Chapitre II.

Des différentes positions du point, de la ligne droite et du plan par rapport aux plans de projections.

Des différentes positions du point.

20. Considérations générales. — Définitions. — Conventions. Les deux plans de projection prolongés au delà de l'axe forment quatre angles dièdres qui comprennent tout l'espace. (Fig. 8.)

Plans de projection. — Nappes positives et nappes négatives.

Appelons nappes les deux parties des plans P_1 et P_2 dans lesquelles ils sont divisés par l'axe, et, pour les distinguer, appelons nappes positives les plans P_1 et P_2 , et nappes négatives les prolongements — P_1 et — P_2 .

Dièdres formés par P₁ et P₂.

Appelons $\begin{cases} \textit{premier} & \textit{angle dièdre celui form\'e par} + P_1 \, \text{et} + P_2; \\ \textit{deuxième angle dièdre n n n - P_1 \, \text{et} + P_2;} \\ \textit{troisième angle dièdre n n n - P_1 \, \text{et} - P_2;} \\ \textit{quatrième angle dièdre n n n + P_1 \, \text{et} - P_2.} \end{cases}$

Hauteurs et ordonnées positives et négatives.

La première ordonnée d'un point est positive ou négative, suivant qu'elle est dans $+P_1$ ou dans $-P_1$.

La seconde ordonnée d'un point est positive ou négative, suivant qu'elle est dans $+P_2$ ou dans $-P_2$.

La première hauteur d'un point est positive ou négative, suivant que ce point est au-dessus ou au-dessous des deux nappes de P₁.

La seconde hauteur d'un point est positive ou négative, suivant que ce point est en avant ou en arrière des deux nappes de P_2 .

Remarque. En exécutant le mouvement de rotation de P_1 autour de l'axe, $+P_1$ viendra coïncider avec $-P_2$, et $-P_1$ avec $+P_2$.

Les premières ordonnées positives se trouveront au-dessous de l'axe, et les premières ordonnées négatives au-dessus de la même ligne.

Les secondes ordonnées positives seront situées au-dessus de l'axe de projection, et les secondes ordonnées négatives au-dessous de cet axe,

21. Différentes positions du point par rapport aux plans de projection.

Menons un plan perpendiculaire à l'axe par un point quelconque de cette ligne, et de ce point comme centre et dans ce plan, décrivons une circonférence de cercle, sur laquelle nous supposons, pour fixer les idées, que le point de l'espace se déplace. (Fig. 8.)

Il occupera successivement les positions suivantes:

1º il sera dans la nappe $+P_1$ en a; 5º dans la nappe $-P_1$, . . . en e; 2º dans le 1º dièdre, . . . en b; 6º dans le 3º dièdre, . . . en f; 7º dans la nappe $-P_2$, . . en g; 4º dans le 2º dièdre, . . . en d; 8º dans le 4º dièdre, . . . en h; 9º enfin il peut être sur l'axe, en i.

22. Représentation et détermination des neuf positions différentes du point.

Observons que la première hauteur d'un point a même signe et même valeur que la seconde ordonnée de ce point, et que la seconde hauteur a même valeur et même signe que la première ordonnée, (Fig. 1.)

Cela posé, le tableau suivant donnera les signes des ordonnées ainsi que leurs positions, pour toutes les positions possibles du point à l'égard des plans de projection.

			SIG	SIGNES	Positions après rabat	Positions après rabattement de P1 sur P2.
Д.	ISOCI	POSITIONS DU POINT.	1re ordonnée ou 2e hauteur.	2º ordonnée ou l'e hauteur.	1re projection et 1re ordonnée.	2º projection. et 2º ordonnée.
l :		a dans le plan + P.	positives	nulles	au-dessous de l'axe	sur l'axe
II.		b dans le 1°r dièdre.	positives	positives	au-dessous de l'axe	au-dessus de l'axe
III.	EN	c dans + Pg.	nulles	positives	sur l'axe	au-dessus de l'axe
IV.	άυ	d dans le 2° dièdre.	négatives	positives	au dessus de l'axe	au-dessus de l'axe
>.	TIS	e dans — P ₁ .	négatives	nulles	au-dessus "	sur l'axe
VI.	IN	f dans le 3º dièdre.	négatives	négatives	au-dessus "	au-dessous de l'axe
VII.	ьог	g dans — P.	nulles	négatives	sur l'axe	au-dessous de l'axe
VIII.		h dans le 4º dièdre.	positives	négatives	au-dessous de l'axe	au-dessous de l'axe
IX.		s sur l'axe.	nulles	nulles	sur l'axe	sur l'axe

23. Réciproque. Il est aisé de prouver (7) que les réciproques des propriétés consignées dans ce tableau sont vraies.

Ainsi on prouvera, que le point de la ligne 3, représenté par sa première projection sur l'axe et sa seconde projection au-dessus de l'axe, est un point du plan + P₂.

