
David Mandl

Automatic Generation of Surrogate
Terminals for Shape Grammar

Derivation

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme

Computer Science

submitted to

Graz University of Technology

Thesis supervisors

Dr. Markus Steinberger

Dr. Denis Kalkofen

Prof. Dr. Dieter Schmalstieg

Institute for Computer Graphics and Vision

Graz, Austria, Mar. 2016

Abstract

Today’s computer graphic applications need a lot of high quality models that are

usually generated by the work of many artists. Shape grammars are an approach to

automatically generate these models based on a set of rules. PGA (parallel generation

of architecture) is a system to evaluate shape grammars for models of buildings on the

GPU. The PGA system evaluates the grammar and generates the geometry in parallel

on the GPU.

In this work we show how to derive so called surrogate terminals from a

given shape grammar. These terminals are used to replace otherwise generated geometry

by textures that approximate the details of the skipped geometry. The textures

replace the details on different detail levels. To derive the LOD levels an error metric

between geometry and detailed surrogate texture is used. This approach also deals with

randomness, thus grammars that are parametrized with random numbers.

Keywords. shape grammar, parallel, architecture, GPU

iii

Kurzfassung

In heutigen Computergrafik-Anwendungen werden sehr viel 3D Modelle von hoher

Qualität benötigt welche aufwendig von vielen Designern erstellt werden müssen.

Shape Grammars sind eine Möglichkeit diese Modelle anhand von einer Menge Regeln

automatisch zu erzeugen. PGA (Parallel Generation of Architecture) ist ein System das

Shape Grammars verwendet um Gebäude zu erzeugen. PGA führt die Grammatik auf

der Grafikkarte (GPU) aus um die Vorteile der Massiven Parallelen Datenverarbeitung

auf der GPU zu nutzen (CUDA).

In dieser Arbeit geht es um die Ableitung sogenannter Surrogate Terminals

für Shape Grammars. Diese Terminals werden verwendet um durch die Grammatik

erzeugte Geometrie durch Texturen zu erstzen welche die ersetze Geometriy

approximieren. Diese Texturen werden für verschiedene Detailstufen erzeugt. Um eine

Bedingung für die verwendung der Detailstufen abzuleiten wird ein Fehlerkriterium

verwendet um den Fehler zwischen 3D Geometrie und der Surrogate Texture zu

bestimmen. Es können auch Zufallszahlen zur parametrisierung der Grammatik

verwendet werden.

v

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly marked all material which has

been quoted either literally or by content from the used sources.

The text document uploaded to TUGRAZonline is identical to the presented master’s

thesis dissertation.

Place Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als

die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich

und inhaltlich entnommene Stellen als solche kenntlich gemacht habe.

Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Master-

arbeit identisch.

Ort Datum Unterschrift

Acknowledgments

I would like to thank the following people.

My supervisor Markus Steinberger for all his feedback and suggestions. He

has been very patient and always had an answer to my questions. Also thanks to him i

can now work for the ICG. Mark Doktor, Pedro Poechat and Michael Kenzel, who laid

out the foundation of the PGA framework which is the base of my work. As well as for

their helpful suggestions and discussions. I also want to thank Denis Kalkofen for his

helpful feedback and motivation to carry on with my work.

ix

Contents

1 Introduction 1

1.1 Problems . 2

1.2 Purpose . 4

1.3 Organization of this work . 5

2 Related Work 7

2.1 Procedural Modelling . 7

2.1.1 Procedural Generation of Textures 8

2.1.2 Fractals . 8

2.1.3 L-Systems . 8

2.2 Shape Grammars . 9

2.3 Evaluating Shape Grammars . 13

2.4 Level of Detail . 14

2.5 Parallel Generation of Architecture . 15

3 Concept 17

3.1 Foundation . 17

3.1.1 Shape Grammar . 17

3.1.2 Derivation Tree . 18

3.1.3 Generation . 18

3.1.4 Rendering . 19

3.2 Texture support . 20

3.3 Surrogate Terminals . 21

3.4 Surrogate Textures . 22

3.5 Level of Detail . 24

3.6 Stochasticity . 24

xi

xii

4 Implementation 27

4.1 PGA extensions . 27

4.1.1 Texture support . 28

4.1.2 Stochasticity . 28

4.2 Derivation Tree . 28

4.3 Surrogate Terminals . 29

4.4 Level of Detail . 29

4.5 Runtime Integration . 30

4.6 Random Parameters . 31

5 Results 33

5.1 Uniform Buildings . 33

5.2 Random Buildings . 36

5.2.1 Random Windows . 36

5.2.2 Random Facades . 38

5.3 Complex Buildings . 41

5.4 Rendering Quality . 43

5.5 Rendering Quality with Stochacitity . 45

6 Conclution and Future Work 47

6.1 Conclustion . 47

6.2 Future Work . 47

A List of Acronyms 49

Bibliography 51

List of Figures

1.1 Example screenshots from state of the art games. (a) Batman flying over

Gotham City. From Batman Arkham Knight c©Rocksteady (b) Tom Clancy

The Division takes place in a large city c©Ubisoft. 1

1.2 city buildings created with PGA . 3

2.1 Using GML a user/designer defines a sequence of modeling operations to

generate more complex geometric objects. In this example, a polygon is

created to instantiate a cylinder, which is then cut and connected to another

cylindric form.. Image from [2] . 7

2.2 Heightmap (a) image generated by a fractal generator. Bright areas show

high section (mountains) and dark areas are valleys. Terrain (b) Rendering

of the generated terrain based on the heightmap. 8

2.3 Trees generated by a L-System (PGA). Images from [19]) 9

2.4 Buildings generated with a split grammar. Image from [23] 10

2.5 Images show generated building with Computer Generated Architecture

(CGA) . 11

2.6 Buildings with façades generated with by-example synthesis. Image from [5] 12

2.7 User created model (a) shows a user created model of an oil platform.

Generated model (b) shows a complex model of oil platforms generated

from (a) by model synthesis. Images from [11] 12

2.8 Building models using the photo at left bottom corner as input for the

structural style. Image from [6] . 13

2.9 Example for a repeat operation on a quad shape. The quad shape is sub-

divided in four equal sized quads along the x axis. 13

2.10 Example of different Level of Detail (LOD)s of the stanfort bunny 14

xiii

xiv LIST OF FIGURES

2.11 Images show building generated with Parallel Generation of Architecture

(PGA). Image from [18] . 16

3.1 This example shows how a quad shaped façade is first split up in 4 tiles by

the repeat operator. Then the subdivision operation is used to subdivide

this tile along X and Y direction in wall and window tiles. Finally the wall

and window tiles use the generate operator to produce the actual geometry. 19

3.2 Simple textured house generated by PGA. 21

3.3 Surrogate terminal replaces a sub-tree in the derivation tree. 22

3.4 Surrogate texture created by render-to-texture 23

3.5 Renderings of the building at different detail levels 24

3.6 clustered sampled textures . 26

4.1 Different houses generated with PGA . 27

5.1 Uniform Houses . 34

5.2 Uniform Building Scene. (a) The grammar used to render the scene. (b)

Rendering including texture buildings without the surrogate terminal ap-

proach. (c) Wireframe rendering of the scene without using surrogate termi-

nals. (d) Rendering with textures using surrogate terminals. (e) Wireframe

rendering using surrogate terminals. 35

5.3 Random Window Scene. (a) The grammar used to render the scene, notice

that the repeat parameter for the facade is randomized. (b) Rendering of

buildings with variable number of windows without surrogate terminals. (c)

Wireframe rendering of the scene without using surrogate terminals. (d)

Rendering with textures using surrogate terminals. (e) Wireframe rendering

using surrogate terminals. 37

5.4 Five different facades for the same house . 38

5.5 Rendering of generated houses different facades 38

5.6 Random Rule Scene. (a) The grammar used to render the scene, notice

that the repeat parameter for the facade is randomized. (b) Rendering of

buildings with variable number of windows without surrogate terminals. (c)

Wireframe rendering of the scene without using surrogate terminals. (d)

Rendering with textures using surrogate terminals. (e) Wireframe rendering

using surrogate terminals. 40

5.7 Five different facades for the same house . 41

5.8 Complex house scene. (a) Rendering of buildings with variable number

of windows without surrogate terminals. (b) Wireframe rendering of the

scene without using surrogate terminals. (c) Rendering with textures using

surrogate terminals. (d) Wireframe rendering using surrogate terminals. . . 43

LIST OF FIGURES xv

5.9 Examples for rendered textures which are compared. (a) Shows a detailed

rendering of one side. (b) Shows the corresponding surrogate terminal with

its surrogate texture. 44

5.10 HDR-VDP-2 Quality between original and surrogate rendering over differ-

ent distances. (a) Shows the quality of all terminals using linear texture

filtering. (b) Shows the quality using mipmapping. 45

5.11 Quality of original rendering and surrogate rendering 45

5.12 Quality of original and surrogate rendering with clustered textures 46

List of Tables

5.1 Results for the Simple House testcase . 34

5.2 Results for the Random Window testcase 36

5.3 Results for the RandomRule testcase . 39

5.4 Results for the Complex house testcase . 41

xvii

1
Introduction

Computer graphic application nowadays require a great amount of content to present

high detailed virtual scenes to their users. These 3D environments consist of many 3D

objects like buildings, characters and small objects. Figure 1.1 shows example renderings

of state of the art games. In these examples large cities with hundreds of building are

rendered by the game’s graphics engine. With increasing hardware capabilities, rendering

many detailed 3D objects is not much of a problem nowadays.

