Druckbeanspruchung in tangentialer Richtung an der Innenfläche der Kugel:

$$\sigma_{d\max} = \frac{1,05 \cdot r_a^3}{r_a^3 - r_i^3} \cdot p_a. \tag{52}$$

Daraus folgt:

$$r_a = r_i \sqrt[3]{\frac{k}{k - 1,05 \ p_a}}. \tag{53}$$

 p_a muß kleiner als $\frac{k}{1,05}$ sein.

Für geringe Wandstärken ist

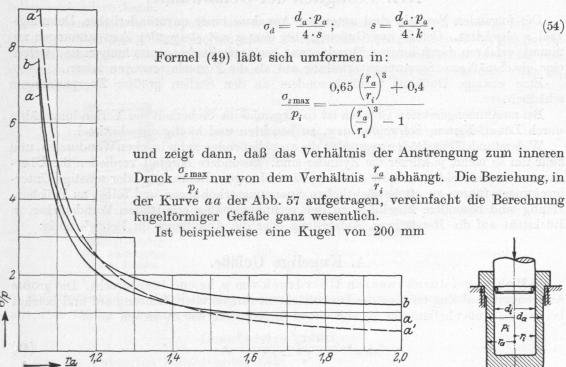


Abb. 57. Zur Berechnung kugeliger Gefäße, a-a innerem Überdruck ausgesetzt, Formel (49), b-b äußerm Überdruck ausgesetzt, Formel (52), a'-a' innerem Überdruck ausgesetzt, Formel (51).

Abb. 58. Hohlzylinder, innerem Druckausgesetzt.

lichtem und 300 mm äußerem Durchmesser, also $\frac{r_a}{r_i} = \frac{150}{100} = 1,5$ einer Innenpressung von 400 at ausgesetzt, so gibt die zur Abszisse 1,5 gehörige Ordinate

$$\frac{\sigma_{z\,\mathrm{max}}}{p_i} = 1{,}09 \quad \mathrm{oder} \quad \sigma_{z\,\mathrm{max}} = 1{,}09 \cdot 400 = 436 \; \mathrm{kg/cm^2}$$

als größte Anstrengung.

Linie bb erleichtert in ähnlicher Weise die Berechnung von Kugelwandungen nach Formel (52), die durch äußeren Druck belastet sind, während Linie a'a' Werte der Näherungsformel (51) wiedergibt.

B. Zylinder.

1. Hohlzylinder, geschlossen oder so gestützt, daß die Wandung durch den Bodendruck auf Zug beansprucht wird, Abb. 58, innerem Überdruck p_i ausgesetzt. An der Innenfläche des Zylinders wird in tangentialer Richtung: