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Abstract

Quantitative imaging techniques are a main topic of ongoing research in Magnetic Res-

onance Imaging (MRI). Current challenges involve the speed up of acquisition as well

as maintaining good accuracy. The present work describes a new accelerated T1 map-

ping method on the basis of model-based reconstruction for Variable Flip Angle (VFA)

data. The reconstruction problem is solved with an Iterative Regularized Gauss-Newton

(IRGN)-Total-Generalized-Variation (TGV) algorithm. Reconstructed parameter maps

for numerical, phantom, and in vivo knee data were in reasonable agreement with ref-

erence values up to a 12 fold acceleration. In order to minimize systematic errors it is

crucial to have knowledge of the exact flip angle distribution. The blurring at sharp

NMR-parameter changes provides an area for future improvements. In this context the

influence of the regularization functional could be subject of further investigations.

Keywords: MRI parameter mapping, IRGN, TGV, VFA, inverse problems, primal-dual



Kurzfassung

Quantitative Bildgebungsverfahren sind ein Schwerpunktthema aktueller Forschung im

Bereich MRI. Aktuelle Herausforderungen beinhalten die Beschleunigung der Aufnahme

bei gleich bleibender oder besserer Genauigkeit. Die vorliegende Arbeit beschreibt ein

neues, beschleunigtes Verfahren zur Bestimmung von T1 ausgehend von einem Mod-

ell basierten Rekonstruktionsverfahren anhand von VFA Daten. Das Rekonstruktion-

sproblem wird dabei mittels eines IRGN-TGV Algorithmus gelöst. Die rekonstruierten

Paramtermaps für numerische, Phantom und in vivo Daten waren bis zu einem Beschleu-

nigungsfaktor von 12 in guter Übereinstimmung mit den Referenzwerten. Um möglichst

kleine systematische Fehler zu erhalten ist die genaue Kenntnis der aktuellen Kippwinkel

notwendig. Die Unschärfen bei starken NMR-Parameteränderungen stellen einen Bereich

für zukünftige Verbesserungen dar. In diesem Zusammenhang könnten die Einflüsse durch

das Regularisierungsfunktional noch weiter untersucht werden.

Schlüsselwörter: MRI parameter mapping, IRGN, TGV, VFA, Inverse Probleme, primal-

dual
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1 Introduction

MRI is widely used in clinical routine diagnostics due to its excellent soft-tissue contrast

providing a vital diacritic tool for physicians. Compared to Computer Tomography (CT)

diagnostics, MRI offers better soft-tissue contrast without any radiation exposure for the

patients. On the other hand CT has the advantage of image contrast based upon a

physical quantity, the Hounsfield unit, enabling the computation of appropriate transfer

functions (e.g. for volume rendering) because the specific value of the tissue is known

in advance. CT is also a faster scanning technique. In contrast to CT, MRI offers only

relative tissue contrast because the contrast is based upon multiple factors such as MRI

sequence type, repetition time, and flip angle.

Commonly used imaging techniques in MRI try to generate image contrasts like the so

called T1-weighted, T2-weighted, or Proton Density (PD)-weighted images. However, these

images are usually a combination of all three weightings. An image is called T1-, respec-

tively T2- or PD-weighted if the difference or change in T1,(T2, PD) contributes the most

to changes in image contrast. In-vivo, the intensity values of pixels containing the same

tissue can be diverse depending on the used imaging sequence and imaging parameters

such as Fluid-Attenuated Inversion Recovery (FLAIR)(suppressing the water signal) and

Short-Tau Inversion Recovery (STIR)(suppressing the fat signal), coil sensitivity, the used

imaging hardware, B1-inhomogeneities, B0-inhomogeneities, rapid susceptibility changes,

and partial volume effects yielding only relative contrast. To overcome this drawback

researchers are developing methods to quantify physical parameters in MRI as a post



1 Introduction

processing step. These quantitative MRI techniques became more and more important

in recent years due to the increasing computing capability of computers and increased

precision and speed of the MRI hardware.

Quantitative MRI offers the possibility of measuring physical quantities rather than rela-

tive contrast depending on the used sequence. Possible quantities for an MRI parameter

map are for example the longitudinal relaxation time constant T1, the transversal relax-

ation time constant T2 and the proton density PD. Absolute PD is difficult to measure

and is commonly replaced by a relative measurement named M0. These quantities are

characteristic for a specific type of tissue but also depend on environment variables such

as temperature, static field strength B0, and other. Different techniques exist to identify

these parameters which will be presented in the following chapters. A possible application

for quantitative MRI are quantitative tracer kinetic studies. These are techniques to mea-

sure vascular parameters such as blood volume and capillary permeability using dynamic

contrast-enhanced MR data. In order to obtain accurate results it is crucial to obtain

accurate T1-maps of the tissue in advance. A major part of such studies is the calibration

of the tracer kinetic model which depends strongly on the pre-contrast tissue T1 [5, 4, 3,

2, 1]. In order to characterize a lesion precisely, locate small lesions or investigate multiple

lesions, a 3D tracer kinetic study is necessary which presupposes a 3D T1 map. Acquiring

3D T1-maps with sub-millimeter resolution is very time consuming, therefore fast imagine

techniques are needed.

T1-mapping in combination with a radiation sensitive gel can be used as radiation dosime-

try because the T1 of the gel is inversely proportional to the dose of ionizing radiation[6]

enabling high resolution 3D radiation dosimetry. These measurements can be used as

a quality control tool in cancer radiation therapy. Parameter mapping offers huge pos-

sibilities for characterization of tissue and classification and quantification of diseases.

The reason why it is not used in every day routine diagnostics is the relatively long scan

time. Since faster imaging strategies are already limited by hardware constraints, Specific

Absorption Rate (SAR) safety limits, and nerve stimulation limits, further scan time re-

2



1 Introduction

duction is only achieved with undersampling strategies. In order to remove the artifacts

induced with the incomplete data problem, more sophisticated reconstruction methods are

necessary and are the focus of this work in the context of gaining quantitative information.

The two main research fields are the so called the fingerprinting and the model-based

reconstruction. The former uses a huge database including all possible combination re-

garding the parameters of interest and a search for the combination of those which match

the measured signal best, see section 1.1.6 for details. The model-based reconstruction

makes use of the signal equation corresponding to the used imaging sequence and an op-

timization algorithm which minimizes the difference between measured signal and model

generated data. Once the difference is minimized the identified model parameters repre-

sent a good approximation of the underlying physical parameters of the tissue. In order

to provide the reader a quick overview of the huge field of parameter mapping a selection

of existing methods is given in the following chapter.

1.1 Background

1.1.1 Relaxation, T1, T2 and ρ

In MRI the term longitudinal relaxation is used to describe the return of the magnetization

to the thermodynamical equilibrium which is aligned with the static magnetic field B0.

This direction is arbitrary chosen to be the z-axis. Transverse relaxation on the other

hand describes the loss of coherence of the spins by dephasing. Assuming a 90◦ excitation

the magnetization is tilted 90◦ and the net magnetization lies in the x-y-plane. After

such an excitation pulse all spins in a sample are aligned in a specific direction and in

phase and a net magnetization can be measured. This net magnetization rotates in the

x-y-plane with a nuclei specific frequency named Lamor-frequency (ωL). It is dependent

on the static magnetic field B0 and the gyromagnetic constant γH+ = 42.5781MHz/T of

3



1 Introduction

the material and can be calculated by Equation 1.1.

ωL = γB0 (1.1)

This transversal magnetization decays very fast because of spin-spin interactions leading

to slightly different rotation frequencies. These differences lead to a dephasing of the

spins ultimately canceling out each other. This effect is described by a mono-exponential

function 1.5 with a time constant T2 therefore the name T2 decay, see Figure 1.2(a) and 1.1.

Due to technical reasons like field inhomogeneities this effect is even more pronounced

which results in a faster decay with a time constant T ∗2 , see Equation 1.2.

1

T ∗2
=

1

T2

+
1

T2′
(1.2)

The measured signal is called Free Induction Decay (FID). Assuming no energy is lost

during this process (very long T1 compared to T2) the majority of spins is still in an

upper energy state. In order to return to the thermodynamical equilibrium they have to

dissipate energy to the lattice which converts the energy to thermal energy and dissipates

it via heat. This process is called spin-lattice relaxation or longitudinal relaxation and can

also be described by a mono-exponential function 1.3 with a time constant T1, therefore

it is known as T1 relaxation, see Figure 1.2(b). These two effects are specific for a given

substance and can be used to generate quantitative images (parameter map). Another

important factor is the proton density PD, usually denoted as ρ, which describes the

number of spins per pixel/voxel. The more proton spins within the sample volume the

higher the signal and the better the Signal-To-Noise Ratio (SNR).

S = kρ(1− e−
TR
T1 ) (1.3)

4
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Figure 1.1: Signal decay T2 and T ∗2 for a 90◦ excitation pulse without T1 decay. Figure
taken from http://www.jcmr-online.com/content/12/1/71/figure/F4.

1.1.2 Classic T2 and T1 mapping techniques

The described techniques in this section are conventionally applied but typically suffer

from very long acquisition times due to the need of long Repetition Time (TR). The

oldest uses the basic spin echo signal equation 1.4

S = kρ(1− e−
TR
T1 )e

−TE
T2 (1.4)

where k is a scaling factor. Acquiring T2 weighted images(TR � T1,TR T2) the signal

equation 1.4 becomes 1.5 and the signal at different Echo Time (TE)s follows a mono-

exponential decay with increasing TE, see Figure 1.2(a).

S = kρe
−TE
T2 (1.5)

The usage of a multi spin echo sequence (e.g. Carr Purcell Meiboom Gill Sequence

(CPMG)) with different TE or a single spin echo experiment with different echo spacing

5
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τ and a fitting technique, for example minimum-least-squares, results in a T2 parameter

map.

A commonly used T1 mapping technique is the Inversion Recovery (IR) spin echo sequence,

where T1 relaxation takes place between an inversion pulse and the following excitation.

The condition TR � T1 has to be fulfilled in order to make sure all spins are in equilibrium

before the next excitation. In this special case the signal after the inversion pulse can be

described by 1.6 depending on the Inversion time (TI) and follows a mono-exponential

curve shown in Figure 1.2(b). This sequence yields a very good T1 contrast.

S = kρ(1− 2e
−TI
T1 ) (1.6)

Acquiring images at different TI ’s and using a fitting routine as mentioned before yields

a T1 parameter map.

These fitting techniques are simple to compute but are time consuming if a 3D-volume

with high spatial resolution should be examined due to the lengthy imaging sequences

used (e.g. IR-SE sequence with 256x256 matrix and TR = 3s leads to a scan time of

approximately 12 min per slice and TI). In order to achieve an accurate fit, data from

at least six points should be available. Before each excitation, the magnetization has

to be in equilibrium which is generally achieved after waiting approximately five times

T1, which lies in the range of 10s. This demand for equilibrium is the reason for the

long acquisition time. Multi spin echo sequences for T2 mapping offer shorter scan time

compared to single spin echo sequences but suffer from stimulated echos, imperfect slice

profile, and B1 inhomogeneities leading to errors in the estimated parameters. This is the

reason why single spin echo sequences still represent the current gold standard. Lengthy

imaging sequences are a major drawback in clinical routine diagnostic where scan time

per patient is a crucial factor. The majority of people who need to be examined by MRI

are elderly and sick people who can not stay in the scanner over a longer period. Clinical

usable examination protocols should not exceed the 30 minute mark which is considered

6
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(a) T2 decay

(b) T1 decay

Figure 1.2: Signal decay of T2 for multi spin echo 1.2(a) and T1 for Inversion Recov-
ery 1.2(b) sequence. Multiple Echos and Inversion times are shown as an
example for properly chosen time points to fit the mono-exponential curve.

a reasonable time most patients can tolerate [7]. In order to meet this time limitation

7
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combined with a fit as accurate as possible, imaging sequence utilizing high acceleration

and complex reconstruction algorithms are being developed.

