
Friedrich Fraundorfer
Peter M. Roth
Fabian Schenk (eds.)

Stift Vorau, Austria
February 6–8, 2019

C
o
m

p
u
te

r
V

is
io

n
 W

in
te

r
W

o
rk

sh
o
p

 2
0

1
9

Proceedings of the
24th Computer Vision
Winter Workshop

Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)

Proceedings of the

24th Computer Vision
Winter Workshop

February 6–8, 2019

Stift Vorau, Austria

Graz University of Technology
Institute of Computer Graphics and Vision

Editors

Friedrich Fraundorfer, Peter M. Roth, and Fabian Schenk

Layout

Graz University of Technology
Institute of Computer Graphics and Vision

Cover

Graz University of Technology
Institute of Computer Graphics and Vision

Cover image: © Stift Vorau

© 2019 Verlag der Technischen Universität Graz
www.tugraz-verlag.at

ISBN e-book 978-3-85125-652-9
DOI 10.3217/978-3-85125-652-9

This work is licensed under a Creative Commons Attribution 4.0 International
License.
https://creativec ommons.org/licenses/by/4.0/deed.en

Contents

Preface . ii

Workshop Organization . iii

Program Committee . iii

Index of Authors . iv

Keynote Talk . 1

Self-supervision for 3D Shape and Appearance Modeling
Gabriel Brostow . 2

Original Contributions . 3

Situation-Aware Pedestrian Trajectory Prediction with Spatio-Temporal Attention Model
Sirin Haddad, Meiqing Wu, Wei He, and Siew-Kei Lam 4

SyDD: Synthetic Depth Data Randomization for Object Detection using Domain-Relevant
Background
Stefan Thalhammer, Kiru Park, Timothy Patten, Markus Vincze, and Walter G. Kropatsch 14

A Spatiotemporal Generative Adversarial Network to Generate Human Action Videos
Stefan Ainetter and Axel Pinz . 23

Perspective transformation for accurate detection of 3D bounding boxes of vehicles in traf-
fic surveillance
Viktor Kocur . 33

Counting slope regions in the surface graphs
Darshan Batavia, Rocio Gonzalez-Diaz, Walter G. Kropatsch, and Rocio Moreno
Casablanca . 42

Leveraging Outdoor Webcams for Local Descriptor Learning
Milan Pultar, Dmytro Mishkin, Jiri Matas . 51

Benchmarking Semantic Segmentation Methods for Obstacle Detection on a Marine Envi-
ronment
Borja Bovcon and Matej Kristan . 61

i

Preface

The 24th Computer Vision Winter Workshop (CVWW 2019), taking place at Stift Vorau, Austria,
was organized by the Institute of Computer Graphics and Vision at Graz University of Technology.
The Computer Vision Winter Workshop is the annual meeting of computer vision research groups
located in Graz, Ljubljana, Prague, and Vienna. The main goal of this workshop is to communicate
fresh scientific ideas within these four groups and to provide conference experience to PhD students.
However, the workshop is open to everyone, which can be seen from many international contributions
and attendees.

After a double-blind full paper review process by an international programme committee, finally,
seven original works have been accepted for publication. These have been presented at the workshop
as oral presentations. In addition, we were happy that Gabriel J. Brostow (University College London)
accepted our invitation and gave an invited talk on Self-supervision for 3D Shape and Appearance
Modeling. The workshop programme was completed by 13 further oral presentations.

Finally, we are happy, that excellent work could be highlighted by an award sponsored by the Austrian
Computer Society (OCG).

Friedrich Fraundorfer, Peter M. Roth, and Fabian Schenk
Vorau, February 2019

ii

Workshop Chairs

Friedrich Fraundorfer, Graz University of Technology
Peter M. Roth, Graz University of Technology
Fabian Schenk, Graz University of Technology

Workshop Administration

Christina Fuchs, Graz University of Technology

Program Committee

Csaba Beleznai, Austrian Institute of Technology
Horst Bischof, Graz University of Technology
Jan Čech, CTU in Prague
Luka Čehovin, University of Ljubljana
Ondrej Chum, CTU in Prague
Boris Flach, CTU in Prague
Vojtech Franc, CTU in Prague
Aleš Jaklič, University of Ljubljana
Margrit Gelautz, Vienna University of Technology
Michal Havlena, PTC Vienna
Martin Hirzer, Graz University of Technology
Jiřı́ Hladůvka, Vienna University of Technology
Walter G. Kropatsch, Vienna University of Technology
Vincent Lepetit, Graz University of Technology
Jiri Matas, CTU in Prague
Mirko Navara, CTU in Prague
Janez Perš, University of Ljubljana
Roman Pflugfelder, Austrian Institute of Technology
Axel Pinz, Graz University of Technology
Thomas Pock, Graz University of Technology
Horst Possegger, Graz University of Technology
Daniel Prusa, CTU in Prague
Robert Sablatnig, Vienna University of Technology
Radim Šára, CTU in Prague
Alexander Shekhovtsov, CTU in Prague
Danijel Skocaj, University of Ljubljana
Darko Stern, Graz University of Technology
Vitomir Štruc, University of Ljubljana
Tomas Werner, CTU in Prague

iii

Index of authors

Ainetter, Stefan, 23

Batavia, Darshan, 42
Bovcon, Borja, 61
Brostow, Gabriel, 2

Casablanca, Rocio Moreno, 42

Gonzalez-Diaz, Rocio, 42

Haddad, Sirin, 4
He, Wei, 4

Kocur, Viktor, 33
Kristan, Matej, 61
Kropatsch, Walter G., 14, 42

Lam, Siew-Kei, 4

Matas, Jiri, 51
Mishkin, Dmytro, 51

Park, Kiru, 14
Patten, Timothy, 14
Pinz, Axel, 23
Pultar, Milan, 51

Thalhammer, Stefan, 14

Vincze, Markus, 14

Wu, Meiqing, 4

iv

Keynote Talk

Self-supervision for 3D Shape and Appearance Modeling

Gabriel Brostow
University College London
G.Brostow@cs.ucl.ac.uk

Abstract

A single glimpse is hardly enough to triangulate the 3D shapes of a scene. But many
glimpses taken together, can give enough supervision to accomplish interesting tasks,
such as depth from a single photo, volume from a single depth, and appearance of
objects and scenes from novel viewing angles. In this talk, I will distill the main lessons
we have learned recently, in attempting to a) design networks that understand "a bit"
about 3D, and to b) train networks to predict depth, or volumes, or appearance, for
several application domains. Some details matter, and the data itself is a key
ingredient. There is still more exciting work to be done! This talk will cover
equivariance, consistency losses, and some personal views on diversity in predictions.

2

Original Contributions

24th Computer Vision Winter Workshop
Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)
Stift Vorau, Austria, February 6–8, 2019

Situation-Aware Pedestrian Trajectory Prediction with Spatio-Temporal
Attention Model

Sirin Haddad Meiqing Wu He Wei
Siew Kei Lam

Nanyang Technological University (NTU)
50 Nanyang Ave, Singapore

{siri0005,wei005}@e.ntu.edu.sg {meiqingwu,assklam}@ntu.edu.sg

Abstract.
Pedestrian trajectory prediction is essential for

collision avoidance in autonomous driving and robot
navigation. However, predicting a pedestrian’s tra-
jectory in crowded environments is non-trivial as it
is influenced by other pedestrians’ motion and static
structures that are present in the scene. Such human-
human and human-space interactions lead to non-
linearities in the trajectories. In this paper, we
present a new spatio-temporal graph based Long
Short-Term Memory (LSTM) network for predict-
ing pedestrian trajectory in crowded environments,
which takes into account the interaction with static
(physical objects) and dynamic (other pedestrians)
elements in the scene. Our results are based on two
widely-used datasets to demonstrate that the pro-
posed method outperforms the state-of-the-art ap-
proaches in human trajectory prediction. In particu-
lar, our method leads to a reduction in Average Dis-
placement Error (ADE) and Final Displacement Er-
ror (FDE) of up to 55% and 61% respectively over
state-of-the-art approaches.

1. Introduction

The provision to estimate future trajectories of
pedestrians and predicting the possibility of colli-
sions can prevent accidents in autonomous driving
and robot navigation. However, pedestrian trajectory
prediction in crowded environments is a challenging
task as human navigation decisions are influenced by
their interactions with other traffic participants and
the static physical objects. In particular, humans nav-
igate in a situation-aware manner by avoiding colli-
sions with static objects and other pedestrians in the
space surrounding them, based on common social

Figure 1: Estimating pedestrian trajectory given the
surrounding environment physical structure in a real-
life scenario. In the figure above, a lamp post lies
in the direction of traversal of the pedestrian of in-
terest. Thus it is essential to capture the existence of
static obstacle and understand how they will navigate
around it.

rules. As such, prediction models must take into ac-
count the interactions of both static and dynamic ele-
ments in the environment in order to accurately pre-
dict the pedestrians’ motion paths. Figure 1 shows a
real scenario that requires awareness of the lamp post
presence in order to make realistic prediction about
the pedestrian trajectory who will avoid walking into
paths leading to the obstacles area.

Previous works that addressed human motion
prediction focused on modeling human-human and
human-space interaction separately. [1, 2, 3, 4, 5] ac-
count for scene static configuration such as obstacles
and scene structures for improving human trajectory
predictions in the presence of dynamic objects. How-
ever, these works mainly target constrained environ-
ments with low crowd density.

4

Recently, the work in [6] presented a deep con-
volutional network that models the impact of scene
static elements on the pedestrian motion. However,
they relied on complex tools comprising convolu-
tion layers and multiple feature maps for modeling
knowledge about the scene. Recurrent neural net-
works in [7, 8, 9] tackled pedestrian trajectory pre-
diction on challenging datasets of outdoor scenes
[10]. Nevertheless, these approaches only modeled
the social interaction among pedestrians without tak-
ing into account the surrounding static context. So-
cial Attention [7] encapsulated the social interactions
along the spatial and temporal domains by adopting
spatio-temporal graph architecture. Their model con-
sidered the social interaction as a global event occur-
ring between each and every pedestrian using their
velocity to state their influence on each other. In con-
trast, Social LSTM [8] only accounted for the influ-
ences within a fixed-size local neighborhood.

In our work, we propose an enhancement to the
models in [7, 11] and improve the modeling of mul-
tiple trajectories correlations over space-time dimen-
sions using the 2D locations of the the static and dy-
namic elements. In particular, the proposed model
overcomes the limitation of Social LSTM [8] which
only accounted for the influence of other pedestrians
within a local neighborhood, while at the same time
being cognizant of the static obstacles at close prox-
imity. This concern was not present in Social Atten-
tion [7]. Our intuition for this model is that while
a pedestrian’s trajectory can be affected by the dy-
namic motions of other pedestrians at a distance, the
decision to avoid static objects is usually made when
the pedestrian is close to the object. Thus, we man-
age to reduce the graph complexity and achieve more
stable predictions by dynamically incorporating the
static elements in the graph structure only when they
potentially pose an impact on pedestrian trajectory.

Our main contributions are as follows: (1) we
present a spatio-temporal graph that explicitly cap-
tures the global interaction of all the pedestrians in
the scene and the local interaction with the static
objects, and (2) we propose a new spatio-temporal
attention mechanism for each pedestrian trajectory.
This mechanism takes into account the local inter-
action among pedestrians and objects. Our spatio-
temporal mechanism is inspired by the work of [12]
which casts the attention methods [13] for sequence
learning tasks on graphs. Experimental results
on two widely-used datasets demonstrate that our

method achieves significant quantitative and qualita-
tive improvements over state-of-the-art methods for
pedestrian trajectory prediction.

2. Related Work

In this section, we present a summary of research
on pedestrians trajectory prediction. The literature
branches into two main trends regarding context in-
clusion: local context and global context. Addi-
tionally, the existing works unfolds into two other
branches in terms of distinguishing multiple objects
influence: attention-based and uniformly-based ap-
proaches.

Local context Versus Global context. It is ob-
vious from the previous introduction that the modern
trajectory prediction approaches [14, 15, 8, 3, 16, 17]
resorted to a limited spatial extent of the surrounding
context as they observed the interactions occurring
within short distance from the pedestrian included,
while [7, 9] were globally-based as they considered
all the pedestrians in the scene even those who are far
away from each other.

According to local context methods, observing the
interaction for a short duration once pedestrians are
close enough to each other, gives limited understand-
ing of the social interaction. While including the
social interactions on a global scene scale, enables
the model to better understand how the interaction
evolves between a pair of pedestrians based on the
velocity effect that the model inherently grasps upon
capturing the change in the spatial distances along
time.

Attention-based Versus Uniformly-based ap-
proaches. Pedestrians navigating in urban environ-
ments influence each other and very often are influ-
enced by the obstacles around them, thus it is essen-
tial for predicting multiple pedestrians trajectories to
recognize the importance of various sources impact
on a pedestrian and pay attention to the more influ-
ential ones. Applying attention in sequence learn-
ing tasks has proved its effectiveness in the overall
algorithm performance and in pedestrian trajectory
prediction methods it helped drawing more plausible
trajectories.

The variational encoder-decoder methods, such
as, Social GAN [9] took the global neighborhood
around pedestrian but it evaluates all pedestrians in a
uniform manner, by assigning equal importance val-
ues to them. Existing RNN approaches [7] applied
soft attention mechanism to assign different impor-

5

tance weights to multiple pedestrians based on their
velocities. While [16] applied hard attention to as-
sign weights based on pedestrians distance, they also
introduced additional soft attention to evaluate the in-
teraction salience in a scene region. So, their trajec-
tory prediction drew conclusions about which region
was more likely for a pedestrian to navigate through.
In our work, we are rather interested in microscopic
prediction of the interaction between pedestrians and
a specific fixed obstacle, hence, we use the soft at-
tention mechanism [12] to evaluate the social inter-
actions only.

Graph-Structured Networks. Real-life applica-
tions generate complicated forms of information in
which they are best represented through graph struc-
tures compared to other rigid hierarchical and end-
to-end organizations. Variational Encoder-Decoder
methods[9, 18, 19], have the advantage of generat-
ing a variety of results, however, they are not ca-
pable of providing a factorized and explicit high-
level representation of the environment components.
Graph Neural Network [20] advanced the applica-
tion of graph-structured data in neural networks in
environments that naturally contain highly interre-
lated behaviors, such as: social media, molecular bi-
ology, etc. Outdoor pedestrians navigation typically
induces a spatio-temporal nature due to alterations
that happen in pedestrian motion trajectory and the
complex interactions with different objects. There-
fore, modeling a rich interactive context requires a
scalable graph-based structuring of the elements and
factorize their relationships in a principled way. Neu-
ral relational networks [14, 15], attempted to predict
the interactions among multiple moving object using
physical motion semantics, however, they did not ac-
count for realistic scenarios such as urban environ-
ments, which makes these networks better fitting for
object linear motion in free space.

Recurrent Neural Networks. Recently, Recur-
rent Neural Networks (RNN) have shown notable
success in modeling data sequences and time-varying
patterns. They organize in a recursively unfolded
structure, which makes them a perfect choice for
temporal analysis and sequence learning tasks, such
as machine translation and human motion forecasting
[21, 22, 23, 24, 25]. Tree-structured RNN [24], il-
lustrated spatio-temporal network organization anal-
ogous to [11]. However, their spatio-temporal archi-
tecture was designed around a skeletal-based human
activity prediction such that, all the units had fixed

dependencies and belong to one cohesive movement.
This prior assumption does not fit with highly dy-
namic contexts such as crowd motion.

Few models [11, 26, 27] structured RNN units
based on graph topology that explicitly represented
elements and their interactions semantics. In our
paper, we extend the generic spatio-temporal graph
used in [11] in a hybrid manner, by combin-
ing globally-based human-human interaction with
locality-based human-space interaction, in addition
to using attention mechanism to distinctively model
social interactions.

3. Approach

3.1. Problem Definition

Given a set of static objects O, and a set of pedes-
trians V and their trajectories Xt

vi observed at time-
steps t = 1,...,Tobs, our model predicts the future lo-
cations X̂t

vi at t = Tobs +1,, Tpred time-steps, with
regards to potential influence of any obstacles pre-
sented in the scene, such that Tobs = 8, vi ∈ V , Tpred
= 12.

3.2. Model Architecture

The spatio-temporal graph is a dynamic struc-
ture that evolves temporally and spatially, due to
the motion state of the pedestrians and changes in
the scene (e.g. as the elements in the scene in-
crease/decrease). Figure 2 shows the corresponding
representation of crowd subjects in spatio-temporal
graphs G = (V ,ΣS ,ΣT), comprising three key
components: nodes set V ∗, spatial edges set ΣS and
temporal edges set ΣT , where nodes represent the
dynamic and the static element (e.g. pedestrians and
static objects), spatial edges represent the relation-
ship between two nodes to indicate the interaction
between them. Temporal edges link the same pedes-
trian node over successive time-steps and thus con-
nect the graph when it is unrolled over time.

Figure 2a illustrates the dynamic structure with an
arbitrary crowd at two consecutive time-steps. At
(t=1), there are four pedestrians. At (t=2), a new
pedestrian (5) enters the scene. Notice that by (t=2),
pedestrian (2) enters the vicinity of the red obstacle,
where they appear to pass through the dashed circular
boundary. Figure 2b shows the corresponding spatio-
temporal graph representation, which evolves dy-
namically over the spatial and temporal domain. This
is evident when the graph unfolds at (t=2), where
a new node is introduced for pedestrian (5) and all

6

pedestrian nodes are connected by undirected edges
to model the mutual interaction. This creates 2(N-1)
spatial edges between pedestrian nodes at every time-
step, where N is the number of pedestrians. In con-
trast, only a single directed edge is pointing from the
obstacle node to the corresponding pedestrian node
to depict the influence posed by the static obstacle on
pedestrian (2).

The components of graph G are replaced with the
corresponding LSTM components, temporal edgeL-
STM, spatial edgeLSTM, nodeLSTM. The relation-
ship between two nodes is characterized by their rel-
ative coordinates, where xv2v3 is the spatial distance
between nodes v2 and v3, and xv2v2 is location of
node v that changes over time.

Eq. (1) defines spatial edgeLSTM embedding
function φ that takes as input: xtv2., all the relative
spatial distances between node xv2 and its neighbors
(e.g. including xv2v3), embedding weight matrix Ws

.

etv2. = φ(xtv2.;Ws) (1)

The spatial edgeLSTMs take the embedded input
feature along with previous spatial hidden states from
all related nodes ht−1

v2. and transform them using nor-
mally initialized weight matrix W lstm

s . The output
hidden states vector htv2. is shown in Eq. (2).

htv2. = LSTM(ht−1
v2. , e

t
v2.,W

lstm
s) (2)

Eq. (3) defines temporal edgeLSTM embedding
function φ that takes as input: the temporal location
of pedestrian node xtv2v2 , embedding weight matrix
Wt.

etv2v2 = φ(xtv2v2 ;Wt) (3)

Eq. (4) defines the LSTM cell and its inputs: pre-
vious temporal hidden state ht−1

v2v2 , embedded input
feature etv2v2 from Eq. (3) and normally initialized
weight matrix W lstm

t for transforming these inputs
into the current hidden state htv2v2 .

htv2v2 = LSTM(ht−1
v2v2 , e

t
v2v2 ,W

lstm
t) (4)

3.3. Spatio-Temporal Attention Module

Given the success of attentional mechanisms in
sequence-based prediction of natural language pro-
cessing applications, this work adopts the concept of

(a) Crowded environment displayed over 2 time-steps.

43

3 4

21

21

o

5
(b) Crowd mapping to abstract spatio-temporal graph
unrolled through two time-steps

Figure 2: Crowd mapping to Spatio-temporal Graph.
(a) A static obstacle is drawn as red rectangle sur-
rounded by a virtual circle which indicates its neigh-
borhood boundaries. (b) The Blue nodes represent
pedestrians 1,2,3,4,5 and the red dashed node repre-
sents obstacle o such that o ∈ O. Directed down-
ward lines indicate temporal edges linking the same
node over time-steps and undirected lines are two-
way spatial edges connecting pedestrian nodes. A di-
rected edge is pointing from Obstacle node to pedes-
trian node to indicate obstacle influence on pedes-
trian. For the sake of clarity, we use dashed links
from node (5) to indicate the remaining spatial edges.
(Best viewed in color).

attention-based generative algorithms [13]. We pro-
pose a variation of Multi-Head method, a soft atten-
tion based on two simple operations, i.e. concatena-
tion and averaging across all edge feature vectors for

7

Figure 3: Multi-node attention mechanism pipeline for pedestrian node v2 at time-step t = 2. On the left-most
side, it shows nodes set V ∗ = {V ,O}. The black dashed vectors store ht+1

v2. , the hidden states of the spatial
edges related to node v2. The red dashed vector stores ht+1

v2o , the hidden state of spatial edge between node
v2 and obstacle o. The blue dashed vector stores ht+1

v2v2, temporal edge hidden state of node v2. These hidden
states are then passed into PReLU and Softmax (S) activations to generate new embeddings ê. The concrete
blue vectors store spatial hidden states êt+1

v2. and temporal hidden state êt+1
v2v2 . Multiplying the new embeddings

vector by their hidden states array results in attention coefficients vectors a, where at+1
v2. is the spatial attention

coefficients vector and at+1
v2v2 is the temporal attention coefficients vector.

each node. In [13], the input comprises fixed number
of words with fixed positions, and the Multi-Head
attention works by stacking multiple attention lay-
ers (heads) in which each layer makes mappings be-
tween words in two sentences. We use a simple at-
tention mechanism, i.e. Multi-Node attention, which
only has a single layer that jointly pays attention to
the features from spatial and temporal domains and
store the attention coefficients into single vector for
node v2 trajectory at each time-step. To illustrate
this, Figure 3 exemplifies attention on pedestrian (2)
and its neighbors at time (t=2). Neighboring edgeL-
STMs states are transformed before concatenation us-
ing the embedding function in Eq. (5) and Eq. (6),
which is a composite of Parametric ReLU and soft-
max. This combined activation ensures that hidden
states remain within a small range of [-1,1] which
will be mapped once again at the sampling stage to a
range of normalized outputs range of [0,1].

êtv2. = softmax(PReLU(htv2.)) (5)

êtv2v2 = softmax(PReLU(htv2v2)) (6)

The Parametric ReLU as illustrated in Eq (7), is
the generalized ReLU function as it ties the leak pa-
rameter α as a network learnable parameter. Employ-
ing such activation function with an adaptive leak pa-

rameters, allows a slightly different span of the neg-
ative hidden states along training batches. This has
proved its benefit for the model prediction perfor-
mance.

PReLU(h) = max(0, h) + α ∗min(0, h); (7)

α = 0.2

The product of embedding vectors ê with the orig-
inal hidden states results in attention weights (also
called coefficients). Eq. (8) and Eq. (9) shows the
spatial attention coefficients atv2. and temporal atten-
tion coefficients atv2v2 , respectively.

atv2. = êtv2.h
t
v2. (8)

atv2v2 = êtv2v2h
t
v2v2 (9)

Eventually, these coefficients will be concatenated
and averaged to generate the final weighted hidden
states vector Hv2

t as shown by Eq. (10):

H t
v2 =

∑N
v (atv2v2 ||atv2.)

N
; N = | atv2v2 || atv2. |

(10)
Comparing the Multi-Head attention with the

single head multiplicative attention (scaled dot-
Product), it turns out that the scaled dot-Product

8

gives a compact representation of all incoming hid-
den states and it serves a similar objective to the
linear pooling mechanism in [8] due to the highly
variable-sized environment. However, it diminishes
the expressive power lost upon compressing feature
vectors size.

While Multi-Head attention averages across the
spatial and temporal attention coefficients without
compressing their depth. Hence, we realized that re-
taining the vectors depth provides sufficient feature
representation for learning the influence of pedestri-
ans on each other.

The pedestrian location coordinates xtv2 are passed
through an embedding layer φ as in Eq. (11) before
its taken as input into nodeLSTM:

etv2 = φ(xtv2 ;Wembed) (11)

Finally, the output vector Hv2
t is concatenated

with previous hidden state ht−1
v2 , and which are then

passed to nodeLSTM v2, along with transformation
weight matrix W lstm to generate current hidden
state htv2 .

htv2 = LSTM(etv2 , concat(h
t−1
v2 ,Hv2

t, etv2),W lstm)
(12)

The future location of pedestrian is sampled from
a bivariate normal distribution N as in Eq. (14). For
estimating the Mean µ, variance σ and correlation ρ
we apply a linear transformation layer in Eq. (13)
Wout to transform htv2 into the estimated parameters.

(µt+1
v2 , σt+1

v2 , ρt+1
v2) = Wouth

t
v2 (13)

(xt+1
v2 , yt+1

v2) ∼ N (µt+1
v2 , σt+1

v2 , ρt+1
v2) (14)

4. Experimental Results

4.1. Datasets and Metrics

Our evaluation is based on two widely-used
datasets, ETH Walking Pedestrians (EWAP) [28],
UCY Students and Zara [29]. In total, the datasets
consist of five videos taken from outdoor surveil-
lance cameras. The datasets contain 2206 human
trajectories, exhibiting different traits that range be-
tween straight linear and curvilinear motion splines.
From our observations, ETH scenes consist of more
straight trajectories with few social interactions as
the video captures people motion at the university

entrance, while UCY scenes display more scenar-
ios pertaining to human-space interactions. For ex-
ample, the UCY-ZARA datasets include pedestrians
bending at the shop entrance, while UCY-University
scenes have more social interactions among standing
groups. Furthermore, these cases in particular, in-
crease the unpredictability of an individual path un-
less social and spatial contexts are taken into account.
In our experiments, two benchmark metrics are used,
i.e. Averaged Displacement Error (ADE) and Final
Displacement Error (FDE) of the TrajNet challenge
[10], for measuring Euclidean deviations (in meters)
between predicted trajectory and actual trajectory.

Averaged Displacement Error: The mean average
l2 distances between predicted trajectory coordinates
(x̂, ŷ) and true trajectory (x, y) for all time-steps i =
(1, .., n) over N pedestrian trajectories in the scene.

ADE =

∑N
j=1

∑n
i=1

√
(x̂j

i−xj
i)

2+(ŷji−yji)
2

n

N
(15)

Final Displacement Error: The average l2 dis-
tance between the final predict step (x̂n, ŷn) and the
true step (xn, yn) over j pedestrians trajectory, where
j = (1, ..., N).

FDE =

∑N
j=1

√
(x̂jn − xjn)2 + (ŷjn − yjn)2

N
(16)

4.2. Ablation Study

We have performed an ablation study by drop-
ping the scaled-dot attention module from Social
Attention and restoring back original settings of
Structural-RNN, to study the usefulness of dot-
Product attention model. The comparison between
the quantitative results of both baselines with our
method, shows that the scaled dot-Product perfor-
mance is lower than the Multi-Node mechanism per-
formance for the 5 datasets in Table 1. On the other
hand, the optimal choice of the human-obstacle con-
nectivity threshold λ = 0.5 parameter, was deter-
mined empirically, based on the objective of lower-
ing the Euclidean errors for both evaluation metrics.

