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Abstract

The main topic of this thesis was the development of a method for the solution of nonequi-
librium quantum impurity problems, which we termed auxiliary master equation approach
(AMEA). The approach enables one to obtain accurate spectral functions in equilibrium
and nonequilibrium situations, especially in the steady state regime but also for time-
dependent cases. As such it can be applied, on the one hand, to a direct simulation of
transport through small quantum systems such as quantum dots or molecular transistors,
and on the other hand, as an impurity solver for dynamical mean field theory (DMFT). In
the latter case, an investigation of nonequilibrium phenomena in extended systems such
as correlated heterostructures, layers or similar geometries is possible. Within DMFT, we
analyzed transport across a correlated layer and the transition from a nearly insulating
Mott state to a strongly correlated metal, together with the temperature dependence of
its transport characteristics. In the context of quantum dots, we applied the solver to
study the challenging nonequilibrium Kondo regime and in particular the splitting behav-
ior of the Kondo resonance at low energy scales. The combination of AMEA with matrix
product states techniques has hereby proven to yield highly accurate spectral functions
and observables at temperatures well below the Kondo scale, which enabled us to resolve
the underlying physics in detail.

The detailed elaboration of the approach and the application and development of dif-
ferent solution strategies was the main topic and achievement of this PhD thesis. A series
of articles on AMEA was published which now constitutes the main part of this cumula-
tive dissertation and presents the results mentioned above. As customary for this type of
thesis, an overarching introduction and summary is given. It provides a unified picture
and complementary information to the descriptions in the publications, together with an
overview over the main findings. In the introduction, more technical details on AMEA are
presented and a recap of the nowadays well-understood equilibrium properties of Kondo
systems is provided. This lays the ground and outlines the motivation to study the not
yet clarified nonequilibrium Kondo regime in the subsequent articles section.

Key words: Nonequilibrium impurity solver, single impurity Anderson model, Kondo
physics, dynamical mean field theory (DMFT), nonequilibrium Green’s functions, exact
diagonalization, matrix product states, multi-dimensional optimization.
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1. Introduction

Strongly correlated electron systems are an interesting, challenging, and intensively stud-
ied field in condensed matter physics. Important emergent phenomena such as magnetism,
high temperature superconductivity, Mott transition, or systems such as strange metals,
which exhibit non-Fermi liquid properties, transition metal oxides and similar materials
can only be explained and described theoretically when taking electron-electron interac-
tions into account. The direct treatment of such interacting quantum manybody systems
is generally unfeasible, so that approximations and appropriate models have to be de-
vised. Famous lattice models in this respect are for instance the Hubbard, Heisenberg
and Ising model, to mention just a few [7]. The Hubbard model was hereby introduced
as an effective model to describe the physics of electrons in partially filled d or f shells,
which have a very flat dispersion so that a localized description is suitable. It treats the
kinetic part of the Hamiltonian as hoppings t from site to site and the electron-electron
interaction only in leading order, by taking the on-site Coulomb repulsion U into account.
However, despite of its simple mathematical form the solution of the Hubbard model con-
stitutes a major challenge. Numerous different numerical and analytical techniques have
been applied to clarify its physics in certain parameter regimes, see e.g. Ref. [8] for a
recent review. Large progress has been made in the past quarter century, after the inven-
tion of the so-called dynamical mean field theory (DMFT) [9–12]. The method opened
the possibility to describe delocalized wave-like states and localized quasi-bound states
in a unified framework and thus, to properly address the Mott transition. It relies on
the approximation to treat correlations between electrons only locally in space, but in
contrast to an ordinary mean field theory it includes their dynamical effects. This ap-
proximation becomes exact in the limit of infinite dimensions D → ∞, the atomic limit
U/t→∞ and also in the non-interacting case U → 0, so that one generally assumes to be
able to interpolate between these points and to describe especially the physics in higher-
dimensional cases appropriately.1 Furthermore, DMFT laid the ground for extensions and
more sophisticated methods which also take non-local correlations into account, see e.g.
Ref. [13–15], by which the low-temperature properties of 2D systems are more reliably
described. Nowadays, it is possible to address within DMFT multi-band Hubbard models
and to compute also the equilibrium properties of realistic materials in DFT+DMFT2,
due to the invention of powerful impurity solvers [16–18].

Impurity solvers are of great importance for DMFT. Within this approach the interact-
ing dynamics on the original lattice is mapped onto a self-consistent impurity problem,
in which only a single interacting site is embedded into a continuous bath of noninteract-
ing electrons. The complexity of the overall problem is by this significantly reduced and,
independent of the original lattice parameters or geometry, the same type of manybody
problem must be solved in the end. However, also impurity problems pose a theoretical

1In practice the approximation often yields accurate results already for 3D.
2For ab-initio calculations of strongly correlated materials one possible and successful approach is to

combine DMFT with density functional theory (DFT).
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1. Introduction

challenge on their own, and the calculation of the interacting Green’s functions is in gen-
eral not exactly possible. Impurity models were devised much earlier in the context of the
Kondo effect, in the combined effort of experimentalists and theoreticians, to shed light
on the intriguing behavior of metal hosts with dilute magnetic impurities. The detailed
explanation of the effect and the solution of the corresponding impurity models posed a
longstanding problem, which lead to the development of dedicated numerical schemes [19].
In the course of the development of DMFT, findings based on this investigations could
be used and renewed interest in the efficient solution of impurity problems arose. Nowa-
days, highly accurate impurity solvers for equilibrium situations exist, which are based
on Monte Carlo schemes or renormalization group ideas [16–18]. For the nonequilibrium
regime, however, new challenges have to be met and established solvers are not yet avail-
able.

Nonequilibrium DMFT and this work: The motivations and demands to extend the
very successful DMFT ideas to the nonequilibrium case are twofold. On the one hand,
advances in experimental techniques now make it possible to excite materials and in par-
ticular their electronic system far away from its equilibrium state together with probing
it at ultrafast timescales, so that its internal dynamics can be studied in great detail. On
the other hand, in most electronic applications such as transistors, memories, detectors
or solar cells, materials have to operate under nonequilibrium conditions. It is therefore
of great importance to be able to accurately describe and study the physics of driven
strongly correlated systems. For the time-dependent case different numerical methods
were devised which allow one to especially address ultrafast phenomena [20–24]. Most
of all, Monte Carlo schemes such as Ref. [24, 25] are here very well applicable. But, in
order to treat steady state physics such time-dependent approaches are generally cum-
bersome and their accuracy degrades in the long time limit. It is thus very desirable to
employ solvers which work directly in the steady state. Numerous approaches exist, which
were listed and discussed already in publications of this thesis in Ref. [1], Sec. 3.1, and
Ref. [2], Sec. 3.2. However, it is challenging to reliably account for Kondo physics and
nonequilibrium phenomena on an equal footing. The first results obtained with our solver
were promising and we hope to contribute further to progress in this direction. In fact,
our studies outlined in Ref. [1], Sec. 3.1, and especially in Ref. [2], Sec. 3.2, have demon-
strated that the developed solver can very accurately address finite temperature Kondo
physics in the equilibrium limit together with its successive suppression when making the
transition to the large current-carrying nonequilibrium state. Furthermore, in the works
Ref. [3], Sec. 3.3, and in Ref. [4], Sec. 3.4, we applied the solver within DMFT to steady
state transport through a correlated layer. This sets the motivation to further extend the
capabilities of the approach in future and to study also other properties of nonequilibrium
Kondo physics and more interesting correlated systems within DMFT.

Before focusing on the approach and thus the main topic of this thesis itself, let us briefly
recapitulate the Kondo effect and some of its basic and nowadays well-known equilibrium
properties, and furthermore, introduce the corresponding impurity models. Many standard
textbooks treat the topic in detail and we refer to Ref. [26,27] and especially to Ref. [28] for
an in-depth explanation. At the end of the section, a brief outlook to the nonequilibrium
regime is given together with the main motivation and the leading questions for the studies
performed in Ref. [2], Sec. 3.2.
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1.1. Impurity problems and the Kondo effect
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Figure 1.1.: Schematic drawing of the experimental findings by Clogston et al. and Sarachik et
al. in Ref. [29,30]. Impurities in different metal alloys may develop a local magnetic
moment, see (2), and exactly in this cases an unusual minimum in the resistivity is
found when lowering the temperature, the Kondo effect.

1.1. Impurity problems and the Kondo effect

Kondo effect: The Kondo effect was first discovered in 1934 when de Haas et al. inves-
tigated gold samples with a small amount of magnetic impurities [31]. At that time the
conventional wisdom was that the resistivity of normal conducting metals at low temper-
ature is a monotonic function of T , and should thus decrease and then saturate at a finite
value when approaching temperature T ≈ 0K. The leading contribution to the resistivity
was believed to be due to phonons, which scales as T 5, and impurity scattering was sup-
posed to contribute only a constant background. However, what was found in the metal
samples with dilute magnetic impurities was, that the resistivity exhibited a minimum
when lowering the temperature and rose again when approaching T → 0. This effect was
later on termed Kondo effect and its proper explanation posed a longstanding problem.
Important input from the experimental side was the correlation between the magnetic
moment of impurities and the resistivity minimum, which was found in measurements
carried out by Clogston et al. and Sarachik et al. in the 1960s [29,30], see also the sketch
in Fig. 1.1. Based on the particular trends in this measurements, Kondo argued 1964 that
the resistivity minimum must originate from the spin degree of freedom of the impurities,
and furthermore, was evidently a single impurity effect rather than a collective behav-
ior of all impurities together [28, 32]. To show this, Kondo calculated perturbatively the
scattering of conduction electrons off the local impurity spin up to third order. The high
order in this perturbative analysis of the spin-flip scattering was crucial since the terms
encountered up to second order were essentially the same as when calculating the ordinary
potential scattering off the impurity. Due to this the relevance of spin-flip scattering was
overlooked up to this time and Kondo was the first to point out that the higher orders in
the perturbation series contain new and conspicuous terms [26]. In particular, the third-
order analysis revealed a scattering term which depended on the occupation number of
the conduction electrons and thus introduced a cut-off in the transport integrals at the
Fermi energy. This lead to the appearance of logarithmic corrections and Kondo found
the following temperature dependence of the resistivity [26–28]3

R(T ) = a+ bT 5 − c log

(
T

D

)
, (1.1)

3Throughout this work we adopt units so that kB = ~ = e = 1.
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1. Introduction

whereby the resistivity constants a and c depend on the impurity concentration, and D
represents the half bandwidth of the conduction electrons. By this the minimum in the
resistivity could be explained since c > 0 in the considered case. However, the logarithmic
term in Eq. (1.1) does not predict a saturation of the resistivity for T → 0 but instead
a divergence. This is unphysical, of course, and demonstrates the breakdown of this
perturbative analysis. Higher-order perturbative calculations carried out in the subsequent
years revealed logarithmic corrections in the higher terms as well, so that it became clear
that the effect must be properly addressed in a non-perturbative manner. Due to this,
the result in Eq. (1.1) can be seen as an expansion valid in the high temperature regime
T � TK , with TK the Kondo temperature as discussed below, and the solution of the
T → 0 limit posed an unresolved issue for years, which became known as the Kondo
problem [28].

Kondo model and low temperature physics: Two important and related impurity mod-
els in the context of Kondo physics are the Anderson and the Kondo model. The Anderson
model is hereby richer in structure since it allows spin as well as charge degrees of freedom
for the impurity. This is more realistic, since the magnetic moment of impurities is caused
by an electron in a partially filled shell. However, in appropriate parameter regimes (see
below) the two models exhibit the same low-energy physics. It is convenient for our pur-
poses here to discuss the Anderson model directly in the context of quantum dots, which
is done in the next paragraph below, and to focus for the moment solely on the Kondo
model. In this model one considers a single localized spin S, representing the impurity
degree of freedom, which interacts with the spins of the surrounding conduction electrons
via an exchange coupling J , so that the Hamiltonian is given by [26,27]

H =
∑

kσ

εkc
†
kσckσ + J

∑

kk′αβ

c†kαck′βσαβS . (1.2)

A value J < 0 favors a ferromagnetic ordering and J > 0 an antiferromagnetic one,
whereby only in the latter case Kondo physics is found. Here, c†kσ/ckσ represent the
fermionic creation and annihilation operators of the conduction electrons with quantum
number k and spin σ, εk is the corresponding dispersion relation, and σαβ denotes the
vector of Pauli matrices. We assume for S a single spin-1/2 particle and it is important to
note that the isolated impurity states with up or down spin are energetically degenerate.
The exchange term may be rewritten in the z-basis as [26]

∑

αβ

c†kαck′βσαβS =
(
c†k↑ck′↑ − c

†
k↓ck′↓

)
Sz + c†k↑ck′↓S

− + c†k↓ck′↑S
+ , (1.3)

by which the spin flip terms become apparent. At low T the occupation number c†kσckσ
exhibits a sharp jump at the Fermi energy EF , so that only conduction electrons with
energy ω ≈ EF can undergo a spin flip process. When lowering the temperature, one
finds that this resonant spin flip scattering completely entangles the impurity spin with
the conduction electrons and ultimately forms a collective singlet state for T → 0. As
a result, the magnetic moment of the impurity is fully compensated by the surrounding
electrons [26–28], which form the so-called Kondo screening cloud.

The change in the ground state energy due to the spin flip processes is associated with
a low-energy scale, the Kondo temperature TK , which depends exponentially on the pa-
rameters of the model [27]

4



1.1. Impurity problems and the Kondo effect

TK = D
√

2Jρ0 exp

(
− 1

2Jρ0

)
, (1.4)

with D the half bandwidth and ρ(ω) ≈ ρ0 the density of conduction electron states. The
remarkable feature of the Kondo model is its universal low-energy physics which depends
solely on the dynamic scale TK . Various measurable quantities such as the magnetic
susceptibility, specific heat or scattering rates are universal functions of T/TK [27, 28].
In the crossover regime T ≈ TK one finds a logarithmic dependence, see also Eq. (1.1)
above, and in the very low temperature regime T � TK a power law behavior. The
scaling properties together with the exponentially small energy scale could only be fully
accounted for with renormalization group (RG) methods. Anderson’s “poor man’s scaling”
gave important insights [27,28], and with the invention of Wilson’s numerical RG in 1975
(NRG) [19] the Kondo model could eventually be solved. The corresponding RG scheme
is based on successively integrating out high-energy excitations to obtain a renormalized
low-energy model, and as soon as the model parameters become invariant under the RG
transformation a fixed point is reached. The so-called weak coupling fixed point J = 0
is relevant for the ferromagnetic model for T → 0, and in the antiferromagnetic case the
T → 0 physics is determined by the strong coupling fixed point J = ∞, which builds up
the above mentioned Kondo singlet as ground state [27,28].4

The singular coupling of the impurity spin to conduction electrons at ω ≈ EF has
drastic consequences for the local density of states on the impurity. A sharp resonance
with a width ∝ TK is formed at ω = EF , the so-called Kondo peak or Abrikosov-Suhl
resonance [26–28]. This is addressed below in the context of the Anderson impurity model
in more detail. It is important to note further that exact results for these impurity
models could later be obtained by Bethe’s ansatz, which gave complementary information
to the RG approaches and resolved thermodynamic properties. Furthermore, important
insights were provided by the connection of the strong coupling fixed point to a local Fermi
liquid [27,28]. From this it is known that the inverse lifetime of the low-energy excitations
at ω ≈ EF scales as ={ΣR(ω)} ∝ (ω − EF )2, resulting in long-lived quasi particles, and
the particular power law behavior can be computed when introducing a small temperature
T � TK or other source of decoherence such as a bias voltage, see below [27,28,33].

Anderson model: In the single impurity Anderson model (SIAM) the impurity is given
by a single spin-dependent site with on-site energy εfσ and an on-site Coulomb repulsion
determined by the Hubbard U , which hybridizes via hoppings Vk with the conduction
electrons c†kσ/ckσ [27, 28,34]:5

H =
∑

σ

εfσnfσ + Unf↑nf↓ +
∑

kσ

εkc
†
kσckσ +

∑

kσ

(
Vkc
†
kσcfσ + h.c.

)
. (1.5)

The index f indicates the impurity site, c†fσ/cfσ are the fermionic creation and annihilation

operators and the particle density is given by nfσ = c†fσcfσ. The continuous density of
states ρ(ω) =

∑
k δ(εk−ω) ≈ ρ0 of conduction electrons is assumed to exhibit a sufficiently

4Note that J = 0 represents a decoupling into an isolated spin, and in Wilson’s representation of the
bath in Eq. (1.2) as a tight-binding chain, J =∞ corresponds to the formation of a singlet between the
impurity and the first site of the Wilson chain together with a decoupling of the remaining sites [28].

5Here and in the following equations h.c. denotes Hermitian conjugate.
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1. Introduction

ΔE>0 ΔE<0

Figure 1.2.: Effective spin-flip via a second-order hopping process and an intermediate virtual
state. The impurity is drawn in red, together with its possible single and double
occupied states, and the filling of the bath for the conduction electrons is indicated
in green. Only electrons at the Fermi edge can undergo a spin-flip.

large half bandwidth D, larger than all bare impurity energies. The Fermi energy EF of
these bath electrons is taken to be zero. The only relevant quantity of the bath for the
low-energy physics is then given by the so-called hybridization strength Γ,

Γ = −=
{

∆R(ω = 0)
}

= π
∑

k

|Vk|2δ(εk − ω) = πV 2ρ0 , (1.6)

related to the retarded hybridization function ∆R(ω) as defined below in Sec. 1.2.
For fully developed Kondo physics one needs degeneracy in spin and one thus typically

considers εfσ = εf . In the atomic limit the decoupled impurity has four possible states:
The empty state has energy E|0〉 = 0, the single occupied states have E|σ〉 = εf , and the
double occupied state E|↑↓〉 = 2εf + U . In the particle-hole symmetric case εf = −U/2
the states |σ〉 are lowest in energy for U > 0. When taking the hybridization with the
conduction electrons into account one finds in a mean field treatment that a local moment
on the impurity can develop for U > πΓ [27]. The mean field approximation is a drastic
one, of course, but it indicates the regime in which a local moment on the impurity
site can form at high temperatures. An effective spin flip is possible via a second order
hopping process into the bath, as sketched in Fig. 1.2. In the large interaction limit U � Γ
one thus obtains the analogous behavior as in the Kondo model above, namely that the
impurity is essentially in single occupied states and interacts with the bath through spin
flip processes. With a projection technique or a canonical transformation, as done by
Schrieffer and Wolff [35], the Anderson model can be mapped onto the Kondo model. By
the restriction to the single occupied sector and by integrating out the charge fluctuations a
renormalization to the low-energy physics is performed. The obtained exchanged coupling
J is given in terms of the SIAM parameters by J = 4|V |2/U , so that one finds for the
Kondo temperature the expression [27,28]

TK =

√
2UΓ

π
exp

(
−πU

8Γ

)
, (1.7)

when replacing in Eq. (1.4) the high-energy cutoffD by U/2 [27].6 Due to this the Anderson
model is governed on a low-energy scale by the same Kondo physics as described above.

6One should note that various slightly different definitions for TK exist, also based on measurable quan-
tities, see e.g. Ref. [2], Sec. 3.2. Common to all is the exponential dependence on the ratio U/Γ.
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1.1. Impurity problems and the Kondo effect

Figure 1.3.: Anderson impurity coupled to two leads at chemical potentials µL and µR, on the
left in the equilibrium case µL = µR, and on the right in nonequilibrium driven by a
nonzero bias voltage φ = µL − µR > 0. The corresponding spectral functions A(ω)
are shown, with a split Kondo peak on the right.

When analyzing the symmetric SIAM with NRG, one finds that the strong coupling fixed
point is the only stable point in the low-energy limit [28]. Furthermore, the Fermi liquid
properties of the ground state tell one that the low-energy excitations at ω ≈ EF are
adiabatically connected to the noninteracting case U = 0. As a result, by the so-called
Friedel sum rule it is ensured that the spectral function A(ω), which represents the local
density of states on the impurity, see Sec. 1.2 below, takes on its unitary limit at the Fermi
energy [27,28,36]

A(ω = EF ) =
1

πΓ
, (1.8)

for T = 0 and any value of U . The relevant energy scale for this low-energy physics is TK ,
so that A(ω) develops a sharp Kondo peak at ω ≈ EF with a width determined by TK .
The peak width thus becomes exponentially small with increasing U due to Eq. (1.7). A
typical situation for the overall spectral function for the equilibrium SIAM is displayed on
the left-hand side in Fig. 1.3.7 The characteristic three-peak structure is visible. The peak
in the middle corresponds to the Kondo resonance and the Hubbard bands at ω ≈ ±U/2 to
incoherent charge excitations, with a width determined by the local value of the frequency-
dependent hybridization strength −=

{
∆R(ω)

}
.

Kondo effect in quantum dots: Besides its relevance for bulk metals with dilute mag-
netic impurities, the Kondo effect has regained attention in recent years also due to its
realization and significance in quantum dot experiments, see e.g. Ref. [37,38]. The confined
electronic states in a quantum dot are often very well approximated by a SIAM, similar as
discussed above but now attached to two baths of electrons instead of one, which we refer
to as leads, see also Fig. 1.3. The chemical potentials of the leads are labeled by µL and
µR.8 In the single occupied state εf = −U/2, with nonzero U and weak dot-lead coupling
Γ � 1, one finds at high enough temperatures T � TK a Coulomb blockade, so that
transport from one lead to the other is suppressed. However, when approaching the limit
T → 0 for µL = µR = 0 so that a Kondo effect can develop, the singular coupling between
the dot and the leads at ω ≈ 0 causes a perfect conductance at zero bias. This comes
about since the current for an infinitesimal bias voltage φ = µL − µR ≈ 0 is determined
by A(ω = 0), which takes on the maximally possible value by virtue of Eq. (1.8). The

7Note that the conduction electrons are represented in this figure by two leads, see next paragraph below.
8In this context we adopt the more common notation of a chemical potential instead of Fermi energy.

7



1. Introduction

Coulomb blockade is thus completely compensated for and the effect is referred to as zero
bias anomaly. On the whole, the Kondo effect manifests itself in quantum dots in sort of
an opposite manner when compared to bulk metals. Above it was stated that a minimum
in the resistivity curve R(T ) is found, but in quantum dots one finds instead a minimum
in the conductivity G(T ) as a function of temperature.

A very interesting and yet not completely resolved question is the fate of the Kondo
resonance when a nonzero bias voltage is applied, which was one of the main topics ad-
dressed in this thesis. The field of nonequilibrium Kondo physics has been a very active
area of research in recent years and numerous different approaches were applied to clar-
ify the physics in certain parameter regimes. An overview of previous literature is listed
in Ref. [2], attached in Sec. 3.2 below. Here, we solely want to outline in a qualitative
manner the main focus. In the very low-energy limit φ ≈ 0 linear response is applicable,
and for T ≈ 0 the transport coefficients are known from Fermi liquid theory. A very
large bias voltage, on the other hand, represents a major source of decoherence similar to
a large temperature and one effectively obtains a weak coupling problem. In the latter
case perturbative techniques can be applied, which revealed weak excitations in A(ω) at
the positions of µL and µR [39, 40]. In the intermediate region, beyond linear response
and thus in a true nonequilibrium regime but still at voltages comparable with TK , exact
results are not yet available. It is precisely this regime that we aimed at in the studies
presented in Ref. [2], Sec. 3.2. What we found were two distinct excitations close to µL and
µR for voltages just above TK , as sketched in Fig. 1.3 on the right, and a linear splitting
behavior when increasing φ (compare also Ref. [1], Sec. 3.1). The transition from the single
to the split Kondo peak occurred hereby in a simple and smooth way. At first, the bias
voltage suppressed, then broadened and finally split the Kondo resonance in two peaks.
For the onset of splitting we could estimate a value of φ ≈ 1− 2TK . All the calculations
presented in Ref. [2] were performed at a finite temperature T , but well below TK . Espe-
cially the excellent agreement with a NRG reference calculation in the equilibrium limit
φ = 0 demonstrated the high achievable accuracy of the approach, and thus motivates us
to further pursue these studies in future.

1.2. Nonequilibrium Green’s functions

Since the approach presented in this thesis is formulated in terms of nonequilibrium Green’s
functions, we briefly recap the basics here. Green’s functions are a powerful and well-
developed framework to address strongly correlated manybody systems in the equilibrium
and also in the nonequilibrium regime. Their appealing feature is that a systematic per-
turbation series is available with an intuitive diagrammatic representation. Furthermore,
they are closely related to response functions of interacting manybody systems and thus
enable one to compute measurable quantities relevant for experiments, without the need
to fully diagonalize the interacting system [7, 41]. The formalism was generalized to the
nonequilibrium case by Kadanoff, Baym and separately by Keldysh [42–44], and allows one
to make use of the same basic concepts and an analogous perturbative expansion. Since
a profound introduction to nonequilibrium Green’s functions is beyond the scope of this
thesis we refer to excellent textbooks and reviews on the topic, for instance Ref. [41,45,46],
and also to the articles Ref. [47–49].

At the heart of the nonequilibrium Green’s functions lies the introduction of a special
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1.2. Nonequilibrium Green’s functions

contour ordering on the time axis. Since the two time limits t → ±∞ are not equivalent
anymore, as in the equilibrium case, the only available reference point is the infinite past.
When neglecting any initial correlations and therefore the so-called Matsubara branch, cf.
Ref. [45–48], which is correct in the steady state for instance, one ends up with a 2 × 2
structure in Keldysh space and has to consider Green’s functions of the form

G(ω) =

(
GR(ω) GK(ω)

0 GA(ω)

)
. (1.9)

Since we are interested in the steady state regime where time translational invariance ap-
plies, one can write all functions in the frequency domain ω. In contrast to the equilibrium
case, a single Green’s function does not suffice anymore to describe all the relevant physics
on a single particle level. Due to the relation of the advanced to the retarded Green’s func-
tion GA(ω) = GR(ω)†, a common choice is to consider GR(ω) and the Keldysh component
GK(ω) as independent functions. For actual computations it is furthermore convenient
to introduce the so-called lesser G<(ω) and greater G>(ω) functions. In the steady state
limit they are defined by the following correlation functions in the time domain

G<(t) = i 〈c†c(t)〉∞ ,

G>(t) = −i 〈c(t)c†〉∞ ,

GR(t) = −iΘ(t)
〈{
c(t), c†

}〉
∞
,

GK(t) = −i
〈[
c(t), c†

]〉
∞
. (1.10)

Here c†/c denote fermionic creation / annihilation operators, whereby a spin or site index
was neglected for clarity,9 〈. . .〉∞ indicates expectation values in the steady state limit,
{A,B} represents the anti- and [A,B] the commutator of A and B, and Θ(t) is the
Heaviside step function. The Green’s functions in frequency domain are obtained by a
Fourier transformation G(ω) =

∫
G(t) exp(iωt)dt. Another central object is the so-called

spectral function A(ω), which is related to the functions above by

A(ω) =
i

2π

(
GR(ω)−GA(ω)

)
=

i

2π

(
G>(ω)−G<(ω)

)
. (1.11)

The meaning of the spectral function is the same as in equilibrium, namely it corresponds
to the local density of states at the considered site. From the definitions in Eq. (1.10)
it follows further that GK(ω) = G>(ω) + G<(ω). In the equilibrium limit the Green’s
functions obey the so-called fluctuation dissipation theorem and are related to each other
via the Fermi-Dirac distribution function f(ω, µ, T ) by

G<(ω) = 2πif(ω, µ, T )A(ω) ,

G>(ω) = 2πi (f(ω, µ, T )− 1)A(ω) ,

GK(ω) = 2πi (2f(ω, µ, T )− 1)A(ω) , (1.12)

so that the knowledge of the spectral function together with µ and T suffices to fully
specify the physical situation. In the nonequilibrium regime this is not the case since a

9Objects of the form 〈c†
iσ
c(t)jσ′〉 would result in analogous matrix expressions.
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1. Introduction

distribution function is not known a priori. As one can see from Eq. (1.12), the lesser
Green’s function is related to the occupation of electrons, the greater to the occupation
of holes and the Keldysh may be interpreted as the occupation of electrons minus the one
of holes. Therefore, the three functions G<(ω), G>(ω) and GK(ω) are directly related to
observables, and the particle density for instance is given by

n = − i

2π

∫
G<(ω)dω

=
1

2
− i

4π

∫
GK(ω)dω . (1.13)

An expression for the current in terms of the Green’s functions G<(ω) and GR(ω) is
provided by the Meir-Wingreen expression, see Ref. [41, 49,50].

Dyson’s equation for the SIAM: When making use of the Keldysh Green’s functions
formalism Eq. (1.9), essentially the same expressions known from equilibrium hold true,
only that each quantity has to be replaced by a 2 × 2 object in Keldysh space, which
we denote by . . . in the following. Let us now consider the particular case of a single
spin-dependent impurity coupled to a continuous bath of electrons, i.e. the SIAM as
discussed above, see Eq. (1.5). The SIAM hereby represents the physical situation itself
or a self-consistent impurity problem as obtained in the DMFT cycle. For simplicity let
us consider the first case, so an impurity coupled to leads λ. An important object is the
so-called hybridization function

∆(ω) =
∑

λ

t′λ
2
g
λ
(ω) , (1.14)

which depends on the surface Green’s functions g
λ
(ω) of lead λ, and on the hoppings t′λ

from the impurity to each lead. Note that g
λ
(ω) is calculated for the case of decoupled

leads, and typically one assumes ideal reservoirs which were in equilibrium at t → −∞
before coupling to the impurity. Therefore, gRλ (ω) is related to the density of states in
the leads and the filling gKλ (ω) is determined by their chemical potential and tempera-
ture through Eq. (1.12). A semi-circular density of states in the leads, for instance, is
represented by a chain of sites with constant hopping, see also Fig. 2.1. However, one
must emphasize that the particular geometry of the leads does not matter and the physics
on the impurity site is invariant under unitary transformations among sites in the leads
only, see e.g. Ref. [51] and also Sec. A.2 below. The hybridization function is therefore
a convenient quantity which fully specifies the correlation functions on the impurity site.
As can be easily checked by equations of motion techniques, see for instance [41], Dyson’s
equation for the noninteracting case is given by

G−1
0 (ω) = g−1

0
(ω)−∆(ω) . (1.15)

Here, g
0
(ω) is the Green’s function of the decoupled central system without interaction,

and G0(ω) is the noninteracting Green’s function of the central system coupled to the

leads, i.e. in the steady state. For the isolated impurity we have gR0
−1

(ω) = ω − εf + i0+

and gK0 (ω) ∝ δ(ω − εf ), with the prefactor depending on the initial filling. The latter,
however, is irrelevant in the steady state.
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To evaluate equations in Keldysh formalism the Langreth rules are useful, which state
how products of contour-ordered objects are transformed [41]. For our purposes we need
especially the inverse of a Keldysh “object”, i.e.

