entgegengesetzten Sinne verläuft, welche ihrerseits immer in einer Abnahme des Löslichkeitszuwachses besteht. Diese feine Differenz drückt sich in obigen Daten nicht aus, ist aber in den Angaben Meyerhoffers¹) enthalten. In der späteren Arbeit von van der Heide²) fällt sie wieder weg, sodass sie praktisch vorläufig kaum in Betracht kommt.

Die Beobachtungen Meyerhoffers seien hier angeführt:

Umwandlung: $CuK_2Cl_4 \cdot 2H_2O = CuKCl_3 + KCl + 2H_2O(92^\circ)$

Richtungsänderung der Kurven für die gesättigten Lösungen von CuK₂Cl₄·2H₂O mit KCl (System I) und CuKCl₃ mit KCl (System II).

	Temp.	KC1	Zunahme pro 1º	CuCl ₂	Zunahme pro 1º
System]	(79.1° 90.5°	14·2 15·4	0.11	16-8 18-8	0.18
System]	II 93.7° 98.8°	15.6 16.2	0.12	19.4 19.7	0.06

Da KCl am Boden verbleibt, findet sich der Hauptknick im Kupferchloridgehalt, während der Chlorkaliumzuwachs eine kleine Zunahme zeigt. Die Mengen der betreffenden Salze sind in Prozenten des an Metall gebundenen Chlors auf das Gesamtgewicht der Lösung berechnet gegeben.

Umwandlung: $CuK_2Cl_4 \cdot 2H_2O + CuCl_2 \cdot 2H_2O = 2CuKCl_3 + 4H_2O$ (57°) Richtungsänderung der Kurven für die gesättigten Lösungen von $CuK_2Cl_4 \cdot 2H_2O$ mit $CuCl_2 \cdot 2H_2O$ (System III) und $CuCl_3K$ mit $CuCl_2 \cdot 2H_2O$ (System IV).

tinadorte.	Temp. KCl 39.6° 4.9		Zunahme pro 1º	CuCl ₂	Zunahme pro 1º
System III	52.90	6-2	0.1 0.00 + 0.1 a mass	23.2 24.1	0.068
System IV	60·2°	.6.6	0.095	24.6	0.050
-,	72.6° 6.3	-0.025	25.5	. 0.073	

 $CuCl_2 \cdot 2H_2O$ verbleibt am Boden. Der Hauptknick zeigt sich also im Kaliumchloridgehalt, während der Chlorkupferzuwachs eine kleine Zunahme erfährt.

Unter Berücksichtigung der eben besprochenen Gesetzmässigkeiten wollen wir uns nun ausführlich mit den Beobachtungen beschäftigen, die speziell am Kaliumkupferchlorid und Kaliumastrakanit resp. Schönit gemacht wurden.

1. Das Kaliumkupferchlorid (CuCl₂ · 2KCl · 2H₂O).³)

Die Umwandlung. Die schönen blauen Krystalle des Kaliumkupferchlorids färben sich beim Erwärmen auf 100° braun und gleichzeitig werden sie feucht. Dieser Versuch wird am zweckmässigsten in einem

¹) Zeitschr. f. physik. Chem. 5, 119.
 ²) Zeitschr. f. physik. Chem. 12, 428.
 ³) Meyerhoffer. Zeitschr. f. physikal. Chem. 3, 336; 5, 97. Vriens l. c. 7, 194.

zugeschmolzenen Rohre ausgeführt, um jedem Krystallwasserverlust vorzubeugen. Wird die Erscheinung in der auf S. 35 beschriebenen Weise unter dem Mikroskop beobachtet, so findet man, dass sich die ursprünglich gut ausgebildeten blaugrünen Tafeln (Fig. 41) in feine braune Nadeln verwandeln, denen bisweilen kleine Chlorkaliumwürfel beigemischt sind (Fig. 42). Beim Erkalten treten an mehreren Stellen wieder kleine Doppelsalzkrystalle auf, die auf Kosten der braunen Nadeln und Chlorkaliumwürfel schnell nach allen Richtungen hin wachsen.