4.3. Training Setup

We accumulated trajectory data for every pedes-
trian with skip rate = 10 frames to avoid overfit-
ting the minimal changes in pedestrian trajectory.
Each LSTM cell is of 256 depth. We transform data
into normalized interpolated pixel coordinates within

9

range [0,1]. In batch processing, we fixate the batch
size batch size = 24, observation length Tobs = 8
time-steps (3.2 seconds), prediction length Tpred =
12 time-steps (4.8 seconds) and epochs epoch num
= 100. After several hyper-parameter tunings, learn-
ing rate is set as lr = 0.001 and optimizer algorithm
is Adam. Activation function in attention layer is
Parametric ReLU, initialized to negative slope α =
0.20 and fractionally degraded throughout the train-
ing process. The training objective is to minimize the
negative log-likelihood loss of the i th trajectory from
time-step Tobs+1 to Tpred:

Li = −
Tpred∑

t=Tobs+1

log(P (xti, y
t
i |σti , µti, ρti)) (17)

4.4. Quantitative Results

As illustrated in Table 1, we set up experiments
to evaluate our proposed models, H-H and H-H-O,
which stand for Human-Human and Human-Human-
Obstacle respectively. The table has two segments,
the first 4 rows evaluate our model with graph-
based baselines: Social Attention and Structural-
RNN, while the next 3 rows evaluate our model
with state-of-the-art models: Social-LSTM and So-
cial GAN (SGAN). Our attention mechanism for
graphs improved prediction for human-human in-
teraction and human-obstacle interaction over the
other graph-based baselines: Social Attention and
Structural-RNN. This is observed from the average
errors under column (AVG) in Table 1. Compar-
ing H-H-O with Social Attention, H-H-O achieves
55% in the average of ADE and 61% in the aver-
age of FDE in all datasets. As Social GAN and
Social-LSTM display the best trajectories produced
by their models, we extracted the average of mini-
mum errors pertaining only to the best predicted tra-
jectories in H-H-O model. It can be observed that
the minimum FDE is considerably lower than min-
imum FDE generated by SGAN model and Social
LSTM, due to our model awareness of surrounding
context. This has made predictions to be plausi-
ble and compliant with the environmental constraint.
The Social GAN work shows several versions of their
model, so we selected their best model version which
is SGAN-20V for our comparison. The most signif-
icant improvement is realized when comparing our
model with Social GAN model, under the Hotel set
with 93% reduction in FDE. Furthermore, the Ho-
tel scene contains more static elements such as trees

and lamp posts as indicated in Figure 2. The sec-
ond best improvement is realized when comparing
our model with Social-LSTM model under the ETH
set with 89% reduction in FDE. The ETH dataset
consists of a set of tightly coupled trajectories due
to the crowd at the university entrance. This is a
busy contextual point where pedestrians are mostly
concerned about avoiding collisions with each others
at the entrance site. Additionally, our model perfor-
mance yields 69% reduction on FDE metric in Ucy-
University, which proves that embedding informa-
tion about physical structure of the scene and busy
interaction points, refines the model understanding of
pedestrian navigation in crowded sites and reduced
the prediction errors in FDE, as our model was more
capable of predicting the final step on a pedestrian
trajectory. From the previous table, it is noticeable
that the ADE and FDE exhibit small discrepancies
due to the accumulative nature in prediction errors.
If the predicted path was entirely approximate to the
ground-truth, the final predicted point will not have
large error, but if the prediction was increasingly de-
viating along the ground-truth, this can impact the
final point errors. This supports our quantitative re-
sults as being consistent and realistic.

4.5. Qualitative Results

In this section, we qualitatively evaluate model
predictions in Hotel and ZARA sets. Figure 4 dis-
plays predicted paths from our models. We have
spotted interesting cases for pedestrian moving near
static objects, and compared both of our models
outputs, Social Attention and Social LSTM with
ground-truth trajectory. Notice the Human-Human
model prediction for pedestrian walking near the
bench in Figure 4a. The ground-truth shows that
pedestrian is avoiding the bench, while Human-
Human model spline achieves lower displacement
than the baseline splines, those fail at evading the
bench area. This case is correctly predicted in our
Human-Human-Obstacle model as illustrated in Fig-
ure 4b. Additionally, Figure 4d shows that Social
Attention and Social LSTM predicts plausible paths
that pedestrian might have chosen, however, it is
not compliant with pedestrian surrounding objects.
Thus, with the aid of obstacle awareness, our model
understands pattern of collision avoidance with any
static subject in their way.

Figure 4c plots trajectories from H-H-O model
where pedestrians are bending toward the shop en-

10

Table 1: Prediction errors ADE/FDE (in meters). Our results are averaged over 30 sampled sequences of
12-steps length for every set under our method. For baselines errors, Social Attention results are obtained
upon re-training their model, while Structural-RNN results are obtained upon manual implementation of their
architecture in PyTorch.

Method ETH HOTEL ZARA1 ZARA2 UNIV AVG

Structural-RNN 2.72/4.60 0.85/1.35 1.05/2.20 1.60/3.50 1.45/3.00 1.53/2.93
Social Attention 3.60/4.70 0.79/1.44 1.30/2.66 0.95/2.05 1.00/2.14 1.53/3.52
H-H 1.19/2.00 0.39/0.96 0.55/1.56 0.58/1.50 0.74/1.89 0.69/1.58
H-H-O 1.24/2.35 0.48/0.80 0.51/1.15 0.56/1.13 0.69/1.45 0.70/1.38

Social LSTM 1.09/2.35 0.79/1.76 0.47/1.00 0.56/1.17 0.67/1.40 0.72/1.54
SGAN-20V 0.81/1.52 0.72/1.61 0.34/0.69 0.42/0.84 0.60/1.26 0.58/1.18
Minimum H-H-O 0.96/0.16 0.35/0.11 0.57/0.30 0.58/0.33 0.53/0.38 0.60/0.26

trance, and our model generates splines that approx-
imate the curvy ground-truth trajectory, as the model
learns the motion pattern at the entrance point.

In some situations, the predictions do not per-
fectly match the ground-truth path, although the de-
viations are quite small. This situation also applies
for the baseline models. Upon extensive visual com-
parisons for all frames in all datasets, we confirmed
that the erroneous results and deviations of the pro-
posed method are much fewer than those found in
the baselines plots. Quantitatively, Euclidean devi-
ations at the path endings have been reduced by up
to 61%, which identifies the improvements that we
highlighted earlier.

5. Conclusion

In this paper we have presented a new spatio-
temporal graph that operates on the local and global
contexts around pedestrian, for predicting their tra-
jectory in outdoor environments. For an accurate
modeling of human-human interactions and human-
space interactions, we employ a simplified version of
Multi-Head attention mechanism for accumulating
the influence from spatial and temporal subspaces.
Our attention mechanism consistently demonstrated
improved prediction results over baseline methods,
for groups as well as individual non-linear trajecto-
ries.

References

[1] H. Kretzschmar, M. Kuderer, and W. Bur-
gard, “Learning to predict trajectories of co-
operatively navigating agents,” in Robotics and

Automation (ICRA), 2014 IEEE International
Conference on. IEEE, 2014, pp. 4015–4020.
1

[2] H. S. Koppula and A. Saxena, “Anticipating
human activities using object affordances for
reactive robotic response,” IEEE transactions
on pattern analysis and machine intelligence,
vol. 38, no. 1, pp. 14–29, 2016. 1

[3] F. Bartoli, G. Lisanti, L. Ballan, and
A. Del Bimbo, “Context-aware trajectory
prediction,” arXiv preprint arXiv:1705.02503,
2017. 1, 2

[4] D. Ellis, E. Sommerlade, and I. Reid, “Mod-
elling pedestrian trajectory patterns with gaus-
sian processes,” in Computer Vision Workshops
(ICCV Workshops), 2009 IEEE 12th Interna-
tional Conference on. IEEE, 2009, pp. 1229–
1234. 1

[5] K. Kim, D. Lee, and I. Essa, “Gaussian process
regression flow for analysis of motion trajecto-
ries,” in Computer vision (ICCV), 2011 IEEE
international conference on. IEEE, 2011, pp.
1164–1171. 1

[6] A. Robicquet, A. Sadeghian, A. Alahi, and
S. Savarese, “Learning social etiquette: Human
trajectory understanding in crowded scenes,”
in European conference on computer vision.
Springer, 2016, pp. 549–565. 2

[7] A. Vemula, K. Muelling, and J. Oh, “Social at-
tention: Modeling attention in human crowds,”

11

(a) H-H model - Hotel scene (b) H-H-O model - Hotel scene

(c) H-H-O model - ZARA scene (d) H-H-O model - ZARA scene

Figure 4: Visualization results for Hotel and Zara sets.

in Proceedings of the International Conference
on Robotics and Automation (ICRA) 2018, May
2018. 2

[8] A. Alahi, K. Goel, V. Ramanathan, A. Ro-
bicquet, L. Fei-Fei, and S. Savarese, “Social
lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition,
2016, pp. 961–971. 2, 6

[9] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese,
and A. Alahi, “Social gan: Socially accept-
able trajectories with generative adversarial
networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), no.
CONF, 2018. 2, 3

[10] A. Sadeghian, V. Kosaraju, A. Gupta,
S. Savarese, and A. Alahi, “Trajnet: To-
wards a benchmark for human trajectory
prediction,” arXiv preprint, 2018. 2, 6

[11] A. Jain, A. R. Zamir, S. Savarese, and A. Sax-
ena, “Structural-rnn: Deep learning on spatio-
temporal graphs,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern
Recognition, 2016, pp. 5308–5317. 2, 3

[12] P. Velickovic, G. Cucurull, A. Casanova,
A. Romero, P. Lio, and Y. Bengio, “Graph at-
tention networks,” stat, vol. 1050, p. 20, 2017.
2, 3

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszko-
reit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in
Advances in Neural Information Processing
Systems, 2017, pp. 6000–6010. 2, 4, 5

[14] S. van Steenkiste, M. Chang, K. Greff, and
J. Schmidhuber, “Relational neural expecta-
tion maximization: Unsupervised discovery of
objects and their interactions,” arXiv preprint
arXiv:1802.10353, 2018. 2, 3

[15] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende
et al., “Interaction networks for learning about
objects, relations and physics,” in Advances in
neural information processing systems, 2016,
pp. 4502–4510. 2, 3

12

[16] T. Fernando, S. Denman, S. Sridharan, and
C. Fookes, “Soft+ hardwired attention: An lstm
framework for human trajectory prediction and
abnormal event detection,” Neural networks,
vol. 108, pp. 466–478, 2018. 2, 3

[17] D. Helbing and P. Molnar, “Social force model
for pedestrian dynamics,” Physical review E,
vol. 51, no. 5, p. 4282, 1995. 2

[18] D. Varshneya and G. Srinivasaraghavan,
“Human trajectory prediction using spatially
aware deep attention models,” arXiv preprint
arXiv:1705.09436, 2017. 3

[19] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H.
Torr, and M. Chandraker, “Desire: Distant fu-
ture prediction in dynamic scenes with interact-
ing agents,” 2017. 3

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagen-
buchner, and G. Monfardini, “The graph neural
network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61–80, 2009. 3

[21] K. Cho, B. Van Merriënboer, C. Gulcehre,
D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase represen-
tations using rnn encoder-decoder for sta-
tistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014. 3

[22] D. Bahdanau, K. Cho, and Y. Bengio, “Neural
machine translation by jointly learning to align
and translate,” arXiv preprint arXiv:1409.0473,
2014. 3

[23] S. Song, C. Lan, J. Xing, W. Zeng, and
J. Liu, “An end-to-end spatio-temporal atten-
tion model for human action recognition from
skeleton data.” in AAAI, vol. 1, no. 2, 2017, p. 7.
3

[24] J. Liu, A. Shahroudy, D. Xu, and G. Wang,
“Spatio-temporal lstm with trust gates for 3d
human action recognition,” in European Con-
ference on Computer Vision. Springer, 2016,
pp. 816–833. 3

[25] H. Xue, D. Q. Huynh, and M. Reynolds, “Ss-
lstm: A hierarchical lstm model for pedes-
trian trajectory prediction,” in 2018 IEEE Win-
ter Conference on Applications of Computer Vi-
sion (WACV). IEEE, 2018, pp. 1186–1194. 3

[26] X. Liang, X. Shen, J. Feng, L. Lin, and S. Yan,
“Semantic object parsing with graph lstm,”
in European Conference on Computer Vision.
Springer, 2016, pp. 125–143. 3

[27] Y. Yuan, X. Liang, X. Wang, D. Y. Yeung,
and A. Gupta, “Temporal dynamic graph lstm
for action-driven video object detection,” arXiv
preprint arXiv:1708.00666, 2017. 3

[28] S. Pellegrini, A. Ess, K. Schindler, and
L. Van Gool, “You’ll never walk alone: Mod-
eling social behavior for multi-target tracking,”
in Computer Vision, 2009 IEEE 12th Interna-
tional Conference on. IEEE, 2009, pp. 261–
268. 6

[29] A. Lerner, Y. Chrysanthou, and D. Lischinski,
“Crowds by example,” in Computer Graphics
Forum, vol. 26, no. 3. Wiley Online Library,
2007, pp. 655–664. 6

13

24th Computer Vision Winter Workshop
Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)
Stift Vorau, Austria, February 6–8, 2019

SyDD: Synthetic Depth Data Randomization for Object Detection using
Domain-Relevant Background

Stefan Thalhammer, Kiru Park, Timothy Patten, Markus Vincze
Automation and Control Institute, TU Wien
Gußhausstraße 27-29, 1040 Vienna, Austria

{thalhammer, park, patten, vincze}@acin.tuwien.ac.at

Walter Kropatsch
Institute of Visual Computing and Human-Centered Technology, TU Wien

Favoritenstraße 9, 1040 Vienna, Austria
krw@prip.tuwien.ac.at

Abstract. In industry CAD-models are readily avail-
able while it is expensive to obtain 3D scans of ac-
tual objects. Consequently, training object detectors
exclusively from CAD-models leads to a consider-
able decrease of the data creation effort. While this
works well for recognition, detection requires better
models to distinguish the object of interest from the
background and to take the expected sensor proper-
ties into account. To tackle this problem we synthet-
ically create depth data with domain-relevant back-
ground and apply randomized augmentation to cre-
ate a superset of the variations of real-world depth
images. Results with a state-of-the-art object de-
tector, trained using our synthetic data, show that
our approach yields better results than learning from
real-world, hand-annotated data with the LineMOD
dataset.

1. Introduction

Assembly systems in manufacturing are subject to
increasing number of variants, smaller lot sizes and
shorter life cycles. The application of assistance sys-
tems will lead to a reduced error rate and increased
capacity [4]. The task of visual assistance systems is
accurate and robust object detection.

Recently deep learning advanced the state of the
art for computer vision tasks such as object detec-
tion. While deep networks achieve superior per-
formance, they require a huge amount of training
data [8]. Capturing and annotating these data is time
and labour consuming and often requires physical in-

Figure 1. By rendering scenes with domain relevant ob-
jects and augmenting the noise model, we create better
synthetic training data for object detection.

stances, which is problematic in fast paced manufac-
turing environments. Industrial applications, how-
ever, typically have CAD-data readily available. We
propose to take advantage of this by creating syn-
thetic training data directly from CAD-models by
rendering depth images from a virtual scene repre-
senting the domain of deployment.

Synthetic depth images are rendered using CAD
models to create a scene then we apply a random-
ized noise model. A standard tool to create syn-
thetic data is the freely available, open-source soft-
ware Blender1 [1, 2, 11]. When training an object de-
tector it is important to create data of sufficient vari-
ability to discriminate the objects of interest from the
background. For object recognition, where one ob-
ject is identified in a cropped image, it is known that
a randomized background is sufficient to improve re-

1www.blender.org

14

sults [15, 17]. For object detection (i.e. classifica-
tion and bounding box regression), where multiple
objects are identified in a scene, randomized back-
grounds are still insufficient to overcome all the am-
biguities. Inspired by Handa et al. [2], who cre-
ate full synthetic scenes for a semantic segmentation
task, we propose to create scenes that include the ex-
pected object placements for better training with re-
alistic depth images.

Another issue to consider is that training deep net-
works using synthetic data and deploying these on
real-world data leads to reduced performance due to
the different domains, the so called reality gap. A
common method to close the reality gap is to create
data of sufficient variability using domain random-
ization [16] or using the Perlin noise technique [17].
A major challenge is to capture the expected varia-
tions in the actual test images. Hence, we propose to
combine Perlin noise [10] with a randomized sensor
model in order to improve object detection in real-
world depth images.

In summary, we propose a domain-related render-
ing step with an improved noise modelling step re-
ferred to as augmentation. Figure 1 outlines the ap-
proach. The contributions are the following:

• Rendering synthetic scenes with domain rele-
vant objects to create a realistic background for
object detection in depth images.

• Introducing randomized augmentation of syn-
thetic depth images to better capture the ex-
pected variations in real-world data.

• Showing advance by evaluating object detection
on a standard dataset, the LineMOD dataset [5],
since bounding-box targets and class labels are
available.

The remaining paper is structured as follows. Sec-
tion 2 summarizes related work. The rendering and
augmentation method is described in Section 3. Sec-
tion 4 presents the results and evaluation. Section 5
concludes with a short discussion.

2. Related Work

This section discusses synthetic data creation and
domain randomization for object detection.

2.1. Synthetic Data Creation

Carlucci et al. [1] use Blender to create a syn-
thetic depth image dataset for object recognition.

They use 3D CAD models downloaded from differ-
ent databases to create object categories. Views are
rendered from a configuration space consisting of ob-
ject distance, camera position, focal length and ran-
dom object warping minimizing the amount of iden-
tical rendered images. Planche et al. [11] present a
pipeline to render realistic depth images for object
recognition. They simulate the image appearance for
a wide range of sensors. Their pipeline consists of
a pattern projection mechanism, an intermediate step
impinging sensor noise followed by stereo matching
and post-processing to reproduce the spatial sensitiv-
ity of the sensors and to simulate the impact of sur-
face materials. Backgrounds such as primitive shapes
and captured real-world scans can be added. Rozant-
sev et al. [12] project the object geometry, taken
from CAD models, into RGB images. A texture fill-
ing algorithm varies the object appearance with re-
spect to blur, noise and material properties. Su et
al. [15] render multiple views of 3D objects to gen-
erate a single compact descriptor of that object using
a CNN. Handa et al. [2] create annotated synthetic
indoor scenes using an automatic furniture arrange-
ment mechanism. They use a simulated Kinect noise
model to include noise in the synthetic depth scans.

In order to enable object detection in synthetic im-
ages it is important to create background information
with sufficient variability to separate the objects of
interest from the insignificant scene parts. Previous
work has only addressed the randomization and aug-
mentation of the generated data for the object of in-
terest, which is mainly due to the focus on the task
of object recognition. We instead consider object de-
tection, and thus augment full scenes, including the
background, to generate high quality training data.

2.2. Domain Randomization

Since we use an off-the-shelf architecture as de-
tector, trained on synthetic data, it is necessary to
transfer the domain to match the real-world image
statistics. Domain randomization is a common strat-
egy to create data of sufficient variability to include
the variations of a desired domain [14, 16, 17].

Sadeghi et al. [14] learn collision avoidance for
autonomous flight from simulation. They render
RGB-images from synthetic 3D hallways. Param-
eters such as wall textures, furniture position, illu-
mination and camera pose are randomized. Tobin et
al. [16] use domain randomization to produce suf-
ficient variability at training time to enable robot

15

Table 1. Background objects in the virtual scenes.
simple no additional background information
limited Apple IMac, bin, keyboard, lamp, lap-

top, two types of screens, mouse, pot
plant, speakers

realistic All from the limited objects, Apple
Iphone, ball, BeatsAudio, two types of
cans, bottle, Buick model, bulb, Dual-
Shock 4 controller, pc fan, knife, Nin-
tendo Gameboy, Nvidia GeForce GTX
1080, plier, spacer, stapler, tablet

grasping. Their approach randomizes shape, posi-
tion, orientation and texture of the objects involved.
The characteristics of lights and the camera extrinsics
are also randomized. Zakharov et al. [17] use domain
randomization to augment depth images. Fractal Per-
lin noise, Voronoi texturing and white noise is used
as background for rendered 3D object models. Perlin
noise is an inexpensive way to simulate sensor noise.
Randomized patterns are used to simulate occlusion.

A remaining challenge for domain randomization
is to randomize the data in the source domain in such
a way that the variations of the target domain are cap-
tured. We address this by augmenting synthetic depth
scans using a combination of Perlin noise and a ran-
domized sensor noise model. Variations of the back-
ground information and the occlusion patterns are
achieved by randomizing the placement of domain-
relevant objects.

3. SyDD: Closing the Reality Gap

We present a method to create and subsequently
augment synthetic depth images. The pipeline,
named SyDD, is presented in Figure 2.

The first step is the creation of synthetic depth im-
ages from a virtual scene. The second step is aug-
menting the synthetic depth images by adding ran-
domly sampled variation to the pixel’s depth values.
This variation of the augmented domain Xa (depth
noise, lateral noise, occluded image regions, errors
due to the limited depth resolution) creates a superset
Xa ⊇ X r of the variations in real-world scans, i.e.,
the target domain X r. However, we take care that
Xa does not diverge too much from X r by choosing
variations in a way not to violate the sampling theory.

3.1. Rendering: Synthetic Data Creation

We create synthetic data with diverse scene setups
and background information in order to produce data

with high variation to train object detectors. Three
different approaches to create synthetic scenes are
chosen in order to evaluate the importance of the
background information:

• simple: Objects are arranged on a table, without
further background information.

• limited: Objects are arranged on a table with
static domain-relevant background objects.

• realistic: Objects are arranged on a table with
static domain-relevant background objects and
randomly placed domain-relevant objects.

Table 1 presents a list of background objects used
for rendering. The additional objects are downloaded
from GrabCAD2.

For every scene five to eight objects of interest are
randomly placed with repetition. These objects are
annotated with a bounding box and with pixel class
correspondences if fully visible. If not fully visi-
ble the bounding box is reduced accordingly and oc-
cluded pixels are not annotated. The camera pose is
randomly chosen from valid views described in the
dataset used for validation. The output of the syn-
thetic data creation step is a depth image, a binary
mask indicating visible image regions and a mask in-
dicating pixel level class correspondences. The bi-
nary mask provides information about image regions
with valid depth values due to the baseline distance of
the infrared projector and the sensor. Figure 3 shows
an example of the synthetically rendered depth im-
ages and visibility masks.

3.2. Augmentation: Randomized Depth Image
Variations

We apply an augmentation loosely based on a sen-
sor model and Perlin noise-based pixel warping to
the rendered depth images. In order to create a super-
set of the variations of real-world depth images the
parameters of our augmentation are randomly cho-
sen for each image.

Various works evaluate and quantify the errors of
the depth scans from infra-red based structured light
cameras such as the Microsoft Kinect V1. The most
common sources of error are the depth sensor itself,
the measurement setup and properties of the object
surface. Missing depth values are typically caused
by infrared occlusion, specular surface reflection and

2https://grabcad.com

16

Figure 2. Synthetic depth image creation and augmentation pipeline.

gaps in the depth images due to strong light [7]. Our
approach is designed for objects of interest with sur-
face materials that diffusely scatter incoming light,
hence omitting the simulation of specular reflections.
We propose to randomize the parameters of our aug-
mentation to account for the intractable number of
variations and combinations of the influences in the
depth image capturing process.

Based on the imaging geometry, parts of the scene
are occluded, these occlusions are affected by strong
light illuminating the scene. In order to simu-
late that influence morphological opening and subse-
quent median filtering is applied to the mask image
that is created by the rendering script. The binary
mask is applied to the synthetic depth images to re-
move the occluded image regions. The kernel sizes
are sampled from {3, 5, 7}. These kernel sizes are
also used for blurring.

For further augmentation depth images are resized
to 320 by 240 pixels, since that is the resolution of the
infra-red based structured light camera, the Microsoft
Kinect V1. The images are down sampled using area
interpolation to avoid aliasing. Blur is added to min-
imize the discrepancy between depth gradients in the
real-world and synthetic images. The standard devi-
ation of the blurring operation is chosen uniformly in
a range from 0.25 to 3.5. The synthetic depth values
are rounded to the nearest quantization value, based
on the hypothesized sensor’s depth resolution [7] to
obtain synthetic depth values in an eleven bit range.

Additional noise is added to the quantized depth
values using an offset chosen randomly from a Gaus-
sian distribution. The depth noise of the sensor in-
creases non-linearly with depth, though since the ex-
pected object placement is in a range of 65 centime-
ters to 115 centimeters we approximate it linearly,

similar to [6]. The offset is calculated per pixel using
its nearest quantized value, scaled by the parameter
nsd. The randomized parameter nsd is drawn uni-
formly between 0.002 and 0.004. This range is based
on the actual depth noise of the Microsoft Kinect V1.

Further randomness of the appearance of occluded
scene parts, depth and lateral noise is added by warp-
ing the depth images through the application of pixel
offsets, using the Perlin noise technique. This ap-
proach is similar to Zakharov et al. [17]. The basic
concept is that a 3D vector field is generated to ran-
domly distort synthetic depth images. Pixel locations
are warped by applying the sampled vector field to
the already augmented depth images. We use their
proposed parameter ranges.

An example of the synthetic depth scans is pre-
sented in Figure 4.

4. Experiments

Three experiments are conducted to evaluate our
approach. First, we compare object detection trained
on the same number of real-world and on synthetic
depth images. Second, results are presented provid-
ing quantitative information about the influence of
the background in the synthetic scene. Third, the
influence of the different steps of the augmentation
method is shown. Finally, we discuss open problems.

All the experiments are conducted on the
LineMOD dataset [5], which is taken from the SIXD
Challenge 20173. This is a standard and well-known
baseline for object recognition and pose estimation
in RGB-D. The test set of the LineMOD dataset con-
sists of 15 test sets, one for each dataset object, with
approximately 1200 captured images per scene. Ev-
ery set has different object instances visible, although

3http://cmp.felk.cvut.cz/sixd/challenge 2017

17

Figure 3. Synthetic depth image (top), visibility mask
(middle) and pixel level class correspondence (bottom).

only the object in the center of the image is annotated
with a bounding box, class and pose. An exception
is the benchvise test set that has all dataset objects
annotated. Since different object instances without
annotation are visible in the test images, only the an-
notated object is considered for calculating the detec-
tion recall. In all experiments we report the percent-
age of correctly detecting and classifying annotated
objects with an Intersection-over-Union (IoU) of 0.5.

Figure 4. Comparison of a real-world (top) and a synthetic
(bottom) depth image, converted to RGB images.

4.1. Experimental Setup

All tests are conducted with the following prepro-
cessing and network configuration. All real-world
and synthetic images are converted to three chan-
nel RGB images. These are coloured based on the
normal direction using the approach of Nakagawa et
al. [9]. Image regions with missing depth values are
inpainted and depth cuts are applied up to 20 cen-
timeters and regions further than 1.8 meters.

We use Faster-RCNN with ResNet-101 [3] back-
bone, pretrained on ImageNet [13], with the standard
optimizer and loss functions. The learning rate starts
at 0.01 and decays to 0.0001. We train for 180000 it-
erations using a batch size of one and a weight decay
of 0.0001.

4.2. Performance on real-world data

We compare an object detector trained on real-
world images that are taken from the benchvise test

18

Table 2. Detection recall of Faster-RCNN trained on real-
world and on synthetic data. Numbers in percent.

Classes real SyDD
ape 53.56 76.86
can 97.24 94.15
cat 41.31 82.70
driller 96.21 92.76
duck 89.39 93.70
eggbox 64.8 81.01
glue 81.72 70.08
holepuncher 89.89 77.69
overall 76.77 83.62

Figure 5. Recall and precision curve comparison of real-
world and synthetic data using different IoU scores.

set of the LineMOD dataset against an object detec-
tor trained on images created by SyDD. Table 2 com-
pares per category detection recall.

The average recall of the detector trained on our
synthetic dataset outperforms the recognizer trained
on real-world data. The performance margin results
from the higher variability in the synthetic dataset.
The biggest differences in detection recall are visible
for the objects ape, cat and eggbox. This is caused
by the scene setup used for capturing the real-world
depth scans. The ape is placed in different poses in
the scene and is either not occluded or completely
occluded in most of the images. The benchvise test
set only includes these extreme cases and does not
have many examples for partial occlusion. The cat is
placed with the same pose in all scans, which again
results in very low visibility or full visibility with the
addition of low variability of pose in the benchvise
test images. The eggbox is placed in different poses
but with a strong similarity of viewpoints. Further-
more, occlusion is caused mostly by the same object.
The randomized augmentation covers a wider range
of variations influencing the image creation process

Table 3. Detection recall of Faster-RCNN trained on
SyDD, with different backgrounds in the virtual scenes.
Numbers in percent.

Classes simple limited realistic
ape 57.79 59.79 79.69
benchvise 65.16 64.09 96.05
bowl 91.24 93.03 85.81
camera 66.61 74.94 94.17
can 57.02 79.10 91.97
cat 58.95 80.75 97.71
cup 76.13 83.06 88.06
driller 65.99 84.76 96.72
duck 82.30 81.58 95.37
eggbox 83.32 92.42 93.77
glue 65.16 79.98 82.79
holepuncher 74.54 85.53 92.97
iron 42.19 64.58 89.84
lamp 50.77 65.69 96.09
phone 71.36 68.22 93.00
overall 63.03 72.29 85.88

as well as the placement of objects in the virtual
scene. This increases the variation of occlusions and
views in comparison to the real-world images in the
benchvise test set. Figure 5 indicates that the per-
formance of the Region Proposal Network is not af-
fected by the usage of our synthetic training data.

