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Abstract

The development of energy efficient electrical machines requires accurate knowledge of
the loss components already in the design stage. This thesis contributes to an improved
iron loss estimation in the ferromagnetic steel laminations by developing novel numerical
methods to deal with eddy current and hysteresis effects.

The presented eddy current model employs finite element methods to consider the three-
dimensional current distribution in the steel sheets. Its computational efficiency is ensured
by the separate treatment of the individual sheets combined with a harmonic decomposi-
tion method to bypass the original transient problem. The hysteresis losses are obtained
from a vector Preisach model which has been generalized to anisotropic material char-
acteristics by modifying its input projection. Both models are identified and validated
against experimental hysteresis loops as well as iron loss measurements carried out on
slip-ring induction machines. Compared to conventional methods, the introduced mod-
els have proven to accurately reproduce the measured results in a reliable and efficient
manner.

Furthermore, some additional iron losses emerging under practical working conditions
are investigated by applying and extending the methods proposed. Special attention
is given first to the effects of loaded operation and the axial loss variation in skewed
machines. Then, the loss characteristics under different inverter supply conditions as well
as the effects of interlaminar short circuits are addressed in detail.

Keywords: eddy currents, electric machines, electromagnetic modeling, finite element
methods, magnetic anisotropy, magnetic hysteresis, magnetic losses, magnetic mate-
rials, manufacturing processes, rotating machines
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Kurzfassung

Erweiterte Wirbelstrom- und Hysteresemodelle für Elektrobleche in rotierenden
elektrischen Maschinen

Die Entwicklung energieeffizienter elektrischer Maschinen erfordert bereits in der Ausle-
gungsphase genaue Kenntnis der beteiligten Verlustkomponenten. Als Beitrag für eine
verbesserte Eisenverlustberechnung in Elektroblechen werden in dieser Arbeit neue Meth-
oden zur numerischen Analyse von Wirbelstrom- und Hystereseeffekten vorgestellt.

Das entwickelte Wibelstrommodell berücksichtigt die dreidimensionalen Stromverteilung
in den Blechen unter Anwendung der Methode der finiten Elemente. Dabei garantiert
die getrennte Behandlung der Einzelbleche, kombiniert mit einer Frequenzzerlegung des
urprünglich transienten Problems, hohe rechentechnische Effizienz. Die Berechnung der
Hystereseverluste erfolgt anhand eines vektorisierten Preisach-Modells, das zusätzlich um
anisotrope Materialeigenschaften erweitert wurde. Die anisotrope Erweiterung basiert auf
einer verallgemeinerten Projektion der vektoriellen Eingangsgrößen. Die Identifikation und
Validierung beider Modelle erfolgt mit Hilfe von experimentell ermittelten Hysteresekurven
sowie Eisenverlustmessungen für Asynchronmaschinen mit Schleifringläufer. Verglichen
mit konventionellen Methoden, erlauben die präsentierten Modelle eine hochgenaue und
zuverlässige Verlustbestimmung bei vergleichsweise geringem numerischen Aufwand.

Die vorgestellten Methoden werden anschließend zur Untersuchung von Zusatzverlusten
unter praktischen Betriebsbedingungen verwendet und entsprechend erweitert. Beson-
deres Augenmerk liegt dabei zunächst auf den Auswirkungen des Lastbetriebes und der
axialen Änderung der Verlustverteilung in geschrägten Maschinen. Des Weiteren werden
auch das Verlustverhalten bei Umrichterspeisung sowie die Auswirkungen interlaminarer
Kurzschlüsse im Detail diskutiert.

Schlagwörter: Wirbelströme, elektrische Maschinen, elektromagnetische Modellierung,
finite Elemente Methoden, magnetische Anisotropie, magnetische Hysterese, mag-
netische Verluste, magnetische Materialien, Herstellungsprozesse, rotierende Maschi-
nen
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1 Introduction

With the steadily growing demand for electricity, electrical machines have become an inte-
gral part of our everyday life. On the consumption side, electric motor driven systems are
the single largest end user of electricity accounting for about 45% of the global electricity
consumption [1]. On the production side, electric generators provide almost exclusively
the total electricity demand, whereby conventional generation units are increasingly sus-
tained by decentralized renewable energy sources. Besides rotating electrical machines,
stationary transformers are extensively used in electronic products and in the electric
power distribution system, allowing for an efficient reduction of the transmission costs.

In all areas of application, systems operated by electrical machines offer large potentials
for ecological and economical savings. On the one hand, the efficiency of the overall system
can be significantly improved by using intelligent control systems, such as variable speed
drives. On the other hand, advances in new technologies enable optimization possibilities
for the machine design itself.

Despite the technological advances made, the design and manufacture of electrical ma-
chines remains one of the most challenging engineering tasks in modern industry. Their
growing variety in applications accompanied by strict specifications lead to interdisci-
plinary problems involving electromagnetic, thermal, mechanical and chemical objectives.
Within this multiphysical context, the development of energy efficient electrical machines
constitutes a primary design goal, manifested in increasingly tightened efficiency require-
ments [2–5].

Developing highly efficient machines necessitates detailed information about the loss
mechanisms involved. Aside from the mechanical losses due to friction or windage, a ma-
jor part of the losses is of electromagnetic origin. According to their local occurrence, the
emerging electromagnetic losses can be classified in resistive losses in the windings, iron
losses in the core stacks, and additional losses in complementary construction parts. Due
to the complicated geometrical structure, non-linear material behavior and partially inter-
acting loss phenomena, the accurate prediction of losses still remains a difficult problem.

Owing to the fast development of computational resources in the past decades, numerical
simulations are being used in an interdisciplinary way in the design process of electrical
machinery. Regarding the electromagnetic design, the finite element analysis is nowadays
a state-of-the-art tool. The basic field distribution in the machine is generally obtained by
a two-dimensional (2-D) cross-sectional finite element analysis performed in the time or
frequency domain. Most of the standard tools enable coupling of the field equations to an
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1.1 Aim and focus of the work

external electrical circuit, the magnetic non-linearity of the iron core is usually considered
by a non-hysteretic magnetization curve. More specific analyses employ three-dimensional
(3-D) models allowing for an accurate evaluation of parasitic effects arising in the complex
geometries.

Even though numerical methods readily enable to predict the operational performance
of electrical machines, the exact determination of losses can rarely be achieved by stan-
dard numerical procedures. In particular, the assessment of the iron losses in the steel
laminations of the core stacks is potentially exposed to considerable uncertainties. The
complicated flux patterns arising make the associated eddy current, hysteresis and excess
effects difficult to characterize, hindering the development of adequate iron loss models.
Mostly, the complex problem is reduced to a simplified one by postprocessing the magnetic
field solution and using predefined specific loss curves or analytical approaches. Although
these techniques are believed to give reasonable results for specific applications and oper-
ating regimes, their limitations and shortcomings are generally acknowledged.

The limits of the simplified approaches are rapidly reached if they are applied to the core
loss estimation of induction machines. The small air-gap of this machine type leads, in
combination with the teeth structure, to slotting fields characterized by high frequencies
and amplitudes. On the one hand, the high-order harmonics induce significant eddy
currents. On the other, harmonics give rise to minor hysteresis loops inside the major loop
resulting in additional hysteresis losses. These difficulties become even more severe when
the machine is operated in conjunction with a frequency converter. Moreover, guiding
magnetic flux in iron cores implies the emergence of fields which are rotating in space.
In induction machines, rotational fields are primarily present in the tooth roots and the
tooth tips of the laminations. The hysteresis losses under rotational flux differ from those
under alternating fields requiring an extension of the scalar models.

For the reasons stated above, enhanced methods for the core loss estimation in general,
and for induction machines in particular, are attracting academic and industrial interest.
This thesis aims to contribute to this field by focusing on advanced methods for the eddy
current as well as the hysteresis loss computation. The developed methods are applied
to the loss prediction of induction machines, but can be utilized generally with any other
topology of rotating electrical machines. The identification and validation of the new
methods is continuously supported by experimental results.

1.1 Aim and focus of the work

The main objective of this thesis is to develop advanced iron loss models, which are in-
tended to enable an accurate prediction of the efficiency of electrical machines. Numerical
methods to simulate the two main iron loss components, namely the eddy current and
hysteresis losses, are presented.

11
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1.2 Scientific contributions

A main part of this thesis deals with 3-D eddy current models for steel laminations
of rotating electrical machines. In most approaches known from literature, the effects of
eddy currents are evaluated using simplified analytical methods, for instance the statis-
tical loss theory [6]. More enhanced methods employ 3-D homogenization techniques or
one-dimensional (1-D) lamination models. To overcome the restrictions of the simplified
approaches, a new method to account for the true 3-D eddy current distribution in the
sheets is developed.

In addition to the eddy current model, a hysteresis loss model proposed by others has
been developed further. The approach is based on a vector Preisach model worked out
previously, and has been extended in order to consider anisotropic material properties.
The hysteresis model is identified and validated by means of measurements performed on
a rotational single sheet tester.

The presented eddy current and hysteresis models are applied to the loss estimation of
induction machines. After validating the models against no load iron loss measurements,
the effects of loading in a skewed machine are investigated. Furthermore, the additional
losses caused by inverter supply as well as interlaminar short circuits will be addressed.

Throughout this work, the loss models are implemented as a postprocessing method fed
by a transient 2-D cross-sectional field analysis. Investigations in literature and the expe-
rience of the author have shown that, for machines with an air-gap, both the operational
behavior and the loss computation itself are only marginally influenced by the losses.

1.2 Scientific contributions

The scientific contributions of this work are listed below. They summarize the main
findings made in the publications [P1–P11], but also include some unpublished results.

• A finite element method to compute the 3-D eddy current distribution in steel lam-
inations of electrical machines is developed and applied to the loss computation of
slip-ring induction machines. The proposed method avoids full transient 3-D sim-
ulations of the whole machine by exciting the 3-D sheet models separately with
boundary conditions obtained from a 2-D field analysis. The eddy current losses
obtained by the 3-D model are compared to two simplified loss models and validated
against no load iron loss measurements. These findings have been presented first at
a conference [P1] and then published in [P2].

• Regarding hysteresis modeling, a vector Preisach hysteresis model known from lit-
erature is extended in order to simulate weak anisotropy present in non-oriented
magnetic steel. The anisotropic material properties are incorporated by generalizing
the input projection of the vector model. The generalization improves the rotational
loss properties at saturation which are not satisfied properly by the original model.
This work has been presented at a scientific meeting [P3] and published in [P4] in-
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volving a discussion on the model identification and validation using measurements
performed on a rotational single sheet tester.

• The time-stepping procedure of the 3-D eddy current model still exhibits the draw-
back of high computational costs, since the high frequencies require a dense mesh
and sufficiently small time step sizes. In order to reduce the numerical burden, a
frequency domain decomposition method has been introduced at a conference [P5]
and published in [P6]. Thereby, the cumbersome non-linear transient 3-D simulation
is successfully bypassed by solving a few linear time-harmonic problems and super-
impose their solutions. The method is further used for studying the eddy current
losses under different loading conditions.

• In [P7] and [P8], the developed methods have been applied to a skewed induction
machine by coupling the loss models to a multi-slice machine model. It is found
that, under load, skewing leads to a highly non-uniform iron loss distribution along
the machine length. Compared to a machine with straight rotor bars, the sum of
iron and copper losses increases slightly in the skewed machine.

• The conference contribution of [P9] has studied the effects of inverter supply on
the machine’s iron loss characteristics. Inverter supply on the stator side, as well
as a doubly fed operating mode with rotor-sided inverter, are investigated. Under
stator-sided inverter supply, the eddy current losses in the steel sheets do consid-
erably increase when compared to sinusoidal feeding, contributing to a total iron
loss increment of 10 % to 15 %. In doubly fed operation, the additional losses are
generally lower owing to the winding topology of the machine studied.

• The capabilities of the 3-D eddy current model have been further extended in [P10]
and [P11] to study the effects of interlaminar short circuits. In avoidance of full mod-
els consisting of multiple short circuited laminations, only a single sheet is considered
and the interlaminar interaction is taken into account by boundary conditions on
the contact surface. The interlaminar contact model allows a quantification of the
additional losses due to interlaminar short circuits and has shown that especially
shearing burrs occurring on the tooth edges can lead to a significant loss increase.

1.3 Collaborations with third parties

The methods presented in the contributions [P1–P11], and summarized in this thesis, were
developed by the first author of those publications. The work was continuously supported
by Prof. Oszkár B́ıró through his expertise in finite element modeling. From outside the
laboratory, various parties were jointly involved.

The industrial partner ELIN Motoren GmbH provided experimental data on the iron
losses of the induction machines as well as data on the electrical steel used. Further,
Dr. Georg Ofner and Dr. Andrej Stermecki collaborated closely with the author by
contributing discussions and comments.
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Prof. Anouar Belahcen and Dr. Emad Dlala from the Department of Electrical Engi-
neering and Automation at the Aalto University in Finland supported the author in the
early stage of his research. Dr. Dlala introduced the author into hysteresis modeling and
provided the initial code for the vector Preisach model.

In collaboration with Mr. Viktor Goričan from Faculty of Electrical Engineering and
Computer Science at the University of Maribor in Slovenia, measurements on a rotational
single sheet tester have been carried out. The measurement results are employed to identify
and validate the proposed hysteresis models.

1.4 Structure of the work

This thesis is subdivided into nine chapters. The current chapter has given a brief in-
troduction by outlining the motivation of this work. The main objectives as well as the
scientific contributions made have been emphasized.

Chapter 2 reviews relevant literature concerning eddy current and hysteresis loss mod-
eling in electrical steel laminations. Special attention is given to additional losses caused
by loading and skewing effects, inverter supply as well as interlaminar faults.

Fundamentals on losses in ferromagnetic materials, finite element methods and Preisach
hysteresis modeling are discussed in chapter 3 by taking into consideration typical chal-
lenges encountered during modeling of rotating electrical machines.

The developed 3-D eddy current model for steel laminations is presented in chapter 4.
The 3-D model is applied to a slip-ring induction machine and compared to simplified
eddy current models as well as no load iron loss measurements.

Chapter 5 extends the vector Preisach hysteresis model to anisotropic properties and
discusses the parameter identification for static and dynamic conditions. Furthermore,
the effects of rotational fields on the machine’s iron loss distribution are subjected to an
in-depth analysis.

The variation of the iron loss characteristics due to loading and skewing is investigated
in chapter 6, together with a harmonic decomposition method to reduce the computational
effort of the transient 3-D eddy current analysis.

Some aspects on additional core losses caused by inverter supply as well as interlaminar
short circuits are addressed in the next chapters. Chapter 7 examines different inverter
supplied operating modes, while chapter 8 deals with interlaminar short circuits due to
shearing burrs and conductive joints.

Chapter 9 gives a conclusion of the work, gathering the scientific achievements made.
The key factors for a reliable and efficient iron loss estimation are elaborated and sugges-
tions for future studies are given.
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This chapter provides a background study on the topics related to this thesis. Starting
with some simplified, experimental iron loss models, advanced methods for the eddy cur-
rent and hysteresis loss computation will be reviewed. Due to the numerous publications
in the related fields it is inconceivable to review them all. Therefore, the focus will be kept
on methods which are preferably applied to rotating electrical machines. Moreover, latest
achievements in modeling of additional core losses arising under practical working condi-
tions are discussed. Based on the literature review made, a brief conclusion benchmarks
the current work.

2.1 Experimental iron loss models

Steinmetz [7] has pioneered work on iron loss modeling by studying hysteretic effects
in ferromagnetic laminations exposed to sinusoidal and unidirectionally alternating flux.
Based on his experiments, he expressed the iron losses as a power function of the amplitude
of the flux density B̂ and the fundamental frequency fs

PFe = kfαs B̂
β. (2.1)

The coefficients k, α and β are obtained by fitting the loss model to experimental data. By
today, the original Steinmetz equation has undergone several modifications, for example
to consider arbitrary flux density waveforms [8, 9], dc bias [10], or minor loops [11].

Based on Steinmetz’ approach, two-component methods have been developed in [12]
and [13], by splitting the total losses into contributions originating from hysteresis, Phys,
and eddy current effects. The statistical loss theory introduced by Bertotti [14], segregates
the eddy current losses further into a classical part Pcl and an excess part Pex, leading to
the following three term expression

PFe = Phys + Pcl + Pex = chysfsB̂
2 + cclf

2
s B̂

2 + cexf
1.5
s B̂1.5. (2.2)

The parameters chys, chys and cex are material specific constants. Assuming sinusoidal
excitation and uniform flux density distribution along the lamination thickness d, ccl be-
comes ccl = σπ2d2/6, wherein σ is the electrical conductivity of the sheet material [15]. The
hysteresis losses originate from the hysteretic character of the magnetization process in
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ferromagnetic materials. Contrary to the eddy current and excess effects, the hysteresis
losses are static in nature, since the energy dissipated during magnetization is independent
of the rate of the applied field. The classical losses are obtained from eddy current analysis
on a homogenous conductive body without domain structure, whereas the excess losses
account for microscopic local eddy currents caused by domain wall motion. In Bertotti’s
theory, the excess losses are also compensating for the skin effect at high frequencies, which
is neglected in the classical term.

Bertotti’s equation (2.2) has been derived for sinusoidally alternating flux. However, in
magnetic cores of rotating electrical machines, the discrete winding distribution, slotting
and saturation effects possibly combined with non-sinusoidal supply conditions, lead to
distorted fields. In [16], the statistical loss theory has been extended for arbitrary flux
waveforms by considering the time derivative of the magnetic flux density B

PFe = Phys +
ccl

T

T∫
0

(
dB

dt

)2

dt+
cex

T

T∫
0

∣∣∣∣dBdt
∣∣∣∣1.5 dt, (2.3)

in which t is time, and T is the time period of the fundamental frequency. Using this
representation, one should note that ccl = σd2/12. A common simplification of (2.2) and
(2.3) is obtained by superposition of the losses for each harmonic component

PFe =

Nh∑
i=1

(
chysifsB̂

2
i + ccl(ifsB̂i)

2 + cex(ifsB̂i)
1.5
)

(2.4)

where B̂i is the amplitude of the ith harmonic of the flux density and Nh is the number
of harmonics considered. Hereinafter, the model defined by (2.4) will be referred to as the
traditional technique and will be compared to the advanced methods developed in this
thesis.

The statistical loss separation theory has been further improved by taking into account
the skin effect for higher frequencies [17], minor hysteresis loops [13, 18], or even by sub-
stituting the loss coefficients with flux- or frequency-dependent polynomials [19].

In general design practice of electrical machinery, the discussed empirical or semi-
empirical models are employed a posteriori to the 2-D finite element solution. A first
application of Bertotti’s statistical loss theory has been presented in [20] by feeding the
flux density distribution of a brushless dc motor element-wise to the loss model. In [21],
five different statistical loss models have been compared to each other. None of the models
has been found to be superior when adopted to the loss estimation of a permanent magnet
synchronous motor.

Mostly, the losses are evaluated independently for each Cartesian component of the flux
density, neglecting the rotational hysteretic behavior. Experiments have shown that the
hysteresis losses under rotational excitation differ from those under alternating conditions
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[22–24]. At low and medium flux densities, the rotational losses can be significantly
higher than in the alternating case, until they start to decrease quickly near saturation.
For instance, in induction machines, rotational fields do occur in the stator tooth roots
and in tooth tips of the sheets. In order to account for rotational effects, the hysteresis
losses have been modified by some correcting factors obtained from comparison of loss
measurements under alternating and circular flux [25,26]. Other works treat the rotational
losses separately by means of semi-empirical fitting functions [27–29].

2.2 Eddy current models

Besides the simplified eddy current terms appearing in the experimental models, physical
eddy current models have been developed along with the advances made in computational
resources. The electromagnetic field quantities in the laminations are thereby evaluated
by discretizing Maxwell’s equations. In the most general case, the resulting quasistatic
eddy current problem is formulated as

∇×
(

1

σ
∇×H

)
= −∂B

∂t
, (2.5)

whereby the flux density vector B is coupled through constitutive material relations to
the magnetic field intensity H.

2.2.1 Homogenization methods

The most common technique in dealing with laminated structures is to assume a bulk
medium having anisotropic material properties. For instance in [30], the electric con-
ductivity has been set to zero in the direction normal to the laminations, and the mag-
netic permeability has been modified according to the stacking factor. Instead of using
anisotropic material quantities, a single component current vector potential has been in-
troduced in [31] to consider the laminar character of the current density. This latter
technique is not valid for any field formulation and restricted to a single orientation of the
sheets within the stack.

The methods mentioned account only for the planar eddy currents caused by the flux
density perpendicular to the sheets. Regarding studies on rotating electrical machines,
they enable to evaluate the additional core losses due to axial stray fields caused by air-
gap fringing and the end winding leakage. Such stray fields are potentially emerging at
end regions of the core, where planar eddy currents can induce a significant loss increase
accompanied by local overheating. In [32], the losses in the stator end region of a turbo-
generator have been analyzed for the first time using a homogenized 3-D finite element
model. Similar studies have been performed in [33] and [34] along with a thermal analysis
for identification of possible hot spots. Recent works have also investigated additional
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losses induced in inactive construction parts, such as clamping plates and fingers [35–37],
or housing and end shields [38,39].

