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Abstract

In this thesis we describe the boundary element method for the discretization of the
time-dependent heat equation. In contrast to standard time-stepping schemes we
consider an arbitrary decomposition of the boundary of the space-time cylinder into
boundary elements. Besides adaptive refinement strategies this approach allows us
to parallelize the computation of the global solution of the whole space-time system.
In addition to the analysis of the boundary integral operators and the derivation of
boundary element methods for the Dirichlet initial boundary value problem we state
convergence properties and error estimates of the approximations. Those estimates
are based on the approximation properties of boundary element spaces in anisotropic
Sobolov spaces, in particular in H2'1(3) and H~24 (). The systems of linear equa-
tions, which arise from the discretization of the integral equations, are solved with the
GMRES method. For an efficient computation of the solution we need preconditioners.
Based on the mapping properties of the single layer- and the hypersingular boundary
integral operator we construct and analyse a preconditioner for the discretization of
the first boundary integral equation. Moreover we describe the FEM-BEM coupling
method for parabolic transmission problems. Finally we present numerical examples
for the one-dimensional heat equation to confirm the theoretical results.

Kurzfassung

In dieser Arbeit wird die Randelementmethode zur Diskretisierung von zeitabhéngigen

Anfangsrandwertproblemen am Modell der Wérmeleitungsgleichung beschrieben. An-

ders als bei klassischen Zeitschrittverfahren wird eine beliebige Zerlegung des Randes

des Raum-Zeit-Zylinders betrachtet, was adaptive Verfeinerungsstrategien und eine

Parallelisierung des iterativen Losungsverfahrens beziiglich des gesamten Raum-Zeit-

Zylinders in einem Schritt ermdéglicht. Neben der Analysis der Randintegraloperatoren

und der Herleitung von Randelementmethoden fiir das Dirichlet-Anfangsrandwertpro-

blem werden auch Konvergenzeigenschaften und Fehlerabschétzungen der Naherungslo-
sungen angegeben. Diese basieren auf den Approximationseigenschaften von Ansatzréu-
men in anisotropen Sobolev-Réumen, insbesondere in H21(X) baw. H~2~1(%). Die

linearen Gleichungssysteme, welche sich aus der Diskretisierung der Randintegral-

gleichungen ergeben, werden mittels GMRES-Verfahren gelost. Fiir ein effizientes

Losen sind Vorkonditionierer notwendig. Ausgehend von den Abbildungseigenschaften

des Einfachschicht- und des hypersinguldaren Randintegraloperators und der Projek-

tionseigenschaften des Calderon-Operators wird ein Vorkonditionierer fiir die Diskreti-

sierung der ersten Randintegralgleichung konstruiert und analysiert. Zusétzlich wird

die Methode der FEM-BEM-Kopplung fiir parabolische Transmissionsprobleme be-

schrieben. Die erarbeiteten theoretischen Aussagen werden anhand von numerischen

Beispielen fiir die eindimensionale Warmeleitungsgleichung iiberpriift.
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Introduction

In this thesis we describe the boundary element method for the discretization of time-
dependent initial boundary value problems using the heat equation as a model problem.
There are different numerical methods in order to compute an approximate solution
of time-dependent initial boundary value problems. Besides standard time-stepping
schemes [32] and decomposition of the whole space-time domain into finite elements
[16] we can use the boundary element method to get an approximation of the solution
of the model problem. As for stationary problems [27] one can use the fundamental
solution of the partial differential equation and the given boundary and initial condi-
tions to derive a representation formula for the solution of the time-dependent model
problem. The problem is reduced to the boundary and we can apply the trace oper-
ators to the representation formula to get boundary integral equations and use some
discretization method to compute an approximate solution of those equations.

The presented analysis of the boundary integral operators and boundary integral equa-
tions is well established and mainly based on the work of Costabel [2] and Noon [17].
There is already a variety of papers regarding different applications of the discretiza-
tion of the heat equation with the boundary element method [2 [8, 15, 17, 18, 20]
using space-time tensor product spaces to discretize the variational formulations of
the boundary integral equations. This method refers to a separate triangulation of
the boundary I" of the domain € and the time interval (0,7") and uses tensor product
spaces as trial spaces. In contrast to this approach we consider an arbitrary decom-
position of the boundary > of the space-time domain @ = €2 x (0,7") into boundary
elements. Besides adaptive refinement strategies and in contrast to standard time-
stepping schemes this approach allows us to parallelize the computation of the global
solution of the whole space-time system.

In this work we consider a Dirichlet initial boundary value problem for the heat equa-
tion. After the derivation of the fundamental solution and the representation formula
for the solution of the model problem we discuss the mapping properties of the heat
potentials and the boundary integral operators, based on [2]. Since Dirichlet boundary
conditions are given, it remains to determine the conormal derivative of the solution
of the model problem. This can be done by solving the boundary integral equations.
The analysis of the operators is done in anisotropic Sobolev spaces [12]. In this set-
ting the single layer boundary integral operator V' and the hypersingular operator D
are not only bounded but also elliptic. Due to the ellipticity of V' we can conclude
unique solvability of the first boundary integral equation using the standard theory of
elliptic operators [27]. Analoguously we get unique solvability of the integral equation
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related to an indirect approach using the single layer potential. After discussing the
different approaches of determining the unknown conormal derivative of the solution
we consider a Galerkin-Bubnov variational formulation in order to discretize the first
boundary integral equation and compute an approximation of the conormal deriva-
tive. Our goal is to use an arbitrary triangulation of the boundary of the space-time
domain (). However, we first consider a separate triangulation of the boundary T"
and the time interval (0,7") and derive approximation properties of the corresponding
space-time tensor product spaces. Afterwards we consider an arbitrary decomposition
of the space-time boundary for n = 1,2 and state approximation properties of the
space of piecewise constant basis functions by using the approximation properties of
the space-time tensor product spaces. The system of linear equations corresponding
to the Galerkin-Bubnov variational formulation is solved with the GMRES method.
Since the condition number of the system matrix depends on the mesh size of the
triangulation of the space-time boundary, the iteration number of the iterative solver
increases with each refinement step. To get rid of this dependency we have to apply
suitable preconditioning strategies. We present a preconditioning technique using op-
erators of opposite order such as V' and D. The presented concept is based on [31].
An advantage of the boundary element method is the handling of exterior problems
in a natural way. This allows us to apply the FEM-BEM coupling method to trans-
mission problems for the heat equation. In Chapter [9] we introduce the concept of
a non-symmetric FEM-BEM coupling method for parabolic transmission problems,
based on [24], and use a Galerkin method to compute an approximate solution of the
problem. In the last chapter we present numerical examples for the one-dimensional
heat equation to confirm the theoretical results.



1 Basics

In order to study the unique solvability of boundary integral equations and their
discretizations we need some results in operator theory. In this chapter we summarize
the main statements, based on [27].

1.1 Operator theory

Let X be a Hilbert space with norm ||-||y = /(:,-) and X’ be the dual space of X.
The norm of an element f € X' is given by
(fv)
[fllx = sup
ovex ||Vl x

where (-,-) denotes the duality pairing on X’ x X. Let A : X — X’ be a linear and
bounded operator, i.e. there exists a constant ¢ > 0 such that

|Av|| v, < vl forall v € X.
We want to find a solution u € X of the operator equation
Au=f (1.1)

where f € X’ is given. This problem is equivalent to its variational formulation, which
is to find u € X such that

(Au,v) = (f,v) for all v e X. (1.2)
If the operator A is X-elliptic, i.e. there exists a constant ¢! > 0 such that
(Av,v) > |lv|5  forall v € X,

then the following theorem ensures the unique solvability of the operator equation
D).

Theorem 1.1 (Lemma of Lax-Milgram). [27, Theorem 3.2] Let the linear operator
A: X = X' be bounded and X -elliptic. For any f € X' there exists a unique solution

u € X of the operator equation
Au = f.

The solution u satisfies

1
Jullx < — [Ifllx -
&

11
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Since ([1.2)) is equivalent to ([L.1)) the ellipticity of the operator A ensures the unique
solvability of the variational formulation of the operator equation as well. According
to Theorem the inverse operator A~!: X’ — X is well defined and satisfies

1
A7 < = lIfllx forall fe X",
1

Now let us consider a linear and bounded operator B : X — X. For a given g € X
we want to find a solution of the operator equation

(I —Bu=g. (1.3)

The following theorem ensures unique solvability of equation ([1.3) when assuming,
that the operator B is a contraction in X, i.e.

B
D
ozvex |lvllx

Theorem 1.2 (Neumann series). [35, Theorem 11.1.11] Let X be a Banach-space and
let B: X — X be a linear and bounded operator satisfying ||B|| < 1. Then I — B is
invertible and

(I -B)™'= i B

The inverse operator satisfies

1 1
I0=570 < Ty

1.2 Galerkin methods

We want to compute an approximate solution of the variational problem (1.2)). Hence
we need unique solvability of the discretized problem as well. Let N € N. We con-
sider a finite dimensional subspace X} := span {(pk}évzl C X and want to find an
approximation wuy, of the solution u of where

N
Up = Zukgok € Xy, (14)

k=1
The Galerkin-Bubnov variational formulation is to find u; € X}, such that
<Auh, Uh> = <f, Uh> for all v, € Xj,. (15)
This problem is equivalent to solving the system of linear equations

Apu = f (1.6)
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where
Apll, k] = (Apr, 1), flI] == (f, @)

for [,k =1,...,N and u is the vector of coefficients regarding (1.4). For u,v € RY we
have
(Anu,v) = (Aup, vp).

Hence we get
(Anv,v) = (Avp, o) > ¢ lun]ls  for all v € RY

which implies the positive definiteness and therefore the invertibility of the matrix
Ap. Thus, the system of linear equations and the variational problem are
uniquely solvable.

Since X, C X, we have

(Au,vp) = (f,vp) for all v, € X,

where u is the unique solution of the variational problem (1.2)). By subtracting (|1.5))
from this equation we get the Galerkin orthogonality

(A(u —up),vp) =0 for all v, € X, (1.7)

The following theorem states a stability estimate for the approximate solution u; as
well as an error estimate with respect to the solution u of the variational problem

2.

Theorem 1.3 (Cea’s Lemma). [27, Theorem 8.1] Let A : X — X' be a bounded and
X-elliptic linear operator. For the unique solution uy € X, of the variational problem

(1.5) there holds

1
lunllx < — Ifllx
&

and
| Ix < 024 I f)_, | |
U — up|| y Clv;ghu Unll x -

Hence we have quasi-optimality of the Galerkin approximation u;, and we can use
approximation properties of the finite dimensional subspace X} to derive error esti-
mates and study the convergence of the Galerkin method.






2 Model problem

Let Q € R™ (n = 1,2,3) be a bounded domain with Lipschitz-boundary T' := 0%,
T € RwithT > 0 and a € R with a > 0. We consider the initial boundary value
problem
aduu(z,t) — Agu(z,t) = f(x,t)  for (z,t) € Q :=Q x (0,7T),
u(z,t) = g(x,t) for (z,t) € ¥:=T x (0,7), (2.1)
u(z,0) =ug(x)  forz e Q
with given source term f and boundary- and initial conditions g and wug satisfying
the compatibility condition g(z,0) = ug(z) for z € I'. Our aim is to represent the
solution of the problem in terms of the given data f, g and uy. Before we derive
the representation formula for the solution of the model problem we first consider

two special cases of the heat equation and compute analytical solutions of those two
problems.

2.1 Series representation of the solution

In this section we derive a series representation of the solution of the homogeneous
heat equation with boundary condition g = 0 and initial condition uy. Due to the
compatibility condition we have ugr = 0.

2.1.1 One-dimensional heat equation

Without loss of generality we choose 2 = (0,1) C R. Let uy € C(£2) be a given initial
condition with uy(0) = up(1) = 0. We consider the initial boundary value problem
adpu(z,t) — Oppu(x,t) =0 for (z,t) € (0,1) x (0,7,
uw(0,t) =u(l,t) =0 for t € (0,7), (2.2)
u(z,0) = ug(x) for z € (0,1).
By using separation of variables, i.e. u(x,t) = X (x)T(t), we get
aX (2)T'(t) = X"(2)T(¢)

which is equivalent to
()  X"(v)
T(t)  X(x)

o = )\ = const.

15



16 2 Model problem

Together with the boundary conditions in (2.2)) we get the Dirichlet eigenvalue problem
X"(z) = AX(z) =0 forz € (0,1),

2.3
X0)=X(1)=0 (2:3)
and the initial value problem
1
T'(t) — =AT'(t) =0 fort
(t) - (t)=0 fort >0, (2.4)

T0)=a
for some constant a € R. The eigenvalues and eigenfunctions of (2.3) are given by
)\k = —(k‘ﬂ' )2

and
Xi(x) = sin(kmx)
where k£ € N. The solution of (2.4)) is then given by

T(t) = ag exp (%)

We conclude that the functions

ug(x,t) = apexp (%) sin (kmx)

are solutions of the homogeneous heat equation in (2.2)) satisfying the boundary con-
ditions u(0,t) = ug(1,t) = 0. The series representation is given by

(e, t) = f: . (_(’ij)?t) sin (k).

It remains to determine the coefficients a; € R. Since u has to satisfy the initial
condition we have

u(z,0) = Z ag sin (kmx) = uo ().

k=1
Multiplying the equation with sin (I7z) and integrating over (0, 1) gives

% 1 1
Z ak/ sin (kmz) sin (Irz)dr = / up(z) sin (Irz)dz.
k=1 0 0

Since

1 1 if | =k
/ sin (kmx) sin (Irx)dr = < 2 1 7
0 0 if I #k,

we get

1
ap = 2/ uo(z) sin (kmz)dz.
0
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2.1.2 Heat equation in the unit square

Let = (0,1) x (0, 1) be the unit square and uy € C(£2) be some given initial condition
satisfying the compatibility condition

Uo(l’, 0) = Uo(flf, 1) = u0(07y) = UO(]-a y) = 0.
As in the spatially one-dimensional case we use separation of variables , i.e.
u(z,t) = Xi(z1)Xa(22)T(0),

to get
() X{(w1) | X5(x9)
(8% =
T(t) Xl([El) XQ([EQ)
In consideration of the homogeneous boundary conditions this relation leads to the
Dirichlet eigenvalue problems

= )\ = const.

X' (z;) — NiXi(x;) =0 for z; € (0,1),

2.5
for i = 1,2 and the initial value problem
1
T'(t)— =XT(t)=0 fort>0
(1) = A1) ort =5 (2.6)
T0)=a

for some constant a € R and A = A\; + Ag. The eigenvalues and eigenfunctions of (2.5))
are given by
/\i7k = —(k‘ﬂ' )2

and
Xix(z;) = sin (kmz;)

where k € N. The solution of (2.6)) is then given by
)\klt

1) = g ()

with Ay = — (k% + (?) 7%, Thus, the functions

g (x,t) = ag exp (M) sin (kray) sin (Irxs)
a

are solutions of the homogeneous heat equation with boundary condition u)s; = 0. The
general solution is given by the series

u(z,t) = Z Zakl exp (M) sin (krzy) sin (Irxs).