1.1.3 Look-Locker methods

These methods are based on the fact that it is not necessary to wait for equilibrium

magnetization before starting the next image acquisition train. Look and Locker derived

an explicit formulation for calculating the magnetization after an arbitrary number of

excitations in Nuclear Magnetic Resonance Spectroscopy (NMRS) [8] which was later

introduced to the MRI. After the 180◦-pulse multiple echos are generated using a Fast

Low Angle Shot (FLASH) sequence. This further decreases scan time but makes the

method sensitive to static field inhomogeneities. In contrast to recovery methods, one shot

methods use a series of small flip angle pulses to measure all points along the T1 relaxation

curve in one recovery. Using small flip angles in combination with a FLASH sequence takes

away some magnetization after each excitation resulting in a modified relaxation time T ∗1 ,

which is described by the formula of Look and Locker. Acquiring all necessary points in a

single shot results in a drastic time decrease for the whole examination. Due to the limited

flip angles this method yields an inferior SNR relative to the recovery method. However,

the reduced scan time can be used to increase the SNR through averaging [9]. The fitting

of T1 is carried out through a three parameter fit of a mono-exponential decay 1.8 and

solving for T1 1.9. The decay is based upon a modified time constant T ∗1 which depends

on T1, the time between pulses τ and α, see Equation 1.7. Using three parameters enables

the correction of imperfect flip angles, leading to more accurate results. However this

method is still time consuming compared to modern FLASH and balanced Steady-State

Free Precession (bSSFP)-based methods.

T ∗1 =
T1

1− T1
τ

ln (cosα)
(1.7)

8



1 Introduction

S = A−B exp

(
−t
T ∗1

)
(1.8)

T1 = T ∗1

(
B

A
− 1

)
(1.9)

The 2D-Look-Locker method was adapted for 3D-measurements by Henderson et al. in

1999 [10]. They showed good agreement with the inversion-recovery spin echo measure-

ments and a fast image acquisition time of approximately 8 minutes for a 256x128x32

image matrix, 5/8 partial Fourier, τ = 5.5ms, and TR = 2000ms. The encoding scheme

for the 3D-Look-Locker is illustrated in Figure 1.1.3. However, no B1+-correction was

performed which would further increase the accuracy of the proposed method because

of the flip angle dependence of T ∗1 like in all other Look-Locker methods. Furthermore

acquiring isometric resolution brain images requires an even higher matrix size which

would result in scan times longer than 20 minutes, which is not feasible in clinical routine

diagnostics [11].

A fast Look-Locker method that allows T1 quantification at the heart is known as Modified

Look-Locker Inversion Recovery (MOLLI) first published by Messroghli et al. [12]. This

method modifies the standard Look-Locker (LL)-method by a selective data acquisition

triggered by the ECG at the end of the diastole and merging of three images acquired

at different TI into one data set. A bSSFP read-out sequence is used because of its high

SNR combined with a Sensitivity Encoding (SENSE) factor of two to further decrease

the scan time, decreasing motion artefacts due to short acquisition compared to the heart

beat rate. A disadvantage of this method is the dependency of T1 upon the heart rate

and its rather larger estimation error for very short (<180ms) and long (>1200ms) T1,

limiting the application of the method.

9
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Figure 1.3: Acquisition scheme for 3D-Look-Locker sequence proposed by Henderson et
al. After an inversion pulse a number ky of phase encoding steps is performed
in the inner loop. This is repeated M times until the necessary number of ky is
acquired. The outer loop Nkz defines the measurement volume. The flip angle
α should be small, e.g. α < 15◦ , in order to not drive the magnetization to
equilibrium too fast. Figure taken from [10]

.

1.1.4 Inversion Recovery balanced Steady-State Free Precession

The IR-bSSFP, also know as IR-True Fast Imaging With Steady State Precession (True-

FISP), technique was first introduced by Schmitt et al.[13] in 2004. It utilizes a inversion

pulse followed by a bSSFP read out with an initial α
2

preparation pulse. The transient

signal for an α
2

prepared bSSFP sequence can be described by a three parameter mono-

exponential function 1.10, see Scheffler et al. [14].

S(nTR) = Sstst(1− INV e−nTR/T
∗
1 ) (1.10)

10
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Where:

Sstst : The steady-state signal

T ∗1 : Apparent relaxation time ≤ T1

INV : Inversion factor indicating the ratio between S0 and Sstst

nTR : n times TR of the current read-out sequence

Schmitt et al.[13] showed that accurate values for T1, T2 and M0 can be acquired with a

three parameter fit of the transient signal and the use of the following equations:

T1 = T ∗1

[
cos2 α

2
+ (A× INV +B) sin2 α

2

]
(1.11)

T2 = T ∗1

[
sin2 α

2
+ (A× INV +B)−1 cos2 α

2

]
(1.12)

M0 =
Sstst (INV − 1)

sin α
2

(1.13)

Where:

A = 2 (1− cosα)−1 cos
α

2
(1.14)

and

B =
(

1 + 2 cos
α

2
+ cosα

)
(cosα− 1)−1 (1.15)

The equation for M0 only holds if T2 relaxation between the α
2
-preparation pulse and the

first α-pulse can be neglected. Furthermore, it is assumed that the off-resonance frequency

is zero and the magnetization evolves along the α
2

cone [14].

Advantages of this method are the relative fast acquisition time, the ability to fit all three

parameters using only one sequence and the good agreement with reported values in the

literature. Drawbacks include its dependency upon off-resonance effects e.g. banding,

rather long scan duration for tissues with high T1 values because of the need of a steady-

11
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state signal, the sensitivity to imperfect slice profiles, and the influence of magnetization

transfer effects [15].

1.1.5 The Variable Flip Angle approach

The VFA approach is a fast and relatively accurate method utilizing variation in signal

intensities based upon a variation of the flip angle to infer the unknown parameters.

A well established method is the Driven Equilibrium Single Pulse Observation of T1,T2

(DESPOT)-approach published by Deoni et al. in 2003 [16]. This method enables the

computation of T1,T2, and M0 using fully sampled 3D-FLASH and bSSFP sequences in

less than 20 minutes. The method, called DESPOT1, can be used to either fit T1 and

M0, which uses the FLASH sequence to extract T1 and M0. DESPOT2, utilizing the

bSSFP sequence is used to calculate T2 and M0 assuming T1 is known. The steady-state

signal for the FLASH sequence can be described by 1.16, the one of the bSSFP sequence

by 1.17, where E1 = e
−TR
T1 , E2 = e

−TR
T2 and α is the excitation flip angle. The dependency

of the signal on T1, T2, and flip angle α for the FLASH and bSSFP sequence is shown in

figures 1.4(a)- 1.4(c).

SFLASH =
M0(1− E1) sinα

1− E1 cosα
(1.16)

SbSSFP =
M0(1− E1) sinα

1− E1E2 − (E1 − E2) cosα
(1.17)

SFLASH
sinα

= E1
SFLASH

tanα
+M0(1− E1) (1.18)

SbSSFP
sinα

=
E1 − E2

1− E1E2

× SbSSFP
tanα

+
M0 (1− E1)

1− E1E2

(1.19)

12
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(a) Signal intensity of a FLASH sequence with varying
α and T1

(b) Signal intensity of a bSSFP sequence with
varying α and T1

(c) Signal intensity of a bSSFP sequence with
varying α and T2

Figure 1.4: This figure shows the signal dependency of the FLASH and bSSFP sequence
upon the flip angle α for different values of T1 and T2. For the FLASH se-
quence exists an specific flip angle α which maximizes the signal for a given
combination of T1 and TR.

If TR is kept constant and α is varied one generates images characterized by T1 respectively

T1 and T2, depending on the used sequence. Through rearranging the signal equations

into a linear form(1.18, 1.19) and performing linear regression to calculate the slope m

and intercept b it is possible to calculate T1, T2, and M0:

13
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DESPOT1:

T1 =
−TR

ln (m)
(1.20)

M0 =
b

1−m
(1.21)

DESPOT2, assuming T1 is known:

T2 =
−TR

ln
(
m−E1

mE1−1

) (1.22)

M0 =
b (E1E2 − 1)

1− E1

(1.23)

Deoni et al. [16] showed that it is possible to achieve an accurate fit by using two ideal

flip angles. Furthermore, he derived an analytical equation to calculate those angles for

the FLASH sequence:

α = cos−1

(
f 2E1 ± (1− E2

1)
√

1− f 2

1− E2
1(1− f 2)

)
(1.24)

where:

f = 0.71

For calculating the ideal flip angles for the bSSFP sequence, the interested reader is

referred to [16].

The ideal number and value for the flip angles depends on the expected T1 values. Cheng

et al. [7] showed that a set of three flip angles provided the best results and thus it is best

to use scan time to increase the SNR of those three scans through averaging rather than

performing more scans with different flip angles. They also proposed a method to choose

the flip angles based upon the maximum and minimum expected T1 value. Furthermore,
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they showed that a minimum SNR of 350 is needed to achieve accurate T1 measurements.

The DESPOT approach is suitable to achieve high resolution parameter maps of a large

volume (e.g.: 25x25x10 cm with <1mm3 Voxel-size) in less than 20 minutes with precision

comparable to recovery methods, see section 1.1.2. The major drawback of this method

is its limited acceleration potential due to the fact, that it operates directly on the images

rather than the k-space itself, limiting the acceleration factor to moderate values up to

4 combined with parallel imaging techniques. Furthermore the expected range of T1

respectively T2 values has to be known in advance to properly choose the ideal flip angles.

The set of ideal flip angles can interfere with the proposed SNR-threshold because very

small flip angles of 3◦ are needed, which in return yields images with rather poor SNR.

Another drawback is the sensitivity of the method with respect to flip angle uncertainties

due to imperfect slice profiles and an inhomogeneous B1+-profile, leading to errors in the

estimated parameters. This limitation gives rise to more sophisticated reconstruction and

fitting methods.

1.1.6 Fingerprinting

Magnetic Resonance Fingerprinting (MRF) is a relatively young technique first published

by Dan Ma et al. [17] in 2013. The basic assumption is that every tissue has its unique set

of parameters and thus unique signal evolution, called fingerprint. MRF uses a dedicated

imaging sequence to increase the distinct information in the signal evolution during the

acquisition and a pattern recognition algorithm to match the fingerprint to a predefined set

of predicted signal evolutions called dictionary. If the signal can be matched to a dictionary

entry, it is possible to generate quantitative maps of all parameters associated with that

particular entry. In order to generate an unique fingerprint it is necessary to vary imaging

parameters, such as the flip angle and phase of radio frequency pulses, the repetition

time, echo time and sampling pattern, in a pseudorandom manner. A possible acquisition

scheme for a bSSFP sequence is shown in Figure 1.5. Advantages of MRF include its
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high acceleration potential due to the fact that undersampling artefacts are suppressed

by the pattern recognition algorithm. This can be achieved if the undersampling artefacts

of the used pattern are mostly uncorrelated to each other. Figure 1.6 shows an example

of reconstructed parameter maps using fingerprinting. In order to increase the acquired

information in a given time frame the parameters are varied in such a way that no stead-

state is reached. It is also more sensitive with respect to imaging and tissue parameters. In

summary, this enables an acquisition speed-up of more than 30 with still excellent image

quality concerning artefacts. Possible drawbacks of MRF include the lack of a proof that

only one fingerprint yields the best match, and its rather high storage requirements if more

parameters should be fitted, because signal behavior for all possible, allowed parameter

combinations have to be precomputed and stored in a database yielding billions of entries.