In order to consider the eddy current loops confined by the sheet thickness, the homog-
enized bulk models have been combined with a separate analysis of the individual sheets.
In [40], the eddy currents caused by parallel fluxes have been evaluated by analytical ex-
pressions. In [41] and [42], the bulk model has been combined with a 1-D eddy current
analysis, whereas in [43] the 3-D models of the single laminations have been treated sep-
arately by exciting them with boundary conditions obtained from the continuum model.

2.2.2 1-D lamination models

The thickness of the steel sheets used in electrical machines is in general considerably
smaller than their transversal dimension. Assuming a magnetic field entering in parallel
to the sheets and neglecting the return paths of the eddy currents, the intrinsically 3-
D eddy current problem can be approximated by a 1-D diffusion equation. The 1-D
formulation has been introduced first in [44] and characterizes the penetration of the flux
density along the lamination thickness. In [45], the approach has been extended to 2-D
fields by solving the 1-D eddy current problem in each direction separately

∂2Hx(z, t)

∂z2
= σ

∂Bx(z, t)

∂t
,

∂2Hy(z, t)

∂z2
= σ

∂By(z, t)

∂t
, (2.6)

where the subscripts x and y refer to the directions to which the fields correspond to.
The one-dimensional nature of the approach consists in evaluating the field quantities
along the lamination thickness in z-direction only. The two equations are coupled through
BH-relations and possibly also through boundary conditions.

The work of [46] has presented one of the first implementations of a 1-D model applied
to the core laminations of an induction machine. The 1-D model has been excited by
boundary conditions derived from the 2-D cross-sectional field solution, neglecting the
reaction of the 1-D model on the 2-D one. Other applications of 1-D methods to various
machine types can be found for instance in [47] and [48]. The coupling between the 2-D
and 1-D models has been thoroughly addressed in [49] by utilizing nested iterative schemes.
In [50], the latter method has been further extended to consider the interaction between
the x- and y-components of the magnetic field via coupling terms in the Jacobian matrix.

Solving the 1-D diffusion equation usually requires a suitable space discretization along
the lamination thickness. In order to avoid such a discretization, so-called mesh-free
lamination models have been developed recently [51–53]. Thereby, the magnetic flux
density is represented by a set of hyperbolic [51, 52] or polynomial [53] basis functions.
In [53], the proposed mesh-free approach has been applied first to an induction machine
and later, in [54], to a wound-field synchronous machine.
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2.2.3 2-D and 3-D lamination models

The application limits of the 1-D approach have been studied in [55], [56] and [57] by
comparison to a 2-D eddy current problem excited in z-direction:

∂2Hz(x, y, t)

∂x2
+
∂2Hz(x, y, t)

∂y2
= σ

∂Bz(x, y, t)

∂t
. (2.7)

All the works have come to the conclusion that the neglection of the edge effects in the 1-D
model leads to an overestimation of the losses. The deviations increase with the frequency
and the sheet thickness. In [57], it has been stated that the geometrical ratio between the
sheet width and the thickness should be higher than 10 for obtaining satisfactory results
with the 1-D formulation.

Lately, 3-D models taking account of each laminate have been set up by solving (2.5)
in its full extent. Most of them are rather simple and serve as a benchmark basis for the
various reduced models [43]. More complex 3-D models for laminated cores of rotating
electrical machines have been employed in [58] and [59].

In [58], the 3-D eddy current distribution in a single sheet of an induction machine and
a permanent magnet motor has been investigated. The 3-D model has been obtained by
extruding the machine’s cross section for a half of the sheet thickness. Axial fields have
been neglected by setting appropriate boundary conditions. The motion of the rotor in
the transient analysis has been considered by re-meshing the air-gap elements.

Moreover, [59] studied the effects of stray fields emerging at the stator core ends of
a turbine generator. First, a 3-D non-conductive bulk model of a pole pitch of the end
region has been examined using a transient analysis. Then, the time-harmonic 3-D model
including each laminate has been analyzed by exciting it with the air-gap flux density
derived from the transient analysis. The insulation between the sheets has been taken
into account by doubly defined finite element nodes on the lamination surface.

2.3 Hysteresis models

Whereas the numerical treatment of non-linear magnetic material behavior can nowadays
be tackled by standard procedures, modeling of hysteretic properties still remains a chal-
lenging subject. During the past decades, hysteresis modeling received increased attention
manifested in numerous publications. In the following, fruitful approaches to including
hysteretic properties in the iron loss analysis of electrical machines are reviewed.

2.3.1 Static hysteresis

Speaking about hysteresis generally implies static hysteretic effects, meaning that the
magnetization behavior is rate-independent of the magnetic field applied. Hysteresis loops

19



2 Literature review of relevant research
2.3 Hysteresis models

are usually measured at low frequencies, for which the dynamic effects of the eddy currents
are negligible.

One of the most popular approaches to hysteresis is the Preisach hysteresis model intro-
duced originally in [60], and later interpreted mathematically in [61]. The model is based
on a simple rectangular hysteresis operator γhα,hβ defined by up- and down-switching val-
ues at hα, hβ and giving the states ±1 depending on the current input field H(t). The
shape of the hysteresis loop is determined by a Preisach distribution function µ(hα, hβ)
covering all possible field intensity values. The output flux density B(t) is obtained by
accumulating the weighted elementary hysteresis operators over a physically meaningful
range hα ≥ hβ:

B(t) =

∫∫
hα≥hβ

µ(hα, hβ)γhα,hβ (H(t)) dhαdhβ. (2.8)

The Preisach distribution function is often obtained from an identification procedure based
on a Gaussian or Lorentzian distribution [62, 63]. Mayergoyz [64] gave a geometrical
interpretation of the classical Preisach model and simplified its numerical implementation
and identification by means of Everett functions [65]. Using Everett functions allows a
complete model identification with first-order reversal curves and avoids the double integral
of (2.8).

The classical Preisach model in its phenomenological nature fulfils some essential fea-
tures observed in experiments, such as the return-point memory and the wiping-out (dele-
tion) property [66]. The return-point memory implies the closure of the minor hysteresis
loops, the wiping-out property states that only the dominant input extrema are stored
by the model. Additionally, the model also exhibits the congruency property, entailing
that variations between the same two extremal values produce congruent minor loops.
However, the congruency property could not be confirmed experimentally. Furthermore,
it was observed in experiments that many cycles may be needed before a minor hysteresis
loop forms a closed path, while the classical Preisach model immediately produces stable
minor loops. Approaches considering the latter phenomenon of accommodation as well as
a generalization of the congruency property can be found in [63] and [64].

An interesting alternative to the classical Preisach model has been described in [67].
The elementary hysteresis operators are thereby replaced by a play function. Using a
stop-type model represents the inverse Preisach operator. The applicability of play- and
stop-type models has been investigated for instance in [68] and [69], concluding that the
play-type model predicts the hysteretic properties more accurately than the stop-type one.

In [70] and [71] a so-called history-dependent hysteresis model has been introduced,
which is based on direct use of experimentally measured first-order reversal curves. The
hysteretic behavior in the overall BH-plane is obtained as a weighted sum of shifted first-
order reversal curves. The history-dependent model rigorously fulfills the return-point and
wiping-out property, and further relaxes the congruency and accommodation problem.
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Another common phenomenological hysteresis model has been proposed by Jiles and
Atherton [72]. The Jiles-Atherton model describes the energetic behavior of the mag-
netic domains analytically. The resulting differential equation is based on an irreversible
magnetization component resulting from the pinning effect, and a reversible component
ensuing from domain wall bowing. The main advantage of the Jiles-Atherton model lies
in its simplicity since it requires only five scalar parameters to be identified. In contrast,
the model has been judged to give inaccurate results regarding the wiping-out property
and the return-point memory leading to non-realistic minor hysteresis loops [73].

2.3.2 Dynamic hysteresis and excess effects

Only static hysteresis models have been reviewed thus far. The term static refers to the
fact that the speed of the input variations has no effect on the shape of the hysteresis loop.
However, in ferromagnetic materials, rate-dependent eddy current and excess effects lead
to a broadening of the hysteresis loops depending on the rate of change of the magnetic
field. The eddy current effects are usually associated with the conductivity of the material,
whereas the microscopic excess effects are considered as part of the hysteretic law. Most
dynamic hysteresis models are based on a dynamization of static models.

In [64], a dynamic Preisach model has been introduced by enforcing the distribution
function to be dependent on the time derivative of the magnetization. Although an in-
depth discussion on the identification procedure of the material parameters was given, the
model has been found to achieve unsatisfactory agreement with experiments [74].

Another, more successful, dynamic generalization of the scalar Preisach model has been
developed by Bertotti [75]. In his model, the dynamic excess effects are modeled by
using rate-dependent elementary hysteresis operators whose switching rate is controlled
by the input field. The results can be physically interpreted by means of the statistical
loss theory [76]. Applications of the dynamic Preisach model of Bertotti can be found
in [77], [78] as well as in [79], where the model has been coupled to the 1-D diffusion
equation.

The dynamization of the history-dependent model of [70, 71] is derived from the con-
cept of magnetic viscosity and formulated in [80]. The proposed viscous-type differential
equation has been proven to give accurate results for a wide range of frequencies, and can
be used in general with any other type of static hysteresis model.

The dynamic model of Jiles [81] is based on a linear second-order differential equation
describing the motion of the domain walls. Compared to the static model, only two new
additional material parameters are introduced specifying the resonance frequency and the
damping coefficient of the resulting harmonic motion equation.
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2.3.3 Vector hysteresis

Most of the models found in literature and discussed up to now are scalar in nature.
However, in electrical machines, the flux patterns are locally rotating rather than unidi-
rectionally alternating. This has led researchers to the development of vector hysteresis
models accounting for the hysteretic behavior under rotational magnetization.

One of the first vector hysteresis models to appear was the Stoner-Wohlfarth model [82].
This model is physically based on the theory of particle assemblies consisting of identical
particles with uniaxial anisotropy. The Stoner-Wohlfarth approach is generally useful for
studying physical processes during magnetization, but fails to reproduce accurate results
at a phenomenological level.

A general vector extension, which can be applied principally to any scalar hysteresis
model, has been proposed by Mayergoyz [64]. In the Mayergoyz approach, the input field
intensity is projected to Nϕ discretized directions eϕi , with ϕi = iπ/Nϕ. The output is
obtained by applying the scalar model in each direction and summing up the outputs:

B(t) =

Nϕ∑
i=1

B[Hϕi(t)]eϕi . (2.9)

Here, B[Hϕi ] stands for the scalar Preisach function. Mayergoyz’ vector extension of the
scalar Preisach model has become widely known as the vector Preisach model and will be
referred to as such here too. The vectorization of the scalar models enables to keep track
of the input history in each direction. The model is identified so that it produces the
same output as the scalar model when magnetized in one direction. Despite its ability to
accurately predict hysteresis loops under alternating and circular conditions, the model has
been criticized for not reproducing the rotational loss properties experimentally observed.
At saturation, the model exhibits an irreversible hysteretic behavior entailing that the
losses remain at a constant level instead of decreasing. To overcome this problem, a
generalized vector model has been introduced in [83] and [84] by modifying the input
projection, or by adjusting the losses using a weighting function [85].

A model that combines features of the Preisach model and the Stoner-Wohlfarth one
has been presented in [86] by replacing the classical scalar Preisach function with a vector
operator based on Stoner-Wohlfarth asteroids. In [63], the elementary hysteresis opera-
tors have been substituted by coupled ellipsoidal hysterons which interact according to
predefined selection rules.

In [87] and [88], energy based vector models have been developed, which have similar-
ities to the Prandtl-Ishlinskii hysteresis model [89] established in continuum mechanics.
Magnetic hysteresis is thereby represented as a superposition of pseudoparticles whose
pinning effect is modeled as a friction-like force. The model intrinsically satisfies vector
properties and is well suited to study magnetic dissipation at a macroscopic scale.
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Aiming towards a general prediction of the magnetodynamic effects under rotational
magnetization, dynamic vector models have been proposed. A simplified and common
dynamization of the static models can be achieved by adding dynamic field components
to the static ones, neglecting the interaction between static and dynamic contributions
[90, 91]. A more enhanced but computationally expensive approach has been studied
in [92] and [93] by coupling the static vector Preisach model to the 1-D eddy current
equation. Besides the Preisach-type models, a dynamical energy based vector hysteresis
model has been introduced in [94] by extending the work of [88].

Considering applications to rotating electrical machines, hysteretic material behavior
is usually included using the Preisach theory. One of the first works to employ a static
vector Preisach model for the iron loss computation of an induction machine is given
in [46]. The vector model is based on the Mayergoyz extension and has been coupled in
the postprocessing stage to the 1-D diffusion equation. Other works to follow have been
presented in [47] and [95]: in [47], the vector Preisach model of [46] has been extended
to include rate-dependent hysteretic properties; in [95], the solution of the diffusion equa-
tion has been avoided by introducing a statistical-like eddy current term to the magnetic
constitutive law.

A great deal of research on Preisach hysteresis modeling in rotating electrical machines
has been carried out by a Finnish research group. In [96], a static vector Preisach model
has been elaborated and incorporated into the 2-D finite element analysis of squirrel cage
induction machines. The latter method has been extended in [74] by strongly coupling
it to a 1-D lamination model and relaxing the rotational loss properties at saturation.
Moreover, a simplified magnetodynamic vector hysteresis model has been introduced based
on the evaluation of magnetization curves. The model combines the static vector Preisach
model with a simplified expression for the dynamic field components, thus avoiding the
computationally expensive solution of the 1-D equation.

2.3.4 Anisotropy

The majority of the proposed hysteresis models is inherently isotropic, neglecting any
anisotropy effects on the field distribution and the ensuing losses. Besides grain-oriented
material, even non-oriented steels can exhibit a certain extent of anisotropy, owing to
inevitable crystal orientations during the rolling process.

An intuitive way to address anisotropic effects in electromagnetic finite element anal-
yses is the introduction of an anisotropic reluctivity tensor [97]. The reluctivities are
obtained from measurements performed on two-dimensional setups enabling magnetiza-
tion in different directions. Other approaches are based on the energy/coenergy concept
which represents the vectorial BH-relationship with the aid of measurements in the rolling
and transverse direction only [98,99].
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Regarding hysteresis modeling, limited attention has been paid to anisotropic behavior.
In [83], an anisotropic Preisach hysteresis model has been presented by generalizing the
input projection of the vector model. The generalized model considers the effects of biaxial
anisotropy exhibiting two perpendicular magnetic easy axes which are equally pronounced.

Modeling of uniaxial anisotropy, defined by a sole magnetic easy axis, into Preisach-
type vector models has been studied in [100–105]. In [100], weak anisotropy has been
considered by direction-dependent elementary hysteresis operators implemented by means
of neural networks. In [101–103], angularly dependent distribution functions have been
introduced. Their angular dependence can be handled by Fourier expansion [101, 102] or
by assembling them as a product of Lorentzian’s functions [103]. A simple anisotropic
generalization of a vector play-model has been given in [104] by multiplying the isotropic
model with an anisotropy matrix. This work has been extended further in [91] to account
for dynamic effects. In [105], the elementary Preisach operator has been replaced by a
four-state vector operator which incorporates microcrystalline anisotropy by adopting the
Stoner-Wohlfarth theory.

The friction-like hysteresis model of [87] is easily extendable to anisotropy effects since
it intrinsically exhibits anisotropic properties. The model identification has been discussed
in [106] and [107] by examples of weakly anisotropic non-oriented steel sheets.

2.4 Additional iron losses

In this thesis, special attention is given to additional losses arising under practical work-
ing conditions, such as loaded operation or inverter supply. Furthermore, the effects of
interlaminar short circuits caused by imperfect sheet insulation will be addressed. These
additional losses are in general rather difficult to assess, owing to their complex origin
and the lack of reliable measurement methods. In conventional machine design, they are
attributed to the so-called stray load losses defined as a global quantity with no insight
into the physics of their formation [2–4]. Without focusing on the concept of stray load
losses, methods to compute these loss components will be reviewed in the following.

2.4.1 Effects of loading and skewing

The evaluation of iron losses is usually performed under no load conditions due to the
feasibility of measurements based on the input-output method. Under load, the conven-
tional input-output method is no longer suitable for studying high efficiency machines,
since even small measurement errors in the input and output powers lead to large errors
in the results. Better accuracy can be achieved by using rather complicated calorimetric
setups which determine the losses from the heat dissipated [108].

In [109] and [110] it has been pointed out that the field harmonics in the iron core of an
induction machine considerably increase when load is getting applied. Under load, higher
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currents have to be provided, resulting in enlarged field harmonics generated by slotting
effects and the winding structure. As observed in [109], in particular the eddy current
losses exhibit a significant increase, since they rise approximately quadratically with the
frequency.

Further challenges arise when induction machines with skewed rotor bars come into
the focus of interest. Skewing is a common practice to reduce torque ripples, harmonic
currents, and acoustic noise. On the one hand, the skew reduces high frequency losses
in the rotor windings. On the other hand, it has been noted early in [111], that skewing
leads to non-uniform flux density distribution along the machine length, which can result
in elevated iron losses.

To avoid computationally expensive 3-D analyses, the skew effects are usually taken
into account by multi-slice finite element models [112, 113]. Thereby, the electromagnetic
quantities are evaluated in several cross-sectional slices at given positions along the ma-
chine axis. The currents in the rotor bars of the individual slices are coupled through
an external electrical circuit. In [114], a time-harmonic multi-slice method has been em-
ployed, combined with a two-term expression for the iron loss estimation. It has been
reported that the flux distribution, and thus the losses, may vary considerably depending
on the loading condition. The investigations in [115–117] have been performed in the time
domain by postprocessing the field solution to fit statistical core loss models. In [116]
and [117], a comprehensive study on how the skew alters the balance between decreasing
rotor bar losses and increased iron losses has been carried out concluding that in larger
machines, where the iron losses become more dominant, the skew results in an overall loss
increment.

In addition to the non-uniform field distribution along the machine length, skewing
entails the emergence of axial field components. These components lead to planar eddy
currents in the laminations and to parasitic inter-bar currents which flow from the rotor
bars into the core. The effects of planar eddy currents have been studied in [118] by
coupling a homogenized 3-D model to a model of individual laminates. In conclusion
it was found that they contribute to negligibly small losses when compared to the eddy
currents flowing within the sheet thickness. The effects of inter-bar currents are generally
examined by resistance networks [119] or 3-D models [115,120].

2.4.2 Effects of inverter supply

Owing to the latest progress in power electronics and control systems, variable speed drives
are increasingly realized by means of frequency converters. In comparison to conventional
sinusoidal supply, the switching operations of the inverter lead to distorted output voltages
whose high frequency components induce additional losses in the machine windings and
cores. In the past decades, the effects of inverter supply have been studied intensively in
several publications, of which the most relevant ones are summarized below.
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In [121], the impact of inverter supply on two samples of soft magnetic materials has
been investigated experimentally. Under pulse width modulated (PWM) voltage supply,
a major increase of the iron losses has been reported, whereby the eddy current losses
have been identified to be most sensitive to the inverter output voltage. The measurement
results have been compared to numerical studies employing a 1-D lamination model [122].
In [123], the 1-D approach has been coupled with a dynamic Preisach model, but no
significant increase of the hysteresis losses has been noticed.

The additional losses in an inverter supplied induction machine have been examined
in [124] using a slotless rotor test bench. During PWM feeding, the iron losses rose by
85 % in comparison to sinusoidal supply. The influences of the inverter characteristics on
the iron losses have been measured in [125], including PWM supply voltages with different
switching frequencies and modulation indices.

The loss computation of inverter fed electrical machines is commonly based on post-
processing the transient 2-D field solution to generalized formulations of the statistical
theory. The generalizations made are established as empirical relations between the losses
under sinusoidal and inverter feeding [17,126,127]. For instance, in [128] and [129], these
generalized models have been applied to the core loss estimation of an induction motor fed
by PWM voltage. While in [128] no validations with measurements have been performed,
the computational results of [129] have shown good accuracy for a large number of supply
types.

Recently, the effects of inverter supply have been studied by means of more enhanced
models allowing for an accurate assessment of the associated eddy current and hysteresis
losses. In [130], a 1-D eddy current model combined with a Preisach-type vector model has
been used to study an induction machine supplied by a six-step voltage source. This supply
type was observed to cause comparatively low additional losses due the few switching
operations involved. Moreover, it has been found that the inclusion of eddy current and
hysteresis effects into the field solution has a rather small influence on the field patterns and
the consequent losses. The works of [131] and [132] have contemporaneously investigated
the eddy currents under PWM excitation by using a 1-D model. The model of [131] takes
also hysteresis into account by using the notion of complex reluctivity. Other interesting
studies on the iron losses of induction machines under PWM supply can be found in [133]
and [134]: in [133], a magnetodynamic vector hysteresis model based on the Preisach
theory has been utilized, whereas in [134] the hysteresis effects have been studied by a
Jiles-Atherton model.

2.4.3 Effects of interlaminar short circuits

Evaluating the influence of manufacturing processes on the magnetic and electric proper-
ties of steel laminations is one of the most difficult aspects to assess. In particular, the
cutting process substantially degrades the electromagnetic characteristics near the steel
edges. Depending on the cutting technique, the degradation process can result in an iron
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loss increase by up to 30 % [135,136]. In the core loss prediction, the effects of cutting are
usually addressed by correction factors derived from experiments [25].