(
G−1

)R
=
(
GR
)−1

,
(
G−1

)K
= −

(
GR
)−1

GK
(
GA
)−1

. (1.16)

Evidently, the retarded component transforms in a simple way and only the Keldysh
component is more involved. By this, Dyson’s equation (1.15) can be rewritten as [41]

GR0
−1

(ω) = gR0
−1

(ω)−∆R(ω) ,

GK0 (ω) =
[
1 +GR0 (ω)∆R(ω)

]
gK0 (ω)

[
1 + ∆A(ω)GA0 (ω)

]
+GR0 (ω)∆K(ω)GA0 (ω)

= GR0 (ω)∆K(ω)GA0 (ω) , (1.17)

where the last line is valid for a sufficiently large support of the lead density of states
∝ ={∆R(ω)}, since the term with gK0 (ω) is then infinitesimal.10 The physical meaning of
this is, that a connected system without bound states takes on a unique steady state in
which the initial filling of the finite central region, i.e. gK0 (ω), does not play a role. This
is the situation we are considering in the following.

For the interacting case one introduces a self-energy Σ(ω), as usual, which accounts for
all manybody effects on the level of the single-particle Green’s functions. Dyson’s equation
for the interacting Green’s function G(ω) of the coupled impurity in the steady state is

G−1(ω) = g−1
0

(ω)−∆(ω)− Σ(ω)

= G−1
0 (ω)− Σ(ω) , (1.18)

and with Eqs. (1.16) and (1.17)11 one finds

GR
−1

(ω) = GR0
−1

(ω)− ΣR(ω)

= gR0
−1

(ω)−∆R(ω)− ΣR(ω) ,

GK(ω) =
[
1 +GR(ω)ΣR(ω)

]
GK0 (ω)

[
1 + ΣA(ω)GA(ω)

]
+GR(ω)ΣK(ω)GA(ω)

= GR(ω)
[
∆K(ω) + ΣK(ω)

]
GA(ω) . (1.19)

In an equilibrium calculation, ∆K(ω) as well as ΣK(ω) fulfill the fluctuation dissipation
theorem Eq. (1.12), and as a consequence, also GK(ω) does. In nonequilibrium this is not
the case anymore, of course, and ΣK(ω) accounts for the changes in the occupation when
interactions are taken into account, whereas ΣR(ω) determines how the local density of
states A(ω) is modified. In equilibrium and even more in nonequilibrium, the computation
of the Keldysh self-energy Σ(ω) for such an interacting quantum system of infinite size
is a difficult task. Exact results are available only in rare cases and one has to resort to
approximations in general. A numerical scheme, whose development was the main task of
this thesis, and which allows for an accurate calculation of Σ(ω) for general nonequilibrium
impurity problems is presented in the following chapter.

10The term is equal to GR0 g
R
0
−1
gK0 g

A
0
−1
GA0 ∝ i0+/

[
(ω − εf −<{∆R})2 + (0+ −={∆R})2

]
and thus in-

finitesimal when ={∆R(ω)} 6= 0 at all roots of (ω− εf −<{∆R(ω)}). This is not the case, for instance,
when the coupling tλ in Eq. (1.14) is so large that (bound) states lie outside the support of ={∆R(ω)}.

11The last line for GK0 (ω) is used.
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2. Auxiliary master equation approach

As discussed in Sec. 1, the accurate solution of quantum impurity problems is of great
interest due to its relevance for nanoscale transport and for DMFT, and currently a very
active area of research. The auxiliary master equation approach (AMEA), which is the
main topic of this thesis, is a versatile impurity solver for general nonequilibrium or equi-
librium situations and is especially suited to treat the steady state. It can be applied,
on the one hand, directly to transport across quantum dots or small molecules and on
the other hand, as an impurity solver within (nonequilibrium) DMFT in order to consider
transport in extended systems. Its major advantages compared to other approaches are:
(i) it can be directly formulated in the steady state limit, (ii) it does not rely on pertur-
bative techniques and instead exhibits a control parameter NB by which the results can
be systematically improved, and (iii) the calculated self-energy is obtained from a true
nonequilibrium system, see below.

This chapter is structured as follows: At first an overview over the approach is given
in Sec. 2.1 and implementation details are provided later in Sec. 2.2. In Sec. 2.1, after
the basic principle is sketched, we briefly show how measurable quantities and correlation
functions are computed. These topics are largely contained in standard textbooks on
open quantum systems and the points listed here are meant to serve as a guidance. The
more technical section 2.2 can be safely skipped by readers not concerned with details on
numerics. However, it may be of help for those interested in a practical implementation.
In general, this chapter serves the purpose to outline the approach in a complementary
way to the publications listed in Sec. 3.

2.1. Overview

2.1.1. Basic principle and major steps

The basic principle of the approach consists in mapping the original physical impurity
problem (IMph), which cannot be solved since it is interacting and of infinite size, onto
an auxiliary one (IMaux), which is effectively of finite size and can thus be solved exactly
or at least accurately by numerical techniques. For IMaux we choose a small number of
bath sites NB which are in addition coupled to two Markovian environments, see also
Fig. 2.1. By this we arrive at a finite but open quantum system which exhibits dissipative
dynamics and relaxes to a true nonequilibrium steady state in the long-time limit. The
approach is similar to what is known as exact diagonalization DMFT (ED-DMFT) in
equilibrium, cf. Ref. [52], but with the important modification to consider an open instead
of a closed quantum system. Introducing an open quantum system for IMaux automatically
results in a continuous spectrum and there is no need for artificial broadening in order
to compute Green’s functions for real ω and most important, the additional couplings to
Markovian environments greatly improve the accuracy of the mapping. Due to this we
obtain very accurate spectral functions and observables already for rather small system
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U

t'R
t'L

μL,TL

μR,TR

U

E33
E02

Γ
(2)

NB = 4

Figure 2.1.: Sketch of the mapping from the physical impurity system (IMph) on the left to the
auxiliary one (IMaux) on the right, by requiring that the hybridization functions are
almost the same, Eq. (2.3). For IMph an Anderson impurity, Eq. (1.5), connected via
t′L/R to two leads at different chemical potentials µL/R and/or temperatures TL/R is
chosen, which are depicted here as two semi-infinite chains. IMaux is represented by
an open quantum system, consisting of a finite number of bath sites NB , with the

noninteracting Hamiltonian defined by Eij , and additional couplings Γ
(1/2)
ij to two

Markovian environments which are either filled or empty.

sizes of NB = O(10). It is also important to stress that despite of the fact that we choose
the auxiliary system to be embedded in Markovian environments, the overall dynamics
seen at the impurity site is clearly non-Markovian. This is due to the intermediate bath
sites and to the non-diagonal couplings to the Markovian environments, see below.

As outlined in Sec. 1.2, for a general impurity problem IMph one can always write Dyson’s
equation in the following form

G−1
ph (ω) = g−1

0
(ω)−∆ph(ω)− Σph(ω) , (2.1)

where the hybridization function ∆ph(ω) fully specifies all relevant information of the
physical bath for Green’s functions at the impurity site, and the self-energy Σph(ω) takes
the onsite interaction U into account, cf. Eq. (1.5). In the same way one specifies Dyson’s
equation for IMaux by

G−1
aux(ω) = g−1

0
(ω)−∆aux(ω)− Σaux(ω) , (2.2)

with the same noninteracting Green’s function of the decoupled impurity g
0
(ω) and the

same U as above in Eq. (2.1). The crucial point is that the interacting Green’s function,
and thus the self-energy, depend solely on the impurity quantities {U, g

0
(ω)} and the

hybridization function, independent of the specific realization of the bath. Therefore, in
the limit ∆aux(ω) = ∆ph(ω), IMaux describes exactly the same impurity physics as IMph.
In practice, ∆aux(ω) = ∆ph(ω) is only possible in some special cases or when NB → ∞.
Nevertheless, one can seek for a mapping which achieves that the hybridization functions
are almost the same

∆aux(ω) ≈ ∆ph(ω) . (2.3)

For this condition we find in practice that it can be fulfilled with high accuracy already
for rather small values of NB, and we obtain an exponential convergence of Eq. (2.3) when
increasing NB. For the latter it is important that one makes optimal use of all bath
parameters in IMaux, as described below in Sec. 2.2.1.

Once the bath parameters of IMaux which best fulfill Eq. (2.3) are found, we solve the
manybody Lindblad problem. In this way we obtain the auxiliary interacting Green’s
function Gaux(ω) from which we calculate Σaux(ω). The interacting solution of IMaux then
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serves as an approximate solution for IMph, whose accuracy is controlled and determined
by Eq. (2.3). We generally make use of the self-energy Σph(ω) = Σaux(ω) =: Σ(ω) instead
of Gaux(ω), by which the noninteracting limit U = 0 is exactly fulfilled and errors in the
single-particle terms are reduced.

On the whole, the two major steps of AMEA are:

(I) Mapping procedure from IMph to IMaux by optimizing the auxiliary bath parameters
in order to fulfill the condition ∆aux(ω) ≈ ∆ph(ω).

(II) Manybody solution of IMaux by which an approximation to the self-energy of IMph

is obtained by Σph(ω) = Σaux(ω).

Details on (I) are presented below in Sec. 2.2.1 and for (II) in Sec. 2.2.2. As usual, the
solution of interacting nonequilibrium manybody systems is challenging. Also in our case
step (II) sets the main limitations to the method with respect to the accessible values of
NB. Below, two different strategies for the manybody solution are presented, which both
solve the interacting IMaux with high accuracy so that errors stemming from step (II) are
of minor importance and step (I) determines the overall accuracy of the approach.

2.1.2. Lindblad equation for the auxiliary impurity problem

For IMaux we choose the most general form of a Markovian open quantum system which
preserves trace, Hermiticity and positive semi-definiteness of the density operator ρ, namely
one described by a Lindblad equation [53,54]:

d

dt
ρ = Lρ . (2.4)

Here, ρ represents the system density operator and L the Lindblad superoperator which
is the generator of the quantum dynamical semigroup V (t) = exp (Lt). The semigroup
property [53]

V (t) = V (t− t′)V (t′) , t ≥ t′ ≥ 0 , (2.5)

tells us that one can work with essentially the same techniques as known from unitary
time evolutions U(t) = exp (−iHt) for Hermitian systems H = H†, only that a direction
of time is prescribed due to the irreversible nature of dissipative systems. The locality of
the time evolution operator V (t), without any memory kernel for the previous history of
the state is exactly the Markov property. In standard textbooks such as Ref. [53–55] it is
shown how to arrive at the Lindblad equation when starting from a system embedded in a
bath and integrating out the bath degrees of freedom within the Born, Markov and secular
approximation.1 In the end, this yields analytical expressions for the coefficients of the
Lindblad equation which depend on system parameters and details of the bath correlation
functions. This approach is usually adopted when applying the Lindblad equation to
certain situations, see e.g. Ref. [5, 53–56]. Here, however, we take a different route and
simply write down a generic Lindblad equation whose coefficients (bath parameters) are
determined through an optimization procedure (cf. Sec. 2.2.1) instead. In particular, for

1For this one usually considers explicitly the reduced density matrices for the system and the bath. Here,
we skip this point in the derivation and work with system dynamics only, so that ρ already refers to
the reduced density operator of the system alone.
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a chosen system size we optimize the bath parameters in order to fulfill the condition
Eq. (2.3) to best approximation.

The Lindblad operator in Eq. (2.4) is commonly decomposed in two components L =
LH + LD, namely a unitary part

LHρ = −i[Haux, ρ] , (2.6)

as known from the usual von-Neumann equation, and the dissipator LD which accounts
for the couplings to the Markovian environments. As noted above, in addition to the
impurity site f we consider NB bath sites, arranged either in a “linear”, “star” or any
other geometry, so that the auxiliary system Hamiltonian can be written as

Haux =
∑

ijσ

Eijc
†
iσcjσ + Unf↑nf↓ . (2.7)

The operators c†iσ/ciσ are hereby the fermionic creation/annihilation operators for site i

and spin σ, and nfσ = c†fσcfσ. The (NB + 1)× (NB + 1) matrix E accounts for all single-
particle hoppings and on-site energies and thus specifies the geometry of IMaux, and U
is the Hubbard on-site interaction. Furthermore, the impurity site f is contained in the
summation over {ij}. For the dissipator LD we choose the following form

LDρ = 2
∑

ijσ

Γ
(1)
ij

(
cjσρc

†
iσ −

1

2

{
ρ, c†iσcjσ

})

+ 2
∑

ijσ

Γ
(2)
ij

(
c†iσρcjσ −

1

2

{
ρ, cjσc

†
iσ

})
, (2.8)

with two types of Lindblad operators proportional to the annihilation and creation oper-
ators with coupling constants Γ(1) and Γ(2), respectively. Also here the impurity index
f is contained in {ij} and the summation runs over all NB + 1 sites. The structure of
Eqs. (2.6) and (2.8) together with the requirement that the matrix E is Hermitian, and
Γ(1) and Γ(2) positive semi-definite, ensures that any initial physical density operator ρ
remains physical and therefore preserves trace, Hermiticity and positive semi-definiteness.
For more details on the choice Eq. (2.8) for the dissipator see also App. A.1.

For the form stated above, the auxiliary bath of a particular IMaux is fully specified by
the three matrices E, Γ(1) and Γ(2), which we denote as bath parameters.2 One should
note that some redundancy exists and one can always perform unitary transformations
among bath sites, see also App. A.2 below. From the same freedom in the Hermitian case
(ED-DMFT), one could expect to be able to reduce all terms to a diagonal from, i.e. a
“star” representation. However, the noninteracting terms in the unitary part Eq. (2.7)
and in the dissipator Eq. (2.8) do not share the same eigenbasis (cf. Eq. (A.1)) and are
“rotated” against each other. Due to this, a large number of effective bath parameters for
the mapping procedure is available, which enables one to fulfill the requirement ∆aux(ω) ≈
∆ph(ω) very accurately even for small system sizes NB + 1. This is the main reason why
AMEA is also for equilibrium situations superior to an usual Hermitian bath as used in
ED-DMFT.
2To be specific, Eff is the on-site energy of the impurity and is thus not a bath parameter and all terms

Γ
(α)
ij with either i = f or/and j = f are set to zero since this ensures that the hybridization function

goes asymptotically to zero for ω = ±∞.
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Steady state density matrix and correlation functions: In order to calculate static
observables and dynamic correlation functions in the stationary limit we need to find the
steady state density operator ρ∞ first. This corresponds to the eigenstate of the Lindblad
superoperator L with eigenvalue zero

Lρ∞ = 0 , (2.9)

or is equally well obtained in the long-time limit by

ρ∞ = lim
t→∞

ρ(t) = lim
t→∞

eLtρ(0) . (2.10)

Since we generally assume that ρ∞ is unique, the particular initial state ρ(0) does not
matter. The uniqueness is always fulfilled when considering for IMaux connected systems
without bound states and nonzero dissipation. Therefore, the eigenspectrum of L consists
in general of oscillating but exponentially damped modes and exactly one eigenvalue zero.
This leads to a contracting property for V (t) = exp (Lt) [53].

Static observables for system operators A are computed in the usual way by

〈A(t)〉 = tr{Aρ(t)} , (2.11)

when ρ(t) is a valid density operator which has trace one, is Hermitian and positive semi-
definite:

tr{ρ(t)} = 1 , ρ(t)† = ρ(t) , 〈v| ρ(t) |v〉 ≥ 0 ∀ |v〉 ∈ H . (2.12)

The computation of two- or multi-time correlation functions can be done with the aid of
the so-called quantum regression theorem [53–55]. The bare Lindblad equation Eq. (2.4)
is originally only formulated to propagate reduced density matrices of the system forward
in time. For correlation functions we need to time evolve non-proper density matrices
such as Aρ. However, in the quantum regression theorem it is shown that within the
same approximations for the Markovian environments also the time evolution of Aρ is
determined by system operators alone and in fact by the same Lindblad equation Eq. (2.4).
For fermionic operators, however, one has to pay attention to the anti-commutation rules
so that one encounters an additional sign when A contains an odd number of fermionic
operators. This is addressed in detail in the appendix of Ref. [6]. In the end one is able
to compute correlation functions by

iGBA(t2, t1) = 〈B(t2)A(t1)〉 = tr{BAt1,t2−t1} , (2.13)

with
d

dt
At1,t = L′At1,t , (2.14)

and

At1,0 = Aρ(t1) , (2.15)

which yields the formal solution [53,54]

iGBA(t2, t1) = tr{BeL′(t2−t1) [Aρ(t1)]} , t2 ≥ t1 . (2.16)

Here, the superoperator L′ is assumed to act on every operator on the right, i.e. everything
in square brackets. The expression allows for a simple interpretation, namely that one has
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2. Auxiliary master equation approach

to propagate the density operator of the system ρ at first up to time t1, apply the operator
A on it, and then propagate the resulting operator up to time t2, at which B is applied and
the trace evaluated. The Lindblad operator L′ = LH+L′D is nearly the same as above only

that the jump operator terms cjσρc
†
iσ and c†iσρcjσ in Eq. (2.8) introduce a minus sign when

A anti-commutes with ciσ/c
†
iσ. The semigroup property does not allow one to directly

consider t2 < t1, however, by using the identity

iGBA(t2, t1) = −iGA†B†(t1, t2)∗ , (2.17)

one attains the desired result. Since a complete derivation on this was published we refer
to Ref. [1], Sec. 3.1, and Ref. [2], Sec. 3.2, for more details in the context of AMEA, and
furthermore to Ref. [53–55] for detailed information on the quantum regression theorem
and the Lindblad equation in general.

2.2. Implementation details

In the following we provide more technical details on the two major steps of the approach,
the mapping procedure and the manybody solution of the auxiliary Lindblad problem.
Hereby, in each part at first a qualitative overview is presented before we focus on the
actual algorithms that we used and by which the results in Sec. 3 were obtained.

2.2.1. Mapping procedure

As outlined in the previous section, our starting point is a general Lindblad equation
of the form Eq. (2.4) with Eqs. (2.6) and (2.8), which contains a set of bath parameters
E, Γ(1) and Γ(2) that need to be determined. As criterion for this we demand that
Eq. (2.3) is fulfilled to best approximation, given the chosen size NB + 1 of the auxiliary
system. For this purpose we need to compute the hybridization function ∆aux(ω) of
IMaux. Since this quantity contains solely the effect of the noninteracting bath sites plus
Markovian environments on the impurity site, and is per definition independent of the
on-site interaction on the impurity, we only need to compute the noninteracting Green’s
functions G0(ω) of IMaux.3 In Ref. [1], Sec. 3.1, or also Ref. [6], expressions for G0(ω) were
derived and we recap here only the result, namely

GR
0 (ω) =

(
ω −E + i

(
Γ(1) + Γ(2)

))−1
,

GK
0 (ω) = 2iGR

0 (ω)
(
Γ(2) − Γ(1)

)
GA

0 (ω) . (2.18)

As one can see, since we deal here with a noninteracting problem the expressions are only
of size (NB + 1) × (NB + 1) and depend on the single-particle coefficients E, Γ(1) and
Γ(2).4 As a result, a single computation of Eq. (2.18) is numerically very cheap. The
hybridization function is hereby obtained by

∆R
aux(ω) = 1/gR0 (ω)− 1/GR0ff (ω) ,

∆K
aux(ω) = GK0ff (ω) / |GR0ff (ω)|2 , (2.19)

3The subscript aux. is dropped in G0(ω) in favor of the readability of equations.
4Besides these equations, in Ref. [1] also a non-optimal set of expressions with twice the matrix size was

stated in the derivation. Since NB + 1 is the size of the single-particle Hilbert space it is very unlikely
to find a more compact expression in the general case.
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where ff denotes the matrix element of G
R/K
0 (ω) on the impurity site with index f . As

is generally the case for connected systems without bound states and a unique stationary
state, the initial occupation of the decoupled impurity gK0 (ω) drops out of the equations,
see Eq. (1.17).

Once the exact equations for ∆aux(ω) are stated, we can specify the mapping condition
∆aux(ω) ≈ ∆ph(ω), Eq. (2.3), in more detail. We choose a certain parametrization which

yields a unique set of matrices E, Γ(1) and Γ(2) with the proper symmetries for every
parameter vector x. Additionally, we quantify the mean squared error between ∆aux(ω)
and ∆ph(ω) in terms of a cost function

C(x)2 =
∑

α∈{R,K}

ωc∫

−ωc

={∆α
ph(ω)−∆α

aux(ω;x)}2W (ω)dω , (2.20)

which depends on the parameter vector of size dim(x). The form is well-suited to apply
multi-dimensional minimization techniques, see below. The absolute minimum of C(x)
with respect to x then specifies the optimal set of bath parameters E, Γ(1) and Γ(2). In
Eq. (2.20), W (ω) denotes an optional weighting function and ωc the cut-off frequency. In
the form stated here we only compute the mean squared difference for the imaginary part
of the hybridization functions on a finite ω-domain. This is sufficient provided ∆ph(ω) and
∆aux(ω) obey the same asymptotic limit, which we ensure. In this case the real part is
always fixed by the Kramers-Kronig relations. In Eq. (2.20), ∆ph(ω) is seen as a fixed input
reference that we want to approximate as precisely as possible by ∆aux(ω). Important is
the fact that both, the retarded and the Keldysh component must be specified and fitted.5

The temperature enters through the Keldysh component of ∆ph(ω). In principle, one can
formally consider T = 0, however, the continuous set of functions defined by Eqs. (2.18)
and (2.19) allows one to resolve only a certain energy scale Teff for a finite number NB.
Therefore, it is useful to choose a nonzero T in ∆ph(ω) for the purpose of dealing with a
well-defined temperature and to avoid Gibbs oscillations in high-accuracy calculations, cf.
Ref. [2], Sec. 3.2.

Besides the requirement ∆aux(ω) ≈ ∆ph(ω) large freedom exists in choosing the par-
ticular geometry for IMaux. For the ED-solver we consider the most general case with a
sparse matrix E and dense matrices Γ(1) and Γ(2) and thus O(N2

B) fit parameters, see also
App. A.2. For the MPS-solver introduced in Sec. 2.2.2.2 below, it is however convenient to
restrict all three matrices to a sparse form, so that we arrive at dim(x) ∝ O(NB).

Multi-dimensional minimization: As stated above, a single evaluation of Eqs. (2.18) and
(2.19) is rather cheap since it involves only one matrix inversion and matrix multiplications
with size NB + 1. Thus, the increase in computation time with NB is rather moderate.
However, the multi-dimensional optimization problem itself is demanding and strongly
depends on the particular behavior of C(x) when varying x. In the worst case scenario,
when C(x) is a rough potential landscape with many local minima and short-scaled varia-
tions, one could imagine that it becomes necessary to nearly explore the whole parameter
space. However, x is a continuous vector and even when assuming a fixed number of
discrete values for each component in x, one faces a number of points in parameter space

5In contrast to the Hermitian case the filling in IMaux is not specified by some chemical potential and
temperature, but by the appropriate combination of Γ(1) and Γ(2).
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2. Auxiliary master equation approach

that grows exponentially with dim(x). In the other extreme, for the case that C(x) is
quadratic in x it is well-known that a conjugate gradient scheme leads to the exact mini-
mum in dim(x) iterations. What we found in practice, when performing the minimization
within AMEA, is, that we have an intermediate situation which exhibits local minima,
but gradient-based methods still work fine especially for smaller values of NB. In the first
work on the ED-solver, Ref. [1] or Sec. 3.1, we employed a quasi-Newton line search with
many random starting points. This was particularly useful for NB < 6 but the necessary
number of starting points increased rapidly with NB. Therefore, in the course of the work
on the MPS-solver, Ref. [2] or Sec. 3.2, more efficient solution strategies were sought for. In
the end we implemented a parallel tempering (PT) approach with feedback optimization,
which is a Monte Carlo scheme that is able to overcome local minima. It is described in
the following in more detail. By this, the minimization problem for the ED-solver with
NB = 6 and for the MPS-solver with up to NB = 16 can be solved in reasonable time.6

In future, in order to perform the mapping for even larger systems efficiently it may be
of interest to improve further on that, for example by combining the parallel tempering
approach with gradient based methods.

Markov chain Monte Carlo (MCMC) techniques were originally developed to calcu-
late thermodynamic properties of classical systems which exhibit a very large phase space
where simple sampling strategies fail. For our purposes here, we are interested in minimiz-
ing the cost function C(x) as defined in Eq. (2.20) with respect to the parameter vector
x. For such high-dimensional minimization problems one can adapt MCMC schemes
by viewing C(x) as an artificial energy and by introducing an artificial inverse temper-
ature β. In the so-called simulated annealing one samples from the Boltzmann distri-
bution p(x) = 1/Z exp (−C(x)β) at a certain β, and then successively cools down the
artificial temperature. Motivated by the behavior of true physical systems one expects
to end up in the low-energy state when letting the system equilibrate and when cool-
ing sufficiently slowly. Analogous to thermodynamics one can calculate the specific heat
CH = β2 〈∆C(x)2〉 and by this locate regions with large changes, i.e. phase transitions,
where a slow cooling is critical. However, in practice it may be time consuming to realize
the equilibration and sufficiently slow cooling, and for tests within AMEA we often ended
up in local minima. In order to obtain a robust algorithm, which can also start from
previous solutions as needed for instance within DMFT, we sought for a method which is
able to efficiently overcome local minima and still systematically targets the low-energy
states. For this a multicanonical and a PT algorithm were tested, whereby we favored the
latter in the end. In the following we briefly outline the PT scheme used within AMEA,
and refer to Ref. [57–61] for a thorough introduction to MCMC, simulated annealing,
multicanonical sampling and PT.

As just stated, in a MCMC scheme one typically samples from the Boltzmann distri-
bution p(x) = 1/Z exp (−C(x)β) at some chosen inverse temperature β. This is done
through an iteratively created chain of states {xl} and one circumvents the explicit cal-
culation of the partition function Z. An effective and well-known scheme for this is the
Metropolis-Hastings algorithm [57, 58]. One starts out with some state xl and proposes
a new configuration xk, whereby it has to be ensured that every state of the system
can be reached in order to achieve ergodicity. The proposed state xk is accepted with

6In both geometries this amounts to dim(x) ≈ 30− 60, depending on whether particle-hole symmetry is
applicable or not. And of course, a large number of parameters enables a good fit in principle, but any
restriction in dim(x) which leaves the results completely or essentially invariant is highly desirable.
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probability7 [57, 58]

pl,kpacc. = min

{
1,
p(xk)

p(xl)

}
= min

{
1, e−(C(xk)−C(xl))β

}
. (2.21)

If the proposed configuration is accepted, then the next element xl+1 in the chain is xk,
otherwise xl again. From Eq. (2.21) it is obvious that pl,kpacc. = 1 when p(xk) > p(xl),
so that an importance sampling towards regions where p(x) is large is achieved. One
can show that the algorithm fulfills detailed balance and draws a set of samples {xl}
from the desired distribution p(x). However, stemming from the iterative construction,
correlations in the chain are present which require a careful analysis for the purpose of
statistical physics [57, 58]. For optimization problems, on the other hand, the situation
is much simpler and one is just interested in the element in {xl} which minimizes C(x).
Since a proposed step with C(xk) < C(xl) is always accepted the algorithm targets minima,
however, also uphill moves in configuration space are allowed with a probability depending
exponentially on the barrier height ∆Ck,l = C(xk)−C(xl) and β. Effectively, uphill moves
take only place when ∆Ck,lβ . O(1). For low values of β large moves in configuration
space with large ∆Ck,l are likely to be accepted, whereas for high β the distribution p(x) is
peaked at minima in C(x), so that especially those regions are sampled. For the latter case
configurations in the chain {xl} are generally more correlated and once a xl corresponds
to a local minimum the algorithm may reside there for very long times.

One has great freedom in defining a proposal distribution from which the new state xk
is drawn given the current configuration xl.

8 Common choices are for instance a Gaussian
or a Lorentzian distribution with the vector difference xk − xl as argument. We favored
the former and updated each component i with a probability according to [57]

qil,k =
1√

2πσi
e
− (xk−xl)

2
i

2σ2
i . (2.22)

Hereby, a different step size σi for each component is expedient since the potential land-
scape C(x) around xl is typically highly anisotropic. Ideally, one should make use of
the covariance matrix Σl of C(xl) and consider as argument for the Gaussian instead
(xk − xl)TΣ−1

l (xk − xl) [57]. However, we encountered the problem that the estimation
of the covariance matrix at run time was strongly affected by noise and thus not feasible.
The adjustment of the step sizes σi, on the contrary, can be done after a short number of
updates by demanding that a value of pl,kpacc. ≈ 0.5 is reached on average when modifying
the component i. For this we implemented a check at every single proposal, that increases
σi → 1.1σi when pl,kpacc. > 0.6 and decreases σi → 0.9σi when pl,kpacc. < 0.4. Analogous
to the treatment of spin systems, we define one sweep as updating each of the dim(x)
components i once.9

In a PT algorithm one considers instead of sampling at one certain temperature a set
of different temperatures β−1

m and corresponding replicas xml , each of which is evolved
through a Markov chain. The highest βm thereby target local minima whereas low βm

7In principle one has to take the proposal probabilities qk,l and ql,k into account. However, since we only
consider the case qk,l = ql,k here, the terms drop out of the equations and are neglected everywhere.

8Note that for minimization purposes only one has in general the flexibility in designing the algorithm
and also the Boltzmann distribution or detailed balance are not compulsory.

