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Abstract

In this thesis we describe the boundary element method for the discretization of the
time-dependent heat equation. In contrast to standard time-stepping schemes we
consider an arbitrary decomposition of the boundary of the space-time cylinder into
boundary elements. Besides adaptive refinement strategies this approach allows us
to parallelize the computation of the global solution of the whole space-time system.
In addition to the analysis of the boundary integral operators and the derivation of
boundary element methods for the Dirichlet initial boundary value problem we state
convergence properties and error estimates of the approximations. Those estimates
are based on the approximation properties of boundary element spaces in anisotropic
Sobolov spaces, in particular in H

1
2
, 1
4 (Σ) and H−

1
2
,− 1

4 (Σ). The systems of linear equa-
tions, which arise from the discretization of the integral equations, are solved with the
GMRES method. For an efficient computation of the solution we need preconditioners.
Based on the mapping properties of the single layer- and the hypersingular boundary
integral operator we construct and analyse a preconditioner for the discretization of
the first boundary integral equation. Moreover we describe the FEM-BEM coupling
method for parabolic transmission problems. Finally we present numerical examples
for the one-dimensional heat equation to confirm the theoretical results.

Kurzfassung

In dieser Arbeit wird die Randelementmethode zur Diskretisierung von zeitabhängigen
Anfangsrandwertproblemen am Modell der Wärmeleitungsgleichung beschrieben. An-
ders als bei klassischen Zeitschrittverfahren wird eine beliebige Zerlegung des Randes
des Raum-Zeit-Zylinders betrachtet, was adaptive Verfeinerungsstrategien und eine
Parallelisierung des iterativen Lösungsverfahrens bezüglich des gesamten Raum-Zeit-
Zylinders in einem Schritt ermöglicht. Neben der Analysis der Randintegraloperatoren
und der Herleitung von Randelementmethoden für das Dirichlet-Anfangsrandwertpro-
blem werden auch Konvergenzeigenschaften und Fehlerabschätzungen der Näherungslö-
sungen angegeben. Diese basieren auf den Approximationseigenschaften von Ansatzräu-
men in anisotropen Sobolev-Räumen, insbesondere in H

1
2
, 1
4 (Σ) bzw. H−

1
2
,− 1

4 (Σ). Die
linearen Gleichungssysteme, welche sich aus der Diskretisierung der Randintegral-
gleichungen ergeben, werden mittels GMRES-Verfahren gelöst. Für ein effizientes
Lösen sind Vorkonditionierer notwendig. Ausgehend von den Abbildungseigenschaften
des Einfachschicht- und des hypersingulären Randintegraloperators und der Projek-
tionseigenschaften des Calderón-Operators wird ein Vorkonditionierer für die Diskreti-
sierung der ersten Randintegralgleichung konstruiert und analysiert. Zusätzlich wird
die Methode der FEM-BEM-Kopplung für parabolische Transmissionsprobleme be-
schrieben. Die erarbeiteten theoretischen Aussagen werden anhand von numerischen
Beispielen für die eindimensionale Wärmeleitungsgleichung überprüft.
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Introduction

In this thesis we describe the boundary element method for the discretization of time-
dependent initial boundary value problems using the heat equation as a model problem.
There are different numerical methods in order to compute an approximate solution
of time-dependent initial boundary value problems. Besides standard time-stepping
schemes [32] and decomposition of the whole space-time domain into finite elements
[16] we can use the boundary element method to get an approximation of the solution
of the model problem. As for stationary problems [27] one can use the fundamental
solution of the partial differential equation and the given boundary and initial condi-
tions to derive a representation formula for the solution of the time-dependent model
problem. The problem is reduced to the boundary and we can apply the trace oper-
ators to the representation formula to get boundary integral equations and use some
discretization method to compute an approximate solution of those equations.
The presented analysis of the boundary integral operators and boundary integral equa-
tions is well established and mainly based on the work of Costabel [2] and Noon [17].
There is already a variety of papers regarding different applications of the discretiza-
tion of the heat equation with the boundary element method [2, 8, 15, 17, 18, 20]
using space-time tensor product spaces to discretize the variational formulations of
the boundary integral equations. This method refers to a separate triangulation of
the boundary Γ of the domain Ω and the time interval (0, T ) and uses tensor product
spaces as trial spaces. In contrast to this approach we consider an arbitrary decom-
position of the boundary Σ of the space-time domain Q = Ω × (0, T ) into boundary
elements. Besides adaptive refinement strategies and in contrast to standard time-
stepping schemes this approach allows us to parallelize the computation of the global
solution of the whole space-time system.
In this work we consider a Dirichlet initial boundary value problem for the heat equa-
tion. After the derivation of the fundamental solution and the representation formula
for the solution of the model problem we discuss the mapping properties of the heat
potentials and the boundary integral operators, based on [2]. Since Dirichlet boundary
conditions are given, it remains to determine the conormal derivative of the solution
of the model problem. This can be done by solving the boundary integral equations.
The analysis of the operators is done in anisotropic Sobolev spaces [12]. In this set-
ting the single layer boundary integral operator V and the hypersingular operator D
are not only bounded but also elliptic. Due to the ellipticity of V we can conclude
unique solvability of the first boundary integral equation using the standard theory of
elliptic operators [27]. Analoguously we get unique solvability of the integral equation
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10 Introduction

related to an indirect approach using the single layer potential. After discussing the
different approaches of determining the unknown conormal derivative of the solution
we consider a Galerkin-Bubnov variational formulation in order to discretize the first
boundary integral equation and compute an approximation of the conormal deriva-
tive. Our goal is to use an arbitrary triangulation of the boundary of the space-time
domain Q. However, we first consider a separate triangulation of the boundary Γ
and the time interval (0, T ) and derive approximation properties of the corresponding
space-time tensor product spaces. Afterwards we consider an arbitrary decomposition
of the space-time boundary for n = 1, 2 and state approximation properties of the
space of piecewise constant basis functions by using the approximation properties of
the space-time tensor product spaces. The system of linear equations corresponding
to the Galerkin-Bubnov variational formulation is solved with the GMRES method.
Since the condition number of the system matrix depends on the mesh size of the
triangulation of the space-time boundary, the iteration number of the iterative solver
increases with each refinement step. To get rid of this dependency we have to apply
suitable preconditioning strategies. We present a preconditioning technique using op-
erators of opposite order such as V and D. The presented concept is based on [31].
An advantage of the boundary element method is the handling of exterior problems
in a natural way. This allows us to apply the FEM-BEM coupling method to trans-
mission problems for the heat equation. In Chapter 9 we introduce the concept of
a non-symmetric FEM-BEM coupling method for parabolic transmission problems,
based on [24], and use a Galerkin method to compute an approximate solution of the
problem. In the last chapter we present numerical examples for the one-dimensional
heat equation to confirm the theoretical results.



1 Basics

In order to study the unique solvability of boundary integral equations and their
discretizations we need some results in operator theory. In this chapter we summarize
the main statements, based on [27].

1.1 Operator theory

Let X be a Hilbert space with norm ‖·‖X =
√
〈·, ·〉 and X ′ be the dual space of X.

The norm of an element f ∈ X ′ is given by

‖f‖X′ = sup
06=v∈X

〈f, v〉
‖v‖X

where 〈·, ·〉 denotes the duality pairing on X ′ × X. Let A : X → X ′ be a linear and
bounded operator, i.e. there exists a constant cA2 > 0 such that

‖Av‖X′ ≤ cA2 ‖v‖X for all v ∈ X.

We want to find a solution u ∈ X of the operator equation

Au = f (1.1)

where f ∈ X ′ is given. This problem is equivalent to its variational formulation, which
is to find u ∈ X such that

〈Au, v〉 = 〈f, v〉 for all v ∈ X. (1.2)

If the operator A is X-elliptic, i.e. there exists a constant cA1 > 0 such that

〈Av, v〉 ≥ cA1 ‖v‖
2
X for all v ∈ X,

then the following theorem ensures the unique solvability of the operator equation
(1.1).

Theorem 1.1 (Lemma of Lax-Milgram). [27, Theorem 3.2] Let the linear operator
A : X → X ′ be bounded and X-elliptic. For any f ∈ X ′ there exists a unique solution
u ∈ X of the operator equation

Au = f.

The solution u satisfies

‖u‖X ≤
1

cA1
‖f‖X′ .

11



12 1 Basics

Since (1.2) is equivalent to (1.1) the ellipticity of the operator A ensures the unique
solvability of the variational formulation of the operator equation as well. According
to Theorem 1.1 the inverse operator A−1 : X ′ → X is well defined and satisfies∥∥A−1f

∥∥ ≤ 1

cA1
‖f‖X′ for all f ∈ X ′.

Now let us consider a linear and bounded operator B : X → X. For a given g ∈ X
we want to find a solution of the operator equation

(I −B)u = g. (1.3)

The following theorem ensures unique solvability of equation (1.3) when assuming,
that the operator B is a contraction in X, i.e.

‖B‖ = sup
06=v∈X

‖Bv‖X
‖v‖X

< 1

Theorem 1.2 (Neumann series). [35, Theorem II.1.11] Let X be a Banach-space and
let B : X → X be a linear and bounded operator satisfying ‖B‖ < 1. Then I − B is
invertible and

(I −B)−1 =
∞∑
k=0

Bk.

The inverse operator satisfies ∥∥(I −B)−1
∥∥ ≤ 1

1− ‖B‖
.

1.2 Galerkin methods

We want to compute an approximate solution of the variational problem (1.2). Hence
we need unique solvability of the discretized problem as well. Let N ∈ N. We con-
sider a finite dimensional subspace Xh := span {ϕk}Nk=1 ⊂ X and want to find an
approximation uh of the solution u of (1.2) where

uh =
N∑
k=1

ukϕk ∈ Xh. (1.4)

The Galerkin-Bubnov variational formulation is to find uh ∈ Xh such that

〈Auh, vh〉 = 〈f, vh〉 for all vh ∈ Xh. (1.5)

This problem is equivalent to solving the system of linear equations

Ahu = f (1.6)
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where
Ah[l, k] := 〈Aϕk, ϕl〉, f [l] := 〈f, ϕl〉

for l, k = 1, ..., N and u is the vector of coefficients regarding (1.4). For u, v ∈ RN we
have

(Ahu, v) = 〈Auh, vh〉.

Hence we get
(Ahv, v) = 〈Avh, vh〉 ≥ cA1 ‖vh‖

2
X for all v ∈ RN

which implies the positive definiteness and therefore the invertibility of the matrix
Ah. Thus, the system of linear equations (1.6) and the variational problem (1.5) are
uniquely solvable.
Since Xh ⊂ X, we have

〈Au, vh〉 = 〈f, vh〉 for all vh ∈ Xh

where u is the unique solution of the variational problem (1.2). By subtracting (1.5)
from this equation we get the Galerkin orthogonality

〈A(u− uh), vh〉 = 0 for all vh ∈ Xh. (1.7)

The following theorem states a stability estimate for the approximate solution uh as
well as an error estimate with respect to the solution u of the variational problem
(1.2).

Theorem 1.3 (Cea’s Lemma). [27, Theorem 8.1] Let A : X → X ′ be a bounded and
X-elliptic linear operator. For the unique solution uh ∈ Xh of the variational problem
(1.5) there holds

‖uh‖X ≤
1

cA1
‖f‖X′

and

‖u− uh‖X ≤
cA2
cA1

inf
vh∈Xh

‖u− vh‖X .

Hence we have quasi-optimality of the Galerkin approximation uh and we can use
approximation properties of the finite dimensional subspace Xh to derive error esti-
mates and study the convergence of the Galerkin method.





2 Model problem

Let Ω ⊂ Rn (n = 1, 2, 3) be a bounded domain with Lipschitz-boundary Γ := ∂Ω,
T ∈ R with T > 0 and α ∈ R with α > 0. We consider the initial boundary value
problem

α∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = g(x, t) for (x, t) ∈ Σ := Γ× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω

(2.1)

with given source term f and boundary- and initial conditions g and u0 satisfying
the compatibility condition g(x, 0) = u0(x) for x ∈ Γ. Our aim is to represent the
solution of the problem in terms of the given data f , g and u0. Before we derive
the representation formula for the solution of the model problem we first consider
two special cases of the heat equation and compute analytical solutions of those two
problems.

2.1 Series representation of the solution

In this section we derive a series representation of the solution of the homogeneous
heat equation with boundary condition g = 0 and initial condition u0. Due to the
compatibility condition we have u0|Γ = 0.

2.1.1 One-dimensional heat equation

Without loss of generality we choose Ω = (0, 1) ⊂ R. Let u0 ∈ C(Ω) be a given initial
condition with u0(0) = u0(1) = 0. We consider the initial boundary value problem

α∂tu(x, t)− ∂xxu(x, t) = 0 for (x, t) ∈ (0, 1)× (0, T ),

u(0, t) = u(1, t) = 0 for t ∈ (0, T ),

u(x, 0) = u0(x) for x ∈ (0, 1).

(2.2)

By using separation of variables, i.e. u(x, t) = X(x)T (t), we get

αX(x)T ′(t) = X ′′(x)T (t)

which is equivalent to

α
T ′(t)

T (t)
=
X ′′(x)

X(x)
= λ = const.

15



16 2 Model problem

Together with the boundary conditions in (2.2) we get the Dirichlet eigenvalue problem

X ′′(x)− λX(x) = 0 for x ∈ (0, 1),

X(0) = X(1) = 0
(2.3)

and the initial value problem

T ′(t)− 1

α
λT (t) = 0 for t > 0,

T (0) = a
(2.4)

for some constant a ∈ R. The eigenvalues and eigenfunctions of (2.3) are given by

λk = −(kπ)2

and
Xk(x) = sin(kπx)

where k ∈ N. The solution of (2.4) is then given by

T (t) = ak exp

(
λkt

α

)
.

We conclude that the functions

uk(x, t) = ak exp

(
λkt

α

)
sin (kπx)

are solutions of the homogeneous heat equation in (2.2) satisfying the boundary con-
ditions uk(0, t) = uk(1, t) = 0. The series representation is given by

u(x, t) =
∞∑
k=1

ak exp

(
−(kπ)2t

α

)
sin (kπx).

It remains to determine the coefficients ak ∈ R. Since u has to satisfy the initial
condition we have

u(x, 0) =
∞∑
k=1

ak sin (kπx)
!

= u0(x).

Multiplying the equation with sin (lπx) and integrating over (0, 1) gives

∞∑
k=1

ak

∫ 1

0

sin (kπx) sin (lπx)dx =

∫ 1

0

u0(x) sin (lπx)dx.

Since ∫ 1

0

sin (kπx) sin (lπx)dx =

{
1
2

if l = k,

0 if l 6= k,

we get

ak = 2

∫ 1

0

u0(x) sin (kπx)dx.
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2.1.2 Heat equation in the unit square

Let Ω = (0, 1)×(0, 1) be the unit square and u0 ∈ C(Ω) be some given initial condition
satisfying the compatibility condition

u0(x, 0) = u0(x, 1) = u0(0, y) = u0(1, y) = 0.

As in the spatially one-dimensional case we use separation of variables , i.e.

u(x, t) = X1(x1)X2(x2)T (t),

to get

α
T ′′(t)

T (t)
=
X ′′1 (x1)

X1(x1)
+
X ′′2 (x2)

X2(x2)
= λ = const.

In consideration of the homogeneous boundary conditions this relation leads to the
Dirichlet eigenvalue problems

X ′′i (xi)− λiXi(xi) = 0 for xi ∈ (0, 1),

Xi(0) = Xi(1) = 0
(2.5)

for i = 1, 2 and the initial value problem

T ′(t)− 1

α
λT (t) = 0 for t > 0,

T (0) = a
(2.6)

for some constant a ∈ R and λ = λ1 +λ2. The eigenvalues and eigenfunctions of (2.5)
are given by

λi,k = −(kπ)2

and
Xi,k(xi) = sin (kπxi)

where k ∈ N. The solution of (2.6) is then given by

T (t) = akl exp

(
λklt

α

)
with λkl = − (k2 + l2) π2. Thus, the functions

ukl(x, t) = akl exp

(
λklt

α

)
sin (kπx1) sin (lπx2)

are solutions of the homogeneous heat equation with boundary condition u|Σ = 0. The
general solution is given by the series

u(x, t) =
∞∑
k=1

∞∑
l=1

akl exp

(
−(k2 + l2)π2t

α

)
sin (kπx1) sin (lπx2).
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It remains to determine the coefficients akl. Similarly to the one-dimensional case we
get

akl = 4

∫ 1

0

∫ 1

0

u0(x1, x2) sin (kπx1) sin (lπx2)dx2dx1.

2.2 Representation formula and fundamental

solution

In order to state a solution of the initial boundary value problem (2.1) and to de-
rive boundary integral equations the existence of a fundamental solution of the heat
equation is essential. In this section we will derive the representation formula for the
solution of the model problem (2.1) including the fundamental solution of the heat
equation.

Theorem 2.1 (Green’s first formula). [1, Corollary 7.8] Let Ω ⊂ Rn be a bounded
domain with Lipschitz-boundary Γ = ∂Ω and u ∈ C2(Ω) ∩ C1(Ω). Then there holds∫

Ω

[∆u(x)v(x) +∇u(x) · ∇v(x)] dx =

∫
Γ

∂

∂n
u(x)v(x)dsx for all v ∈ C1(Ω) ∩ C(Ω).

Assume that u ∈ C2(Q) is a solution of the partial differential equation in (2.1).
Multiplying the partial differential equation in (2.1) with a function v ∈ C2(Q) and
integration over Q leads to∫ T

0

∫
Ω

[α∂su(y, s)v(y, s)−∆yu(y, s)v(y, s)] dyds =

∫ T

0

∫
Ω

f(y, s)v(y, s)dyds.

Applying Theorem 2.1 to the second term of the left hand side gives∫ T

0

∫
Ω

[α∂su(y, s)v(y, s) +∇yu(y, s) · ∇yv(y, s)] dyds

=

∫ T

0

∫
Ω

f(y, s)v(y, s)dyds+

∫ T

0

∫
Γ

∂

∂ny
u(y, s)v(y, s)dsyds.

(2.7)

This equation is called Green’s first formula for the heat equation. By using integration
by parts regarding the first term of the left hand side and by rearranging the terms
we get

α

∫
Ω

u(y, T )v(y, T )dy = α

∫
Ω

u(y, 0)v(y, 0)dy +

∫ T

0

∫
Ω

f(y, s)v(y, s)dyds

+

∫ T

0

∫
Ω

[αu(y, s)∂sv(y, s)−∇yu(y, s) · ∇yv(y, s)] dyds

+

∫ T

0

∫
Γ

∂

∂ny
u(y, s)v(y, s)dsyds.



2.2 Representation formula and fundamental solution 19

Again, by using Theorem 2.1 we get the equation

α

∫
Ω

u(y, T )v(y, T )dy = α

∫
Ω

u(y, 0)v(y, 0)dy +

∫ T

0

∫
Ω

f(y, s)v(y, s)dyds

−
∫ T

0

∫
Ω

[−α∂sv(y, s)−∆yv(y, s)]u(y, s)dyds

+

∫ T

0

∫
Γ

∂

∂ny
u(y, s)v(y, s)dsyds−

∫ T

0

∫
Γ

∂

∂ny
v(y, s)u(y, s)dsyds.