4.3. Influence of the Background Information

The importance of the background information in
the training data is evaluated by comparing three ob-
ject detectors trained on different background ob-
jects, each consisting of 10000 images. Table 3
shows the performance recall.

The results indicate that the usage of additional
background information during synthetic data gener-
ation improves the detection recall. Results also indi-
cate that is unnecessary to use the same background
objects during training as during deployment. Our
findings show that domain specific background ob-
jects are sufficient for detectors to yield similar per-
formance to detectors trained on real-world, hand-
annotated images. The reader is directed to the de-
tection results of the bowl. The recall for this ob-
ject decreases with the usage of more comprehensive
background information.

4.4. Evaluation of the Augmentation Method

The influence of the augmentation used for creat-
ing training data is evaluated by comparing four ob-
ject detectors trained on 10000 images. The augmen-

19

Figure 6. Exemplary images, displaying the synthetic
training dataset, with simple background information
(top) and limited background information (bottom).

tation methods are:

• synth: non augmented synthetic depth data.

• perlin: augmenting the synthetic images only
using Perlin noise with the parameters from
[17], after removing occluded image regions us-
ing the randomized visibility mask.

• auth: randomized realistic sensor model, where
the difference to our proposed method SyDD is
that the depth noise nsd is added before quan-
tizing these to eleven bit range.

• SyDD: our proposed augmentation.

The results presented in Table 4 indicate that
strong average detection performance is achieved
when adding Perlin noise. However, even better per-
formance is achieved using our augmentation. We
conclude that augmenting images with Perlin noise
can effectively close the domain gap, but combining
with a randomized sensor model leads to even more
powerful detectors. Re-sampling the augmented im-
ages to the Kinect’s depth resolution decreases detec-
tion and classification results.

Table 4. Detection recall of Faster-RCNN trained using
different augmentation methods. Numbers in percent.

Classes synth. perlin auth. SyDD
ape 59.06 71.76 67.96 79.69
benchvise 71.99 93.90 91.85 96.05
bowl 91.64 91.48 91.08 85.81
camera 56.54 84.60 89.84 94.17
can 53.51 94.15 95.32 91.97
cat 89.91 97.20 91.18 97.71
cup 73.23 84.19 81.21 88.06
driller 89.31 95.62 95.71 96.72
duck 62.04 93.78 89.63 95.37
eggbox 45.49 81.80 90.90 93.77
glue 44.02 85.08 83.44 82.79
holepuncher 59.18 93.37 81.33 92.97
iron 39.15 89.41 78.83 89.84
lamp 75.31 93.48 97.96 96.09
phone 45.78 91.31 90.27 93.00
overall 59.76 83.82 82.28 85.88

4.5. Open Problems

Figure 7. Detection result with incorrect detections of
stacked objects.

Qualitative results of object detection using train-
ing images from SyDD and test images from
LineMOD are presented in Figure 7 and Figure 8.

20

Figure 8. Detection result with incorrect detections on
boundary regions of the image or fabric.

The RGB-images are only used for visualization.
The top of Figure 7 shows an ape placed on top of
a camera, which is incorrectly classified as driller.
A similar error is visible in the bottom of Figure 7.
The benchvise is correctly classified but the duck is
not detected. This error arises because objects in the
virtual scene are enclosed by a convex hull. Conse-
quently, perfectly stacked objects can not be found in
the synthetic images. A convex hull is used to repre-
sent the collision shape of objects to minimize errors
when performing the physics simulation.

Figure 8 shows detection results with objects in-

correctly detected on fabric, near the image bound-
ary. The top image shows an incorrect detection of
benchvise in the upper left corner of the image. An-
other incorrectly detected instance of iron is visible
in the middle image on the right edge. These detec-
tions result from annotating only partly visible ob-
jects that are cropped by the image boundary during
training. Another common error is the detection of
objects on smoothly curved fabric surfaces as can be
seen in the bottom parts of the middle and the bot-
tom image in Figure 8. This error is a combination
of annotating boundary regions in the synthetic im-
ages and missing background information during the
rendering process.

5. Conclusion

We present a pipeline to create and augment syn-
thetic depth data to close the reality gap for object
detection. Our experiments demonstrate that deep
networks trained using our data outperform detec-
tors trained on available real-world, hand-annotated
data. This is promising because we can significantly
reduce the time and effort to generate training data
for real-world deployment of modern computer vi-
sion algorithms.

Our method efficiently closes the domain gap on
the LineMOD dataset and hence completely allevi-
ates the need to use real-world training data. The
main drawbacks of our method can be easily over-
come by fine tuning the rendering script to the de-
sired task, but would compromise the generalization
of the approach. We show that the usage of domain-
specific objects creates discriminating background
information for object detectors trained using syn-
thetic data. Additionally we show that it is prefer-
able to use an augmentation loosely based on a sen-
sor rather than using an authentic sensor model.

Our domain randomization approach omits certain
aspects of depth image variations since they are not
relevant for the challenges at hand. Future work will
address the task of generalizing our domain random-
ization to other sensors.

Acknowledgements

This work has been supported by the Austrian Re-
search Promotion Agency in the program “Produc-
tion of the Future” funded project MMAssist II (FFG
No.: 858623) and the Austrian Ministry for Trans-
port, Innovation and Technology (bmvit).

21

References

[1] F. M. Carlucci, P. Russo, and B. Caputo. A deep rep-
resentation for depth images from synthetic data. In
Robotics and Automation, IEEE International Con-
ference on, pages 1362–1369. IEEE, 2017. 1, 2

[2] A. Handa, V. Patraucean, V. Badrinarayanan,
S. Stent, and R. Cipolla. Understanding real world
indoor scenes with synthetic data. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 4077–4085, 2016. 1, 2

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[4] S. Hinrichsen, D. Riediger, and A. Unrau. Assis-
tance systems in manual assembly. In Proceedings
6th International Conference on Production Engi-
neering and Management, pages 3–13, 2016. 1

[5] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer,
G. Bradski, K. Konolige, and N. Navab. Model
based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes.
In Asian conference on computer vision, pages 548–
562. Springer, 2012. 2, 4

[6] T. Hodaň, P. Haluza, Š. Obdržálek, J. Matas,
M. Lourakis, and X. Zabulis. T-LESS: An RGB-
D dataset for 6D pose estimation of texture-less ob-
jects. IEEE Winter Conference on Applications of
Computer Vision, 2017. 4

[7] K. Khoshelham and S. O. Elberink. Accuracy and
resolution of kinect depth data for indoor mapping
applications. Sensors, 12:1437–1454, 2012. 4

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012. 1

[9] Y. Nakagawa, H. Uchiyama, H. Nagahara, and R.-I.
Taniguchi. Estimating surface normals with depth
image gradients for fast and accurate registration. In
3D Vision, International Conference on, pages 640–
647. IEEE, 2015. 5

[10] K. Perlin. Improving noise. In ACM Transactions on
Graphics, volume 21, pages 681–682. ACM, 2002.
2

[11] B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluck-
ner, O. Lehmann, T. Chen, A. Hutter, S. Zakharov,
H. Kosch, et al. Depthsynth: Real-time realistic
synthetic data generation from cad models for 2.5 d
recognition. In 3D Vision, International Conference
on, pages 1–10. IEEE, 2017. 1, 2

[12] A. Rozantsev, V. Lepetit, and P. Fua. On render-
ing synthetic images for training an object detec-
tor. Computer Vision and Image Understanding,
137:24–37, 2015. 2

[13] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale
visual recognition challenge. International Journal
of Computer Vision, 115:211–252, 2015. 5

[14] F. Sadeghi and S. Levine. CAD2RL: Real single-
image flight without a single real image. In
Robotics: Science and Systems, 2017. 2

[15] H. Su, S. Maji, E. Kalogerakis, and E. Learned-
Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE
international conference on computer vision, pages
945–953, 2015. 2

[16] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba,
and P. Abbeel. Domain randomization for trans-
ferring deep neural networks from simulation to
the real world. In Intelligent Robots and Systems,
IEEE/RSJ International Conference on, pages 23–
30. IEEE, 2017. 2

[17] S. Zakharov, B. Planche, Z. Wu, A. Hutter,
H. Kosch, and S. Ilic. Keep it unreal: Bridging the
realism gap for 2.5d recognition with geometry pri-
ors only. 2018 International Conference on 3D Vi-
sion, pages 1–11, 2018. 2, 3, 4, 7

22

24th Computer Vision Winter Workshop
Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)
Stift Vorau, Austria, February 6–8, 2019

A Spatiotemporal Generative Adversarial Network
to Generate Human Action Videos

Stefan Ainetter, Axel Pinz
Graz Univerisity of Technology

stefan.ainetter@student.tugraz.at,

axel.pinz@tugraz.at

Abstract. We propose a method to generate high
resolution human action videos, by extending a 2D
generator network to the spatiotemporal domain.
Our generative model consists of a fully convolu-
tional 3D generator, combined with a domain spe-
cific video classifier. By using activation maximiza-
tion in the spatiotemporal domain, we are able to
generate action videos at a spatial resolution of
227×227px. Our model, evaluated on the UCF-101
dataset, achieves a state-of-the-art Inception Score
of 23.44. Additionally, we improve the accuracy of a
video classifier using our videos for data augmenta-
tion, which proves high quality and variance of our
generated videos.

1. Introduction

Introduced in 2014, Generative Adversarial Net-
works (GANs) [13] have been continuously re-
searched due to their ability to learn perceptual repre-
sentations of images in an unsupervised manner. Es-
pecially in computer vision, GANs can be beneficial
for a variety of tasks like clustering, classification,
and sample generation. Recent research on GANs
for image generation has led to methods which can
synthesize images up to a spatial resolution of 2
megapixels [4, 42]. However, video generation lags
behind, with current resolutions of, e.g. 64× 64 pix-
els [29], so that further research is needed to extend
the use of GANs towards the generation of realistic
looking videos.

This work addresses the generation of videos in
the domain of action recognition. Training a model
to generate videos of human actions will provide fur-
ther insight into this domain, and therefore might im-
prove the performance and design of current action
recognition classifiers. For this purpose, we persent

Figure 1. Visualization of generated videos using our
STGAN . Each video consists of 16 consecutive frames.
Results are shown for the UCF-101 classes Baseball
Pitch (top) and Billiard (bottom).

a spatiotemporal GAN (STGAN), which can gen-
erate videos in the domain of action recognition at a
spatial resolution of 227 × 227px. Figure 1 shows
two examples of our generated video clips with a du-
ration of 16 frames.

We quantitatively evaluate our results using the In-
ception Score (IS) [32]. In comparison to other ap-
proaches for action video generation, we establish a
new state-of-the-art both in terms of IS and spatial
resolution. Furthermore, we demonstrate that it is
possible to fool the Inception Score metric by gen-
erating samples that are optimized to achieve a high
score, as claimed by [32]. We show how to use IS to
obtain valid results, by strictly separating the video
generation process and the evaluation. In addition,
we use our generated videos for data augmentation,
by training an action recognition classifier with both,
real and generated data. This increases the accuracy
of the classifier and indicates an overall high image
quality and variance in our generated videos.

23

2. Related Work

Generative models for image generation. The
idea of GANs was first proposed in [13], outperform-
ing other generative models like autoencoders [20,
40] and Boltzmann machines [23, 31] according to
image quality. Since then, GANs have been a pop-
ular field of research, and are used in different do-
mains like image in-painting [17], image-to-image
translation [24, 43] and super resolution [22]. GAN
training using the loss function proposed in [13] is
considered as unstable. Therefore, Dosovitskiy and
Brox [7] combined the GAN loss with additional
losses in image and feature space to make the train-
ing more stable. Their loss function proved to be
stable during training and generated realistic looking
images. Several attempts [25, 11, 26] used this loss
function in combination with activation maximiza-
tion [45, 9, 46, 33] to generate class specific images.

Another popular approach is the Wasserstein-
GAN [2], where the loss function is modeled by
the Earth-Mover or Wasserstein-1 distance. Several
GANs [28, 14, 32, 3, 1] adapted this loss function to
improve quality, stability and variation of the gener-
ated images.

GANs have also been used in the context of super-
resolution [34, 22] to create high resolution output
from low resolution input. Denton et al. [5] proposed
a framework that generates images in a coarse-to-
fine fashion, combining a conditional GAN model
with a Laplacian pyramid representation. Karras et
al. [19] were able to generate images at a resolution
of 1024 × 1024px using GANs and a coarse-to-fine
network structure. For this approach, both the gen-
erator and discriminator grow progressively during
training.

Video Generation using GANs. Video recogni-
tion and classification received a lot of attention
in recent past. Therefore, generating videos via
generative models is also drawing much attention.
TGAN [29] generates videos for action recognition
using two generators, where one generator learns to
generate images, and the other one models tempo-
ral coherence. It produces frames with the spatial
resolution of 64 × 64px. Vondrick et al. [41] pro-
posed a model to generate videos with a spatiotem-
poral convolutional architecture that separates fore-
ground and background. Tulyakov et al. [39] pro-
posed a video generator which decomposes motion
and content of videos. They use an additional re-

current neural network combined with an image gen-
erator, to model a sequence of consecutive frames.
Recently, TGANv2 [30] was introduced, which uses
subsampling layers in the generator and several sub-
discriminators for video generation. Fuchs [11] used
a similar network architecture compared to our ap-
proach to generate videos of arbitrary length, with
the goal to visualize deep driving models. Koltun and
Chen [4], and Wang et al. [42] are able to synthesize
videos with a spatial resolution of 2048 × 1024px,
also using progressively growing network architec-
tures. However, they use semantic layouts instead of
noise as input, which simplifies the process of gener-
ating samples.

Evaluation methods for generative models. Di-
rectly comparing the images of two different gener-
ative models, in terms of image quality, is hard to
achieve. Salimans et al. [32] proposed an evaluation
metric called the Inception Score (IS). To achieve a
high IS, images should contain meaningful objects
and the GAN should generate varied images. This
metric is widely used to evaluate the quality of gener-
ated images [14] and videos [36, 29, 39, 30]. Another
way of GAN evaluation is to measure the variance of
the generated data. This can be achieved using struc-
tural similarity [44], and was used as evaluation met-
ric in [27, 19]. Another popular method is using the
Fréchet Inception distance [15], which is based on
the Fréchet distance [8].

3. Generative Adversarial Networks for Im-
age Generation

Our spatiotemporal GAN is based on a 2D gener-
ative model provided by [7], which is used for image
generation. This section briefly summarizes the im-
portant aspects about the spatial network architecture
and the loss function for image generation. Note that
we did not train the 2D generator on our own, but
used a pre-trained version provided by [7], before we
extended the architecture to generate videos instead
of images.

3.1. Spatial Network Architecture

The 2D generative model consists of a generator
and a discriminator, with an additional encoder net-
work used for feature extraction. During training,
the extracted features (which are provided by the en-
coder) serve as input code vector z for the generator
and the discriminator. All code vectors z belong to
a low-dimensional input space, which we denote as

24

latent space.
Generator. The generator network consists of fully-
connected layers, followed by convolutional and up-
convolutional layers to map a code vector z to an
image. Upconvolutional layers make it possible to
up-sample the respective layer input so that the code
vector z with dimension 1× 4096 maps to an image
of 256× 256px. Rectified Linear Units (ReLUs) are
used as nonlinear activation functions in all layers.
Discriminator. The architecture of the discrimina-
tor network consists of five convolutional layers, fol-
lowed by a pooling layer to extract features of the
input images. These features are concatenated with
a code vector z, which is extracted from real images
by the encoder network. Dropout [37] is performed
on the resulting feature vector before it is further pro-
cessed by two fully-connected layers and then classi-
fied as real or fake image.
Encoder network. The network architecture of the
encoder is AlexNet [21] pre-trained on ImageNet.
During training, the encoder network is used as aux-
iliary network to extract features from real and gener-
ated images. These features are then used for several
purposes: 1) During training, the generator uses fea-
tures from real images as input vector, rather than
randomly generated ones. This helps to identify
compact regions in the latent space which correspond
to natural images. 2) The discriminator gets a copy
of the same features, to prevent unbalanced training.
3) The extracted features of the encoder are used to
calculate the loss function.

3.2. Loss Function for Image Generation

Dosovitskiy and Brox [7] proposed a generator
loss function which minimizes distances in image
and feature space, additionally to the adversarial
loss. This boosts the invariance with respect to
irrelevant transformations, and the sensitivity to
local image statistics, according to [7]. The com-
position of these three losses leads to better results
in image quality, because the additional feature loss
reflects the perceptual similarity of images. The
loss in image space helps to stabilize the training
process, as adversarial training is known to be un-
stable and sensitive to hyperparameter selection [13].

The composite loss function L according to [7]
is defined as

L = λimgLimg + λfeatLfeat + λadvLadv, (1)

with the Euclidean loss in image space Limg, the Eu-
clidean loss in feature space Lfeat, and the adver-
sarial loss Ladv. All three parts are weighted with a
specific parameter λ.
The loss in image space Limg is written as

Limg =
∑

h,w

‖G(z)− x‖22, (2)

where G(z) and x are the generated and real images,
respectively, with the dimensionality [H ×W × 3],
where H and W define the spatial resolution of the
RGB image. The indices h,w are therefore the spa-
tial indices of the images.
The feature loss Lfeat is defined as

Lfeat =
∑

h,w

‖E(G(z))− E(x)‖22, (3)

using the encoder network E to extract features form
real and generated images. The adversarial loss Ladv
is defined as

Ladv = − logD(G(z)), (4)

where D(·) defines the discriminator function.

Furthermore, it is also necessary to optimize
the discriminator, to successfully classify real and
fake images. The generator and discriminator are
trained concurrently, using

Ldiscr = −[log(D(x)) + log(1−D(G(z)))], (5)

as the loss function for the discriminator.

4. Spatiotemporal Network Structure and Pa-
rameter Transfer

We extended the network structures described in
Subsection 3.1 to generate videos instead of images.
The main idea is to convert the filters from spatial
to spatiotemporal kernels using the approach pro-
posed in [10]. Then, the parameters of the pre-
trained networks provided by [7] are transferred to
the spatiotemporal domain. The new spatiotemporal
weights w3D are initialized layerwise, by following
these steps:

1. The temporal weights for each layer are defined
as w2D with the dimensions [W × H × C],
where W and H define the spatial filter size,
and C defines the number of channels. In the
first step, the dimensions of the spatiotemporal
weights w3D are defined as [W ×H ×T ′×C],
where T ′ describes the temporal filter depth.

25

Layer Kernel Stride Output Size
G fc8 / / 16, 4096
G fc7 / / 16, 4096
G fc6 / / 16, 4096

reshape layer / / 4x4x16, 256
G upconv5 4x4x3 2x2x1 8x8x16, 256

G conv5 3x3x3 1x1x1 8x8x16, 512
G upconv4 4x4x3 2x2x1 16x16x16, 256

G conv4 3x3x3 1x1x1 16x16x16, 256
G upconv3 4x4x3 2x2x1 32x32x16, 128

G conv3 3x3x3 1x1x1 32x32x16, 128
G upconv2 4x4x3 2x2x1 64x64x16, 64
G upconv1 4x4x3 2x2x1 128x128x16, 32
G upconv0 4x4x3 2x2x1 256x256x16, 3

Table 1. Network structure of 3D generator. The spa-
tiotemporal dimensions for kernel, padding and stride are
shown in the order [width x height x time]. The output
size is written as [width x height x time, # channels]. We
applied [1 x 1 x 1] padding at all convolutional and up-
convolutional layers. For video generation, the temporal
duration was set to T = 16 frames.

2. All spatial weights w2D are then copied to each
temporal position t of the weights ŵ3D. This
step can be written as

ŵ3D(t) = w2D,∀t ∈ [1, T ′]. (6)

3. The last step is to divide the spatiotemporal
weights ŵ3D by the temporal filter depth T ′:

w3D =
ŵ3D

T ′
. (7)

This step is used to average the weights across
time, and therefore serves as temporal smooth-
ing.

We decided to use a temporal filter depth of T ′ = 3
for all convolutional and upconvolutional layers.
All biases and weights from the fully-connected
layers are directly copied from the 2D to the 3D
architecture.

The temporal stride is kept dense throughout
all network layers, to ensure that the full duration
of the sequence is preserved through the whole
network. Table 1 shows a detailed overview of our
3D generator architecture after parameter transfer.

4.1. Generating Videos using Activation Maxi-
mization

To generate videos for a specific action, we use
our spatiotemporal generator with Activation Maxi-
mization (AM) [9, 46, 33] to maximize the probabil-
ity that a generated video belongs to a specific class.
For this purpose, we use a task specific condition net-
work Φ. This condition network is a pre-trained clas-
sifier, and delivers output probabilities for each class
in the dataset. The goal of this technique is to find a
specific code vector that maximizes the activation of
a neuron h. Formally, the objective function can be
written as

ẑ = arg max
z

(Φh(G(z))− λ|z|), (8)

with the parameter λ weighing the regularization
term. To perform activation maximization in com-
bination with a generative model, we build on the
PPGN framework [25], which is an extension of [26].
The experimental setup using our generator in com-
bination with a condition network is shown in Fig-
ure 2. In the forward path, our 3D generator pro-
duces videos given a random code vector z. These
generated videos serve as input for the condition net-
work, which calculates the softmax probability that
the video belongs to a specific UCF-101 class. As
we want to maximize the activation for a specific
output neuron h, we can back-propagate the gradi-
ent ∂ log Φh(G(z))

∂z through the condition network and
the 3D generator, to update the code vector z. Note
that Gaussian noiseN (0, 10−17) is added to the gra-
dient before it is applied, to boost the variance of the
generated videos.
We perform up to 100 iterations of AM, where the
learning rate for the update function starts at 1.0 and
linearly decays to 0.1. Other AM specific parameters
are taken from [25]. Figure 3 shows the iterative pro-
cess of AM, transforming random code vectors to a
specific action video.
The generator serves as a learned natural image prior,
which makes it possible to synthesize interpretable
videos. Without using the generator as prior, it would
not be possible to generate realistic looking samples,
because the set of all possible outputs is too vast.

4.2. Condition Networks

A condition network is a trained classifier, which
is used to perform activation maximization. There-
fore, the generator and the condition network should

26

target neuron
h

z(t) ∼  (0, 1)
3D

Generator
Generated

Video
Condition
Network

Backward
pass

G Φ

t

Figure 2. Video generation using activation maximization. The 3D generator G uses a random code vector z(t), which
consists of multiple 1×4096 latent vectors, where each vector corresponds to one frame of the generate video. This video
serves as input for a pre-trained condition network Φ. The goal is to maximize the activation for a specific target neuron
h, and to back-propagate the gradient through both networks to adjust the code vector z(t).

Figure 3. Visualization of activation maximization for
class Billiard. Top to bottom shows the process of ac-
tivation maximization applied to 8 frames at different it-
eration steps. The sequence of images changes from ran-
dom patterns at top to billiard at bottom. The videos were
generated with our spatiotemporal GAN and the LRCN
condition network.

operate in a similar domain, using similar datasets
for training. As we want to generate videos for ac-
tion recognition we were looking for classifier net-
works trained on datasets like UCF-101 [35] and
Sports-1M [18]. Therefore, we used LRCN [6]
and C3D [38] as condition networks in our experi-
ments. Note that the spatial resolution of our gen-
erated videos directly depends on the spatial input
dimension of the condition network. Although our
3D generator would be able to generate output videos
with 256×256px, our generated videos after AM are

restricted to 227 × 227px, which is the spatial reso-
lution for the input of LRCN (which we used in our
main experiments).

5. Evaluation

The evaluation of our STGAN is divided into
three different parts:

1. Qualitative evaluation of the generated videos
with analysis of findings and potential failure
cases.

2. Quantitative evaluation using the Inception
Score, and comparison to state-of-the-art ap-
proaches.

3. Using our generated videos for data augmenta-
tion, to increase the performance of an action
recognition classifier.

5.1. Qualitative Evaluation

We performed AM for each class in the UCF-101
dataset, where the input for our generator is a se-
quence of random code vectors, each of them drawn
from a Gaussian distributionN (0, 1). We decided to
sample videos with a length of 16 frames in all main
experiments, to be consistent in our evaluations. Fig-
ure 4 shows generated image sequences for several
classes, using our STGAN .
General findings, according to the quality of gener-
ated samples are:
1) One can see that our STGAN does have problems
to generate faces correctly, shown in the example for
the class Apply Lipstick (Figure 4 top). This is be-
cause our STGAN is not able to learn the correct
number of face parts, like eyes and nose. Similar

27

problems occur for all classes which focus on hu-
man faces. The reason for this problem could be the
usage of max-pooling at some stage of the convolu-
tional neural network, which makes the representa-
tion invariant to small translations of the input. This
means, that the network only focuses on a feature be-
ing absent or present, but not on how many times it
occurs [12].
2) Videos generated for the class Billiard (Figure 4
middle) show results with high image quality. This
means, that the quality for each individual frame is
high, and the whole video shows a reasonable se-
quence of consecutive frames which represent a spe-
cific action. According to temporal coherence, it
seems that the combination of weight transfer to 3D
and a condition network pre-trained on video ac-
tion recognition are enough to generate meaningful
videos. Our STGAN , which was never trained on
video data, seems to inherit the information of tem-
poral coherence from the condition network (which
was trained on action videos) during AM.
3) Because we use AM, the generated videos indi-
cate what is most important for the condition net-
work to differentiate between different classes. For
the class Clean and Jerk (Figure 4 bottom), the net-
work clearly focuses on the weights. It seems that
the human body is not important for classifying this
action, and therefore the frames contain no human
body. This insight could possibly be used to further
understand how convolutional neural networks work,
and could therefore help to improve the quality of ac-
tion recognition classifiers.

5.2. Quantitative Evaluation

We quantitatively evaluated our STGAN using
the Inception Score (IS). We compare our results to
other state-of-the-art GANs, which also operate in
the domain of video generation for action recogni-
tion.
Evaluation procedure. In order to compute the IS,
we generated 10000 videos, which were randomly
sampled from a uniform distribution over all UCF-
101 classes. Afterwards, we used the C3D action
recognition classifier provided by [16] to calculate
the IS. The resolution and the number of frames for
a C3D input video are 112 × 112px and 16, respec-
tively. Therefore, we resized our generated samples
to match the spatial dimension. Additionally, we cal-
culate the IS for the whole UCF-101 dataset. This
serves as a key score indicating the IS for real videos.
Table 2 shows the IS of our approaches compared

Figure 4. Visualization of generated videos using
STGAN in combination with LRCN as condition net-
work. Each video consists of 16 consecutive frames. Re-
sults are shown for the classes Apply Lipstick, Billiard
and Clean and Jerk (top to bottom).

Method Inception
Score

MoCoGAN [39] 12.42
Conditional TGAN [29] 15.83

TGANv2 (bs = 64) [30]1 22.70
TGANv2 (bs = 256) [30]1 24.34

STGAN 23.44
STGAN (C3D) 66.33
UCF101 dataset 70.07

Table 2. IS for different models trained on UCF-
101. State-of-the-art approaches (MoCoGAN, TGAN and
TGANv2) are compared to our STGAN . Also, the IS for
the UCF-101 dataset is stated. Our IS, achieved by us-
ing different networks for conditioning and classifying, is
written in boldface. Please note that we outperformed all
published competitors [39, 29] by a large margin1.

to other state-of-the-art GANs for video generation.
Note that the evaluation procedure of all approaches
in Table 2 is the same, which enables us to directly
compare the methods with each other. The IS of the
other approaches is provided by the authors in their
papers.

Our STGAN achieves state-of-the-art Inception
Scores. Using LRCN as condition network and
the C3D network for evaluation, we achieve an
IS of 23.44, which outperforms several other ap-
proaches and is comparable to TGANv2 [30]1. It
is also worth mentioning that our STGAN gener-

1During the preparation of our paper, we note the appear-
ance of [30] on arXiv. This is, to our knowledge, the only work
presenting results comparable to ours.

28

Figure 5. Visualization of generated videos using
STGAN and C3D as condition network. Each video con-
sists of 16 consecutive frames. Results are shown for the
classes Baseball Pitch (top) and Clean and Jerk (bot-
tom). Although these generated samples achieve a high IS
(see Table 2), the videos to not contain any real action sce-
narios. Therefore, we label them as adversarial examples,
which fooled the classifier used for the IS calculation.

ates videos with the highest spatial resolution, com-
pared to the approaches in Table 2. Note that the high
IS of TGANv2 comes with high computational cost.
Our STGAN runs on a single 12Gb GPU, whereas
TGANv2 needs four and 16 GPUs (12Gb) to run
their model with a batch size of 64 and 256, respec-
tively (corresponds to the IS of TGANv2 (bs = 64)
and TGANv2 (bs = 256) in Table 2). Therefore,
our model has a clear advantage in terms of compu-
tational cost and memory consumption.

Fooling the Inception Score is possible. If the
same classifier is used as condition network for AM
and to calculate the IS, the IS can be fooled, because
the generated samples are in fact generated to have
a high probability with a certain condition network.
We proved this by using the C3D network for sample
generation and calculation of the IS (corresponds to
STGAN(C3D) in Table 2). The IS for this setup is
66.33, which would indicate samples that are com-
parable to real data, in terms of image quality and
variance. However, Figure 5 shows examples using
STGAN(C3D) for video generation. By analyz-
ing these samples, one can see that the videos do not
contain any real objects, indicating that these are ad-
versarial examples. Salimans et al. [32] stated that
directly optimizing the IS would lead to adversarial
examples, but did not provide results to prove this
claim. Our experiments prove this claim, and show
that it is easily possible to fool the IS.

5.3. Supervised Learning using Generated Videos

Additional to the previous evaluations, we used
our generated videos for data augmentation, to train

an action recognition classifier. We used a C3D
implementation [16] as classifier, and the UCF-101
dataset for training and evaluation.

5.3.1 Dataset Preprocessing

Our STGAN enables us to generate videos for all
101 classes of the UCF-101 dataset. However, not
all generated samples have the same image quality,
due to the variance in the generated data. Therefore,
we analyzed the results of our Inception Score cal-
culation, and chose samples for data augmentation
that contributed to a high score. Furthermore, we
limited the number of samples per class to 100, to
prevent unbalancing the training data too much. Fig-
ure 6 shows a comparison of the UCF-101 train split
1 and our generated samples.

5.3.2 Training Schedule

We used the pre-trained C3D model, which was
trained on the Sports-1M dataset as initialization for
our network parameters. The pre-trained model is
available online2. Other training parameters were
taken from the original code [16]. We fine-tuned the
classifier on UCF-101, using our generated videos,
the UCF-101 train split 1, and a combination of both.
For each experiment, the training data were ran-
domly shuffled at the beginning of training. After
200 iterations of training, using a batch size of 10, we
evaluated the performance of the classifier by calcu-
lating the random clip accuracy on the UCF-101 test
split 1. This helped to determine the optimal point to
stop training and avoided overfitting.

5.3.3 Classification Results

Table 3 provides the accuracy of our trained clas-
sifiers. If we use our generated samples without
any real data for training, we achieve an accuracy
of 15.6%. This is significantly lower than the accu-
racy for train split 1, which is 50.6% in our experi-
ments. However, this experiment indicates that our
generated samples provide meaningful information
about the UCF-101 dataset. Using both, the real and
generated data for training the classifier, we achieve
an accuracy of 52.2%. This improvement shows
that there is some additional information in the aug-
mented data, although the generated data do not have

2https://github.com/hx173149/C3D-tensorflow, last visited:
Dec. 2018

29

Ap
pl

yE
ye

M
ak

eu
p

Ap
pl

yL
ip

st
ic

k
Ar

ch
er

y
B

ab
yC

ra
w

lin
g

B
al

an
ce

B
ea

m
B

an
dM

ar
ch

in
g

B
as

eb
al

lP
itc

h
B

as
ke

tb
al

l
B

as
ke

tb
al

lD
un

k
B

en
ch

Pr
es

s
B

ik
in

g
B

ill
ia

rd
s

B
lo

w
D

ry
H

ai
r

B
lo

w
in

gC
an

dl
es

B
od

yW
ei

gh
tS

qu
at

s
B

ow
lin

g
B

ox
in

gP
un

ch
in

gB
ag

B
ox

in
gS

pe
ed

B
ag

B
re

as
tS

tr
ok

e
B

ru
sh

in
gT

ee
th

C
le

an
An

dJ
er

k
C

lif
fD

iv
in

g
C

ri
ck

et
B

ow
lin

g
C

ri
ck

et
Sh

ot
C

ut
tin

gI
nK

itc
he

n
D

iv
in

g
D

ru
m

m
in

g
Fe

nc
in

g
Fi

el
dH

oc
ke

yP
en

al
ty

Fl
oo

rG
ym

na
st

ic
s

Fr
is

be
eC

at
ch

Fr
on

tC
ra

w
l

G
ol

fS
w

in
g

H
ai

rc
ut

H
am

m
er

in
g

H
am

m
er

Th
ro

w
H

an
dS

ta
nd

Pu
sh

up
s

H
an

ds
ta

nd
W

al
ki

ng
H

ea
dM

as
sa

ge
H

ig
hJ

um
p

H
or

se
R

ac
e

H
or

se
R

id
in

g
H

ul
aH

oo
p

Ic
eD

an
ci

ng
Ja

ve
lin

Th
ro

w
Ju

gg
lin

gB
al

ls
Ju

m
pi

ng
Ja

ck
Ju

m
pR

op
e

K
ay

ak
in

g
K

ni
tt

in
g0

25

50

75

100

N
um

be
r

of
 V

id
eo

s

Data Distribution for UCF-101 Train Split and Generated Samples
UCF-101 Train Split
STGAN Generated Samples

Lo
ng

Ju
m

p
Lu

ng
es

M
ili

ta
ry

Pa
ra

de
M

ix
in

g
M

op
pi

ng
Fl

oo
r

N
un

ch
uc

ks
Pa

ra
lle

lB
ar

s
Pi

zz
aT

os
si

ng
Pl

ay
in

gC
el

lo
Pl

ay
in

gD
af

Pl
ay

in
gD

ho
l

Pl
ay

in
gF

lu
te

Pl
ay

in
gG

ui
ta

r
Pl

ay
in

gP
ia

no
Pl

ay
in

gS
ita

r
Pl

ay
in

gT
ab

la
Pl

ay
in

gV
io

lin
Po

le
Va

ul
t

Po
m

m
el

H
or

se
Pu

llU
ps

Pu
nc

h
Pu

sh
U

ps
R

af
tin

g
R

oc
kC

lim
bi

ng
In

do
or

R
op

eC
lim

bi
ng

R
ow

in
g

Sa
ls

aS
pi

n
Sh

av
in

gB
ea

rd
Sh

ot
pu

t
Sk

at
eB

oa
rd

in
g

Sk
iin

g
Sk

ije
t

Sk
yD

iv
in

g
So

cc
er

Ju
gg

lin
g

So
cc

er
Pe

na
lty

St
ill

R
in

gs
Su

m
oW

re
st

lin
g

Su
rf

in
g

Sw
in

g
Ta

bl
eT

en
ni

sS
ho

t
Ta

iC
hi

Te
nn

is
Sw

in
g

Th
ro

w
D

is
cu

s
Tr

am
po

lin
eJ

um
pi

ng
Ty

pi
ng

U
ne

ve
nB

ar
s

Vo
lle

yb
al

lS
pi

ki
ng

W
al

ki
ng

W
ith

D
og

W
al

lP
us

hu
ps

W
ri

tin
gO

nB
oa

rd
Yo

Yo

0

50

100

N
um

be
r

of
 V

id
eo

s

Figure 6. Comparison of data distribution between UCF-101 train split 1 and our generated samples. The generated
samples for data augmentation were chosen according to the IS, and the number of samples per class is restricted to at
most 100 samples. The data distribution shows that our STGAN is not able to produce high quality samples for certain
classes e.g. JumpRope, Nunchucks, Pizza Tossing.

Training Procedure Accuracy
Generated Samples Only 15,6%

Train Split 1 50,6%
Train Split 1 +

Generated Samples
52,2%

Table 3. Accuracy of C3D action recognition classifier.
The accuracy was calculated for the UCF-101 test split 1,
where we randomly extracted 16 consecutive frames from
each clip for testing. Training with generated samples
leads to a lower score, compared to training with real data.
However, training with both, real and generated data leads
to an increase of accuracy, which indicates that our gener-
ated samples contain valuable additional information for
action recognition.

the same image quality as the real ones. Note that
the goal of this experiment was to show the practical
benefit of our STGAN , rather than competing for a
state-of-the-art accuracy for UCF-101. This means,
that another network architecture, and a more careful
selection of hyperparameters, combined with an op-
timized training schedule, would certainly lead to a
higher overall accuracy for all experiments.

6. Conclusion

We have presented a method to generate human
action videos for 101 action classes at a spatial res-

olution of 227 × 227px, by extending a generative
model proposed for image generation to the spa-
tiotemporal domain. A condition network performs
activation maximization, where our generator is used
as image prior. In terms of image quality measured
by the Inception Score, our approach outperforms all
published state-of-the-art methods by a large margin,
and also improves with respect to spatial resolution
of the generated videos.

Our evaluations also demonstrate a major weak-
ness of the Inception Score metric: We were able
to generate adversarial examples, which contained
no meaningful objects, but achieved an exceptionally
high Inception Score. This means that (a) adversarial
examples deserve in-depth research in the future, and
(b) Inception Score should be reconsidered.

Action videos generated by our approach can
readily be used for data augmentation, in addition to
real training data. This leads to an increased accu-
racy of the classifier, which underlines the high qual-
ity and variance of our videos, and highlights direct
benefits towards improved recognition.

References

[1] M. Arjovsky and L. Bottou. Towards princi-
pled methods for training generative adversarial net-

30

works. In International Conference on Learning
Representations (ICLR), 2017. 2

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasser-
stein generative adversarial networks. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning (ICML), pages 214–223, 2017. 2

[3] D. Berthelot, T. Schumm, and L. Metz. Began:
boundary equilibrium generative adversarial net-
works. arXiv preprint arXiv:1703.10717, 2017. 2

[4] Q. Chen and V. Koltun. Photographic image syn-
thesis with cascaded refinement networks. In The
IEEE International Conference on Computer Vision
(ICCV), pages 1520–1529, 2017. 1, 2

[5] E. L. Denton, S. Chintala, R. Fergus, et al. Deep
generative image models using a laplacian pyramid
of adversarial networks. In Advances in Neural In-
formation Processing Systems (NIPS), pages 1486–
1494, 2015. 2

[6] J. Donahue, L. Anne Hendricks, S. Guadarrama,
M. Rohrbach, S. Venugopalan, K. Saenko, and
T. Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2625–2634, 2015. 5

[7] A. Dosovitskiy and T. Brox. Generating images
with perceptual similarity metrics based on deep net-
works. In Advances in Neural Information Process-
ing Systems (NIPS), pages 658–666, 2016. 2, 3

[8] D. Dowson and B. Landau. The fréchet distance be-
tween multivariate normal distributions. Journal of
Multivariate Analysis, 12(3):450–455, 1982. 2

[9] D. Erhan, Y. Bengio, A. Courville, and P. Vincent.
Visualizing higher-layer features of a deep network.
Technical report, University of Montreal, 2009. 2, 4

[10] C. Feichtenhofer, A. Pinz, and R. Wildes. Spa-
tiotemporal residual networks for video action
recognition. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 3468–3476, 2016. 3

[11] H. Fuchs. Visualizing and Understanding Deep
Driving Models. Masters Thesis at Institute of Elec-
trical Measurement and Measurement Signal Pro-
cessing, Graz University of Technology, 2017. 2

[12] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT Press, 2016. 6

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Advances
in Neural Information Processing Systems (NIPS),
pages 2672–2680, 2014. 1, 2, 3

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,
and A. C. Courville. Improved training of wasser-
stein gans. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5767–5777, 2017. 2

[15] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler,
and S. Hochreiter. Gans trained by a two time-scale

update rule converge to a local nash equilibrium. In
Advances in Neural Information Processing Systems
(NIPS), pages 6626–6637, 2017. 2

[16] HouXin. C3D-tensorflow. https://github.
com/hx173149/C3D-tensorflow, 2018. last
visited: Sep 2018. 6, 7

[17] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally
and Locally Consistent Image Completion. ACM
Transactions on Graphics (TOG), 36(4):107:1–
107:14, 2017. 2

[18] A. Karpathy, G. Toderici, S. Shetty, T. Leung,
R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1725–1732, 2014.
5

[19] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Pro-
gressive growing of GANs for improved quality, sta-
bility, and variation. In International Conference on
Learning Representations (ICLR), 2018. 2

[20] D. P. Kingma and M. Welling. Auto-encoding varia-
tional bayes. In International Conference on Learn-
ing Representations (ICLR), 2014. 2

[21] A. Krizhevsky, I. Sutskever, and G. Hinton. Ima-
genet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1097–1105, 2012. 3

[22] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cun-
ningham, A. Acosta, A. P. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi. Photo-realistic single image
super-resolution using a generative adversarial net-
work. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 105–
114, 2017. 2

[23] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Con-
volutional deep belief networks for scalable unsu-
pervised learning of hierarchical representations. In
Proceedings of the 26th International Conference on
Machine Learning (ICML), pages 609–616, 2009. 2

[24] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised
image-to-image translation networks. In Advances
in Neural Information Processing Systems (NIPS),
pages 700–708, 2017. 2

[25] A. Nguyen, J. Clune, Y. Bengio, A. Dosovitskiy,
and J. Yosinski. Plug & play generative networks:
Conditional iterative generation of images in latent
space. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3510–3520,
2017. 2, 4

[26] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and
J. Clune. Synthesizing the preferred inputs for neu-
rons in neural networks via deep generator networks.
In Advances in Neural Information Processing Sys-
tems (NIPS), pages 3387–3395, 2016. 2, 4

31

[27] A. Odena, C. Olah, and J. Shlens. Conditional image
synthesis with auxiliary classifier gans. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning (ICML), pages 2642–2651, 2017. 2

[28] A. Radford, L. Metz, and S. Chintala. Unsupervised
representation learning with deep convolutional gen-
erative adversarial networks. In International Con-
ference on Learning Representations (ICLR), 2016.
2

[29] M. Saito, E. Matsumoto, and S. Saito. Temporal
generative adversarial nets with singular value clip-
ping. In The IEEE International Conference on
Computer Vision (ICCV), pages 2849–2858, 2017.
1, 2, 6

[30] M. Saito and S. Saito. TGANv2: Efficient training of
large models for video generation with multiple sub-
sampling layers. arXiv preprint arXiv:1811.09245,
2018. 2, 6

[31] R. Salakhutdinov and H. Larochelle. Efficient learn-
ing of deep boltzmann machines. In Proceedings of
the 13th International Conference on Artificial In-
telligence and Statistics (AISTATS), pages 693–700,
2010. 2

[32] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen. Improved techniques for
training gans. In Advances in Neural Information
Processing Systems (NIPS), pages 2234–2242, 2016.
1, 2, 7

[33] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep
inside convolutional networks: Visualising image
classification models and saliency maps. Inter-
national Conference on Learning Representations
(ICLR), 2014. 2, 4

[34] C. K. Soenderby, J. Caballero, L. Theis, W. Shi,
and F. Huszár. Amortised map inference for im-
age super-resolution. In International Conference
on Learning Representations (ICLR), 2017. 2

[35] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A
dataset of 101 human actions classes from videos in
the wild. Technical report, Center for Research in
Computer Vision (CRCV), November 2012. 5

[36] C. Spampinato, S. Palazzo, P. D’Oro, F. Murabito,
D. Giordano, and M. Shah. Vos-gan: Adversar-
ial learning of visual-temporal dynamics for unsu-
pervised dense prediction in videos. arXiv preprint
arXiv:1803.09092, 2018. 2

[37] N. Srivastava, G. Hinton, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning
Research (JMLR), 15:1929–1958, 2014. 3

[38] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and
M. Paluri. Learning spatiotemporal features with
3d convolutional networks. In The IEEE Inter-
national Conference on Computer Vision (ICCV),
pages 4489–4497, 2015. 5

[39] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz.
Mocogan: Decomposing motion and content for
video generation. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2018.
2, 6

[40] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Man-
zagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning
(ICML), pages 1096–1103, 2008. 2

[41] C. Vondrick, H. Pirsiavash, and A. Torralba. Gen-
erating videos with scene dynamics. In Advances
in Neural Information Processing Systems (NIPS),
pages 613–621, 2016. 2

[42] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, G. Liu, A. Tao,
J. Kautz, and B. Catanzaro. Video-to-video synthe-
sis. In Advances in Neural Information Processing
Systems (NIPS), 2018. 1, 2

[43] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz,
and B. Catanzaro. High-resolution image synthesis
and semantic manipulation with conditional gans. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018. 2

[44] Z. Wang, E. P. Simoncelli, and A. C. Bovik. Mul-
tiscale structural similarity for image quality assess-
ment. In Asilomar Conference on Signals, Systems
& Computers, volume 2, pages 1398–1402, 2003. 2

[45] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and
H. Lipson. Understanding neural networks through
deep visualization. In Deep Learning Work-
shop, International Conference on Machine Learn-
ing (ICML), 2015. 2

[46] M. D. Zeiler and R. Fergus. Visualizing and under-
standing convolutional networks. In European Con-
ference on Computer Vision (ECCV), pages 818–
833, 2014. 2, 4

32

24th Computer Vision Winter Workshop
Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)
Stift Vorau, Austria, February 6–8, 2019

Perspective transformation for accurate detection of 3D bounding boxes of
vehicles in traffic surveillance

Viktor Kocur
Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava

Mlynská Dolina, Bratislava
viktor.kocur@fmph.uniba.sk

Abstract. Detection and tracking of vehicles cap-
tured by traffic surveillance cameras is a key com-
ponent of intelligent traffic systems. In this paper
a novel method of detecting 3D bounding boxes of
vehicles is presented. Using the known geometry
of the surveilled scene, we propose an algorithm to
construct a perspective transformation. The trans-
formation enables us to simplify the problem of de-
tecting 3D bounding boxes to detecting 2D bound-
ing boxes with one additional parameter. We can
therefore utilize modified 2D object detectors based
on deep convolutional networks to detect 3D bound-
ing boxes of vehicles. Known 3D bounding boxes of
vehicles can be utilized to improve results on tasks
such as fine-grained vehicle classification or vehicle
re-identification. We test the accuracy of our detector
by comparing the accuracy of speed measurement on
the BrnoCompSpeed dataset with the existing state
of the art method. Our method decreases the mean
error in speed measurement by 22 % (1.10 km/h to
0.86 km/h) and the median error in speed measure-
ment by 33 % (0.97 km/h to 0.65 km/h mean), while
also increasing the recall (83.3 % to 89.3 %).

1. Introduction

Recent development in commercially available
cameras has increased the quality of recorded images
and decreased the costs required to install cameras
in traffic surveillance scenarios. Automatic traffic
surveillance aims to provide information about the
surveilled vehicles such as their speed, type and di-
mensions and as such is an important aspect of intel-
ligent traffic system design.

There are two crucial requirements for accurate
monitoring of vehicles. Precise detection of their
position and accurate camera calibration. Multi-

ple methods of monocular camera calibration exist.
However, they usually require manual measurements
of some distances in the road plane. Dubská et al.
[8] proposed a fully automatic method of camera cal-
ibration based on vanishing point detection. Sochor
et al. [25] further improved the method. We employ
this method for calibration and focus on the accuracy
of vehicle detection.

Object detection is one of the key tasks in com-
puter vision. Current state of the art object detec-
tors rely on convolutional neural network backbones
to extract feature maps from images. A structure
based on so-called anchorboxes is used to determine
the position of bounding boxes of detected objects.
There are two types of such object detection net-
works: one-stage detectors and two-stage detectors.
One-stage detectors such as SSD [17] or YOLO [22]
have shorter inference times, but suffer from worse
accuracy than two-stage detectors such as Faster R-
CNN [23] and R-FCN [4]. We employ a recently
published one-stage detector RetinaNet [14], which
managed to bridge the accuracy gap while keeping
the inference times low.

In this paper we propose a perspective image
transformation, which utilizes the geometry of a
common traffic surveillance scenario to rectify the
image. Rectification of the image allows us to re-
duce the problem of detecting 3D bounding boxes of
vehicles to detection of 2D bounding boxes with one
additional parameter. Any object detector which uti-
lizes anchorboxes can be easily modified to detect 3D
bounding boxes of vehicles in the transformed im-
ages. We test our method on the task of speed mea-
surement of vehicles captured by a static monocu-
lar traffic camera. Compared to existing approaches,
our method achieves lower mean error of measured
speeds, while being computationally simpler.

33

2. Related work

2.1. Camera calibration

Multiple approaches have been proposed to deal
with camera calibration in a traffic surveillance sce-
nario. A calibration pattern [7] or manual measure-
ments on the road [19] can be used to determine the
camera parameters. Some methods use line segments
on the road or traffic signs to find vanishing points
[2, 9]. Other methods perform calibration based on
vehicle movement [5, 24].

We require the calibration method to be fully au-
tomatic and highly accurate. Dubská et al. [8] pro-
posed a fully automatic method of camera calibration
by finding three orthogonal vanishing points. The po-
sition of the first vanishing point is determined by de-
tecting motion of the surveilled vehicles. Interesting
feature points are detected and tracked with a KLT
tracker. Hough transform is used to accumulate the
found lines of motion in a diamond space based on
parallel coordinates. To determine the second van-
ishing point, the edges of the vehicles which do not
correspond to the first vanishing point are again ac-
cumulated. The two vanishing points are then deter-
mined from the diamond space with the third vanish-
ing point being calculated as orthogonal to the first
two.

To detect the scale of the scene, the dimensions of
3D bounding boxes of the passing vehicles are col-
lected. The mean of the collected dimensions is com-
pared against statistical data and thus a scale, which
enables measuring distances on the road plane, is de-
termined. This approach has been further improved
by Sochor et al. [25] who used edgelets correspond-
ing to relevant car features to detect the second van-
ishing point more accurately. The detection of the
scale was also improved by fitting a 3D model of a
common vehicle to the detections of the vehicle in
the footage.

2.2. Object detection

Most cameras employed in traffic surveillance are
static. Many vehicle detection approaches [3, 19]
therefore utilize background substraction methods to
detect the vehicles. These methods can fail with
quickly changing lighting conditions or small cam-
era movements and may result in single detections
containing more than one vehicle due to occlusion.
Luvizón et al. use motion detector [1] to detect li-
cense plates. Daley et al. [5] find edges in the inter-

frame differences [29]. Pham and Lee [28] propose a
method based on finding the windshields of vehicles.
Zhou et al. [31] propose two deep neural networks to
propose and verify the detections.

We opt to base our method on recent object de-
tectors based on deep convolutional neural networks,
as these, given proper training data, can handle dif-
ferent light conditions and occlusion. These can be
divided in two categories: one-stage and two-stage
detectors. Two stage methods (Faster R-CNN [23]
and R-FCN [4]) utilize a convolutional neural net-
work to extract features from an image. The first
stage comprises of determining which regions, called
anchorboxes, in the image could potentially contain
foreground objects. In the second stage the features
corresponding to the proposed anchorboxes are pro-
cessed further to determine which object, if any, the
candidate anchorbox contains. Along with this clas-
sification task, the shape and position of the proposed
anchorbox is offset via regression to better fit the ob-
ject. Finally, non-maximum supression is applied to
remove all but one bounding box per detected object.
An extension of Faster R-CNN called Mask R-CNN
[10] additionally enables pixel-wise segmentation of
the detected objects.

One-stage detectors differ from two stage detec-
tors by performing classification and regression on
all anchorboxes. This results in disproportionate
amount of negative (i.e. background) proposals com-
pared to the amount of positive samples (i.e. ob-
jects) and biases the training process. To remedy this,
SSD [17] uses hard negative mining and YOLO [22]
uses a fixed weight on loss contributions by the back-
ground anchorboxes. These approaches are faster
than two-stage detectors, but have worse results on
standard benchmarks [12].

RetinaNet [14] introduced focal loss to address the
issue of negative sample bias and utilized a feature
pyramid network to further improve its performance.
RetinaNet achieves better results on COCO detection
task [15] than Faster R-CNN while keeping the ben-
efits of low inference times of the other one-stage de-
tectors.

We compare our results with a method of ob-
ject detection proposed in [25] in which a Faster R-
CNN object detector is used to find 2D bounding
boxes. The bounding boxes are then used to join
foreground blobs obtained via background subtrac-
tion into masks of vehicles.

34

2.3. Object tracking

To allow for vehicle counting and speed measure-
ment, the vehicles have to be tracked from frame to
frame. Since object detection may sometimes fail a
robust tracker is necessary. Kalman filter [13] has
been a reliable tool to tackle the task of object track-
ing. Recent successes with deep neural nets led to
development of object tracking methods which uti-
lize convolutional architectures in combinations with
recurrent neural networks [20, 16, 21]. For our case
we found that a simple object tracker, which com-
pares the positions of bounding boxes in subsequent
frames is sufficient.

2.4. Benefits of 3D bounding boxes

The task of detecting 2D bounding boxes of ve-
hicles is in general easier than detecting 3D bound-
ing boxes. However 3D bounding boxes have been
shown to be valuable in improving various traffic
surveillance algorithms such as fine-grained vehicle
classification [27] and vehicle re-identification [30].

2.5. Datasets

Sochor et al. [26] performed a survey of existing
traffic surveillance datasets. Most publicly available
datasets suffer from too few recorded vehicles and
inaccurate measurements of ground truth speeds.

Authors of the survey published their own
BrnoCompSpeed dataset. The dataset contains
videos from 7 locations. Each location is recorded
for approximately one hour from three different
viewpoints on an overpass above the recorded roads.
The dataset contains ground truth data of over 20
thousand vehicle speeds obtained via LIDAR gate
measurements. We train and evaluate our method on
this dataset.

After the publication of the survey Luvizón et al.
[18] published a dataset comprising of 5 hours of
video of smaller sections of roads. Speed measure-
ments of cars using inductive loops and labeled li-
cense plate numbers are provided as ground truth.

3. Proposed method

The goal of our method is to detect 3D bounding
boxes of cars recorded with a monocular camera in-
stalled above the road plane.

3.1. Image transformation

For our method we assume that the camera has
been calibrated as per [25]. This calibration method

has very few limitations regarding the camera po-
sition. The camera has to be positioned above the
road plane and the observed road segment has to be
straight. The main parameters obtained by the cali-
bration are the positions of the two relevant vanish-
ing points in the image. Assuming that the principal
point is in the center of the image, the position of the
third vanishing point as well as focal length of the
camera can be calculated. This enables us to project
any point in the image onto the road plane. To enable
measurements of distances on the road plane one ad-
ditional parameter, denoted as scale, is determined
during calibration.

The first detected vanishing point (denoted further
as VP1) corresponds to the lines on the road plane
which are parallel to the direction of the moving ve-
hicles. The second detected vanishing point (VP2)
corresponds to the lines which lie on the road plane
but are perpendicular to the the direction of the mov-
ing vehicles. The third vanishing point (VP3) cor-
responds to the lines which are perpendicular to the
road plane.

The goal of our transformation is to produce an
image in which all lines corresponding to VP2 will
be parallel to the x-axis of the transformed image
and the lines corresponding to VP3 will be parallel
to the y axis. Thus in the transformed image plane
both VP2 and VP3 will be ideal points. Additionally,
we require the lines corresponding to VP3 to be pre-
served and thus we will use perspective transforma-
tion. As a result of such transformation the objects
which are aligned with the three vanishing points
(most importantly the vehicles on the road) will be
rectified in the transformed image.

In most cases this transformation can be per-
formed in a way which preserves the whole captured
scene in the resulting image. To find the perspec-
tive transformation for such cases we employ an al-
gorithm (see Figure 1 for visual reference):

• In the original image plane, for both VP2 and
VP3, construct two lines which originate in the
vanishing point and are tangent to the viewing
window.

