Tabelle III.

Kraftbedarf der Hebewerke.

Post- Nr.	Für das Höchst- reservoir	Im Hebewerk	Zu hebende Wassermenge		Förder-	Druck-	Erforderliche
			in Betriebs- stunden	l/Sek.	hőhe h/m	verlust h/m	Leistung des Elektromotors P. S.
I	Steinbruch	Steinhof	24	37	92.50	2.30	85
2	Michaelerberg	Salmannsdorf	15	55	89.00	2.30	122
3	Dreimarkstein	Salmannsdorf	10.5	7.5	144.00	2.70	27
4	Kobenzl	Krapfenwaldgasse	15	24	117.50	6.10	72
5	Kahlenberg	Krapfenwaldgasse	10.5	4	207.50	13.70	21
					Zusammen		327

Um zu erkennen, daß und wie dies möglich ist, sei an den schon beschriebenen Zweck dieser Rohrleitung erinnert; sie soll einerseits in dem neu zu versorgenden Stadtgebiete das Wasser mit natürlichem Drucke möglichst hoch abgeben und anderseits auch die beiden Gegenreservoirs in der Galizinstraße und am Fuße des Hungerberges versorgen.

An diesen beiden Stellen wird durch die Wasserabgabe aus der hochgespannten Leitung an die tiefliegenden Behälter ein sehr bedeutender hydrodynamischer Druck, ein Überdruck, ausgelöst, der nutzlos vernichtet werden müßte, wenn er nicht in Arbeit umgesetzt wird.

Dieser Drucküberschuß beträgt vor dem Reservoir »Galizinstraße« 77 m und vor dem Reservoir »Hungerberg« 86 m; nachdem aber an ersterer Stelle 147 l pro Sekunde und an letzterer 361 l pro Sekunde abzugeben sind, so kann hier durch Einschaltung zweckentsprechender Wassermotoren (Turbinen) Kraft zum Antriebe elektrischer Motoren gewonnen werden; die erzeugte elektrische Energie soll durch Kabelleitungen nach den Verbrauchsstellen – den Hebewerken – übertragen und dort als motorische Kraft für die Pumpen benützt werden.

Auf diese Art sind, wie aus der Tabelle IV zu entnehmen ist, beim Reservoir »Galizinstraße« 96 P. S. und beim Reservoir »Hungerberg« 264 P. S. durch 24 Stunden hindurch an den Dynamos zu gewinnen.

Die Primärstation in der Galizinstraße hat die Kraft an das Hebewerk beim Reservoir Steinhof und die Primärstation Hungerberg an die beiden Hebewerke Salmannsdorf und Krapfenwaldgasse abzugeben, wodurch sich die kürzesten Fernleitungen ergeben.

Ein Vergleich der Tabellen III und IV zeigt, daß die Kraftstation »Hungerberg« ausreichend stark ist, um den Bedarf der Hebewerke Salmannsdorf und Krapfenwaldgasse
während der in Tabelle III angegebenen Betriebszeiten zu decken. Die Zentrale »Galizinstraße« kann dagegen für den Kraftbedarf des Hebewerkes Steinhof nur bei 24 stündigem