9Again, different choices are possible. For instance in cases where dim(x) is very large random updates
of the most relevant components could be more appropriate.
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2. Auxiliary master equation approach

values allow for large moves in configuration space. The key idea of the PT approach is to
let the individual replicas evolve dynamically in the set of βm. By this one achieves that a
replica at high βm values systematically targets local minima but can overcome potential
barriers again when its inverse temperature is changed to lower values. As a result, the
time scales are drastically reduced and an efficient sampling of the low-energy states is
achieved. For the purpose of calculating thermodynamic properties one usually chooses a
Metropolis-Hastings probability to swap two replicas with adjacent temperatures [60,61]

pm,m+1
swap,l = min

{
1,
pm(xm+1

l )pm+1(xml )

pm+1(xm+1
l )pm(xml )

}
= min

{
1, e(βm+1−βm)(C(xm+1

l )−C(xml ))
}
, (2.23)

with the Boltzmann distribution for each βm given by pm(x) = 1/Zm exp (−C(x)βm).
Such swap moves are conveniently proposed after a certain number of sweeps, which
satisfies the sufficient condition of balance for thermodynamics [61]. In practice we chose 10
sweeps before swapping replicas. For the exchange to effectively take place the underlying
requirement is that the adjacent βm and βm+1 values are close enough to each other, so
that the two energy distributions Ω[C(x)]pm(x) and Ω[C(x)]pm+1(x) overlap, with Ω[C]
the density of states. This means that a replica at one temperature must represent a
likely configuration for the neighboring temperature [61, 62]. In order to achieve this, a
crucial point in the PT algorithm is to adjust the distribution of the inverse temperatures
properly to the considered situation. Various criteria for this have been devised, see e.g.
Ref. [61]. A common choice is to demand that the swapping probability Eq. (2.23) becomes
constant as a function of temperature [63, 64], and in Ref. [65] a feedback strategy was
presented which optimizes the round trip times of replicas. We tested the latter within
AMEA but favored the simpler former criterion in the end, since it allows for a rapid
feedback and quick adjustment to large changes in C(xml ). In the simple situation of a
constant specific heat CH with respect to energy C for instance, an optimal strategy is
known since a geometric progression βm/βm+1 = const. of temperatures yields a constant
swapping probability [61, 62]. For interesting cases in practice this is rarely fulfilled, but
within AMEA it served as a good starting point. The set of inverse temperatures is then
optimized by averaging pm,m+1

swap,l over a couple of swappings to obtain the mean probability

p̄m,m+1
swap and adjusting the βm thereafter. For this we chose a fixed lowest and highest βm

value and changed the spacings in between according to

∆β′m = c
∆βm

log
(
p̄m,m+1

swap

) , (2.24)

with ∆βm = βm+1−βm and c adjusted properly so that max(β′m)−min(β′m) = max(βm)−
min(βm). In the works by Ref. [63,64] it was shown that a constant swapping probability
of 20%−23% seems to be optimal. We determined the highest and lowest βm values by the
changes in C(x) we want to resolve or allow for, and the number of inverse temperatures
βm was then set accordingly in order to roughly obtain p̄m,m+1

swap ≈ 0.25. Fixing the lowest
and highest βm is again only one possible but for our purposes convenient choice.

However, despite of the feedback optimization of temperatures as just described above,
we often encountered in practice the unwanted behavior that the set of parallel replicas
effectively decoupled into several clusters. To understand this let us imagine the situation
that the replica with T0 = min(β−1

m ) just dropped into a local minimum C0 well below the
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other replicas. For convenience we denote the temperature of the next higher inverse βm
by T1, and by C1 its mean value at the moment. Since C0 just changed drastically it does
not overlap with the momentary distribution of C(x) at T1, so that C1 − C0 in Eq. (2.23)
is too large and swapping therefore effectively disabled. The temperature optimization
Eq. (2.24) attempts to cure this by shifting the two adjacent temperatures together, in
this case T1 → T0 since T0 = const. For ∆βm ≈ 0 swapping sets in again even though
C1 − C0 is large.10 Such a swapping, however, is inefficient since T1 and T0 are essentially
the same and once the replica at C0 is swapped to T1 it cannot propagate further to the
next higher temperature since the difference in C(x) is large again. Therefore, an undesired
oscillating behavior occurs. In order to suppress such an effective decoupling we found it
advantageous to introduce the following simple modification to Eq. (2.23)

pm,m+1
swap,l = max

{
pm,m+1

swap,l , p
th.
swap

}
, (2.25)

with a certain threshold probability pth.
swap. By this one avoids that temperatures are shifted

unnecessarily close to each other and regains the desired effect in parallel tempering that
the best minima at high βm can be swapped to lower βm and by this overcome local
potential barriers. One should note that the modification violates balance conditions and
therefore the applicability in statistical physics. But, it is perfectly valid for the purpose
of minimization problems and we could obtain a speed up of the computations in practice.
We found it suitable to choose the threshold probability below half of the mean acceptance
probability p̄swap, e.g. pth.

swap = 0.1 or 0.05.

2.2.2. Manybody solution of the auxiliary Lindblad problem

Once the bath parameters E, Γ(1) and Γ(2) for the Lindblad equation are set the main
objective is to solve the manybody problem. Different strategies exist for interacting
Lindblad equations. These can be divided into two major categories: On the one hand,
quantum jump or stochastic wave function approaches have been devised [66–69], which
sample ρ(t) by stochastically time evolving a set of pure states, and on the other hand,
the Lindblad equation for the density operator can be solved directly. The former was not
tested in the course of this thesis and one still needs to clarify how accurately correlation
functions can be calculated. Instead, we follow here the second path and aim for calculating
the full manybody density operator ρ(t) directly. This has the appealing feature to be
formally very similar to what is known for Hamiltonian systems, only that appropriate
methods for non-Hermitian problems must be applied.

In particular, we employ a so-called super-fermionic representation which maps the
density operator ρ(t) onto a state vector |ρ(t)〉, and the superoperator L onto an ordinary
non-Hermitian operator L which acts on states instead of operators [70]. By this Eq. (2.4)
is mapped onto

d

dt
|ρ(t)〉 = L |ρ(t)〉 . (2.26)

In detail this can be done by introducing an augmented fermion Fock space with twice as
many sites. The additional sites are labeled by a “tilde” and following the derivation in

10Note that in most cases T1 → T0 does not yield C1 → C0. C1 approaches only the next local minimum.
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Ref. [70] we introduce the so-called left vacuum11

|I〉 =
∑

{niσ}
(−i)N({niσ}) |{niσ}〉 ⊗ |{̃n̄iσ}〉 . (2.27)

Here, |{niσ}〉 denotes a configuration state of the original system and |{̃n̄iσ}〉 specifies the
corresponding one in the tilde system with inverted occupation numbers n̄iσ = 1 − niσ.
The summation runs over all possible manybody basis states in the original system. A
proper phase factor depending on the total particle number N ({niσ}) =

∑
iσ niσ of state

|{niσ}〉 is introduced, so that the following “tilde conjugation rules” hold true [2, 70]

cjσ |I〉 = −ic̃jσ |I〉 ,
c†jσ |I〉 = −ic̃†jσ |I〉 , (2.28)

with c†jσ/cjσ and c̃†jσ/c̃jσ fermionic operators for original and tilde sites.12 With the left
vacuum one defines the following state vector for the density operator [70]

|ρ(t)〉 = ρ(t) |I〉 , (2.29)

so that normalization and expectation values for system operators translate into

〈I|ρ(t)〉 = 1 , 〈A(t)〉 = 〈I|A |ρ(t)〉 . (2.30)

To transform the Lindblad equation (2.4), with Eqs. (2.6) and (2.8), one needs to evaluate
(Lρ) |I〉 → L |ρ(t)〉 with the “tilde conjugation rules” Eq. (2.28) and the commuting prop-

erty [c̃jσ, ρ(t)] = 0 and [c̃†jσ, ρ(t)] = 0. For the purpose of writing the result in compact
form we introduce the vector notation

c†σ =
(
c†0σ, . . . , c

†
NBσ

, c̃†0σ, . . . , c̃
†
NBσ

)
. (2.31)

With this we arrive at the following Lindblad operator [2]

iL =
∑

σ

c†σ

(
E + iΩ 2Γ(2)

−2Γ(1) E − iΩ

)
cσ − 2 Tr (E + iΛ)

+ U

(
nf↑nf↓ − ñf↑ñf↓ +

∑

σ

ñfσ + 1

)
, (2.32)

where Ω = Γ(2) − Γ(1) and Λ = Γ(1) + Γ(2). In this form it is apparent that L obeys a
SU(2) spin symmetry. However, in the implemented programs we accounted only for the
simpler U(1) particle conservation per spin:

[
L,Nσ + Ñσ

]
= 0 , with Nσ =

NB∑

j=0

njσ , Ñσ =

NB∑

j=0

ñjσ . (2.33)

11The particular definition differs from Ref. [70] since we introduced a particle-hole transformation in the
augmented space, which avoids anomalous terms in the transformed Lindblad operator, Eq. (2.32).

12One should note that the particular phase factor in Eq. (2.27), which is needed for Eq. (2.28) to hold true,
is dependent on the chosen ordering of fermionic operators in the basis states. The factor (−i)N({niσ}),
for instance, is consistent with an ordering of the form . . . c†j c̃

†
jc
†
j+1c̃

†
j+1 . . . per spin component.
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With the “tilde conjugation rules” Eq. (2.28) we find that

〈I| (Nσ + Ñσ) |I〉 = NB + 1 , (2.34)

and the designation left vacuum is motivated by Eq. (2.28) and the relation [70]

〈I|L = 0 . (2.35)

Thus, 〈I| is a left-sided eigenstate of the Lindblad operator. Its right-sided counterpart is
just the steady state |ρ∞〉 that we are interested in

L |ρ∞〉 = 0 , or |ρ∞〉 = lim
t→∞

eLt |ρ(0)〉 . (2.36)

From Eqs. (2.30) and (2.34) we know that the eigenstates |I〉 and |ρ∞〉 must be located
in the half-filled, spin-symmetric sector. For the time-dependent case |ρ(t)〉 one should
note that if the initial state |ρ(0)〉 has well-defined particle numbers Nσ + Ñσ they are
conserved during the time evolution. If this is not the case for |ρ(0)〉, then the components
with Nσ + Ñσ 6= NB + 1 are exponentially damped due to the contracting property of
exp(Lt).13 Finally, Eq. (2.16) for correlation functions is translated into 14

iGBA(t2, t1) = 〈I|BeL(t2−t1)A |ρ(t1)〉 , t2 ≥ t1 . (2.37)

With this and Eq. (1.10) we find the following expressions for the lesser and greater Green’s
functions in the steady state |ρ∞〉 on the impurity site

G<σ (−t) = i 〈I| c†fσeLtcfσ |ρ∞〉 , t ≥ 0 ,

G>σ (t) = −i 〈I| cfσeLtc
†
fσ |ρ∞〉 , t ≥ 0 . (2.38)

The expressions above can be computed directly through a time evolution in IMaux and
the missing information in the other time direction is obtained by Eq. (2.17), i.e. by
G<σ (t) = −G<σ (−t)† and G>σ (−t) = −G>σ (t)†. The retarded and Keldysh Green’s functions
are given by, see Eq. (1.10),

GRσ (t) = Θ(t)
(
G>σ (t) +G<σ (−t)†

)
,

GKσ (t) = G>σ (t) +G<σ (t) . (2.39)

The corresponding expressions in frequency space are

G<σ (ω) = 〈I| c†fσ
1

ω + iL
cfσ |ρ∞〉 − h.c. ,

G>σ (ω) = 〈I| cfσ
1

ω − iL c
†
fσ |ρ∞〉 − h.c. , (2.40)

and for the retarded and Keldysh functions we find

GRσ (ω) = 〈I| cfσ
1

ω − iL c
†
fσ |ρ∞〉+

(
〈I| c†fσ

1

ω + iL
cfσ |ρ∞〉

)∗
,

GKσ (ω) = 〈I| cfσ
1

ω − iL c
†
fσ |ρ∞〉+ 〈I| c†fσ

1

ω + iL
cfσ |ρ∞〉 − h.c. . (2.41)

13To reach |ρ∞〉 through a time evolution a convenient starting point is for instance |I〉.
14One should stress that in the super-fermionic representation the Lindblad operator L for the time

evolution of |ρ(t1)〉 as well as for A |ρ(t1)〉 is the same. The additional sign factors in front of the jump
operator terms mentioned above cancel again.
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2.2.2.1. Exact diagonalization (ED)

The exact diagonalization (ED) approach enables one to solve the equations numerically
exactly and for arbitrary parameters, i.e. for any bath couplings and values for the inter-
action strength U . But, its disadvantage is that the memory and computation demands
increase exponentially with system size, since one has to set up the full manybody basis
with Hilbert space size NH ∼ exp(NB). For rather small systems, in our case NB . 3 and
NH = O(103), one can employ a so-called full diagonalization and calculate all eigenvalues
and excited states. Since this full information is generally not needed it is much more
efficient to employ Krylov space methods for sparse systems which extend the range in
our case up to NB = 6 or NH ≈ 107. Due to the fact that we need to solve for the density
operator instead of a pure state, the complexity of the manybody solution for a NB + 1
sites IMaux corresponds to the one of a 2(NB + 1) sites Hubbard problem. Therefore, the
accessible system sizes within ED are NB = {2, 4, 6} bath sites and NB = 8 is already
prohibitive with standard computing resources.15 Of course it is important to make use of
symmetries of the underlying operator, such as Eq. (2.33). Since ED is one of the standard
methods for interacting quantum manybody systems, we refer to Ref. [71–73] for details
on how to treat large-scale eigenvalue problems, and here we only list the most important
steps and the particular modifications that are needed to solve the non-Hermitian Lind-
blad problem Eqs. (2.26) and (2.32). Before considering how to calculate the steady state
or Green’s functions let us briefly outline two important Krylov space methods for sparse,
non-Hermitian matrices.

Arnoldi scheme: The Arnoldi scheme is a general method to build up a right-sided
Krylov space basis for an arbitrary non-Hermitian matrix L, of size NH × NH and
for a given initial vector r0 of size NH × 1 [71–73]. The Krylov subspace KNK =
span

{
r0,Lr0, . . . ,L

NK−1r0

}
is an orthonormal set of NK vectors, based on the pow-

ers of L applied to r0. In general, a Krylov space method is superior to an ordinary
power method Lnr0 as it makes optimal use of the computed matrix-vector products.
The Arnoldi scheme may be used to estimate eigenvalues of L or to evaluate expressions
of the form f(L)r0 with f(x) an analytic function. KNK is calculated in an iterative
fashion by computing each time a matrix-vector product followed by a Gram-Schmidt or
QR orthogonalization process:

r′n = Lrn−1 −
n−1∑

j=0

rj

(
r†jLrn−1

)
,

rn =
r′n
‖r′n‖

. (2.42)

In the case ‖r′µ+1‖ = 0 an invariant subspace was found so that Kn = Kµ ∀n ≥ µ, and the
degree of the minimal polynomial of L with respect to r0 is µ [71, 72]. With the Krylov
matrix QNK = [r0, r1, . . . , rNK−1] of size NH ×NK we can compute the Krylov subspace
representation of L

HNK = Q†NKLQNK , (2.43)

15In principle on could also consider odd values for NB , however, practical tests have shown that the extra
bath site does not give significant advantages, see also Ref. [1].
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which is of size NK ×NK and of upper Hessenberg form. The latter property follows from
the recurrence relation Eq. (2.42), and note that the matrix elements of HNK are directly

obtained during the iteration from [HNK ]j,n−1 = r†jLrn−1 and [HNK ]n,n−1 = ‖r′n‖.16

For the case that an invariant subspace is found the eigenvalues of HNK represent those
of L exactly and the corresponding eigenvectors are found from Eq. (2.42) or LQNK =
QNKHNK .

In practice, ‖r′n‖ = 0 is only obtained in rare cases17 and thus the eigenvalues of
HNK serve as an approximation to those of L. However, by virtue of its relation to the
power method, one finds for the Krylov space methods that especially extremal eigenvalues
converge very quickly and in general it suffices to consider NK � NH. If large values of
NK are needed it may be advisable to consider a restarted version of the algorithm, see
e.g. Ref. [71–73], since the computational effort for the orthogonalization in Eq. (2.42)
increases with NK . From the definitions above it follows that the Krylov matrix generally
fulfills the properties

Q†NKQNK = 1NK , QNKQ
†
NK
6= 1NH . (2.44)

In order to evaluate analytic functions of L such as f(L)r0 one can set to good approxi-
mation

f(L)r0 ≈ f(QNKHNKQ
†
NK

)r0

= QNKf(HNK )Q†NKr0 , (2.45)

when the Arnoldi iteration is initialized by r0. We then have (Q†NKr0)j = δ0,j and the

leading error term is given by O(‖LNKr0‖). As a result, the error decreases exponentially
when increasing NK and is thus well-controlled.

Two-sided Lanczos scheme: The algorithm is also called Bi-Lanczos scheme and is
the non-Hermitian analogue to the well-known Lanczos iteration [71, 73, 74]. It works in
a very similar manner, only that one explicitly constructs left- and right-sided Krylov
space vectors and orthogonalizes them against each other. Thus, we consider here a
general non-Hermitian matrix L of size NH × NH and two initial vectors l0 and r0 of
size NH × 1. From these we build up the two bi-orthogonal Krylov subspaces KlNK =

span
{
l†0, l

†
0L, . . . , l

†
0L

NK−1
}

and KrNK = span
{
r0,Lr0, . . . ,L

NK−1r0

}
. The iteration

16In the special case that L is Hermitian, the same must be true for HNK so that the upper Hessen-
berg form reduces to a tridiagonal one, and the Arnoldi scheme to the well-known Hermitian Lanczos
algorithm with its three-term recurrence.

17For instance, such a situation may occur when considering a noninteracting situation in the full many-
body basis, and hereby especially with the (two-sided) Lanczos algorithm.

27



2. Auxiliary master equation approach

works as follows

l′†n+1 = l†nL− enl†n − knl†n−1 ,

r′n+1 = Lrn − enrn − knrn−1 ,

en = l†nLrn ,

kn+1 = l†nLrn+1 = l†n+1Lrn

= (l′†n+1r
′
n+1)1/2 ,

l†n+1 = l′†n+1/kn+1 ,

rn+1 = r′n+1/kn+1 . (2.46)

Since only products between left- and right-sided vectors are involved some ambiguity
exists in how to define the prefactors, and the expressions stated above are thus only
one of the possible choices. It is evident that two matrix vector multiplications l†nL and
Lrn are needed in each iteration and as in the Hermitian case, a three-term recurrence
suffices to build up the bi-orthogonal basis set l†nrm = δn,m. As a result, the explicit
Gram-Schmidt orthogonalization against all previous vectors, as in the Arnoldi scheme, is
not needed here and the computational effort does not increase with the iteration number.
Similar to the condition above, the iteration must be stopped when the norm of the newest
Krylov space vector is (essentially) zero. However, since only products between left- and
right-sided vectors are considered several situations may occur. One speaks of a normal
termination when kn+1 = 0 together with ‖l′n+1‖ = 0 and/or ‖r′n+1‖ = 0, which means
that an invariant left KlNK and/or right Krylov subspace KrNK was found. A breakdown
occurs when kn+1 = 0 together with ‖l′n+1‖ 6= 0 and ‖r′n+1‖ 6= 0. So-called look-ahead
strategies exist in order to cure such cases and to continue the iteration [74–76]. However,
in actual calculations within AMEA we never encountered it so that we did not implement
look-ahead strategies.

With the left- and right sided Krylov matrices V −1
NK

= [l†0, l
†
1, . . . , l

†
NK−1] and V NK

=

[r0, r1, . . . , rNK−1], of size NK ×NH and NH ×NK , one obtains for the Krylov subspace
projection of L a tridiagonal form

TNK = V −1
NK
LV NK

. (2.47)

The diagonal components are given by en ∈ C and both off-diagonals by kn ∈ C, as defined
in Eq. (2.46). Similar to the Arnoldi scheme above the following relations hold true

V −1
NK
V NK

= 1NK , V NK
V −1
NK
6= 1NH , (2.48)

and expressions of the form l†0f(L)r0 for analytic functions f(x) can be efficiently calcu-
lated in the Krylov subspace by [77]

l†0f(L)r0 ≈ l†0f(V NK
TNKV

−1
NK

)r0

= l†0V NK
f(TNK )V −1

NK
r0

= [f(TNK )]0,0 . (2.49)

In the last line we made again use of the fact that the Bi-Lanczos iteration is initialized
with l†0 and r0. As before, an exponential convergence is obtained and one even finds that

the leading order error is proportional to O(l†0L
2NK−1r0), see also Ref. [77–80].
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Steady state and correlation functions: The Arnoldi and Bi-Lanczos scheme described
above enable us to efficiently solve for the steady state as well as for Green’s functions. Let
us begin with the former. Various strategies exist to calculate the steady state, for instance
by searching for the eigenstate with eigenvalue zero L |ρ∞〉 = 0. As noted above, Krylov
space iterations generally converge particularly well for extremal eigenvalues. However,
since the eigenvalues λν of L fulfill <{λν} ≤ 0 and ={λν} ∈ R, it is thus not well-controlled
to get the steady state in a direct fashion. One approach for instance is to formulate
a variational principle which minimizes ‖L |ρ∞〉‖. In the 2−norm this corresponds to
searching for the smallest eigenvalue of the Hermitian operator L†L. It was tested in
practice, however, we found that such a strategy is very inefficient since one ends up with
the squared singular value spectrum of L and thus with a very unfavorable condition
number. As a result, a huge number of (Hermitian) Lanczos iterations is needed. A
systematic approach to target eigenvectors to certain eigenvalues is given by the shift-
and-invert procedure [73]. For the steady state one hereby introduces a small shift s > 0
and searches for the largest eigenvalue of

(L− s1)−1 |ρ∞〉 = λ′max |ρ∞〉 , (2.50)

with an Arnoldi scheme. The inverse of the matrix is not needed since one can replace
operations of the form r̃n+1 = (L− s1)−1 rn by (L− s1) r̃n+1 = rn. An efficient solver
for non-Hermitian sparse systems of equations is for instance the stabilized biconjugate
gradient method, ideally with an incomplete LU decomposition as preconditioner. Since
such a scheme is based on Krylov space methods as well, one ends up with an inner and an
outer iteration. The convergence properties of the two iterations are affected and controlled
by the shift s. Small values of s target the eigenvalue of the steady state better so that the
outer iteration converges faster, but, a too small s results in an ill-conditioned problem for
the solution of the linear system, so that the inner iteration becomes problematic. One
thus has to search for the optimal point. Since we found that the solution of the linear
system is numerically demanding, even with a memory consuming iLU decomposition, this
strategy was not favored in the end.

Eventually, we concluded that a plain time evolution is the most robust and even most
efficient way to obtain the steady state within AMEA. This is especially true when em-
ploying time evolution algorithms based on Krylov space methods. Furthermore, the same
scheme can also be applied to calculate Green’s functions in the time domain. We are thus
interested in a general time evolution of the form

|ρ(t)〉 = eLt |ρ(0)〉 ,
r(t) = eLtr0 , (2.51)

where the second line corresponds to the resulting matrix expression in the manybody
basis. In principle, both the Bi-Lanczos and the Arnoldi scheme are applicable but due to
the fact that only right-sided vectors are needed it is more natural and clearer to use the
latter. The expression is already in the form as needed in Eq. (2.45) so that we obtain

r(t) = QNKe
HNK

tQ†NKr0 , (2.52)

where HNK denotes again the Krylov space projection of L and the iteration is initialized

with r0, i.e. QNK = [r0, r1, . . . , rNK−1]. From this we arrive with c(0) = Q†NKr0 at the
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following equation [81]

r(t) =

NK−1∑

k=0

ck(t)rk ,

c(t) = eHNK
tc(0) , (2.53)

and as before ck(0) = δ0,k. We thus see that the time evolution can be represented as
a sum of Krylov space vectors with complex weights. Generally, the absolute value of
ck(t) decays rapidly as a function of k and an intuitive criterion for convergence is thus to
demand that the last coefficient is negligible [81,82]

cNK−1(t)

‖c(t)‖ < ε , (2.54)

where ε determines the overall accuracy. Note that the denominator in Eq. (2.54) is
important in the case of non-Hermitian time evolutions. Usually, one is interested in time
evolving a state over a sequence of discrete time intervals. For this one simply calculates
in Eq. (2.53) a sufficient number of Krylov space vectors NK to obtain r(t) in the desired
accuracy, and then restarts the Krylov space iteration for the next time step with r(t).
The value for NK strongly depends on the size of the time step and also whether one deals
with strongly excited states. In either limits, when t = 0 or when r0 is an eigenstate of L
it is obvious that NK = 1 suffices. The latter is particularly useful when searching for the
stationary state |ρ∞〉. We found it efficient to fix a value of NK ≈ 20 and to take for each
time step the longest possible t which still fulfills Eq. (2.54). By this, the time steps are
initially rather short but become longer when getting closer to the steady state, which in
turn accelerates convergence.

In order to calculate correlation functions directly in the frequency domain, as defined
in Eqs. (2.40) and (2.41), we employ the two-sided Lanczos scheme. When written in the
manybody basis we need to solve for expressions of the form

G(ω) = l†0
1

ω − iLr0 , (2.55)

where we assume that the states have been normalized before l†0r0 = 1. This is of the

form as stated in Eq. (2.49), so that we build up with l†0 and r0 the bi-orthogonal Krylov
subspace, calculate the projection TNK of L into this subspace, and estimate the Green’s
function by

G(ω) =
[
(ω − iTNK )−1

]
0,0

. (2.56)

The matrix inversion in Krylov space is very cheap since NK ≈ 100−1000 typically suffices
for accurate results. As stated above, the scheme converges exponentially when increasing
NK . We found that this is even then the case when round-off errors are present, which
cause the Krylov space vectors to become linearly dependent at larger values of NK . The
only effect is that finite precision arithmetic slows down the rate of convergence. On the
contrary, in the usual Hermitian ground state Lanczos problems with round-off errors may
appear at high iteration numbers.
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2.2.2.2. Matrix product states (MPS)

Matrix product states (MPS) are an efficient representation of manybody states of one-
dimensional systems. In particular, ground states of 1D short-ranged Hamiltonians with
an excitation gap, where an area law applies, are very suitable for MPS [83–85]. But
the range has been greatly extended in recent years to the treatment of excited states,
finite temperature situations, correlation functions, time-dependent situations and higher
or quasi-higher (stripes, tubes, . . . ) dimensional systems [84–91]. Also within the density
matrix renormalization group (DMRG) [84] and NRG [16], matrix product states have
gained great significance and these algorithms are nowadays conveniently formulated in
the language of MPS. Moreover, the applicability to and the treatment of open quantum
systems with MPS techniques was investigated by various groups, see e.g. Ref. [92–99].
Since the important field of matrix product states and the related tensor network ap-
proaches [85,91] is a very active and vast area of research, a thorough introduction cannot
be given here and is beyond the scope of this thesis. Due to this we refer in this respect
mainly to literature and outline solely the algorithms which are of importance for AMEA.
For instance, the review article Ref. [84] gives a very good introduction to the field of MPS
and provides an overview over different techniques. In particular, for AMEA we make use
of the so-called time evolving block decimation (TEBD) [100, 101], which is an efficient
and directly parallelizable time evolution technique for short-ranged Hamiltonians.

Geometry of IMaux: For MPS in general and especially for TEBD it is of advantage
to have a one-dimensional system with short-ranged couplings only. As mentioned above
in Sec. 2.2.1, besides the mapping criterion ∆aux(ω) ≈ ∆ph(ω), Eq. (2.3), we have great
freedom in choosing the particular geometry of IMaux. With the applicability of MPS-
methods in view we restrict IMaux in the following to a setup where all three matrices E,
Γ(1) and Γ(2) are sparse and of tridiagonal form. This results in a suboptimal mapping
for a given number of bath sites NB when compared with the ED-solver. But, since MPS
methods allow one to deal with much larger system sizes in the manybody solution, the
overall accuracy is considerably better in the end.

A sketch for the chosen IMaux geometry in the super-fermionic formulation is depicted
in Fig. 2.2. The couplings between sites correspond hereby to a graphical representation
of Eq. (2.32). We display sites for the augmented fermion Fock space below sites of the
original system. If one restricts to nearest neighbor terms inE, Γ(1) and Γ(2) only, a simple
picture of a ladder of fermionic sites is obtained, and we choose the impurity to be situated
in the center. Sites on the upper chain are coupled by the terms E + i(Γ(2) − Γ(1)),
augmented sites on the lower chain by E − i(Γ(2) − Γ(1)), and a directional hopping from
the lower to the upper chain is given by Γ(2) and in the opposite direction by Γ(1). In
order to minimize entanglement and thus for an optimal applicability of MPS, we found
it convenient to further restrict the geometry of IMaux to one, in which Γ(2) is nonzero
only for one side of the ladder (left side here) and Γ(1) on the other side.18 When labeling

the impurity site with f this means that Γ
(2)
ij = 0 for i ≥ f or j ≥ f , and that Γ

(1)
ij = 0

for i ≤ f or j ≤ f . By this one arrives at a setup in which the sites of the original
system on the left are filled and sites on the right are empty when decoupled from the
impurity.19 We thus refer to this geometry for IMaux as filled/empty. Note that the

18For a discussion on this see below at the end of this section and also Ref. [2], Sec. 3.2.
19Note that the hybridization function is just defined through such a cavity construction.
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2. Auxiliary master equation approach

Figure 2.2.: Graphic illustration of the auxiliary impurity system as used within MPS. The im-
purity is at site f and coupled to a filled/empty chain on the left/right. In the
super-fermionic representation and with nearest neighbor couplings only, Eq. (2.32)
corresponds to a ladder geometry. At the bottom a sketch of the time evolution
within the TEBD scheme is shown, whereby the two-site gates act on original and on
“tilde” sites. Figure from Ref. [2], Sec. 3.2.

situation with respect to left/right is reversed when looking at sites in the augmented
system. For the coupled system, due to the directional hoppings produced by Γ(1) and
Γ(2), this means that a circular current is driven through IMaux. Interestingly, we find
in practice that the mapping procedure is affected by this second restriction only in a
minor and nearly negligible way, so that it seems that the filled/empty-geometry is even a
natural representation for a single impurity IMaux with a number of bath parameters that
scales linearly in NB. For more details on this see also App. A.2.