(a) (b)

Figure 1.1: Example screenshots from state of the art games. (a) Batman flying over Gotham
City. From Batman Arkham Knight c©Rocksteady (b) Tom Clancy The Division takes place in a
large city c©Ubisoft.

To make such big 3D scenes a large number of 3D objects is needed. All these objects are

often still created by hand by 3D artists. These artists still rely on the same 3D modeling

programs from years ago. Tools like Maya 1 and Blender 2 are still used to produce the

necessary 3D assets for characters, props and buildings. These tools are not designed for

mass production of 3D models, i.e. authoring hundreds of 3D objects.

1http://www.autodesk.de/products/maya
2http://www.blender.org

1

http://www.autodesk.de/products/maya
http://www.blender.org

2 Chapter 1. Introduction

However, many of these assets could be generated automatically so the

artists could focus on other things in his workflow. For example modern video games like

Far Cry 4 or Grand Theft Auto 5 offer a huge amount of content for its gamers. The

creation of all the assets needed often requires many artists to spend hundreds of hours

working on building the 3D models only. Many of these objects often show variations of

basic objects that could be created automatically. For example city buildings often share

a basic type of shape.

Another example is the movie industry, where nowadays a lot of scenes are done in green

screen and Computer Generated Imagery (CGI) is used to represent certain scenes

(background). These images can be either painted or created using 3D renderings. These

scenes are usually created by 3D artists in many hours of work but most of these rendered

scenes are only a few seconds on screen. These could be generated automatically to let

the artists concentrate on detailed CGI that is used for creatures or other detailed models.

Many other fields exist which can benefit from the automatic creation of

computer graphic content. For example architecture, computer aided design, medicine,

etc. All share the same problem, a large amount of content has to be created which often

include variations of basic shapes.

Shape grammars allow to greatly reduce the time and effort required to cre-

ate 3D content. They provide a way to create assets like buildings procedurally, i.e.

without any manual interaction. These grammars consist of a set of rules which

determine how the geometry is automatically created. This way, only the rules need to be

defined to produce the geometry for, e.g., buildings. Therefore, no interaction is needed

to create the actual geometry. Another benefit is that any changes in the shape grammar

can be viewed instantly by rendering the resulting geometry. With randomization whole

cities can be created in a few seconds while it would take several work hours to create all

those buildings by hand. See figure 1.2 for an example of a city generated by rules using

the PGA system.

1.1 Problems

In shape grammars a problem is how the different content is generated. Either multiple

grammars are needed or an attributed grammar in which the parameters allow the user

to alter the results the grammar produces. However, the creation of a shape grammar is

not as intuitive as creating geometry by hand. Therefore an editor is usually needed to

see the resulting geometry of a shape grammar.

When generating multiple objects with a shape grammar an obvious problem

1.1. Problems 3

Figure 1.2: city buildings created with PGA

is that the different outcome shapes are always the same. To overcome this there are

attributed grammars which can be parametrized to allow for different resulting shapes.

To create a diverse city of many different buildings it would still be necessary to define

every building with a set of grammar rules. A method to reduce the number of rules

needed are random parameters that can be used to create many different buildings from

a single shape grammar rule set.

Evaluation of the grammar can be done either on the Central Processing

Unit (CPU) or on the Graphics Processing Unit (GPU). Evaluating grammars for many

buildings on the CPU can be very slow because the grammar has to be processed

sequential. The GPU is a lot faster in processing small tasks in parallel. The problem

is that the grammar rules are dependent on their parent rules so the rules cant be

easily executed in parallel. To overcome this issue, an evaluation system on the GPU

has to introduce parallelism into the dependency graph that represents the parent-child

relationship between generated shapes.

Another problem is that the shape grammar gets executed for every building

even if its not visible or to far away to see any details. To overcome this one can consider

the distances of the buildings to the camera and adjust the evaluation of the grammar

to only generate enough detail for rendering. The missing detail could be replaced by

an imposter rendering that resembles the geometry. For example a texture could be

generated beforehand that resembles the replaced geometry on at a specific distance to

4 Chapter 1. Introduction

the camera.

1.2 Purpose

Using only a small set of rules shape grammars can produce a large amount of

geometry automatically. While shape grammars can be evaluated either on the CPU

or on the GPU for this work we focus on the evaluation on the GPU which has the

advantage of having the geometry information directly available on the GPU for rendering.

Shape grammars work on geometric shapes, in this work we use simple

shapes like boxes and quads. These shapes can be used to derive shapes of simple

buildings. The shapes are defined in the shape grammar definition or rule-set. During

the grammar evaluation these shapes are used to derive the geometry of every rule. The

grammar evaluation stops at so called terminal symbols [23] where the actual geometry

is produced. This is the point where the shape’s geometric transformation comes into

play to create the final output shape. Which shapes are used depends on the 3D models

that needs to be created.

In this work, we explore the notion of so-called surrogate terminals [18] for

shape grammars, which are used to replace detailed geometry by much simpler geometry

during the evaluation of the shape grammar. This allows to stop the evaluation

earlier and replace covered geometry. This means that they need to resemble the

geometry of the replaced detail. To achieve this goal we present a derivation method

to preprocess a shape grammar and create surrogate terminals for a given shape grammar.

To replace the detail, a custom texture has to be created that contains the

replaced details. These textures are called surrogate textures. To render this textures it

is also necessary to replace the geometry with a coarse shape that can be texture mapped

with the surrogate texture.

Every surrogate terminal can be viewed as a LOD . To use multiple level of

detail a condition is needed to derive the correct detail level at any time. Since

the amount of detail that is rendered depends on the distance from the geometry

to the camera, this distance can be used to derive the current needed detail

level and choose the corresponding surrogate texture. In this way the optimal

detail level can be chosen during runtime. To get the right camera distance

for every detail level a metric is needed for comparing the detailed rendering

with the surrogate terminal rendering. This metric need to minimize the error

between these two renderings to get the right camera distance for switching the detail level.

Shape grammars can be parametrized to achieve different resulting shapes

1.3. Organization of this work 5

using the same rule. These parameters can also be chosen randomly. In this work we

describe how to incorporate random parameters in GPU shape grammars and how to use

them during runtime. For surrogate terminals, this means that the replaced detail can

be very different if random parameters are used. This can result in an large amount of

different shapes and textures on terminal symbols. Thus, we also show how to cope with

random parameters when creating surrogate textures and how to reduce the number of tex-

tures needed. And thus also reduce the amount of memory needed for storing the textures.

In this work, we tackle two major challenges associated with surrogate termi-

nal creation: First, we show how to derive a surrogate texture that replaces the

detailed geometry as closely as possible. Second, we tackle the problem of deriving the

right distances for switching detail levels and how to compare the resulting render-

ing to the original detail rendering so that the error between both is as minimal as possible.

In this work the PGA system is used to evaluate shape grammars. PGA

evaluates the grammar on the GPU using a rule scheduling mechanism. PGA uses the

grammar definition to generate simple geometry based on shapes like boxes and quads.

The system is implemented in C++ while using Compute Unified Device Architecture

(CUDA) for the grammar evaluation part and OpenGL for the rendering part. The

grammar definition is done with template meta programming using C++ templates.

This system is extended with new features to allow for rendering of textured models and

new parameters that allow random values. These features are needed to support the

surrogate terminals.

1.3 Organization of this work

In chapter 2 we give an overview of related work in the field of shape grammars, procedural

modelling and GPU scheduling. Also a short overview of level of detail methods is given.

Chapter 3 introduces the existing PGA system and the needed extensions to support

surrogate terminals. Also the concept behind surrogate terminals and surrogate textures

are explained as well as their creation process. This chapter also deals with the automatic

derivation of the LOD levels and presents a method to measure the quality of the created

textures. In chapter 4 the implementation of needed extension to the PGA system is

discussed and the creation process of surrogate terminals and their textures are explained.

Along those lines we discuss how the image quality is measured and the detail levels are

derived. Then, in chapter 5 we compare different scenes of buildings generated by PGA

with and without surrogate terminals. The full quality between original rendering and

surrogate rendering is also discussed in this chapter. Finally, in chapter 6 we conclude our

work and give hints on possible future expansions for this system.

2
Related Work

This chapter reviews the work in the field procedural modeling, shape grammars and the

approaches to evaluate these grammars and different methods for LOD rendering. The

implementation of this work is based on the PGA framework [19] this work is also reviewed.

2.1 Procedural Modelling

Procedural modeling is a method to automatically create geometry for computer graphics.

Methods for generating this geometry ranges from shape grammars [12] to programming

languages [2]. The user defines a production process that is interpreted by a system that

generates the geometry based on the input given. This allows to create parametrizable 3D

models within short time compared to modeling those models in a program like blender
1.

Figure 2.1: Using GML a user/designer defines a sequence of modeling operations to generate
more complex geometric objects. In this example, a polygon is created to instantiate a cylinder,
which is then cut and connected to another cylindric form.. Image from [2]

1http://www.blender.org

7

http://www.blender.org

8 Chapter 2. Related Work

2.1.1 Procedural Generation of Textures

It is also possible to generate textures procedurally. One method to create such

textures are noise patterns which are used to generate seemingly random textures. A

popular approach to create such textures is to use so called Perlin noise [14]. These

textures are used to perturb textures to create effects that seem to be randomly generated.

