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To my Parents





The passport is a human being’s no-
blest part. It comes into being much
less simply than people themselves
do. A human being can come into
the world anywhere, in the most care-
less way; but a passport, never. For
that reason it is recognized when it is
good, whereas a human being can be
very, very good yet go unrecognized.

Bertolt Brecht
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Abstract

Document inspection requires detailed knowledge, but it is carried out by trained and

untrained individuals. Although the process can be automated by dedicated machinery,

such devices are not always available and the correct interpretation of results requires

training. Due to the widespread use of smartphones, it is interesting to investigate their

usefulness regarding document inspection. However, this poses unique challenges due to

a large and diverse corpus of documents, unexpected user behavior and limited resources.

In particular, we investigate the usefulness of Handheld Augmented Reality setups as

semi-automatic tools for document inspection. We first investigate the detection and clas-

sification of documents for making them accessible in a mobile setting. For this task we

employ an efficient approach for the detection of the document region, which allows to

process rectified images in a client-side solution for mobile visual search. This improves

both tracking and classification performance over using full-frame images and gives instant

results. We show that the client-side engine compares favorably to a commercial solution

and also delivers reasonable performance with document images. We further aim to exploit

handheld setups beyond being document information systems by extracting textual infor-

mation from documents. We propose an efficient solution for reading machine-readable

zones using the built-in camera of a smartphone without imposing strict limitations on the

viewpoint, which standard applications do. The extracted data can be instantly used for

verification or for querying additional information. We also contribute a large set of syn-

thetically generated data for further research. With the goal to support the inspection of

optically variable devices such as holograms, we initially show the feasibility of detecting,

recording and matching them in a mobile setting. For reasons of task complexity, the user

should be guided throughout the image capture process, which we tackle by presenting

several user interfaces for view alignment and constrained navigation. We finally show

that a parametrization based on typical user behavior considerably reduces the temporal

effort, while providing slightly better decisions than untrained users.
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Kurzfassung

Die Prüfung von Dokumenten wird von Personen mit unterschiedlichem Wissensstand

durchgeführt. Spezielle Prüfgeräte sind nicht immer verfügbar und die korrekte Interpre-

tation der Ergebnisse benötigt entsprechende Kenntnisse. Durch die große Verbreitung

von Mobiltelefonen steht grundsätzlich ein weiteres Prüfwerkzeug zur Verfügung. Beson-

dere Herausforderungen bestehen im großen und vielfältigen Bestand von Dokumenten,

im weitgehend beliebigen Verhalten der Nutzer sowie in den eingeschränkten Ressourcen

von mobilen Geräten. In dieser Arbeit beschäftigen wir uns im Speziellen mit dem Ein-

satz von Handheld Augmented Reality zur semi-automatischen Prüfung von Dokumenten.

Zunächst wird die Detektion und Klassifikation von Dokumenten betrachtet. Wir stellen

dafür einen effizienten Ansatz zur Detektion des Dokumentbereiches vor. Damit kann ein

entzerrtes Bild ermittelt werden, welches dann in einem lokalen Ansatz für Mobile Visual

Search verarbeitet wird. Diese Vorgangsweise verbessert sowohl das Tracking als auch

die Klassifikation. Wir zeigen außerdem, dass der lokale Ansatz eine vergleichbare Erken-

nungsleistung wie eine kommerzielle Lösung bietet, aber deutlich weniger Zeit benötigt.

Die Eignung zur Klassifikation von Dokumenten wird in einer Evaluierung gezeigt. Wir

stellen außerdem eine effiziente Lösung zum Auslesen der maschinenlesbaren Zone vor,

wobei nur die eingebaute Kamera eines mobilen Gerätes verwendet wird. Damit können

im Gegensatz zu aktuellen Lösungen auch rotierte und perspektivisch verzerrte Doku-

mente erfasst werden. Die extrahierten Daten können unmittelbar zur weiteren Prüfung

oder zur Abfrage von Zusatzinformationen dienen. Es wurde außerdem ein großer Be-

stand von Daten erzeugt, welcher als Grundlage zur weiteren Forschung dienen kann. Mit

dem Ziel, die mobile Prüfung von optisch variablen Elemente wie Hologrammen zu un-

terstützen, wird zunächst die Machbarkeit von Detektion, Aufnahme und Abgleich gezeigt.

Aufgrund der besonderen Anforderungen dieser Anordnung, muss der Benutzer zur Auf-

nahme angeleitet werden. Dies wird durch spezielle Benutzerschnittstellen zur geziel-

ten Ausrichtung und zur Bewegung in einem beschränkten Navigationsbereich erreicht.

Mit einer Parametrierung basierend auf dem typischen Verhalten von Nutzern kann der

Zeitaufwand deutlich reduziert werden. Das System übertrifft letztlich die Entscheidungen

von Laien bezüglich der Echtheit der verwendeten Hologramme.
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1.1 Mobile Augmented Reality

Augmented reality (AR) [22] aims to enrich the real world with digital information in order

to generate value for a human operator. The first prototype (The Sword of Damocles)

was realized in 1968 by Sutherland [155] as a head-mounted display rendering wireframe

models according to input from a mechanical or ultrasonic head position sensor. However,

a widely accepted definition of the term AR did not appear until the 1990s. Milgram et

al. [113] define a Reality-Virtuality Continuum and position AR into the space between

reality and virtual reality. A definition given by Azuma [7] provides more detail by stating

that AR applications

• combine the real and the virtual,

• are interactive in real time and

• register information in the real world in 3D.

We are interested in setups which are at least partly aware of their surroundings and are

able to extend objects or parts of the environment with purposeful information. These are

1

Reference:

Caudell, T.P. and Mizell, D.W. (1992)
Augmented reality: an application of heads-up display technology to manual manufacturing processes

Reference:

Ivan E. Sutherland (1968)
A Head-Mounted Three-Dimensional Display

Reference:

P. Milgram and F. Kishino (1994)
A Taxonomy of Mixed Reality Visual Displays

Reference:

Rontald T. Azuma (1997)
A Survey of Augmented Reality



2 Chapter 1. Introduction

dynamic setups, where the display of information can adapt according to the viewpoint

in order to allow a seamless experience for the user. In the past, AR systems often

required dedicated, powerful and, thus, non-portable hardware, which in turn limited

its distribution. This has changed with the world-wide adoption of reasonably powerful

mobile devices with built-in cameras.

According to recent estimates, one quarter of the global population will be using smart-

phones in 20151. Nowadays mobile devices employ several computing cores, programmable

GPUs and high-resolution cameras as well as screens. Besides, there is a wide range of

sensing and communication facilities included. Mobile performance, although still limited

in extent for reasons of the form factor, manages to exceed performance of desktop ma-

chines from a few years ago. Consequently, there is a trend towards substituting desktop

setups and laptops with smartphones and tablets for certain productive tasks, while over-

coming limited storage capabilities and locality with cloud solutions. With such a wide

distribution of devices at hand, new opportunities and application scenarios evolve, which

also bring up new challenges in computer vision (CV), visualization and interaction. From

the early steps of marker-based tracking, which was later extended to natural features,

there is a trend towards the reconstruction of the environment or individual objects, which

allows the adaptation of an application to the current setting. Screens, although offer-

ing a reasonably high resolution, are still small in physical size and require sophisticated

strategies for visualizing information. Interaction is no longer limited to buttons or the

screen. Instead, devices and even the environment serve as tangible user interfaces, where

the basis must be provided by robust, efficient and scalable CV algorithms.

While many scenarios for Mobile AR target navigation or entertainment, we propose

the use such setups as a tool for the inspection of documents. This is motivated by

the fact that mobile devices are readily available, but dedicated tools and, in particular,

knowledge for the inspection of documents by the public are not. Besides, mobile services

for document authentication2 are currently emerging, which underlines the relevance for

scientific treatment of this topic. In the following, a brief introduction into the field of

document inspection will be provided, including considerations on the opportunities for

mobile devices in this context. Then, the goals for this work are defined along with a

description of the scientific contributions of this thesis.

1.2 Document Inspection

The purpose of document inspection is to reason about the validity of a document by

examination of document properties, including security elements. Documents of interest

are machine-readable travel documents, like passports, identification cards and visas, but

also checks, vouchers and banknotes. The outcome of document inspection may affect the

1http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/

1011694
2https://www.jumio.com

http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
http://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
https://www.jumio.com


1.2. Document Inspection 3

ability of a person to use a document for payment up to the point of gaining access to

restricted facilities.

According to a press release by the European Central Bank [41], the number of coun-

terfeit Euro banknotes withdrawn in the second half of 2014 was about 507,000. This

example shows that everyone should be concerned about document counterfeiting and

that there is obviously an information deficit in the public on how to prevent fraud in

everyday cash payment.

In the remainder of this work, specific terms for document inspection will be used,

which are now defined:

Counterfeit Document: Unauthorized reproduction of a full document.

Forged/Tampered Document: Unauthorized alteration of an original.

Pseudo Document: Fantasy/fictitious or camouflage document without legal value.

1.2.1 Security Features

Valuable documents contain various security features, with the goal to prevent forgery or

counterfeiting. Corresponding features should be cheap in mass production, but require

expert knowledge and specialized machinery for reproduction. In general, advanced secu-

rity features must not allow a cheap shortcut in their inspection. Still, human inspection

must be possible with manageable effort and training. Features should be designed to

allow for automatic checks by appropriate machinery in order to save time and to avoid

human error. On the scale of the document, there should be features which also allow basic

checking for blind or partially sighted people. While, in the following, a short overview of

popular security features will be given, the interested reader is referred to the work of van

Renesse [169].

Overview: There are a large number of security features currently in use. They can

be incorporated into the substrate of a security document, printed on top, or added as

a separate element, sometimes as an additional foil containing several features over the

entire document. Security features can have haptic properties, which must be checked by

touching. Examples are the type of substrate, imprints, intaglio (high pressure) printing,

perforations or watermarks (see Figure 1.1). The latter are more commonly checked by

viewing them with light from behind, so these are also optical security elements.

Similar, there are registers, which consist of parts printed on the front- and backside

of a document, but unite to a full element when held against a light source. There is also

microprint, which is a very high resolution printing that cannot be copied easily. Similarly,

guilloches consist of very fine geometric structures, which are often used to impede the

alteration of personal information present on a document.

Optically variable devices (OVD) have distinct visual properties, which change con-

Reference:

European Central Bank (ECB) (2015)
Biannual Information on Euro Banknote Counterfeiting

Reference:

 ()
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Figure 1.1: Subset of the security features present on a 50 Euro banknote (top row) with selected
details for optically variable features (bottom left).

siderably when varying the viewing angle or the position of incident light sources. A well

known feature used on banknotes is optically variable ink, which changes its brightness

or tone depending on the viewing angle. Similarly, a stripe (thread) can be incorporated

on top or inside of the substrate. Then, there are security holograms, which show one or

more distinct patterns, depending on the viewing angle and sources of illumination, ex-

ploiting various physical phenomena (diffraction, interference). Often, so-called rainbow

holograms are encountered, which can be viewed by using white light, letting the object

appear in all spectral colors. Depending on the number of layers, 2D and 3D images or

motion sequence (stereogram, kinegram) can be shown. Although they generally show

iridescent colors, a more natural appearance can be achieved (e.g., true color hologram).

Changeable (CLI) or multiple (MLI) laser images contain various pieces of information

written by a laser into the substrate, where, depending on the viewing angle, only a single

one can be seen at a time. Note that throughout this thesis, we use the term hologram

interchangeably with the terms OVD or view-dependent element.

There are other features like thermochromatic (color change depending on temper-

ature) or magnetic ink. Windows can also be incorporated, which can act as filtering

devices to visualize other security feature present on a document (self-authenticating).

However, the most advanced element is only relevant when it does not fall victim to the
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complacency of the person in charge.

For inspection by dedicated machinery, often fluorescent dyes and substrates are used,

which make the document change appearance, when viewed under infrared or ultra-violet

light. Special machine-readable zones (MRZ) are used on certain identity documents,

which contain the most important information about the document and the correspond-

ing person including checksums. They allow for efficient and accurate readings by dedi-

cated machinery. Following a suggestion by the International Civil Aviation Organization

(ICAO) in 2003, biometric passports were introduced (ePassport). They store personal

information and, possibly, also biometric features such as fingerprints or a facial image on

a microchip, where the latter can only be obtained via a secure communications channel

employing near-field communication (NFC).

Threats: A list of main threats for the security of travel documents can be found in

an ICAO document [74]. They state that the entire document can be counterfeited and

that elements or pages are substituted, deleted or altered. Fraudulent documents may

be constructed using material from legitimate documents for by using illegally acquired

genuine document blanks. In order to prevent copying, when digital reproduction equip-

ment is at hand, the use of optically variable features with appropriate integration into

the document is suggested. Although they cannot be copied by photo-mechanical means,

OVDs and, in particular, holograms can be attacked by re-origination (complete remake),

performing optical or mechanical replication, including the use of substitutes. In case of

Euro banknotes, a special ring pattern (EURion constellation) is printed onto the docu-

ment during production. Upon its detection, off-the-shelf digital copying equipment will

not allow duplication. Sometimes, fake documents are artificially aged in order to make

imperfections of features appear less obvious. A microchip present on a fake document

can be deliberately destroyed to prevent comparisons of visible and stored information in

the chip. For travel documents, there seems to be a shift from fraudulent alteration of

documents towards identity fraud, where look-a-likes try to pass personal checks using a

genuine document from another individual [33]. In this case, it is no longer sufficient to

mainly check the document itself, but to put equal effort in the recognition of the person.

1.2.2 Inspection and Tools

A common way for checking a document mainly for untrained individuals is the feel-look-

tilt test. This is often carried out with banknotes3. The examiner is required to touch

certain parts of the document in order to feel the structure of the surface and to carry out

visual inspection by looking at the document and comparing the appearance with reference

material often found in a manual. This may include certain movements of the document,

in order to trigger a visual effect relevant to inspection. In case of ID-documents, an

additional check for correspondence of the data on the document and its owner is required

3http://www.ecb.europa.eu/securityfeatures

Reference:

 ()


Reference:

Malcolm Cuthbertson (2010)
The Changing Global Dynamic of Travel Document Fraud

http://www.ecb.europa.eu/securityfeatures
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Figure 1.2: Exemplary tools for document inspection (left to right, top to bottom): Banknote Pen
(http://www.amazon.co.uk), Manual (https://www.ecb.europa.eu), Doculus Lumus (Magni-
fying Glass, LEDs (White, UV), NFC Reader - http://www.doculuslumus.com), handheld and
Passport Readers (http://www.access-is.com), Smartphone

in order to catch impostors. Although, until recently, this was limited to an examination

of the document itself, an additional security layer has been added by the introduction

of a micro-chip containing biometric data (e.g., facial image, fingerprint or iris scan).

However, an unreadable chip does not automatically render such an ID-document invalid.

Consequently, checking documents still requires thorough inspection by human beings or

special machinery.

More formally, the inspection of documents is often divided into three different classes

[169]. They differ in the type of tools and the amount of additional knowledge (train-

ing) involved throughout the inspection process. The general public typically carries out

first-line inspection, which does not involve special training or the use of additional tools.

Typically, watermarks, intaglio printing, security threads, registered printing and view-

dependent elements such as holograms or optically variable ink are examined. Special pens

(check of paper type) or reference manuals are used for checking banknotes at this level

(see Figure 1.2). In second-line inspection, trained people check documents using special

tools, which often provide an automatic decision on validity. In this case, features such as

luminescent printing, magnetic inks, or bar codes are used. This level also includes checks

performed in automatic teller machines. Forensic experts carry out third-level inspec-

tions using even more sophisticated equipment (e.g., spectrometers, microscopes, infrared

cameras and chemical indicators). This often happens in laboratories or a dedicated in-

spection facility. In contrast to the other levels of inspection, this may be destructive to

the document in question.

Reference:

 ()


http://www.amazon.co.uk
https://www.ecb.europa.eu
http://www.doculuslumus.com
http://www.access-is.com


1.2. Document Inspection 7

According to van Renesse [169], it is not possible to replicate every part of a security

document faithfully, and not all security features present on a document are known to the

public. Comparisons with the naked eye are considered sufficient for checking, but this

requires detailed information about the document. Consequently, he states that there is

a tendency to reject documents instead of learning how to inspect them properly. In case

of holograms, first-line inspection is based on printed guides or digital manuals. Often

being issued by public authorities, they usually show distinct patterns visible within the

hologram area. However, they often lack an indication on the viewing direction and do

not specify requirements on the lighting conditions. Consequently, the inspection may be

tedious for the untrained user. In the absence of specific information, holograms tend to

be inspected just by looking for changes in appearance or the pure presence of rainbow

colors, which has no particular value with respect to security [169].

1.2.3 Opportunities for Mobile Devices

Gariup and Soederlind [51] compared the performance of experts and automatic systems

for document verification in a study. They found that automatic inspection was slower

and performed less well. Closed studies reveal that during inspection, individuals tend to

overly rely on automated document readers instead of following their instinct. Besides, the

chance of misinterpretation of results may constitute a vulnerability and, consequently,

thorough training is required. They conclude that human factors are important and that

automation may become a risk. This is further backed up by a Gschwandtner et al. [56],

who show that automatic border control systems can be tricked by using an active display

along with some sensing hardware.

It must be noted that using a mobile device would correspond to second-level in-

spection, because it is an additional tool. However, in certain cases the process requires

interaction with a human operator and thus cannot be used to assess documents fully

automatically. Besides, due to the wide user-base of mobile devices, it can also be used

by lay people. With the aforementioned considerations on human behavior with fully au-

tomatic inspection, it is very reasonable to propose a semi-automatic setup involving an

off-the-shelf mobile device.

When using off-the-shelf devices for document inspection, only the built-in features of

the device are available. This includes the front and back camera, usually with automatic

focus, in most cases also a white LED flashlight and the capability to perform near-

field communication (NFC). The use of UV sources is not common, and even using an

external one would not be useful, since phone cameras nowadays employ UV filters. Not

considering the built-in microchip, such devices can only serve as advanced magnifying

glasses, if no specific applications targeted towards document inspection are available.

Given the appropriate software, they could serve as advanced information systems, gain

the capability to read and match information from a document or even serve as an advanced

tool for the inspection of specific elements on a document.

Reference:

 ()


Reference:

 ()


Reference:

Gariup, M. and Soederlind, G. (2013)
Document Fraud Detection at the Border: Preliminary Observations on Human and Machine Performance

Reference:

Michael Gschwandtner and Svorad Stolc and Franz Daubner (2014)
Optical Security Document Simulator for Black-Box Testing of (ABC) Systems
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Information System: Finding the correct reference information for a given document

is an important requirement prior to the actual inspection process. This can be achieved

by requiring a manual lookup of document properties (e.g., country, document type, year

of issue etc.) using a manual, or by entering such information within an application for

mobile devices. However, this could also be achieved by carrying out the analysis of one or

more images taken by the built-in camera of a mobile device. If, at this point, the relevant

set of documents is known to the system, pseudo-documents will be immediately rejected.

For verification of security features, there is still a mapping required from the information

shown on the screen to the document and vice versa. By tracking the document, the

position of security features and, possibly, their appearance can be augmented in the right

spot, which can facilitate the mapping of information by the operator. In the end, this

leads to the design of an advanced AR information system for document inspection.

As obtained from an initial study we conducted, people mainly focus on holograms,

faces and textual information (see Appendix B). Surprisingly, the latter seems to be less

important for a quick check and, in the absence of tools, the MRZ cannot be thoroughly

examined at all, since there are checksums included.

Extraction and Matching: However, it is desirable to provide further support by

automatic extraction and matching of information [50]. This could speed up the process

and increase robustness by removing human bias. In particular, this leads to the detection

and extraction of face images, text and all kinds of special patterns. With the goal to allow

fast and efficient queries about the person in question, a machine-readable zone has been

put on documents starting around 1980. Such information can be detected and extracted

using off-the-shelf mobile devices. However, special care must be taken in order to allow

for fast and robust reading despite changes regarding the viewpoint and image capture

conditions, which are characteristic for mobile scenarios.

View-Dependent Elements: Holograms are considered highly fraud-resistant. Van

Renesse states that, according to the International Hologram Manufacturers Association

(IHMA), there has been no case of a well-designed authentication hologram being copied

accurately [169]. Therefore, the development of tools and algorithms for the mobile de-

tection and verification of such elements deserves interest in research. In particular, these

are interesting features for inspection in mobile scenarios, since checking such features

requires a movement of the document in order to reproduce the desired appearance for

comparison, which is the case in typical Mobile AR setups. When tracking documents

containing these elements, the image capture conditions can be monitored. This could

pave the way for semi-automatic inspection systems for holograms and similar elements.

However, such a setup poses unique challenges regarding user guidance, visualization and

the selection of relevant reference information.

Reference:

Monika Gariup (2015)
How to Detect Document and Identity Fraud?

Reference:
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1.3 Problem Statement

The following considerations target the inspection of documents using off-the-shelf mobile

devices in the context of AR. This involves the active support of the verification process

by automatic image capture, extraction of relevant information and automatic matching

with reference information.

A possible application scenario is the inspection of documents by small shops or in-

dividuals, which do not carry out this task on a regular basis and, thus, are not willing

to spend money on dedicated machinery or carry it around in their pocket permanently.

Mobile AR setups for document inspection could also be useful for educational purposes

and for raising awareness of the public regarding newly introduced or updated documents.

Vision: An ideal Mobile AR system for document inspection would perform an auto-

matic classification of the document, taking away the burden of manual document selection

from the user. All steps involving identity documents are carried out directly on the mobile

device for reasons of protecting sensitive data. This requires a classification and tracking

approach that is largely independent of personal information shown on the document.

Then, relevant information can be immediately overlaid onto the document and visually

marked according to its importance throughout the process. Identity information is read

seamlessly from the document and used for querying supplementary information about

an individual from a remote databases connected over a secure communication channel.

As, typically, the operator has both hands employed with holding the device and the

document, the selection of appropriate information is carried out by changing the pose

of the document or the device. During slight pose changes of the user, the behavior of

view-dependent elements can be monitored and matched against reference information.

Suitable hints and visual feedback given by the system help the user to efficiently cap-

ture all the required information. The system finally provides its verification result and

provides insights to the user on the basis of a particular decision.

Goals: The goals of this thesis originate from the desire to exhibit Mobile AR setups for

document inspection beyond being a medium for in situ information presentation. They

can be summarized as follows:

• Enable the mobile detection and tracking of arbitrarily personalized documents.

• Investigate how off-the-shelf mobile devices can serve as verification tools by reading

textual information present on documents and, in particular, supporting the mobile

verification of view-dependent elements such as holograms.

It must be noted that we do not address face recognition for the purpose of inspecting

ID-documents in this thesis. The reason is that this task deserves extensive treatment,

which is out of scope here. Besides, face recognition and verification with the image on
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a document requires taking one or more facial images of a person, which would put the

focus away from the document, thus, interrupt the work-flow and, possibly, cause a certain

degree of indisposition.

1.4 Challenges and Strategies

The aforementioned goals give rise to specific challenges that need to be addressed through-

out the thesis. First, there are lots of different document types and variants floating

around, for which little or no reference data is accessible. In many cases, this hinders the

design of specific approaches, which are otherwise deemed well suited. If applicable, we

perform a detailed evaluation, often directly on mobile devices.

ID-documents are personalized regarding the owner, which affects their appearance

and recognition performance dramatically, including the ability to track them from a

given template. We split the recognition and tracking task and first localize the document

in order to build a tracking-target on the fly. However, some state-of-the art frameworks

for tracking require each template to be sent over to a server. This is not feasible for

reasons of protecting personal data. So, all processing involving ID-data on documents

must be carried out directly on the mobile device. The limited resources available on

mobile devices clearly conflict with desirable properties from the perspective of the user,

such as instant processing and feedback.

The user should not be rigidly constrained in his or her movements. This is an impor-

tant requirement for automatic extraction or matching of information. In order to tackle

these issues, we exploit prior information about the task at hand, whenever possible,

without entirely sacrificing the general applicability of the approach.

View-dependent elements such as holograms pose several unique challenges such as

major changes in appearance, depending on the viewing direction and the nature of light

sources in the environment. We use a light source fixed to the camera in order to reduce

task complexity and allow the application on off-the-shelf mobile hardware.

Guiding the user within the small workspaces involving document and device while

conducting a task pressed for time, is not obvious at all. We design and evaluate several

approaches in an iterative design process, providing instant feedback on spatial position

and completion status, with a presentation of results that is suitable for visual inspection

by the user.

1.5 Contribution and Results

The major parts of this thesis are based on publications which were authored by myself.

In particular, the following list describes the mapping of these papers to the corresponding

chapters.

• Chapter 3 is based on the papers:
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A. Hartl and G. Reitmayr. Rectangular target extraction for mobile augmented re-

ality applications. In International Conference on Pattern Recognition (ICPR), 2012

A. Hartl, D. Schmalstieg and G. Reitmayr. Client-side mobile visual

search. In International Conference on Computer Vision Theory and Applications

(VISAPP), 2014

This chapter describes basic building blocks for document inspection

using Mobile AR through document detection and tracking. We propose to extract

a suitable template directly from the live-video-stream provided by the built-in

camera of mobile devices. So, tracking the document can take place immediately,

and the task of determining the actual class of the document is treated as a

separate step. This is carried out on the obtained template by a custom client-side

solution for visual search, avoiding any communication of personal image data.

• Chapter 4 is based on the paper:

A. Hartl, C. Arth and D. Schmalstieg. Real-time detection and recognition of

machine-readable zones with mobile devices. In International Conference on

Computer Vision Theory and Applications (VISAPP), 2015

This chapter describes a mobile approach for efficient detection and

extraction of machine-readable zones using off-the-shelf mobile devices. It does not

require strict alignment with an orthogonal viewing direction and allows continuous

feedback for the user. This provides a fast and cost-effective way of reading the

MRZ data for querying additional information without the need for specialized

machinery. We also contribute a large database of synthetic MRZ data, covering a

broad range of diverse settings, backgrounds and view points for evaluation.

• Chapter 5 is based on the papers:

A. Hartl, C. Arth and D. Schmalstieg. Ar-based hologram detection on security

documents using a mobile phone. In International Symposium on Visual

Computing (ISVC), 2014

A. Hartl, J. Grubert, D. Schmalstieg and G. Reitmayr. Mobile interac-

tive hologram verification. In International Symposium on Mixed and Augmented

Reality (ISMAR), 2013

In this part of the thesis, we investigate the feasibility of hologram

detection and verification on off-the-shelf mobile devices. In particular, we show

that it is possible to detect holograms on documents without prior information on

the location or appearance of these elements. Then, an approach for repeatable

capture of patterns visible on holograms is presented and evaluated. The obtained
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results indicate that the mobile recording and verification of such information is

feasible, but the complexity of the task demands suitable user guidance.

• Chapter 6 is based on the aforementioned paper including follow-up work:

A. Hartl, J. Grubert, C. Reinbacher, C. Arth and D. Schmalstieg. Mobile user

interfaces for efficient verification of holograms. In Virtual Reality (VR), 2015

This chapter is mainly devoted to user interfaces for mobile hologram

verification and the evaluation of prototypes. First, an initial approach for view

alignment is presented an evaluated within a user study. The obtained results

indicate that the mobile recording and verification of holograms is feasible, but

time-consuming. Building on these results, the efficiency of mobile hologram

verification is improved by employing special task-oriented user interfaces

along with automatic image capture and matching. After determination of the

most efficient user interface for this task through a user study, an alternative

parametrization is proposed. In an additional study, this setup is shown to further

decrease checking time and also to improve the robustness of mobile hologram

verification up to a level, which is better than decisions made by lay people.

1.6 Collaboration Statement

The aforementioned papers involved collaborations with several people from the Institute

of Computer Graphics and Vision at Graz University of Technology. Clemens Arth was

involved in creating new research ideas and gave early feedback regarding most of the

approaches crafted throughout this thesis. He also contributed as a co-author, constantly

encouraging to push forward paper drafting and submission. Gerhard Reitmayr supervised

part of the thesis and also contributed an implementation of a tracker based on natural

features. Jens Grubert was involved in the design and evaluation of user studies regarding

hologram verification. Christian Reinbacher supported the creation of a robot setup for

recording reference data of holograms and also contributed by controlling the robot arm.

1.7 Thesis Outline

The context for the scientific work conducted in this thesis is built by consideration of

related work in Chapter 2. The basis for Mobile AR-based document inspection of doc-

uments with arbitrary personalization is laid in Chapter 3. An approach for reading

machine-readable zones with mobile devices is proposed in Chapter 4. The feasibility of

mobile hologram detection and verification is investigated in Chapter 5 and several user

interfaces for hologram verification are presented and evaluated in Chapter 6. Finally, a

conclusion along with an outlook on future work is provided in Chapter 7.
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Document inspection with off-the-shelf mobile devices takes place in a small workspace

directly in front of the user. The demand to present relevant information for inspection

calls for a robust and scalable approach for determining the class of an unknown document.

Since OVDs can be involved, information about the relative position and orientation of the

document regarding the image acquisition device is required. In an unconstrained setup, it

is very reasonable to guide the user throughout the process. Due to these considerations,

mobile document inspection can benefit from AR.

In the following, we consider relevant developments in Mobile and Handheld AR. We

provide an overview of document inspection by means of CV, focusing on banknotes,

ID-documents as well as OVDs. We identify important topics for research on document

inspection with Mobile AR. First, document detection and classification are treated in the

context of large-scale setups suitable for client-side processing. Then, the extraction of

textual information from documents is considered. Finally, visualization and user guidance

are treated, which, along with registration, are critical regarding practical application.