Exercices. Retrouver les points dont les projections sont indiquées dans le tableau.

24. En comparant entre elles les propriétés des projections du point dans ses différentes positions, nous pouvons poser les lois suivantes :

I. Suivant qu'un point est situé dans l'un des deux plans de projection, il est lui-même sa projection sur ce plan, et sa projection sur l'autre plan sera sur l'axe.

Réciproquement. Suivant que l'une des deux projections d'un point est sur l'axe, ce point appartient au plan de projection de nom contraire à celui de cette projection.

II. Suivant qu'un point est situé au-dessus ou au-dessous d'une des nappes du premier plan de projection P₁, sa seconde projection sera située au-dessus ou audessous de l'axe. Réciproquement. Suivant que la seconde projection d'un point se trouve au-dessus ou au-dessous de l'axe, ce point est, dans l'espace, au-dessus ou au-dessous de l'une des deux nappes de P_1 .

III. Suivant qu'un point est situé en deçà ou au delà d'une des nappes du second plan de projection P_2 , sa première projection est au-dessus ou au-dessus de V axe.

Réciproquement. Suivant que la première projection d'un point se trouve au-dessous ou audessus de l'axe, ce point est, dans l'espace, en deçà ou au delà de l'une des deux nappes de P_2 .

Remarque. Voir (**Planche I**, **Epupe 9**), la représentation du point dans toutes les positions par rapport à P_1 et P_2 , positions figurées dans la fig. 8 et marquées dans le tableau du § 22.

Des différentes positions de la droite à l'égard des deux plans de projection.

25. Différentes positions. Une droite de l'espace peut occuper une des dix positions suivantes :

	parallèle	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(1. (2.
		à l'axe .			(3.
	perpendiculaire	à P4			(4.
	perpendiculaire	à Pa.	,		(5.
Elle sera	(à l'axe .			(6.
	située				
,	situee	P.			(8.
		sur l'axe			(9,
	oblique				

26. Droite parallèle à P_1 . Toute droite parallèle à P_1 a pour seconde projection une droite parallèle à V axe.

En effet, la droite d et les projetantes de ses points sur P_2 déterminent le second plan projetant de d, plan qui est parallèle à P_1 puisque les droites qui le déterminent sont parallèles à ce plan. Le second plan projetant de la droite d ainsi que P_1 sont donc coupés par P_2 suivant deux droites, d'' et l'axe, qui sont parallèles. (Fig. 10. — Epure 14—1.)

Réciproquement. Si la seconde projection d'une droite est parallèle à Vaxe, cette droite est parallèle à V_1 .

En effet, le plan perpendiculaire à P_2 mené par d'étant parallèle à P_1 , il rencontrera le plan normal à P_1 mené par d'suivant la droite n (13), nécessairement parallèle à P_1 .

27. Droite parallèle à P_2 . Toute droite parallèle à P_2 a pour première projection une droite parallèle à l'axe, et réciproquement. (**Epure 14-2.**)

Mêmes démonstrations qu'au § 26.

- 28. Droite parallèle à l'axe. Une droite parallèle à l'axe a ses deux projections parallèles à l'axe, et réciproquement. (Ep. 14-3.)
 Une telle droite est, en effet, parallèle à P, et à P,.
- **29.** Droite perpendiculaire à P_1 . Toute droite perpendiculaire à P_1 a pour seconde projection une droite perpendiculaire à l'axe, et pour première projection un point. (Fig. 11. Epure 14-4.)

En effet, le premier plan projetant d'une telle droite d sera la droite elle-même; il donnera pour projection de d sur P_1 un point, la trace-projection de d sur P_1 .

Le second plan projetant de d étant mené par la droite d normale à P_1 , sera à son tour normal à P_1 et, comme tel, il ne peut couper P_2 que suivant une droite d'' normale à P_1 , donc normale à toute droite passant par son pied dans ce plan, donc à l'axe.

Réciproquement. Si la première projection d'une droite se réduit à un point, et si la seconde projection de cette droite est une droite normale à l'axe, la droite de l'espace ainsi représentée est perpendiculaire à P₁. (A démontrer.)

30. Droite perpendiculaire à P₂. Toute droite perpendiculaire à P₂ a pour seconde projection un point, et pour première projection une droite perpendiculaire à l'axe, et réciproquement. (Ep. 14-5.)