Another problem that comes side by side with huge databases is the need for reliant and

fast matching algorithms which have to be developed.

1.1.7 Model-based Reconstruction

Model-based reconstruction makes use of the signal equation corresponding to the used

sequence, in order to incorporate additional information to the minimization problem of

finding the parameters of interest. The problem of finding the ideal set of parameters is

solved iteratively. The data generated by the forward model is compared to the acquired

data and by varying the model parameters the residual error is minimized in a least-square

sense 1.25. The minimization problem at hand may be non-linear or even non-convex.

Therefore, advanced algorithms are needed to find a solution. Model-based reconstruction

can be used for sequences where an analytical expression for the signal exists, but could

also be used with the Bloch equations.
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min
x

1

2
‖G(x)− d‖2

2 (1.25)

Where:

x : Vector of unknown parameters ∈ Rq×n×m
+

q : Number of unknown parameters

d : Measured data ∈ Cn×m×i×k

i : Number of coils

k : Number of varied parameters (e.g. flip angle)

G : Function mapping the parameters X → Y which lies in data space,

comprising a model of the MRI signal

Advantages of model-based reconstruction are the well known behavior of various mini-

mization algorithms which exist to solve the problem at hand and its high acceleration

potential, if these algorithms are combined with proper regularization methods. Possible

drawbacks are rather long reconstruction time, depending on the used solver, and lim-

itation of the regularization depending on the optimization algorithm. Because in this

work the model-based reconstruction approach is used, a more detailed explanation of

this method is given in chapter 2.

Because of the numerous advantages of model-based reconstruction it is used in a huge

variety of applications. Some examples include a model-based acceleration of LL T1 map-

ping proposed by Tran-Gia et al. [18] which uses model-based fitting of an exponential

relaxation process to reconstruct parameter maps of highly undersampled and radially

acquired IR-LL data. Another example is a model-based T2 mapping technique proposed

by Sumpf et al. [19] which utilizes a train of spin echo sequences at different TE’s to gen-

erate T2 and spin density maps. Furthermore, model-based reconstruction is not limited

to simple signal models but can also be used with the generating function formalism, see
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for example [20], or even the Bloch equations, allowing very fast acquisition, e.g. by using

the transient signals as the base for the parameter mapping.

1.2 Definition of task

The aim of this work is to develop and compare different algorithms in order to recon-

struct parameter maps regarding T1 using by highly undersampled FLASH data. Uti-

lizing an existing Matlab script (Mathworks Inc., Natick, USA) as starting point and

adapting it for the FLASH sequence the performance of Non-Linear Conjungate Gra-

dient (CG-descent), Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS), and

IRGN-TGV by means of computation time, correctness of fit, SNR, and memory usage

should be compared. In addition to these different undersampling patterns, cartesian

interleaved, radial and pseudorandom, are used and compared in terms of maximum pos-

sible image acceleration and resulting quality of fit. This comparison is carried out in

three different stages. First, using numerical simulated data to proof the correctness of

the implemented algorithm, secondly using MRI-phantom data, and lastly in vivo data of

human knees.
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(a) sequence diagram

(b) sampling pattern (c) varying parameters

Figure 1.5: 1.5(a) shows a bSSFP sequence diagram with varied acquisition parameters
during every readout. The parameters are varied in a pseudorandom pattern.
A possible pattern for the varied parameters is shown in 1.5(c). In order
to maximize the k-space information and minimize undersampling artefact
coherence a variable density spiral readout is used 1.5(b). Figure adopted
from [17].
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(a) reconstructed image from
one acquisition

(b) matched signal of one pixel (c) T1 map

(d) off-resonance frequency (e) T2 map (f) M0 map

Figure 1.6: Example of the high acceleration potential of MRF. Conventional reconstruc-
tion yields significant undersampling errors 1.6(a). Signal evolution in one
Pixel 1.6(b). Reconstructed parameter maps 1.6(c)-1.6(f). Figure adopted
from [17].
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2.1 Generation of undersampled data

In order to achieve high acceleration it is necessary to reduce the scan time. This is usually

done by reducing the number of phase encoding steps, effectively reducing the acquired

data. Because of the nature of MRI data acquisition and the well known properties of

the Fourier transform, reducing the acquired data inevitable leads to aliasing artifacts

in the reconstructed image. Depending on the used undersampling pattern the artifacts

are differently pronounced. One of the first undersampling strategies used is the skipping

of a predefined number of lines which reduces the effective scan time by the amount of

lines skipped, e.g. skipping every second line yields a effective acceleration of 2. However,

this technique yields pronounced undersampling artefacts because the Nyquist criterion

is violated, leading to backfolding in phase encoding direction. Another method known

from CT reconstruction is radial sampling which offers the benefit of nearly uncorrelated

undersampling artefacts leading to rather high quality images even at high acceleration

factors. A new sampling approach is know as pseudo-random sampling which determines

the sampling position by means of drawing from a 2D Poisson disc random distribution

with variable density. Specifying the sampling points in a pseudo-random fashion yields

highly uncorrelated artefacts which manifest as additive noise in the image, see Fig-

ure 2.1(e). The k-space is fully sampled in a 32x32 neighborhood around the center. All

three methods were implemented as a preprocessing step in order to produce artificially
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undersampled data from fully sampled reference scans and numerical phantoms.

(a) Reference Image

(b) interleaved AF2 (c) interleaved AF10

(d) radial AF2 (e) radial AF10

(f) pseudo-random AF2 (g) pseudo-random AF10

Figure 2.1: Examples of different undersampling pattern and their influence on image

artefacts using standard inverse Fourier transform as reconstruction method.
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2.2 Coil-sensitivity estimation, low-resolution images

It is known from parallel imaging that the information of independent receiver coils can

be exploited for encoding a part of the spatial information. In order to make use of

the information the coil sensitivity profile has to be known. Several algorithms exist

to compute coil sensitivity maps from a given number of coil images [[21]-[22]]. Older

algorithms [21] solve the problem sequential, first guessing the coil profiles and second

reconstructing the image. Newer approaches solve the combined problem by making use

of iterative regularized reconstruction methods [22]. Due to the fact that the proposed

algorithm incorporates coil sensitivity information it is necessary to compute the coil

sensitivity profiles in advance. The algorithm proposed by Ücker et al. [22] is used to

compute the coil sensitivity map. The method uses an iterative regularized Gauss-Newton

optimization algorithm to solve the problem. Such an optimization method is also used

in the present work and described in section 2.5.3. In order to produce low resolution

images of the undersampled k-space data, which is necessary for the DESPOT1- initial

guess, a block which can be defined in advance, is selected in the center of the k-space. To

reduce truncation artifacts associated with the windowing, a Hamming window is used.

The low-resolution reconstruction of each receiver channel is combined into one image

with the method proposed by Walsh et al. [21]. This image serves as the base for the

low-resolution guess.

2.3 B1+-mapping

In order to produce accurate results it is necessary to correct for the imperfect flip angle

distribution, both through-plane and in-plane. The through-plane error is reduced by the

usage of 3D-image acquisition and neglecting the outermost slices. The in-plane correction

needs information about the flip angle distribution across the plane. Several methods exist

to measure the flip angle distribution such as the double-angle method [23] which relies
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upon intensity differences in magnitude images or the Bloch-Siegert-mapping [24] which

uses differences in the phase image to compute the flip angle distribution. The latter

method offers the advantage of rapid acquisition and good accuracy even for higher flip

angles. Therefore, it is more desirable if short scan time and high precision are required

like in parameter mapping which is the case in the present work. The Bloch-Siegert shift

occurs if an off-resonant Radio Frequency (RF)-Pulse is applied. The off-resonance RF-

Pulse changes the resonance frequency of a nucleus, the amount of shift depends upon

(B1+)2 and the difference between the spin resonance frequency and the applied RF ωRF .

If phase images are acquired, they are in general dependent upon B0 inhomogeneities,

transmit excitation, receive phase, and other sequence-related phase shifts. In order to

remove these influences two images at ±ωRF are acquired. The difference between those

two scans depends up to the first order term solely on the Bloch-Siegert shift and therefore

B1+ can be calculated, see Equation 2.1. The generated B1+ map is used for correcting

the flip angle distribution across a slice.

ΦBS =

∫ T

0

(γB1+(t))2

2ωRF (t)
dx (2.1)

2.4 DESPOT-TV, initial guess

Low resolution images of the k-space center are generated using the method proposed by

Walsh et al. [21] and utilized to generate a low resolution initial guess of T1 and M0 with

the DESPOT1 fitting procedure, proposed by Cheng et al. [7]. The DESPOT1 method

is combined with a Total-Variation (TV) regularization and a primal-dual algorithm,

proposed by Chambolle and Pock [25], is used to solve the resulting optimization problem.

The proposed fitting algorithm equals a pointwise linear regression with a spatial TV

regularization in order to suppress noise. The basic form of the DESPOT1 equation [7]
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is given by:
SFLASH

sinα︸ ︷︷ ︸
d

= E1︸︷︷︸
m

SFLASH
tanα︸ ︷︷ ︸
aα

+M0(1− E1)︸ ︷︷ ︸
b

(2.2)

Rewriting the basic equation into vector-matrix notation, considering the problem has

to be solved for every pixel, and introducing the TV-regularization term, leads to the

following optimization problem:

x∗ = arg min
x

λ

2
‖Ax− d‖2

2 +
1

2
‖∇x‖1 (2.3)

where:

x : Vector containing the slope m and point of intercept b of the linear equation 2.2

A : System matrix of the linear equation, which can be expressed as a sparse matrix 2.4

d : Defined as in equation 2.2

The vector x is ordered in a way that the slope m is contained in the first half and

the intercept b is contained in the second. Therefore the matrix A is composed as in

Equation 2.4 where the index refers to the pixel in the image and the whole image is stored

in a vector containing all rows concatenated after each other. As shown in Equation 2.4

this matrix is a sparse matrix and therefore can be easily generated and stored in Matlab.

A =



aα11 0 0 0 . . . 1 0 0 0 . . .

aα21 0 0 0 . . . 1 0 0 0 . . .
...

...
...

...
...

...
...

...
...

...

aαn1 0 0 0 . . . 1 0 0 0 . . .

0 aα21 0 0 . . . 0 1 0 0 . . .

0 aα22 0 0 . . . 0 1 0 0 . . .
...

...
...

...
...

...
...

...
...

...


(2.4)

Comparing Equation 2.3 to the standard form of a convex, non-smooth primal problem
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in 2.5

min
x
F (Kx) +G(x) (2.5)

one finds that

F (ξ) = ‖ξ‖1 (2.6)

K = ∇ (2.7)

G(x) =
λ

2
‖Ax− d‖2

2 (2.8)

and the problem can be written as a general saddle-point problem of the form

min
x

max
y
〈Kx, y〉+G(x)− F ∗(y) ⇐⇒

min
x

max
y

〈
x,KHy

〉
+G(x)− F ∗(y) ⇐⇒

min
x

max
y
− 〈x, div y〉+

λ

2
‖Ax− d‖2

2 − I‖·‖≤Y (y)

(2.9)

where I‖·‖≤Y donates the indicator function of Y and Y is the union of pointwise L2 balls.