(2.8)

This equation is called Green’s second formula for the heat equation. We want the
third integral of the right hand side to be zero, i.e. we search for a function v which
is a solution of the adjoint homogeneous heat equation

−α∂sv(y, s)−∆yv(y, s) = 0 for (y, s) ∈ Q.

Since we want to find a representation of the solution u = u(x, t) of the model problem
(2.1) we define v as

v(y, s) := U(y − x, t− s)

where (x, t) ∈ Q is fixed. In this case we have

∂sv(y, s) = ∂sU(y − x, t− s) = −∂τU(y − x, τ)

where τ = t− s, thus

α∂τU(y − x, τ)−∆yU(y − x, τ) = 0 for (y, s) ∈ Q.

We assume the function U to be spherically symmetric, i.e. U(y − x, τ) = Ũ(r, τ)
where r = |y − x|. For r 6= 0 we get

α∂τ Ũ(r, τ)− ∂rrŨ(r, τ)− (n− 1)
1

r
∂rŨ(r, τ) = 0. (2.9)

With Ũ(r, τ) = τ γg(z), where z =
r√
τ

, γ ∈ R and τ > 0 (⇔ s < t) we get

∂τ Ũ(r, τ) = γτ γ−1g(z)− 1

2
τ γ−1zg′(z),

∂rŨ(r, τ) = g′(z)τ γ−
1
2 ,

∂rrŨ(r, τ) = g′′(z)τ γ−1.

Therefore equation (2.9) changes to

α

[
γτ γ−1g(z)− 1

2
τ γ−1zg′(z)

]
− g′′(z)τ γ−1 − (n− 1)

1

r
g′(z)τ γ−

1
2 = 0
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which is equivalent to

α

[
γg(z)− 1

2
zg′(z)

]
− g′′(z)− (n− 1)

1

z
g′(z) = 0. (2.10)

It remains to solve this ordinary differential equation. First we consider the one-
dimensional case n = 1, i.e. we have

αγg(z)− α1

2
zg′(z)− g′′(z) = 0

which can be written as

α

(
γ +

1

2

)
g(z)− d

dz

[
α

1

2
zg(z) + g′(z)

]
= 0.

By choosing γ = −1
2

we get

d

dz

[
α

1

2
zg(z) + g′(z)

]
= 0.

Hence

α
1

2
zg(z) + g′(z) = c0

with c0 ∈ R. By setting c0 = 0 and using separation of variables we get

ln g = −α1

4
z2 + c1

and with c1 = 0 we conclude

g(z) = exp
(
−α

4
z2
)

(2.11)

which is a solution of the differential equation (2.10) for n = 1. When inserting (2.11)
into (2.10) for general n we get

0 = α
[
γ exp

(
−α

4
z2
)

+
α

4
z2 exp

(
−α

4
z2
)]

+
α

2
exp

(
−α

4
z2
)

− α2

4
z2 exp

(
−α

4
z2
)

+ (n− 1)
α

2
exp

(
−α

4
z2
)

= exp
(
−α

4
z2
)
α
[
γ +

n

2

]
.

Thus, (2.11) is also a solution in the two- and three dimensional case if γ = −n
2
.

Reconsidering the definition of the functions U and Ũ we have

U(y − x, t− s) = (t− s)−n/2 exp

(
−α|y − x|

2

4(t− s)

)
for s < t.
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Due to the singularity of the function U at t = s we consider the space-time-cylinder
Qt−ε := Ω× (0, t− ε) where 0 < ε < t. Analogously to (2.8) we get

α

∫
Ω

u(y, t− ε)v(y, t− ε)dy = α

∫
Ω

u(y, 0)v(y, 0)dy +

∫ t−ε

0

∫
Ω

f(y, s)v(y, s)dyds

−
∫ t−ε

0

∫
Ω

[−α∂sv(y, s)−∆yv(y, s)]u(y, s)dyds

+

∫ t−ε

0

∫
Γ

∂

∂ny
u(y, s)v(y, s)dsyds−

∫ t−ε

0

∫
Γ

∂

∂ny
v(y, s)u(y, s)dsyds.

With v(y, s) = U(y − x, t− s) we have

α

∫
Ω

u(y, t− ε)U(y − x, ε)dy = α

∫
Ω

u(y, 0)U(y − x, t)dy

+

∫ t−ε

0

∫
Ω

f(y, s)U(y − x, t− s)dyds+

∫ t−ε

0

∫
Γ

∂

∂ny
u(y, s)U(y − x, t− s)dsyds

−
∫ t−ε

0

∫
Γ

∂

∂ny
U(y − x, t− s)u(y, s)dsyds.

(2.12)
Let us consider the integral of the left hand side that is

α

∫
Ω

u(y, t− ε)U(y − x, ε)dy = α

∫
Ω

ε−n/2u(y, t− ε) exp

(
−α|y − x|

2

4ε

)
dy.

By using the Taylor expansion u(y, t− ε) = u(x, t) + (y− x)>∇xu(ξx, ξt)− ε∂tu(ξx, ξt)
with (

ξx
ξt

)
=

(
x+ θ(y − x)

t− θε

)
where θ ∈ (0, 1) we get

α

εn/2

∫
Ω

u(y, t− ε) exp

(
−α|y − x|

2

4ε

)
dy = u(x, t)

α

εn/2

∫
Ω

exp

(
−α|y − x|

2

4ε

)
dy

+
α

εn/2

∫
Ω

(y − x)T∇xu(ξx, ξt) exp

(
−α|y − x|

2

4ε

)
dy

− α

εn/2−1

∫
Ω

∂tu(ξx, ξt) exp

(
−α|y − x|

2

4ε

)
dy.

(2.13)
Next we are going to show the convergence of the first integral of the right hand side.
First we consider the spatially one-dimensional case n = 1, i.e. Ω = (a, b) with a, b ∈ R
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and x ∈ (a, b). We have

A : =
α

ε1/2

∫ b

a

exp

(
−α(y − x)2

4ε

)
dy

=
α

ε1/2

∫ x

a

exp

(
−α(y − x)2

4ε

)
dy +

α

ε1/2

∫ b

x

exp

(
−α(y − x)2

4ε

)
dy.

By using the substitution z = x−y
x−a for the first integral and z = y−x

b−x for the second one
we get

A =
α

ε1/2
(x− a)

∫ 1

0

exp

(
−α(x− a)2z2

4ε

)
dz

+
α

ε1/2
(b− x)

∫ 1

0

exp

(
−α(b− x)2z2

4ε

)
dz.

The substitution α(x−a)2z2

4ε
= η2 for the first and α(b−x)2z2

4ε
= η2 for the second integral

leads to

A = 2
√
α

(x−a)
2

√
α
ε∫

0

exp
(
−η2

)
dη + 2

√
α

(b−x)
2

√
α
ε∫

0

exp
(
−η2

)
dη

and we finally get

A −→ 4
√
α

∫ ∞
0

exp
(
−η2

)
dη = 2

√
απ

as ε → 0. In the two-dimensional case we choose R > 0 such that BR(x) ⊂ Ω and
consider

A :=
α

ε

∫
BR(x)

exp

(
−α|y − x|

2

4ε

)
dy.

The integral over Ω \ BR(x) converges to 0, since α
ε

exp
(
−α|y−x|2

4ε

)
→ 0 for y 6= x as

ε→ 0. By using polar coordinates we get

A =
α

ε

∫ R

0

∫ 2π

0

exp

(
−αr

2

4ε

)
rdϕdr =

2πα

ε

∫ R

0

exp

(
−αr

2

4ε

)
rdr

= 4π

[
1− exp

(
−αR

2

4ε

)]
−→ 4π

as ε → 0. In the three-dimensional case we also choose R > 0 such that BR(x) ⊂ Ω
and consider

A :=
α

ε3/2

∫
BR(x)

exp

(
−α|y − x|

2

4ε

)
dy.

As in the two-dimensional case the integral over Ω\BR(x) vanishes. By using spherical
coordinates we get

A =
α

ε3/2

∫ R

0

∫ 2π

0

∫ π

0

exp

(
−αr

2

4ε

)
r2 sin θdθdϕdr =

4πα

ε3/2

∫ R

0

exp

(
−αr

2

4ε

)
r2dr.
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The substitution η2 = αr2

4ε
leads to

A =
32π√
α

√
α
4ε
R∫

0

exp
(
−η2

)
η2dη −→ 32π√

α

∫ ∞
0

exp
(
−η2

)
η2dη =

8π3/2

√
α

as ε → 0. The other two integrals in (2.13) vanish as ε → 0 due to the boundedness
of ∇xu and ∂tu. We finally get the representation formula by taking the limit ε → 0
in (2.12), i.e. we have

u(x, t) =

∫
Ω

u(y, 0)U?(x− y, t)dy +
1

α

∫ t

0

∫
Ω

f(y, s)U?(x− y, t− s)dyds

+
1

α

∫ t

0

∫
Γ

∂

∂ny
u(y, s)U?(x− y, t− s)dsyds

− 1

α

∫ t

0

u(y, s)
∂

∂ny
U?(x− y, t− s)dsyds

(2.14)

where

U?(x− y, t− s) =

(
α

4π(t− s)

)n/2
exp

(
−α|x− y|2

4(t− s)

)
for s < t.

The function

U?(x− y, t− s) =


(

α

4π(t− s)

)n/2
exp

(
−α|x− y|2

4(t− s)

)
, s < t,

0 , else

(2.15)

is called the fundamental solution of the heat equation. Due to the definition of U?

equation (2.14) can be written as

u(x, t) =

∫
Ω

u(y, 0)U?(x− y, t)dy +
1

α

∫ T

0

∫
Ω

f(y, s)U?(x− y, t− s)dyds

+
1

α

∫ T

0

∫
Γ

∂

∂ny
u(y, s)U?(x− y, t− s)dsyds

− 1

α

∫ T

0

u(y, s)
∂

∂ny
U?(x− y, t− s)dsyds.

(2.16)

Remark 2.1. Let ε > 0. Due to construction the fundamental solution U? is a
solution of the homogeneous heat equation

(α∂t −∆x)U
?(x− y, t− s) = 0 for (x, t) ∈ Q and (y, s) ∈ Ω× (0, t− ε).
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Moreover the fundamental solution U? defined by (2.15) has the following properties.

Lemma 2.2. For t > 0 there holds∫
Rn
U?(x, t)dx = 1.

Proof. Let t > 0. We have∫
Rn
U?(x, t) =

( α

4πt

)n/2 ∫
Rn

exp

(
−α|x|2

4t

)
dx

= π−n/2
∫
Rn

exp
(
−|z|2

)
dz

= π−n/2
n∏
i=1

∫
Rn

exp
(
−z2

i

)
dzi = 1.

Lemma 2.3. Let u0 ∈ C(Ω) ∩ L∞(Ω). For x ∈ Ω there holds

lim
t→0

∫
Ω

U?(x− y, t)u0(y)dy = u0(x).

Proof. Let ε > 0 and u0 ∈ C(Ω) ∩ L∞(Ω). The function ũ0 is defined as

ũ0(x) =

{
u0(x) for x ∈ Ω,

0 else.

Due to Lemma 2.2 and since U?(x, t) > 0 for (x, t) ∈ Rn × (0, T ) we have∣∣∣∣∫
Ω

U?(x− y, t)u0(y)dy − u0(x)

∣∣∣∣ =

∣∣∣∣∫
Rn
U?(x− y, t)[ũ0(y)− ũ0(x)]dy

∣∣∣∣
≤
∫
Rn
U?(x− y, t) |ũ0(y)− ũ0(x)| dy.

Since u0 ist continuous, there exists a constant δ > 0 such that |ũ0(y)− ũ0(x)| < ε/2
if |y − x| < δ. Hence we can write the last integral as∫

Rn

U?(x− y, t) |ũ0(y)− ũ0(x)| dy =

∫
Rn\Bδ(x)

U?(x− y, t) |ũ0(y)− ũ0(x)| dy

+

∫
Bδ(x)

U?(x− y, t) |ũ0(y)− ũ0(x)| dy.
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The second integral can be estimated from above by∫
Bδ(x)

U?(x− y, t) |ũ0(y)− ũ0(x)|︸ ︷︷ ︸
<ε/2

dy <
ε

2

∫
Rn
U?(x− y, t)dy =

ε

2
.

Considering the first integral we have∫
Rn\Bδ(x)

U?(x− y, t) |ũ0(y)− ũ(x)| dy ≤ 2 ‖u‖L∞(Ω)

∫
Rn\Bδ(x)

U?(x− y, t)dy,

since u ∈ L∞(Ω). By using the substitution z = x− y we get∫
Rn\Bδ(x)

U?(x− y, t)dy =

∫
Rn\Bδ(0)

U?(z, t)dz =
( α

4πt

)n/2 ∫
Rn\Bδ(0)

exp

(
−|z|2α

4t

)
dz.

By using polar coordinates we get the estimate∫
Rn\Bδ(x)

U?(x− y, t)dy ≤ Ct−n/2
∞∫
δ

rn−1 exp

(
−r2α

4t

)
dr = C ′

∞∫
at−1/2

ρn−1 exp
(
−ρ2

)
dρ

with suitable constants C,C ′ > 0 and a = δ
(
α
4

)1/2
. The last integral converges to zero

as t→ 0, i.e. for t small enough there holds∫
Rn\Bδ(x)

U?(x− y, t) |ũ0(y)− ũ0(x)| dy < ε/2.

Altogether we have ∣∣∣∣∫
Ω

U?(x− y, t)u0(y)dy − u0(x)

∣∣∣∣ < ε

for t small enough. Since ε > 0 was arbitrarily chosen, the assertion is proven.

Due to the representation formula (2.16) it suffices to know the Cauchy data ∂nu|Σ
and u|Σ to compute the solution of the model problem (2.1). Thus, the problem is
reduced to the boundary. Since the boundary datum u|Σ = g is given, it remains
to determine the unknown conormal derivative ∂nu|Σ. By applying the Dirichlet and
Neumann trace operators (see Chapter 3) to the representation formula (2.14) we get
boundary integral equations, which have to be solved. To study the existence and
uniqueness of solutions of the boundary integral equations we have to define suitable
function spaces, which will be discussed in the following chapter.
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Solutions of the heat equation show different behaviour in temporal and spatial di-
rection. This leads to the concept of anisotropic Sobolev spaces, which we introduce
and discuss in this chapter. Under certain conditions we can define trace operators
acting on those spaces and therefore provide conditions for the given Dirichlet datum
g and the unkown Neumann datum ∂nu|Σ of the solution, which result in existence and
uniqueness theorems of solutions of the model problem (2.1). The presented results
are based on [12] and [13].
Before introducing the concept of anisotropic Sobolev spaces we recall definitions and
properties of standard Sobolev spaces, based on [14] and [27] .

3.1 Standard Sobolev spaces

Let Ω ⊂ Rn be a bounded domain with boundary Γ := ∂Ω. For k ∈ N0 the Sobolev
space W k

2 (Ω) is defined as

W k
2 (Ω) := {v ∈ L2(Ω) : Dαv ∈ L2(Ω) for all α ∈ Nn

0 : |α| ≤ k}

where Dαv denotes the weak derivative of v of order α [27, Chapter 2.2]. The Sobolev
space W k

2 (Ω) equipped with the scalar product

〈v, w〉Wk
2 (Ω) :=

∑
|α|≤k

∫
Ω

DαvDαw dx

defines a Hilbert space. Let κ ∈ (0, 1) and s := k + κ ∈ R \ N. Then

‖u‖W s
2 (Ω) :=

{
‖u‖2

Wk
2 (Ω) + |u|2W s

2 (Ω)

}1/2

with

|u|2W s
2 (Ω) :=

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|2

|x− y|n+2κ
dxdy

defines a norm called the Sobolev-Slobodeckii norm. The Sobolev space W s
2 (Ω) defined

as

W s
2 (Ω) :=

{
v ∈ W k

2 (Ω) : ‖v‖W s
2 (Ω) <∞

}

27
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is a Hilbert space with respect to the scalar product

〈v, w〉W s
2 (Ω) := 〈v, w〉Wk

2 (Ω) +
∑
|α|=k

∫
Ω

∫
Ω

(Dαv(x)−Dαv(y)) (Dαw(x)−Dαw(y))

|x− y|n+2κ
dxdy.

The Sobolev spaces Hs(Rn) are introduced using distributions [27, Chapter 2.4]. The
norm of a function u ∈ Hs(Rn) is given by

‖u‖2
Hs(Rn) :=

∫
Rn

(
1 + |ξ|2

)s |û(ξ)|2 dξ

where û denotes the Fourier transform of u. For s ∈ R+
0 we have [27, Theorem 2.4]

Hs(Rn) = W s
2 (Rn).

For a domain Ω ⊂ Rn the Sobolev space Hs(Ω) is defined as

Hs(Ω) :=
{
v = ṽ|Ω : ṽ ∈ Hs(Rn)

}
with norm

‖v‖Hs(Ω) := inf
ṽ∈Hs(Rn),ṽ|Ω=v

‖ṽ‖Hs(Rn) .

If Ω is a Lipschitz domain we have [27, Theorem 2.6]

Hs(Ω) = W s
2 (Ω) for all s > 0.

Moreover we consider the spaces

H̃s(Ω) := C∞0 (Ω)
‖·‖Hs(Rn) , Hs

0(Ω) := C∞0 (Ω)
‖·‖Hs(Ω) .

Again, if Ω is a Lipschitz domain we have [27, Theorem 2.5]

H̃s(Ω) =
[
H−s(Ω)

]′
, Hs(Ω) =

[
H̃−s(Ω)

]′
for all s ∈ R.

From now on let Ω be a bounded domain with Lipschitz boundary Γ := ∂Ω. Similarly
to what we have seen above we can define Sobolev spaces Hs(Γ) on the boundary Γ
for |s| ≤ 1. For s ∈ (0, 1) the Sobolev-Slobodeckii norm is defined as

‖v‖Hs(Γ) :=
{
‖v‖2

L2(Γ) + |v|2Hs(Γ)

}1/2

(3.1)

with

|v|2Hs(Γ) =

∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|n−1+2s
dsxdsy.
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The Sobolev space Hs(Γ) for s ∈ (0, 1) is defined as the completion of C(Γ) with
respect of the Sobolev-Slobodeckii norm (3.1) and is a Hilbert space with scalar product

〈u, v〉Hs(Γ) := 〈u, v〉L2(Γ) +

∫
Γ

∫
Γ

(u(x)− u(y)) (v(x)− v(y))

|x− y|n−1+2s
dxdy.

For s = 0 we have H0(Γ) = L2(Γ).
Sobolev spaces with negative order s ∈ (−1, 0) are defined as the dual spaces of
H−s(Γ), i.e. we have

Hs(Γ) :=
[
H−s(Γ)

]′
with norm

‖w‖Hs(Γ) := sup
06=v∈H−s(Γ)

〈w, v〉Γ
‖v‖H−s(Γ)

where 〈·, ·〉Γ denotes the duality product

〈w, v〉Γ :=

∫
Γ

w(x)v(x)dsx.