The application of procedural textures are for example particle systems (fire,

rain, etc.), terrain modeling and simulating the sky and clouds.

2.1.2 Fractals

Fractals are a mathematical set with self similar patterns repeated on different scales.

Many natural phenomena show these patterns, for example, plants, mountain ranges,

river networks, etc. This is why fractals can be used to replicate these natural phenomena

in computer graphics. In computer graphics, fractals are, e.g., used to create the height

maps in procedural terrain approaches. [13].

(a) (b)

Figure 2.2: Heightmap (a) image generated by a fractal generator. Bright areas show high section
(mountains) and dark areas are valleys. Terrain (b) Rendering of the generated terrain based on
the heightmap.

2.1.3 L-Systems

L-Systems are a formal system that is used to describe the growth of plants. A formal

grammar is used to define the production rules that form a string from an alphabet. This

2.2. Shape Grammars 9

system can be used for generating 3D plant models [15]. Due to the parallel rewriting of

rules in L-Systems the derivation process can be executed in parallel on a GPU [7]. An

example of trees generated by such a system can be seen in Figure 2.3. These trees were

generated by the PGA system.

Figure 2.3: Trees generated by a L-System (PGA). Images from [19])

2.2 Shape Grammars

Shape grammars are a set of rewriting rules for geometric shapes. They were first

introduced by G. Stiny [20]. Later he introduced the notion of so-called set grammars

[22]. Set grammars are shape grammars with the difference that the rewriting of rules is

done on an active set of symbols. In the beginning this set is populated with all starting

symbols of the shape grammar. Then each symbol is evaluated and the resulting terminal

or non-terminal symbol is placed in the set. This continues until the set contains only

terminal symbols.

Shapes are the geometric entities that are produced and transformed by

shape grammars. Every rule defined in the grammar has a shape that defines the

geometry input for this rule. The rule itself defines the output or possible multiple

output shapes that are generated after executing the rule. The basic definition of shapes

is given by [21]:

”A shape is a limited arrangement of straight lines in three dimensional Eu-

clidean space.”

Since this is a very broad definition there is the notion of basic shapes which

are a subset of shapes describing simple shapes. Working with lines would not be very

intuitive, thus basic shapes are used since they can by easily translated to point sets,

10 Chapter 2. Related Work

lines or faces when needed. Examples for basic shapes are cubes, cylinders, spheres or

prisms. These basic shapes can be parametrized and labelled.

A shape grammar consists of four sets [23]:

• a set of terminal symbols N ⊆ U

• a set of non-terminal symbols T ⊆ U

• a set of starting symbols I ⊆ N

• a set of production rules R ⊂ U × U∗

Terminal symbols are symbols where the grammar evaluation stops, which is the point

where the actual geometry is created. Non-terminal symbols are symbols which can be

evaluated by using the appropriate production rule to derive the next set of symbols.

The starting symbols are non-terminal symbols where the grammar evaluation starts.

The production rules define how the left side which is always a non-terminal is replaced

by a set of symbols. The grammar evaluation stops if there are only terminals symbols left.

Based on set grammars Wonka et al. [23] et al. introduced split grammars

which work on basic shapes using so called split operations. Split operations allow to

subdivide the current shape in smaller shapes that are contained in the current shape.

Split grammars were applied to model architecture of buildings by Mueller et al. [12]. In

this work city buildings are created by shape grammars which are applied on starting

lots. See figure 2.4 for an example of buildings created with a split grammar.

.

Figure 2.4: Buildings generated with a split grammar. Image from [23]

Shape grammar rules define a geometric transformation between input and output shape.

2.2. Shape Grammars 11

These operations are based on L-systems [15].

To define the rules necessary to create a geometric shape, several systems

have been proposed. For example, The Generative Modelling Language (GML) defines

a stack based language that is interpreted to create geometric shapes [2]. Most

systems that are based on shape grammars use a set of strings to define the rewriting rules.

The G2 language derives its grammar rules from the Python programming

language [4]. The city engine uses CGA shape which is a shape grammar for façade

modelling [12]. See Figure 2.5 for example buildings created with CGA. Most prominent

one is CGA Shape which executes its shape grammar on the GPU . See figure 2.5 and for

example renderings of CGA.

.

Figure 2.5: Images show generated building with CGA

Besides the generation of buildings, shape grammars have been successfully used to

produce high quality models. For example Synthetic texture can be produces to

approximate the geometry of façades of buildings [5]. These textures are rearranged from

source images of possible façades. See Figure 2.6 for an example of generated houses with

synthetic put together façade textures.

12 Chapter 2. Related Work

.

Figure 2.6: Buildings with façades generated with by-example synthesis. Image from [5]

Model synthesis is an approach to generate complex models based on user defined input

models [11].

(a) (b)
.

Figure 2.7: User created model (a) shows a user created model of an oil platform. Generated
model (b) shows a complex model of oil platforms generated from (a) by model synthesis. Images
from [11]

With structure preserving re-targeting [6] complex building models can be generated,

which resemble the structural style of a given input architectural model. See figure 2.8 for

example models generated with this method.

2.3. Evaluating Shape Grammars 13

.

Figure 2.8: Building models using the photo at left bottom corner as input for the structural
style. Image from [6]

2.3 Evaluating Shape Grammars

To create the actual geometry, shape grammars need to be evaluated. Which means that

every rule is executed and the left symbol is replaced by either a terminal symbol or a

non-terminal symbol. Terminal symbols are symbols where the grammar evaluations

stops while non-terminal symbols are evaluated and rewritten depending on the rule that

applies to this symbol [20].

The production rules in shape grammars are composed by a shape and an

operator. The shape is the geometric shape on which the operator is executed. The

operator defines a transformation that is applied on this shape. The resulting output

shape depends on the operation applied. See 2.9 for a example of a repeat operation on a

simple quad. Naturally this means a grammar is evaluated sequentially. However when a

.

Figure 2.9: Example for a repeat operation on a quad shape. The quad shape is subdivided in
four equal sized quads along the x axis.

non-terminal symbol produces multiple non terminal symbols from a rewriting rule the

grammar can be parallelized. Therefore, shape grammars have been evaluated on the

CPU [12] and GPU [7].

GPU s offer massive parallel processing power and have the advantage of

rendering the result directly without the need of transferring it from the main memory

14 Chapter 2. Related Work

to the GPU . Lipp et al. [7] were one of the first to use the general purpose cores of a

modern GPU to evaluate the grammar. They used CUDA to launch multiple kernels,

each for every grammar symbol. A thread is launched for every non-terminal symbol in

the active set. The kernel executes the operation on the current shape and produces the

resulting output symbol which is added to the active set. This means, for each symbol a

thread is launched to execute the operation of the current rule.

Several other work has been done regarding generation of buildings using

shape grammars on the CPU and GPU . For example, Yang et al. [24] evaluate grammars

based on L-systems on CPU clusters. Another approach to evaluate grammars on the

GPU was presented by Magdics et al. [9]. They show how to use multiple render passes

to generate intermediate symbols. The problem with such an approach is that many

rendering passes are required the evaluate the shape grammar.

2.4 Level of Detail

Level of detail is an approach to use simplified 3D models to reduce the amount of

rendered geometry and therefore increase the frame rate. Lower models replace the

original detailed geometry when a certain condition is fulfilled, mostly the current

distance to the users viewpoint. These simplified models can be created by hand using a

3D modeling program or automatically by mesh simplification for example using vertex

decimation [16]. The two most common approaches for implementing LOD are discrete

LOD and continuous LOD [8].

.

Figure 2.10: Example of different LODs of the stanfort bunny

Discrete LOD simply replaces the detailed models with simplified ones when a certain

distance threshold is reached. This has the advantage that the detail levels can be

created offline. During rendering the runtime only has to pick the right LOD . The

drawback is that it cannot be used with drastic simplification because the occurring pop

2.5. Parallel Generation of Architecture 15

up would be easily noticeable.

Continuous LOD on the other hand derives the level of detail during run-

time. This way, the needed detail level can be created exactly and not approximated by

a few discrete models. This reduces the amount of pop up drastically and results in a

much better granularity.

In this work the detail levels are created as a preprocessing step. During

runtime the correct level is chosen based on a shape grammar operator that chooses the

right level at a given distance. Thus using a discrete LOD approach.

Level of detail approaches have also been used in procedural modelling using

shape grammars. In the work of [1] the shape grammar is use to automatically generate

simplified shapes of terminal symbols to be used for LOD . Since the detail levels are

calculated for terminal shapes, the grammar evaluation will not change. While on

contrast in this work we create LOD textures that can replace whole sub-trees in

the derivation tree thus stopping the grammar evaluation earlier. The surrogate tex-

tures are generated using render-to-texture methods to create an image-based impostor [3].

To compare original and surrogate renderings the HDR-VDP-2 metric [10] is

used. The HDR-VDP-2 compares the visibility as well as the image quality between two

images. The result is a quality measure describing the similarity between the two images.

2.5 Parallel Generation of Architecture

Foundation of this work is the work on PGA [19] and on-the-fly rendering with the same

system [18]. They are based on the Softshell framework for GPU scheduling [17]. The

new PGA System that is used as an implementation foundation for this work, is using its

own queuing framework to execute the workload on the GPU .