In order to solve the primal-dual problem one needs the resolvent operators of F ∗ and G,

where F ∗ denotes the convex conjugate of F . They are defined by (see Chambolle and

Pock [25]):

y = (I + σ∂F ∗)−1(ỹ) = arg min
y

{
‖y − ỹ‖2

2

2τ
+ F ∗(y)

}

x = (I + τ∂G)−1(x̃) = arg min
x

{
‖x− x̃‖2

2

2τ
+G(x)

} (2.10)

Because F ∗ is the indicator function the resolvent operator of F ∗ degenerates to the
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pointwise Euclidean projections onto L2 balls:

y = (I + σ∂F ∗)−1(ỹ) ⇐⇒ yi,j =
ỹi,j

max(1, |ỹi,j)|
. (2.11)

In order to find the resolvent operator of G one needs to solve a quadratic problem. The

solution to this problem is given as:

x = (I + τ∂G)−1(x̃) ⇐⇒ x =
x̃+ τλATd

1 + τλATA
(2.12)

Finally, the update steps for the primal-dual algorithm are defined as:

yn+1 = (I + σ∂F ∗)−1(yn + σnKx
n)

xn+1 = (I + τ∂G)−1(xn − τnK∗yn+1)

Θn = 1√
1+2γτn

, τn+1 = Θnτn, σn+1 = σn
Θn

xn+1 = xn+1 + θ(xn+1 − xn)

(2.13)

The initial step sizes are chosen such as

στ < L (2.14)

holds true. The Lipschitz constant L of the linear operator K, the gradient operator, is

known to be 8. Therefore, σ = τ = 1√
8

are chosen as the initial step size. If the optimal

x? is found, one can calculate T1 and M0 through

T1 =
−TR

ln (m)
(2.15)

M0 =
b

1−m
(2.16)

where:

m : is the slope of the linear equation

b : is the intersection with the y-axis
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The whole process of linear regression with spatial TV constrained is illustrated in Fig-

ure 2.4.

Figure 2.2: Graphical schematic of the initial-guess algorithm. The upper part of the

figure shows the pixel wise linear regression along the different flip angles.

Subsequent a spatial TV constrained is applied to smooth the result. The TV

constraint is represented as the two vectors in the lower part of the image.

28



2 Methods

2.5 Model-based Reconstruction

Model-based reconstruction combines the signal equation and additional a-priori informa-

tion, like coil sensitivity and knowledge about the undersampling pattern, to generate a

model of the MRI signal in every pixel. The base of this work is the steady-state signal

equation of the FLASH-sequence 2.17 which depends on T1 and M0. The T ∗2 influence is

neglected.

S (M0, T1, α) = M0 sinα
1− e−

TR
T1

1− e−
TR
T1 cosα

(2.17)

Where:

M0 : unknown M0-map ∈ Rn×m
+ : n, m ∈ N+

T1 : unknown T1-map ∈ Rn×m
+ : n, m ∈ N+

α : known flip-angle ∈ [−π, π]

In order to use the proposed optimization algorithms, one needs the derivatives with

respect to T1 and M0 of the signal equation 2.17 which are given by 2.18and 2.19.

∂S

∂M0

= sinα
1− e−

−TR
T1

1− e−
TR
T1 cosα

(2.18)

∂S

∂T1

= −M0TRe
TR
T1 (2 sinα− 2 cosα sinα)

2T 2
1

(
e
TR
T1 − cosα

)2 (2.19)

Casting the problem of finding M0 and T1 into the form of a basic minimization problem,

minimizing the difference between the model generated data and the measured data by

the means of a L2 norm, yields:

min
x

1

2
‖G(x)− d‖2

2 +R(x) (2.20)
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Where:

x : Vector of M0, T1 ∈ R2×n×m
+

d : Measured data ∈ Cn×m×i×k

G : X → Y

R : Some regularization term

The operator G contains the whole signal model, coil sensitivity information, the Fourier

transform, and the undersampling pattern. This process is described by Equation 2.21.

G : x→

PkF [CiS (M0, T1, αk)]
...

 (2.21)

Where:

k = 1 . . .M : Number of flip angles

i = 1 . . . N : Number of coils

Pk : Undersampling pattern

Ci : Coil sensitivity

Checking the convexity of the function using the “convexchecker“ tool provided by Bapi

Chatterjee at Indian Institute of Technology Delhi, New Delhi, India, it can be shown

that the function is not globally convex nor linear. Therefore nonlinear solvers have to be

used to find the minimum and thus the desired values of T1 and M0. The non convexity

of the function is a major problem because there exists no necessary optimality condition

for non convex functions. Therefore no algorithm is provably able to guarantee conver-

gence to the global solution. Different algorithms exist to solve non-linear problems but

no mathematical proof can be given, that the solution is truly the global minimum. They

can be divided into two major categories namely first order methods which make use of

the gradient information to solve the problem, the Conjugate Gradient (CG)-algorithm

belongs to this group, and second order methods which use additional information from
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the Hessian matrix. Computing the Hessian can be very demanding and for larger prob-

lems storing the matrix is not possible. Therefore, methods exist which approximate the

Hessian in every iteration. The IRGN-algorithm which linearizes the problem in every

step and solves the linearized problem afterwards is such an algorithm. Both methods,

CG and IRGN, are implemented and described in detail in the following sections.

2.5.1 Parameter and data scaling

An important part in solving the problem at hand is the scaling of the parameters and

the data. The parameter scaling is done by dividing every pixel by the maximum of

the value of interest, found in the initial guess. This generates maps in the range of

[0,1]. Using the described scaling is crucial for the optimization algorithms because the

parameters are separated by several orders which results in a not converging algorithm

if not scaled appropriate. Scaling of the data is used to make the problem at hand

independent of the actual measurement. This is important because the data is dependent

on the actual SNR and other sequence related entities which are only relative for MRI.

This dependency would give rise to the problem of choosing between the weight of data

and the regularization term dependent on the measurement. Scaling the data enables

the use of a fixed regularization parameter, thus providing a robust algorithm for various

experiments.

2.5.2 CG descent

CG descent, developed by William Hager, University of Florida, Department of Mathe-

matics, is a collection of CG-methods using different line-search algorithms and gradient

information up to incorporating information of a (quasi)-Hessian matrix, the LBFGS

approach. The collection features a C-implementation as well as a Matlab MEX-file im-

plementation of the algorithms. The two optimization algorithms used in the present
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work are explained in detail on the following pages. For further information regarding the

CG descent script and possible usages the interested reader is referred to [26][27].

2.5.2.1 Conjugate Gradient

Conjugate gradient methods are widely used in optimization problems because of their

fast convergence speed and low memory requirement. They are not only suitable for

linear problems but also for nonlinear problems and their convergence behavior for linear

problems is well studied [27]. Even though there exists no convergence proof for non-

linear problems they perform rather well in practice on such types of problems. First

order methods require a continuously differentiable cost function and thus are restricted

to smooth regularization methods. This limits their potential to reproduce sharp edges

which leads to a blurred image. To solve a problem the CG-algorithm is initialized with

an initial guess x0 ∈ Rn and generates a sequence xk, k ≥ 1 by using the recurrence:

xk+1 = xk + αkdk (2.22)

Where αk is the step size obtained by a line search and dk the direction generated by

dk+1 = −gk+1 + βkdk, d0 = −g0 (2.23)

where βk is the CG update parameter which has a strong influence on convergence of the

algorithm and gk = ∇f(xk)
T , the gradient of f at xk. Hager et al. suggest to use the

update scheme in Equation 2.24 for optimal performance which is also implemented in

their algorithm. For detailed explanation of the proposed update scheme, the reader is

referred to [28].

βk =

(
yk − 2dk

‖yk‖2
2

dTk yk

)T
gk+1

dTk yk
(2.24)

Another important part in a CG algorithm is the line search which has to ensure that a

sufficient descent is achieved and has significant impact on convergence and stability of the
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overall algorithm. The ideal point to terminate the line search is reached if the standard

Wolfe conditions are fulfilled. However, the proposed algorithm performs better if the

stronger approximate Wolfe conditions are fulfilled which where introduced by Hager et

al [28]. Furthermore the standard Wolfe conditions limit the precision of the algorithm

to the order of the square root of the machine precision. By using the approximate

Wolfe conditions the precision can be increased to the order of machine precision. The

approximate Wolfe conditions are given by:

σgTk dk ≤ gTk+1dk ≤ (2δ − 1)gTk dk (2.25)

Where 0 < δ < 1
2

and δ < σ < 1. Even though there is no convergence theory for the

approximate Wolfe conditions in CG algorithms they yield a practical performance much

better than that of the standard or generalized or strong Wolfe conditions [27].

2.5.2.2 LBFGS

LBFGS belongs to the quasi-Newton methods which approximate the Hessian matrix. In

contrast to Broyden-Fletcher-Goldfarb-Shanno (BFGS) which uses all previous iterations

to approximate the Hessian in every step, the limited memory approach uses only the

last m iterations to calculate the Hessian. This is especially useful when dealing with

large scale problems like in the present work. Similar to the CG methods they require

a continuously differentiable cost function and thus are limited to smooth regularization

methods. Because of the approximation of the Hessian with first order derivatives they

can deal with function which are only one-time differentiable.

The general start of a BFGS method is defining a positive semi-definit matrix H0 (often

identity), sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk). The update formula for the
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approximate Hessian H written in product form is given by

Hk+1 =
(
I − ρysT

)
Hk

(
I − ρysT

)
+ ρssT ≡ vtHkv + ρssT (2.26)

where ρ = 1
yT s

. Using this formula it is easy to implement an limited-memory BFGS-

algorithm assuming v = I and ρssT = 0 is equivalent to dropping a correction term. As

an example the number of corrections stored m = 2:

H0 = I (2.27)

H1 = vT0 H0v0 + ρ0s0s
T
0 (2.28)

H2 = vT1 v
T
0 H0v0v1 + vT1 ρ0s0s

T
0 v1 + ρ1s1s

T
1 (2.29)

Updating to H3 needs to drop the oldest infromation:

H3 = vT2 v
T
1 H1v1v2 + vT2 ρ1s1s

T
1 v2 + ρ2s2s

T
2 (2.30)

...

The update for xk is obtained by a linesearch similar to the gradient method

xk+1 = xk + αkpk (2.31)

where αk is the step size obtained by the line search and pk is the direction obtained by:

pk = −Hk∇f(xk) (2.32)

The present work uses the same linesearch as the CG implementation because it was shown

by Hager et al. [26] that this particular implementation performed best. For detailed

information about the LBFGS method the interested reader is referred to [29].
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2.5.3 IRGN-TGV

IRGN-methods linearize the problem with a Taylor-series expansion truncated after the

first order term in every Gauss-Newton-step and solve the linear problem afterwards. The

fact that they only need the derivative of the model rather than the derivatives of the

whole cost function enables the use of L1 based regularization methods. A regularization

term which allows sharp edges and smooth structures in images is the TGV-term [30].

TGV best reflects the properties of a parameter map (sharp edges at tissue boundaries,

smooth within the tissue) and is therefore used as regularization term in this work. An

effective method for solving a TGV problem is the primal-dual approach, introduced by

Chambolle and Pock [25] which is described below.

The problem of finding M0 and T1 in Equation 2.17 is a non-linear problem and we use

a Taylor-series expansion truncated after the first order term to linearize the MRI signal

model:

G(x) ≈ G(xj) +
∂G

∂x
|x=xj︸ ︷︷ ︸

DG

(x− xj) (2.33)

The derivative of G at the expansion point with respect to the parameters is called DG.