«
k=1 l=1
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It remains to determine the coefficients ag;. Similarly to the one-dimensional case we
get

1 1
ap = 4/ / uop (1, x2) sin (kmay) sin (Imxs)dxody.
o Jo

2.2 Representation formula and fundamental
solution

In order to state a solution of the initial boundary value problem and to de-
rive boundary integral equations the existence of a fundamental solution of the heat
equation is essential. In this section we will derive the representation formula for the
solution of the model problem including the fundamental solution of the heat
equation.

Theorem 2.1 (Green’s first formula). [1, Corollary 7.8] Let Q@ C R™ be a bounded
domain with Lipschitz-boundary T' = 9Q and u € C*(Q) N CY(Q). Then there holds

/Q[Au( x)v(z) + Vu(z) - Vo(zx) d:p—/ Yo(z)ds, for all v € CH(Q) N C(Q).

Assume that u € C?(Q) is a solution of the partial differential equation in (2.1).
Multiplying the partial differential equation in (2.1)) with a function v € C?(Q) and
integration over () leads to

/OT/Q [adsuy; s)v(y, s) = Ayuly, s)v(y, s)] dyds = /OT /Q [y, s)vly, s)dyds.

Applying Theorem to the second term of the left hand side gives

/0 / laduly, $)v(y, 5) + Vyu(y, 5) - Vyo(y, 5)) dyds

:/OT/Qﬂy’ s)u(y, S)dyd8_|_/0T/Fainyu(y, s)vu(y, s)ds,ds.

This equation is called Green’s first formula for the heat equation. By using integration
by parts regarding the first term of the left hand side and by rearranging the terms
we get

(2.7)

a/QU(y,T)v(y,T)dyza/U(y,O)v(y,O)der/0 /Qf(y,S)v(y,S)dyds
au(y, s)0sv(y, s) — Vyu(y, s) - Vyu(y, s)] dyds

L
+/O / y, 8)ds,ds.
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Again, by using Theorem 2.1 we get the equation

a/ﬂﬂ(y,T)v(y,T)dy = a/QU(yy(J)v(y?O)der/oT/Qf(y, s)o(y, s)dyds

- [ [ ety s) = Agota. o) uly,s)dus (28)

/ / u(y, s)o(y, s)dsyds — / / y, 8)ds,ds.

This equation is called Green’s second formula for the heat equation. We want the
third integral of the right hand side to be zero, i.e. we search for a function v which
is a solution of the adjoint homogeneous heat equation

—alsv(y,s) — Ay(y,s) =0 for (y,s) € Q.

Since we want to find a representation of the solution u = u(x,t) of the model problem
(2.1) we define v as

U(ya 8) = U(y - :C?t - S)
where (z,t) € @ is fixed. In this case we have
831](3/, S) - as(](y - I7t - S) = _aTU<y -, T)
where 7 =t — s, thus

ad.U(y —x,7) — AUy —2z,7) =0 for (y,s) € Q.

We assume the function U to be spherically symmetric, i.e. U(y — z,7) = U(r,7)
where r = |y — x|. For r # 0 we get

a@ﬁm7y4%ﬁvgy—m—1ﬁ@ﬁwquo (2.9)

L,vERandT>0(<:>s<t)weget

\/;

0,0(r.7) =7"g(2) -

0.U(r,m) = g'(2)72,
O U(r,7) = ¢"(z)77 .

With U(r,7) = 77g(z), where z =

1

-1,
g (2),

Therefore equation (2.9) changes to

1
a |y g(z) - 577‘129’(2) — " () = (n—1)=g'(z)77" 2 =0
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which is equivalent to

o o) - 32| = ") - (0= D3 ) . (2.10)

z

It remains to solve this ordinary differential equation. First we consider the one-
dimensional case n = 1, i.e. we have

1

avg(z) — 04529’(2) —4d"(2)=0

which can be written as
1 d [ 1 ,
o (v 5) a6~ ageat + o) =0

By choosing 7 = —% we get

7 ozeat + )] =0

Hence
1

a529(2) +9(2) =

with ¢y € R. By setting ¢y = 0 and using separation of variables we get

1
Ing=—-a-2>+¢

4

and with ¢; = 0 we conclude
OC 2
g(z) = exp (——42 ) (2.11)

which is a solution of the differential equation (2.10]) for n = 1. When inserting (2.11])
into (2.10)) for general n we get

0=« ['yexp <——z ) + Zzz exp ( 0422)] + gexp (—%22>

4 4 2
2
— %z exp (—%z2> +(n—-1) —eXp <—%z2>
n
o (-5 1+ )

Thus, (2.11)) is also a solution in the two- and three dimensional case if v = —
Reconsidering the definition of the functions U and U we have

0|3

aly — x|

Uly—a,t—s)=(t—s) " ?exp (— T ) for s < t.
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Due to the singularity of the function U at t = s we consider the space-time-cylinder
Qi—c =2 x (0,t —€) where 0 < ¢ < t. Analogously to (2.8]) we get

o [uty.t =ty =y = / w0 0ds+ [ [ Flonsioty. )ivds

—/ / —adsv(y, s) — Ayu(y, )] u(y, s)dyds
0
0
+/ /— u(y, s)v(y, s)ds,ds — / / Y, s)ds,ds.
0 0

With v(y,s) = U(y — x,t — s) we have

a/gu(y,t—e)U(y—w,e)dy:a/ﬂu(y,())U(y—x,t)dy

+ /t_e/ fly,s)U(y — x,t — s)dyds + /Ot_6 /F ainyu(y, s)U(y —z,t — s)ds,ds
/ / 8ny — s)u(y, s)ds,ds.

Let us consider the integral of the left hand side that is

—n/2 a|y - l’|2
a | u(y,t—e)U(y—x,e)dy=a [ e u(y,t —e)exp | —————— | dy.
QO Q 4e

By using the Taylor expansion u(y,t —¢) = u(z,t) + (y — 2) " Vou(&s, &) — e0pu(éy, &)

with
&) t —fe
where 6 € (0,1) we get

- aly —of a aly — =f*
m/gu@/;t —5) €xXp (_4—E)dy = u(I,t)m/Qexp <—4—8 dy

o - aly — z?

2 aly — x]?
_ M /(; 6tu(§:va ft) exp < 4—€> dy
(2.13)

Next we are going to show the convergence of the first integral of the right hand side.
First we consider the spatially one-dimensional case n = 1, i.e. Q = (a,b) with a,b € R

(2.12)
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and x € (a,b). We have
o ' ([ aly—ap
A:m/a exXp (_4—5)dy
I aly — x)? a [* aly — x)?
—m/a‘ exp (—4—8)dy+m/x exXp _4—8 dy

By using the substitution z = >= for the first integral and z = =" for the second one
we get

« ! a(z — a)?2?
A= m(:c — a)/o exp (—4—€>dz
a ! a(b — z)%2?
+ 81T(b — x)/o exp (_4—5>d2'

The substitution 2Z=2°2* n? for the first and a(b;—?%ﬂ = 7n? for the second integral

4e
leads to
A =2V« / exp (—nQ)dn + 2V / exp (—772)d77
0

0
and we finally get

A—> 4\/5/ exp (—n2)dn = 2y/am
0

as ¢ — 0. In the two-dimensional case we choose R > 0 such that Br(z) C Q and

consider )
€ JBg(w) de

The integral over €2\ Bg(z) converges to 0, since ¢ exp (—aly4—?|2> — 0 for y # x as

€ — 0. By using polar coordinates we get

R p2r 2 R 2
2
A= [ [T (<5 )raear =2 [Tewp (<5 Jrar
e Jo Jo 4e e Jo 4e
2
=A4r {1 — exp (—ﬂ)] — 47
4e

as € — 0. In the three-dimensional case we also choose R > 0 such that Bg(z) C Q2

and consider | |2
«Q aly —x
A= —— exp <——)dy.
63/2 Br(x) 48

As in the two-dimensional case the integral over Q\ Bg(z) vanishes. By using spherical
coordinates we get

R 27 s 2 R 9
_ @ ar 9 . _Ara ar )
A= /0 /0 /0 exp (—4—8)7« sin 0ddipdr = /0 exp (_ v )T 0
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The substitution n? = Oj4—’: leads to

R
4e
32m 32
A= ﬁ / exp (—7]2)7]2d7) — ﬁ exp (—nQ)nZdn = NG

as € — 0. The other two integrals in (2.13]) vanish as ¢ — 0 due to the boundedness
of V,u and dyu. We finally get the representation formula by taking the limit € — 0

in (2.12)), i.e. we have
1 t
o) = [ ulg. 00U =y iy + 2 [ [ Fl0 @ gt = s)dyds
Q 0 Jo

1L [[ 0 .
5/0 /1“ a—nyu(y, s)U*(x — y,t — s)ds,ds (2.14)
¢ 0

1 *
——/0 u(y, s )(9_nyU (x —y,t —s)ds,ds

o

where

n/2 2
) a —alzr —y|
U (x —y,t 8)—(47r(t—s)) exp< =) ) for s < t.

The function
a  \"* (—alz -y _,
* — exp| ———— |, s <t,
Uz —y,t —s) = \dn(t — s) P\ =) (2.15)
0, else

is called the fundamental solution of the heat equation. Due to the definition of U*

equation ([2.14)) can be written as

u(z,t) = / u(y, 0)U*(x —y, t)dy + — //fy, VU (x —y,t — s)dyds

/ / 8ny (x —y,t —s)ds,ds (2.16)
— —/ u( )ﬁU*(a: —y,t — s)ds,ds.
a 0 y? a y7 y

Remark 2.1. Let ¢ > 0. Due to construction the fundamental solution U* is a
solution of the homogeneous heat equation

(0, — A,) U (x —y,t —s) =0 for (x,t) € Q and (y,s) € 2 x (0,t —¢).
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Moreover the fundamental solution U* defined by ([2.15|) has the following properties.

Lemma 2.2. Fort > 0 there holds

/ U*(z,t)dr = 1.
Proof. Let t > 0. We have

. a2 —alz|?
. U(z,t) = (R) /n exp <—4t )d:ﬁ
= ‘"/2/ exp (—|z[*)dz
= ”/2H/ exp dzlfl

Lemma 2.3. Let ug € C(Q2) N L>®(Q). For x € Q there holds

lim [ U*(z —y, t)uo(y)dy = uo(x).

t—0 Q

Proof. Let ¢ > 0 and ug € C(Q2) N L*(Q2). The function g is defined as

o(z) = {uo(:c) for x € Q,

0 else.

Due to Lemma [2.2) and since U*(z,t) > 0 for (z,¢) € R" x (0,T) we have

/ U*(z — y, t)uo(y)dy — uo(z)| =
Q

< Ur(x —y,t) [uo(y) — ()| dy.

Rn

| vt = v ) aly) - Tl

Since wg ist continuous, there exists a constant § > 0 such that |ug(y) — ug(x)| < &/2
if |y — x| < 0. Hence we can write the last integral as

/ U — 1) [fo(y) — o(a)| dy = / U (& — 1) fioly) — Tio(a) | dy

Rm R™\Bs ()

n / U@ — 1) fioly) — To(a)]| dy.
Bs(z)
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The second integral can be estimated from above by

. ~ ~ 5 . 5
[ U=ty ~a@ldy <5 [ UG-y =

Bs(z) <e/2
Considering the first integral we have
/ Uz =y, 1) [uo(y) — u(x)| dy < 2|l po o / U*(z =y, t)dy,
R"\Bj(x) R™\Bs ()
since u € L>*(2). By using the substitution z = x — y we get
o \n/2 —|z|?a
U*(x — y, t)dy = U (2 t)dz = () / ZEL ) g,
[ ve-vna= [ veni- (5 exp (210 o
R"\Bj(z) R™\Bs(0) R™\Bs(0)
By using polar coordinates we get the estimate

00 o 00
/ U*(x —y,t)dy < Ct"/z/rnl exp ( Zta)dr =’ / p"texp (—p°)dp
é

R™\Bj(z) —1/2

at

1/

with suitable constants C,C’ > 0 and a = (%) ?. The last integral converges to zero

as t — 0, i.e. for t small enough there holds
U(z —y,t) [uo(y) — uo(x)| dy < /2.
R™\B; (x)

Altogether we have
[ U= v thun(wdy - wofa)| < e
Q

for ¢t small enough. Since € > 0 was arbitrarily chosen, the assertion is proven. O

Due to the representation formula it suffices to know the Cauchy data d,u s
and wjy to compute the solution of the model problem ({2.1). Thus, the problem is
reduced to the boundary. Since the boundary datum wuy;, = g is given, it remains
to determine the unknown conormal derivative 0,u|s;. By applying the Dirichlet and
Neumann trace operators (see Chapter [3)) to the representation formula (2.14) we get
boundary integral equations, which have to be solved. To study the existence and
uniqueness of solutions of the boundary integral equations we have to define suitable
function spaces, which will be discussed in the following chapter.






3 Function spaces

Solutions of the heat equation show different behaviour in temporal and spatial di-
rection. This leads to the concept of anisotropic Sobolev spaces, which we introduce
and discuss in this chapter. Under certain conditions we can define trace operators
acting on those spaces and therefore provide conditions for the given Dirichlet datum
g and the unkown Neumann datum &, ux; of the solution, which result in existence and
uniqueness theorems of solutions of the model problem (2.1). The presented results
are based on [12] and [13].

Before introducing the concept of anisotropic Sobolev spaces we recall definitions and
properties of standard Sobolev spaces, based on [14] and [27] .

3.1 Standard Sobolev spaces

Let © C R™ be a bounded domain with boundary I" := 0. For k € Ny the Sobolev
space Wi (Q) is defined as

WE(Q) :={v € Ly(Q) : D* € Ly() for all a € N : |a| < k}

where D*v denotes the weak derivative of v of order « [27, Chapter 2.2]. The Sobolev
space WX (Q) equipped with the scalar product

(v, W) = Z /DavDaw dx
Q

| <k

defines a Hilbert space. Let x € (0,1) and s :=k + x € R\ N. Then

2 1/
sy = { IulBsion + g
with Du(z) - Du(y)P
Du(x) — D*u(y
Ul o = // dxdy
W@ I;k aJo v — y|t2e

defines a norm called the Sobolev-Slobodeckii norm. The Sobolev space W3 (£2) defined
as

W3(©) = {v € WHQ) : [[ollyza) < o0}

27
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is a Hilbert space with respect to the scalar product

<U,’LU>W25(Q) — <’U,U)>W2k(ﬂ) + Z /{;/Q (Dav(ac) — Dav<y>) (Do‘w(ac) — Daw@))dwdy

o |z — |t

The Sobolev spaces H*(R™) are introduced using distributions [27, Chapter 2.4]. The
norm of a function u € H*(R") is given by

|

ey = [ (1 I o)
where 4 denotes the Fourier transform of u. For s € R{ we have [27, Theorem 2.4]
H*(R™) = W3 (R").
For a domain 2 C R"™ the Sobolev space H*({) is defined as
H*(Q) :={v="14:0€ H(R")}

with norm

ol = . inf Il

TEHS(R"), 0} He®) -

If Q is a Lipschitz domain we have [27, Theorem 2.6]
H*(Q) = W5 () for all s > 0.
Moreover we consider the spaces
() = GE@ e gaq) = @) e,
Again, if Q is a Lipschitz domain we have [27, Theorem 2.5]
Q) = [H(Q), H(9Q) = [ﬁ‘S(Q)}/ for all s € R.
From now on let €2 be a bounded domain with Lipschitz boundary I' := 0€). Similarly

to what we have seen above we can define Sobolev spaces H*(I') on the boundary I
for |s| < 1. For s € (0,1) the Sobolev-Slobodeckii norm is defined as

0]

) ) 1/2
He () = {HUHL2(F) + v Hs(r)} (3.1)

> [v(x) — v(y)]?
o = — 7 ds,ds,.
Hs(T) /F . |:v _ y|n—1+2s Yy

with

lv
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The Sobolev space H*(I') for s € (0,1) is defined as the completion of C(I') with
respect of the Sobolev-Slobodeckii norm ([3.1]) and is a Hilbert space with scalar product

(1000 2= (00D + [ / W) (wle) = o)) g,

|$ _ y|n 1+2s

For s = 0 we have H(T") = L*(T).
Sobolev spaces with negative order s € (—1,0) are defined as the dual spaces of
H=*(T), i.e. we have

with norm

||w| Hs(D) "= sup —<w7U>F

0#£veH —5(T") ||U||H*S(F)

where (-, -)r denotes the duality product

(w, o) = / w(z)u(e)ds,.

