am geraden Kurbeltrieb.

90	100	110	120	130	140	150	160	170	1800
270	260	250	240	230	220	210	200	190	
0,200	-0,362	0,495	0,600	0,678	-0,731 $0,542$	0,766	0,785	0,796	0,800
1,000	0,950	0,874	0,779	0,666		0,413	0,278	0,139	0
0,222	-0,382	-0,512	-0,611	0,681	-0,727	0,755	-0,769	-0,776	-0,778
	0,946	0,867	0,768	0,655	0,532	0,403	0,271	0,136	0
0,250 1,000	0,409 0,941	-0,534 $0,857$	-0.625 0.755	0,686 0,641	0,723 0,518	0,741 0,391	-0.748 0.261	0,750 0,131	-0,750 0

oder in erster Annäherung, nämlich bei Vernachlässigung der Strecke \overline{GF} gegenüber 2 L:

$$\overline{G} F \approx \frac{\overline{C} F^2}{2 L} = \frac{R^2 \sin^2 \varphi}{2 L},$$

$$x = R (1 - \cos \varphi) \pm \frac{R^2 \sin^2 \varphi}{2 L}.$$
(286)

Der Winkel ψ nimmt um so kleinere Werte an, je größer die Schubstangenlänge Lim Verhältnis zum Kurbelhalbmesser R ist. Im Grenzfall $L=\infty$ wird $\psi=0$ und der Kolbenweg: (287) $x' = R(1 - \cos \varphi).$

Dann ist er also durch die Projektion der Kurbelzapfenmitte auf die Kolbenweglinie gegeben, wobei noch die Wege für den Hin- und Rückgang bei gleichen Kurbelwinkeln qgleich groß werden.

2. Geschwindigkeitsverhältnisse am geraden Kurbeltriebe.

Für den Hingang gibt eine gleichförmige Kurbelgeschwindigkeit v bei ihrer Zerlegung in der Richtung der Schubstange und senkrecht dazu nach Abb. 1048 die Stangengeschwindig $c = \frac{v_i}{\cos \psi} = \frac{v \sin{(\phi + \psi)}}{\cos{\psi}},$ (288a) keit $v_l = v \sin (\varphi + \psi)$ und die Kolbengeschwindigkeit:

$$c = \frac{v_l}{\cos \psi} = \frac{v \sin(\varphi + \psi)}{\cos \psi},$$
 (288a)

da v_i als Komponente von c betrachtet werden kann. Für den Rückweg gilt:

$$c_{1} = \frac{v \sin{(\varphi - \psi)}}{\cos{\psi}}. \tag{288 b} \quad \text{Abb. 1048. Geschwindigkeitsverhältnisse}$$
 am geraden Kurbeltrieb.

Die Kolbengeschwindigkeit ist demnach von φ und ψ und damit von dem Verhältnis $\frac{n}{L}$ abhängig, das bei liegender Maschinen zu $\frac{1}{5}$, bei stehenden bis zu $\frac{1}{4.5}$ und $\frac{1}{4}$ gewählt zu werden pflegt. Zusammenstellung 112 enthält die Werte von $\frac{\sin{(\varphi \pm \psi)}}{\cos{\psi}}$ für Kurbelwinkel von 10° zu 10°.

Bei der zeichnerischen Ermittlung trägt man v polar auf, erhält bei gleichförmiger hwindigkeit einen Kreis mit dem Halbmesser v, Abb. 1049, und findet die Kolben-