DG maps the changes of the parameters x− xj which lie in parameter space to the data

space. DG can be calculated as:
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DG : x− xj =

M0 −M0j

T1 − T1j

→(PkF [Ci ∂S(αk)

∂M0

∣∣∣∣
M0=M0j ,T1=T1j

(M0 −M0j)

]
+

PkF

[
Ci

∂S(αk)

∂T1

∣∣∣∣
M0=M0j ,T1=T1j

(T1 − T1j)

])
= y

(2.34)

In order to solve the linear problem one needs to calculate the adjoint to DG which is

shown in 2.35.

DGH : y →


∑#α

k=1
∂S(αk)
∂M0

∣∣∣
M0=M0j ,T1=T1j

∑#coils
i=1 CiF−1Pky

∑#α
k=1

∂S(αk)
∂T1

∣∣∣
M0=M0j ,T1=T1j

∑#coils
i=1 CiF−1Pky

 (2.35)

In each linearization step (Gauss-Newton-Step) the following TGV regularized problem

has to be solved:
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x?j+1 =arg min
x

λ

2

∥∥∥DG(x)− d̃
∥∥∥2

2
+ TGV(x) +

1

2δ
‖x− xj‖ =

arg min
M0,T1,
vo,v1

α1‖∇M0 − vo‖1 + α0‖ε(vo)‖1 + β1‖∇T1 − v1‖1 + β0‖ε(v1)‖1

+
λ

2

∥∥∥∥∥∥∥∥∥∥∥
DG|M0=M0j ,T1=T1j

M0

T1

−
d−G(M0j

T1j

)
+ DG|M0=M0j ,T1=T1j

M0j

T1j


︸ ︷︷ ︸

residuum d̃

∥∥∥∥∥∥∥∥∥∥∥

2

2

+
1

2δ

∥∥∥∥∥∥∥∥∥∥∥∥


M0 −M0j

T1 − T1j

0

0



∥∥∥∥∥∥∥∥∥∥∥∥

2

2
(2.36)

To solve this problem efficiently one may use the primal-dual algorithm. In order to use

this algorithm the problem at hand has to be compared to the standard form of the primal

minimization problem

min
x
F (Kx) +G(x) (2.37)

where F and G are convex functions and K is a continuous linear operator. Comparing

this formulation with our problem in 2.36 to identify F , G, and K leads to:
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F (y) = α1‖z1‖1 + α0‖z2‖1 + β1‖z3‖1 + β0‖z4‖1︸ ︷︷ ︸
dualization of the parameters

+
λ

2
‖r‖2

2︸ ︷︷ ︸
dualization of the data term

G(ξ) =
1

2δ

∥∥∥∥∥∥∥∥∥∥∥∥


ξ1 −M0j

ξ2 − T1j

0

0



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

K(x) =



∇ 0 −Id 0

0 0 ε 0

0 ∇ 0 −Id

0 0 0 ε

DG1 DG2 0 0




M0

T1

v0

v1


︸ ︷︷ ︸

x

KT (y) =


−div1 0 0 0 DGH

1

0 0 −div1 0 DGH
2

−Id −div2 0 0 0

0 0 −Id −div2 0





z1

z2

z3

z4

r


︸ ︷︷ ︸

y

(2.38)

The primal-dual algorithm needs the resolvent operators of F ∗ and G, where F ∗ denotes

the convex conjugate of F . The resolvent operator of F ∗ is defined as:
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x = (I + σ∂F ∗)−1(y) = arg min
x

{
‖x− y‖2

2

2σ
+ F ∗(x)

}
F ∗(y) = I‖·‖≤α1(z1) + I‖·‖≤α0(z2) + I‖·‖≤β1(z3) + I‖·‖≤β0(z4) +

1

2λ
‖r‖2

2

⇒ (I + σ∂F ∗)−1(y) =
yi

max (1, |yi|
αi,βi

)︸ ︷︷ ︸
Pi: i=1...4

,
r

1 + σ
λ︸ ︷︷ ︸

PL2

(2.39)

The resolvent operator of G is defined as:

x = (I + σ∂G)−1(y) = arg min
x

{
‖x− y‖2

2

2σ
+G(x)

}
⇒

(I + σ∂G)−1(y) =



τδM0j + y1

1 + τδ︸ ︷︷ ︸
PM0

τδT1j + y2

1 + τδ︸ ︷︷ ︸
PT1

Id

Id



(2.40)

The resolvent operator of G is only used on M0 and T1 because G ≡ 0 for v0 and v1.

Therefore, the resolvent operator for v0 and v1 becomes simply identity. The general

update steps of the primal-dual algorithm are defined as

yn+1 = (I + σ∂F ∗)−1(yn + σKxn)

xn+1 = (I + τ∂G)−1(xn − τKTyn+1)

xn+1 = xn+1 + θ(xn+1 − xn)

(2.41)
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where θ = 1 is chosen for the extrapolation step as proposed by Chambolle and Pock [25].

In order to promote convergence we introduce an adaptive step size, as proposed by

Bredies et al. [31], which is computed after each iteration. Given Θ ∈ (0, 1) and η > 0,

after each iteration we update σ and τ , e.g. η = 1 equal step sizes for primal and dual, as

σ = S
(
στ,

‖xn+1 − xn‖X
‖K(xn+1 − xn)‖Y

)
η

τ = S
(
στ,

‖xn+1 − xn‖X
‖K(xn+1 − xn)‖Y

)
/η

(2.42)

where

S(στ, ξ) =


ξ if

√
Θστ ≥ ξ,

√
Θστ if

√
στ ≥ ξ

√
Θστ,

√
στ else

) (2.43)

The initial step sizes are chosen such as

στ < L (2.44)

holds true. The Lipschitz constant L of the linear operator K is approximated in every

IRGN iteration through power-iteration.

The problem of finding the optimal value for x in every Gauss-Newton step can be de-

scribed by the following pseudo-code:
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Initialize: (M0, T1, v0, v1), (M0, T1, v0, v1), (z1, z2, z3, z4), σ, τ > 0, η = θ = 1

Iterate:

Dual Update:

zn+1
1 ← P1

(
zn1 + σ(∇M0 − v0)

)
zn+1

2 ← P2 (zn2 + σε(v0))

zn+1
3 ← P3

(
zn3 + σ(∇T1 − v1)

)
zn+1

4 ← P4 (zn4 + σε(v1))

rn+1 ← PL2

(
rn + σ(DG

(
M0

T1

)
− d̃)

)
Primal Update:

Mn+1
0 ← PM0

(
Mn

0 − τ
(
−div1z

n+1
1 +DGH

1 (rn+1)
))

T n+1
1 ← PT1

(
T n1 − τ

(
−div1z

n+1
3 +DGH

2 (rn+1)
))

vn+1
0 ← v0 − τ

(
−div2z

n+1
2 − zn+1

1

)
vn+1

1 ← v1 − τ
(
−div2z

n+1
4 − zn+1

3

)
Stepsize Update:

σn+1 ← S
(
στ, ‖xn+1−xn‖

‖K(xn+1−xn)‖

)
τn+1 ← σn+1

Extrapolation and update:

(M0, T1, v0, v1)← 2(Mn+1
0 , T n+1

1 , vn+1
0 , vn+1

1 )− (Mn
0 , T

n
1 , v

n
0 , v

n
1 )

(Mn
0 , T

n
1 , v

n
0 , v

n
1 )← (Mn+1

0 , T n+1
1 , vn+1

0 , vn+1
1 )

Algorithm 1: Primal-dual algorithm for solving the TGV regularized model-based re-

construction of VFA data in every Gauss-Newton step.
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3 Results

3.1 Numerical simulations

3.1.1 Phantom generation

The numerical simulations are performed with the“Modified Shepp-Logan phantom” from

Matlab, the Mathworks Inc., see Figure 3.1. In order to simulate realistic T1 times we set

the T1 time constant of the different regions to the values listed in Table 3.1. Furthermore,

we simulate four different receiver coils, which are located at the corner of the image. The

sensitivities are simulated with the Biot-Savart law and the Matlab script provided by

Matthie Guerquin-Kern [32]. The simulated T1 map along with simulated coil sensitivities,

are plugged into the signal equation for the FLASH sequence 1.16 to generate magnitude

images. We simulate three different flip angles, 3◦, 10◦ 16◦, and modulate a phase onto

the coil sensitivities to take phase effects of in vivo imaging into account, see Figure 3.3.

All images are generated with TR/TE = 3.4ms/1.1ms and a matrix size of 256x256 pixel.

Furthermore, we also take T2 effects into account by adding the term e
−TE
T2 multiplicative

to the signal equation. All images have an additive common noise term and a random

additive coil noise term, which is generated separately for every coil, leading to an SNR

of 20 or worse depending on the position, as can be seen in Figure 3.2. The last step is a

2D-Fourier transform to generate k-space data.



3 Results

Table 3.1: T1 and M0 reference values of the numerical Shepp-Logan phantom.

Region T1 M0

in ms in a.u.
1 3000 4
2 1200 1.5
3 800 2
4 500 2

(a) Reference M0 (b) Reference T1

Figure 3.1: Reference parameter maps for T1 and M0 of the numerical Shepp-Logan
phantom.

3.1.2 Numerical results of CG descent

All results were generated with the default parameters for the CG descent algorithm using

the modifications shown in Table 3.2. Memory denotes the number of gradient vectors

stored in order to approximate the Hessian matrix.

Table 3.2: CG descent and LBFGS parameter set for numerical phantoms.

CG restarts LBFGS CG maxit memory
10 true 100 5
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(a) Simulated magnitude image
for α = 3◦

(b) Simulated magnitude image
for α = 16◦

(c) Simulated magnitude image
for α = 10◦

Figure 3.2: Numerically simulated magnitude images for different flip angles.

Interleaved pattern

The results for an interleaved undersampling pattern are shown in Figure 3.4. The image

in the upper left corner of the figure shows the reference T1 map used. To the right of

the reference is a fully sampled reconstruction generated with the CG descent algorithm

and further to the right are the results for increased undersampling, namely 6 and 12

fold acceleration. The difference between the reference image and the accelerated recon-

struction are illustrated below the corresponding parameter map and are given in percent.

The mean and standard deviation for the different ROIs shown in Figure 3.4 were evalu-

ated with Matlab and are presented in Table 3.3. Additionally the results were evaluated

along a line horizontally and vertically through the center of the image. The results of

this evaluation are shown in Figure 3.5. The computation time for one reconstruction was

approximately 20 minutes on a 64 Bit Windows 7 PC with an Intel Core i5-3350p @ 3.10

GHz with 16 GB of RAM.
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Figure 3.3: Simulated coil sensitivities and phase for the four receiver coils.

3.1.3 Numerical results IRGN

All results were generated with the parameters for the IRGN-TGV algorithm shown in

Table 3.4.

Interleaved pattern

The results for an interleaved undersampling pattern are shown in Figure 3.6. The im-

age in the upper left corner of the figure shows the reference T1 map used. To the right

are the results of the IRGN-TGV algorithm for increasing acceleration, starting at 1 (no

acceleration) to 6 and finally 12 fold acceleration. The difference between the reference

image and the accelerated reconstruction are illustrated below the corresponding param-

eter map and are given in percent. The mean and standard deviation for the different
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Figure 3.4: Estimated parameter maps of T1 from the CG descent algorithm with an in-
terleaved undersampling scheme and the corresponding fitting error in percent
for different acceleration factors.

ROIs shown in Figure 3.6 were evaluated and are presented in Table 3.5. Additionally the

results were evaluated along a line horizontally and vertically through the center of the

image. The results of this evaluation are shown in Figure 3.7. The computation time for

one reconstruction was approximately 8 hours on a 64 Bit Windows 7 PC with an Intel

Core i5-3350p @ 3.10 GHz with 16 GB of RAM.