3.2 Anisotropic Sobolev spaces

In this section we introduce anisotropic Sobolev spaces. The definitions and the main
results are based on [12] and [13].
For r, s > 0 the anisotropic Sobolev space H™*(R" x R) is defined as

H™(R" x R) := L2(R, H"(R™) N H*(R, L*(R"))
where
ve H'(R,LX(RY) & (14 |72)% 6 € L*(R* x R)

and v denotes the Fourier transform of v with respect to the time variable . The space
L*(R, H"(R™)) can be characterized in a similar way by using the Fourier transform
with respect to the spatial variable x. The norm of a function u € H™*(R" x R) is
given by

il e iy = /R/ [(L+1€P)" + L+ 17P) ] fal, m)Pdedr.

For @ = Q x (0,T), where Q C R" is a bounded Lipschitz domain and 7" > 0, the
space H™*(Q) is defined as the space of restrictions of functions in H™*(R" x R) to @
equipped with the quotient norm. We write

H™(Q) = L*(0,T; H" () N H*(0,T; L*(2)).
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Moreover we define the space of functions in H"*(Q)) with zero initial conditions
H™(Q) := {u="10:ueH*(Qx (—00,T)) : u(x,t) =0 for t <0} .
Another important space in terms of existence and uniqueness analysis is the space
V(Q) = L*(0,T; HY(Q)) N H'(0,T; H(Q))

with norm
2 2 2
lullyigy = lullze0. 1 ) + @0l 20 .m-1(0) (3.2)

and its subspaces

V(Q) = {u=10:ueV(Qx(—0,T)): u(z,t)=0fort <0},
Vo(Q) := L*(0, T Hy (Q)) VH(0,T; HH(Q)).

The space ]7(@) is the space of functions in V(@) having zero initial conditions, whereas
Vo(Q) denotes the space of functions in V(@) having zero boundary conditions. The

norms in (3.2)) are given by

T
2 2
T ——— / ey )

and
(aOpu,v)g

2
Ho‘atuHLQ(O,T;H—l(Q)) = sup
0#£veL2(0,T;HL () [[v]] L2(0,T;H}(R))

with .
2
1ol 01y = / / V,0(e, ) Pdrdt.

The space V(Q) is a dense subspace of Hl’%(Q) [12, Theorem 12.4]. An important
property of functions u € V(Q) is, that they are in some sense continuous in time.
More precisely we have

u € C([0,T); L*(£2)). (3.3)

If u € L2(0, T; H*(Q) N H'(0,T; L*()), then u € C([0, T]; H'()).

3.3 Anisotropic Sobolev spaces on X

The spaces H™*(X) for r,s > 0 are defined analogously. We have
H™(S) == L2(0, T; H"(T) N H*(0, T; LX(T)).

For r,s € (0,1) an equivalent norm is given by

2 2
[[ul Hrs(X) "= Hu”m(z) + ’u|%2(O,T;HT(F)) + |u ?“{S(O,T;LQ(F))
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|u(z y. t)?
|ul 220 28 (ry) /// |x_y|n 1+2 ds,ds,dt

T Ju, )||L2
)
Jul H#(0,T;L2(T)) / / T|1+25 drdt.

Moreover we define the subspace

with

and

H*(S) := L*(0,T; H'(I")) N H{(0,T; L*(T))

which is the closure in H"*(X) of the subspace of functions vanishing in a neighborhood
oft=0and ¢t ="T. For 0 < s < 3 we have H5*(X) = H™(X).

Anisotropic Sobolev spaces on ¥ with negative order r, s < 0 are defined as the dual
spaces of H " *(X), i.e. we have

H™(5) = [H" (D))

with norm

L <w>U>E

||w||HT15(E) T Sup || ||
0veH ;" (2) IV H-—=s(5)

where (-, )y denotes the duality product

(w,v)s ::/Ew(y,s)v(y,s)dsyds.

Let € C R" be a bounded Lipschitz domain with boundary I' = 0. For a function
u € C(Q) we define the interior Dirichlet trace

yty(x,t) ;= lim  u(Z,t) for (x,t) € %.

Q37— zel

Hence ~™u coincides with the restriction of u to the space-time boundary %, i.e. we

have v« = uy,. The following theorem provides a relation of the Dirichlet trace " u

and v in case of functions in anisotropic Sobolev spaces.

Theorem 3.1. [13, Theorem 2.1] Let u € H™*(Q) with r > 3, s > 0. Then there
exists a linear, bounded operator vi™ : H™*(Q) — H""(X) with

||7mtuHHW(Z) <ecr ||u||HT,S(Q) for alluw € H™(Q),
where =1 — ;, v =s8— g3 and o 1s an extension of VM = s, for u € C(Q).

If r =1 and s = 5 we have 7" : HY2(Q) — H21(X). The Dirichlet trace operator

also satisfies a surjectivity property in the following setting.
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Lemma 3.2. [2, Corollary 2.12] The mapping " : V(Q) — H2 (%) is surjective.

Since we want to compute the conormal derivative of solutions of initial bound-
ary value problems, we have to define some Neumann trace operator as well. Let
u € C'(Q). The interior Neumann trace of u is defined as

Wulz,t) = lim n,-Vzu(Z,t) for (z,t) € X
Q3z—zel

Hence ~{™u coincides with the conormal derivative of u, i.e we have 7™u = 9,us.
Again, we want to define the Neumann trace of functions in anisotropic Sobolev spaces
as well. Four our purposes it suffices to restrict to the space

HY3(Q, 08, — A,) == {u € H"3(Q): (ad, — Ayu € LQ(Q)} .

Theorem 3.3. [2, Proposition 2.8] The mapping 7{™ : H3(Q,a0,—A,) — H 271(%)
is linear and bounded. If u € C*(Q) then v{™u = d,ujx in the distributional sense.

3.4 Piecewise smooth functions on X

Let I'g C I' = 0€2 be an open part of the boundary of 2. For » > 0 we define the space
H'(Lo) :=={v="7pr,:0€ H'(T)}

equipped with the quotient norm. For a closed, piecewise smooth boundary I' = UiJ:1 T,

with I; NT'; = 0 for ¢ # j and r > 0 we define the space of piecewise smooth functions
on I' as

H () :={veLl’T):yr, € H(I) fori=1,..,J}

; 1/2
||U||H;W(r) = <Z1 v, ZT(D‘)) '

With 3, =T, x (0,T) for j = 1,...,J we have 3 = szlij. For » > 0 and s > 0 we
define anisotropic Sobolev spaces on the open part ¥; of the space-time boundary ¥
as

with norm

H>(5;) ={v="0g,:0€ H*(D)},
Hy* (%) ={v="7,: 0 € H(X) : supp v C ;}

and the space of piecewise smooth functions on ¥ as

H#(S) = {veLl’(X) vy, € H(X;) for j=1,...,J}
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J 1/2
||U||Hg;5(2) = (Z ||U\Ej| Zr»s(zj)) :
J

For r, s < 0 the anisotropic Sobolev spaces on X; are defined as the dual spaces

with norm

/

H™(%)) = [Hy" ()], H™(Z)) = [H ()]
and

J
Hys(3) = [ [ ()
j=1

with norm

J
||w||H;:,§(Z) = 2 leij‘ Hrs (%)
=

Lemma 3.4. Forr,s <0 and w € Hy;;(X) there holds

||w||HTvS(E) < ||w||H;;;5(z)-

Proof. For w € H};2(¥) we have

w, V),
Hrs(s) = SUD L o, o))

OAveH (%) HUHH*“*S(E) 0#£vEH ;" 75 () j=1 HUHHfrﬁs(z)

[[]

< sup |<w|2j, U|2j>2j|

0£vEH " °(%) =1 ”v\Ej ”Hfr»fs(zj)

Since H"7*(¥) € H™7°(X) we get

Joll ey < sup i, v, )
Hrs(Y) =
OAveH—m#(8) S5 va]’HH*"’*S(Ej)
J
< sup
;omems@j) 13l (s

[(wys,, vi)s,|
e = ||wHH£{,f(E) .






4 Existence theorems

Using the concept of anisotropic Sobolev spaces we can prove existence and uniqueness
of solutions of the initial boundary value problem (2.1)). We consider different settings
of the model problem.

Lemma 4.1. [2, Lemma 2.3] Let f € L*(0,T; H(Q)). Then the initial boundary
value problem

adu — Ayu=f in Q,
u=0 on X,

u=0 onQx{0}

has a unique solution u € Vo(Q).

Theorem 4.2. [5, Chapter 7, Theorem 3]. Let ug € L*(Q) and f € L*(Q). Then the
wnitial boundary value problem

adu — Azu=f in Q,
u=0 on, (4.1)
u=wuy on§x{0}

has a unique solution u € Vy(Q).

Regarding the unique solution u € Vy(Q) C H 1%(62) of the initial boundary value
problem we have vty € Hzi(X) and since (ad, — Ay)u = 0 we conclude
u e HY2(Q,ad, — A,) and therefore 4™y € H-2~1(X). Higher regularity of the
initial condition ug leads to higher regularity of the solution wu.

Theorem 4.3. [5, Chapter 7, Theorem 5] Let ug € Hy (), f € L*(Q) and u € Vo(Q)
be the unique solution of problem ([A.1]). Then w € L*(0,T; H*(U)) N H'(0,T; L*(U)).

Theorem 4.4. [, Theorem 2.9] Let g € Hz1(X). Then the initial boundary value

problem
adiu —Au=0 inQ,

u=g on, (4.2)
u=0 onQx{0}

has a unique solution u € H"/2(Q).

35
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The unique solution u € H2(Q) of ([@.2) satisfies ad,u — Ayu = 0. We conclude
O € L*(0,T; H1(Q)), since

1
Opu = anu € L*(0,T; H(Q)).

Hence we have u € V(Q).

Theorem 4.5. Let ug € L*(Q) and g € H23(X). Then the initial boundary value

problem
adiu — Ayu=0 1inQ,

u=g on?d, (4.3)
u=ug on§x{0}
has a unique solution u € V(Q).

Proof. Let u € Vy(Q) be the unique solution of the initial boundary value problem
(4.1) with f = 0 and initial condition uy € L*(2) which exists according to Theorem
4.2l For u := u + U we have

adit — Azu=0 1in Q,
Uw=g onx,
=0 onQx{0}

since u € C([0,T],L*(2)). Theorem implies, that there exists a unique solution
€ V(Q). Hence u =u+u € V(Q) is a unique solution of (4.3)). O



5 Boundary integral operators

We consider the Dirichlet initial boundary value problem (2.1)) with source term
f € L2(Q), boundary condition g € H2'1 (%) and initial condition uy € L($2). The
solution for (z,t) € @ is given by the representation formula

u(z,t) /U*:L’—y, tug(y)dy + — / /U*x—y, s)f(y, s)dyds

/ /U* r—y,t )8—u(y, s)ds,ds
__/ /a—nyU* r—y,t—s)g(y, s)ds,ds.

By applying the trace operators we get boundary integral equations. To study the
unique solvability of those equations we have to analyse the mapping properties of
the heat potentials. The presented theory on boundary integral operators for the heat
equation is mainly based on [2].

5.1 Initial potential

Let ug € L*(Q). The function

(Mouo)(z, 1) = /QU*(x —y, tue(y)dy  for (z,t) € Q (5.1)

is called initial potential of the heat equation with initial condition uy. For x € " and
t € (0,7) we define the boundary integral operators

(Mouo)(, 1) == 7 (Mouo)(z,t) = Lim (Mouo)(Z, t)

O>z—zel

and
(Myug)(, 1) == Y™ (Mouo)(x,t) = lim _ng - Va(Mouo)(Z, 1).

Q>5T—zxel

The initial potential has the following properties.

Lemma 5.1. The initial potential ]\%uo with ug € L*(Q) is a solution of the homoge-
neous heat equation in Q).

37



38 5 Boundary integral operators

Proof. Let u(zx,t) = (Mouo)(m,t) for (x,t) € @ be the intial potential with initial
condition ug € L*(2). We have

aduu(z,t) — Ayu(z,t) = (a0, — Azu) /Q U*(x — y, t)uo(y)dy.

The fundamental solution U*(z — y,t) is smooth for ¢ > 0 and x € Q. Thus, we can
exchange integration and differentiation. Using the fact, that U*(x —y, t) is a solution
of the homogeneous heat equation for all y € €2 we get

adwu(z,t) — Agu(z, t) = / a0 U™ (z —y,t) — AU (z — y, t)] up(y)dy = 0.
Q> ~

=0

]
Lemma 5.2. For uy € C(2) N L>®(Q) and x € 2 it holds
lim(Mouo)(z, t) = uo(z).
t—0
Proof. Follows with Lemma O

Hence the initial potential satisfies the initial condition.

Lemma 5.3. [I8, Lemma 5.4] The mapping My : L*(Q) — HY3(Q,ad, — A,) is
linear and bounded.

Hence according to Lemma and Lemma the integral operators My = 'y(i)nt]\%
and M, = ’}/thg are well defined and bounded. We have

Mo : L3(Q) = H23(S),
My : LX(Q) — H =~

5.2 Volume potential

Let f € L*(Q). The function

(Nof)(z,1) / /U* x—y,t—8)f(y,s)dyds for (z,t) € Q (5.2)

is called volume potential of the heat equation with source term f. For x € I' and
t € (0,T) we define the boundary integral operators
(Nof)(,) == 5" (Nof)(,t) = __lim_(Nof)(,t)

Q3z—xel

and
(NLf)(@, 1) =" (Nof) (2, ) = lim _n, - Va(Nof)(@,1).

Q3z—zel
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Lemma 5.4. Let f € O(Q). The volume potential Nof is a solution of the partial
differential equation

aduu(z,t) — Ayu(z,t) = f(x,t)  for (z,t) € Q.