2.1 Towards Handheld Augmented Reality

Starting with Sutherland’s initial prototype in 1968 [155], it took until the 1990s to estab-

lish a widely accepted definition of AR [113], [7]. The demand to combine the real and the

13
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virtual world requires an accurate and continuous registration of information (pose track-

ing). This, in turn, allows the creation of interactive applications working in real-time,

aiming to generate a benefit for the user. In the context of this thesis, pose tracking using

images captured by a camera deserves a more detailed description, along with a historic

outline of Handheld AR, which also illustrates current directions of research in the field.

Pose Tracking: Azuma states that pose tracking should take place in real time (i.e.,

30 FPS), be stable (e.g., free of jitter), and the accuracy should be in the order of a few

mm regarding position and fraction of a degree for orientation [7]. For most applications,

this involves the estimation of six degrees of freedom (e.g., translation, rotation). With

this information, the relation of the observing camera and a scene can be described (ex-

trinsic parameters [65]). Together with the intrinsic parameters of the camera (principal

point, focal length) determined in an off-line calibration phase, a view frustum is defined

for visualization of information with respect to the viewing position and orientation of

the observer. Image distortion caused by the camera is usually modeled through radial

and tangential distortion and must be considered during estimation, if high accuracy is

required.

Obtaining such information is a complex task and has been studied extensively in

literature. In the beginning, various sensors were used for tracking along with a prior

on location and orientation. These setups often suffered from inaccuracies and drift.

Consequently, visual tracking was added in order to compensate for these effects. However,

this comes at the cost of considerably increased computational effort, in particular for

unmodified or unknown scenes.

2.1.1 Initial Setups using Sensors

Efforts to use compact devices for AR initially required stationary setups for information

overlay or tracking. An example is the Chameleon system presented by Fitzmaurice in

1993 [47], which displays spatially situated information on a map. Employing magnetic

tracking of a handheld device, graphics are rendered on a workstation, recorded via a

camera and transferred to the device for display.

Advancements in mobile computing power and the availability of the Global Position-

ing System (GPS) for coarse registration enabled the creation of backpack systems (Mobile

AR), resulting in several outdoor scenarios. In 1994, Loomis et al. [104] presented an out-

door navigation system for the visually impaired. It uses differential GPS and a head-worn

compass connected to a notebook employing data from a Geographic Information System.

This generates an acoustic virtual display, which can give audio hints at interesting lo-

cations. The first Mobile Augmented Reality System was presented by Steve Feiner et

al. [45] in 1997. Their Touring Machine uses a see-through head-mounted display (HMD)

with an orientation tracker. Other components such as differential GPS and a digital

wireless radio for web access along with a notebook are put into a backpack. The system
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contains also a handheld computer with a stylus and a touch interface. The application

scenario is an interactive campus guide, overlaying label information onto buildings, which

can be selected and navigated to, along with the possibility to get additional information

from a server running on the handheld computer. They reported that, due to tracking

inaccuracies, it was only possible to label an entire building instead of a particular part.

In 1998, Thomas et al. [160] presented a mobile system using a HMD, GPS and a wear-

able computer. Initially being used for navigation purposes, it also added an electronic

compass. Höllerer et al. [72] presented a system for experiencing hypermedia content in

their associated location, along with a mobile campus guide, in 1999, employing for the

first time GPS and inertial sensors for tracking.

A typical application using built-in sensors of current mobile devices are AR browsers

(e.g., Wikitude1, Layar2). They augment the environment with digital information from

a remote database, according to the associated geographical location or object. Initially

suffering from the the same issues in accuracy and usability as reported with early cus-

tom AR setups, they have recently added visual tracking along with image recognition

capabilities.

2.1.2 Visual Tracking

As mobile setups were gaining image capturing capabilities, visual tracking became an

interesting topic for the AR community. Initially, visual tracking was realized by adding

artificial markers to a scene and measuring their position by evaluation of the live-feed

obtained from the camera. In case of limited computational capabilities, this task can

be outsourced to a server, if the corresponding latency is acceptable for the application.

In 1995 Jun Rekimoto and Katashi Nagao proposed NaviCam [140]. They employ a

mobile display tethered to a workstation, which uses a camera for optical tracking of

color coded-markers. Context-sensitive information is overlaid directly on the screen of

the mobile device. In 1999, Kato presented an open-source framework for tracking matrix

markers in real-time (ARToolKit) [83]. It subsequently became very popular within the

AR community. In 2000, Thomas et al. [159] presented an extension to the popular game

Quake. Their setup consisted of GPS, an electronic compass and, most notably, vision-

based tracking using markers. This mobile backpack setup allows to control the game

character by movements of the user in the real world and the composition is displayed in a

HMD. In 2001, Reitmayr and Schmalstieg presented a system for mobile collaborative AR

[139]. They used a freely configurable tracking setup, fusing information from arbitrary

sensors in order to allow the manipulation of objects in the near field. Several users can

collaborate in this shared space and even join an on-going session.

In 2003, Wagner et al. presented the first AR system with stand-alone marker tracking

running on a handheld device and coined the term Handheld Augmented Reality [175].

1https://www.wikitude.com
2https://www.layar.com
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They used this setup as the basis for an indoor navigation application. Optionally, a server

connection for offloading the tracking task from the mobile device can be used, which is

transparent for the application. In the same year, the first commercially available AR

game (Mozzies or Mosquito Hunt) was delivered with the Siemens SX1 phone. Mosquitoes

are superimposed over the live video feed. The goal is to shoot at them using a cross

hair controlled by movements of the device detected through analysis of the video feed.

In 2004, Möhring demonstrated a system for detecting and tracking 3D markers on a

phone, providing see-through AR without requiring a calibrated camera [119]. In 2006

Reitmayr and Drummond [138] presented a model-based tracking system for outdoor AR

in urban environments, which allowed accurate overlays on a handheld device. They

combined an edge-based tracker (accurate localization) with a gyroscope (coping with

fast motions), along with measurements of gravity and the magnetic field for avoiding

drift. In case of tracking failure, an automatic re-initialization procedure was started,

which used previously stored reference frames. In 2008, Wagner et al. [174] presented

the first implementation of natural feature tracking (NFT) in real-time on mobile phones.

Consequently, no artificial parts (e.g., marker) need to be added to the scene. They rely

on heavily optimized local features in order to cope with the limited capabilities of mobile

device. In 2011, Kurz and Benhimane [91] investigated the use of gravity information for

improving tracking and also augmentation in Handheld AR.

Arth et al. created several works for wide-area localization on mobile phones, using

off-line reconstruction (2009)[5], only GPS-tagged images (2012)[4] or a client-side SLAM

setup (2014)[171]. These approaches allow a mobile device to globally determine its posi-

tion in large environments and instantly perform pose tracking.

Reconstruction and Tracking of the Environment: In 2007, Klein and Murray [85]

laid the basis for AR in partially unknown environments with a system for parallel mapping

and tracking (PTAM) from a monocular camera, which can automatically discover its

surroundings while tracking. This was later adapted to run in real-time on a smartphone

for table-top environments [86]. In 2010, Wagner et al. [173] presented a real-time approach

for the creation and tracking of panoramic maps on mobile phones. This is a useful

tool in the context of Handheld AR, where the user often explores the environment by

performing rotational movements, remaining approximately in the same spot. In 2011,

Pirchheim and Reitmayr presented a real-time camera pose tracking and mapping system

which uses the assumption of a planar scene to implement a highly efficient mapping

algorithm [132]. In 2013, Gasparini and Bertolino [52] presented a tracking algorithm

designed for a mobile device equipped with a stereo camera. In contrast to monocular

solutions, no user-interaction is needed for initialization. Reconstruction uses a stereo

approach, while tracking runs in real-time on a single camera, but can rely on the stereo

setup to generate additional features, when needed. In order to asses the quality of visual

tracking, a plane is fitted to the 3D features obtained during initialization. In 2014, Schöps

et al. [145] presented a direct (feature-less) approach for tracking and mapping running
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on mobile devices. New images are tracked using direct image alignment, while geometry

is represented in the form of a semi-dense depth map.

Reconstruction and Tracking of Objects: In 2011, a trend towards the mobile re-

construction of previously unknown 3D objects emerged. This tackles the issue of content

creation, which is an integral part in the creation of any AR experience. Besides, the

advent of object printing technology further emerged the need for reasonable 3D models

of objects. Gruber et al. [55] presented a mobile space-carving approach for the recon-

struction of simple objects. Pan et al. [127] presented a novel system employing panoramic

images for reconstruction. It allows the generation of a coarse 3D model of the environ-

ment within several seconds on mobile phones. In 2013 Prisacariu et al. [136] presented

a silhouette-based 3D tracking and reconstruction framework running in real time on a

mobile phone. In the same year, Tanskanen [157] showed a dense stereo system for live

3D reconstruction on mobile devices, filling a gap in current cloud-based mobile recon-

struction services. Kolev et al. [88] finally developed an efficient and accurate scheme

for integrating multiple stereo-based depth hypotheses into a compact and consistent 3D

model. Thereby, various criteria based on local geometry orientation, underlying camera

setting and photometric evidence are evaluated to judge the reliability of each measure-

ment.

2.2 CV-based Document Inspection

We define CV-based document inspection as the analysis of an instance of a document

regarding a given reference model, by evaluation of one or more images for the purpose

of getting a decision on its validity. In general, there is a distinction between considering

extrinsic (special visual) and intrinsic (mostly textual) features. The first case is relevant

for both banknotes and identity documents (see Section 2.2.1), which employ security

elements. In this context, an overview of prior art on capturing and inspecting OVDs

will be given in Section 2.2.2. The second case targets non-protected documents such as

invoices or contracts, which are not considered in this thesis.

2.2.1 Banknotes and ID Documents

Banknotes: There are several works on banknote authentication reported in literature.

While most of them use a stationary setup with several different light sources, there are

also solutions involving camera phones, which can, of course, only make use of the built-in

functionality of the device. Ahmed et al. [1] propose an automated counterfeit detec-

tion system for Bangladeshi banknotes, making use of a web-cam and LED light sources

(static setup). They use six feature types in order to characterize micro-print, optically

variable and iridescent ink (contour analysis), watermarks (PCA), security threads (match-

ing local features) and ultra-violet lines (edge/line detection) present on banknotes. They
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accumulate success points for each feature, requiring at least 4 of 6 features for successful

authentication.

Machine assisted authentication of Indian banknotes is descried by Roy et al. [142],

using a special scanning device (UV, IR, spectrometer) for image acquisition. They mainly

use features selected by forensic experts (printing technique, ink properties, thread, art

work) and perform classification using both an Artificial Neural Network (ANN) and a

Support Vector Machine (SVM) [17]. They compare the scores of the system with those

of experts and trained individuals. They report that their method usually gives better

decisions than trained individuals, despite being faster.

Bruna et al. [18] build a low cost banknote validation system on custom embedded

hardware. They process IR images and tackle the non-uniformity of the light source using

a brightness map. Using genuine and counterfeit images of banknotes, they learn the

location and appearance of simple patch features including the corresponding thresholds.

A currency reader running on camera phones is presented by Liu [98]. They target

especially visually impaired persons. Performing background subtraction and using Boost-

ing on random pair-wise features, the system runs on an off-the-shelf mobile device with a

very low false-positive rate. Radványi et al. [137] also perform banknote recognition for the

visually impaired using a mobile device (bionic eyeglass). After binarization of the image,

tactile marks are detected (morphological operations), the shape of portraits is assessed,

and numbers are recognized. At least two consistent votes are required in order to make

a decision. By exploiting the topology of documents, the position of missing elements can

be estimated including the corners of the banknote. In a user study with visually impaired

persons, the system achieved an accuracy of around 96%. Lohweg et al. [103] propose the

authentication of security documents and, especially banknotes, with mobile devices using

Wavelet-based detection of intaglio printing. First, intaglio line structures are detected

and recorded in a categorization map, which form the basis for Wavelet selection. Then,

moment-based features are calculated from Wavelet coefficients, but also features based

on statistics controlled by the variance (Local Adaptive Cumulative Histogram). Classi-

fier boundaries are calculated using linear discriminant analysis, which they favor over an

SVM solution.

Hasanuzzaman et al. [66] perform banknote recognition by computing and matching

SURF [11] features on several regions of interest on the document. They require at least

two regions to pass and evaluate the approach on 140 dollar bills. They achieve perfect

accuracy also with occlusions. Choi et al. [31] classify banknotes from Wavelet features on

non-overlapping blocks of edge images. In an evaluation involving 12 classes (10800 im-

ages), 99% of Korean bills could be classified correctly. The impact of degraded banknotes

is studied by Khashman et al [84]. They use the Discrete Cosine Transform and biorthog-

onal Wavelet Transform to simulate the desired effects, feeding averaged subimages into

an ANN.
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ID Documents: Wu et al. [178] present an automatic recognition system for machine-

readable travel documents, using textual, facial and identity matching through a database

check. Results are combined using fuzzy set-based fusion. Mandridake et al. [106] propose

work towards the fully automatic detection of identity fraud. They stress the analysis of

background printing and photo substitution and present an initial evaluation of document

similarity using SURF features.

Bessmeltsev et al. [12] propose a high-speed approach for reading MRZ data. They

analyze the projection profile of the MRZ region to perform slant correction and optical

character recognition (OCR) using template-matching. They evaluate their algorithm on

a portable passport reader, with a test database of 30 images, achieving perfect accuracy

and processing times of less than one second.

Other work in this context targets the automatic verification of signatures written on

documents, for which the interested reader is referred to a review paper by Pal et al. [126].

2.2.2 Optically Variable Devices

Related work on OVDs can be divided into approaches suitable for capturing such ele-

ments, hologram reconstruction and validation, but also hologram inspection.

Capturing holograms is largely related to capturing a spatially varying bidirectional

reflectance distribution function (SVBRDF). This 6D function characterizes the amount

of radiance that is reflected at each surface point according to the viewing and lighting

directions. Ren et al. describe a portable solution to SVBRDF measurement of flat surfaces

using a mobile device, a BRDF chart and a linear light source [141]. Being based on an

approach by Dong et al. [34], they locally reconstruct purely specular components, which

allows for arbitrary per-point variation of diffuse and specular parts. Jachnik et al. [77]

conduct real-time surface light-field capture from a single handheld camera with fixed

exposure, shutter and gain. They require a static planar scene and illumination and split

diffuse and specular components, finally estimating an environment map. They rely on a

guidance component in the form of a colored hemisphere, which indicates whether a pixel

has been seen from a particular viewing direction.

The reconstruction of 3D information from holograms is also treated in literature. This

is usually connected to digital holography, where an image sensor is used for recording

interference patterns, instead of a photo-platter. Buraga-Lefebvre et al. [19] analyze the

diffraction pattern on a hologram (in-line holography) using a Wavelet Transform in order

to reconstruct the location of small particles in 3D. Their setup requires a laser source, a

movable hologram, a relay lens and a camera. They state that diffraction can be treated

as a convolution between the amplitude distribution in the object plane and a family of

Wavelet functions. In contrast to previous approaches, no focusing on individual particles

is required, improving overall accuracy. Amplitude reconstructions of holograms are shown

by Pitkäho to be suitable for gaining a depth image using stereo reconstruction [133].

Pramila et al. [135] segment the watermark from a dual-layer hologram. Recording is
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done using a camera and a uniform light source, facing towards a tiltable plane containing

the hologram. They note that the result is very sensitive to the angle of the plane.

Holographic patterns are identified from a printed page by Janucki et al. [78]. They create

a Wavelet approximation of the intensity distribution of the hologram and use a Wiener

filter to eliminate the influence of non-uniform background. This setup is also suitable for

quality estimation of a holographic device. Automatic inspection systems for holograms

can use sets of patterns illuminated with multiple IR LEDs on a hemisphere [92, 129].

Images are captured with a CCD camera at controlled illumination angle, and correlation-

based matching is carried out in the frequency domain. They extend the system with a

correction of rotation angles and evaluate it with two Korean banknotes. Recently, Soukup

et al. [151] proposed an approach for sampling the BRDF of Diffractive Optically Variable

Imaging Devices (DOVID) using photometric stereo and light-field-based methods. For

this purpose, they use a tailored feature descriptor which is robust against several expected

sources of inaccuracy, but still specific enough for the given task. They demonstrate

their approach on the practical task of automated discrimination between genuine and

counterfeited DOVIDs on banknotes.

Besides verification, there have been efforts to combine holograms with computer

graphics [14]. By extending a partial hologram reconstruction with additional content,

a dynamic high-quality display can be realized [15].

2.3 Document Detection and Classification

Two key issues treated in this thesis are the detection and classification of documents.

Although ID documents and, in particular, banknotes get slightly curved when used, in

the following, we consider only roughly planar documents. This is mainly motivated by

the demand to deliver interactive framerates on off-the-shelf mobile devices (see Chapter

3). Similarly, due to the lack of depth sensing hardware in current mobile devices, only

approaches suitable for a monocular setup are considered.

2.3.1 Detection of Rectangular Regions

For detection, we are interested in getting a minimum bounding rectangle of the docu-

ment region present in an image for further processing. Consequently, the output are the

estimated corner positions of a document. Assuming approximate planarity, a document

appears in a captured image as a rectangle, which can be perspectively distorted depending

on the camera position and orientation. This type of problem is not limited to banknotes

and ID-documents, but it is relevant for arbitrary regions fulfilling the aforementioned

property. In the following, we present a survey of relevant approaches for the detection of

such regions by means of CV.

There are two different approaches for tackling the problem at hand. Either the doc-

ument corners or borders can be detected directly, or a transformation can be computed
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beforehand, with a subsequent detection of borders parallel to the undistorted image frame.

In the first case, suitable evidence must be available within the document region.

The estimated transformation can the used remove the perspective distortion of the

region enclosed by the detected borders. Throughout this thesis, we mean by the word

rectification the process of removing this distortion and creating a rectified representation

through image warping. This is different than in stereo vision [65], where the term rectifi-

cation denotes the process of projecting two or more images onto a common plane using

epipolar geometry, while in our case only a single image is processed in general.

Transformation and Detection: Directional information such as text lines or para-

graphs available on documents are subject to perspective distortion, depending on the

viewpoint. The virtual extension of cues for the same direction appear to intersect in the

so-called vanishing point, which is typically outside of the image frame or at infinity, if

there is no distortion. If enough cues for directional information are available in the image,

such points can be estimated. Using two orthogonal vanishing directions, the image can

be fully rectified. Due to the presence of noise on document images, typically a robust

estimation is required [89, 131]. It is typically much harder to obtain vertical cues. Miao

and Peng [111] use morphological operations to obtain connected components for fitting

text lines. After rectification in the horizontal direction, vertical cues are obtained by

analysis of character strokes. Yin et al. [180] perform robust vanishing point detection

targeting mobile devices. They cluster line intersections and perform a voting operation

by projection analysis on the Gaussian sphere space. Alternatively, the rectification of a

planar region can also be achieved by using a SLAM approach [132].

The rectified image or a representation thereof (i.e., edge image), can be used for

detection of the actual borders of the document region. Zhu et al. [186] detect rectangular

particles in cryo-electron microscopy images using a rectangular Hough transform. They

split the task into finding the location of rectangles and estimate their orientation. This

approach requires all rectangles in the image to have the same size, which must be known

in advance. Jung and Schramm [80] use a windowed Hough transform to determine the

centers of rectangles and analyze peaks in the accumulator to determine the corners.

Bhaskar et al. [13] extract peaks corresponding to line segments from the image using the

Hough transform or the Radon transform and perform filtering according to geometric

(accumulator space) and spatial (image space) constraints.

Zhang and Kosecka [182] estimate vanishing directions through gradient binning, con-

nected component analysis and line-fitting. They use a homography-based verification of

hypotheses to recover the relative pose without calibration. Shaw and Barnes [147] work

directly on vanishing lines without requiring a rectified representation. They detect line

segments along these directions and perform a set intersection followed by non-maximum

suppression through analysis of the neighborhood around the detected locations.

Yonemoto [181] proposes an interactive image rectification method based on the de-

tection of horizontal and vertical lines within a target object. The approach requires user
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input by making a horizontal stroke or specifying an entire region of interest.

Direct Detection: If there is insufficient evidence available for computing vanishing

points or a feature-based rectification, the document region must be detected directly

from the input image. Zhu and Qingzhi [187] perform rectangle detection by chain code

tracing and line-fitting. They can also cope with intersecting rectangles.

A common approach for the direct detection of perspectively distorted rectangles is

to use image primitives such as corners or line segments. This is usually based on the

generation and subsequent verification of hypotheses. An introduction of the general idea

can be found in the work of Lin et al. [97].

Tao et al. [8] obtain line primitives from contour tracing and determine pairs of parallel

lines, which are merged into rectangles. Lagunovsky and Ablameyko [93] extract linear

primitives from lines, group them and perform quadrangle detection by analysis of the

distance of line endpoints towards their hypothetical intersection. Li [96] computes edges

based on the analysis of smoothed images among all color channels. A minimum bounding

box is estimated for each rectangle candidate using exhaustive search (rotation of the

support region), which is verified by considering the support in a local neighborhood.

Besides, there are approaches formulating the detection of rectangles in a probabilistic

framework using evidence gained through the detection of line segments [101, 112].

2.3.2 Document Classification

Document classification can be seen as a preprocessing step for the subsequent authenti-

cation of a document. The goal is to replace or facilitate the selection of the document

class by the human operator, giving a list of labels with decreasing relevance.

In general, documents can be represented in terms of their textual content, their vi-

sual appearance or their layout. The documents considered within this thesis typically

have non-uniform and feature-rich backgrounds, with a varying amount of text and other

elements. For ID-documents, a reasonable amount of static and dynamic text is present,

including face images and possibly visual security features. However, banknotes have very

little text (e.g., serial number) printed on them and often pose less obvious security fea-

tures. Consequently, it is reasonable to focus on a robust and efficient classification based

on the overall appearance instead, possibly fusing additional textual or layout information.

Local Features: Objects captured with mobile phone cameras may differ strongly in ap-

pearance, when compared to images obtained in a controlled environment. Consequently,

local image features are a reasonable choice for representation, abstracting from custom

acquisition conditions. Local image features typically require initial keypoint localization

and can be divided into two broad groups. While the first group can be represented as a

feature-vector (e.g., SIFT [105], SURF [11]), the second group is computed from pixel dif-

ferences and stored as a binary string. Binary feature descriptors like BRIEF [20], ORB
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[143], BRISK [94] and FREAK [2] can be more efficiently computed and matched. A

recent approach called BinBoost [162] finds a low-dimensional, but highly discriminative

binary descriptor using supervised learning. The resulting descriptors feature accuracy

comparable to floating point descriptors.

Recognition with local features can be realized by feature matching (e.g., based on

distance computations). Optionally, the spatial layout can be verified by a suitable model

(e.g., robust homography computation using Random Sample Consensus (RANSAC) [46]

for the planar case). Chen et al. [29] compute SIFT features of bank forms on a regular grid

and use a kd-tree to approximate distance computations for classification. They use 91

classes with only five training samples each, still giving a classification rate of over 99%.

In case of a large amount of samples, features can be quantized using a vocabulary of

visuals words obtained by clustering all feature descriptors (Bag of Words (BOW)) [149].

Augereau et al. [6] apply the BOW model to visual and textual features with subsequent

classification of codeword histograms by SVMs. In order to improve the overall result,

they train another SVM with the probabilistic output of the two individual SVMs. They

classify 1925 documents from a production chain into one of 12 classes, using just five

samples for training. They state that fusion in general gives equal or better results than

a single classifier.

However, the vocabulary can become very large, making both storage and retrieval

infeasible. By hierarchically clustering of the available features, the BOW model is appli-

cable to problems of larger scale, employing an initial classification [123]. Images are clas-

sified using a suitable scoring scheme (e.g., Term Frequency-Inverse Document Frequency

(TF-IDF)). Together with subsequent geometric verification of candidates obtained from

the hierarchical BOW model, this setup can be used for large-scale mobile recognition of

various objects (Mobile Visual Search). Performance can be further enhanced by taking

into account the context of local features, but this comes at the cost of increased memory

consumption [177]. Initial results obtained by the vocabulary tree may be improved using

tree-based re-ranking as an additional step, before performing geometric verification [163].

With a larger number of classes, the dominant factor is the size of the inverted index in

the vocabulary tree, which can be compressed [27]. Tsai et al. [166] perform mobile visual

search supported by text detection. They identify the title, rectify it and extract the text.

This also gives an affine model that can be used to constrain the region of interest and the

orientation during the matching stage of geometric verification. Using documents with

a large amount of text, the true-positive rate is increased by up to 50%. In later work

Tsai, et al. [165] perform mobile visual search on a variant of SIFT computed from HOG

information originating from a word patch. They evaluate the approach on a synthetic

database of word patches. Although not requiring an OCR-step or dictionary look-up,

they achieve similar performance.

Other Approaches: Besides using local features, there are other approaches to classify

documents based on their appearance, text information or layout. Gao et al. [49] extract
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a dendrogram of MSER regions, roughly corresponding to physical parts of the document.

They create a histogram of region pairs encoding the structural relationship and use TF-

IDF for classification. In an evaluation containing images of 4,109 invoices from 249

providers, their approach is able to outperform traditional BOW methods. Usilin et

al. [167] perform visual appearance-based document classification using modified Haar

features [172]. They use only rectangular features and remove the cascade structure, in

order to differentiate between five classes of official documents. They are able to achieve

a classification rate of 94% using a large amount of training samples.

Van Beusekom et al. [168] perform layout-based classification using pairwise

distance measurements between bounding boxes of layout elements. In a subsequent

graph-matching step, an optimal assignment is computed and used for the classification

of medical journals. While only in 69% of the test cases, the type of the journal was

classified correctly, the type of the overall layout was classified correctly in 92% of all

cases. Layout-based classification of documents is considered by Cesarini et al. [23]. They

use OCR to obtain a set of regions, which are initially represented as a tree-structure

and converted into a fixed-size representation for classification.

Besides, there are several approaches targeting the retrieval of documents containing

mainly text [40, 99]. Considering the spatial layout of words in a hashing approach, good

retrieval performance can be achieved even for large datasets [120, 156]. This setup is

even suitable for tracking, thus, enabling the augmentation of a document. Toyama et

al. [161] use this approach for image-based document retrieval in an interactive system.

They combine it with a wearable eye-tracker and a see-through head-mounted display to

determine the region on the document where the user is looking. This allows to automat-

ically retrieve additional information while reading a document and to augment it. They

demonstrate the usefulness of the system within a user study, automatically augmenting

translations of words onto a document.

Kunze et al. [90] propose an approach for recognizing the type of a document which

a person is reading, using an eye tracker. From fixations and saccades, gaze features are

computed using a sliding window, and classified with a decision tree. They evaluate the

approach with Japanese documents, and succeed in determining the document type (5

classes) in 99% of all cases, provided that the user is known. For an unknown user, the

accuracy drops to 74%.

2.4 Text Detection and Recognition

Reading text on arbitrary documents with camera phones is very different compared to

processing office documents with a scanning device. ID-documents and banknotes have

very diverse backgrounds. In the absence of prior information, the task of text detection

and recognition on such documents is actually similar to processing text in natural scenes.
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2.4.1 Overview

Standard CV techniques for text detection can be mainly categorized into texture-based

and component-based approaches. In texture-based approaches, sliding windows and a

subsequent classifier are used for robust detection. However, the computation of text

masks for an OCR stage may require additional effort. Component-based approaches

tend to compute single characters through segmentation and group them together to form

lines or words. Relevant approaches are often rather efficient and provide text masks as

a by-product. However, such bottom-up approaches require region filtering operations for

improved robustness.

Liu and Sarkar [102] detect candidates for text regions with local adaptive thresholds

(binarization). They perform a grouping step considering geometric properties, intensity

and shape. Zhu et al. [185] segment and detect text using binarization and subsequent

boosting in a cascade for reduction of runtime. Liu et al. [100] use an extended local

adaptive thresholding operator that is scale-invariant. Regions are filtered using character

stroke features and are then grouped using a graph structure. Color clustering is used

by Kasar and Ramakrishnan [82] to produce text candidates. They use twelve different

features (geometry, contour, stroke, gradient) in a filtering stage employing an SVM.

Milyaev et al. [114] state that reasonable binarization is critical for using off-the-shelf OCR

engines. They formulate document binarization in an energy minimization framework to

provide a robust basis for end-to-end text recognition.

MSER is used by Merino-Gracia et al. [110] in a system for supporting visually impaired

individuals. They employ graph-based grouping on filtered regions for the final result.

Donoser et al. [35] use MSER to track and recognize license plate characters. Neumann and

Matas [121] extend MSER using topological information and conduct exhaustive search

on character sequences, followed by a grouping step and SVM-based validation. They

consider careful grouping to be important for getting good results. Gonzalez et al. [3]

combine MSER with local adaptive thresholds and also use an SVM-based classifier for

the detection of characters.

There are several works which use morphological operations to segment text regions.

Fabrizio et al. [43] detect text in street-level images using toggle-mapping and SVM-based

validation. Minetto et al. [115] extended this regarding scale-invariance. In addition, a

HOG descriptor can be added for improved performance [116].

Epshtein et al. [39] exploit the observation of constant character stroke width using a

novel image operator called Stroke-Width Transform (SWT). This approach is based on

the evaluation of opposing gradients on the basis of an edge map. They employ several

filtering operations to obtain words. Neumann and Matas [122] detect text using extremal

regions, which are invariant regarding blurred images, illumination, color, texture and low

contrast. Their approach employs a subsequent classification step (Boosting, SVM).