3.2 Anisotropic Sobolev spaces

In this section we introduce anisotropic Sobolev spaces. The definitions and the main
results are based on [12] and [13].
For r, s ≥ 0 the anisotropic Sobolev space Hr,s(Rn × R) is defined as

Hr,s(Rn × R) := L2(R, Hr(Rn) ∩Hs(R, L2(Rn))

where

v ∈ Hs(R, L2(Rn))⇔
(
1 + |τ |2

)s/2
v̂ ∈ L2(Rn × R)

and v̂ denotes the Fourier transform of v with respect to the time variable t. The space
L2(R, Hr(Rn)) can be characterized in a similar way by using the Fourier transform
with respect to the spatial variable x. The norm of a function u ∈ Hr,s(Rn × R) is
given by

‖u‖Hr,s(Rn×R) :=

∫
R

∫
Rn

[(
1 + |ξ|2

)r
+
(
1 + |τ |2

)s] |û(ξ, τ)|2dξdτ.

For Q = Ω × (0, T ), where Ω ⊂ Rn is a bounded Lipschitz domain and T > 0, the
space Hr,s(Q) is defined as the space of restrictions of functions in Hr,s(Rn ×R) to Q
equipped with the quotient norm. We write

Hr,s(Q) = L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω)).
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Moreover we define the space of functions in Hr,s(Q) with zero initial conditions

H̃r,s(Q) :=
{
u = ũ|Q : u ∈ Hr,s(Ω× (−∞, T )) : u(x, t) = 0 for t < 0

}
.

Another important space in terms of existence and uniqueness analysis is the space

V(Q) := L2(0, T ;H1(Ω)) ∩H1(0, T ;H−1(Ω))

with norm
‖u‖2

V(Q) := ‖u‖2
L2(0,T ;H1(Ω)) + ‖α∂tu‖2

L2(0,T ;H−1(Ω)) (3.2)

and its subspaces

Ṽ(Q) :=
{
u = ũ|Q : u ∈ V(Ω× (−∞, T )) : u(x, t) = 0 for t < 0

}
,

V0(Q) := L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)).

The space Ṽ(Q) is the space of functions in V(Q) having zero initial conditions, whereas
V0(Q) denotes the space of functions in V(Q) having zero boundary conditions. The
norms in (3.2) are given by

‖u‖2
L2(0,T ;H1(Ω)) :=

∫ T

0

‖u(·, t)‖2
H1(Ω) dt

and

‖α∂tu‖2
L2(0,T ;H−1(Ω)) := sup

06=v∈L2(0,T ;H1
0 (Ω))

〈α∂tu, v〉Q
‖v‖L2(0,T ;H1

0 (Ω))

with

‖v‖2
L2(0,T ;H1

0 (Ω)) :=

∫ T

0

∫
Ω

|∇xv(x, t)|2dxdt.

The space V(Q) is a dense subspace of H1, 1
2 (Q) [12, Theorem 12.4]. An important

property of functions u ∈ V(Q) is, that they are in some sense continuous in time.
More precisely we have

u ∈ C([0, T ];L2(Ω)). (3.3)

If u ∈ L2(0, T ;H2(Ω) ∩H1(0, T ;L2(Ω)), then u ∈ C([0, T ];H1(Ω)).

3.3 Anisotropic Sobolev spaces on Σ

The spaces Hr,s(Σ) for r, s ≥ 0 are defined analogously. We have

Hr,s(Σ) := L2(0, T ;Hr(Γ) ∩Hs(0, T ;L2(Γ)).

For r, s ∈ (0, 1) an equivalent norm is given by

‖u‖2
Hr,s(Σ) := ‖u‖2

L2(Σ) + |u|2L2(0,T ;Hr(Γ)) + |u|2Hs(0,T ;L2(Γ))
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with

|u|2L2(0,T ;Hr(Γ)) :=

∫ T

0

∫
Γ

∫
Γ

|u(x, t)− u(y, t)|2

|x− y|n−1+2r
dsydsxdt

and

|u|2Hs(0,T ;L2(Γ)) :=

∫ T

0

∫ T

0

‖u(·, t)− u(·, τ)‖2
L2(Γ)

|t− τ |1+2s
dτdt.

Moreover we define the subspace

Hr,s
,0 (Σ) := L2(0, T ;Hr(Γ)) ∩Hs

0(0, T ;L2(Γ))

which is the closure in Hr,s(Σ) of the subspace of functions vanishing in a neighborhood
of t = 0 and t = T . For 0 ≤ s < 1

2
we have Hr,s

,0 (Σ) = Hr,s(Σ).
Anisotropic Sobolev spaces on Σ with negative order r, s < 0 are defined as the dual
spaces of H−r,−s,0 (Σ), i.e. we have

Hr,s(Σ) :=
[
H−r,−s,0 (Σ)

]′
with norm

‖w‖Hr,s(Σ) := sup
0 6=v∈H−r,−s,0 (Σ)

〈w, v〉Σ
‖v‖H−r,−s(Σ)

where 〈·, ·〉Σ denotes the duality product

〈w, v〉Σ :=

∫
Σ

w(y, s)v(y, s)dsyds.

Let Ω ⊂ Rn be a bounded Lipschitz domain with boundary Γ = ∂Ω. For a function
u ∈ C(Q) we define the interior Dirichlet trace

γint
0 u(x, t) := lim

Ω3x̃→x∈Γ
u(x̃, t) for (x, t) ∈ Σ.

Hence γint
0 u coincides with the restriction of u to the space-time boundary Σ, i.e. we

have γint
0 u = u|Σ. The following theorem provides a relation of the Dirichlet trace γint

0 u
and u in case of functions in anisotropic Sobolev spaces.

Theorem 3.1. [13, Theorem 2.1] Let u ∈ Hr,s(Q) with r > 1
2
, s ≥ 0. Then there

exists a linear, bounded operator γint0 : Hr,s(Q)→ Hµ,ν(Σ) with∥∥γint0 u
∥∥
Hµ,ν(Σ)

≤ cT ‖u‖Hr,s(Q) for all u ∈ Hr,s(Q),

where µ = r − 1
2
, ν = s− s

2r
and γ0 is an extension of γint0 u = u|Σ for u ∈ C(Q).

If r = 1 and s = 1
2

we have γint
0 : H1, 1

2 (Q)→ H
1
2
, 1
4 (Σ). The Dirichlet trace operator

also satisfies a surjectivity property in the following setting.
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Lemma 3.2. [2, Corollary 2.12] The mapping γint0 : Ṽ(Q)→ H
1
2
, 1
4 (Σ) is surjective.

Since we want to compute the conormal derivative of solutions of initial bound-
ary value problems, we have to define some Neumann trace operator as well. Let
u ∈ C1(Q). The interior Neumann trace of u is defined as

γint
1 u(x, t) := lim

Ω3x̃→x∈Γ
nx · ∇x̃u(x̃, t) for (x, t) ∈ Σ.

Hence γint
1 u coincides with the conormal derivative of u, i.e we have γint

1 u = ∂nu|Σ.
Again, we want to define the Neumann trace of functions in anisotropic Sobolev spaces
as well. Four our purposes it suffices to restrict to the space

H1, 1
2 (Q,α∂t −∆x) :=

{
u ∈ H1, 1

2 (Q) : (α∂t −∆)u ∈ L2(Q)
}
.

Theorem 3.3. [2, Proposition 2.8] The mapping γint1 : H1, 1
2 (Q,α∂t−∆x)→ H−

1
2
,− 1

4 (Σ)
is linear and bounded. If u ∈ C1(Q) then γint1 u = ∂nu|Σ in the distributional sense.

3.4 Piecewise smooth functions on Σ

Let Γ0 ⊂ Γ = ∂Ω be an open part of the boundary of Ω. For r ≥ 0 we define the space

Hr(Γ0) :=
{
v = ṽ|Γ0 : ṽ ∈ Hr(Γ)

}
equipped with the quotient norm. For a closed, piecewise smooth boundary Γ =

⋃J
i=1 Γi

with Γi∩Γj = ∅ for i 6= j and r ≥ 0 we define the space of piecewise smooth functions
on Γ as

Hr
pw(Γ) :=

{
v ∈ L2(Γ) : v|Γi ∈ Hr(Γi) for i = 1, ..., J

}
with norm

‖v‖Hr
pw(Γ) :=

(
J∑
i=1

∥∥v|Γi∥∥2

Hr(Γi)

)1/2

.

With Σj := Γj × (0, T ) for j = 1, ..., J we have Σ =
⋃J
j=1 Σj. For r ≥ 0 and s ≥ 0 we

define anisotropic Sobolev spaces on the open part Σj of the space-time boundary Σ
as

Hr,s(Σj) :=
{
v = ṽ|Σj : ṽ ∈ Hr,s(Σ)

}
,

Hr,s
0 (Σj) :=

{
v = ṽ|Σj : ṽ ∈ Hr,s

,0 (Σ) : supp ṽ ⊂ Σj

}
and the space of piecewise smooth functions on Σ as

Hr,s
pw(Σ) :=

{
v ∈ L2(Σ) : v|Σj ∈ Hr,s(Σj) for j = 1, ..., J

}
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with norm

‖v‖Hr,s
pw (Σ) :=

(
J∑
j

∥∥v|Σj∥∥2

Hr,s(Σj)

)1/2

.

For r, s < 0 the anisotropic Sobolev spaces on Σj are defined as the dual spaces

Hr,s(Σj) :=
[
H−r,−s0 (Σj)

]′
, H̃r,s(Σj) :=

[
H−r,−s(Σj)

]′
and

Hr,s
pw(Σ) :=

J∏
j=1

H̃r,s(Σj)

with norm

‖w‖Hr,s
pw (Σ) :=

J∑
j=1

∥∥w|Σj∥∥H̃r,s(Σj)
.

Lemma 3.4. For r, s < 0 and w ∈ Hr,s
pw(Σ) there holds

‖w‖Hr,s(Σ) ≤ ‖w‖Hr,s
pw (Σ) .

Proof. For w ∈ Hr,s
pw(Σ) we have

‖w‖Hr,s(Σ) = sup
06=v∈H−r,−s,0 (Σ)

|〈w, v〉Σ|
‖v‖H−r,−s(Σ)

≤ sup
0 6=v∈H−r,−s,0 (Σ)

J∑
j=1

|〈w, v〉Σj |
‖v‖H−r,−s(Σ)

≤ sup
06=v∈H−r,−s,0 (Σ)

J∑
j=1

|〈w|Σj , v|Σj〉Σj |∥∥v|Σj∥∥H−r,−s(Σj) .
Since H−r,−s,0 (Σ) ⊂ H−r,−s(Σ) we get

‖w‖Hr,s(Σ) ≤ sup
06=v∈H−r,−s(Σ)

J∑
j=1

|〈w|Σj , v|Σj〉Σj |∥∥v|Σj∥∥H−r,−s(Σj)
≤

J∑
j=1

sup
0 6=vj∈H−r,−s(Σj)

|〈w|Σj , vj〉Σj |
‖vj‖H−r,−s(Σj)

= ‖w‖Hr,s
pw (Σ) .





4 Existence theorems

Using the concept of anisotropic Sobolev spaces we can prove existence and uniqueness
of solutions of the initial boundary value problem (2.1). We consider different settings
of the model problem.

Lemma 4.1. [2, Lemma 2.3] Let f ∈ L2(0, T ;H−1(Ω)). Then the initial boundary
value problem

α∂tu−∆xu = f in Q,

u = 0 on Σ,

u = 0 on Ω× {0}

has a unique solution u ∈ V0(Q).

Theorem 4.2. [5, Chapter 7, Theorem 3]. Let u0 ∈ L2(Ω) and f ∈ L2(Q). Then the
initial boundary value problem

α∂tu−∆xu = f in Q,

u = 0 on Σ,

u = u0 on Ω× {0}
(4.1)

has a unique solution u ∈ V0(Q).

Regarding the unique solution u ∈ V0(Q) ⊂ H1, 1
2 (Q) of the initial boundary value

problem (4.1) we have γint
0 u ∈ H

1
2
, 1
4 (Σ) and since (α∂t − ∆x)u = 0 we conclude

u ∈ H1, 1
2 (Q,α∂t − ∆x) and therefore γint

1 u ∈ H−
1
2
,− 1

4 (Σ). Higher regularity of the
initial condition u0 leads to higher regularity of the solution u.

Theorem 4.3. [5, Chapter 7, Theorem 5] Let u0 ∈ H1
0 (Ω), f ∈ L2(Q) and u ∈ V0(Q)

be the unique solution of problem (4.1). Then u ∈ L2(0, T ;H2(U)) ∩H1(0, T ;L2(U)).

Theorem 4.4. [2, Theorem 2.9] Let g ∈ H 1
2
, 1
4 (Σ). Then the initial boundary value

problem
α∂tu−∆xu = 0 in Q,

u = g on Σ,

u = 0 on Ω× {0}
(4.2)

has a unique solution u ∈ H̃1,1/2(Q).
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The unique solution u ∈ H̃1, 1
2 (Q) of (4.2) satisfies α∂tu − ∆xu = 0. We conclude

∂tu ∈ L2(0, T ;H−1(Q)), since

∂tu =
1

α
∆xu ∈ L2(0, T ;H−1(Ω)).

Hence we have u ∈ Ṽ(Q).

Theorem 4.5. Let u0 ∈ L2(Ω) and g ∈ H
1
2
, 1
4 (Σ). Then the initial boundary value

problem
α∂tu−∆xu = 0 in Q,

u = g on Σ,

u = u0 on Ω× {0}
(4.3)

has a unique solution u ∈ V(Q).

Proof. Let ũ ∈ V0(Q) be the unique solution of the initial boundary value problem
(4.1) with f = 0 and initial condition u0 ∈ L2(Ω) which exists according to Theorem
4.2. For u := ũ+ û we have

α∂tû−∆xû = 0 in Q,

û = g on Σ,

û = 0 on Ω× {0}

since ũ ∈ C([0, T ], L2(Ω)). Theorem 4.4 implies, that there exists a unique solution

û ∈ Ṽ(Q). Hence u = ũ+ û ∈ V(Q) is a unique solution of (4.3).



5 Boundary integral operators

We consider the Dirichlet initial boundary value problem (2.1) with source term

f ∈ L2(Q), boundary condition g ∈ H 1
2
, 1
4 (Σ) and initial condition u0 ∈ L2(Ω). The

solution for (x, t) ∈ Q is given by the representation formula

u(x, t) =

∫
Ω

U?(x− y, t)u0(y)dy +
1

α

∫ T

0

∫
Ω

U?(x− y, t− s)f(y, s)dyds

+
1

α

∫ T

0

∫
Γ

U?(x− y, t− s) ∂

∂ny
u(y, s)dsyds

− 1

α

∫ T

0

∫
Γ

∂

∂ny
U?(x− y, t− s)g(y, s)dsyds.

By applying the trace operators we get boundary integral equations. To study the
unique solvability of those equations we have to analyse the mapping properties of
the heat potentials. The presented theory on boundary integral operators for the heat
equation is mainly based on [2].

5.1 Initial potential

Let u0 ∈ L2(Ω). The function

(M̃0u0)(x, t) :=

∫
Ω

U?(x− y, t)u0(y)dy for (x, t) ∈ Q (5.1)

is called initial potential of the heat equation with initial condition u0. For x ∈ Γ and
t ∈ (0, T ) we define the boundary integral operators

(M0u0)(x, t) := γint
0 (M̃0u0)(x, t) = lim

Ω3x̃→x∈Γ
(M̃0u0)(x̃, t)

and
(M1u0)(x, t) := γint

1 (M̃0u0)(x, t) = lim
Ω3x̃→x∈Γ

nx · ∇x̃(M̃0u0)(x̃, t).

The initial potential has the following properties.

Lemma 5.1. The initial potential M̃0u0 with u0 ∈ L2(Ω) is a solution of the homoge-
neous heat equation in Q.
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Proof. Let u(x, t) := (M̃0u0)(x, t) for (x, t) ∈ Q be the intial potential with initial
condition u0 ∈ L2(Ω). We have

α∂tu(x, t)−∆xu(x, t) = (α∂t −∆xu)

∫
Ω

U?(x− y, t)u0(y)dy.

The fundamental solution U?(x − y, t) is smooth for t > 0 and x ∈ Ω. Thus, we can
exchange integration and differentiation. Using the fact, that U?(x− y, t) is a solution
of the homogeneous heat equation for all y ∈ Ω we get

α∂tu(x, t)−∆xu(x, t) =

∫
Ω

[α∂tU
?(x− y, t)−∆xU

?(x− y, t)]︸ ︷︷ ︸
=0

u0(y)dy = 0.

Lemma 5.2. For u0 ∈ C(Ω) ∩ L∞(Ω) and x ∈ Ω it holds

lim
t→0

(M̃0u0)(x, t) = u0(x).

Proof. Follows with Lemma 2.3.

Hence the initial potential satisfies the initial condition.

Lemma 5.3. [18, Lemma 5.4] The mapping M̃0 : L2(Ω) → H1, 1
2 (Q,α∂t − ∆x) is

linear and bounded.

Hence according to Lemma 3.1 and Lemma 3.3 the integral operators M0 = γint
0 M̃0

and M1 = γint
1 M̃0 are well defined and bounded. We have

M0 : L2(Ω)→ H
1
2
, 1
4 (Σ),

M1 : L2(Ω)→ H−
1
2
,− 1

4 (Σ).

5.2 Volume potential

Let f ∈ L2(Q). The function

(Ñ0f)(x, t) :=
1

α

∫ t

0

∫
Ω

U?(x− y, t− s)f(y, s)dyds for (x, t) ∈ Q (5.2)

is called volume potential of the heat equation with source term f . For x ∈ Γ and
t ∈ (0, T ) we define the boundary integral operators

(N0f)(x, t) := γint
0 (Ñ0f)(x, t) = lim

Ω3x̃→x∈Γ
(Ñ0f)(x̃, t)

and
(N1f)(x, t) := γint

1 (Ñ0f)(x, t) = lim
Ω3x̃→x∈Γ

nx · ∇x̃(Ñ0f)(x̃, t).
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Lemma 5.4. Let f ∈ C(Q). The volume potential Ñ0f is a solution of the partial
differential equation

α∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q.

Proof. Let u(x, t) := (Ñ0f)(x, t) for (x, t) ∈ Q be the volume potential with source
term f ∈ C(Ω). We have

α∂tu(x, t)−∆xu(x, t) = (α∂t −∆x)(Ñ0f)(x, t)

= (α∂t −∆x) lim
ε→0

1

α

∫ t−ε

0

∫
Ω

U?(x− y, t− s)f(y, s)dyds.

Let ε > 0. The fundamental solution U?(x − y, t − s) is smooth for t > 0 and
s ∈ (0, t− ε). Hence we can apply the Leibniz integral rule and exchange integration
and differentiation. We have

(α∂t −∆x)
1

α

∫ t−ε

0

∫
Ω

U?(x− y, t− s)f(y, s)dyds

=

∫ t−ε

0

∫
Ω

∂tU
?(x− y, t− s)f(y, s)dyds+

∫
Ω

U?(x− y, ε)f(y, t− ε)dy

− 1

α

∫ t−ε

0

∫
Ω

∆xU
?(x− y, t− s)f(y, s)dyds

=

∫ t−ε

0

∫
Ω

[
∂t −

1

α
∆x

]
U?(x− y, t− s)f(y, s)dyds

+

∫
Ω

U?(x− y, ε)f(y, t− ε)dy.

Since U?(x − y, t − s) is a solution of the homogeneous heat equation for y ∈ Ω and
s ∈ (0, t − ε), the first integral of the right hand side vanishes. Additionally Lemma
2.3 implies ∫

Ω

U?(x− y, ε)f(y, t− ε)dy −→ f(x, t)

as ε→ 0. Since ε > 0 was arbitrarily chosen we get

(α∂t −∆x)u(x, t) = f(x, t).

By definition the volume potential satisfies (Ñ0f)(x, 0) = 0 for x ∈ Ω. Due to

Lemma 4.1 and Theorem 4.4 we conclude Ñ0 : L2(Ω) → H1, 1
2 (Q,α∂t − ∆) is linear

and bounded. Hence the integral operators N0 = γint
0 Ñ0 and N1 = γint

1 Ñ0 are bounded
as well. We have

N0 : L2(Q)→ H
1
2
, 1
4 (Σ),

N1 : L2(Q)→ H−
1
2
,− 1

4 (Σ).
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5.3 Single layer potential

The single layer potential of the heat equation with density w ∈ H− 1
2
,− 1

4 (Σ) is defined
as

(Ṽ w)(x, t) :=
1

α

∫ t

0

∫
Γ

U?(x− y, t− s)w(y, s)dsyds for (x, t) ∈ Q. (5.3)

For x ∈ Γ and t ∈ (0, T ) we define the single layer boundary integral operator V with
density w as

(V w)(x, t) := γint
0 (Ṽ w)(x, t) = lim

Ω3x̃→x∈Γ
(Ṽ w)(x̃, t).

Lemma 5.5. The single layer potential Ṽ w with density w is a solution of the homo-
geneous heat equation in Q.

Proof. Let (x, t) ∈ Ω× (0, T ) and w ∈ L2(Σ). For u(x, t) := (Ṽ w)(x, t) we have

α∂tu(x, t)−∆xu(x, t) = (α∂t −∆x)(Ṽ w)(x, t)

= (α∂t −∆x) lim
ε→0

1

α

∫ t−ε

0

∫
Γ

U?(x− y, t− s)w(y, s)dsyds.

Let ε > 0. The fundamental solution U?(x − y, t − s) is smooth for y ∈ Ω and
s ∈ (0, t − ε). Thus, we can apply the Leibniz integral rule and exchange integration
and differentiation. We have

(α∂t −∆x)
1

α

∫ t−ε

0

∫
Γ

U?(x− y, t− s)w(y, s)dsyds

=

∫ t−ε

0

∫
Γ

∂tU
?(x− y, t− s)w(y, s)dsyds+

∫
Γ

U?(x− y, ε)w(y, t− ε)dsy

− 1

α

∫ t−ε

0

∫
Γ

∆xU
?(x− y, t− s)w(y, s)dsyds

=

∫ t−ε

0

∫
Γ

[
∂t −

1

α
∆x

]
U?(x− y, t− s)w(y, s)dsyds

+

∫
Γ

U?(x− y, ε)w(y, t− ε)dsy

The fundamental solution U?(x − y, t − s) is a solution of the homogeneous heat
equation for (x, t) ∈ Ω × (0, T ) and (y, s) ∈ Γ × (0, t − ε). Thus, the first integral of
the right hand side vanishes. For x ∈ Ω and y ∈ Γ we have x 6= y and therefore the
dominated convergence theorem [4, Theorem 5.2] implies∫

Γ

U?(x− y, ε)w(y, t− ε)dsy −→ 0
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as ε→ 0. Hence we get

(α∂t −∆x)u(x, t) = 0.

By using a density argument we conclude that the statement holds for w ∈ H− 1
2
,− 1

4 (Σ)
as well.

Lemma 5.6. [2, Remark 3.2] The mapping Ṽ : H−
1
2
,− 1

4 (Σ) → H1, 1
2 (Q,α∂t − ∆x) is

linear and bounded.

Hence V w = γint
0 (Ṽ w) is well defined and due to Lemma 3.1 the single layer bound-

ary integral operator

V := γint
0 Ṽ : H−

1
2
,− 1

4 (Σ)→ H
1
2
, 1
4 (Σ)

is linear and bounded, i.e. there exsists a constant cV2 > 0 such that

‖V w‖
H

1
2 ,

1
4 (Σ)
≤ cV2 ‖w‖H− 1

2 ,−
1
4 (Σ)

for all w ∈ H−
1
2
,− 1

4 (Σ).

For the exterior trace we have

(V w)(x, t) = γext
0 (Ṽ w)(x, t) = lim

Rn\Ω3x̃→x∈Γ
(Ṽ w)(x̃, t) for (x, t) ∈ Σ

and therefore we obtain the jump relation[
γ0Ṽ w

]
|Σ

= γext
0 (Ṽ w)(x, t)− γint

0 (Ṽ w)(x, t) = 0 for (x, t) ∈ Σ. (5.4)

5.4 Adjoint double layer potential

Due to Lemma 3.3 the operator γint
1 Ṽ : H−

1
2
,− 1

4 (Σ) → H−
1
2
,− 1

4 (Σ) is linear and
bounded.

Lemma 5.7. [7, Chapter 5, Theorem 1]. Let w ∈ C(Σ) and (x, t) ∈ Σ = Γ× (0, T ).

The single layer potential Ṽ w satisfies the relation

γint1 (Ṽ w)(x, t) = lim
Ω3x̃→x∈Γ

nx · ∇x̃(Ṽ w)(x̃, t) =
1

2
w(x, t) + (K ′w)(x, t)

where

(K ′w)(x, t) =
1

α

∫ t

0

∫
Γ

∂

∂nx
U?(x− y, t− s)w(y, s)dsyds for (x, t) ∈ Σ

is called the adjoint double layer potential with density w.
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The exterior conormal derivative of the single layer potential satisfies

γext
1 (Ṽ w)(x, t) = lim

Rn\Ω3x̃→x∈Γ
nx · ∇x̃(Ṽ w)(x̃, t) = −1

2
w(x, t) + (K ′w)(x, t).

Thus, we get the jump relation[
γ1Ṽ w

]
|Σ

= γext
1 (Ṽ w)(x, t)− γint

1 (Ṽ w)(x, t) = −w(x, t) for (x, t) ∈ Σ.

Using this relation, we can define the adjoint double boundary integral operator for
functions w ∈ H− 1

2
,− 1

4 (Σ) as

K ′w :=
1

2

(
γint

1 (Ṽ w) + γext
1 (Ṽ w)

)
.

Due to the linearity and boundedness of Ṽ and the Neumann trace operators the
mapping

K ′ : H−
1
2
,− 1

4 (Σ)→ H−
1
2
,− 1

4 (Σ)

is linear and bounded. The jump relation for the conormal derivative of the single
layer potential holds for functions w ∈ H− 1

2
,− 1

4 (Σ) as well, i.e. we have[
γ1Ṽ w

]
|Σ

= −w(x, t) for (x, t) ∈ Σ. (5.5)

5.5 Double layer potential

The double layer potential of the heat equation with density v ∈ H 1
2
, 1
4 (Σ) is defined

as

(Wv)(x, t) :=
1

α

∫ T

0

∫
Γ

∂

∂ny
U?(x− y, t− s)v(y, s)dsyds for (x, t) ∈ Q. (5.6)

Lemma 5.8. The double layer potential Wv with density v is a solution of the homo-
geneous heat equation in Q.

Proof. Let (x, t) ∈ Ω× (0, T ) and v ∈ H 1
2
, 1
4 (Σ). For u(x, t) := (Wv)(x, t) we have

α∂tu(x, t)−∆xu(x, t) = (α∂t −∆x)(Wv)(x, t)

= (α∂t −∆x) lim
ε→0

1

α

∫ t−ε

0

∫
Γ

∂

∂ny
U?(x− y, t− s)v(y, s)dsyds.
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Let ε > 0. As in the case of the single layer potential we can apply the Leibniz integral
rule and exchange integration and differentiation. We get

(α∂t −∆x)
1

α

∫ t−ε

0

∫
Γ

∂

∂ny
U?(x− y, t− s)v(y, s)dsyds

=

∫ t−ε

0

∫
Γ

∂

∂ny

[
∂t −

1

α
∆x

]
U?(x− y, t− s)v(y, s)dsyds

+

∫
Γ

∂

∂ny
U?(x− y, ε)v(y, t− ε)dsy.

The first integral of the right hand side vanishes, since U?(x − y, t − s) is a solution
of the homogeneous heat equation. For x ∈ Ω and y ∈ Γ we have x 6= y and therefore
the dominated convergence theorem [4, Theorem 5.2] implies∫

Γ

∂

∂ny
U?(x− y, ε)v(y, t− ε)dsy −→ 0

as ε→ 0. Hence we have
(α∂t −∆x)u(x, t) = 0.

Lemma 5.9. [2, Proposition 3.3] The mapping W : H
1
2
, 1
4 (Σ)→ H1, 1

2 (Q,α∂t−∆x) is
linear and bounded.

Thus, the linear operator γint
0 W : H

1
2
, 1
4 (Σ)→ H

1
2
, 1
4 (Σ) is well defined and bounded.

Lemma 5.10. [7, Chapter 5] Let v ∈ C(Σ) and (x, t) ∈ Σ. The double layer potential
Wv satisfies the relation

γint0 (Wv)(x, t) = lim
Ω3x̃→x∈Γ

(Wv)(x̃, t) = −1

2
v(x, t) + (Kv)(x, t)

where K denotes the double layer boundary integral operator defined as

(Kv)(x, t) =
1

α

∫ T

0

∫
Γ

∂

∂ny
U?(x− y, t− s)v(y, s)dsyds for (x, t) ∈ Σ.

The exterior Dirichlet trace of the double layer potential satisfies

γext
0 (Wv)(x, t) = lim

Rn\Ω3x̃→x∈Γ
(Wv)(x̃, t) =

1

2
v(x, t) + (Kv)(x, t) for (x, t) ∈ Σ.

Hence we have the following jump relation for the Dirichlet trace of the double layer
potential

[γ0Wv]|Σ = γext
0 (Wv)(x, t)− γint

0 (Wv)(x, t) = v(x, t) for (x, t) ∈ Σ. (5.7)
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Using this relation we can define the double layer boundary integral operator K for
functions v ∈ H 1

2
, 1
4 (Σ) as

Kv :=
1

2

(
γint

0 (Wv) + γext
0 (Wv)

)
.

The boundedness of the mapping

K : H
1
2
, 1
4 (Σ)→ H

1
2
, 1
4 (Σ)

follows from the boundedness of the operator W and the Dirichlet trace operators.
The jump relation (5.7) holds for functions v ∈ H 1

2
, 1
4 (Σ) as well, i.e. we have

[γ0Wv]|Σ = v(x, t) for (x, t) ∈ Σ. (5.8)

5.6 Hypersingular boundary integral operator

The hypersingular operator D with density v ∈ H 1
2
, 1
4 (Σ) is defined as

(Dv)(x, t) := −γint
1 (Wv)(x, t) = − lim

Ω3x̃→x∈Γ
nx · ∇x̃(Wv)(x̃, t) for (x, t) ∈ Σ.

Due to the boundedness of the operator W and the Neumann trace operator the
hypersingular operator

D : H
1
2
, 1
4 (Σ)→ H−

1
2
,− 1

4 (Σ)

is bounded as well, i.e. there exists a constant cD2 > 0 such that

‖Dv‖
H−

1
2 ,−

1
4 (Σ)
≤ cD2 ‖v‖H 1

2 ,
1
4 (Σ)

for all v ∈ H
1
2
, 1
4 (Σ).

The conormal derivative of the double layer potential satisfies the jump relation [2,
Theorem 3.4]

[γ1Wv]|Σ = γext
1 (Wv)(x, t)− γint

0 (Wv)(x, t) = 0 for (x, t) ∈ Σ.
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Let us consider the representation formula (2.16) for the solution of the model problem
(2.1). For (x̃, t) ∈ Q we have

u(x̃, t) = (Ṽ γint
1 u)(x̃, t)− (Wγint

0 u)(x̃, t) + (M̃0u0)(x̃, t) + (Ñ0f)(x̃, t).

By applying the Dirichlet trace operator and recalling the jump relations of the heat
potentials we get the first boundary integral equation

γint
0 u(x, t) =(V γint

1 u)(x, t) +
1

2
γint

0 u(x, t)− (Kγint
0 u)(x, t)

+ (M0u0)(x, t) + (N0f)(x, t)
(6.1)

for (x, t) ∈ Σ. Similarly by applying the Neumann trace operator we get the second
boundary integral equation

γint
1 u(x, t) =

1

2
γint

1 u(x, t) + (K ′γint
1 u)(x, t) + (Dγint

0 u)(x, t)

+ (M1u0)(x, t) + (N1f)(x, t)
(6.2)

for (x, t) ∈ Σ. Together these equations lead to the Calderón system of boundary
integral equations. We have(

γint
0 u
γint

1 u

)
=

(
1
2
I −K V
D 1

2
I +K ′

)
︸ ︷︷ ︸

=: C

(
γint

0 u
γint

1 u

)
+

(
M0u0

M1u0

)
+

(
N0f
N1f

)
.

(6.3)

The operator C is called the Calderón projection operator.

Lemma 6.1. C is a projection, i.e. C = C2.

Proof. Let (ψ, ϕ) ∈ H− 1
2
,− 1

4 (Σ)×H 1
2
, 1
4 (Σ). Then the function

u(x̃, t) := (Ṽ ψ)(x̃, t)− (Wϕ)(x̃, t) for (x̃, t) ∈ Q

is a solution of the homogeneous heat equation. By applying the trace operators we
get the boundary integral equations

γint
0 u = V ψ +

(
1

2
I −K

)
ϕ

γint
1 u =

(
1

2
I +K ′

)
ψ +Dϕ.

(6.4)
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Additionally u is a solution of the homogeneous heat equation with Cauchy data
γint

0 u, γint
1 u and inital condition u0 = 0, i.e. we have(

γint
0 u
γint

1 u

)
=

(
1
2
I −K V
D 1

2
I +K ′

)(
γint

0 u
γint

1 u

)
.

Inserting (6.4) leads to(
1
2
I −K V
D 1

2
I +K ′

)(
ψ
ϕ

)
=

(
1
2
I −K V
D 1

2
I +K ′

)2(
ψ
ϕ

)
.

Since the functions ψ, ϕ were arbitrarily chosen, we conclude C = C2.

In consequence of the projection property of the Calderón operator we have the
following relations.

Corollary 6.2. The boundary integral operators satisfy

V D =

(
1

2
I −K

)(
1

2
I +K

)
,

DV =

(
1

2
I +K ′

)(
1

2
I −K ′

)
,

V K ′ = KV,

K ′D = DK.

Proof. Follows from C = C2.

Let us recall the mapping properties of the boundary integral operators. We have

V : H−
1
2
,− 1

4 (Σ)→ H
1
2
, 1
4 (Σ),

K : H
1
2
, 1
4 (Σ)→ H

1
2
, 1
4 (Σ),

K ′ : H−
1
2
,− 1

4 (Σ)→ H−
1
2
,− 1

4 (Σ),

D : H
1
2
, 1
4 (Σ)→ H−

1
2
,− 1

4 (Σ).

(6.5)

Theorem 6.3. [2, Corollary 3.10, Theorem 3.11] The operator

A : H
1
2
, 1
4 (Σ)×H−

1
2
,− 1

4 (Σ)→ H
1
2
, 1
4 (Σ)×H−

1
2
,− 1

4 (Σ)

defined as

A :=

(
−K V
D K ′

)
is an isomorphism and there exists a constant c1 > 0 such that

〈
(
ψ
ϕ

)
,

(
V −K
K ′ D

)(
ψ
ϕ

)
〉 ≥ c1

(
‖ψ‖2

H−
1
2 ,−

1
4 (Σ)

+ ‖ϕ‖2

H
1
2 ,

1
4 (Σ)

)
for all (ψ, ϕ) ∈ H− 1

2
,− 1

4 (Σ)×H 1
2
, 1
4 (Σ).

By using this theorem we can prove the ellipticity of the operators V and D.
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6.1 Ellipticity of the single layer boundary integral

operator V

Lemma 6.4. The single layer boundary integral operator V defines an isomorphism
and there exists a constant cV1 > 0 such that

〈V w,w〉 ≥ cV1 ‖w‖
2

H−
1
2
,− 1

4 (Σ)
for all w ∈ H−

1
2
,− 1

4 (Σ).

Proof. Follows from Theorem 6.3 with ϕ = 0.

Hence the single layer boundary integral operator V : H−
1
2
,− 1

4 (Σ) → H
1
2
, 1
4 (Σ) is

bounded and H−
1
2
,− 1

4 (Σ)-elliptic and therefore invertible. Thus, the inverse operator

V −1 : H
1
2
, 1
4 (Σ)→ H−

1
2
,− 1

4 (Σ) is well defined and bounded according to the Lemma of
Lax-Milgram (Theorem 1.1). We have

∥∥V −1v
∥∥
H−

1
2 ,−

1
4 (Σ)
≤ 1

cV1
‖v‖

H
1
2 ,

1
4 (Σ)

for all v ∈ H
1
2
, 1
4 (Σ).

6.2 Ellipticity of the hypersingular boundary

integral operator D

Lemma 6.5. The hypersingular boundary integral operator D defines an isomorphism
and there exists a constant cD1 > 0 such that

〈Dv, v〉 ≥ cD1 ‖v‖
2

H
1
2
, 1
4 (Σ)

for all v ∈ H
1
2
, 1
4 (Σ).

Proof. Follows from Theorem 6.3 with ψ = 0.

Hence D is invertible and according to the Lemma of Lax-Milgram (Theorem 1.1)
we have ∥∥D−1w

∥∥
H

1
2 ,

1
4 (Σ)
≤ 1

cD1
‖w‖

H−
1
2 ,−

1
4 (Σ)

for all w ∈ H−
1
2
,− 1

4 (Σ).

According to Corollary 6.2 we have the relations

V D =

(
1

2
I −K

)(
1

2
I +K

)
,

DV =

(
1

2
I +K ′

)(
1

2
I −K ′

)
.
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Since V and D define isomorphisms, the operators

1

2
I −K, 1

2
I +K : H

1
2
, 1
4 (Σ)→ H

1
2
, 1
4 (Σ),

1

2
I −K ′, 1

2
I +K ′ : H−

1
2
,− 1

4 (Σ)→ H−
1
2
,− 1

4 (Σ)

define isomorphisms as well. Hence these operators are invertible. It is well known
that under certain circumstances these operators define contractions, see [17] and [19].
For example if the boundary Γ is C2, then the double layer boundary integral operator
K defines a contraction for sufficiently small T .

6.3 Steklov-Poincaré operator

We consider the system of boundary integral equations corresponding to the homoge-
neous heat equation with initial condition u0 = 0. We have(

γint
0 u
γint

1 u

)
=

(
1
2
I −K V
D 1

2
I +K ′

)(
γint

0 u
γint

1 u

)
.

Using the first integral equation we can define the Dirichlet to Neumann map

γint
1 u = V −1

(
1

2
I +K

)
γint

0 u. (6.6)

The operator

S := V −1

(
1

2
I +K

)
: H

1
2
, 1
4 (Σ)→ H−

1
2
,− 1

4 (Σ) (6.7)

is called Steklov-Poincaré operator for the heat equation. When inserting (6.6) into
the second boundary integral equation we obtain

γint
1 u =

[
D +

(
1

2
I +K ′

)
V −1

(
1

2
I +K

)]
γint

0 u.

Hence we get a symmetric representation of the Steklov-Poincaré operator. We have

S = D +

(
1

2
I +K ′

)
V −1

(
1

2
I +K

)
. (6.8)

Due to the boundedness of the operators K,K ′, D and V −1 the operator S is bounded
as well.

Lemma 6.6. The Steklov-Poincaré operator S is H
1
2
, 1
4 (Σ)-elliptic, i.e. there exists a

constant cS1 > 0 such that

〈Sv, v〉 ≥ cS1 ‖v‖
2

H
1
2 ,

1
4 (Σ)

for all v ∈ H
1
2
, 1
4 (Σ).
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Proof. For v ∈ H 1
2
, 1
4 (Σ) we define ψ := V −1

(
1
2
I +K

)
v ∈ H− 1

2
,− 1

4 (Σ) and get

〈
(
ψ
v

)
,

(
V −K
K ′ D

)(
ψ
v

)
〉 =

1

2
〈V −1

(
1

2
I +K

)
v, v〉+ 〈v,K ′V −1

(
1

2
I +K

)
v +Dv〉

= 〈v,
(

1

2
I +K ′

)
V −1

(
1

2
I +K

)
v +Dv〉

= 〈v, Sv〉.

The statement follows with Theorem 6.3.

6.4 Dirichlet initial boundary value problem

Let us consider the initial boundary value problem

α∂tu(x, t)−∆xu(x, t) = 0 for (x, t) ∈ Q = Ω× (0, T ),

u(x, t) = g(x, t) for (x, t) ∈ Σ = Γ× (0, T ),

u(x, 0) = u0(x) for x ∈ Ω

with boundary condition g ∈ H
1
2
, 1
4 (Σ) and intial condition u0 ∈ L2(Ω). Then the

solution is given by the representation formula

u(x̃, t) = (Ṽ γint
1 u)(x̃, t)− (Wg)(x̃, t) + (M̃0u0)(x̃, t) for (x̃, t) ∈ Q.

It remains to determine the unknown conormal derivative γint
1 u ∈ H− 1

2
, 1
4 (Σ). There

are different ways to accomplish this. For example we can use the boundary integral
equations (6.3) to solve the problem. This is called direct approach. First let us
consider the boundary integral equation (6.1), i.e. we have

γint
0 u(x, t) = (V γint

1 u)(x, t) +
1

2
γint

0 u(x, t)− (Kγint
0 u)(x, t) + (M0u0)(x, t)

for (x, t) ∈ Σ. We have to find γint
1 u ∈ H− 1

2
,− 1

4 (Σ) such that

V γint
1 u =

(
1

2
I +K

)
g −M0u0 on Σ.

Since the boundary integral operatorsK : H
1
2
, 1
4 (Σ)→ H

1
2
, 1
4 (Σ), M0 : L2(Σ)→ H

1
2
, 1
4 (Σ)

and V : H−
1
2
,− 1

4 (Σ) → H
1
2
, 1
4 (Σ) are bounded and V is H−

1
2
,− 1

4 (Σ)-elliptic, there ex-

ists a unique solution γint
1 u ∈ H−

1
2
,− 1

4 (Σ) according to the Lemma of Lax-Milgram
(Theorem 1.1). The solution γint

1 u satisfies

∥∥γint
1 u
∥∥
H−

1
2 ,−

1
4 (Σ)
≤ 1

cV1

(∥∥∥∥(1

2
I +K

)
g

∥∥∥∥
H

1
2 ,

1
4 (Σ)

+ ‖M0u0‖H 1
2 ,

1
4 (Σ)

)
≤ 1

cV1

(
cW2 ‖g‖H 1

2 ,
1
4 (Σ)

+ cM0
2 ‖u0‖L2

)
.
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The variational formulation of the problem is to find γint
1 u ∈ H− 1

2
,− 1

4 (Σ) such that

〈V γint
1 u, τ〉Σ = 〈

(
1

2
I +K

)
g, τ〉Σ − 〈M0u0, τ〉Σ for all τ ∈ H−

1
2
,− 1

4 (Σ).

We could also use the second boundary integral equation to determine the unknown
Neumann datum γint

1 u, which is given by

γint
1 u(x, t) =

1

2
γint

1 u(x, t) + (K ′γint
1 u)(x, t) + (Dγint

0 u)(x, t) + (M1u0)(x, t)

for (x, t) ∈ Σ. We have to find γint
1 u ∈ H− 1

2
,− 1

4 (Σ) such that(
1

2
I −K ′

)
γint

1 u = Dg +M1u0 on Σ.

The operator 1
2
I −K ′ is invertible and therefore there exists a unique solution of the

problem.
Another approach is using an indirect formulation with the single layer potential Ṽ .
A solution of the homogeneous heat equation with initial condition u0 is given by

u(x̃, t) = (Ṽ w)(x̃, t) + (M̃0u0)(x̃, t) for (x̃, t) ∈ Q

with density w ∈ H− 1
2
,− 1

4 (Σ). By applying the Dirichlet trace operator to this equation
we get

g(x, t) = (V w)(x, t) + (M0u0)(x, t) for (x, t) ∈ Σ. (6.9)

Thus, we have to find w ∈ H− 1
2
,− 1

4 (Σ) such that

V w = g −M0u0 on Σ.

As in the case of the direct formulation with the first boundary integral equation
the unique solvability follows with the Lemma of Lax-Milgram (Theorem 1.1). The

variational formulation is to find w ∈ H− 1
2
,− 1

4 (Σ) such that

〈V w, τ〉Σ = 〈g −M0u0, τ〉Σ for all τ ∈ H−
1
2
,− 1

4 (Σ).

In the same way we can use the double layer potential W . The function

u(x̃, t) = −(Wv)(x̃, t) + (M̃0u0)(x̃, t) for (x̃, t) ∈ Q

with density v ∈ H 1
2
, 1
4 (Σ) solves the homogeneous heat equation with initial condition

u0. Applying the Dirichlet trace operator leads to the boundary integral equation

g(x, t) =
1

2
v(x, t)− (Kv)(x, t) + (M0u0)(x, t) for (x, t) ∈ Σ.
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Hence we have to find v ∈ H 1
2
, 1
4 (Σ) such that(

1

2
I −K

)
v = g −M0u0 on Σ.

Again, this problem is uniquely solvable since the operator 1
2
I −K is invertible. The

variational formulation of this problem is to find v ∈ H 1
2
, 1
4 (Σ) such that

〈
(

1

2
I −K

)
v, τ〉Σ = 〈g −M0u0, τ〉Σ for all τ ∈ H−

1
2
,− 1

4 (Σ).

Hence the ansatz space and the test space differ in this setting.
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The solution of the Dirichlet initial boundary value problem (2.1) with initial condi-
tion u0, boundary data g and source term f = 0 is given by

u(x̃, t) = (Ṽ γint
1 u)(x̃, t)− (Wg)(x̃, t) + (M̃0u0)(x̃, t) for (x̃, t) ∈ Q.

In the previous chapter we have shown, that we can determine the unknown conor-
mal derivative γint

0 u by solving the first boundary integral equation (6.1), which is
equivalent to solving the corresponding variational formulation. We have to find
w := γint

1 u ∈ H− 1
2
,− 1

4 (Σ) such that

〈V w, τ〉Σ = 〈
(

1

2
I +K

)
g, τ〉Σ − 〈M0u0, τ〉Σ for all τ ∈ H−

1
2
,− 1

4 (Σ). (7.1)

In this section we discretize this problem by considering a Galerkin-Bubnov variational
formulation. First we have to define suitable trial spaces with respect to an admissible
triangulation of the space-time boundary Σ.

7.1 Discretization

We consider two different triangulation approaches. The first one is a separate tri-
angulation of the boundary Γ and the time interval (0, T ). In this case we can use
space-time tensor product spaces to discretize the variational formuation (7.1) and we
are able to state error estimates simply by combining approximation properties of the
spatial and temporal discretization. The second approach is the triangluation of the
space-time boundary Σ = Γ × (0, T ). When using piecewise constant basis functions
for the discretization of the variational formulation (7.1) we can derive error estimates
by using the approximation properties of the space-time tensor product spaces of the
first method.

Spatial and temporal triangulation

We assume, that the Lipschitz boundary Γ = ∂Ω is piecewise smooth with Γ =
⋃J
j=1 Γj.

Let {ΓNX}NX∈N be a family of admissible triangulations of the boundary Γ into bound-
ary elements γl, i.e. we have

ΓNX =

NX⋃
l=1

γl. (7.2)
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Moreover we assume, that there are no curved elements and that there is no approxi-
mation of the boundary. For each boundary element γl there exists j ∈ {1, ..., J} such
that γl ⊂ Γj. The boundary elements γl can be described as γl = χl(γ), where γ is
some reference element in Rn−1. The boundary elements γl are line segments in the
spatially two-dimensional case n = 2 and plane triangles in the three-dimensional case
n = 3. In the one-dimensional case the boundary Γ is a set of two points and therefore
we do not have a triangulation of Γ for n = 1. Let {xk}Mk=1 be the set of boundary
nodes xk of ΓNX . For each boundary element γl we define its volume

∆l :=

∫
γl

dsx,

its local mesh size
hl := ∆

1/(n−1)
l

and its diameter
dl := sup

x,y∈γl
|x− y| .

The global mesh size is given by

hx := max
l=1,...,NX

hl.

The family {ΓNX}NX∈N of triangulations is said to be globally quasi-uniform, if there
exists a constant cG,x ≥ 1 independent of ΓNX such that

hx,max

hx,min

≤ cG,x.

We assume that the boundary elements are shape regular, i.e. there exists a constant
cB independent of ΓNX such that

dl ≤ cBhl for all l = 1, ..., NX .

As mentioned before, in the spatially one-dimensional case there is no triangulation
of the boundary Γ. Whereas for n = 2, 3 we need a parametrization of the boundary
elements γl.
In the two-dimensional case the boundary elements γl are line segments with nodes
xl1 , xl2 ∈ R2. Thus, γl can be described as

x(ξ) = xl1 + ξ(xl2 − xl1) for ξ ∈ γ = (0, 1).

Hence we have

hl = dl = ∆l =

∫
γl

dsx = |xl2 − xl1|.
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In the three-dimensional case the boundary elements γl are plane triangles with nodes
xl1 , xl2 , xl3 ∈ R3. Therefore the boundary element γl can be described as

x(ξ) = xl1 + ξ1(xl2 − xl1) + ξ2(xl3 − xl1) = xl1 + Jlξ

where ξ = (ξ1, ξ2)T ∈ γ = {ξ ∈ R2 : 0 < ξ1 < 1, 0 < ξ2 < 1− ξ1} and

Jl =
(
xl2 − xl1 xl3 − xl1

)
.

The volume of a boundary element γl is given by

∆l =

∫
γl

dsx =
1

2
|detJl|.

Since time is one-dimensional we consider a family {INT }NT∈N of decompositions of
the time interval I := (0, T ) into line segments τk, i.e. we have

INT =

NT⋃
k=1

τ k. (7.3)

The elements τk = (tk1 , tk2) can be described as τk = ψk(τ), where τ is the reference
element τ := (0, 1). In our case we have

ψk(t̂) = tk1 + t̂(tk2 − tk1) for t̂ ∈ (0, 1).

As for the boundary elements γl we can define the local mesh size of an element τk,
which coincides with its volume, as

htk := tk2 − tk1

and the global mesh size as
ht := max

k=1,...,NT
htk .

Again, the family {INT }NT∈N of triangulations is said to be globally quasi-uniform, if
there exists a constant cG,t ≥ 1 independent of INT such that

ht,max

ht,min

≤ cG,t.

Trial spaces

In order to find an approximation of the solution of (7.1) we have to define suitable
finite dimensional function spaces. Since the conormal derivative of functions could
be discontinuous depending on the domain Ω, it is reasonable to approximate the
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conormal derivative w = γint
1 u by discontinuous functions. In this work we consider

the space of piecewise constant basis functions.
Let S0

ht
(I) be the space of piecewise constant basis functions on I = (0, T ) with respect

to the temporal triangulation INT , i.e. we have

S0
ht(I) := span

{
ψ0
k

}NT
k=1

with

ψ0
k(t) :=

{
1 for t ∈ τk,
0 else

and S0
hx

(Γ) be the space of piecewise constant basis functions on Γ = ∂Ω with respect
to the spatial triangulation ΓNX , i.e.

S0
hx(Γ) := span

{
ϕ0
l

}NX
l=1

with

ϕ0
l (x) :=

{
1 for x ∈ γl,
0 else.

The space-time tensor product space of piecewise constant basis functions on Σ =
Γ× (0, T ) is then given by

S0,0
hx,ht

(Σ) := S0
hx(Γ)⊗ S0

ht(I). (7.4)

We can use these trial spaces to search for an approximation wh of the conormal
derivative w = γint

1 u. Since we want to derive error estimates for the approximation
wh, we have to examine approximation properties of functions vh ∈ S0,0

hx,ht
(Σ).

Approximation properties

In order to derive approximation properties of the trial space S0,0
hx,ht

(Σ) we first recall
some approximation properties of the spaces S0

hx
(Γ) and S0

ht
(I).

The L2(Γ)-projection Qhxu ∈ S0
hx

(Γ) of a function u ∈ L2(Γ) is defined as the unique
solution of the variational problem

〈Qhxu, vh〉L2(Γ) = 〈u, vh〉L2(Γ) for all vh ∈ S0
hx(Γ). (7.5)

The L2(Γ)-projection operator Qhx satisfies the stability esimate

‖Qhxu‖L2(Γ) ≤ ‖u‖L2(Γ) for all u ∈ L2(Γ). (7.6)

Theorem 7.1. [27, Theorem 10.2] Let u ∈ Hs(Γ) with s ∈ [0, 1] and Qhxu ∈ S0
hx

(Γ)
be the L2(Γ)-projection of u. Then there hold the error estimates

‖u−Qhxu‖L2(Γ) ≤ ‖u‖L2(Γ) ,

‖u−Qhxu‖L2(Γ) ≤ chsx|u|Hs(Γ).
(7.7)
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Corollary 7.2. [27, Corollary 10.3] Let u ∈ Hs(Γ) with s ∈ [0, 1]. For σ ∈ [−1, 0)
there holds the error estimate

‖u−Qhxu‖Hσ(Γ) ≤ chs−σx |u|Hs(Γ). (7.8)

The following lemma states an global inverse inequalitiy for functions wh ∈ S0
hx

(Γ).

The proof with respect to the H−
1
2 (Γ)-norm is given in [27, Lemma 10.10] and uses

interpolation arguments. In the same way one can show the estimate in the Hσ(Γ)-
norm for σ ∈ (−1, 0].

Lemma 7.3. Assume that the boundary decomposition ΓNX is globally quasi-uniform
and let σ ∈ (−1, 0]. Then there holds

‖wh‖L2(Γ) ≤ cIh
σ
x ‖wh‖Hσ(Γ) for all wh ∈ S0

hx(Γ). (7.9)

Analogously the L2(I)-projection Qhtu ∈ S0
ht

(I) of a function u ∈ L2(I) is defined
as the unique solution of the variational problem

〈Qhtu, vh〉L2(I) = 〈u, vh〉L2(I) for all vh ∈ S0
ht(I). (7.10)

The estimates (7.7), (7.8) and (7.9) hold for functions u ∈ Hs(I) and wh ∈ S0
ht

(I) as
well.
By using those approximation properties we can derive estimates for the L2(Σ)-projec-
tion Qhx,htu ∈ S

0,0
hx,ht

(Σ) of a function u ∈ L2(Σ) where Qhx,htu is the unique solution
of the variational problem

〈Qhx,htu, vh〉L2(Σ) = 〈u, vh〉L2(Σ) for all vh ∈ S0,0
hx,ht

(Σ). (7.11)

The projections QΣ
hx
u and QΣ

ht
u for u ∈ L2(Σ) are defined as

(QΣ
hxu)(x, t) := (Qhxu(·, t))(x),

(QΣ
htu)(x, t) := (Qhtu(x, ·))(t).

(7.12)

Let u ∈ L2(Σ). By using the stability estimate (7.6) we get

∥∥QΣ
hxu
∥∥2

L2(Σ)
=

∫ T

0

∫
Γ

[
(QΣ

hxu)(x, t)
]2
dsxdt =

∫ T

0

∫
Γ

[(Qhxu(·, t))(x)]2 dsxdt

=

∫ T

0

‖(Qhxu(·, t))‖2
L2(Γ) dt ≤

∫ T

0

‖u(·, t)‖2
L2(Γ) dt = ‖u‖2

L2(Σ) .

Hence we have ∥∥QΣ
hxu
∥∥
L2(Σ)

≤ ‖u‖L2(Σ) for all u ∈ L2(Σ). (7.13)
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Let vh ∈ S0,0
hx,ht

(Σ) and u ∈ L2(Σ). Since vh ∈ S0,0
hx,ht

(Σ) we have the representation

vh(x, t) =

NX∑
i=1

NT∑
j=1

vijϕ
0
i (x)ψ0

j (t).

According to (7.11) we have

〈Qhx,htu, vh〉L2(Σ) = 〈u, vh〉L2(Σ) =

∫ T

0

∫
Γ

u(x, t)vh(x, t)dsxdt

=

NX∑
i=1

NT∑
j=1

vij

∫
Γ

ϕ0
i (x)

∫ T

0

u(x, t)ψ0
j (t)dtdsx.

By using the projection property (7.10) we get

〈Qhx,htu, vh〉L2(Σ) =

NX∑
i=1

NT∑
j=1

vij

∫
Γ

ϕ0
i (x)

∫ T

0

(QΣ
htu)(x, t)ψ0

j (t)dtdsx

=

NX∑
i=1

NT∑
j=1

vij

∫ T

0

ψ0
j (t)

∫
Γ

(QΣ
htu)(x, t)ϕ0

i (x)dsxdt.

Again, the projection property (7.5) gives

〈Qhx,htu, vh〉L2(Σ) =

NX∑
i=1

NT∑
j=1

vij

∫ T

0

ψ0
j (t)

∫
Γ

(QΣ
hxQ

Σ
htu)(x, t)ϕ0

i (x)dsxdt

=

∫ T

0

∫
Γ

(QΣ
hxQ

Σ
htu)(x, t)vh(x, t)dsxdt

= 〈QΣ
hxQ

Σ
htu, vh〉L2(Σ).

We conclude

〈Qhx,htu−QΣ
hxQ

Σ
htu, vh〉L2(Σ) = 0 for all vh ∈ S0,0

hx,ht
(Σ)

and since QΣ
hx
QΣ
ht
u ∈ S0,0

hx,ht
(Σ) we can choose vh = Qhx,htu−QΣ

hx
QΣ
ht
u and get∥∥Qhx,htu−QΣ

hxQ
Σ
htu
∥∥
L2(Σ)

= 0.

This is true for all u ∈ L2(Σ). Hence the operators coincide and we have the repre-
sentation Qhx,ht = QΣ

hx
QΣ
ht

. Due to the definition of the L2(Σ)-projections QΣ
hx
u and

QΣ
ht
u (7.12) we can use the approximation properties of the operators Qhx and Qht to

derive estimates for the L2(Σ)-projection Qhx,htu.
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Lemma 7.4. Let u ∈ Hr,s(Σ) with r, s ∈ [0, 1] and Qhx,htu ∈ S
0,0
hx,ht

(Σ) be the L2(Σ)-
projection of u. Then there hold the estimates

‖u−Qhx,htu‖L2(Σ) ≤ ‖u‖L2(Σ) ,

‖u−Qhx,htu‖L2(Σ) ≤ c (hrx + hst) |u|Hr,s(Σ)

where
|u|2Hr,s(Σ) = |u|2L2(0,T ;Hr(Γ)) + |u|2Hs(0,T ;L2(Γ)).

Proof. For u ∈ Hr,s(Σ) ⊂ L2(Σ) we have

〈u−Qhx,htu, vh〉L2(Σ) = 0 for all vh ∈ S0,0
hx,ht

(Σ)

and therefore

‖u−Qhx,htu‖
2
L2(Σ) = 〈u−Qhx,htu, u−Qhx,htu〉L2(Σ) = 〈u−Qhx,htu, u〉L2(Σ)

≤ ‖u−Qhx,htu‖L2(Σ) ‖u‖L2(Σ)

The first estimate follows by multiplying this inequality with ‖u−Qhx,htu‖
−1
L2(Σ) if

u−Qhx,htu 6= 0. The estimate is also true for u−Qhx,htu = 0. By using the triangle
inequality, the stability estimate (7.13) and Theorem 7.1 we get

‖u−Qhx,htu‖L2(Σ) =
∥∥u−QΣ

hxQ
Σ
htu
∥∥
L2(Σ)

=
∥∥u−QΣ

hxu+QΣ
hx(u−Q

Σ
htu)

∥∥
L2(Σ)

≤
∥∥u−QΣ

hxu
∥∥
L2(Σ)

+
∥∥u−QΣ

htu
∥∥
L2(Σ)

≤ c̃
(
hrx|u|L2(0,T ;Hr(Γ)) + hst |u|Hs(0,T ;L2(Γ))

)
.

Thus, we have
‖u−Qhx,ht‖L2(Σ) ≤ c (hrx + hst) |u|Hr,s(Σ).

The following lemma states an error estimate in norms of anisotropic Sobolev spaces
with negative order.

Lemma 7.5. Let u ∈ Hr,s(Σ) with r, s ∈ [0, 1]. For σ, µ ∈ [−1, 0) there holds the
error estimate

‖u−Qhx,htu‖Hσ,µ(Σ) ≤ c
(
h−σx + h−µt

)
(hrx + hst) |u|Hr,s(Σ).

Proof. By duality and using (7.11) we get

‖u−Qhx,htu‖Hσ,µ(Σ) = sup
06=v∈H−σ,−µ,0 (Σ)

〈u−Qhx,htu, v〉Σ
‖v‖H−σ,−µ(Σ)

= sup
06=v∈H−σ,−µ,0 (Σ)

〈u−Qhx,htu, v −Qhx,htv〉Σ
‖v‖H−σ,−µ(Σ)

.
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Applying the Cauchy-Schwarz inequality and using Lemma 7.4 leads to

‖u−Qhx,htu‖Hσ,µ(Σ) ≤ ‖u−Qhx,htu‖L2(Σ) sup
06=v∈H−σ,−µ,0 (Σ)

‖v −Qhx,htv‖L2(Σ)

‖v‖H−σ,−µ(Σ)

≤ c (hrx + hst)
(
h−σx + h−µt

)
|u|Hr,s(Σ).

Triangulation of the space-time boundary Σ

Recall that the boundary Γ is piecewise smooth with Γ =
⋃J
j=1 Γj. With Σj :=

Γj × (0, T ) for j = 1, ..., J we get Σ =
⋃J
j=1 Σj. We consider a family {ΣN}N∈N of

admissible triangulations of Σ into boundary elements σl, i.e. we have

ΣN =
N⋃
l=1

σl. (7.14)

Again, we assume that there are no curved elements and that there is no approximation
of the space-time boundary Σ. For each boundary element σl there exists exactly
one j ∈ {1, ..., J} such that σl ⊂ Σj. The boundary elements σl can be described as
σl = χl(σ), where σ is some reference element in Rn. The elements σl are line segments
in the one-dimensional case n = 1, plane triangles in the two-dimensional case n = 2,
and tetrahedra in the three-dimensional case n = 3. Let {(xk, tk)}Mk=1 be the set of
boundary nodes (xk, tk) of ΣN . For each boundary element σl we define its volume

∆l :=

∫
σl

dsx,

its local mesh size
hl := ∆

1/n
l

and its diameter
dl := sup

(x,t),(y,s)∈σl
|(x, t)− (y, s)| .

The global mesh size is defined as

h := max
l=1,...,N

hl.

The family {ΣN}N∈N of triangulations is said to be globally quasi-uniform, if there
exists a constant cG ≥ 1 independent of N such that

hmax

hmin

≤ cG.
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We assume that the boundary elements are shape regular, i.e. there exists a constant
cB independent of N such that

dl ≤ cBhl for l = 1, ..., N.

In the spatially one-dimensional case n = 1 the boundary Γ = ∂Ω is a set of two points
x1, x2 ∈ R. Thus, the boundary elements σl are line segments in temporal direction
with fixed spatial coordinate xl ∈ (x1, x2). Let (xl, tl1) and (xl, tl2) be the nodes of the
boundary element σl. Then σl can be described as(

x
t

)
=

(
xl

tl1 + ξ(tl2 − tl1)

)
where ξ ∈ σ = (0, 1). Hence we have

hl = dl = ∆l =

∫
σl

dsxdt = |tl2 − tl1|.

In the two-dimensional case the boundary elements σl are plane triangles with nodes
(xl1 , tl1), (xl2 , tl2) and (xl3 , tl3). We assume that the boundary elements are rectangular
triangles, where one of the edges adjacent to the right angle is parallel to the domain
Ω as shown in Figure 7.1 . The boundary element σl can be described as(

x
t

)
=

(
xl1 + ξ1(xl2 − xl1) + ξ2(xl3 − xl1)
tl1 + ξ1(tl2 − tl1) + ξ2(tl3 − tl1)

)
=

(
xl1
tl1

)
+ Jl

(
ξ1

ξ2

)
where (ξ1, ξ2)T ∈ σ = {ξ ∈ R2 : 0 < ξ1 < 1, 0 < ξ2 < 1− ξ1} and

Jl =

(
xl2 − xl1 xl3 − xl1
tl2 − tl1 tl3 − tl1

)
.

The volume of a boundary element σl is given by

∆l =

∫
σl

dsxdt =
1

2
|detJl|.

In the three-dimensional-case the boundary elements σl are tetrahedra with nodes
(xli , tli), i = 1, ..., 4. Similarly to the two-dimensional case we assume, that the bound-
ary elements are trirectangular tetrahedra where one of the sides adjacent to the right
angle is parallel to the boundary Γ. The boundary element σl can be described as

(
x
t

)
=

(
xl1
tl1

)
+ Jl

ξ1

ξ2

ξ3


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Figure 7.1: Sample triangulation of a part of Σ for n = 2.

where (ξ1, ξ2, ξ3)T ∈ σ = {ξ ∈ R3 : 0 < ξ1 < 1, 0 < ξ2 < 1− ξ1, 0 < ξ3 < 1− ξ1 − ξ2}
and

Jl =

(
xl2 − xl1 xl3 − xl1 xl4 − xl1
tl2 − tl1 tl3 − tl1 tl4 − tl1

)
.

The volume of a boundary element σl is given by

∆l =

∫
σl

dsxdt =
1

6
|detJl|.

Trial spaces

For the approximation of the conormal derivative w = γint
1 u ∈ H− 1

2
,− 1

4 (Σ) we consider
the space of piecewise constant basis function S0

h(Σ) with respect to the triangulation
ΣN defined as

S0
h(Σ) := span

{
ϕ0
l

}N
l=1

with

ϕ0
l (x, t) :=

{
1 for (x, t) ∈ σl,
0 else.
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Approximation properties

In the spatially one-dimensional case the form of the boundary elements and therefore
the trial spaces coincide with the space-time tensor product spaces introduced at the
beginning of this section. Hence we have the same approximation properties.
Due to the assumption, that the boundary elements in the two-dimensional case are
rectangular triangles where one of the edges adjacent to the right angle is parallel to
Ω, see Figure 7.1, we can derive error estimates of the L2(Σ)-projection Qhu ∈ S0

h(Σ)
for u ∈ L2(Σ) by using the approximation properties of functions vh ∈ S0,0

hx,ht
(Σ).

Due to the structure of the decomposition of Σ, two boundary elements σl1 , σl2 , l1 6= l2,
form a rectangle, which can be represented as γl1 × τl1 where γl1 is an element of the
spatial triangulation (7.2) and τl1 is an element of the temporal triangulation (7.3).
The decomposition ΣN of Σ induces a spatial decomposition ΓNX of the boundary Γ
and a temporal decomposition INT of I = (0, T ). Let S0,0

hx,ht
(Σ) be the corresponding

space-time tensor product space (7.4), where hx denotes the maximum size of the
boundary elements in spatial direction and ht the maximum size of the boundary
elements in temporal direction. For each boundary element σl there exists an adjacent
element σkl and elements γil , τjl such that

σl ∪ σkl = γil × τjl .

In other words, for each rectangle ςij := γi × τj there exist exactly two boundary
elements σl(ij)1 , σl(ij)2 such that

ςij = σl(ij)1 ∪ σl(ij)2 .

Hence we have S0,0
hx,ht

(Σ) ⊂ S0
h(Σ).

The L2(Σ)-projection Qhu ∈ S0
h(Σ) of a function u ∈ L2(Σ) is defined as the unique

solution of the variational problem

〈Qhu, vh〉L2(Σ) = 〈u, vh〉L2(Σ) for all vh ∈ S0
h(Σ). (7.15)

For u ∈ L2(Σ) we have

‖u−Qhu‖2
L2(Σ) = 〈u−Qhu, u−Qhu〉L2(Σ) = 〈u−Qhu, u−Qhx,htu〉L2(Σ)

≤ ‖u−Qhu‖L2(Σ) ‖u−Qhx,htu‖L2(Σ)

since Qhx,htu ∈ S0
hx,ht

(Σ) ⊂ S0
h(Σ). We get

‖u−Qhu‖L2(Σ) ≤ ‖u−Qhx,htu‖L2(Σ) for all u ∈ L2(Σ) (7.16)

and obtain the following approximation properties.
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Lemma 7.6. Let u ∈ Hr,s(Σ) with r, s ∈ [0, 1] and Qhu ∈ S0
h(Σ) be the L2(Σ)-

projection of u. Then there hold the error estimates

‖u−Qhu‖L2(Σ) ≤ ‖u‖L2(Σ) ,

‖u−Qhu‖L2(Σ) ≤ c (hrx + hst) |u|Hr,s(Σ).

Proof. Follows with (7.16) and Lemma 7.4.

Lemma 7.7. Let u ∈ Hr,s(Σ) with r, s ∈ [0, 1]. For σ, µ ∈ [−1, 0) there holds

‖u−Qhu‖Hσ,µ(Σ) ≤ c
(
h−σx + h−µt

)
(hrx + hst) |u|Hr,s(Σ).

Proof. Analogously to the proof of Lemma 7.5.

The three-dimensional case needs further examination. By using similiar arguments
as for n = 2 we can assume, that we have the same approximation properties for n = 3
as well.

7.2 BEM for the Dirichlet initial boundary value

problem

For the discretization of the variational formulation (7.1) we consider the space of piece-

wise constant basis function S0
h(Σ) ⊂ H−

1
2
,− 1

4 (Σ) corresponding to the triangulation
(7.14) of the space-time boundary Σ. The Galerkin-Bubnov variational formulation of
(7.1) is to find wh ∈ S0

h(Σ) such that

〈V wh, τh〉Σ = 〈
(

1

2
I +K

)
g, τh〉Σ − 〈M0u0, τh〉Σ for all τh ∈ S0

h(Σ). (7.17)

Considering wh(x, t) =
∑N

k=1wkϕ
0
k(x, t) this problem is equivalent to

N∑
k=1

wk〈V ϕ0
k, ϕ

0
l 〉Σ = 〈

(
1

2
I +K

)
g, ϕ0

l 〉Σ − 〈M0u0, ϕ
0
l 〉Σ for l = 1, ..., N.

This system of linear equations can be written as

Vhw = f (7.18)

where
Vh[l, k] = 〈V ϕ0

k, ϕ
0
l 〉Σ

and

f [l] = 〈
(

1

2
I +K

)
g, ϕ0

l 〉Σ − 〈M0u0, ϕ
0
l 〉Σ

for l, k = 1, ..., N . Due to the ellipticity of V this system is uniquely solvable, see
Chapter 1.
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7.3 Error estimates

Since the single layer boundary integral operator V is H−
1
2
,− 1

4 (Σ)-elliptic and bounded
we can use Cea’s Lemma (Theorem 1.3) to conclude quasi-optimality of the Galerkin
approximation wh ∈ S0

h(Σ), i.e. we have

‖w − wh‖H− 1
2 ,−

1
4 (Σ)
≤ cV2
cV1

inf
τh∈S0

h(Σ)
‖w − τh‖H− 1

2 ,−
1
4 (Σ)

. (7.19)

Now we can use the approximation properties of the trial space S0
h(Σ) to derive error

esimates for the solution wh of (7.17). By applying Lemma 3.4 we get

‖w − wh‖H− 1
2 ,−

1
4 (Σ)
≤ cV2
cV1

J∑
j=1

inf
τ jh∈S

0
h(Σj)

∥∥w|Σj − τ jh∥∥H̃− 1
2 ,−

1
4 (Σj)

(7.20)

and obtain the following error estimates.

Theorem 7.8. Let wh ∈ S0
h(Σ) be the unique solution of the Galerkin variational

problem (7.17). For w ∈ Hr,s
pw(Σ) with r, s ∈ [0, 1] there holds

‖w − wh‖H− 1
2 ,−

1
4 (Σ)
≤ c

(
h1/2
x + h

1/4
t

)
(hrx + hst) |w|Hr,s

pw (Σ).

Proof. The assertion follows by applying Lemma 7.5 to the estimate (7.20).

Since the boundary elements are assumed to be shape regular, we have hx ≤ cBh
and ht ≤ cBh and get

‖w − wh‖H− 1
2 ,−

1
4 (Σ)
≤ c̃h

1
4

+α|w|Hr,s
pw (Σ)

where α = min(r, s).
In the one-dimensional case we can identify the space S0

h(Σ) with S0
h(I) where I = (0, T ).

The terms with hx in Theorem 7.8 vanish and we get

‖w − wh‖H− 1
4 (I)
≤ ch

1
4

+s|w|Hs
pw(I).

For n = 1 it is quite easy to derive an error estimate in the L2(I) norm, assuming that
the family of triangulations of Σ is globally quasi-uniform.

Theorem 7.9. Assume that the boundary decomposition ΣN is globally quasi-uniform.
For n = 1 let wh ∈ S0

h(I) be the unique solution of the Galerkin variational problem
(7.17). For w ∈ Hs

pw(I) with s ∈ [0, 1] there holds

‖w − wh‖L2(I) ≤ hs|w|Hs
pw(I).
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Proof. By using the triangle inequality, Lemma 7.4 and Lemma 7.3 we get

‖w − wh‖L2(I) ≤ ‖w −Qhw‖L2(I) + ‖Qhw − wh‖L2(I)

≤ c̃hs|w|Hs
pw(I) + cIh

−1/4 ‖Qhw − wh‖H− 1
4 (I)

.

The assertion follows with

‖Qhw − wh‖H− 1
4 (I)
≤ ‖Qhw − w‖H− 1

4 (I)
+ ‖w − wh‖H− 1

4 (I)
,

Lemma 7.5 and Theorem 7.8.



8 Preconditioning

Since the matrix Vh is positive definite we can apply the GMRES method to solve the
system of linear equations

Vhw = f

derived in the previous chapter. The number of iterations depends on the condition
number of the matrix Vh. In our case the condition number increases as the mesh size
h decreases. Thus, it is necessary to apply preconditioning strategies. Let us recall
the basic concept of preconditioners.
Let X be a reflexive Banach space and X ′ its dual space. We consider the problem

Au = f

with a linear, bounded and X-elliptic operator A : X → X ′ and f ∈ X ′. According to
the Lemma of Lax-Milgram (Theorem 1.1) this operator equation is uniquely solvable.
Let Xh = span {ϕi}Ni=1 ⊂ X be a finite dimensional subspace. Then the discrete
problem

Ahu = f (8.1)

is uniquely solvable as well, see Chapter 1. By multiplying this equation with the
inverse of a regular matrix CA ∈ RN×N we get

C−1
A Ahu = C−1

A f. (8.2)

Due to the regularity of the matrix CA this problem is equivalent to (8.1). The idea is to
choose the matrix CA in a such way, that the condition number of the preconditioned
matrix C−1

A Ah is independent of the mesh size h. Moreover we want to be able to
compute the inverse of the matrix CA efficiently.
When using boundary element methods we can use preconditioning techniques based
on boundary integral operators of opposite order, such as the single layer boundary
integral operator V and the hypersingular boundary integral operator D.

8.1 Calderón preconditioning

The presented preconditioning strategy is based on [31] and [9]. Let B : X ′ → X be
a linear and bounded operator and Yh = span {ψj=1}Mj=1 ⊂ X ′ be a finite dimensional
subspace. Moreover B satisfies the inf-sup condition

sup
0 6=wh∈Yh

|〈Bqh, wh〉|
‖wh‖X′

≥ cB1 ‖qh‖X′ for all qh ∈ Yh.
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The ellipticity of the operator A implies

sup
06=vh∈Xh

|〈Auh, vh〉|
‖vh‖X

≥ cA1 ‖uh‖X for all uh ∈ Xh.

Theorem 8.1. [9, Theorem 2.1] If N = dimXh = dimYh = M and there exists a
constant cM1 > 0 such that

sup
06=wh∈Yh

(vh, wh)

‖wh‖X′
≥ cM1 ‖vh‖X for all vh ∈ Xh,

then

κ
(
M−1

h BhM
−T
h Ah

)
≤ cA2 c

B
2

cA1 c
B
1 (cM1 )2

where
Ah[i, j] = 〈Aϕj, ϕi〉, Bh[i, j] = 〈Bψj, ψi〉, Mh[i, j] = (ϕj, ψi)

for i, j = 1, ..., N .

Let us consider the single layer boundary integral operator V and the hypersingular
boundary integral operator D and finite dimensional subspaces Xh ⊂ H−

1
2
,− 1

4 (Σ),

Yh ⊂ H
1
2
, 1
4 (Σ). Both operators are elliptic. Hence the operators satisfy the inf-sup

conditions

sup
06=τh∈Xh

|〈V th, τh〉Σ|
‖τh‖H− 1

2 ,−
1
4 (Σ)

≥ cV1 ‖th‖H− 1
2 ,−

1
4 (Σ)

for all th ∈ Xh

and

sup
06=vh∈Yh

|〈Duh, vh〉Σ|
‖vh‖H 1

2 ,
1
4 (Σ)

≥ cD1 ‖uh‖H 1
2 ,

1
4 (Σ)

for all uh ∈ Yh.