MPS representation and entanglement: For the ladder geometry depicted in Fig. 2.2
it is natural to combine two sites into a single vertical MPS-“site”. In this way we end
up with a linear “chain” with nearest neighbor terms only, even if we use tridiagonal Γ-
matrices as already assumed above. The negative aspect is that by this grouping of sites
one obtains for a single MPS-site a local Hilbert space size of d = 16. When denoting
each local basis state by |si〉, with si = {1, 2, . . . , 16}, we can write the manybody state of
IMaux as follows

|ρ〉 =
∑

{si}
c{si} |{si}〉 =

∑

{si}
c{si}

NB⊗

i=0

|si〉 . (2.57)

The summation over {si} denotes hereby all dNB+1 possibilities for the manybody basis
states of the system, and c{si} labels the corresponding coefficients of |ρ〉 in this basis.
Such a generic manybody state can always be rewritten in terms of a matrix product state
of the form

|ρ〉 =
∑

{si}
As0

0 A
s1
1 A

s2
2 . . .A

sNB
NB
|{si}〉 =

NB⊗

i=0

(
d∑

si=1

Asi
i |si〉

)
, (2.58)

whereby As0
0 corresponds to a row and A

sNB
NB

to a column vector, and the matrices in
between are rectangular. This is exactly true for any state, no matter how strongly
entangled it is, only that the needed matrix dimension χmax = dim(A

sf
f ) = dNB/2 grows

exponentially with system size. In the limit that all of the matrices are scalars with matrix
dimension 1 one ends up with an ordinary tensor product state.
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A full derivation and many details on MPS are given for instance in Ref. [84,85]. Here,
we outline only briefly the steps on how to obtain Eq. (2.58), in order to sketch the basic
idea of the MPS truncation. Imagine that one writes the coefficients in Eq. (2.57) as a
vector of size 1×dNB+1 and reshapes it into a matrix Cs0,(s1,s2,...,sNB ) of size d×dNB when
taking s0 as first index. For this object one now performs a singular value decomposition
(SVD) [84]20

Cs0,(s1,s2,...,sNB ) =
d∑

a0=1

Us0,a0Sa0,a0

(
V †
)
a0,(s1,s2,...,sNB )

=
d∑

a0=1

Us0,a0C
′
a0,(s1,s2,...,sNB ) ,

(2.59)
which introduces an auxiliary index a0. When regrouping elements again and rewriting
the obtained coefficient matrix on the right as C ′(a0,s1),(s2,...,sNB ), thus of size d2 × dNB−1,

a subsequent SVD yields

C ′(a0,s1),(s2,...,sNB ) =
d2∑

a1=1

U(a0,s1),a1C
′′
a1,(s2,...,sNB ) . (2.60)

By repeating this scheme in a recursive manner one can decompose the coefficients into
local matrices U(ai−1,si),ai , each of which is reshaped into a set of matrices Asiai−1,ai by
taking its columns. In the end this tensor train just represents the original coefficients by

c{si} =
d∑

a0=1

d2∑

a1=1

· · ·
dNB/2∑

af−1=1

dNB/2∑

af=1

· · ·
d∑

aNB−1=1

As01,a0
As1a0,a1 . . . A

sNB
aNB−1,1

, (2.61)

when the impurity index is placed in the center at f = NB/2 with NB even. This relation
is exact and shows how to transform any set of coefficients c{si} into a product of matrices
where each physical index si enters only locally. On each bond (i, i+1), an auxiliary index
ai corresponding to the matrix index must be introduced. As follows from the successive
SVDs, the bond dimensions χi increase hereby exponentially as di+1 and the maximum is
reached in the center of the chain.

In fact, in the equations stated so far the dimensionality of the underlying system did not
enter explicitly and we simply introduced an ordering of the physical indices si. Now, the
essential point is that many states of one-dimensional systems, in particular ground states,
can be very accurately represented by a MPS with very small bond dimensions χi � dNB/2.
It is thus possible to identify components of minor importance and to truncate the state.
The singular values, i.e. the entries of the diagonal matrices λai = Sai,ai in the SVDs play
for this purpose a central role in the MPS formalism. In general they fulfill λai ≥ 0 and
for a normalized state 〈ρ|ρ〉 = 1 one has

χi∑

ai=1

λ2
ai = 1 . (2.62)

For convenience one assumes an ordering so that λ1 > λ2 > · · · > λχi . For 1D-systems it
is typically true that the spectrum of singular values λai decays rapidly. Therefore, when

20A SVD decomposes any rectangular matrix M of size a× b into M = USV †, with U of size a×min(a, b)
and U†U = 1, V † of size min(a, b) × b and V †V = 1, and the diagonal matrix S of size min(a, b) ×
min(a, b) and Si,i ≥ 0.
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introducing a smaller bond dimension χ < χi and discarding all λai with ai > χ one can
expect to introduce only a small error. This is quantified by the so-called truncated weight

wtr.
i =

χi∑

ai=χ+1

λ2
ai , (2.63)

and one finds that the error between the truncated state |ρ〉tr. and the original one |ρ〉 is
just determined by Eq. (2.63). Even more one can show that this prescription is optimal
in the 2-norm error when constructing out of |ρ〉 a state with reduced bond dimension.
When performing each of the SVDs outlined above with an upper bound χ for the bond
dimensions χi, and keeping track of the truncated weight according to Eq. (2.63), one finds
that the overall error is bound by [84]

‖|ρ〉tr. − |ρ〉‖22 ≤ 2

NB−1∑

i=0

wtr.
i . (2.64)

Another important quantity in this context is the bipartite entanglement entropy S
A|B
i ,

which is given by [84]

S
A|B
i = −

χi∑

ai=1

λ2
ai log2

(
λ2
ai

)
, (2.65)

and related to the Schmidt decomposition of quantum states. It is a measure for the en-
tanglement between the left and the right side of the system when performing a bipartition

at bond i. For a product state one has S
A|B
i = 0 since χi = 1, and in the extreme case

that all states are equally important λ2
ai = 1/χi one finds S

A|B
i = log2(χi), i.e. [84, 85]

χi ∝ eS
A|B
i . (2.66)

This simple expression is for usual quantum states not exactly true but allows one to
estimate the functional behavior of the necessary bond dimension χ with respect to the
entanglement entropy SA|B. Since ground states of gapped, short-ranged Hamiltonians
obey so-called area laws [83], which state that their entanglement entropy scales with the
area of a subsystem instead of its volume, i.e. SA|B ∼ LD−1, one obtains the estimate
χ ∼ const. for 1D and χ ∼ exp(L) for 2D. For 1D this means that a MPS representation
is valid for arbitrarily large systems in principle, but the exponential scaling in higher-
dimensional cases greatly limits the applicability of MPS to such systems [84]. In general,
the dependence of SA|B on the system size crucially determines whether MPS methods
are well-applicable or not. Within AMEA we obtained an intermediate situation since the
chosen IMaux is one-dimensional but an area law does not apply to the steady state |ρ∞〉.
We found that the bipartite entanglement in IMaux typically increased with NB, however,
in a sublinear way similar to a critical quantum system. This has the consequence that
larger values of χ are generally required for larger NB, and the bond dimension crucially
affects the computational effort which approximately scales as O(NBχ

3). However, the
increase of SA|B with NB is rather moderate so that sufficiently large systems with NB ≈
16 or more are accessible. As a result, a very good overall accuracy within AMEA is
possible and we found a significant improvement compared to the ED-solver.
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Measurements and TEBD: For expectation values in the super-fermionic formalism one
needs to normalize |ρ〉 against |I〉. A MPS representation of |I〉 is directly obtained when
rewriting Eq. (2.27) as a tensor product of local terms |I〉j

|I〉 =

NB⊗

j=0

|I〉j , (2.67)

which are given by21

|I〉j =
(
c̃†j↑ − i c

†
j↑

)(
c̃†j↓ − i c

†
j↓

)
|0〉

=
(
c̃†j↑c̃

†
j↓ + i c̃†j↓c

†
j↑ − 1 c†j↑c

†
j↓ − i c̃

†
j↑c
†
j↓

)
|0〉 . (2.68)

The phase factors {1, i,−1,−i} are chosen to fulfill the “tilde conjugation” rules Eq. (2.28)

with a basis ordering at site j defined by c̃†j↑c̃
†
j↓c
†
j↑c
†
j↓. Note that these factors just corre-

spond to the nonzero entries of the 1×1 MPS-matrices of state |I〉, which is thus a simple
product state. When denoting the MPS-matrices by v

sj
j we find for the overlap 〈I|ρ〉 the

following expression

〈I|ρ〉 =
∑

{si}
v
sNB †
NB

. . . vs1†1 vs0†0 As0
0 A

s1
1 . . .A

sNB
NB

. (2.69)

It is hereby important to first perform the summation over physical indices before multi-
plying the auxiliary matrix indices in order to avoid exponentially many terms [84]. The
action of local operations on a state is particularly simple in the MPS representation. For
instance, consider a local operator at site j of the form

Oj =
∑

s′j ,sj

O
s′j ,sj
j |s′j〉 〈sj | . (2.70)

When applied to the state of Eq. (2.58), |ρ′〉 = Oj |ρ〉, only the matrices at site j are
modified by22

A
s′j
j =

∑

sj

O
s′j ,sj
j A

sj
j . (2.71)

In analogous manner one applies a tensor product of local operators O1 ⊗O2 ⊗ · · · ⊗ONB
to a MPS. However, in more complicated operators such as Hamiltonians or the Lindblad
operator in AMEA, a large sum of different tensor products of local operators appears.
The MPS ideas can be directly extended to this case and one defines matrix product
operators (MPO) by

O =
∑

{s′i},{si}

O
s′0,s0
0 O

s′1,s1
1 . . .O

s′NB
,sNB

NB
|{s′i}〉 〈{si}| . (2.72)

For a tensor product operator O1 ⊗ O2 ⊗ · · · ⊗ ONB the individual matrices O
s′i,si
i would

be scalars and their values given by the on-site matrix elements 〈s′i|Oi |si 〉. We refer to

21A prefactor 1/2 may be included in |I〉j for normalization.
22Fermionic signs from neighboring sites are neglected here.
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2. Auxiliary master equation approach

Ref. [84] for more details on how to construct the MPO for a given Hamiltonian. In the
end, one finds that Eq. (2.72) is an effective representation for operators with short-ranged
couplings. The Lindblad operator Eqs. (2.26) and (2.32), for instance, can be written as
a MPO with bond dimension D = 10, whereby D refers to the size of the matrices

O
s′i,si
i .23 For the case that we start with a state |ρ〉 with bond dimension χ and apply

L to it, the resulting state |ρ〉′ = L |ρ〉 has an increased bond dimension of χ′ = Dχ. A
repeated application would thus result in an exponential growth of the bond dimension.
To circumvent this, one needs to truncate the state |ρ〉′ again and reduce χ′ → χ. Similar
to the steps outlined above, the MPS compression can be done for instance by SVDs, or
more optimally in a variational manner [84]. With this truncation scheme one can apply in
principle the same Krylov space methods as described above in Sec. 2.2.2.1 to time evolve
the state |ρ(t)〉 = exp(Lt) |ρ(0)〉. However, one has to bear in mind that the reduced state
space of MPS with bond dimension χ� dNB/2 does not represent a complete vector space.
Therefore, if the Krylov space vectors Ln |ρ〉 are not well-represented in this state space the
scheme cannot work. We tested a Krylov space time stepping with MPS for AMEA, but,
its performance was very limited and problems with too large truncation errors occurred.
For the same reason we discarded also the other Krylov space techniques, and instead of
calculating the Green’s functions in the frequency domain as in ED, we chose to perform
time evolutions only. An efficient and accurate scheme for time evolutions is TEBD, which
we found to perform well in AMEA. It is briefly presented in the following and for technical
details we refer again to Ref. [84, 100,101].

Eq. (2.58) stated above is not the only possible form and various MPS representations

exist. When
∑

si
Asi†
i A

si
i = 1, as in Eq. (2.58), a MPS state is called left-canonical. A

so-called right-canonical state with
∑

si
Bsi
i B

si†
i = 1 is constructed by performing the

SVDs outlined above from right to left instead of left to right [84]. In this way a MPS in
one given form can be transformed into another. A third important representation was
introduced in Ref. [100,101] and is called canonical

|ρ〉 =
∑

{si}
Γs00 Λ0Γ

s1
1 Λ1Γ

s2
2 Λ2 . . .ΛNB−1Γ

sNB
NB
|{si}〉 . (2.73)

Hereby, the matrices Λi are diagonal and contain the singular values for each bond. By
this, one can immediately perform a Schmidt decomposition of the system at any bond
µ with a correctly left-orthogonal side i ≤ µ and Asi

i = Λi−1Γ
si
i , a right-orthogonal side

j > µ and B
sj
j = Γ

sj
j Λj , and the corresponding Schmidt values at bond µ given by Λµ.

As a result, the entanglement at each bond is directly accessible by Λi and Eq. (2.65), and
much more importantly, the representation allows for effective local modifications of the
MPS states when applying few-site operators together with successive SVD truncations.

In particular, the time evolution operator exp(Lt) can be decomposed into individual
parts by the well-known Trotter-Suzuki decomposition [84, 102]. For this one divides the
time evolution into small intervals ∆t and splits L into two parts Le and Lo, acting on even
and odd bonds only. Since [Le, Lo] 6= 0, a Trotter error is encountered when decomposing
the time evolution into

exp(L∆t) = exp(Le∆t) exp(Lo∆t) +O(∆t2) . (2.74)

23This is true for the chosen geometry with nearest neighbor terms at most in E, Γ(1) and Γ(2).
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2.2. Implementation details

A time propagation with the simple splitting scheme above is only first order accurate in
the step size ∆t. Especially for the purpose of calculating the steady state it is advan-
tageous to implement a higher-order splitting. An often applied second order scheme is
the so-called Strang splitting [103]. However, we obtained better results with the second
order scheme by McLachlan [102,104]

exp(L∆t) = exp(Lo∆t1) exp(Le∆t2) exp(Lo∆t2) exp(Le∆t1) +O(∆t3) , (2.75)

with ∆t1 = (1− 1/
√

2)∆t and ∆t2 = 1/
√

2∆t. By this the Trotter error in |ρ∞〉 could be
further reduced. Independent of the particular splitting schemes, Le and Lo by themselves
are given by a sum of commuting parts Li,i+1. As a result, the individual terms in
exp(Le∆t) can be applied to |ρ(t)〉 independently of each other and in parallel, see also
Fig. 2.2. We thus have to consider solely the action of two-site gates V (s′i,s

′
i+1),(si,si+1) =

exp(Li,i+1∆t) on |ρ(t)〉. When applied to the state in Eq. (2.73) additional entanglement
between site i and site i + 1 is created which causes the bond dimension to increase. In
this algorithm, the increase is determined by the local Hilbert space size via χ′ = dχ. The
advantage of the representation Eq. (2.73) is that the state |ρ(t)〉′ = exp(Li,i+1∆t) |ρ(t)〉
can be brought back into its canonical form with one SVD and local operations on the sites i
and i+1 only, and a systematic truncation via the singular values Λ′i is readily accessible.24

Therefore, the TEBD algorithm allows for an efficient and directly parallelizable time
evolution of |ρ(t)〉 when L has short-ranged couplings only.

Steady state and correlation functions: As discussed above, for the IMaux encountered
in AMEA the application of Krylov space methods within MPS was rather inefficient and
problematic. Much better results were obtained by using a TEBD scheme for the time
evolution. On the one hand, the achievable accuracy was superior and on the other hand,
the algorithm was better parallelizable and in general much faster. However, one should
note that Krylov space methods and also variational formulations have been applied in
recent works to Lindblad problems within MPS, see e.g. Ref. [97–99]. Most probably, the
applicability of such schemes strongly depends on the size of the local Hilbert space d and
the entanglement properties.

To calculate the steady state through a time evolution we used a series of time intervals
with successively smaller time steps ∆t. By this, the Trotter error could be systematically
suppressed and controlled. However, for a fixed length of the time intervals the number of
steps, and thus the computational effort, increases as 1/∆t. In practice it was sufficient to
use ∆t values not smaller than 0.01 Γ−1. The convergence can be monitored by applying
the full Lindblad MPO to the state and evaluating ‖L |ρ(t)〉‖, and also by computing
local observables 〈I|O |ρ(t)〉. Once the steady state |ρ∞〉 is obtained the Green’s function
are calculated in the time domain according to Eqs. (2.38) and (2.39). It is hereby of
advantage, even though not of crucial importance, to employ a linear prediction of the
time-dependent Green’s functions G(t). This is well-applicable since the behavior of G(t)
after a sufficiently long relaxation time is very predictive and consists out of a sum of
oscillating and exponentially decaying terms. Details on linear prediction can be found for
instance in Ref. [87]. Finally, a discrete Fourier transform is employed to obtain Green’s
functions in the frequency domain. To avoid Gibbs oscillations it is advantageous to

24Note that one has to perform a re-canonization of the state when dealing with a non-Hermitian generator
in the time evolution. In practice we did this after one application of Le or Lo.
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Figure 2.3.: Trend of the bipartite entanglement entropy S
A|B
i in IMaux, Eq. (2.65), for various

impurity parameters. On the left for a bias voltage φ = 0, middle for φ = 2 Γ, and
on the right for φ = 4 Γ. Leads have been chosen as in Ref. [2], Sec. 3.2, with a
temperature of T = 0.05 Γ. Different values for the interaction strength U , magnetic
field B and gate voltage VG are shown, with εf↑/↓ = −U/2 + VG ±B/2 in Eq. (1.5).

transform GR −GA and to complement the real part thereafter with the Kramers-Kronig
relation.

Concerning the entanglement properties of the steady state |ρ∞〉 and excited states

c
(†)
f,σ |ρ∞〉, as needed for Green’s functions, one can say that the situation is sort of reversed

when compared to the Hermitian case of unitary time evolutions. Normally, a ground state
|ψ0〉 can be represented very well by a MPS with small bond dimensions, and only in the

time evolution of excited states c
(†)
f,σ |ψ0〉 a rapid growth of entanglement is observed. In

many cases the entanglement increases even linearly in time S ∼ t which has the drastic

consequence that the bond dimensions in c
(†)
f,σ |ψ0〉 should be increased exponentially [84].

Due to this, a hard limit is set to the possible simulation times.25 Within AMEA we
generally find the situation that the steady state |ρ∞〉 possesses already a rather high
amount of entanglement, so that large bond dimensions are needed (χ ≈ 1000 with U(1)

symmetry, cf. Eq. (2.33)). But, when time evolving excited states c
(†)
f,σ |ρ∞〉 we obtain

only a short transient behavior with rapid entanglement growth, which then saturates
quickly. Therefore, very long simulation times are accessible and from a comparison to
ED we even found that the relative error is quite constant as a function of time. Most
probably this originates in the contracting property of V (t) = exp(Lt) and the resulting
exponential damping of excited states. A plot illustrating this entanglement behavior is
given in Ref. [2], Sec. 3.2. In Fig. 2.3 various plots for the entanglement in |ρ∞〉 as a
function of the bond index are shown. Two things are apparent: On the one hand, the
largest entanglement entropy builds up in the center of the system at the impurity site,
and on the other hand, a drastic decrease with increasing interaction strength is observed.
Both are a consequence of the special geometry chosen for IMaux, consisting of a filled
and an empty bath chain. Due to this, possible hopping processes inside the chains are
strongly suppressed which results in a low entanglement entropy there. Hoppings from
the filled to the empty side are only possible across the impurity site, which in turn are
limited when increasing the on-site Coulomb repulsion U . A similar effect is seen when
including a Zeemann splitting of the on-site energy on the impurity by a magnetic field.
A nonzero gate voltage, however, causes a more complicated behavior and evidently an

25However, different sophisticated strategies exist on how to extend this range [84,87,105].
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asymmetry in S
A|B
i .26 On the whole, the chosen geometry for IMaux is thus particularly

applicable to situations with intermediate to strong interactions. Close to the U = 0 limit
other geometries such as an unfolding of spin up and spin down electrons into two separate
chains [84] could be of advantage. However, for the mapping procedure to work well, a
geometry with two chains per spin is needed, so that an unfolding is more complicated in
this case. Up to now it was not tested since especially the regime of strong interactions is
challenging for numerical methods and of particular interest. With the developed MPS-
solver we could obtain very accurate and promising results for this, see also Ref. [2] or
Sec. 3.2 below.

26Note that a small gate voltage does not displace the Kondo peak and also does not affect its weight in
a significant way.

39





3. Publications

Overview: The four articles included below constitute the main part of this thesis and
are listed in chronological order. All of them deal with the auxiliary master equation ap-
proach (AMEA), which was introduced in Ref. [106]. There, the basic concept of mapping
the original impurity problem onto an auxiliary open quantum system was suggested. The
main topic and achievements of this thesis were to work out details in AMEA thoroughly
and to adapt more efficient solution strategies for the mapping procedure and the many-
body solution. In this way, a significant improvement of the capabilities of the approach
could be attained. In the papers listed below, we developed two different technical im-
provements for the manybody solution and applied them to study, on the one hand, the
nonequilibrium steady state physics of the single impurity Anderson model (SIAM), and
on the other hand, transport across correlated layers within dynamical mean field theory
(DMFT). We chose to only include the four articles below, since they fit together very
well and build up a comprehensive picture of AMEA. Further papers published in the
course of this thesis are briefly discussed at the end of this chapter and indicated in the
bibliography as well.

In the first paper Ref. [1], Sec. 3.1, we presented a detailed derivation of the expressions
for the noninteracting and interacting Green’s functions that are needed within AMEA
for the auxiliary Lindblad problem. Furthermore, we employed Krylov space methods for
the exact diagonalization (ED) of the manybody problem. This enabled us to treat a
larger number of bath sites of up to NB = 6 instead of the NB = 2 in Ref. [106]. This
is an important improvement, since, on the one hand, the size of the Hilbert space basis
increases exponentially and on the other hand, the overall accuracy of AMEA crucially
depends on the number of bath sites and we typically find an exponential convergence
when increasing NB. The Krylov space implementation of the ED-solver enabled us to
study the nonequilibrium SIAM and the behavior of the Kondo peak over a wide range of
bias voltages and parameters.

In the second paper Ref. [2], Sec. 3.2, a different solution strategy for the manybody
problem based on matrix product states (MPS) was presented, with the purpose of in-
vestigating the Kondo physics of the nonequilibrium SIAM in great detail. By exploiting
the freedom to choose different geometries for the auxiliary Lindblad problem we could
employ efficient time evolution techniques for MPS with nearest neighbor couplings only
and furthermore, could drastically reduce the build-up of bipartite entanglement entropy.
On the whole, this enabled us to consider up to NB = 16 bath sites with the MPS solver
and thus to achieve highly accurate results. A benchmark against a numerical renor-
malization group (NRG) calculation in the equilibrium limit revealed a remarkably close
agreement for a situation with strong interaction and temperatures well below the Kondo
temperature TK . A convergence check in the nonequilibrium case showed the robustness
of the results, so that a detailed investigation of the nonequilibrium spectral function and
the splitting of the Kondo peak with increasing bias could be presented. Furthermore,
measurable quantities relevant for experiments were calculated and discussed.
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3. Publications

In the third paper Ref. [3], Sec. 3.3, as well as in the fourth paper Ref. [4], Sec. 3.4, an
application of the ED-AMEA impurity solver within DMFT was presented. In particular,
we studied charge transport across a correlated interface, which consisted of an infinitely
extended 2D Hubbard layer sandwiched between two semi-infinite metallic leads. As for
the SIAM discussed above, a current was driven across the system by applying a bias
voltage between the two leads. One should note, that the same system was already con-
sidered in Ref. [106], however, with an ED-solver with 2 bath sites only. Due to the Krylov
space ED-solver developed in this thesis, we could efficiently solve larger systems and pre-
sented DMFT calculations with up to NB = 6. This enabled us to study the crossover
from a nearly insulating Mott state to a strongly correlated metal up to a noninteracting
metallic state, and its different manifestations in the current-voltage characteristics and in
the spectral functions. In Ref. [4] we additionally introduced different lead temperatures,
which enabled us to also study a temperature-induced suppression of the quasiparticle
peak besides the bias-introduced decoherence. Not only the spectral function but also the
current voltage characteristics revealed a very similar behavior to the Kondo physics in
the nonequilibrium SIAM studied before.

Preliminary remark: In the following, a short preamble is included for each paper in order
to clearly specify the contributions from each author, as required for a cumulative thesis.
Furthermore, these preambles also serve the purpose to highlight important technical or
numerical details of each work, which is meant to enable the reader to better assess the
novelties and also the differences between each work.
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3.1. Publication 1: ED impurity solver

3.1. Publication 1: ED impurity solver

3.1.1. Preamble

The article titled Auxiliary master equation approach to nonequilibrium correlated impu-
rities was published in Physical Review B, 89 165105, April 2014 [1].

This work was done by Antonius Dorda (AD) as first author and Martin Nuss (MN) as
co-author, supervised by Wolfgang von der Linden (WL), and Enrico Arrigoni (EA). EA
predefined and guided this research to large extent. AD, MN and EA worked together
on the analytical derivation of expressions for the nonequilibrium Green’s functions for
the auxiliary impurity problem. AD then wrote the corresponding Matlab- and C-code
for the solution of the noninteracting and interacting Lindblad problem. Hereby, different
variants for the solution of the interacting problem were tested and compared. In the
end, especially sparse methods for non-Hermitian matrices were employed: A shift-and-
invert Arnoldi (rather small systems, NB < 6) or a simple time evolution with a 2nd
order Runge-Kutta stepping for the steady state, and thereafter, a two-sided Lanczos
iteration for the ω-dependent Green’s functions from a Lehmann representation. For
the second important part, the mapping procedure, AD implemented and tested different
minimization routines, and finally employed a quasi-Newton line search method with many
random starting points. Especially EA and also the other authors contributed to assessing
the efficiency of the different numerical approaches and thus to the design of the program.
With this program, AD carried out the investigations and produced the data presented
in the article below. All authors together analyzed and discussed the data, and decided
for the topics to be investigated. MN and EA conducted most of the literature research
and AD, MN and EA wrote a first version of the manuscript. All authors contributed in
writing, revising and discussing the manuscript.

3.1.2. Original article

(see next page)
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Auxiliary master equation approach to nonequilibrium correlated impurities

Antonius Dorda,* Martin Nuss, Wolfgang von der Linden, and Enrico Arrigoni
Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria

(Received 23 December 2013; published 7 April 2014)

We present a numerical method for the study of correlated quantum impurity problems out of equilibrium,
which is particularly suited to address steady-state properties within dynamical mean field theory. The approach,
recently introduced by Arrigoni et al. [Phys. Rev. Lett. 110, 086403 (2013)], is based upon a mapping of the
original impurity problem onto an auxiliary open quantum system, consisting of the interacting impurity coupled
to bath sites as well as to a Markovian environment. The dynamics of the auxiliary system is governed by a
Lindblad master equation whose parameters are used to optimize the mapping. The accuracy of the results can be
readily estimated and systematically improved by increasing the number of auxiliary bath sites, or by introducing
a linear correction. Here, we focus on a detailed discussion of the proposed approach including technical remarks.
To solve for the Green’s functions of the auxiliary impurity problem, a non-Hermitian Lanczos diagonalization
is applied. As a benchmark, results for the steady-state current-voltage characteristics of the single-impurity
Anderson model are presented. Furthermore, the bias dependence of the single-particle spectral function and the
splitting of the Kondo resonance are discussed. In its present form, the method is fast, efficient, and features a
controlled accuracy.

DOI: 10.1103/PhysRevB.89.165105 PACS number(s): 71.15.−m, 71.27.+a, 73.63.Kv, 73.23.−b

I. INTRODUCTION

Correlated systems out of equilibrium have recently at-
tracted increasing interest due to the significant progress
in a number of related experimental fields. Advances in
microscopic control and manipulation of quantum mechanical
many-body systems within quantum optics [1] and ultracold
quantum gases, for example in optical lattices [2–6], have long
reached high accuracy and versatility. Ultrafast laser spec-
troscopy [7,8] offers the possibility to explore and understand
electronic dynamics in unprecedented detail. Experiments
in condensed matter nanotechnology [9], spintronics [10],
molecular junctions [11–16], and quantum wires or quantum
dots [17,18] are able to reveal effects of the interference of
few microscopic quantum states. The nonequilibrium nature
of such experiments does not only offer a new route to
explore fundamental aspects of quantum physics, such as
nonequilibrium quantum phase transitions [19], the interplay
between quantum entanglement, dissipation, and decoherence
[20], or the pathway to thermalization [21,22], but also
suggests the possibility of exciting future applications [11,23].

Addressing the dynamics of correlated quantum systems
poses a major challenge to theoretical endeavors. In this
respect, quantum impurity models help improving our un-
derstanding of fermionic many-body systems. In particular,
the single-impurity Anderson model (SIAM) [24], which was
originally devised to study magnetic impurities in metallic
hosts [25,26], has become an important tool in many areas
of condensed matter physics [27,28]. Most prominently, it
features nonperturbative many-body physics which manifest

*dorda@tugraz.at
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in the Kondo effect [29]. It provides the backbone for all
calculations within dynamical mean field theory (DMFT)
[28,30], a technique which allows us to understand the
properties of a broad range of correlated systems and becomes
exact in the limit of infinite dimensions [31]. The basic
physical properties of the SIAM in equilibrium are quite well
understood [29] thanks to the pioneering work from Kondo
[32], renormalization group [33], as well as perturbation theory
(PT) [34–37] and the mapping to its low-energy realization,
the Kondo model [38].

The SIAM out of equilibrium provides a description for
several physical processes such as, for example, nonlinear
transport through quantum dots [17,39], correlated molecules
[13,14,40–42], or the influence of adsorbed atoms on surfaces
or bulk transport [43]. As in the equilibrium case, the solution
of the SIAM constitutes the bottleneck of nonequilibrium
DMFT [44–51] calculations. Therefore, accurate and efficient
methods to obtain dynamical correlation functions of impurity
models out of equilibrium are required in order to describe
time-resolved experiments on strongly correlated compounds
[7,8] and to understand their steady-state transport character-
istics [23].

However, nonequilibrium correlated impurity models still
pose an exciting challenge to theory. Our work addresses this
issue with special emphasis on the steady state. But, before
introducing this work in Sec. I, we briefly review previous
approaches. In recent times, a number of computational
techniques have been devised to handle the SIAM out of
equilibrium. Among them are scattering-state Bethe ansatz
(BA) [52], scattering-state NRG (SNRG) [53–55], noncrossing
approximation studies [56,57], fourth-order Keldysh PT [58],
other perturbative methods [59,60] in combination with the
renormalization group (RG) [61–65], iterative summation
of real-time path integrals [66], time-dependent NRG [67],
flow equation techniques [68,69], the time-dependent density
matrix RG (DMRG) [70–75] applied to the SIAM [76,77],
nonequilibrium cluster PT (CPT) [78], the nonequilibrium
variational cluster approach (VCA) [79,80], dual fermions

1098-0121/2014/89(16)/165105(17) 165105-1 Published by the American Physical Society
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[81], the functional RG (fRG) [82,83], diagrammatic quantum
Monte Carlo (QMC) [84,85], continuous time QMC (CT-
QMC) calculations on an auxiliary system with an imaginary
bias [86–90], superoperator techniques [91,92], many-body
PT and time-dependent density functional theory [93], gen-
eralized slave-boson methods [94], real-time RG (rtRG) [95],
time-dependent Gutzwiller mean field calculations [96], and
generalized master equation approaches [97]. Comparisons of
the results of some of these methods are available in literature
[77,98,99] and time scales have been discussed in Ref. [100].

