	Durchmesser mm	Gangzahl/1"	Gewindetiefe mm
$\begin{cases} {}^{4}/{}_{2}^{"} \\ R^{2}/{}_{4}^{"} \text{ m Sp} \end{cases}$	12,70	12	1,36
	12,96	19	nur 0,75
$\begin{cases} 4^{\prime\prime} \\ R \ 3^{1/2} \end{cases}$	101,60	3	5,42
	100,33	11	nur 1,48

Als eigentliches Konstruktionsgewinde ist das Rohrgewinde seiner verhältnismäßig großen Sprünge in bezug auf den Außendurchmesser nicht immer geeignet. Deshalb wurden in den DIN 239 und 240 zwei Whitworth-Feingewinde Nr. 1 und 2 aufgestellt, deren Außendurchmesser in Millimetern festgelegt sind, deren Gangzahl sich aber natur-

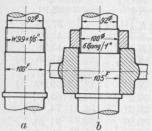


Abb. 334. Zur Ausbildung des Whitworth-Feingewindes. M. 1:10.

gemäß auf den Zoll bezieht. Dabei ist hervorzuheben, daß die größeren Durchmesser absichtlich von den Normaldurchmessern der deutschen Industrie um je 1 mm nach unten abweichen, also die Endziffern 4 und 9 aufweisen, um das Gewinde gegenüber den anschließenden Wellenstücken mit normalen Durchmessern etwas zurücktreten zu lassen und beim Aufschieben von Teilen durch ein darüber gelegtes dünnes Blech schützen zu können. Zudem ist es dadurch vielfach möglich, mit geringeren Konstruktionsdurchmessern auszukommen. Hätte das Gewinde im Falle b der Abb. 334 100 mm Durchmesser, so müßte die Sitzstelle der Scheibe, falls diese mit Festsitz aufgebracht werden soll, 105 mm Durchmesser be-

kommen; andernfalls würde das Gewinde beim Aufbringen beschädigt werden. Mit 100 mm Durchmesser kommt man aber im Falle a aus. Bis 80 mm Durchmesser sind die Normaldurchmesser zugrunde gelegt, weil dieselben in dem Bereich genügend fein abgestuft sind und weil es dadurch möglich war, in Übereinstimmung mit dem in der Schweiz und in Frankreich schon festgelegten Gewinde zu bleiben. Auf Wunsch der Industrie hat auch das Whitworth-Feingewinde Spitzenspiel bekommen; da aber der Einheitlichkeit wegen der Außendurchmesser des Muttergewindes als Durchmesser gilt, weicht der Außendurchmesser des Bolzendurchmessers vom Nennmaß etwas ab. Bezeichnet wird das Whitworth-Feingewinde durch ein vorgesetztes W und das Produkt des Außendurchmessers in Millimetern und der Steigung, in Teilen eines Zolles aus gedrückt: W 60·1/ $_6$ ".

B. Das Metrische Gewinde.

In den Ländern, die das metrische Maß eingeführt hatten, waren seit langem Bestrebungen im Gange, auch ein Gewinde auf dieser Grundlage zu schaffen. Nach langwierigen Vorarbeiten wurde schließlich in Zürich zwischen Vertretern der deutschen, französischen und schweizer Industrie (Verein deutscher Ingenieure, Société d'encouragement pour l'industrie nationale und Verein schweizerischer Maschinenindustrieller) das S.-I.-Gewinde (Système International) vereinbart und 1898 von einem internationalen Kongreß angenommen. Es erfreut sich zunehmender Verbreitung.

Die Grundlage bildet ein gleichseitiges Dreieck, Abb. 335, so daß Flankenwinkel von 60° entstehen. An den vorspringenden Kanten ist das Gewinde um $^{1}/_{8}$ der Dreieckhöhe abgeflacht und zur leichteren Herstellung der tragenden Flanken mit Spitzenspiel a=0.045~h unter Ausrundung des Grundes versehen. Die wirkliche Gangtiefe wird dabei t=0.6945~h, die Tragtiefe $t_{t}=^{3}/_{4}\cdot t_{0}=0.65~h$. Die Durchmesser d, über den abgestumpften Kanten des Vollgewindes gemessen, sowie die Ganghöhen sind in Millimetern festgelegt.

Die oben erwähnten internationalen Vereinbarungen bezogen sich auf Gewindedurchmesser zwischen 6 und 80 mm. Durch den Normenausschuß der deutschen Industrie

Zusammenstellung 61.

Metrisches Gewinde von 1 bis 149 mm Durchmesser nach DIN 13, 14, 931, 932, 934. Maße in mm.

Bolzen					Mut	ter		DIN 475	DIN 931, 932	DIN 934	Ge-
Ge- winde- durch- messer d	$egin{array}{c} ext{Kern-} \ ext{durch-} \ ext{messer} \ ext{d_1} \end{array}$	Kern- querschnit cm ²	Flanken- durch- messer	Gang- höhe	Gewinde- durch- messer D	$egin{array}{c} \operatorname{Kern-} \\ \operatorname{durch-} \\ \operatorname{messer} \\ D_1 \end{array}$	Tragtiefe t_t	Schlüs- sel- weite	Kopf- höhe	Mutter- höhe	winde- durch- messer
1 1,2 1,4 1,7	0,652 0,852 0,984 1,214		0,838 1,038 1,205 1,473	0,25 0,25 0,3 0,35	$\begin{array}{c} 1,024 \\ 1,224 \\ 1,426 \\ 1,733 \end{array}$	0,676 0,876 1,010 1,246	0,162 0,162 0,195 0,227	_ _ 4	_ _ _ 	_ _ _ 	1 1,2 1,4 1,7
2 2,3 2,6	1,444 1,744 1,974		1,740 2,040 2,308	$0,4 \\ 0,4 \\ 0,45$	2,036 2,336 2,642	1,480 1,780 2,016	$0,260 \\ 0,260 \\ 0,292$	4,5 5 5,5	1,4 1,6 1,8	2 2,3 2,6	2 2,3 2,6
3 3,5	2,306 2,666	Ξ	2,675 3,110	0,5 0,6	$3,044 \\ 3,554$	2,350 2,720	0,325 0,390	6 7	2 2,4	3 3,5	3,5
4 (4,5)	3,028 3,458	_	3,545 4,013	0,7 0,75	4,062 4,568	3,090 3,526	0,455 0,487	8 9	2,8 3,2	4 4,5	$\frac{4}{(4,5)}$
5 (5,5)	3,888 4,250		4,480 4,915	0,8 0,9	5,072 5,580	3,960 4,330	$0,520 \\ 0,585$	9	3,5 4	4,5 5	$ \begin{array}{c} 5 \\ (5,5) \end{array} $
6 (7) 8 (9)	4,610 5,610 6,264 7,264	0,167 0,247 0,308 0,414	5,350 6,350 7,188 8,188	1 1,25 1,25	6,090 7,090 8,112 9,112	4,700 5,700 6,376 7,376	0,650 $0,650$ $0,812$ $0,812$	11 11 14 17	5 5 6 6	5,5 5,5 6,5 8	6 (7) 8 (9)
10 (11) 12	7,916 8,916 9,570	0,492 0,624 0,718	9,026 10,026 10,863	1,5 1,5 1,75	10,136 11,136 12,156	8,052 9,052 9,726	0,974 0,974 1,137	17 19 22	7 8 9	8 9,5 11	10 (11) 12
14 16 18	11,222 13,222 14,528	0,989 1,373 1,657	12,701 14,701 16,376	2 2 2,5	14,180 16,180 18,224	11,402 13,402 14,752	1,299 1,299 1,624	22 27 32	9 11 13	11 13 16	14 16 18
20 22 24	16,528 18,528 19,832	2,145 2,696 3,089	$ \begin{array}{c c} 18,376 \\ 20,376 \\ 22,051 \end{array} $	2,5 2,5 3	20,224 22,224 24,270	16,752 18,752 20,102	1,624 1,624 1,949	32 36 36	13 16 16	16 18 18	$\frac{20}{22}$ $\frac{24}{24}$
27 30 33	22,832 25,138 28,138	4,094 4,963 6,218	25,051 27,727 30,727	3 3,5 3,5	27,270 30,316 33,316	23,102 25,454 28,454	1,949 2,273 2,273	41 46 50	18 20 22	20 22 25	27 30 33
36 39 42	30,444 33,444 35,750	7,279 8,785 10,04	33,402 36,402 39,077	4 4 4,5	36,360 39,360 42,404	30,804 33,804 36,154	2,598 2,598 2,923	55 60 65	24 27 30	28 30 32	36 39 42
45 48 52	38,750 41,054 45,054	11,79 13,23 15,94	42,077 44,752 48,752	4,5 5 5	45,404 48,450 52,450	39,154 41,504 45,504	2,923 3,248 3,248	70 75 80	32 34 36	35 38 40	45 48 52
56 60 64	48,360 52,360 55,666	18,37 21,53 24,34	52,428 56,428 60,103	5,5 5,5 6	56,496 60,496 64,54	48,856 52,856 56,206	3,572 3,572 3,897	85 90 95	=	. 45 50 50	$ \begin{array}{c} 56 \\ 60 \\ 64 \end{array} $
68 72 76	59,666 63,666 67,666	27,96 31,83 35,96	64,103 68,103 72,103	6 6 6	68,54 72,54 76,54	60,206 64,206 68,206	3,897 3,897 3,897	100 105 110	_	55 55 60	68 72 76
80 84 89	71,666 75,666 80,666	40,34 44,96 51,10	76,103 80,103 85,103	6 6 6	80,54 84,54 89,54	72,206 76,206 81,206	3,897 3,897 3,897	115 120 130	=	65 65 70	80 84 89
94 99 104	85,666 90,666 95,666	57,64 64,56 71,88	90,103 95,103 100,103	6 6 6	94,54 99,54 104,54	86,206 91,206 96,206	3,897 3,897 3,897	135 145 150	=	75 80 85	94 99 104
109 114 119	100,666 105,666 110,666	79,59 87,69 96,18	105,103 110,103 115,103	6 6 6	109,54 114,54 119,54	101,206 106,206 111,206	3,897 3,897 3,897	155 165 175	_	85 90 95	109 114 119
124 129 134	115,666 120,666 125,666	105,07 114,35 124,04	120,103 125,103 130,103	6 6 6	124,54 129,54 134,54	116,206 121,206 126,206	3,897 3,897 3,897	180 185 190	=	100 105 105	$124 \\ 129 \\ 134$
139 144 149	130,666 135,666 140,666	134,09 144,10 155,40	135,103 140,103 145,103	6 6 6	139,54 144,54 149,54	131,206 136,206 141,206	3,897 3,897 3,897	200 210 210	_	110 115 115	139 144 149

wurden sie nach unten bis zu 1 mm, DIN 13, nach oben bis zu 149 mm Durchmesser, DIN 14, bei geringen Abänderungen der Gewinde von 72, 76 und 80 mm Durchmesser, unter der neuen Bezeichnung "Metrisches Gewinde", ergänzt. Vgl. Zusammenstellung 61. Zweck der Ergänzung war, das bisher in der Elektrotechnik und in der

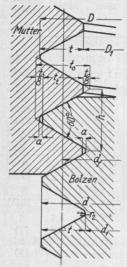


Abb.335. Grundform des S.-I.- und des Metrischen Gewindes.

Feinmechanik für kleine Schrauben meist benutzte Löwenherzgewinde zu ersetzen und die in der deutschen Industrie gebrauchten Gewinde nur auf zwei Arten, das Whitworth- und das Metrische Gewinde, zurückzuführen. Die eingeklammerten Gewindedurchmesser sollen möglichst vermieden werden. Auf Drehbänken mit Leitspindeln nach englischem Zoll läßt sich das Metrische Gewinde durch Einschalten eines Rades von 127 Zähnen unter Ausnutzung des Umstandes, daß $1'' = 25,40 = \frac{1}{5} \cdot 127,00$ mm ist, herstellen.

Eine Reihe von Metrischen Feingewinden Nr. 1 bis 9 ist in den DIN 241 bis 243, 516 bis 521 festgelegt worden. Als Konstruktionsgewinde kommen dabei vor allem die Metrischen Feingewinde Nr. 1 und 2 in Frage. Dasjenige Nr. 1, DIN 241, bildet die Fortsetzung des Metrischen nach DIN 14, umfaßt das Gebiet von 154 bis 499 mm Durchmesser und hat durchweg 6 mm Steigung. Die Metrischen Feingewinde 2 und 3, DIN 242 und 243, beziehen sich auf die kleineren Durchmesser von 24 bis 189, bzw. 1 bis 300 mm und laufen gewissermaßen den gröberen Befestigungsgewinden parallel. Angaben über die Bereiche und die Steigungen enthält Zusammenstellung 62.

Schließlich ist in den Metrischen Feingewinden 4 bis 9 eine Reihe mit sehr geringen Steigungen, insbesondere für die Zwecke der Feinmechanik und Optik, geschaffen worden, für welche die Gewinde 1 bis 3 noch zu grob sind.

Zusammenstellung 62. Feingewinde (Auszug).

Metrisches Feingewinde

		18.50 - 48.4	7	Ietrisches F	eingewi	inde	Whity	vorth-Feir	gewinde
11.18	1, 651, 11, 1		Nr. 1	Nr.	2	Nr. 3	Nr.		Nr. 2
-			241	242		243 Bl. 1—3	239		
Bereich		• • • • •	154—499 mr	n 24—189	mm	1—300 mm	56-499	mm 20	—189 mm
Durch- messer mm	Metrisch Nr. 1	es Feingew.	Whitwort Nr. 1	h-Feingew.	Durch	r Metrisches	Feingew.		th-Feingew.
20 22 24 27 30 33 36 39 42 45 48 52 56 60 64 68 72 76 80 84 89 94 99		2 mm Ganghöhe 1,389 mm Gewinde- tiefe 3 mm Ganghöhe 2,084 mm Gewinde- tiefe 4 mm Ganghöhe 2,778 mm Gewinde- tiefe	4 Gang auf 1 Zoll,	10 Gang auf 1 Zoll, 1,439 mm Gewindetiefe 8 Gang auf 1 Zoll 1,798 mm Gewindetiefe 6 Gang auf 1 Zoll, 2,397 mm Gewindetiefe	mm 104 109 114 119 124 129 134 149 154 159 164 169 174 189 194 199 204 209 214	6 mm Ganghöhe, 4,167 mm Gewinde- tiefe	4 mm Ganghöhe, 2,778 mm Gewinde- tiefe	Nr. 1 4 Gang auf 1 Zoll, 3,596 mr Ge-winde-tiefe bis 499 mm Ø	Ge- winde- tiefe

Auf den Zeichnungen und bei Bestellungen werden die Metrischen Feingewinde durch den Buchstaben M und das Produkt aus dem Außendurchmesser und der Ganghöhe in mm, beispielweise durch M 94 \times 4, gekennzeichnet.

Das Metrische Feingewinde 3 ist für die folgenden Durchmesser bei den darunter

angegebenen Ganghöhen vorgesehen:

Durchmesser		De la constante de la constant	2,3 €		$4,5$ 5 5,5 mm \leftarrow 0,5 \longrightarrow mm			
	← Dui	r in ganz igend		Durchmesser mit den Endziffern 2, 5, 8 und z. B. 102, 105, 108, 110, 112				
Durchmesser			53—100		02—190		192—300 mm 4 mm	

Über die Anwendungsgebiete der beiden Gewindearten in der Deutschen Industrie Ende 1924 gibt die folgende, dem Dinbuch 2 entnommene Zusammenstellung Aufschluß.

		Durchmes	serbereich			
ion Theritalian Schuler	1—1	0 mm	über 10—50 mm			
Behörden und Verbände	Whitworth DIN 11	Metrisch DIN 13	Whitworth DIN 11, 12	Metrisch DIN 14		
Reichseisenbahn	Fahrzeuge	Lokomotiven, Maschinen, Apparate	allgemein	_		
Reichspost	_	allgemein	allgemein	_		
Reichsheer		allgemein		allgemein		
Reichsmarine	_	allgemein	allgemein			
Handelsschiff-Normenausschuß (HNA)	zum Teil	zum Teil	allgemein	_		
Verband deutscher Elektrotechniker (VDE)	_	allgemein	allgemein	_		
Zentralverband der deutschen elektrotechnischen Industrie (ZV)	_	allgemein	allgemein	_		
Verband deutscher Schwachstromindustrieller (VdSI)	_	allgemein	allgemein	_		
Kraftfahrbau (Reichsverband d. Automobilindu-						
strie)		allgemein		allgemein		

Die Gruppe "Großmaschinenbau" im Arbeitsausschuß für Einführung der Normen hat im Juni 1925 beschlossen, die Normen wie folgt anzuwenden.

Schraubengewinde: Von 1 bis 10 mm DIN 13, von $^{1}/_{2}$ " bis 2" DIN 11, über 2" kommt noch bis $2^{1}/_{2}$ " das Whitworth-Gewinde in Betracht; ferner das Whitworth-Feingewinde 1 nach DIN 239 im Durchmesserbereich 68 bis einschließlich 99 mm (jedoch ohne Spitzenspiel).

Konstruktionsgewinde: Von 20 bis 189 mm Whitworth-Feingewinde 2 nach DIN 240. Für hoch und stoßweise beanspruchte Maschinenteile geht der Großmaschinenbau im allgemeinen bei Durchmesser 149 auf das Feingewinde nach DIN 239 über und benutzt also von 154 mm ab 4 Gang auf 1". Außerdem wird das Whitworth-Feingewinde 2 mit 6 Gang auf 1" weitergeführt bis 369 mm für leichter beanspruchte Teile (Rotationsmaschinenbau). Nebenher läuft das Rohrgewinde, hat aber nur untergeordnete Bedeutung.

Zu wünschen wäre, daß sich die gesamte Industrie auf eine einzige Gewindeart einigte, für welche bei dem in Deutschland sonst allgemein eingeführten metrischen Maße, das auch im Auslande immer größere Bedeutung und Verbreitung gewinnt, nur

das Metrische Gewinde in Betracht kommt.

Dem bislang in der Elektrotechnik und von den Mechanikern benutzten Löwenherzgewinde liegt ein einem Quadrat eingeschriebenes Dreieck zugrunde, so daß die Flankenneigung 1:2 und der Spitzenwinkel $53^{\circ}8'$ ist. An den Außenkanten und im Grunde ist das Profil um $\frac{t_0}{8}$ geradlinig abgeschnitten. Die Hauptmaße sind in der

214 Schrauben.

Zusammenstellung 63 wiedergegeben, weil das Löwenherzgewinde vielleicht noch nicht sofort verschwinden wird, wenn auch sein völliger Ersatz durch das Metrische baldigst anzustreben ist.

Zusammenstellung 63. Löwenherzgewinde.

