wobei K, c_1 und c_2 vom Baustoff abhängige Festwerte sind. Zahlen dafür enthält die folgende Zusammenstellung, die gleichzeitig den Gültigkeitsbereich der Formel durch die Grenzwerte von $\frac{l}{i}$ angibt; beim Überschreiten der Größtwerte ist im Belastungsfalle II die Eulersche Formel anzuwenden.

Zusammenstellung 3. Festwerte der Tetmajerschen Knickformel.

Stoff	K	c_1	c_2	Grenzen für $\frac{l}{i}$	
				min	max
Flußstahl	3350	0,00185	0	-	90
eisen)	3100	0,00368	0	10	105
Nickelstahl (mit $< 5^{\circ}/_{\circ}$ Ni)	4700	0,00490	0	_	86
Gußeisen	7760	0,01546	0.00007	5	80
Bauholz	293	0,00662	0	1.8	100

Aus der Tetmajerschen Gleichung folgt die Tragkraft P eines Konstruktionsteiles bei $\mathfrak S$ facher Sicherheit

$$P = \frac{P_k}{\mathfrak{S}} = F \cdot \frac{K}{\mathfrak{S}} \left[1 - c_1 \cdot \frac{l}{i} + c_2 \left(\frac{l}{i} \right)^2 \right]. \tag{21}$$

Leider gestattet die Formel nicht die unmittelbare Berechnung des Trägheitsmomentes oder Querschnittes eines Stabes aus der gegebenen Belastung P und der Länge l, da in

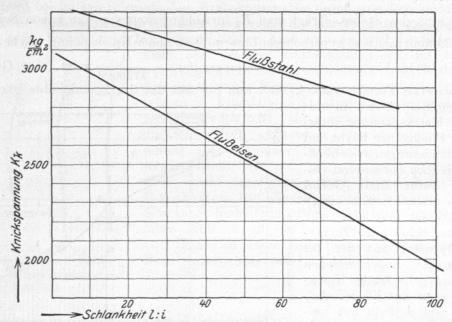


Abb. 21. Knickspannungen in Abhängigkeit von der Schlankheit an Flußeisen und -stahl.

ihr zwei Unbekannte, F und i vorkommen. Man ist vielmehr auf Probieren angewiesen, das am einfachsten durchgeführt wird, indem man zunächst die Knickspannung K_k und die Sicherheit $\mathfrak S$ annimmt und aus $\frac{K_k}{\mathfrak S}=k_k$ die zulässige Druckspannung und damit den Querschnitt

 $F = \frac{P}{k_k}$

ermittelt. Aus der gewählten Querschnittform folgt dann das Trägheitsmoment J und der Trägheitshalbmesser $i=\sqrt[J]{\frac{J}{F}}$ und damit die Schlankheit $\frac{l}{i}$, die die Nachprüfung,