Despite this large number of approaches, only a limited
number of them is applicable to nonequilibrium DMFT, and
very few are still accurate for large times in steady state.
Beyond the quadratic action for the Falicof-Kimball model
[46,101,102], iterated PT (IPT) [45], numerical renormal-
ization group (NRG) [48], real-time QMC [48,103], the
noncrossing approximation (NCA) [104,105], and recently
Hamiltonian-based impurity solvers [106] have been applied in
the time-dependent case. Some of the above approaches, such
as QMC [49] and DMRG [73], are very accurate in addressing
the short- and medium-time dynamics, but in some cases the
accuracy decreases at long times and a steady state can not be
reliably identified. Some other methods are perturbative and/or
valid only in certain parameter regions or for restricted models.
RG approaches (e.g., [61]) are certainly more appropriate to
identify the low-energy behavior.

This work

In this paper, we discuss a method, first proposed in
[51], which addresses the correlated impurity problem out of
equilibrium, and is particularly efficient for the steady state.
The accuracy of the results is controlled as it can be directly
estimated by analyzing the bath hybridization function (details
following). Here, we extend, test, and provide details of this
approach and its implementation. The basic idea is to map the
impurity problem onto an auxiliary open system, consisting of
a small number of bath sites coupled to the interacting impurity
and, additionally, to a so-called Markovian environment [107].
The parameters of this auxiliary open quantum system are
obtained by optimization in order to represent the original
impurity problem as accurately as possible. The auxiliary
system dynamics are governed by a Lindblad master equation
which is solved exactly with the non-Hermitian Lanczos
method. The crucial point is that the overall accuracy of the
method is thus solely determined by how well the auxiliary
system reproduces the original one. This can be, in principle,
improved by increasing the number of auxiliary bath sites.

In this study, we provide convincing benchmarks for
the steady-state properties of the SIAM coupled to two
metallic leads under bias voltage. We include a discussion
of convergence as a function of the number of bath sites and
present a scheme to estimate the error and partially correct for
it. In its presented form, the method is fast, efficient, and is
directly applicable to steady-state dynamical mean field theory
[51] for which previously suggested methods are less reliable.
Extending the method to treat time-dependent properties and
multiorbital systems is possible, in principle, however with a
much heavier computational effort.

The paper is organized as follows: In Sec. II A, the SIAM
under bias voltage is introduced. In Sec. II B, we introduce
nonequilibrium Green’s functions and in Secs. II C and II D,
we outline the auxiliary master equation approach where we
also focus on details of our particular implementation. Results
for the steady state, including the equilibrium situation, are
presented in Sec. III. This includes the steady-state current-
voltage characteristics which we compare with exact results
from matrix product state (MPS) time evolution [77] as well
as data for the spectral function under bias which we compare
with nonequilibrium NRG [54]. We conclude and give an
outlook in Sec. IV.

II. AUXILIARY MASTER EQUATION APPROACH

As discussed above, the method is particularly suited to
deal with nonequilibrium steady-state properties caused by
different temperatures and/or chemical potential in the leads
of a correlated quantum impurity system. As such, it can be
readily used as impurity solver for nonequilibrium DMFT
[46,51]. Here, we illustrate its application to the fermionic
SIAM with two leads having different chemical potentials,
and, in principle, different temperatures.

A. Nonequilibrium single-impurity Anderson model

We consider a single Anderson impurity coupled to elec-
tronic leads under bias voltage [see Fig. 1(a)]

Ĥ = Ĥimp + Ĥres + Ĥcoup. (1)

The impurity orbital features charge as well as spin degrees of
freedom and is subject to a local Coulomb repulsion U :

Ĥimp = εf

∑
σ

f †
σ fσ + U n̂

f

↑ n̂
f

↓ .

FIG. 1. (Color online) (a) Sketch of the quantum impurity model
(1) consisting of an impurity with interaction U coupled via
hybridizations t ′

λ to noninteracting leads at chemical potential μλ

and temperature Tλ, λ ∈ {L,R}. (b) Illustration of the auxiliary open
quantum system [Eq. (10a)] with single-particle parameters Eμν and
Lindblad dissipators �κ

μν consisting of the impurity at site f = 0, NB

bath sites (NB = 4 in the plot), as well as a Markovian environment
(shaded areas). When evaluating linear corrections (see Appendix C),
an additional site NB + 1 is used.
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Here, f †
σ /fσ denote fermionic creation/annihilation operators

for the impurity orbital with spin σ ∈ {↑,↓}, respectively. The
particle-number operator is defined in the usual way n̂

f
σ =

f †
σ fσ and the impurity onsite potential is εf = (VG − U

2 ), with
gate voltage VG = 0 at particle-hole symmetry. The impurity
is coupled to two noninteracting electronic leads λ ∈ {L,R}
with dispersion ελk:

Ĥres =
∑
λkσ

(ελ + ελk) c
†
kλσ ckλσ .

The effect of a bias voltage φ is to shift the chemical
potential and the onsite energies of the two leads by ελ = ±φ

2 ,
respectively. For the energies ελk of the leads we will consider
two cases.

(i) Two tight-binding semi-infinite chains with nearest-
neighbor hopping t , corresponding to a semicircular electronic
density of states (DOS): In this case, the boundary retarded
single-particle Green’s function of the two uncoupled leads is
given by [108–110]

gR
λ (ω) = gR

SC,λ(ω) = ω − ελ

2t2
− i

√
4t2 − (ω − ελ)2

2t2
, (2)

with a bandwidth of DSC = 4 t .
(ii) A constant DOS with a bandwidth DWB = π t results

in boundary Green’s functions [109]

gR
λ (ω) = gR

WB,λ(ω) = − 1

DWB

ln

⎛
⎝ω − ελ − DWB

2

ω − ελ + DWB
2

⎞
⎠ . (3)

The choice DWB = π t makes sure that the DOS at ω = 0 of
both lead types coincide. The leads are coupled to the impurity
orbital by

Ĥcoup =
∑
λσ

t ′λ
1√
Nk

∑
k

(c†kλσ fσ + f †
σ ckλσ ),

where we take the same hybridization t ′λ = −0.3162 t for both
leads, and Nk → ∞ is the number of k points. Expressions
presented below are valid for arbitrary temperatures, although
we will show results for zero temperature only, which is
numerically the most unfavorable case [111]. The setup
chosen here represents by no means a limitation of the
method and extensions to more complicated situations, such
as nonsymmetric couplings, off particle-hole symmetry, etc.,
are straightforward.

B. Steady-state nonequilibrium Green’s functions

We are interested in the steady-state behavior under bias
voltage of the model described by Eq. (1). We assume that such
a steady state exists and is unique [112]. We denote the single-
particle Green’s function of the impurity in the nonequilibrium
Green’s function (Keldysh) formalism by [113–117]

G(ω) =
(

GR(ω) GK (ω)
0 GA(ω)

)
. (4)

Fourier transformation to energy ω is possible since in the
steady state the system becomes time translationally invariant.

In that case, the memory of the initial condition has been fully
washed away, so there is no contribution from the Matsubara
branch [118]. We will use an underline . . . to denote two-point
functions with the Keldysh matrix structure as in Eq. (4).

The Green’s function of the correlated impurity can be
expressed via Dyson’s equation

G−1(ω) = G−1
0 (ω) − �(ω), (5)

where �(ω) is the impurity self-energy. The noninteracting
impurity Green’s function G0(ω) can be written in the form

G−1
0 (ω) = g−1

0
(ω) − �(ω), (6)

g
0
(ω) being the noninteracting Green’s function of the discon-

nected impurity [108], and

�(ω) =
∑

λ

t ′ 2
λ g

λ
(ω) (7)

is the hybridization function of the leads (a 2 × 2 Keldysh
object, in contrast to the equilibrium case, where it is conve-
nient to work in Matsubara space). We define an equilibrium
Anderson width [29] for each lead �0 ≡ − 1

2 Im[�R(ω =
0)] = t ′2λ

t
≈ 0.1 t . In the following, we will use �0 as a unit

of energy and in addition we choose � = e = 1.
The boundary Green’s functions g

λ
of each disconnected

lead is determined by (a) its retarded component gR
λ [either

Eqs. (2) or (3)], (b) its advanced component gA
λ = gR∗

λ , and
(c) its Keldysh component, which satisfies the fluctuation
dissipation theorem

gK
λ (ω) = 2i [1 − 2pF(ω − μλ)] Im

[
gR

λ (ω)
]

(8)

since the disconnected leads are in equilibrium. Here, pF(ω −
μλ) is the Fermi distribution with chemical potential μλ. For
the noninteracting isolated impurity, one can take (g−1

0 )R =
ω − εf and (g−1

0 )K = 0 since infinitesimals 0+ can be ne-
glected after coupling to the leads (unless there are bound
states). As usual, the presence of the interaction U makes the
solution of the problem impurity plus leads a major challenge
both in equilibrium as well as out of equilibrium, which we
plan to address in this paper.

Similarly to the equilibrium case, the action of the leads
on the impurity is completely determined by the hybridization
function �(ω), independently of how the leads are represented
in detail. In other words, if one constructs a different
configuration of leads (e.g., with more leads with different
temperatures, DOS, etc.), which has the same �(ω), i.e. the
same �R(ω) and �K (ω) as Eq. (7), then the resulting local
properties of the interacting impurity, e.g., the Green’s function
G(ω) are the same. This holds provided the leads contain
noninteracting fermions only.

The approach we suggested in Ref. [51] precisely exploits
this property. The idea is to replace the impurity plus leads
system [Eq. (1)] by an auxiliary one which reproduces �(ω)
as accurately as possible, and at the same time can be
solved exactly by numerical methods, such as Lanczos exact
diagonalization. Details on the construction of the auxiliary
impurity system are given in the following.

The self-energy �aux(ω) of the auxiliary system, obtained
by exact diagonalization, is used in analogy to DMFT [28,119]
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as an approximation to the physical self-energy of the original
impurity system. Inserting �(ω) ≈ �aux(ω) into Eqs. (5) and
(6), together with the exact hybridization function �(ω) yields
an approximation for the physical Green’s function. From
this, observables such as the current or the spectral function
are then calculated. We emphasize that the accuracy of this
approximation can be controlled by the difference between
the �aux(ω) of the auxiliary system and the physical one �(ω),
and that this can be, in principle, systematically improved, as
discussed below.

C. Auxiliary open quantum system

The idea presented here is strongly related to the exact diag-
onalization (ED) approach for the DMFT impurity problem in
equilibrium [28,119]. Here, the infinite leads are replaced by
a small number of bath sites, whose parameters are optimized
by fitting the hybridization function in Matsubara space. The
reduced system of bath sites plus impurity is then solved by
Lanczos ED [120]. This approach can not be straightforwardly
extended to the nonequilibrium steady-state case for several
reasons: (i) since the small bath is finite, its time dependence is
(quasi)periodic, i.e., no steady state is reached, (ii) there is no
Matsubara representation out of equilibrium [121], thus, one
is forced to use real energies but (iii) in this case Im[�R

aux(ω)]
of the small bath consists of δ peaks and can hardly be fitted
to a smooth �R(ω). The solution we suggested in Ref. [51]
consists in additionally coupling the small bath to a Markovian
environment, which makes it effectively “infinitely large,” and
solves problems (i) and (iii) above. Specifically, we replace
the impurity plus leads model [Eq. (1)] by an auxiliary open
quantum system consisting of the impurity plus a small number
of bath sites, which in turn are coupled to a Markovian
environment.

The dynamics of the system (consisting of bath sites and
impurity), including the effect of the Markovian environment is
expressed in terms of the Lindblad quantum master equation
which controls the time dependence of its reduced density
operator ρ̂ [107,122]:

˙̂ρ = ˆ̂Lρ̂. (9)

The Lindblad superoperator [123]

ˆ̂L = ˆ̂LH + ˆ̂LD (10a)

consists of a unitary contribution

ˆ̂LH ρ̂ = −i[Ĥaux,ρ̂],

as well as a nonunitary, dissipative term originating from the
coupling to the Markovian environment

ˆ̂LDρ̂ ≡ 2
NB∑

μν=0

∑
σ

[
�(1)

νμ

(
dμσ ρ̂ d†

νσ − 1

2
{ρ̂,d†

νσ dμσ }
)

+�(2)
νμ

(
d†

νσ ρ̂ dμσ − 1

2
{ρ̂,dμσ d†

νσ }
)]

, (10b)

where [Â,B̂] and {Â,B̂} denote the commutator and anticom-
mutator, respectively. The unitary time evolution is generated

by the Hamiltonian

Ĥaux =
NB∑

μν=0

∑
σ

Eμνd
†
μσ dνσ + Ud

†
f ↑df ↑d

†
f ↓df ↓, (11)

describing a fermionic “chain” (Eμν is nonzero only for onsite
and nearest-neighbor terms). It is convenient to choose the
interacting impurity at site f = 0 and NB auxiliary bath
sites at μ,ν = 1, . . . ,NB (see Fig. 1(b)). As usual, d†

μσ /dμσ

create/annihilate the corresponding auxiliary particles. The
quadratic form of the dissipator [Eq. (10b)] corresponds to
a noninteracting Markovian environment. The dissipation ma-
trices �(κ)

μν , κ ∈ {1,2}, are Hermitian and positive semidefinite
[122]. The advantage of replacing the impurity problem by
the auxiliary one described by Eqs. (9)–(11), is that for a
small number of bath sites the dynamics of the interacting
auxiliary system can be solved exactly by diagonalization

of the superoperator ˆ̂L in the space of many-body density
operators (see Sec. II D 2).

Intuitively, one can consider the effective system as a
truncation of the original chain described by Eq. (1), whereby
the Markovian environment compensates for the missing
“pieces.” However, this would still be a crude approximation
and, in addition, it would not be clear how to introduce the
chemical potential in the Markovian environment (except for
weak coupling). Our strategy, similarly to the equilibrium
case, consists in simply using the parameters of the auxiliary
system in order to provide an optimal fit to the bath spectral
function �(ω). The parameters for the fit are, in principle,
Eμν and �(κ)

μν . However, one should consider that there is a
certain redundancy. In other words, several combinations of
parameters lead to the same �(ω). For example, it is well
known in equilibrium that in the case of the Eμν one can
restrict to diagonal and nearest-neighbor terms only [124].

The accuracy of the results will be directly related to the
accuracy of the fit to �(ω), and this is expected to increase
rapidly with the number of fit parameters, which obviously
increases with NB . On the other hand, also the computational
complexity necessary to exactly diagonalize the interacting
auxiliary system increases exponentially with NB . The fit does
not present a major numerical difficulty, as the determination of
the hybridization functions of both the original model [Eq. (7)],
as well as the one of the auxiliary system �aux(ω) described
by the Lindblad equation (10) require the evaluation of G0
[cf. (6)], i.e., the solution of a noninteracting problem.

The fit is obtained by minimizing the cost function

χ
(
Eμν,�

(κ)
μν

) =
∑

α∈{R,K}

∫ ∞

−∞
dω Wα(ω)

× ∣∣�α(ω) − �α
aux

(
ω; Eμν,�

(κ)
μν

)∣∣n (12)

with respect to the parameters of the auxiliary system. The
advanced component does not need to be considered as
�A = �R∗. Of course, as in ED-based DMFT, there exists
an ambiguity which is related to the choice of the weight
function Wα(ω), which also sets the integral boundaries. This
uncertainty is clearly reduced upon increasing NB .

Depending on the expected physics, it might be useful to
adopt an energy-dependent weight function. This could be
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used, for example, to describe the physics around the chemical
potentials more accurately.

Once the auxiliary system is defined in terms of
Eμν and �(κ)

μν , the corresponding interacting nonequilibrium
problem (10) can be solved by an exact diagonalization of the

non-Hermitian superoperator ˆ̂Lwithin the space of many-body
density operators. The dimension of this space is equal to the
square of the dimension of the many-body Hilbert space, and
thus it grows exponentially as a function of NB . Therefore,
for NB � 4, a non-Hermitian Lanczos treatment must be
used. The solution of the noninteracting Lindblad problem is
nonstandard (see, e.g., Ref. [125]), and a method particularly
suited for the present approach is discussed in Sec. II D 1.

D. Green’s functions of the auxiliary Lindblad problem

In this section, we present expressions for the Green’s
functions of the auxiliary system. Specifically, we will derive
an analytic expression for the noninteracting Green’s functions
in Sec. II D 1, and illustrate the numerical procedure to
determine the interacting ones in Sec. II D 2. The derivations
make largely use of the formalism of [126] (see also [127]). For
an alternative appealing approach to the noninteracting case,
see also Ref. [125]. All Green’s functions discussed in Sec. II D
are the ones of the auxiliary system, which are different from
the physical ones for NB < ∞.

The dynamics of the auxiliary open quantum system

described by the superoperator ˆ̂L [Eq. (10)] can be recast in an
elegant way as a standard operator problem in an augmented
fermion Fock space with twice as many sites [125–128].
Specifically, one introduces “tilde” operators d̃μ/d̃†

μ together
with the original ones dμ/d†

μ [129]. Introducing the so-called
left vacuum

|I 〉 =
∑

S

(−i)NS |S〉 ⊗ |S̃〉 , (13)

where |S〉 are many-body states of the original Fock space, |S̃〉
the corresponding ones of the tilde space [126], and NS the
number of particles in S. The nonequilibrium density operator
can be written as a state vector in this augmented space

|ρ(t)〉 ≡ ρ̂(t) |I 〉 . (14)

The Lindblad equation is rewritten in a Schrödinger-type
fashion [123,126]

d

dt
|ρ(t)〉 = L̂ |ρ(t)〉 , (15)

where now L̂ is an ordinary operator in the augmented space.
L̂ = L̂0 + L̂I is conveniently represented in terms of the
operators of the augmented space in a vector notation [129]:

d† = (
d
†
0, . . . ,d

†
NB

,d̃0, . . . d̃NB

)
.

Its noninteracting part L0 reads in the augmented space
[123,126] as

iL̂0 =
∑

σ

(d†hd − Tr(E + i�)), (16)

where Tr denotes the matrix trace and the matrix h is given by

h =
(

E + i� 2�(2)

−2�(1) E − i�

)
, (17)

with

� = (�(2) + �(1)), � = (�(2) − �(1)).

Its interacting part has the form [126]

iLI = Ud
†
f ↑df ↑d

†
f ↓df ↓ − Ud̃

†
f ↑d̃f ↑d̃

†
f ↓d̃f ↓.

In this auxiliary open system, dynamic two-time correlation
functions for two operators Â and B̂ of the system can be
expressed as

iGBA(t2,t1) ≡ 〈B̂U (t2)ÂU (t1)〉
= tr U (B̂U (t2)ÂU (t1)ρ̂U ) = tr

(
B̂Ât1,t2−t1

)
, (18)

where ρ̂U is the density operator of the “universe” U composed
of the system and Markovian environment, tr is the trace
over the system degrees of freedom, tr E the one over
the environment, tr U = tr ⊗ tr E the one over the universe,
ÔU (. . .) denotes the unitary time evolution of an operator Ô

according to the Hamiltonian of the universe ĤU . Here [107],

Ât1,t ≡ tr E(e−iĤU t Âρ̂U (t1)e+iĤU t ). (19)

Notice that the time evolution of ρ̂U (t), as well as the one
in Eq. (19), are opposite with respect to the Heisenberg time
evolution of operators. This is the convention for density oper-
ators. For t = t2 − t1 > 0 one can use the quantum regression
theorem [107] which holds under the same assumptions as for
Eq. (9). It states that

d

dt
Ât1,t = ˆ̂LÂt1,t . (20)

In the augmented space, in the same way as for (14) and
(15), one can associate the operator (19) with the state vector
|At1,t 〉 = Ât1,t |I 〉. For this vector, (20) translates into

d

dt

∣∣At1,t

〉 = L̂
∣∣At1,t

〉
. (21)

Considering its initial value (time t = 0)∣∣At1,0
〉 = Â |ρ(t1)〉 ,

the solution of (21) reads as∣∣At1,t

〉 = eL̂t Â |ρ(t1)〉 . (22)

Therefore, we have for the correlation function (18) for
t2 > t1, which we denote as G+

BA(t2,t1):

iG+
BA(t2,t1) = 〈I |B̂eL̂(t2−t1)Â|ρ(t1)〉 = 〈I |B̂(t2 − t1)Â|ρ(t1)〉,

where

B̂(t) := e−L̂t B̂eL̂t (23)

is the non-Hermitian time evolution of the operator B̂, and we
have exploited the relation [126] 〈I | L̂ = 0. For the steady-
state correlation function, which depends on t = t2 − t1, we
have

iG+
BA(t) = 〈I | B̂(t)Â |ρ∞〉 , (24)
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where ρ̂∞ is the steady-state density operator. Since the
quantum regression theorem only propagates forward in time,
for t < 0 one has to take the complex conjugate of Eq. (18),
which gives for the t < 0 steady-state correlation function
denoted as G−

BA

iG−
BA(t) = −iG+

A†B†(−t)∗ = 〈I | Â†(−t)B̂† |ρ∞〉∗ . (25)

Using (24), the steady-state greater Green’s function for times
t > 0 reads as [130]

G>+
μν (t) ≡ −iθ (t) 〈dμ(t + t1)d†

ν (t1)〉t1→∞

= −iθ (t) 〈I | dμ(t)d†
ν |ρ∞〉 . (26)

We can use (24) also for the lesser Green’s function, however,
for [130] t < 0,

G<+
μν (t) ≡ iθ (−t) 〈d†

ν (t1)dμ(t + t1)〉t1→∞

= iθ (−t) 〈I | d†
ν (−t)dμ |ρ∞〉 .

For the opposite sign of t , we can use (25), so that for both
Green’s functions one has [123,130]

G
>
<−(t) = −G

>
<+(−t)†. (27)

For the Fourier-transformed Green’s function, defined, with
abuse of notation as

G
>
<±(ω) = ∫

dt eiωt G
>
<±(t) , (28)

relation (27) translates into

G
>
<−(ω) = −G

>
<+(ω)†. (29)

We need the retarded and the Keldysh Green’s functions

GR = G>+ − G<− = G>+ + G<+†,

GK = G>+ + G<− + G>− + G<+ = G>+ + G<+ − H.c.,

(30)

whereby both relations hold for the time-dependent as well as
for the Fourier-transformed ones.

1. Noninteracting case

To solve the noninteracting Lindblad problem described by
(16), one first diagonalizes the non-Hermitian matrix [126] h
in Eq. (17):

ε = V −1hV , (31)

where ε is a diagonal matrix of eigenvalues εμ. The noninter-
acting Lindbladian (16) can then be written as

iL̂0 = ξ̄ ε ξ + η

in terms of the normal modes

ξ = V −1d, ξ̄ = d†V , (32)

and a constant η. The normal modes still obey canonical
anticommutation rules

{ξμ,ξ̄ν} = δμν , (33)

but are not mutually Hermitian conjugate.
The steady state |ρ∞〉 obeys the equation

L̂ |ρ∞〉 = 0.

Let us now consider the time evolution (22) of a state initially
consisting of the normal mode operators applied to the steady-
state density matrix

eL̂0t ξμ |ρ∞〉 = eL̂0t ξμe−L̂0t |ρ∞〉 = eiεμt ξμ |ρ∞〉 .

If Im(εμ) < 0, this term diverges exponentially in the long-
time limit, which would be in contradiction to the fact that
|ρ∞〉 is a steady state, unless the state created by ξμ is zero.
Therefore, we must have

ξμ |ρ∞〉 = 0 for Im(εμ) < 0. (34a)

Similarly, we must have

ξ̄μ |ρ∞〉 = 0 for Im(εμ) > 0. (34b)

These equations, thus, define the steady state as a kind of
“Fermi sea.” In addition, by requiring that expectation values
of the form

〈I | ξμ(t)ξ̄ν |ρ〉
do not diverge for large t , we obtain that

〈I | ξμ = 0 for Im(εμ) > 0, (34c)

〈I | ξ̄μ = 0 for Im(εμ) < 0. (34d)

From (34d) it follows that an expectation value of the form
〈I | ξ̄μξν |ρ∞〉 vanishes for the case Im(εμ) < 0. For Im(εμ) >

0 we make use of the anticommutation rules (33) together with
(34b) and the fact that [126] 〈I |ρ∞〉 = tr ρ∞ = 1 and arrive at

〈I | ξ̄μξν |ρ∞〉 = Dμν ,

where the matrix

Dμν = δμν θ [Im(εμ)].

Similarly,

〈I | ξμξ̄ν |ρ∞〉 = D̄μν ≡ δμν − Dμν .

The expression for the steady-state correlation functions of
the eigenmodes ξ of L̂0 can be now evaluated by considering
that, due to the anticommutation rules, the Heisenberg time
evolution (23) gives

ξμ(t) = e−iεμt ξμ, ξ̄μ(t) = eiεμt ξ̄μ.

Thus,

〈I | ξμ(t)ξ̄ν |ρ∞〉 = e−iεμt 〈I | ξμξ̄ν |ρ∞〉 = e−iεμtDμν .

In this way, the greater Green’s function for t > 0 becomes

iG>+
0μν(t) = 〈I | dμ(t)d†

ν |ρ∞〉
=

∑
ς

Vμςe−iες t D̄ςς (V −1)ςν

= (Ve−iεt D̄V −1)μν , (35)

where we have used (32). The Green’s functions are defined
with operators dμ/d†

μ in the original Fock space, so that it is
sufficient to know the first NB + 1 rows (columns) of V (V −1).
For this purpose we introduce

U = T V , U (−1) = V −1T †,
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whereby T is a (NB + 1) × (2NB + 2) matrix, which in block
form reads as T = (11 0). Notice that U−1 �= U (−1). With
this, the Fourier transform (28) of (35) is given by [131]

G>+
0 (ω) =

(
U

D̄
ω − ε

U (−1)

)
, (36)

and G>−
0μν(ω) is obtained with the help of (29). Similarly, the

lesser Green’s function for t < 0

iG<+
0μν(t) = −〈I |d†

νdμ(t) |ρ∞〉
= −

∑
ς

Vμςe−iες tDςς (V −1)ςν

= −(Ue−iεt DU (−1))μν ,

with the Fourier transform

G<+
0 (ω) =

(
U

D
ω − ε

U (−1)

)
, (37)

and G<−
0 (ω) is obtained from (29). Using (30) together with

(36) and (37), we get

GR
0 (ω) = U

D̄
ω − ε

U (−1) +
(

U
D

ω − ε
U (−1)

)†
, (38)

and for the Keldysh Green’s function using also (29)

GK
0 (ω) = U

(
D̄

ω − ε
+ D

ω − ε

)
U (−1) − H.c.

= U
(

1

ω − ε

)
U (−1) − H.c. (39)

In principle, one could just carry out the diagonalization
(31) and then evaluate (38) and (39) numerically, which is
a rather lightweight task. However, it is possible to obtain
a (partially) analytical expression for the Green’s functions.
Indeed, a lengthy but straightforward calculation yields for the
retarded one

GR
0 (ω) = (ω − E + i�)−1 . (40)

Similarly, for the Keldysh component of the inverse Green’s
function, we obtain(

G−1
0

)K ≡ −GR−1
0 GK

0 GA−1
0 = −2i�. (41)

To sum up, (40) and (41) are the main results of this section.
To evaluate �aux(ω), one then uses (6), whereby one should
consider that the matrix G0 in Keldysh space is just the local
one, i.e., in terms of the components local at the impurity GR

0ff

and GK
0ff :

G0 ≡
(

GR
0ff GK

0ff

0 GA
0ff

)
.

In turn, GK
0ff , the ff component of GK

0 , has to be ob-
tained from (41) by the well-known expression [116] GK

0 =
−GR

0 (G−1
0 )K GA

0 .

2. Interacting case

The next step consists in solving the interacting auxiliary
Lindblad problem described by (10a) in order to determine the

Green’s function and the self-energy at the impurity site. This is
done by Lanczos exact diagonalization within the many-body
augmented Fock space.

First, the steady state |ρ∞〉 has to be determined as the right-
sided eigenstate of the Lindblad operator L̂ with eigenvalue
l0 = 0. For convenience, we introduce

L̂ = iL̂, (42)

which is a kind of non-Hermitian Hamiltonian with complex
eigenvalues �. The dimension of the Hilbert space can be
reduced by exploiting symmetries similar to the equilibrium
case. The conservation of the particle number per spin N̂σ is
replaced here by the conservation of N̂σ − ˆ̃Nσ [51]. The steady
state lies in the sector Nσ − Ñσ = 0.

Starting from Eq. (26), the steady-state greater Green’s
function of the impurity reads as in a non-Hermitian Lehmann
representation, for t > 0,

G>+
μν (t) = −i

∑
n

e−i�
(+1)
n t 〈I | dμ

∣∣R(+1)
n

〉 〈
L(+1)

n

∣∣ d†
ν |ρ∞〉 ,

where the identity
∑

n |R(+1)
n 〉 〈L(+1)

n | in the sector Nσ − Ñσ =
+1 has been inserted, in terms of right (|R(+1)

n 〉) and left
(〈L(+1)

n |) eigenstates of L̂ with eigenvalues �(+1)
n , and |I 〉 is

the left vacuum (13). Its Fourier transform reads as

G>
μν(ω) =

∑
n

1

ω − �
(+1)
n

〈I | dμ

∣∣R(+1)
n

〉 〈
L(+1)

n

∣∣ d†
ν |ρ∞〉

−
∑

n

1

ω − �
(+1)∗
n

( 〈I | dν

∣∣R(+1)
n

〉 〈
L(+1)

n

∣∣ d†
μ |ρ∞〉 )∗

.

(43)

The analogous expression for the lesser Green’s function
G<

μν(ω) is obtained by inserting a complete set of eigenstates
in the Nσ − Ñσ = −1 sector and exchanging the elementary
operators accordingly. GK

μν(ω) and GR
μν(ω) are obtained using

Eq. (30) [see also (29)].
For a small number of bath sites NB � 3, the dimension of

the augmented Fock space is still moderate, and eigenvalues
and eigenvectors can be determined by full diagonalization.
For NB � 4, a non-Hermitian Lanczos procedure has to be
carried out. Especially extracting the steady state is not an
easy task since it lies in the center of the spectrum. Details of
our numerical procedure are given in Appendix A.

Once the interacting and noninteracting Green’s functions
of the auxiliary system at the impurity site G(ω) and G0(ω),
respectively, are determined, the corresponding self-energy is
obtained via Dyson’s equation in Keldysh space [Eq. (5)]. The
individual components are explicitly [51]

�R(ω) = 1/GR
0 (ω) − 1/GR(ω),

�K (ω) = −GK
0 (ω)

/∣∣GR
0 (ω)

∣∣2 + GK (ω)/|GR(ω)|2.