The works of [137] and [135] emphasize that commonly utilized punching methods lead to
a serious decrease of the magnetic permeability due to the mechanical stress applied. Laser-
cutting may even induce a more severe permeability drop owing to thermal strains [138].
The effects of stress on the permeability have been considered in [139] and [140] by in-
troducing a thin finite element layer of low permeability on the cutting edges. Other
works take also the effects of the mechanical stress caused by shrink fitting and stamping
into account [141,142]. Lately, measurement and simulation of stress-dependent magnetic
material properties have become a topic of considerable interest manifested in various pub-
lications documenting ongoing research [143, 144]. In this thesis, no further attention is
given to the change of material characteristics during manufacturing. The discussions be-
low are rather focusing on the effects of interlaminar short circuits, which will be analyzed
according to their origin of occurrence.

In addition to the degradation of electromagnetic properties, the mechanical deforma-
tions during the cutting process result in creation of microscopic shearing burrs on the
lamination edges. These edge burrs can break down the insulation leading to conductive
connections between the stacked sheets. If the burr-induced short circuits cover several
laminations, high currents begin to circulate, resulting in a significant loss increment and
hence to local overheating [145]. Mostly, the effects of interlaminar short circuits have been
considered by statistical evaluation of measured data [146, 147]. The used measurement
setups are for instance based on capacitive methods [147] or employ external flux density
sensors [148]. To precisely quantify the additional losses arising, measurement systems
allowing for a selective application of artificial burrs have been set up. In [149], edge burrs
have been introduced in a controlled manner to a model of a transformer core. Compared
to a configuration without burrs, the burr effects have led to an increase of the total losses
by about 100 %. In the burr region, the local losses became almost 50 times higher. Simi-
lar experiments have been performed in [150] and [151] by using a three-phase transformer
core and a clamping device for the application of burrs. The measurement results have
also been compared to an analytical eddy current model, but only poor correlation was
found due to the simplifications made. In the works of [152] and [153] the interlaminar
contacts have been modeled using a resistance network analogy. The investigations in [152]
are based on an elementary short circuit comprising two sheet pairs. In [153], the network
parameters have been derived from a simple small-scale 3-D finite element model.

Further interlaminar short circuits are caused by conductive joints, such as bolts, welds
or clamping bars. In most cases, these fixations as well as the shaft and parts of the frame
are mounted uninsulated on the core, short-circuiting a large number of laminations.
Although the consequent loss increase is commonly acknowledged in industrial praxis,
only a few scientific publications address the effects of conductive joints. The influence of
welding joints on a toroidal core has been studied experimentally in [154] and [155]. It
has been stated that the iron losses can rise by up to 44% depending on the number of
welding passes and the core material.
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A third possible cause for interlaminar short circuits are small insulation faults on
the lamination surfaces inside the core middle. Such inner short circuits are most likely
caused by aging effects combined with high temperature loads. The quality of the surface
insulation is normally assessed by measurement of the surface resistance [156]. Because of
the stochastic nature of coating faults, they are almost exclusively quantified by statistical
means [146,156].

2.5 Conclusion

This chapter has summarized relevant literature discussing eddy current and hysteresis
models as well as additional iron losses emerging under practical working conditions. De-
spite the recent availability of powerful numerical tools, the estimation of iron losses is still
mostly based on simple analytical approaches, for instance the statistical loss theory [6].
Additional losses are commonly considered by correcting factors without having detailed
insight into their origin.

The eddy current problem in the steel sheets of electrical machines is usually treated
by approximation of Maxwell’s equations employing homogenization techniques or 1-D
lamination models. However, in small machine parts such as teeth, bridges or closed slots,
the effects of the 3-D eddy-current distribution are not negligible, and the methods stated
may be no longer valid [57]. These edge effects become particularly important at the
tooth tips exposed to high harmonic flux variations [56]. To overcome the restrictions
of the homogenization methods and 1-D approaches, a method based on a 3-D finite
element analysis is developed in this thesis. Unlike other 3-D models [132,157], the method
proposed avoids cumbersome modeling of the rotor movement.

The Preisach model is the most popular hysteresis model in computational electromag-
netics. Compared to other models, it offers high accuracy and stability founded on a
robust mathematical background. In light of these advantages, a Preisach-type vector
hysteresis model is used in this work, too. The used model has originally been proposed
by others [64, 74], and is extended by the author to account for weak bi- and uniaxial
anisotropies. The new anisotropy model is based on a generalized input projection and
omits complicated expansions of the distribution functions, such as implemented in [101]
or [102].

It is known from literature that the iron losses of an induction machine increase when
load is getting applied. These effects will also be investigated in this thesis. Moreover, the
developed eddy current and hysteresis models will be applied to the study of skewing effects
having been investigated before by extensions of the statistical loss theory only [115–117].

Recently, the iron loss characteristics under inverter supply have attracted the attention
of many researchers and are addressed here, too. Besides the commonly investigated
inverter supply on the stator side, a doubly fed operation mode will also be examined.
Slip-ring induction machines operated in doubly fed mode are supplied by a frequency
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converter on the rotor side. The presented studies on the iron loss properties under rotor-
sided inverter supply are new to the knowledge of the author.

The quantification of additional losses due to interlaminar short circuits is mostly per-
formed in the literature using analytical methods derived from simple geometries. In order
to enable studies on more complicated structures like an electrical machine, the 3-D eddy
current model will be extended in this work by introducing suitable boundary conditions
on the interlaminar contact surface. The method is capable of computing the true paths
and values of the eddy currents and avoids full models comprising several interconnected
sheets.

The developed models are applied in postprocessing manner to the 2-D cross-sectional
field solution of the machine. The effects of the inclusion of the iron losses in the field
analysis have been mentioned in section 2.4.2 and also studied in [48,158], concluding that
for rotating electrical machines, their effects can be neglected without any significant loss
of accuracy. Owing to the air-gap present in this machine type, a considerable amount of
reactive power is required for the field generation, which in turn significantly attenuates
the effects of iron losses. Furthermore, the incorporation of hysteresis and eddy current
effects into the field solution implies high computational costs potentially suffering from
numerical instability [93, 159]. Bearing these considerations in mind, the effects of iron
losses are omitted during the 2-D analysis in favor of an efficient implementation well
suited for industrial design purposes.
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After introducing some details of the loss generation in ferromagnetic materials, funda-
mentals of the numerical methods used will be presented in this chapter. The analysis of
the electromagnetic field quantities is based on finite element methods, which are reviewed
with particular emphasis on eddy current formulations and applications to rotating elec-
trical machines. Moreover, the implementation of the employed Preisach hysteresis model
will be detailed, involving a discussion on its identification and extension to rotating fields
as well as dynamic conditions.

3.1 Losses in ferromagnetic materials

At a microscopic scale, ferromagnetic materials are frequently characterized using the
domain theory [160]. Magnetic domains are regions with uniform magnetization separated
by domain walls. When a magnetic field is getting applied, the domains align themselves
with the external field. The magnetization process is accompanied by movement of the
domain walls and alignment of the magnetic dipole moments. These phenomena are partly
irreversible and reflected in the overall hysteretic behavior at macroscopic scale.

Depending on their chemical composition, grain size and the manufacturing process,
ferromagnetic materials feature different magnetic properties adapted to specific applica-
tions. The magnetically soft ferro-silicon alloys used in electrical machines are easy to
magnetize (high permeability) and show low magnetic losses. They can be classified in
non-oriented and grain-oriented types. In grain-oriented steel, the domains are selectively
aligned in a specific direction using a sequence of annealing and rolling treatments. Con-
sequently, this steel type is characterized by strong anisotropy and rather large grain size.
Grain-oriented steel is preferably used in transformers and large-sized rotating machines
in which the core is assembled of sectorally segmented sheets. Non-oriented steel shows
similar magnetic properties in all directions. Small anisotropies are potentially caused by
the domain orientation during the rolling process. Owing to simpler manufacturing and
thus lower costs, this steel type is used in a large variety of applications and will also be
in the focus of this work.

During the magnetization of a ferromagnetic material, a part of the supplied energy is
converted to heat. The associated energy loss during a magnetization cycle is proportional
to the area of the hysteresis loop. According to their physical origin and their frequency
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dependence, the total iron losses can be subdivided in two main groups, namely the
hysteresis and the eddy current losses.

3.1.1 Hysteresis losses

The partially irreversible alignment of the magnetic domains leads to hysteretic behavior,
and, thus, to the formation of losses. The hysteresis losses are static, since the energy
needed to surpass the irreversible processes is independent of the frequency of the field
applied.

Under unidirectionally alternating fields, the hysteresis losses increase steadily with
the magnetic flux density until they show saturation tendencies at high values of B (see
Fig. 3.1). This is due to the fact that the magnetization process at saturation is chiefly
characterised by reversible alignments of the magnetic dipoles. These reversible effects
take place hysteresis-free, requiring no energy when changing the magnetic state.
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Fig. 3.1: Qualitative progression of the hysteresis losses under unidirectionally alternating
and purely rotational field excitation [161].

In tooth roots and tips of rotating electrical machines as well as in T-joints of transformer
cores, the magnetic field is locally rotating. In [161], it has been proven theoretically that
the hysteresis losses under circular field with low amplitudes are about 2.3 times higher
than in the alternating case. Experiments have shown that the losses drop to zero at
saturation, as presented in Fig. 3.1. The loss drop is substantiated by the definitive
alignment of the magnetic domains at saturation and the hysteresis-free rotation of the
field against the domain anisotropy [161].
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3.1.2 Eddy current losses

Eddy currents are induced whenever an electrically conductive body is exposed to time
varying magnetic fields. The related energy losses are of dynamic nature, since they
increase with the frequency of the supply field. Besides the classical eddy current losses
present in homogenous materials, excess losses arise owing to the domain structure of the
material.

3.1.2.1 Classical eddy current losses

During a magnetization cycle, the ferromagnetic material is exposed to a flux density
varying in time. According to Faraday’s law this changing flux density induces an electric
field within the medium. In a homogenous conductive body, this electric field drives eddy
currents as shown in Fig. 3.2(a).

eddy current

B(t)

homogeneous
body

(a) classical

eddy current

H(t)
magnetic domain

domain wall

wall
movement

(b) excess

Fig. 3.2: Schematic representation of eddy currents emerging from classical and excess
effects [162].

The eddy currents themself generate a magnetic field which dampens the original one
in the middle of the sheet. This skin effect increases with the frequency and results in an
inhomogenous field distribution. Hence, the simplified methods reviewed in section 2.1,
which assume a homogenous field within the lamination, are no longer valid for higher
frequencies. In Bertotti’s statistical loss theory [6], the skin effect is attributed to the
excess losses, but such an approach still does not consider the local field distribution
inside the sheet. The limits for the applicability of the simplified techniques depend on
the geometrical and electromagnetic properties of the steel sheets and lie in a range of
several hundred hertz [19].
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3.1.2.2 Excess losses

The classical eddy currents account solely for the macroscopic currents induced in a ho-
mogeneous body. However, the domain structure of the material leads to the generation of
eddy currents at a microscopic level. As indicated in Fig. 3.2(b), the domain walls begin to
move when an alternating field is getting applied, provoking eddy currents to flow between
the domains. The ensuing microscopic losses are often called excess or anomalous losses.
Their extent depends mainly on the grain size of the material under investigation [14]. In
materials with large domains, such as grain-oriented steel, the long domain walls move
rather fast, leading to high losses. In comparison, non-oriented steel with fine grains is
characterized by relatively low excess losses. Owing to their small amount in non-oriented
materials, limited attention is paid to excess loss phenomena within this work.

3.2 Finite element method in electromagnetism

Nowadays, finite element methods have become recognized as a general analysis tool used
in various engineering disciplines. In the design process of electromagnetic devices, finite
element methods readily enable handling complex geometries and realistic materials. Re-
garding rotating electrical machines, the 2-D non-linear finite element analysis coupled
with circuit equations is the state-of-the-art, made available in several commercial soft-
ware packages. Pending challenges, being topics of ongoing research, are, for example, the
inclusion of magnetic hysteresis into the field solution, the modeling of rotor motion in a
3-D environment, or coupling procedures in a multiphysical context.

Hereinafter, the finite element method will be discussed in the context of eddy current
problems. Starting from Maxwell’s equations, the resulting boundary value problem will
be expressed in weighted residual form. Different potential formulations are derived and
appropriate methods for space and time discretization will be presented. Some typical
issues in modeling of rotating electrical machines are highlighted, too.

3.2.1 Problem definition

Maxwell’s equations allow a complete description of electromagnetically coupled phenom-
ena by gathering Ampère’s law, Faraday’s law of induction and Gauss’ law. In this thesis,
the focus will be kept on quasistatic eddy current problems, in which the displacement
current density is assumed to be negligible. When treating eddy current problems, it is
convenient to classify the problem domains according to their electrical conductivities, as
presented in Fig. 3.3. In the non-conductive region Ωn, the magnetic field quantities are
static but time-dependent, whereas in the conductive domain eddy currents are addition-
ally present.
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non-conductive region Ωn

ΓBn

ΓHc

ΓEc
ΓHn

conductive region Ωc

Γcn

J0

Fig. 3.3: General domain for eddy current problems with boundary conditions. Note that
a coil excitation with given current density J0 has been chosen for illustration
purposes. Other excitation types are discussed in the text.

To start with, the problem is excited by a given current density J0 situated in Ωn. Exci-
tations with prescribed total current or voltage of a conductor lead to a skin effect problem
with current or voltage excitation, respectively. Skin effect problems will be treated in
section 3.2.5.1, and typical excitations for machine models are detailed in section 3.2.6.1.

In the non-conductive region Ωn, the set of differential equations to be solved is

∇×H = J0

∇ ·B = 0

}
in Ωn. (3.1)

Using time domain notation, the governing equations in the conductive eddy current
domain Ωc become

∇×H = J

∇×E = −∂B
∂t

∇ ·B = 0

 in Ωc, (3.2)

where E is the electric field intensity and J is the current density. The field quantities
are coupled through constitutive material relations

B = µH, H = νB in Ωn ∪ Ωc, (3.3)

J = σE, E = ρJ in Ωc, (3.4)
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in which µ is the permeability, ν the reluctivity and ρ the resistivity of the material. In
the numerical field computations in this work, the magnetic properties are modeled as
isotropic and hysteresis-free. Hysteretic behavior will be considered by postprocessing
the non-hysteretic (single-valued) field solution to the Preisach model, whose basics are
summarized in section 3.3.

Table 3.1: Boundary conditions for the
problem domain of Fig. 3.3

boundary condition

ΓHc H × n = 0

ΓEc E × n = 0

ΓHn H × n = K

ΓBn B · n = −b

Γcn
H × n and B · n
continuous

The symbol K denotes any existing sur-
face current densities and b stands for sur-
face charge densities.

On the outer boundaries of the problem do-
main, either the tangential or the normal com-
ponent of relevant field quantities is prescribed
(see Table 3.1, n stands for the outer nor-
mal vector). Along ΓHc and ΓHn, the tan-
gential component of the magnetic field inten-
sity is specified. The tangential component
of the electrical field intensity is prescribed
on ΓEc, while the normal component of the
magnetic flux density is given along ΓBn. On
the interface between the conducting and non-
conducting region, denoted by Γcn, the tan-
gential component of the magnetic field in-
tensity and the normal component of the flux
density are continuous, providing coupling between the formulations in Ωc and Ωn. Ap-
plying these boundary conditions to the differential equations system of (3.1) and (3.2)
leads to a unique solution [163].

In the following, the numerical solution of the presented quasistatic eddy current prob-
lem will be discussed, by first introducing some basic concepts of finite element modeling.
Afterwards, the finite element equations will be formulated by means of suitable potential
functions.

3.2.2 Method of weighted residuals

The method of weighted residuals provides a sound basis for the formulation of finite
element methods. Thereby, an approximate solution of a boundary value problem is
sought by expressing the problem in weak form using an integral approach.

First, a time-independent electromagnetic field problem will be considered, defined by
a differential equation of the form

Au− f = 0 (3.5)

where A is a differential operator, f the known excitation function, and u the unknown
function. The boundary value problem becomes completely specified through Dirichlet
and Neumann boundary conditions. Dirichlet boundary conditions define the function
values along a boundary, whereas Neumann conditions prescribe the normal derivatives
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of the solution. Neumann boundary conditions are satisfied implicitly within the weak
formulation and are therefore often called natural boundary conditions.

For the numerical solution, the unknown function is approximated as a linear combina-
tion of basis functions nj using the following ansatz:

u ≈ ũ = uD +
N∑
j=1

ujnj . (3.6)

The function uD satisfies the inhomogeneous Dirichlet boundary conditions. The N lin-
early independent basis functions fulfill the homogeneous Dirichlet conditions, and uj are
constant coefficients. Evaluating (3.5) with the approximated function ũ leads inherently
to an error, called residual r

Aũ− f = r 6= 0. (3.7)

The principle of weighted residuals states that the product of the residual and an arbi-
trary weighting function wi vanishes when integrated over the whole problem domain Ω∫

Ω

wir dΩ =

∫
Ω

wi(Aũ− f) dΩ = 0, i = 1, 2, . . . , N. (3.8)

If the weighting functions are selected to be the same as those for the approximation of the
solution, Galerkin’s method is arrived at. Substituting (3.6) to (3.8) with wi =ni results
in the following equations system

N∑
j=1

uj

∫
Ω

niAnj dΩ =

∫
Ω

nif dΩ−
∫
Ω

niAuD dΩ (3.9)

which can be rewritten in matrix form as

[A]{u} = {b}. (3.10)

The coefficients of the stiffness matrix [A] are obtained as

Aij =

∫
Ω

niAnj dΩ. (3.11)

If the differential operator A is symmetric, the matrix [A] is symmetric as well. The vector
{u} comprises the unknown variables uj , and the elements of the right hand side vector
{b} are given as

bi =

∫
Ω

nif dΩ−
∫
Ω

niAuD dΩ. (3.12)
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In transient eddy current problems, the time derivatives of the field quantities need also
to be considered, leading to an operator equation of the form

Au+B
∂u

∂t
− f = 0. (3.13)

The unknown function is now space- and time-dependent and will be approximated as

u ≈ ũ(r, t) = uD(r, t) +
N∑
j=1

uj(t)nj(r). (3.14)

In contrast to static problems, the coefficients uj are time-dependent. The dependence of
ũ on the spatial coordinate r is taken into account by the basis functions nj .

Applying Galerkin’s method to the differential equation of (3.13) leads to

N∑
j=1

uj ∫
Ω

niAnj dΩ + u̇j

∫
Ω

niBnj dΩ

 =

∫
Ω

nif dΩ−
∫
Ω

niAuD dΩ−
∫
Ω

niBu̇D dΩ,

(3.15)

wherein the dotted quantities denote the first-order time derivatives. Again, the Galerkin
equations can be presented in matrix form as

[A]{u}+ [B]{u̇} = {b}, (3.16)

with

Aij =

∫
Ω

niAnj dΩ, Bij =

∫
Ω

niBnj dΩ, (3.17)

and

bi =

∫
Ω

nif dΩ−
∫
Ω

niAuD dΩ−
∫
Ω

niBu̇D dΩ. (3.18)

The numerical solution of problems formulated by Galerkin’s method requires discretiza-
tion in terms of space and time. The next two sections discuss suitable discretization
methods for electromagnetic field problems.

37



3 Fundamentals
3.2 Finite element method in electromagnetism

3.2.3 Space discretization using finite elements

In the classical Galerkin method, the unknown function is represented by a set of ba-
sis functions which are defined over the whole problem domain. However, in practical
problems it is rather difficult to approximate the true solution over the entire domain.
Therefore, it appears expedient to divide the entire continuous domain in small subdo-
mains, called finite elements, over which simple basis functions are defined.

Depending on the dimensionality of the problem under investigation, the domain can be
subdivided into line segments (1-D), triangles or rectangles (2-D), or tetrahedra, triangular
prisms and hexahedral elements (3-D). The discretized structure thus obtained is called
mesh or grid. Within the elements, the unknown functions can be represented on a nodal
or edge basis.

Using node based elements, the unknown scalar and vector functions are approximated
in the nodes associated with the element. The solution is usually interpolated by contin-
uous and piecewise polynomial basis functions which satisfy

nj =

{
1 at node j

0 at all other nodes.
(3.19)

For a given element geometry, the basis functions can be expressed in local coordinates.
If the transformation between these local and the global coordinates (xj , yj , zj) is expressed
with the same basis functions, one speaks of isoparametric elements. The isoparametric
representation transforms an arbitrarily shaped element in the global xyz-space into a
regularly shaped element in the local ξηζ-space:

x =

Nn∑
j=1

xjnj(ξ, η, ζ), y =

Nn∑
j=1

yjnj(ξ, η, ζ), z =

Nn∑
j=1

zjnj(ξ, η, ζ). (3.20)

The shape functions nj are dependent on the number of nodes Nn present in the element.
The use of isoparametric elements with higher-order shape functions allows to form more
general shapes and minimizes discretization errors on curved boundaries.

When expressing vector quantities with nodal elements, they impose full continuity of
the vector field in normal and tangential direction. Under certain conditions, this can lead
to erroneous and non-physical solutions [164, 165]. The problems arising are avoided, if
the unknown vector functions are approximated by edge based elements. They assign the
degrees of freedom to the edges of the elements and, thus, ensure the physically required
continuity of the tangential component, while allowing normal discontinuity. The basis
functions of an edge element are of vectorial nature and fulfill∫

edgei

nj · dr =

{
1 if i= j

0 otherwise.
(3.21)
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The finite element formulation via basis functions described by (3.19) and (3.21) leads
to sparse system matrices with small bandwidth, provided that the nodes are numbered
properly. The resulting linear equations systems can be solved by direct or iterative
methods. Direct methods are based on Gaussian elimination and are best suited for
small problems requiring a low amount of arithmetics. Larger problems involving a high
number of degrees of freedom are preferably treated by iterative Krylov subspace methods,
such as conjugate gradient techniques. The convergence of the iterative algorithms can be
accelerated by using appropriate regularization and preconditioning methods. If non-linear
material characteristics come into consideration, the governing equations system becomes
non-linear, too. Non-linear matrix solvers are commonly based on the Newton-Raphson
method, the Picard-Banach method or the fixed-point iteration.