Proof. Let u(x,t) :== (Nof)(x,t) for (z,t) € Q be the volume potential with source
term f € C(Q). We have

adyu(z,t) — Ayul(z, t) = (ad, — A)(Nof)(, 1)

t—e
= (ady — A, )hm /U* r—y,t—s)f(y,s)dyds.

e—0 v

Let ¢ > 0. The fundamental solution U*(x — y,t — s) is smooth for ¢ > 0 and
€ (0,t — e). Hence we can apply the Leibniz integral rule and exchange integration
and differentiation. We have

(0y — /t 6/U*:zc—y,zf—s)f(y, s)dyds
- / ot = )t dds + [ U= 250t - )y
0 Q Q
1 t—e )
_a/o /QAIU (x —y,t —s)f(y,s)dyds
= [ [ o= s vt -t - st g
0 Q o
+ / U(x —y,e)f(y,t —e)dy.
Q

Since U*(x — y,t — s) is a solution of the homogeneous heat equation for y € Q and
€ (0,t — ¢), the first integral of the right hand side vanishes. Additionally Lemma
implies

| U@ =)t =iy — St
as € — 0. Since € > 0 was arbitrarily chosen we get
(dy — Ap)u(zx,t) = f(x,t).
O

By definition the volume potential satisfies (Nof)(z,0) = 0 for x € Q. Due to

Lemma and Theorem we conclude Nj : LZ(Q) — HY2(Q, ad, — A) is linear

and bounded. Hence the integral operators Ny = thO and N; = ’}/thg are bounded
as well. We have

No: L*(Q) — H>1(D),
Ny LA(Q) —» H 3 i(%).



40 5 Boundary integral operators

5.3 Single layer potential

The single layer potential of the heat equation with density w € H~2~1(%) is defined
as

(Vw)(z,t) == é/o /FU*(x —y,t —s)w(y, s)ds,ds  for (z,t) € Q. (5.3)

For x € I" and t € (0,7) we define the single layer boundary integral operator V' with
density w as
(Vw)(@, 1) = (Vw) (e, t) = lim_ (Vw)(F,1).

Q3x—zel

Lemma 5.5. The single layer potential Vw with density w is a solution of the homo-
geneous heat equation in Q).

Proof. Let (z,t) € Q x (0,T) and w € L2(%). For u(x,t) := (Vw)(z,t) we have
aduu(x,t) — AIU(CEJ) = (a0, — A )(‘7w)( t)

t—e
= (a0 — A, )hm /U* r—y,t—s)w(y,s)ds,ds.

e—0 v

Let ¢ > 0. The fundamental solution U*(z — y,t — s) is smooth for y € Q and
€ (0,t — ). Thus, we can apply the Leibniz integral rule and exchange integration
and differentiation. We have

(a0, — / / U (2 =y, t — s)w(y, )ds,ds
/’(/a (@ =1t = sulydsds + [ V(o =y huly.t = )ds,

__/ /A U (z =y, t — s)w(y, )ds,ds
_ /0 /F {at—aaz} U* (2 — g, £ — s)wly, s)ds,ds

-5Awa—%> (4.1 — e)ds,

The fundamental solution U*(z — y,t — s) is a solution of the homogeneous heat
equation for (z,t) € 2 x (0,7) and (y,s) € I' x (0, — ¢). Thus, the first integral of
the right hand side vanishes. For x € Q) and y € I" we have = # y and therefore the
dominated convergence theorem [4, Theorem 5.2] implies

/U*x—y, w(y,t —¢e)ds, — 0
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as € — 0. Hence we get
(a0 — Ap)u(z,t) = 0.

By using a density argument we conclude that the statement holds for w € H —371 ()
as well. O

N,

Lemma 5.6. [2, Remark 3.2] The mapping V : H21(%) — H“2(Q,ad, — A,) is

linear and bounded.

Hence Vw = v(i]nt(‘N/w) is well defined and due to Lemma|3.1| the single layer bound-

ary integral operator

=

)

ST

V=AY Ho27a(%) — H2i(X)

is linear and bounded, i.e. there exsists a constant ¢y > 0 such that

<cy ||w||H_%,_1 for all w € H—%v—i(g)'

Vel 3.3, )

)

For the exterior trace we have

(Vw)(z,t) = (Vw)(z,t) = lim  (Vw)(Z,t) for (z,t) €D

R?M\Q37—z€l

and therefore we obtain the jump relation

[70‘711)] .= A (Vw)(w, t) — At (Vaw)(z,8) =0 for (z,) €5, (5.4)

5.4 Adjoint double layer potential

Due to Lemma the operator ¥V : H-2~i(X) — H~2~1(%) is linear and
bounded.

Lemma 5.7. [7, Chapter 5, Theorem 1]. Let w € C(X) and (z,t) € X =T x (0,T).

The single layer potential Vw satisfies the relation

N (V) (z,t) =  lim nx-vzﬁw)(a??t)=%w<x,t>+<K’w>(ﬂc>t>

Q3z—zel

where

(K'w)(x,t) = é/ot/r ﬁix U(x —y,t — s)w(y, s)ds,ds for (z,t) € X

15 called the adjoint double layer potential with density w.
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The exterior conormal derivative of the single layer potential satisfies

V() (2,8) = lim nx«Vg(Vw)(?c',t):—%w(:c,t)—l—(K’w)(:c,t).

R?\Q3F—z€l

Thus, we get the jump relation

[%?w]l — TV w) (e, ) — Y (Vw) (2, 1) = —w(z,t) for (z,1) € 5.

Using this relation, we can define the adjoint double boundary integral operator for
. 1 1
functions w € H 271(X) as

K'w = ; ( (V) + ﬁ’“(Vw))

Due to the linearity and boundedness of V and the Neumann trace operators the
mapping
K':H 2 i(X) > H 271(%)

is linear and bounded. The jump relation for the conormal derivative of the single
1 1
layer potential holds for functions w € H™271(X) as well, i.e. we have

[711711}] 5 —w(z,t) for (x,t) € X. (5.5)

5.5 Double layer potential

The double layer potential of the heat equation with density v € Hz'1(X) is defined
as

(W / /GTU* r—y,t—s)v(y,s)ds,ds for (z,t) € Q. (5.6)

Lemma 5.8. The double layer potential Wv with density v is a solution of the homo-
geneous heat equation in Q).

Proof. Let (z,t) € Q% (0,T) and v € H21 (). For u(x, t) := (Wv)(z,t) we have

adpu(z,t) — Ayu(x, t) (a0 — Ay)(Wo)(x,t)
t—e
= (a0, — il_r>n 1~ / 8_nyU r—y,t—s)v(y, s)ds,ds.
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Let € > 0. As in the case of the single layer potential we can apply the Leibniz integral
rule and exchange integration and differentiation. We get

t—e
(0 — Az)l/ / iU*(JU —y,t—s)v(y, s)ds,ds
ony

«

t—e a 1 N
= /O /Fa—ny |:8t — EACE:| U (‘T - yvt - S)U(y7 S)dsde
9 .
+/8—%U (x — y,e)oly, t — £)ds,.

The first integral of the right hand side vanishes, since U*(z — y,t — s) is a solution
of the homogeneous heat equation. For x € (2 and y € I' we have x # y and therefore
the dominated convergence theorem [4, Theorem 5.2] implies

/a—nyU*x— e)v(y,t —e)ds, — 0
as € — 0. Hence we have
(@ — Ap)u(z,t) = 0.
O]

Lemma 5.9. [2, Proposition 3.3] The mapping W : H21 () — HY2(Q, ad, — A,) is
linear and bounded.

Thus, the linear operator 72W : Hz'1(X) — H21(X) is well defined and bounded.

Lemma 5.10. [7, Chapter 5] Let v € C(X) and (x,t) € ©. The double layer potential
W satisfies the relation

VEWo)(z,t) =  lim  (Wo)(Z,t) = —%v(x,t) + (Kv)(z,t)

O3Z—zel

where K denotes the double layer boundary integral operator defined as

(Kv)(z,t) = l/ / %U*(x —y,t —s)v(y, s)ds,ds  for (x,t) € X.

The exterior Dirichlet trace of the double layer potential satisfies

VX (Wo)(x,t) = lim  (Wo)(z,t) = %v(m,t) + (Kv)(z,t) for (z,t) € X.

R™M\Q5T—z€l

Hence we have the following jump relation for the Dirichlet trace of the double layer
potential

W)y = VW) (z,t) — v (Wo)(x,t) = v(z,t)  for (z,t) € 2. (5.7)
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Using this relation we can define the double layer boundary integral operator K for
11
functions v € H2'1(X) as

Kv == (%" (W) + 15 (W) .

DN —

The boundedness of the mapping
K:H>i(X) - H2i(x)

follows from the boundedness of the operator W and the Dirichlet trace operators.
The jump relation (5.7 holds for functions v € H %75(2) as well, i.e. we have

oW og = v(z,t) for (z,t) € X. (5.8)

5.6 Hypersingular boundary integral operator
The hypersingular operator D with density v € H %’i(E) is defined as

(Dv)(z,t) := =" (Wo)(z,t) = —  lim n, - Va(Wo)(z,t) for (z,t) € X.
Qoz—zel
Due to the boundedness of the operator W and the Neumann trace operator the

hypersingular operator L o
D:H>»%(X) = H 2 4(%)

is bounded as well, i.e. there exists a constant ¢’ > 0 such that

1Dl 4oy < €8 10l for all v € H2 ().

1) HE(x)

The conormal derivative of the double layer potential satisfies the jump relation [2]
Theorem 3.4]

(MWl = AP W) (2, 1) — A (Wo)(x,t) =0 for (z,t) € 2.
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Let us consider the representation formula ([2.16)) for the solution of the model problem
(2.1)). For (z,t) € Q we have

(@, 1) = (VA"u) @, 1) — (WA u) (@, £) + (Mouo) (7, 1) + (No)(F 1).

By applying the Dirichlet trace operator and recalling the jump relations of the heat
potentials we get the first boundary integral equation

Yo u(r, t) =(VAu)(z, t) + Evému(x,t) — (K~ u) (x, t)

+ (Mouo)(,t) + (Nof)(z,1)

for (z,t) € X. Similarly by applying the Neumann trace operator we get the second
boundary integral equation

(6.1)

in 1 in in in
T tu(w7 t) 25’71 tu(xa t) + (KIIYI tu)($7 t) + (D’yO tu)(l'a t)

+ (M1u0)<x7t) + (le)(xvt)

for (z,t) € X. Together these equations lead to the Calderén system of boundary
integral equations. We have

wu) (31— K Vv Voru n Moug n Nof
U D I+ K') \hiu Miuqg Nif) (6.3)
—¢C

The operator C is called the Calderén projection operator.

(6.2)

Lemma 6.1. C is a projection, i.e. C = C>.

Proof. Let (1, p) € H 271(X) x Hz'1(X). Then the function

is a solution of the homogeneous heat equation. By applying the trace operators we
get the boundary integral equations
. 1
W=V + (51 - K) 0

: 1
W = (51—1— K’) Y+ De.

45



46 6 Boundary integral equations

Additionally u is a solution of the homogeneous heat equation with Cauchy data
ity yity and inital condition uy = 0, i.e. we have

Yu\ (AT -K 1% yinty,
Aty ) D %]—i—K’ Aty )

Inserting (6.4) leads to

II-K Vv v\ (M -K V 2 1y
D I+K)\¢) \ D LiI+K) \¢)

Since the functions 1), ¢ were arbitrarily chosen, we conclude C = C2. ]

N =

In consequence of the projection property of the Calderén operator we have the
following relations.

Corollary 6.2. The boundary integral operators satisfy

1 1
D=(-I-K)||=I+K
Vo= (31 ) (31 +5).
DV = 1I+K’ 1[—K’

S\ 2 2 ’

VK' =KV,
K'D = DK.
Proof. Follows from C = C2. [

Let us recall the mapping properties of the boundary integral operators. We have
V:H2TI(E) - H(5),
K:H>i(2) - H2i(x),
K':H 2 i(X) > H 2 1(%),
D:H>%(S) » H 2 1(%).
Theorem 6.3. [2, Corollary 3.10, Theorem 3.11] The operator
A H21(S) x H271(8) — H21(2) x H271(%)

-K V
Am ( ! K,)
1s an isomorphism and there exists a constant ¢y > 0 such that

—-K
(D) (e 2 (D) 2 (g + et )

for all (Y, ) € H271(X) x Hz1(3).
By using this theorem we can prove the ellipticity of the operators V' and D.

(6.5)

defined as
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6.1 Ellipticity of the single layer boundary integral
operator V

Lemma 6.4. The single layer boundary integral operator V defines an isomorphism
and there exists a constant ¢{ > 0 such that

Vw,w) > ¢! [Jwl|]? for all w e H’%”i(E).

H >7i(%)
Proof. Follows from Theorem [6.3] with ¢ = 0. O

Hence the single layer boundary integral operator V : H™2~1 (%) — H24 (%) is
bounded and H ’%”%(E)—elliptic and therefore invertible. Thus, the inverse operator
V-1 H2i(%) — H 2 1(2) is well defined and bounded according to the Lemma of
Lax-Milgram (Theorem [I.1)). We have

[ P for all v € H21(X).

et < ol

1

& HE (%)

6.2 Ellipticity of the hypersingular boundary
integral operator D

Lemma 6.5. The hypersingular boundary integral operator D defines an isomorphism
and there exists a constant cP > 0 such that

(Dv,v) > P v’ forallve Hz %(E)

H>1(%)
Proof. Follows from Theorem [6.3] with ¢ = 0. O

Hence D is invertible and according to the Lemma of Lax-Milgram (Theorem [1.1))
we have

1D ]| gy <o for all w € H™271(%).

gl
HY (%) ClD

1 _1
H 271(%)

According to Corollary [6.2] we have the relations

1 1
D=(-I-K||=I+K
Vo= (31 K) (314 ).
DV = 1I+K’ 11 K’

S \2 2 '
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Since V' and D define isomorphisms, the operators

1 1
gl K5I +K: H2i(Y) = H2i (%),

1 1 1 1 1 1

I K\ S+ K :H 27i(S) — H 2 4(%)

2 2

define isomorphisms as well. Hence these operators are invertible. It is well known
that under certain circumstances these operators define contractions, see [17] and [19].
For example if the boundary I' is C?, then the double layer boundary integral operator
K defines a contraction for sufficiently small 7.

6.3 Steklov-Poincaré operator

We consider the system of boundary integral equations corresponding to the homoge-
neous heat equation with initial condition ug = 0. We have

You\ (AT -K 1% Yanty,
Aty ) D I+ K ) \hitu)
Using the first integral equation we can define the Dirichlet to Neumann map
. 1 .
Aty = V1 (51 + K) Y. (6.6)

The operator

NI

S =V (%I + K) L H2a(X) —» H 27 a(%) (6.7)

is called Steklov-Poincaré operator for the heat equation. When inserting into
the second boundary integral equation we obtain

W = {D + (51—1— K’) V! (51—1— K)] Yo't

Hence we get a symmetric representation of the Steklov-Poincaré operator. We have

1 1
S=D+ (51 + K’) vt (51 + K> : (6.8)

Due to the boundedness of the operators K, K’, D and V! the operator S is bounded
as well.

Lemma 6.6. The Steklov-Poincaré operator S is H%’%(Z)—elliptic, 1.e. there exists a
constant ¢f > 0 such that

(Sv,v) > ¢f H'UHZI | for allv e H%’i(Z).

3(z)
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Proof. For v € H23(%) we define ¢ := V' (L + K)v € H™274(%) and get

(C/j) : Gg, _é() (f)> = %(Vl (%IJFK) v,v) + (v, K'V 1 (%I+K> v+ Dv)

1 1
= (v, (51 + K’) V! (51 + K) v+ Dv)
= (v, Sv).
The statement follows with Theorem [6.3] O

6.4 Dirichlet initial boundary value problem

Let us consider the initial boundary value problem
aduu(z,t) — Ayu(x,t) =0 for (z,t) € Q =Q x (0,7,
u(x,t) = g(x,t) for (z,t) e =1 x (0,7),
u(z,0) =ug(x)  forz e Q

with boundary condition ¢ € Hz'1(X) and intial condition uy € L2(2). Then the
solution is given by the representation formula

u(@, 1) = (VA"u) (3, 1) — (Wo)(F,£) + (Mouo) (7, 1) for (&,1) € Q.