Radial pattern

The results for a radial undersampling pattern are shown in Figure 3.8. The image in

the upper left corner of the figure shows the reference T1 map used. To the right are

the results of the IRGN-TGV algorithm for increasing acceleration, starting at 1 (no

acceleration) to 6 and finally 12 fold acceleration. The difference between the reference

46



3 Results

Figure 3.5: Line profile along the x- and y-axis of the resulting T1 fit using an interleaved
undersampling scheme for different acceleration factors and the CG descent
algorithm. The center of the image is assumed to be the origin of the coordi-
nate system.

image and the accelerated reconstruction are shown below the corresponding parameter

map and are given in percent. The mean and standard deviation for the different ROIs

shown in Figure 3.8 were evaluated and are presented in Table 3.6. Additionally the

results were evaluated along a line horizontally and vertically through the center of the

image. The results of this evaluation are shown in Figure 3.9. The computation time for

one reconstruction was approximately 8 hours on a 64 Bit Windows 7 PC with a Intel

Core i5-3350p @ 3.10 GHz with 16 GB of RAM.
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Table 3.3: Mean and SD of the different ROIs and acceleration factors of the numerical
phantom using an interleaved undersampling scheme and a CG descent opti-
mization algorithm. ROIs are defined as in Figure 3.4

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 3000.000 0.000 1582.151 19.969
Roi 2 1200.000 0.000 1978.329 12.312
Roi 3 3000.000 0.000 1576.826 21.883
Roi 4 800.000 0.000 739.010 589.248

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 1345.141 103.592 10610.254 1562.141
Roi 2 4590.451 279.942 1865.925 781.107
Roi 3 1346.864 98.272 10179.205 1478.765
Roi 4 1298.655 196.410 4307.804 2624.727

Table 3.4: IRGN-TGV parameter set for numerical phantoms.

initial TGV iterations maximal TGV iterations IRGN iterations
1 1000 100
λ δ σ τ

1.6e4 10 1√
4
√

2+16+L

1√
4
√

2+16+L

α0 α1 β0 β1

1
√

2 1
√

2

Pseudo random pattern

The results for a pseudo random undersampling pattern are shown in Figure 3.10. The

image in the upper left corner of the figure shows the reference T1 map used. To the right

are the results of the IRGN-TGV algorithm for increasing acceleration, starting at 1 (no

acceleration) to 6 and finally 12 fold acceleration. The difference between the reference

image and the accelerated reconstruction are illustrated below the corresponding param-

eter map and are given in percent. The mean and standard deviation for the different

ROIs shown in Figure 3.10 were evaluated and are presented in Table 3.7. Additionally

the results were evaluated along a line horizontally and vertically through the center of

the image. The results of this evaluation are shown in Figure 3.11. The computation time

for one reconstruction was approximately 8 hours on a 64 Bit Windows 7 PC with a Intel

48



3 Results

Figure 3.6: Estimated parameter maps of T1 from the IRGN-TGV algorithm with an in-
terleaved undersampling scheme and the corresponding fitting error in percent
for different acceleration factors.

Core i5-3350p @ 3.10 GHz with 16 GB of RAM.

3.1.4 Influence of the B1+ map

In order to show the influence of errors in the B1+ map, a simulated B1+ field map as

shown in Figure 3.12 was modulated onto the numerical phantom. The phantom size was

128x128 pixel with the same properties for T1 and M0 as in Figure 3.1(b) and 3.1(a).

The results for no B1+ correction, 1% error and 5% error in the B1+ map are shown

in Figure 3.13. Furthermore, a line plot along the x- respectively y-Axis is shown in

Figure 3.14 and the mean and standard deviation for different ROIs is calculated and

presented in Table 3.8. All reconstructions were performed using no acceleration to better

demonstrate the influence of B1+ errors. Reconstruction time for this lower resolution was
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Figure 3.7: Line profile along the x- and y-axis of the resulting T1 fit using an interleaved
undersampling scheme for different acceleration factors and the IRGN-TGV
algorithm. The center of the image is assumed to be the origin of the coordi-
nate system.

2 hours on a 64 Bit Windows 7 PC with an Intel Core i5-3350p @ 3.10 GHz with 16 GB

of RAM.
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Table 3.5: Mean and SD of the different ROIs and acceleration factors with an inter-
leaved undersampling scheme of the numerical phantom and the IRGN-TGV
algorithm. ROIs are defined as in Figure 3.6

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 3000.000 0.000 2997.053 51.635
Roi 2 1200.000 0.000 1195.197 5.289
Roi 3 3000.000 0.000 3033.521 99.151
Roi 4 800.000 0.000 800.129 4.439

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 3001.475 94.445 -38.467 263.285
Roi 2 1194.539 35.206 346.940 130.178
Roi 3 2988.765 211.739 -156.633 226.196
Roi 4 800.080 31.798 -150.576 101.199

Figure 3.8: Estimated parameter maps of T1 from the IRGN-TGV algorithm with a ra-
dial undersampling scheme and the corresponding fitting error in percent for
different acceleration factors.
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Figure 3.9: Line profile along the x- and y-axis of the resulting T1 fit using a radial under-
sampling scheme for different acceleration factors and the IRGN-TGV algo-
rithm. The center of the image is assumed to be the origin of the coordinate
system.

Table 3.6: Mean and SD of the different ROIs and acceleration factors with a radial un-
dersampling scheme of the numerical phantom and the IRGN-TGV algorithm.
ROIs are defined as in Figure 3.8

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 3000.000 0.000 2990.702 60.306
Roi 2 1200.000 0.000 1195.165 5.350
Roi 3 3000.000 0.000 3048.655 89.546
Roi 4 800.000 0.000 800.017 4.334

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 3001.177 54.172 3011.871 83.411
Roi 2 1194.851 7.428 1195.207 15.806
Roi 3 3067.322 79.274 3079.189 136.500
Roi 4 799.894 6.107 799.622 10.856
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Figure 3.10: Estimated parameter maps of T1 from the IRGN-TGV algorithm with a
pseudo random undersampling scheme and the corresponding fitting error in
percent for different acceleration factors.

Table 3.7: Mean and SD of the different ROIs and acceleration factors of the numerical
phantom using a pseudo random undersampling scheme and the IRGN-TGV
algorithm. ROIs are defined as in Figure 3.10

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 3000.000 0.000 2971.849 85.872
Roi 2 1200.000 0.000 1195.457 5.991
Roi 3 3000.000 0.000 3054.480 82.048
Roi 4 800.000 0.000 799.945 4.312

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 2959.439 132.118 2932.027 196.589
Roi 2 1197.745 23.982 1196.963 38.514
Roi 3 3060.543 109.316 3028.437 208.376
Roi 4 799.539 9.606 800.962 22.342
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Figure 3.11: Line profile along the x- and y-axis of the resulting T1 fit using a pseudo ran-
dom undersampling scheme for different acceleration factors and the IRGN-
TGV algorithm. The center of the image is assumed to be the origin of the
coordinate system.

Figure 3.12: Simulated B1+ map for the numerical experiment of B1+ influence on the T1

quantification.
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Figure 3.13: Resulting T1 fit for different B1+ correction errors using the IRGN-TGV
algorithm.

Table 3.8: Mean and SD of the different ROIs and B1+ maps of the numerical phantom
and the IRGN-TGV algorithm. ROIs are defined as in Figure 3.13.

Reference T1 mean Reference T1 SD Uncorrected B1+ mean Uncorrected B1+ SD
in ms in ms in ms in ms

Roi 1 3000.000 0.000 3317.916 380.702
Roi 2 1200.000 0.000 1400.529 85.386
Roi 3 3000.000 0.000 2616.376 174.869
Roi 4 800.000 0.000 667.648 116.613

1% error in B1+ mean 1% error in B1+ SD 5% error in B1+ mean 5% error in B1+ SD
in ms in ms in ms in ms

Roi 1 3013.657 108.277 3276.117 117.657
Roi 2 1219.867 23.969 1325.702 26.062
Roi 3 3087.511 98.765 3355.299 107.360
Roi 4 816.678 13.738 887.260 14.922
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Figure 3.14: Line profile along the x- and y-axis of the resulting T1 fit using different B1+

maps and the IRGN-TGV algorithm.
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3.2 MRI phantom

All results were generated with the parameters for the IRGN-TGV algorithm as shown

in Table 3.4. Turbo inversion recovery spin echo measurements of the different ROIs

are shown in Table 3.11, sequence parameters are shown in Table 3.10. The sequence

parameters of the used 3D-FLASH acquisition are shown in Table 3.9. All measurements

were done on a 3T Siemens MAGNETOM Skyra.

Table 3.9: Sequence parameters for the 3D-FLASH acquisition of the MRI phantom
measurements.

TR TE α FOV Scan matrix phase oversampling
in ms in ms in ◦ in mm in a.u. in %

Scan 1 7.27 2.6 3 256x256x208 256x256x208 15
Scan 2 7.27 2.6 10 256x256x208 256x256x208 15
Scan 3 7.27 2.6 16 256x256x208 256x256x208 15

Table 3.10: Sequence parameters for the turbo inversion recovery spin echo acquisition of
the MRI phantom measurements.

TI TR TE α FOV Scan matrix
in ms in ms in ms in ◦ in mm in a.u.

80 10000 9.8 180 210x210 192x192
160 10000 9.8 180 210x210 192x192
300 10000 9.8 180 210x210 192x192
500 10000 9.8 180 210x210 192x192
800 10000 9.8 180 210x210 192x192
1200 10000 9.8 180 210x210 192x192
1800 10000 9.8 180 210x210 192x192
2480 10000 9.8 180 210x210 192x192

Table 3.11: Mean and SD of the different ROIs for the MRI phantom using an inversion
recovery fit. ROIs are defined as in Figure 3.15

Roi 1 Roi 2 Roi 3 Roi 4 Roi 5 Roi 6

T1 mean in ms 660 389 215 1192 1081 3959
T1 SD in ms 9 6 3 26 20 80
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Interleaved pattern

The results for an interleaved undersampling pattern are shown in Figure 3.15. The im-

age in the upper left corner of the figure represents the reference evaluated through a

DESPOT1 fit. To the right of the reference is a fully sampled reconstruction generated

with the IRGN-TGV algorithm and further to the right are the results for increased un-

dersampling, namely 6 and 12 fold acceleration. The difference between the reference

image and the accelerated reconstruction are illustrated below the corresponding parame-

ter map and are given in percent. The mean and standard deviation for the different ROIs

shown in Figure 3.15 were evaluated with Matlab and are presented in Table 3.12. The

computation time for one reconstruction was approximately 8 hours on a 64 Bit Windows

7 PC with an Intel Core i5-3350p @ 3.10 GHz with 16 GB of RAM.

Figure 3.15: Estimated parameter maps of T1 from the IRGN-TGV algorithm with an
interleaved undersampling scheme and the corresponding fitting error in per-
cent for different acceleration factors.
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Table 3.12: Mean and SD of the different ROIs and acceleration factors of the MRI phan-
tom using an interleaved undersampling scheme and the IRGN-TGV algo-
rithm. ROIs are defined as in Figure 3.15

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 647.759 20.505 680.891 23.431
Roi 2 355.022 9.364 371.095 17.033
Roi 3 186.369 5.751 191.831 10.196
Roi 4 1326.078 99.033 1383.255 105.350
Roi 5 1090.271 34.103 1140.414 28.745
Roi 6 3513.247 415.889 2999.869 325.097

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 686.572 28.316 681.723 67.562
Roi 2 372.654 23.290 367.676 40.270
Roi 3 191.847 15.607 192.177 24.616
Roi 4 1388.959 108.202 1378.533 126.725
Roi 5 1143.305 25.911 1149.457 78.485
Roi 6 4143.072 372.139 4146.893 366.764

Table 3.13: Relative difference in percent of the mean T1 values in Table 3.12 to the gold
standard values in Table 3.11.