If we choose suitable subspaces Xh, Yh with dimXh = dimYh which satisfy the inf-sup
condition

sup
06=vh∈Yh

〈τh, vh〉L2(Σ)

‖vh‖H 1
2 ,

1
4 (Σ)

≥ cM1 ‖τh‖H− 1
2 ,−

1
4 (Σ)

for all τh ∈ Xh, (8.3)

then Theorem 8.1 implies

κ
(
M−1

h DhM
−T
h Vh

)
≤ cV2 c

D
2

cV1 c
D
1 (cM1 )2

where

Vh[l, k] = 〈V ϕk, ϕl〉Σ, Dh[l, k] = 〈Dψk, ψl〉Σ, Mh[l, k] = 〈ϕk, ψl〉L2(Σ)

for l, k = 1, ..., N . Hence if we use the preconditioner

C−1
V = M−1

h DhM
−T
h
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the condition number of the preconditioned matrix is bounded. Since Mh is a sparse
matrix, the inverse M−1

h can be computed efficiently. It remains to choose the finite
dimensional subspaces Xh, Yh.
In this work we present different approaches for the spatially one-dimensional case.
Some of the results can easily be extended to n = 2, 3.

8.1.1 Piecewise constant basis functions

For n = 1 the boundary elements are line segments in temporal direction. Thus, we
can identify the boundary of the space-time cylinder with the time interval I := (0, T ).

Since S0
h(I) ⊂ H

1
4 (I) we can choose S0

h(I) as the trial space for the discretization of the
single layer operator V and the hypersingular operator D, i.e. we have Xh := S0

h(I)
and Yh := S0

h(I) and therefore dimXh = dimYh. In order to prove the inf-sup condition
(8.3) forXh = Yh = S0

h(I) we need stability of the L2(I)-projection operatorQh defined

by (7.15) in the Sobolev space H
1
4 (I). We consider the boundary decomposition ΣN

given by (7.14), i.e. we have

ΣN =
N⋃
l=1

σl.

For l = 1, ..., N we define I(l) to be the index set of the boundary element σl and all
its adjacent elements. The local mesh size associated with the boundary element σl is
then given by

ĥl :=
1

|I(l)|
∑
k∈I(l)

hk for l = 1, ...N. (8.4)

We assume the boundary decomposition ΣN to be locally quasi-uniform, i.e. there
exists a constant cL ≥ 1 independent of N such that

1

cL
≤ ĥl
hk
≤ cL for all k ∈ I(l), l = 1, ..., N.

Moreover we define
ωl :=

⋃
k∈I(l)

σk for l = 1, ..., N.

The proof of the stability of the L2(I)-projection onto the space of piecewise linear

and continuous basis fuctions S1
h(I) = span {ϕ1

i }
M
i=1 in fractional Sobolev spaces can

be found in [25]. It is based on the assumption, that there exists a constant c0 > 0
such that

(HlGlH
−1
l xl, xl) ≥ c0(Dlxl, xl) for all xl ∈ R|J(l)|

where J(l) denotes the index set of all nodes adjacent to the element σl and the local
matrices are defined as

Gl[j, i] := 〈ϕ1
i , ϕ

1
j〉L2(σl), Dl := diag

(∥∥ϕ1
i

∥∥2

L2(σl)

)
, Hl := diag

(
ĥ

1
4
i

)
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for i, j ∈ J(l) and l = 1, ...N . In this context ĥi is the local mesh size associated with
the node (xi, ti) of the mesh. When using piecewise constant basis functions we define
the local matrices as

Gl[j, i] := 〈ϕ0
i , ϕ

0
j〉L2(ωl), Dl := diag

(∥∥ϕ0
i

∥∥2

L2(ωl)

)
, Hl := diag

(
ĥ

1
4
i

)
for i, j ∈ I(l) and l = 1, ..., N where ĥi is the local mesh size defined by (8.4). Hence
we have Gl = Dl and get

(HlGlH
−1
l xl, xl) = (Dlxl, xl) for all xl ∈ R|I(l)|

and l = 1, ..., N . The remaining steps to prove the stability of the L2(I)-projection

onto the space of piecewise constant basis functions in H
1
4 (I) are the same as in the

case of piecewise linear and continuous basis functions described in [25]. We conclude
that there exists a constant cQ > 0 such that

‖Qhv‖H 1
4 (I)
≤ cQ ‖v‖H 1

4 (I)
for all v ∈ H

1
4 (I). (8.5)

Lemma 8.2. For a locally quasi-uniform mesh there holds the inf-sup condition

1

cQ
‖τh‖H− 1

4 (I)
≤ sup

06=vh∈S0
h(I)

〈τh, vh〉L2(I)

‖vh‖H 1
4 (I)

for all τh ∈ S0
h(I).

Proof. For a locally quasi-uniform mesh the operator Qh : H
1
4 (I) → S0

h(I) ⊂ H
1
4 (I)

is bounded according to (8.5). For τ ∈ S0
h(I) we have

‖τh‖H− 1
4 (I)

= sup
06=v∈H

1
4 (I)

〈τh, v〉L2(I)

‖v‖
H

1
4 (I)

= sup
06=v∈H

1
4 (I)

〈τh, Qhv〉L2(I)

‖v‖
H

1
4 (I)

≤ cQ sup
06=v∈H

1
4 (I)

〈τh, Qhv〉L2(I)

‖Qhv‖H 1
4 (I)

≤ cQ sup
06=vh∈S0

h(I)

〈τh, vh〉L2(I)

‖vh‖H 1
4 (I)

which concludes the proof.

Hence the inf-sup-condition (8.3) is satisfied and we can use the discretization of
the hypersingular operator D with respect to the space of piecewise constant basis
functions S0

h(I) as a preconditioner.
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8.1.2 Piecewise linear and continuous basis functions

As a second approach we choose the space of piecewise linear and continuous basis
functions S1

h(I) = span {ϕ1
i }
M
i=1 for the discretization of the operators V and D, since

Xh := S1
h(I) ⊂ H−

1
4 (I) and Yh := S1

h(I) ⊂ H
1
4 (I). Clearly we have dimXh = dimYh.

Before proving the inf-sup condition (8.3) in this setting let us recall some properties
of the space S1

h(I), based on [27, Chapter 10.2].

Lemma 8.3. Assume that the boundary decomposition ΣN is globally quasi-uniform
and let s ∈ [0, 1]. Then there holds the inverse inequality

‖vh‖Hs(I) ≤ cIh
−s ‖vh‖L2(I) for all vh ∈ S1

h(I).

The L2(I)-projection Qhu ∈ S1
h(I) of a function u ∈ L2(I) is defined as the unique

solution of the variational problem

〈Qhu, vh〉L2(I) = 〈u, vh〉L2(I) for all vh ∈ S1
h(I).

The operator Qh satisfies the stability estimate

‖Qhu‖L2(I) ≤ ‖u‖L2(I) for all u ∈ L2(I). (8.6)

Let s ∈ [0, 1]. According to [25, Theorem 3.2] there exists a constant cS > 0 such that

‖Qhu‖Hs(I) ≤ cS ‖u‖Hs(I) for all u ∈ Hs(I) (8.7)

assuming appropriate mesh conditions locally, see [25, Section 4]. This estimate is also
satisfied for a globally quasi-uniform decomposition of I.

Theorem 8.4. Let u ∈ Hs(I) with s ∈ [0, 1] and Qhu ∈ S1
h(I) be the L2(I)-projection

of u. Then there holds the estimate

‖u−Qhu‖L2(I) ≤ chs|u|Hs(I).

By using the stability estimate (8.7) we can prove an inf-sup-condition for the finite-
dimensional function spaces Xh and Yh.

Lemma 8.5. Assume that the stability estimate (8.7) is satisfied. Then there holds

1

cS
‖τh‖H− 1

4 (I)
≤ sup

0 6=vh∈S1
h(I)

〈τh, vh〉L2(I)

‖vh‖H 1
4 (I)

for all τh ∈ S1
h(I).

Proof. According to (8.7) the L2(I)-projection operator Qh : H
1
4 (I)→ S1

h(I) ⊂ H
1
4 (I)

is bounded, i.e. there exists cS > 0 such that

‖Qhv‖H 1
4 (I)
≤ cS ‖v‖H 1

4 (I)
for all v ∈ H

1
4 (I).
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For τh ∈ S1
h(I) we have

‖τh‖H− 1
4 (I)

= sup
06=v∈H

1
4 (I)

〈τh, v〉L2(I)

‖v‖
H

1
4 (I)

= sup
06=v∈H

1
4 (I)

〈τh, Qhv〉L2(I)

‖v‖
H

1
4 (I)

≤ cS sup
06=v∈H

1
4 (I)

〈τh, Qhv〉L2(I)

‖Qhv‖H 1
4 (I)

≤ cS sup
06=vh∈S1

h(I)

〈τh, vh〉L2(I)

‖vh‖H 1
4 (I)

which concludes the proof.

Thus, according to Theorem 8.1 the condition number of the preconditioned matrix
is bounded when using the space S1

h(I) for the discretization of V and D.
This strategy can be extended to the two- and three-dimensional case, since we have
S1
h(Σ) ⊂ H−

1
2
,− 1

4 (Σ) and S1
h(Σ) ⊂ H

1
2
, 1
4 (Σ). If one can prove the boundedness of the

L2(Σ)-projection Qh : H
1
2
, 1
4 (Σ) → S1

h(Σ) ⊂ H
1
2
, 1
4 (Σ), for example by using interpola-

tion arguments [12, 13], then the proof of the inf-sup-condition (8.3) is the same as in
Lemma 8.5.

8.1.3 Dual mesh

The third approach is to use Xh := S0
h(Ĩ) corresponding to a dual mesh for the

discretization of V and Yh := S1
h(I) for D. For details concerning the construction of

the dual mesh, see [28] and [10]. We have dimXh = dimYh. Figure 8.1 shows a sample
dual mesh for the one-dimensional case. It remains to prove the inf-sup condition
(8.3). We assume, that the boundary decomposition ΣN is globally quasi-uniform.

Lemma 8.6. There holds the inf-sup-condition

1

cDM
‖τh‖H− 1

4 (I)
≤ sup

06=vh∈S1
h(I)

〈τh, vh〉L2(I)

‖vh‖H 1
4 (I)

for all τh ∈ S0
h(Ĩ).

Proof. According to [26, Section 3] we have

c̃ ‖vh‖L2(I) ≤ sup
06=τh∈S0

h(Ĩ)

〈τh, vh〉L2(I)

‖τh‖L2(I)

for all vh ∈ S1
h(I). (8.8)

Let the L2(I)-projection Q̃h : L2(I)→ S1
h(I) ⊂ L2(I) be defined as

〈Q̃hu, τh〉L2(I) = 〈u, τh〉L2(I) for all τh ∈ S0
h(Ĩ). (8.9)
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Figure 8.1: Sample dual mesh for n = 1.

Due to (8.8) this variational problem is well defined and uniquely solvable. For
u ∈ L2(I) the triangle inequality implies∥∥∥u− Q̃hu

∥∥∥
L2(I)

≤ ‖u−Qhu‖L2(I) +
∥∥∥Qhu− Q̃hu

∥∥∥
L2(I)

where Qhu ∈ S1
h(I) is the standard L2(I)-projection of u. Since Qhu − Q̃hu ∈ S1

h(I)
we can use (8.8), (8.9) and the Cauchy-Schwarz inequality to get

∥∥∥u− Q̃hu
∥∥∥
L2(I)

≤ ‖u−Qhu‖L2(I) +
1

c̃
sup

06=τh∈S0
h(Ĩ)

〈τh, Qhu− u〉L2(I)

‖τh‖L2(I)

≤ c ‖u−Qhu‖L2(I)

(8.10)

with some constant c > 0. The triangle inequality, the global inverse inequality
(Lemma 8.3) and the stability estimate (8.7) imply∥∥∥Q̃hu

∥∥∥
H

1
4 (I)
≤
∥∥∥Q̃hu−Qhu

∥∥∥
H

1
4 (I)

+ ‖Qhu‖H 1
4 (I)

≤ cIh
− 1

4

∥∥∥Q̃hu−Qhu
∥∥∥
L2(I)

+ cS ‖u‖H 1
4 (I)

.

Since Q̃hu ∈ S1
h(I) we have Q̃hu−Qhu = Qh

(
Q̃hu− u

)
. Thus, applying the estimates

(8.6), (8.10) and Theorem 8.4 leads to∥∥∥Q̃hu
∥∥∥
H

1
4 (I)
≤ ĉh−

1
4 ‖u−Qhu‖L2(I) + cS ‖u‖H 1

4 (I)
≤ cDM ‖u‖H 1

4 (I)
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with some constant cDM > 0. Hence for τh ∈ S0
h(Ĩ) we have

‖τh‖H− 1
4 (I)

= sup
0 6=v∈H

1
4 (I)

〈τh, v〉L2(I)

‖v‖
H

1
4 (I)

= sup
0 6=v∈H

1
4 (I)

〈τh, Q̃hv〉L2(I)

‖v‖
H

1
4 (I)

≤ cDM sup
06=v∈H

1
4 (I)

〈τh, Q̃hv〉L2(I)∥∥∥Q̃hv
∥∥∥
H

1
4 (I)

≤ cDM sup
06=vh∈S1

h(I)

〈τh, vh〉L2(I)

‖vh‖H 1
4 (I)

which concludes the proof.

Consequently, when discretizing V in the space S0
h(Ĩ) and D in the space S1

h(I)
the preconditioner C−1

V = M−1
h DhM

−T
h leads to a bounded condition number of the

preconditioned system matrix. As in the case of piecewise linear basis functions this ap-
proach is a suitable preconditioning technique for n = 2, 3 as well. Since the boundary
elements of the dual mesh are of arbitrary form (polygonial), we need approximation
properties of trial spaces corresponding to the dual mesh in anisotropic Sobolev spaces.



9 FEM-BEM coupling

In this chapter we present and discuss a FEM-BEM coupling method for parabolic
transmission problems, based on [3]. As in the case of stationary transmission problems
[24] we can derive boundary integral equations for the exterior problem and use a
coupling method to solve the integral equations in combination with a finite element
discretization of the interior problem [29]. We consider a non-symmetric FEM-BEM
coupling method. In addition to the derivation of a variational formulation for the
coupled problem we consider a Galerkin method in order to discretize the problem
and compute an approximation of the solution.

9.1 Model problem

Let f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ H1
0 (Ω). We consider the transmission problem

α∂tui(x, t)− divx [A(x, t)∇xui(x, t)] = f(x, t) for (x, t) ∈ Ω× (0, T ),

α∂tue(x, t)−∆ue(x, t) = 0 for (x, t) ∈ Ωext × (0, T ),

ui(x, 0) = u0(x) for x ∈ Ω,

ue(x, 0) = 0 for x ∈ Ωext

(9.1)

with Ωext := Rn \ Ω and transmission conditions

ui(x, t) = ue(x, t), nx · [A(x, t)∇xui(x, t)] =
∂

∂nx
ue(x, t) =: we(x, t) (9.2)

for (x, t) ∈ Σ. We assume, that the coefficient matrix A(x, t) ∈ Rn×n is symmetric
and uniform positive definite, i.e. there exists θ > 0 such that

θ|ξ|2 ≤ [A(x, t) ξ] · ξ

for all (x, t) ∈ Q and all ξ ∈ Rn. The solution ue of the exterior problem satisfies
a radiation condition for |x| → ∞ and t ∈ (0, T ). Similarly to the initial boundary
value problem (2.1) we can derive a representation formula for the solution ue of the

75
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exterior problem [3]. For (x̃, t) ∈ Ωext × (0, T ) we have

ue(x̃, t) =− 1

α

T∫
0

∫
Γ

U∗(x̃− y, t− s) ∂

∂ny
ue(y, s)dsyds

+
1

α

T∫
0

∫
Γ

∂

∂ny
U∗(x̃− y, t− s)ue(y, s)dsyds.

(9.3)

By applying the Dirichlet trace operator and using the jump relations (5.4) and (5.7)
we get the first boundary integral equation for the exterior problem

γext
0 ue = −V γext

1 ue +

(
1

2
I +K

)
γext

0 ue on Σ. (9.4)

9.2 Coupling

First we consider the initial boundary value problem

α∂tui(x, t)− divx [A(x, t)∇xui(x, t)] = f(x, t) for (x, t) ∈ Ω× (0, T )

ui(x, 0) = u0(x) for x ∈ Ω
(9.5)

with f ∈ L2(0, T ;H−1(Ω)), u0 ∈ H1
0 (Ω) and the Neumann boundary condition

nx · [A(x, t)∇xui(x, t)] = wi(x, t) for (x, t) ∈ Γ× (0, T ).

The variational formulation is to find ui ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ; H̃−1(Ω)) with
ui(x, 0) = u0(x) for x ∈ Ω such that

a(ui, v) =

∫ T

0

∫
Ω

f(x, t), v(x, t)dxdt+

∫ T

0

∫
Γ

wi(x, t)v(x, t)dsxdt

for all v ∈ L2(0, T ;H1(Ω)). The bilinear form a(·, ·) is given by

a(u, v) :=

∫ T

0

∫
Ω

α∂tui(x, t)v(x, t)dxdt+

∫ T

0

∫
Ω

[A(x, t)∇xui(x, t)] · ∇xv(x, t)dxdt

for u ∈ L2(0, T ;H1(Ω)) ∩ H1(0, T ; H̃−1(Ω)) und v ∈ L2(0, T ;H1(Ω)). Due to the
initial condition in (9.5) we consider the decomposition ui(x, t) = ui(x, t) + u0(x, t)

for (x, t) ∈ Q where u0 ∈ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ; H̃−1(Ω)) is an extension of the

initial condition u0 ∈ H1
0 (Ω) into the space-time cylinder Q. Hence we want to find

ui ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; H̃−1(Ω)) with ui(x, 0) = 0 for x ∈ Ω such that

a(ui, v)− 〈wi, γint
0 v〉Σ = 〈f, v〉Q − a(u0, v) for all v ∈ L2(0, T ;H1(Ω)).



9.3 Discretization 77

For details regarding existence and uniqueness of solutions, see [29] and [30]. Let X

be the Dirichlet trace space of L2(0, T ;H1(Ω)) ∩ H1(0, T ; H̃−1(Ω)). The variational
formulation of the boundary integral equation (9.4) is to find we ∈ X ′ such that

〈V we, τ〉Σ + 〈
(

1

2
I −K

)
γext

0 ue, τ〉Σ = 0 for all τ ∈ X ′.

Together with the transmission conditions (9.2) we get the variational formulation of

the coupled problem. We have to find ui ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ; H̃−1(Ω)) with
ui(x, 0) = 0 for x ∈ Ω and we ∈ X ′ such that

a(ui, v)− 〈we, γint
0 v〉Σ = 〈f, v〉Q − a(u0, v),

〈V we, τ〉Σ + 〈
(

1

2
I −K

)
γint

0 ui, τ〉Σ = 0
(9.6)

for all v ∈ L2(0, T ;H1(Ω)) and τ ∈ X ′.

9.3 Discretization

We consider an admissible triangulation Th = {ql}
NQ
l=1 of the space-time cylinder Q into

finite elements ql. Let {(xk, tk)}
MQ

k=1 be the set of nodes of the triangulation. We define
I0 to be the index set of the nodes, which do not belong to Ω × {0} and M0 := |I0|.
Moreover II is the index set of the nodes, which do not belong to Σ ∪

(
Ω× {0}

)
and MI := |II |. The nodes are sorted in such a way, that I0 ⊂ {1, ...,M0} and
II ⊂ {1, ...,MI}. The boundary elements Eh = {σk}NΣ

k=1 of the induced decomposition
of Σ are given by

Eh :=
{
σ ⊂ Σ : ∃ q ∈ Th : σ = ∂q ∩ Σ

}
.