It remains to determine the unknown conormal derivative vi"u € H ’%’i(Z). There
are different ways to accomplish this. For example we can use the boundary integral
equations to solve the problem. This is called direct approach. First let us
consider the boundary integral equation , i.e. we have

. . 1 . .
e, ) = (V) (e, 8) + o5l ) — (Kaie) (e, ) + (Mou) (2,1

for (z,t) € ¥. We have to find vi™u € H~2~1(X) such that
1

. 1
VAytu = (51 + K) g — Myug on X.

Since the boundary integral operators K : Hz1(X) — Hz1 (), My : L2(X) — H2 (%)
and V : H"271(%) — H21(X) are bounded and V is H-2~1(%)-clliptic, there ex-
ists a unique solution vy € H~24 (%) according to the Lemma of Lax-Milgram
(Theorem [1.1). The solution "y satisfies

1 1
— I+ K
o (H(z i )g

+ HM0U0\|H;,}1(E)>
1

w M
o7 (gl 145y + A" Neol2).

int
ull -3.-4
H% H™274(%)

IN

11
H2'1(x)

IN
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int

The variational formulation of the problem is to find vy € H~21(%) such that
. 1 11
(VAy™u, )y = ((51 + K> g, T)s — (Moug, )y, forall T € H 27 1(%).

We could also use the second boundary integral equation to determine the unknown

int

Neumann datum ~;"u, which is given by
in 1 in in in
(e, t) = gotule, t) + (K" (e, 6) + (Drgu) (e, 8) + (Myuo) (@, )

for (z,t) € X. We have to find v« € H~21(X) such that

1 .
(51 - K') u = Dg + Myug on X.

The operator %I — K’ is invertible and therefore there exists a unique solution of the
problem. B
Another approach is using an indirect formulation with the single layer potential V.
A solution of the homogeneous heat equation with initial condition ug is given by

w@, t) = (Vw)(Z,t) + (Mouo)(Z,t)  for (Z,t) € Q

with density w € H —3q (X). By applying the Dirichlet trace operator to this equation
we get
g(x,t) = (Vw)(x,t) + (Moug)(z,t) for (x,t) € X. (6.9)

Thus, we have to find w € H=2(X) such that
Vw=g— Myug on X.

As in the case of the direct formulation with the first boundary integral equation
the unique solvability follows with the Lemma of Lax-Milgram (Theorem [1.1]). The
variational formulation is to find w € H~24(X) such that

(Vw,7)s = (g — Myug, 7)y  for all T € H 774 (%).
In the same way we can use the double layer potential W. The function
w(@, t) = —(Wo) (@, t) + (Mouo)(%,t)  for (Z,t) € Q

with density v € H 21 (33) solves the homogeneous heat equation with initial condition
ug. Applying the Dirichlet trace operator leads to the boundary integral equation

g(x,t) = %v(m,t) — (Kv)(x,t) + (Moug)(z,t) for (x,t) € X.
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Hence we have to find v € H2'1(2) such that

1
(§I—K)v—g—M0u0 on .

Again, this problem is uniquely solvable since the operator %] — K is invertible. The
variational formulation of this problem is to find v € H e (3) such that

1 1 1
<<§I - K) v, )y = (g — Moug, )y forall T € H 27 1(%).

Hence the ansatz space and the test space differ in this setting.
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The solution of the Dirichlet initial boundary value problem ({2.1)) with initial condi-
tion ug, boundary data ¢ and source term f = 0 is given by

u(@, 1) = (VA" u) (@, 1) — (Wg)(F, ) + (Mouo) (7, 1) for (&,1) € Q.

In the previous chapter we have shown, that we can determine the unknown conor-

mal derivative v{™u by solving the first boundary integral equation (6.1)), which is

equivalent to solving the corresponding variational formulation. We have to find
int B

w :=~y"u € H-2~1(X) such that

1
(Vw, 1)y = ((51 + K) 9, 7)s — (Moug, 7)y  for all T € H™ 274 (%). (7.1)
In this section we discretize this problem by considering a Galerkin-Bubnov variational
formulation. First we have to define suitable trial spaces with respect to an admissible
triangulation of the space-time boundary X.

7.1 Discretization

We consider two different triangulation approaches. The first one is a separate tri-
angulation of the boundary I' and the time interval (0,7"). In this case we can use
space-time tensor product spaces to discretize the variational formuation and we
are able to state error estimates simply by combining approximation properties of the
spatial and temporal discretization. The second approach is the triangluation of the
space-time boundary ¥ = I" x (0,7"). When using piecewise constant basis functions
for the discretization of the variational formulation ([7.1)) we can derive error estimates
by using the approximation properties of the space-time tensor product spaces of the
first method.

Spatial and temporal triangulation

We assume, that the Lipschitz boundary I' = 052 is piecewise smooth with ' = U;.]Zl T;.
Let {T'ny } y, en be a family of admissible triangulations of the boundary I' into bound-
ary elements ~;, i.e. we have

Nx
Tny =J7 (7:2)
=1

23
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Moreover we assume, that there are no curved elements and that there is no approxi-
mation of the boundary. For each boundary element ~; there exists j € {1, ..., J} such
that 7, C I';. The boundary elements 7; can be described as vy, = x;(7), where 7 is
some reference element in R"~!. The boundary elements 7, are line segments in the
spatially two-dimensional case n = 2 and plane triangles in the three-dimensional case
n = 3. In the one-dimensional case the boundary I' is a set of two points and therefore
we do not have a triangulation of I' for n = 1. Let {%}2/[:1 be the set of boundary
nodes zj, of I'y, . For each boundary element 7; we define its volume

A ::/dsx,
"

by o= AVOD

its local mesh size

and its diameter

d,:= sup |z —vyl.
zyem

The global mesh size is given by

hy := max h;.
I=1,..Nx

The family {T'y, } Nyen Of triangulations is said to be globally quasi-uniform, if there
exists a constant cg, > 1 independent of I'y, such that

We assume that the boundary elements are shape regular, i.e. there exists a constant
cp independent of I'y, such that

dy <cgh; foralll=1,..., Nx.

As mentioned before, in the spatially one-dimensional case there is no triangulation
of the boundary I". Whereas for n = 2,3 we need a parametrization of the boundary
elements ;.

In the two-dimensional case the boundary elements 7, are line segments with nodes
1y, 11, € R% Thus, 7; can be described as

v(§) =z, +&(2y, —1y,) for €y =(0,1).

Hence we have

hl :dl = Al :/ de = |$12 —.’L‘11|.
Rt
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In the three-dimensional case the boundary elements 7; are plane triangles with nodes
Ty, T1,, Ty, € R3. Therefore the boundary element v; can be described as

w(§) = a2y, + (T, — wpy) + ST, — m0y) = 19y + i
where € = (£,,&)T ey ={6eR?:0<& <1,0< 6 <1 &) and
Jl = (ZL’lQ — Ty, T3 — l‘ll) .

The volume of a boundary element ~; is given by
1
Al = / de = —|detJl].
" 2

Since time is one-dimensional we consider a family {/n,}y, oy of decompositions of
the time interval I := (0,7) into line segments 7, i.e. we have

Nr
Iy, = U 7. (7.3)
k=1
The elements 7, = (x,, tx,) can be described as 7, = ¥y (7), where 7 is the reference
element 7 := (0,1). In our case we have
wk(f) = tkl -+ Z?(th — tkl) for £ € (O, 1)

As for the boundary elements 7; we can define the local mesh size of an element 7,
which coincides with its volume, as

htk. = th — tkl
and the global mesh size as
hy := max hy,.
k=1,....Np

Again, the family {Iy, } npen Of triangulations is said to be globally quasi-uniform, if
there exists a constant cg; > 1 independent of Iy, such that

ht,max
— < cgy-
t,min

Trial spaces

In order to find an approximation of the solution of (|7.1]) we have to define suitable
finite dimensional function spaces. Since the conormal derivative of functions could
be discontinuous depending on the domain 2, it is reasonable to approximate the
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conormal derivative w = "y by discontinuous functions. In this work we consider

the space of piecewise constant basis functions.
Let Sy, (I) be the space of piecewise constant basis functions on I = (0,7") with respect
to the temporal triangulation Iy,., i.e. we have

Sp.(I) := span {wg}ff;

1 for t € 7,
GR(t) = { '

with

0 else

and SSI(F) be the space of piecewise constant basis functions on I' = 9€) with respect
to the spatial triangulation I'y,, i.e.

Sh.(T) := span {¢} },5

1 for x € v,
] (x) ==
0 else.

with

The space-time tensor product space of piecewise constant basis functions on ¥ =
I' x (0,7 is then given by

Spt (B) =S (I) ® Sp,(I). (7.4)

We can use these trial spaces to search for an approximation wj, of the conormal
derivative w = vi"u. Since we want to derive error estimates for the approximation

wy, we have to examine approximation properties of functions v;, € S,?;O ht(Z).

Approximation properties

In order to derive approximation properties of the trial space S,?fht(Z) we first recall
some approximation properties of the spaces S; (T') and S (I).

The L*(T)-projection Qp,u € S; (T') of a function v € L*(I') is defined as the unique
solution of the variational problem

(Qn,u,vn)r2ry = (u,vp) 2y for all v, € S) (T). (7.5)
The L?(T)-projection operator Qj,, satisfies the stability esimate
|Qn oy < Nl ey for all we LA(T), (7.

Theorem 7.1. [27, Theorem 10.2] Let uw € H*(T') with s € [0,1] and Qy,u € Sp (T)
be the L*(T')-projection of u. Then there hold the error estimates
|u— thu||L2(F) < HU”Lz(F) ’

s (.7
Ju— thUHB(F) < chilu

Hs(T)-
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Corollary 7.2. [27, Corollary 10.3] Let w € H*(I'") with s € [0,1]. For o € [—1,0)
there holds the error estimate

Hu - thuHHJ(F) < Ch;_a‘u’Hs(p). (7.8)

The following lemma states an global inverse inequalitiy for functions wy € S,?z(F).

The proof with respect to the H~2(I')-norm is given in [27, Lemma 10.10] and uses
interpolation arguments. In the same way one can show the estimate in the H(I)-
norm for o € (—1,0].

Lemma 7.3. Assume that the boundary decomposition 'y, is globally quasi-uniform
and let o € (—1,0]. Then there holds

lwall oy < erhg [lwall gory — for all wy € Sp (D). (7.9)

Analogously the L?(I)-projection Qu,u € S, (I) of a function u € L*(I) is defined
as the unique solution of the variational problem

(Qnyuyvn)r2(r) = (u,vp) 2y for all vy, € Sp (1). (7.10)

The estimates (7.7), (7.8) and (7.9) hold for functions u € H*(I) and w;, € S} (1) as

well.

By using those approximation properties we can derive estimates for the L?(3)-projec-
tion Qp, p,u € S,?;Oht(Z) of a function u € L*(X) where Qp,, ,u is the unique solution
of the variational problem

(Qhyon s Un)12(s) = (U, vp) sy for all vy €SP0, (5. (7.11)
The projections Q%xu and Qiu for u € L?(X) are defined as

(Qr,u) (2, 1) == (Qn,ul- 1)(2),
(@, u)(x,t) = (Qnul,))(1).

Let u € L*(X). By using the stability estimate (7.6) we get

(7.12)

Q@ llosy = [ [ NQE ) st = [ [ [(Qut )@ dsa
OT 2 TO 2 2
= | M@uute Dy de < [ TNy e = s

Hence we have

b
||th“

|L2(E) <lull gy forall u e L*(X). (7.13)
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Let vy, € nght@) and v € L*(X). Since v, € Sg;oht(Z) we have the representation

=Y ) ol (@) ()

i=1 j=1

According to ([7.11]) we have

<Qh$,htu7vh>L2(2) u Uh L2(S / / ulzx, t vh x,t dsmdt

Nx Nr

- ZZ%/% / u(a, t)y) (t)dtds,.

=1 j=1

By using the projection property (7.10) we get

Nx Nr

(Qhy s Vh) 12(x) = ZZUU/% / (Qu )(x,t)zﬁ?(t)dtdsm

= ZZ%‘ /OT?/JO( )/(th )(, ) () ds dt.

Again, the projection property (7.5 gives

Nx Nr

@t vy = 33 v / W0 [ (@ QR s,

i=1 j=1
/ /thQh (z,t)vp(x, t)ds,dt
= (Q¥, Q1 Vn) 12(w)-

We conclude

(Qhy hyu — Qfoiu, Uh>L2(2) =0 forall v, € S,?;O’ht(E)

and since Qfoiu € Sgﬁht(Z) we can choose vy, = Qp, p, U — Qfoiu and get

Hth,htu - Q%ngtuHLQ(Z) =0

This is true for all «w € L*(X). Hence the operators coincide and we have the repre-
sentation Qp, p, = Qmea. Due to the definition of the L?(3)-projections Qfmu and
Q%tu we can use the approximation properties of the operators @)y, and @y, to
derive estimates for the L?*(X)-projection Qp, s, u.
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Lemma 7.4. Let u € H™*(X) with r,s € [0,1] and Qp, n,u € Sy, () be the L*(S)-
projection of w. Then there hold the estimates

lu — th7htu||L2(E) = ||U||L2(2) )
[w = Qnyn il oy < € (4 D7) [ulrs s
where
|U|?1ns(z) = |U|i2(o,T;Hr(r)) + |U|%{S(O,T;L2(F))'
Proof. For uw € H™*(X) C L*(X) we have
(U = Qny it V) 2(xy = 0 for all vy, € nght(z)
and therefore
|u — th,htu”i2(g) = (U — Qhy s U — Qhy b W) £2(5) = (U — Qhyh Us W) L2()

< lu-— th,htuﬂm(z) HUHLQ(Z)

The first estimate follows by multiplying this inequality with |u — th’htuﬂzg(z) if
u — Qp, n,u # 0. The estimate is also true for u — Qp, n,u = 0. By using the triangle
inequality, the stability estimate (|7.13)) and Theorem we get

HU, - th,htuHLQ(E) - Hu - QEZQEzu”L?(Z) = Hu - Qigu + QEZ(U - Qiu)||L2(z)
< o= @l oy + [l — Q] oy

S E<h;|u|L2(O7T;HT(F)) + hﬂu

Ho(0T5L2()) ) -

Thus, we have
||’LL - th:,ht ||L2(E) <c (h; + hf) |U|HT’S(E)'
O]

The following lemma states an error estimate in norms of anisotropic Sobolev spaces
with negative order.

Lemma 7.5. Let u € H™(X) with r,s € [0,1]. For o,u € [—1,0) there holds the
error estimate

Hu - th,htuHHJ,u(E) S C (h;U + h;#) (h; + hts> ’u|HT,S(E)

Proof. By duality and using (7.11]) we get

U — Qh U, V) s
HU’ - th"htuHHU7l‘l‘(E) = sup < || || x, e s >
orverym sy INVlla-oous)

_ sup <u - th,htua U= th,htv>2

0£veH ;7 (%) ||U||H—m—u(z)




60 7 Boundary element methods

Applying the Cauchy-Schwarz inequality and using Lemma [7.4] leads to

[0 = Qe eV 25

||u - th,htUHHU,u(E) < ||U - th,htunm(z) sup H
0£veH 7 7H(%) UHH—G,—u(z)

<c(hl+h)) (hy,” + h") |ulgrss).