As discussed in Sec. II B, this is used in the Dyson equation
(5) for the physical Green’s function.

III. RESULTS

In this section, results for the steady-state properties of
a symmetric, correlated Anderson impurity coupled to two
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FIG. 2. (Color online) Comparison of Im[�α(ω)] from (7) (black) with Im[�α
aux(ω)] at the absolute minimum of the cost function (12) for

auxiliary system sizes NB = 2,4, and 6 bath sites (green, blue, and orange, respectively), and α = R (top) and K (bottom). Results are shown
for tight-binding leads (2) and (8) with t = 10 �0, and three different bias voltages φ ∈ {10,27,28}�0 from left to right.

metallic leads under bias voltage are provided. We assess
the validity of the proposed method by discussing the fit
of the hybridization function and outline how uncertainties
are estimated. Results for the current voltage characteristics
and the nonequilibrium spectral function are presented and
compared with data from time-evolving block decimation
(TEBD) [77] and SNRG [54] calculations, respectively. The
effect of a linear correction of the calculated Green’s functions
is illustrated.

A. Hybridization functions

The optimal representation of the exact bath �(ω) by
the auxiliary one �aux(ω) is obtained by minimizing the
cost function (12). In practice, this is done by employing a
quasi-Newton line search [132,133]. In particular, we chose an
equal weighting of the retarded and the Keldysh component
WR(ω) = WK (ω) = �(ωc − |ω|). After finding our results
to be robust upon different values for the cutoff ωc, as
well as upon using different norms (n = 1,2) in Eq. (12),
we finally choose ωc = 50 �0 and consider imaginary parts
{Im[�α(ω) − �α

aux(ω)]}2 in the cost function only. This is
justified since �K

aux(ω) is purely imaginary and the real part of
�R

aux(ω) is connected to its imaginary part via the Kramers-
Kronig relations [134]. The asymptotic behavior of �R

aux(ω)
is determined by �ff whereas the one of �K

aux(ω) by �ff .
Therefore, the correct asymptotic limit limω→±∞ �aux(ω) =
0 is guaranteed by taking �

(1)
ff = �

(2)
ff = 0, which results

in �
(κ)
μf = �

(κ)
f μ = 0 due to the requirement of semipositive

definiteness of �(κ)
μν . Particle-hole symmetry allows for a

further reduction of the auxiliary system parameters [135].
In this work, we use an even number of auxiliary bath

sites NB = 2,4, and 6 in a linear setup [see Fig. 1(b)] with
an equal number to the left and to the right of the impurity
(only Fig. 6 displays one calculation for an odd number of
bath sites). In Fig. 2, the obtained auxiliary hybridization
functions are compared with the exact ones for various bias

voltages. We find a quick convergence as a function of NB ,
which degrades for large bias voltage φ. The Fermi steps at
the chemical potentials in �K

aux(ω) can not be properly resolved
in the case of NB = 2. Especially in the case of φ = 10 �0 the
auxiliary hybridization functions for NB = 6 as well as for
NB = 4 agree fairly well with the exact one and capture all
essential features, in particular the Fermi steps. The auxiliary
bath develops spurious oscillations in �R

aux(ω) at the energies
of the Fermi levels of the contacts. Here, the discrepancy with
�R(ω) is considerable in magnitude, but extends over small ω

intervals, thus inducing only small errors in the self-energies.
When following the absolute minimum of the cost function

(12) as a function of some external parameter, such as, e.g.,
the bias voltage φ, spurious discontinuities appear due to the
fact that local minima cross each other. This occurs for large
bias voltages and large U , and/or small NB , for which the
approach is more challenging. An example for such a situation
is shown in Fig. 2 for the case NB = 4, when comparing the
hybridization functions just before and after such a crossing,
i.e., for φ = 27 �0 and 28 �0. Even though the changes in the
exact hybridization function are only minor, �aux(ω) displays
a considerable difference. The influence of this spurious effect
on observable quantities is shown in Fig. 3 (right panel, orange
circles) for a different parameter set of NB = 6 at around
φc = 33 �0. The artificial discontinuity in the current is caused
by the shift of spectral weight in �aux(ω).

To deal with these discontinuities, we adopt a scheme
which is suitable for obtaining a continuous dependence of
observables on external parameters and, in addition, allows us
to estimate their uncertainties (see Fig. 3). We first identify a
set of local minima of the cost function (12), obtained by
a series of minimum searches starting with random initial
values. These local minima are then used to calculate an
average and variance of physical quantities, such as the
current. We consider the distribution of local minima with a
Boltzmann weight associated with an artificial “temperature,”
whereby the value of the cost function (12) is the associated
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FIG. 3. (Color online) Current j vs voltage φ for the model (1) with tight-binding leads and onsite interaction U = 12 �0 (left) and
U = 20 �0 (right). Results for three different auxiliary systems with NB ∈ {2,4,6} are displayed and compared with reference data from TEBD
(magenta dotted and ×) [77]. We plot the averaged mean values connected by lines together with error bars determined according to Sec. III A
and Appendix B. The additional data marks for U = 20 �0 are as follows: The circles for NB = 6 display j (φ) when considering the absolute
minimum in the fit (12). NB = 2,lc and NB = 4,lc present the results of a linear correction of the current values of the absolute minima as
described in Appendix C. The inset displays the difference �j of the calculated currents to the TEBD results.

“energy.” This artificial temperature for the Boltzmann weight
is chosen in such a way that the averaged spectral weight of
the hybridization function as a function of φ is as smooth
as possible. Details are outlined in Appendix B. A possible
pitfall, however, is that physical discontinuities, i.e., real phase
transitions could be overlooked. It is thus compulsory to
additionally investigate the results for the absolute minima
and for different bath setups carefully. This approach has a
certain degree of arbitrariness. However, we point out that it
only affects regions with large error bars in Fig. 3, i.e., large φ

and large U for which also other techniques are less accurate.

B. Current-voltage characteristics

After evaluating the interacting impurity Green’s function
of the physical system according to (5) with the self-energy
evaluated in Sec. II D, we are able to determine the steady-
state current. This is done with the help of the Meir-Wingreen
expression [116,136,137] in its symmetrized form, where we
have already summed over spin

j = i

∫ ∞

−∞

dω

2π
([γL(ω) − γR(ω)]G<(ω)

+ [pF,L(ω)γL(ω) − pF,R(ω)γR(ω)][GR(ω) − GA(ω)]),

(45)

γλ(ω) = −2|t ′λ|2Im[gR
λ (ω)] are the “lead self-energies” and

pF,λ(ω) = pF(ω − μλ) denotes the Fermi distribution of lead
λ with chemical potential μλ.

To quantify the accuracy of the method, we compare the
results for the current-voltage characteristics with quasiexact
reference data from TEBD [77]. We find very good agreement
for interaction strength U < 12 �0. Since in this paper we want
to benchmark the approach in “difficult” parameter regimes,
in the following, we will discuss U � 12�0 only. In Fig. 3 we
display data for U = 12 �0 and 20 �0. The data points and
error bars shown are obtained by using the averaging scheme
as described in Appendix B. For the universal physics at small
and medium bias voltages φ � 20 �0, the current as a function

of the auxiliary system size (NB ∈ {2,4,6}) converges rapidly
to the expected result. The convergence is even monotonic in
a broad region of the parameter space. The zero-bias response
is linear for all NB and approaches the results expected
from the Friedel sum rule [29] j (φ = 0+) = 2 e2

h
φ quickly

for increasing NB . For U = 12 �0 already the NB � 4 results
yield a good reproduction of the current in this bias regime.
For U = 20 �0 and φ � 20 �0, a larger difference between
the NB = 4 and 6 results is observed. Notice that also other
available methods do not yield a satisfactory result in this
parameter regime. In the lead-dependent high-bias regime,
the fit becomes more challenging and large variances appear
in the calculated quantities. This indicates the presence of
many competing local minima with similar values for the
cost function whose value tends to increase with increasing
φ. For φ � 40 �0, the densities of states of the left and the
right contacts do not overlap anymore and the current has
to vanish. This limit can not be exactly reproduced by the
proposed approach due to spurious long-range Lorentzian tails
present in the auxiliary Markovian environment. Nevertheless,
j (φ = 40 �0) approaches zero as one increases the number of
bath sites. This holds true for quantities obtained at the absolute
minimum of the cost function as well as for averaged ones.

To extrapolate our results to larger NB , a scheme for linear
corrections is discussed in Appendix C. Data for NB = 2,lc
and 4,lc, whereby “lc” denotes “linear correction,” is shown
in Fig. 3. For large U = 20 �0 and small- to medium-bias
voltages φ � 20 �0, a solid improvement towards the TEBD
reference values is observed (see inset Fig. 3). Correction
ratios r (see Appendix C) close to one indicate a good
applicability of the linear correction scheme. We find on
average r ≈ 0.75 for φ � 20 �0 (NB = 2,lc and 4,lc). In
the high-bias regime, however, the linear correction can not
be applied with large magnitude and r drops below 0.5
for NB = 2,lc. Nevertheless, the calculation of the effective,
auxiliary hybridization function �aux,r (ω) as described in
Appendix C successfully avoids an “overcorrection” of the
current values and automatically allows one to estimate the
reliability of the results.
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FIG. 4. (Color online) Single-particle spectral function at the impurity evaluated for NB = 6, different bias voltages φ, and U = 12 �0

(left) and U = 20 �0 (right). Data are obtained according to Sec. III A and Appendix B. Other parameters are as in Fig. 3.

Judging from the larger uncertainty from the averaging
procedure and the strong effects of the linear corrections,
we conclude that the high-bias regime is more sensitive to
the details of the fitted, auxiliary hybridization function. The
universal low- and medium-bias regimes are, however, very
well reproduced even with a small number of auxiliary bath
sites.

C. Nonequilibrium spectral function

The bias-dependent single-particle spectral function is
evaluated from the physical steady-state Green’s function of
the impurity A(ω) = − 1

π
Im[GR(ω)]. Results obtained using

NB = 6 for U = 12 �0 and 20 �0 are presented for the whole
bias range of interest in Fig. 4. Data for NB = 4 are similar, but
here the Kondo physics can not be reproduced as accurately as
in the case of NB = 6. Our approach does preserve the local
charge density 〈nf 〉 = ∑

σ
1
2 + 1

2

∫ ∞
−∞

dω
2π

Im[GK (ω)] = 1 and
magnetization 〈mf 〉 = 0 as well as the spectral sum rule [138].

The presented method reproduces qualitatively correctly
also the equilibrium physics at φ = 0 since A(ω) displays
a Kondo resonance at ω = 0 and two Hubbard satellites
at the approximate positions ω ≈ ±U/2. This renders the
application to equilibrium DMFT problems an interesting
perspective. The width and magnitude of the Kondo resonance
are discussed in comparison with (S)NRG data in Sec. III C 1.

Upon increasing the bias voltage, the Kondo resonance
splits up and two excitations are observed at the energies of
the Fermi levels of the leads [78,139,140]. For U = 12 �0,
the splitted resonances merge into the Hubbard bands at
approximately φ ≈ 15 �0 and can not be clearly identified
thereafter. In contrast, in the case of U = 20 �0, the resonances
overlap with the Hubbard satellites and can still be observed
in the spectrum A(ω) at higher voltages. Calculations with
increasing U in the high-bias regime φ ≈ 40 �0 have shown
the consistency of this effect and that a minimum value of
U ≈ 15 �0 is needed in order for the resonances at the Fermi
energies to be perceptible after having crossed the Hubbard
bands.

1. Comparison with scattering states numerical
renormalization group

We compare the computed spectral functions with results
obtained by means of SNRG [53]. For this purpose, we use a
flat DOS [Eq. (3)] for the leads, as in Ref. [53]. Focusing on the
low-bias regime and NB = 6, the obtained spectral functions
are depicted in Fig. 5. Compared with SNRG, our results do
not achieve the same accuracy in the low-energy domain, i.e.,
in the vicinity of ω ≈ 0. However, our data provide a better
resolution at higher energies. When inspecting the Kondo peak
in the equilibrium case φ = 0, our results do not fully fulfill
the Friedel sum rule [29,141,142]. Depending on parameters,
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FIG. 5. (Color online) Single-particle spectral function for a con-
stant DOS of the leads (3), with DWB = 20 �0 and U = 16 �0 and
different bias voltages φ (in units of �0). Results are obtained for
NB = 6 and at the absolute minimum of Eq. (12). For a comparison
with SNRG [53] [Fig. 2(a) therein], note that their � = 2 �0.

the height of the Kondo resonance is underestimated. This is
due to the fact that the imaginary part of the self-energy at
ω = 0 has a small finite value which is due to the Lorentzian
tails of the Markovian environment.

The resolution does not suffice to tell whether a two- or a
three-peak structure is present for very low-bias voltages φ �
2 �0. Nevertheless, one can say that the higher-bias regime
φ > 4 �0 is resolved more accurately and one is able to clearly
distinguish the excitations at the Fermi energies of the contacts
from the Hubbard satellites. The observed linear splitting is
consistent with experiments on nanodevices [139,140]. Within
second-order Keldysh PT [58] and QMC results [143], the
resonance does not split but is suppressed only. In fourth order
and in NCA it splits into two, which are located near the
chemical potentials of the two leads [58]. Other methods yield
a splitting with features slightly different in details: real-time
diagrammatics [144], VCA [78], imaginary potential QMC
[90], or scaling methods [145]. Overall, a good qualitative
agreement with the SNRG results is achieved which underlines
the reliability of the calculated spectral functions.

2. Linear correction of Green’s functions

Here, we consider the effect of a linear correction of the
Green’s functions, as outlined in Appendix C. In the left
panels (right panels) of Fig. 6, we show data for NB = 2
(NB = 4) including linear corrections (r = 1) for a high
interaction strength in the low-bias regime. We benchmark
to data obtained using NB = 6 without corrections.

For NB = 2 without linear corrections, the spectral function
of the auxiliary system does not feature excitations at the Fermi
energies of the contacts (ω = ±2 �0), which are present in
the NB = 6 data. Also, the spectra appear washed out. The
linearly corrected result, however, features not only the two
resonances at the appropriate energies, but also the shoulders
present in the reference data. Again, in the Keldysh Green’s
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FIG. 6. (Color online) Effects of the linear corrections of the
Green’s functions according to Apendix C (solid blue lines). The
dashed lines indicate the uncorrected G(ω) with the same NB , while
solid orange and light blue lines display results for larger NB for
comparison. Results are shown for a constant lead DOS [Eq. (3)]
with DWB = 20 �0, U = 16 �0, and φ = 4 �0.

function a large correction towards the more accurate NB = 6
results is observed. To highlight the fact that the improvement
of the linear correction is not only due to the inclusion of one
additional bath site, also a calculation for an auxiliary system
with NB = 3 is shown. Evidently, the NB = 3 spectral function
exhibits a large weight at low frequencies, but the resolution
is rather low and only a single, smeared out peak at ω = 0 �0

is observed. It clearly does not account for the splitting of the
Kondo resonance.

For NB = 4, a similar enhancement is found. Clearly, the
size of the corrections is much smaller. Especially in the
Keldysh component, the Green’s function for NB = 6 and for
the corrected NB = 4 system nearly coincide. In general, the
difference between the NB = 6 and the NB = 4 calculations
(raw and corrected) is quite small, so that the presented spectral
functions in Fig. 5 for larger values of φ � 12 �0 can be
assumed to be quite accurate.

Overall, the linear correction enables a vast improvement
in the universal low- and medium-bias regimes for all U ,
which becomes especially important for large U . For large-bias
voltages, when lead band effects become prominent, the linear
correction is more challenging (see also Sec. III B).

IV. CONCLUSIONS

We have presented a numerical approach to study correlated
quantum impurity problems out of equilibrium [51]. The
auxiliary master equation approach presented here is based
on a mapping of the original Hamiltonian to an auxiliary
open quantum system consisting of the interacting impurity
coupled to bath sites as well as to a Markovian environment.
The dynamics of the auxiliary open system is controlled by
a Lindblad master equation. Its parameters are determined
by a fit to the impurity-environment hybridization function.
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This has many similarities to the procedure used for the
exact-diagonalization dynamical mean field theory impurity
solver, but has the advantage that one can work directly
with real frequencies, which is mandatory for nonequilibrium
systems.

We have illustrated how the accuracy of the results can
be estimated, and systematically improved by increasing the
number of auxiliary bath sites. A scheme to introduce linear
corrections has been devised. We presented in detail how
the nonequilibrium Green’s functions of the correlated open
quantum system are obtained by making use of non-Hermitian
Lanczos diagonalization in a superoperator space. These
techniques make the whole method fast and efficient as well
as particularly suited as an impurity solver for steady-state
dynamical mean field theory [51].

In this work, we have applied the approach to the single-
impurity Anderson model, which is one of the paradigmatic
quantum impurity models. We have analyzed in detail the
systematic improvement of the current-voltage characteristics
as a function of the number of auxiliary bath sites. Already for
four auxiliary bath sites, results show a rather good agreement
with quasiexact data from time-evolving block decimation [77]
in the low- and medium-bias regimes. In the high-bias regime,
the current deviates from the expected result with increasing
interaction strength. However, we have shown how to estimate
the reliability of the data from the deviation of the hybridization
functions and how results can be corrected to linear order in
this deviation. The impurity spectral function obtained in our
calculation features a linear splitting of the Kondo resonance
as a function of bias voltage. Good agreement with data
from scattering-state numerical renormalization group [53]
was found.

Applications of the presented method to multiorbital
correlated impurities or correlated clusters is in principle
straightforward, although numerically more demanding. Such
systems are themselves of interest as models for transport
through molecular or nanoscopic objects and as solvers
for nonequilibrium cluster dynamical mean field theory.
In this case, a larger number of auxiliary sites might be
necessary to obtain a good representation of the various
hybridization functions. For this situation, one should use
numerically more efficient methods to solve for larger cor-
related open quantum systems, such as matrix product states
and density matrix renormalization group, possibly combined
with stochastic wave-function approaches [146–148], sparse
polynomial space [149,150], or configuration interaction
approaches [151]. A more accurate determination of low
energy, and possibly critical properties, might be achieved by
a combination with renormalization group iteration schemes,
similar to the numerical renormalization group. Work along
these lines is in progress.

Although we have presented results for the steady state,
where the method is most efficient, also extensions to time-
dependent phenomena provide an interesting and feasible
perspective. While other approaches, such as time-dependent
density matrix renormalization group [73] or quantum Monte
Carlo [49] are certainly more accurate at short times, the
present approach could be used to estimate directly slowly
decaying modes by inspecting the behavior of the low-lying
spectrum of the Lindblad operator.
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APPENDIX A: NUMERICAL CALCULATION OF THE
AUXILIARY INTERACTING GREEN’S FUNCTION

In this section, we present details of the numerical eval-
uation of the auxiliary Green’s function, as described in
Sec. II D 2. We focus on large Hilbert spaces for which
a sparse-matrix approach is mandatory. To determine the
steady state, which is the right-sided eigenstate of L̂ with
eigenvalue zero, one can make use of a shift-and-invert Arnoldi
procedure [152–155]. The spectrum of L̂ [Eq. (42)] has the
property that Im(�n) < 0 for all eigenvalues �n (except the
steady state �0 = 0). Therefore, given a small shift s > 0,
the eigenvector of (L̂ − is1̂1)−1 with the largest eigenvalue
is the steady state. Since L̂ is non-Hermitian, the three-term
recurrence of the ordinary Lanczos scheme [120] does not
apply, and one has to resort to an Arnoldi scheme instead.
To construct the corresponding Krylov space, a system of
equations (L̂ − is1̂1) |φ̃n+1〉 = |φn〉 has to be solved in each
step. For the problem at hand, we found that this can be
done most efficiently by combining a stabilized biconjugate
gradient method with an incomplete LU decomposition as
preconditioner [156,157]. Despite using sparse-matrix meth-
ods, the memory requirements of this approach are rather high
compared to the schemes presented below.

A second possible route to determine the steady state |ρ∞〉
is to perform an explicit time evolution. For unitary time
evolutions, a well-established method relies on the Lanczos
scheme to construct an approximate time evolution operator
[158]. Such an approach can be adapted to the nonunitary
case by using a two-sided Lanczos scheme (see below), or
also by employing an Arnoldi procedure [155]. Since L̂ is
non-Hermitian, one can equally well use a simpler backward
or forward Euler scheme [133] to discretize the nonunitary
time evolution operator. These approaches may not yield a
highly accurate time evolution of |ρ(t)〉, but can nevertheless
determine the steady state within a moderate number of steps.
As for the shift-and-invert approach above, to solve the implicit
update of |ρ(tn+1)〉 at time step tn in the case of the backward
Euler, a biconjugate gradient routine has proven to be effective.
For the forward time integration, a Runge-Kutta method
of second order is sufficient, with the great advantage that
only matrix-vector multiplications are needed, which reduces
memory requirements. In practice, for the considered cases
it was found that for not too large systems (NB < 6), the
shift-and-invert Arnoldi procedure is best suited, whereas a
forward time integration is advantageous for the case NB = 6.

Once the steady state is determined, Green’s functions can
be effectively calculated by employing a two-sided Lanczos
scheme [152,159–163]. We therefore express the right- and
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left-sided eigenvectors of L̂ in Eq. (43) in a Krylov space basis

|Rn〉 =
∑

k

Ukn

∣∣φk
R

〉
, 〈Ln| =

∑
k

(U−1)nk

〈
φk

L

∣∣ .

Here, we have omitted the Nσ − Ñσ symmetry sector index
for the sake of clarity. The biorthogonal Lanczos vectors〈

φk
L

∣∣φk′
R

〉 = δkk′

are determined by the three-term recurrence∣∣φn+1
R

〉 = 1

cn+1

(
L̂

∣∣φn
R

〉 − en

∣∣φn
R

〉 − kn

∣∣φn−1
R

〉 )
,

〈
φn+1

L

∣∣ = 1

c∗
n+1

( 〈
φn

L

∣∣ L̂ − en

〈
φn

L

∣∣ − k∗
n

〈
φn−1

L

∣∣ ),

with

en = 〈
φn

L

∣∣ L̂ ∣∣φn
R

〉
,

kn = 〈
φn−1

L

∣∣ L̂ ∣∣φn
R

〉 = (〈
φn

L

∣∣L̂ ∣∣φn−1
R

〉 )∗
,

and a normalization constant cn such that 〈φn
L|φn

R〉 = 1. One
has a certain degree of freedom in the choice of cn and kn

due to the relation k∗
n = cn, which is fulfilled, for example, by

kn = k∗
n = cn.

In the Krylov basis, L̂ takes on a tridiagonal form Tnm =
〈φn

L| L̂ |φm
R 〉 with the matrix elements Tnn = en, Tn−1n = kn,

and Tnn−1 = k∗
n. When n + 1 becomes as large as the degree of

the minimal polynomial of L̂, the eigenvalues and eigenvectors
of T represent those of L̂ [152,160]. If one truncates the
Krylov basis, this statement holds still approximately true,
especially for the largest eigenvalues in magnitude. Analogous
to the Hermitian case [164], an exponential convergence of
the eigenspectrum of T towards the one of L̂ is observed,
which is of particular importance for the calculation of Green’s
functions. A peculiarity of the two-sided Lanczos scheme is
that not every Krylov subspace guarantees that Im(�n) < 0
for all eigenvalues �n of T . In order to obtain the appropriate
pole structure for the estimated Green’s functions, one has to
check Im(�n) < 0 together with convergence criteria. In cases
in which Im(�n) < 0 can not be fulfilled exactly, it has to
be ensured at least that the corresponding weights of these
eigenvalues are negligible.

For the calculation of the Green’s functions needed here it
is convenient to choose appropriate initial vectors, which are
in the case of the greater Green’s function (43)∣∣φ0

R

〉 = 1

c0
(d†

f |ρ∞〉), 〈
φ0

L

∣∣ = 1

c∗
0

(〈I | df ).

When denoting by �n and Uk,n the eigenvalues and right-sided
eigenvectors of T , respectively, Eq. (43) can be cast into the
form

G>(ω) =
∑
n,k,k′

UknU
−1
nk′

ω − �n

〈I | df

∣∣φk
R

〉 〈
φk′

L

∣∣ d†
f |ρ∞〉

−
∑
n,k,k′

(
UknU

−1
nk′

)∗

ω − �∗
n

(〈I |df

∣∣φk
R

〉 〈
φk′

L

∣∣ d†
f |ρ∞〉)∗

= |c0|2
∑

n

U0nU
−1
n0

ω − �n

− |c0|2
∑

n

(
U0nU

−1
n0

)∗

ω − �∗
n

.

APPENDIX B: AVERAGING SCHEME FOR MULTIPLE
LOCAL MINIMA

This section contains details on the approach we used to de-
termine the artificial “temperature” for the Boltzmann weights
as described in Sec. III A. We consider the situation that a
set of local minima for which Eq. (12) becomes stationary
is known. Let us specify by ay(φ) the vector of parameters
{Eμν,�

(κ)
μν }y corresponding to one certain local minimum for a

set of model parameters, labeled by y. In order to quantify the
spectral weight distribution of the corresponding hybridization
function �aux[ω; ay(φ)], we define

mR
2 [ay(φ)] =

∫ ωc

−ωc

Im
{
�R

aux[ω; ay(φ)]
}
ω2dω,

mK
3 [ay(φ)] =

∫ ωc

−ωc

Im
{
�K

aux[ω; ay(φ)]
}
ω3dω,

which are similar to the second and third moments of
�R

aux and �K
aux, respectively. For the Keldysh component,

a definition analogous to the first moment would yield the
desired information as well but the choice above has been
found to be more sensitive to details of �K

aux. The value of the
corresponding cost function χ [ay(φ)] of the yth minimum is
used as an artificial “energy” and enables one to define weights
when making use of Boltzmann’s statistic

Py(φ,β) = 1

Z
e−βχ[ay (φ)],

where we introduced an artificial “temperature” β−1. For each
bias voltage separately, we are then able to calculate averaged
quantities

mR
2 (φ,β) =

∑
y

Py(φ,β)mR
2 [ay(φ)],

as well as mK
3 (φ,β) and χ (φ,β) in an analogous manner.

The quantities mR
2 (φ,β) and mK

3 (φ,β) provide an estimate
of the center of the spectral weight for the averaged set of
hybridization functions for each bias voltage φ.

Our goal is that these quantities vary in a smooth way
when changing the bias voltage. To achieve this, we employ a
minimum curvature scheme [133], meaning that we optimize
the function

vc(β) =
∫ φmax

0

{
wR

∣∣∣∣ ∂2

∂φ2
mR

2 (φ,β)

∣∣∣∣
2

+ wK

∣∣∣∣ ∂2

∂φ2
mK

3 (φ,β)

∣∣∣∣
2

+wχ

∣∣∣∣ ∂2

∂φ2
χ (φ,β)

∣∣∣∣
2 }

dφ,

with respect to β. This determines the optimal artificial
temperature, which ensures that the averaged cost function as
well as the averaged spectral weight are as smooth functions
of φ as possible, given the set of calculated minima {ay(φ)}.
As in many optimization problems, an arbitrariness exists in
the definition of the quantities mR

2 (φ,β) and mK
3 (φ,β), as well

as in choosing the values of the weights wR , wK , and wχ . In
our case, all of the weights were chosen to be equal to one in
units of t .

An improvement of the results, to a certain degree at least,
could be expected when making use of extensions like a
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bias dependent β(φ). This has not been considered in this
work since already a single variable β provided quite smooth
observables. As mentioned in the main text, in any case, it
is obligatory to examine besides the averaged results also the
ones for the absolute minima and/or for different averaging
schemes, in order to avoid that physical discontinuities are
averaged out. We stress that this approach has to be taken with
due care since it is in some aspects arbitrary. However, it is
useful to give an estimate of the error of the calculation, and
can certainly identify regions in parameter space where the
error is negligibly small.

APPENDIX C: LINEAR CORRECTIONS

In this section, we present a scheme to correct physical
quantities up to linear order in the difference [165]

D(ω) = �ex(ω) − �aux(ω)

between the auxiliary and the exact hybridization functions.
Although D(ω) decreases rapidly with increasing number of
auxiliary bath sites NB , the size of the Hilbert space also
increases exponentially with NB . This poses a clear limit to
the maximum value of NB .

The idea is based on the fact that each physical quantity
O[ � ] is a functional of �(ω). Its exact value is, thus,
obtained as O[ �ex]. For a finite NB there will always be
a nonzero value of D(ω) at some energies, so we will always
obtain an approximate value O[ � aux]. A linear correction
can be obtained by evaluating numerically the functional
derivative of O[ � ]. Strictly speaking, considering that only
Im[�R(ω)] and Im[�K (ω)] are independent functions, O is
a functional O[Im(�R),Im(�K )]. Suppose one knows the
functional derivatives

δO[ � ]

δ Im[�α(ω)]
, α ∈ {R,K}

then to linear order in D(ω)

O[ �ex]≈O[ � aux]

+ r
∑

α∈{R,K}

∫
δO[ � ]

δ Im[�α(ω0)]

∣∣∣∣
�=�aux

Im[Dα(ω0)] dω0

+O(D2), (C1)

with r = 1.
We evaluate the functional derivative numerically in the

following way. One first evaluates O[ � aux] at the optimum
�aux(ω). Then, O is evaluated at a “shifted” Im[�α(ω)],
obtained by adding a delta function peaked around a certain
energy ω0:

δω0 (ω) ≡ δ(ω − ω0),

multiplied by a small coefficient ε. The functional derivatives
are then approximated linearly, by making use of the equations

δO[ � ]

δ Im[�R(ω0)]
± 2

δO[ � ]

δ Im[�K (ω0)]

≈ 1

ε

(
O[Im(�R),Im(�K )]

−O[Im(�R) − εδω0 ,Im(�K ) ∓ 2εδω0 ]
)
, (C2)

which become exact in the ε → 0 limit.
A (quasi)delta-peak correction εδω0 to �α(ω) can be

obtained by attaching an additional bath site (NB + 1) with
onsite energy ENB+1,NB+1 = ω0 directly to the impurity site
with a hopping ENB+1,f = √

ε/π . The sum of �
(1)
NB+1,NB+1

and �
(2)
NB+1,NB+1 is proportional to the width of δω0 and, thus,

should be taken as small as possible. In practice, one uses a
discretization of the integration over ω0 in Eq. (C1) and the
width of the delta peaks has to be adjusted accordingly. Setting
one of the components �κ

NB+1,NB+1 to zero yields a peak in the
Keldysh component with a coefficient ±2ε, respectively, as
used in Eq. (C2).

