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ABSTRACT: Using neural correlates of intentionally 

induced human emotions may offer alternative imagery 

strategies to control brain-computer interface (BCI) 

applications. In this paper, self-induced emotions, i.e., 

emotions induced by participants performing sad or 

happy related emotional imagery, are compared to motor 

imagery (MI) in a two-class electroencephalogram 

(EEG)-based BCI. The BCI setup includes a multistage 

signal-processing framework allowing online continuous 

feedback presentation in a game involving one-

dimensional control of game character. From seven 

participants, the highest online classification accuracies 

are 90% for emotion-inducing imagery (EII) and 80% for 

MI. Offline and online results analysis showed no 

significant differences in MI and EII performance. The 

results suggest that EII may be suitable for intentional 

control in BCI paradigms and offer a viable alternative 

for some BCI users. 

 

INTRODUCTION 

 

Brain-computer interfaces (BCIs) offer means to 

communicate and control computer-based applications 

without movement, including entertainment [1], [2] (e.g. 

BCI games), rehabilitation [3] and assistive technologies. 

BCIs are built around decoding the person’s intent by 

direct measurement of brain activity [4], usually 

measured through electroencephalography (EEG). One 

of the challenges in BCI is that there are limited options 

for control strategies available to the users: some 

strategies, e.g., motor imagery, are challenging for some 

users and require training [5], [6], and other strategies 

(evoked potentials) often require gaze control and are 

dependent on external stimuli. As a non-negligible 

portion of subjects have been shown to be unable to learn 

how to control a motor imagery (MI) BCI [5], within a 

limited duration of training there is a need for 

investigation of alternative imagery strategies for such 

users.  

Emotion is being investigated as a potential BCI control 

strategy. The differences observed in brain responses to 

different emotional stimuli or recall of emotional events 

may enable a multi-class BCI [7]. Positive emotions 

(e.g., happy, joy) are associated with less relative alpha 

power in left frontal cortical regions than the right, 

whereas for negative emotions (e.g., sad, disgust) less 

relative alpha power is observed in the right frontal 

cortical area [8], [9], and similar hemispheric asymmetry 

activation was reported in functional imaging [10]. 

Besides the differences in brain activity associated with 

different emotions, for emotion to be useful in active 

independent BCIs, where the user issues a command as 

opposed to waiting on a stimulus to evoke a brain 

response, the BCI user is required to imagine or recall 

emotional situations. Chanel et al. [11] reported an 

accuracy of 71.3% in two-class classification of self-

induced emotion, in their study, the participants were 

self-paced in the task of self-inducing emotion. In similar 

study, Chanel et al [12] achieved an accuracy of 63% in 

a three-class (negative emotion, positive emotion, and 

neutral) and 80% for two-class classification. In their 

study, the participants were asked to recall emotional 

events in an 8 s trial. Furthermore, Iacoviello et al. [13] 

achieved a classification accuracy of 90.2% for imagery 

induced by remembering unpleasing odor versus relaxed 

state. Sitaram et al. [14], in fMRI-based study, presented 

performance feedback to participants who were recalling 

sad, happy, and disgust emotions, and achieved an 

accuracy of 60% in a three-class classification with 

feedback presentation. Only a few of previous work have 

applied emotion-inducing imagery with real or pseudo-

real time feedback presentation. In a typical BCI system, 

the user should be provided with interaction feedback.  

In the preliminary study on EII [15], participants 

controlled a video game character using sad and happy 

imageries, and their performance suggested that the use 

of emotion-inducing imageries in BCI should be 

investigated. Here, imageries of self-induced emotional 

states are investigated as an alternative to MI, using a 

standard MI BCI paradigm and setup with healthy human 

participants. Performance results of imageries induced by 

sad versus happy events compared to results of left versus 

right hand movement imageries during the one-

dimensional control of a video game character are 

reported. 

 

MATERIALS AND METHODS 

 

     Participants: Seven healthy volunteering participants 

(1 female and 6 men, mean age 29, SD = 6) were 

recruited at Ulster University. Each participant, 

individually participated in one EEG recording session, 
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and after the session the participant was asked, in an 

informal interview, what he/she thought about his/her 

performance in task execution during the session. Six of 

the participants had previously participated in at least one 

motor imagery BCI study, and one of these six 

participants was known to have a good performance in 

MI. The remaining participant was participating in active 

BCI paradigm for the first time. All the seven participants 

had not previously participated in EII BCI training prior 

to the study. 