Triangulation of the space-time boundary X

Recall that the boundary I' is piecewise smooth with I' = U;.Izl [;. With &, =
[; x (0,T) for j = 1,....,J we get & = Uj:lij‘ We consider a family {Xn} ey of
admissible triangulations of Y into boundary elements oy, i.e. we have

N
sy =|Ja (7.14)
=1

Again, we assume that there are no curved elements and that there is no approximation
of the space-time boundary Y. For each boundary element o; there exists exactly
one j € {1,...,J} such that o; C ¥;. The boundary elements o; can be described as
o1 = xi(0), where o is some reference element in R”. The elements o; are line segments
in the one-dimensional case n = 1, plane triangles in the two-dimensional case n = 2,
and tetrahedra in the three-dimensional case n = 3. Let {(z,t)}r-, be the set of
boundary nodes (z,t;) of X . For each boundary element o; we define its volume

Al Z:/ dSI,

hl = All/n

its local mesh size

and its diameter

dp:= sup |[(z,t) = (y,9)].
(z,t),(y,s)€0;

The global mesh size is defined as

h:= max h,.
I=1,...N

The family {3y} ycy of triangulations is said to be globally quasi-uniform, if there
exists a constant cg > 1 independent of N such that

hmax
S Cq-
hmin
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We assume that the boundary elements are shape regular, i.e. there exists a constant
cp independent of NV such that

dl § CBhl for [ = 1, ...,N.

In the spatially one-dimensional case n = 1 the boundary I' = 92 is a set of two points
x1,xy € R. Thus, the boundary elements o; are line segments in temporal direction
with fixed spatial coordinate x; € (x1,x2). Let (z;,t;,) and (z,t;,) be the nodes of the
boundary element ;. Then o; can be described as

(f) - (tll + 5(22 — tll)>

where £ € 0 = (0,1). Hence we have
hl = dl = Al = / dSmdt = |t12 _tll‘-
gy

In the two-dimensional case the boundary elements o; are plane triangles with nodes
(@1, 1), (21, t1,) and (xy,, £, ). We assume that the boundary elements are rectangular
triangles, where one of the edges adjacent to the right angle is parallel to the domain
Q2 as shown in Figure[7.I]. The boundary element o; can be described as

x _ xy, + fl(xb - $l1) + 62(‘%73 - xll) _ Ty + J; 51
t tll + £1 (tlz - tll) + £2<tl3 - tll) tll 52
where (£,&)T €o={(eR?*:0<&<1,0<& <1 =&} and
Ty, — Xy Ly, — Xy
J — 2 1 3 1 .
: (tl2 —t, b, — 1t )
The volume of a boundary element o; is given by
1
Al = / dsxdt = §]detJl\.
oy

In the three-dimensional-case the boundary elements o; are tetrahedra with nodes
(x1,,t;,), t =1, ..., 4. Similarly to the two-dimensional case we assume, that the bound-
ary elements are trirectangular tetrahedra where one of the sides adjacent to the right
angle is parallel to the boundary I'. The boundary element o; can be described as
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0.6 2

0.4 .

| | | | | |
0 0.2 0.4 0.6 0.8 1

15

Figure 7.1: Sample triangulation of a part of X for n = 2.

where (£1,6,6)T € 0 = {LeR*:0<6<1,0<6<1-6,0<G<1—& — &)
and

Jl _ Ly — Xy Xyg — Xy Ty — Ty
tl2 — tll tl3 — tll tl4 — tll

The volume of a boundary element o; is given by

1
Al = / dedt = g\detJl|.
o1

Trial spaces

For the approximation of the conormal derivative w = 4"y € H~2~1(X) we consider
the space of piecewise constant basis function S} (X) with respect to the triangulation
Y defined as

SY(X) := span {90?}1]11

with

0
T, t) =
wi(@,1) 0 else.

{1 for (z,t) € oy,
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Approximation properties

In the spatially one-dimensional case the form of the boundary elements and therefore
the trial spaces coincide with the space-time tensor product spaces introduced at the
beginning of this section. Hence we have the same approximation properties.

Due to the assumption, that the boundary elements in the two-dimensional case are
rectangular triangles where one of the edges adjacent to the right angle is parallel to
Q, see Figure [7.1] we can derive error estimates of the L*(X)-projection Quu € Si(X)
for u € L*(X) by using the approximation properties of functions vy, € Sgﬁht(Z).

Due to the structure of the decomposition of ¥, two boundary elements oy, , 0y,, l1 # lo,
form a rectangle, which can be represented as v;, X 75, where +;, is an element of the
spatial triangulation and 7, is an element of the temporal triangulation (|7.3)).
The decomposition X of ¥ induces a spatial decomposition I'y, of the boundary I'
and a temporal decomposition Iy, of I = (0,7"). Let Sgﬁht(Z) be the corresponding
space-time tensor product space , where h, denotes the maximum size of the
boundary elements in spatial direction and h; the maximum size of the boundary
elements in temporal direction. For each boundary element o; there exists an adjacent
element oy, and elements +;,, 75, such that

orUaog, =y, X Tj-

In other words, for each rectangle g;; := 7; x 7; there exist exactly two boundary
elements 0y(5),, 0y(:5), such that

Sij = Ou(ign Y OU(ig)z2-
Hence we have 5,°, (%) C S)(%).

The L*(X)-projection Qpu € SP(X) of a function u € L*(X) is defined as the unique
solution of the variational problem

(Qnu, vp) 2y = (u,vp) 2wy for all v, € Sp(X). (7.15)

For u € L*(X) we have

|w — Qhu|’i2(g) = (u— Quru,u — Qpu)r2x) = (U — Quu, U — Qpy 1, U) 12(x)

< lu-— QhUHL?(E) Ju— th,htunm(z)
since Qp, n,u € S)_5,(X) C Sp(X). We get
lu = Qnull o) < llu = Qnypull 2y forallue L*(%) (7.16)

and obtain the following approximation properties.



64 7 Boundary element methods

Lemma 7.6. Let u € H™(X) with r,s € [0,1] and Quu € SY(X) be the L*(X)-
projection of u. Then there hold the error estimates

Ju— Qhu”p(z) < HUHLQ(E) )
lu = Qnull 205y < ¢ (b + 1Y) [ulams(s).
Proof. Follows with and Lemma [7.4] O]
Lemma 7.7. Let u € H"*(X) with r,s € [0,1]. For o, € [—1,0) there holds
lu = Qntell rownisy < € (ha” + 1y ™) (hy + h7) [ul (s
Proof. Analogously to the proof of Lemma [7.5] O

The three-dimensional case needs further examination. By using similiar arguments
as for n = 2 we can assume, that we have the same approximation properties for n = 3
as well.

7.2 BEM for the Dirichlet initial boundary value
problem

For the discretization of the variational formulation we consider the space of piece-
wise constant basis function S)(¥) C H *%’*i(E) corresponding to the triangulation
[7.14) of the space-time boundary 3. The Galerkin-Bubnov variational formulation of
7.1)) is to find wy, € Sp(X) such that

1
<th,7h>g = <(§I + K) g,Th>E — <M0U0,Th>g for all Th € Sg(E) (717)

Considering wy,(x,t) = Z]kvzl wrpy(x,t) this problem is equivalent to

N
1
D wlVel @)s = <<§I+ K) 9:#0)s — (Moug,¢})s forl=1,..,N.
k=1

This system of linear equations can be written as

Viw = f (7.18)

where
Vh“: k] = <V9027 90?>E
and

fll] = ((%] + K) 9,905 — (Mouo, ¢})»

for I,k = 1,...,N. Due to the ellipticity of V this system is uniquely solvable, see
Chapter [I]
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7.3 Error estimates

Since the single layer boundary integral operator V' is H A (X)-elliptic and bounded
we can use Cea’s Lemma (Theorem to conclude quasi-optimality of the Galerkin
approximation wy, € SP(X), i.e. we have
v
2

<2 inf lw—7all -3

7.19
i(z) = ey mesd(x) ( )

||w_wh||H*%y* 7*711(2) *

Now we can use the approximation properties of the trial space SY(X) to derive error

esimates for the solution wy, of (7.17). By applying Lemma [3.4] we get

v o J
< 2 inf me —TjH 11
— j J rllg-2-1(
€1 4 esiss) (

lw —wa (7.20)

A )

and obtain the following error estimates.

Theorem 7.8. Let w;, € SP(X) be the unique solution of the Galerkin variational
problem (7.17)). For w € Hp3(X) with r,s € [0, 1] there holds

4 r s
e R O (hiﬂ ! ) (e 1) o o

—371
Proof. The assertion follows by applying Lemma to the estimate (7.20)). ]

Since the boundary elements are assumed to be shape regular, we have h, < cgh
and h; < cgh and get
1,
o=l .4y < ol
where o« = min(r, s).
In the one-dimensional case we can identify the space S)(X) with S} (1) where I = (0, 7).
The terms with h, in Theorem [7.8] vanish and we get

1
||w — wh”H*zl;([) < Ch4+8|w|HSw(I)'

For n = 1 it is quite easy to derive an error estimate in the L?(/) norm, assuming that
the family of triangulations of ¥ is globally quasi-uniform.

Theorem 7.9. Assume that the boundary decomposition ¥y is globally quasi-uniform.
Forn =1 let wy, € SY(I) be the unique solution of the Galerkin variational problem
(7.17). Forw € H;,(I) with s € [0,1] there holds

lw = wnll g2y < A7 W] mg,n)-
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Proof. By using the triangle inequality, Lemma [7.4] and Lemma [7.3] we get

= wnll sy < llw = Quwll oy + 1Qnw = wall e

< ch’lw Y| Quw — wi

H, (1) T el H%(I)"

The assertion follows with

Lemma [7.5 and Theorem [7.8] O



8 Preconditioning

Since the matrix V}, is positive definite we can apply the GMRES method to solve the
system of linear equations
Vhw = i

derived in the previous chapter. The number of iterations depends on the condition
number of the matrix V},. In our case the condition number increases as the mesh size
h decreases. Thus, it is necessary to apply preconditioning strategies. Let us recall
the basic concept of preconditioners.

Let X be a reflexive Banach space and X' its dual space. We consider the problem

Au=f

with a linear, bounded and X-elliptic operator A : X — X" and f € X’. According to
the Lemma of Lax-Milgram (Theorem this operator equation is uniquely solvable.
Let X}, = span {goi}i]\il C X be a finite dimensional subspace. Then the discrete
problem

Apu=f (8.1)
is uniquely solvable as well, see Chapter By multiplying this equation with the
inverse of a regular matrix C'y € RV*Y we get

CilAu=CL'f. (8.2)

Due to the regularity of the matrix C'4 this problem is equivalent to (8.1)). The idea is to
choose the matrix C'4 in a such way, that the condition number of the preconditioned
matrix C';' Ay, is independent of the mesh size h. Moreover we want to be able to
compute the inverse of the matrix Cy efficiently.

When using boundary element methods we can use preconditioning techniques based
on boundary integral operators of opposite order, such as the single layer boundary
integral operator V' and the hypersingular boundary integral operator D.

8.1 Calderon preconditioning

The presented preconditioning strategy is based on [31] and [9]. Let B : X’ — X be
a linear and bounded operator and Y}, = span {wjzl}j]\il C X' be a finite dimensional
subspace. Moreover B satisfies the inf-sup condition

B
sup B, wn)| > cf |lanllx  for all g, € Vs

0w EY), Hwthf

67
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The ellipticity of the operator A implies
A
sup [(Aup, vp)|
0Fvp €X), “UhHX

Theorem 8.1. [9, Theorem 2.1] If N = dimX,; = dimY), = M and there exists a
constant ¢ > 0 such that

> it lunll  for all uy, € X,

sup (Uhawh) 2
0Fwhr €Yy HwhHX’

A owlly  for all vy, € Xy,

then
A B

MAB M TA) < — 22
e (U

where
Ah[l,]] = <A§0j7(;0i>a Bh[lmﬂ = <Bwj7¢i>7 Mh[zaj] = ((,0],77&,)
fori,7=1,...,N.
Let us consider the single layer boundary integral operator V' and the hypersingular
boundary integral operator D and finite dimensional subspaces X, C H _%’_i(Z),

Y, C H %’i(z). Both operators are elliptic. Hence the operators satisfy the inf-sup
conditions

Vitn, 7
Sup NVtn, 7)s] >V ||thHH_%7_%(Z) for all ¢, € X,
ozmexi Ihll y-3. -3 5,
and D
Up, U
sup M > c? ”uhHH%’%(E) for all up, € Yh.

0#£vR €Y}, ||Uh||H%’ZII(E)

If we choose suitable subspaces X}, Y, with dimX, = dimY} which satisfy the inf-sup
condition

, U y T X 8.3
5 < h h>L2( ) > Ciw ||7—h|| %’7211( ) for aH h S hs ( : )
0#£vR €Y ||Uh||H%%(§])
then Theorem @ illlplieS
(M 1l) M V) < 22
K 1 4 £
h hiVip h) = CYClD(C{V[)Q

where

Vill, k]l = Vo, on)s,  Dull, k] = (Dw, i)s,  Mall, k] = (or, V1) 12()

for [,k =1,..., N. Hence if we use the preconditioner

Cyt = M, 'D,M,; "
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the condition number of the preconditioned matrix is bounded. Since M, is a sparse
matrix, the inverse M, I can be computed efficiently. It remains to choose the finite
dimensional subspaces X}, Y},.

In this work we present different approaches for the spatially one-dimensional case.
Some of the results can easily be extended to n = 2, 3.