• For both lines originating in VP2 find the in-
tersections with both of the lines originating in
VP3. This yields four points.

• Determine which of these four intersection
points correspond to which corner points of the
viewing window.

35

Figure 1. a) Lines starting in VP2 (blue) and VP3 (red), which are tangent to the viewing window (gray) are detected. b)
Intersections of the lines are found. Points of intersection are paired with the corners of the viewing window. The four
pairs are used to find the perspective transform. c) Perspective transform is applied.

• Find a perspective transformation which maps
the intersection points to their respective corner
points.

This is possible in most cases, however in a case
in which the line connecting the two vanishing points
intersects the viewing window the algorithm fails.
This is expected as in such a case the points on the
intersecting line correspond to both vanishing points
and thus in the transformed image they would have
to form a line which is perpendicular to itself. For
this to occur the camera has to be positioned not right
above the captured road, but on its side. Usually such
situations could be avoided by considering the posi-
tion in which to install the cameras, for instance in
the BrnoCompSpeed dataset there is no such scene
where this is the case. Nevertheless it is always pos-
sible to crop the viewing window to obtain the trans-
formation.

This strategy can be employed even when the al-
gorithm doesn’t fail, but the resulting image is too
distorted. In this paper we use this strategy heuristi-
cally only for one outlier video and thus we do not
specify a rule for its use. Note that the viewing win-
dow is reduced only for the calculation of the trans-
formation properties. The pixels which do not fit into
the new viewing window can still appear in the trans-
formed image.

3.2. Bounding boxes in the transformed image

The 3D bounding boxes we aim to detect are
aligned with the vanishing points as in [25]. In their
work Sochor et al. first segment the vehicle and then
construct the bounding box around the mask. The
construction in this manner is problematic, as the re-
sulting bounding box depends on the order in which
the vertices of the bounding box are constructed.

The perspective transformation described above

enables us to reduce the problem of finding the 3D
bounding box to finding a 2D bounding box with
one additional parameter. This is possible, since
the transformation rectifies the image in a manner in
which all the lines corresponding to VP2 and VP3 are
parallel to either of the image axes. The remaining
parameter denoted as cc is determined by the relative
position of the top frontal edge of the 3D bounding
box against the 2D bounding box which encloses the
whole 3D bounding box. The construction of the 2D
bounding box can be seen in Figure 2.

Reconstructing the 3D bounding box from the 2D
version can be achieved by considering the position
of VP1 in the transformed image. A point on the side
of the 2D bounding box is determined by the parame-
ter cc and a relative position of the transformed VP1.
If the transformed VP1 is to the left of the bounding
box, then the point is on the right side and vice versa.
If the transformed VP1 is directly above the bound-
ing box, then the side can be chosen arbitrarily. With
the position of this point known, the 3D bounding
box can be constructed in the transformed image. To
obtain the 3D bounding box in the original image, the
positions of the vertices of the 3D bounding box are
transformed to the original image space via inverse
perspective transform.

3.3. Bounding box detection

As shown in the previous subsection we only need
to detect 2D bounding boxes with the parameter cc.
For this purpose we utilize the RetinaNet object de-
tector [14]. This detector outputs 2D bounding boxes
for the detected objects. We modify the method to
add cc to each of the output boxes.

The RetinaNet, as well as other object detecting
meta-architectures, use anchorboxes as default posi-
tions of bounding boxes to determine where the ob-
jects are. The object detection task is separated into

36

Figure 2. a) 3D bounding box (green) which is aligned with VP1 (yellow), VP2 (blue) and VP3 (red). b) 3D bounding
box. c) 3D bouding box after the perspective transform is applied. d) The parametrization of the 3D bouding box as 2D
bouding box (green). The parameter cc is determined as the ratio of the distance from top of the 2D bounding box to the
top-front edge of the transformed 3D bounding box (blue) and the height of the 2D bouding box.

three parts: determining which anchorboxes contain
which objects, resizing and moving the anchorboxes
to better fit the objects and finally performing non-
maximum suppression to avoid multiple detections
of the same object. To train the network a two-part
loss (1) is used.

Ltot =
1

N
(Lconf + Lloc) (1)

The loss is averaged over all N anchorboxes,
Lconf is the Focal loss used to train a classifier to
determine which objects, if any, are in the bounding
box. Lloc is the regression loss to train the network
how to reshape and offset the anchorboxes. To in-
clude the parameter cc we add another regression loss
(2).

Lc =
1

N

N∑

i=1

M∑

j=1

xi,jsL1

(
cpc,i − cgc,j

)
(2)

In the loss we sum over all of the N anchorboxes
and M ground truth bounding boxes. xi,j determines
whether the i-th anchorbox corresponds to the j-th
ground truth label [17]. We subtract the ground truth
value of cc denoted as cgc,j from the predicted value
cpc,i and apply smooth L1 loss.

3.4. Training

To obtain training data we use data from two dis-
tinct datasets. The first dataset is BoxCars116k [27],
the original purpose of this dataset is fine-grained ve-
hicle classification. The dataset contains over 116
thousand images, each containing one car along with
make and model labels, information on positions of
vanishing points and the 3D bounding box of the car.
We transform these images with the proposed trans-
formation and calculate the 2D bounding boxes and
cc based on the provided 3D bounding boxes. Since

each image is only of one car we augment the im-
ages by rescaling them and placing them randomly
on a black background.

The other used dataset is BrnoCompSpeed [26].
We use the split C of this dataset leaving 9 videos for
testing, 9 for training and 3 for validation. The orig-
inal purpose of this dataset is speed measurement,
therefore we test our method by measuring speed on
the test set. For training and validation we pick ev-
ery 25-th frame of the videos. Within the dataset a
mask of the region of interest (e.g. the surveilled
road) is provided, therefore we keep only the pixels
from the region of interest to not confuse the net-
work with cars outside the road, which would get
transformed in undesirable ways since they may not
be aligned with the vanishing points. We run these
frames through Mask-RCNN [10] image segmenta-
tion network trained on the COCO dataset [15] to
obtain masks of the cars. We transform the masks
and the images using our transformation and create
the 2D bounding boxes with and without cc as labels
for training.

We train the model on the labeled data in a stan-
dard procedure. The validation loss is used to choose
the best model for inference. We employ ResNet50
[11] pre-trained on Imagenet [6] as our backbone net-
work. The input of the network is an image with 640
by 360 pixels.

3.5. Speed measurement

We perform speed measurement on the test videos.
For each video the network is used to detect the 3D
bounding boxes. Each detected 3D bounding box is
compared via its encompassing 2D bounding box to
the tracks which have been detected in the previous
frames.

For each detection the IoU (intersection over
union) metric is calculated against the last 2D bound-
ing box of each track. If IoU is higher than 0.1 for at

37

least one track, then the bounding box is added to the
track with highest IoU score. If no track has higher
IoU against the detection, then a new track is created.
If a track hasn’t had any bounding boxes added to it
in the last 5 frames, then the track is no longer con-
sidered active. To detect speed we filter out bounding
boxes too close to the edges of the images. We also
discard tracks which have less than 5 detected bound-
ing boxes within them.

For the 3D bounding box the speed is determined
using a point which is in the middle of the frontal
bottom edge of the 3D bounding box. Since this
points should under normal circumstances lie on the
road plane, we can use the camera calibration to eas-
ily determine the distances between various positions
within a track. To detect the average speeds of the
vehicles we employ the same method as [26] by cal-
culating median speed over the whole track.

4. Results

We compare our results with the results achieved
in [25] as these are the best achieved results pub-
lished in the literature, which we denote as So-
chorAuto for automatic calibration and SochorMan-
ual for manual calibration. Our method is denoted
as Transform3D. Examples of the resulting bounding
boxes can be seen in Figure 4.

4.1. Ablation experiments

To properly gauge the impact of the image trans-
formation we perform two ablation experiments. We
train the standard RetinaNet 2D object detector on
the same data as the other models, except that the
images are not transformed. We refer to this model
as Orig2D. We also train the standard RetinaNet 2D
object detector on the transformed image. We use
the same 2D bounding boxes as in Transform3D, but
without the parameter cc. We refer to this method as
Transform2D. We train these models with the same
hyperparameters as our base model.

For our method as well as the ablation experiments
we set the confidence necessary to classify a predic-
tion as true to 0.2. This is an unusually low thresh-
old. However in this case it is beneficial as setting
the threshold too high may lead to lower recall, while
also producing more false positives due to tracks be-
ing possibly split into two. Having more detections
in the track even if they have lower confidence scores
doesn’t hurt the overall resulting speed measurement
since we determine the speed as the median of inter-

frame speeds.

4.2. Cropping the viewing window

Figure 3. The transformed image when the viewing win-
dow is cropped (left) and when the original viewing win-
dow is used (right).

Method Recall Precision
Cropped 0.8955 0.8360
Uncropped 0.2582 0.4595

Table 1. Precision and recall achieved on session 5 left
video for the Transform3D utilizing cropping of the view-
ing window (Cropped) and the baseline Transform3D
(Uncropped).

In our experiments we noticed that for one of the
testing videos (session 5 left) the recall values were
significantly lower than for the rest of the videos. The
reason for this was the fact that the second vanish-
ing point position was too close to the center of the
image and the resulting transformed image was too
distorted for the image detector to work. To remedy
this we employed the strategy described in subsec-
tion 3.1. We crop the original 1920 by 1080 pixel
viewing window from the left by 100 pixels, from
top by 200 pixels, and from the right by 480 pixels
and use the reduced viewing window to perform the
transformation. See Figure 3 for comparison of the
transformed images.

In the Table 1 we show the recall and precision
values for both the baseline version and the cropped
version. Recall is significantly higher for the cropped
version. This indicates that camera placement can
affect the algorithm significantly. However, even in
a case of bad viewing angle a simple manual setting
can provide results similar to changing the camera
position.

As the abysmal recall would significantly skew the
overall recall of the method, we use the cropped ver-
sion of the session 5 left video in the overall results
including the ablation experiments. Other videos
could also benefit from employment of this strategy,
but we opt to not use cropping when not necessary.

38

Figure 4. 3D bounding boxes (red) and the reference point for speed measurement (green) detected on the testing data:
correct bounding boxes (a-d), bounding boxes with bad dimensions (e,f), the same frame from session 5 left without
cropping (g) and with cropping (h), a pair of cars detected properly (i), few frames later at the border of the viewing
window a false positive appears (j).

Method
Mean error

(km/h)
Median error

(km/h)
95-th percentile

(km/h)
Mean Recall

(%)
Mean Precision

(%)
Transform3D (ours) 0.86 0.65 2.17 89.32 87.67
Transform2D (ours) 0.83 0.60 2.04 82.06 83.53
Orig2D (ours) 0.97 0.79 2.25 85.96 86.44
SochorAuto [25] 1.10 0.97 2.22 83.34 90.72
SochorManual [25] 1.32 0.95 3.45 83.34 90.72

Table 2. The results of the compared methods. Mean, median and 95-th percentile errors are calculated as means of the
corresponding error statistics for each video. Recall and precision are averaged over the videos in the test set.

4.3. Speed measurement accuracy

In the Table 2 the resulting mean absolute error
compared to the measured ground truth speed mea-
surement is shown as well as mean recall and pre-
cision for the detected tracks. We make our results

available online 1. Our method achieves lower mean
error and significantly lower median error than both
the fully automatic method SochorAuto and a method
using manual calibration SochorManual, while also

1https://github.com/kocurvik/CVWW2019_
results

39

significantly increasing recall and decreasing pre-
cision. Since we use the same calibration as So-
chorAuto the only difference is in the detection of
vehicles. Our method therefore detects the positions
of vehicles more accurately.

From the results of the ablation experiments it
can be noted that Transform2D outperforms Trans-
form3D in terms of lower speed measurement error.
There is a tradeoff between accuracy and recall. In
some cases Transform2D produces a bounding box
whose parts lie outside of the original image. The
point which is used for tracking can therefore be dis-
carded by the evaluation algorithm provided in [26],
which may lead to the whole track being discarded.
We opted to not modify the evaluation script to keep
the results comparable with other research. This ef-
fect usually occurs in videos with significant distor-
tion and therefore we expect the omitted cases to be
the difficult ones, thus lowering the speed measure-
ment error. However, we cannot conclude that there
is any benefit to using 3D bounding boxes over 2D
bounding boxes with regards to the speed measure-
ment task.

The ablation method Orig2D also outperforms the
methods from [25] with respect to errors, but by a
significantly lower margin. This indicates that trans-
forming the image is beneficial to speed measure-
ment, but significant improvements can be obtained
just by using a better object detector and training
data.

4.4. Computational efficiency

Our method runs in real-time (25 FPS) on an
Nvidia GTX 970 GPU. We were unable to obtain
the FPS of the model we compare against, but we
expect it to be lower as it uses the Faster R-CNN ob-
ject detector, which is in general significantly slower
compared to the detector we used [14].

5. Conclusion

We propose a method to detect and track 3D
bounding boxes of vehicles in a standard traffic
surveillance scenario. Our methods are based on ap-
plying a deep convolutional neural network for ob-
ject detection on an image which has been rectified
by a perspective transformation based on known po-
sitions of vanishing points. 3D bounding boxes can
be detected directly without the need of obtaining the
contours of the vehicles.

Our method improved the mean absolute error on

a speed measurement task by 22 % (1.10 km/h to
0.86 km/h) and median error by 33 % (0.97 km/h
to 0.65 km/h) compared to the existing state-of-the
art fully automatic method, while also increasing the
recall.

Acknowledgements

I would like to thank my supervisor Milan Ftáčnik
for his guidance in this research. I would also like
to thank Adam Herout for his valuable comments. I
gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of a GPU.

References
[1] A. F. Bobick and J. W. Davis. The recognition of

human movement using temporal templates. IEEE
Transactions on pattern analysis and machine intel-
ligence, 23(3):257–267, 2001. 2

[2] F. Cathey and D. Dailey. A novel technique to
dynamically measure vehicle speed using uncali-
brated roadway cameras. In Intelligent Vehicles
Symposium, 2005. Proceedings. IEEE, pages 777–
782. IEEE, 2005. 2

[3] E. R. Corral-Soto and J. H. Elder. Slot cars: 3d mod-
elling for improved visual traffic analytics. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2017. 2

[4] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detec-
tion via region-based fully convolutional networks.
In Advances in neural information processing sys-
tems, pages 379–387, 2016. 1, 2

[5] D. J. Dailey, F. W. Cathey, and S. Pumrin. An al-
gorithm to estimate mean traffic speed using uncal-
ibrated cameras. IEEE Transactions on Intelligent
Transportation Systems, 1(2):98–107, 2000. 2

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. Ieee, 2009. 5

[7] V.-H. Do, L.-H. Nghiem, N. P. Thi, and N. P.
Ngoc. A simple camera calibration method for ve-
hicle velocity estimation. In Electrical Engineer-
ing/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), 2015 12th In-
ternational Conference on, pages 1–5. IEEE, 2015.
2

[8] M. Dubská, A. Herout, and J. Sochor. Automatic
camera calibration for traffic understanding. In
BMVC, volume 4, page 8, 2014. 1, 2

[9] L. Grammatikopoulos, G. Karras, and E. Petsa. Au-
tomatic estimation of vehicle speed from uncali-
brated video sequences. In Proceedings of Interna-
tional Symposium on Modern Technologies, Educa-

40

tion and Professional Practice in Geodesy and Re-
lated Fields, pages 332–338, 2005. 2

[10] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask
r-cnn. In Computer Vision (ICCV), 2017 IEEE In-
ternational Conference on, pages 2980–2988. IEEE,
2017. 2, 5

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[12] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara,
A. Fathi, I. Fischer, Z. Wojna, Y. Song, S. Guadar-
rama, et al. Speed/accuracy trade-offs for modern
convolutional object detectors. In IEEE CVPR, vol-
ume 4, 2017. 2

[13] R. E. Kalman. A new approach to linear filtering and
prediction problems. Journal of basic Engineering,
82(1):35–45, 1960. 3

[14] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár.
Focal loss for dense object detection. IEEE transac-
tions on pattern analysis and machine intelligence,
2018. 1, 2, 4, 8

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Per-
ona, D. Ramanan, P. Dollár, and C. L. Zitnick. Mi-
crosoft coco: Common objects in context. In Eu-
ropean conference on computer vision, pages 740–
755. Springer, 2014. 2, 5

[16] M. Liu and M. Zhu. Mobile video object detection
with temporally-aware feature maps. arXiv preprint
arXiv:1711.06368, 2017. 3

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, and A. C. Berg. Ssd: Single shot multibox
detector. In European conference on computer vi-
sion, pages 21–37. Springer, 2016. 1, 2, 5

[18] D. C. Luvizon, B. T. Nassu, and R. Minetto. A
video-based system for vehicle speed measurement
in urban roadways. IEEE Transactions on Intelligent
Transportation Systems, 18(6):1393–1404, 2017. 3

[19] C. Maduro, K. Batista, P. Peixoto, and J. Batista.
Estimation of vehicle velocity and traffic intensity
using rectified images. In Image Processing, 2008.
ICIP 2008. 15th IEEE International Conference on,
pages 777–780. IEEE, 2008. 2

[20] A. Milan, S. H. Rezatofighi, A. R. Dick, I. D. Reid,
and K. Schindler. Online multi-target tracking us-
ing recurrent neural networks. In AAAI, volume 2,
page 4, 2017. 3

[21] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang,
C. Cai, and Z. He. Spatially supervised recur-
rent convolutional neural networks for visual ob-
ject tracking. In Circuits and Systems (ISCAS),
2017 IEEE International Symposium on, pages 1–4.
IEEE, 2017. 3

[22] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 779–
788, 2016. 1, 2

[23] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn:
Towards real-time object detection with region pro-
posal networks. In Advances in neural information
processing systems, pages 91–99, 2015. 1, 2

[24] T. N. Schoepflin and D. J. Dailey. Dynamic camera
calibration of roadside traffic management cameras
for vehicle speed estimation. IEEE Transactions
on Intelligent Transportation Systems, 4(2):90–98,
2003. 2

[25] J. Sochor, R. Juránek, and A. Herout. Traffic surveil-
lance camera calibration by 3d model bounding
box alignment for accurate vehicle speed measure-
ment. Computer Vision and Image Understanding,
161:87–98, 2017. 1, 2, 3, 4, 6, 7, 8

[26] J. Sochor, R. Juránek, J. Špaňhel, L. Maršı́k,
A. Širokỳ, A. Herout, and P. Zemčı́k. Brnocomp-
speed: Review of traffic camera calibration and
comprehensive dataset for monocular speed mea-
surement. arXiv preprint arXiv:1702.06441, 2017.
3, 5, 6, 8

[27] J. Sochor, J. Špaňhel, and A. Herout. Boxcars: Im-
proving fine-grained recognition of vehicles using
3-d bounding boxes in traffic surveillance. IEEE
Transactions on Intelligent Transportation Systems,
2018. 3, 5

[28] H. Van Pham and B.-R. Lee. Front-view car de-
tection and counting with occlusion in dense traffic
flow. International Journal of Control, Automation
and Systems, 13(5):1150–1160, 2015. 2

[29] C. Vieren, F. Cabestaing, and J.-G. Postaire. Catch-
ing moving objects with snakes for motion tracking.
Pattern recognition letters, 16(7):679–685, 1995. 2

[30] D. Zapletal and A. Herout. Vehicle re-identification
for automatic video traffic surveillance. In Proceed-
ings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 25–31,
2016. 3

[31] Y. Zhou, L. Liu, L. Shao, and M. Mellor. Dave: a
unified framework for fast vehicle detection and an-
notation. In European Conference on Computer Vi-
sion, pages 278–293. Springer, 2016. 2

41

24th Computer Vision Winter Workshop
Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)
Stift Vorau, Austria, February 6–8, 2019

Counting slope regions in the surface graphs

Darshan Batavia, Walter G. Kropatsch
PRIP Group 193/03
TU Wien, Austria

{darshan,krw}@prip.tuwien.ac.at

Rocio Gonzalez-Diaz, Rocio M. Casablanca
Applied Maths 1

University of Seville, Spain
{rogodi,rociomc}@us.es

Abstract. The discrete version of a continuous sur-
face sampled at optimum sampling rate can be well
expressed in form of a neighborhood graph contain-
ing the critical points (maxima, minima, saddles) of
the surface. Basic operations on the graph such as
edge contraction and removal eliminate non-critical
points and collapse plateau regions resulting in the
formation of a graph pyramid. If the neighborhood
graph is well-composed, faces in the graph pyramid
are slope regions. In this paper we focus on the graph
on the top of the pyramid which will contain critical
points only, self-loops and multiple edges connect-
ing the same vertices. We enumerate the different
possible configurations of slope regions, forming a
catalogue of different configurations when combin-
ing slope regions and studying the number of slope
regions on the top.

1. Introduction

There is a strong correlation between an image
and a geographical surface. A digital image can
be perceived as a geographical surface where the
height of a point in the surface is directly propor-
tional to the pixel intensity at that coordinate. The
critical points: maxima, minima and saddle from
the image correspond to the hills, dales and ridge in
terrain. Configurations of critical points and slope
lines of surfaces were discussed by Cayley [3] and
Maxwell [17]. Their observations are with respect to
the earth’s topography but play a significant role in
exploiting properties of smooth surfaces. Nackmann
Lee [15] represented and studied their possible con-
figurations in form of a graph for a Morse function
of two variables (also called 2D Morse function).

Edelsbrunner et al. [8, 7] attempt to capture
the topological aspect of the images by construct-
ing a hierarchy of increasingly coarse Morse-Smale

complexes and decompose a piecewise linear 2D-
manifold. Degenerated critical points were excluded
in that study. Categorization of critical points and
slope points was simplified in [4] with the use of Lo-
cal Binary Patterns (LBPs).

Cerman et al. [5] use LBP to orient the edges
of the neighborhood graph of an image. By using
contraction and removal operations on the edges of
the neighborhood graph, they generate progressively
smaller graphs. Stacking such smaller graphs forms a
graph pyramid, used for multi-resolution image seg-
mentation. A similar approach can be found in [19]
which uses a super pixel hierarchy for the formation
of the pyramid used for a similar purpose.

For a 1D Morse function, critical points x are
identified if its first derivative is null. For a 2D Morse
function, Critical points are determined by vanishing
first derivatives. To classify the critical points in 2D
we study the determinant of the Hessian matrixH . If
it is non-zero, then the point is a non-degenerate crit-
ical point. Otherwise, it is a degenerate critical point
which is excluded from a Morse function. The signs
of the eigenvalues of H are used to classify the point
in maximum, minimum or saddle points.

In [12, 11] the authors form a slope complex ex-
tending the model developed in [8, 7], to include de-
generated critical points. In this paper, we allow the
occurrence of degenerated critical points where ei-
ther the Hessian matrix is nilpotent or semi-definite.
If the Hessian matrix is nilpotent, the neighborhood
of the point is a plateau region, which is a local sur-
face patch of points with the same height. If the Hes-
sian is a positive semi-definite matrix, then one of it’s
eigenvalue is zero and the neighborhood of the point
contains a level curve inside a 2D surface.

In formation of the graph pyramid, the top level
of the pyramid is expected to be preserve only with
the critical points. Also there is no unique configura-

42

tion in which these critical points are connected. Eu-
ler’s formula [6, theorem 4.2.7] provides the lower
bound for the number of faces formed by connect-
ing the vertices, provided the number of edges are
known. It further get complicated when we allow
the self-loops. In this paper, we study all the dif-
ferent configuration of faces also called as slope re-
gions which are formed by connections of the criti-
cal vertices. We also present an approach to count
the number of slope regions in a given primal graph
which includes self-loops. In this paper we avoid use
of derivatives and instead use Local Binary Patterns
(LBPs) to determine the category of a point (mini-
mum, maximum, saddle or slope) in discrete domain
which is explained in Section 2 along with few other
necessary definitions. Section 3 introduces the proto-
types of slope regions with minimal number of edges.
In Section 4 we summarize the effect of contracting
the saddle components. Section 5 is dedicated to the
combinations of slope regions which form the basis
to represent a surface. We provide a formula to count
the number of slope regions of a surface to ski down
from its embedded graph in Section 6. We general-
ize the count made in [11] in the sense that in this
paper the primal graph can contain self-loops. Fi-
nally, Section 7 is devoted to conclusions and future
works. The appendix contains some examples of ap-
plying LBP pyramids on the digital images.

2. Basic definitions

A digital image P can be visually perceived as
a sampled version of a geographical terrain model
which is a continuous surface denoted by S. The
sampling frequency to choose the samples should
satisfy the Nyquist criterion with respect to the min-
imum distance between any two critical points. The
digital image P can be efficiently represented by a
dual pair of plane graphs. The primal graph or neigh-
borhood graphG = (V,E) is formed by vertices v ∈
V corresponding to pixels p ∈ P connected to the
four adjacent neighbors by edges e ∈ E. The dual
of the primal graph is the graph G = (V , E) where
every dual vertex v ∈ V corresponds to a face in the
primal graph G and dual edges e ∈ E correspond
to the border separating the faces in theG [6, Section
4.6]. The gray value (g-value) of the pixel p is visu-
ally conceived as the height of the surface and it is
denoted by g(p) = g(v) where v is the correspond-
ing vertex of p. There are two operations: contraction
and removal defined on the edges of the graph. Con-

traction of edge [6, Section 1.7] in G will result in
merging the two vertices connected by the respective
edge. This is equivalent to the removal operation in
G. The removal of an edge (v, w) ∈ E disconnects

the two vertices v and w and merges the two faces
which is equivalent to contract e ∈ E in G. There
is a one-to-one correspondence between the edges of
G and G. By successively contracting and removing
edges, we form a stack of progressively reducing pla-
nar graphs (Gk, Gk), k ∈ {0, 1, . . . , n} where each
graph Gk+1 is smaller than the graph Gk [10, 1, 9].
The base level of the graph is the primal graph G0.

Definition 1. The orientation of an edge (i, j) ∈ E
in the primal graph G = (V,E) is directed from ver-
tex i to vertex j iff g(i) > g(j).

The edge e ∈ E connecting two vertices v, w ∈ V
where g(v) = g(w) are non-oriented. Note that we
define orientation of edges by considering only the
gray values as a feature of an image. The theory
stated in this paper remains same for the higher di-
mensional feature vector if the orientation of edges
is well defined for the domain.

The LBP value of an edge e ∈ E connecting two
vertices v, w ∈ V is defined by comparing the g-
values of the vertices. The LBP value of e is 1 if
g(v) > g(w) and it is 0 if g(v) < g(w). The LBP
code of vertex v ∈ V is obtained by concatenating, in
clockwise or counterclockwise orientation, the LBP
value of edges incident to v (edges connecting ver-
tices v, w ∈ V such that g(v) = g(w) are not con-
sidered when computing the LBP code of vertex v).
LBP codes are used for the classification of vertices
into maximum, minimum, saddle or slope point.

Definition 2. A vertex v in graph Gk is a local max-
imum ⊕ if its LBP code consists of only 1s.

Definition 3. A vertex v in graph Gk is a local min-
imum 	 if its LBP code consists of only 0s.

Definition 4. A vertex v in graph Gk is a slope point
if the circular permutation1 of it’s LBP code has ex-
actly 2 bit switches.

Definition 5. A vertex v in graph Gk is a saddle
point ⊗ if the circular permutation of it’s LBP code
has a number of bit switches greater than 2.

1Circular permutation consists of rotating the code clockwise
or counter-clockwise by 1 bit.

43

Fig. 1(a), (b), (c) and (d) are examples of a local
maximum, a local minimum, a slope point and a sad-
dle point respectively. The category of the vertex is
decided by the orientation of the edges incident on
the vertex and the categorization is independent of
the number of the incident edges. Thus the theory
can be generalized beyond the gray scale digital im-
ages, where the vertex may contain a vector of the
values (for example: RGB), provided that the metric
for the orientation of the edges is well defined.

j j

jj

+ −

×

6
-

?

�

?

�

6

-

?

-

6

�-
6

�

6

(a) (b)

(d)(c)

Figure 1. LBP categories and the orientation of the inci-
dent edges.