Saio et al. [144] use Wavelet-coefficients for text detection. Mishra et al. [117] first

detect characters using HOG features and am SVM in a sliding window. They also use a
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lexicon-based prior and combine the available information in an optimization step. Sun

et al. [153] evaluate several gradient images and verify the result using a visual saliency

operator. Yi and Tian [179] compute regions based on gradients and color information.

They propose two different algorithms for grouping, which have a major impact on accu-

racy. Pan et al. [128] follow a hybrid approach by computing boosted HOG features and

binarization with region computation. Opitz et al. [125] perform end-to-end text recogni-

tion by computing a ternary coding of local binary patterns [124] over a sliding window

and use a Convolutional Neural Network (CNN) [17] for character recognition.

The performance of text detection can be improved by employing visual saliency in-

formation. Karthikeyan et al. [81] learn an attention map from several visual saliency

features. This gives a binary map that can be used for text detection using SWT, increas-

ing its performance.

An alternative approach for character recognition and detection is to use local features.

Iwamura et al. [75] robustly match SIFT features of characters using a local RANSAC

algorithm. In this case, the arrangements of local features can be used to roughly determine

the corresponding text region in the input image. Kobayashi et al. [87] propose an anytime

algorithm, which aims to speed up the aforementioned approach by splitting the input

image into cells and prioritizing recognition according to the estimated difficulty of a

character and the regions covered by previous characters. They also support video input

by tracking characters in order to improve the process. By splitting computations into

several threads, a result can be generated once per second on a desktop machine [76].

Matsuda et al. [108] sequentially estimate an affine transformation for each character.

This allows the recognition of characters having only three correspondences.

2.4.2 Mobile Systems

Recently mobile devices have become an interesting platform for text detection and ex-

traction3. Gomez and Karatzas [54] present a solution for real-time detection and tracking

of text suitable for mobile devices. They use MSER for text detection and track groups of

regions with multi-oriented text. The system performs text detection and tracking in sep-

arate threads and automatically merges results, if new information arrives. They require

1 s for text detection and 40 ms for tracking on an off-the-shelf mobile device.

Wang et al. [176] rely on initial user input for text detection and analyze character

stroke width with subsequent refinement through binarization. Fragoso et al. [48] present

a mobile system for real-time translation and augmentation of text, which also requires

initial user input. They first analyze the gradient distribution near the touchpoint to esti-

mate an initial bounding box. Then, the position of a minimum bounding box is computed

using the Hough transform. This can be used to undistort the region. They separate the

background, obtaining a mask for OCR. The system finally sends the extracted text to

3http://questvisual.com
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Google Translate4 and augments the result onto the original region in the image.

2.5 Visualization and User Guidance

Mobile and Handheld AR systems are largely unconstrained setups. Thus, the presen-

tation of information with respect to the real world and guidance for the user deserve

special attention. Reviewing the spectrum of security elements present on documents, the

inspection of OVDs seems to be the most challenging effort. They require considerable

interaction, even when manual inspection is carried out. Since they differ in appearance

depending on the viewing direction and the presence of light sources in the environment,

it is reasonable to guide the user through the inspection process and to give appropriate

feedback.

In literature, there are various works on guiding the user in order to efficiently fulfill

a given task, which greatly vary in the size of the workspace, where the interaction takes

place. Although for document inspection mainly a subset of the human arm reachable

workspace is relevant, we also consider approaches suitable for larger workspaces, given

that they could be adapted for the goals of this thesis.

View Alignment: User guidance can be approached by visualization of the view

alignment error concerning a given reference pose. Examples are surgical scenarios in

telemedicine, where colored augmented coordinates are used for easier navigation of

the end effector [30]. Pyramidal frustums can also serve as a means of guidance for

navigation. This can be seen as a geometric representation of the camera at the time of

capture [150]. This approach is used for real-time visual guidance for accurate alignment

of an ultrasound probe by Sun et al. [154]. After tracking artificial skin features for

probe localization, visual guidance for 6 DoF alignment is provided via an augmented

virtual pyramid. Such a pyramidal representation is also related to the Omnidirectional

Funnel [16], which is useful for calling attention. Bae et al. [9] use visual guidance for

re-photography. They analyze the camera image to determine, if a sufficiently similar

image was captured. Then, three visualizations are presented for alignment. First,

a 2D arrow indicates the required direction of movement w.r.t. a top-down camera

viewpoint. Second, this information is also indicated concerning a back-front camera

viewpoint. Finally, they visualize edges for adjustment and feedback of the current

camera orientation. Heger et al. [69] perform user-interactive registration of bone with

A-mode ultrasound. The pointer is mechanically tracked, and a 2D-indicator is used to

provide visual feedback about the deviation from the surface normal during alignment of

the transducer to the local bone surface.

4translate.google.com
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Constrained Navigation: Alternatively, guidance can be achieved by visualization

of a constrained navigation space. Shingu et al. [148] create AR visualizations for re-

photography tasks. They use a sphere as a pointing indicator along with a half-transparent

cone having its apex at the sphere as an indicator of viewing direction. Once the viewpoint

is inside the cone, it is not visible anymore. The sphere then changes its color when it is

fully visible. This corresponds to a valid recording position. Sukan et al. [152] propose

a wider range of look-from and look-at volumes for guiding the user to a constrained

set of viewing positions and orientations, not counting roll (ParaFrustum). This can be

realized as an in situ visualization or via non-augmented gauges. In the in situ variant,

the transparency of volumes is modulated, depending on the distance and orientation of

the current pose. In addition, the general representation of the look-at volume is also

changed.

2.6 Discussion

Mobile Augmented Reality has a broad track of research and finally found a widely ac-

cepted platform in off-the-shelf mobile devices. Real-time tracking using natural features

is feasible on mobile phones and can, in principle, be exploited for building advanced doc-

ument information systems. Document inspection by means of CV focuses on banknotes,

but much less on ID-documents or OVDs. Mostly static setups are reported in literature,

which target automatic operation. Although they can rely on special hardware and may

provide reasonable accuracy, it is not desirable to do without human reasoning [51].

A prerequisite for AR-based inspection is the determination of the document class,

which is not trivial to be realized efficiently on the device, given variations in person-

alization, a large amount of classes, but only a small amount of samples for training.

Feature-based approaches give promising results, but, so far, they have not been shown to

provide a feasible solution for document classification on mobiles.

Within the broad range of prior art on the detection and extraction of text in natural

scenes, there are also mobile solutions. However, the requirements in the context of mobile

document inspection are different, in that they call for efficient and accurate end-to-end

text recognition, which, in general, cannot rely on a dictionary (e.g., MRZ, serial number).

To the best of our knowledge, there is no mobile approach on the detection or verifica-

tion of OVDs. Due to their nature, repeatable recordings from several viewing directions

must be carried out. Given appropriate lighting conditions, a reasonable strategy for

comparing the visual appearance is required. From the perspective of the user, such an

approach may require either strict alignment with a given viewing direction or continuous

sampling in a constrained space. As literature is limited in this regard, there is room for

a custom user-guidance and visualization approach for the inspection of such elements.
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A key ingredient for document inspection is the knowledge about the class of the

document in question. Only with this knowledge, suitable reference information can be

indexed for subsequent tracking and verification steps. Knowledge about the document

class can be gained through an initial classification step. Although the classification can

be performed manually by the user, in the context of inspection using Mobile AR, an

automatic classification from one or more images of the document in question is desirable

for reasons of efficiency and usability.

In a typical Mobile AR pipeline, target recognition and tracking operate on a number

of templates known before the start-up of the the application. However, issues arise,

when attempting to process personalized documents such as passports or ID-cards in such

a setup. Large changes in appearance due to personalization impede robust tracking.

Consequently, a standard pipeline for Mobile AR cannot serve as a basic building block

for applications targeting document verification.

3.1 Contribution

In contrast to the state-of-the-art, we propose to extract a suitable template directly from

the live video stream provided by the built-in camera of mobile devices. So, tracking the

document can take place immediately, and the task of determining the actual class of the

document is treated as a separate step, which is carried out on the extracted region of the

image containing the document (see Figure 3.1).

29
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Figure 3.1: Overview of the proposed pipeline for tracking documents with arbitrary personal-
ization.

In the following, we propose efficient solutions for both document detection and clas-

sification, which can be computed instantly on off-the-shelf mobile hardware. Besides

improving performance regarding tracking and classification, this setup also minimizes

undesirable delays and avoids legal issues, which would arise, when performing these steps

remotely on the original input images. Even if only a representation needs to be trans-

mitted to the server, this is not desirable for reasons of responsiveness and connectivity.

Document detection is handled by a custom solution designed for mobile application,

which is not limited to documents, but can be used for an arbitrary rectangular region

[63]. For classification, a client-side solution for mobile visual search is introduced, which

is modified to allow efficient operation on off-the-shelf mobile devices [64]. In an extensive

evaluation, the latter is shown to provide reasonable classification performance on person-

alized and non-personalized documents, while both computational complexity and storage

requirements remain manageable for off-the-shelf mobile devices.

3.2 Document Detection

Printed documents, posters, a deck of cards, the screen of a computer, a window or an

image projected onto a wall are all planar objects which are bounded by rectangular bor-

ders. Consequently, these are interesting targets for use within mobile AR applications

employing NFT to obtain the pose of a target in real-time. Typically, one or more rect-

angular image targets are delivered with an AR application. Consequently, the targets

cannot represent the effects of operating conditions and camera settings on appearance

occurring at runtime.

In document inspection, it is required to track a variant of a known target, due to

varying personalization. The resulting visual gap degrades tracking performance. Since

the entire set of instances is not known, they cannot be deployed with the application,

and even if that was the case, the storage requirements would make deployment rather

difficult.

This can be solved by instantly creating a tracking target directly on the mobile device

by analysis of the video stream. This enables more robust tracking and the use of the

extracted target for subsequent image processing tasks, instead of the full frame image.

We propose a method for localization and rectification of a dominant rectangular re-

gion within an arbitrary image. This approach can deal with perspective distortion and
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Figure 3.2: Top row: Visualization of the region of interest and tracking of the detected and
rectified document region within a Mobile AR prototype. Bottom row: Since no assumptions
about the contents of the region are made, the proposed approach has several other use cases.

high-frequency structures (see Figure 3.2). We show the success of the approach as well as

its applicability to mobile devices in an extensive evaluation on real hardware (see Section

3.2.2). We obtain a significant increase in tracking performance, and are able to substan-

tially improve the recognition rate of an exemplary visual search application by processing

a rectified image obtained from the detected rectangular region.

3.2.1 Localization of Rectangular Structures

Rectangle detection using the Hough transform is not robust regarding perspective dis-

tortion and harms efficiency, due to the high dimensionality of the accumulator space.

We also noticed that vanishing point estimation often fails on typical images showing

rectangular tracking targets which do not contain a lot of textual information. Using

image primitives resolves these issues. In contrast to previous work [8] [97], we employ

adaptive edge detection, filter high frequency noise and deal with a reasonable amount of

perspective distortion.

To ensure broad applicability, assumptions on the content of the background image

as well as the region to be extracted should be avoided. However, we limit ourselves to

planar rectangular regions that are visually separated from the background through their
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bounding edges, lying within a region of interest (ROI). This is a trade-off to obtain an

algorithm that is computationally feasible on mobile platforms and to improve robustness.

Figure 3.3: Outline of the algorithm: Lines are detected from a filtered edge-map. Then, hy-
potheses are built from pairs of lines. These are verified using the support on the original edge-map.
Finally, the distorted rectangle region is rectified.

3.2.1.1 Algorithm

Initially, we compute an edge map by applying a Canny edge detector [21] with automatic

threshold selection (see Figure 3.3 for an illustration of the steps involved). After filtering

text-like structures, we perform line detection to obtain all possible lines within the ROI

[37]. We group each two lines having a difference in direction of less than 14 degrees

together. Then, pairs of line bundles are selected, giving a list of hypotheses for rectangular

regions, each consisting of four lines. In order to reduce the amount of initial hypotheses,

filtering is applied by intersection of lines and verification that the corners lie within the

ROI. This is a critical step that improves robustness as well as efficiency. Finally, the

support for each hypothesis is computed on a dilated edge image, which forms the basis

for ranking. This is to account for imperfect fitting and a certain amount of curvature.

The result is a ranked list of hypotheses, from which the final candidate is taken. This

corresponds to the most dominant rectangular region regarding the ROI.

If the region is to be used as a tracking target, we assume it to be rectangular, so

that it can be automatically rectified. We compute the dimensions of an undistorted

rectangle by averaging the pixel width and height of the corresponding hypothesis. With

this information, a homography can be computed for rectification.

3.2.1.2 Text Filtering

High frequency structures can lead to rather strong, but false responses in line detection.

Consequently, we perform filtering of the edge image before line detection (see Figure 3.4).

This improves robustness as well as runtime of our algorithm by reducing the amount of

hypotheses. We noticed that most noise comes from small text-like regions in the input

image. Consequently, we compute a rough estimate of such locations by a region-based

approach and filter them. We first segment the image using adaptive thresholding [146]

and then label it for accessing individual regions including their contours [26]. Each

region is then assessed according the criteria aspect ratio, relative height and the amount

of pixels with respect to their bounding boxes. We compute each criterion regarding the

dimensions of the ROI and apply a suitable threshold for making the final decision on

a region. Keeping only the contours of the rejected regions within a mask, we apply a
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dilation to account for inaccuracies in segmentation. The edge map of the image is then

thinned out according to the obtained text mask, before line detection takes place.

Figure 3.4: Influence of filtering text-like structures on line detection: Result on plain edge map
(left). Result on filtered edge map (right).

3.2.1.3 Adaptations for Mobile Phones

As the scenario for image acquisition is largely unconstrained, an automatic selection of

parameters is desirable, especially for edge detection. However, the flood fill operation

used for hysteresis thresholding in the Canny edge detector was highly inefficient when

run on mobile devices. Switching to a stack-based implementation gave a more than 100-

fold speed-up compared with a standard implementation. In addition, line detection was

a major bottleneck. We achieved a 4-fold speedup by using look-up tables and reducing

the resolution of the accumulator space. This allows instant processing on current mobile

hardware.

3.2.2 Experimental Evaluation

We first assess the general performance of our algorithm concerning accuracy and run-

time. Then, we investigate the performance of the extracted target in NFT. Lastly, we

demonstrate that the approach can be beneficial in a visual search scenario. We use the

Samsung Galaxy S2 smartphone for all relevant parts of this evaluation (ARM A9-based

dual-core CPU up to 1.2 GHz, 1 GB of RAM, 8 MP camera).

3.2.2.1 Accuracy and Runtime

We took 78 images (640 x 480 pixels) of various categories of rectangular items (book

covers, business cards, posters) and manually annotated the rectangle corners. For lower

resolution images, we downscaled the ground truth locations with the images.
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For assessing the quality of localization, we compute correspondences between the ex-

tracted and manually annotated corners and the distances between corresponding corners.

We define a relative error metric,

e =
∆dexmax

drefmin

(3.1)

where ∆dexmax denotes the maximum error in location over four corners, and drefmin

denotes the minimum edge length for the annotated quadrangle. According to our results,

the relative error decreases w.r.t. the input resolution (see Figure 3.5).

In practice, we found e = 0.035 to be a suitable upper threshold indicating successful

detection of a target that is usable for all kinds of applications. Nevertheless, the target

can be used for AR applications even with a larger relative error.

We evaluated the runtime performance of our algorithm on a mobile device. Figure

3.6 shows the individual processing steps and overall processing time for different input

resolutions. Note that the time consumed for the hypothesis filtering step at 320 x 240

pixels is around twice the time required by the two higher resolutions. This can be

attributed to merging of high frequency structures, which cannot be covered by our region-

based text filtering. Overall, we chose an input resolution of 480 x 360 pixels for the

remaining experiments, as it represents a good tradeoff between accuracy and runtime.

In specific cases, the lowest resolution still performs adequately, which allows to have

near-interactive frame rates on the tested device.

3.2.2.2 Effect on Natural Feature Tracking

We compared tracking performance of a digital representation with that of an extracted

target in three conditions: indoor, outdoor and a very low light environment. For this

purpose, we implemented a NFT pipeline on mobile phones. We use BRISK [94] as a

detector/descriptor in the computation of the initial pose and hand over this information

to a patch-based tracker [174]. We process 60 video sequences (640 x 480 pixels) of posters
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Figure 3.5: Mean relative error per category regarding the input resolution.
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Figure 3.7: Tracking performance w.r.t. environment for digital and extracted targets (left);
Recognition rates for visual search using the full image and the extracted region (right)

and books and determine the percentage of successfully tracked frames (track-ratio) with

respect to all frames, when using the digital image or a target image extracted from the

video (see Figure 3.7). We consider tracking to be successful, if at least thkp percent of

all visible keypoints match regarding a given NCC-threshold thNCC . We use thkp = 10

percent and thNCC = 0.68. In all situations, the extracted target gives a higher ratio of

tracked frames. According to our experiments, the expected gain can be more than 25%,

depending on the environment of operation.

Similar to tracking, the performance of image recognition can also be improved by

processing rectified input images (see Figure 3.7). It must be noted that the business card

category is particularly difficult for traditional recognition, because it contains several ex-

amples having the same layout but with different personalization. In this case, processing

the extracted and rectified image gives a considerable gain in recognition rate.
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3.3 Document Classification

The classification step suitable for use in a mobile verification pipeline needs to cover a

large number of documents. Still, results must be delivered instantly, despite running

locally on the mobile device. This poses additional challenges regarding computational

complexity and memory requirements.

In the following, document classification is based on a mobile visual search pipeline,

running entirely on the client. Current remote services for visual search have large de-

lays with only little dependence on image resolution (see Section 3.3.5.6). Consequently,

it is interesting to investigate visual search from a client-side perspective. We choose a

traditional vocabulary tree pipeline for reasons of efficiency, extensibility and popularity.

However, we neither transfer the image nor descriptors to a server and perform all process-

ing locally on the mobile device. In particular, the proposed approach contains a number

of adaptations to allow instant recognition, when using off-the-shelf mobile devices, im-

proving both accuracy and delay over remote processing.

Since there is no suitable public database available for evaluation, the mobile visual

search part is initially evaluated on established databases using full frames. This allows

to conduct a comparative evaluation involving a commercial recognition service regarding

accuracy and runtime. Then, a series of custom datasets containing rectified documents

with different personalization is evaluated with the proposed approach in a separate step.

Disclaimer: It must be noted that the main goal of this part of the thesis was to create

a basic building block, which, due to the applied nature of the topic, is required to be able

to conduct research in other areas (see Chapters 5 and 6). Thus, we do not aim to fully

explore or extend the solution space for mobile document classification, but we provide a

client-side solution, which fulfills the aforementioned constraints and compares favorably

with a commercial server-side solution.

3.3.1 Mobile Visual Search

Visual search is a way of obtaining information about objects in the proximity of the user

by taking an image of the object and using the image to index into a database of known

objects. The aim of previous work on mobile visual search was mainly to reduce the amount

of data that needs to be transferred to a server performing the actual search operation

[53] [79]. This applies to the standard pipeline using the vocabulary tree, but also to

alternative approaches, which convert the feature-vector to a binary representation [183]

or perform hashing [68]. Compressing keypoint locations [164] or using special descriptors

further help to reduce transmission time [24]. Still, the initial latency caused by current

mobile networks may degrade usability, which is critical in a mobile context.

With advancements in processing power, screen size and connectivity, mobile devices

such as smartphones or tablets have become an interesting platform for this kind of service.
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It is important to note that, in this case, mobile visual search may replace standard input

methods up to a certain degree. This means that information retrieval may take place

considerably faster than in a traditional keyboard or touchscreen-driven setup. Today,

mobile visual search is available through services like Google Goggles1 or kooaba2, dealing

with large numbers of categories or classes such as products, logos, printed text, but

also places and faces. While the former is available as an application on major mobile

platforms, the latter can be queried through a web API, processing a given image.

Prior art closest to the proposed approach is given by Henze et al. [70]. They use

heavily optimized local features that are known to sacrifice scale-invariance. The authors

only provide a user study on the performance of the system that deals with a rather

small number of images. In contrast, we modify selected parts of the pipeline to account

for special requirements of mobile setups such as limited processing power and storage

capabilities, but also to allow better scaling to a larger number of images. We provide an

extensive evaluation of standard datasets with current-off-the-shelf hardware. Thus, we

describe a system that is half-way between an online visual search solution and a real-time

system. Performing the search locally on the device allows for instant responses, while we

are able to limit the memory consumption on current off-the-shelf smartphones for image

databases of reasonable size.

3.3.2 Considerations and Approach

On a general level, a major goal of performing mobile visual search on the client is to reduce

the large round-trip time of current server-side solutions. Runtime is a very critical factor

for mobile applications, and failure to deliver in this area may lead to immediate rejection

by the user. Due to constraints in processing power and memory, it is not possible to

duplicate a conventional server-side solution onto a mobile device. This also means that

the scale of a mobile database will be considerably smaller than a server-side system, as

all information needs to be stored on the device itself. The size of applications packages

is also critical, as they are typically downloaded by the device over 3G or Wi-Fi networks.

Consequently, we need to keep both runtime and storage requirements at a reasonable

level, so that the problem remains computationally feasible on current mobile devices.

With these considerations in mind, we first implemented a suitable pipeline for visual

search and ported it to mobile devices. We then added various modifications so that the

pipeline can be used in a realistic scenario employing a large number of image classes or

categories, still working in instant time entirely on the mobile device.

3.3.3 Overview

Our pipeline largely follows the standard concept for visual search. We perform keypoint

detection and feature extraction on an input image resized to a desired maximum dimen-

1http://www.google.com/mobile/goggles
2http://www.kooaba.com
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Figure 3.8: Overview of a local visual search pipeline: Image descriptors are extracted and
initially classified using a vocabulary tree built from suitable training data. The result is sub-
sequently refined during geometric verification. Dotted lines denote the path of data during the
training phase.

sion and hand over this data to a vocabulary tree structure for initial classification. For

reasons of efficiency, we perform flat scoring at the leafs. In this step, we pipe each feature

descriptor down the tree, accumulate normalized visit counts stored during training for

each class and weight them by the corresponding entropy. The final result is reported as

the index which corresponds to the maximum of the accumulation vector.

We improve our results in a subsequent verification step with a suitable number of

candidates (see Figure 3.8). We serialize both tree data and keypoint/feature descriptor

data created during training. While the first is kept in main memory for reasons of speed,

the latter is read on demand from flash memory during geometric verification. Since we

mainly target planar objects in this work, we employ robust homography estimation using

RANSAC to re-rank the list obtained from the vocabulary tree [65].

3.3.4 Modifications for Mobile Application

We made various enhancements to the standard approach for visual search to improve both

runtime and memory requirements. Descriptor computation is a critical task in this type

of application, as it tends to have a comparatively large runtime. We modified the current

implementation of OPEN-SURF [42] by speeding up integral image computation, but also

by employing modifications in the final step of descriptor computation. More specifically,

we use a grid-size of 3x3, for 36 dimensions in the feature vector. This yields considerable

savings in runtime during descriptor computation and geometric verification, but also in

terms of storage. Memory consumption is critical, as it influences both installation time

and startup time. We reduce requirements in main memory (tree structure), but also in

flash memory (keypoints/descriptors) by using half-precision float values throughout the

Figure 3.9: Pipeline for compressing local features: Keypoint locations are compressed into half
precision values and descriptors are linearly quantized with optional PCA.
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pipeline. In particular, this affects keypoint data and vocabulary tree data (see Figure

3.9). In addition, we compress descriptor data by linear quantization into a single byte per

dimension. Optionally, we perform PCA [130] to reduce the number of initial dimensions

before linear quantization. We also employ compression of inverted index data by recursive

integer coding [118], targeting specifically the burden on main memory caused by a large

number of image classes. We decompress all data on-the-fly during program execution,

working solely on the mobile CPU. We evaluate this client-side pipeline w.r.t. runtime and

memory consumption in detail in the next section.

3.3.5 Evaluation for General Purposes

We first evaluate the local pipeline w.r.t. recognition performance, runtime and memory

requirements directly on a Samsung Galaxy S3 mobile phone using established databases.

This is an off-the-shelf smartphone with an ARM-Cortex A9 CPU (up to 1.4 GHz) and 1

GB of main memory running Android. Information about the performance on this device

allows to estimate behavior on most smartphones or tablets currently in use. We evaluate

recognition performance using the commercial recognition service kooaba. This allows to

compare the behavior of our pipeline to a state-of-the-art solution for image retrieval.

3.3.5.1 Metrics and Datasets

In general, we report recognition rate (relative amount of candidates classified correctly),

runtime (descriptor computation, vocabulary tree, geometric verification) and the size of

serialized data for the vocabulary tree and keypoints/descriptors. If not noted otherwise,

runtime is given in milliseconds (ms) and memory usage is reported in megabytes (MB).

Based on informal experiences with acceptable recognition latency, we set the upper run-

time limit of a local pipeline at approximately 500 ms on current off-the-shelf devices.

We use several datasets in our evaluation (see Table 3.1). The posters dataset was

created mainly to be able to evaluate behavior with various image transformations and

serves for initial testing. The Missouri [177] and in particular the Stanford [25] dataset

represent typical objects and operating conditions encountered in mobile visual search.

Especially the latter is interesting in our context, as it contains more than 1000 classes.

Finally, the UK-Bench3 dataset is included here to be able to evaluate the behavior of the

pipeline with a larger number of image classes. This dataset is not very representative

for mobile visual search, however, as it also contains different views of non-planar objects,

sometimes captured on very textured background. Since there is no test set given, it

requires computation of a different metric for evaluation (uky-score).

Although the scale of these experiments is relatively small compared to server-side sys-

tems from literature, it seems to be a common practice to create larger datasets by insertion

of an arbitrary amount of distractor images. In contrast to our evaluation methodology,

3www.vis.uky.edu/~stewe/ukbench
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Name Categories Images Light Clutter Distortion

Posters 11 11 x x
Missouri Mobile 5 400 x x x
Stanford MVS 8 1193 x x x

UK-Bench 2550 10200 x x

Table 3.1: Most datasets used in our evaluation represent typical operating conditions for mobile
visual search. The UK-Bench dataset allows evaluations of larger scale.

R D P F T V Sum
train/test [ms] [ms] [ms] [ms]

320/320 SIFT 0.8170 1269 21 180 1470
320/320 SURF 0.8568 604 9 58 671
320/320 OSURF 0.7829 208 8 59 275
320/320 OSURF36 0.7784 126 4 43 173
320/480 OSURF36 0.8409 208 6 34 248

Table 3.2: Local pipeline: Performance and runtime of various local features on the posters
dataset: R...resolution, D...type of feature, P...recognition performance, F...feature computation,
T...vocabulary tree, V...geometric verification

a comparison is much more difficult in these cases.

3.3.5.2 Evaluation of the Local Pipeline

We first evaluate the system to determine suitable parameters for feature descriptors and

geometric verification. Then, we determine the influence of compression on recognition

rate, runtime and memory consumption. In a final step, we evaluate our pipeline with a

considerably larger number of classes. This allows to come up with a clear statement on

performance and practical usability on current mobile hardware.

3.3.5.3 Descriptors and Geometric Verification

We evaluated the influence of the number of candidates used in geometric verifcation on

recognition rate and runtime for the posters dataset (see Figure 3.11). We evaluate various

feature descriptors for use in our pipeline with the posters dataset (compression switched

off). In order to facilitate the comparison of results, we also evaluate SIFT and SURF.

We use a maximum extension for the input image of 320 pixels and limit the maximum

number of keypoints to 256. Geometric verification is enabled, but configured to just use

one candidate. From Table 3.2 and Figure 3.10, it is evident that we obtain reasonable

recognition performance with the evaluated feature types. However, runtime of certain

setups such as SIFT or SURF is prohibitive for current mobile devices considering our

runtime budget of approximately 500 ms. Our modified OPEN-SURF descriptor with
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Figure 3.10: Local pipeline: Performance and runtime of various feature descriptors on the
posters dataset: Our modified SURF descriptor provides reasonable performance but takes up less
runtime compared to the unmodified variants.

Figure 3.11: Local pipeline: Effect of geometric verification on the posters dataset: Performance
saturates around three candidates

just 36 dimensions takes only a fraction of runtime compared to SURF. However, the

recognition rate is around 10% lower. As runtime is comparatively low, we can also

process images of higher-resolution (e.g., 480 pixels). In this case, we can roughly match

the recognition rate of SURF. Still, runtime is less than 50% compared to SURF. In

particular, runtime for geometric verification is shorter, which is also due to the reduced

size of the descriptor. So, it is possible to use more candidates for a given runtime budget.

We see that runtime scales approximately linearly in the number of candidates. Similarly,

recognition rate improves with an increasing number of candidates. Although performance

seems to saturate, starting with three candidates for the posters dataset, we choose to use

six candidates for our modified OPEN-SURF descriptor, as runtime is still around 500
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N D P F T V T F
[ms] [ms] [ms] [MB] [MB]

Post. SURF 0.8568 604 9 58 0.98 0.79
Post. OSURF36 0.9204 212 6 135 0.49 0.41
Post. OSURF36C 0.9329 211 16 136 0.15 0.12

Miss. SURF 0.6751 742 15 68 33.2 27.5
Miss. OSURF36 0.8623 248 9 180 16.9 14.6
Miss. OSURF36C 0.8759 225 26 151 5.14 4.61

Stanf. SURF 0.6550 640 14 58 84.1 72.2
Stanf. OSURF36 0.6940 216 9 134 36.4 33.5
Stanf. OSURF36C 0.7000 216 26 134 11.1 10.5

Table 3.3: Local pipeline: Effect of compressing keypoints and descriptors: N...name of dataset,
D...type of feature, F...feature computation, P...recognition performance, T...tree, V...geometric
verification

ms. Based on our runtime budget, we can only compare the performance of our modified

descriptor to SURF using a single candidate for verification. In Table 3.3 and Figure 3.12,

we present the results of this setup with the Missouri and Stanford datasets. Compared

with the baseline, our modified OPEN-SURF descriptor offers 5%-20% better performance

in this setup, but takes up only half of the runtime of SURF. Still, memory requirements

for tree and descriptors are comparatively high, especially for the Stanford dataset.