3.2.4 Time discretization

According to their nature of time dependence, electromagnetic field problems can be clas-
sified in static, time-harmonic and transient problems. While static problems are time-
independent, harmonic and transient problems require consideration of the time variation
of the field quantities. In time-harmonic problems given in the frequency domain, the
time dependence is specified by sinusoidal functions having a single frequency. Transient
methods formulated in time domain enable modeling of fields varying arbitrarily in time.

Transient formulations call for schemes to discretize the finite element equations in the
time domain. In most cases, so-called one-step integration approaches are applied, which
can be summarised as θ-methods. The time axis is thereby divided into discrete time
intervals ∆tk where the subscript k denotes the k-th step and tk = tk−1 + ∆tk. Expressing
the time t between two consecutive time steps as

t = (1− θ)tk−1 + θtk, (3.22)

with θ ∈ [0, 1], and considering the matrix-type problem of (3.16), the time derivative of
the solution vector {u̇} can be approximated as

{u̇(t)} ≈ {uk} − {uk−1}
∆tk

, (3.23)

wherein the notation {u(tk)}= {uk} is used. Approximating further

{u(t)} ≈ (1− θ){uk−1}+ θ{uk}, {b(t)} ≈ (1− θ){bk−1}+ θ{bk}, (3.24)

and substituting these relations to (3.16) yields

[A]((1− θ){uk−1}+ θ{uk}) + [B]

({uk} − {uk−1}
∆tk

)
= (1− θ){bk−1}+ θ{bk}. (3.25)
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After bringing the known quantities of the previous (k− 1)-th time step to the right
hand side, this algebraic equations system is solved in each time step k using established
methods.

If θ= 0, the forward Euler method is obtained, θ= 1 gives the backward Euler scheme.
Other popular choices are θ= 1/2 (Crank-Nicolson’s method) or θ= 2/3 (Galerkin’s method).
Choosing 1/2<θ≤ 1 results in an unconditionally stable scheme which is stable regardless
of the selected time step size.

3.2.5 Formulations for eddy current problems

Electromagnetic field problems are efficiently dealt with by means of potential functions
describing magnetic or electric field quantities. Using scalar and vector potentials as
primary variables significantly reduces the number of degrees of freedom to be solved,
allowing for an economic treatment of various problem types.

Regarding quasistatic eddy current problems, the magnetic field must be described
in both conductive and non-conductive regions, whereas the electric field needs to be
considered in the conductive domains only. These fields can be represented by potentials
in different ways. For instance, the solenoidality of the magnetic flux density enables to
introduce the magnetic vector potential A as

B = ∇×A in Ωn ∪ Ωc. (3.26)

In conductive regions, an electric scalar potential V can be defined, which satisfies

E = −∂A
∂t
−∇∂V

∂t
in Ωc. (3.27)

The time derivative in the second term ensures the symmetry of the resulting Galerkin
equations [166]. Alternatively, the electric field quantities can be expressed with the aid
of the electric vector potential T , since the current density becomes divergence-free under
quasistatic conditions:

J = ∇× T in Ωc. (3.28)

Introducing the reduced magnetic scalar potential Φ, the magnetic field intensity can be
written as

H = T0 + T −∇Φ in Ωc, (3.29)

H = T0 −∇Φ in Ωn. (3.30)
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The use of an impressed vector potential T0 avoids modeling of complex coil geometries
in the finite element mesh. It describes the current sources as

J0 = ∇× T0 in Ωn. (3.31)

One possible choice is T0 =H0, where H0 is the field of the coils in free space which can
be obtained from Biot Savart’s law

H0(r) =
1

4π

∫
Ω

J0 × (r − r′)

|r − r′|3 dΩ′. (3.32)

The introduced potentials provide the basis for different eddy current formulations [164],
of which the most relevant ones will be presented in the following. Besides the A,V -A
and T ,Φ-Φ formulations commonly available in various commercial software packages, also
the A,T -A formulation will be discussed, since it has proven to be advantageous in some
specific cases investigated.

3.2.5.1 A,V -A formulation

Formulating Ampère’s law and the continuity equation for the current density by means
of the potentials A and V leads to

∇× (ν∇×A) + σ
∂A

∂t
+ σ∇∂V

∂t
= 0,

−∇ ·
(
σ
∂A

∂t
+ σ∇∂V

∂t

)
= 0

 in Ωc. (3.33)

In the non-conductive domain one obtains

∇× (ν∇×A) = J0 in Ωn. (3.34)

Representing the boundary conditions of Table 3.1 in terms of potentials results in Dirichlet
and Neumann conditions summarized in Table 3.2. On the boundary ΓEc, a constant scalar
potential V0 is specified, enabling treatment of skin effect problems with voltage excitation.
Current excitation can be taken into account by introducing V0 as an unknown constant
satisfying the following integral relation [167]:∫

ΓEc

σ

(
∂A

∂t
+∇∂V

∂t

)
· ndΓ = I, (3.35)

where I is the given current.
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Table 3.2: Boundary conditions for the A,V -A formulation

boundary condition

ΓHc (ν∇×A)× n = 0 and
(
−σ ∂A∂t − σ∇∂V

∂t

)
· n = 0

ΓEc A× n = 0 and V = constant = V0

ΓHn (ν∇×A)× n = K

ΓBn (∇×A) · n = −b

Γcn
(νc∇×Ac)× nc + (νn∇×An)× nn = 0 and

(∇×Ac) · nc + (∇×An) · nn = 0

The subscript c denotes quantities defined in the conductive domain, n those
ones existing in the non-conductive region. For the outer normal vectors holds
nc =−nn.

When applying Galerkin’s method, the magnetic vector potential is advantageously
expanded by edge basis functions and the electric scalar potential by nodal functions [168].
The resulting equations system is symmetric but singular, since the gradient of any nodal
based function lies in the function space of the edge based ones [164]. The singularity of
the system matrix poses no hindrance when conjugate gradient techniques are applied,
provided that the right hand side is consistent. Direct methods require gauging of the
vector potential, for instance being realized by tree-gauge approaches [169]. The A,V -
A formulation necessitates accurate discretization of the exciting coils within the finite
element mesh. This disadvantage can be bypassed by a reduced magnetic vector potential
formulation, in which the excitation field is treated separately.

3.2.5.2 T ,Φ-Φ formulation

Substituting the potentials defined in (3.28)-(3.31) into Maxwell’s equations, the governing
differential equations become

∇× (ρ∇× T ) + µ
∂T

∂t
− µ∇∂Φ

∂t
= −µ∂T0

∂t
,

∇ · (µT − µ∇Φ) = −∇ · (µT0)

 in Ωc, (3.36)

and

−∇ · (µ∇Φ) = −∇ · (µT0) in Ωn. (3.37)

Expanding T in terms of edge basis functions, and Φ by nodal basis functions leads again
to a symmetric and singular Galerkin equations system.
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Table 3.3: Boundary conditions for the T ,Φ-Φ formulation

boundary condition

ΓHc T × n = T0 × n = 0 and Φ = constant = Φ0

ΓEc
(ρ∇× T )× n = −(ρ∇× T0)× n = 0 and

µ(T −∇Φ) · n = −µT0 · n = 0

ΓHn Φ = constant = Φ0

ΓBn µ∂Φ
∂n = b+ µT0 · n

Γcn
T × n = 0 and

(µcT0 + µcT − µc∇Φ) ·nc + (µnT0− µn∇Φ) ·nn = 0

On the boundaries, the potentials have to fulfill the conditions listed in Table 3.3.
If the conducting domain includes holes, the non-conducting region becomes multiply
connected leading to a multivalued scalar potential. This restriction can be circumvented
by defining fake conductors in the holes or by introducing cutting domains featuring a
potential jump [170]. Most efficiently, tree-co-tree techniques can be applied to make
multiply connected topologies simply connected [171].

3.2.5.3 A,T -A formulation

In this formulation, the current vector potential T is used exclusively to describe the
current density in the conductive domain. The magnetic field in the whole domain is rep-
resented by the magnetic vector potential A. Reformulating Ampère’s law and Faraday’s
law yields

∇× (ν∇×A)−∇× T = 0,

∇× (ρ∇× T ) +∇× ∂A

∂t
= 0

 in Ωc, (3.38)

whereas (3.34) holds in the non-conductive domain. Expressing T as the time derivative of
a modified current vector potential, t, and approximating A and t by edge basis functions,
results again in symmetric Galerkin equations.

At a first glance, the use of two vector potentials appears to be inefficient when compared
to vector-scalar potential formulations. However, this formulation explicitly satisfies the
solenoidality of B and J on the boundaries by specifying the tangential components of
A and T as Dirichlet conditions (see Table 3.4). Compared to vector-scalar potential
formulations with implicit Neumann conditions, the A,T -A formulation entails, in some
cases, faster convergence of iterative solvers.
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Table 3.4: Boundary conditions for the A,T -A formulation

boundary condition

ΓHc (ν∇×A)× n = 0 and T × n = 0

ΓEc (ρ∇× T )× n = 0 and A× n = 0

ΓHn (ν∇×A)× n = K

ΓBn (∇×A) · n = −b

Γcn
(νc∇×Ac)× nc + (νn∇×An)× nn = 0 and

(∇×Ac) · nc + (∇×An) · nn = 0

Γcn1 T × n = 0

Γcn2 (∇× (ρ∇× T ))× nc =
(
∇× ∂A

∂t

)
× nn

On the interface between the conductive and non-conductive domain Γcn, boundary
conditions for T need to be specified in addition to those for A. From a numerical point
of view it would be desirable to set T ×n=0 as a homogeneous Dirichlet condition. But
such an approach would again complicate the treatment of multiply connected regions.
Therefore it is most effective to subdivide Γcn = Γcn1 ∪ Γcn2, and to derive the interface
condition on Γcn2 from Fraday’s law.

3.2.6 2-D field analysis of rotating electrical machines

The electromagnetic field inside the machine cores can often be assumed to be constant
along the axial direction, enabling its representation by cross-sectional 2-D models. Based
on the 2-D field distribution, various machine properties can be readily evaluated, such as
speed-torque characteristics or equivalent circuit parameters. Commonly, the 2-D analysis
is based on the A,V -A formulation employing a single component vector potential. This
approach is also implemented in the commercial 2-D software packages used in this thesis
[172]. Hereinafter, some special challenges faced in this respect will be discussed. The
3-D simulations are based on an in-house code and will be detailed further in the next
chapters.

3.2.6.1 Coupling field and circuit model

The windings of the machine are supplied by an external electrical circuit requiring cou-
pling of the field and circuit equations. In windings with massive conductors, skin effects
may occur, whereas thin stranded coils are usually modeled as regions without skin effect.
The machine windings can either be voltage or current driven. In current driven prob-
lems, the feeding current is known a priori and specified by (3.35) in the case of massive
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conductors, or by a uniform current density in the case of stranded coils. In voltage driven
windings with skin effect, the supply current I is introduced as an unknown variable and
fulfills

U = (R+Rdc)I + Lσ
dI

dt
+Rdc

∫
ΓEc

σ
∂A

∂t
· ndΓ. (3.39)

The circuit parameters R and Lσ denote any existing resistances or leakage inductances
not considered by the field model, Rdc is the dc-resistance of the winding, and U stands
for the given voltage. For windings with no skin effect, the induced voltages are obtained
from the time derivative of the averaged flux linkage associated with the coil. The coils
need to be connected according to the machine’s winding configuration, leading to an
additional equations system for the unknown currents which is solved together with the
field equations [173].

3.2.6.2 Transient analysis with rotor motion

A major part of the iron losses in rotating electrical machines originates from high-order
field harmonics caused, for example, by slotting effects or the discrete winding distribu-
tion. An accurate assessment of all high-order frequency components necessitates transient
analyses being realized by time-stepping schemes. If the transient analysis is started with
zero initial values, several periods have to be stepped through before reaching the steady
state. The ensuing large computational burden can be alleviated by utilizing approximate
frequency domain techniques to determine non-zero initial values [174, 175]. The initial
field values are thereby obtained by a time-harmonic pre-simulation. Non-linearity of the
magnetic materials is usually taken into account by effective reluctivity approaches [176],
out of which the average energy method of [177] will be applied within this work.

If the field analysis is performed in the time domain, the motion of the rotor needs to be
considered, requiring coupling of two domains sliding relative to each other. A common
method to treat motional problems is the moving band technique [178], in which a thin
air-gap layer is re-meshed in every time step. Other approaches are based on mortar
elements [179] or simple interpolation techniques [172, 180]. In the mortar method, an
integration mesh with additional basis functions is introduced on the interface by means
of which a set of constraint equations is defined. The second technique, which is also used
in this thesis, interpolates the variables from the master mesh to the slave mesh with the
aid of linear approximation functions.

In [58], [180] and [181], the mentioned methods have also been extended to 3-D machine
models, which have become feasible due to the recent advances in computational power.
3-D models allow to take into account axial fields arising from air-gap fringing and the
end winding leakage as well as skewing effects. If the axial fields are neglected, skewed
induction machines can be analyzed by multi-slice models [112, 113]. They represent the
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axial field distribution by a set of 2-D models given at different positions along the machine
length. The 2-D slices are coupled trough an external electrical circuit which enforces the
same current in all 2-D field models.

3.3 Preisach hysteresis model

The Preisach model features accurate characterization of hysteretic materials by means
of established mathematical formalisms. As already outlined in the literature review,
the model enables correct modeling of major and minor loops by taking into account
essential hysteretic properties. Despite its profound physical and theoretical background,
the numerical implementation of the model is still lacking a general approach, hindering its
integration into finite element software packages. Such problems involve, for instance, the
necessity of extensive experimental data, the inversion of the classical Preisach model, or
its extension to rotational and dynamic fields. Below, efficient algorithms for tackling the
implementation problems encountered will be presented, after giving some fundamental
considerations on classical Preisach modeling. The used algorithms are based on the work
of [64] and [74], whereby the latter has been expanded further in [84] and [182].

3.3.1 Model representation by Everett functions

The Preisach model described by (2.8), is advantageously implemented by means of Everett
functions. The values of the Everett function can be calculated from the input extrema
(first-order reversal curves) of the flux density as

E(hα, hβ) =
1

2
(B(hα, hβ)−B(hα)) =

∫∫
Ω(hα,hβ)

µ(hα, hβ) dhα dhβ, (3.40)

in which B(hα) refers to the values of B at the reversal points and B(hα, hβ) to values along
the first-order reversal curves. In contrast to analytical approaches based on Gaussian or
Lorentzian distribution functions, the use of precalculated Everett functions eliminates
the numerically cumbersome double integration in the Preisach plane Ω.

If the model is identified from k= 1, 2, . . . , Nrev reversal curves, the output flux density
is obtained by summing up the Everett functions at the ascending and descending reversal
points hαk and hβk, respectively

B(t) = B[H(t)] = −E(hα0, hβ0) + 2

Nrev∑
k=1

(E(hαk, hβk−1)− E(hαk, hβk)). (3.41)

The Everett weight E(hα0, hβ0) is evaluated at the turning points of the major loop given
by hα0 and hβ0.
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Implementing the Preisach model by Everett functions guarantees high accuracy and
efficiency, but requires measurement of a family of first-order reversal curves, which entails
some difficulties [183]. From a practical point of view, it is therefore desirable to construct
the first-order reversals from the measured major loop, or even to approximate the major
loop analytically using a few parameters provided by the manufacturers of electrical steel.

3.3.1.1 Approximation of the major loop

In chapter 4, the major hysteresis loop will be approximated with the aid of the hyperbolic
functions given in [184]:

g(H) =

{
H+Hc

h1+k1|H+Hc| for −Hc < H < Ĥm

H+Hc
h1+k2|H+Hc| for − Ĥm < H < −Hc,

(3.42)

where Hc denotes the coercivity field and (Ĥm,B̂m) is the point upto which the material
exhibits hysteresis. The parameters h1, k1 and k2 can be identified from the major loop
measured under quasistatic conditions or from basic parameters given in the data sheet
of the material [182]. The descending branch of the major loop can now be built as

Bm(H) = B̂m
2g(H)− g(Ĥm)− g(−Ĥm)

g(Ĥm)− g(−Ĥm)
, (3.43)

and the ascending branch results from symmetry since Bm(H) =−Bm(−H).

3.3.1.2 Construction of first-order reversal curves

The first-order reversal curves can be created from the major loop in various ways. One
possibility is to approximate them analytically, as for example shown in [185]. Here, the
first-order reversal curves will be constructed by means of a Preisach distribution function
obtained pointwise from the major loop. According to [186], a symmetrical distribution
function can be represented as

µ(hα, hβ) = λ(−hα)λ(hβ) (3.44)

where λ is 1-D function defined pointwise, which can be used to express the gradient of
the descending branch of the major loop as

dBm

dH
= 2λ(H)

H∫
Ĥm

λ(hβ) dhβ. (3.45)
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Dividing H = {H1, H2, . . . ,HN} into N equal subintervals ∆h, in which dBm/dH and λ are
considered as constant, (3.45) can be discretized as

dBm

dH

∣∣∣∣
i

=
Bmi+1 −Bmi

Hi+1 −Hi
= 2λ(Hi)

i∑
l=1

λ(Hl)∆h. (3.46)

Evaluating this equation for all subintervals i= 1, 2, . . . , N leads to a bilinear equations
system to be solved algebraically [187]. The distribution function thus obtained defines
the classical Preisach model completely by the knowledge of the major loop. In this work,
the classical model is solely used for calculating first-order reversal curves required in the
inversion procedure described below.

3.3.2 Inversion of the classical Preisach model

The classical Preisach model takes the field intensity H as input, and gives the flux den-
sity B as output. However, 2-D electromagnetic field problems are conventionally treated
by magnetic vector potential formulations requiring B as input quantity for the Preisach
model. In order to incorporate the Preisach model into such formulations, the classical
model needs to be inverted. Furthermore, the inverted B-based model enables a straight-
forward dynamization of the static models using the approach of section 3.3.4.

Mostly, the classical Preisach model is inverted by iterative methods [95], or by in-
verting the distribution function itself [188]. Iterative methods have been found to be
computationally demanding, while the inversion of the distribution function is not gener-
ally possible. To overcome these restrictions, an inverted Everett function F will be used
here which allows to rewrite (3.41) as

H(t) = H[B(t)] = −F (bα0, bβ0) + 2

Nrev∑
k=1

(F (bαk, bβk−1)− F (bαk, bβk)), (3.47)

by exchanging the roles of B and H. The up- and down-switching values bα and bβ are
now controlled by B.

The Everett function is inverted numerically using an algorithm proposed in [182]. The
algorithm discretizes the Preisach plane in M ×M points and generates first-order reversal
curves depending on B. First, the non-linearity is transformed from B to H, by applying
a linear interpolation operator Φ to the descending branch of the major loop described by
the discrete values Bm = {Bm1, Bm2, . . . , BmN}:

Hmj = Φ(bαj , H1, . . . ,HN ;Bm1, . . . , BmN ), j = 1, . . . ,M. (3.48)

Then, descending first-order reversal curves are constructed by supplying

Hrij =
i− 1

M − 1
(Ĥm −Hmj) +Hmj , i = 1, . . . , N, j = 1, . . . ,M (3.49)
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to the forward Preisach model identified in section 3.3.1.2, yielding Brij . Now, the reversal
points are controlled by bα, but the non-linearity of the curves still remains in B. To
transform the non-linearity to H, the linear operator Φ is applied once again to each
first-order reversal curve

Hrevij = Φ(bαi, Hr1j , . . . ,HrNj,;Br1j , . . . , BrNj), i = 1, . . . , j, j = 1, . . . ,M. (3.50)

Finally, the inverted Everett function is obtained from Hrevij in analogy to (3.40). The al-
gorithm used ensures the creation of a uniform and smooth inverted Everett function, pro-
vided that N >M . For numerical implementations, the M ×M Everett table is mapped
to a coarser grid using bicubic spline interpolation.

3.3.3 Vector model

The rotational flux present in electrical machines requires a vectorization of the scalar
model presented above. If the vector extension is realized by the Mayergoyz approach,
(2.9) can be rewritten in inverted form as

H(t) =

Nϕ∑
i=1

Hϕi(t)eϕi =

Nϕ∑
i=1

H[Bϕi(t)]eϕi . (3.51)

Assuming isotropic material, the input projection of the flux density is given by

Bϕi(t) = |B(t)| cos(ϕ− ϕi), (3.52)

in which ϕ is the polar angle specifying the direction of the magnetic flux density vector.
Anisotropic behavior will be treated in chapter 5 by introducing a generalization of (3.52),
which simultaneously improves the rotational loss properties.

The Everett function of the vector model Fϕ needs to be re-identified by comparison to
the scalar Everett function. The resulting identification problem reads

F (bα, bβ) =

Nϕ∑
i=1

Fϕ(bα cosϕi, bβ cosϕi) cosϕi (3.53)

and is solved numerically using the procedure developed in [189]. This guarantees that the
vector model gives the same output as the scalar one when supplied by a unidirectionally
alternating flux density.

