Aus Gleichung 3 erhält man mit $x = \alpha H$ und Gleichung I

$$J = \frac{1}{6} B H^3 (1 - \alpha)^2 (2 + \alpha);$$

Nun ergibt sich aber aus einer der beiden Gleichungen 4 unter Benützung von 5 und für $\sigma_b = \sigma$, $s_e = s$,

Dies oben eingesetzt liefert:

$$H^2 = \frac{6 \nu \alpha}{s (1 - \alpha)^2 (2 + \alpha)} \frac{M}{B} = C' \frac{M}{B}, \dots$$
 II

wobei die Werte von C und C' für variables α einer weiter unten folgenden Tabelle*) zu entnehmen sind.

Bei gegebener Balkenbreite B liefert die Formel II die Höhe, und die Formel I die notwendige Eisenfläche. Bei Platten kann man am einfachsten M und F_e auf die Breite B=1 beziehen; dann fällt B aus den Formeln.

Für den praktisch wichtigen Fall von $s = 1000 \ kg/cm^2$

$$\sigma = 33\frac{1}{3}$$
 , also $\alpha = \frac{2}{3}$ liefern die

Formeln I und II

$$\frac{F_e = \frac{BH}{180}}{\text{oder } \frac{F_e \doteq 0.560/_0 F_b}{F_e \doteq 0.560/_0 F_b}} \right\} \quad . \quad . \quad . \quad . \quad . \quad Ia$$
für $B = 1, H^2 \doteq \frac{M}{5}$

Beispiel: Eine freiaufliegende Platte für das Angriffsmoment $M = 72000 \, kgcm$ pro 1 m Plattenbreite ist zu dimensionieren:

Auf die Breiteneinheit 1 cm entfällt

 $M = 720 \ kg \ cm,$ somit nach Formel II^a $H^2 = \frac{M}{5} = 144,$ $H = 12 \ cm$

Eisenfläche pro 1 m Breite nach Formel $I^a: F_e = \frac{1200}{180} = 6\frac{2}{3} cm^2$

Es ist nach dem Gesagten selbstverständlich, daß die obigen Formeln I und II dieselben Werte ergeben, wie sie Professor Melan an der oben zitierten Stelle fand.

2. Platten mit "steifer" Armierung.

(Vgl. Tafel I, Fig. 2a, 2b).

Bezeichnet h die Höhe der steifen Einlage, H die Höhe der Platte und x den Abstand der ideellen Schwerachse von der Unterkante der Konstruktion (wobei wieder die dünne Betonschichte unterhalb des Eisens nicht in Rechnung

^{*)} Siehe Seite 14.

gezogen sei) so gilt zur Ermittelung der Schwerachse bekanntlich: Summe der statischen Momente aller wirksamen Flächenteile gleich Null:

$$\frac{1}{2}B(H-x)^2 = \nu F_e\left(x-\frac{h}{2}\right) \dots \dots 8$$

wobei F_e die gesammte auf die Breite B entfallende Eisenfläche bedeutet. Setzen wir hierin nach Gleichung 7

so ergibt sich

$$\frac{1}{2}BH^2(1-lpha)^2 = \nu F_e H\left(lpha - rac{k}{2}
ight)$$
 und

Vergleicht man dies mit Gleichung I so findet man, daß Gleichung III für $h \equiv 0$ also $k \equiv 0$ in Gleichung I übergeht.

Hier ist es mitunter zweckmäßiger die Gleichung nach B aufzulösen. Sie lautet dann

Das Trägheitsmoment des wirksamen Querschnitts ergibt sich mit

$$J = \frac{1}{3} B (H - x)^3 + \nu F_e \left(x - \frac{h}{2} \right)^2 + \nu J_e, \quad . \quad . \quad . \quad 10$$

wobei J_e das Trägheitsmoment der steifen Einlage, bezogen auf die eigene Achse, ist. Diese Formel (10) setzt als Armierung ein Profil voraus, dessen Schwerpunkt in der halben Höhe liegt, ist also für gewalzte I-Träger, für genietete mit horizontaler Symmetrieachse giltig, nicht aber z. B. für Bulbeisen.