Definition 6. A path π is a non empty sub-graph of
G, consisting of an alternating sequence of vertices
and edges π = v1, e(v1, v2), v2, . . . , e(vr−1, vr), vr.
The LBP code of path π is obtained by consecutively
concatenating the LBP value of edge e(vi−1, vi) for
i ∈ {2, 3, . . . , r}. If there are no bit switches in the
LBP code of π then π is a monotonic path. A mono-
tonic path which contains at least one oriented edge
is a strictly monotonic path.

A plateau is a connected, non empty sub-graph
GP = (VP , EP) ⊂ G = (V,E) such that every edge
(v, w) ∈ EP of the plateau satisfies g(v) = g(w).
A level curve is a particular case of plateaus: It is
a path along which all the vertices have the same g-
value. Notice that a self-loop is also a level curve and
edges of level curves are not oriented. Observe that a
level curve can be a monotonic path but it cannot be
a strictly monotonic path since a strictly monotonic
path requires requires at least one oriented edge (i.e,
an edge with LBP value). After performing the con-
traction of the edges of a plateau, the sub-graph is re-
duced to either a single vertex or a set of level curves
incident to a common vertex.

A non-well composed configuration is modified
to a well-composed configuration [14] by adding a
dummy vertex which is a hidden saddle point [5].
Adding a hidden saddle includes addition of four
edges incident on the hidden saddle point which en-
sures that no two local extrema of same category be
part of the same face. It decomposes the respec-
tive face into four distinct slope regions with degree2

three each.
The LBP codes are embedded after the contraction

of all the edges in the plateau and adding the hidden
saddles. The successive operations of contraction on
edges may generate self-loops which are included in
the model we provide in this document.

Definition 7. A face in a surface embedded graph G
is a slope region S if all the pairs of points in the
surface corresponding to the face can be connected
by a continuous monotonic curve inside the face.

See the example of a slope region bounded by a
level curve in Fig. 2d. The slope regions and their
different configurations are discussed in [11, 12].

Remark 1. The boundary δS of the slope region S
can either be decomposed into exactly two monotonic
paths or a level curve [11, Lemma 1].

Remark 2. Properties of a slope region: Saddle
points can only exist on the boundary δS of the slope
region S with additional edges incident to the saddle
point outside the slope region. Saddle points cannot
exist in the interior S \ δS of the slope region S [11,
Lemma 2].

A well-composed sampled surface is a well-
composed digital picture [13] which samples a con-
tinuous surface. The following property holds.

Lemma 1. All the faces in the primal graph Gk af-
ter contraction of plateau regions in a well-composed
sampled surface are slope regions.

Proof. After collapsing the plateau region to a sin-
gle vertex, the vertex is encoded by a LBP code
which may result in a maximum, minimum, saddle
or a slope point. If the plateau collapses into a level
curve, a walk on level curves do not require an orien-
tation of its edges. A contraction operation in the in-
terior of graph will reduce the degree of the two face
sharing the contracted edge. So after contracting the

2The degree of a face in primal graph is the number of edges
surrounding the face.

44

plateau region, the maximum degree of a face in pri-
mal graphGk will be four. After both the above men-
tioned operations (contraction of plateau and adding
hidden saddles), the maximum degree of a face is
four with a constraint that no two extrema of same
category share the same face. In simple words, no
two local maxima and no two local minima are on
the same face. Thus we obtain an acyclic configura-
tion of faces of degree 3 or 4 composed of not more
than one maximum and one minimum. The remain-
ing vertices are composed of slope points and / or
saddles. The border of such face will always be com-
posed of two distinct monotonic paths, i.e. the face
is a slope region according to Remark 7.

Lemma 2. The minimum possible degree of a face to
be a slope region is three.

Proof. If the degree of a face is reduced to two, it
simply means that the two vertices are connected by
double edges and one of the edge can be removed to
simplify the graph and eliminate redundant informa-
tion.

3. Minimal slope regions

In this section we enumerate the different possible
configurations of slope regions which can be gener-
ated with a minimum number edges and the incident
vertices are only critical points, also called minimal
slope regions.

As mentioned in Lemma 2, the minimum num-
ber of oriented edges to form a slope region is three.
Fig. 2 shows the possible configurations of minimal
slope regions. Fig. 2a is a simple triangle which can
be generated by categorizing the vertices A,B and C
as maximum ⊕, minimum 	 and a saddle point ⊗ in
random order. Fig. 2b is a non-simple triangle where
vertex A can be a maximum or a minimum and has
a self-loop encapsulated by the multiple edges con-
necting vertex A and B. This self-loop needs a further
inside sub-graph S, otherwise it is redundant and re-
moved by simplification. Fig. 2c is the reverse of
Fig. 2b, where the face with multiple edges connect-
ing vertices A and B is encapsulated by the self-loop
attached to vertex A. Also in this case there must be
a further sub-graph D between the double edges to
avoid redundancy. Fig. 2d is the simplified version
of Fig. 2c where one of the edge connecting vertices
A and B is removed.

The motivation behind enumeration of minimal
slope regions is to represent a sampled surface with

slope regions formed by the critical points only. In
this way, we can move ahead to our goal of counting
the minimal number of slope regions (faces) in the
primal graph Gk which also includes self-loops.

�� �� �� ��
�� ��

B

A

C

�� ��

�� ��

�� ��

�� ��

A

A

B

B

�� �� �� ��A B

(a) (b)

(d)(c)

S

D

Figure 2. Configuration of slope regions with minimum
number of vertices and edges.

4. Contraction of saddle components

Consider a graph Gk with all faces being mini-
mal slope regions. The sub-graph formed by a con-
nected component of saddle points can only have a
tree structure [11, Remark 3]. In this section, we
summarize the effect of contracting each saddle tree
to a single point.

Lemma 3. The number of faces of graphGk remains
the same after contracting all the connected saddle
components of Gk.

Proof. According to Lemma 1, all the faces in the
primal graph Gk of a well-composed sampled sur-
face are slope regions. The proof of Lemma 3 for a
sub-graph of Gk composed of adjacent slope regions
sharing saddle points can be extended to the whole
graph Gk. Consider a sub-graph of Gk formed by
a tree of saddle points and their incident edges and
neighborhood vertices as shown in Figure 3a. Con-
traction of an edge in this saddle tree removes exactly
one edge and one vertex. Substituting these values
in Euler’s formula, the number of faces will remain
constant. It can be verified in Fig. 3b where the edges
of the saddle tree are contracted into a single saddle
point. The number of slope regions (faces) in Gk re-
mains the same.

45

�� ���� ��

�� ���� ��
�� ��

++

++

+

�� ��
�� ���� �� �� ��
×
×× ×

�� ��
�� ���� ��

�� �� �� ��

−
−−

− −

-

-

��

�

--

-

6

?

6

??

@
@@
I�

��
�

�
�
�
�

����

(a) �� ��+�� ��+

�� ��+�� ��+
�� ��+

�� ��×
�� ��−
�� ��−�� ��−

�� ��− �� ��−
� -

6

6

�
�
�
�

����& %? ?

� I%�&-

(b)

Figure 3. Sub-graph formed by a saddle tree before (a)
and after (b) contraction

5. Combinations of slope regions

In this subsection we construct sub-graphs by
combining different configurations of minimal slope
regions mentioned in Section 3.

1. We start by generating a sub-graph formed by
considering multiple occurrences of configura-
tion Fig. 2a. We get a sub-graph with alternating
sequence of maxima and minima surrounding a
single saddle point as shown in Fig. 4

���

���

���

���

+

+

+

+
���
×

���

���

���

���

−

−

−

−

�

6 6

�

-

? ?

-

6

�

?

-
@
@

@
@

I

�
�

�
�

	
@
@
@
@

R

�
�
�
�

�

T

T
T T

T

T
TT

Figure 4. Saddle surrounded by 8 slope regions.

The slope region T in Fig. 4 is a simple triangle
formed by critical points only. The lower limit
of the number of slope regions T that can share
the same saddle point is 2, while the upper limit

is the total amount of slope regions on the sur-
face.

2. The combination of self-loop and double edge
configurations is more tricky. If we encapsulate
configuration Fig. 2d inside Fig. 2b, we get a
configuration of self-loop S+ and S− encapsu-
lated by an alternating sequence of maxima and
minima as shown in Fig. 5a, 5b respectively.

���
+ ���
 ���
− −
$

%

�

�
-S+

S+

& %

' $

-

-

(a) Self-loop attached to ⊕.

���
− ���
 ���
+ +

$

%

�

�
�

�

�

S−
S−

& %

' $

(b) Self-loop attached to 	.
Figure 5. Combining self-loops and double edges.

3. The self-loops attached to saddles show a sim-
ple (S×+, S×−) configuration (Fig. 6) and a
more complex configuration involving the sim-
ple slope region T. The simple configurations
can be combined similar to the self-loops at ex-
trema:

In this case, the orientation of S×+ and S×− is
opposite to each other to yield an outside dou-
ble edge between the saddle and the extremum.
The pending edge connected to the saddle out-
side the slope region must be complemented by
the opposite extremum. It can be completed by
a cycle around ⊗ similar to the simple triangles
T above.

The complex configurations (S×+,T,T) and
(S×−,T,T) (Fig. 7) have on the outside a
self-loop attached to the saddle. The self-
loop of S×+ can be encapsulated into an S×−-
configuration and the self-loop S×− into an
S×+- configuration. In both cases the outside is
a double edge connecting two different extrema.

46

�
�	×�
�	 �
�	�
�	 − −+ �

'
&

�
�
-S×−

S×+

& %

' $

-

-

(a) S×− inside S×+.

�
�	×�
�	 �
�	�
�	 + +− -

'
&

�
�

�S×+
S×−

& %

' $

�

�

(b) S×+ inside S×−.
Figure 6. Combining self-loop and double edges attached
to a saddle ⊗.

Hence it can be combined easily with any of the
other configurations with alternating extrema on
the outside.

���
×���
+
'

&

!
-�
-

� �-���
− �- T
T

S×+

(a) S×+ encapsulating two slope regions T inside
self loop.

���
×���
−
'

&

!
��
�

� �����
+ -� T
T

S×−

(b) S×− encapsulating two slope regions T inside
self loop.

Figure 7. Combining simple slope region T with self loop
and double edges attached to S×+ and S×−

4. Alternatively, any of the configurations bounded
by a double edge can be recursively embed-
ded into a self-loop generating one more of the
above primitive self-loop configurations. The
completion towards the outside is then analo-
gously as in the primitive configurations.

6. Number of slope regions

LetGk be a graph composed of only critical points
and with saddle trees being contracted. Then, the

slope regions (faces of the graph) are separated by
single edges only. Hence it makes sense to count the
number of edges which serve as boundary between
the two slope regions instead of counting the slope
regions itself.

From now on, a (⊕,)-edge of Gk is an edge
connecting a maximum and a minimum. A (⊕,)-
bridge of Gk is a (⊕,)-edge satisfying that its re-
moval would disconnect the graph Gk.

Theorem 4. Given a graph Gk made of critical
points only with all the slope regions composed of
maximum three edges, we apply following operations
on Gk:

1. delete all (⊕,)-edges inside the boundary of
graph Gk,

2. keep all (⊕,)-edges on the boundary of graph
Gk,

3. keep all (⊕,)-bridges, and

4. delete self-loops between S×+, S×−.

The resulting graph is plane, all dual faces are slope
regions and it cannot be further reduced without de-
stroying the property that all faces are slope regions.
The total number of slope regions corresponds to the
sum of the following entities:

|{ edge (⊕,) such that ⊕ ∈ V⊕ and 	 ∈ V	}|
+|{ edge (⊗,⊗) such that ⊗ ∈ V⊗ and

(⊗,⊗) = (S×+, S×−)}|.
(1)

Remark that (1) counts for inner (⊕,)-edges the
merged slope regions but only one slope for outer
(⊕,)-edges and (⊕,)-bridges. Multiple (⊕,)-
edges count only one slope.

Proof. Deletion of an edge does not change the pla-
narity of a graph.

We show that the deletion of a (⊕,)-edge or of
the self-loop merges two slope regions into a new
face which is a slope by considering the cases sepa-
rately. A (⊕,)-edge of Gk may be a (⊕,)-bridge
or it may be an inner (⊕,)-edge of Gk. In the
first two cases the (⊕,)-edge bounds a single slope.
Notice that a bridge need not be an outer edge and is
therefore separately mentioned.

An inner (⊕,)-edge in a triangular mesh is ad-
jacent to two other triangles each being a slope with
the same two local extrema. Hence the quadrilateral

47

formed after the removal of the (⊕,)-edge is also
a slope. The argument remains true after the first
(⊕,)-edge of multiple (⊕,)-edges is removed.
Therefore all multiple (⊕,)-edges can be removed
and the merged slope regions still share the same two
extrema in a single slope.

The special configurations involving self-loops
enumerated in Section 3 need to be considered with
care: Self-loops attached to extrema inherit the prop-
erty of being extremal from their anchor vertices.
They separate inner and outer faces which are both
either lower or higher than the self-loop. Every path
connecting a point in the inner face with a point in the
outer face must cross the self-loop which is extremal
and, hence, the path cannot be monotonic.

However, self-loops attached to saddles surround
either a higher slope S×+ or a lower slope S×−. S×+

can be embedded only inside S×− and S×− only in-
side S×+. In both cases the removal of the self-loop
generates a face which contains one minimum and
one maximum and is a valid slope.

Finally we proceed to show the given count of
slope regions (1). We have shown in Lemma 3 that all
edges attached to saddles do not have any influence
on the number of slope regions. All edges between
two saddles can be contracted without reducing the
number of slope regions and saddles except self-
loops cannot form cycles. The first part combines the
first three cases while the count of self-loops attached
to saddles follows the above arguments.

7. Conclusion

In this paper, we have formed a catalogue of dif-
ferent slope configuration which can be formed using
critical points. We further enumerated all the possi-
ble combinations of slope regions which forms the
basis to represent a surface. Then we provide a for-
mula to count the number of slope regions in a graph
of a surface. One possible extension of counting the
number of slope regions is to serve as an objective
quality measure of an algorithm of multi-resolution
image segmentation.

References

[1] L. Brun and W. G. Kropatsch. Dual Contrac-
tion of Combinatorial Maps. In W. G. Kropatsch
and J.-M. Jolion, editors, 2nd IAPR-TC-15 Work-
shop on Graph-based Representation, pages 145–
154. OCG-Schriftenreihe, Österreichische Com-
puter Gesellschaft, 1999. Band 126. 2, 8

[2] P. J. Burt, T.-H. Hong, and A. Rosenfeld. Seg-
mentation and estimation of image region properties
through cooperative hierarchial computation. IEEE
Transactions on Systems, Man, and Cybernetics,
11(12):802–809, 1981. 8

[3] A. Cayley. Xl. On contour and slope lines. The
London, Edinburgh, and Dublin Philosophical Mag-
azine and Journal of Science, 18(120):264–268,
1859. 1

[4] M. Cerman, R. Gonzalez-Diaz, and W. G.
Kropatsch. LBP and Irregular Graph Pyramids. In
N. Petkov and G. Azzopardi, editors, Proceedings of
the CAIP2015, 2015. 1

[5] M. Cerman, I. Janusch, R. Gonzalez-Diaz, and W. G.
Kropatsch. Topology-based image segmentation us-
ing LBP pyramids. Machine Vision and Applica-
tions, 27(8):1161–1174, 2016. 1, 3

[6] R. Diestel. Graph theory. 1997. Grad. Texts in Math,
1997. 2

[7] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pas-
cucci. Morse-Smale complexes for piecewise linear
3-manifolds. In Proceedings of the nineteenth an-
nual symposium on Computational geometry, pages
361–370. ACM, 2003. 1

[8] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hier-
archical Morse-Smale complexes for piecewise lin-
ear 2-manifolds. Discrete and computational Geom-
etry, 30(1):87–107, 2003. 1

[9] Y. Haxhimusa and W. G. Kropatsch. Hierarchy
of Partitions with Dual Graph Contraction. In
E. Michaelis and G. Krell, editors, DAGM 2003,
25th DAGM Symposium, volume 2781 of Lecture
Notes in Computer Science, pages 338–345, Magde-
burg, Germany, September 2003. Springer, Berlin
Heidelberg. 2

[10] W. G. Kropatsch. Building Irregular Pyramids by
Dual Graph Contraction. IEE-Proc. Vision, Image
and Signal Processing, Vol. 142(No. 6):pp. 366–
374, December 1995. 2, 8

[11] W. G. Kropatsch, R. M. Casablanca, D. Batavia, and
R. Gonzalez-Diaz. Computing and reducing slope
complexes. In Discrete Geometry for Com-puter Im-
agery, volume 11382, pages 12–25. Springer, 2019.
1, 2, 3, 4

[12] W. G. Kropatsch, R. M. Casablanca, D. Batavia, and
R. Gonzalez-Diaz. On the space between critical
points. In Computational Topology in Image Context
- 7th International Workshop, CTIC 2019, Mlaga,
Spain, January 24-25, 2019, Proceedings. Springer,
2019. 1, 3

[13] L. Latecki, U. Eckhardt, and A. Rosenfeld. Well-
composed sets. Computer Vision and Image Under-
standing, 61(1):70 – 83, 1995. 3

[14] L. J. Latecki. 3d well-composed pictures. CVGIP:
Graphical Model and Image Processing, 59(3):164–
172, 1997. 3

48

[15] R. N. Lee. Two-dimensional critical point configura-
tion graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 4:442–450, 1984. 1

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A
database of human segmented natural images and
its application to evaluating segmentation algorithms
and measuring ecological statistics. In Computer Vi-
sion, 2001. ICCV 2001. Proceedings. Eighth IEEE
International Conference on, volume 2, pages 416–
423. IEEE, 2001. 8

[17] J. C. Maxwell. L. On hills and dales: To the
editors of the philosophical magazine and journal.
The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 40(269):421–427,
1870. 1

[18] A. Montanvert, P. Meer, and A. Rosenfeld. Hier-
archical image analysis using irregular tessellations.
IEEE Transactions on Pattern Analysis & Machine
Intelligence, 4:307–316, 1991. 8

[19] X. Wei, Q. Yang, Y. Gong, N. Ahuja, and M.-H.
Yang. Superpixel hierarchy. IEEE Transactions on
Image Processing, 27(10):4838–4849, 2018. 1

8. Appendix

In this section, we show examples of multi-
resolution image segmentation using combinatorial
graph pyramid. Due to lack of flexibility in the reg-
ular pyramid [2], irregular pyramids [18] were intro-
duced. Irregular pyramids can be stored in various
data structures like adjacency graphs, dual graphs,
combinatorial maps, etc. We use a stack of combina-
torial maps to form combinatorial pyramids [10, 1].
Similar to graphs, we define the operation of contrac-
tion and removal of edges in the combinatorial pyra-
mid. Edges are removed or contracted in the primal
graph as long as the resulting faces continue to be
slope regions. Formation of graph pyramid may re-
sult in generation of the self-loops and multiple edges
between the vertices. Hence it becomes important to
count the number of slope regions in primal graph
(dual vertices) which essentially are the number of
segments at the given level of the graph pyramid,
which was the main task of this paper.

We used the Berkeley Image Segmentation
Dataset [16] which consists of images of size 481 ×
321 = 154401 pixels. That means, at the base level
of the graph pyramid, there are 154401 vertices and
153600 faces. The results below show the original
image and the processed image with more than 90%
reduction of slope regions. It can be clearly observed
in Fig. 8 and Fig. 9, that the texture information in
the image is preserved and the contour effect can be

seen on the region with smooth gradient.

(a)

(b)

Figure 8. (a) Original image of size 481×321 with 154401
regions and (b) has 9264 regions i.e. 94% reduction.

49

(a)

(b)
Figure 9. (a) Original image of size 481×321 with 154401
regions and (b) has 15440 regions i.e. 90% reduction.

50

24th Computer Vision Winter Workshop
Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)
Stift Vorau, Austria, February 6–8, 2019

Leveraging Outdoor Webcams for Local Descriptor Learning

Milan Pultar, Dmytro Mishkin, Jiřı́ Matas
Visual Recognition Group, Dept. of Cybernetics
Faculty of Electrical Engineering, CTU in Prague

milan.pultar@gmail.com, {mishkdmy, matas}@cmp.felk.cvut.cz

Abstract. We present AMOS Patches, a large set of
image cut-outs, intended primarily for the robusti-
fication of trainable local feature descriptors to il-
lumination and appearance changes. Images con-
tributing to AMOS Patches originate from the AMOS
dataset of recordings from a large set of outdoor we-
bcams.

The semiautomatic method used to generate
AMOS Patches is described. It includes camera se-
lection, viewpoint clustering and patch selection. For
training, we provide both the registered full source
images as well as the patches.

A new descriptor, trained on the AMOS Patches
and 6Brown datasets, is introduced. It achieves state-
of-the-art in matching under illumination changes on
standard benchmarks.

1. Introduction

Local feature descriptors are widely used in tasks
such as structure from motion [34, 31], image re-
trieval [36] and in applications like autonomous driv-
ing [9], which benefit from the robustness of the de-
scriptors to acquisition conditions.

Recent years have witnessed a noticeable effort
to move from handcrafted descriptors [21] to those
obtained by deep learning [26, 37]. Existing work
explores possible architectures [5, 37], loss func-
tions [26, 13, 16] and improvements of robustness
to viewpoint changes by introducing large scale
datasets from 3D reconstruction [29, 22].

Robustness to illumination and appearance
changes has received little attention, yet it is a bigger
challenge for modern descriptors [28, 4]. We tackle
this problem by leveraging information from 24/7
webcams located worldwide [15, 14].

We make the following contributions. First, we
present a method for extracting veridical patch cor-

(a)

(b)

Figure 1: The AMOS dataset [14, 15] - example
images from (a) cameras contributing to the AMOS
patches set and (b) cameras unsuitable for descriptor
training because of blur, dynamic content or domi-
nant sky.

respondences from the ”static” cameras. Second, we
present the AMOS Patches dataset1 for training of
local feature descriptors with improved robustness to
changes in illumination and appearance.

As a final contribution, HardNet [26] trained with
AMOS Patches achieves state-of-the-art results in the
commonly used HPatches benchmark [4].

2. Related Work

The literature on local feature descriptors is vast.
Here we focus on descriptors which are robust to

1The dataset and contributing images are available at
https://github.com/pultarmi/AMOS_patches

51

illumination and appearance changes, refering the
reader to Csurka et al. [8] for detailed survey on re-
cent advances in local features. There are two main
ways towards achieving robustness to illumination
change: by descriptor construction and by learning
on the appropriate dataset. Normalization of the
patch mean and variance is a simple but powerful
method, which is implemented in both SIFT [21] and
modern learned descriptors [37, 26]. The normaliza-
tion makes the descriptor invariant to affine changes
in pixel intensities in the patch. HalfSIFT [17] treats
opposite intensity gradient directions as equal, trad-
ing off half of the SIFT dimensionality for being
contrast reversal invariant. It works well in medical
imaging and infrared-vs-visible matching.

The family of order-based descriptors like
LIOP [39] or MROGH [10] operates on the relative
order of pixel intensities in the patch instead of on
the intensities themselves. Relative order (sorting)
is invariant to any monotonically increasing inten-
sity transformation. Descriptors like SymFeat [12],
SSIM [35] and learned DASC [18] encode local sym-
metries and self-similarities. Another possibility is,
instead of constructing a descriptor, to apply some
transformation to the pixel intensities as done by the
learned RGB2NIR [41] or hand-crafted LAT [32],
and then use a standard descriptor, e.g. SIFT.

Data-driven approaches mostly include Siamese
convolution networks with modality-specific
branches, like the Quadruplet Network [3]. The
decision which branch to use for a specific patch
comes from an external source or a domain classifier.
HNet [20] uses an auto-encoder network and style
transfer methods like CycleGAN [43] for emulating
different modalities.

There is a number of image-level datasets specifi-
cally designed for testing illumination-robust recog-
nition: DTU Robot [2], OxfordAffine [25], Robot-
Car dataset [23], Aachen Day-Night [33], GDB [40],
SymBench [12], etc. Despite the importance of
the topic, the number of patch-level datasets for
illumination-robust descriptors is small, especially
those which are suitable for descriptor learning. To
our best knowledge, Two Yosemite sequences from
the Phototour dataset [6] and the Illumination split of
the HPatches dataset [4] are the only ones suitable
for descriptor learning and are publicly available.

3. Creating AMOS Patches

AMOS [14, 15] is a continuously growing pub-
licly available dataset collected from outdoor web-
cams, currently containing over one billion (or 20
TB) images. It is organized into individual camera
directories, which are split into folders according to
the year and month of the acquisition. The size of the
images varies, and so does their quality and the num-
ber of images in each camera directory. A typical
AMOS camera is static and has approximately 300
times 300 pixel size. Many cameras store images in
all seasons and during the whole day.

The advantage of static cameras lies in the fact that
they show the same structure under different weather
and lighting conditions. Therefore, if observing a
static scene, they are highly suitable for training of
local feature descriptor robust to illumination and ap-
pearance changes.

We learned the hard way that using this type of
data is not trivial. Firstly, due to the dataset size,
it is not feasible with moderate computing power to
load such data into memory. Moreover, preprocess-
ing would take a prohibitive amount of time. Sec-
ondly, the training procedure is sensitive to misreg-
istration of the images and the presence and size of
moving objects. Many cameras experience techni-
cal issues such as: being out of focus, rotating over
time, displaying highly dynamic scene (e.g. sky, sea
waves), which all significantly hurt the performance
of the trained descriptor, as discussed later.

Therefore, we developed a pipeline for the cre-
ation of AMOS Patches, shown in Figure 2, which
entails several steps to create a clean dataset with
veridical patch correspondences. These methods fo-
cus on the selection of cameras and images, detection
of view switching in a camera and the registration
of images. Because of several not easily detectable
problems, it was still necessary to perform final man-
ual check of the selected image sets.

3.1. Camera selection

The first step — camera selection — aims at
choosing a subset of cameras which are suitable for
training, i.e. do not produce very dark images, are
sharp and do not display moving objects like cars or
boats.

The procedure uses two neural networks, a sky de-
tector [24] and an object detector [1], and computes
simple statistics for each of 20 randomly chosen im-
ages in each camera directory.

52

Figure 2: The pipeline of AMOS patches consists of: camera selection to filter out dynamic or empty scenes,
appearance clustering to remove redundant images, viewpoint reclustering to tackle switching cameras, precise
registration for further filtering, manual pruning for final selection of views and patch sampling.

The camera selection took approximately one
week on a single PC (IntelXeonCPU E5-2620) with
one GPU GTX Titan X. Processing more images
by the neural network detectors increases both the
precision of the method and the running time. Our
choice is therefore based on the available computa-
tion power.

Each image is then checked whether it satisfies the
following conditions:

• f1 : sky area < 50% not empty

• f2 : no detected cars or boats not dynamic

• f3 : Var(∇2 image) ≥ 180 sharp

• f4 : mean pixel intensity > 30 not black

• f5 : image size > (700, 700) large

A camera is kept if at least 14 out of the 20 images
pass the check.

The filter f5 is the most restrictive, it removes 91%
of the cameras – AMOS contains mostly low resolu-
tion images. The reasoning behind using f5 is that
images with smaller size often observe a motorway
or are blurred. Also, such cameras would not gen-
erate many patches. We want to select only a rela-
tively small subset of the cameras with the predefined
characteristics and therefore an incorrect removal of
a camera is not a problem.

Several cameras were removed because of cor-
rupted image files. The resulting set contains 474
camera folders which were subject to subsequent pre-
processing.

3.2. Appearance clustering by K-means

The resulting data is of sufficient quality, but it is
highly redundant: images shot in 10 minute inter-
vals are often indistinguishable and very common.

To select sufficiently diverse image sets, we run the
K-means clustering algorithm with K=120 to keep
the most representative images. We use the fc6 layer
of the ImageNet-pretrained AlexNet [19] network as
the global image descriptor. While not being the
state-of-the-art, AlexNet is still the most effective ar-
chitecture in terms of speed [7], with an acceptable
quality.

At this stage of the pipeline, there are K=120 im-
ages for each of the C=474 cameras selected, a fea-
sible number for training with the computational re-
sources available.