3.3.5.4 Compression

In order to tackle increasing memory requirements, we compress both descriptors and the

tree structure. The effect of these measures can be seen in Table 3.3 and Figure 3.12.

Our compression efforts significantly reduce memory requirements, while the effect on

runtime is negligible. By employing the proposed modifications, up to 85% of storage space

can be saved over standard SURF. Interestingly, there is a small increase in recognition

performance when compression is enabled. This may be due to a reduction in noise caused

by our quantization scheme.

3.3.5.5 Scalability

In this experiment, we determine large-scale performance on the UK-Bench dataset. We

perform this test on a Samsung Galaxy S3 smartphone and enable compression of key-

points and descriptors, but also the inverted index stored in the vocabulary tree. From

Figure 3.12, it is evident that our pipeline scales well concerning recognition rate, runtime

and main memory consumption. It is possible to manage more than 10000 classes with

the current pipeline, using less than 110 MB of total storage space. Only a fraction (ap-

proximately 50 MB) of data needs to be loaded into main memory. On the one hand, the

overall scores obtained in this experiment are lower than those reported in literature, as
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Figure 3.12: Local pipeline: Left and middle column: Detailed evaluation of compression on
various datasets: Compared with standard SURF, up to 85% of storage space can be saved at
negligible runtime overhead and slightly increased performance. Right column: Testing scalability
with the UK-Bench dataset on a Samsung Galaxy S3 mobile phone. Our pipeline scales well
concerning recognition rate, runtime and main memory consumption.

our parametrization is targeted towards practical applicability on mobile devices. On the

other hand, it does not seem reasonable for this kind of application to train a class for

each view of an object. As current mobile devices feature 1-2 GB of main memory and

at least 16 GB of flash storage, this purely client-side approach is estimated to be able to

handle an amount of images that is around 1-2 magnitudes higher.

3.3.5.6 Comparison with kooaba

For this experiment, we uploaded relevant reference images into a single group and deac-

tivated all images not relevant to the current experiment or dataset. We then performed

queries over a Wi-Fi internet connection. This can be considered a very optimistic setup

compared to current mobile phone networks.

According to initial tests, the query resolution has little influence on runtime and

recognition rate. We scale down query images to a maximum extension of 320 pixels,

which is rather common for mobile applications. From Figure 3.13, we see that the posters

dataset performs best (approximately 0.7) on kooaba. With the Missouri and Stanford

datasets, performance drops by around 10%. Compared to our client-side approach, overall
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Figure 3.13: Comparison of server-side mobile visual search (kooaba) and client-side mobile visual
search: Our client-side solution offers significantly better recogniton and runtime performance.

performance per dataset is significantly lower (5-25%).

However, the client-side approach has lower performance for the print category of the

Stanford dataset (see Figure 3.14). As text in general features many keypoints, this drop

is likely to be caused by the imposed keypoint limit of our approach. It must be noted

that the performance for the landmark category is low for both approaches. This may be

caused by the fact that the publicly available training set consists of several images of the

same object, each having a separate class. This is not a common application scenario for

visual search, however.

For this experiment, runtime of kooaba is around 1500 ms, where the Missouri dataset

has a higher runtime than the other two (see Figure 3.13). For our setup, the bottleneck

currently seems to lie in the recognition engine itself, rather than connection speed.

All in all, the client-side solution offers significantly better recognition performance

on the evaluated datasets compared with a state-of-the-art server-side solution. However,

the latter performs better in the print category. A local pipeline giving a result in ap-

proximately 500 ms, can, therefore, compete in recognition performance with a server-side

solution, which takes three times the runtime.

3.3.5.7 Mobile Prototype Application

We built a mobile prototype for Android smartphones and tablets, demonstrating client-

side mobile visual search, but also server-side visual search using kooaba (see Figure 3.15).

So, it is possible to compare performance of these approaches side-by-side on current off-

the-shelf smartphones. Similar to popular search engines, we give a list of candidates in
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Figure 3.14: Detailed evaluation for the local pipeline and kooaba: Top row: Local pipeline,.
Bottom row: kooaba. Our client-side approach delivers significantly improved recognition perfor-
mance for all datasets and categories except print (keypoint limit).

the form of preview images, which may be activated to trigger a web-based search in order

to get additional information.

We also use our client-side module for visual search to extend the amount of realis-

tically usable tracking targets within the Vuforia SDK4 for mobile Augmented Reality.

In this case, we can instantly select a matching tracking dataset without requiring user

intervention or costly server-side recognition. We successfully tested this setup with sev-

eral hundred image targets. Due to limitations in the SDK, we cannot provide a detailed

evaluation, however.

3.3.6 Evaluation for Document Classification

The aforementioned implementation of client-side mobile visual search can be used for the

classification of documents. In the following, a document class is defined by a background

image and generic text attached on top of it. For ID-documents, a unique instance is

created using personal data (e.g., image of the owner, textual data, signature).

In the context of document verification, invariance regarding changes in personalization

4https://www.vuforia.com

https://www.vuforia.com
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Figure 3.15: Mobile prototype: Client-side visual search (top-left). Tracking and augmenting an
image target recognized by client-side visual search (top-right). Fast switching of tracking datasets
with the local pipeline (bottom-left, 268 ms). Slow recognition using the server-side approach
(1984 ms, bottom-right).

and layout is desirable. We carry out an initial evaluation on a small dataset in order to

assess the performance regarding such changes with several configurations (see Section

3.3.6.2). Using the most promising configurations, an experiment of larger scale is carried

out in order to give a more realistic estimate of performance (see Section 3.3.6.3).

In contrast to common approaches in this context, the chosen pipeline allows to process

rectified input images instead of the full input frame. All experiments were carried out on

a standard laptop (Intel Core i7 CPU (2 GHz), 8 GB RAM, Windows 8.1).

3.3.6.1 Datasets

There are no public datasets available for an evaluation with documents involving vari-

ations in personalization and layout (translation, rotation). Thus, we used synthetically

generated data for the major part of the following evaluation. Six datasets of varying

scale were used for training or testing. Most of the testsets contain passports, since these

are very common documents, and this represents a major use case of the overall approach
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ID Name Examples Classes Synth. Content

2 did5c1i 5 5 x passports
4 did5c100i 500 5 x passports (personalization)
5 study11c1i 244 243 passports, ID-cards, banknotes
6 did26c20i 520 26 x passports (personalization)
7 did26c400i 10400 26 x passports (personalization, layout)
8 study11c1im 61 16 passports taken with mobile phone

Table 3.4: Datasets used for the evaluation for document classification performance: Terms in
brackets denote the type of variations present within the data.

ID-Train ID-Test D DD C P F T V MT MF
[ms] [ms] [ms] [MB] [MB]

2 4 SIFT 128 1 0.998 67 27 34 0.70 0.58
3 1 104

SURF 64 1 0.966 132 18 34 0.46 0.39
3 1 132

OSURF 64 1 1 148 17 19 0.26 0.28
3 1 81

36 1 0.984 112 11 17 0.16 0.14
3 1 75

Table 3.5: Initial evaluation of document classification performance: D...type of feature,
DD...dimensions, C...candidates for geom. verif., P...recognition performance, F...feature com-
putation, T...vocabulary tree, V...geom. verif., MT/MF...memory consumption for tree/features

(see Table 3.4). Each dataset has an identifier, which is used in subsequent tables to

identify the source data used for training and testing. Examples are shown in Figure 3.16

to illustrate the degree of variation in personalization and layout present in the data.

3.3.6.2 Initial Evaluation

The goal of this evaluation is an assessment of performance with variable personalization

and changes in layout, using several different types of descriptors. For this purpose, a

small training database with just 5 classes (ID: 2) is used. We limited the amount of

features for training to a maximum of 1024 and for classification to a maximum of 512.

Similar to the results of the general purpose evaluation, the maximum extension of the

input image was fixed to 480 pixels. According to Table 3.5, all tested configurations are

able to deliver reasonable performance, which can be further improved by using a larger

number of candidates in geometric verification.
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Figure 3.16: Exemplary images from document evaluation data: Top row: Different personaliza-
tion. Middle row: Layout variations. Bottom row: Images obtained with a mobile phone.

3.3.6.3 Extended Evaluation

The goal of this part of the evaluation is to assess the behavior of the approach with an

increasing number of classes for training and test.

First the amount of classes used for training is increased to a total of 243 (ID: 5), and

testing is performed with the same dataset which was used in the initial evaluation. The

results are similar compared to the initial test (see Table 3.6). However, the modified

SURF descriptor with 36 dimensions is now able to deliver a perfect result and takes only
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ID-Train ID-Test D DD C P F T V MT MF
[ms] [ms] [ms] [MB] [MB]

5 4 OSURF 64 1 0.998 156 27 21 11.4 10.2
3 1 73

36 1 1 104 15 16 7.4 6.75
3 1 59

6 64 1 0.9980 157 27 19 11.4 10.2
3 0.9980 83

36 1 0.9940 113 16 16 7.4 6.75
3 1 74

7 64 1 0.9666 176 26 23 11.4 10.2
36 1 0.9422 116 15 21 7.4 6.75

Table 3.6: Extended evaluation of document classification performance: D...type of feature,
DD...dimensions, C...candidates for geom. verif., P...recognition performance, F...feature compu-
tation, T...vocabulary tree, V...geom. verif., MT/MF...memory consumption for tree/features

7.4 MB of memory for the tree structure and 6.75 MB of memory for verification data.

When evaluating the impact of different personalization (ID: 6), recognition rates drop

slightly to 0.998 for OSURF or 0.994 for the modified descriptor. When using three

candidates, the perfect result of the previous evaluation is preserved.

Then, all available synthetic data is used for testing, which are 10400 samples (ID:

7). Besides different personalization, also layout variations (see Figure 3.16) are contained

within the data.

All the previous tests gave usable results given a reasonable parametrization, but they

were all using synthetic data. For a more realistic assessment of performance, also images of

real documents captured with mobile phones must be considered. We used all the available

samples and captured them using the Galaxy Nexus smartphone. Then, the document

detection and rectification approach described in Section 3.2 was carried out in order to

get a rectified input image (ID: 8). According to Table 3.7, geometric verification has a

big impact on recognition performance in this case. Considering only a single candidate,

the best result is obtained by the unmodified OSURF descriptor (0.7704). When using

three candidates, the recognition rate is already 0.9344. This is about 10% more than the

modified descriptor. Considering five candidates from the list obtained with the modified

descriptor, the performance is slightly above 0.9. However, this saves several megabytes

of main memory. The progress of the recognition rate with one, three or five candidates is

plotted in Figure 3.17. Since the recognition rate increases when considering more images

from the result list, it may still be feasible to use a single candidate for verification.

However, this would cause additional effort for the user, who needs to perform the final

selection from the obtained list of results.
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ID-Train ID-Test D DD C P F T V MT MF
[ms] [ms] [ms] [MB] [MB]

5 8 OSURF 64 1 0.7704 146 25 29 11.4 10.2
3 0.9344 71
5 0.9508 111

36 1 0.6721 105 15 21 7.4 6.75
3 0.8360 60
5 0.9016 97

Table 3.7: Evaluation of mobile visual search on rectified images (Samsung Galaxy Nexus smart-
phone): D...type of feature, DD...dimensions, C...candidates for geom. verif., P...recognition per-
formance, F...feature computation, T...vocabulary tree, V...geom. verif., MT/MF...memory con-
sumption for tree/features
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Figure 3.17: Evaluation results using rectified document images (Samsung Galaxy Nexus smart-
phone) considering one (left), three (middle) or five (right) candidates during geometric verification.
Although the recognition rate increases with more candidates, using a single candidate can still be
feasible. In this case, the final selection must be done by the user.

3.4 Conclusion

We approached the requirement of tracking and classifying documents with arbitrary per-

sonalization by splitting up the traditional pipeline for mobile AR. By first carrying out

a detection step on the input frame, the borders of the document are localized. After

rectification, we classify it and use the extracted image as a tracking target.

Detection: The document detection approach is realized by searching for a dominant

rectangular region within the input image. No assumptions are made about the content

of the region, except that it is bounded by borders which correspond to edges in the

image. Through suitable modification, this algorithm runs in instant time on off-the-shelf

smartphones, which we demonstrated throughout an extensive evaluation. Building on

reasonable accuracy in detection, using the rectified region improved the success rate of

tracking by more than 25% and the recognition rate by around 10%, with even larger gains

for certain document categories.
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We observed that grid-like structures can lead to false positives. This could be resolved

by making further assumptions about the content of the document (e.g., vanishing point

estimation from text lines) or by processing several frames and fusing the result. When

enough additional cues can be gained from the input image, a full rectification can be

carried out, preceding the actual detection of the document borders. An available text

mask can directly be used for filtering the edge map before line detection.

Alternatively, trying to track several hypotheses could help to find a valid detection

result. A perpendicular edge search could obtain a better estimate with curved contours.

While possibly making the process more accurate or successful, the effect on runtime needs

to be investigated.

Classification: For the classification task, a client-side solution for mobile visual search

is employed. Starting from a traditional visual search pipeline, several optimizations were

made in order to decrease runtime and reduce storage space. We evaluated this approach

first with full-frame images instead of rectified ones to assess its general performance.

Compared with a standard approach, 85% of storage space can be saved, delivering con-

siderably increased recognition performance at only a fraction of the runtime of a commer-

cial solution. Besides classification of single-images, this approach can also be used as a

pre-selector for tracking databases in a commercial AR solution. The scale of the solution

can be increased without requiring user intervention or costly server-side recognition.

We evaluated the proposed classification approach with undistorted document images.

Synthetic data including variations in personalization and layout was evaluated in sev-

eral configurations. With a suitable number of candidates used in geometric verification,

classification rates exceeding 90% can be achieved. A subsequent evaluation with images

taken with an off-the-shelf mobile phone confirmed the eligibility of the proposed approach

for practical application.

For future work, descriptor computation should be accelerated further, possibly by

using the GPU for part of the processing. This would certainly lead to an even more

responsive system, but might also improve the recognition rate by relaxing the current

limitation on the number of keypoints/feature descriptors. As their size again poses a

problem for huge numbers of classes, they should be further compressed (e.g., variable-

rate quantization).
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Identity documents originally had to be read manually for querying additional infor-

mation about an individual from a database. In 1968, efforts were initiated to establish a

possibility for an automatic reading procedure, with the goal to speed up identity checks

and to avoid human error in reading textual identification data [74]. This lead to the

introduction of a machine-readable zone (MRZ) found on documents such as passports,

visas and ID-cards during the 1980s (see Figure 4.1). The underlying specification was

subsequently revised and the MRZ still plays a major role regarding current ePassports,

where a valid MRZ reading is required in order to gain access to the chip inside the pass-

port. This in turn ensures that the passport must be accessible for visual inspection when

attempting to access the stored information. The information contained in the MRZ can

also be used to classify a document, which is required for a subsequent verification task.

The information contained in the MRZ is an extract of the contents of the Visual

Inspection Zone (VIZ) with additional local and global checksums. They serve as a measure

for data integrity, which could be infringed due to reading errors or deliberate modification

of the contents. There are three different types of MRZ, usually placed on the identity

page of machine-readable travel documents or the back side of ID-cards. They consist of

a paragraph with two or three parallel lines of black OCR-B text (fixed width and size)

with fixed inter-line distance (see Figure 4.3). The characters are additionally required to

respond in the near-infrared spectrum and may be combined with other security features,

provided that there is no adverse effect on reading quality [74]. While most of the contents

53
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Figure 4.1: Exemplary documents with machine-readable zones (MRZ). Left: Identity card.
Right: Passport. The MRZ region is depicted by a red rectangle overlaid onto the original image.

Figure 4.2: Reading solutions for MRZs. Left: Stationary reader. Middle: Snap-on device for
mobile phones. Right: Mobile application using the build-in camera of a smartphone requiring an
initial alignment operation.

of the MRZ are specified, especially the TD-1 format contains unoccupied space for placing

additional data.

Reading MRZ data usually requires dedicated machinery, be it stationary or mobile. In

the context of mobile application, there is also additional hardware, which can be attached

to standard mobile phones1 2 (see Figure 4.2).

Besides, there are mobile applications, which claim to support robust reading of MRZ

data from the built-in camera of the device (Smart 3D OCR MRZ3, ABBY on Device

OCR4, Keesing AuthentiScan5 or Jumio FastFill/Netverify6). All available approaches

using the built-in camera have in common that the MRZ must be aligned with the image

capture device, before the actual reading operation can take place (see Figure 4.2). This

requirement prolongs reading time and runs against the original intention of machine-

readable travel documents.

Consequently, there is a need for a more flexible solution of reading MRZ data on

off-the-shelf mobile devices. Although the MRZ is designed to be read by automatic

1
http://www.access-is.com

2
http://www.movion.eu/grabba

3
http://smartengines.biz

4
http://www.abbyy-developers.eu

5
https://www.keesingtechnologies.com

6
https://www.jumio.com

http://www.access-is.com
http://www.movion.eu/grabba
http://smartengines.biz
http://www.abbyy-developers.eu
https://www.keesingtechnologies.com
https://www.jumio.com


4.1. Contribution 55

machinery, solving the task in a general setting, as proposed in this work, is far from

trivial, as is the character recognition. As there is no prior knowledge about the presence

of a MRZ, the algorithm has to identify the area of interest automatically in real-time,

despite motion blur and all other adversities emerging in real-world mobile phone image

acquisition. The subsequent character recognition algorithm is challenged by the need for

perfect recognition performance, to make the overall system competitive.

4.1 Contribution

We propose a solution for detecting and recognizing machine-readable zones on arbitrary

documents using off-the-shelf mobile devices without additional hardware [60]. In contrast

to current mobile applications that use the built-in camera, our approach does not require

strict alignment with an orthogonal viewing direction at a fixed distance. By performing

an initial detection step and assessment of the capture conditions, visual feedback about

the status of the operation can be continuously provided to the user. We show that our

algorithms allow real-time detection and instant reading of the relevant information from

arbitrary documents (see Figure 4.9). This provides the basis for an efficient and cost-

effective way to read and check the validity of MRZ data, which realistically cannot be done

manually during document inspection. Together with the communication capabilities of

current mobile devices, off-the-shelf smartphones can be turned into devices for querying

additional information about an individual from appropriate databases.

Since there is no publicly available database for developing and evaluating MRZ reading

algorithms, we also contribute a large database of synthetic MRZ data, covering a broad

range of diverse acquisition settings, backgrounds and view points. The database is used

to evaluate our approach, giving a baseline for future developments in MRZ reading.

4.2 Algorithm

We identified a set of properties for text on documents - in particular for the MRZ -

which are useful for detection and reading. Text regions on documents are generally

much smaller than text-like distortions in the background. A local region containing text

normally consists of a single color with limited variation, and the stroke width of each

character is roughly constant. All character boundaries are closed, and connecting lines

on the contour are smooth. These boundaries correspond largely with edges detected in the

input image. Single characters within text regions generally have very similar properties

and are connected along an oriented line. In most cases, a minimum number of characters

per text region can be assumed.

The approach we suggest for mobile MRZ reading works in four steps. First, the

location of candidate text must be determined in the image. From this information, the

MRZ is detected by considering the spatial layout between candidate groups. Then, a
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Figure 4.3: Left: Structure of machine-readable zones. There are three different types, which
contain two or three lines of text. This corresponds to 90, 72 or 88 individual characters. Right:
Outline of our algorithm for mobile MRZ reading. The MRZ structure is detected from text groups.
Then, individual characters are rectified using an estimated transformation and fed into a custom
OCR stage. Several frames are fused together for better performance.

Figure 4.4: Steps in our algorithm. Top row: Input-image, segmentation result, filtered connected
components. Bottom row: Delaunay triangulation, filtered pairs, final MRZ detection result.

local transformation for each character is estimated, which can be used for rectification,

followed by the recognition of characters, giving a confidence value w.r.t. each character

of the relevant subset of the OCR-B font. Finally, information from several input frames

is fused in order to improve the result (see Figure 4.3). We will now discuss these steps in

more detail.

4.2.1 Text Detection

We employ Toggle Mapping [44] and linear-time region labeling [26] as basic building

blocks for initial generation of connected components (see Figure 4.5). Initial filtering is

done based on region geometry and boundary properties (area, extension, aspect ratio,

fill ratio, compactness). We also experimented with edge contrast and stroke width, but
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Figure 4.5: Left: Outline of the text detection approach used in our framework. Connected
components are obtained from an initial segmentation step, labeled and filtered. Then, they are
pair-wise grouped and split into words, providing the basis for MRZ detection. Right: Rectification
of Characters: First, a global transformation T is estimated using intersections points of fitted
lines in image space and the corresponding world coordinates. Then, a local transformation can
be estimated per character, which is then used for patch warping.

these did not improve results significantly at that stage.

Similar regions are grouped together based on region-properties and spatial coherence

of characters. For reasons of efficiency, a Delaunay triangulation is used for getting an

initial pair-wise grouping. Pair-wise connections in the graph are then filtered using various

relative criteria (height, distance, position-offset, area, angle, grey-value, stroke-width)

followed by generation of strongly connected components [158]. This gives a series of

ordered groups, ideally representing single text words, but, depending on parametrization

and document structure, several words can be contained (see Figure 4.4). Therefore, an

additional filtering step is employed.

In a split/merge approach based on group properties (min. number of components,

max./min. distances, direction, grey-value, area, stroke-width), final text groups are gen-

erated. From the filtered groups, the individual components of the MRZ can be detected by

analysis of their geometry. We search for groups fulfilling a minimum length requirement

(30 characters). During selection, their horizontal and vertical distances are analyzed, fi-

nally giving a number of groups that are considered for processing in the optical character

recognition stage.

4.2.2 Rectification

The detected characters can be rectified using MRZ structure information (see Figure

4.3). First, horizontal and vertical lines are fitted onto the detected MRZ components

using linear regression on their centroids. These lines are further intersected in order to

give improved estimates of the four outermost character centers PcI . Using the known

properties of the OCR-B font, corresponding coordinates PcW can be computed in rec-

tified (world) space, which allow to estimate a perspective transformation T . For each

character centroid, as obtained from the intersection process, the limits of the patch can

be determined in world space using font properties and projected into the input image.

Now a local transformation can be estimated for each character, which can be used for

rectification (see Figure 4.5). In order to improve the input for the OCR stage, we perform

up-sampling of character patches during warping.
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Figure 4.6: Overview of the OCR stage: Rectified patches are binarized, filtered and padded.
After scaling, an overlap feature is computed, which gives a feature vector for further classification.

4.2.3 Optical Character Recognition

The OCR stage uses the result of a subsequent binarization step as input data. We use

Toggle Mapping for this task, label the obtained binary mask and estimate a minimum

bounding box for the character (see Figure 4.6). Through a careful selection of frames, a

small number of samples is sufficient for the recognition of single characters.

We employ an overlap-metric for character recognition, which is computed on a regular

grid [73]. We compute the local overlap for each cell and store it as a feature-vector.

Using the L1 distance, the similarity concerning a number of reference templates can be

computed, which is also treated as a confidence value. We use ARM NEON7 instructions in

the matching stage in order to be able to deal with a higher number of template characters.

We generated the initial samples by rendering true-type fonts and added a small number

of real samples, which were extracted using the proposed approach.

4.2.4 Frame Fusion

When working with live-video, several frames can be processed on the mobile device for

improving robustness. For a subsequent fusion process, correspondences between char-

acters must be established. In the fashion of tracking by detection, the structure of the

initial detection result is considered whenever searching for suitable frames.

In each frame i, for every MRZ character j, distances di,j,k concerning all known

references k can be recorded. For each entry, the mean value w.r.t. all frames is computed:

dj,k = mean(di,j,k). The final result per character is then computed as the one having the

smallest distance: di = min(dj,k).

7
http://www.arm.com/products/processors/technologies/neon.php
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4.3 Synthetic MRZ Dataset

Due to legal issues, it is not possible to get hold of a large number of identity documents

for evaluation. Therefore, a large database for developing and evaluating MRZ reading

algorithms is not publicly available.

We collected a set of different ID documents and passports from Google images, using

only images marked as free for modification and distribution, sorted them according to

their MRZ type and systematically removed the MRZ through impainting. We then

use these document templates with different backgrounds and render both the document

and a randomly generated MRZ string of the corresponding type. The MRZ string is

generated by leveraging a public database of common names8, using different nationality

codes and adding a random time stamp as the birth date, the date of issue and the date of

expiry. Finally, the MRZ is completed with the corresponding checksums [74]. Through

this generic approach, we can create any number of example documents, single images and

also entire frame sequences. In total, over 11.000 different MRZs were generated, resulting

in more than 90.000 individual images. In contrast to a preceding evaluation involving only

images of 640 x 480 pixels [60], we created a new database containing images with higher

resolution (1440 x 1080 pixels) and re-evaluated an updated version of the algorithm with

unified character warping and extended reference data (111 samples). Images were scaled

down to the same resolution used in the initial version (640 x 480 pixels), before being fed

into the algorithm.

Single Images: To generate realistic views of the documents, typical viewpoints are

simulated by transformation and rendering of the current template-MRZ combination. In

order to mimic typical user behavior, small local changes in transformation are introduced

to create a number of images around a selected global setting. Noise and blur is added

to the rendered document to increase realism. These documents are considered for the

8
https://www.drupal.org/project/namedb

Figure 4.7: Single MRZ documents placed in front of a cluttered background image. Backgrounds
with different complexities are used, starting from almost uniform to completely cluttered.
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Figure 4.8: Top: Sequences of frames rendered onto a random background, and the corresponding
camera trajectory. For better visibility, only every 25th frame is drawn as a frustum. Bottom:
Sample frames from two sequences. As the document is rendered into a video, the background
changes with each frame.

evaluation of algorithms based on single snapshots. Some sample images are depicted in

Figure 4.7. To also allow for ID document detection algorithms to work on the proposed

dataset, different backgrounds are used to reflect different levels of detection complexity.

Image Sequences: As mobile devices can be used to acquire entire frame sequences

dynamically, we also created a set of frame sequences. We recorded several motion patterns

of a mobile device over a planar target, storing the calculated pose for each frame [174].

The average length of these sequences is about 100 frames. For each frame, we render the

template-MRZ combination using the previously recorded pose onto frames from a video

taken at a public train station. Thereby we also allow the evaluation of approaches which

are able to detect and track a document and combine the reading results over multiple

frames. Sample camera paths and corresponding rendered image sequences are shown in

Figure 4.8.

4.4 Evaluation

In the following experiments, we determine the accuracy of MRZ detection, character

reading and runtime for all relevant steps of the proposed approach. We evaluate a pro-

totype of the MRZ reader (see Figure 4.9) on various mobile devices running Android

with captured images of real documents and synthetic images from the aforementioned

database. In contrast to previous work [60], we evaluate a revised implementation of the
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Figure 4.9: Prototype application for reading MRZs without strict requirements regarding the
viewpoint (Samsung Galaxy S5). Left: Detection phase. Right: Final reading result.

algorithm on a re-created database featuring images of higher resolution.

4.4.1 Initial Experiments

We conducted a series of initial experiments with real image sequences acquired with the

Samsung Galaxy S5 smartphone from twelve different documents. In order to reduce lag

within the mobile application, we initially processed VGA images in our pipeline. Then we

switched to a HD-like resolution maintaining a 4:3 aspect ratio (1440 x 1080 pixels). These

choices are motivated by the available formats of real-time video streams on current mobile

devices. In both cases, the images were down-scaled for text detection and transformation

estimation, whereas the real input resolution was used in the OCR stage. It must be noted

that we considered only MRZ readings from successful detection results.

We see from Figure 4.10 that considerable gains can be made for MRZ readings from

VGA images by fusion of results from several frames. While for a single frame just 75.00%

of all readings are fully correct, starting with two frames, this number is increased to

91.67% and gives a perfect result with five frames. With images of higher resolution,

there is a much smaller difference when fusing reading results over more frames (91.67%

for two frames vs a perfect reading result starting with three frames). From these results

it is evident that the fusion operation helps to improve reading results for both smaller

and larger resolutions. Consequently, is is sufficient to process several images of lower

resolution, which translates to a more responsive application.

4.4.2 Reading Accuracy

Reading accuracy is evaluated using single and multiple frames taken from the single-image

database. While individual character recognition is barely affected by using more frames,

the performance of MRZ detection is noticeably increased (see Figure 4.11). A MRZ

detection rate of 88.48% is achieved by using five frames, along with a character reading

rate of 99.96%. In terms of successful detection, this is a significant improvement over

processing single shots (detection: 78.16%) on low-resolution mobile-images in real-time.

Although the detection and reading of individual characters works reasonably well,
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Figure 4.10: Initial Experiments: Full MRZ reading for images of 640 x 480 pixels (left) and
images of 1440 x 1080 pixels (right). The fusion operation helps to improve results in both cases.
When fusing reading results from five images of lower resolution, a perfect reading rate can be
achieved on the evaluated dataset.

getting correct readings for the entire MRZ is still a challenging task, since no dictionary

can be used for large parts of the MRZ (see Figure 4.11). However, frame fusion helps to

improve the results by up to 4%.

Obviously, MRZ detection performance and character reading are related to the input

pose (see Figure 4.13). We can observe that the proposed approach can detect and read

MRZ data despite perspective distortion, saving document alignment time for the user.

Most gaps seem to be caused by segmentation artifacts, which cause unresolvable ambigu-

ities in the grouping stage. However, the largest gap for the exemplary sequence consists

of just two frames, which corresponds to a maximum waiting time of less than 0.1 s for

getting processable data, or less than 0.5 s when fusing five frames (assuming a framerate

of 30 FPS).

4.4.3 Algorithm Runtime

Runtime is dominated by the OCR part of the algorithm, the rectification, segmentation

and feature computation (see Figure 4.12), while the initial text detection and subsequent

fusion operations take up only a fraction of the overall runtime.

In total, reading a single MRZ takes around 270 ms on the NVIDIA Shield tablet.

On the Samsung Galaxy S5 smartphone, it takes 361 ms per frame, whereas on our

development machine (MBP i7, 2 GHZ), the overall runtime per frame is around 77 ms.

It must be noted that an optimized built for the Shield tablet was used in obtaining the

aforementioned measurements.
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Figure 4.11: Left: MRZ detection and character reading accuracy (single-image database): While
individual character recognition is barely affected by using more frames, the performance of MRZ
detection is noticeably increased. Right: Full MRZ reading accuracy (single-image database):
Despite reasonable character recognition rates, reading entire MRZs is still difficult, since no dic-
tionary can be used for most parts. However, fusion of reading results from several frames improves
reading rates by up to 4%.
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Figure 4.12: Left: Errors for individual characters (single-image database): In some cases, the
characters I, L, T and 1 are confused with others. Right: Runtime of the prototype for various
mobile devices (Android; subset of images): Runtime is dominated by patch warping and optical
character recognition. The duration for MRZ detection from text groups and fusion is negligible.

4.5 Discussion and Future Work

We presented an approach for real-time MRZ detection and reading, which does not require

accurate alignment of the document or the MRZ. By initial MRZ detection and fusion of

results from several input frames, our custom OCR stage produces reasonable character
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Figure 4.13: Top: Exemplary result of processing an entire image sequence of the synthetic
database. The maximum gap size is two frames, which corresponds to a waiting time of less than
0.1 s, until processable data arrives (assuming a framerate of 30 FPS). Bottom: Corresponding
orientation throughout the exemplary image sequence. The example document is captured from
viewpoints that differ considerably from the ideal setting.

reading results despite having to deal with unaligned input. For evaluation purposes, we

introduced a new synthetic database, which covers many different document backgrounds,

MRZ contents and viewpoints. Saving the time required for alignment, MRZ data can be

extracted faster than with state-off-the-art mobile applications. Based on the results of

our experimental evaluation, some individual aspects deserve further discussion.

MRZ Detection: Detection from a single frame is difficult, as it might fail, if the

document is viewed under steep angles. The overall MRZ recognition process clearly

benefits from using a continuous video feed (see Figure 4.11). Due to the efficiency of our

approach, frames can be processed in real-time, and instant feedback can be given to the

user. Due to the larger amount of data, missing single frames is not critical.

Character Recognition: Although reasonable character recognition rates (exceeding

95%) could be obtained during our evaluation, a closer inspection reveals that in some

cases, the current prototype confuses the characters I, L, T and 1 with similar samples

(see Figure 4.12). Beside character confusion, occasional issues in character segmentation

make up most of the remaining cases due to region splits. This could be improved by

a machine-learning approach on the extracted patches (e.g., SVM). It is important to
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note that for full MRZ reading, a heavily tuned character recognition engine has to be

employed, suffering from a failure rate of at most 1e−4%. Given the fact that real-world

samples are hardly to be found in large quantities, this turns out to be a challenging

problem on its own.

Image Resolution: We found that using a video stream with higher resolution (i.e.,

Full HD) in our mobile prototype only gives small improvements over fusing multiple

frames with lower resolution, as proposed in this work. When processing such a stream

on Android, there is noticeable latency, even though the full resolution is only used in the

OCR stage. Due to this delay, there can be a lot of change between subsequent frames,

causing occasional blur depending on user behavior. Since this is particularly undesirable

regarding usability, it seems reasonable to stick with low or medium resolution images,

employ an advanced frame selection strategy (e.g., depending on sharpness or lighting)

and to further improve the OCR stage.

Future Work: It could be worthwhile to investigate the fusion of character segmentation

results, instead of character classification results. This could help to further save runtime,

since the time-consuming OCR stage would need to be evaluated only once for the final

masks.

If more character training data becomes available, the template matching could be

replaced with a suitable classifier. This would certainly help to improve full MRZ reading

results including runtime. Our aim is to create synthetic character samples with different

kinds of noise and other distortions in order to mimic all kinds of acquisition conditions

and settings. Then, different machine learning techniques can be employed to improve

upon the current approach.

The MRZ should be continuously tracked in order to support partial readings and to

improve the monitoring of capture conditions. This would help to cope with temporary

distortions like highlights which may currently prevent successful MRZ detection and

reading. Then, really extreme poses and differences in the depth of field can be detected

and rejected. For practical reasons, slightly curved documents should also be handled.

With a robust estimation of a transformation from the MRZ, the detection of document

borders (see Chapter 3) could be improved. Since the corresponding edge-map can be fully

rectified, searching for lines is greatly simplified. In addition, the search only needs to be

carried out at a certain distance from the MRZ (dependent on the direction), since the

position of the MRZ on the document is constrained by the available specification [74].
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View-dependent elements such as holograms are used frequently on security documents.

They change their appearance depending on the viewing direction and the position of light

sources in the environment. This property makes them an interesting element to be put

onto all kinds of documents or goods for the purpose of ensuring originality.

Hologram verification requires that knowledge about both the existence and the visual

appearance of such an element is given. In the Mobile AR pipeline proposed in this work,

such knowledge can be provided by the system, once the class of the document has been

identified. Since knowledge about the presence of a hologram in a document can also

be beneficial for document classification, it is interesting to investigate the feasibility of

performing automatic hologram detection.

However, it is a common practice to substitute a hologram by a similar one1. In

this case, detailed knowledge about the behavior of the element is required in order to

reason about the validity of a document. Although such information can be provided by

a document information system after successful classification, due to the dependence of

the element onto the viewing conditions (i.e., light sources in the environment) it may still

involve undirected movements. This does not assure true correspondence of the viewing

direction and the appearance of the element. With a Mobile AR system, such information

is available and can be exploited.

1according to a domain expert consulted
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5.1 Contribution

We investigate the feasibility of hologram detection on off-the-shelf mobile devices, when

no prior information about the contents of a document is given (see Section 5.2). This

mimics the case of reference-free verification, as performed by untrained individuals. Using

efficient algorithms suitable for mobile application, the location of one or more holograms

can be determined using a series of registered images taken automatically during changes

in orientation of the device or the document, caused by the user [59].

We also investigate the feasibility of hologram verification using off-the-shelf mobile

devices by proposing a setup for repeatable image capture of hologram patches [62]. By

using the built-in flashlight of a mobile device and by processing images within a mobile AR

framework, data suitable for visual comparison of hologram patches can be captured. We

further propose a setup for capturing reference information for comparison and investigate

the possibility of performing automatic matching on the mobile device.

To the best of our knowledge we are the first to tackle these tasks in the context of

off-the-shelf mobile devices.

5.2 Feasibility of Mobile Hologram Detection

The main contribution of the work presented in the following is the automatic detection

of both the presence and location of holograms on a security document using a Mobile

AR setup. This has multiple use cases, such as the detection of document layout for a

subsequent classification step or automatic model building including verification.

The necessity of sampling the appearance of holograms from multiple view points is

not apparent to the naive user. Therefore, as a side contribution, we propose an AR game

concept which causes the player to capture the appearance of the document playfully,

without the need to consider details about the nature of holograms. The results of a user

study proof the plausibility of this approach.

5.2.1 Document Detection, Tracking and Registration

Security documents are usually made of paper or cardboard and are generally of rectan-

gular shape. For reasons of robustness and efficiency, we limit ourselves to roughly planar

regions.

5.2.1.1 Detection and Tracking

We first generate a suitable document template which can be used for frame-to-frame

tracking or a dedicated registration step. It is based on an algorithm for the detection and

rectification of perspectively distorted rectangles, serving as tracking targets (see Chapter

3). The user is asked to place the device in front of a document and to trigger the

detection. Once the document region has been detected, it is rectified and stored. The

Reference:
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rectified image is then used to create a planar tracking template represented as an image

pyramid at runtime, which can be tracked using natural features [174]. Harris corners and

NCC are used to match patches across subsequent frames and to establish a homography

between the current observation and the rectified target. A motion model is employed to

estimate and predict the camera motion, saving a considerable amount of computational

resources. As a result, the algorithm can be used in real-time on modern smartphone

hardware, as it delivers a full 6DOF pose for each frame.

This setup has the advantage that is allows to interact with previously unseen docu-

ments having arbitrary personal data on it. In the context of subsequent CV algorithms,

knowledge of the current viewpoint can be beneficial, as it allows us to work with rectified

images and to control image capture.

5.2.1.2 Image Stack Creation

In order to decide upon the presence of holograms on a document, it needs to be recorded

from several viewpoints. A minimum of n = 2 frames recorded from suitable viewing

angles is required to be able to reason about the presence of such elements. For reasons

of robustness, more viewpoints should be recorded. Based on the results of the target

tracking module, our algorithm consists of three main parts to create an image stack: (i)

frame selection, (ii) warping/registration and (iii) spatial filtering (see Figure 5.1).

Frame Selection: Ideally, the image stack should contain poses to cover the variability

of a view-dependent element in the best possible way. This is not an easy task for inexpe-

rienced operators. Therefore, in favor of repeatability and reduced cognitive load, the task

of frame selection is not assigned to the end user. We use the obtained tracking pose to

automatically select frames based on a 2D-orientation map (polar/azimuthal angle) cen-

tered at the document (with some pointing tolerance) and also consider target visibility

and template similarity.

Registration: For every frame which passes the selection step, the estimated homogra-

phy from the tracker pose is used to create a rectified image. A full set of frames generates

a stack of equally sized pictures (see Figure 5.2). In general, the tracking algorithm is

rather robust and can track the target successfully over a wide range of viewing angles.

Parts of the target may move out of the camera image, and the observations may undergo

Figure 5.1: Illustration of the required steps for hologram detection per frame and per docu-
ment/evaluation of the image stack.
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Figure 5.2: Left: The target is tracked and observations from different positions are recorded.
Right: Through the estimated homography, each image is rectified and pushed onto the stack.

significant perspective distortion. The rectified images can therefore be incomplete or

show alignment problems.

We experimented with refining the alignment in an additional step with feature extrac-

tion, windowed matching and homography estimation. However, this degrades the frame

rate, which is not desirable from the standpoint of usability. As frames are constantly

delivered by the camera, we, instead, chose to reject badly registered frames using NCC

scoring, which is computationally cheaper. Due to the real-time tracking in the proposed

setup, this is a reasonable way for automatically selecting usable frames.

Spatial Filtering: Each new layer added to the stack of registered images is spatially

filtered to better cope with noise and remaining inaccuracies in registration. We use a

windowed mean filter for this task, which is based on integral image computation [146].

We account for incomplete image information (black areas in warping) by recording valid

areas used in filtering in a second mask.

5.2.2 Hologram Detection

Unlike other effects, such as specular highlights, visual changes caused by holograms re-

main spatially constant. Our approach is based on the idea of tracking changes in appear-

ance over time, using the registered image stack as a starting point.

Our algorithm for processing the stack consists of two main parts: (i) map creation by

statistics-based voting and (ii) a segmentation and mode-seeking algorithm for creating the

final detection result (see Figure 5.1). An optional verification step is also added, which

uses NCC computations at the estimated hologram positions throughout the registered

stack to reject false positives.

Reference:

 ()




5.2. Feasibility of Mobile Hologram Detection 71

20
40

60
80

100
120

140
160

10

20

30

40

50

60

70

80

0

50

100

150

200

250

x

y

m
ap

 v
al

ue

Figure 5.3: Left: Surface plot of a hologram map obtained from a sample document. Top-right:
Corresponding scaled intensity image. Bottom-right: Selection result using adaptive thresholding.

5.2.2.1 Map Building

We treat the image stack at each position (x, y) as a series of measurements. We assess the

amount of change by computing a suitable error concerning a model m at position (x, y)

over the entire stack, obeying the masks computed in the previous step. This finally gives

an intermediate representation of evidence for view-dependence, which we call hologram

map (see Figure 5.3). We tested using the mean m0 or the median m1 along with the

average quadratic error in image space

e0(x, y) =

√√√√ 1

L(x, y)− 1

L(x,y)∑
l=1

(vl(x, y)−m)2 (5.1)

or the average absolute error

e1(x, y) =
1

L(x, y)

L(x,y)∑
l=1

|vl(x, y)−m|, (5.2)

with m ∈ {m0,m1} in different combinations, where L(x, y) is the number of stack layers

that contain valid entries for position (x, y) according to the obtained masks, and vl(x, y)

is the pixel value in layer l.

In case of the pair m0, e0, model-building and error computation can be done on-line,

which requires relatively few computational resources.
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5.2.2.2 Segmentation and Filtering

We seek to localize dominant spatial peaks within the hologram map and the adjacent

regions of large changes of similar magnitude. Consequently, this can be treated as a

segmentation problem, where the choice of the method influences both quality and runtime.

As the content of the map is highly dependent on the nature of the document itself, it

is not sufficient to just apply a global threshold. In contrast, we use locally computed

thresholds, which are additionally adapted using global information [10] (see Figure 5.3

for an exemplary result). In order to save runtime, integral images are used for filtering.

The computed regions are filtered in order to reduce false positives. We use mini-

mum area, aspect ratio, and compactness along with a minimum magnitude/homogeneity

criterion on the obtained region.

5.2.3 Experiments

We recorded several documents with holograms using a Samsung Galaxy S3 smartphone

(Quad-Core ARM Cortex A9 CPU, 1 GB RAM, Mali-400 GPU, Android 4.1.2) with and

without flashlight enabled. We used Euro banknotes and several samples, mainly attached

to prints of specimen documents, giving a total number of 14 different holograms.

We quantized the orientation map with a step-size of 2 degrees and limit the extension

to 25 degrees in each direction. We aimed for relatively high number of frames (90) in

order to allow a more detailed evaluation of the algorithm. However, this is not a problem

due to the real-time tracking. Document regions are warped to have a maximum extension

of 160 pixels, and spatial filtering is carried out on a 3x3 window.

The initial workflow consisted of detecting the document and moving the phone or

the document around, logging image frames and pose data to memory. This data is fed

into our algorithm and analyzed concerning accuracy. The most promising setup is timed

directly on the mobile device. In order to obtain more representative results, we captured

each document three times, with and without flashlight.

The user needs to capture the document from various viewpoints in order to gather

the required data for the algorithm at hand. Since it is not obvious, how the user can be

supported during this process, we exploit an existing context for this task an evaluate it

within a user study.

5.2.3.1 Accuracy

In order to get reasonable insight concerning the performance of the algorithm, we man-

ually annotated all template images, producing reference masks for hologram occurrence

and location. These are then considered as ground-truth for the remainder of the task.

Our scoring is based on a layout distance metric originating from document retrieval

[168]. Similar to layout distance metrics for documents, our metric has to account for

missing or superfluous elements, but we only consider overlapping regions (e.g., without

Reference:
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Figure 5.4: Left: Using Google Glass to perform hologram detection on a foreign passport. The
picture as seen by the user is depicted in the inlay in the lower right corner. Right: Visualization
of exemplary detection results in our prototype. Note that this is based on an approximation of
the hologram region by a bounding rectangle, although we obtain a more detailed estimate of the
region.
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Figure 5.5: Results of hologram detection using 14 different documents when, binarizing the
hologram map with flash enabled (left) and flash disabled (right). Not using the flashlight gives
better results, since specular highlights can hamper map evaluation. There are only small changes,
when more than 30 frames are used.

Manhattan metric), relating a region present in the ground-truth mask Rgt to the regions

Rj obtained by our detection approach (see Equation 5.3), where Ov denotes the number

of overlapping pixels and sov the obtained score. We treat a detection as true positive, if

sov ≥ 0.4. In case several regions in the detection result have a sufficiently high overlap

with the same ground truth region, the best one is counted as true positive, whereas the

others are regarded as false positives.

sov(Rgt, Rj) =
2Ov(Rgt, Rj)

area(Rgt) + area(Rj)
(5.3)

We ran the proposed hologram detection algorithms using different algorithmic combi-

nations for analyzing the image stack (see Figure 5.5). Obviously, there is little difference

concerning accuracy for the evaluated methods. From around 30-40 processed frames up-

wards, there are only small changes when adding more frames. Best results regarding
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Figure 5.6: Left: Runtime for the individual parts of our approach on several different devices.
Note that the first group of tasks is done once per frame, while the second group of algorithms
needs only be done once per session. Right: Segmentation of single stack layers. Input image (top
row), MSER regions (middle row), MSER regions from modified input image (highlight detection,
inpainting)

practical applicability are obtained by using the combination (m0, e0), giving a recall of

∼ 0.75. We omit plotting precision, since it was found to be at maximum value in almost

all cases.

Interestingly, using the flashlight gives worse detection results. We found that this is

often due to specular highlights, which make map evaluation considerably harder.

5.2.3.2 Runtime

Runtime of the proposed algorithm can be divided into two overall parts. The first part,

building and updating the image stack, needs to be done on a per-frame basis and, there-

fore, needs to be very fast. The second part, the final evaluation of the hologram map

along with the subsequent validation step, is done at the end of the capture operation.

Therefore, this step is less critical concerning runtime. We made experiments on several

different mobile devices employing a representative subset of documents using the most

promising setup determined during evaluation of accuracy, (m0, e0).

According to Figure 5.6, the individual algorithmic parts take between 13-25 ms per-

frame on most devices. Obviously, warping using the available pose information requires

most of the time. Final evaluation of the hologram map including segmentation and

filtering takes between 13-31 ms, but this needs to be done only once per session. Overall,

the Samsung Galaxy S3 is the fastest device per frame, whereas the Nexus 4 is the fastest

one for generation and evaluation of the map. Google Glass is the slowest among the

tested devices, taking around 40 ms per frame. Our Glass developed a relatively hot

surface temperature during testing, which quickly causes thermal throttling.

It must be noted that the aforementioned optional validation step of a detected region

takes several hundred ms. However, it only needs to be done once per session. Upon

successful detection, we augment a semi-transparent shape at the corresponding positions

(see Figure 5.4).
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5.2.3.3 User Guidance

Various movements of a mobile device over a surface are common with mobile AR games.

In the following, we investigate if such a setting can be useful for hologram detection.

Concept: We crafted a mobile AR game which can be played on an arbitrary planar

document. The goal is to help a hungry eagle flying around the document to get hold of

suitable prey (spider, snake, cobra), which is sitting on a regular grid augmented onto the

document (search mode). Mimicking the eagle’s eye, we use a sighting device and perform

loose matching of the center and viewing direction. Cells (base point), polar angle and

azimuthal angle of the ray are randomly selected for placing prey (see Figure 5.7). This

means, several randomly sampled hemispherical subspaces are used.

Upon successful alignment, the eagle dives towards the prey to get hold of it (attack

mode), triggering an attack animation of the prey. Then, the eagle flies away (carry mode),

while the user receives a score (see Figure 5.8).

User Study: We evaluated the game running the proposed hologram detector in the

background within a user study taking place in several offices around our institute. Par-

ticipants (11, 1 female) were briefly introduced to the game concept and mechanics on an

off-the-shelf mobile phone. They were asked to play the game on a document used in our

previous evaluation, logging task completion time, score and hologram detection results

onto the flash memory of the device. The participants’ opinion regarding enjoyment, moti-

vation and the game’s usability was recorded in a questionnaire along with user comments

right after gameplay. It must be noted that participants did not receive any hints on

the existence or purpose of the background task. Consequently, the progress bar within

the app was modified to just count the number of gaming rounds, instead of the frame

acquisitions by the detector. The end of gameplay is either triggered by the background

task (detection algorithm finished) or by the game (maximum number of rounds (32)).

The data captured by 7 of 10 users during gameplay was suitable for hologram de-

augmented	
  playfield	
   base	
  	
  sphere	
  (prey)	
  

top	
  circle	
  	
   viewing	
  ray	
   phone	
  screen	
  center	
  

eagle	
  

Figure 5.7: Mobile AR game concept: Cells are augmented on the document for prey placement.
The sighting device consists of a base sphere, top circle and a focus point on the screen. For
alignment (triggering the eagle to dive for prey), all elements must roughly coincide.
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tection. Additionally, another suitable hologram map was recorded, which did not make

it through final verification (M = 0.75, SD = 0.40). Participants played for around two

minutes (M = 98.9s, SD = 46.6s). Gameplay was generally stopped by the background

task except in one case, where the participant had severe issues with the interface. Due

to the unusually high completion time (231 s), we treated this participant as an outlier.

All questions related to user experience were rated on a 5-item Likert scale ([-2,2]

interval). Generally, users enjoyed the game (M = 1.40, SD = 0.48) and felt motivated

(M = 1.10, SD = 0.53). The game was rated to be easy to use (M = 1.30, SD = 0.90)

and to have satisfying controls (M = 1.20, SD = 0.60). The prototype was specifically

described by five users as being ’fun’. However, three users reported on the repetitive

nature of it. One user suggested to build several mini games or to increase the challenge

by requiring finer alignment depending on the type of prey. One user reported that the

prototype was difficult to use at the beginning, but increasingly better when progressing.

Figure 5.8: Screenshots from the game taken on the mobile phone. The eagle is circling over
the target, on which the system places animated prey. By placing prey it suggests a new viewing
position the user should reach with the mobile device to make the eagle attack and score.

5.2.4 Discussion

The proposed approach has notable similarities with existing background subtraction tech-

niques. However, we use real-time tracking to obtain registered images from a number of

viewpoints and only segment the final map to obtain candidate regions, which are subse-

quently validated. All this effort results in a pipeline that can be readily integrated into

existing applications for document verification, as it delivers reasonable results at a very

small runtime overhead during interaction.

Although our algorithm performs reasonably well on many public security documents,

very shiny surfaces and holograms with a small number of different appearances cause false

positives/negatives. We went to tackle these problems by using different map segmentation

methods like MSER [107] or Mean-Shift [32]. However, in particular for Mean-Shift,

this lead to less consistent results with serious region fragmentation, especially for more

complicated backgrounds or very challenging lighting conditions.

In order to tackle reflections, we added a highlight detector and performed inpainting,

which seems to improve results (see Figure 5.6). It seems more reasonable to carry out

some more elaborate analysis of the image stack, however. As preliminary tests showed,
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this comes at the cost of a notable runtime overhead on mobile devices and requires more

in-depth investigation in the future.

An evaluation of the detector during a mobile AR game showed that in 8 of 10 cases,

suitable data for hologram detection could be captured in the background, although no

hints were given to the user on the actual purpose of the evaluation. It seems that the

limited number of randomly placed sampling positions only partially maps to the image

acquisition task of the detector. Probably a feedback channel from the orientation map

towards prey placement could improve results in this case. Some users criticized the

repetitive nature of the game in its current state and gave suggestions for improvement.

However, meeting the demand for finer alignment might be counterproductive for the

speed of the game, which is a major source of enjoyment and motivation. Using several

prey locations/fly paths simultaneously could lead to a more challenging experience, while

keeping the game’s main appeal. In addition, the game setting could be improved by using

more graphical elements like a sandy document texture, additional animals interacting

with the game events or even a nest for the eagle.

5.3 Feasibility of Mobile Hologram Verification

During hologram verification, a set of appearances must found on the current element and

compared to reference information. If mobile devices should become useful for hologram

verification, it must be possible to repeatably capture such appearances with the built-in

camera. Consequently, the observed appearances must be similar w.r.t. given reference

information despite changes in capture conditions and unexpected user behavior. In the

following, we propose a suitable setting for recording holograms using off-the-shelf mobile

devices and evaluate its feasibility to serve as input for automatic matching.

5.3.1 Recording Holograms for Mobile Verification

View-dependent security elements show high-detail images that change drastically depend-

ing both on the viewing direction and the dominant light direction. Therefore, a single

image cannot capture the full appearance of such elements. We chose to represent the ele-

ments using a SVBRDF representation [57] that allows us to both preserve the dependence

on viewing and lighting angles as well as the spatial variation of the images. Furthermore,

we are only interested in planar, thin surfaces - printed documents. Therefore, we do not

require accurate models of self-shadowing or subsurface scattering effects.

However, because we are targeting a handheld mobile application where the device

and the document are both moving, we require a full BRDF representation, as opposed to

a surface light field [77]. Thus we are effectively using a 6D appearance model per color

channel, where the radiance I is a function of both location (x, y) on the document, as

Reference:
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well as incoming light direction l and viewing direction d:

I = I(x, y, l, d). (5.4)

The direction vectors l and d are unit length and therefore have only 2 degrees of freedom.

We are mainly interested in showing a representative image of the view-dependent

element to the user. Therefore, we make several simplifying assumptions. We assume

that the total radiance from a point on the element is dominated by a single major light

source direction. Thus, we do not integrate over all incoming light directions, but a single

snapshot is enough, given the dominant direction. Furthermore, we do not require a fully

radiometric calibration and do not control for automatic exposure and white balancing of

the camera.

We simply sample the appearance as a set of images indexed by viewing direction d

and light direction l. We do not attempt to estimate a smooth BRDF model covering all

points on the element, but rather keep the individual images as the final representation.

This preserves the sharp changes in appearance, when the element flips from one view to

another, as well as the necessary detail in the spatial domain.

5.3.1.1 Light Source

In practice, the dominant light direction poses a challenge in a mobile setup. Without any

prior knowledge, we cannot reliably index into the list of appearance images. Therefore,

we use the LED light source on a mobile as a constant source of illumination in the scene.

As this is usually close to the camera, it dominates other light sources in indoor scenarios.

Because the LED is fixed with an offset vector o with respect to the camera, the light

direction l is a function of the camera pose with respect to the document (see Figure

5.9). The light direction is now proportional to the camera position P plus offset vector

o, rotated by the camera rotation in world coordinates.

l ∝ P +R · o (5.5)

For a fixed distance to the surface, P is just a rotated vector, and we obtain a similar

equation for the viewing direction

d ∝ R ·

0

0

1

 (5.6)

Thus, our representation is reduced to a 5D model, indexed by the full 3D camera rotation

and the location (x, y) on the document.
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Figure 5.9: With the LED light source in a fixed configuration to the camera, there are only
three degrees of freedom in the input to the SVBRDF function.

Figure 5.10: Captured appearances of view-dependent elements using the proposed setup.

5.3.1.2 Feasibility

We performed an initial feasibility check w.r.t. image capture on the Samsung Galaxy S3

mobile phone using the built-in camera and flashlight. We captured various holograms on

banknotes and plastic cards and observed whether the recorded appearance matches those

illustrated in given reference material for the element under consideration. According

to Figure 5.10, it is possible to capture different appearance states of view-dependent

elements with this setup.

When operated at a small distance to the document, the built-in LED flashlight dom-

inates other light sources in typical indoor scenarios. This assumption is invalidated with

strong artificial light sources or when operating outside (e.g., direct sunlight). In such

cases, the workspace must be carefully shielded (e.g., manually).

The flashlight may introduce severe specular highlights, even directly on the hologram.

These highlights usually appear around the orthogonal view of the target, but do not affect

the application much, because the more interesting views for verification are often at an

angle away from the normal. Moreover, the verification of most holograms does not require

dense sampling, but relies on a rather limited number of specific views.

The location of the LED close to the camera would indicate that the light direction

l can be approximated with the viewing direction d. However, we tested this, and we

clearly observed a dependency in the appearance on rotations of the device around the

camera’s optical axis. Figure 5.11 shows an example. While the phone was pointed along

the same direction from the element, it was rotated around the optical axis, leading to

different images.
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Figure 5.11: Visualization of repeated capture while rotating around the optical axis (top left).
Dependency of rotation around the optical axis on the appearance (images 1-7). The upper patches
show element images captured by the camera. The lower patches show the rectified element images
that form the appearance model.
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Figure 5.12: Overview of our mobile hologram verification pipeline. For manual verification,
images are registered and the extracted hologram patches are rectified. In case of semi-automatic
verification, additional processing is required (dotted rectangles).

5.3.2 Framework for Mobile Hologram Verification

Mobile hologram inspection relies on a pipeline performing document detec-

tion/classification and tracking/verification (see Figure 5.12). Assuming suitable

reference information, the position of holograms on the document template is known,

once the classification step is completed. During the capturing process, the tracking pose

allows to assess the correct viewing angle and to rectify the target region from the video

frame for visualization and matching. This approach does not need any further user

input, besides covering all possible viewing directions and orientations.

5.3.2.1 Basic System

Following the insights gained from feasibility testing, we constructed a mobile AR pro-

totype for hologram verification. By visually tracking the known document, the system

estimates the current viewing direction and camera pose. Available layout information

can be represented by an initial augmentation, providing instant feedback on the presence

and location of relevant security features (see Figure 5.13).

Both detection and tracking rely on the assumption that we are observing planar

objects. This is often violated with paper-documents, however. In most cases, this does

not lead to tracking failure, but pose jitter. We smooth out the poses in a ring buffer

to improve stability. Averaging the pose over 2-3 frames stabilizes the view, while the

introduced lag is small for this particular setup.