Substituiert man in Gleichung 10 für ν F_c $\left(x-\frac{h}{2}\right)^2$ den aus Gleichung 8 resultierenden Wert

$$\nu F_{\epsilon} \left(x-\frac{h}{2}\right)^2 = \frac{1}{2} B (H-x)^2 \left(x-\frac{h}{2}\right)$$
 und führt man auch

Gleichung 7 und 9 ein, so erhält man

Aus dieser Gleichung ist zunächst Je zu eliminieren.

Es ist $J_e \equiv c$. $F_e h^2$, wobei c bei den reichsdeutschen und österreichischen gewalzten Normal-I-Profilen ziemlich genau gleich $\frac{1}{6}$ ist. Setzt man hierin die Werte für h aus Gleichung 9 und für F_e aus Gleichung III, so erhält man

$$J_{e} = c \frac{(1 - \alpha)^{2}}{2 \nu \left(\alpha - \frac{k}{2}\right)} k^{2} B H^{3}$$

und für die gewalzten Normal-I-Profile ist

$$\mathring{C} = \frac{(1-\alpha)^2}{12\nu\left(\alpha-\frac{k}{2}\right)} \quad . \quad . \quad . \quad . \quad . \quad . \quad 13$$

Führt man nun den Wert von J_e aus Gleichungen 12, und 13 in Gleichung 11 ein und ersetzt J durch den in Gleichung 7a gefundenen Wert

$$J = \frac{v \alpha}{s} MH$$
, so findet man endlich

Formel IV geht für k=0 in Formel II über.

Die Gleichungen III und IV, die sich zur direkten Dimensionierung von Platten mit steifen Einlagen benützen lassen, schreiben sich auch wie folgt:

wobei C_1 und C_2 für die verschiedenen Werte der zulässigen Spannungen und für die verschiedenen Werte von α und k aus nachstehenden Tabellen zu entnehmen sind. m ist das auf die Breiteneinheit reduzierte Angriffsmoment.

Zulässige Eisen-	Zu- lässiger Beton- druck okg/cm ²	α	Werte von C_1 für $\nu=15$ und					
$Zug-$ spannung $s kg/cm^2$			$k = \frac{1}{2}$	$k = \frac{2}{3}$	$k = \frac{3}{4}$	$k = \frac{4}{5}$	k = 1	
800	25	0.681	127.062	102.593	90.212	82.842	53.360	
	30	0.640	90.278	71.065	61.344	55.556	32.408	
	$33\frac{1}{3}$	0.615	73.873	57.076	48.574	43.515	23.276	
	40	0.571	52:325	38.795	31.949	27.874	11.573	
900	25	0.706	161.948	129.458	117:556	106 205	71.497	
	30	0.667	112.818	90.363	78.998	72.235	45.181	
- A	331/3	0.643	92.506	72.970	63.083	57.199	33.661	
	40	0.600	65.625	50.062	42.187	37.500	18.750	
1000	25	0.727	196.428	158.600	141.690	131.627	91.376	
	30	0.690	137:356	111.445	98.335	90.532	59:313	
	331/3	0.667	112.818	90.363	78.998	72.235	45.181	
	40	0.625	80.000	62.293	53.334	48.000	26.667	
1200	25	0.762	277:480	227.205	204.962	191.721	138:758	
	30	0.727	196.482	158 600	141.690	131.627	91.376	
	$33\frac{1}{3}$	0.706	161.948	129.458	117:556	106.205	71.497	
	40	0.667	112.818	90.363	78.998	72.235	45.181	

$$C_2 = \frac{12 \nu \alpha \left(\alpha - \frac{k}{2}\right)}{s \left(1 - \alpha\right)^2 \left[k^2 + \left(2 + \alpha - \frac{3}{2}k\right) \left(2 \alpha - k\right)\right]} \dots^*\right) \dots 15$$