Feature descriptor training with patches selected
from this image set was not successful. We were un-
able to achieve accuracy higher than 49.1 mean aver-
age precision (mAP) in the HPatches matching task;
the state-of-the-art is 59.1 mAP – GeoDesc [22].

3.3. Viewpoint clustering with MODS

After examining the data closely, we found that
many of the cameras switch between a few views,
which breaks our assumption for the generation of
ground truth correspondences via identity transfor-
mation. In order to filter out the non-matching views,
we run MODS [27], a fast method for two-view
matching, and split each camera folder into clusters,
called views, by applying a threshold on the number
of inliers and the difference between the homography
matrix and the identity transform.

Let (x1, x2, ..., xK) be a set of images in a camera
folder in arbitrary order. MODS matching is first run
on pairs (x1, x2), (x1, x3), ...(x1, xK). Image x1 be-
comes the reference image in a newly created view,
which contains xi for which the registration yields
more than 50 inliers and SAD(H(x1, xi), I3) < 50.
SAD denotes the sum of absolute differences, H de-

53

notes a homography matrix normalized by the ele-
ment in position (3, 3), I3 is 3x3 identity matrix. All
images in the created view are then removed from
the processed image set. The step is repeated until
no images remain.

We observed that the number of the resulting
views in one camera folder depends on phenomena
other than camera movement. For example, in cases
where there is a fog or very rainy weather, MODS
fails to match most of the image pairs and many
of them form a single element cluster, which is ex-
cluded from further processing. For each camera, we
keep only the view with the largest number of im-
ages, if it has more than 50. Each remaining view is
reduced to 50 images by random selection.

3.4. Registration with GDB-ICP

While the MODS method is effective in matching
and subsequent reclustering of camera sequences, in
most of the cases the estimate of the global homog-
raphy is not suficiently precise. MODS often outputs
a homography valid for only small area in the image,
see the example shown in Figure 3. Therefore, the
views contain also images which are not correctly
aligned. To alleviate the problem, we run Gener-
alized Dual Bootstrap-ICP [40] to prune the set of
views, keeping those where this second registration
is successful.

The registration proceeds as follows. Each view
folder contains images (x1, x2, ..., x50), where image
x1 is the MODS reference. The GDB-ICP registra-
tion is run on pairs (x1, x2), (x1, x3), ...(x1, x50) and
warped images x′2, x

′
3, ..., x

′
50 are obtained. If regis-

tration fails on any pair, the whole view is removed.
After the precise registration with GDB-ICP, 151

views remained. It is feasible to manually inspect
such a set.

3.5. Manual pruning

A few problems remain, see Figure 4, such as dy-
namic scenes, undetected sky (the sky detector fires
mostly on the clear blue sky). As a precaution, we
also removed views with very similar content and
views from different cameras observing the same
place from a different viewpoint. We tried to use the
scene segmentation network [42] to detect moving
objects, but the result was not satisfactory. The final
selection is therefore done by hand, resulting in a set
of 27 folders with 50 images each.

Figure 3: MODS registration failure, most of the cor-
respondences are on moving structures. Top: an im-
age pair with marked inliers. Bottom: wrongly trans-
formed image (left) and the reference.

Figure 4: Manually pruned views. Examples of dy-
namic scenes (left, center) and a cloud-dominated
scene not removed during camera selection (right).

3.6. Patch selection, training

The last phase of the AMOS Patches pipeline con-
sists of sampling images to obtain patch centers,
scales and angles, and subsequent cropping from
source images. We tested two approaches. First, one
may average the images in a view and evaluate a re-
sponse function over the resulting image. Second,
one may evaluate the response function over all im-
ages in a view and average the outputs. The result-
ing 2D map is then used as a probability mask for
the selection of patch centers. Scales and angles are
sampled independently at random from a predefined
range.

For training, we use the hard-in-batch triplet mar-
gin loss [26]. This structured loss requires corre-
sponding (positive) pairs of patches on input. There-
fore, AMOS Patches dataset consists of sets of
patches cropped from the same position in each im-
age in a view. The size of each patch set is equal to
the number of images in a view directory, which is
50 in our case. Each patch is resampled to 96 times
96 pixels.

During training, we apply random affine transfor-
mation and cropping to get patches of smaller size.
First, random rotation from range (−25◦, 25◦), scal-
ing from range (0.8, 1.4) and shear are applied. Sec-
ond, from a 64 times 64 center of a patch we crop a

54

32 times 32 region with random scale. These trans-
formed patches are the input for training.

We use the HardNet implementation in Pytorch
[30]. For training we use batch size of 1024, 20
epochs, learning rate = 20, SGD optimizer with mo-
mentum = 0.9.

4. Evaluating influences on precision

We examine the influence of several choices made
before and during training. They relate to batch for-
mation, patch selection and the dataset size. Also,
we show the importance of registration of images in
a view.

Two evaluation tasks are considered. In the match-
ing task, there are two equally sized sets of patches
from two different images. The descriptor is used to
find a bijection between them. The average preci-
sion (AP) over discrete recall levels is evaluated for
each such pair of images. Averaging the results over
a number of image pairs gives mAP (mean AP). In
the verification task there is a set of pairs of patches.
The descriptor assigns a score that the two patches
in a pair correspond. Precision-recall curve is then
plotted based on the sorted (according to the score)
list of patch pairs distances.

4.1. Registration

In this experiment we show the importance of the
precise alignment of images. We displace each patch
by different shifts and observe the influence on the
HPatches matching score, see Figure 5. Notice how
the performance of the descriptor improves with a
small shift, but then quickly deteriorates. We use
#source views = 27 (all), 30000 patch sets and Hes-
sian weighting without averaging. These parameters
are defined below.

4.2. Number of source views

The hard-in-batch triplet margin loss is influenced
by the composition of a batch. This experiment
shows that lowering the number of views from which
we choose patches to form a batch is an effective way
to improve training on AMOS Patches, see Figure
6. We interpret this behaviour as follows. Reducing
the number of views increases the number of neg-
ative patches from the same scene, which are often
the most difficult to distinguish.

4.3. AMOS Patches size

Here we examine the influence of the dataset size,
i.e. the number of patch sets created from source

Figure 5: HPatches matching. The mAP score of
Hardnet trained on AMOS patches displaced by dif-
ferent shifts.

Figure 6: HardNet mAP score in HPatches matching
task as a function of the number of source views for a
batch. Views are selected randomly in each iteration.
Dataset consists of 27 views in total.

views, see Figure 7. We use the results from the
previous experiment and choose #(source cameras)
= 6. The graph shows there is a rough increase in
HPatches matching score on bigger datasets. Based
on the result, we fix the number of patches to be
30 000 to trade off dataset compactness for slightly
higher performance.

4.4. Patch sampling

The patch selection method is partially determined
by two independent choices: the response function
and the averaging method. First, we find the best
response function (Table 1), then we keep it fixed

55

Figure 7: HardNet mAP score in HPatches matching
task evaluated for different sizes of AMOS patches
training dataset. Each value is an average over 3 dif-
ferent randomly generated datasets of the same size.

and determine the optimal averaging function, which
may apply either to outputs from the response func-
tion (Table 2) or to images in a view (Table 3).

Table 1: Patch sampling: Influence of the response
function on HPatches matching score (mAP).

Weighting mAP

Uniform 56.20
Hessian 56.39√

Hessian 56.49
NMS(

√
Hessian) 56.18

Table 2: Patch sampling: Influence of the response
averaging on HPatches matching score (mAP).
Weighting function is

√
Hessian.

Averaging mAP

none 56.49
mean 56.10
median 56.45

5. Evaluation

HPatches and AMOS benchmarks. The evalua-
tion shows that HardNet trained on AMOS Patches
and 6Brown dataset outperforms the state-of-the-art
descriptors for matching under illumination changes.
We also use the new AMOS Patches testing split

Table 3: Patch sampling: Influence of the image av-
eraging on HPatches matching score (mAP). Weight-
ing function is

√
Hessian.

Image mAP

random 56.49
median 56.44
mean 56.58

Figure 8: HardNet performance on the AMOS test
set, when trained on the AMOS, Liberty, AMOS and
Liberty, AMOS and 6Brown and PS [29] datasets.
SIFT results are provided as a baseline.

to evaluate robustness to lighting and season-related
conditions. See Table 4 for results in the matching
task, Figure 9 in the verification task and Figure 8
for comparison on the proposed AMOS Patches test
split.

Table 4: HPatches matching scores (mAP).

Training set HPatches subset
illum view full

Liberty 49.86 55.62 52.79
6Brown 52.39 59.15 55.83
PS 48.55 67.43 58.16

Webcam [38] 51.82 50.77 51.29
AMOS-patches 55.17 57.94 56.58
+Liberty 56.14 60.27 58.24
+6Brown 56.22 61.50 58.91

Wide baseline stereo. Finally, we evaluate the de-
scriptors on a real-world task – wide baseline stereo

56

(a) HPatches intra easy (b) HPatches inter easy

(c) HPatches intra hard (d) HPatches inter hard

(e) HPatches intra tough (f) HPatches inter tough

Figure 9: HardNet performance evaluated on the HPatches benchmark. Precision-recall curve is presented
based on the output from the verification task. Legend shows the training set name with the corresponding
AUC.

57

Table 5: Comparison of the AMOS+6Br HardNet vs. HardNet++ [26] following the protocol [28]. The number
of matched image pairs is shown. The numbers of image pairs in a dataset are boxed. Best results are in bold.

EF [44] EVD [27] OxAff [25] SymB [12] GDB [40] map2photo [28] LTLL [11]
Descriptor 33 15 40 46 22 6 172

HardNet++ [26] 31 15 40 40 18 2 108
HardNetAMOS+6Br 33 15 40 45 19 4 106

on multiple datasets, following the protocol [28].
Two metrics are reported: the number of successfully
matched image pairs and the average number of in-
liers per matched pair. Results are shown in Table 5.
Edge Foci (EF) [44], Extreme view [27] and Oxford
Affine [25] benchmarks provide a sanity check — the
performance on the benchmark is saturated and they
contain (mostly) images taken from a slightly differ-
ent viewpoint.

SymB [12], GDB [40] and map2photo [28] con-
tain image pairs which are almost perfectly regis-
tered, but have severe differences in illumination or
modalities, e.g. drawing vs. photo, etc. AMOS+6Br
HardNet performs better than baseline HardNet++ on
such datasets. The last dataset – LTLL [11] con-
sists of historical photos and old postcards. The
landmarks are depicted with significant changes in
both viewpoint and illumination. Baseline Hard-
Net++ slightly outperforms our descriptor. Over-
all, the benchmark confirms that HardNet trained on
AMOS Patches is robust to illumination and appear-
ance changes in real-world scenarios.

6. Conclusion

We provide the AMOS Patches dataset for robus-
tification of local feature descriptors to illumination
and appearance changes. It is based on registered im-
ages from selected cameras from the AMOS dataset.
It has both the training and testing split.

We introduce the local feature descriptor trained
on AMOS Patches and 6Brown datasets, which
achieves the score of 58.91 mAP in HPatches match-
ing task in full split, compared to the current state-of-
the-art: 59.1 mAP (GeoDesc). The advantage of the
descriptor is the robustness to illumation. It achieves
the state-of-the-art score of 56.22 mAP in matching
task, illum split, compared to 52.39 mAP of Hard-
Net++.

We conclude with a list of observations and rec-
ommendations related to using webcams for descrip-
tor learning:

• Scene parsing methods do not work well in out-
door webcams. The precision of the near state-
of-the-art network [42] is not satisfactory.

• For camera selection we recommend to adopt
strict ”quality” criteria and be prepared to loose
many suitable cameras in the process.

• When picking cameras for training manually, a
small and diverse subset is better than a bigger
one with similar views or imprecise alignment
of images.

Acknowledgements

The authors were supported by the Austrian
Ministry for Transport, Innovation and Technology,
the Federal Ministry of Science, Research and
Economy, and the Province of Upper Austria in the
frame of the COMET center SCCH, the CTU student
grant SGS17/185/OHK3/3T/13, and the OP VVV
funded project CZ.02.1.01/0.0/0.0/16 019/0000765
Research Center for Informat-
ics.

References

[1] https://github.com/kuangliu/torchcv. reviewed on
December 2018. 2

[2] H. Aanæs, A. Dahl, and K. Steenstrup Pedersen. In-
teresting interest points. International Journal of
Computer Vision, 97:18–35, 2012. 2

[3] C. A. Aguilera, A. D. Sappa, C. Aguilera, and
R. Toledo. Cross-spectral local descriptors via
quadruplet network. Sensors, 17(4), 2017. 2

[4] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikola-
jczyk. HPatches: A benchmark and evaluation of
handcrafted and learned local descriptors. In The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 4, page 6, 2017. 1, 2

[5] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk.
Learning local feature descriptors with triplets and
shallow convolutional neural networks. In Pro-
ceedings of the British Machine Vision Conference
(BMVC), 2016. 1

58

[6] M. Brown and D. G. Lowe. Automatic panoramic
image stitching using invariant features. Interna-
tional Journal on Computer Vision, 74(1):59–73,
2007. 2

[7] A. Canziani, A. Paszke, and E. Culurciello. An anal-
ysis of deep neural network models for practical ap-
plications. arXiv preprint arXiv:1605.07678, 2016.
3

[8] G. Csurka and M. Humenberger. From handcrafted
to deep local invariant features. arXiv preprint
arXiv:1807.10254, 2018. 2

[9] A. Dewan, T. Caselitz, and W. Burgard. Learning
a local feature descriptor for 3d lidar scans. arXiv
preprint arXiv:1809.07494, 2018. 1

[10] B. Fan, F. Wu, and Z. Hu. Aggregating gradient dis-
tributions into intensity orders: A novel local image
descriptor. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2011.
2

[11] B. Fernando, T. Tommasi, and T. Tuytelaars. Loca-
tion recognition over large time lags. Computer Vi-
sion and Image Understanding, 139:21 – 28, 2015.
8

[12] D. Hauagge and N. Snavely. Image matching using
local symmetry features. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 206–213, 2012. 2, 8

[13] K. He, Y. Lu, and S. Sclaroff. Local descriptors op-
timized for average precision. In The IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), June 2018. 1

[14] N. Jacobs, W. Burgin, N. Fridrich, A. Abrams,
K. Miskell, B. H. Braswell, A. D. Richardson, and
R. Pless. The global network of outdoor webcams:
properties and applications. In Proceedings of the
17th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems,
pages 111–120. ACM, 2009. 1, 2

[15] N. Jacobs, N. Roman, and R. Pless. Consistent tem-
poral variations in many outdoor scenes. In IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 1–6. IEEE, 2007. 1, 2

[16] M. Keller, Z. Chen, F. Maffra, P. Schmuck, and
M. Chli. Learning deep descriptors with scale-aware
triplet networks. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June
2018. 1

[17] A. Kelman, M. Sofka, and C. V. Stewart. Key-
point descriptors for matching across multiple im-
age modalities and non-linear intensity variations. In
CVPR 2007, 2007. 2

[18] S. Kim, D. Min, B. Ham, M. N. Do, and K. Sohn.
Dasc: Robust dense descriptor for multi-modal and
multi-spectral correspondence estimation. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 39(9), Sept 2017. 2

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information pro-
cessing systems, pages 1097–1105, 2012. 3

[20] W. Liu, X. Shen, C. Wang, Z. Zhang, C. Wen, and
J. Li. H-net: Neural network for cross-domain im-
age patch matching. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, 7 2018. 2

[21] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of com-
puter vision, 60(2):91–110, 2004. 1, 2

[22] Z. Luo, T. Shen, L. Zhou, S. Zhu, R. Zhang, Y. Yao,
T. Fang, and L. Quan. Geodesc: Learning local de-
scriptors by integrating geometry constraints. In The
European Conference on Computer Vision (ECCV),
September 2018. 1, 3

[23] W. Maddern, G. Pascoe, C. Linegar, and P. Newman.
1 Year, 1000km: The Oxford RobotCar Dataset. The
International Journal of Robotics Research (IJRR),
36(1):3–15, 2017. 2

[24] R. P. Mihail, S. Workman, Z. Bessinger, and N. Ja-
cobs. Sky segmentation in the wild: An empirical
study. In Applications of Computer Vision (WACV),
2016 IEEE Winter Conference on, pages 1–6. IEEE,
2016. 2

[25] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zis-
serman, J. Matas, F. Schaffalitzky, T. Kadir, and
L. Van Gool. A comparison of affine region de-
tectors. International Journal of Computer Vision
(IJCV), 65(1):43–72, 2005. 2, 8

[26] A. Mishchuk, D. Mishkin, F. Radenovic, and
J. Matas. Working hard to know your neighbor’s
margins: Local descriptor learning loss. In Ad-
vances in Neural Information Processing Systems,
pages 4826–4837, 2017. 1, 2, 4, 8

[27] D. Mishkin, J. Matas, and M. Perdoch. Mods: Fast
and robust method for two-view matching. Com-
puter Vision and Image Understanding, 141:81–93,
2015. 3, 8

[28] D. Mishkin, J. Matas, M. Perdoch, and K. Lenc.
Wxbs: Wide baseline stereo generalizations. In Pro-
ceedings of the British Machine Vision Conference
(BMVC), September 2015. 1, 8

[29] R. Mitra, N. Doiphode, U. Gautam, S. Narayan,
S. Ahmed, S. Chandran, and A. Jain. A large dataset
for improving patch matching. arXiv preprint
arXiv:1801.01466, 2018. 1, 6

[30] A. Paszke, S. Gross, S. Chintala, G. Chanan,
E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation
in pytorch. In NIPS-W, 2017. 5

[31] A. Resindra, A. Torii, and M. Okutomi. Structure
from motion using dense cnn features with keypoint
relocalization. IPSJ Transactions on Computer Vi-
sion and Applications, 10, Dec 2018. 1

59

[32] S. Ryu, S. Kim, and K. Sohn. Lat: Local area trans-
form for cross modal correspondence matching. Pat-
tern Recognition, 63, 2017. 2

[33] T. Sattler, W. Maddern, C. Toft, A. Torii, L. Ham-
marstrand, E. Stenborg, D. Safari, M. Okutomi,
M. Pollefeys, J. Sivic, F. Kahl, and T. Pajdla. Bench-
marking 6DOF outdoor visual localization in chang-
ing conditions. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
8601–8610. IEEE Computer Society, 2018. 2

[34] J. L. Schonberger and J.-M. Frahm. Structure-from-
motion revisited. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 4104–4113, 2016. 1

[35] E. Shechtman and M. Irani. Matching local self-
similarities across images and videos. In The IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2007. 2

[36] T. Shen, Z. Luo, L. Zhou, R. Zhang, S. Zhu, T. Fang,
and L. Quan. Matchable image retrieval by learn-
ing from surface reconstruction. arXiv preprint
arXiv:1811.10343, 2018. 1

[37] Y. Tian, B. Fan, and F. Wu. L2-net: Deep learning of
discriminative patch descriptor in euclidean space.
In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 1, 2

[38] Y. Verdie, K. M. Yi, P. Fua, and V. Lepetit. TILDE:
A temporally invariant learned detector. In The IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2015. 6

[39] Z. Wang, B. Fan, G. Wang, and F. Wu. Exploring lo-
cal and overall ordinal information for robust feature
description. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 38(11), Nov 2016. 2

[40] G. Yang, C. V. Stewart, M. Sofka, and C.-L. Tsai.
Registration of challenging image pairs: Initializa-
tion, estimation, and decision. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(11),
2007. 2, 4, 8

[41] T. Zhi, B. R. Pires, M. Hebert, and S. G.
Narasimhan. Deep material-aware cross-spectral
stereo matching. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June
2018. 2

[42] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler,
A. Barriuso, and A. Torralba. Semantic understand-
ing of scenes through the ADE20k dataset. Interna-
tional Journal on Computer Vision, 2018. 4, 8

[43] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros.
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In IEEE Inter-
national Conference on Computer Vision (ICCV),
2017. 2

[44] C. L. Zitnick and K. Ramnath. Edge foci interest
points. In IEEE International Conference on Com-
puter Vision (ICCV), pages 359–366, 2011. 8

60

24th Computer Vision Winter Workshop
Friedrich Fraundorfer, Peter M. Roth, Fabian Schenk (eds.)
Stift Vorau, Austria, February 6–8, 2019

Benchmarking Semantic Segmentation Methods for Obstacle Detection on a
Marine Environment

Borja Bovcon, Matej Kristan
University of Ljubljana

Faculty of Computer and Information Science
1000 Ljubljana

borja.bovcon@fri.uni-lj.si

matej.kristan@fri.uni-lj.si

Abstract. Obstacle detection is an important and
critical module of autonomous navigation. Majority
of modern obstacle detection algorithms are based
on semantic segmentation and scene understand-
ing. Most of these methods were developed for au-
tonomous ground vehicles and their performance has
not yet been evaluated for autonomous boats. In this
paper, we (i) benchmark and analyze the most com-
mon segmentation algorithms for autonomous driv-
ing on a marine environment, (ii) propose a new,
pixel-wise annotated, maritime training set for fine-
tuning segmentation methods, (iii) conduct an in-
depth study of their performance on Modd2 dataset,
pinpoint their drawbacks along with their qualities
and (iv) compare the results of classical segmen-
tation metrics against obstacle detection metric in
terms of USV safety.

1. Introduction

Small-sized unmanned surface vehicles (USVs)
are an affordable tool for navigating in shallow wa-
ters and narrow marinas. They are mainly used
for coastal environmental patrol and remote inspec-
tion of difficult-to-reach man-made structures. These
tasks require a high level of autonomy which pri-
marily depends on timely detection and avoidance
of nearby obstacles and floating debris. Lightweight
and information-rich sensors, such as cameras, com-
bined with computer vision algorithms are gaining
prominence as leading obstacle detection mecha-
nisms.

Obstacles can be detected by various image-
processing approaches, for instance background sub-
traction [33], foreground extraction [12], 3-D recon-

Figure 1 Sample image and its ground truth segmen-
tation. Sky, obstacles and water are represented with
deep blue, yellow and cyan color respectively.

struction [34], semantic segmentation [17, 6, 7, 5]
etc. Recently, the use of deep learning has con-
tributed significantly to the striking progress in the
field of semantic segmentation. The main goal of se-
mantic segmentation methods is to perform a pixel-
wise classification of the image, that provides neces-
sary information for scene understanding. Scene un-
derstanding is a crucial part for a successful and safe
autonomous navigation. Many methods [4, 3, 20, 24,
21], developed for navigation of autonomous ground
vehicles, rely on semantic segmentation algorithms
to detect obstacles in a scene. Siam et al. [32] have
done an in-depth comparison of such semantic seg-
mentation methods for autonomous driving and pro-
posed a real-time segmentation benchmarking frame-
work. However, in marine environment different as-
sumptions hold and different segmentation tasks pose
a challenge. For instance, the appearance of water
varies significantly due to waves and weather con-
ditions. Moreover, submerged and small obstacles
might also present a significant threat to the USV.

In this paper we benchmark three commonly used
state-of-the-art deep learning semantic segmentation

61

methods (U-Net [31], PSP-Net [37] and DeepLab-
v2 [8]) on a marine environment. We evaluate
each method based on traditional segmentation met-
rics and compare the results against metrics used in
a marine Multi-modal obstacle detection dataset 2
(Modd2) [7]. The Modd2 is currently one of the
largest publicly-available datasets. It consists of a
challenging sequences where the sky and the wa-
ter component are not always distinguishable due to
the unfavouring weather conditions. To accurately
train selected deep learning segmentation methods,
we provide 280 representative images of a marine en-
vironment with pixel-wise ground truth annotations.

2. Related work

Obstacle detection for unmanned surface vehicles
is still a relatively young research area. A com-
mon practice for obstacle detection in marine envi-
ronment is the use of range sensors - for instance
radar [2, 25], sonar [15] etc. Range sensors have
difficulties discriminating between water and land in
the far field [11] and suffer from scanning rate lim-
itations. Moreover radar also has problems detect-
ing small, non-metallic obstacles. Larson et al. [18]
presented advances in obstacle avoidance for USVs
and pointed out the use of camera as an affordable
and information rich alternative. Prasad et al. [27]
have done an extensive survey of various background
subtraction methods and evaluated their performance
on Singapore Marine Dataset (SMD) [28] as obstacle
detection mechanisms. Analysis shows that spurious
dynamics of water and wakes are a leading cause of
multiple false detections.

Estimating the water-edge in an image can signif-
icantly limit the region of interest (ROI) where ob-
stacles occur. Wang et al. [35] combine saliency de-
tection and motion estimation to search for obstacles
below the estimated water edge. Their assumption
of a sharp boundary between water and sky when
estimating the water edge is in practice often vio-
lated. In [34], Wang et al. introduced the use of a
stereo camera system to perform 3-D reconstruction
of the scene, which enables them to detect obstacles
above the water surface. However, only obstacles
that significantly protrude through the water can be
detected. Another problem arises in the state of a
calm sea, where water lacks a texture, thus leading to
a degraded 3-D reconstruction of the scene and con-
sequently inaccurate water surface estimation. Al-
ternatively Kristan et al. [17] proposed a graphical

model (SSM) for monocular obstacle detection via
semantic segmentation. The algorithm generates a
water-segmentation mask and treats all blobs inside
the water region as obstacles. SSM successfully de-
tects both obstacles protruding through the surface
and the floating ones, it does not assume a straight
water edge and runs in real-time. Nevertheless, it still
fails in the presence of visual ambiguities. For exam-
ple, when the boat faces open water and the horizon
is obscured by haze.

The line separating the water and sky component
might not be clear due to the unfavouring weather
conditions like haze. Bovcon et al. [6] addressed
this issue by introducing measurements from the on-
board IMU into the segmentation model. The IMU
measurements are used to project the horizon into
camera view and automatically adjust the priors and
hyper-priors of the segmentation model. Their algo-
rithm can correctly estimate the horizon even when
obscured. In their recent work [5] the problem of nu-
merous false positive detections has been addressed
by a joint stereo image segmentation, where cor-
responding pixels in the left and right image are
assigned to the same semantic region which con-
sequently improves obstacle detection through en-
forced segmentation consistency. Paccaud et al. [26]
focus on a lake-deployed USVs, where surrounding
land is visible most of the time and the water surface
is predominantly calm and without distinct waves.
Similar to [6] they use IMU sensor to project the
horizon line to the image and define the ROI in which
they search for the water edge with RANSAC. On the
obtained water component area they use Sobel oper-
ator along x- and y-axis in combination with thresh-
old to find blobs representing obstacles. Detected
blobs are tracked within consecutive frames to iden-
tify false detections caused by glint and reflections.
Method assumes that obstacles have sharp edges and
is thus unable to detect partially submerged obsta-
cles. Jeong et al. [16] use a scene parsing network
(PSPNet [37] pre-trained on ADE20k dataset) to per-
form general segmentation of the image. The horizon
approximation is obtained by searching for maximal
vertical location corresponding to the sea component
in each column of the segmentation mask. Location
of the horizon is refined by iteratively applying least-
squares regression on its points. The method was
evaluated on SMD [28] where it achieved promising
results. However, the SMD does not contain images
with intense fog, where line between sea and sky is

62

not visible. Lee et al. [19] proposed using deep learn-
ing network to detect and classify ships. They use
a general Faster R-CNN [30], in combination with
Bayesian framework to detect ships. Method is able
to detect and classify seven different types of ships
and cannot be used to distinguish arbitrary obstacles
in the water without providing a large amount of ad-
ditional training data.

3. Semantic Segmentation CNNs

In this section we present three commonly used
neural network architectures for semantic segmenta-
tion. In Section 3.1 we outline the architecture of the
U-Net [31], in Section 3.2 we mark out scene pars-
ing network PSP-Net [37], while in Section 3.3 we
describe the model of the DeepLab-v2 [8].

3.1. U-Net [31]

The U-Net, proposed by Ronneberger et al. [31],
was initially designed for bio-medical image seg-
mentation. Since then, it was used for various seg-
mentation purposes ranging from segmentation of ur-
ban planning maps [13] to the road detection through
segmentation [22, 36]. Its architecture, shown in Fig-
ure 2 top, incorporates an encoder which captures
context and a symmetric decoder that provides pre-
cise localization. The encoder part consists of a re-
peated application of convolutions and a max pool-
ing operation which halves the feature map size. Af-
ter each down-sampling, the number of feature chan-
nels is doubled. In contrast, the decoder part of the
network is comprised of an up-sampling of the fea-
ture map size, followed by a convolution that halves
the number of feature channels. A skip connection,
in form of a concatenation which combines the in-
formation from a corresponding layer in the encoder
part, is followed by two convolutions. Each convo-
lution in the network is followed by a rectified linear
unit (ReLU). With a proper data augmentation, the
network can be trained end-to-end and pixel-to-pixel
on a set of very few images and still produce good
results [31].