Äußerer Durchmesser d mm	1	1,2	1,4	1,7	2	2,3	2,6	3	3,5 4	1	4,5	5	5,5	6	7	8	9	10
Ganghöhe h mm	0,25	0,25	0,3	0,35	0,4	0,4	0,45	0,5	0,60),7	0,75	0,8	0,9	1,0	1,1	1,2	1,3	1,4
Kerndurchmesser d_1 mm.	0,625	0,825	0,95	1,175	1,4	1,7	1,925	2,25	2,6 2	2,95	3,375	3,8	4,15	4,5	5,35	6,2	7,05	7,9

C. Das U.S. St.-Gewinde.

Das United States Standart-Gewinde gründet sich auf die von Sellers 1864 angegebene Gewindeform, Abb. 336, mit 60 $^{\circ}$ Flankenwinkel unter Abflachung der Kanten um $^{1}/_{8}$ der Dreieckhöhe. Der äußere Durchmesser d ist in englischen Zollen festgelegt

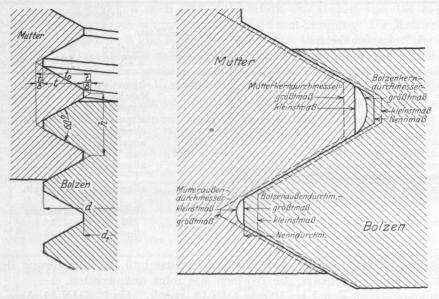


Abb. 336. Sellersgewinde.

Abb. 336a. Toleranzen des U. S. St.-Gewindes.

Zusammenstellung 64. U. S. St.-Gewinde.

Äußerer Gewinde- durchm. d engl. Zoll	h wert		I durenm		$\begin{array}{c} {\rm Zahlen-} \\ {\rm wert} \\ n \end{array}$	Äußerer Gewinde- durchm. d engl. Zoll	Ganghöhe h engl. Zoll	Zahlen- wert n
1/8" 3/16" 1/4"	0,0250 0,0417 0,0500	0,2000 0,2222 0,2000	$ \begin{array}{c} 1^{1/8}'' \\ 1^{1/4}'' \\ 1^{3/8}'' \end{array} $	0,1429 0,1429 0,1667	0,1270 0,1143 0,1212	$3^{1/4}'' \ 3^{1/2}'' \ 3^{3/4}''$	0,2857 0,3077 0,3333	0,0879 0,0879 0,0889
5/16"	0,0556	0,1778	11/2"	0,1667	0,1111	4"	0,3333	0,0833
3/8" 7/16" 1/2"	0,0625 0,0714 0,0769	0,1667 0,1633 0,1538	$ \begin{array}{c c} 1^{5/8}'' \\ 1^{3/4}'' \\ 1^{7/8}'' \end{array} $	0,1818 0,2000 0,2000	0,1119 0,1143 0,1067	$\begin{array}{c c} 4^{1}/_{4}^{"} \\ 4^{1}/_{2}^{"} \\ 4^{3}/_{4}^{"} \end{array}$	0,3478 0,3636 0,3810	0,0818 0,0808 0,0802
9/16"	0,0833	0,1481	2"	0,2222	0,1111	5"	0,4000	0,0800
5/8" 3/4" 7/8"	0,0909 0,1000 0,1111	$0,1455 \\ 0,1333 \\ 0,1270$	$\begin{array}{c} 2^{1/4}'' \\ 2^{1/2}'' \\ 2^{3/4}'' \end{array}$	0,2222 0,2500 0,2500	0,0988 0,1000 0,0909	$\begin{bmatrix} 5^{1}/4'' \\ 5^{1}/2'' \\ 5^{3}/4'' \end{bmatrix}$	0,4000 0,4211 0,4211	0,0762 0,0766 0,0732
1"	0,1250	0,1250	3"	0,2857	0,0952	6"	0,4444	0,0741