PGA is a system to automatically generate geometry for many buildings

based on a shape grammar. The definition of these buildings is done by a shape

grammar. A building is represented by a set of grammar rules. PGA evaluates these rules

on the GPU in a parallel manner. This allows to generate and render those buildings

during runtime [18]. The old version of PGA uses the Softshell framework to schedule

and evaluate the grammar rules. Since then PGA has been reworked with a new queuing

framework for GPU scheduling and pre-compiled rules to speed-up the evaluation of

the grammar. The new PGA system is the foundation of this work and is extended to

support the creation of surrogate terminals and textures. In Figure 2.11 you can see

examples of generated buildings with the PGA system.

16 Chapter 2. Related Work

(a) (b)

Figure 2.11: Images show building generated with PGA. Image from [18]

3
Concept

PGA is an approach to evaluate shape grammars on the GPU for the creation of city

buildings. Instead of modeling all the geometry manually in a modeling program, PGA

generates it based on a given set of grammar rules. These rules are defined by the current

shape (scope) and an operator that defines a geometric transformation. The shape is a

simple geometric shape like a box or a quad. The transformation defines how the current

shape is changed to create the geometry for the following rules.

3.1 Foundation

3.1.1 Shape Grammar

The shape grammar for PGA is based on CGA shape and uses split operations from split

grammars [23]. Each rule defines a operation that is applied on a given input shape and

a successor rule that is called after the current rule is finished. The output shapes of the

current operation are the input shape(s) of the following rule. Additionally rules can be

parameterized for example the size of the repetition extend when using a repeat operation.

There are different operator types in PGA:

• basic affine transformations: Translate, Rotate and Scale

• terminal operators: Generate, Discard

• changing the shape dimension: Extrude, ComponentSplit

• subdividing the shape (split operations): Repeat, Subdivide

• conditional production: IfSizeLess

The affine operations describe a simple geometric transformation which is applied to

the current shape. The terminal operators define the creation of the actual geometry,

17

18 Chapter 3. Concept

depending on the current shape a set of vertices, face and normals is created to represent

this shape. The discard operator is needed when the final shape is skipped, this can be

useful for creating windows in buildings. To change the shape type there are the Extrude

and ComponentSplit operations. Extrude takes a 2D shape and extrudes it along the

face normal to create a 3D shape. For example, a quad can be extruded to create a

box shape. The ComponentSplit splits the shape into smaller parts, for example a box

can be split into 6 quads for each box side. The IfSizeLess operator allows conditional

production, for example when a subdivision operation is applied below a specified size

and above this size a repeat operation is to fill the remaining size of the parent shape.

The split operators produce multiple output shapes, which is different to the

other operators. Meaning a split rule will create multiple instances of the following rule

that is evaluated. The operators work in a given scope, which is defined by the current

shape of the object. Shapes are geometric primitives like quads, cubes or polygons.

Some operators can change the current shape into another shape type. For example the

”ComponentSplit” operator can split a box shape into six quad shapes. Most other

operators work with the same shape as parent and child scope. The split operators can

produce multiple output shapes from a single input shape.

These operators can be parametrized depending on the type of operation.

For example the Repeat operator has the repetition extend as parameter. This value

defines the size of every repetition extend which implies the number of repetitions. The

basic PGA system supports constant values as parameters.

3.1.2 Derivation Tree

The grammar derivation tree represents the evaluation of the shape grammar in graph

form. The starting rule is the root of the tree, the non-terminal symbols are the interme-

diate nodes and the terminal symbols represent the leaf nodes. The rules are represented

by the edges between nodes. See figure 3.1 for a simple example of a derivation tree.

The blue nodes are non-terminal symbols and the green ones terminal symbols. The num-

bers represent the number of output symbols created by a rule. During the grammar

evaluation this tree is traversed starting from the root node. The derivation tree is an

important concept that is used in the next chapter to generate surrogate textures.

3.1.3 Generation

The evaluation of the grammar is done on the GPU . The grammar rules are the input

and the output is a set of buffers to render the created scene. The evaluation of the rules

is done using a queueing framework which balances the workload on the GPU . The

grammar is evaluated starting with the first rule until the terminal symbols are reached.

3.1. Foundation 19

Figure 3.1: This example shows how a quad shaped façade is first split up in 4 tiles by the repeat
operator. Then the subdivision operation is used to subdivide this tile along X and Y direction in
wall and window tiles. Finally the wall and window tiles use the generate operator to produce the
actual geometry.

The terminal rules generate the geometry given by the current shape and place it in so

called terminal buffers. These buffers are used to render the actual geometry on the GPU .

To optimize the grammar evaluation the definition of grammar rules is done

using template meta programming. Thus the generation of production rules is

done during compile time which speeds up the whole process when the grammar

is evaluated. Since the GPU is very efficient for processing small threads in a

massively parallel manner it is important to schedule the rules accordingly to keep

the GPU occupied. There are two different scheduling methods for the generation process:

Rule-based scheduling means that the grammar rule-set is pre-compiled.

The rule-set is given as a set of nested templates so the compiler actually builds the

grammar derivation tree during compile time. During runtime the tree is traversed and

the operators are executed on the GPU .

Operator-based scheduling is a method to interpret the rule-set during

runtime. To do this a dispatch table is build during runtime which contains all the rule

information. Each rule has one entry in this lookup table. The advantage of this method

is that rules can be changed during runtime without the need of compiling everything

again.

3.1.4 Rendering

Rendering is done with OpenGL Application Programming Interface (API). The terminal

buffers that are filled by the queueing framework are used to renderer the geometry

20 Chapter 3. Concept

with appropriate shaders. Since there are multiple buffers for vertices, indices and

texture coordinates the geometry can be rendered using simple texture mapping which

is the basis for creating levels of detail later. There are different methods to render the

resulting geometry in PGA.

Non-Instanced rendering means that the whole geometry (vertices, indices,

texture coordinates) that is held in buffers. The disadvantage of this is that it uses a

lot of memory since every vertex is stored even if many building models share the same

geometry/basic shapes but are only at different positions.

Instanced rendering is a method to render shapes that share the same ge-

ometry changing only the transformation between instances. OpenGL allows to render

instanced geometry by passing the model matrix as input to the shader. The advantage

of this is that the geometry for identical shapes only needs to be stored once. Every

instance of this shape is rendered using the corresponding model matrix.

3.2 Texture support

Texture support is needed to actually render terminal shapes with different textures

and allow to create so called surrogate textures. In the original PGA implementation

there is no material support and thus is implemented for this work. To render geometry

with different textures the rendering buffers are split in so called terminal buffers.

Each terminal buffer holds all the geometry that is rendered with a specific texture.

This is needed to render the each terminal buffer with a corresponding texture. To

render terminal buffers with texture mapping the geometry generating operator also

produces texture coordinates for every terminal symbol. The texture mapping is created

depending on the used terminal shape.

This also allows to create different materials (texture + shader combinations)

for every terminal buffer. During runtime the corresponding shader assigned to this

terminal buffer can be used to render the geometry.

The generation of the texture coordinates depends on the shape that is gen-

erated. Since the Generate operator is the only one that generates geometry

information (vertex position, normals, etc.) this operator is extended to generate

texture coordinates accordingly. Since the operator has the information about the

generated shape type it is easy to create the correct texture coordinates for each type.

These texture coordinates are stored per vertex like the other vertex attributes. See

figure 3.2 for a simple example of a textured house created by a shape grammar with PGA.

3.3. Surrogate Terminals 21

Figure 3.2: Simple textured house generated by PGA.

To apply the texture to the rendered terminal buffer the texture is set as

active texture while this buffer is rendered. A vertex shader with the new texture

coordinates as additional input and a fragment shader with the active texture as sampler

can render the resulting shape with the associated texture.

3.3 Surrogate Terminals

Surrogate Terminals are generated terminal symbols that replace a node in the derivation

tree and allow to prune the tree. These terminals need to resemble the terminal shapes

that would have been generated by the replaced sub-tree. They need to approximate the

replaced geometry, as well as the replaced texture detail. For the geometric detail the

derived shape can be used to generated a suitable surrogate geometry. For the texture

detail it is necessary to use all the textures used by the replaced terminal shapes to create

a so called surrogate texture. This texture approximates the replaced detail of the sub-tree.

The advantage of surrogate terminals is that the grammar evaluation can

stop at a certain point, when no more detail is needed for the current scene. A

lot of geometry that would have been generated can be skipped this way. This re-

sults in a reduced time to generate the resulting scene. See figure 3.3 for a example of this.

As you can see the non-terminal symbol FacadeTile is replaced by the termi-

22 Chapter 3. Concept

Figure 3.3: Surrogate terminal replaces a sub-tree in the derivation tree.

nal symbol FacadeTileSurrogate. This means that the grammar evaluation stops at

this point and the sub-tree of the replaced node is pruned. Since every rule works on a

current shape, the shape of the replaced symbol is used as shape for the new terminal

symbol. Since the evaluation stops at this point a generate operator is executed on the

current shape to create geometry in the current scope. To store the generated geometry

it is necessary to provide additional terminal buffers for every surrogate terminal in

the grammar. These buffers are used to render the surrogate terminals with a special

texture. As the replaced sub-tree can have multiple terminal symbols as leaf nodes, the

surrogate terminal needs to consider the detail covered by those nodes.

3.4 Surrogate Textures

Surrogate Textures are the textures used to replace the detail covered by the original

sub-tree of the shape grammar derivation. As mentioned before, every surrogate terminal

has its own terminal buffer. Now a texture is needed to render these terminal buffers.

The shape of the surrogate terminal covers the spatial scope of the replaced rules.

Because of that the shape of the replaced rule is used as scope for the surrogate texture

as well.

In order to create surrogate textures for candidate nodes the derivation tree

for the corresponding grammar has to be parsed bottom up starting with the textures

for terminal symbols. To do this a suitable data structure is needed to actually traverse

the derivation tree. Since the shape grammar rule-set is known, it can be used to create

a tree structure that resembles the derivation tree of this shape grammar. PGA uses

templates to define the rule-set, a similar method can be used to build a tree structure.

Every rule has the next successor rule as a parameter, thus defining the tree structure

3.4. Surrogate Textures 23

implicitly. For each rule a corresponding node in the tree is created. The tree itself is

build starting from the first rule as root node, each successor rule is added as a child to

the current node. This is done for every rule until the terminal nodes have been reached.

They represent the leaf nodes in the tree.

After the tree has been build, a depth first search algorithm can be used to

traverse the tree. To start the surrogate creation process the search starts with the root

node and traverse the left most branch of the tree until it reaches the first leaf node. At

the leaf nodes, the texture that is used for this terminal shape is added possible child

texture for intermediate surrogate textures. A list of surrogate terminals is filled while

traversing the tree. Depending on the operator type and the shape a surrogate terminal

is created using the current shape as geometric scope. The textures from the child nodes

are used to compose a texture that represents the child textures. This is done with a

render-to-texture method. Since the scope of the parent and child nodes is known from

the parameters of the shape grammar the textures can be placed accordingly and then

rendered to a new texture. The texture is saved together with the shape of the terminal.

This is done for all split operations that use a quad shape (subdivide, repeat). See figure

3.4 for an example surrogate texture created by this process.

Figure 3.4: Surrogate texture created by render-to-texture

As you can see the created surrogate texture resembles the replaced child nodes. The

shape of the surrogate terminal is the current shape of the replaced node. After the

textures have been created the are simply stored on disk. This whole process can be

done as a preprocessing step for a given shape grammar. During runtime the textures

24 Chapter 3. Concept

are loaded and used when rendering the corresponding terminal buffer of the terminal.

3.5 Level of Detail

To apply the created LOD textures during runtime it is necessary to use a condition to

apply the right detail level. The distance between current terminal and the camera is

used as condition to derive the right level. These distances are used during runtime to

decide if the current grammar evaluation can halt and a surrogate terminal can be used.

These distances can be derived offline during the pre processing step after the surrogate

terminal are created.

To do this, the surrogate terminals with their corresponding textures and the

original detailed geometry are rendered and compared to each other. The comparison

is done using HDR-VDP-2 [10], a visual metric for image comparison. This is done for

different camera distances until a error threshold is reached otherwise the distance is set

to the far plane.

The original rendering is done in a higher resolution to overcome sampling

errors due to rasterization and aliasing. Because of the sampling theorem the minimum

sampling frequency has to be bigger than two times the input frequency. In case of an

image the sampling is done in two dimensions. This means that the number of pixels

needs to be at least four times higher than the resulting resolution. See figure 3.5 for an

example of surrogate terminals at different distances.

Figure 3.5: Renderings of the building at different detail levels

3.6 Stochasticity

Stochasticity allows to derive many different final output shapes from a single shape

grammar. So instead of using several grammars for different building you can use only

one grammar that is parametrized with random values to allow different outcomes in the

3.6. Stochasticity 25

evaluation phase.

To incorporate random parameters into PGA there are two things needed: A

random seed and a random generator to propagate the seed. The seed is generated at

the beginning as a pseudo random value for every starting symbol (axiom). This seed is

stored as an attribute of the shape, so each shape needs an additional memory of four byte.

During the evaluation of the grammar rule the seed is used to generate a

new seed for the successor rule. The next seed is calculated with a linear congruential

generator. This way, the propagation of the seed down the tree is deterministic. Thus,

the same initial seed will result in the same derived random values at every node of the

derivation tree.

The linear congruential generator has the form: xn+1 = axn + b mod m

• xn+1 is the next seed value

• xn is the current seed

• a, b constant factors

• m modulus

When using random parameters with the grammar the generation of the surrogate

texture differs from the normal method. Since the resulting texture can look different

depending on the propagated seed there needs to be a way to approximate all the

possible children textures. One way would be to create all possible result textures and

save them. The selection of the right texture can be done in the surrogate operator using

the random value.

This is not feasible for many nested rules with random parameters since it

can result in a large amount of need textures. One way to save texture memory is

to cluster resulting sample textures and create one surrogate texture for all samples

assigned to this cluster. In figure 3.6 you can see an example of three clustered sample

images using k-means.

To compensate the error between the surrogate texture and the original child textures

the calculation of the LOD error metric has to be adapted. Instead of one sample per

distance the error metric has to be evaluated for each resulting cluster texture. To do

this a number of samples of the original rendering is created, spanning over the range of

the random value. Every sample rendering is compared to the surrogate rendering of the

nearest cluster. The sample with the largest error is taken to derive the minimal distance

to the camera for every cluster texture.

26 Chapter 3. Concept

Figure 3.6: clustered sampled textures

4
Implementation

The implementation is done in C++/CUDA. For testing and comparing of the image

quality MATLAB is used. To define the grammar C++ template are used. This gives the

advantage of generating the derivation tree during compile time.

Figure 4.1: Different houses generated with PGA

4.1 PGA extensions

There are two we added to the PGA framework to support surrogate terminals. First,

texture support is needed to allow the rendering of textured terminal shapes. Second,

27

28 Chapter 4. Implementation

random values are needed to allow stochastic evaluation of the shape grammar.

4.1.1 Texture support

To allow rendering the generated geometry with textures, there are two things needed.

First, the texture mapping for the terminal symbols has to be defined. And second, the

assignment of textures to a specific terminal symbol has to be done. PGA is using vertex

buffers to store the generated geometry (positions, normals, indices).

The texture mapping depends on the terminal shape created. In case of a

quad the UV coordinates can be simply created by mapping the uv plane onto the quad.

For cubes a single texture can be used for all six faces.

Operators like repeat apply the same operation multiple times to their parent

shape. This can be used to employ the repetition to the texture instead of the geometry.

OpenGL allows textures to be repeated across a surface by altering the texture

coordinates to control the repetition number. This can be used for surrogate textures to

repeat the child texture and approximate the geometry.

4.1.2 Stochasticity

For randomness there are two things needed. First, a randomly seed needs to

passed to each rule of the shape grammar. And second, a new rule parameter type

which allows to define ranges of possible parameters. The random seed is used

to generate the actual value in the valid parameter range which is applied to this operator.

To pass the random seed to all rules in the grammar the derivation tree can

be used. Starting with a generated pseudo random value for the start rule every node

down the tree uses this value to generate a new number and passes it to its children.

This way every node gets a unique random value which is deterministic and dependent

on the starting value of the root node. This leads to the same derivation every time the

same starting seed has been used.

4.2 Derivation Tree

The grammar derivation tree is implicitly build by the grammar rules using the nested

templates that are used to define the grammar. The start rule is the root node, the

non-terminal symbols are the intermediate nodes and the terminal symbols are the leaf

nodes. To build the tree a node data structure which contains the a reference to the

children of the node and information about the used parameters. Since every operator

can produce a different number of children a template specialization is used to encode

the further derivation and calculation of shape size. The size is needed to derive the

4.3. Surrogate Terminals 29

correct texture alignment for the surrogate textures.

To traverse the tree each operator gets a method for building up the related

surrogate texture. These methods are called on all child nodes of the current node. This

way, the whole tree is traversed in a depth first manner and for each suitable operator

a texture can be build. The rule tree is created from nested templates, thus it is build

during compile time. All the information needed from the shape grammar is stored

inside the template as types. During runtime when the tree is traversed the implemented

methods have access to all members of their template class.

4.3 Surrogate Terminals

After the derivation tree has been build, each node contains all the information needed

to build surrogate terminals. It depends on the type of operator if a surrogate terminal

is created or not. For example a subdivide or repeat rule can be replaced by a fitting

surrogate. An operator that is suitable for a surrogate terminal also has a method

to create a surrogate texture that resembles the child nodes appearance. Since the

derivation tree is traversed from bottom up the surrogate texture creation process starts

with the leaf nodes which are assigned to a specific texture/material. These textures are

passed to the parent node to create the first surrogate texture where applicable.

The texture is generated based on the appearance of the child nodes. Start-

ing with the leaf nodes the used textures are passed to the parent rules. Depending on

the operator and given parameters the child texture are arranged to fit the appearance.

This arrangement is rendered to a new texture which is assigned to the current node

as surrogate texture. Using the size information previously stored in each node of the

derivation tree, the correct alignment of textures can be build. Since this process can be

done beforehand as preprocessing step the textures are simple stored for later use.

4.4 Level of Detail

The LOD is derived from comparing the generated surrogate texture with the original

rendering. To do this an image quality measurement is needed. Both are rendered at

different distances and compared given an image quality measure. The distance which

reaches a quality threshold is chosen as minimal distance for switching the detail level.

The important parameter is the error between original and surrogate rendering since the

chosen distances depends on it. The larger the error is, the earlier a non terminal is

replaced by an surrogate terminal.

When using random parameters the different resulting outcomes can not be

30 Chapter 4. Implementation

approximated by one terminal. Instead all the possible outcomes need to be

approximated by multiple surrogate textures per terminal. The appearance of child

nodes depends on the random seed. To get every possibility, every possible outcome

could be rendered to a texture and then chosen during runtime using the cor-

responding seed value. This can lead to a lot of textures which would need to be generated.

Instead of creating all possible textures similar textures can be clustered to a

single texture using a k-means clustering. This way, the amount of textures needed can

be greatly reduced. During runtime, the right texture is chosen by selecting the nearest

cluster.

4.5 Runtime Integration

To use the surrogate terminals during runtime a new operator is introduced:

The Surrogate operator takes as parameters the distance, the buffer index for

the surrogate terminal and the rule that is normally derived. This operator

simply checks the current distance between camera and the current shape. If the

distance is greater than the distance provided by the operator the surrogate ter-

minal is evaluated. Otherwise the grammar derivation simply continues with the next rule.

The Syntax is as follows:

Surrogate<maxDistance, CallRule<Successor>, BufferIndex>

• maxDistance - minimal distance to the camera

• Successor - next rule to be evaluated

• BufferIndex - index of the terminal buffer

This Operator simple checks distance(cameraPos, shapePos) < maxDistance. If the

condition is met, the operator creates a terminal symbol within the current scope. The

vertex data is stored in the terminal buffer addressed with BufferIndex.

During rendering the surrogate terminals are rendered using the correspond-

ing buffer index defined in the shape grammar. The surrogate textures are assigned to

this buffer index, so the terminals are rendered with the correct texture.

There are two ways to incorporate this new operator in a shape grammar.

With rule-based scheduling the grammar rules are given as template parameters. For

each surrogate terminal a new rule has to be added before the rule that is to be replaced.

This rule becomes the successor rule to the surrogate rule in case the condition is

fulfilled. When using operator-based scheduling the surrogate rules can be placed in

4.6. Random Parameters 31

the dispatch table created by PGA. This can be done during runtime since the table is

dynamically created in the GPU memory.

4.6 Random Parameters

The derived seeds can be used to parametrize the operators with random values. To

achieve this, PGA needs to distinguish between constant values and random values.

Since PGA already uses templates to parametrize the rules, new template classes for

constant and random values are added.

The random values can be expressed as a closed interval [a, b] so the result-

ing value x lies within. During runtime the passed seed and the interval result in a

pseudo random value as final input parameter for an operator.

Random value calculation: x = a · seed + |b− a|

PGA is implemented in C++ using template meta programming for grammar

definition and evaluation. This means that the grammar is defined using nested

templates classes. The parameters for the rules are also encoded as template arguments.

The advantage of this is that you can use different data types as parameters. This

means that the grammar definition and evaluation (rule-based evaluation) is done during

compile time which saves a lot of processing power during runtime. Syntax for constant

and random values:

Const<Value>

Rand<Min, Max>

Since PGA can use two different scheduling methods as mention in the generation

section there is a difference in storing these parameters.

With rule-based scheduling the parameters are simply stored as template

parameters. Meaning they are set during compile time. While this works for constant

values, random values need the seed provided by the shape during runtime. Thus, every

operator that support random values needs to be adapted to evaluate the random value

during runtime to derive the actual parameter value before executing its operation.

When using operator-based scheduling PGA creates a dispatch table for the

grammar rules during runtime. This means the parameters also needs to be stored in

this table. Each dispatch table entry also holds an array of parameters used for the

corresponding operator of this rule. While constant values only need one entry per

parameter in this array, random values need more memory since it is necessary to store

the minimum and maximum possible value in the table. This means the table needs to

32 Chapter 4. Implementation

hold at least two times the number of parameters as values.

The seed can not only be used for parameters, there is also a new operator

called RandomRule. This operator takes a list of successor rules and a probability value

which are used during runtime to determine the successor rule. The syntax for this new

rule is as follows:

RandomRule<Pair<Propability, CallRule<Successor>>, ...>

This rule takes the current seed and selects one of the successor rules based on the prob-

abilities. The probability values are in the range of 0-1 and add up to 1. During runtime,

the seed value is used to select one of the corresponding successor rules. The selected

rule is evaluated next and the seed is passed to the following rule. This way, different

evaluation paths lead to different intermediate symbols and sub-trees which produce a

completely new set of geometry symbols. In the context of different starting axioms one

can use this operator to produce totally different city buildings based on the random seed.

The seed is passed to the children nodes and recalculated per node.

5
Results

This section presents results of the presented approach for surrogate terminals.

Specifically, it compares its rendering quality and performance to the traditional

approach, i.e. without using surrogate terminals. To judge the presented approach, this

section compares the time spend on geometry generation, the overall time spend on

rendering one frame (as frames per second) and the amount of geometry built.

The approach is evaluated on three different scenes. The first scene consists

of a single building without any random parameters. For the second scene, two

different building rule sets are developed and chosen randomly. In addition, the

height of all buildings is randomized. The selection of the building rule and the

height requires the system to use the random seed to select the right surrogate termi-

nal at runtime. The last scene shows more complex office buildings with random elements.

All tests have been done on a common PC system operating on Windows 10.

The system is equipped with an Intel Core i7-4770k CPU, 16GB RAM and a NVIDIA

GeForce GTX 980 TI, 6 GB VRAM graphics board.

5.1 Uniform Buildings

A simple rule set is used to test the functionality of the surrogate terminals during

runtime. (see Figure 5.1). The entire scene consists of 256 houses placed in a 16 by 16

grid. To get consistent measurements the camera is placed at a fixed location where the

whole scene of buildings is visible.

The renderings with and without surrogate terminal are shown in Figure 5.2.

Notice the reduced amount of polygons when surrogate terminals are used. Both

rendered image look almost the same, it is hardly possible to spot a difference with

33

34 Chapter 5. Results

the naked eye. But when looking at the wireframe models of the same renderings the

difference is much more obvious. In the close up of one of the buildings it is visible that

there is basically only one quad per side of the house. In the original scene each side has

much more geometry rendered.

Figure 5.1: Uniform Houses

SimpleHouse Surrogates no Surrogates

Average FPS 4143 1925
Generation time 0.087616 ms 1.65578 ms
Vertices 8848 994368
Indices 13272 1491552

Table 5.1: Results for the Simple House testcase

Table 5.1 shows the average generation time for all the buildings and the average

rendering time, measured in frames per second (fps). The number of vertices and indices

show the amount of geometry rendered. Since the terminal shapes are quads in this case

there are 4 vertices and 6 indices per quad.

The measurements clearly show the reduction of geometry needed to render

the scene compared to the original scene without surrogate terminals. Also the time

5.1. Uniform Buildings 35

Wall -> Generate {Quad}

Roof -> Generate {Quad}

Window -> Generate {Quad}

WindowTile -> SubdivideY {1r : Wall, 2r : Window, 1r : Wall}

FacadeTileX -> SubdivideX {1r : Wall, 2r : WindowTile, 1r : Wall}

FacadeX -> RepeatX {0.5 : FacadeTileX}

Side -> RepeatY {1.0 : FacadeX}

First -> ComponentSplit {Roof, Wall, Side}

(a) Grammar to generate a textured house.

(b) Rendering without surrogate terminals. (c) Wireframe rendering without surrogate
terminals.

(d) Rendering with surrogate terminals. (e) Wireframe rendering with surrogate termi-
nals

Figure 5.2: Uniform Building Scene. (a) The grammar used to render the scene. (b) Rendering
including texture buildings without the surrogate terminal approach. (c) Wireframe rendering of
the scene without using surrogate terminals. (d) Rendering with textures using surrogate terminals.
(e) Wireframe rendering using surrogate terminals.

36 Chapter 5. Results

spend on generating the geometry is much lower since the evaluation of the shape

grammar can stop if the condition for the surrogate operator is met. However, the

resulting rendering looks very similar to the one created without using surrogate

terminals. The reason for this is that the surrogate textures used to replace the detailed

geometry are created from the child node textures. Thus they should closely resemble

the replaced detail.

5.2 Random Buildings

In order to test randomness there are two things to consider. First random parameters that

allow to alter the derived output shape(s) of a rule. Second the new RandomRule operator

that allows to randomly select the next rule within a set of possible successor rules. Both

cases are tested with and without surrogate terminals to look at the performance using

randomization.

5.2.1 Random Windows

This scene shows the same buildings as in the first testcase with the difference that the

amount of windows in each floor can be between 4 to 6. This shows that the surrogate

terminal also work for a random repeat operator. The scene consists of 256 houses in

total, placed on a 16 by 16 grid (see Figure 5.3).

In this test the same rule-set as in the simple house testcase is used but this

time with random parameters. Table 5.2 shows the results of this testcase. As you can

see, the amount of windows is the same in both renderings but with surrogate terminals

the amount of geometry is much less. Because of the repeating pattern in the geometry

it can easily be replaced by a repeated texture.

RandomWindow Surrogates no Surrogates

Average FPS 4455 1744
Generation time 0.09104 ms 1.98877 ms
Vertices 8848 1166128
Indices 13272 1749192

Table 5.2: Results for the Random Window testcase

The generation time is much less with surrogate terminals than without, also the amount

of vertices and indices needed to be stored for rendering is drastically reduced.

5.2. Random Buildings 37

Wall -> Generate {Quad}

Roof -> Generate {Quad}

Window -> Generate {Quad}

WindowTile -> SubdivideY {1r : Wall, 2r : Window, 1r : Wall}

FacadeTileX -> SubdivideX {1r : Wall, 2r : WindowTile, 1r : Wall}

FacadeX -> RepeatX {Rand(0.3, 0.5) : FacadeTileX}

Side -> RepeatY {1.0 : FacadeX}

First -> ComponentSplit {Roof, Wall, Side}

(a) Grammar to generate a textured house.

(b) Rendering without surrogate terminals. (c) Wireframe rendering without surrogate
terminals.

(d) Rendering with surrogate terminals. (e) Wireframe rendering with surrogate termi-
nals

Figure 5.3: Random Window Scene. (a) The grammar used to render the scene, notice that the
repeat parameter for the facade is randomized. (b) Rendering of buildings with variable number of
windows without surrogate terminals. (c) Wireframe rendering of the scene without using surrogate
terminals. (d) Rendering with textures using surrogate terminals. (e) Wireframe rendering using
surrogate terminals.

38 Chapter 5. Results

5.2.2 Random Facades

This Testcase provides 5 different facade types for the same House. The RandomRule

operator is applied after the base shape of the building is set. This operator selects one

of the five facade rulesets depending on a probability and the given random value. See

figure 5.4 for the five facades.

Figure 5.4: Five different facades for the same house

For this testcase a 16x16 grid of skyscrapers is generated and rendered. The generation

Figure 5.5: Rendering of generated houses different facades

and rendering time is compared with surrogate terminals and without them. To

generated the same buildings the same seed is used to derive the random values. Thus

the city has exactly the same buildings in both renderings. As you can see the generation

time with surrogate terminal is about half of the original scene. Also a lot less vertices

5.2. Random Buildings 39

RandomRule Surrogates no Surrogates

Average FPS 1274 922
Generation time 1.45ms 2.91ms
Vertices 820480 1420752
Indices 1230720 2131128

Table 5.3: Results for the RandomRule testcase

and indices are needed to render the scene resulting in more frames per second. See

figure 5.6 for a side by side comparison between both scenes and their wireframe models.

Wall -> Generate {Quad}

Roof -> Generate {Quad}

Window -> Generate {Quad}

BalconyWall -> Generate {Box}

BalconyEmpty -> Discard

WindowTile -> SubdivideY {1r : Wall, 2r : Window, 1r : Wall}

FacadeTileX -> SubdivideX {1r : Wall, 2r : WindowTile, 1r : Wall}

BalconyTile -> SubdivideX {1r : BalconyWall, 18r : BalconySpace, 1r : BalconyWall}

BalconyOutside -> SubdivideZ {4r : BalconyTile, 1r : BalconyWall}

BalconyExtent -> SubdivideY {1r : BalconyEmpty, 1r : BalconyOutside}

Balcony -> Extrude {0.5 : BalconyExtent}

FacadeA -> RepeatX {0.5 : FacadeTileX}

FacadeB -> SubdivideY {1r : Balcony, 1r : Wall}

FacadeC -> SubdivideX {1r : FacadeTileX, 2r : FacadeB, 1r : FacadeTileX}

FacadeD -> SubdivideX {1r : FacadeTileX, 1r : FacadeTileX, 2r : FacadeB}

FacadeE -> SubdivideX {2r : FacadeB, 1r : FacadeTileX, 1r : FacadeTileX}

FacadeX -> RandomRule {FacadeA, FacadeB, FacadeC, FacadeD, FacadeE}

Side -> RepeatY {1.0 : FacadeX}

First -> ComponentSplit {Roof, Wall, Side}

The above Listing shows the shape grammar used to generate the different façades. Note

the RandomRule operator that selects one of the five possible façades. Each façade has

a value assigned which determines the probability of being chosen as next rule. These

probabilities always add up to 1.

40 Chapter 5. Results

BalconyWall -> Generate {Box}

BalconyEmpty -> Discard

BalconyTile -> SubdivideX {1r : BalconyWall, 18r : BalconySpace, 1r : BalconyWall}

BalconyOutside -> SubdivideZ {4r : BalconyTile, 1r : BalconyWall}

BalconyExtent -> SubdivideY {1r : BalconyEmpty, 1r : BalconyOutside}

Balcony -> Extrude {0.5 : BalconyExtent}

(a) Grammar to generate a balcony.

(b) Rendering without surrogate terminals. (c) Wireframe rendering without surrogate
terminals.

(d) Rendering with surrogate terminals. (e) Wireframe rendering with surrogate termi-
nals

Figure 5.6: Random Rule Scene. (a) The grammar used to render the scene, notice that the
repeat parameter for the facade is randomized. (b) Rendering of buildings with variable number of
windows without surrogate terminals. (c) Wireframe rendering of the scene without using surrogate
terminals. (d) Rendering with textures using surrogate terminals. (e) Wireframe rendering using
surrogate terminals.

5.3. Complex Buildings 41

5.3 Complex Buildings

For the last testcase a more complex rule-set is used to create office buildings. In this case

the façades are split up in a ground façade consisting of the door and a ground floor. The

rest of the façade is randomly chosen from three possible alignments. The roof can hold

addition decoration with air conditioners and towers.

Figure 5.7: Five different facades for the same house

Table 5.4 shows the result of this testcase. Once again the generation time is faster with

surrogate terminals than without. The amount of geometry needed is greatly reduced.

ComplexHouse Surrogates no Surrogates

Average FPS 2587 2150
Generation time 0.38576 ms 1.14048ms
Vertices 119116 524288
Indices 178674 786432

Table 5.4: Results for the Complex house testcase

AirConditionerSide -> Generate{Quad}

AirConditionerTop -> Generate{Quad}

ColumnWall -> Generate{Quad}

42 Chapter 5. Results

Door -> Generate{Quad}

Top -> Generate{Quad}

Wall -> Generate{Quad}

Window -> Generate{Quad}

Tower -> ComponentSplit{Wall, Empty, Wall}

Tower4 -> Translate{(0, 2.5, 0) : Tower}

Tower3 -> Scale{(1, 5, 1) : Tower4}

Tower2 -> SubdivideZ{1r : Tower3, 1r : Empty, 1r : Tower3, 1r : Empty, 1r : Tower3}

Tower1 -> SubdivideZ{1r : Tower3, 3r : Empty, 1r : Tower3}

TowerDeco -> SubdivideX{1r : Tower1, 1r : Empty, 1r : Tower2, 1r : Empty, 1r : Tower1}

AirConditioner -> ComponentSplit{AirConditionerTop, Empty, AirConditionerSide}

AirConditioner4 -> Translate{(0, 0.75, 0) : AirConditioner}

AirConditioner3 -> Scale{(3.5, 1.5, 2.5) : AirConditioner4}

AirConditioner2 -> SubdivideZ{1r : Empty, 1r : AirConditioner3}

AirConditioner1 -> SubdivideZ{1r : AirConditioner3, 1r : Empty}

AirConditionerDeco -> SubdivideX{1r : AirConditioner1, 1r : AirConditioner2}

RoofDeco -> RandomRule{AirConditionerDeco, Empty, TowerDeco}

RoofFacade -> ComponentSplit{Top, Empty, Wall}

RoofFloor -> SubdivideY{1r : RoofFacade, 1r : RoofDeco}

RoofExtent -> SubdivideY{1r : Empty, 1r : RoofFloor}

Floor -> RepeatX{4 : Window}

FacadeTile -> RepeatY {4 : Floor}

FacadeLong -> SubdivideX{1 : ColumnWall, 1r : FacadeTile, 1 : ColumnWall,

1r : FacadeTile, 1 : ColumnWall, 1r : FacadeTile, 1 : ColumnWall}

FacadeMedium -> SubdivideX{1 : ColumnWall, 1r : FacadeTile, 1 : ColumnWall,

1r : FacadeTile, 1 : ColumnWall}

FacadeShort -> SubdivideX{1 : ColumnWall, 1r : FacadeTile, 1 : ColumnWall}

Facade -> RandomRule{FacadeShort, FacadeMedium, FacadeLong}

DoorFrame -> SubdivideX {2r : Wall, 78r : Door, 20r : Wall}

DoorFront -> SubdivideX {1r : Wall, 2.4 : DoorFrame, 1r : Wall}

DoorExtend -> ComponentSplit {DoorFront, Empty, Wall}

DoorSection -> ExtrudeZ {1 : DoorExtend}

GroundFacade -> SubdivideX{1 : ColumnWall, 1r : FacadeTile, 5 : DoorSection,

1r : FacadeTile, 1 : ColumnWall}

Roof -> ExtrudeZ {0.8 : RoofExtend}

5.4. Rendering Quality 43

Side -> SubdivideY {5 : GroundFacade, 1r : Facade}

Start -> ComponentSplit {Roof, Empty, Side}

(a) Rendering without surrogate terminals. (b) Wireframe rendering without surrogate
terminals.

(c) Rendering with surrogate terminals. (d) Wireframe rendering with surrogate termi-
nals

Figure 5.8: Complex house scene. (a) Rendering of buildings with variable number of windows
without surrogate terminals. (b) Wireframe rendering of the scene without using surrogate ter-
minals. (c) Rendering with textures using surrogate terminals. (d) Wireframe rendering using
surrogate terminals.

5.4 Rendering Quality

The HDR-VDP compares the visibility aswell as the image quality between two images.

To test the image quality between the original rendering and the surrogate terminal, the

original is rendered at eight times the screen resolution and subsampled. The rendered

image is scaled down to original screen resolution using nearest neighbour and bilinear

44 Chapter 5. Results

interpolation. The metric is evaluated between those two scaled down images to get the

image quality of the normal rengering. To get the quality of the surrogate rendering

the metric is evaluated between the scaled down original renderering and the surrogate

rendering.

The tests are done using the surrogate terminals created for the uniform

house testcase. The each surrogate terminal and the corresponding detailed geometry

are both rendered to a texture for image comparison (See Figure 5.9).

(a) Façade side with detailed geometry (b) Façede side with a surrogate terminal

Figure 5.9: Examples for rendered textures which are compared. (a) Shows a detailed rendering
of one side. (b) Shows the corresponding surrogate terminal with its surrogate texture.

On small distances the quality of the original image is much better compared to the

quality of the surrogate. As the distance increases the difference between both qualities

decreases. If the difference is below a certain threshold the distance is chosen as switch

distance for this surrogate terminal.

As you can see the quality of of both renderings is not much different at low distances. At

higher distances the surrogate rendering has a better quality than the original rendering.

This is due to geometric aliasing. The difference between both quality measures increases

as the distance increases. A negative value indicates that the surrogate rendering has a

better quality than the original rendering.

5.5. Rendering Quality with Stochacitity 45

(a) Quality with linear filtering (b) Quality with mipmapping

Figure 5.10: HDR-VDP-2 Quality between original and surrogate rendering over different dis-
tances. (a) Shows the quality of all terminals using linear texture filtering. (b) Shows the quality
using mipmapping.

Figure 5.11: Quality of original rendering and surrogate rendering

5.5 Rendering Quality with Stochacitity

With random paramaters the outcome of the generation process can differ a lot. As

discussed in chapter 3 a clustering approach is used to reduce the amount of needed

surrogate textures in the case of random parameters. The k-means algorithm is used to

cluster a number of samples over the range of the random values to k clustered textures.

To measure the quality of the clustered texture compared to the original rendering the

quality of every sample is compared to the quality of its nearest cluster. See figure 5.12

for an example of this.

Four samples are clustered to the same texture. The quality of the surrogate roughly

follows the quality of the original samples.

46 Chapter 5. Results

Figure 5.12: Quality of original and surrogate rendering with clustered textures

6
Conclution and Future Work

6.1 Conclustion

Surrogate terminals offer a way to automatically reduce the complexity of generated

geometry from shape grammars. The derived surrogate textures replace the

covered detail in the grammar derivation tree. These textures can be created as a

preprocessing step for a given grammar and applied during runtime via an operator. The

needed LODs are derived using a error metric based on visibility and quality of two images.

With these resulting textures the grammar evaluation for a shape can be

stopped if the camera distance is large enough that the difference between the surrogate

and the full detail cannot be seen. This way the generation time is a lot less compared

to evaluating the whole grammar every time. Also the amount of needed geometry is

greatly reduced which results in a increased performance while rendering.

6.2 Future Work

In this work the focus was to give an overview what surrogate terminals are and how to

derive them for split rules. It would be interresting to extend this to other operators.

The problem with operators which change the shape in a three dimensional way is that

a surrogate would look quite different depending on the viewing angle. For example

a balcony that is created with the extrude operator. Another problem occurs if the

extruded shape changes the silhouette of the parent shape.

Solutions would be either to create multiple surrogate textures per terminal

that are applied depending on the current viewing angle to the camera. These texture

could be clustered like the surrogate texture samples with random parameters.

47

A
List of Acronyms

API Application Programming Interface

CGA Computer Generated Architecture

CGI Computer Generated Imagery

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GML Generative Modelling Language

GPU Graphics Processing Unit

LOD Level of Detail

PGA Parallel Generation of Architecture

49

BIBLIOGRAPHY 51

Bibliography

[1] Besuievsky, G. and Patow, G. (2013). Customizable LoD for procedural architecture.

Comp. Graph. Forum, 32. (page 15)

[2] Havemann, S. (2005). Generative Mesh Modeling. PhD thesis, TU Braunschweig.

(page xiii, 7, 11)

[3] Jeschke, S., Wimmer, M., and Purgathofer, W. (2005). Imagebased representations

for accelerated rendering of complex scenes. Eurographics, pages 1–20. (page 15)

[4] Krecklau, L., Pavic, D., and Kobbelt, L. (2011). Generalized Use of Non-Terminal

Symbols for Procedural Modeling. 29:2291–2303. (page 11)

[5] Lefebvre, S., Hornus, S., and Lasram, A. (2010). By-example synthesis of architectural

textures. ACM Trans. Graph., 29:A84. (page xiii, 11, 12)

[6] Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B.

(2011). Structure-Preserving Retargeting of Irregular 3D Architecture. ACM Trans.

Graph., 30(6):A183. (page xiii, 12, 13)

[7] Lipp, M., Wonka, P., and Wimmer, M. (2010). Parallel Generation of Multiple L-

systems. Computers & Graphics, 34(5):585–593. (page 9, 13, 14)

[8] Luebke, D., Watson, B., Cohen, J. D., Reddy, M., and Varshney, A. (2002). Level of

Detail for 3D Graphics. Elsevier Science Inc., New York, NY, USA. (page 14)

[9] Magdics, M. (2009). Real-time Generation of L-system Scene Models for Rendering

and Interaction. In Spring Conf. on Computer Graphics, pages 77–84. Comenius Univ.

(page 14)

[10] Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W. (2011). Hdr-vdp-2: A

calibrated visual metric for visibility and quality predictions in all luminance conditions.

ACM Transactions on Graphics (Proc. of SIGGRAPH’11), 30(4)(40). (page 15, 24)

[11] Merrell, P. and Manocha, D. (2011). Model Synthesis: A General Procedural Mod-

eling Algorithm. IEEE Trans. Visualization and Computer Graphics, 17:715–728.

(page xiii, 12)

[12] Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Gool, L. V. (2006). Procedural

Modeling of Buildings. ACM Trans. Graph., 25(3):614–623. (page 7, 10, 11, 13)

[13] Musgrave, F. K., Kolb, C. E., and Mace, R. S. (1989). The synthesis and rendering

of eroded fractal terrains. SIGGRAPH Comput. Graph., 23(3):41–50. (page 8)

[14] Perlin, K. (1985). An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296.

(page 8)

52 Chapter A. List of Acronyms

[15] Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algorithmic Beauty of Plants.

New York. (page 9, 11)

[16] Schroeder, W. J., Zarge, J. A., and Lorensen, W. E. (1992). Decimation of triangle

meshes. SIGGRAPH Comput. Graph., 26(2):65–70. (page 14)

[17] Steinberger, M., Kainz, B., Kerbl, B., Hauswiesner, S., Kenzel, M., and Schmalstieg,

D. (2012). Softshell: Dynamic Scheduling on GPUs. ACM Trans. Graph., 31(6):A161.

(page 15)

[18] Steinberger, M., Kenzel, M., Kainz, B., Müller, J., Wonka, P., and Schmalstieg, D.

(2014a). On-the-fly generation and rendering of infinite cities on the GPU. Comp.

Graph. Forum, 33. (page xiv, 4, 15, 16)

[19] Steinberger, M., Kenzel, M., Kainz, B., Müller, J., Wonka, P., and Schmalstieg, D.

(2014b). Parallel generation of architecture on the GPU. Comp. Graph. Forum, 33.

(page xiii, 7, 9, 15)

[20] Stiny, G. (1975). Pictorial and Formal Aspects of Shape and Shape Grammars.

Birkhauser Verlag, Basel. (page 9, 13)

[21] Stiny, G. (1980). Introduction to shape and shape grammars. Environment and

planning B, 7(3). (page 9)

[22] Stiny, G. (1982). Spatial Relations and Grammars. Environment and Planning B,

9:313–314. (page 9)

[23] Wonka, P., Wimmer, M., Sillion, F. X., and Ribarsky, W. (2003). Instant Architec-

ture. ACM Trans. Graph., 22(3):669–677. (page xiii, 4, 10, 17)

[24] Yang, T., Huang, Z., Lin, X., Chen, J., and Ni, J. (2007). A Parallel Algorithm for

Binary-Tree-Based String Rewriting in L-system. In Proc. of the Second International

Multi-symposiums of Computer and Computational Sciences, pages 245–252. (page 14)

	Introduction
	Problems
	Purpose
	Organization of this work

	Related Work
	Procedural Modelling
	Procedural Generation of Textures
	Fractals
	L-Systems

	Shape Grammars
	Evaluating Shape Grammars
	Level of Detail
	Parallel Generation of Architecture

	Concept
	Foundation
	Shape Grammar
	Derivation Tree
	Generation
	Rendering

	Texture support
	Surrogate Terminals
	Surrogate Textures
	Level of Detail
	Stochasticity

	Implementation
	PGA extensions
	Texture support
	Stochasticity

	Derivation Tree
	Surrogate Terminals
	Level of Detail
	Runtime Integration
	Random Parameters

	Results
	Uniform Buildings
	Random Buildings
	Random Windows
	Random Facades

	Complex Buildings
	Rendering Quality
	Rendering Quality with Stochacitity

	Conclution and Future Work
	Conclustion
	Future Work

	List of Acronyms
	Bibliography