Notice that the functional derivative (C2) amounts to
carrying out two many-body calculations for each point ω0 on
a system with NB + 1 bath sites. However, it is not necessary
to repeat the calculation for each physical quantity of interest.
In the linearly corrected current values presented in Sec. III B,
a ω0 mesh of 200 points was used, whereby this number is
likely to be reduced when optimizing the method.

Strictly speaking, the coefficient r in Eq. (C1) should be 1.
However, for cases in which the linear correction is not small,
this could produce an “overcorrection.” In order to avoid this,
we introduce a smaller ratio r which is determined as follows:
We evaluate the corrected self-energy at each ω via Eq. (C1)
and O = �(ω) with some value of r < 1 and denote it �r (ω).
We do the same for the Green’s function of the auxiliary system
and denote it Gr (ω). Using Eqs. (5) and (6), we now have an
estimate of an effective r-dependent auxiliary hybridization
function of the linearly corrected system via

�aux,r (ω) ≡ g−1
0

(ω) − G−1
r (ω) − �r (ω).

In principle, for r = 1 this gives �ex(ω) up to O(D2). In
practice, for finite D(ω), one can introduce a cost function χ (r)
analogous to Eq. (12) to minimize the difference |�aux,r (ω) −
�ex(ω)| as a function of r . We checked that for the case
in which the linear correction is a good approximation, the
minimum occurs at r = 1. If the minimum of χ (r) is situated
at some value rmin < 1, then one corrects also other physical
quantities according to Eq. (C1) with the same r = rmin.

Alternatively to the correction (C1) discussed above, one
can use the numerical functional derivative evaluated via
Eq. (C2) in order to estimate the sensitivity of the value of
O with respect to variations of Im[�α

aux(ω)] as a function of
ω and α. This is of use, in a second step, to adjust the weight
function Wα(ω) in Eq. (12), so that more sensitive ω regions
acquire a larger weight.
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J. König, and M. Büttiker, Phys. Rev. B 85, 075301 (2012).
[101] L. M. Falicov and J. C. Kimball, Phys. Rev. Lett. 22, 997

(1969).
[102] M. Eckstein and M. Kollar, Phys. Rev. Lett. 100, 120404

(2008).
[103] M. Eckstein, M. Kollar, and P. Werner, Phys. Rev. B 81, 115131

(2010).

[104] S. Okamoto, Phys. Rev. Lett. 101, 116807 (2008).
[105] C. Aron, G. Kotliar, and C. Weber, Phys. Rev. Lett. 108, 086401

(2012).
[106] C. Gramsch, K. Balzer, M. Eckstein, and M. Kollar, Phys. Rev.

B 88, 235106 (2013).
[107] H. J. Carmichael, Statistical Methods in Quantum Optics:

Master Equations and Fokker-Planck Equations, Vol. 1 of Texts
and Monographs in Physics (Springer, Singapore, 2002).

[108] In our convention, lowercase g denotes Green’s functions of the
system where the impurity is disconnected from the reservoirs,
while capital G denotes Green’s functions of the connected
system.

[109] Conventions for branch cuts are such that gR is causal.
[110] E. N. Economou, Green’s Functions in Quantum Physics

(Springer, Heidelberg, 2006).
[111] Note that in the present formalism, temperature would enter

through the hybridization function �K (ω) only.
[112] This is in general true unless the system has bound states.
[113] L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics:

Green’s Function Methods in Equilibrium and Nonequilibrium
Problems (Addison-Wesley, Redwood City, CA, 1962).

[114] J. Schwinger, J. Math. Phys. 2, 407 (1961).
[115] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1965) ,[JETP 20,

1018 (1965)].
[116] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and

Optics of Semiconductors (Springer, Heidelberg, 1998).
[117] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[118] A. Kamenev, Field Theory of Non-Equilibrium Systems

(Cambridge University Press, Cambridge, 2011).
[119] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[120] C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1951).
[121] See Ref. [87].
[122] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, England, 2009).
[123] Operators are denoted by a hat ô, while superoperators acting
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[143] L. Mühlbacher, D. F. Urban, and A. Komnik, Phys. Rev. B 83,

075107 (2011).
[144] J. König, J. Schmid, H. Schoeller, and G. Schön, Phys. Rev. B

54, 16820 (1996).
[145] A. Rosch, J. Paaske, J. Kroha, and P. Wölfle, Phys. Rev. Lett.
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3.2. Publication 2: MPS impurity solver

3.2.1. Preamble

The article titled Auxiliary master equation approach within matrix product states: Spec-
tral properties of the nonequilibrium Anderson impurity model was published in Physical
Review B, 92, 125145, September 2015 with an editor’s suggestion [2].

This work was carried out by Antonius Dorda (AD) as first author and Martin Ganahl
(MG) as co-author, under the supervision of Hans Gerd Evertz (HE), Wolfgang von der
Linden (WL), and Enrico Arrigoni (EA). EA initiated the collaboration, put forward
the idea of making use of matrix product states (MPS) to solve the auxiliary impurity
problem more efficiently, and guided actively the course of this work. The original C++
code package for MPS was previously developed by MG, which was then extended by
AD in order to apply it within AMEA. In particular, the code had to be extended to
the treatment of non-Hermitian generators in the time evolution, the particular Lindblad
operator, measurement objects and initial states were implemented, and different operator-
splitting techniques were included and tested in order to reduce the Trotter error. MG
assisted in debugging and profiling, and under the guidance of HE a careful analysis of the
errors in the MPS time evolution was conducted by AD. AD, EA and WL investigated
different strategies in the mapping procedure, which lead to the consideration of filled and
empty bath chains and could significantly reduce the build-up of bipartite entanglement
entropy. Secondly, AD, HE, WL, and EA worked on minimization methods for the fit
in order to improve the mapping procedure. Some gradient-based and especially Monte
Carlo methods were implemented and tested. In the end, a parallel tempering approach
with feedback optimization has proven to be most efficient. For this AD implemented a
general C++ code that was later on also incorporated in the ED-solver for DMFT, see
Sec. 3.3 and 3.4. All of the calculations presented in the article were performed by AD.
After a literature research, AD wrote a first version of the manuscript which was then
revised by EA, HE, WL, and MG. All authors contributed to discussing results and the
manuscript itself.

3.2.2. Original article

(see next page)
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Auxiliary master equation approach within matrix product states: Spectral properties
of the nonequilibrium Anderson impurity model

Antonius Dorda,1,* Martin Ganahl,1,2 Hans Gerd Evertz,1 Wolfgang von der Linden,1 and Enrico Arrigoni1,†
1Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria

2Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada
(Received 15 July 2015; published 24 September 2015)

Within the recently introduced auxiliary master equation approach it is possible to address steady state
properties of strongly correlated impurity models, small molecules, or clusters efficiently and with high accuracy.
It is particularly suited for dynamical mean field theory in the nonequilibrium as well as in the equilibrium
case. The method is based on the solution of an auxiliary open quantum system, which can be made quickly
equivalent to the original impurity problem. In its first implementation a Krylov space method was employed.
Here, we aim at extending the capabilities of the approach by adopting matrix product states for the solution of
the corresponding auxiliary quantum master equation. This allows for a drastic increase in accuracy and permits
us to access the Kondo regime for large values of the interaction. In particular, we investigate the nonequilibrium
steady state of a single-impurity Anderson model and focus on the spectral properties for temperatures T below
the Kondo temperature TK and for small bias voltages φ. For the two cases considered, with T ≈ TK/4 and
T ≈ TK/10, we find a clear splitting of the Kondo resonance into a two-peak structure for φ close above TK . In
the equilibrium case (φ = 0) and for T ≈ TK/4, the obtained spectral function essentially coincides with the one
from numerical renormalization group.

DOI: 10.1103/PhysRevB.92.125145 PACS number(s): 71.15.−m, 72.15.Qm, 73.21.La, 73.63.Kv

I. INTRODUCTION

The equilibrium properties of the single-impurity An-
derson model (SIAM) and the associated Kondo model
[1–3], originally devised in the process of investigating metal
hosts with dilute magnetic impurities [4–6], are nowadays well
understood [7,8]. Renormalization group (RG) methods pro-
vided the first perturbative analyses [9], and especially the de-
velopment of Wilson’s numerical RG (NRG) [10] allowed one
to properly capture the universal low-energy physics, governed
by an exponentially small energy scale, the Kondo temperature
TK [8]. The field of correlated impurity models has gained re-
newed interest due to novel experimental realizations in quan-
tum dots [11–15], single-molecule transistors [16–20], and
from a theoretical point of view, due to its importance for dy-
namical mean field theory (DMFT) [8,21–26]. The extension
of DMFT to the nonequilibrium case can be carried out within
the Keldysh formalism [27–29]. Nonequilibrium DMFT and
different applicable impurity solvers have been thoroughly
discussed in other work; see for instance Refs. [29–37].

In the present study we want to focus on the physics
of the impurity problem out of equilibrium itself, with an
implementation of the auxiliary master equation approach
(AMEA) [35,36] based on matrix product states (MPS).
Already in a first study, where Krylov space methods were
employed [36], AMEA has proven to feature a systematically
improvable accuracy and to yield a well-defined Kondo peak
in equilibrium together with a splitting in the nonequilibrium
case. However, the exponential scaling of Krylov space
methods with system size sets a “hard limit” to the achievable
accuracy, and thus to the lowest temperatures accessible. The
MPS extension presented here turns out to be crucial in

*dorda@tugraz.at
†arrigoni@tugraz.at

order to achieve highly accurate results in the Kondo regime
down to low temperatures and up to large interactions. In the
equilibrium case, the accuracy of our results becomes even
comparable to NRG.

Specifically, we investigate the nonequilibrium steady state
dynamics of a SIAM, which is driven by the coupling to
two leads at different chemical potentials, caused by an
external bias voltage φ. Impurity models in such a setup
were considered already by many groups, numerically as
well as analytically [38–40]. To give a brief nonexhaustive
overview, different techniques employed are the noncrossing
approximation [41–43], real-time diagrammatic methods [44],
Keldysh perturbation theory [45], Keldysh effective field
theory [46,47], dual fermions [48,49], perturbative RG [50,51],
flow equations [52,53], functional RG [54,55], real-time
RG [56–59], time-dependent density matrix RG [60–63],
NRG [64–66], Monte Carlo methods [67–69], as well as cluster
approaches [70]. The properties of the correlated impurity have
been established in certain limits, for example for high temper-
atures T � TK or high biases φ � TK , where the Kondo effect
is strongly suppressed by decoherence and the problem reduces
to a weak-coupling one [43,53,57,71–73]. A splitting of the
Kondo peak in the spectral function was found at sufficiently
high bias voltages and low T , with a two-peak structure pinned
to the chemical potentials of the leads [41–45,51,53,64,68–70].
In the other limit φ � TK and T � TK , linear response
as well as Fermi liquid theory are applicable [49,58,74,75].
Nevertheless, the intermediate and low-energy nonequilibrium
regime, where both T and φ are of the order of and especially
below TK , remains challenging and the spectral properties
could not yet be completely resolved. Work in this direction
has for example been done in Refs. [64,68,69]. However, the
extension of NRG to the nonequilibrium case still leaves open
questions [76], and the Monte Carlo approaches, even though
numerically exact, are either limited to relatively high tempera-
tures and short times, or involve a demanding double analytical

1098-0121/2015/92(12)/125145(13) 125145-1 ©2015 American Physical Society
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continuation [77,78]. With the work presented here, we want to
contribute to these findings and present well-resolved spectral
data for cases where both T � TK and φ � TK .

II. MODEL AND METHOD

The basic idea of AMEA is to map a general correlated
impurity model in or out of equilibrium, here referred to as the
physical impurity model (IMph), onto an appropriately chosen
auxiliary one (IMaux), which is small enough to be solvable
precisely by numerical techniques. The self-energy of IMaux

serves then as an approximation to the one of IMph. Specifi-
cally, IMaux is modeled by an open quantum system described
by a Lindblad equation, which consists of a finite number of
bath sites and additional Markovian environments. In the map-
ping procedure, the bath parameters of IMaux are optimized in
order to reproduce the dynamics of IMph as closely as possible.
By increasing the number of bath sites NB , more optimization
parameters are available and a convergence (typically expo-
nential) towards the exact solution of IMph is achieved. The
mapping is formulated in terms of the hybridization function of
IMaux, which is obtained through a single-particle calculation,
and the many-body problem is solved thereafter.

AMEA itself and a solution strategy for the correlated
IMaux based on exact diagonalization (ED) was presented in
detail in Refs. [35,36]. Here, we make use of MPS in order
to solve for the correlation functions, which enables us to
treat auxiliary systems with a larger number of bath sites. In
the following we briefly summarize the governing equations
in AMEA and point out modifications in the construction of
IMaux favorable for an MPS treatment. After that, the MPS
implementation is discussed.

A. Keldysh Green’s functions

In general, for nonequilibrium situations Green’s functions
are conveniently defined on the Keldysh contour [79–84].
Since we are particularly interested in the long-time limit,
where a steady state is reached, time translational invariance
applies and the Keldysh Green’s functions can be written in
the frequency domain

G(ω) =
(

GR(ω) GK (ω)
0 GA(ω)

)
, (1)

with GA = (GR)†, and we denote by an underscore · · · a 2 ×
2 object in Keldysh space. Only in an equilibrium situation
the Keldysh component is related to the retarded one via the
fluctuation dissipation theorem

GK (ω) = 2i[1 − 2pFD(ω,μ,T )]Im{GR(ω)}, (2)

where pFD(ω,μ,T ) represents the Fermi-Dirac distribution. In
contrast, in a general nonequilibrium situation a distribution
function is not known a priori and the Keldysh and the retarded
component have to be considered as independent functions.

It is convenient to introduce the steady state lesser and
greater Green’s functions

G<(t) = i 〈c†(t)c〉 , G>(t) = −i 〈c(t)c†〉 , (3)

for generic fermionic creation/annihilation operators c†/c,
which are related to GR and GK by

GR(ω) − GA(ω) = G>(ω) − G<(ω) = −2iπA(ω),

GK (ω) = G>(ω) + G<(ω), (4)

and A(ω) is the spectral function. Throughout this work we
consider solely steady state expectation values and denote
them in compact notation by 〈. . .〉; cf. Eq. (3).

B. Physical impurity model

In this work, we consider for IMph a single-impurity
Anderson model in a nonequilibrium setup, given by an im-
purity Hamiltonian Himp, two noninteracting fermionic leads
representing the electronic reservoir Hres, and an impurity-
reservoir coupling Hcoup:

Hph = Himp + Hres + Hcoup. (5)

The correlated impurity consists of a single level with energy
εd and on-site Hubbard interaction U ,

Himp = εd

∑
σ∈{↑,↓}

d†
σ dσ + U

(
d
†
↑d↑ − 1

2

)(
d
†
↓d↓ − 1

2

)
, (6)

where d†
σ /dσ are fermionic creation and annihilation operators

on the impurity site. The reservoir Hamiltonian can be written
in terms of the energy levels ελk and potentials ελ for the two
leads λ,

Hres =
∑

λ∈{L,R}

∑
kσ

(ελ + ελk)a†
λkσ aλkσ , (7)

and the impurity-reservoir coupling is given by

Hcoup = 1√
Nk

∑
λkσ

t ′λ(a†
λkσ dσ + H.c.), (8)

with a
†
λkσ /aλkσ representing creation and annihilation opera-

tors for lead electrons.
Throughout this work we consider the particle-hole sym-

metric case with εd = 0, t ′L = t ′R , εLk = εRk . An externally
applied bias voltage φ results in an antisymmetrical shift of
the chemical potentials μL/R = ±φ

2 . In Sec. III C we further
consider for the on-site energies the case εL/R = ±φ

2 , whereas
in the rest of the work the voltage does not shift the lead ener-
gies. This is irrelevant for φ much smaller than the bandwidth.

The Green’s function of IMph is given by the Dyson
equation

G−1
ph (ω) = g−1

0
(ω) − �ph(ω) − 	ph(ω). (9)

Here, g
0

denotes the noninteracting Keldysh Green’s function

of the decoupled impurity, i.e., gR
0 = (ω − εd )−1, and (g−1

0
)K

can be neglected. The hybridization function �ph is given by
the sum of contributions from the two leads

�ph(ω) =
∑

λ

t ′λ
2
g

λ
(ω), (10)

where g
λ
(ω) denote lead Green’s functions at the contact point

in the decoupled case. Except in the calculations presented in
Sec. III C, we consider throughout this work a flat band model
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with the retarded component of g
λ
(ω) given by

−Im
{
gR

λ (ω)
} = π

2D

(D − |ω|), (11)

where we choose the hybridization strength � = t ′λ
2
π/D as

unit of energy and take D = 10 �. The real part is determined
via the Kramers-Kronig relation. For the fit in the mapping
procedure (see Sec. II D) it is of advantage to deal with smooth
functions of ω, so that we introduce in Eq. (11) a smearing of
the cutoffs in the Heaviside function, determined by Fermi
functions pFD(ω,±D,0.5 �) with an artificial temperature
0.5 �. Since this modification is well outside the scale of the
impurity energies, it does not affect the low-energy physics.

The decoupled leads are in equilibrium, so that the Keldysh
component gK

λ (ω) of each lead is given by Eq. (2) with the
corresponding chemical potential μλ. The temperature T is
taken to be the same in both of the leads. Notice that the
Keldysh component is the only T -dependent quantity and
results for different T shown below differ only in the smearing
of the Fermi edge in gK

λ (ω). In particular, we are interested
in temperatures close to and below the Kondo temperature
TK . As for other methods, the low-temperature regime is most
challenging (cf. Sec. II D and Appendix B). For a Hubbard
interaction of U = 6 �, as considered throughout the work,
one finds for the flat band model TK ≈ 0.2 � [8,85–88].

The remaining unknown quantity in Eq. (9) is the self-
energy 	ph(ω), which cannot be determined exactly since IMph

is interacting and of infinite size. This is evaluated by means
of the mapping to IMaux.

C. Auxiliary impurity model

For IMaux we take an open quantum system of finite size,
embedded in Markovian environments and described by a
Lindblad equation for the system density operator ρ:

d

dt
ρ = Lρ. (12)

The Lindblad superoperator L = LH + LD consists of a
unitary part LH ρ = −i[Haux,ρ] and the dissipator LD as
described below [89].

Additionally to the original impurity site we consider NB

bath sites arranged in a linear geometry. For convenience we
choose NB even and the impurity site at the center, specified
by the index f . The Hamiltonian for IMaux is given by

Haux =
∑
ijσ

Eij c
†
iσ cjσ + Unf ↑nf ↓. (13)

Here nf σ = c
†
f σ cf σ with c

†
iσ /ciσ the fermionic cre-

ation/annihilation operators and the (NB + 1) × (NB + 1)
matrix E couples only nearest neighbor (n.n.) terms; i.e.,
it is tridiagonal in the chosen geometry. To end up with a
noninteracting bath we allow at most for Lindblad operators
that are linear in c

†
iσ /ciσ . The dissipator is then given by [89]

LDρ = 2
∑
ijσ

�
(1)
ij

(
cjσ ρc

†
iσ − 1

2
{ρ,c

†
iσ cjσ }

)

+ 2
∑
ijσ

�
(2)
ij

(
c
†
iσ ρcjσ − 1

2
{ρ,cjσ c

†
iσ }

)
. (14)

Both matrices of coupling constants �(1) and �(2) are symmet-
ric and positive definite [90].

A key aspect in AMEA is that the bath parameters in the
Lindblad equation are not determined within conventional
Born-Markov approximations [91–93] but are only used as
fit parameters to optimally reproduce �ph(ω) by �aux(ω); see
Sec. II D.

Once the parameters of IMaux are determined, the many-
body problem is solved (cf. Sec. II E) in order to obtain the
interacting Green’s function

G−1
aux(ω) = g−1

0
(ω) − �aux(ω) − 	aux(ω). (15)

At this point it is convenient to set 	ph(ω) = 	aux(ω) = 	(ω),
so that we obtain from Eq. (9) a very accurate result for
the Green’s function of IMph. In this way, the U = 0 limit
is recovered exactly.

D. Mapping procedure

In order to have a faithful representation of the dynamics of
IMph by IMaux, we need to fulfill �aux(ω) ≈ �ph(ω) as closely
as possible. For local quantities and correlation functions on
the impurity, the influence of the bath is completely determined
by the hybridization function only, independently of the
specific bath geometry. Therefore, the mapping becomes exact
in the limit �aux(ω) ≡ �ph(ω). To achieve �aux(ω) ≈ �ph(ω),
we minimize the mean-squared error between them as a
function of the bath parameters in the Lindblad equation, i.e.,
the matrices E, �(1), and �(2).

It is important to stress that a single-particle calculation
is sufficient to determine �aux(ω), for which the Green’s
functions read [35,36]

GR
0 (ω) = [ω − E + i(�(1) + �(2))]−1,

(16)
GK

0 (ω) = 2iGR
0 (ω)(�(2) − �(1))GA

0 (ω).

Here, the inversion and multiplications are carried out for
matrices in the site indices. The hybridization function is given
in terms of the elements with impurity index f :

�R
aux(ω) = 1/gR

0 (ω) − 1/GR
0ff (ω),

(17)
�K

aux(ω) = GK
0ff (ω) /

∣∣GR
0ff (ω)

∣∣2
.

A single evaluation of the hybridization function is at most
of O(N3

B) and thus not time consuming. However, for a
large number of bath parameters (�20) the multidimensional
optimization problem may become demanding and appropri-
ate methods are needed. In particular, a parallel tempering
approach has proven to be effective, which is discussed in
some more detail in Appendix A.

Beyond the requirement �aux(ω) ≈ �ph(ω), complete free-
dom exists in choosing a suitable auxiliary system. For the
many-body solution with MPS it is convenient to allow for
nearest neighbor terms in the Lindblad couplings only, i.e.,
to restrict not only E but also the matrices �(1) and �(2) to
a tridiagonal form. In this way one ends up with a geometry
where the impurity couples to a bath with n.n. terms only. As
discussed below, the bipartite entanglement entropy of IMaux

can be reduced when imposing further that �
(1)
i,j has nonzero

terms only for bath sites in one of the chains, e.g., for i,j > f ,
and �

(2)
i,j on the other side, i.e., for i,j < f . For the latter

125145-3



ANTONIUS DORDA et al. PHYSICAL REVIEW B 92, 125145 (2015)

restriction we found that it affects the quality of the fit only
in a minor way but significantly improves the applicability of
MPS.

It is important to note that the relevant energy scale for
the mapping procedure is not � but the bandwidth 2D. For a
certain IMaux, one can adjust to different � values by simply
rescaling all terms in E with index f , i.e., the hoppings
to the impurity site, without changing other properties of
�aux(ω) [90]. On the other hand, one can rescale the whole
hybridization function by multiplying the matrices E, �(1),
and �(2) by the desired factor. Therefore, the complexity of
the mapping procedure is dominated by the smallest ω scale
compared to the largest one. For the flat band model, this
essentially means that one has to regard T and φ in units
of D. With increasing number of bath sites NB we observe
that sharper features can be resolved. Therefore, a maximal
considered value of NB converts to a lower bound for the ratio
of temperature T to bandwidth 2D which can be reproduced
by �aux(ω). More details on the mapping procedure are given
in Appendix B and Ref. [94].

E. Many-body solution

1. Superfermion representation

As introduced in Refs. [95,96] and made use of in
Refs. [35,36], the Lindblad equation (12) can be recast into
a standard operator problem when considering an augmented
fermion Fock space with twice as many sites. We use the
notation of Ref. [95], to which we refer for further details, in
combination with a particle-hole transformation in the “tilde”
space [97]. The so-called left vacuum reads

|I 〉 =
∑
{niσ }

(−i)N({niσ }) |{niσ }〉 ⊗ |{̃n̄iσ }〉 . (18)

The summation runs over all possible many-body basis states
|{niσ }〉 of the original system and |{̃n̄iσ }〉 specifies those in the
tilde system with inverted occupation numbers. N ({niσ }) =∑

iσ niσ is the total number of particles in state |{niσ }〉.
The left vacuum maps the density operator ρ(t) onto the

state vector |ρ(t)〉 = ρ(t) |I 〉. Thermodynamic expectation
values are determined in this framework by expressions of
the form 〈O(t)〉 = 〈I | O |ρ(t)〉. When evaluating (Lρ) |I 〉 for
the Lindblad equation (12), one finds

d

dt
|ρ(t)〉 = L |ρ(t)〉 , (19)

where the superoperator L is replaced by an ordinary non-
Hermitian operator L. In vector notation

c†σ = (
c
†
0σ , . . . ,c

†
NBσ ,c̃

†
0σ , . . . ,c̃

†
NBσ

)
, (20)

with c
†
iσ /ciσ and c̃

†
iσ /c̃iσ fermionic operators in the original

and in the tilde system, respectively, the Lindblad operator L

is given by

iL =
∑

σ

c†σ

(
E + i� 2�(2)

−2�(1) E − i�

)
cσ − 2 Tr(E + i�)

+U

(
nf ↑nf ↓ − ñf ↑ñf ↓ +

∑
σ

ñf σ + 1

)
, (21)

FIG. 1. (Color online) The upper part of the figure shows a
schematic drawing of the auxiliary system in the superfermion
representation, for NB bath sites and with the impurity located at
the central site f = NB/2. The upper chain corresponds to original
sites and the lower chain to the additionally introduced “tilde” sites;
see Sec. II E 1. In the chosen fit restriction, see Sec. II D, the coupling
terms of the Lindblad operator L, Eq. (21), represent a ladder
geometry with cross links. �(1) causes a directional hopping from
the upper to the lower chain and for �(2) it is vice versa. Moreover,
�

(2)
i,j is nonzero only for i,j < f and �

(1)
i,j only for i,j > f . In the

lower part, in gray scale, we schematically depict the tensor network
for TEBD (Sec. II E 2), where L is decomposed in nearest neighbor
terms Li,i+1 which are applied in an alternating manner.

where � = �(2) − �(1) and � = �(1) + �(2). Clearly, L con-
serves the total particle number per spin

∑
i (niσ + ñiσ ). The

steady state |ρ∞〉 = limt→∞ |ρ(t)〉 as well as |I 〉 are situated in
the half-filled, spin-symmetric sector. Steady state expectation
values and correlation functions are calculated by [36,98]

〈A(t)B〉 = 〈I | AeLtB |ρ∞〉 , for t � 0. (22)

For tridiagonal matrices E, �(1), and �(2), see Sec. II D,
the coupling terms in Eq. (21) represent a ladder system as
depicted in Fig. 1. Sites on the original and the tilde system
with the same index (i = j ) or i = j ± 1 are coupled with rates
�

(1)
i,j and �

(2)
i,j by a directional hopping. The restriction of �

(2)
i,j

to the left side i,j < f and for �
(1)
i,j to the right side i,j > f

leads to the situation that a circular current flows through the
system. In this geometry one finds the tendency that sites on
the left are filled in the original system and empty in the tilde
system, whereas for the right side it is vice versa. This limits
the possible hopping processes inside the chains and is in favor
of a small bipartite entanglement entropy [99].

2. Matrix product states

A large amount of literature exists on MPS in general and
for Lindblad-type problems in particular [99–115]. Here we
briefly state the governing equations for the well-known MPS
methods made use of in this work.

We combine sites with the same index i in the original and
in the tilde system to one “MPS site,” with a local Hilbert
space dimension d = 16 (see also Fig. 1). For the resulting
one-dimensional chain of sites it is straight-forward to write
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down a MPS representation [100]:

|ρ〉 =
∑
{si }

c{si } |{si}〉 =
NB∏
i=0

⎛
⎝ d∑

si=1

Asi

i

⎞
⎠ |{si}〉 . (23)

Here, |ρ〉 is a generic many-body state with coefficients
c{si } and Asi

i represents MPS matrices for site i with local
quantum numbers si [116]. The mapping Eq. (23) is exact
for matrices which are exponentially large in NB . However,
even for much smaller matrix dimensions χ � dNB/2 a very
accurate representation of |ρ〉 is possible in many cases.
For the auxiliary systems considered in this work, see also
Sec. III A, χ ≈ 1000 is sufficient when making use of Abelian
symmetries of the Lindblad operator Eq. (21). Concerning the
positivity of ρ, one should note that the form of Eq. (23) does
not ensure it per construction [114,115]. However, we did not
encounter unphysical results even for very small values of χ .

In order to calculate observables, a MPS representation
of |I 〉 is needed. One finds that Eq. (18) can be recast into
a state with χ = 1, i.e., a product state, in which |I 〉 is
maximally entangled between original and tilde sites for the
same index i. This is analogous to a purification of the identity
operator [103,104,108].

When rewriting the Lindblad operator Eq. (21) with tridiag-
onal matrices E, �(1), and �(2) in the form of a matrix product
operator, one has couplings of n.n. sites only. This enables us to
use very efficient time evolution techniques as for example the
time evolving block decimation (TEBD) [101]. Here, a Trotter
decomposition is used to split the full time evolution exp(L�t)
into small parts exp(Li,i+1�t) for neighboring sites, and terms
with even and odd i are applied in an alternating manner; see
also Fig. 1. In this work we use splitting methods accurate
to second order in �t [117–120]. We found that reducing
the time step to �t = 0.01 �−1 for the steady state and to
�t = 0.05 �−1 for the Green’s functions is usually sufficient.

To obtain the desired steady state correlation functions of
IMaux, for example G<, we proceed as follows:

(1) Calculate the steady state |ρ∞〉 by time evolution with
TEBD. Successively smaller time steps �t are used in order to
eliminate the Trotter error. Static observables and L |ρ∞〉 = 0
may serve as convergence criteria [121].

(2) Apply cf σ to |ρ∞〉 and time-evolve the excited state

to get G<
σ (tn) = i 〈I | c†f σ eLtncf σ |ρ∞〉 at discrete points in the

time domain.
(3) Employ linear prediction on the data G<(tn) and

thereafter a Fourier transformation to obtain G<(ω) in the
frequency domain [98,102,104,122].

III. RESULTS

Before focusing on the nonequilibrium physics of the
single-impurity Anderson model, we briefly discuss the bipar-
tite entanglement entropy of the auxiliary impurity model, and
a benchmark for the equilibrium case. After that the spectral
properties as a function of bias voltage are presented for two
different temperatures, one clearly below and one above the
Kondo temperature TK . Furthermore, the bias dependence of
observables such as the current and the double occupancy is
discussed. In the last part of this paper a different density of

states in the leads is considered, which allows to better resolve
the physics at low temperatures and low bias voltages.