Roi 1 Roi 2 Roi 3 Roi 4 Roi 5 Roi 6

ACC 1 difference in % 3.03 -4.63 -11.16 16.02 5.45 -24.25
ACC 6 difference in % 3.93 -4.37 -11.16 16.44 5.74 4.65
ACC 12 difference in % 3.18 -5.65 -10.70 15.6 6.29 4.72

Radial pattern

The results for a radial undersampling pattern are shown in Figure 3.16. The image in the

upper left corner of the figure represents the reference evaluated through a DESPOT1 fit.

To the right of the reference is a fully sampled reconstruction generated with the IRGN-

TGV algorithm and further to the right are the results for increased undersampling,

namely 6 and 12 fold acceleration. The difference between the reference image and the

accelerated reconstruction are shown below the corresponding parameter map and are

given in percent. The mean and standard deviation for the different ROIs shown in

Figure 3.16 were evaluated with Matlab and are presented in Table 3.14. The computation
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time for one reconstruction was approximately 8 hours on a 64 Bit Windows 7 PC with

an Intel Core i5-3350p @ 3.10 GHz with 16 GB of RAM.

Figure 3.16: Estimated parameter maps of T1 from the IRGN-TGV algorithm with a
radial undersampling scheme and the corresponding fitting error in percent
for different acceleration factors.

Pseudo random pattern

The results for a pseudo random undersampling pattern are shown in Figure 3.17. The im-

age in the upper left corner of the figure represents the ground truth reference a DESPOT1

fit. To the right of the reference is a fully sampled reconstruction generated with the

IRGN-TGV algorithm and further to the right are the results for increased undersam-

pling, namely 6 times and 12 times acceleration. The difference between the reference

image and the accelerated reconstruction are shown below the corresponding parameter

map and are given in percent. The mean and standard deviation for the different ROIs

shown in Figure 3.17 were evaluated with Matlab and are presented in Table 3.16. The
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Table 3.14: Mean and SD of the different ROIs and acceleration factors of the MRI phan-
tom using a radial undersampling scheme and the IRGN-TGV algorithm.
ROIs are defined as in Figure 3.16

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 648.060 20.666 681.243 23.608
Roi 2 354.798 9.002 370.677 16.446
Roi 3 186.770 5.835 191.811 10.138
Roi 4 1334.770 96.069 1391.095 102.114
Roi 5 1088.412 34.969 1140.426 29.753
Roi 6 3483.699 377.722 2983.475 301.631

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 682.774 22.468 687.519 29.848
Roi 2 371.088 16.924 372.231 20.840
Roi 3 191.810 11.441 191.590 16.198
Roi 4 1394.166 101.764 1398.290 103.979
Roi 5 1142.521 30.675 1145.929 33.375
Roi 6 4148.048 351.516 4153.492 354.293

Table 3.15: Relative difference in percent of the mean T1 values in Table 3.14 to the gold
standard values in Table 3.11.

Roi 1 Roi 2 Roi 3 Roi 4 Roi 5 Roi 6

ACC 1 difference in % 3.18 -4.88 -10.79 16.69 5.46 -24.65
ACC 6 difference in % 3.33 -4.63 -10.79 16.95 5.64 4.77
ACC 12 difference in % 4.09 -4.37 -10.89 17.37 6.01 4.90

computation time for one reconstruction was approximately 8 hours on a 64 Bit Windows

7 PC with an Intel Core i5-3350p @ 3.10 GHz with 16 GB of RAM.

3.3 In vivo knee measurements

The results for a pseudo random undersampling pattern are shown in Figure 3.18. The

image in the upper left corner of the figure represents the reference evaluated through

a DESPOT1 fit. To the right of the reference is a fully sampled reconstruction gener-

ated with the IRGN-TGV algorithm and further to the right are the results for increased
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Figure 3.17: Estimated parameter maps of T1 from the IRGN-TGV algorithm with a
pseudo random undersampling scheme and the corresponding fitting error in
percent for different acceleration factors.

undersampling, namely 6 and 12 fold acceleration. The difference between the reference

image and the accelerated reconstruction are illustrated below the corresponding parame-

ter map given in percent. The mean and standard deviation for the different ROIs shown

in Figure 3.18 were evaluated with Matlab and are presented in Table 3.19. Additionally,

all values are compared to the values found in literature [33, 34, 35], see Table 3.20. The

computation time for one reconstruction was approximately 8 hours on a 64 Bit Windows

7 PC with an Intel Core i5-3350p @ 3.10 GHz with 16 GB of RAM. The sequence param-

eters of the used 3D-FLASH acquisition are shown in Table 3.18. All measurements were

done on a 3T Siemens MAGNETOM Skyra.
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Table 3.16: Mean and SD of the different ROIs and acceleration factors of the MRI phan-
tom using a pseudo random undersampling scheme and the IRGN-TGV algo-
rithm. ROIs are defined as in Figure 3.17

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 649.190 21.079 682.087 23.868
Roi 2 354.918 9.229 371.102 16.327
Roi 3 186.319 5.818 191.755 10.348
Roi 4 1324.779 102.217 1381.223 109.577
Roi 5 1087.878 34.242 1139.591 28.627
Roi 6 3519.882 421.458 3012.068 316.303

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 688.331 38.093 680.624 53.981
Roi 2 376.950 24.755 376.671 36.877
Roi 3 193.594 17.784 194.814 23.792
Roi 4 1386.915 116.540 1374.003 126.211
Roi 5 1140.334 44.661 1134.807 60.267
Roi 6 3242.360 271.919 3340.523 274.484

Table 3.17: Relative difference in percent of the mean T1 values in Table 3.16 to the gold
standard values in Table 3.11.

Roi 1 Roi 2 Roi 3 Roi 4 Roi 5 Roi 6

ACC 1 difference in % 3.33 -4.63 -10.81 15.86 5.37 -23.92
ACC 6 difference in % 4.24 -3.08 -9.96 16.35 5.46 -18.11
ACC 12 difference in % 3.03 -3.34 -9.39 15.27 4.90 -15.64

Table 3.18: Sequence parameters for the 3D-FLASH acquisition of the in vivo knee
measurements.

TR TE α FOV Scan matrix phase oversampling
in ms in ms in ◦ in mm in a.u. in %

Scan 1 6.18 2.46 3 180x180x145 256x256x208 15
Scan 2 6.18 2.46 10 180x180x145 256x256x208 15
Scan 3 6.18 2.46 16 180x180x145 256x256x208 15
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Figure 3.18: Estimated parameter maps of T1 from the IRGN-TGV algorithm with a
pseudo random undersampling scheme and the corresponding fitting error in
percent for different acceleration factors.

Table 3.19: Mean and SD of the different ROIs and acceleration factors of the in vivo
knee measurements using a pseudo random undersampling scheme and the
IRGN-TGV algorithm. ROIs are defined as in Figure 3.18

Reference T1 mean Reference T1 SD ACC 1 mean T1 ACC 1 SD T1

in ms in ms in ms in ms

Roi 1 494.267 36.802 526.003 65.746
Roi 2 1725.262 110.238 1633.926 45.581
Roi 3 531.142 68.600 535.386 51.476
Roi 4 450.053 63.514 419.858 61.608
Roi 5 1623.165 130.858 1504.788 89.361

ACC 6 mean T1 ACC 6 SD T1 ACC 12 mean T1 ACC 12 SD T1

in ms in ms in ms in ms

Roi 1 528.088 66.680 211.818 124.911
Roi 2 1583.387 51.746 398.759 42.634
Roi 3 551.226 62.662 205.809 83.650
Roi 4 438.463 74.434 178.944 64.027
Roi 5 1481.615 71.543 371.157 66.426
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Table 3.20: Reference T1 values from literature for different tissues found in the human
knee.

Subcutaneous Skeletal Tendons Cartilage Synovial Blood Marrow
Fat Muscle Liquid

in ms in ms in ms in ms in ms in ms in ms

T1 365±9[33] 1420±38.1[33] 621±23[35] 1240±107[33] 3620±320[33] 1932±85[34] 371±7.94[33]
1412±13[34] 1156±10[34]

Table 3.21: Relative difference in percent of the mean T1 values in Table 3.19 to the values
found for the relevant tissue in the literature.

Roi 1 Roi 2 Roi 3 Roi 4 Roi 5
Fat Muscle Marrow Marrow Muscle

ACC 1 difference in % 44.11 15.07 44.20 12.93 5.92
ACC 6 difference in % 44.66 11.48 48.52 18.06 4.30
ACC 12 difference in % -42.19 -71.97 -43.94 -52.02 -73.87
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4.1 IRGN-TGV algorithm

The reason for choosing the IRGN method as optimization algorithm is that it is easier

to solve the linearized problem instead of operating directly on the non-linear problem.

It is then possible to include more sophisticated regularization functionals in the lin-

earized problem. A popular choice is the TGV-term but it adds the problem of being

non smooth. An efficient solution for this type of problems can be computed with duality

based approaches like the used Chambolle-Pock algorithm.

The algorithm proposed in Equation 2.36 has several parameters to optimize its perfor-

mance. By increasing the regularization parameter λ the importance of the data term is

increased and one has to find the optimal λ in order to stay true to the data but also

regularize enough to minimize undersampling artifacts and noise. λ naturally depends on

the noise-level and methods like Morozov’s discrepancy principle [36] could be used to get

estimates. Yet practical solutions in this work are achieved by computing reconstructions

over a range of values and with visual evaluation of the image quality. In order to make λ

independent of the measured data we normalize the measured data by the data L2 norm

times 100. In order to limit the maximum descent along the linearized function a penalty

for the L2 deviation of the function value is introduced. By increasing δ this penalty

is given less weight and the minimization can walk further away from the linearization
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point. In order to find the optimal δ one has to do the same trial and error procedure as

with finding the optimal λ. The optimal TGV parameters α0, α1, β0, β1 are chosen by the

recommendations proposed by Bredies et al. [30]. The primal(τ) and dual(σ) step sizes

are chosen as recommended by Chambolle et al. [25] and are adapted in every step as de-

scribed by Bredies et al. [31]. The chosen parameters yield a rather robust algorithm for a

huge field of applications starting from numerical phantoms up to in vivo reconstructions

with highly undersampled (up to factor 12) data. The agreement of the resulting fits with

standard reconstruction is discussed in detail on the following pages.

Another crucial part in achieving a proper working algorithm is the scaling of the pa-

rameters. As T1 scaling factor we choose the maximum T1 value of the initial guess and

divide every pixel by this value to receive a scaled T1 map between 0 and 1. For highly

undersampled data it is possible to obtain rather large numbers of T1 due to the numeric

instability of the DESPOT method which is used for computing an initial guess. To

account for such outliers we limit the maximum T1 scaling factor to 5000 because there

exists no tissue of interest with higher T1 values in vivo. The M0 scaling factor is chosen

based upon a histogram driven approach because M0 has no physical limitations similar

to T1.

By using the appropriate scaling factors and parameters for the algorithm it even is

possible to initialize the optimization algorithm with a flat initial guess. This is a huge

advantage over the CG descent algorithm because the initial guess for higher acceleration

factors is quite erroneous and these errors have a huge influence on the convergence of the

algorithm. Yet a good initial guess improves the convergence rate to the optimal solution

significantly. However, no effects on the accuracy of the fit could be observed.