     Experimental Setup: Each EEG recording session 

included four runs: two EII runs and two motor imagery 

runs. Each type of imagery consisted of one training run 

and one online feedback run as shown in Fig. 1. The order 

of runs was randomized between participants i.e., either 

EII or MI was performed in the first two runs. The 

recording session utilized a computer game paradigm 

called NeuroSensi, in which a light, representing a 

neuronal spike, traversed the left or right graphical axon 

(see Fig. 2) on the computer screen, cued the participant 

to perform one of two imageries i.e., left versus right 

hand movement, or sad versus happy emotion-inducing 

imagery. In feedback runs, the game objective was to 

collect the spike by moving the game character (a 

graphical representation of neuron’s cell body and 

dendrites as shown in Fig. 2). Points are awarded for 

moving the game character in the right direction and 

positioning the character as close as possible to the axon 

when the spike reached the end of the axon. Additional 

points are awarded for collecting more than three spikes 

consecutively without failure. These bonus points are 

accompanied with background neurons firing and 

propagating several spikes for about 1 s (after task 

execution). The continuous feedback, i.e., movement of 

the game character, was controlled by the BCI. Each run 

included 60 trials randomly ordered for two class tasks, 

30 trials for each class. Before starting EII runs, the 

participant was instructed to identify two mnemonic or 

fictitious emotional events: one event he/she thought 

would make him/her happy and another events that 

would make him/her sad. To avoid possible emotional 

stress into the participants, they were instructed to refrain 

from using extremely sad events. During EII training 

runs, participants were asked to imagine or recall the sad 

event when the spike was cued on the left axon, and to 

imagine or recall the happy event when the cue appeared 

on the right hand side axon. In the case of motor imagery 

tasks, the participant was asked to imagine right hand 

movement when the cue was on right, and left hand 

movement when the cue appeared on the left side. 

 

Figure 1. The structure of recording session. Each 

recording session had 4 runs of imagery tasks, each run 

with 60 trials (see details in text). 

EEG data were sampled at 125 Hz from 16 channels 

(Fp1, Fp2, F3, Fz, F4, T7, C3, Cz, C4, T8, P3, Pz, P4, 

PO7, PO8, and Oz) setup in 10-20 system. EEG data 

were visually inspected for strong artefacts (e.g., eye-

blinks) and then processed through a multistage signal 

processing framework which includes neural-time-

series-prediction-preprocessing (NTSPP), spectral 

filtering (SF) in subject specific frequency bands and 

common spatial patterns (CSP) as previously used in [1], 

[16]. This signal processing framework is illustrated in 

Fig. 3.

 

Figure 2. The screenshots of the BCI game used in cueing and feedback presentation. The neuron character is fixed in the 

middle of the two axons during no-feedback run (screenshot on the left), and it moves horizontally to collect the spike 

during the feedback run (screenshot on the right).
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Figure 3. BCI setup used to preprocess EEG, extract and classify EEG features correlating to imageries; in the feedback 

session, the classifier’s output is de-biased to adapt the feedback.

     Time-Series-Prediction: In the NTSPP framework 

different prediction networks are trained to specialize in 

predicting future samples of different EEG signals. Due 

to network specialization, features extracted from the 

predicted signals are more separable and thus easier to 

classify. The number of time-series available and the 

number of classes governs the number of specialized 

predictor networks and the resultant number of predicted 

time-series from which to extract features 

  P M C   (1) 

where P is the number of networks (which is equal to 

number of predicted time-series), M is the number of 

EEG channels and C is the number of classes. For 

prediction,  

     ˆ ( ) ( ),..., ( ( 1)ci ci i ix t f x t x t   (2) 

where t is the current time instant,  Δ is the embedding 

dimension and τ is the time delay, π is the prediction 

horizon, cif  is the prediction model trained on the ith 

EEG channel, xi, i=1,..,M, for class c, c =1,..C, and ˆ
cix  is 

the predicted time series produced for channel i by the 

predictor for class c. NTSPP adapts to each subject 

autonomously using self-organizing fuzzy neural 

networks (SOFNN) [17]. 