3.3.4 Dynamic hybrid model

The vector Preisach model presented is by definition static and excludes any eddy current
and excess effects. Coupling suitable eddy current models to a dynamic Preisach model
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has proven to be highly accurate [190], but suffers from high computational costs, and,
in some cases, from numerical instabilities [93]. In order to avoid such numerical compli-
cations, a simplified magnetodynamic vector hysteresis model has been introduced in [90]
by adopting concepts of the statistical loss separation theory. Thereby, the magnetic field
strength is decomposed into a static hysteresis part Hhys, a classical eddy current part Hcl

and an excess part Hex

Hϕi(t) = Hhys(t) +Hcl(t) +Hex(t)

= H[Bϕi(t)] + cclδe

∣∣∣∣dBϕi(t)dt

∣∣∣∣γ + cexδe

∣∣∣∣dBϕi(t)dt

∣∣∣∣0.5 , (3.54)

with δe = sign(dBϕi/dt). Introducing the exponent γ as

γ(Bϕi(t)) = a0 + a1δe

(
Bϕi(t)

Bsat

)
+ a2

(
Bϕi(t)

Bsat

)2

(3.55)

ensures that the classical eddy current term is non-linearly dependent on the applied
magnetic field, which implies accurate modeling of high-order harmonic effects. The con-
stant Bsat stands for a predefined saturation value and can be chosen as Bsat = B̂m. The
prediction of minor hysteresis loops can be improved by defining a0 as

a0 = α0 + α1|Brev|, (3.56)

where Brev are the reversal values of the flux density. The parameters cex, a1, a2, α0 and
α1 are identified from dynamic BH-loops measured at different frequencies, ccl can be
kept fixed to ccl = σd2/12.

Using definitions of section 2.2.2, the power losses per unit volume are calculated by the
Poynting theorem as

P =
1

T

T∫
0

H · ∂B
∂t

dt =
1

T

T∫
0

(
Hx

dBx
dt

+Hy
dBy
dt

)
dt, (3.57)

and averaged over a fundamental period. The losses can be separated further into alter-
nating and rotating components following the theorem of [191]:

Palt =
1

T

T∫
0

|H|d|B|
dt

cos(α) dt, Prot =
1

T

T∫
0

dϕ

dt
(H ×B)z dt, (3.58)

in which α denotes the phase lag between the B and H vectors. The subscript z in
(H ×B)z represents the vector component in z-direction.
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The model of (3.54) combines features of the statistical engineering approach with the
accuracy of advanced approaches for solving the penetration equation, and is therefore
referred to as the hybrid model. It can be used for the iron loss calculation either at the
postprocessing stage, as in this work, or even for incorporating the iron losses into the
field solution. In the next chapter, the hybrid model will by compared to the traditional
model of (2.4) as well as to the 3-D eddy current model proposed.
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Accurate methods for predicting iron losses in electrical machines need to cope with com-
plex phenomena, like high harmonic content and rotating flux. In particular, the exact
computation of the eddy current losses plays a key role within this context, since they
become a major loss component at high frequencies. As discussed in chapter 2, the eddy
current losses in the steel sheets are commonly evaluated using simplified postprocessing
methods based on the statistical loss theory. More enhanced methods employ 3-D homoge-
nization techniques or 1-D lamination models. Homogenized models solely account for the
planar eddy currents caused by perpendicular fields. 1-D models consider the penetration
of the flux density along the lamination thickness, but neglect the return path of the eddy
currents on the sheet edges.

In this chapter, a novel method to compute the true 3-D eddy current distribution in the
steel laminations will be presented. The 3-D model is excited by time-dependent boundary
conditions derived from a 2-D cross-sectional field analysis. The proposed approach allows
separate treatment of the stator and rotor sheets preventing computationally expensive
transient 3-D simulations for the whole machine. Nevertheless, all loss relevant effects,
such as high-order harmonics and the rotor motion are accounted for in the analysis.
The resulting losses serve as a validation basis for various reduced models and enable the
segregation of the different iron loss components.

The method developed is applied to the loss estimation of a three-phase, low-voltage,
four pole slip-ring induction machine designed for wind power applications in the megawatt
range. Details on the machine parameters and the used steel sheet type are given in
appendix A. Some further, previously unpublished, results of another machine of similar
type are given in appendix B.

The investigations in this chapter are restricted to no load operation only. Results for
loaded operation will be presented in chapter 6, along with a method to reduce the compu-
tational burden of the original 3-D time-stepping approach. The 3-D eddy current model
has been originally presented at [P1] and then published in [P2], including comparisons
of the 3-D model to two simplified loss models, as well as validations against iron loss
measurements.
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4.1 Coupling the 2-D machine model to the 3-D sheet model

The proposed method can be subdivided into two steps: first, a transient 2-D field analysis
is carried for the whole machine. In a second step, the 3-D eddy current problem is solved
separately for a single stator and rotor sheet.

The 2-D field analysis is performed by means of a third-party software package using a
nodal based A,V -A formulation [172]. The problem domain is discretized by rectangular
or triangular elements with shape functions of second order. In the 2-D model, the iron
regions are assumed to be non-conductive; their magnetic non-linearity is considered by
a single-valued magnetization curve and handled by the Newton-Raphson scheme. The
massive rotor bars are modeled as eddy current domains, but not the stranded stator con-
ductors. The resistance and leakage inductance of the end windings are taken into account
by lumped circuit parameters coupled externally to the field model. The stator windings
are driven by currents obtained from measurements or analytical approaches based on
the equivalent circuit theory. The movement of the rotor in the time-stepping analysis is
treated by nodal interpolation on an air-gap interface layer. Starting transients are atten-
uated by determining the initial steady state through a time-harmonic pre-simulation.

Only no load operation will be studied within this chapter. During the iron loss mea-
surements under no load, the machine’s rotor windings have been kept open in order to
prevent undesired rotor currents and, hence, further losses. Neglecting any currents in the
rotor windings, the intrinsically transient problem can be reduced to a magnetostatic one,
solved for different rotor positions.

The 3-D model is weakly coupled to the 2-D model by impressing the 2-D magnetic
vector potential on its boundaries. The specification of the boundary conditions for the
3-D model will be detailed in the next sections. Homogeneous and solely parallel flux
is assumed within the iron stack. Therefore, only a single sheet needs to be considered.
In [39] it was reported that additional parallel and axial flux due to air-gap fringing and
the end winding leakage decays quickly towards the core middle. These stray fluxes will
be even smaller for the investigated machine, since the clamping plates have a remarkable
shielding effect.

Figs. 4.1 and 4.2 show the 3-D finite element models for the stator and rotor sheets.
Because of symmetry, only one pole of the machine and a half of the lamination thickness
is modeled. To model the edge effects correctly even for high frequencies, a relatively
fine mesh is used near the edges and the tooth tips. Depending on the frequencies of the
arising field harmonics, three to ten equally sized finite element layers are used along a
half of the sheet thickness. One should note that the finite element mesh of the individual
laminates is independent of the grid in the 2-D model. Therefore, a much coarser mesh
can be used in the 2-D machine model than in the 3-D model of the sheets.

The 3-D eddy current problem is solved solely in the conductive laminates. Two dif-
ferent eddy current formulations, the A,V and A,T formulations, are investigated. The
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Fig. 4.1: 3-D finite element model of the investigated stator sheet as well as boundary
conditions for the A,V formulation.

analysis is performed using an in-house software package based on isoparamteric hexahe-
dral edge elements with quadratic shape functions. The employed iterative solver utilizes
conjugate gradient methods preconditioned by incomplete Cholesky factorization. Time
discretization is managed by the backward Euler scheme, and magnetic non-linearity is
handled by the Picard-Banach method.

4.1.1 Boundary conditions for the A,V formulation

The electromagnetic field within the lamination is prescribed uniquely by specifying the
normal component of B on its boundaries in addition to setting the normal component of J
to zero [43]. The prescription of the normal component of B is equivalent to specifying the
tangential component of A. The A,V formulation of (3.33) implicitly satisfies the condition
of vanishing normal component of J on the sheet surface by setting the scalar potential
V free. However, this natural boundary condition can be only satisfied approximately by
the finite element solution.

The tangential component of A on the boundaries along the lamination thickness is
extrapolated from the 2-D vector potential and assumed to be constant along the thickness.
The boundaries along the lamination thickness are hereinafter called axial boundaries.
Since flux in axial direction is neglected, A × n is set to zero on the boundaries parallel
to the sheets. The boundary conditions are then

A× n =

{
A2−D × n on axial boundaries

0 on parallel boundaries,
(4.1)
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Fig. 4.2: 3-D finite element model of the investigated rotor sheet as well as boundary
conditions for the A,T formulation.

where A2-D is the vector potential from the 2-D field solution. The boundary conditions
are prescribed anew for every time step. Fig. 4.1 demonstrates the specifications of the
boundary conditions for the A-V formulation by means of a stator sheet.

4.1.2 Boundary conditions for the A,T formulation

Using the A-T formulation of (3.38), the normal component of J can be specified by
the tangential component of the current vector potential T . Unlike the A,V formulation,
the A,T formulation satisfies the condition of vanishing normal component of the current
density exactly by setting the T ×n=0 on the lamination surface. The boundary condi-
tions for A are the same as those in the A,V formulation. Fig. 4.2 shows the boundary
conditions for the A,T formulation by using the example of a rotor sheet.

4.2 3-D eddy current distribution

After performing a 2-D field analysis for the whole machine, the 3-D models have been
solved with the A,V and A,T formulations using time-dependent boundary conditions
from the 2-D solution. In order to cover all relevant harmonic effects, an equidistant
time step size of ∆t= T/100 has been used for the stator, and ∆t= T/1000 for the rotor
sheet simulation. The absence of high-order field harmonics in the stator allows for using
relatively large time step sizes. With increasing load, high-order harmonics become also
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Fig. 4.3: Current density distribution in a stator sheet at a specific time instant and rated
no load current.

Fig. 4.4: Current density distribution in a rotor sheet at a specific time instant and rated
no load current. The sheet is rotated counterclockwise for illustration purposes.

pronounced in the stator sheet, requiring identical time discretization as in the rotor (see
also chapter 6).

The current density distribution in the steel sheets is presented in Figs. 4.3 and 4.4,
respectively. The simulations shown have been carried out for rated no load current using
the A,V formulation. In the stator sheet, the current density is quite uniformly distributed
and mainly caused by the 50 Hz fundamental frequency component. The eddy currents in
the rotor are concentrated in the tooth tips and are almost exclusively evoked by the first
stator slot harmonic at 1800 Hz (see also Fig. 6.1). The corresponding losses are obtained
by integrating the product of E and J over the sheet volume and averaged over time.

Fig. 4.5 provides an enlarged view of the current density in a stator and rotor tooth.
In addition to the computations with the A,V formulation, also the results of the A,T
formulation are presented, indicating excellent agreement between both formulations. The
corresponding 3-D behavior of B and J illustrated by vector plots is shown in Fig. 4.6.
Only the tooth tip regions are plotted for better visualization. Details on the compu-
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(a) A,V formulation (b) A,T formulation

Fig. 4.5: Current density distribution in stator tooth 8 (above) and rotor tooth 8 (below)
for both formulations. Refer to Figs. 4.3 and 4.4 for numbering.

tational requirements of both the A,V and A,T formulation will be given in chapter 6,
together with the numerical savings achieved by a harmonic decomposition method.

4.3 Total iron losses

The total iron losses, composed of classical eddy current, hysteresis and excess losses, will
be compared first to two simplified loss models and then validated against no load iron
loss measurements.

4.3.1 Simplified iron loss models

Two simplified iron loss models are discussed as a representative example of the numerous
techniques known from the literature. The first one is the traditional model of (2.4) which
is derived from the statistical loss theory. The second one is the hybrid model of (3.54)
and is based on the evaluation of magnetization curves. Both models are employed as a
postprocessing method.
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(a) flux density (b) current density

Fig. 4.6: Magnetic flux density and current density in stator tooth tip 8 (above) and rotor
tooth tip 8 (below). The A-V formulation has been used.

4.3.1.1 Traditional model

One of the most common techniques for the iron loss estimation in electrical machines is
to apply the traditional model of (2.4) element-wise to the 2-D solution. The input flux

density is thereby obtained as Bi =
√
B2
i,x +B2

i,y, where Bi,x and Bi,y are the harmonic
components of the flux density in x- and y-direction, respectively. The parameters in (2.4)
are identified from measurements on an Epstein frame and listed in Table 4.1. The frame
consists of 280×30 mm strips with a total sample mass of 1 kg. The measurements have
been performed according to the IEC 60404-2 standard, which specifies the measurement
procedure up to 400 Hz [192]. Measurements for higher frequencies take into consideration
the IEC 60404-10 standard, too [193].

Table 4.1: Identified parameters for the traditional model

chys ccl cex

162 σπ2d2/6 = 0.97 3.59

The thickness and the conductivity of the sheet
are given with d= 0.5 mm and σ= 2.35 MS/m.
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Fig. 4.7 compares the specific losses obtained from measurements with the results from
a least square fitting procedure of (2.4). Only measurements up to 200 Hz are used for
the model identification. For the sake of comparison, the calculated loss curves for 400,
500, 1000 and 2000 Hz are shown, too. The model can not be adjusted for the whole
range of frequencies. Fitting for higher frequencies results in unrealistically low losses for
lower frequencies and vice versa. The identified parameter set is found to be the best
compromise for the current application, since it is expected that a major part of the losses
is attributable to the low frequency regime.
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Fig. 4.7: Measured ( ) and fitted ( ) specific loss curves for the traditional model. The
measurements have been carried out under sinusoidal flux excitation using an
Epstein frame.

The main advantage of the traditional technique lies in its simplicity: only three param-
eters need to be identified from alternating flux measurements and the implementation is
straightforward. But it is well known that the model fails when high harmonics or complex
flux patterns occur. In the derivation of the classical eddy current term of (2.4) it is as-
sumed that the lamination thickness is considerably smaller than the skin depth. However,
the skin depth increases for higher frequencies particularly entailing an overestimation of
the high frequency rotor losses. Inadequate modeling of the effects of minor loops leads
to further deviations. Moreover, the rotational behavior of the hysteresis losses is not
accounted for, because the model does not distinguish between alternating and rotational
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fields. The traditional technique might be significantly improved by introducing enhanced
approaches enabling proper modeling of the skin effect under high frequencies [17], minor
hysteresis loops [13], or rotational losses [25]. In this work, solely the basic traditional
model is examined, since it is featured to be one of the most popular iron loss models.

4.3.1.2 Hybrid model

The hybrid model of (3.54) overcomes some imperfections of the traditional method by
evaluating the shape of dynamic magnetization curves. The hysteresis term in (3.54) is
computed by the static vector Preisach model presented in section 3.3. The Preisach
model is implemented by Everett functions constructed from first-order reversal curves
which are derived from the major hysteresis loop. The major loop is approximated an-
alytically by fitting the expression of (3.42) to BH-measurements on an Epstein frame.
The measurements have been carried out under quasistatic conditions up to a flux density
of 1.5 T. The number of the directions in the vector model has been set to Nϕ = 10.

The dynamic parameters describing the eddy current and excess effects are identified
from BH-loops measured at different frequencies. Fig. 4.8 shows the measured and fitted
hysteresis characteristics; Table 4.2 summarizes the identified parameters. The hybrid
model is able to accurately predict the loop shapes in a simple and efficient way, and
considers further the effects of minor loops and rotational losses.

Table 4.2: Identified parameters for the hybrid model

ccl cex a1 a2 α0 α1 Bsat

σd2/12 = 0.049 0.12 0.15 −0.018 0.91 0.055 1.5

4.3.2 Model comparison

The losses from the 3-D model serve as reference for those obtained from the simplified
techniques. The results of the different models as a function of the supply current are com-
pared in Fig. 4.9. The proportion of the eddy current losses in the rotor core is remarkable
and nearly as high as in the stator. The results from the traditional technique and the
3-D model fit well for the low frequency stator losses. The hybrid model only slightly
underestimates the losses. As expected, the traditional technique clearly overpredicts the
high-order harmonic rotor losses, while the hybrid model gives fairly good results. The
significant deviations for the traditional technique have already been noted during the
identification procedure, which has demonstrated that the model can not be adjusted for
a wide frequency range (see Fig. 4.7).
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Fig. 4.8: Measured ( ) and fitted ( ) dynamic BH-loops obtained by applying flux den-
sities of different fundamental frequency. The measurements have been performed
with an Epstein frame. Note that the flux excitation does not necessarily need
to be sinusoidal.

Fig. 4.10 segregates the different iron loss components of the simplified models. Com-
pared to the hybrid model, the traditional one underestimates the hysteresis losses slightly,
because it does not take the effects of minor loops and rotational losses properly into con-
sideration. Similarly to the classical eddy current losses, the excess losses are clearly
overestimated by the traditional technique. In the hybrid model, the excess losses account
for the domains wall motion and the interdependence between hysteresis and eddy current
effects [50]. It is observed that the excess losses become rather small in the non-oriented
steel studied, provided that the high frequency effects are modeled correctly.
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Fig. 4.9: No load eddy current losses as a function of the supply current predicted by
the 3-D model and the simplified models. The losses per single sheet have been
multiplied by the lamination number to get the losses of the whole core stack.

4.3.3 Validation against measurements

For no load operation, the total iron losses are directly accessible by measurements based
on the input-output method. The measurements have been performed with opened rotor
slip-rings in order to avoid additional rotor currents. The machine under test was driven by
a second machine running at synchronous speed. Thereby, the friction losses are covered
by the driving machine. The iron losses are obtained by subtracting the stator winding
losses from those measured on the stator terminals.
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(a) traditional model (b) hybrid model

Fig. 4.10: Separated iron losses for no load operation obtained by the simplified models.

The measured and computed no load iron loss characteristics are presented in Fig. 4.11.
Since the 3-D model considers the eddy current losses only, the hysteresis and excess
losses are taken from the hybrid model including the vector Preisach model. The 3-D
model and the hybrid technique give accurate results for a wide range of supply currents.
The traditional model shows remarkable discrepancies, especially at higher currents, since
it is unable to cope with the high harmonic eddy current losses in the rotor.

With increasing no load current, the flux paths tend increasingly to close into the housing
and complementary construction parts. The ensuing leakage fluxes cause additional losses
not accounted for in the iron loss computation. In order to assess these extra losses, a full 3-
D model of the machine’s end region has been set up. The end region model comprises the
cores’ end, the clamping system, the housing and the surrounding air. The end windings
are modeled as filament currents whose excitation field is calculated by Biot Savart’s law.
Only the clamping plate and the frame are defined as electrically conductive. To reduce
the number of unknowns in the non-conducting domains, the T ,Φ-Φ formulation is applied
for the eddy current analysis. The analysis is performed in the frequency domain, again
using hexahedral edge elements. The non-linearity of the iron cores and clamping plate is
considered by an effective reluctivity approach.

Fig. 4.12 shows the eddy current loss distribution in the stator clamping plate when
the 3-D model is fed by maximum current of 404 A. At higher currents, the iron cores
become saturated and stray fluxes are increasingly penetrating the clamping plate. The
resulting losses are also included in Fig. 4.12 explaining the differences between measured
and computed iron loss values at high currents. The losses induced in the frame were found
to be negligibly small when compared to those of the clamping plate, and are therefore
not discussed any further.

63



4 3-D eddy current model for steel laminations
4.3 Total iron losses

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

No Load Current I0 in A

T
ot

a
l

Ir
o
n

L
os

se
s
P

to
t

in
k
W

3-D model
traditional model
hybrid model

measured
clamping plate

Fig. 4.11: Measured and simulated total iron losses for no load operation as a function of
the supply current. The computed losses in the clamping plate are given, too.

Fig. 4.12: Time-averaged eddy current loss distribution in the stator clamping plate for
maximum no load current (I0 = 404 A). The stator’s core end and the windings
of a positive phase are also shown.
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Preisach hysteresis models

The Preisach hysteresis model employed in the previous chapter is isotropic in nature
showing the same BH-characteristics in every direction. However, even the non-oriented
steel used exhibits a certain amount of anisotropy which affects the field distribution and
hence the iron losses. In non-oriented materials, these anisotropic effects are primarily
caused by the crystal alignment during the rolling process and, to some extent, also by
magnetocrystalline and shape anisotropies present in each singular particle.

The previous identification of the isotropic models has been performed by means of
a standard Epstein frame whose sample strips have been cut in arbitrary directions to
average the effects of anisotropy. In order to accurately assess the material’s anisotropy,
measurements on a rotational single sheet tester have been carried out to allow independent
excitation in different directions as well as generation of spatially rotating fields.

Following the author’s contributions [P3] and [P4], this chapter introduces a new gener-
alization of the vector Preisach model in order to simulate weak bi- and uniaxial anisotropy
present in non-oriented magnetic steel. The generalization is based on a modified input
projection and improves the rotational loss behavior as well. Moreover, the model is com-
bined with a simplified approach for the eddy current and excess effects, enabling studies
of frequency-dependent anisotropic properties.