Viewpoint and flashlight act as triggers for different appearances. From our experi-

ence, not using the flashlight as a dominant light source does not give repeatable results.

According to informal tests, there is limited invariance with different devices, depending

on camera properties, flash intensity and relative position (see Section 5.3.3). Conse-

quently, an initial probing of the current lighting conditions is required before the actual

verification task can take place. When the exposure can be fixed on the mobile device,

this can be achieved by activation of the flashlight and thresholding the relative amount

of saturated pixels in order to reason about the dominance of the built-in light source.
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Figure 5.13: Mobile document verification system tracking a sample instance of the data page
used in passport. The position of security features is augmented directly onto the document (left).
Detailed information about an element can be triggered by pointing the camera at it (right).

5.3.2.2 Selection of Reference Data

Hologram verification requires a set of reference appearances of the corresponding region,

which needs to be matched against the captured image data at runtime. Consequently,

the first step is to select a series of viewing directions relevant to the verification process.

The choice of reference data for verification depends on the hologram (e.g., number

of transitions) and is constrained by the particular setup being used. Normally, the main

source of reference information is a printed manual, which is obviously missing the corre-

sponding pose information. However, the verification of holograms in the context of mobile

AR poses additional constraints. For each viewing direction, we require stable tracking

and reproducible appearance. While the former mainly excludes low angles and extreme

close-up views from being recorded (tracking failure), the latter limits the maximum view-

ing distance and avoids orthogonal angles, which produce specular highlights due to the

placement of the LED light. In practice, it seems reasonable to operate roughly at con-

stant distance from the hologram, giving a hemispherical capture space. We consider two

views to be the minimum for verification of view-dependent elements.

5.3.3 Systematic Recording and Automatic Matching

An automatic way of sampling reference data from a given hologram is desirable for reasons

of temporal effort and accuracy. In the following, we describe a setup for systematic image

capture, which provides a reliable basis for the selection of reference data. This data can

then be used for the actual verification step taking place at runtime.

Hologram verification using Mobile AR has the advantage that the hologram is cap-

tured under the right viewing angle and lighting conditions. Then, visual inspection can

be carried out by the operator, which is the same as with a printed or digital manual.

However, it is reasonable to assume that an automatic matching step will be more effi-

cient, since it allows come up with a final decision by the system without requiring further

user intervention.
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Figure 5.14: Left: We sample the view-dependent element on a document using an industrial
robot and an off-the-shelf mobile phone. Right: Due to using a single dominant light source, the
element is sampled from viewpoints situated on a hemisphere.

5.3.3.1 Systematic Recording

With moderate ambient light, the appearance of a hologram is largely dominated by the

LED flashlight of mobile devices. This essentially means that the workspace consists of

a hemisphere centered at the hologram on the document. This space must be further

restricted due to the nature of the light source (highlights on orthogonal views), the

tracking system (robustness with low angles) and the operator. We use an industrial

robot (Mitsubishi MELFA) for capturing all relevant appearances of a view-dependent

element (see Figure 5.14). This allows reliable sampling of holograms and eliminates

undesired human influence. We spatially sample a hemispherical space using the robot

and remotely control the device. Initially, an orthogonal position is approached and an

auto-focus operation is triggered on the mobile device, which results in a reasonable focus

setting for the remainder of the process. We capture the current video image and the

corresponding pose for each position on the hemisphere.

We assume the hologram to be planar and project its bounding box into the image using

the recorded pose. We estimate an image transformation with respect to the hologram

region on the undistorted template and warp the sub-image containing the hologram. For

increased accuracy, we perform an additional registration step using the template of the

document, before extraction and rectification of the corresponding patch. The result is a

stack of registered image patches that represent all observable appearances of the current

hologram. From all the recorded information, a relevant subset must be selected according

to the criteria given in Section 5.3.2.2.

5.3.3.2 Automatic Matching

The automatic matching of selected reference information can be carried out on rectified

patch data by using layout and pose information. The matching step itself demands a

suitable similarity measure. In the following we elaborate on the usefulness of different



84 Chapter 5. Hologram Detection and Verification

Figure 5.15: Holograms used in our matching experiments. Top Row: Original elements. Bottom
Row: Substitutes

similarity measures for the purpose of mobile hologram verification.

Similarity Measure: A suitable similarity measure should be able to quantify the dif-

ference in appearance between genuine and fake holograms. Ideally, it should be invariant

regarding variations in image capture conditions and the type of the hologram. In order

to allow a subsequent inspection of the result by a human operator, such a measure should

largely correspond to human perception.

In the following we evaluate a series of similarity measures on holograms recorded with

the Samsung Galaxy S5 smartphone (see Figure 5.15). In each case an original, a copy

and a substitute were recorded under typical office conditions using the built-in flashlight

as a dominant light-source. The settings for the recordings included an office room with

light switched off, fluorescent light and the aisle in front of it, which has more daylight

influence.

We evaluated several similarity measures such as Sum of Absolute Differences (SAD)

and NCC, which are often used for stereo matching [71]. Due to the requirement of

correspondence regarding human perception, Structural Similarity Index (SSIM)[184] and

Edge-based Structural Similarity (ESSIM)[28] are also included. Additionally, we evaluate

SSIM with color patches by reporting the minimum value over all channels (CSSIM).

Evaluation is carried out as a binary classification task on each reference view of

every hologram. The task is to assign the correct class to each recorded patch from

an original, copied or substitute hologram based on pair-wise matching. The required

matching thresholds are selected automatically, based on the difference in scores between

original and fake patches for each reference viewing direction. The recording position is

Reference:

Hirschmuller, H. and Scharstein, D. (2009)
Evaluation of Stereo Matching Costs on Images with Radiometric Differences

Reference:

Zhou Wang, A.C. Bovik, H. R. Sheikh and E. P. Simoncelli (2004)
Image quality assessment: from error visibility to structural similarity

Reference:

Guan-Hao Chen and Chun-Ling Yang and Lai-Man Po and Sheng-Li Xie (2006)
Edge-Based Structural Similarity for Image Quality Assessment
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Figure 5.16: Left: Performance of various similarity metrics in recognizing fake and original
patches when using data from all slices of the orientation map. Right: Relative difference of scores
between fakes and originals. Note that the data was taken under various office conditions (no
artificial light, fluorescent light, slight daylight (aisle)).

considered by matching patches only if the pose lies within a certain orientation threshold

concerning the reference pose. Neglecting this relationship is not desirable, since elements

having the same appearances at different viewing positions could not be differentiated

anymore. This would weaken the security of the proposed approach.

There are notable differences in patch recognition regarding the type of hologram,

but also the associated metric (see Figure 5.16). SSIM-based metrics, in general, give

better results than NCC and, in particular, SAD. Overall, SSIM is stable, giving patch

recognition rates of over 90% for holograms 3 and 4 and over 85% for the remaining ones.

Hologram 1 is obviously most difficult to recognize regarding its originality (low SAD and

NCC scores). We may speculate that this is due to the large amount of rainbow colors

present on its patches.

For robust matching, the margin of the classifier should be as large as possible. Map-

ping this to the current task, the relative difference of matching scores between originals

and fakes should also be large. Normalized relative scoring distances depict consider-

able differences between the evaluated similarity measures, but, also, between different

holograms (see Figure 5.16). SAD and NCC only span a very small range compared to

SSIM-based measures. So, it is much more difficult to set a reasonable matching thresh-

old for them than it is for SSIM. Based on these insights, it seems more promising to use

SSIM for matching hologram patches, instead of NCC. This is further backed up by results

obtained from performing hologram verification using majority voting on individual patch

matching results (see Figure 5.17). In this case, only SSIM allows to correctly recognize

originals and fakes under typical office conditions.

We further investigated the patch matching performance for originals and fakes under

optimal office conditions, when using different devices at runtime (see Figure 5.17). We
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Figure 5.17: Left: Performance in recognizing fake and original holograms by majority voting
on patch matching results under various office conditions. Right: Performance in recognizing fake
and original patches when using various devices under optimal office conditions.

observed stable verification performance for two off-the-shelf devices (Samsung Galaxy S6

Edge, LG Optimus 4X HD). However, the Xperia Z2 smartphone failed. Further inves-

tigation revealed a relatively weak LED-light-source coupled with very different sensing

characteristics. This device is not able to reproduce different appearances of hologram

patches and cannot be used for hologram verification.

During feasibility testing we found that pre-filtering (Gauss or median filter) improves

robustness in case of unstable views (e.g., rainbow hologram). Besides, additional shape-

matching (e.g., modified Hausdorff distance [36]) can be used to reject false positives in

case of very distinct patterns within the patch (e.g., stereogram). After computation of the

matching score, linear scaling (k, d) of the result can be carried out based on coefficients

computed from matching the captured reference data in an off-line step (see Figure 5.12).

5.3.4 Discussion

We observed that different appearances of holograms can be repeatably captured, if the

built-in light source dominates the scene and if the hologram is recorded from the right

viewing direction. We proposed to use a mobile AR framework for document verification

for this task, since the available layout and pose information can be used for extracting

rectified patches from the image. However, due to the constraints of this setup, it seems

reasonable to support the user during image capture by an active guidance component

(see Chapter 6).

The required reference information for comparison can be obtained by sampling the

hemispherical space above the element and selecting a series of views according to several

constraints imposed by the mobile setup. The user can then decide on the validity of the

element by comparing the recorded data with reference information.

In order to improve the efficiency of the process, patch matching should be carried

Reference:

 ()
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out automatically instead of manual comparisons by the user. We evaluated different

similarity measures for the purpose of hologram verification with originals, color copies

and substitutes. The obtained results suggest that it is possible to automatically decide

on the validity of appearances, but the results vary depending on the similarity measure

used. NCC and in particular SSIM gave the most promising results. The actual choice

is dependent on the hologram and the computational capabilities of the device. Ideally,

the type of device should be the same for capturing reference information and on-line

verification. Our experiments revealed that, for several devices, verification is still possible

under optimal office conditions. While further invariance could be handled by using a

machine-learning based approach for the comparison of patches, a reasonably large amount

of training data is currently not available. Consequently, it lies in the responsibility of the

actual implementation to detect the type of device and to retrieve the corresponding data

for optimal matching performance. However, one popular device used in our evaluation

cannot be used for hologram verification at all.

5.4 Conclusion

Detection: We presented an approach to automatically detect holograms on security

documents with a mobile device. Our framework is capable of detecting and tracking a yet

unseen document and automatically determining the location of one or more holograms,

if present. For this purpose, a registered image stack is built in real-time and instantly

analyzed, once the orientation space has been sufficiently covered. The experimental

results presented proof of the plausibility of the algorithms proposed for use on off-the-

shelf mobile devices.

In order to better detect holograms with a small number of views, a more elaborate

stack analysis should be carried out. This is especially important for documents with

shiny surfaces in case the flashlight must be used during image capture. In the context of

practical application, it is also desirable to guide the user in order to efficiently record all

the information required for detection.

Verification: We investigated the feasibility of capturing view-dependent elements using

off-the-shelf mobile devices. Repeatable image capture is possible when using a dominant

light source (i.e., built-in LED) and matching the required viewing direction. This has

to be done for all relevant appearances of the element. Layout and tracking information,

as available in a mobile AR framework for document verification, can be exploited to

extract rectified patches for manual matching by the user. In order to better exploit the

capabilities of a mobile setup, automatic matching should be performed by the system.

An evaluation using different similarity measures with originals, fakes and substitutes

revealed, that it seems realistic to build a semi-automatic system for hologram verification

using an off-the-shelf mobile device.
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It would also be possible to treat the matching step as a machine-learning problem and

to decide on patch correspondence using a suitable classifier. However, this assumption

demands a large number of real-world appearances of originals and fake holograms for

training and testing, which are not available currently.

Due to the complexity of the task, it is reasonable to interactively guide the user

throughout the process. An evaluation of our hologram detection algorithm within a

mobile AR game gave encouraging results towards improving document security while

playing. However, from the standpoint of practical usability, the efficiency of the process

is a critical factor. Consequently, we will now focus on specialized goal-oriented user

interfaces for the mobile inspection of holograms.
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The proposed setup for mobile hologram verification requires to record the element

from a series of viewpoints, while obeying additional constraints such as operating distance

or pointing at the element, which is imposed by the hemispherical capture space. In

order to get reliable results within a reasonable time span, the user should be supported

throughout the image capture process and possibly also during the actual decision phase.

We must make sure, that all interesting space gets efficiently covered during image capture,

so that a reliable decision can be made by either the user or the system. Especially when

targeting non-processional users, the type and the parametrization of the user interface

becomes a critical factor for the task at hand.

In the following, we present a series of experiments on hologram verification with off-

the-shelf mobile devices, involving several different user interfaces, supporting manual and

automatic matching of original and fake holograms [61, 62].

6.1 Contribution

We propose an approach for capturing holograms through view alignment, which allows

the user to compare the expected appearance of a view-dependent feature and the real

observed one under the current viewing direction (see Section 6.2). Our evaluation shows

that such a setup can be used for repeatable image capture of hologram patches and is

89
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able to provide suitable data for comparing patches. Although it is possible to verify

holograms with this setup, it requires considerable temporal, physical and mental effort.

With the goal of improving the efficiency of the process, we propose several different

user interfaces for hologram verification on off-the-shelf mobile devices using automatic

capture and matching (see Section 6.3). Building on previous results, the problem is once

more treated as an alignment task but also investigated in the context of constrained

navigation. This finally leads to the design of a hybrid user interface. We compare

these interfaces in a user study involving original and modified elements, informing a

detailed discussion on the usefulness of these interfaces. Our results indicate that there is

a significant difference in capture time between interfaces but that users do not prefer the

fastest interface and are able to give better decisions on validity.

Following the insights gained from the aforementioned experiments, an alternative

parametrization is proposed, which is mainly motivated by the analysis of typical user

behavior when recording holograms with mobile devices. A subsequent evaluation within

a user study with original and substitute holograms revealed significant improvements

in matching accuracy and task completion time (see Section 6.4). The obtained results

show, that holograms can be captured and automatically assessed in around 15 s, leading

to better decisions on validity than those provided by laypersons.

6.2 View Alignment

The user can be guided to capture a frame from the same viewing direction and under the

same light direction as captured in the reference image set. Using the LED light of the

mobile phone as a dominant light source, the task is simplified to aligning the current pose

of the mobile phone operated by the user with several reference views. For this task we

propose a novel visual guidance approach for view alignment (see Section 6.2.1). While a

comparison from a single point of view can lead to rejection, acceptance requires to check

several viewing directions that present different appearances.

We investigated if it is possible to move to the correct viewpoints during a user study.

Given pairs of reference and test images captured with a mobile device, we subsequently

investigated patch similarity, but also user decisions on validity, and compared it to a

digital manual based approach (see Section 6.2.3).

6.2.1 Conceptual Approach

We propose a visual guidance approach inspired by two widely known metaphors, namely

iron sights and virtual horizon. Iron sights are used to align the viewing direction of

the operator with the direction of the device. In general, shaped alignment markers are

used for this task, which are positioned at a given distance on the device. Accounting for

distance or scale depends on the task and requires a calibration procedure. This is often

applied in sighting mechanisms.
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The virtual horizon is an indicator of level, which is often used when a device needs to

be aligned relative to the ground. At any time, the instrument shows the level of the object

relative to earth gravity. Implementations range from a simple water level for mechanical

tasks to advanced electronic devices used in aircrafts.

Based on these techniques, we subdivide view alignment into three steps: We match

the direction of the viewing ray (iron sights), the position along ray and the in-plane

rotation (virtual horizon). It is crucial to guide the user through these steps, so that

accurate alignment can take place (see Figure 6.1 for a conceptual overview).

6.2.2 Implementation

We implemented the proposed guidance approach in an interactive prototype for mobile

devices. The camera rotation of the tracking pose indexes into the stack of reference

images for a given hologram. The reference image is brought up for comparison with an

image captured from the live video frame.

The iron sights setup is realized by using two big circles, which mark start- and end-

point of the viewing ray. By using the intrinsic parameters of the camera, we scale the lower

ray circle so that it overlaps entirely with the top circle, once direction and distance match.

For easier alignment, we additionally use a smaller ray base circle, which is intended to

overlap with a small sphere fixed on the device screen. Their scale is also adapted with

the intrinsic parameters. The virtual horizon setup consists of two lines placed at the top

of the ray and two similar lines fixed on the screen. By using two different colors for each

line, we account for a possible ambiguity in rotation around the optical axis (see Figure

6.2).

We used the following color scheme to support the three-step alignment approach: red

Figure 6.1: Geometry of the proposed alignment approach. Matching the current view with a
given reference view takes place by aligning the viewing ray direction, position (base sphere on the
device screen with the ray base circle, ray top circle with the ray bottom circle) and orientation
(virtual horizon on top of ray with the virtual horizon on the device screen).
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Figure 6.2: Exemplary alignment sequence: Not aligned (top left). Aligning direction using iron
sights (top right). Adjusting distance (bottom left). Aligning rotation using the virtual horizon
(bottom right).

for the on-screen sphere, small ray base circle, green for the big ray base circle, top ray circle

and blue/yellow for the virtual horizon. Depending on the most similar (w.r.t. orientation)

reference pose, an automatic pre-selection is carried out by the system, drawing the full

iron sights and virtual horizon setup for the selected reference pose only. Whenever the

user makes a selection, the color of the reference ray is adapted. The user gets a short

summary of her decisions, when viewing the setup from farther away, and knows where

no decision was recorded up to that point. We draw the last captured ray associated with

the current reference pose, so that the user can get an impression of how well the captured

views fit (see Figure 6.3 and Figure 6.2).

Runtime Operation: During verification, image capturing is triggered by the user,

when the alignment of a reference pose and the current pose is deemed close enough

for accurate visual feedback. In this case, an auto-focus operation is triggered, and the

tracking pose is checked for stability, before the current frame and corresponding pose

are recorded. This is to avoid recording of pose jitter or blurry patches. We assume the
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Figure 6.3: Our interactive system for verification of view-dependent elements performs SVBRDF
capture using the built-in LED on the mobile device (top-left). The user gets an overview of relevant
views for verification, which are color-coded w.r.t. the decision of the user (right, note the number
attached to each view). The system allows the user to accurately match given reference views
and to compare the changes of holographic or similar security elements with the corresponding
reference appearances (bottom).

hologram to be planar and project the bounding box of the hologram into the image by

using the current pose. We estimate an image transformation with respect to the hologram

region on the undistorted template and subsequently warp the sub-image containing the

hologram. Consequently, the appearance of the warped patch corresponds to the selected

viewing direction. This allows for an efficient comparison. We display this patch side-by-

side with a reference patch. This similarity must be rated by the user to express consent,

uncertainty or rejection.

6.2.3 Evaluation

To test the feasibility of the proposed approach for mobile hologram verification, we de-

termined several performance parameters with users in a pilot study. This study had two

aims:

• Record the performance of users in target acquisition
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• Provide a first comparison to a simple paper based method

For system performance, we wanted to know how accurate users can acquire the neces-

sary viewing directions, given our guidance system. Understanding the potential accuracy

limits is important for determining minimal angles and distances between views for ver-

ification and learning what differences the system has to tolerate. Moreover, we wanted

to see if users can correctly verify a hologram using the current system. It is not clear if

the representation on the screen under real lighting conditions is comparable and looks

similar enough to users.

An additional goal was to analyze the potential for automation of the process, which

includes automatic capture and matching of hologram patches.

6.2.3.1 Study Design and Apparatus

We followed a within-subjects study design, recording view alignment and matching per-

formance, but also comparing the effects of the AR interface and a digital manual (DM,

providing visual step-by-step instructions, see Figure 6.4) on several aspects in a hologram

verification task. We investigated both performance based measures (alignment error, task

completion time, error rates in matching and for the main task), and user experience (UX)

dimensions (instrumental dimensions like usability, non-instrumental dimensions like he-

donic stimulation and identity, and emotional dimensions like intrinsic motivation).

The experiment took place under controlled laboratory conditions. Specifically, the

lighting was fixed to allow for comparable results in the digital manual condition. Both

interfaces were deployed on Samsung Galaxy S3 smartphones. The tasks were carried out,

while seated at a round table, but users were free to move around at any time (see Figure

6.5).

Figure 6.4: Exemplary view used in the digital manual. Overall image indicating the viewpoint
(left). Zoomed image of the hologram patch (right).
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Figure 6.5: Image showing table setup used during the study (left). Specimen banknote with
window showing hologram to be checked by participants of the study (right).

6.2.3.2 Task and Procedure

As main task, we chose the verification of the hologram present on a 50 Euro banknote,

which is one of the most often counterfeited banknotes in the Euro zone [38]. It must be

noted that the holograms on banknotes with higher values (100, 200, 500 Euro) behave in

a very similar way. The participants should inspect four holograms with each interface.

Specifically, they were asked to view the hologram from six different viewpoints (depicting

three different pictures: the banknote value, a window, and a doorway - see Figure 6.3

for view locations), but were free to stop the hologram verification, before completing

all views if they already came up with a decision. They were instructed to compare the

reference close-up view of the hologram with the view of the hologram that they were

inspecting and decide if they were similar. We pointed out that the holograms do not

have to match on a pixel-by-pixel view, but did not give any further hints on what similar

meant, leaving this decision up to the participants. After inspecting the hologram from all

six views, participants should come up with an overall decision on whether the hologram

was a real one or a counterfeited one. We did not tell the participants at any time before,

during or after the experiment if counterfeited (or real) holograms were among the ones

they inspected. We used eight printed specimen notes in total (four per interface) and

only left a hole for showing the underlying hologram of a real banknote (see Figure 6.5),

to avoid that the checking of further security features of the banknote could influence the

participants judgments. All employed holograms were real (no counterfeited hologram was

used).

At the beginning of the experiment, users filled in a background questionnaire. They

proceeded with a learning phase of the starting interface (AR or digital manual, coun-

terbalanced) inspecting a hologram not related to banknotes followed by the main task.
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After inspecting each banknote, participants briefly indicated their confidence in following

aspects in an online questionnaire: Is the current hologram real or fake? Did the depicted

reference viewpoints match the ones of the participants? Did the depicted reference close-

up views match the ones the participants saw?

After checking the holograms on all four banknotes, participants completed intermedi-

ate questionnaires regarding workload and UX qualities of the interaction. They repeated

the procedure (training, main task, questionnaires) with the second interface. At the end

of the study, a short semi-structured interview was conducted, focusing on aspects ob-

served during the participants’ interactions with the interfaces. The overall duration of

the experiment was around 60 minutes.

6.2.3.3 Participants

We conducted the study with 17 volunteers (1 female). Most participants reported to

have considerable experience with computers and a high interest in technical matters.

Only two volunteers reported not to own a smartphone or tablet. However, the majority

(13 participants) had never checked a hologram before. Three of the participants were

English speaking, but all instructions and questionnaires were given to the participants in

either German or English.

6.2.3.4 Data collection

Within the experiment, we collected device, video and survey data complemented with

photos and notes. For the AR system, we recorded camera poses and user interactions and

captured hologram patch data along with task completion time. In case of the digital man-

ual (DM), we measured the task completion time with a separate clock. In addition, the

actions of the users were video-taped. Besides quantitative analysis of data, we employed

several subjective scales to capture both general UX dimensions as well as task-specific

aspects. Specifically, we employed the Nasa TLX for workload assessment [58], AttrakDiff

[67] for capturing hedonic (stimulation, identity) and pragmatic UX dimensions and the

interest/enjoyment and value/usefulness sub-scales of the Intrinsic Motivation Inventory

(IMI) [109]. We analyzed quantitative data with the R statistical package and Microsoft

Excel. Null hypothesis significance testing (NHST) was carried out at the 0.05 level.

For the positional and orientation data, we treated all data outside the 2.5% and 97.5%

percentiles as outliers. The percentiles were computed on the aggregated data over all

views.

6.2.3.5 Results

We first analyze user performance in view navigation by comparison with the six given

reference views at all relevant events. The subsequent analysis of patch similarity using

image-based measures gives an impression on the performance of the proposed approach for
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mobile SVBRDF capture. Then, we provide results on task-level performance (hologram

verification) for the AR system and the DM, which attributes to patch similarity rated

by the user and the ability to come up with a final decision. Finally we provide results

related to the user’s subjective assessment.

One participant took significantly longer for the proposed tasks than was suggested.

As this behavior was limited to a single person, we consider the associated runs to be

outliers and do not use the associated data in the evaluation.

Maneuvering to Target Poses: We analyzed data corresponding to all selected views

during the study. Ranges of alignment errors in translation and rotation give a hint on

the level of accuracy attainable with our guidance approach (see Figure 6.6). The range of

translation error is -8mm to 10mm. The range of rotation error is -8 to 8 degrees. Overall,

the largest error is encountered with view number 4. This was the first view typically

selected by most of the participants, when they were still gaining familiarity with the

system.

Figure 6.6: Alignment errors for different views of the hologram captured in the user study.
Translation (left). Rotation (right). Axis color-coded: x...red, y...green, z...blue

Another way to assess the performance of using the guidance system is to compare

the captured patches with a suitable image similarity metric. We register reference and

captured patches using optical flow [134] and use NCC as our measure for patch similarity.

The optical flow correction is to account for inaccuracies due to unstable tracking (see

Reference:
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Figure 6.7: Matching registered patches: reference, warped image, registered image (left). NCC
scores with registered images for different views (right).

Figure 6.7). In this setup, four out of the six views obtain average NCC scores above

0.75. This suggests that the proposed setup for SVBRDF capture allows acquisition of

hologram patches for non-expert users, despite varying lighting conditions and limits in

pose accuracy. Two views have very low NCC scores, however. Again, one of them is the

view most users approached first, when they cannot be considered entirely familiar with

the system.

Task Performance: Regarding the task completion time, the medians of the AR and

the DM interface were 188 and 103 seconds, respectively (see Figure 6.8, left). As the data

was not normal distributed, a two-tailed Wilcoxon signed-rank test was employed and

showed that there is a significant effect of interface (W = 1687, Z = 4.48, p < 0.05, r =

0.48) on task completion time.

Participants rated how sure they were that the banknotes are real and fake for each

banknote (see Figure 6.8, middle). In addition, they rated how confident they were that the

individual hologram views corresponded to the reference close up views and how confident

they were that their viewpoints corresponded to the reference viewpoints (camera poses).

For the pooled results (over all four banknotes), a two-tailed Wilcoxon signed-rank test

showed no significant effect of interface on any of those ratings.

Subjective Assessment: We used the NASA TLX weighted scores scheme to assess

subjective demands. For computation of the scores, we used both the magnitude of load
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(ratings) and sources of load (weights), which evaluate the contribution of each factor. The

ratings for demands on subject and for task interaction are shown in Figure 6.8. Two-

tailed Wilcoxon signed-rank tests indicated a significant effect of interface (W = 98, Z =

2.13, p < 0.05, r = 0.37) on physical demand (MD for AR: 14.67, MD for DM: 3.33) and a

significant effect of interface (W = 111, Z = 2.32, p < 0.05, r = 0.40) on temporal demand

(MD for AR: 5.67, MD for DM: 4.00). There were no significant differences in NASA TLX

weighted scores for the other dimensions.

The AttrakDiff questionnaire is an instrument for measuring the attractiveness of an

interactive system along pragmatic and hedonic user experience qualities. Paired two-

tailed t-tests were conducted to compare the effects of the interfaces on the pragmatic

quality (PQ), hedonic quality identity (HQ-I), and hedonic quality stimulation (HQ-S).

Each subscale consists of seven items with a bipolar rating scale. We used five-item scales

and averaged the ratings of all seven items for each subscale. Group differences for UX

qualities PQ, HQ-I and HQ-S between the AR and DM interface condition are reported in

Table 6.1 and Figure 6.9. The interface had a significant effect on all dimensions, with the

AR interface leading to a significant lower score for the pragmatic (usability) dimension

(with a medium effect size), but significantly higher scores for the hedonic dimensions

(with large effect sizes).

We also assessed the participant’s intrinsic motivation through the IMI [109]. Specif-

Figure 6.8: Task completion times for the augmented reality and digital manual interfaces (left)
and agreement to ’I think the hologram is real’ (middle). Weighted NASA TLX dimensions for
demands imposed on subject and for task interaction; MD: Mental Demand, PD: Physical Demand,
TD: Temporal Demand, per: Performance, Eff: Effort, Fru: Frustration (right).

AR DM
Quality M SD M SD t(13) p Cohens’s d

PQ -.08 .37 .28 .37 -2.58 .02 .37

HQ-I .42 .37 -.15 .60 3.20 .005 .78

HQ-S .6 .39 -.54 .67 7.58 6e-7 1.92

Table 6.1: Group differences for UX qualities PQ, HQ-I and HQ-S
between the AR and DM interface condition.
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Figure 6.9: Left: AttrakDiff scores for Pragmatic Quality (PQ), Hedonic Identity (HQ-I), and
Hedonic Stimulation (HQ-S) on a 5-item bipolar scale. Right: IMI scores for Interest/Enjoyment
(IE) and Value/Usefulness (VU).

ically, we employed the interest/enjoyment and value/usefulness subscales (5-point Lik-

ert scale). A two-tailed Wilcoxon signed-rank test indicated significant effect for AR

(MD : 0.86) and DM (MD : −0.29) on Interest/Enjoyment (W = 123, p < .05, r = .38).

There was no effect on value/usefulness (see also Figure 6.9).

6.2.4 Discussion

The results obtained with the proposed approaches for hologram capture and user nav-

igation demonstrate that non-experts regarding document security can record different

appearances of hologram patches with consumer hardware.