Furthermore, a good estimate of the flip angle distribution across the slice is needed to

produce accurate results. Even slight deviations of the flip angle lead to huge errors in the

T1 map, as can be seen in Figure 3.13 and 3.14. Simulating B1+ deviations in the order

of 5%, which is a reasonable error for in vivo B1+ maps, lead to T1 errors of up to 15%,
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see Table 3.8. Therefore, it is crucial to achieve flip angle maps as accurate as possible to

achieve reliable T1 maps.

To account for problems concerning inexact slice profiles all measurements are done with

3D-sequences. 3D slabs still suffer from a non perfect slice profile at the edges of the

volume, therefore reconstruction is performed on the inner slices only. The reconstruction

is done by 1D-Fourier transform along the read-out direction followed by performing the

optimization algorithm on the 2D slices generated by the 1D transform. This is necessary

due to RAM limitations of the currently available hardware. In order to show the good

performance of the algorithm and due to the long reconstruction time of more than 8 hours

per slice and per acceleration case only the middle slice of the 3D volume is reconstructed.

Choosing the middle slice is also the best choice regarding the slice profile along the 3D

volume due to the fact that the outer slices are not reaching the nominal flip angle.

The reason for this problem is the inability to produce RF-pulse that excite an exactly

rectangular volume.

4.2 CG descent

The CG descent algorithm needs the first derivative of the cost function in every step in

order to minimize the problem. Therefore it is limited to smooth regularization terms,

e.g. the Tikhonov regularization. A regularization term is necessary because of the ill-

posedness of the problem increases with increasing acceleration. The simple Tihkhonov

regularization provides a stability increase of the problem at the cost of loosing sharp

edges. In order to overcome this drawback we reduce the corresponding λ by a factor of

10 after each restart. This yields a strong regularized algorithm far away from the optimal

solution and little to no regularization close to the optimal solution. The CG descent

algorithm of Hager et al. [26] has the advantage of automatically switching between a

LBFGS optimization algorithm to a CG algorithm if the program runs out of memory.
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The same scaling for the data and parameters as well as the same initial guess as for

IRGN-TGV are used to make both approaches comparable. As shown in Figure 3.4 the

CG descent algorithm was unable to converge to the optimal solution. However, this is

not surprising for a non-linear, non-convex problem because there is no theoretical proof

of convergence for these problems. Because of the poor performance of the CG descent

algorithm on numerically simulated data even for no acceleration it is not used any further

for the problems at hand. It has to be noted that the algorithm was able to converge

with an initial guess close to the solution. Because of the superior performance of the

IRGN-TGV algorithm this approach was not further investigated.

4.3 Numerical simulations

The results for no acceleration show good agreement with the reference T1, both in absolute

T1 value in the different ROIs as well as at the edges of different tissues, see Tables 3.5,

3.6, 3.7. The error maps in Figures 3.6- 3.10 as well as the line plots along the x- and y

axis in Figures 3.7- 3.11 supplement the good agreement but also show that the higher

the difference at the border of two tissues, the higher the error of the resulting fit in that

specific region. This is due to the fact that the TGV regularization term has increasing

costs for higher jumps as can be seen in Figure 4.1. The fact that a higher jump cost

more in terms of minimization yields to a piecewise smooth signal behavior at edges with

very distinct T1 values. This effect can be seen by taking a closer look at the line plots

for different acceleration factors. At low acceleration factors there is little noise in the

image and thus the edges can be clearly detected. The higher the acceleration, the higher

the noise and at some point it is more cost efficient in terms of minimization to fit a line

between two points close to the edge instead of a jump. This yields a blurring of edges

especially in regions of very distinctive T1 values. A possible solution might be the use of

modifications to TGV that avoid step-dependent increase of cost.
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Another important part is the choice of the undersampling pattern. Undersampling pat-

terns that result in the best possible incoherence of the aliasing artifacts in the image

domain (radial, Poisson disk, random) are favorable over sampling pattern that yield co-

herent aliasing (uniform Cartesian, block pattern) and thus leading to high image degra-

dation for already modest acceleration factors. This results in typical residual artifacts,

shown in Figure 3.6, even for moderate acceleration factors like 6. For higher acceleration

factors it was impossible to reconstruct a valid parameter map. Therefore, a pattern with

better incoherence condition should be chosen. A pattern which is easy to implement in

practice is the radial undersampling know from projection methods like the CT. By using

this pattern it is possible to reconstruct the T1 map even at high acceleration of 12 with

good accuracy and little residual artifacts. Taking a closer look at the error maps in Fig-

ure 3.8 one can see the typical residual artifacts of a radial pattern, the so called streaking

artifacts. They get more pronounced at higher acceleration rates. At an undersampling

factor of 6 they are barely visible. However, at 12 they can be clearly seen in the error

map although they are nearly not present in the T1 map itself.

The best choice for the undersampling pattern is a pseudo random undersampling scheme

because it minimizes residual artifacts related to the pattern itself. The results for such

an undersampling pattern are shown in Figure 3.10. Even for high acceleration factors the

residual artifacts have the nature of noise and no characteristic patterns are recognizable

in either the T1 maps themself or the error maps. Even though this pattern offers huge

advantages regarding the quality of the resulting reconstruction it has the major drawback

that it is not commonly available on conventional clinical MRI scanners. Furthermore,

the results for the pseudo random pattern are slightly worse than the ones for the radial

pattern especially at edges which could be due to the fact that the radial pattern is rotated

for every flip angle in order to maximize the k-space information. By generating three dif-

ferent random patterns for the three flip angles used, a result similar to the radial pattern

can be expected. The reconstructed T1 maps show good agreement with the reference

for all acceleration factors and patterns in the four defined ROIs except for the inter-
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leaved pattern at the highest acceleration factor. The mean pixel value of the reference

always lies within one standard deviation around the mean of the reconstructed T1 map.

As expected the standard deviation increases with increasing acceleration because the

overall SNR of the fit decreases with increasing acceleration. Additionally the percentual

standard deviation varies along different tissues. A higher T1 leads to a higher standard

deviation. This is due to the fact that the minimization algorithm produces blurring at

edges relative to the change in the absolute value by fitting of a smooth function between

the edges of a tissue, as can be seen in Figure 3.11 in the plot along the x-axis. The

two jumps to a tissues with a T1 of 3000ms results in a smooth signal behavior between

the edges with even a slightly over shoot. As explained above, the reason might be a

shortcoming of the TGV functional.

Figure 4.1: Value of the TGV functional for different functions in 1D. Constant and lin-
ear functions have zero cost, discontinuities depend upon the jump distance
respectively the turn rate.

4.4 MRI phantom

In order to show the robustness of the algorithm the results for the MRI phantom mea-

surements are generated with the same parameters as in the numerical case. Even though

they are not optimized for the MRI data the results are very promising and show good

agreement with the fully sampled reference. Taking a closer look at the parameter maps

for the interleaved pattern in Figure 3.15, there are little to no residual artifacts of the
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used pattern up to a acceleration factor of 6. At a speed up factor of 12 they become

visible but only in the small tubes. The absolute values of the different tubes differ only

to a small percentage (up to 2.5%) from the reference values but the T1 of the surrounding

water was significantly overestimated by up to 30%. The results for the radial pattern in

Figure 3.16 show also a good agreement with the reference values within the tubes and

an overestimation of the T1 of the surrounding water. In contrast to the interleaved pat-

tern there are no residual artifacts corresponding to the used pattern visible. The pseudo

random pattern performed best for the measured data, having the lowest fitting error of

all the used patterns through all acceleration factors. It was not possible to reconstruct

the small borders of the acrylic glass tubes due to the effects involved at borders of highly

distinct T1 values described in section 4.3.

Taking a closer look a the mean and standard deviation in the six different ROIs it is

interesting to note that the standard deviation of ROIs with high T1 values stays nearly the

same for all acceleration factors and is even better than the reference standard deviation in

water. The smaller the absolute T1 value the higher the increase in the standard deviation

with increasing acceleration. Therefore the SNR of the reconstructed parameter map is

dependent on the absolute value of T1 in the tissue of interest. The small deviations

in reference values between the different patterns are due to the fact that the ROIs are

drawn independent from each other for every pattern, e.g. all ROIs are the same within

the interleaved pattern but are different to those of the radial pattern.

Comparing the results of the IRGN-TGV fit to those of the inversion recovery spin echo

experiment in Table 3.11 reveals some deviations of the proposed method to the reference

T1 values for all acceleration factors. The relative differences for the different acceleration

factors in Table 3.13, 3.15 and 3.17 show a good agreement with the gold standard

for moderate T1 values. Small T1 values < 300 ms and large T1 values > 1100ms show

substantial difference to the gold standard of more than 10%. Another finding is that small

values are underestimated, whereas high T1 values are generally overestimated except for

water. The results for water in the inversion recovery spin echo experiment are likely
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erroneous because of the very long T1 of water and the relatively short TR of 10s chosen

for the inversion recovery sequence. To produce accurate results the TR should be in the

order of 5 times the maximum T1 of the investigated substance. Literature suggests a

water T1 of 4200-4500ms which clearly violates this assumption.

Possible explanations for the difference to the gold standard method are errors in the

calculated B1+-map which result in wrong flip angles in that region, a problem present

in all VFA methods. Even a slight deviation of the flip angle leads to huge errors in the

resulting T1 map. The results in Section 3.1.4, as well as the discussion of those results in

section 4.1, promote this assumption. Therefore, it is crucial to generate a B1+-map as

accurate as possible. Furthermore, errors in the coil sensitivity map can lead to under- or

overestimation of the resulting T1 map.

4.5 In vivo reconstruction

The in vivo results are generated using the same parameters for the optimization algorithm

as in the numerical and MRI phantom set-up. Because the random pattern performed

best with real MRI data, as can be seen in the previous section, it is used to show the

performance of the algorithm on in vivo data. The reconstructed T1 map for fully sampled

data shows good edge information as well as preserved small structures in adipose tissue.

The error map in Figure 3.18 supports this finding by clearly showing detail information

which is present in the IRGN reconstruction but absent in the DESPOT1 fit, most likely

due to the TV denoising. Comparing the absolute values of the reconstructed T1 map to

those of the literature shows that the algorithm overestimates T1 for all tissues of interest

as can be seen in Table 3.21. However the DESPOT method yields values similar to the

ones found by our algorithm. This suggests that the reason for the deviations can be

found in the acquired data or the used preprocessing. Possible problems are the already

discussed sensitivity to errors in the flip angle map as well as errors in the computed coil
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sensitivities. The flip angles where chosen as proposed by Cheng et al. [7]. However, it is

not yet clear if the chosen flip angles are optimal in the sense of maximizing the distinct

information in the measurement data for our reconstruction. The algorithm performs

well up to an acceleration of six, even preserving detail information, but breaks down if

further acceleration is applied even though it was possible to reconstruct phantoms with

an acceleration of 12.

4.6 Conclusion

The presented work describes a new algorithm to solve a T1 parameter fitting problem

based upon the VFA method. Due to the general formulation of the algorithm it is ex-

tendable and can therefore be used for all different kinds of model-based optimization

problems. Additionally the proposed technique is robust regarding the choice of opti-

mization parameters as observed for numerical simulations, phantom data, and in vivo

applications.

It is further shown that the accuracy of VFA parameter mapping is strongly influenced

by the accuracy of the B1+ map. Further research has to be done in order to produce

more accurate flip-angle mapping techniques as well as validate existing methods.

The rather long reconstruction times of up to eight hours per slice gives rise to the need

of acceleration. This could be done by porting the code from the CPU to the GPU.

The blurring in regions of strong signal changes may be solved by adapting the TGV

regularization to account for different increments of intensity.
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