5.1 Anisotropy model

The vector Preisach model of section 3.3.3 applies the scalar model in each feasible direc-
tion and forms the output by superimposing the individual scalar contributions. In the
inverted model, the scalar inputs are obtained by projecting the flux density vector onto
the directions of interest. Here, a novel extension of the original Mayergoyz model will be
introduced, by redefining the input projection of (3.52) as

Bϕi(t) = |B(t)| · δ · | cos(ϕ− ϕi + ψ(t))|1/w, (5.1)

where δ= sign(cos(ϕ − ϕi + ψ)). The coefficient w has been originally proposed in [83]
and implements biaxial anisotropy. Biaxial anisotropic material exhibits two equally pro-
nounced magnetic easy axes perpendicular to each other. This type of anisotropy results
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in flower-shaped H-loci when a circular flux density is applied. The angle ψ introduced
here aims to incorporate uniaxial anisotropy (ψaniso) by simultaneously improving the
rotational loss properties (ψrot)

ψ(t) = ψaniso(t) + ψrot(t). (5.2)

Both components will be detailed in the following, using the definitions below.

5.1.1 Uniaxial anisotropy

Uniaxial anisotropy is characterized by a sole magnetic easy axis, leading to elliptical field
loci under rotational excitation. Introducing an additional projection angle in (5.2) leads
to a new projection system which increases or decreases the input flux density of the
individual scalar models. For materials exhibiting uniaxial anisotropy, ψaniso has to be
π-periodic with respect to the magnetic easy axis specified by the angle θ:

ψaniso(t) = Ψ(B) sin(2(ϕi − θ)). (5.3)

Depending on the material under investigation, Ψ can be B-dependent, as e. g. given in
Table 5.1. One should note that besides an implicit uniaxial anisotropy in the rolling axis,
further anisotropy axes may be present in the material. In such cases, their contributions
are superimposed additively.

5.1.2 Improving rotational loss properties

Although the Mayergoyz model features essential vector hysteresis characteristics, it fails
to represent the rotational loss properties close to saturation [84]. As discussed in chap-
ter 2, the model produces an irreversible hysteretic behavior at high magnitudes, and
therefore the losses dwell at a constant level instead of decreasing as experimentally ob-
served. To improve the rotational loss properties, a small phase shift ψrot is introduced
between the B and H vectors following the approach of [84]:

ψrot(t) = g(B)sign(dϕ). (5.4)

The real function g is introduced here as

g(B(t)) = arot1e−arot2(|B(t)|−Brot)2 + ψ0, (5.5)

in which arot1, arot2, Brot and ψ0 are constant parameters identified from rotational loss
measurements. The first term in (5.5) is based on a Gaussian distribution function enabling
the representation of the rotational behavior near Brot. The angle ψ0 is independent of
the flux density and ensures that the B and H vectors become parallel at saturation.
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5.1.3 Dynamic extension

The dynamization of the static model is again based on the hybrid approach of sec-
tion 3.3.4. Since a uniform distribution of the eddy currents in the cross section is assumed,
an isotropic flux density projection Biso

ϕi is supplied to the hybrid model of (3.54):

Hϕi(t) = H[Bϕi(t)] + cclδe

∣∣∣∣∣dBiso
ϕi (t)

dt

∣∣∣∣∣
γ

+ cexδe

∣∣∣∣∣dBiso
ϕi (t)

dt

∣∣∣∣∣
0.5

. (5.6)

The exponent γ reads:

γ(Bϕi(t)) = a0 + a1δe

(
dBiso

ϕi (t)

Bsat

)
+ a2

(
dBiso

ϕi (t)

Bsat

)2

, (5.7)

and δe = sign(dBiso
ϕi/dt). The isotropic input projection is obtained by setting w= 1 and

ψ= 0 in (5.1), which thus reduces to its basic form of (3.52). The parameters of the
dynamic model are again identified from BH-loops measured in different directions.

5.2 Identification results

The magnetic characteristics of the non-oriented steel grade used have been measured
under alternating and circular flux using a rotational single sheet tester. The studied
specimens have been cut from three different positions on the steel strip, located in the
center and near the opposing edges. Since almost no differences have been observed in the
magnetic properties of the different specimens, only results for the middle sample will be
presented in the following.

The used measurement setup (see [194] and Fig. 5.1 for details) consists of a personal
computer equipped with a data acquisition card, instrumentation and power amplifiers,
and the tester itself. The yoke of the tester is an ordinary stator core of an induction motor
carrying a special two phase winding. The yoke construction minimizes leakage fluxes
allowing high field homogeneity even at high induction levels and in any magnetization
direction. Slot effects are pronounced in the layer close to the air-gap, but do not influence
the field homogeneity in the inner measurement region [195].

The magnetic flux density is measured by two orthogonal B-coils wound trough 0.8 mm
holes in the sample. The H-components are determined by cross coils (20×20 mm2 mea-
suring area, 2 mm thick) placed on the sample surface. Since the magnetic field intensity
decays with the distance from the sample, the H-coils have been mounted as close to
the surface as structurally possible. The inevitable distance between the sensors and the
sample surface results in too low measured H-values leading to a softer BH-behavior than
observed in the Epstein frame measurements of chapter 4. However, the BH-loop area,
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Fig. 5.1: Measurement system with personal computer, data acquisition card (PCI 6110)
with two 12 bit D/A converters and four 16 bit A/D converters, stereo power
amplifier (JBL MPX 1200), instrumentation amplifier (PGA-204) controlled by
DIO port, and the rotational single sheet tester. The sample diameter is 78 mm,
the stator inner diameter 81.5 mm [194].

and hence the losses, obtained by both systems show no notable difference (see Fig. 5.2),
endorsing the general validity of the proposed setup. The evaluation of the field intensity
can be improved by employing a biaxial array of hall sensors [196], or by sandwiching the
H-coils between two sample sheets [197].

The induced voltages in the B-coils are amplified and fed to a iterative feedback control.
The computerized control system allows to generate arbitrary flux density waveforms
varying with frequencies up to 2 kHz. The attainable peak flux density is given with 2 T
for frequencies up to 100 Hz, and decreases for higher frequencies owing to the limited
output power of the stereo amplifier.

5.2.1 Static hysteresis

First, the anisotropy parameters in (5.1) and (5.3) are identified using alternating mea-
surements in different directions spread by 15◦ increments. The measurements have been
carried out at low frequencies, for which the effects of the eddy currents are negligible. The
model identification is based on a least square method which fits the simulation results
to the measured data by adjusting the parameters w and Ψ. The scalar Everett function
initially needed in the vectorization procedure is obtained by supplying an angularly av-
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Fig. 5.2: Specific losses measured by the Epstein frame ( ) and the rotational single sheet
tester ( ) . The losses from the rotational single sheet tester are obtained by
averaging the alternating losses in different directions. The rotational single sheet
tester achieves higher induction levels over the entire frequency range.

eraged major loop to the algorithms described in section 3.3. In the identification of the
vector Everett function, (3.53) can also be modified according to the generalized input
projection, leading to spatially dependent Everett data, such as used in [101] or [102].
In this work, (3.53) is kept in its original form, maintaining the Everett data isotropic.
Considering the anisotropic effects subsequently during the field projection avoids lengthy
identification algorithms and keeps the model implementation simple and efficient.

The vector hysteresis model has been identified for Nϕ = 16 directions using measure-
ments up to flux densities of 1.7 T. Beyond the major loop, a non-hysteretic single-valued
magnetization curve has been employed. The single-valued extension is constructed by
cubic spline interpolation between the end point of the BH-curve and the maximum mea-
sured flux density of 2 T [182].

The identified anisotropy parameters are summarized in Table 5.1. Besides a biaxial
anisotropy (w= 0.94), two directions of uniaxial anisotropy are apparent in the mate-
rial: a strong anisotropy in the rolling direction (x-axis), and a rather small one around
θ=−45◦. The form of the Ψ-functions is obtained from basic observations on the the
angular dependency of the H-loci. The associated constants are obtained by the least
square identification procedure mentioned above.
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Table 5.1: Identified uniaxial anisotropy parameters

axis Ψ θ

1 0.30

[
1−

(
|B(t)|
Biso

)2
]

0◦

2 0.013|B(t)|2 −44.4◦

At Biso = 2 T the anisotropy in rolling direction
decreases to zero.

Fig. 5.3 compares the simulated and measured field intensity obtained under purely cir-
cular flux density rotating in clockwise direction. No significant difference has been noted
between the measurements in clockwise and counterclockwise direction. The used steel
exhibits remarkable uniaxial anisotropy in rolling direction, which is especially pronounced
for low flux densities and decreases towards saturation. Biaxial anisotropy becomes no-
table at higher induction levels and results in flower-shaped field loci with four peaks.

Owing to anisotropy, the phase lag between the B and H vectors varies with the angular
position. In particular, under rotational excitation, the changing phase lag modifies the
hysteresis loop area, and thus the losses. Fig. 5.4 shows the measured and simulated BH-
loops in x- and y-direction, when the material is exposed to circular field with a constant
amplitude of 2 T. Due to symmetry, only a half of the hysteresis loops is presented in
the plot. In y-direction, the ascending branch of the BH-loop intersects the descending
branch leading to a negative loop area. No intersection is detected in x-direction causing
an enlargement of the hysteresis area. Consequently, the losses in y-direction become
negative while those in x-direction increase. In total, the losses balance each other and
drop to zero at saturation, as seen in Fig. 5.7(b).

The prediction of the rotational losses has been further improved by adding the phase
lag of (5.4) to the anisotropy angles. The corresponding parameters, listed in Table 5.2, are
determined by fitting the computed static loss curve to the measured one. The correction
angle reaches its maximum of 1.92◦ at Brot = 1.4 T, and decreases to 0.15◦ for flux densities
above 1.8 T.

Table 5.2: Identified parameters for rotational loss improvement

arot1 arot2 Brot ψ0

0.031 30.8 1.4 0.0026
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Fig. 5.3: Measured ( ) and simulated ( ) loci of flux density (above) and field (below)
under static and rotational excitation. The amplitude of the flux density has
been increased in 0.2 T steps (a) and 0.1 T steps (b), respectively.

5.2.2 Dynamic hysteresis

After implementing the static model, the dynamic one is identified from BH-loops mea-
sured over a wide range of frequencies. The dynamic parameters obtained are given in
Table 5.3 and differ slightly from those of the hybrid model in section 4.3.1.2. This is
explained by the fact that hysteresis loops alternating in multiple directions directions
have been used in the identification. Further differences are caused by the softened BH-
behavior due to the inaccuracy in H-sensing, but also substantiated by the higher Bsat

value specified.
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Fig. 5.4: Measured ( ) and simulated ( ) BH-loops for a static, clockwise rotational flux
density of 2 T. Only the measurement results are shown in the zoomed section for
sake of better visibility. The corresponding losses in x-direction are +2.99 kJ/m3

(measured) and +2.78 kJ/m3 (simulated), those in y-direction −2.73 kJ/m3 (mea-
sured) and −2.75 kJ/m3 (simulated).

The measured and fitted BH-characteristics under alternating flux excitation in x- and
y-direction are shown in Fig. 5.5. The anisotropy decreases with increasing frequency,
since the field components related to the eddy current and excess effects are distributed
uniformly along the angular position. This effect can be examined especially well under
rotational conditions, as presented in Fig. 5.6. The deflection of the H-loci in the y-
direction is due to the fact that the field intensity induced by the eddy currents leads to an
additional Hx-component. Its sign depends on whether the field intensity is increasing or
decreasing, resulting in opposite inclination angles between clockwise and counterclockwise
rotation.

Table 5.3: Identified parameters for the dynamic anisotropy model

ccl cex a1 a2 α0 α1 Bsat

0.049 0.15 0.24 −0.015 0.95 0.042 1.7
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Fig. 5.5: Measured ( ) and simulated ( ) BH-loops for alternating excitation varying
with different frequencies.
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Fig. 5.6: Measured ( ) and simulated ( ) field loci (above) and corresponding BH-loops (below) under clockwise rota-
tional excitation for different frequencies. The amplitude of the flux density has been increased from 0.2 T to 1.4 T
in 0.2 T steps.
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5.2.3 Losses

Fig. 5.7 presents the energy losses obtained by evaluating the BH-loop area. Under
static conditions, the loss curves are consistent with the theoretical considerations and
experimental results of section 3.1.1. For low flux densities, the rotational losses are
higher than the alternating ones until they drop to zero at saturation. With increasing
frequency, in particular the rotational losses rise significantly, becoming nearly twice as
high as in the alternating case.
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Fig. 5.7: Measured ( ) and simulated ( ) iron losses for different frequencies under al-
ternating and rotational flux excitation.

5.3 Effects of anisotropy and rotational fields on the machine’s
iron losses

The methods proposed aim to investigate the impact of anisotropy and rotational effects
on the iron loss behavior of rotating electrical machines. The evaluation of anisotropic
effects requires their consideration in the 2-D field analysis, either as an anisotropic single-
valued BH-curve, or even by coupling the field solution to the hysteresis model. The
implementation of methods to account for magnetic anisotropy in the 2-D analysis would
exceed the scope of this work. Therefore, the effects of anisotropy on the machine’s iron
losses are not discussed any further and will be addressed in future research. It is expected
that anisotropy might impact the local iron loss distribution in the laminations, but its
overall effect will be averaged along the core length since the individual sheets are usually
rotated stepwise for one slot pitch.
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(a) total, corrected (b) alternating, corrected

(c) rotating, corrected (d) rot., increase without correction

Fig. 5.8: Breakdown of hysteresis losses in alternating and rotating contributions as well
as increase of the rotating component when no phase lag correction is applied
(pno corr − pcorr). The total hysteresis losses of 3.24 kW separate into 2.55 kW for
the alternating and 0.69 kW for the rotating components. Applying the original
approach without correction, the rotational losses increase by about 20 %, while
the alternating ones remain almost unaffected (+0.72 %).

In order to study the rotational loss improvement introduced in section 5.1.2, the com-
puted hysteresis losses will be compared to the original Mayergoyz model. Fig. 5.8 shows
the separated hysteresis loss components for the previously investigated induction ma-
chine, obtained by applying the vector Preisach model to the no load 2-D solution. In
the vector model, the input projection has been kept isotropic and corrected by the phase
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lag of (5.4). The rotational losses are mostly concentrated in the tooth roots and tips,
and account for about 20 % of the total hysteresis losses. Using the original Mayergoyz
approach, the rotational losses remain constant at saturation, leading to higher losses than
with the proposed correction (see Fig. 5.8(d)). In total, the hysteresis losses rise only by
4.79 %, since the emerging fields in the machine are rarely purely circular, contributing
thus to relatively low rotational losses.
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6 Additional losses due to loading and
skewing

The previous analyses were limited to no load operations only. When load is getting
applied, the flux patterns in the machine become increasingly distorted leading to ele-
vated iron losses. Although the fundamental flux density components generally decrease
by increasing the load, the iron losses increase due to the emergence of high-order field
harmonics. In machines with skewed rotor bars, the axial field distribution becomes non-
uniform under load entailing a redistribution of the losses along the core length. Especially
in larger machines, the effects of skewing can result in an overall increase of the total ma-
chine losses.

In this chapter, the dependence of the core losses on the effects of loading and skewing
will be studied by gathering findings of the author’s publications [P5–P8]. In [P5] and
[P6], the 3-D eddy current distribution in the steel sheets has been evaluated for various
loading conditions. In addition, a harmonic decomposition method has been introduced
effectively reducing the computational burden of the original 3-D time-stepping method
of chapter 4 by solving a few time-harmonic problems instead. The works of [P7] and [P8]
have investigated the effects of skewing on the axial iron loss distribution and compared
the obtained losses to the ones of a machine with straight rotor bars.

Different loading conditions examined during the standard machine tests will be an-
alyzed. In these tests, the stator terminals of the machine are supplied with sinusoidal
voltage and the slip-rings of the rotor windings are short-circuited. The load is specified
by a second machine coupled to the shaft of the machine under test. In the transient
2-D simulations for the whole machine, the operating condition is specified via a constant
rotor speed and the stator current. The iron loss models are again applied a posteriori to
the 2-D solution.

6.1 Frequency domain decomposition of the transient 3-D eddy
current problem

Solving the 3-D eddy current problem of a steel sheet in the time domain entails high
computational costs, since the high field frequencies call for fine numerical discretization
in terms of space and time. The ensuing numerical burden can be significantly reduced by

78



6 Additional losses due to loading and skewing
6.1 Frequency domain decomposition of the transient 3-D eddy current problem

substituting the non-linear time-stepping procedure with linear time-harmonic evaluations
of dominant frequency components.

6.1.1 Eddy current formulations in frequency domain

The harmonic analyses are carried out independently in parallel for different field fre-
quencies ωk. Rewriting the A-V formulation of (3.33) for the time-harmonic case using
complex notation yields

∇× (ν∇×A) + jωkσA + jωkσ∇V = 0,

−∇ · (jωkσA + jωkσ∇V ) = 0.
(6.1)

For the A,T formulation, the governing equations of (3.38) become

∇× (ν∇×A)−∇× T = 0,

∇×
(

1

σ
∇× T

)
+ jωk∇×A = 0.

(6.2)

The actual saturation level of the machine is considered by defining the reluctivity ν using
the field’s peak values from the non-linear transient 2-D simulations performed in advance

ν =
max {|H2-D(t)|}
max {|B2-D(t)|}

∣∣∣∣
T

. (6.3)

The magnetic field intensity and flux density in a 2-D element, H2-D and B2-D, are eval-
uated over a period of the fundamental line frequency. The reluctivity is assumed as
constant for consecutive 3-D elements extruded from the 2-D mesh. Therewith, the varia-
tion of the reluctivity in axial direction is neglected. The same reluctivity values are used
for all time-harmonic analyses.

After solving the harmonic problems, an arbitrary field value at a specific time instant
X(t) is obtained by superposition of the individual frequency components X(jωk) in proper
phase relation

X(t) = Re

{∑
ωk

X(jωk) · ejωkt

}
. (6.4)

6.1.2 Boundary conditions for the harmonic problems

The specification of boundary conditions discussed in chapter 4 can be adopted in a
straightforward manner to time-harmonic problems. In order to excite the individual
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harmonic models, the transient 2-D magnetic vector potential needs to be decomposed
into its spectral components. Considering induction machines, all possible field frequencies
can be determined a priori using analytical approaches, see e. g. [198] and [199]. The
electromagnetic field in a slip-ring induction machine with integer slot windings can be
expressed by a sum of rotating field components having the spatial azimuthal order r, the
frequencies ωs in a stator coordinate system, and ωr in a moving rotor coordinate system

r = p(1 + 6gs + 6gr + 2ksat),

ωs = ω0(1 + 6gr(1− s) + 2ksat),

ωr = ωs − (1− s)r
p
ω0.

(6.5)

Here, p stands for the pole pair number of the machine and ω0 = 2πf0 is the line frequency.
The slip value s is defined by the mechanical speed of the rotor. The integer values gs and
gr belong to the field components generated by slotting effects and the discrete winding
distribution. The index s corresponds to the stator, and r to the rotor. The integer
variable ksat is related to saturation effects.

Since the field frequencies caused by the asynchronous rotor movement do, in general,
not coincide with multiples of the fundamental frequency, the commonly applied discrete
Fourier transform leads to erroneous results due to leakage effects. Therefore, the method
of [199] is used, which replaces the Fourier transform straight to the frequency domain by a
two-step approach: first, a Fourier transform is performed in azimuthal direction, yielding
the spatial characteristic for different ordinal numbers r. Then, the frequency components
are computed for each spatial order using a least square algorithm. As the individual field
components are clearly separated by their spatial order, even closely spaced spectral lines
can be determined correctly avoiding leakage and aliasing effects.

6.1.3 Field harmonics

Fig. 6.1 shows the frequency spectrum of the magnetic flux density in a tooth tip, ob-
tained by applying the procedure of [199] to the 2-D solution. The simulations have been
carried out for various loads, rising from 0 % up to 125 % of the rated torque. A whole
period of the fundamental line frequency divided in 1000 time steps has been used for
the frequency domain evaluation. One should note the close but distinct spectral lines,
especially prominent in the rotor, which can not be resolved properly by a conventional
Fourier transform. The dominant spectral lines near the 3rd, 5th and 7th multiples of the
fundamental frequency are induced by saturation effects and the discrete winding distri-
bution. Additionally, slotting effects cause notable high harmonics arising next to 2100 Hz
in the stator, and 1800 Hz in the rotor tooth. Further slot harmonics appear near 4200
and 3600 Hz. As the machine draws more current under load, the frequency components
due to winding and slotting enlarge.
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Fig. 6.1: Load-dependent frequency spectrum of the radial component of the flux density
observed in a stator and rotor tooth tip of the 2-D model. The fundamental
frequency components are not shown, the rotor frequencies are given in the rotor
coordinate system. The crossed spectral lines indicate all occurring components,
the circles mark the selected set used in the time-harmonic method.