Mêmes démonstrations qu'au § 29.

31. Droite perpendiculaire à l'axe. Une droite perpendiculaire à l'axe se projette sur chacun des deux plans de projection suivant une droite perpendiculaire à cet axe. (Fig. 12. Epure 14-6.)

Le théorème des trois perpendiculaires du cinquième livre de la géométrie élémentaire, nous apprend que si une droite d est perpendiculaire à une droite a située dans un plan, la projection de d sur ce plan est normale à la droite a. Donc d' et d'' sont perpendiculaires à l'axe, droite située dans P_1 et P_2 .

La réciproque de cette propriété n'est pas toujours vraie. Une droite ayant chacune de ses projections normale à l'axe peut être normale à cette ligne; elle sera toujours située dans un plan perpendiculaire à l'axe.

Une telle droite, pour être suffisamment représentée, exige les projections de deux de ses points.

32. Droite située dans P_1 . Une droite située dans P_1 est elle-même sa première projection; sa seconde projection sera sur l'axe. (**Epure 14-7**.)

Le premier plan de projection P_1 deviendra, en effet, le second plan projetant de cette droite.

Réciproquement. Toute droite dont la seconde projection coïncide avec l'axe, est une droite de P₁.

- **33.** Droite située dans P_2 . Une droite située dans P_2 est elle-même sa seconde projection; sa première projection sera sur l'axe, et réciproquement. (**Epure 14-8**.)
- **34. Droite sur l'axe.** Une telle droite a ses deux projections qui coïncident avec l'axe, et réciproquement. (**Epure 14-9.**)
- 35. Droite quelconque, oblique à l'axe et aux deux plans P_1 et P_2 .

Toute droite qui ne se trouve pas dans une des neuf positions précédentes, aura pour projections sur P_1 et P_2 des droites obliques à l'axe. Réciproquement, une droite d qui a ses deux projections d' et d'' obliques à l'axe, est une droite de l'espace inclinée sur l'axe et sur les deux plans P_1 et P_2 .

36. Traces d'une droite. Les points d'intersection de la droite avec les deux plans de projection s'appellent les *traces* de la droite; ce sont les *traces laissées* sur ces plans par la droite qui les perce en ces points.

Première trace. La trace sur P_1 est la première trace de la droite.

Seconde trace. La trace sur P2 est la seconde trace de la droite.

37. Construire les deux traces d'une droite. La première trace étant le point de rencontre de la droite d avec P_1 , se trouvera dans P_1 et sur d, donc en α , dont les deux projections sont a' et a''. (Epure 13.)

De même, le point b, dont les deux projections sont b' et b'', appartient à d et se trouve dans P_2 ; ce point est donc la seconde trace de la droite.

De là, il suit, que pour avoir les traces d'une droite, on n'a qu'à

prolonger les projections de cette droite jusqu'à l'axe, et élever, en ces points, des perpendiculaires à l'axe; chacune de ces perpendiculaires reliera deux projections d'une trace.

38. Formulaire pour reconnaître les positions d'une droite dans l'espace à la simple inspection de ses projections dans une épure.

Si les deux projections se confondent et sont perpendiculaires à l'axe, la droite de l'espace peut être perpendiculaire à l'axe. Elle sera toujours située dans un plan perpendiculaire à l'axe, et il faut, pour la déterminer, donner les projections de deux de ses points.

Des différentes positions du plan à l'égard des plans de projection.

39. Plan parallèle à P₁. Tout plan parallèle à P₁ n'a qu'une trace, sa trace sur P₂, et celle-ci est parallèle à l'axe. (**Epure 17-1**.) Breithof. Géom. descript. I.

Réciproquement. Tout plan représenté par une seule trace sur P_2 parallèle à l'axe, est un plan parallèle à P_1 .

40. Plan parallèle à P_2 . Tout plan parallèle à P_2 ne peut avoir qu'une première trace, et celle-ci est parallèle à l'axe. (Ep. 17-2.)

Réciproquement. Tout plan représenté par une seule trace sur P_1 parallèle à l'axe, est un plan parallèle à P_2 .

41. Plan parallèle à l'axe. Un plan parallèle à l'axe, s'il a deux traces, a ces dernières parallèles à l'axe. (Fig. 15. Epure 17-3.)

Un tel plan T, en effet, rencontrant P_1 et P_2 , ne peut couper ces plans que suivant des droites parallèles à l'axe, car autrement T ne serait plus parallèle à cette ligne.

Réciproquement. Tout plan dont les deux traces sont parallèles à l'axe, est parallèle à cette ligne. (A démontrer.)