8.1.1 Piecewise constant basis functions

For n = 1 the boundary elements are line segments in temporal direction. Thus, we
can identify the boundary of the space-time cylinder with the time interval I := (0, 7).
Since SP(I) C H(I) we can choose SY(I) as the trial space for the discretization of the
single layer operator V' and the hypersingular operator D, i.e. we have X} := SY([)
and Y}, := SY(I) and therefore dim X}, = dimY},. In order to prove the inf-sup condition
for X}, = Y, = SP(I) we need stability of the L?(I)-projection operator @, defined
by in the Sobolev space H i([ ). We consider the boundary decomposition ¥y
given by , i.e. we have

N

sy =
=1

For [ =1, ..., N we define I(I) to be the index set of the boundary element o; and all
its adjacent elements. The local mesh size associated with the boundary element o; is
then given by

~ 1
hii=——= > hy forl=1,.N. (8.4)
0,2,
We assume the boundary decomposition ¥y to be locally quasi-uniform, i.e. there
exists a constant ¢;, > 1 independent of N such that
1 h
— < h—’ <¢p forallkelI(l), l=1,..,N.

cr k

Moreover we define
wy = U or forl=1,...,N.
kel(l)
The proof of the stability of the L?(I)-projection onto the space of piecewise linear
and continuous basis fuctions S}(I) = span {ap}}f\il in fractional Sobolev spaces can
be found in [25]. It is based on the assumption, that there exists a constant ¢q > 0
such that
(HlGlHl_lllaiz) > co(Dyzy, z;) for all x; € RO
where J(1) denotes the index set of all nodes adjacent to the element o; and the local
matrices are defined as

Gl[]vz} = <90117 SO;>L2(O'1)7 Dl = dlag <H9011Hi2(01)> ’ Hl = dlag <il}>
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fori,j € J(I) and [ = 1,...N. In this context h; is the local mesh size associated with
the node (x;,t;) of the mesh. When using piecewise constant basis functions we define
the local matrices as

. . 2 . ~1
Gilji i) = (% Wiz, Dri= diag ([60]]3a,)  Hi= diag ()

fori,j € I(l) and [ = 1,..., N where h; is the local mesh size defined by (8.4). Hence
we have G; = D, and get

(HlGlHlflgl,gl) = (Dyz;,z;) for all z; € RO

and [ = 1,..., N. The remaining steps to prove the stability of the L?*(I)-projection
onto the space of piecewise constant basis functions in H i([ ) are the same as in the
case of piecewise linear and continuous basis functions described in [25]. We conclude
that there exists a constant cg > 0 such that

HthHH%(D < cg HUHH%(I) for all v € Hi(I). (8.5)
Lemma 8.2. For a locally quasi-uniform mesh there holds the inf-sup condition

1 Thy Un)L2(1
- ”ThHH_%(I) < sup (T, vn) 121y
CcQ 0#vpeSY(I) ”UhHH%(I)

for all 7, € SY(I).
Proof. For a locally quasi-uniform mesh the operator Q, : Hi(I) — S)(I) c Ha(I)
is bounded according to (8.5)). For 7 € SY(I) we have

(Ths V) L2(1) (Ths @) 2(n)
supp -————>=  sup —— ——>

0£veHE (1) ||v||H71I(I) 0£veH 1 (1) ”U”H%u)
(h, @nv) 121y

7l -4y =

<cg sup
< sup <7'h> Uh>L2(1)
S CQ T

which concludes the proof. ]

Hence the inf-sup-condition (8.3)) is satisfied and we can use the discretization of
the hypersingular operator D with respect to the space of piecewise constant basis
functions SP(7) as a preconditioner.
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8.1.2 Piecewise linear and continuous basis functions

As a second approach we choose the space of piecewise linear and continuous basis
functions S} (I) = span {gozl}f\il for the discretization of the operators V and D, since
X, .= SYI) c H i(I) and Y, := SL(I) ¢ Hi(I). Clearly we have dimX, = dim},.
Before proving the inf-sup condition in this setting let us recall some properties
of the space S} (I), based on [27, Chapter 10.2].

Lemma 8.3. Assume that the boundary decomposition Y is globally quasi-uniform
and let s € [0,1]. Then there holds the inverse inequality

[0 ey < crth™ ||Uh||L2(1) for all v, € Sy(I).

The L*(I)-projection Quu € Si(I) of a function u € L*(I) is defined as the unique
solution of the variational problem

(Qnu,vn)r2(r) = (u,vp)r2¢ry  for all v, € Si(I).
The operator (), satisfies the stability estimate
IQutdl oy < sy for all w e L2(D). (8.

Let s € [0, 1]. According to [25, Theorem 3.2] there exists a constant c¢g > 0 such that

assuming appropriate mesh conditions locally, see |25 Section 4]. This estimate is also
satisfied for a globally quasi-uniform decomposition of I.

Theorem 8.4. Let u € H*(I) with s € [0,1] and Quu € S}(I) be the L*(I)-projection
of w. Then there holds the estimate

lu — Qnullp2(ry < ch®lulpsr).

By using the stability estimate (8.7) we can prove an inf-sup-condition for the finite-
dimensional function spaces X} and Y},.

Lemma 8.5. Assume that the stability estimate (8.7) is satisfied. Then there holds

1 (Ths Un) L2(1)
" HThHH_?lI(I) < sup ~——=

for all 7, € S}(I).
0#£vp€SE() HU’l”H%(I)

1

Proof. According to (8.7) the L2(I)-projection operator Qy, : Hi(I) — SL(I) c Hi(I)
is bounded, i.e. there exists c¢g > 0 such that

1
HthHH%(I) < cg HU“H%(I) for all v € H1(I).
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For 7, € S}(I) we have

(Ths V) L2(1) (Ths @) 2(n)
supp -———>= sup —— ——>

0£veHE (1) ||v||H71I(I) 0£veH T (1) ”U”H%(I)
(h, @nv) 121y

7l -4y =

<
=S Qe
0£veH 1 (I) H1(I)

Thy U
<es sup (Th, Un) £2(1)

O#vaS}L(I) ||Uh ”HZII (I
which concludes the proof. [

Thus, according to Theorem the condition number of the preconditioned matrix
is bounded when using the space S} (I) for the discretization of V and D.
This strategy can be extended to the two- and three-dimensional case, since we have
SHE) € H™2~4(X) and SH(X) € Hza(X). If one can prove the boundedness of the
L2(¥)-projection @, : H2i(X) — SL(X) € Hz1(%), for example by using interpola-
tion arguments [12, [13], then the proof of the inf-sup-condition (8.3)) is the same as in
Lemma B35

8.1.3 Dual mesh

The third approach is to use X, := SP(I) corresponding to a dual mesh for the
discretization of V and Y}, := S}.(I) for D. For details concerning the construction of
the dual mesh, see [28] and [10]. We have dim X}, = dimY},. Figure 8.1 shows a sample
dual mesh for the one-dimensional case. It remains to prove the inf-sup condition
. We assume, that the boundary decomposition Xy is globally quasi-uniform.

Lemma 8.6. There holds the inf-sup-condition

1 (Thy Un) L2(1)
sup ————’

for all 7, € SY(I).
0#1)}165,11([) ||Uh||Hzlxr(1)

<
CpMm “ThHH_ZlI(I) -

Proof. According to [26, Section 3] we have

<7'h; Uh>L2(1)

Clloall ey < sup for all vy, € SL(I). (8.8)

vimespd Tallzzcn
Let the L2(I)-projection Qp, : L2(I) — SL(I) € L*(I) be defined as

(@hu,m)Lz(I) = <U77'h>L2(I) for all T € S,?(T) (89)
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Figure 8.1: Sample dual mesh for n = 1.

Due to (8.8) this variational problem is well defined and uniquely solvable. For
u € L*(I) the triangle inequality implies

fo-a

< = Qualyagry + @ = Qi

L2(I L3(I)

where Qnu € S}(I) is the standard L?(I)-projection of u. Since Qpu — Quu € SH(I)
we can use (8.8)), and the Cauchy-Schwarz inequality to get

(Th, Qnu — w) 121y
sup

0#£7,€89 (1) HTh”L2(1) (8.10)

o] =

Ju= Q| , < lhu= Quull oy +

L3(I)

< cllu— Quull )

with some constant ¢ > 0. The triangle inequality, the global inverse inequality
(Lemma and the stability estimate (8.7) imply

_ 5.
HQhuHHzll(I) < HQhU QhuHHi(z) + ||Qhu||H%[(I)

S C]hii

@nu = Qhu”m(z) Tes “uHH%(I) '
Since Quu € S}H(I) we have Quu—Qnu = Qp <C§hu — u) Thus, applying the estimates

(8-6), (8-10) and Theorem [8.4] leads to

~ Ay —1
| @]y, < e Nl = Quadllagry + s

o ki = eom el )
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with some constant cpys > 0. Hence for 7, € SP(I) we have

<Th>U>L2(I) <Th,@hU>L2(I)
|l ,cr = sup ————= sup ————
) o oIl R
0#veH 1 (I) H1(I) 0#veH1(I) H1(I)
<oy sup <Thith>L2(1) S (Th, Un) L2(1
O;AveH?lI(I) HQhU H%(I) 0F£vn€SE(T) thHHzl(([)
which concludes the proof. O

Consequently, when discretizing V' in the space S)(I) and D in the space S}([)
the preconditioner C;l = M, 1Dh]\/[,: T leads to a bounded condition number of the
preconditioned system matrix. As in the case of piecewise linear basis functions this ap-
proach is a suitable preconditioning technique for n = 2, 3 as well. Since the boundary
elements of the dual mesh are of arbitrary form (polygonial), we need approximation
properties of trial spaces corresponding to the dual mesh in anisotropic Sobolev spaces.



9 FEM-BEM coupling

In this chapter we present and discuss a FEM-BEM coupling method for parabolic
transmission problems, based on [3]. As in the case of stationary transmission problems
[24] we can derive boundary integral equations for the exterior problem and use a
coupling method to solve the integral equations in combination with a finite element
discretization of the interior problem [29]. We consider a non-symmetric FEM-BEM
coupling method. In addition to the derivation of a variational formulation for the
coupled problem we consider a Galerkin method in order to discretize the problem
and compute an approximation of the solution.

9.1 Model problem

Let f € L*(0,T; H'(Q)) and ug € H}(Q2). We consider the transmission problem

adpu;i(z,t) — div, [A(z, ) Veui(x, t)] = f(z,t) for (x,t) € Q x (0,7T),

]
alpue(z,t) — Aue(x,t) =0 for (z,t) € Q™ x (0,T), 0.1)
ui(2,0) = ug(x) for xz € Q, '
ue(z,0) =0 for x € Q™
with Q¢ := R" \  and transmission conditions
0
wi(z,t) = ue(x,t), mng-[Alx,)Vou(z,t)] = 5 Ue(x,t) =: we(z,t) (9.2)

x

for (xz,t) € ¥. We assume, that the coefficient matrix A(z,t) € R™" is symmetric
and uniform positive definite, i.e. there exists # > 0 such that

01 < [A(z,1)€] - €

for all (z,t) € @ and all £ € R™. The solution u,. of the exterior problem satisfies
a radiation condition for |x| — oo and ¢ € (0,7"). Similarly to the initial boundary
value problem ({2.1)) we can derive a representation formula for the solution w, of the

75
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exterior problem [3]. For (Z,t) € Q% x (0,T) we have

T
1
Ue(T,t) = — o / / Uz —y,t— s)%ue(y, s)ds,ds
y
0
1 . ; (9.3)
+ a//a—ny (T —y,t — s)uey, s)ds,ds.
0T

By applying the Dirichlet trace operator and using the jump relations and (| .
we get the first boundary integral equation for the exterior problem

1

9.2 Coupling

First we consider the initial boundary value problem

adyu;(z,t) — div, [A(x, ) Vui(z, t)] = f(z,t) for (z,t) € Q x (0,7T) (9.5)

ui(2,0) = ug(xz) for z € Q '

with f € Ly(0,T; H*(Q)),uo € H} () and the Neumann boundary condition
ng - [A(x, t)Veu(z, )] = wi(x,t)  for (x,t) € T' x (0,7T).

The variational formulation is to find w; € Ly(0, T; HY(2)) N HY(0,T; H~(2)) with
u;i(z,0) = up(x) for x € 2 such that

a(u;,v //fxt :L'tdxdt—l—/ /wzxt (x,t)ds,dt

for all v € Ly(0,T; H*(2)). The bilinear form a(-,-) is given by

a(u,v) = /OT/Qaﬁtui(a:,t)v(:v,t)da:dth/OT/Q[A(a:,t)qui(:r,t)] - Vo(z, t)dxdt

for u € Ly(0,T; HY(Q)) N HY(0,T; H(Q)) und v € Ly(0,T; H(Q)). Due to the
initial condition in ([9.5) we consider the decomposition w;(x,t) = w;(x,t) + Up(z,t)
for (z,t) € Q where Wy € Ly(0,T; HH(Q)) N H (0, T; H-}()) is an extension of the
initial condition ug € Hg(Q) into the space-time cylinder ). Hence we want to find
T € Ly(0,T; HY(Q)) N HY(0, T; H(Q)) with @;(z,0) = 0 for z € Q such that

a(@;, v) — (wi, " 0)s = (f,v)g — a(t,v) for all v € Ly(0,T; H'(2)).
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For details regarding existence and uniqueness of solutions, see [29] and [30]. Let X
be the Dirichlet trace space of Ly(0,T; H'(Q)) N H'(0,T; H'(2)). The variational
formulation of the boundary integral equation ((9.4)) is to find w, € X’ such that

1
(Vwe, T)s + <<§I - K) Y%, T)y =0 for all T € X'.

Together with the transmission conditions (9.2]) we get the variational formulation of
the coupled problem. We have to find u; € Ly(0,7; H(Q)) N H*(0,T; H*(Q)) with
u;(x,0) =0 for z € Q and w, € X’ such that

a(ﬂiv U) - <w67’>/(i)ntv>2 = <f7 U>Q - CL(ﬂO? U)a

1 .
(Vwe, T)s + (<§I — K) Yo', T)s = 0

(9.6)

for all v € Ly(0,T; H(Q)) and 7 € X'.

9.3 Discretization

We consider an admissible triangulation 7, = {ql}l]\i@l of the space-time cylinder () into
finite elements ¢;. Let {(xy, tk)}]k\in be the set of nodes of the triangulation. We define
Iy to be the index set of the nodes, which do not belong to Q x {0} and M, := |Iy|.
Moreover I is the index set of the nodes, which do not belong to X U (€ x {0})
and M; := |I;|. The nodes are sorted in such a way, that [, C {1,..., My} and
Iy c {1,..., M;}. The boundary elements &, = {ak}ffjl of the induced decomposition
of X are given by
Ep = {UCE:HqE'E:J:@qﬂi}.

Figure 9.1] shows a sample triangulation for the spatially one-dimensional problem.
Let SP(X) = span{gog}ivfl be the space of piecewise constant basis function with
respect to the triangulation &, of the boundary 32, i.e. we have

1 for (z,t) € oy,
pr(e,t) ==
0 else

for k = 1,.., Ny, and SHQ) = span{p!}? be the space of piecewise linear and
continuous basis functions o} with respect to the triangulation 7; of the space-time
cylinder @), i.e.

oi(zj,t;) =06 fori,j=1,.. Mo,

where (z;,1;) € R™! are the coordinates of the j-th node of T, see [34]. Moreover we
define S}, ,(Q) to be the space of functions in S;(Q), which vanish on € x {0}. Due
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T T A 771
1 11— &
o Nodes I,
08l || o Nodes Iy
0.6 [ -
04 -
0.2} -
0 [ _
| | | | | |
0 0.2 0.4 0.6 0.8 1
x

Figure 9.1: Sample triangulation of @ = (0,1) x (0, 1).

to the sorting of the nodes we have S ((Q) = span {¢; }Z 1- We approximate w, and
u; by

My
We,h, = Zw €SN, wn= ZU]SO; S SI}L,O(Q)-

J=1

Hence it remains to compute the unknown coefficients w* and /.

9.4 Galerkin method

Let g, be the interpolation of 1, in S}(Q), i.e. we have

Mq
— o 7 1
Uo,n = UpP;
Jj=1

with ) = To(xj,t;) for j = 1, ..., Mg. Since Ty € Lo(0, T; HE () N HY0,T; H(Q2))
we have uj) = 0 for x; € I'. The Galerkin variational formulation of is to find
Uy € Spo(Q) and w,, € S)(¥) such that

a(@i b, vn) — (Wen, vn)s = (fyvn)g — a(@op, vn),

1
<Vwe,h,7'h>z + <<—[ — K) ﬂi,hﬂ’h)Z = 0

2
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for all v € S, ((Q) and for all 7, € S})(¥). This formulation is equivalent to the system
of linear equations

Age  Ags ac 19
Aso Ass —MF o | = f (9.7)
My, — K,V w 0
with
Mq
Alji] = alel,e}), aljl =w +ul, fli]={feho— Y. ufalphel)
r=My+1

for¢,7 =1,..., My, where ug =0 for z; € T', and
RN 0 q 1 0 _ 0.0
Mh[LZ] - <90M1+i790l>27 Kh[lﬂ] - <K90M1+i7901>2’ Vh[lvk] - <V901c7901>2
fori=1,...,My— M; and k,l =1, ..., Nx.