More specifically, users were able to reach the six views used in the study with reason-

able accuracy (maximum range of translation error from -8 to 10 mm, maximum range of

rotation error from -8 to 8 degrees; see Figure 6.6). It must be noted that the used specimen

banknote did not remain entirely planar during the study. Although potentially leading to

larger errors, real banknotes often suffer from similar deformations. Consequently, several

users commented that final alignment was tedious and should be automated.

Patch similarity computed after registration gave NCC scores greater than 0.75 for

four of the six views (see Figure 6.7). While the pixel-wise registration improved NCC

scores noticeably, the obtained pose accuracy was close enough to the reference view, so

that the appearance of the view-dependent elements was correct. Thus, while we need to

automatically correct for small pose variances, the correct sector for the view-dependent

appearance was usually selected.

On the task level, the AR system shows similar verification performance to a digital

manual, but longer task completion times and higher physical and temporal demand (see

Figure 6.8). This is reasonable, because users are forced to move to the right pose, which

ensures repeatable conditions and reasonable matching of patches. However, none of

the evaluated interfaces was able to provide clear evidence whether a hologram is real

or not. While the AR system was also not rated better in terms of usability (pragmatic

quality), both the AttraktDiff and IMI (see Figure 6.9) questionnaires indicated significant

higher ratings for hedonic dimensions and interest/enjoyment. This could indicate a higher

motivational value for non-professional users to employ the AR system for verification.
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Figure 6.10: Improved user interface (left): Top-left patch showing reference data for the nearest
reference view, top-right patch showing captured data by the user. Bottom-left patch showing
live view of the warped hologram patch. Additional elements represent visual ranges for easier
alignment. Automatic recapture (right): The hologram is recaptured when a more suitable pose
is encountered.

While most users requested automatic capture and patch matching, some users also

suggested a summary page or the possibility to have a live view of the warped hologram

patch. We redesigned the user interface to address these issues and to support a more

natural workflow for verification. We incorporated a real-time view of the warped patch

and added automatic recapture of the hologram, whenever a better match concerning pose

is encountered (see Figure 6.10). We also provide cues for each of the steps required during

alignment in the form of additional graphical elements representing alignment ranges.

Finally, we show the reference patch and the best recorded patch concerning pose for the

nearest reference frame. The user can now continuously inspect the hologram, get instant

visual feedback and modify local decisions on validity.

We conducted an informal study with seven of the original participants, comparing

the updated user interface with the previous iteration. Five of seven users felt more

confident (two equal) on their decision concerning validity. However, six of seven users

rated temporal effort to be equal (one less). Users verbally reported that they found

the live-view and the alignment ranges to be useful. Regarding cognitive and physical

strain, five of seven users rated the system to be equal to the previous iteration (two less

straining). Two users asked for automatic image capture to avoid camera shake.

Not being able to work with actual fakes in the study certainly limits insights con-

cerning practical usability. However, credible fake documents and in particular holograms

are difficult to produce or acquire. The challenge is to get hold of samples which are not

immediately identified as fake but strongly resemble genuine items. This also means that

simple photocopies are of limited value. However, the approach could be evaluated with

holograms from different documents embedded in a generic looking surround or even with

rotated or possibly thermally treated holograms. The latter would allow to gain more

insights w.r.t. practical usability.

All in all these can be considered encouraging results for building both manual and

automatic mobile hologram verification systems.
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6.3 Efficient User Interfaces

We aim to improve upon the efficiency of mobile hologram verification by proposing spe-

cial task-oriented user interfaces. They avoid manual interaction, such as tapping on the

screen, for reasons of accuracy and efficiency. Instead, image capture is triggered auto-

matically, when the user is in a suitable position and matching with reference information

is carried out in the background. With these setups, an automatic decision is available

immediately after image capture.

We observed that many holograms feature similar appearances in very different lo-

cations. Consequently, one could think of rejecting the entire pose information during

matching and just taking care that the user is pointing towards the hologram. However,

this does not seem feasible, since users cannot be expected to sample the entire hemisphere

thoroughly without guidance. It is mandatory to consider the viewing direction in order

to get a good coverage of the pose space and provide a reliable exit mechanism. Using

information about the viewing direction, when matching, provides additional security.

An obvious approach is to guide the user to align the mobile device with exactly those

view points, which are associated with the selected reference data. Alternatively, a portion

of space can be visualized for sampling by the user, which requires coverage of a larger

region instead of given positions. Combining both approaches leads to a hybrid variant,

which uses a comparatively small region for sampling relevant data. In the following, we

cover the design of these approaches in more detail. In favor of usability, we decided to

omit an explicit check of the in-plane rotation of reference views during matching. This

is motivated by the fact that when views are placed on a hemisphere, reasonable results

can be achieved by just rotating the target.

6.3.1 Alignment Interface

Sampling holograms can be treated as an alignment task, where users have to point at the

center of the element, align with the viewing direction using iron sights, match the rotation

along the viewing ray using a virtual horizon and take care of the recording distance [62].

Although this causes a lot of strain, we believe that a careful design in conjunction with

automatic recording and matching can lead to considerable gains in efficiency. This could

make the alignment approach a strong competitor for constrained approaches.

We propose an improved alignment interface, which was designed in an iterative process

involving continuous user feedback. A sketch of the elements involved can be seen in Figure

6.11. We observed that users often had trouble matching the overall orientation of the

document and the device with the original approach. Not being able to do so makes

the overall alignment process more tedious. Consequently, the revised approach starts

with coarse alignment of document-device orientation. We project the camera center and

the top point of a reference pose down on the target surface and compute the relative

angle as a rough indicator of initial alignment. This can be visualized as a color-coded

Reference:
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Figure 6.11: Geometry of the revised alignment approach. Matching takes place by alignment
of target rotation and pointing with the indicator at the element. Finally, the viewing direction is
refined using the direction rubber band at an acceptable viewing distance.

indicator within a circle around the element. Depending on the sign of the computed error,

arrows are placed on the circle to indicate the required movement of the target. Upon

successful alignment (within a certain range), we proceed with more accurate indicators

for the viewing direction. We use animated rubber bands as indicators for pointing at

the element, but also for the vertical angle on the hemisphere. In both cases, the goal is

to follow the animated arrows in order to shrink down the rubber band into a point (see

Figure 6.12). Finally, a focus indicator is realized as a scaled sphere placed at the base

point of the current viewing direction on the target. Animated, directed arrows indicate

the required direction of movement. Note that we perform an initial focus operation at

the first view to be aligned and keep this setting throughout the process.

Views are captured sequentially, with feedback on the overall progress of the operation.

This aims to reduce visual clutter for the user. Upon successful alignment, several frames

are recorded from the live-video stream and automatically matched against prerecorded

reference data. From these measurements, the one having the highest matching score is

selected as the result patch for the user. During the process, we provide guidance towards

the desired direction, but also feedback regarding the quality of alignment. Similar to

the previous approaches, we aim to minimize the required movements for the user by

automatic selection of the nearest view. A live-view of the rectified hologram patch is

constantly displayed during spatial interaction in order to provide visual feedback of the
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Figure 6.12: Exemplary alignment sequence: Not aligned (top left). Aligning target rotation
(top right). Pointing at target (bottom left). Aligning viewing direction along hemisphere arc
(bottom right).

changes in appearance with varying recording position (see Figure 6.12 for an exemplary

alignment sequence).

After recording each of the views, a summary including the current overall decision

(genuine/fake) is presented to the user (see Figure 6.16). The user may skim through the

captured views and compare them side-by-side with the expected reference data. If the

system suggestion is revised by the user, an overall similarity score is recomputed, which

eventually changes the final decision. The user may also re-record certain views in order to

get a better basis for the final decision. This can be done in the summary for the current

view and works for all the approaches described here.

6.3.2 Constrained Navigation Interface

The task can also be treated within a constrained navigation framework. The idea is to

guide the user to sample larger portions of space instead of aligning with single views. By

giving more freedom to the user, this can reduce workload and task completion time.

The initial step is to guide the user to point at the hologram as required by the
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recording setup. We provide guidance using an animated rubber band, which shows a

moving arrow, once outside a given radius away from the element (see Figures 6.13, 6.14).

The capture distance needs to be adjusted as a starting point for an auto-focus operation,

so that the assumption about the flashlight being the dominant light-source holds. For

this purpose, we scale the entire widget and require the user to adjust the distance, so

that the outer ring of the widget stays within the given distance bounds.

Although the robot recording operates on a hemisphere, it does not seem reasonable

to apply this concept directly. An augmented hemisphere would certainly lead to coverage

of the entire space, but not necessarily in the shortest possible time. With an augmented

hemisphere, the most obvious movement is to scan hull slices and then rotate the document

for the next slice. We empirically verified that changing orientation from an orthogonal

starting point (conic) is much faster than target rotation with slice-scanning.

In favor of efficiently treating both originals and fakes, the user should be guided to-

wards different viewing directions or ranges. We propose a 2D orientation map (projection

of the conic space) [69] for this task. It is divided into slices that are aligned on one or

more tracks. The current position on the map is visualized by a cursor, and the current

slice is also highlighted. The cursor position is corrected by the target orientation, so

that the movement direction always corresponds to the orientation of the device (see Fig-

ures 6.13, 6.14). In general, it is not sufficient to just capture a single shot inside each

slice. We record several shots per slice, that differ at least by a given angular threshold.

The exact amount is automatically calculated, taking into account the area of the slice.

Consequently, the user can move freely inside the pie slices during the process. The tiny

Figure 6.13: Geometry of the proposed constrained navigation approach for sampling the holo-
gram. The user is guided to point at the element, and a cursor is controlled by the 2D orientation
on an augmented pie, divided into slices and tracks.

Reference:

 ()




106 Chapter 6. User Interfaces for Hologram Verification

Figure 6.14: We guide the user to point at the element using an animated rubber band (top-
left). Focus adjustment showing the layout of the orientation map and green distance bounds
(top-right). Constrained navigation UI with pie slices (bottom-left). Augmentation directly onto
the document/element (bottom-right).

arrows around the cursor serve as movement indicators. Whenever the user remains static

inside a non-completed slice, flashing arrows remind to move on. The upper arc defined

by a (sub-)slice is used as a completion indicator, which switches from red to green with

increasing slice coverage. The orientation map is realized as a widget placed in the screen

plane (2D-CON) or augmented onto the target (AR-CON).

In a pilot study, we tried using either no visual information on the capturing procedure

or a progress bar without any orientation information. Using no visualization at all gave

the best completion time, but also the lowest spatial coverage. In the following, we dropped

the interface without guidance and the progress bar. It must be noted that even with the

AR-CON interface, not all participants sampled the entire hologram. Consequently, we

went to incorporate slightly more guidance with the goal to only check pie slices containing

a reference view (see Figure 6.15).
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Figure 6.15: AR UIs with guidance for interesting subspaces. Either pie-slices (AR-CON, left)
or circular regions (AR-HYB, right) are indicated for sampling by the user.

6.3.3 Hybrid Interface

The location of reference views cannot be mapped straightforward to pie slices. It may be

necessary to associate several pie slices with a single reference view, increasing the amount

of slices to be checked. Since the number is generally much lower than the total number of

pie slices, we use small regions on the augmented map around reference locations, which

also serve as local completion indicators (AR-HYB, Figure 6.15).

These two UIs were evaluated in another pre-study, this time involving a demonstration

phase. According to the results obtained, AR-HYB had a much lower task completion time

compared with AR-CON. Users were able to complete the task using both approaches

(perfect coverage of interesting slices/regions) and obtained reasonable patch-matching

scores. Users generally gave very positive ratings concerning the type of guidance and

overall usefulness of the application, with a clear preference for AR-HYB. Motivated by

user demand and our own reasoning, this clearly moved the approach more in the direction

of an alignment task. As we consider our informal studies only suitable for guiding the

design process, we conducted a more detailed evaluation.

6.3.4 Evaluation

We evaluated the most promising candidate for constrained navigation (CON) and the

hybrid approach (HYB, see Figure 6.15) against the alignment UI (ALI, see Figure 6.12).

After image capture, a summary is presented to the user (see Figure 6.16) independent of

the UI used for capture. The global system decision is communicated via a colored square

(green...valid, yellow...unsure, red...invalid) to the user. Each reference has its own page,

showing the reference data on the left side of the screen and the best recorded match on

the right side, along with a local rating by the system, which can be changed by the user

in case of doubt. It must be noted that we also monitored distance as capture condition,

so that the users had to stay within the allowed distance range for the CON and HYB
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Figure 6.16: User interfaces for hologram verification: Constrained navigation (top-left), align-
ment (top-right) and hybrid user interfaces (bottom-left) are designed, implemented and evaluated
within a user study. They allow to reliably capture image data suitable for automatic verification.
Results are presented to the user in a summary (bottom-right).

interfaces. We manually selected two reference views per hologram with a visually equal

spatial distribution.

6.3.4.1 Study Design and Tasks

According to a domain expert we consulted, professionals can identify most fake documents

or holograms within a few seconds. The focus of the following study is on laypersons

without advanced domain knowledge or experience, using an off-the-shelf smartphone for

hologram inspection.

We designed a within-subjects study to compare both the performance and user expe-

rience aspects of the three aforementioned user interfaces for hologram verification.

The study had two independent factors: interface and hologram. The independent

variable of main interest was interface (with three levels: ALI, CON, HYB). We modeled

hologram as fixed effect (four level), since the holograms were deliberately selected (and

not randomly sampled from a population) in order to represent intensity-dominated and

shape-dominated samples including common mixtures.

For each of the four holograms, we selected the corresponding reference views with

the goal of minimizing the variance an individual hologram could have on the results.

Dependent variables of interest were task completion time (both capture and decision

time), system performance (how well the system could verify the validity of the hologram),

user performance (how well the user could verify the validity of the hologram), and user
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experience measures (usability, workload, hedonic and motivational aspects).

For each interface, the actual verification procedure started upon pointing the center

of the screen at the element and tapping on it. For the ALI interface, the user had to

align the rotation of the document with the current reference view (azimuthal angle),

point at the center of the hologram and adjust the viewing direction (polar angle) along

with the capture distance. In case of the CON interface, the user had to point at the

element, following the base rubber band. The orientation cursor had to be moved inside

the indicated (connected) pie slices by changing the azimuth and inclination angles through

device movement and monitoring the operating distance. The HYB interface had to be

operated in a similar way. However, the cursor had to be aligned and moved inside small

circular regions. Upon successful sampling, the system summary/system decision was

presented to the user.

6.3.4.2 Apparatus and Data Collection

We conducted the study in a lab with illumination from the ceiling enabled (fluorescent

lamps). In order to minimize variations induced by daylight changes, we kept the blinds

of the room closed throughout the entire study.

All user interfaces were integrated into a single Android application running on the

Samsung Galaxy S5 mobile phone (Android 4.4.2) and using the built-in camera with LED

flashlight enabled. Reference data for verification was recorded with our robot using the

same device (see Section 5.3.3.1).

We used four holograms as shown in Figure 6.17, each on a different base document.

With our choice of samples and reference data, we aimed to address the non-trivial case

of hologram substitution, since that is rather common according to a document expert we

consulted for our study. Although some of the views we selected (i.e., black patches) may

not resemble the typical appearance of holograms for the public, we believe that the large

visual difference w.r.t. the other image in the pair justifies their use.

We collected data for evaluation through automatic logging on the test device itself,

questionnaires and interviews. For data analysis, we used Matlab, R, and SPSS. Null

hypothesis significance test were carried out at a .05 significance level, if not otherwise

noted.

6.3.4.3 Procedure

Each participant was informed about the study purpose and the approximate length prior

to the start of the study. The participants filled out a demographic questionnaire and

then conducted the Vandenberg and Kuse mental rotation test [170]. They were informed

that they would test a total of 12 holograms with three user interfaces (four holograms

per interface). Although 12 holograms were shown to the participants as a stack, only a

subset of four holograms was used for all interfaces (see Figure 6.17).
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Figure 6.17: Samples used in our study. We evaluated all user interfaces with two original (no. 1,
4 - top row) and two fake (no. 2, 3 - bottom row) holograms, where each was placed on a different
document template. Reference information recorded with the robot setup is used by the system
for matching, while the other images are exemplary recordings during verification by the user.

The following procedure was repeated for all three user interfaces. A training phase

with both a correct and a fake document (not appearing in the actual study) was con-

ducted. This also included an explanation of application controls along with document

classification and tracking. Participants could test the interface as long as they liked (on

average less than five minutes). After feeling comfortable with the interface, participants

were asked to use the current interface to capture four holograms, one at a time. After

capturing a single hologram, the system presented its decision on the validity of the single
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views and an overall decision (valid, unsure, invalid). After seeing the system decision,

the participants were asked to fill out a post-task questionnaire, in which they were asked

to assess the validity of the hologram on their own (5-item bipolar scale: I am totally

sure that the hologram is fake ... neutral ... I am totally sure that the hologram is

valid). After validating four holograms with the current interface, the users filled out a

post-interface questionnaire (5-item Likert scale, ease-of-use and time items of the After

Scenario Questionnaire [95]), the NASA TLX questionnaire (with weighting of items) [58],

the AttrakDiff [67] and Intrinsic Motivation Inventory questionnaires [109].

After having conducted this procedure for all three interfaces, the participants filled

out a final questionnaire, in which they should choose their preferred interface (overall

preference, which interface was fastest to use, which interface was easiest to use). Finally,

they were asked about the reasons for their choices. Participants received a voucher worth

10 EUR for their time.

The starting order of both interface and hologram was counterbalanced. The tasks

where grouped by interface. While each participant was exposed to each hologram three

times, we took care to make them believe it was a separate hologram (by showing a staple

of several documents and hiding from them which document was drawn out of the staple).

Each participant was exposed to individual interface-hologram combinations exactly once

during the study. The whole procedure took on average 90 minutes. Participants could

take a break anytime they wanted.

6.3.4.4 Participants

19 volunteers (2 female, age M = 26.8, SD = 4.46) participated in the study. All except

one participant owned at least one smartphone or tablet, where the majority (16) had

been using it for at least one year. In general, participants reported to be interested in

technology. Thirteen participants had already used an AR application at least once. Seven

participants had never attempted to verify a hologram before. In the mental rotation

test, the majority of participants scored reasonably (M = 0.8, SD = 0.14). With 19

participants assessing four holograms with three interfaces, we obtained 228 samples.

6.3.4.5 Hypotheses

Based on our observation and the insights gained during pre-studies, we had the following

hypotheses: H1: The hybrid UI will be the fastest among all interfaces. H2: The alignment

UI will be the most accurate one, but slow. H3: The constrained navigation UI will be

the easiest to use.

The hybrid interface combines desirable elements from alignment (accurate end po-

sition) and constrained navigation (marked interaction space). With a small number of

reference views, checking should be very fast (H1 ). The revised alignment interface should

assure the most accurate capture positions and, consequently, has the best prospects for

accurate matching and verification (H2 ). This might come at the cost of increased capture
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time. The constrained navigation approach gives most freedom to the user. The pie slice

layout could be familiar to users, although accuracy w.r.t. single reference views might

not be as good and, by design, a bigger space needs to be sampled (H3 ).

6.3.4.6 Findings

We performed an analysis of task completion time, user and system performance and user

experience aspects for hologram verification.

Task Completion Time: For capture time (the time from start of the task until the

presentation of system results), a two-way within-subjects analysis of variance (ANOVA)

showed a significant main effect for interface, F (2, 36) = 3.60, p = .038, partial η2 = .17

and a significant main effect of hologram, F (3, 54) = 4.04, p = .012, partial η2 = .18. The

interaction between interface and hologram was not significant.

Multiple pairwise post-hoc comparisons with Bonferroni correction for interface re-

vealed that the mean score for capture time (in seconds) for the hybrid interface (M =

37.22, SD = 38.20) was significantly different compared to alignment (M = 57.01, SD =

55.77) (t(75) = 3.44, p = .001), but not compared to constrained navigation (M =

44.43, SD = 20.70). Also, there was no significant difference between constrained nav-

igation and alignment.

Multiple pairwise post-hoc comparisons with Bonferroni correction for hologram re-

vealed that the mean score for capture time (in seconds) for hologram 2 (M = 39.61, SD =

29.39) was significantly different compared to hologram 4 (M = 55.19, SD = 53.51),

t(56) = −3.23, p = .002, but not compared to hologram 1 (M = 45.58, SD = 40.97)

or hologram 3. There were no other significant differences between holograms. Further-

more, there where no learning effects for either interface or hologram, as indicated by a

within-subjects ANOVA.

The decision time (the time spent in the summary screens) over all interfaces was on

average 18.45 seconds (SD = 15.32). A two-way within-subjects ANOVA showed no sig-

nificant main effect for interface, but for hologram F (3, 54) = 3.233, p = .029, partial η2 =

.152. However, multiple pairwise post-hoc comparisons with Bonferroni correction for holo-

gram did not indicate any significant pairwise differences (hologram 1 M = 17.7, SD =

12.72, hologram 2 M = 23.7, SD = 19.54, hologram 3 M = 15.53, SD = 8.85, hologram

4 M = 16.98, SD = 17.54). The interaction between interface and hologram was not

significant.

To summarize, the capture time using the hybrid interface was significantly faster than

the alignment interface and for hologram 2 compared to hologram 4. For decision time, no

pairwise significant differences could be found. There were no learning effects for interface

or hologram.
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User and System Performance: Over all participants and holograms, 79.6% of the

users’ decisions were correct (treating both items ’I am totally sure that the hologram is

[in]valid’ and ’I am sure that the hologram is [in]valid’ as correct answers). For 12.5% of

the decisions, the users where unsure if the hologram was valid or fake. An investigation of

the effects of the predictors interface and hologram on the dichotomous dependent variable

’correctness of user decision’ using logistic regression was statistically not significant. Note

that we had to exclude one participant from this sub-evaluation due to incomplete data.

73.1% of the system decision were correct. The system was unsure if the hologram

is valid or fake in 11% of all cases. As for user decision, we used logistic regression to

investigate the effects of interface and hologram on the dichotomous dependent variable

’correctness of system decision’. The logistic regression model was statistically significant

X2(5) = 58.83, p < .0001, explained 37.5% (Nagelkerke’s R2) of the variance in system

decision and correctly classified 81.5% of the cases. The Wald criterion demonstrated that

hologram made a significant contribution to prediction (Wald X2(3) = 20.80, p < .0001),

but interface did not. The system only made correct decisions in 50.0% for hologram 1

(neutral: 27.8%, hologram 2 correct: 100%, 3 correct: 94.4%, 3 neutral: 0.04%), 4 correct:

74.1%, 4 neutral: 13.0%).

To summarize, users were able to correctly validate (decide if the hologram is valid

or false) in 80% of the cases, but the system only in 73%. Hologram was a significant

predictor for system decision, with a validation performance for hologram 1 of only 50.0%.

User Experience: We investigated ease of use and satisfaction with task duration with

the ASQ, cognitive load with the NASA TLX, and hedonic and motivational aspects with

AttrakDiff and Intrinsic Motivation Inventory questionnaires, after each participant had

finished using a single interface.

A one-way Friedmann ANOVA by ranks did not indicate a significant effect of interface

on ease-of-use. Similarly, for satisfaction with task duration (over all four holograms per

interface), there was no significant effect of interface. Note that we had to exclude one

participant from this sub-evaluation due to missing data.

For cognitive workload, as measured by NASA TLX, one-way Friedmann ANOVAs

by ranks did not indicate significant effects of interface on the subscales (mental demand,

physical demand, temporal demand, performance, effort, frustration) or the overall mea-

sure. Due to space reasons and the non-significance of the omnibus tests, we will not

report further statistics here.

Similar, for pragmatic quality (PQ), hedonic quality - identity (HQI) and hedonic

quality - stimulation (HQS), as measured by AttrakDiff, and for value-usefulness and

interest-enjoyment as measured by the Intrinsic Motivation Inventory, one-way Friedmann

ANOVAs by ranks did not indicate significant effects of interface.

In the final questionnaire, 47% of the participants indicated that CON was easiest to

use (ALI: 21%, HYB: 32%), 42% indicated that CON was fastest to use (ALI: 16 % HYB:

42%) and 47% favored CON overall (ALI: 26.5%, HYB: 26.5%).
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In summary, the statistical analysis could not indicate significant effects of the inter-

faces on usability, workload, hedonic qualities or intrinsic motivation. Still, about half of

the participants preferred CON overall and indicated that it was easiest to use.

6.3.5 Discussion

Our analysis did not fully confirm hypothesis H1. The hybrid interface was the fastest

one, taking roughly 40 s for image capture, being significantly faster than the alignment

interface (which took around one minute for verification). However, the hybrid interface

was not significantly faster than the constrained navigation interface (ca. 45 s).

While this is a significant improvement over related work ([62], but using up to six

views), this is still a long time span and probably not feasible for a quick check in a

real-world situation. However, as most checked documents will be originals, an early exit

for such samples could further decrease checking time. As decision time did not vary

significantly between interfaces, they are all suited to recording data for verification.

Around 73% of the system decisions were correct, which may seem rather low. As

there was no significant effect of any interface, hypothesis H2 does not hold in this regard.

If we only neglect wrong decisions (i.e., combine positive and neutral decisions), the sys-

tem performance would still be below the combined rate for user decisions (system: 84%

correct vs. user: 92% correct). It seems that users either came up with their own (more

invariant) similarity measure during the study, or they used additional appearance infor-

mation gathered through the sampling process for their decisions, which was not available

to our system (e.g., due to non-matching viewing direction). However, most of the neutral

system decisions (around 63%) were caused by hologram 1 (50 EUR banknote, see Figure

6.17). This hologram shows rainbow colors, which is a very difficult case for our matching

approach. Together with the rather conservative parametrization of our system (avoiding

false positives) and the encouraging results of hologram 4 (around 90% combined rate),

we speculate that the type of hologram has considerable influence on its verifiability with

the proposed approach.

While the statistical analysis did not indicate significant effects of interface and user

experience measures, we obtained a large number of comments in the post-hoc interviews

throughout the study. The HYB UI, being the fastest one, was described four times as

’intuitive’, ’good to use’ or ’easy’ (CON: 7, ALI: 3). However, four participants reported

that the movements required were initially not clear (CON: 4, ALI: 5). With the CON

UI, four users recognized the freedom in movement. For the slow ALI UI, three users

expressed their interest in that UI (’interesting’, ’cool idea’, ’visually best’). One user

stated that it was ’easy to spot, what to do, but difficult to accomplish’. Two users also

gave positive comments about the usefulness of the summary.

For the CON and HYB interface, one user suggested to always display the pointing

rubber band, even when the widget is perfectly at the screen center. For CON, one user

suggested an additional completion indicator for pie slices involving the pie region itself

Reference:
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instead of the border. The same user also suggested to use additional indicators for viewing

ray alignment in the ALI UI.

Despite being the fastest one (around 40 s), the hybrid user interface did not receive the

same degree of user consent as the CON interface when taking into account the comments.

Users explicitly criticized the final alignment stage involved. As a take away, it seems

that the most efficient interface does not necessarily reflect the general preference of the

user. Such awareness should be considered for real-world deployments of mobile AR user

interfaces requiring fine-grained maneuvering.

6.4 User-Friendly Parametrization

Both the gap in matching performance between the system and the operator as well as

the improved, but still impractical verification time deserve additional attention. We inte-

grated SSIM for matching into the mobile prototype for hologram verification and propose

an alternative distribution of reference views. In this case, more reference information can

be used for matching, while still requiring only small movements by the operator. We

evaluate this setup within a user study regarding accuracy and task completion time.

6.4.1 Distribution of Views

With the goal of further reducing temporal effort, the selection of reference views to be

checked becomes increasingly important. A selection focusing solely on differences in

appearance (as used in a printed or digital manual) could be disadvantageous for mobile

applications, since a large range in orientation needs to be spanned by the user. In contrast,

a reasonable spatial positioning of reference views could lead to savings in task completion

time. With the experience gained in prior experiments, it seems reasonable that the layout

of reference views conforms with typical movements of users when examining holograms

(see Appendix B). In order to allow the inspection of a hologram regardless of whether the

document is lying on a desk or held in hand, reference views should be placed in the lower

vertical direction of the orientation space (see Figure 6.18). Due to the observed movement

along a path, it also seems reasonable to use a sequence of patterns for verification instead

of single spots. In this case, more data is available for matching, which could lead to more

robust decisions by the system.

6.4.2 Evaluation

We took four pairs of originals and substitutes used in a previous experiment (see Figure

5.15) and selected an alternative layout of reference views (see Figure 6.19) for the Hybrid

user interface. This prototype was then evaluated within a user study with the goal to

evaluate the accuracy of decisions by this modified and re-parametrized system as well as

the temporal effort concerning image capture and decisions.
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6.4.2.1 Procedure

Participants were informed about the study purpose and length, followed by a short in-

vestigation of demographic data. Then, a training phase was started in order to make

the participant familiar with the checking procedure using a fake and an original docu-

ment. Afterward, four pairs of documents (original, substitute - see Figure 5.15) had to

be checked using the proposed approach. We rotated the sequence of these documents

with each participant. During this process, relevant data such as timestamps for various

actions, matching scores and system/user decisions on validity were recorded. After each

hologram, the users were questioned about their decision on validity. After all runs, they

were asked to rate the process as a whole and to give comments regarding their experience.

We used a Samsung Galaxy S5 smartphone throughout the study.

Altogether, 24 users participated in the study (2 female, age M = 29.54, SD = 5.54).

All but one user reported to own a smartphone for at least one year. In general, they

described their affinity to technology as high to very high. Half of the participants reported

to never have examined a hologram before.