42. Plan perpendiculaire à P₁. Un plan perpendiculaire à P₁ a, en général, deux traces; sa première trace est quelconque et sa seconde trace est perpendiculaire à l'axe. (Fig. 16. Ep. 17-4.)

En effet, le plan T et le plan P_2 , tous les deux perpendiculaires à P_1 , se rencontrent suivant T_2 , seconde trace de T, perpendiculaire à P_1 , donc à toute droite passant par son pied dans P_1 , donc à l'axe.

Remarque. La trace T_1 est quelconque; elle est parallèle ou normale à l'axe, suivant que T est parallèle ou normal à P_2 .

Réciproquement. Tout plan dont la trace sur P_2 est perpendiculaire à l'axe, est un plan perpendiculaire à P_1 .

Les deux plans P_1 et P_2 forment un dièdre droit qui a pour arête l'axe de projection. La droite T_2 normale à l'axe étant située dans la face P_2 , sera normale à l'autre face P_1 . Par suite, le plan T de l'espace se trouvant être mené par une droite normale à P_1 , sera normal à ce plan.

La trace T_1 du plan T normal à P_1 porte le nom de **trace-projection** du plan T. Elle est le lieu géométrique des projections sur P_1 de tous les points de T.

43. Plan perpendiculaire à P_2 . Un plan perpendiculaire à P_2 a, en général, deux traces; sa première trace est perpendiculaire à l'axe et sa seconde trace est quelconque. (Epure 17-5.)

Réciproquement. Tout plan dont la première trace est perpen-

diculaire à l'axe, est un plan perpendiculaire à P_2 . (Mêmes démonstrations qu'au § 42.)

Remarque. La trace sur P_2 est quelconque; elle devient parallèle ou perpendiculaire à l'axe, suivant que le plan est parallèle ou normal à P_1 .

La trace sur P_2 du plan normal à P_2 sera la **trace-projection** du plan sur P_2 . Elle est le lieu géométrique des projections de tous les points de ce plan sur P_2 .

44. Plan perpendiculaire à l'axe. Un plan perpendiculaire à l'axe a ses deux traces perpendiculaires à l'axe, et réciproquement. (Epure 17-6.)

Un tel plan est, en effet, perpendiculaire à P_1 et à P_2 .

Remarque. Les deux traces se confondent et ne forment qu'une seule perpendiculaire à l'axe.

45. Plan oblique aux deux plans de projection.

Un tel plan ne se trouvant dans aucune des conditions particulières qui caractérisent les positions précédentes, aura ses deux traces obliques à l'axe, et réciproquement.

46. Formulaire pour reconnaître les positions d'un plan dans l'espace à la simple inspection de ses traces dans une épure.

la première trace d'un plan est	parallèle ou perpendiculaire	å l'axe, ce plan est	parallèle à P2, normal à P2,	ent.
la seconde trace d'un plan est	parallèle ou perpendiculaire	å l'axe, ce plan est	parallèle à P ₁ , normal à P ₁ ,	et réciproquement
les deux traces d'un plan sont	parallèles ou	å l'axe, ce plan est	parallèle à l'axe,	et
	d'un plan est la seconde trace d'un plan est les deux traces d'un	la première trace d'un plan est la seconde trace d'un plan est parallèle ou perpendiculaire perpendiculaire perpendiculaire les deux traces d'un perpendiculaire parallèles ou	la première trace d'un plan est la seconde trace d'un plan est la seconde trace d'un plan est parallèle ou perpendiculaire a l'axe, ce plan est perpendiculaire les deux traces d'un plan sont parallèles ou parallèles	la première trace d'un plan est $\begin{cases} & \text{ou} \\ & \text{ou} \\ & \text{perpendiculaire} \end{cases}$ $\begin{cases} & \text{a l'axe,} \\ & \text{ce plan est} \end{cases}$ normal à P_2 , $\begin{cases} & \text{parallèle å P_1,} \\ & \text{ou} \\ & \text{perpendiculaire} \end{cases}$ $\begin{cases} & \text{parallèle å P_2,} \\ & \text{ce plan est} \end{cases}$ normal à P_1 , $\begin{cases} & \text{parallèle å P_1,} \\ & \text{normal å P_1,} \end{cases}$ les deux traces d'un $\begin{cases} & \text{parallèles} \\ & \text{ou} \end{cases}$ $\begin{cases} & \text{a l'axe,} \\ & \text{ce plan est} \end{cases}$ $\begin{cases} & \text{parallèle å l'axe,} \\ & \text{ou} \end{cases}$ $\begin{cases} & \text{parallèle å l'axe,} \\ & \text{ce plan est} \end{cases}$