The circled spectral lines in Fig. 6.1 indicate the frequency components accounted for in
the time-harmonic computations. The associated frequencies are obtained by substituting
the integer values

gs = −2
Ns

6p
,−Ns

6p
,−1, 0,+1,+

Ns

6p
,+2

Ns

6p
,

gr = −2
Nr

6p
,−Nr

6p
,−2,−1,+1,+2,+

Nr

6p
,+2

Nr

6p

(6.6)

into (6.5), and neglecting saturation effects (ksat = 0). The stator and rotor slot numbers
are given by Ns = 72 and Nr = 84. Together with the fundamental frequency component
at f0 = 50 Hz, seven frequencies have been considered in the harmonic simulations for the
stator sheet. For the rotor sheet, the fundamental component emerging at low frequencies
sf0 has not been accounted for, since it induces negligible losses. Thus, a set of eight
frequencies has been used for the rotor lamination. Considering more frequencies led to
no significant improvement in the loss evaluation.
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6.1.4 Eddy current losses

Fig. 6.2 compares the 3-D eddy current loss distribution in the sheets obatined by the
harmonic superposition method to the one obtained by a time-stepping analysis. Excellent
agreement is achieved between the transient and harmonic approach. Under load, the
stator losses are due to both the fundamental and high frequency fields. The fundamental
frequency losses are again distributed uniformly within the lamination, while the high-
order frequency losses are concentrated in the teeth and their tips. The rotor losses are
primarily caused by high-order fields near the air-gap. Since not a complete period of
the fundamental rotor field is captured in the simulations, the loss distribution alters in
circumferential direction. However, the averaged loss values differ in the per mill range
compared to the results for a complete period, which can be easily obtained by summing
up the time-harmonic solutions over a whole rotor period.

The eddy current losses integrated over the sheet volume are given in Fig. 6.3. As
observed in Fig. 6.1, the high-order field harmonics rise with the applied load, resulting in

(a) time-stepping (b) harmonic superposition

Fig. 6.2: Time-averaged eddy current loss density computed by a time-stepping analysis
and by the harmonic superposition principle for the stator (above) and rotor sheet
(below). The simulations have been carried out for rated load, the losses have
been averaged over a period of the fundamental line frequency. The A,V formu-
lation has been used in both time and frequency domain, the A,T formulation
in the frequency domain.
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Fig. 6.3: Eddy current losses per sheet for different loads computed by a time-stepping
analysis and relative error to the results of the harmonic superposition method.

elevated losses. In particular, the rotor losses do strongly increase, since they are mainly
induced by high-order frequency fields. The relative difference in losses obtained by the
transient and the time-harmonic analysis is plotted on the right axis of Fig. 6.3. Using the
proposed limited set of frequencies, the error ranges between 1 % to 3 % for the stator and
4 % to 8 % for the rotor sheet. The harmonic superposition method gives slightly lower
loss values, because not all frequency components are covered within the analysis.

6.1.5 Computational requirements

Table 6.1 lists the elapsed simulation times for the transient and harmonic 3-D problems,
when conjugate gradient techniques are applied. The time-stepping methods require sev-
eral days of computation. Once reaching the steady state after 20 to 30 time steps, a whole
period of the fundamental line frequency comprising 1000 time steps has been simulated.
Under low load, a good loss estimation can already be achieved by evaluating some tens
of steps, since the steady state losses remain almost constant over time. Small variations
are caused by high frequency effects. With increasing load, the loss variations due to the
high frequency fields rise, requiring considerably more time steps to ensure a reliable loss
determination. The A,V formulation solves the transient problem significantly faster than
the A,T one, because it involves about 35 % less degrees of freedom (DOF).
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Table 6.1: Computational data for the original transient 3-D analysis and the harmonic
superposition method

stator sheet rotor sheet

domain transient harmonic transient harmonic

formulation A,V A,T A,V A,T A,V A,T A,V A,T

number of elements 47736 47736 47736 47736 60732 60732 60732 60732

DOF (mio.) 0.66 1.02 0.66 1.02 0.84 1.30 0.84 1.30

assembly time (h) 202 310 0.01 0.03 227 380 0.01 0.04

solution time (h) 245 329 0.94 0.32 222 412 1.11 0.77

total CPU time (h) 448 638 0.95 0.35 449 792 1.12 0.82

number of
- - 3523 567 - - 3083 1003

linear iterations

losses (mW) 1000 1018 971.8 972.0 1142 1198 1064 1065

Simulations for rated load. The same convergence criteria have been set in the stator and rotor sheet
simulations, respectively. An Intel Xeon computer running at 2.00 GHz has been utilized.

The harmonic superposition approach requires just a fraction of time compared to the
original time-stepping method. Since the harmonic problems are treated in parallel, the
times in Table 6.1 are given for the simulation with the longest time needed. For the
A,T formulation, the number of linear iterations, and hence the total CPU time, is about
the same over the whole frequency range. The A,V formulation needs considerably more
iterations as the frequency increases, since the satisfaction of the natural boundary condi-
tion ensuring that the normal component of the current density is zero on the lamination
boundaries becomes more cumbersome. Within the A,T formulation, this condition is
specified explicitly by the tangential component of T . Consequently, this formulation con-
verges in much less iterations when applied to higher frequencies. Compared to the A,V
formulation, the A,T one solves the harmonic problems faster, although a larger number
of degrees of freedom is required. Using the A,T formulation, about 60 % of the total
simulation time can be saved for the stator, and about 30 % for the rotor sheet.

6.2 Effects of skewing

The rotor bars of the machine investigated are skewed for one stator slot pitch. The
effects of skewing are studied by coupling the iron loss models to a multi-slice model of
the machine. The multi-slice model consists of five equidistantly placed slices whose rotor
bars are externally coupled through an electrical circuit.
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6.2.1 Axial loss variation

In a skewed machine, the phase of the rotor field with respect to the stator field changes
along the machine axis. The superposition of the two fields yields a non-uniform flux
density distribution [111]. For the investigated cases, the fundamental component of the
flux density rises steadily along the core length. This effect increases with the load and
leads to axially varying iron losses. Fig. 6.4 shows the computed eddy current losses in the

Fig. 6.4: Eddy current loss distribution in the stator (above) and rotor (below) sheets for
a five-slice model at a specific time instant and rated load.
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sheets obtained by performing the 3-D analysis for every slice. In the stator laminations,
the fundamental frequency losses increase considerably with the slice number, while the
high-order harmonic losses change to a less extent along the machine length. The axial
variation of the loss distribution in the stator and rotor teeth is explained by a change in
the reluctance of the flux paths for different teeth positions in the slices.

The axial iron loss behavior under varying load is detailed in Fig. 6.5. The hysteresis
losses are again computed by a static vector Preisach model neglecting any anisotropic
effects. Overall, the axial loss variation increases with the load. For rated load, the total
iron losses in the fifth stator slice are about 100 % higher than in the first one. For the
rotor core, this non-uniformity is less pronounced, but still amounts to about 50 % between
the outermost slices.

Under no load, the skew has a negligible influence on the axial loss distribution, owing
to the absence of the rotor field. Slight variations are caused by a change in the reluctivity
of the magnetic circuit along the machine length. The iron losses in the individual stator
slices differ up to 0.18 % compared to those obtained from a single-slice model representing
a non-skewed machine. For the rotor slices this difference is up to 0.14 %. The small
variations justify the utilization of a single-slice model for the no load case.

As observed previously, the general loss increment under load is due to the growing
high-order field harmonics. Compared to the eddy current losses, the hysteresis losses
in the stator core are less affected by the load. This is beacuse the fundamental field
component under load is increasingly damped by the rotor field resulting in a diminished
major hysteresis loop. The ensuing loss decrease is partly balanced by the effects of minor
loops which are originating from higher harmonics. In contrast, the hysteresis losses in
the rotor are almost exclusively caused by minor loops and increase thus with the applied
load (see also Figs. 7.6 to 7.8).

6.2.2 Comparison to a straight machine

The sum of losses for the skewed machine, presented in Fig. 6.6(a), is compared in
Fig. 6.6(b) to those of a machine with straight rotor bars. Although the differences be-
tween the iron loss results are rather small, a general increase in the stator losses and a
decrease in the rotor losses can be observed for the skewed machine. The copper losses in
the stator and rotor winding rise slightly, since the skewed machine has a lower power fac-
tor, which requires higher currents to provide the same output torque. The high frequency
copper losses in the massive rotor bars are not significantly influenced by the skew. This is
due to the fact that the rotor bars of the studied machine are lying remarkably deep in the
slots, preventing the penetration of the stator slotting fields. Hence, no significant rotor
joule loss decrease is apparent in the skewed machine. The sum of the iron and winding
losses in the stator and rotor, designated as the total losses, increases by up to 1.22 % for
the skewed variant.
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(a) stator (b) rotor

Fig. 6.5: Eddy current, hysteresis and total iron losses for different slice numbers and load-
ing conditions. The colored surfaces represent the losses for the skewed machine,
the gray ones those for the non-skewed variant. The given values refer to a single
sheet; a cubic spline interpolation is used between the slice positions.
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(a) skewed variant (b) increase to straight variant

Fig. 6.6: Losses computed for the skewed machine and their increase compared to the
straight variant. The loss sum is obtained by adding the losses of all slices.

The small differences in the total losses justify the omission of the skewing effects from
previous computations. The overall iron losses can be estimated with high accuracy using
a single-slice model of a non-skewed machine. Therefore, the investigations in the next
chapters will also employ a single-slice model taking benefit of less computational expenses.
However, the axial variation in the iron losses should be considered during the thermal
design process.
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7 Additional losses due to inverter supply

During the past decades, variable speed drives operated with frequency converters have
become a de facto standard solution in many industrial applications. Such inverter fed
systems enable, on the one hand, to efficiently optimize the machines’ speed and torque
characteristics over a wide range of operating regimes. On the other hand, the non-
sinusoidal supply evoked by the frequency converter leads to additional machine losses and,
thus, to thermal problems. In particular the iron losses in the steel sheets significantly
increase due to additional eddy currents in the laminations and the presence of minor
hysteresis loops under distorted flux.

This chapter extends the previous analyses to the effects of PWM voltage supply on
the machine’s iron loss characteristics by recapping the conference contribution [P9]. The
examined slip-ring topology enables for studies of inverter supply on the stator terminals,
as well as operations in doubly fed mode. Doubly fed concepts are largely used in wind
power applications to adapt the mechanical speed provided by the wind turbine to the
electrical frequency needed in the power grid. Thereby, electrical power is supplied to the
machine’s rotor terminals by means of a frequency converter. The additional losses under
rotor-sided inverter supply behave differently compared to the stator fed ones, and are
therefore evaluated on a comparative basis.

7.1 Inverter fed machine model

The effects of inverter supply are investigated by coupling the 2-D finite element model of
the machine to a frequency converter model. Two different configurations running under
various loading conditions will be analyzed. For clarity, their modeling will be treated
separately in the following.

7.1.1 Stator fed operation

Again, no load and rated load operations performed during the standard machine tests
will be studied. In order to assess the iron loss increase between sinusoidal and PWM
supply, an inverter fed machine model, as sketched in Fig. 7.1(a), has been set up. In
contrast to the previous analyses, the stator terminals of the machine are voltage fed
via an external electrical circuit. The computational burden is alleviated by neglecting
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power grid IM

=
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inverter

(a) stator fed operation
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3∼

=

inverter

(b) doubly fed operation

Fig. 7.1: Operation modes under investigation. Induction machines (IM) in topology (a)
are commonly used in motor applications, whereas topology (b) is a typical wind
power application becoming economically competitive in the megawatt range.

eddy current effects in the rotor windings and by using a single-slice model representing a
non-skewed machine.

The finite element model is coupled to a MATLAB/Simulink [200] environment which
provides the PWM voltage. The modeled inverter topology is a voltage sourced two-
level converter consisting of three half-bridges. The switching elements are assumed to
be ideal omitting any parasitic effects. The PWM signal generation is based on a space
vector modulation using a software determined switching pattern [201]. Fig. 7.2 shows
the simulated PWM voltage and the corresponding frequency spectrum. In all cases
investigated, the dc-link voltage is given with 1100 V, and the switching frequency with
fc = 2250 Hz. To accurately detect all switching operations, the time steps in the transient
computation have been kept fixed to ∆t= 1/(30fc), which corresponds to 1350 equidistant
steps during a 50 Hz fundamental period. The finite element machine model is invoked in
each time step, starting transients are again avoided by a harmonic pre-simulation.

7.1.2 Doubly fed operation

In wind power applications with doubly fed machines (see Fig. 7.1(b) and [202]), electrical
power is added or discharged to the machine’s rotor terminals. Whenever the speed of the
wind turbine becomes over-synchronous, power is carried over the rotor-sided inverter to
the grid. In sub-synchronous operation, active power is supplied to the rotor and fed back
to the grid along with the mechanical turbine power. Unlike topologies with stator-sided
inverters, only a fractional amount of the total plant power is carried over the converter
taking advantage of smaller inverter dimensioning.

The finite element model of the machine as well as the PWM algorithms are handled in
the same way as discussed above. To ensure a correct field formation during doubly fed
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Fig. 7.2: Stator PWM voltage with sinusoidal reference in time and frequency domain.
The fundamental frequency component of 690 V is not shown in the spectrum.
The harmonic components induced by the inverter are chiefly pronounced in the
sidebands near integer multiples of the switching frequency.

operation, the axes of the stator and rotor windings need to be aligned by specifying the
initial rotor position. The stator voltage supplied to the finite element model is assumed
to be sinusoidal, the PWM rotor voltage is controlled by a scheme given in Fig. 7.3. The
PI control system modeled is a simplified version of practical implementations, in which
the reference value for the rotor current Ir,ref is calculated using the measured output
power. In the present studies, the rotor current reference is predicted analytically. The
analytical program is based on the equivalent circuit theory of induction machines and
considers saturation effects, too [203]. The parameters for PI controller are obtained by
analyzing the step response of the analytical machine model. Owing to the control system
involved, startup transients need to be passed through before reaching the steady state.

7.2 Effects of inverter supply

The iron loss increase under inverter supply is evaluated by feeding the 2-D field solution
to the iron loss models developed in the previous chapters. The 3-D eddy current model
is solved in time domain using the A,V formulation. The Preisach hysteresis model is
identified from measurements presented in chapter 5 and employs again an isotropic input
projection during vectorization.

All simulations have been carried out for both sinusoidal and PWM supply types. The
computations under stator fed operation have been performed for no load and rated load
conditions, by specifying the slip with s= 0 % and s= +0.91 %, respectively. In doubly
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P
W
M

Ir,ref

Us

n

Ur

-
IrPI IM

Fig. 7.3: Block diagram of the rotor current controller. The induction machine (IM) model
takes the sinusoidal stator voltage Us, the PWM rotor voltage Ur and the constant
turbine speed n as inputs, and feeds back the rotor current Ir.

fed operation it is assumed that the turbine runs at 1700 rpm (s=−13.3 %) and that the
plant delivers rated power with a power factor of cosϕ= 1 to the grid. About 10 % of
the total output power as well as the overall reactive power required are carried over the
frequency converter.

7.2.1 Eddy current losses

The loss distributions computed by the eddy current analysis are shown in Figs. 7.4 and
7.5. The results for sinusoidal stator fed operation have been thoroughly discussed in
the previous chapters and are given here too, for the sake of completeness. The losses
in doubly fed operation show a distribution similar to the loaded stator fed ones due to
similar current loads in both cases.

Under stator fed inverter supply, the eddy current losses increase considerably for both
loading conditions. The high harmonics present in the PWM supply voltage induce high
frequency currents in the stator and rotor windings which lead to additional losses in the
tooth area. The loss distribution increases almost equally for both loading types, since
they are fed by the same PWM voltage. Slight differences can be observed on the rotor
surface, because some tooth tip regions become highly saturated under load, presenting
an unattractive path for the high-order inverter fields.

In doubly fed operation, the PWM-induced loss increase is significantly smaller than in
the stator fed mode. This is due to the fact that the number of windings in the rotor is
less than half of that in the stator. Harmonic voltage supplied to the rotor thus results
in lower harmonic fields than if fed to the stator, even though the low rms value of the
rotor voltage entails a smaller modulation index usually characterized by higher harmonic
content [125].
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Fig. 7.4: Time-averaged eddy current loss distribution in the stator sheet under sinusoidal supply (above) and their increase
under PWM supply (pPWM− psin, below) for different operational conditions.
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Fig. 7.5: Time-averaged eddy current loss distribution in the rotor sheet under sinusoidal supply (above) and their increase
under PWM supply (pPWM− psin, below) for different operational conditions.
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Fig. 7.6: Static hysteresis loops observed in the center of a stator tooth under sinusoidal supply (above) and under PWM
supply (below) for different operating modes.
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Fig. 7.7: Static hysteresis loops observed in the center of a rotor tooth under sinusoidal supply (above) and under PWM
supply (below) for different operating modes.
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Fig. 7.8: Hysteresis losses under sinusoidal supply (above) and their increase under PWM supply (pPWM− psin, below) for
different operational conditions. The losses are calculated from the BH-loop area spanned over a complete period
of the fundamental line frequency.
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7.2 Effects of inverter supply

7.2.2 Hysteresis losses

Figs. 7.6 and 7.7 present the hysteresis loops in the middle of a tooth, obtained by postpro-
cessing the 2-D field solution to the vector Preisach model. On the one hand, the PWM
supply results in formation of new minor hysteresis loops as observed in the stator under
no load condition. On the other hand, inverter feeding entails an enlargement of existing
minor loops originating from slotting effects. The latter effect can be examined especially
well in the rotor core, due to the exclusive presence of minor loops.

Under sinusoidal conditions, the hysteresis losses in Fig. 7.8 exhibit a similar distribution
as the eddy current losses. A major part of the losses is evoked by the fundamental
frequency component and most prominent in the stator sheet. The high frequency losses
are again concentrated in the teeth and their tips and increase with the load applied. The
additional hysteresis losses under PWM supply are considerably smaller than the eddy
current ones. The loss increment is most pronounced in low saturated rotor tooth tips,
whereas the stator losses do only marginally increase since the newly created minor loops
span a relatively small BH-loop area.

7.2.3 Total iron losses

Table 7.1 quantifies the different iron loss components for each operating mode investi-
gated. The given excess losses are again obtained from the hybrid model described in
section 3.3.4. Under stator fed operation, the additional losses induced by the frequency
converter are significant in both no load and rated load conditions. In percentage terms,
the loss increase is more apparent under no load because of the inherently lower sinusoidal
losses. The eddy current losses are observed to be most affected by the harmonics of the
PWM supply, whereas the additional minor hysteresis loops result in a comparatively small
loss increment. Moreover, it should be noted that particularly the rotor core is exposed
to a severe loss increase, an important information for cooling design optimizations.

The studied doubly fed operation mode shows similar sinusoidal losses as the stator fed
mode running under motor load, owing to similar loss distributions in both cases. The
extra losses due to inverter supply exhibit the same tendencies as discussed above, but are
in general much lower than the stator fed ones. This behavior is explained by the differ-
ent winding topologies of stator and rotor resulting in different conversion of the voltage
harmonics. Speaking in terms of equivalent circuit parameters, this implies that the ma-
chine represents a higher filter inductance for harmonics supplied to the rotor. Regarding
wind power applications, the reduced additional losses in doubly fed configurations can be
considered as a further advantage when competing against other topologies available.

98



7 Additional losses due to inverter supply
7.2 Effects of inverter supply

Table 7.1: Iron losses under sinusoidal supply and their increase under PWM supply

(a) stator losses

operation stator fed
doubly fed

mode no load rated load

supply type sinus PWM sinus PWM sinus PWM

Pcl (kW) 0.93 +26.1 % 1.46 +19.3 % 1.47 +4.51 %

Phys (kW) 2.81 +4.32 % 3.26 +3.75 % 3.18 +0.48 %

Pex (kW) 0.18 +26.4 % 0.24 +18.1 % 0.24 +1.04 %

Ptot (kW) 3.92 +10.5 % 4.96 +9.03 % 4.89 +1.71 %

(b) rotor losses

operation stator fed
doubly fed

mode no load rated load

supply type sinus PWM sinus PWM sinus PWM

Pcl (kW) 0.83 +25.6 % 1.38 +16.7 % 1.48 +7.49 %

Phys (kW) 0.58 +20.8 % 1.27 +8.39 % 1.67 +1.97 %

Pex (kW) 0.13 +25.9 % 0.20 +13.9 % 0.21 +4.66 %

Ptot (kW) 1.54 +23.8 % 2.85 +12.9 % 3.36 +4.57 %

(c) stator + rotor losses

operation stator fed
doubly fed

mode no load rated load

supply type sinus PWM sinus PWM sinus PWM

Ptot (kW) 5.45 +14.2 % 7.81 +10.4 % 8.25 +2.88 %
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8 Additional losses due to interlaminar
short circuits

Besides additional losses arising under practical working conditions, such as loaded oper-
ation or inverter supply, the manufacturing process itself can lead to a deteriorated loss
behavior of the electrical steel sheets used. The ensuing loss increase is in general rather
difficult to assess, since different manufacturing steps like rolling, cutting or assembling
affect the electromagnetic steel properties in a stochastic way. An acknowledged issue
during all stages of production is the formation of interlaminar short circuits between the
stacked sheets possibly resulting in a significant loss increase and triggering local overheat-
ing. As outlined in the literature review of chapter 2, interlaminar short circuits are most
likely caused by shearing burrs on the cutting edges as well as conductive joints mounted
uninsulated on the iron stack. Further galvanic contacts can emerge from age-related
insulation faults inside the core, but these are not treated here in detail.

Within the context of manufacturing influences, this chapter aims to contribute towards
a better understanding of the effects of interlaminar short circuits. For this purpose, a novel
interlaminar contact model will be set up by introducing appropriate boundary conditions
on the 3-D eddy current model of a single sheet. Such an approach avoids full 3-D models
with multiple short circuited laminations which become quickly cumbersome when more
complicated geometries are dealt with. The interlaminar model has been presented in
the conference publications [P10] and [P11], in which the method proposed has been first
validated against full models with several joined sheets, and then applied to quantify the
additional losses due to shearing burrs and conductive joints.