Zunächst handelte es sich darum, die braunen Nadeln zu isolieren. Da der Zerfall des Doppelsalzes unter Wasserabscheidung vor sich geht, wurde die Anwendung wasserentziehender Mittel versucht, und zwar eignete sich für diesen Zweck der Eisessig am besten. Das Doppelsalz löst sich darin beim Erwärmen unter Braunfärbung auf. und beim Erkalten scheiden sich granatrote Nadeln ab, die heiss abfiltriert und zunächst im Dampftrichter und später im Luftbade bei 100° getrocknet wurden. Die Analyse ergab die Formel CuCl₂ · KCl und wurde diesem neuen Doppelsalz der Name Cuprikaliumchlorid im Gegensatze zum ursprünglichen Cupribikaliumchlorid beigelegt. Die Darstellungsweise dieses Salzes lässt sich übrigens bedeutend vereinfachen, wenn man Kupfer - und Kaliumchlorid im Verhältnis CuCl₂:KCl entweder in Eisessig löst oder auch beide Salze einfach zusammenschmilzt.

Fig. 41.

Fig. 42.

Diesen Beobachtungen entsprechend, wird die vorliegende Umwandlung durch folgende Gleichung ausgedrückt:

 $CuK_2Cl_4 \cdot 2H_2O = KCuCl_3 + KCl + 2H_2O.$

Die Wahrscheinlichkeit dieser Auffassung wird noch dadurch erhöht, dass ein Gemisch von CuKCl₃, KCl und $2H_2O$ zu einer festen blauen Masse erstarrt, aus deren Lösung bei 100° die beiden Salze CuKCl₃ und KCl nebeneinander auskrystallisieren.

Die Umwandlungstemperatur. Um die Temperatur festzustellen, bei der die eben besprochene Umwandlung des Cupribikaliumchlorids vor sich geht, wurde dessen Ausdehnung im Dilatometer beobachtet. Die Messungen ergaben folgende Werte:

Temp.	Niveau:	Steigerung pro 1º
7.50	121 mm	0 01
55°	238	3 mm
86°	325	3 "
89°	334	3 "
900	339	5 "
910	345 "	6 "
91.80	355 "	13 "
92.80	457	102 "
100°	482 "	4 "

Diese Tabelle ist in Fig. 43 graphisch dargestellt, und findet demnach die Umwandlung zwischen 91.8° und 92.8°, rund bei 92° statt, d. h.

bei einer Temperatur, die mit einer ganz auffallenden Volumzunahme verbunden ist. Die sich bereits von 89° ab steigernde Ausdehnung, welche etwas grösser als die normal zu erwartende ist (zwischen 89° bis 90° z. B. 5 statt 3 etc.), weist auf geringe Verunreinigungen des Untersuchungsobjektes hin. Der Einfluss solcher Fremdkörper tritt übrigens bedeutend zurück, wenn man, wie auf S. 38 beschrieben

In William

wurde, bei halber Umwandlung arbeitet.

Die zweite Umwandlungstemperatur. Nachdem diese Beobachtungen gemacht waren, die zu einem weiteren Studium dieses interessanten Doppelsalzes aufforderten, wurde die Frage zu beantworten gesucht: Was wird aus einem Gemisch von KCl, CuCl₂ und H₂O in verschiedenen Mengenverhältnissen und bei verschiedenen Temperaturen? Vergegenwärtigt man sich nochmals die oben erwähnten Erscheinungen, so liegt der Gedanke nahe, dass diese Umwandlung notwendiger Weise

noch eine zweite bedingt, da sie einer dem Schmelzen vergleichbaren teilweisen Verflüssigung entspricht, deren Temperatur, wie immer, durch Fremdkörper erniedrigt wird. Nun ist bei 93° von den hier in Betracht kommenden Verbindungen KCl, $\operatorname{CuK_2Cl_4} \cdot 2\operatorname{H_2O}$ und 2KCl vorhanden, während $\operatorname{CuCl_2} \cdot 2\operatorname{H_2O}$ fehlt. Es kommt daher jetzt darauf an, die Temperatur zu bestimmen, bei der sich $\operatorname{CuK_2Cl_4} \cdot 2\operatorname{H_2O}$ in $\operatorname{CuKCl_3}$ bei Anwesenheit von $\operatorname{CuCl_2} \cdot 2\operatorname{H_2O}$ nach der Gleichung verwandelt:

 $\operatorname{Cu} \mathrm{K}_{2} \mathrm{Cl}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} + \operatorname{Cu} \mathrm{Cl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} = 2 \mathrm{Cu} \mathrm{Cl}_{2} \cdot \mathrm{KCl} + 4 \mathrm{H}_{2} \mathrm{O}.$

Zu diesem Zwecke wurde die entsprechende Mischung in ein Dilatometer gebracht unter Zusatz von etwas CuKCl₃, um die Reaction einzuleiten. Die Messungen ergaben folgende Werte:

Temp.	Niveau	Steigung pro 1º
38,40	40 mm	Pro 1
51,8	200	12 mm
53,6	227	15
54.6	248	21
55.6	500	252
56.2	509	15 .
57.6	529	14
58.6	540	11
62.6	603	16
65.6	649	13

Die Umwandlungstemperatur liegt offenbar zwischen 54,6° und 55,6° also rund bei 55°.1)

Sowohl die bei 92° vor sich gehende, wie auch die zuletzt beschriebene Umwandlung werden nach einander beobachtet, wenn das Dilatometer mit Kupferchlorid und Doppelsalz im Überschuss beschickt ist. Die auf diese Weise ausgeführten Messungen sind in Figur 44 graphisch zusammengestellt und zwar entsprechen die einzelnen Kurransbachuitte folgen den Mischeren

Kurvenabschnitte folgenden Mischungen bez. Umwandlungen:

- AB $\operatorname{Cu}\operatorname{Cl}_2 \cdot 2\operatorname{H}_2 0 + 2\operatorname{Cu}\operatorname{K}_2\operatorname{Cl}_4 \cdot 2\operatorname{H}_2 0$
- BC Erste Umwandlung (56°)
- $\mathrm{CD} \quad \mathrm{Cu}\,\mathrm{K_2}\,\mathrm{Cl_4}\cdot\mathrm{2\,H_2O} + \mathrm{Cu}\,\mathrm{KCl_3} + \mathrm{2\,H_2O}$
- DE Zweite Umwandlung (92°)
- EF $2 \operatorname{Cu} K \operatorname{Cl}_3 + K \operatorname{Cl} + 4 \operatorname{H}_2 O$.

Die Löslichkeitsbestimmung. Wie bereits oben auseinandergesetzt wurde, ist es zweckmässig für diese Bestimmung zunächst die Um-

¹) Bei einer späteren thermometrischen Bestimmung stellte sich die Temperatur 56° als richtiger heraus.

van't Hoff, Vorlesungen.

wandlungstemperatur zu wählen, weil bei dieser mehrere Löslichkeiten zusammenstossen.

Diese Bestimmung bei 56° ergab:

24.5 % der Lösung: Chlor an Kupfer gebunden,

99

6.7 %, " " " Kalium

Die Lösung hat demnach dort die Zusammensetzung:

100 H₂O; 8.6 KCl; 15.6 CuCl₂,

und die Umwandlung entspricht der Gleichung: $CuK_2 Cl_4 \cdot 2H_2 O + 1.33 CuCl_2 \cdot 2H_2 O = 1.6 CuKCl_3 + 0.046$ (100 H₂O; 8.6 KCl; 15.6 CuCl₂).

Die Bestimmung bei 92° ergab:

19.2% der Lösung: Chlor an Kupfer gebunden, 15.5%, """"Kalium", Die Lösung hat demnach dort die Zusammensetzung: 100 H₂O; 25.1 KCl; 15.5 CuCl₂.

und die Umwandlung entspricht der Gleichung: $CuK_2 Cl_4 \cdot 2H_2 O = 0.69 CuKCl_3 + 0.81 KCl + 0.2 (100 H_2 O;$ 25.1 KCl; 15.5 CuCl₂).