     Spectral Filtering: Prior to the calculation of the 

spatial filters, X can be preprocessed with NTSPP and/or 

spectrally filtered in specific frequency bands. The bands 

are selected autonomously in the offline data processing 

stage using a heuristic search and are subsequently used 

to band pass filter the data before CSP is applied. The 

search space is every possible band size in the 8 - 28Hz 

range. The high frequencies are not considered since they 

are likely to be contaminated with scalp electromyogram 

(EMG) [18], especially in the case of frowning associated 

with emotion-inducing tasks. These bands encompass the 

alpha, beta bands which are altered during sensorimotor 

processing [17], [19], [20] and for emotional state 

detection these bands or sub-bands within these bands are 

often used  [21], [22]. 

     Common Spatial Patterns (CSP): CSP is used to 

maximize the ratio of class-conditional variances of EEG 

sources. CSP is applied by pooled estimates of the 

covariance matrices, Σ1 and Σ2, for two classes, as 

follows: 

 


  1 1
( {1,2})c

c

I t

c i iI i
X X c   (3) 

where Ic is the number of trials for class c and Xi is the 

M×N matrices containing the ith windowed segment of 

trial i;  N is the window length and M is the number of 

EEG channels – when CSP is used in conjunction with 

NTSPP, M=P as per (1). The two covariance matrices, Σ1 

and Σ2, are simultaneously diagonalized such that the 

Eigenvalues sum to 1. This is achieved by calculating the 

generalized eigenvectors W:  

    1 1 2( )W WD   (4) 

where the diagonal matrix D contains the Eigenvalue of 

Σ1 and the column vectors of W are the filters for the CSP 

projections. With this projection matrix the 

decomposition mapping of the windowed trials X is given 

as 

 E WX   (5) 

     Features Extraction and Classification: Features, , 

are derived from the log-variance of 

preprocessed/surrogate signals within a 2 second sliding 

window:  

   log(var( ))E   (6) 

The dimensionality of 
 
depends on the number of 

surrogate signals used from E. The common practice is 

to use several (between 2 and 6) eigenvectors from both 

ends of the eigenvector spectrum, i.e., the columns of W. 

Using NTSPP the dimensionality of X can increase 

significantly. CSP, can be used to reduce the 
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dimensionality therefore combining NTSPP with CSP 

leads to increased separability while maintaining a 

tractable dimensionality [16]. Linear discriminant 

analysis (LDA) is used to classify the features at the rate 

of the sampling interval. 

An inner-outer cross-validation (CV), with 5 outer folds, 

is performed to find the optimal subject-specific 

frequency. In the outer fold, NTSPP is trained on up to 

10 trials randomly selected from each class (2 seconds of 

event related data from each trial). The trained networks 

then predict all the data from the training folds to produce 

a surrogate set of trials containing only EEG predictions. 

The 4 training folds from the outer splits are then split 

into 5 folds on which an inner 5-fold cross validation is 

performed for best subject specific frequency selection. 

After the subject specific frequency band selection, 

NTSPP-SF-CSP is then applied on the outer fold training 

set, where a feature set is extracted. The LDA classifier 

is trained at every time point across the trials and tested 

for that point on the outer test folds. The average across 

the five-folds is used to identify the optimal number of 

CSPs (between 1-3 from each side of W) and the final 

time point of maximum separation which are then used 

to setup the final classifier using all the training data, to 

be deployed online. The Fig. 3 illustrates the BCI setup 

used in this study.  

In the online processing, the classifier’s output 

translation to the game character movement was de-

biased to account for class bias behaviour and improve 

feedback stability. This de-biasing was carried out by 

continuous removal of the mean from the continuous 

classifier output, where the mean was calculated with a 

35s window on the most recent classifier output.  

Additionally, EEG dynamics throughout tasks execution 

were also explored through event-related 

(de)synchronization (ERD/S) analysis. The ERD/S was 

computed as power change respective to the baseline 

power as in [23] within the subject’s selected frequency 

band after applying independent components analysis 

and wavelet transform on the data for further artefacts 

removal [24].  