Consequently we can compute the unkown coefficients w* and 4’ and the correspond-
ing approximations w, , and %; 5. The solution w; , of the interior transmission problem
(9.1) is then given by w; , = U; ,+Uo 5, Whereas the solution w. j, of the exterior problem
is given by the representation formula , i.e. we have

Uen(F, 1) = —(Vwe )3, 1) + (WA T0) (3, 8) for (,) € Q™ x (0, 7).






10 Numerical examples

In this chapter we present numerical examples regarding the convergence proper-
ties of the Galerkin approximations and the preconditioning techniques for the one-
dimensional heat equation as well as examples for the FEM-BEM coupling method.

10.1 Preconditioning

Let 2 = (0,1) and T'= 1. In general we consider the initial boundary value problem
adpu(z,t) — Oppu(z,t) =0 for (z,t) € (0,1) x (0,1),
u(0,t) =u(l,t) =0 for t € (0,1), (10.1)
u(z,0) = ug(x) for xz € (0,1)

where v is some given initial condition satisfying uy(0) = uo(1) = 0. The solution u
is given by the representation formula

w(@ t) = (VA™u)(F, 1) + (Mouo)(Z, 1) for (Z,t) € (0,1) x (0,1).
We use the variational formulation of the first boundary integral equation (7.1]) to de-

termine the unknown conormal derivative v, i.e. we have to find vy € H-2~1(%)
such that

(VAPtu, 7)s = —(Moug, 7)s  for all 7 € H™274(%).

For the discretization of this formulation we consider the space of piecewise constant
basis functions Sj(3). This leads to the system of linear equations

Vhw = i (102)
where
VLK = (Vi ol)s = [ (Vi) (o o s
5
1 iy 2%
= —nlnk/ / U*(z; — zg, t — s)dsdt

a by thy

and

£l = — (Moo, )5 = — / (Moto) (,£) 60z, t)ds, dt

2
tl2 1

= _nl/ / U*(x1 — y, t)uo(y)dydt
tll 0

81
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forl,k =1,..., N. The Galerkin approximation wy, of the conormal derivative w = ity

is then given by
N
wy(z,t) = Zwm?(m,t) for (z,t) € X.
=1

The system is solved with the GMRES method. We want the condition number
to be independent of the mesh size h. Therefore we use the preconditioning technique
introduced in Chapter[8] In the one-dimensional case we can use the piecewise constant
basis functions to discretize the hypersingular operator D. The preconditioner is given
by

Cyl =M, 'D M, T

where

t12
DW%L%Dd#ﬁz—/Ukb@wﬁ@ﬁwwﬁwy/(Ddxmﬂﬁ
>

tll

and
M%M:@%%mmzéd@ﬁﬁmwmﬁ

_ ‘tl2_tl1| il =k,
1o ifl4k "

Since M), is a diagonal matrix, the computation of the inverse of M), and the compu-
tation of the preconditioning matrix CY, ! respectively is quite fast and very simple.

Uniform refinement

First we consider the initial boundary value problem with initial condition
ugp(z) = sin (2rz) € HL(Q) und use a uniform refinement strategy to compute the
approximation wy. The unique solution of this problem is shown in Figure[10.1} Table
shows the L?(X)-error and the corrensponding convergence, the condition numbers
of the system matrix and the preconditioned matrix, as well as the iteration numbers of
the GMRES method in both cases. We obtain linear convergence of the approximation,
which is what we expected according to Theorem . While we can see that the
condition number of the matrix V}, is increasing with a factor of approximately v/2, the
condition number of the preconditioned matrix CY, 'V, is bounded. Hence the iteration
number of the preconditioned system is bounded as well, while the iteration number
corresponding to (10.2) is increasing with a factor of approximately v/2.
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Figure 10.1: Uniform refinement. Approximation u, at level 11.

’ L ‘ N ‘ |w —willp, 5 ‘ eoc ‘ (V) ‘ Factor ‘ It. ‘ Factor ‘ K(Cy'VA) ‘ It.
0 2 2,249 0 1,001 0 1 0 1,002 1
1 4 1,311 0,778 | 2,808 2,807 | 2 2 1,279 2
2 8 0,658 0,996 | 4,905 1,746 | 4 2 1,422 4
3 16 0,324 1,021 | 7,548 1,539 | 8 2 1,486 8
4| 32 0,16 1,017 | 11,14 | 1476 | 16| 2 1541 | 14
5 | 64 0,079 1,01 | 16,724 | 1,501 | 31 | 1,938 1,563 13
6 | 128 0,04 1,006 | 13,47 0,805 | 41 | 1,323 1,59 13
7 | 256 0,02 1,003 | 22,053 | 1,637 | 50 | 1,22 1,615 12
8 | 512 0,01 1,001 | 32,043 | 1,453 | 59 | 1,18 1,636 12
9 | 1024 0,005 1,001 | 60,957 | 1,902 | 70 | 1,186 1,777 11
10 | 2048 0,002 1,000 | 88,488 | 1,452 | 82 | 1,171 1,762 11
11 | 4096 0,001 1,000 | 125,957 | 1,423 | 96 | 1,171 1,765 10

Table 10.1: Uniform refinement. Condition and iteration numbers.
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The unique solution of the initial boundary value problem with initial condition
ug = 0 is u = 0. Thus, we have y™u = 0. Table m shows the iteration numbers of
the GMRES method using a random initial guess. Again, we obtain boundedness of
the iteration numbers corresponding to the preconditioned system. We can conclude
that the results concerning the iteration numbers in the previous example do not
depend on the given data.

’ ‘ N ‘ It. ‘ Factor ‘ It. Prec.
2 2 0 2
4 3 1.5 3
8 4 1,333 4
16 8 2 8
32 16 2 13

64 | 31 | 1,038 14
128 | 42 | 1,355 13
256 | 52 | 1,238 13
512 | 64 | 1,231 13
1024 | 77 | 1,203 13
2048 | 92 | 1,195 13
4096 | 109 | 1,185 12

T2 ©ow-0ou kW O

Table 10.2: Iteration numbers for a random initial guess of the GMRES.

Adaptive refinement

We consider problem ([10.1]) with initial condition uy = 5exp (—10z) sin (rz) and use
an adaptive refinement strategy to compute the approximation wy,.
Let N € N and ¥ be a decomposition of ¥ into N boundary elements o; as given by

(7.14), i.e. we have
N
sy =|Ja
=1

Let w = "y € H™271 () be the exact solution and wj, = SV wg) € SU(E) be the
Galerkin approximation of the problem. The local L?(X)-error on a boundary element
o0y is then given by

e = |lw— whHL?(al) :

The strategy is to refine each boundary element o; whose error satisfies

.....
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with parameter 0 € (0,1). In our case we divide those elements into two elements of
same size. We continue to refine the mesh until the global error

1
N 2
o 2
. (z )
=1

is less than some given value. Of course, in general we do not know the exact solution
of the problem. Thus, we have to use a posteriori error estimators, see for example [0]
and [23].

According to Section the exact solution of the problem is given by the

series

u(z,t) = Zak exp (_(kTﬂ)t) sin (krz) for (z,t) € Q

k=1
with

1
ap = 2/ uo(z) sin (kmz)dz.
0

Hence the conormal derivative w = O,y is given by

D, 1) i — BT o cos (kma) for (2.4) €
hu(x,t) = ng apexp | ——— | kncos (kmx) for (x,
2 k €XP o
where n, = —1 for x = 0 and n, = 1 for x = 1. The solution u; of the problem

(10.1)) is shown in Figure [10.2] Figure [10.3[shows the approximation wy, of the conor-
mal derivative. In Table you can see the L?(X)-error, the condition numbers of

the system matrix and the preconditioned matrices, as well as the iteration numbers
of the GMRES method. In addition to the Calderén preconditioner the condition
and iteration numbers of the diagonally scaled system matrix is listed in the table.
As in the case of uniform refinement we obtain boundedness of the condition num-
ber of the Calderén-preconditioned matrix Cy,'V;, as well as the boundedness of the
corresponding iteration numbers of the GMRES method. Diagonal scaling causes an
improvement concerning the condition numbers of the system matrix and the iteration

numbers of the GMRES method.
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Figure 10.2: Adaptive refinement.

14

12

10 |-

th('7t)

Figure 10.3: Adaptive refinement. Approximation wy, at level 10.
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‘ CV = dlath ‘ CV = MhDgth ‘

| N | w—will, | #(h) |

It. | k(Cy'V) | Ik | 6(Cy'WR) | Ik

|

L
0 2
1] 3
2| 5
307
4109
5 11
6 | 13
7 | 20
8 | 31
9 | 47
10 | 74
11| 114
12 | 177
13 | 278

1,886
1,637
1,272
0,914
0,615
0,401
0,267
0,166
0,101
0,063
0,039
0,024
0,015
0,01

1,001
3,972
12,225
34,212
92,081
118,586
338,26
621,773
1608,08
2344.9
6141,47
8409,92
230076
27528,3

74
114
173
200

1,001
2,553
4,055
3,611
3,164
2,945
2,303
3,524
4,457
5,779
8,348
10,95
14,324
21,094

1,002
1,16

1,166
1,156
1,149
1,224
1,21

1,197
1,252
1,574
1,692
1,561
1,716
1,677

Table 10.3: Adaptive refinement. Condition and iteration numbers.

10.2 FEM-BEM coupling

For 2 = (0,1) and 7" =1 we consider the one-dimensional transmission problem

where f € L*(0,T; H '(Q)) and ug € H'(Q) are given. The following examples refer

= f(*Ia t)
0
up(z) for x € Q,
0 for x € Q=

for (z,t) € 2 x (0,1),
for (z,t) € Q™ x (0,1),

(10.3)

to the initial triangulation shown in Figure 9.1] and a uniform refinement strategy.

The tables show the L*(Q)-error |lu; — w;pll ;o (@) and the corresponding convergence

of the approximation of the interior problem. The L?(Q)-error was computed with the
7-point rule [33] Section C.1]. The system of linear equations (9.7)) was solved with

PARDISO Version 5.0.0 [11} 211, 22].
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Initial condition uy continuously differentiable

We consider the transmission problem ((10.3)) with A =1, f = 0 and initial condition

1
(2x —1)2 -1
0 else.

exp sin (rx)  for z € (0,1),

up(z) =

Figure [10.4] shows the approximation u; of the solution of the transmission problem
(10.3)). The L?*(Q)-errors and the estimated orders of convergence are listed in Table
As expected we get an order of convergence of 2 for the Galerkin approximation
of the interior problem.

’ Level H My ‘ No ‘ Ny, ‘ i = winll 1,0 ‘ eoc

0 9 8 4 0.0316182 0

1 25 32 8 0.015779 1.00275
2 81 128 | 16 0.00422301 1.90166
3 289 | 512 | 32 0.00111947 1.91545
4 1089 | 2048 | 64 0.000289581 | 1.95078
5 4225 | 8192 | 128 7.3735e-05 1.97355

Table 10.4: Error and convergence of u; j,.
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Figure 10.4: Approximation uy at level 5.
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Initial condition uy not continuously differentiable

We consider the transmission problem (10.3)) with A =1, f = 0 and initial condition

1

— (1 =1 -2 fi 1
aropog) L) free)

1
uo(x) = g P
0

else.

The solution uy, of the corresponding transmission problem ((10.3)) is shown in Figure
10.5] In this case we get a reduced order of convergence, as you can see in Table [10.5]
which is what we expected due to the given initial condition.

’Level H Mg ‘ No ‘ Ny, ‘ ||ui—ui,h||L2(Q) ‘ eoc ‘

0 9 8 4 0.0299642 0
25 32 8 0.00684995 2.12907
81 128 | 16 0.00187444 1.86963
289 | 512 | 32 0.000584336 | 1.68159
1089 | 2048 | 64 0.000202621 1.52801
4225 | 8192 | 128 7.33331e-05 1.46625

U~ W N~

Table 10.5: Error and convergence of u; .

Figure 10.5: Approximate solution u;, at level 5.






11 Conclusion and Outlook

In this work we presented the boundary element method for the discretization of the
time-dependent heat equation. After the derivation of the representation formula for
the solution of the model problem ([2.1)) we analysed the heat potentials and the bound-
ary integral operators in the setting of anisotropic Sobolev spaces. We have shown,
that the single layer boundary integral operator V' and the hypersingular operator
D are elliptic and bounded and therefore invertible. We presented four different ap-
proaches for the computation of the unkown conormal derivative 0,ux,. We discussed
direct approaches using the boundary integral equations as well as indirect for-
mulations with the single layer potential and the double layer potential. All four
formulations are uniquely solvable.

We considered a Galerkin-Bubnov variational formulation of the first boundary inte-
gral equation and concluded unique solvability of the discrete problem due to
the ellipticity and boundedness of the operator V. As a trial space we used the space of
piecewise constant basis functions SP(X) corresponding to an arbitrary triangulation
of the space-time boundary 3 for the one- and two-dimensional problem, see Section
In the two-dimensional case we made an assumption on the form and orientation
of the boundary elements, see Figure [7.1], and derived the approximation properties
of SP(X) by using the approximation properties of space-time tensor product spaces.
The extension of those approximation properties to trial spaces with respect to trian-
gulations with boundary elements of arbitrary form and orientation for n = 2 as well
as for n = 3 is still open.

We estimated the error of the Galerkin approximations in the energy norm and stated
an estimate for the L?(X)-error of the approximations for the one-dimensional problem
by using the inverse inequality (7.9)). If we can prove an inverse inequality for functions
in SP(X) for n = 2,3 in the setting of anisotropic Sobolev spaces, we are able to give
an L?(X)-error estimate for n = 2,3 as well.

We used the GMRES method to solve the system of linear equations (7.18). Since the
condition number of the matrix V}, depends on the mesh size h of the decomposition of
> we applied the Calderén preconditioning strategy and used the discretization of the
hypersingular operator D as a preconditioner for V}, see Chapter [§f We discussed the
one-dimensional problem and presented three different approaches for the discretiza-
tion of V and D. If we can prove stability of the L?(X)-projection onto the space
of piecewise linear and continuous basis functions in the anisotropic Sobolev space
Hzi (32) some of the results can be extended to n = 2, 3. However, this is still an open
issue.
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92 11 Conclusion and Outlook

In Chapter [0 we presented the concept of a non-symmetric FEM-BEM coupling
method for the parabolic transmission problem (9.1)) and described a Galerkin method
for the discretization of the coupled problem. It is still an open question how to char-
acterize the trace spaces of the Bochner spaces used for the variational formulation of
the interior problem and if the operator V' is elliptic in this setting as well.

In Chapter [10] we introduced an adaptive refinement strategy but used the exact solu-
tion to get an error estimator. Of course in general we do not know the exact solution.
Thus, we have to establish a posteriori error estimators for the anisotropic BEM in
order to define adaptive refinement strategies.
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