Um ein anschauliches Bild von diesen Verhältnissen zu erhalten, wollen wir, nach den auf Seite 14 gemachten Angaben, das an Kalium

gebundene Chlor als vertikale Projektion in die Figur 45 oberhalb der Temperaturaxe eintragen, während die untere Hälfte für die an Kupfer

gebundene Chlormenge in horizontaler Projektion bestimmt ist. Die auf solche Weise für die Temperaturen 56° und 92° gefundenen Punkte P und Q werden in der Figur durch die Projektionen $P_1 P_2$ und $Q_1 Q_2$ dargestellt. Der räumlichen Lage dieser beiden Punkte entspricht dann die Zusammensetzung der bei 56° an Cu K₂ Cl₄ · 2H₂O, Cu Cl₂ · 2H₂O und Cu KCl₃ resp. bei 92° an Cu K₂ Cl₄ · 2H₂O, KCl und Cu KCl₃ gesättigten Lösung. Ferner bilden diese beiden Punkte P und Q die Schnittpunkte je dreier Löslichkeitskurven, deren Richtung einzeln bestimmt werden muss.

Fangen wir mit Q an, so treffen hier einerseits die beiden Kurven für die an $CuK_2Cl_4.2H_2O$ und $CuKCl_3$ resp. KCl gesättigten Lösungen und anderseits diejenige für die gemeinschaftliche Lösung der Einzelsalze CuKCl₃ und KCl zusammen. Letztere Linie steigt mit zunehmender Temperatur an und ist durch eine bei 98,8° ausgeführte Bestimmung (Punkt A in der Zeichnung) festgelegt, welche folgende Resultate ergab:

Löslichkeit von CuKCl₃ und KCl:

Temperatur	Prozente der Lösung an mit Cu	Prozente der Lösung an mit K
Constraints (gebundenem Chlor	gebundenem Chlor
98·8º	19.7	16.7

Von der Kurve für die Salze CuK₂Cl₄.2H₂O und KCl wurden eine Anzahl Punkte bei verschiedenen Temperaturen bestimmt, deren erster bei 39° gelegener Punkt B in der Zeichnung entspricht.

T V C. CI 9H O and KCl.

	LOSIICIKEIL VOIL R2 OUOI4.21.	1 ₂ 0 unu non.	
Temperatur	Prozente der Lösung an mit Cu gebundenem Chlor	Prozente der Lösung an mit K gebundenem Chlor	
39.40	12	10.7	
49.90	12.9	11.5	
60.49	14.2	12.5	
79.10	16.8	14.2	

Wie schliesslich aus der Betrachtung der bei 56° gefundenen zweiten Umwandlung hervorgeht, haben wir von der dritten Kurve für die an $CuK_2Cl_4.2H_2O$ und $CuKCl_3$ gesättigte Lösung bereits ein zweites Datum im Punkte P, bei welchem die Lösung an $CuK_2Cl_4.2H_2O$, $CuCl_2.2H_2O$ und $CuKCl_3$ gesättigt ist. Unterhalb 56° lässt sich für die beiden ersten der letztgenannten drei Salze eine Löslichkeitskurve aufstellen, die mit sinkender Temperatur beständig fällt und aus folgenden Beobachtungen erhalten wurde. Der bei 0° gefundehe Wert entspricht dem Punkt C in der Zeichnung.