3.2. PSP-Net [37]

Zhao et al. [37] designed a state-of-the-art scene
parsing network PSP-Net. Its architecture is visu-
alized in Figure 2 middle. They use a pre-trained
ResNet-50 [14] backbone with a dilated network
strategy to extract features from the input image. The
extracted feature map is then fed to pyramid pooling

module, where features are fused under four different
pyramid scales. After each pyramid level, a convo-
lution is applied to reduce the dimension of context
representation and maintain the weight of a global
feature. Low dimension feature maps are up-sampled
to the size of the original feature map via bi-linear in-
terpolation and concatenated with the initial feature
map. Concatenation is sent through a convolution to
generate the final prediction map, which is further
up-sampled to the original resolution.

3.3. DeepLab-v2 [8]

Chen et al. [8] proposed a segmentation model
that uses ResNet-101 [14] backbone with atrous con-
volutions to extract features from the input image.
Atrous convolutions enable them to explicitly control
the resolution at which feature responses are com-
puted and to enlarge the field-of-view (FOV) of fil-
ters. The main benefit of a larger FOV is obtaining a
preponderant context without increasing the number
of parameters. Passing multiple rescaled versions of
the original image to parallel CNN branches allows
them to perform a multi-scale semantic segmenta-
tion. The responses are combined with a fully con-
nected Conditional Random Field (CRF) which im-
proves the localization of object boundaries. Tuning
of the CRF is done separately as a post-processing
step. The architecture of DeepLab-v2 is shown
in Figure 2 bottom.

4. Experimental setup

The dataset and evaluation protocol are described
in Section 4.1 while implementation details of evalu-
ated methods are given in Section 4.2.

4.1. The dataset and evaluation protocol

The performance of segmentation methods was
analyzed on Modd2 [7], which consists of 11675
stereo images captured by a small-sized USV in the
coastal waters of Marina Koper, Slovenia. The on-
board cameras can accurately estimate the depth up
to 185m and their frame-rate is limited to 10 frames
per second. Obstacles and water-edge in the dataset
were manually annotated with bounding boxes and
a polygon respectively. The segmentation CNNs
from Section 3 require sufficient training data to
produce satisfactory results. We have captured and
handpicked 280 images under different weather con-
ditions from Marina Koper using the acquisition sys-
tem of [7]. These images were pixel-wise annotated

63

In
p

u
t

im
a

g
e

3,64,64

64,128,128

128,256,256

256,512,512

512,1024,1024

1024,512,512

512,256,256

256,128,128

128,64,64 3

In
p

u
t

im
a

g
e

S
o

ft
m

a
x
 o

u
tp

u
t

S
o

ft
m

a
x

o
u

tp
u

t

ResNet-50

Pyramid Pooling Module

Pool Upsample

In
p

u
t

im
a

g
e

s
a

t
th

re
e

 d
iff

e
re

n
t

sc
a

le
s

S
o

ft
m

a
x
 o

u
tp

u
t

ResNet-101

3

512 3

3

3

512

Upsample
and stack

3 3

512

512

argmax
Improve
localization

3

3

3 3 39

by a fully
connected
CRF

U-Net

PSP-Net

DeepLab-v2

Figure 2 Architecture illustration of tested CNNs.
Black arrows represent 2-D convolutions, red arrows
denote max pooling, while unpooling is marked with
green arrows. The blue box corresponds to a multi-
channel feature map, beneath which a number of fea-
ture channels is written. The gray box represents a
copied feature map.

for three classes (water, sky and environment) by hu-
man annotators (see Figure 1). The annotated im-
ages were further color augmented to increase diver-
sity of the training set and replicate weather condi-
tions from Modd2. For color augmentation we have
handpicked seven descriptive images from Modd2

Figure 3 Sample image from the train set (top left)
surrounded by its color augmentation variations.

which were used as target images in the color transfer
method [29] proposed by Reinhard et al. With data
augmentation we have generated 1960 new training
samples with accurate ground truth annotations. Fig-
ure 3 shows a sample image from the train set and
its color augmentations. Timely and accurate obsta-
cle detection is of central importance for autonomous
navigation, so we rescaled images from Modd2 on
two different resolutions - low (512× 288) and high
(896×512) to test the detection accuracy against pro-
cessing speed.

For image segmentation evaluation purposes we
have used metrics inspired by Long et al. [23]. These
metrics are mean pixel accuracy

(∑
i nii∑
i ti

)
, mean IOU

(
1
ncl

∑
i

nii
ti+

∑
j nji−nii

)
and frequency weighted

IOU
(
(
∑

k tk)
−1∑

i
tinii

ti+
∑

j nji−nii

)
, where ncl de-

notes the number of classes in the ground truth, nji
represents the number of pixels of the class j pre-
dicted to belong to the class i, while ti stands for the
total number of pixels of class i in the ground truth
segmentation. Segmentation metrics do not provide
information on how many obstacles were detected,
neither how accurately the sea-edge was approxi-
mated. For this task, the evaluation protocol of [7]
was used. It measures the accuracy of the pixel-wise
water-edge estimation by mean-squared error over all
sequences, while the accuracy of obstacle detection
is measured by the number of true positives (TP),
false positives (FP), false negatives (FN) and by the
overall F-measure, i.e., a harmonic mean of precision
and recall.

4.2. Implementation details

A softmax-cross-entropy loss function and a
stochastic gradient descent (SGD) optimization were

64

used to train the segmentation networks. The initial
learning rate was set to a low value of 0.009 and a
weight decay factor of 0.7 was applied after every
5th epoch.

In our implementation of U-Net (Section 3.1) we
have employed batch-normalization after each con-
volution and before ReLU activation to speed-up the
training process. In the PSP-Net (Section 3.2) im-
plementation we have initialized ResNet-50 weights,
which were pre-trained on the ADE20k [38, 39]
dataset, while in the DeepLab-v2 (Section 3.3) im-
plementation we have restored ResNet-101 weights,
which were pre-trained on the ImageNet [10] dataset.
Additionally, we have modified the number of output
channels in the last layer of both DeepLab-v2 and
PSP-Net according to our dataset. The fine-tuning
process was carried out for 60 epochs. A single-
scale version of DeepLab-v2 (Section 3.3) is denoted
as DeepLab-v2S, while its multi-scale counterpart is
denoted as DeepLab-v2M.

The semantic segmentation methods were imple-
mented in Python and use Tensorflow [1] back-end.
All experiments were run on a desktop computer
with Intel Core i7-7700 3.6GHz CPU and nVidia
GTX1080 Ti GPU.

5. Experimental results

We begin our analysis with Section 5.1 where we
analyze semantic segmentation results, in Section 5.2
we interpret obstacle detection results, while Sec-
tion 5.3 serves for qualitative comparison. Results
of methods from Section 3 were compared against a
baseline method ISSM [7]. The speed of the tested
methods is analyzed in Section 5.4.

5.1. Semantic segmentation results

The semantic segmentation results are summa-
rized in Table 1. On low-resolution images DeepLab-
v2S achieves the highest accuracy, followed by
DeepLab-v2M, PSP-Net and U-Net in the order
given. The differences in results between DeepLab-
v2S and DeepLab-v2M are 0.11%, 0.14% and 0.10%
for the mean pixel accuracy, the mean IOU and the
frequency weighted IOU, respectively.

On high-resolution images, DeepLab-v2M
achieves the highest accuracy based on the mean
pixel accuracy and the frequency weighted IOU,
followed by DeepLab-v2S, PSP-Net and U-Net. The
differences in results between the top two methods
are 0.09% and 0.10% for the mean pixel accuracy

Resolution 512× 288

Mean Pixel Accuracy Mean IOU Frequency Weighted IOU

U-Net [31] 93.12 88.82 86.27
PSPNet [37] 96.32 93.33 93.02
DeepLab-v2S [8] 98.07 96.18 95.93
DeepLab-v2M [9] 97.96 96.04 95.83

Resolution 896× 512

Mean Pixel Accuracy Mean IOU Frequency Weighted IOU

U-Net [31] 90.91 85.59 82.30
PSPNet [37] 94.69 90.42 89.98
DeepLab-v2S [8] 96.91 94.26 93.56
DeepLab-v2M [9] 97.00 94.15 93.66

Table 1 Semantic segmentation results with tra-
ditional metrics - mean pixel accuracy, mean
intersection-over-union and frequency weighted
intersection-over-union. All reported results are in
percentages.

and the frequency weighted IOU, respectively.
Based on the mean IOU metric, DeepLab-v2S
outperforms DeepLab-v2M by 0.11%.

Additional smaller input images of DeepLab-
v2M only detriment its performance compared to
DeepLab-v2S, because bouys and other tiny obsta-
cles disappear in the process of re-scalling. This
is substantiated by a lower number of detections
(shown in Table 2).

U-Net is very sensitive to reflections and sun-
glitter in water, which causes a lot of false positive
detections (Table 2), subsequently leading to a low
segmentation accuracy. Based solely on given seg-
mentation metrics and their results we cannot fully
determine which method detects more obstacles and
how well it approximates navigable surface.

5.2. Obstacle detection results

Table 2 summarizes results based on metrics used
in [7]. On low-resolution images DeepLab-v2S ap-
proximates the water-edge the most accurately, fal-
lowed by DeepLab-v2M, PSP-Net, ISSM and U-
Net. DeepLab-v2S outperforms its multi-scale coun-
terpart DeepLab-v2M by 3.6% on the water-edge
estimation task. The highest F-measure score is
achieved by PSP-Net, followed by DeepLab-v2S,
ISSM, DeepLab-v2M and U-Net. PSP-Net outper-
forms second-best DeepLab-v2M by 14.1% on the
obstacle detection task.

On high-resolution images DeepLab-v2M approx-
imates the water-edge the most accurately, fol-
lowed by DeepLab-v2S, ISSM, PSP-Net and U-
Net in the order given. DeepLab-v2M outperforms
its single-scale counterpart DeepLab-v2S by 2.2%
on the water-edge estimation task. It also obtains

65

Baseline

µedg TP FP FN F-measure

ISSM [5] 0.056 (0.066) 538 1641 144 0.376

Resolution 512× 288

µedg TP FP FN F-measure

U-Net [31] 0.098 (0.090) 296 2329 383 0.179
PSP-Net [37] 0.050 (0.063) 322 203 357 0.535
DeepLab-v2S [8] 0.027 (0.035) 245 121 434 0.469
DeepLab-v2M [8] 0.028 (0.041) 121 25 558 0.293

Resolution 896× 512

µedg TP FP FN F-measure

U-Net [31] 0.128 (0.115) 153 4686 526 0.055
PSPNet [37] 0.073 (0.101) 318 94 361 0.583
DeepLab-v2S [8] 0.045 (0.065) 388 447 291 0.513
DeepLab-v2M [8] 0.044 (0.058) 361 117 318 0.624

Table 2 Modd2 [7] reports water-edge estimation er-
ror µedg and its standard deviation, the number of
true positive (TP), false positive (FP), false negative
(FN) detections and the F-measure.

the highest F-measure score, followed by PSP-Net,
DeepLab-v2S, ISSM and U-Net. DeepLab-v2M out-
performs PSP-Net by approximately 7% on the task
of obstacle detection.

In general DeepLab-v2 variations approximate
the water-edge most accurately. The difference
in the number of detections between DeepLab-v2S
and DeepLab-v2M is significant, especially on low-
resolution images, where multiple re-scalled inputs
of DeepLab-v2M suppress small obstacles. This
causes a reduction of true positive as well as false
positive detections. The difference in the water-edge
approximation is less significant, because the water
edge does not disappear in the process of re-scaling.
PSP-Net is able to detect a lot of true positives, yet
it has problems with over- and under-estimating the
water edge when overlooking the open sea. Simi-
larily to U-Net, the ISSM method is also sensitive
to sun-glitter and reflections, causing a considerable
amount of false positive detections and poor water-
edge approximation compared to DeepLab-v2, re-
gardless of having an additional IMU sensor. ISSM
detects significantly more true positives than any
method from Section 3, but its high number of false
positive detections deteriorates its overall F-measure
score.

5.3. Qualitative comparison

In this section we present a qualitative compari-
son of methods from Section 3. We limit ourselves

to the input resolution of 512×288, where the differ-
ence between single-scale and multi-scale version of
DeepLab-v2 is most prominent. Figure 4 depicts seg-
mentation performance in various challenging sce-
narios.

The first row in Figure 4 shows a problem of
a small obstacle detection. DeepLab-v2S detects
a smaller buoy, while its multi-scale version sup-
pressed the detection. The water-edge is also bet-
ter estimated in a single-scale version. The water-
edge estimation of U-Net is severely over-estimated,
however its sensitivity allows it to correctly detect the
buoy. PSP-Net is unable to detect obstacles (boat and
buoy) in the scene and it drastically under-estimates
the water-edge. ISSM correctly detects all obsta-
cles in the scene. These observations are reflected
in quantitative results (Table 1,Table 2) as well.

The second row in Figure 4 portraits the difficulty
of water segmentation in presence of significant sun-
glitter. As stated in Section 5.1, U-Net and ISSM are
sensitive to sun-glitter. This causes a lot of false posi-
tive detections and poor water-edge estimation. Most
of the falsely classified patches are relatively large,
which has a negative effect on a segmentation accu-
racy presented in Table 1. In general, PSP-Net and
DeepLab-v2 do not have problems with sun-glitter
which is reflected in segmentation (Table 1) and ob-
stacle detection (Table 2) results.

The third row in Figure 4 depicts a challenge of
detecting an obstacle (i.e., a green buoy) whose color
resembles the surrounding water. U-Net detects only
a top part of the obstacle, however the bottom is the
more important part for safe navigation. It also dras-
tically over-estimates the water edge, which has a
significant negative impact on the segmentation ac-
curacy. The obstacle in a scene is big enough to not
get suppressed in a multi-scale version of DeepLab-
v2. Moreover, the various scales of DeepLab-v2M
allow it to refine the outline of an obstacle more
precisely. PSP-Net does not detect obstacle at all
and its water-edge approximation is severely over-
estimated. ISSM approximates the water-edge the
most precisely. It detects obstacle as a whole plus
a part of its reflection in the water.

The last row in Figure 4 shows a scene in a har-
bour with water droplets on a camera lens. The water
droplets were correctly ignored by all methods. They
have also correctly estimated the water-edge, how-
ever none of the CNN methods was able to detect a
pole in close proximity, which is a critically danger-

66

ous misclassification. On the other hand, ISSM is
able to correctly detect the pole, but its water-edge
estimation is affected by sun-glitter.

5.4. Speed analysis

The processing speed of methods, described
in Section 3, is presented in Table 3. On low-
resolution images U-Net is the fastest, followed by
DeepLab-v2S, PSP-Net and DeepLab-v2M. Simi-
larly, U-Net is also the fastest on high-resolution
images, followed by PSP-Net, DeepLab-v2S and
DeepLab-v2M.

U-Net is the fastest method due to its low-
complexity architecture and fewer parameters com-
pared to those of PSP-Net and DeepLab-v2. Both
PSP-Net and DeepLab-v2 use ResNet backend archi-
tecture, however PSP-Net uses ResNet-50 architec-
ture, while DeepLab-v2 uses ResNet-101 architec-
ture. Besides this DeepLab-v2 also has a fully con-
volutional CRF layer, which explains the slower per-
formance. Despite the segmentation of multi-scale
images in DeepLab-v2M is done parallel, we wit-
ness a slow-down of approximately 50% compared
to DeepLab-v2S. The ISSM method is the fastest,
however its performance was measured on images of
size 100× 100.

The on-board cameras from Modd2 [7] are lim-
ited to 10 frames-per-second, meaning that all of the
methods from Section 3 would be capable of running
in real-time when inputted with low-resolution im-
ages. However, only U-Net and PSP-Net would be
able to run at real-time when using high-resolution
images.

6. Conclusion

In this paper, we benchmarked three popular se-
mantic segmentation methods on a marine environ-
ment and prepared an in-depth analysis of their per-
formances. As expected, the results showed that
complex networks are able to estimate the water-edge
more accurately. DeepLab-v2 produced the most
promising results for the task of water-edge estima-
tion as well as for the obstacle detection task. This
could be due to deeper backbone model (ResNet-
101) compared to PSP-Net (ResNet-50). U-Net per-
formed the worst, which could be a consequence of
training it from scratch.

On the task of water-edge approximation CNN
methods, described in Section 3, mostly over-
estimate the water-edge location. In contrast, non-

Baseline

tseg [ms] ω [fps]

ISSM [7] 33.8 29.6

Resolution 512× 288

tseg [ms] ω [fps]

U-Net [31] 37.6 26.6
PSPNet [37] 57.9 17.3
DeepLab-v2S [8] 48.5 20.6
DeepLab-v2M [8] 98.6 10.1

Resolution 896× 512

tseg [ms] ω [fps]

U-Net [31] 93.2 10.7
PSPNet [37] 98.1 10.2
DeepLab-v2S [8] 114.8 8.7
DeepLab-v2M [8] 218.7 4.6

Table 3 Times required for single image segmen-
tation, measured in milliseconds, is denoted with
tseg, while the corresponding frame-rate, measured
in frames-per-second (fps), is denoted as ω.

CNN ISSM does not over-estimate the water-edge
location due to embedded IMU sensor, which serves
for horizon calculation and segmentation restriction.
Nevertheless, due to its sensitivity to sun-glitter, it
under-estimates the water-edge location in special
cases. This reduces the potential navigable surface,
but it does not cause dangerous instances. On the task
of obstacle detection, certain obstacles, which visual
appearance is similar to water, remain undetected in
all compared methods. Detection of buoys far away
also proved to be difficult, but such misclassification
do not pose an immediate danger to USVs. False
positive detections are mainly caused by reflections
and prominent sun-glitter.

When processing low-resolution images, all meth-
ods are capable of running in real-time. However,
low-resolution images also produce low F-measure
scores. When processing high-resolution images,
presented CNN methods achieve higher F-measure
scores due to mostly larger number of true posi-
tive detections. DeepLab-v2 cannot run in real-time
when processing high-resolution images, while other
methods are on the verge of running in real-time.

In our future work, we plan a deeper analysis of
tested methods, accompanied by additional state-of-
the-art segmentation methods. For a fair compar-
ison we plan on re-train all methods on the same

67

Input image U-Net DeepLab-v2MPSP-Net DeepLab-v2S

Resolution 512 x 288

ISSM

100 x 100

Figure 4 Qualitative comparison of methods for resolution 512×288. The sky, obstacles and water components
are denoted with deep-blue, yellow and cyan color, respectively. The ground truth sea edge is annotated with
a pink line, while ground truth obstacles are outlined with a dotted bounding box. False positives are marked
with a red bounding box, whereas correctly detected obstacles are marked with a green bounding box.

dataset and use a significantly larger training set for
fine-tunning. We will explore a new evaluation met-
rics, specifically designed for a marine environment,
which takes into account the size of obstacles and
their distances from the USV. We also plan to exper-
iment with optimization of the segmentation process
and embedding different sensor modalities into deep-

learning segmentation algorithms.

ACKNOWLEDGMENT

This work was supported in part by the Slovenian
research agency (ARRS) programmes P2-0214 and
P2-0095, and the Slovenian research agency (ARRS)
research project ViAMaRo J2-8175.

68

References
[1] M. Abadi et al. TensorFlow: Large-scale machine

learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] C. Almeida, T. Franco, H. Ferreira, A. Martins,
R. Santos, J. M. Almeida, J. Carvalho, and E. Silva.
Radar based collision detection developments on
USV ROAZ II. In OCEANS - EU, pages 1–6, May
2009.

[3] J. M. Alvarez, T. Gevers, Y. LeCun, and A. M.
Lopez. Road scene segmentation from a single im-
age. In European Conference on Computer Vision,
pages 376–389. Springer, 2012.

[4] J. M. Alvarez, Y. LeCun, T. Gevers, and A. M.
Lopez. Semantic road segmentation via multi-scale
ensembles of learned features. In European Confer-
ence on Computer Vision, pages 586–595. Springer,
2012.

[5] B. Bovcon and M. Kristan. Obstacle detection for
usvs by joint stereo-view semantic segmentation.
2018.

[6] B. Bovcon, R. Mandeljc, J. Perš, and M. Kristan.
Improving vision-based obstacle detection on USV
using inertial sensor. In ISPA, pages 1–6, Sept 2017.

[7] B. Bovcon, J. Perš, M. Kristan, et al. Stereo ob-
stacle detection for unmanned surface vehicles by
IMU-assisted semantic segmentation. Robotics and
Autonomous Systems, 104:1–13, 2018.

[8] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Mur-
phy, and A. L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE TPAMI,
40(4):834–848, 2018.

[9] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
H. Adam. Encoder-decoder with atrous separable
convolution for semantic image segmentation. arXiv
preprint arXiv:1802.02611, 2018.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. ImageNet: A large-scale hierarchical
image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 248–255. Ieee, 2009.

[11] L. Elkins, D. Sellers, and W. R. Monach. The
autonomous maritime navigation (AMN) project:
Field tests, autonomous and cooperative behaviors,
data fusion, sensors, and vehicles. Journal of Field
Robotics, 27(6):790–818, 2010.

[12] Y. Guo, M. Romero, S. H. Ieng, F. Plumet, R. Benos-
man, and B. Gas. Reactive path planning for au-
tonomous sailboat using an omni-directional cam-
era for obstacle detection. In ICM, pages 445–450,
2011.

[13] Z. Guo, H. Shengoku, G. Wu, Q. Chen, W. Yuan,
X. Shi, X. Shao, Y. Xu, and R. Shibasaki. Seman-
tic segmentation for urban planning maps based on

U-Net. In IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium, pages
6187–6190. IEEE, 2018.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[15] H. K. Heidarsson and G. S. Sukhatme. Obstacle de-
tection and avoidance for an autonomous surface ve-
hicle using a profiling sonar. In ICRA 2011, pages
731–736, May 2011.

[16] C. Y. Jeong, H. S. Yang, and K. D. Moon. Hori-
zon detection in maritime images using scene pars-
ing network. Electronics Letters, 54(12):760–762,
2018.

[17] M. Kristan, V. S. Kenk, S. Kovačič, and J. Perš. Fast
image-based obstacle detection from unmanned sur-
face vehicles. IEEE TCYB, 46(3):641–654, 2016.

[18] J. Larson, M. Bruch, R. Halterman, J. Rogers, and
R. Webster. Advances in autonomous obstacle
avoidance for unmanned surface vehicles. Techni-
cal report, SPAWAR San Diego, 2007.

[19] S.-J. Lee, M.-I. Roh, H.-W. Lee, J.-S. Ha, I.-G. Woo,
et al. Image-based ship detection and classification
for unmanned surface vehicle using real-time ob-
ject detection neural networks. In The 28th Interna-
tional Ocean and Polar Engineering Conference. In-
ternational Society of Offshore and Polar Engineers,
2018.

[20] D. Levi, N. Garnett, E. Fetaya, and I. Herzlyia. Stix-
elnet: A deep convolutional network for obstacle
detection and road segmentation. In BMVC, pages
109–1, 2015.

[21] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan.
Scale-aware fast R-CNN for pedestrian detection.
IEEE Transactions on Multimedia, 20(4):985–996,
2018.

[22] L. Liu and Y. Zhou. A closer look at U-Net for
road detection. In ICDIP 2018, volume 10806, page
108061I. International Society for Optics and Pho-
tonics, 2018.

[23] J. Long, E. Shelhamer, and T. Darrell. Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440,
2015.

[24] G. L. Oliveira, W. Burgard, and T. Brox. Effi-
cient deep models for monocular road segmenta-
tion. In Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on, pages
4885–4891. IEEE, 2016.

[25] C. Onunka and G. Bright. Autonomous marine craft
navigation: On the study of radar obstacle detection.
In ICCAR 2010, pages 567–572, Dec 2010.

69

[26] P. Paccaud and D. Barry. Obstacle detection for lake-
deployed autonomous surface vehicles using RGB
imagery. PloS one, 13(10):e0205319, 2018.

[27] D. K. Prasad, C. K. Prasath, D. Rajan, L. Rach-
mawati, E. Rajabally, and C. Quek. Object detection
in a maritime environment: Performance evaluation
of background subtraction methods. IEEE Trans-
actions on Intelligent Transportation Systems, pages
1–16, 2018.

[28] D. K. Prasad, D. Rajan, L. Rachmawati, E. Raja-
bally, and C. Quek. Video processing from electro-
optical sensors for object detection and tracking in a
maritime environment: a survey. IEEE Transactions
on Intelligent Transportation Systems, 18(8):1993–
2016, 2017.

[29] E. Reinhard, M. Adhikhmin, B. Gooch, and
P. Shirley. Color transfer between images. IEEE
Computer graphics and applications, 21(5):34–41,
2001.

[30] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-
CNN: Towards real-time object detection with re-
gion proposal networks. In Advances in neural in-
formation processing systems, pages 91–99, 2015.

[31] O. Ronneberger, P. Fischer, and T. Brox. U-Net:
Convolutional networks for biomedical image seg-
mentation. In MICCAI, pages 234–241. Springer,
2015.

[32] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani,
M. Jagersand, H. Zhang, N. Vallurupalli, S. Anna-
maneni, G. Varma, C. Jawahar, et al. A compara-
tive study of real-time semantic segmentation for au-
tonomous driving. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 587–597, 2018.

[33] D. Socek, D. Culibrk, O. Marques, H. Kalva, and
B. Furht. A hybrid color-based foreground object
detection method for automated marine surveillance.
LNCS, 3708:340, 2005.

[34] H. Wang and Z. Wei. Stereovision based obstacle
detection system for unmanned surface vehicle. In
ROBIO, pages 917–921, 2013.

[35] H. Wang, Z. Wei, C. S. Ow, K. T. Ho, B. Feng, and
J. Huang. Improvement in real-time obstacle detec-
tion system for USV. In ICARCV, pages 1317–1322,
2012.

[36] W. Xia, Z. Chen, Y. Zhang, and J. Liu. An approach
for road material identification by dual-stage convo-
lutional networks. In IGARSS 2018 - 2018 IEEE In-
ternational Geoscience and Remote Sensing Sympo-
sium, pages 7153–7156, July 2018.

[37] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyra-
mid scene parsing network. In IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages
2881–2890, 2017.

[38] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Bar-
riuso, and A. Torralba. Semantic understanding of

scenes through the ADE20k dataset. arXiv preprint
arXiv:1608.05442, 2016.

[39] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso,
and A. Torralba. Scene parsing through ADE20K
dataset. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

70

	Cover
	Impressum
	Table of Contents
	Preface
	Workshop Organization
	Program Committee
	Index of Authors
	Keynote Talk
	Self-supervision for 3D Shape and Appearance Modeling Gabriel Brostow
	Original Contributions
	Situation-Aware Pedestrian Trajectory Prediction with Spatio-Temporal Attention Model Sirin Haddad, Meiqing Wu, Wei He, and Siew-Kei Lam
	SyDD: Synthetic Depth Data Randomization for Object Detection using Domain-Relevant Background Stefan Thalhammer, Kiru Park, Timothy Patten, Markus Vincze, and Walter G. Kropatsch
	A Spatiotemporal Generative Adversarial Network to Generate Human Action Videos Stefan Ainetter and Axel Pinz
	Perspective transformation for accurate detection of 3D bounding boxes of vehicles in traffic surveillance Viktor Kocur
	Counting slope regions in the surface graphs Darshan Batavia, Rocio Gonzalez-Diaz, Walter G. Kropatsch, and Rocio Moreno Casablanca
	Leveraging Outdoor Webcams for Local Descriptor Learning Milan Pultar, Dmytro Mishkin, Jiri Matas
	Benchmarking Semantic Segmentation Methods for Obstacle Detection on a Marine Environment Borja Bovcon and Matej Kristan