Figure 9.1 shows a sample triangulation for the spatially one-dimensional problem.
Let S0

h(Σ) = span {ϕ0
k}

NΣ

k=1 be the space of piecewise constant basis function with
respect to the triangulation Eh of the boundary Σ, i.e. we have

ϕ0
k(x, t) :=

{
1 for (x, t) ∈ σk,
0 else

for k = 1, ..., NΣ and S1
h(Q) = span {ϕ1

i }
MQ

i=1 be the space of piecewise linear and
continuous basis functions ϕ1

i with respect to the triangulation Th of the space-time
cylinder Q, i.e.

ϕ1
i (xj, tj) = δij for i, j = 1, ...,MQ,

where (xj, tj) ∈ Rn+1 are the coordinates of the j-th node of Th, see [34]. Moreover we
define S1

h,0(Q) to be the space of functions in S1
h(Q), which vanish on Ω × {0}. Due
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Figure 9.1: Sample triangulation of Q = (0, 1)× (0, 1).

to the sorting of the nodes we have S1
h,0(Q) = span {ϕ1

i }
M0

i=1. We approximate we and
ui by

we,h =

NΣ∑
k=1

wkϕ0
k ∈ S0

h(Σ), ui,h =

M0∑
j=1

ujϕ1
j ∈ S1

h,0(Q).

Hence it remains to compute the unknown coefficients wk and uj.

9.4 Galerkin method

Let u0,h be the interpolation of u0 in S1
h(Q), i.e. we have

u0,h =

MQ∑
j=1

uj0ϕ
1
j

with uj0 = u0(xj, tj) for j = 1, ...,MQ. Since u0 ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ; H̃−1(Ω))

we have uj0 = 0 for xj ∈ Γ. The Galerkin variational formulation of (9.6) is to find
ui,h ∈ S1

h,0(Q) and we,h ∈ S0
h(Σ) such that

a(ui,h, vh)− 〈we,h, vh〉Σ = 〈f, vh〉Q − a(u0,h, vh),

〈V we,h, τh〉Σ + 〈
(

1

2
I −K

)
ui,h, τh〉Σ = 0
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for all v ∈ S1
h,0(Q) and for all τh ∈ S0

h(Σ). This formulation is equivalent to the system
of linear equationsAQQ AQΣ

AΣQ AΣΣ −MT
h

1
2
Mh −Kh Vh

 ûQ

ûΣ

w

 =

 fQ

fΣ

0

 (9.7)

with

A[j, i] = a(ϕ1
i , ϕ

1
j), û[j] = uj + uj0, f [j] = 〈f, ϕ1

j〉Q −
MQ∑

r=M0+1

ur0 a(ϕ1
r, ϕ

1
j)

for i, j = 1, ...,M0, where uj0 = 0 for xj ∈ Γ, and

Mh[l, i] = 〈ϕ1
MI+i, ϕ

0
l 〉Σ, Kh[l, i] = 〈Kϕ1

MI+i, ϕ
0
l 〉Σ, Vh[l, k] = 〈V ϕ0

k, ϕ
0
l 〉Σ

for i = 1, ...,M0 −MI and k, l = 1, ..., NΣ.

Consequently we can compute the unkown coefficients wk and uj and the correspond-
ing approximations we,h and ui,h. The solution ui,h of the interior transmission problem
(9.1) is then given by ui,h = ui,h+u0,h, whereas the solution ue,h of the exterior problem
is given by the representation formula (9.3), i.e. we have

ue,h(x̃, t) = −(Ṽ we,h)(x̃, t) + (Wγint
0 ui,h)(x̃, t) for (x̃, t) ∈ Ωext × (0, T ).





10 Numerical examples

In this chapter we present numerical examples regarding the convergence proper-
ties of the Galerkin approximations and the preconditioning techniques for the one-
dimensional heat equation as well as examples for the FEM-BEM coupling method.

10.1 Preconditioning

Let Ω = (0, 1) and T = 1. In general we consider the initial boundary value problem

α∂tu(x, t)− ∂xxu(x, t) = 0 for (x, t) ∈ (0, 1)× (0, 1),

u(0, t) = u(1, t) = 0 for t ∈ (0, 1),

u(x, 0) = u0(x) for x ∈ (0, 1)

(10.1)

where u0 is some given initial condition satisfying u0(0) = u0(1) = 0. The solution u
is given by the representation formula

u(x̃, t) = (Ṽ γint
1 u)(x̃, t) + (M̃0u0)(x̃, t) for (x̃, t) ∈ (0, 1)× (0, 1).

We use the variational formulation of the first boundary integral equation (7.1) to de-

termine the unknown conormal derivative γint
1 u, i.e. we have to find γint

1 u ∈ H− 1
2
,− 1

4 (Σ)
such that

〈V γint
1 u, τ〉Σ = −〈M0u0, τ〉Σ for all τ ∈ H−

1
2
,− 1

4 (Σ).

For the discretization of this formulation we consider the space of piecewise constant
basis functions S0

h(Σ). This leads to the system of linear equations

Vhw = f (10.2)

where

Vh[l, k] = 〈V ϕ0
k, ϕ

0
l 〉Σ =

∫
Σ

(V ϕ0
k)(x, t)ϕ

0
l (x, t)dsxdt

=
1

α
nlnk

∫ tl2

tl1

∫ tk2

tk1

U?(xl − xk, t− s)dsdt

and

f [l] = −〈M0u0, ϕ
0
l 〉Σ = −

∫
Σ

(M0u0)(x, t)ϕ0
l (x, t)dsxdt

= −nl
∫ tl2

tl1

∫ 1

0

U?(xl − y, t)u0(y)dydt

81
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for l, k = 1, ..., N . The Galerkin approximation wh of the conormal derivative w = γint
1 u

is then given by

wh(x, t) =
N∑
l=1

wlϕ
0
l (x, t) for (x, t) ∈ Σ.

The system (10.2) is solved with the GMRES method. We want the condition number
to be independent of the mesh size h. Therefore we use the preconditioning technique
introduced in Chapter 8. In the one-dimensional case we can use the piecewise constant
basis functions to discretize the hypersingular operator D. The preconditioner is given
by

C−1
V = M−1

h DhM
−T
h

where

Dh[l, k] = 〈Dϕ0
k, ϕ

1
l 〉Σ =

∫
Σ

(Dϕ0
k)(x, t)ϕ

0
l (x, t)dsxdt = nl

∫ tl2

tl1

(Dϕ0
k)(xl, t)dt

and

Mh[l, k] = 〈ϕ0
k, ϕ

0
l 〉L2(Σ) =

∫
Σ

ϕ0
k(x, t)ϕ

0
l (x, t)dsxdt

=

{
|tl2 − tl1 | if l = k,

0 if l 6= k
.

Since Mh is a diagonal matrix, the computation of the inverse of Mh and the compu-
tation of the preconditioning matrix C−1

V respectively is quite fast and very simple.

Uniform refinement

First we consider the initial boundary value problem (10.1) with initial condition
u0(x) = sin (2πx) ∈ H1

0 (Ω) und use a uniform refinement strategy to compute the
approximation wh. The unique solution of this problem is shown in Figure 10.1. Table
10.1 shows the L2(Σ)-error and the corrensponding convergence, the condition numbers
of the system matrix and the preconditioned matrix, as well as the iteration numbers of
the GMRES method in both cases. We obtain linear convergence of the approximation,
which is what we expected according to Theorem (7.9). While we can see that the
condition number of the matrix Vh is increasing with a factor of approximately

√
2, the

condition number of the preconditioned matrix C−1
V Vh is bounded. Hence the iteration

number of the preconditioned system is bounded as well, while the iteration number
corresponding to (10.2) is increasing with a factor of approximately 4

√
2.
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Figure 10.1: Uniform refinement. Approximation uh at level 11.

L N ‖w − wh‖L2(Σ) eoc κ(Vh) Factor It. Factor κ(C−1
V Vh) It.

0 2 2,249 0 1,001 0 1 0 1,002 1

1 4 1,311 0,778 2,808 2,807 2 2 1,279 2

2 8 0,658 0,996 4,905 1,746 4 2 1,422 4

3 16 0,324 1,021 7,548 1,539 8 2 1,486 8

4 32 0,16 1,017 11,14 1,476 16 2 1,541 14

5 64 0,079 1,01 16,724 1,501 31 1,938 1,563 13

6 128 0,04 1,006 13,47 0,805 41 1,323 1,59 13

7 256 0,02 1,003 22,053 1,637 50 1,22 1,615 12

8 512 0,01 1,001 32,043 1,453 59 1,18 1,636 12

9 1024 0,005 1,001 60,957 1,902 70 1,186 1,777 11

10 2048 0,002 1,000 88,488 1,452 82 1,171 1,762 11

11 4096 0,001 1,000 125,957 1,423 96 1,171 1,765 10

Table 10.1: Uniform refinement. Condition and iteration numbers.
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The unique solution of the initial boundary value problem (10.1) with initial condition
u0 = 0 is u = 0. Thus, we have γint

1 u = 0. Table 10.2 shows the iteration numbers of
the GMRES method using a random initial guess. Again, we obtain boundedness of
the iteration numbers corresponding to the preconditioned system. We can conclude
that the results concerning the iteration numbers in the previous example do not
depend on the given data.

L N It. Factor It. Prec.

0 2 2 0 2
1 4 3 1,5 3
2 8 4 1,333 4
3 16 8 2 8
4 32 16 2 13
5 64 31 1,938 14
6 128 42 1,355 13
7 256 52 1,238 13
8 512 64 1,231 13
9 1024 77 1,203 13
10 2048 92 1,195 13
11 4096 109 1,185 12

Table 10.2: Iteration numbers for a random initial guess of the GMRES.

Adaptive refinement

We consider problem (10.1) with initial condition u0 = 5 exp (−10x) sin (πx) and use
an adaptive refinement strategy to compute the approximation wh.
Let N ∈ N and ΣN be a decomposition of Σ into N boundary elements σl as given by
(7.14), i.e. we have

ΣN =
N⋃
l=1

σl.

Let w = γint
1 u ∈ H− 1

2
,− 1

4 (Σ) be the exact solution and wh =
∑N

l=1wlϕ
0
l ∈ S0

h(Σ) be the
Galerkin approximation of the problem. The local L2(Σ)-error on a boundary element
σl is then given by

el := ‖w − wh‖L2(σl)
.

The strategy is to refine each boundary element σl whose error satisfies

el ≥ θ max
k=1,...,N

ek
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with parameter θ ∈ (0, 1). In our case we divide those elements into two elements of
same size. We continue to refine the mesh until the global error

e :=

(
N∑
l=1

e2
l

) 1
2

is less than some given value. Of course, in general we do not know the exact solution
of the problem. Thus, we have to use a posteriori error estimators, see for example [6]
and [23].
According to Section 2.1.1 the exact solution of the problem (10.1) is given by the
series

u(x, t) =
∞∑
k=1

ak exp

(
−(kπ)2t

α

)
sin (kπx) for (x, t) ∈ Q

with

ak = 2

∫ 1

0

u0(x) sin (kπx)dx.

Hence the conormal derivative w = ∂nu|Σ is given by

∂nu(x, t) = nx

∞∑
k=1

ak exp

(
−(kπ)2t

α

)
kπ cos (kπx) for (x, t) ∈ Σ

where nx = −1 for x = 0 and nx = 1 for x = 1. The solution uh of the problem
(10.1) is shown in Figure 10.2. Figure 10.3 shows the approximation wh of the conor-
mal derivative. In Table 10.3 you can see the L2(Σ)-error, the condition numbers of
the system matrix and the preconditioned matrices, as well as the iteration numbers
of the GMRES method. In addition to the Calderón preconditioner the condition
and iteration numbers of the diagonally scaled system matrix is listed in the table.
As in the case of uniform refinement we obtain boundedness of the condition num-
ber of the Calderón-preconditioned matrix C−1

V Vh, as well as the boundedness of the
corresponding iteration numbers of the GMRES method. Diagonal scaling causes an
improvement concerning the condition numbers of the system matrix and the iteration
numbers of the GMRES method.
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Figure 10.2: Adaptive refinement. Approximation uh at level 10.
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Figure 10.3: Adaptive refinement. Approximation wh at level 10.
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CV = diagVh CV = MhD
−1
h Mh

L N ‖w − wh‖L2(Σ) κ(Vh) It. κ(C−1
V Vh) It. κ(C−1

V Vh) It.

0 2 1,886 1,001 2 1,001 2 1,002 2

1 3 1,637 3,972 3 2,553 3 1,16 3

2 5 1,272 12,225 5 4,055 4 1,166 4

3 7 0,914 34,212 7 3,611 6 1,156 6

4 9 0,615 92,081 9 3,164 8 1,149 8

5 11 0,401 118,586 11 2,945 10 1,224 10

6 13 0,267 338,26 13 2,803 12 1,21 12

7 20 0,166 621,773 20 3,524 18 1,197 13

8 31 0,101 1608,08 31 4,457 27 1,252 12

9 47 0,063 2344,9 47 5,779 32 1,574 11

10 74 0,039 6141,47 74 8,348 37 1,692 11

11 114 0,024 8409,92 114 10,95 42 1,561 10

12 177 0,015 23007,6 173 14,324 47 1,716 10

13 278 0,01 27528,3 200 21,094 53 1,677 10

Table 10.3: Adaptive refinement. Condition and iteration numbers.

10.2 FEM-BEM coupling

For Ω = (0, 1) and T = 1 we consider the one-dimensional transmission problem

α∂tui(x, t)− ∂x [A(x)∂xui(x, t)] = f(x, t) for (x, t) ∈ Ω× (0, 1),

α∂tue(x, t)− ∂xxue(x, t) = 0 for (x, t) ∈ Ωext × (0, 1),

ui(x, 0) = u0(x) for x ∈ Ω,

ue(x, 0) = 0 for x ∈ Ωext

(10.3)

where f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ H1(Ω) are given. The following examples refer
to the initial triangulation shown in Figure 9.1 and a uniform refinement strategy.
The tables show the L2(Q)-error ‖ui − ui,h‖L2(Q) and the corresponding convergence

of the approximation of the interior problem. The L2(Q)-error was computed with the
7-point rule [33, Section C.1]. The system of linear equations (9.7) was solved with
PARDISO Version 5.0.0 [11, 21, 22].
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Initial condition u0 continuously differentiable

We consider the transmission problem (10.3) with A ≡ 1, f ≡ 0 and initial condition

u0(x) =

exp

(
1

(2x− 1)2 − 1

)
sin (πx) for x ∈ (0, 1),

0 else.

Figure 10.4 shows the approximation uh of the solution of the transmission problem
(10.3). The L2(Q)-errors and the estimated orders of convergence are listed in Table
10.4. As expected we get an order of convergence of 2 for the Galerkin approximation
of the interior problem.

Level MQ NQ NΣ ‖ui − ui,h‖L2(Q) eoc

0 9 8 4 0.0316182 0
1 25 32 8 0.015779 1.00275
2 81 128 16 0.00422301 1.90166
3 289 512 32 0.00111947 1.91545
4 1089 2048 64 0.000289581 1.95078
5 4225 8192 128 7.3735e-05 1.97355

Table 10.4: Error and convergence of ui,h.

Figure 10.4: Approximation uh at level 5.
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Initial condition u0 not continuously differentiable

We consider the transmission problem (10.3) with A ≡ 1, f ≡ 0 and initial condition

u0(x) =


1

2
exp

(
1

(2x− 1)2 − 1

)
(1− |1− 2x|) for x ∈ (0, 1),

0 else.

The solution uh of the corresponding transmission problem (10.3) is shown in Figure
10.5. In this case we get a reduced order of convergence, as you can see in Table 10.5,
which is what we expected due to the given initial condition.

Level MQ NQ NΣ ‖ui − ui,h‖L2(Q) eoc

0 9 8 4 0.0299642 0
1 25 32 8 0.00684995 2.12907
2 81 128 16 0.00187444 1.86963
3 289 512 32 0.000584336 1.68159
4 1089 2048 64 0.000202621 1.52801
5 4225 8192 128 7.33331e-05 1.46625

Table 10.5: Error and convergence of ui,h.

Figure 10.5: Approximate solution uh at level 5.





11 Conclusion and Outlook

In this work we presented the boundary element method for the discretization of the
time-dependent heat equation. After the derivation of the representation formula for
the solution of the model problem (2.1) we analysed the heat potentials and the bound-
ary integral operators in the setting of anisotropic Sobolev spaces. We have shown,
that the single layer boundary integral operator V and the hypersingular operator
D are elliptic and bounded and therefore invertible. We presented four different ap-
proaches for the computation of the unkown conormal derivative ∂nu|Σ. We discussed
direct approaches using the boundary integral equations (6.3) as well as indirect for-
mulations with the single layer potential and the double layer potential. All four
formulations are uniquely solvable.
We considered a Galerkin-Bubnov variational formulation of the first boundary inte-
gral equation (7.17) and concluded unique solvability of the discrete problem due to
the ellipticity and boundedness of the operator V . As a trial space we used the space of
piecewise constant basis functions S0

h(Σ) corresponding to an arbitrary triangulation
of the space-time boundary Σ for the one- and two-dimensional problem, see Section
7.1. In the two-dimensional case we made an assumption on the form and orientation
of the boundary elements, see Figure 7.1, and derived the approximation properties
of S0

h(Σ) by using the approximation properties of space-time tensor product spaces.
The extension of those approximation properties to trial spaces with respect to trian-
gulations with boundary elements of arbitrary form and orientation for n = 2 as well
as for n = 3 is still open.
We estimated the error of the Galerkin approximations in the energy norm and stated
an estimate for the L2(Σ)-error of the approximations for the one-dimensional problem
by using the inverse inequality (7.9). If we can prove an inverse inequality for functions
in S0

h(Σ) for n = 2, 3 in the setting of anisotropic Sobolev spaces, we are able to give
an L2(Σ)-error estimate for n = 2, 3 as well.
We used the GMRES method to solve the system of linear equations (7.18). Since the
condition number of the matrix Vh depends on the mesh size h of the decomposition of
Σ we applied the Calderón preconditioning strategy and used the discretization of the
hypersingular operator D as a preconditioner for Vh, see Chapter 8. We discussed the
one-dimensional problem and presented three different approaches for the discretiza-
tion of V and D. If we can prove stability of the L2(Σ)-projection onto the space
of piecewise linear and continuous basis functions in the anisotropic Sobolev space
H

1
2
, 1
4 (Σ) some of the results can be extended to n = 2, 3. However, this is still an open

issue.

91
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In Chapter 9 we presented the concept of a non-symmetric FEM-BEM coupling
method for the parabolic transmission problem (9.1) and described a Galerkin method
for the discretization of the coupled problem. It is still an open question how to char-
acterize the trace spaces of the Bochner spaces used for the variational formulation of
the interior problem and if the operator V is elliptic in this setting as well.
In Chapter 10 we introduced an adaptive refinement strategy but used the exact solu-
tion to get an error estimator. Of course in general we do not know the exact solution.
Thus, we have to establish a posteriori error estimators for the anisotropic BEM in
order to define adaptive refinement strategies.
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