5*

	Löslichkeit von CuK2Cl4.2H2O	und CuCl ₂ .2H ₂ O.
Temperatur	Prozente der Lösung an mit Cu gebundenem Chlor	Prozente der Lösung an mit K gebundenem Chlor
00	21.4	2.1
39.60	23.2	and alignment of 4.9 distances
50.10	23.3	5.9 mile state 5.9
52.90	24.1	6.2

Bei höheren Temperaturen steigen von P aus zwei Kurven auf, die der Sättigung an $CuKCl_8$ mit $CuCl_2 \cdot 2H_2O$ resp. $CuK_2Cl_4 \cdot 2H_2O$ entsprechen. Letztere verbindet, wie erwähnt, P mit Q, was anderseits von einer dazwischen bei 64.2° ausgeführten Bestimmung bestätigt wurde.

negativatio	Löslichkeit von CuK ₂ Cl ₄ ·2H ₂ O und CuKCl ₃ .			
Temperatur	Prozente der Lösung an mit Cu gebundenem Chlor	Prozente der Lösung an mit K gebundenem Chlor		
64.20	22.6	8.8 1.04 DA 10 8.8		
		The second se		

Die zweite von P aus aufsteigende Kurve für die Salze $CuKCl_s$ und $CuCl_2 \cdot 2H_2O$ wurde durch folgende Versuche erhalten, die bei 72.6° im Punkte D abschlossen:

 Löslichkeit von CuKCl₃ und CuCl₂·2H₂O.

 Temperatur
 Prozente der Lösung an mit Cu gebundenem Chlor
 Prozente der Lösung an mit K gebundenem Chlor

 60·2
 24·6
 6·6

 72·6
 25·5
 6·3

Auf diese Weise erhält man das Kurvensystem CP, PD, PQ, BQ, QA, in dem jede Linie die Löslichkeit eines Salzpaares bezeichnet, während in den Schnittpunkten P und Q je drei Salze zusammentreffen. Ausserdem werden durch diese Kurven eine Anzahl Felder abgegrenzt, die der Sättigung an je einem Salze entsprechen, und zwar gilt das links liegende Feld CPQB für $CuK_2Cl_4 \cdot 2H_2O$ und das rechts liegende DPQA für CuKCl₃. Die Verbindungslinie PQ ist also die Existenzgrenze der beiden untersuchten Salze in Berührung mit sämtlichen möglichen Lösungen.

Bei weiterer Überlegung kommen dann noch zwei andere Felder hinzu. Oberhalb BQA liegt das Gebiet für KCl, das unter beständiger Verminderung des Chlorkupfergehaltes die vertikale Projektionsebene in EF erreicht, wo nur noch eine an KCl gesättigte Lösung vorliegt. Ganz analog erstreckt sich unterhalb CPD das Feld für CuCl₂, welches in der Linie GH die horizontale Projektionsebene trifft, und hier ist es der Gehalt an Kaliumchlorid, der beständig abnimmt¹).

Da ein vollständiger Abschluss nach links und rechts bis zur

¹) Diese Linie ist punktiert, weil die Löslichkeitsangaben zum Teil fehlen. (Siehe Reicher und van Deventer. Zeitschr. f. physik. Ch. 5, 561.) Eis- resp. Kochgrenze nicht erreicht wurde, so stellt das von den eben erwähnten Sättigungsfeldern, Linien und Punkten begrenzte Gebilde nur ein Stück eines grösseren Ganzen dar. Inn rhalb desselben

liegen die ungesättigten Zustände, die in der Temperaturaxe in reines Wasser übergehen, während ausserhalb die übersättigten Lösungen auftreten.

bereits auf Seite 25 entwickelt wurde. lässt sich eine der eben besproche-Lösungen bezieht und mit einer Rotationsfläche für die Maximaltension des e' Wassers abschliesst.

Damit man ein der Figur 45 ganz analoges Bild erhält, ist es wesentlich, die diesem Kurvensystem zu Grunde liegenden Lösungen auch hier zu benutzen. Die betreffenden Tensionen wurden daher gleichzeitig in dem in Figur 46 abgebildeten Apparat gemessen, dessen vier untere cylindrische Abteilungen zur Aufnahme der in geeigneter Weise zube-

reiteten und angefeuchteten Salzmischungen bestimmt sind. Das horizontale Glasrohr f enthält ein mit Zinkchlorid beschicktes Röhrchen g und zu Anfang des Versuches auch eine genügende Menge Quecksilber. Zunächst verbindet man das Rohr h mit der Luftpumpe, macht den Apparat möglichst luftleer und schmilzt bei h ab. Dann lässt man durch eine passende Bewegung das in f befindliche Quecksilber in das Röhrensystem bei a einlaufen und erwärmt das Ganze in einem Apparat, dessen Einrichtung ohne weitere Beschreibung aus Figur 47 hervorgeht. Die betreffenden Temperaturen werden durch eine siedende Flüssigkeit hervorgebracht, und zu den Ablesungen verwendet man am zweckmässigsten das Kathetometer.