6.4.2.2 Findings and Discussion

Temporal Effort and Accuracy: Holograms can be assessed by the system immedi-

ately after image capture, which takes approximately 15 seconds (M = 14.97, SD = 8.59).

Figure 6.18: Alternative layout of reference views (orientation) for hologram verification on
movement paths. Reference views should be placed on a vertical path, making the device face
towards the user in case the document is lying on a surface (dark-blue circles).

Figure 6.19: Exemplary selection of reference views on the lower half of a vertical path.
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Figure 6.20: Temporal effort (left) and accuracy of user decisions (right) with the updated
prototype. Holograms can be assessed by the system in approx. 15 s with all decisions being
correct. Users additionally need approx. 20 s for assessment, being correct in 85.94% of all cases.

A subsequent decision by the user takes another 20 s (M = 20.07, SD = 15.17, see Figure

6.20). One-way within subjects ANOVAs revealed no significant effect of hologram on

capture time, but on decision time (F (7, 184) = 2.46, p = 0.0196). Multiple pairwise post-

hoc comparisons with Bonferroni correction for hologram revealed that the decision time

for hologram 1-o (M = 27, SD = 19.99) was significantly different to those of hologram

1-f (M = 12.83, SD = 14.07). The system was able to assess the hologram correctly in

all cases. Users were unsure about the validity of the hologram in 10.94% of all cases and

succeeded to give a correct decision in 85.94% of all cases (see Table 6.2 for details on

individual holograms).

Four users pointed out that they enjoyed using the application (’steep learning curve’,

’liked it’). Half of the users mentioned that it was not completely intuitive to use the

application (e.g., ’complicated’, ’needs practice’). One user suggested to use textual hints

or a virtual example. Another user suggested to use the wire-frame of a 3D object for

alignment or to augment a half-dome on top of the element. Two users mentioned issues

with deciding on the validity of a hologram (e.g., ’not clear, when patches are different’,

’different colors are irritating’).

Discussion: The modified selection of reference views leads to a reasonable checking

time of 15 s when using the system. Due to the fact that three reference views were used,

Hologram 1-o 1-f 2-o 2-f 3-o 3-f 4-o 4-f

Correct [%] 75.0 100.0 83.3 50.0 91.7 95.8 91.7 100.0
Neutral [%] 25.0 0.0 8.3 37.5 8.3 0.0 8.3 0.0
Wrong [%] 0.0 0.0 8.4 12.5 0.0 4.2 0.0 0.0

Table 6.2: User decisions for hologram inspection using originals and substitutes.
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instead of two, this is an encouraging result, which confirms that the actual selection is

critical to the efficiency of the process.

While it is interesting to note that the actual decision time (20 s) takes longer than

image capture, this is not relevant for the evaluated holograms, since the system was able

to give a perfect decision in all cases. The significant difference in decision time between

Hologram 1-o and hologram 1-f (substitute) is very likely due to a larger visual difference

for this pair regarding the original and the substitute. The lower accuracy achieved by the

users (85.94%) gives room for speculation that they cannot intuitively assess the evaluated

holograms by themselves. Users, in particular, had issues assessing hologram 2-f correctly,

which is a rotated version of the original element. They were also rather unsure about the

validity of Hologram 1-o, where the patterns are subject to a larger amount of color noise.

Many participants pointed out that the interface was complicated to use. This is due to

the complexity of the task, which requires simultaneous monitoring of several parameters

and rather fine-grained navigation. This could be improved by using textual instructions

or animation throughout the process. Using a wireframe-based alignment approach does

not seem reasonable in the light of prior results (see Section 6.3.4.6).

It must be noted that the aforementioned selection of reference views, although nat-

ural for the user and beneficial regarding efficiency, may not be possible for an arbitrary

security element. The reason is that the complete set of reference patterns does not nec-

essarily become visible when recording with a flash-enabled mobile device and following

the suggested path for orientation change (i.e., tilting downwards). Consequently, there is

a need for specially designed security elements which allow the aforementioned selection

of viewing directions. This can be considered a realistic demand, since there are already

elements on the market which approximately have this property.

6.5 Conclusion and Future Work

Accounting for the importance of user guidance in mobile settings, and, in particular,

for hologram verification, we conducted a series of experiments involving different user

interfaces supporting manual and automatic comparison of patches.

View Alignment We first proposed a novel user guidance approach suitable for view

alignment based on iron sights and the virtual horizon. This allows the user to efficiently

match the pose of the phone with pre-recorded views of the hologram. We implemented

this approach within a mobile AR framework for document inspection and conducted a

user study comparing a digital manual with the AR system. The obtained results prove

that it is feasible to capture and verify holograms in a manual setting on off-the-shelf

mobile phones. However, it is necessary to decrease physical and cognitive strain for the

user.
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Efficient User Interfaces With the goal to improve the efficiency of the overall ap-

proach, we implemented and evaluated several different AR user interfaces for checking

holograms. Alignment, constrained navigation and hybrid approaches using automatic

matching were compared in a user study. Although the hybrid interface had the fastest

completion time, users preferred the constrained navigation interface over the other two

according to the comments received. Although this led to a considerable reduction in

effort for the user, the system was not able to match the performance of users inspecting

the captured images manually.

User-Friendly Parametrization As the required temporal effort as well as the accu-

racy called for further improvement, we modified the spatial distribution of reference views

in order to mimic the typical behavior of users observed during document verification and

also changed the similarity measure for patch-matching. An evaluation within a user study

turned out, that hologram capture can be done in approximately 15 s. An automatic de-

cision by the system follows immediately. Consequently, the selection of reference views

is critical for the efficiency of the process. Contrary to decisions on validity made by the

users, the system proved to be correct in all cases.

Future Work In order to allow the use of the application without a training phase (e.g.,

download from an app-store), it seems reasonable to provide an in-app tutorial through

visual and textual hints for each step of the process.

It must be noted that the initial focus operation required for adjusting the camera

lens to the small operating distance for capturing hologram patches my require several

seconds with current off-the-shelf devices. With better control over the camera, a suitable

distance could be set automatically due to the available document and pose information.

This would further reducing the required temporal effort and improve the overall usability.

From the results obtained in our studies, it is evident that security elements should be

designed with mobile verification by human operators in mind. Besides placing relevant

appearances along main viewing directions, it would also be reasonable to support a con-

tinuous assessment of capture conditions during the process (i.e., flashlight dominance).

This could be realized by using a hologram made of several parts. However, it seems

beneficial to switch to a different sampling pattern in this case (i.e., orthogonal move-

ments). Such a pattern has been commercially adopted for product protection involving a

2D barcode equipped with a unique hologram1. However, this solution does not support a

thorough monitoring of capture conditions and uses a non-interactive setup with discrete

sampling positions.

1http://www.authenticvision.com

http://www.authenticvision.com
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7.1 Summary of Results

In this work, we considered the use of off-the-shelf mobile devices for document inspection

in the context of AR. Initially, basic building blocks for the creation of a mobile information

system for assessing documents, including those containing personal data, were established.

We proposed a sequential approach, consisting of document detection and subsequent

classification of the document from a rectified input image. In order to allow application of

off-the-shelf mobile devices, efficient algorithms for the detection of perspectively distorted

rectangular regions and purely client-side mobile visual search were proposed, implemented

and confirmed through extensive evaluation to be suitable for use on ordinary devices.

Having an advanced mobile image acquisition device at hand, we went on to investigate

how it could be used to support the actual process of checking security documents. To this

end, we designed an efficient approach for detection and recognition of machine-readable

zones, without requiring accurate alignment of the imaging device and the document. This

solution, while giving more freedom to the user and providing an instant feedback channel,

was shown to offer reasonable performance and accuracy, despite having to deal with the

challenges of mobile setups. We also contributed a synthetic database, which can be used

for further research in the field.

With the Mobile AR setup established in the initial steps, we first investigated the

feasibility of mobile hologram detection and verification. For repeatable image capture

of hologram patterns, a dominant light-source is required (e.g., built-in flashlight), which

121
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limits the application mostly to indoor scenarios. While we confirmed the feasibility of

those steps in an extensive evaluation, the requirement of aligning the image device with

the document several times in order to get suitable data for verification, lead to impractical

temporal effort and load for the user. Automatic image capture and matching along

with several different user interfaces were introduced in order to increase efficiency. The

outcome was a semi-automatic system for mobile hologram verification. A final evaluation

taking into account typical user behavior and involving substitute holograms, revealed that

it is possible to capture relevant information in approximately 15 s. Automatic decisions

made by the system were able to surpass the judgment given by the actual human operator.

7.2 Lessons Learned

During the work described in this thesis, additional insights were gained that could be

useful when considering further research in the current or a related field. In the following,

these will be briefly discussed.

Computer Vision on Mobile Devices: With the task of processing identity docu-

ments, it became evident that state-of-the art solutions for detection and tracking are too

restrictive for our goals. Although it is understandable that companies want to protect

their achievements, we can speculate that slightly more flexible toolkits for Mobile AR

would be beneficial for research.

Considering the issue of document classification, our experience shows there is still

potential to improve upon the accuracy or latency of commercial solutions, while using only

the computing power available in a handheld device. However, during various phases of this

work, we were plagued with throttling of the mobile device. Consequently, monitoring the

efficiency of the application is still mandatory, because peak performance is only available

for a relatively short amount of time, due to thermal or energy issues.

We experienced an omnipresent lack of representative data for training and testing of

algorithms involving documents. Although it is absolutely necessary to protect privacy,

it seems also reasonable to demand public authorities to help in establishing anonymous

databases, which can be used for the evaluation of algorithms for document verification.

Interaction and User Experience: The complex task of mobile hologram verification

shows the importance of user interface design. Comparing the final efficiency achieved with

results along the path, it seems very reasonable to observe the natural behavior of users

when designing approaches for user guidance and interaction. If possible by any means,

the intuitive behavior of users shall be determined and exploited for the achievement of

the actual task. The verbal preference we observed for an actually slower interface suggest

that users do not like to be patronized. This observation is increasingly important in the

context of app-stores, where software is not expected to arrive with lengthy explanations
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on usage. However, there is also a solid basis on computer vision required, which can cope

with the desired freedom of the user.

7.3 Outlook

Especially for mobile document inspection, improving the performance of visual tracking

is desirable. While this could be treated by extending the scope of features used for

tracking (e.g., text), typical deformations of documents should also be handled, which,

given the limited processing power available, is a challenge on its own. For mobile hologram

verification, processing curved documents could mean that the element is no longer planar.

This calls for additional research about the effect of these deformations on the appearance

of the element. When also the front camera of a mobile device is available, gaze tracking

could become a source of information to trigger the display of augmented information on

the document without moving the device or the document.

As pointed out initially, the focus of fraud is shifting away from the document to the

actual people handing over the document. In order to catch imposters, mobile verification

should be extended to support personnel with the verification of the identity of a person in

question. This could be done by automatic facial recognition, possibly also using biometric

information stored in a microchip of the document (ePassport). Again, this functionality

must be realized under computational constraints, despite strict requirements regarding

robustness and the protection of sensitive data.





A
List of Acronyms

ANN...Artificial Neural Network

ANOVA...ANalysis Of VAriance

AR...Augmented Reality

BOW...Bag Of Words

BRIEF...Binary Robust Independent Elementary Features

BRISK...Binary Robust Invariant Scalable Keypoints

CCD...Charge-Coupled Device

CV...Computer Vision

GPS...Global Positioning System

HD...High Definition

HOG...Histogram Of Gradients

HMD...Head Mounted Display

LED...Light-Emitting Diode

MRZ...Machine Readable Zone

MSER...Maximally Stable Extremal Regions

NCC...Normalized Cross Correlation

NFC...Near Field Communication

NFT...Natural Feature Tracking
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OCR...Optical Character Recognition

ORB...Oriented FAST and Rotated BRIEF

OVD...Optically Variable Device

PCA...Principal Component Analysis

RANSAC...Random Sample Consensus

ROI...Region Of Interest

SAD...Sum of Absolute Differences

SIFT...Scale-Invariant Feature Transform

SSIM...Structural Similarity Index

SURF...Speeded Up Robust Features

SVM...Support Vector Machine

TF-IDF...Term Frequency, Inverse Document Frequency

VIZ...Visual Inspection Zone

SLAM...Simultaneous Localization and Mapping

SVBRDF...Spatially Varying Bidirectional Reflectance Distribution Function

SWT...Stroke Width Transform

UX...User Experience

VGA...Video Graphics Array



B
Study on Document Capture

We conducted an experiment in order to gain more insights about the typical behavior of

laypersons when recording documents with mobile devices for the purpose of inspection.

In the first part of the experiment, participants were asked to record a self-made sample

of an ID-document using the Samsung Galaxy S5 smartphone for as long as they deemed

appropriate. During recording, the document was tracked and the pose and video infor-

mation was logged onto the device including the corresponding timestamps. Afterward,

participants were asked about what they had been looking for on the document. In the

second part, they were asked to look specifically at the hologram through the mobile de-

vice within two trials. In the first case, users were asked to record the hologram with the

document in hand, while in the second case, the document was placed on a table. In order

to avoid learning effects, we balanced the order of trials among the participants.

In total, 20 participants (three female) took part in the study, which on average lasted

for about ten minutes. We analyzed the obtained data by producing a map of the unpro-

jection of the camera center onto the template. However, no distinct hot-spots besides

the hologram became visible. After the analysis of the comments obtained by the users, it

turned out, that people looked at the hologram, face, text and other specialized elements,

but did not necessarily keep the element visible in the middle of the screen. However,

the hologram and the face image were usually examined before all the other elements (see

Figure B.1). Over all participants, the document was sampled on average for around 37 s

(M = 37.15, SD = 16.21).

During both trials of hologram inspection, users looked at the hologram and started

to tilt the document or the device. On average, users were sampling the hologram in these

scenarios for around 33 s (M = 33.35, SD = 13.59). Changes in orientation in general

took place roughly along the vertical and horizontal axes. However, there is a notable

difference in behavior, depending on whether the document is in hand or on the table.

While in the first case, mainly vertical movements are made into both directions, in the

second case orientation changes take place in the lower direction and to the side (less

distinct). The latter seems reasonable, since otherwise the user would move the screen
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Figure B.1: Checking order of various security features for an exemplary ID-document (top
row). The hologram and the face image are the most interesting elements, followed by textual
information including the MRZ. Orientation changes during hologram inspection were considered
with the document held in hand (bottom-left) and with the document kept on a table (bottom-
right). This corresponds to tilting the document roughly in the vertical and also in the horizontal
direction. In the first case, users did not move the document exactly in the vertical direction. This
can also be seen by the visualized Eigenvectors (red and blue lines).

of the device away from the field of vision. It must be noted that in the first case, the

majority of users tried to fix the device in one hand and tilted the document only. From

the visualization of the corresponding Eigenvectors it is evident, that users did not move

the document exactly in the vertical direction when holding it in hand, but also rotated

it slightly.
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[40] Erol, B., Antúnez, E. R., and Hull, J. J. (2008). Hotpaper: multimedia interaction

with paper using mobile phones. In El-Saddik, A., Vuong, S., Griwodz, C., Bimbo,

A. D., Candan, K. S., and Jaimes, A., editors, Proceedings of the ACM International

Conference on Multimedia, pages 399–408. ACM. (page 24)

[41] European Central Bank (ECB) (2015). Biannual information on euro banknote coun-

terfeiting. https://www.ecb.europa.eu/press/pr/date/2015/html/pr150123.en.html . (page 3)

[42] Evans, C. (2009). Notes on the opensurf library. Technical Report CSTR-09-001,

University of Bristol. (page 38)

[43] Fabrizio, J., Cord, M., and Marcotegui, B. (2009a). Text extraction from street level

images. In CMRT, pages 199–204. (page 25)

[44] Fabrizio, J., Marcotegui, B., and Cord, M. (2009b). Text segmentation in natural

scenes using toggle-mapping. In Proceedings of IEEE International Conference on Image

Processing (ICIP), pages 2349–2352. (page 56)

[45] Feiner, S., MacIntyre, B., Hollerer, T., and Webster, A. (1997). A touring machine:

prototyping 3d mobile augmented reality systems for exploring the urban environment.

In International Symposium on Wearable Computers (ISWC), pages 74–81. (page 14)

[46] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography. Comm.

ACM, 24(6):381–395. (page 23)

[47] Fitzmaurice, G. W. (1993). Situated information spaces and spatially aware palmtop

computers. Commun. ACM, 36(7):39–49. (page 14)

[48] Fragoso, V., Gauglitz, S., Zamora, S., Kleban, J., and Turk, M. (2011). Translatar: A

mobile augmented reality translator. In IEEE Workshop on Applications of Computer

Vision (WACV), pages 497–502. (page 26)



BIBLIOGRAPHY 133

[49] Gao, H., Rusinol, M., Karatzas, D., and Llados, J. (2014). Embedding document

structure to bag-of-words through pair-wise stable key-regions. In Proceedings of Inter-

national Conference on Pattern Recognition (ICPR), pages 2903–2908. (page 23)

[50] Gariup, M. (2015). How to detect document and identity fraud? Seminar on ID

Theft. (page 8)

[51] Gariup, M. and Soederlind, G. (2013). Document fraud detection at the border:

Preliminary observations on human and machine performance. In European Intelligence

and Security Informatics Conference (EISIC), pages 231–238. (page 7, 28)

[52] Gasparini, S. and Bertolino, P. (2013). Stereo camera tracking for mobile devices. In

IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),

pages 14–19. (page 16)

[53] Girod, B., Chandrasekhar, V., Chen, D. M., Cheung, N.-M., Grzeszczuk, R., Reznik,

Y. A., Takacs, G., Tsai, S. S., and Vedantham, R. (2011). Mobile visual search. IEEE

Signal Processing Magazine, 28(4):61–76. (page 36)

[54] Gomez, L. and Karatzas, D. (2014). Mser-based real-time text detection and tracking.

In Proceedings of International Conference on Pattern Recognition (ICPR), pages 3110–

3115. (page 26)

[55] Gruber, L., Hartl, A., Arth, C., Hauswiesner, S., and Schmalstieg, D. (2011). Rapid

reconstruction of small objects on mobile phones. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),

pages 20–27. (page 17)

[56] Gschwandtner, M., Stolc, S., and Daubner, F. (2014). Optical security document

simulator for black-box testing of (abc) systems. In IEEE Joint Intelligence and Security

Informatics Conference, (JISIC), pages 300–303. (page 7)

[57] Haindl, M. and Filip, J. (2013). Visual Texture. Advances in Computer Vision and

Pattern Recognition. Springer Verlag. (page 77)

[58] Hart, S. G. and Staveland, L. E. (1988). Human Mental Workload, chapter Develop-

ment of NASA-TLX (Task Load Index): Results of empirical and theoretical research.

North Holland Press, Amsterdam. (page 96, 111)

[59] Hartl, A., Arth, C., and Schmalstieg, D. (2014a). Ar-based hologram detection on

security documents using a mobile phone. In Bebis, G., Boyle, R., Parvin, B., Koracin,

D., McMahan, R., Jerald, J., Zhang, H., Drucker, S., Kambhamettu, C., El Choubassi,

M., Deng, Z., and Carlson, M., editors, Advances in Visual Computing, volume 8888

of Lecture Notes in Computer Science (LNCS), pages 335–346. Springer International

Publishing. (page 68)



134

[60] Hartl, A., Arth, C., and Schmalstieg, D. (2015a). Real-time detection and recognition

of machine-readable zones with mobile devices. In Proceedings of the International Con-

ference on Computer Vision Theory and Applications (VISAPP), pages 79–87. (page 55,

59, 60)

[61] Hartl, A., Grubert, J., Reinbacher, C., Arth, C., and Schmalstieg, D. (2015b). Mobile

user interfaces for efficient verification of holograms. In Proceedings of the IEEE Virtual

Reality Annual International Symposium (VR). (page 89)

[62] Hartl, A., Grubert, J., Schmalstieg, D., and Reitmayr, G. (2013). Mobile interactive

hologram verification. In Proceedings of IEEE International Symposium on Mixed and

Augmented Reality (ISMAR), pages 75–82. (page 68, 89, 102, 114)

[63] Hartl, A. and Reitmayr, G. (2012). Rectangular target extraction for mobile aug-

mented reality applications. In Proceedings of International Conference on Pattern

Recognition (ICPR), pages 81–84. (page 30)

[64] Hartl, A., Schmalstieg, D., and Reitmayr, G. (2014b). Client-side mobile visual

search. In Proceedings of the International Conference on Computer Vision Theory and

Applications (VISAPP), pages 125–132. (page 30)

[65] Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision.

Cambridge University Press, second edition. (page 14, 21, 38)

[66] Hasanuzzaman, F., Yang, X., and Tian, Y. (2011). Robust and effective component-

based banknote recognition by surf features. In Annual Wireless and Optical Commu-

nications Conference (WOCC), pages 1–6. (page 18)

[67] Hassenzahl, M., Burmester, M., and Koller, F. (2003). AttrakDiff: Ein Fragebogen

zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In Mensch &

Computer 2003: Interaktion in Bewegung, pages 187–196, Stuttgart, Germany. B. G.

Teubner. (page 96, 111)

[68] He, J., Feng, J., Liu, X., Cheng, T., Lin, T.-H., Chung, H., and Chang, S.-F. (2012).

Mobile product search with bag of hash bits and boundary reranking. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3005–

3012. (page 36)

[69] Heger, S., Portheine, F., Ohnsorge, J. A. K., Schkommodau, E., and Radermacher,

K. (2005). User-interactive registration of bone with a-mode ultrasound. Engineering

in Medicine and Biology Magazine, IEEE, 24(2):85–95. (page 27, 105)

[70] Henze, N., Schinke, T., and Boll, S. (2009). What is that? object recognition from

natural features on a mobile phone. In Workshop on Mobile Interaction with The Real

World. (page 37)



BIBLIOGRAPHY 135

[71] Hirschmuller, H. and Scharstein, D. (2009). Evaluation of stereo matching costs

on images with radiometric differences. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 31(9):1582–1599. (page 84)

[72] Hollerer, T., Feiner, S., and Pavlik, J. (1999). Situated documentaries: embedding

multimedia presentations in the real world. In International Symposium on Wearable

Computers (ISWC), pages 79–86. (page 15)

[73] Hu, J., Kashi, R., and Wilfong, G. (1999). Document classification using layout

analysis. In 1999. Proceedings of the International Workshop on Database and Expert

Systems Applications, pages 556–560. (page 58)

[74] ICAO (2008). Machine readable travel documents. (page 5, 53, 59, 65)

[75] Iwamura, M., Kobayashi, T., and Kise, K. (2011). Recognition of multiple characters

in a scene image using arrangement of local features. In International Conference on

Document Analysis and Recognition (ICDAR), pages 1409–1413. (page 26)

[76] Iwamura, M., Kobayashi, T., Matsuda, T., and Kise, K. (2013). Recognition of

layout-free characters on complex background. In IAPR Asian Conference on Pattern

Recognition (ACPR), pages 740–741. (page 26)

[77] Jachnik, J., Newcombe, R. A., and Davison, A. J. (2012). Real-time surface light-field

capture for augmentation of planar specular surfaces. In Proceedings of IEEE Interna-

tional Symposium on Mixed and Augmented Reality (ISMAR), pages 91–97. (page 19,

77)

[78] Janucki, J. and Owsik, J. (2003). A wiener filter based correlation method intended

to evaluate effectiveness of holographic security devices. Optics Communications, 218(4-

6):221–228. (page 20)

[79] Ji, R., Duan, L.-Y., Chen, J., Yao, H., Rui, Y., Chang, S.-F., and Gao, W. (2011).

Towards low bit rate mobile visual search with multiple-channel coding. In ACM MM,

pages 573–582. (page 36)

[80] Jung, C. and Schramm, R. (2004). Rectangle detection based on a windowed hough

transform. In Symposium on Computer Graphics and Image Processing, pages 113–120.

(page 21)

[81] Karthikeyan, S., Jagadeesh, V., and Manjunath, B. S. (2013). Learning bottom-up

text attention maps for text detection using stroke width transform. In Proceedings of

IEEE International Conference on Image Processing (ICIP). (page 26)

[82] Kasar, T. and Ramakrishnan, A. G. (2012). Multi-script and multi-oriented text lo-

calization from scene images. In Proceedings of the International Conference on Camera-

Based Document Analysis and Recognition (CBDAR), pages 1–14, Berlin, Heidelberg.

Springer-Verlag. (page 25)



136

[83] Kato, H. and Billinghurst, M. (1999). Marker tracking and hmd calibration for a

video-based augmented reality conferencing system. In Proceedings of the IEEE and

ACM International Workshop on Augmented Reality, pages 85–94. (page 15)

[84] Khashman, A., Sekeroglu, B., and Dimililer, K. (2005). Deformed banknote identifica-

tion using pattern averaging and neural networks. In Proceedings of the WSEAS Inter-

national Conference on Computational Intelligence, Man-machine Systems and Cyber-

netics, CIMMACS’05, pages 233–237, Stevens Point, Wisconsin, USA. World Scientific

and Engineering Academy and Society (WSEAS). (page 18)

[85] Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR

workspaces. In Proceedings of IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), Nara, Japan. (page 16)

[86] Klein, G. and Murray, D. (2009). Parallel tracking and mapping on a camera phone.

In Proceedings of IEEE International Symposium on Mixed and Augmented Reality (IS-

MAR), Orlando. (page 16)

[87] Kobayashi, T., Iwamura, M., Matsuda, T., and Kise, K. (2013). An anytime algo-

rithm for camera-based character recognition. In International Conference on Document

Analysis and Recognition (ICDAR), pages 1140–1144. (page 26)

[88] Kolev, K., Tanskanen, P., Speciale, P., and Pollefeys, M. (2014). Turning mobile

phones into 3d scanners. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3946–3953. (page 17)

[89] Kosecka, J. and Zhang, W. (2002). Efficient computation of vanishing points. In

IEEE International Conference on Robotics and Automation (ICRA), volume 1, pages

223–228. (page 21)

[90] Kunze, K., Utsumi, Y., Shiga, Y., Kise, K., and Bulling, A. (2013). I know what you

are reading: Recognition of document types using mobile eye tracking. In International

Symposium on Wearable Computers (ISWC), ISWC ’13, pages 113–116, New York, NY,

USA. ACM. (page 24)

[91] Kurz, D. and Benhimane, S. (2011). Gravity-aware handheld augmented reality. In

Proceedings of IEEE International Symposium on Mixed and Augmented Reality (IS-

MAR), ISMAR ’11, pages 111–120, Washington, DC, USA. IEEE Computer Society.

(page 16)

[92] Kwon, H.-J. and Park, T.-H. (2007). An automatic inspection system for hologram

with multiple patterns. In SICE, pages 2663–2666. (page 20)

[93] Lagunovsky, D. and Ablameyko, S. (1999). Straight-line-based primitive extraction

in grey-scale object recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 20(10):1005–1014. (page 22)



BIBLIOGRAPHY 137

[94] Leutenegger, S., Chli, M., and R., S. (2011). Brisk: Binary robust invariant scal-

able keypoints. In Proceedings of IEEE International Conference on Computer Vision

(ICCV), pages 2548–2555. (page 23, 34)

[95] Lewis, J. R. (1991). Psychometric evaluation of an after-scenario questionnaire for

computer usability studies: The asq. SIGCHI Bull., 23(1):78–81. (page 111)

[96] Li, Q. (2014). A geometric framework for rectangular shape detection. IEEE Trans-

actions on Image Processing (TIP), 23(9):4139–4149. (page 22)

[97] Lin, C., Huertas, A., and Nevatia, R. (1994). Detection of buildings using perceptual

grouping and shadows. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 62–69. (page 22, 31)

[98] Liu, X. (2008). A camera phone based currency reader for the visually impaired.

In Proceedings of the International ACM SIGACCESS Conference on Computers and

Accessibility, Assets ’08, pages 305–306, New York, NY, USA. ACM. (page 18)

[99] Liu, X. and Doermann, D. (2008). Mobile retriever: Access to digital documents from

their physical source. International Journal on Document Analysis and Recognition

(IJDAR), 11(1):19–27. (page 24)

[100] Liu, X., Lu, K., , and Wang, W. (2012). Effectively localize text in natural scene

images. In Proceedings of International Conference on Pattern Recognition (ICPR).

(page 25)

[101] Liu, Y., Ikenaga, T., and Goto, S. (2007). An mrf model-based approach to the

detection of rectangular shape objects in color images. Signal Processing, 87(11):2649–

2658. (page 22)

[102] Liu, Z. and Sarkar, S. (2008). Robust outdoor text detection using text intensity

and shape features. In Proceedings of International Conference on Pattern Recognition

(ICPR). (page 25)

[103] Lohweg, V., Hoffmann, J., Dörksen, H., Hildebrand, R., Gillich, E., Hofmann, J.,

and Schaede, J. (2014). Authentication of security documents and mobile device to

carry out the authentication. WO Patent App. PCT/IB2014/058,776. (page 18)

[104] Loomis, J. M., Golledge, R. G., Klatzky, R. L., Speigle, J. M., and Tietz, J. (1994).

Personal guidance system for the visually impaired. In Proceedings of the Annual ACM

Conference on Assistive Technologies, Assets ’94, pages 85–91, New York, NY, USA.

ACM. (page 14)

[105] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision (IJCV), 60(2):91–110. (page 22)



138

[106] Mandridake, C., Ouddan, A., Hoarau, M., and Win-Lime, K. (2014). Towards fully

automatic id document frauds detection. In Workshop Interdisciplinaire sur la Sécurité
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