Zu- lässiger Eisenzug s kg/cm ²	Zu- lässiger Beton- druck σ kg/cm²	α	Werte von C_2 für $\nu=15$ und					
			$k = \frac{1}{2}$	$k = \frac{2}{3}$	$k = \frac{3}{4}$	$k = \frac{4}{5}$	k = 1	
800	25	0.681	0.3390	0.3246	0.3042	0.2874	1.1909	
	30	0.640	0.2513	0.2350	0.2156	0.2003	0.1179	
	$33\frac{1}{3}$	0.615	0.2115	0.1942	0.1754	0.1608	0.0854	
or games	40	0.571	0.1579	0.1394	0.1212	0.1077	0.0430	
900	25	0 706	0.3748	0.3549	0.3439	0 3201	0.2253	
	30	0.667	0.2714	0.2579	0.2401	0.2257	0.1445	
1 1 1	331/3	0.643	0.2282	0.2138	0.1965	0.1828	0.1087	
1	40	0.600	0.1699	0.1542	0.1376	0.1250	0.0615	
1000	25	0.727	0.4012	0.3832	0.3656	0.3505	0.2560	
	30	0.690	0.2905	0.2794	0.2629	0.2492	0.1691	
Javani	$33\frac{1}{3}$	0.667	0.2499	0.2321	0.2161	0.2031	0 1301	
	40	0.625	0.1811	0.1676	0.1524	0.1405	0.0781	
1200	25	0.762	0.4576	0.4425	0.4268	0.4125	0.3182	
	30	0.727	0.3344	0 3193	0.3047	0 2921	0.2133	
	331/3	0.706	0.2811	0.2661	0.2579	0.2401	0.1690	
	40	0.667	0.2035	0.1934	0.1801	0.1693	0.1084	

Die Benützung der Formeln geschieht wie folgt:

Aus den zulässigen Spannungen im Eisen und Beton bestimmt sich aus der Tabelle oder aus Gleichung 6 der Wert von α . Der Wert von k wird nach Bedarf angenommen und B wird dann aus der Formel III bestimmt. Dabei ist zu berücksichtigen, daß sich B umso größer ergeben wird, daß man die Eiseneinlagen umso weiter auseinander wird rücken dürfen, je größer k gewählt wird.

 $k=\frac{3}{4}$ bis $\frac{4}{5}$ dürfte der geeignetste Wert sein. Eine Änderung in der Annahme von k hat sehr geringen Einfluß auf H und ändert bloß F_e und B.

Man ermittelt H aus Gleichung IV, worin M/B = m das auf die Breiteneinheit reduzierte Angriffsmoment ist.

Mit H ist aus h = kH auch die Profilnummer h und somit aus dem Profilbuch F_e gegeben.

Aus Gleichung III ergibt sich dann das B. **)

^{*)} Zur Hilfe bei der Berechnung anderer Werte von C_1 und C_2 als in obiger Tabelle angegeben diene daß $C_2 = C_1 \frac{6 \alpha}{s \left[k^2 + (2 + \alpha - \frac{3}{2} k) (2 \alpha - k)\right]}$.

^{**)} Ergibt sich B hieraus größer als etwa 1^m , so ist die Platte zwischen den Traversen für sich zu untersuchen und k eventuell kleiner zu wählen.

Für den in der Praxis wichtigen Fall $s = 1000 \ kg/cm^2$, $\sigma = 33.3 \ kg/cm^2$ und für k = 3/4

lauten die beiden Gleichungen III und IV.

Beispiel: Eine Platte mit steifen Einlagen für ein Biegungsmoment von 120.000 kgcm pro 1 m Plattenbreite zu konstruieren: zulässig sei $s = 1000 \ kg/cm^2$,

 $6 = 33\frac{1}{3} \, kg/cm^2$.

a) Ich wähle $h = \frac{3}{4} H$, also $k = \frac{3}{4}$.

Die Tabellen liefern hiefür $C_1 = 78.998$

 $C_2 = 0.2161$

Für 1 cm Breite ist $\frac{M}{B}$ = 1200 kgcm. Somit nach Gleichung IV^a

 $H^2 = 0.2161 \cdot 1200$ H = 16 cm; somit $h = \frac{3}{4} H = 12 cm$.

α) Nach den österreichischen Normalien hat I-Profil Nr. 12 eine Fläche $F_e = 16.08 \ cm^2$

nach IIIa ist

$$B = 78.998 \cdot \frac{16.08}{16} = \text{rund } 80 \text{ cm.}$$

Untersucht man zur Kontrolle die so angenommene Konstruktion hnsichtlich ihrer Spannungen, so erhält man:

> x = 10.7 cm $J = 15196.5 \text{ cm}^4$ $M = 80.1200 = 96.000 \ kgcm$ $s = 1010 \ kg/cm^2$ 6 = 33.4

β) Nach den deutschen Normalprofilen hat I-Profil Nr. 12 eine Flähe $F_e = 14.2 \text{ cm}^2$

nach IIIa ist

$$B = 78.998 \frac{14.2}{16}$$
; = rund 70 cm.

Die Untersuchung ergibt:

x = 10.7 cm $J = 13147.39 \text{ cm}^4$ $M = 76800 \ kgcm$ $s = 937 \ kg/cm^2$ $\sigma = 31$

b) Hätte man $k=4/\epsilon$ gewählt, so hätten die beiden Tabellen geliefer.

 $C_1 = 72.235$

 $C_2 = 0.2031$ und nach Formel IV wäre

H = 15.5 cm geworden.

Praktisch ausgeführt hätte man auch dann $H=16\,cm$; daraus erkennt man, wie gering der Einfluß einer Änderung in der Wahl von k ist.

3. Plattenbalken mit schlaffer Armierung.

(Vgl. Tafel I, Fig. 3a, 3b, 3c.)

Mit diesen Konstruktionen, denen heute im Betoneisenhochbau die größte Rolle zugefallen ist, wollen wir uns ausführlich befassen. Es sei zunächst der Vorgang charakterisiert, wie er bei der Projektierung solcher Balkendecken bisher eingehalten wird. Die Dimensionierung wird nach dem Maximalmoment vorgenommen, und es wird dann eine Untersuchung der durch Querkräfte am stärksten beanspruchten Stellen bezüglich der dort auftretenden Schubspannungen durchgeführt. Auf diese Schubspannungen kommen wir im II. Teil der Arbeit noch zurück. Die Dimensionierung selbst beschränkt sich auf die Ermittlung der Randspannungen an der Stelle des Maximalmoments unter Zugrundelegung einer ersten Annahme. Dabei ist d in der Regel schon aus der Untersuchung der Platte für sich als Querkonstruktion zwischen den Rippen gegeben. Für B wird bisher entweder die Rippendistanz oder nach den deutschen Vorschriften der Rippenlänge in Rechnung gestellt. Wie es sich damit verhält, darüber handelt der ganze zweite Teil dieser Arbeit. Für den ersten Teil soll deshalb B als gegeben angesehen werden. Es werden ferner für F_{e_i} b, h erste Annahmen gemacht und man erhält dann die Fläche des ideellen Betonbalkens nach Melan aus

ferner aus einer Gleichgewichtsgleichung

Das Trägheitsmoment des ideellen Betonbalkens auf seine ideelle Schwerpunktsachse aus:

Endlich, wenn M das Maximalmoment der äußeren Kräfte ist, die Grenzspannungen im gefährlichen Querschnitt

Ergeben sich hieraus zulässige Werte, so ist die Konstruktion ausreichend. Soll sie auch ökonomisch dimensioniert sein, so müssen sich aus 19) die zulässigen Grenzwerte der Inanspruchnahme ergeben.

Die statische Berechnung läuft also auch hier auf eine Untersuchung einer nach dem Gefühl getroffenen ersten Annahme hinaus. Darin und ferner in dem Umstand, daß es aus dem Ergebnis der Formeln 19, sofern es ein ungünstiges ist, nicht ohne weiteres zu erkennen ist, welche Abmessung der Rippenplatte zu ändern ist und in welchem Ausmaß — darin liegen die Hauptschwierigkeiten für den in der Berechnung von Betoneisenkonstruktionen Ungeübten. Verfasser hat als Dozierender der Eisen- und Eisenbetonkonstruktionen