Zu dem auf diese Weise erhaltenen Kurvensystem kommt einmal noch die bereits erwähnte Tensionskurve des Wassers hinzu, ausserdem müssen aber noch die auf das Krystallwasser bezüglichen Linien eingetragen werden, welche bei den Umwandlungstemperaturen mit obigen Tensionskurven zusammentreffen. So spaltet z. B. das Doppelsalz $CuK_2Cl_4.2H_2O$ bei 92° sein Krystallwasser unter Bildung einer Lösung ab, die an $CuK_2Cl_4.2H_2O$, $CuKCl_3$ und KCl gesättigt ist und bei dieser Temperatur dieselbe Tension haben muss wie das Doppelsalz. Es treffen demnach vier Tensionskurven in einem Punkte zusammen. Die angestellten Versuche ergaben folgende Zahlen:

Lösung Krystallwasser CuK ₂ Cl ₄ ·2 H ₂ O, KCl			Lösung		Lösung		
		$CuK_{2}Cl_{4} \cdot 2H_{2}O, KCl$		KCI	CuK, Cl, .2H, O, CuKCl,		CnKCl, KCl
74.60	131 mm	74.60	187 mr	n	1		
89.20	278.5 mm		-		89.20	292 mm	in the state of the
92°	319 mm	(92°	326 mm	1)	920	322 mm	(92º 325 mm)
	-	92.6°	332 mm	1		- Handreit N	age die
	-		<u> </u>			-there all	95º 369.7 mm
	-Hallen Lines		24 <u></u>				97° 402.6 mm
		A BAR STATE		251.01.12.57 B	机关系 网络拉马拉马拉马拉马拉		

Anderseits spaltet sich aus einer Mischung von $CuCl_2 \cdot 2H_2O$ mit $CuK_2Cl_4 \cdot 2H_2O$ bereits bei 56° Krystallwasser unter Bildung einer an $CuK_2Cl_4 \cdot 2H_2O$, $CuCl_2 \cdot 2H_2O$ und $CuKCl_3$ gesättigten Lösung ab, und auch hier sind die vier Tensionen einander gleich:

Krystallwasser	Lösung CuK ₂ Cl ₄ ·2H ₂ O, CuCl ₂ ·2H ₂ O	Lösung CuK ₂ Cl ₄ , CuKCl ₈	Lösung CuKCl _e , CuCl _e · 2H ₂ O
46.6° 42.2 mm	46.6° 47.4 mm	dic.i.	· · · · · ·
51.5° 57.6 mm	51.5° 58.4 mm	in the second	There is in sold of
(56° 75.9 mm)	(56° 70 mm)	56° 73 mm	56° 73.4 mm
and the second sec		89.2º 292 mm	89.2 268 mm

In Figur 48 sind sämtliche Resultate graphisch eingetragen, und treten dort die Tensionsschnittpunkte sehr deutlich hervor. Diese Zeichnung ässt sich, um auch die Tensionen anderer nur an einem Salze gesättigter oder ungesättigter Lösungen zum Ausdruck zu bringen, mit Figur 45 in der Weise kombinieren, dass durch einen Punkt, z. B. durch P, senkrecht zur Temperaturaxe eine Linie gezogen wird, deren Länge proportional

1. Das Kaliumkupferchlorid.

dem in Figur 48 angegebenen Druck genommen wird. Man erhält so eine PQ-Kurve zwischen den Projektionsebenen u. s. w., während die Tensionen der nur an einem Salz gesättigten Lösungen durch Feld zum Ausdruck kommen, die in den Projektionsebenen für Sättigung an KCl an CuCl₂·2H₂O abschliessen. Die Tensionen der ungesättigten Lösungen

liegen dann sämtlich weiter von der Temperaturaxe entfernt und gehen endlich in die Werte für reines Wasser über.