The following investigations employ time-harmonic analyses and are limited to the sta-
tor core operated under no load conditions. Previous results showed that, for no load,
the losses in the stator sheets are almost exclusively caused by the fundamental field
component. Therefore, they can be even evaluated correctly using harmonic simulations
considering the fundamental component only. For rated no load current, the eddy current
losses obtained from the transient analysis are 901 W, while the time-harmonic simulation
yields 904 W. Despite the simplifications made, all relevant factors influencing the behavior
underlying an interlaminar short circuit are still incorporated in the computations. The
use of harmonic analyses constitutes no restriction on the introduced method, it remains
easily expandable to transient simulations.
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8.1 Interlaminar eddy current model

The developed 3-D eddy current model is extended to take account of the effects of inter-
laminar short circuits by specifying additional boundary conditions on the galvanic contact
surfaces. Again, only a single sheet is considered in the 3-D model. This reduced approach
is valid as far as, for multiple interconnected laminates, the electromagnetic quantities in
the sheets within the core become periodic.

Fig. 8.1 illustrates the specifications of the boundary conditions for the 3-D model when
the A, V formulation is used for the eddy current analysis. On the insulated surfaces,
the boundary conditions of chapter 4 apply, ensuring that the normal component of the
current density is zero here. On the interlaminar contact surface Γc, the current flow is

Fig. 8.1: Introduction of interlaminar boundary conditions on the stator sheet model. Note
that Γc does not necessarily needs to be simply connected. The sheet thickness
is increased for better visibility.

assumed to be normal to the face, resulting in a constant but unknown electric scalar
potential. Moreover, it has to be guaranteed that the current exchanged through the
contact spots between the laminations is zero by reformulating (3.35) as∫

Γc

σ (jωA + jω∇V ) · ndΓ = 0. (8.1)
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8.2 Validation of the interlaminar model

The unknown scalar potential is determined by introducing (8.1) as an additional equation
into the finite element equations system [167].

For short circuits occurring on the sheet edges like shearing burrs, the effects of the high
circulating eddy currents on the given magnetic boundary field cannot be neglected. In
such cases, the magnetic vector potential is not prescribed directly on the axial boundaries,
but on an additional outer finite element layer surrounding the lamination. This layer is
modeled as non-conductive extending the 3-D problem to an A,V -A one. Thus, the
required independence of the impressed field from the eddy currents is ensured again.

8.2 Validation of the interlaminar model

The proposed interlaminar contact model is validated by means of two different examples:
a simple conductive ring and a stator sheet sector of the induction machine investigated.
Following the two step approach of chapter 4, the 3-D models are excited by boundary
conditions obtained from a preceding 2-D analysis. Linear media are assumed for vali-
dation purposes, magnetic non-linearity is taken into account in section 8.3 based on an
effective reluctivity method.

8.2.1 Conductive ring

As sketched in Fig. 8.2(a), the 2-D model of the ring is excited by a conductor arranged
symmetrically in the bore and separated by an air-gap. The 3-D model (see Fig. 8.2(b))
consists of ten and a half stacked lamination quarters which are short circuited by two
conductive joints through the entire core stack. The joint material is the same as that

(a) 2-D model (b) 3-D model

Fig. 8.2: Validation geometries of the conductive ring.
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(a) full model (b) sector detail

Fig. 8.3: Current density (above) and flux density (below) at a specific time instant for
the full model as well as the corresponding vector plots for the framed sectors.

of the laminates. The insulation between the sheets is modeled as a non-conductive A-
region having a relative permeability of one and a thickness of one hundredth of that of
the laminations. The 2-D field solution is prescribed on the curved boundaries of the 3-D
model, and periodic boundary conditions are applied on its left and right hand side. On
the top surface, the normal component of B as well as that of J is set to zero; on the
bottom surface, the problem is mirrored using symmetric boundary conditions. The 2-D
problem is treated with the time-harmonic A formulation, the 3-D one with the A,V -A
formulation.

The electromagnetic quantities in Fig. 8.3 repeat periodically in the center sheets, sug-
gesting the applicability of the reduced approach. The currents circulating through the
contact spots affect the original 2-D field distribution and lead to an increased flux density
near the ring edges. The undermost lamination of the full model serves as a validation
reference for the proposed single sheet model. The field solutions of both models are com-
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(a) full model (b) reduced model

Fig. 8.4: Current density (above) and flux density (below) distribution computed for the
bottom lamination of the full model and for the reduced model proposed.

pared in Fig. 8.4. Their good agreement is also confirmed in terms of losses which are
10.9 mW for the full model and 11.4 mW for the reduced one.

8.2.2 Stator sheet sector

Since 3-D simulations with multiple short circuited stator laminations are hardly feasible,
only a small sheet sector is considered in the full model. Fig. 8.5(a) highlights the studied
sector, which is extruded in Fig. 8.5(b) to a 3-D model of hundred and a half laminates
interconnected by shearing burrs over two teeth. A continuous burr width of 100µm has
been modeled requiring a rather fine mesh near the contact region. Results for different
burr widths will be presented in section 8.3.2. Again, the properties of the burr material
are assumed to be the same as those of the sheets. The 2-D vector potential is impressed
on an outer non-conductive layer enclosing the teeth and on the stator back. The normal
component of both B and J is zero on the top surface and on the boundaries intersecting
the yoke.

The eddy current distribution computed by the full model is shown in Fig. 8.6, indicat-
ing high currents in the burred region which are closing over the teeth (see also Fig. 8.9).
The induced currents increase with the number of short circuited laminations and asymp-
totically approach a final value. Accordingly, the reduced model presents a worst case
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(a) 2-D model (b) 3-D model

Fig. 8.5: Validation geometries of the stator sheet sector.

Fig. 8.6: Current density distribution for no load at a specific time instant for the full
model.

scenario for a suitably large amount of interconnected sheets. The number of sheets re-
quired depends on various factors, such as the short circuit’s geometry, sheet dimensions
or material properties. The computed losses in the undermost lamination of the full model
are 364 mW, the reduced method predicts 392 mW. The full model gives slightly lower loss
values due to the limited number of laminations connected.
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8.3 Effects of interlaminar short circuits

Two types of short circuits are discussed in more detail. The first one involves conductive
joints introduced by clamping bars. Second, the effects of shearing burrs are subjected to
a parametric study. All of the analyses below have been performed by using the proposed
interlaminar contact model taking into account magnetic non-linearities.

8.3.1 Conductive joints

The iron stacks of mid-power range machines are commonly fixed by clamping bars in-
stalled after pressing the core. These clamping plates are mounted uninsulated on the
core back representing a conductive connection among the sheets. Here, the ensuing loss
increase for different numbers of bars attached along the stator back circumference is
examined.

(a) maximum flux density (b) loss density

Fig. 8.7: Flux density and time-averaged loss density distribution in a stator sheet for four
clamping bars per pole modeled.

The results for four clamping bars per pole pitch are shown in Fig. 8.7, and demonstrate
that, on the one hand, the induced currents in axial direction cause additional losses. On
the other hand, they oppose the original field increasing the magnetic flux density and
hence the losses near the clamping areas. A detailed view of the electromagnetic quantities
near a contact area is given in Fig. 8.8. The eddy current losses rise linearly with the
number of bars, reaching from 3.93 % for one, to 13.7 % for four bars installed.

8.3.2 Shearing burrs

In order to quantify the extra losses due to edge burrs, simulations for various burr widths
and different numbers of teeth afflicted have been carried out. Contrary to the former val-
idation example, a complete stator sheet quarter has been considered in the computations.
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(a) field distribution (b) vector plot

Fig. 8.8: Current density (above) and flux density (below) in the contact spot area at a
specific time instant.

Fig. 8.9 shows the eddy current paths in the contact layer for different faulty teeth. The
high magnetizing flux in the tooth area induces interlaminar currents enclosing the teeth,
leading to a steep loss increase. The trends in Fig. 8.10 exhibit a cubic dependence of the
additional losses on the number of teeth burred. Applying burrs on the stator back has
led to no significant loss increment owing to the weakened flux density near the outermost
rim.

The burr width has been varied in a practically relevant range from 10 to 100µm.
Even broader galvanic contacts may be present in laser cut sheets due to the heat-induced
insulation burn-off. As presented in Fig. 8.10, the losses rise linearly with the width of
the burr layer, regardless of the amount of teeth afflicted.

One should note that the burrs modeled will not be present to such an extent in a healthy
machine. The simulated configurations are worst case approximations giving maximum
loss values indicating the strong necessity to minimize burr-induced short circuits as far as
practicable. However, the basic trends and findings will still hold, even when the overall
problem might be alleviated by its stochastic nature.

107



8 Additional losses due to interlaminar short circuits
8.3 Effects of interlaminar short circuits

(a) 1 tooth burred (b) 2 teeth burred

(c) 3 teeth burred (d) 5 teeth burred

Fig. 8.9: Current density vector plots for different number of faulty teeth and a burr width
of 100µm. The burr region only is considered in the plot. Red arrows indicate
the closing paths of the current loops.
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Fig. 8.10: Losses as a function of the number of burred teeth for different burr widths.
The given values refer to a single sheet.
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9 Discussions and Conclusions

This thesis contributes to an improved iron loss estimation in rotating electrical machines
by developing and applying advanced eddy current and hysteresis loss models. This chap-
ter summarizes the main findings obtained, including a discussion on their practical sig-
nificance. Finally, some proposals for further work are given and the main conclusions are
drawn.

9.1 Discussion of the methods and results

To ensure consistency with the previous structure, the following discussions are organized
chapter-wise.

9.1.1 3-D eddy current model

The developed eddy current model overcomes some restrictions of the approaches known
from literature by considering the true 3-D eddy current distribution in the steel sheets.
This ensures correct modeling of the edge effects becoming important in the lamination’s
tooth tips exposed to high frequency fields. Using the method proposed, a classical 2-D
field analysis is carried out first in order to generate a set of boundary conditions for the
3-D model. Then, the 3-D eddy current problem is solved separately for the stator and
rotor sheets, thus allowing their parallel treatment avoiding computationally expensive
transient 3-D simulations including rotor motion.

Combined with the Preisach hysteresis model, the 3-D eddy current model has been
applied to the iron loss estimation of slip-ring induction machines, for which no load mea-
surements were available. Good agreement is observed between the measured and com-
puted values, confirming the validity of the methods presented. Some inevitable differences
are caused by the deteriorated material characteristics resulting from manufacturing, and
additional losses in inactive construction parts, some of which have also been addressed
numerically.

Since measurements hardly enable the segregation of the different core loss components,
the proposed eddy current model serves as a validation basis for two simplified loss models:
the widely used traditional technique based on the statistical loss theory, and the hybrid
model which evaluates the shapes of dynamic hysteresis loops. The identification proce-
dure of the traditional model has shown that it is limited to low frequency applications.
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The traditional model might be considerably improved by using modified approaches out-
lined in the literature review. However, the purpose of this work has been to study a
broadly applied and rather simple model requiring a minimum set of parameters. As a
representative example of a more advanced technique, the hybrid model gives quite accu-
rate results up to high frequencies and flux densities, and has been found to be a good
compromise between computational burden, accuracy and universality.

9.1.2 Anisotropic vector Preisach model

Using a generalized input projection in the vector model enables an efficient treatment
of anisotropic material properties by keeping all essential features of the original Preisach
model. The generalization presented further improves the rotational loss characteristics
at saturation by correcting the phase lag between the B and H vectors. In combination
with the hybrid approach for the eddy current and excess effects, the model is able to
cope with alternating and rotating flux conditions even for frequencies up to the kilohertz
range.

Although studies on how the anisotropy affects the machine’s iron losses are still pending,
the effects of the rotational loss behavior have been subjected to a detailed analysis. It
has been shown that the rotational losses are notably decreasing when using the proposed
phase lag correction. However, their reduction contributes to a minor decrease of the
overall hysteresis losses, owing to the limited presence of purely rotational fields.

9.1.3 Effects of loading and skewing

The high harmonic content present in the machine cores leads to elevated iron losses,
which significantly increase when load is getting applied. The effects of loading have been
investigated along with the development of a harmonic decomposition method to efficiently
bypass the numerical effort of the original transient eddy current analysis. The harmonic
method requires a fractional amount of computation time and gives reliable results under
any loading state. Besides its parallelization capabilities, the approach introduced has the
further advantage of providing the steady state solution instantaneously without the need
to step through starting transients. The time-harmonic problems are solved fastest with
the A,T instead of the commonly used A,V formulation, because the former one allows
an explicit satisfaction of the boundary conditions for the current density.

The effects of skewing have been evaluated by applying the iron loss models to a multi-
slice solution. The simulation results under load show that skewing leads to a highly
non-uniform core loss distribution along the machine length. Even though the overall
losses are only marginally influenced by the skew, their axial redistribution can lead to
localized overheating which should be remedied by suitable cooling measures.
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In the conventional machine design, the additional losses due to loading are usually
considered by stray load factors, or even ignored completely. The investigations in this
thesis have stressed the crucial importance of correctly modeling the high frequency effects
under load. Factors making the conventional approaches inappropriate are complicated
machine geometries combined with magnetic non-linear material properties. For instance,
it has been observed that particularly the magnetic characteristics of the slot wedges in
the stator have a strong influence on the high frequency rotor losses, thus requiring proper
measurement and modeling of the wedge material.

9.1.4 Effects of inverter supply

The high frequency effects become even more aggravated when the machine windings are
externally supplied by a frequency converter. The additional losses arising have been
calculated by coupling a PWM fed machine model to the eddy current and hysteresis
loss models presented. Different inverter fed operating modes have been examined by
comparing them to sinusoidal supply conditions.

During inverter feeding on the stator side, the iron losses increase by up to about
15 %, whereby the eddy current component is identified to be most affected. Compared to
previous work known from literature, the iron losses in doubly fed operation in general, and
under inverter supply in particular, have been addressed for the first time. Interestingly,
the rotor-sided inverter supply has led to relatively low extra losses, since the different
turns ratio of the rotor winding attenuates the harmonic field content induced.

9.1.5 Effects of interlaminar short circuits

Extending the 3-D eddy current model proposed, the effects of interlaminar short circuits
have been taken into account by suitable boundary conditions on the contact surface. The
reduced single sheet approach avoids full 3-D models of many short-circuited laminations
by still considering their geometrically complex structure.

Comparisons of the interlaminar contact model against full models have confirmed the
validity of the reduced method as long as the electromagnetic quantities in the short-
circuited sheets stay periodic. For a low number of interconnected laminations, the full
model yields lower losses than the reduced one. Consequently, the reduced model consti-
tutes a worst case approximation used in practice for the quantification of loss limits.

Applications have revealed a significant loss increase for conductive paths introduced by
shearing burrs on the tooth edges. Furthermore, additional losses due to conductive fixing
joints have also been detailed, whose effects are usually acknowledged in the industrial
praxis, but rarely quantified by numerical means.
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9.2 Suggestions for future research

In this thesis, the 3-D eddy current model has been compared to two simplified loss mod-
els which represent various methods known from literature. For a more comprehensive
assessment of the 3-D effects, comparisons to other advanced approaches, like 1-D lam-
ination models, have to be carried out in future. Moreover, the 3-D model offers high
extension capabilities to account for axial fields caused by air-gap fringing and the end
winding leakage. To consider their effects, the initial 2-D analysis needs to be replaced by
a 3-D laminar continuum model having anisotropic material properties. The eddy currents
within each laminate will then be computed by exciting the individual sheet models with
both axial and parallel field components.

As already mentioned, applications of the proposed anisotropic vector Preisach model
are still missing, making them an attractive topic for subsequent research. When em-
ploying the model in postprocessing stage, anisotropic behavior must be considered in the
BH-characteristics of the 2-D analysis. Their incorporation is most efficiently achieved by
energy/coenergy concepts, such as used in the elliptic model of [99]. In order to sustain
the general validity of the anisotropic hysteresis model, further measurements including
two other steel grades have been performed, which remain to be identified in future.

The harmonic decomposition method has been developed for sinusoidal supply condi-
tions. Extensions to inverter supply require consideration of the additional harmonics
introduced when deriving the boundary conditions for the individual harmonic 3-D prob-
lems. The evaluation of skewing effects could be improved by adopting the approach
of [204] which analytically reconstructs the field variation along the machine length based
on a multi-slice solution. Thus, a finer resolution of the axial loss distribution could be
obtained, instead of using the slice solutions only.

The investigations in chapter 7 were limited to a single inverter topology providing the
same PWM pattern. In future, the analysis could be expanded to other inverter char-
acteristics comprising different modulation techniques and switching frequencies. These
studies will enable establishing an optimization basis for the whole drive system, taking
into account additional machine losses as well as switching losses emerging in the frequency
converter.

Regarding the effects of interlaminar short circuits, the method introduced needs to
be combined with statistical approaches before incorporating them into practical design
tools. In particular, the formation of burrs is of highly stochastic nature and has to be
identified from a series of measurements. Lately, the deterioration of the steel properties
as a result of various manufacturing influences, most importantly the permeability drop
due to mechanical stress, have aroused the interest of many researchers [141–144] whose
proposals could also be integrated in the methods presented here.
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9.3 Conclusion

To conclude, this thesis has tackled some of the main problems encountered during the
development of accurate design tools for the prediction of iron losses in rotating electrical
machines. Such problems embrace the occurrence of distorted field patterns in a basically
3-D structure, complicated ferromagnetic properties at a microscopic scale, and the lack of
reliable measurement data. Traditionally, the complex phenomena arising are treated by
simplified analytical or empirical approaches, which do neither allow exact quantification
nor segregation of the loss components.

The advanced methods proposed distinguish themselves from pervious approaches by
establishing novel numerical procedures founded on a physical or phenomenological basis.
The presented eddy current model considers the 3-D field distribution in the individual
laminates, thus offering high accuracy but also computational efficiency when realized by
the harmonic decomposition approach. The extensions of the vector Preisach model have
helped to improve the predictions of hysteresis effects under magnetically anisotropic con-
ditions as well as rotational fields. Combining the two models has proven to correctly
reproduce measurement results for the complex field patterns emerging in induction ma-
chines.

Applications have addressed various types of additional losses arising under practical
working conditions. Under loaded operation and inverter supply, the harmonic field con-
tent, and hence the iron losses, increase significantly, emphasising the strong necessity
to accurately consider high frequency effects in the models. Within the context of man-
ufacturing influences, the 3-D eddy current model has been extended to the effects of
interlaminar short circuits, providing initial studies for a systematical assessment of a
relatively unexplored field.
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A Machine and sheet data

The main parameters of the studied slip-ring induction machines are listed in Table A.1.
Machine 1 has been examined in the main chapters, while some further results for machine
2 are given in appendix B. The same steel sheet type is used in both machines (see
Table A.2).

Table A.1: Main parameters of the slip-ring induction machines studied

machine 1 machine 2

rated power (MW) 1.75 1.75

rated frequency (Hz) 50 60

rated voltage (V) 690 575

rated slip 0.91 % 0.72 %

power factor 0.92 0.90

number of poles 4 6

number of phases 3 3

winding connection stator delta star

winding connection rotor star star

skewed yes yes

Table A.2: Main parameters of the electrical steel sheet used

grade M400-50A

thickness (mm) 0.5

conductivity @ 20◦C (MS/m) 2.35

mass density (kg/m3) 7700
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B Further simulation and measurement
results

Here, additional results for the induction machine 2, detailed in Table A.1, are given.
The presented investigations have been carried out for no load operation fed by rated
voltage. In contrast to the no load simulations of chapter 4, the initial 2-D problem
is voltage driven via an external electrical circuit. Regarding the computed iron losses,
no significant differences have been observed when supplying the models with sinusoidal
current, since the stator currents of the voltage fed model are characterized by rather low
harmonic content [202].

The core losses are again evaluated by postprocessing the 2-D field solution by the
methods presented. Fig. B.1 shows the computed 3-D eddy current density in the steel
sheets, and Fig. B.2 the simulated hysteresis losses. Both distributions exhibit similar
properties as observed for machine 1 whose results have been thoroughly discussed in the
previous chapters. The core loss components are segregated in Table B.1 which includes
results for machine 1 as well. Again, good agreement is achieved between measurements
and simulations evidencing the validity of the proposed methods.

Table B.1: Separated iron losses for both machines

machine 1 machine 2

stator rotor stator rotor

Pcl (kW) 0.93 0.83 1.37 1.89

Phys (kW) 2.81 0.58 3.45 1.59

Pex (kW) 0.18 0.13 0.24 0.25

Ptot (kW) 5.45 8.80

measured 5.50 8.37
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B Further simulation and measurement results

Fig. B.1: 3-D eddy current distribution at a specific time instant for the stator (above)
and rotor (below) sheets of machine 2.

Fig. B.2: Hysteresis losses for machine 2 obtained from the isotropic vector Preisach model
without phase lag correction.
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[175] A. Stermecki, O. B́ıró, K. Preis, S. Rainer, and G. Ofner, “Numerical analysis of
steady-state operation of three-phase induction machines by an approximate fre-
quency domain technique,” Elektrotechnik & Informationstechnik, vol. 128, no. 3,
pp. 81–85, 2011.
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2-d magnetic properties of grain oriented silicon steel sheet using RRSST,” in Pro-
ceedings of the 11th Symposium on Electromagnetic Fields in Mechatronics, Electri-
cal and Electronic Engineering (ISEF), 2003.
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