 

RESULTS 

 

Offline cross-validation classification accuracy (CA) for 

each run, along with online single-trial CA results for 

feedback runs, online results, and sample results from 

event-related (de)synchronization analysis are reported 

in Fig. 4, Fig. 5, Fig. 6, and Fig. 7 respectively. Wilcoxon 

signed rank tests showed no significant differences 

between EII and MI (p > 0.05), although the EII training 

accuracies exceed the MI accuracies for most of the 

participants. ERD/S analysis showed EII tasks 

separability in the temporal and frontal channels; this can 

be seen in sample topographic maps for subject 2 in     

Fig. 7. The online classification results in Fig. 5 show 

decrease in accuracies for most of the participants 

compared to what was achieved in offline analysis for the 

feedback run. However, in each of the considered BCI 

strategies, there was one participant who achieved good 

online performance: one experienced participant 

achieved 81% in MI and another achieved 90% in EII 

online performance. The performance in the remaining 

participants is 64.18 ± 4.75% and 62.09 ± 2.03% for EII 

and MI respectively.  

 

 

Figure 4. The LOOCV classification accuracy for 

feedback and no-feedback runs. There were no feedback 

runs for subject 1.  

 

Figure 5. Online task classification accuracies for 

emotion inducing imagery and motor imagery during 

feedback runs. Note that there were no feedback runs for 

subject 1. 

 

 

Figure 6. Topographic maps of band power changes 

(ERD/S) in [8–13] Hz band during motor imagery task 

execution for subject 2, and time-course ERD/S observed 

from channel C4.  
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Figure 7. Topographic maps of band power changes in 

[8–20] Hz band during emotion inducing tasks execution 

for subject 2, and and time-course ERD/S from channel 

Fp1. 

DISCUSSION 

 

The objective of this pilot study was to investigate the 

discriminability of EEG during emotion inducing 

imagery, to investigate if emotion-inducing imageries 

could be used to control a video game using a BCI and to 

compare performances of EII with the extensively 

studied motor imagery based control strategies. The 

results suggest that emotions, which normally influence 

the way we live [25], may be intentionally modulated and 

actively translated  in a BCI control paradigm. 

Consequently, the study shows some of the first evidence 

to support the use of emotion inducing imagery as a 

replacement to motor imagery. This study was based on 

one off-line training session and online training session 

for both MI and EII. Although participants were limited 

by the amount of training, their classification accuracies 

exceed chance level which was 50%. It usually requires 

several training sessions to achieve good accuracy in 

motor imagery performance, so further validation with 

multiple sessions training and on a larger sample of 

participants is required to determine if emotion imagery 

could be used by BCI users who do not perform well with 

motor imagery. Subject 2 who achieved high online 

performance in MI is familiar with motor imagery based 

BCI and had achieved good accuracies in the past. The 

participant with highest accuracy in online EII (subject 5) 

reported in the post-session interview that meditation 

practice was the key technique used in executing tasks 

for EII; meditation has been shown to improve BCI 

performance [26], [27]. Subject 2 also reported regular 

meditation practice.  

Two participants showed acceptable online performance, 

whereas for the other participants’ online performance is 

diminished with respect to the calibration run (the run 

without feedback). Even though a reduction in accuracy 

was observed in the online runs, the baseline accuracy (1 

s before cue) were significantly lower that the peak 

accuracy during the task execution (p < 0.05) for all the 

participants indicating that above chance performance 

was achieved.  In addition, as this is single session and 

participants experienced on-screen feedback for the first 

time (except subject 2) along with distractors in the 

games (game score updates and bonus firing spikes), this 

likely had an impact on participants’ concentration, 

cognitive load [28] and maintaining focus and 

consistency between the runs. With additional sessions 

the BCI and participants’ performance may be more 

robust. 

 

CONCLUSION 

 

Emotion induced by imagining fictional events or 

recalling mnemonic emotional events with a continuous 

feedback in a BCI setup was investigated in this 

preliminary study, using a setup normally used for motor 

imagery. The comparison between online control of a 

game in single session with either motor imagery and 

emotion-inducing imagery showed that the performance 

difference is insignificant, suggesting that emotion-

inducing imagery may be used as an alternative to motor 

imagery. The reported results are from seven 

participants, each with one EEG recording session, so 

more analysis with a larger sample of participants and 

multiple training sessions is currently being carried out 

to thoroughly compare motor imagery and emotion 

inducing imagery BCI. Besides validating the 

comparison, there is a need to assess the effect of 

multiple training sessions on EII performance. 
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