Es sei schliesslich noch bemerkt, dass auch hier wieder ein feiner, praktisch gar nicht ins Gewicht fallender Unterschied zwischen den Schnittpunkten der Löslichkeits- und Tensionskurven besteht, da erstere den Verhältnissen bei Atmosphärendruck und letztere denen bei der jeweiligen Maximaltension entsprechen. Da sich die Umwandlungstemperatur kaum 0.01° pro Atmosphäre ändert, so würden nur bei höchster Genauigkeit der Messungen die bei der Maximaltension bestimmten Löslichkeitskurven einen etwas abweichenden Schnittpunkt aufweisen, der dann streng mit dem Tensionsschnittpunkt zusammenfiele. Bakhuis Roozeboom¹) hat deshalb vorgeschlagen, die der Maximaltension entsprechende Umwandlungstemperatur als Multipelpunkt zu bezeichnen, da hier ein Maximum von folgenden fünf neben einander bestehenden Stoffzuständen (Phasen nach Gibbs) vorliegt:

bei P $CuK_2Cl_4 \cdot 2H_2O$, $CuCl_2 \cdot 2H_2O$, $CuKCl_3$, Lösung und Dampf bei Q "KCl "

In den Linien vereinigen sich dann vier derartige Zustände, wie z. B. in PQ: $CuK_2Cl_4 \cdot 2H_2O$, $CuKCl_3$, Lösung und Dampf. Die Tensionskurven für das Krystallwasser entsprechen ebenfalls vier Phasen. So entsteht bei der Kurve für $CuK_2Cl_4 \cdot 2H_2O$ neben dem gebildeten Dampf $CuKCl_3$ und KCl, während bei derjenigen des Gemisches von $CuK_2Cl_4 \cdot 2H_2O$ mit $CuCl_2 \cdot 2H_2O$ neben dem Dampf noch $CuKCl_3$ auftritt.

Die Felder entsprechen dem gleichzeitigen Auftreten von drei Zuständen. In dem zwischen PQ, CP und BQ gelegenen Gebiete ist z. B. $CuK_2Cl_4 \cdot 2H_2O$ neben Lösung und Dampf anwesend.

Für die Lösungen wird diese Betrachtung wesentlich vereinfacht, wenn man an Stelle der Stoffzustände (Phasen) von Bodenkörpern²) spricht, d. h. solchen Körpern, an denen die Lösung gesättigt ist. Mit Rücksicht auf diese Ausdrucksweise haben wir:

In	den	Punkten (P, Q)	drei Bod	lenkörper.
In	den	Linien (PQ u. s. w.)	zwei	
In	den	Feldern (CPQB u. s. w.)	einen	de pressión
In	dem	Körpergebilde	keinen	

2. Der Schönit: $MgK_{2}(SO_{4})_{2} \cdot 6H_{2}O^{3}$

Während die Versuche mit dem Kupferbikaliumchlorid nur soweit durchgeführt wurden, bis das Doppelsalz bei der oberen Existenzgrenze unter Chlorkaliumabspaltung zerfiel, hat die Untersuchung des Schönits insofern ein besonderes Interesse, als die Existenzfähigkeit dieses Salzes in Berührung mit Lösung durch zwei Umwandlungen nach höheren und niederen Temperaturen, also allseitig abgegrenzt wurde. Ferner

²) Meyerhoffer, Sitzungsber. d. k. Akademie in Wien. Mathem. naturwissensch. Classe, Bd. 12, Abt. 2, März 1893.

³) van der Heide, Zeitschr. f. physik. Chem. 12, 416.

¹⁾ Zeitschr. f. physik. Chem. 2, 513.