A. Entanglement scaling

Matrix product states are an efficient representation of
many-body states with a low bipartite entanglement entropy
S. The required matrix dimension χ at a certain bond (i,i + 1)
scales exponentially with the entropy at this bond, Si,i+1. From
Hermitian systems it is known that ground states of gapped,
one-dimensional systems obey an area law and are thus well
suited for MPS. Also an evolution in imaginary time converges
well, but the real time evolution of excited states may become
problematic due to a buildup of entanglement [100]. For
the auxiliary impurity model investigated here, the behavior
appears to be opposite. In general, the steady state |ρ∞〉 of
IMaux does not fulfill an area law and instead an increase of
maxi Si,i+1 with increasing system size NB is observed [111].
Despite this, the time evolution of excited states is unproblem-
atic, likely because of the damping involved, and the long-time
limit can easily be reached.

We observe that the optimized parameters in IMaux strongly
depend on the number of bath sites and on the external, physical
parameters (φ, T , ...). Therefore, it is difficult to infer a reliable
quantitative entanglement scaling with NB . Qualitatively we
find that maxi Si,i+1 increases moderately with NB and slower
than linear. The magnitude of the entanglement is considerably
reduced by the restricted setup for IMaux described in Sec. II D,
which has the tendency towards a filled and an empty bath
chain in the steady state. In this setup, Si,i+1 takes on the largest
value at the central bonds which connect to the impurity site
and falls off quickly with distance from the center.

Independent of the actual scaling, the increase of bipartite
entanglement with NB has the consequence that one is limited
to certain system sizes. In this work we consider up to NB =
16 with χ = 1000, which is feasible in a reasonable amount
of time. Most likely, one would need higher values of χ in
order to treat even larger systems precisely. We checked the
reliability of the results presented below by increasing the
matrix dimension to χ = 1500 in several cases, for different

FIG. 2. (Color online) Temporal evolution of the bipartite entan-
glement entropy S in a typical IMaux with NB = 12, representing the
case φ = 1 �. The system is in the steady state for t < 0 and cf σ is
applied to |ρ∞〉 at t = 0. We show S(t) where it is largest, namely
for the innermost bonds at the impurity, as well as for the next ones
to the outside.
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FIG. 3. (Color online) Spectral function in equilibrium: plotted
for different number of bath sites NB and compared with reference
data from NRG [86]. Results are for U = 6 � and flat band leads,
Eq. (11), with D = 10 � and T = 0.05 �.

values of φ and T . Furthermore, the time evolution for the
Green’s functions was validated by reducing the time step to
�t = 0.01 �−1. Overall, we found in the worst cases relative
differences in A(ω) up to O(10−3). These errors are small
enough for our purposes, so that we focus in the following on
the accuracy of the mapping procedure, i.e., versus NB .

To analyze the temporal evolution of S, a typical time-
dependent case is shown in Fig. 2. Here, t < 0 indicates
the steady state regime and at t = 0 an annihilation operator
is applied to |ρ∞〉 in order to calculate the lesser Green’s
function. To estimate the relevant time scale, Im{G<(t)} (not
plotted) drops from 0.5 at t = 0 to 10−2 at t = 3 �−1. As
one can see, Si,i+1 changes at first rapidly but saturates then
and oscillates in time around a constant value. Thus, it is
unproblematic to resolve G<(t) even on very large time scales.
This was furthermore checked for small NB with an exact
diagonalization solution as reference [123]. When inspecting
the short-time behavior of Si,i+1, an asymmetry is evident.
This results from the application of an operator to the original
system alone, without changing the tilde system.

B. Spectral and transport properties

Before focusing on the nonequilibrium physics, we briefly
present results for the equilibrium situation φ = 0 in Fig. 3.
Here, a quasiexact solution is provided by means of NRG [86].
For T = 0.05 � ≈ TK/4 the system is well inside the Kondo
regime and the peak height of A(0)π� ≈ 0.9 almost ful-
fills the T = 0 Friedel sum rule [A(0)π� = 1 for T →
0] [85,124,125]. Results obtained with AMEA are shown for
different system sizes, with particular focus on the low-energy
physics. Noticeable differences are apparent for NB = 8, but,
upon increasing the number of bath sites quick convergence
is observed and excellent agreement with the NRG data is
found. This shows that AMEA, especially with MPS, is a very
accurate impurity solver also in the equilibrium case for T > 0.

Regarding the accuracy of the calculations, we can state
that NB = 12 is essentially sufficient to provide reliable
spectral data in equilibrium for T = 0.05 �. However, for
the nonequilibrium situations considered in the following one
has to take into account that the accuracy of the mapping
procedure is to some degree dependent on φ. This is analyzed
in detail in Appendix B and here we solely want to note
that the low bias φ � 1

3 � as well as the higher bias regime
φ � 2 � converge more rapidly than the intermediate values,
for T = 0.05 �. For the larger values of T used below the
calculations are even easier, as one can achieve a very good
mapping �aux(ω) ≈ �ph(ω) already for less than NB = 12.

After this benchmark, we now study the steady state
nonequilibrium spectral properties for two different temper-
atures, one below and one above the Kondo temperature. In
Fig. 4 results are presented for T = 0.05 � and in Fig. 5
for T = 0.5 �. In the first case, it is apparent that small
bias voltages φ < � cause a decrease and smearing of the
Kondo peak, whereas larger voltages result in a splitting; see
also Refs. [41–45,64,68–70]. It is known that with increasing
current, resonant spin-flip scattering is prevented due to de-
coherence. Despite this, distinct excitations are clearly visible
even at rather high bias voltages and located approximately
at the positions of the chemical potentials μL/R = ±φ

2 . This
can be attributed to intralead processes, which however are
strongly suppressed. In Fig. 4 we present furthermore the

Im

FIG. 4. (Color online) Bias-dependent spectral function (left) and retarded self-energy (right) for T = 0.05 �. Solid lines correspond to
calculations with NB = 16 and dash-dotted lines to NB = 14, but in many cases they cannot be distinguished. Bias voltage φ is given in units
of �. Results are for U = 6 � and flat band leads, Eq. (11), with D = 10 �.
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Im

FIG. 5. (Color online) Bias-dependent spectral function (left) and retarded self-energy (right) for T = 0.5 �. Calculations are performed
with NB = 10 and other parameters are the same as in Fig. 4.

retarded self-energy, which enables us to better locate at which
φ value splitting sets in. An upper bound can be estimated by
the value φ = 0.5 �, where −Im{	R(ω)} exhibits two minima.
In Sec. III C we resolve the physics at low bias in some more
detail.

In Fig. 5 the same system is considered for T = 0.5 �.
As expected, the features are much broader and the Kondo
peak for φ = 0 is strongly suppressed [126]. Despite this, one
can still note splitting and weak excitations at μL/R = ±φ

2 at
rather high voltages φ � 3 �. In −Im{	R(ω)}, only the result
for φ = 2 � exhibits two slight minima. One can thus infer
that the temperature dominates the decoherence processes on
the impurity in this case and excitations at μL/R are further
suppressed and strongly smeared out.

For both temperatures T = 0.05 � and T = 0.5 �, we
present two observables of interest, the double occupancy
and the current, in Fig. 6. The latter is obtained from
the standard Meir-Wingreen expression [83,127,128]. In the
current it is obvious that the temperature strongly influences
the low bias regime, as is expected from linear response
considerations. Especially the differential conductance enables
us to resolve the low bias physics and we find a typical

Kondo behavior [57,58]. At higher voltages φ � 2 �, however,
one observes for T = 0.05 � a slight increase of ∂j/∂φ due
to charge fluctuations. At even higher voltages (φ � 3�)
both temperatures result in a similar linear current-voltage
characteristic since the two spectral functions nearly merge
into each other. The double occupancy 〈nf ↑nf ↓〉 exhibits
an interesting behavior for T = 0.05 � < TK . In this case,
〈nf ↑nf ↓〉 and thus the charge fluctuation as well exhibit a
minimum (at φ ≈ 2 �). It originates from two competing
mechanisms evolving with increasing φ: On the one hand,
the enlarged transport window, approximately given by the
interval (−φ

2 ,
φ

2 ), increases 〈nf ↑nf ↓〉, and on the other hand,
the suppression of resonant spin-flip scattering has the opposite
effect. Apparently, the latter dominates initially at low bias. We
observe a similar behavior in the temperature dependence of
the double occupancy 〈nf ↑nf ↓〉

T
in the equilibrium case. We

find a minimum in 〈nf ↑nf ↓〉
T

at T ≈ 0.5 �. Therefore, the
impurity is at this value in the local moment regime. When
applying a bias voltage in the case of T = 0.5 �, the double
occupancy increases monotonically with φ, as can be seen in
Fig. 6. One can therefore conclude that the Kondo effect and
its suppression with increasing φ has a significant effect on

FIG. 6. (Color online) Double occupancy (left) and transport properties (right) as a function of bias voltage φ. Current j is depicted with
solid lines and the differential conductance ∂j/∂φ with dash-dotted lines. The latter is calculated with three-point Lagrange polynomials, based
on the data for j as marked in the plot. Results are shown for T = 0.5 � with NB = 10, and for T = 0.05 � with NB = 14. Other parameters
are as in Fig. 4. The linear response and equilibrium values for 〈nf ↑nf ↓〉 are from NRG [86].
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Im

FIG. 7. (Color online) Bias-dependent spectral function (left) and retarded self-energy (right) for U = 6 �, T = 0.02 �, and a Lorentzian
density of states in the leads; see Eq. (24). Solid lines correspond to calculations with NB = 16 whereas dash-dotted lines to ones with NB = 14.
The bias voltage φ is in units of �. The inset on the left is for NB = 16 and φ = 0.

the double occupancy. However, the particular position of the
minimum is not related to TK but essentially only determined
by the energy scale �, as discussed in Refs. [129,130]. The
reliability of our results is corroborated by the close agreement
for φ = 0 with the equilibrium values obtained by NRG
(marked by circles in Fig. 6).

C. Low bias spectrum

In order to better resolve the low-energy spectral properties
of the Anderson impurity model, we now consider briefly the
case of a Lorentzian density of states in the leads. In particular
we replace Eq. (11) with

gR
λ (ω) = (ω − ελ + iγ )−1, (24)

where εL/R = ±φ

2 . This can be produced by a bath consisting
of one site with on-site energy ελ which further connects to a
wide band given by γ . We take � = −Im{�R(0)} again as unit
of energy and choose γ = 5/π � together with 2t ′λ

2
/γ = �.

The Keldysh component is given by Eq. (2) with μL/R = ±φ

2 ,
as before.

A Lorentzian density of states is particularly suited for
AMEA, since the retarded part �R

aux(ω) alone can be fitted
exactly with a single bath site. This simplification does not
apply to the Keldysh component with its Fermi edges. Still,
one can expect that the mapping procedure is more accurate
than for a flat density of states and indeed we find that we are
able to reproduce �ph(ω) by �aux(ω) more precisely for the
same NB . As a result, we can reach lower T with the same
system sizes. For details on the achievable accuracy we refer
to Appendix B.

In particular we investigate the case T = 0.02 � and
U = 6 � and focus on bias voltages close to TK . In addition
to the lower temperature especially the smaller effective
hybridization strength at the position of the Hubbard bands
leads to an increased separation of Kondo and Hubbard
features in the spectral function, and thus, to an improved
resolution. This can be seen in the peaked structure of the
inset in Fig. 7. The smaller temperature allows us to analyze the
behavior for lower bias voltages down to φ = 0.1 � [131]. Also
for this setup we find a similar dependence of the spectrum as

a function of voltage to that before, only at a decreased energy
scale. The self-energy in Fig. 7 indicates that a splitting is
first perceptible at a bias of φ ≈ 0.2–0.3 �. From our data we
can thus conclude that for bias voltages just above the Kondo
temperature, a clear splitting of the Kondo resonance into a
simple two-peak structure occurs.

IV. CONCLUSIONS

In this work we presented an improved formulation of
AMEA, introduced in Refs. [35,36], obtained by employing
matrix product states for the solution of the auxiliary master
equation in the interacting case. This allowed us to treat
larger auxiliary systems with more optimization parameters for
the mapping procedure, as compared to the ED-based solver
in Ref. [36]. This is crucial, since the accuracy in AMEA
increases exponentially with the number of optimization
parameters. As a result, we obtained well-converged spectral
data and static observables, whose accuracy for the equilibrium
case was comparable to NRG down to low temperatures and
for large interactions. More specifically, in the calculations
presented here, we were able to investigate the steady state
properties of the single-impurity Anderson model as a function
of bias voltage φ and at temperatures T well below the
Kondo temperature TK . In the spectral function we obtained
a prominent Kondo peak for φ = 0 and T ≈ TK/4, which
compared very well to an equilibrium NRG calculation, and
a broadening and subsequent splitting of the peak when
considering φ > 0. Also for the case of a Lorentzian density of
states in the leads, which enabled us to lower the temperature
to T ≈ TK/10, we found no evidence of a different behavior
than a simple splitting of the Kondo peak. In order to locate the
value of φ at which the peak starts to split, it was advantageous
to inspect the retarded self-energy. From this we concluded that
two excitations become visible for bias voltages just above the
Kondo temperature, at φ ≈ 1–2 TK .

For the many-body solution with MPS it was of advantage
to adjust the geometry of the auxiliary system and possible
modifications were discussed. As in other studies of Lindblad
problems with MPS, we found an increase of the bipartite
entanglement entropy S with system size NB [111]. However,
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the increase was moderate and slower than linear, which
made it possible to treat auxiliary open systems up to
NB ≈ 16 reliably and within a rather short computation time
(a couple of days). The value NB = 16 is by no means a
“hard limit” and much larger systems are expected to be
feasible, especially when including additionally non-Abelian
symmetries [106,107].

In general, the present MPS extension of AMEA constitutes
a versatile and very accurate impurity solver for both equilib-
rium and nonequilibrium steady state situations. Compared to
the ED-based solver presented in Ref. [36], the computation
time is longer but the achievable accuracy is much higher.
Therefore, the MPS impurity solver is especially suited for
situations in which a high spectral resolution is needed and a
detailed investigation of the underlying physics is desired.
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APPENDIX A: MULTIDIMENSIONAL OPTIMIZATION

In order to achieve �aux(ω) ≈ �ph(ω), we optimize the bath
parameters E, �(1), and �(2). For this a suitable parametrization
is chosen, which yields a unique set of matrices E, �(1), and
�(2) for every parameter vector x. The mean-squared error is
quantified by a cost function

C(x)2 =
∑

α∈{R,K}

∫ ωc

−ωc

Im
{
�α

ph(ω) − �α
aux(ω; x)

}2
W (ω)dω,

(A1)
with a certain cutoff ωc and weighting W (ω), which we take
to be constant in the present paper.

A variety of strategies exists to find the optimal parameter
set xopt which minimizes a cost function as stated above.
In previous work, Ref. [36], we employed a gradient-based
method with a large number of random starting points. Such a
deterministic minimization works well for rather small prob-
lems, but becomes inefficient in the higher-dimensional case
dim(x) � 20. It is then of great advantage to employ methods
which are able to overcome local minima. Appropriate Monte
Carlo (MC) sampling based methods are for instance simulated
annealing, multicanonical simulations, or parallel tempering
(PT) [132–137]. Especially a feedback-optimized version of
the latter has proven to be useful for our purposes. For details
we refer to Refs. [135,136] and in the following we outline
only briefly the implementation as used in this work.

In PT, also called replica exchange, one regards C(x) as an
artificial energy, defines a set of artificial inverse temperatures

βm, and samples for each temperature from the Boltzmann
distribution pm(x) = 1/Zmexp[−C(x)βm]. A replica xm

1 is
assigned to each βm and updated through a Markov chain with
the Metropolis-Hastings algorithm [138]. These MC sweeps
generate a sequence of xm

l , l = 1,2, . . . , which are distributed
according to pm(x). In addition, a swapping of replicas xm

l

and xm+1
l for neighboring inverse temperatures βm and βm+1 is

proposed after a certain number of sweeps. Again, a Metropolis
probability is used for the swaps,

q
m,m+1
l = min

(
1, exp

[
�Cm

l (βm − βm+1)
])

, (A2)

with �Cm
l = [C(xm

l ) − C(xm+1
l )]. The set of βm in PT has

the purpose that the low temperatures enable an efficient
sampling of regions where C(x) is small and the exchange
with higher temperatures avoids trapping in local minima. To
allow for an expedient exchange of replicas, the set of βm

needs to be adjusted. For our purposes we chose a feedback
strategy which shifts the values βm in order to achieve that
the swapping probability Eq. (A2) becomes constant with
respect to m. This strategy may not be the best possible
choice in general, cf. Ref. [137], but enables a fast feedback
and quickly adjusts to large changes in the values C(xm

l ).
In addition, we modified q

m,m+1
l → max(qm,m+1

l ,qth) with a
certain threshold probability (qth ≈ 0.1), to avoid that during
a PT run a separation into several temperature sets occurs,
which do not exchange replicas efficiently. This may violate
balance conditions for thermodynamic observables but does
not affect the applicability to minimization problems. For the
other PT parameters we proceeded in the following way: In
a single sweep each coordinate of xm

l was updated once and
10 sweeps were performed before attempting a swap. Around
20–30 inverse temperatures βm were used.

In general, one cannot expect to find the optimal solu-
tion in a nontrivial high-dimensional problem, but with the
PT algorithm as outlined above we obtain an xmin which
minimizes the cost function locally and may furthermore
fulfill C(xmin) ≈ C(xopt) to good approximation. For the largest

Im
Im

FIG. 8. (Color online) Hybridization function �aux(ω) as ob-
tained from minimizing the cost function Eq. (A1) with ωc = 15 �

and W (ω) = 1, for the flat band model Eqs. (10), (11) with φ = 2 �

and T = 0.05 �. Results on the left are for NB = 12 and on the right
for NB = 14.
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FIG. 9. (Color online) Convergence of �aux(ω) with increasing NB . Results with T = 0.5 � and T = 0.05 � are for the flat band case
Eqs. (10), (11), and the ones with T = 0.02 � are for the Lorentzian density of states Eq. (24). For the cost function C, Eq. (A1), we chose
W (ω) = 1 as well as ωc = 15 � for the flat band model and ωc = 5 � for the Lorentzian case. The normalization C0 refers to the value of C for
�aux(ω) ≡ 0.

systems considered in this work, NB � 14, a good starting
point was found to be important. For the case of tridiagonal
E, �(1), and �(2), a convenient choice is to make use of xmin

from the next smaller system with NB − 2.

APPENDIX B: CONVERGENCE AS A FUNCTION OF NB

Figure 8 depicts two typical results of the optimization
described in Appendix A, for NB = 12 and NB = 14. It is
apparent that rapid convergence is achieved when increasing
NB . For low temperatures T we find that the biggest error in
�aux(ω) occurs in the retarded component at the positions of
the chemical potentials μL/R = ±φ

2 ; see NB = 12. This is a
consequence of optimizing �R

aux(ω) and �K
aux(ω) simultane-

ously. For higher temperatures, for instance T = 0.5 �, this
effect is much less pronounced.

A brief analysis of the convergence behavior of the mapping
procedure with increasing NB is given in Fig. 9. We present
values of the cost function C, Eq. (A1), for different temper-
atures and bias voltages. In general one finds an exponential
convergence C ∝ exp(−rNB) to good approximation and the
higher the temperature, the higher the rate of convergence r .
By averaging over results for different φ we estimate a scaling
of r ∝ T

1
4 . One can deduce from the order of magnitude

of C that the calculations presented for A(ω) at T = 0.02 �

(Fig. 7) are not converged to the same accuracy as the ones at
T = 0.05 � (Fig. 4) or T = 0.5 � (Fig. 5), and larger systems
with NB � 20 would be needed. However, the accuracy is
comparable to the NB = 12 results for T = 0.05 �, which
already yielded qualitative correct behavior and quite accurate
spectral data; see also Figs. 3 and 10. The influence of φ

is nonmonotonic and strongly dependent on the particular
density of states in the leads. For the situations considered
in this work we find the tendency that larger φ result in larger
values of C. For a more detailed analysis of the scaling with
temperature and the mapping procedure in general we refer to
Ref. [94].

For the flat band case with T = 0.05 � we present a more
thorough investigation by comparing the spectral function in
the interacting case U = 6 � for different numbers of bath sites
in Fig. 10. As can be anticipated from the cost function C in
Fig. 9, the cases φ = 1/3 � and φ = 2 � are well converged for
NB = 16, which manifests itself also in A(ω). The case φ = �

exhibits larger values of C and one can note more significant
changes in A(ω). Interestingly, rather high values of C are
obtained for φ = 4 �, but nevertheless, the spectral function
converges nicely. As discussed above for Fig. 8, the largest
errors in �aux(ω) correspond to short-scaled oscillations in
�R

aux(ω). These errors are likely to be averaged out once the
spectral function exhibits rather broad features. This is exactly

FIG. 10. (Color online) Convergence of the spectral function as depicted in Fig. 3 with increasing NB , i.e., for the flat band model with
U = 6 � and T = 0.05 �.
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the case for higher bias voltages where the Kondo effect is
strongly suppressed. On the whole, when inspecting Fig. 10
and also Fig. 3, one can note a slightly nonsmooth convergence
with NB , especially close to the Kondo regime for low φ. This
can be accounted for by abrupt changes of spectral weight in
�R

aux(ω) around ω = 0, when changing NB . One possibility to

suppress this effect is to adjust the weighting function W (ω)
in Eq. (A1) accordingly. However, this is most probably only
of importance when aiming to achieve even higher accuracies
in A(ω) and with the choice W (ω) = 1, one can regard the
calculations presented in this work as unbiased and accurate
over the whole ω domain.
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3.3. Publication 3: DMFT

3.3.1. Preamble

The article titled Transport through a correlated interface: Auxiliary master equation ap-
proach was published in Physical Review B, 92, 245125, December 2015 [3].

This work was carried out by Irakli Titvinidze (IT) as first author and Antonius Dorda
(AD) as co-author, supervised by Wolfgang von der Linden (WL), and Enrico Arrigoni
(EA). EA guided the work to great extent and participated actively in its realization. IT
wrote a DMFT-code for a general setup of multiple correlated layers attached to two leads,
whereby translational invariance in the transverse direction was assumed. AD assisted in
its C++ implementation and rewrote the ED-solver in order to include it in DMFT.
Specifically, AD made use of the core routines for the manybody solution from the first
work Ref. [1], Sec. 3.1, but the steady state solution was implemented in a faster and more
stable way by making use of Krylov space methods for the time evolution as well. For the
mapping procedure the parallel tempering approach from Ref. [2], Sec. 3.2, was included
and the needed ED-setups for the auxiliary system were implemented. On the whole, an
automated C++ code for the ED-solver was written by AD, appropriate for an inclusion
within DMFT. AD and IT together did a testing, debugging and optimization of the
different routines. IT then performed the major part of the calculations and investigations.
Furthermore, IT wrote a first paper draft which AD, EA and WL revised and expanded.
All authors contributed to deciding on the route of investigation and to the discussion of
results.

3.3.2. Original article

(see next page)
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Transport through a correlated interface:
Auxiliary master equation approach

Irakli Titvinidze,* Antonius Dorda, Wolfgang von der Linden, and Enrico Arrigoni
Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria

(Received 25 August 2015; published 21 December 2015)

We present improvements of a recently introduced numerical method [E. Arrigoni et al., Phys. Rev. Lett. 110,
086403 (2013)] to compute steady-state properties of strongly correlated electronic systems out of equilibrium.
The method can be considered as a nonequilibrium generalization of exact diagonalization based dynamical
mean-field theory (DMFT). The key modification for the nonequilibrium situation consists in addressing the
DMFT impurity problem within an auxiliary system consisting of the correlated impurity, Nb uncorrelated
bath sites, and two Markovian environments (sink and reservoir). Algorithmic improvements in the impurity
solver allow to treat efficiently larger values of Nb than previously in DMFT. This increases the accuracy of the
results and is crucial for a correct description of the physical behavior of the system in the relevant parameter
range including a semiquantitative description of the Kondo regime. To illustrate the approach, we consider a
monoatomic layer of correlated orbitals, described by the single-band Hubbard model, attached to two metallic
leads. The nonequilibrium situation is driven by a bias voltage applied to the leads. For this system, we investigate
the spectral function and the steady-state current-voltage characteristics in the weakly as well as in the strongly
interacting limit. In particular, we investigate the nonequilibrium behavior of quasiparticle excitations within
the Mott gap of the correlated layer. We find for low-bias voltage Kondo-type behavior in the vicinity of the
insulating phase. In particular, we observe a splitting of the Kondo resonance as a function of the bias voltage.

DOI: 10.1103/PhysRevB.92.245125 PACS number(s): 71.27.+a, 47.70.Nd, 73.40.−c, 05.60.Gg

I. INTRODUCTION

The recent impressive experimental progress in tailoring
different microscopically controlled quantum objects has
prompted increasing interest in correlated systems out of
equilibrium. Of particular importance are correlated het-
erostructures [1–6], quantum wires [7] and quantum dots
[8,9] with atomic resolution, experiments in ultracold-atomic
gases in optical lattices [10–14], as well as ultrafast laser
spectroscopy [15–18].

The theoretical description and understanding of these
experiments in particular and of complex strongly correlated
systems in general presents major challenges to theoretical
solid-state physics. For this purpose, different theoretical
approaches have been developed. For the equilibrium sit-
uation, one of the most powerful methods is dynamical
mean-field theory (DMFT) [19–21], which is a comprehensive,
thermodynamically consistent, and nonperturbative scheme.
The only approximation in DMFT is the locality of the
self-energy, which becomes exact in infinite dimensions, but
usually it is a good approximation for two and three spatial
dimensions. The key point of DMFT is to map the original
problem onto a single-impurity Anderson model (SIAM)
[22] whose parameters are determined self-consistently. For
this purpose, several classes of so-called impurity solvers
were developed. Among them, the most powerful methods
are the numerical renormalization group (NRG) approach
[23–25], quantum Monte Carlo (QMC) [26–29], and exact
diagonalization (ED) [30,31].

Prompted by the success of DMFT for equilibrium sys-
tems, the approach was extended [32–38] to deal with
time-dependent problems within the nonequilibrium Green’s

*irakli.titvinidze@tugraz.at

function approach originating from the works of Kubo [39],
Schwinger [40], Kadanoff and Baym [41,42], and Keldysh
[43]. Similar to the equilibrium case, also nonequilibrium
DMFT is based on the solution of an appropriate (nonequi-
librium) SIAM. Despite the fact that many approaches have
been suggested to solve such impurity problems (see, e.g.,
Refs. [32,35,36,38,44–59]), not all of them are suited for
nonequilibrium DMFT. In addition, many of these are only
reliable for short times and cannot treat long time behavior and
accurately describe the steady state. Therefore, developing a
nonperturbative impurity solver, which can treat reliably the
steady-state behavior of the SIAM is quite a challenge.

The nonequilibrium approach, that will be presented in this
paper, has its roots in the exact diagonalization (ED)-based
DMFT (ED-DMFT). In equilibrium ED-DMFT, one replaces
the infinite bath by an auxiliary finite noninteracting electronic
chain whose parameters are determined by a fit to the DMFT
hybridization function �. This cannot be trivially extended
to the steady-state situation. First of all, due to the fact that
the auxiliary system is finite, there is no dissipation and a
proper steady state is never reached. An additional technical
aspect is that the spectrum of the auxiliary system is discrete
and, therefore, the fit in real frequencies is problematic.
But, only in the equilibrium case one can circumvent this
problem by introducing a fit in Matsubara space [60]. A
possible solution to these problems was suggested by us in
Refs. [61,62] with an approach which enables direct access to
the steady-state properties of the correlated impurity problem.
The basic idea is that in addition to a finite number of bath sites
coupled to the impurity, as in equilibrium ED, two Markovian
environments are introduced, which act as particle sink and
reservoir. This auxiliary model represents an open quantum
system with dissipative dynamics, which allows to properly
describe steady-state situations. The behavior of this auxiliary
nonequilibrium impurity problem is described by a Lindblad
master equation, which can be solved exactly by numerical
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approaches such as full diagonalization [61], non-Hermitian
Krylov space [62], or matrix product state (MPS) methods
[63]. Its solution allows to determine both the retarded and the
Keldysh self-energies, which are required by the DMFT loop,
with high accuracy. Here, in particular, we apply the Krylov
space approach of Ref. [62] to solve the DMFT impurity
problem. This yields a much better accuracy than in Ref. [61],
which allows us to resolve the splitting of the quasiparticle
resonance as a function of the bias voltage.

The paper is organized as follows: In Sec. II A we shortly
introduce the Hamiltonian of the system, while in Secs. II B
and II C we give an overview over steady-state DMFT within
the nonequilibrium Green’s function formalism. In Sec. II D
we discuss the auxiliary master equation approach, with focus
on details of our implementation. Afterwards, in Sec. III
we present our results for a simple correlated interface. In
particular, in Sec. III A we benchmark the accuracy, while
in Secs. III B and III C the steady-state current and spectral
functions are investigated, respectively. Finally, in Sec. IV we
give concluding remarks and an outlook.

II. MODEL AND METHOD

A. Model

To illustrate the approach, we consider a minimalistic
model for transport across a correlated interface (see Fig. 1),
which consists of a correlated infinite and transitionally
invariant layer (c), with local Hubbard interaction U , onsite
energy εc = −U/2, and nearest-neighbor hopping amplitude
tc, sandwiched between two semi-infinite metallic leads (α =
l,r), with onsite energies εα and nearest-neighbor hopping
amplitudes tα . The leads are semi-infinite and translationally
invariant in the xy plane (parallel to the correlated layer). The
hybridization between lead α and the correlated layer is vα

(see Fig. 1). A bias voltage � is applied between the leads.
The Hamiltonian reads as

H = Hc +
∑
α=l,r

Hα + Hcoup. (1)

Here,

Hc = −tc
∑
〈ij〉,σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ + εc

∑
i,σ

niσ (2)

trvr

εr, μrtc
U, εc

tl vl

εl, μl

FIG. 1. (Color online) Schematic representation of the system,
consisting of the correlated layer (red) with local Hubbard interaction
U and onsite energy εc, sandwiched between two semi-infinite
metallic leads (blue), with onsite energies εl and εr , respectively.
The hopping between neighboring sites of the correlated layer is tc,
while the one for the left (right) lead is tl (tr ). Hybridization between
the left (right) lead and the correlated layer is vl (vr ). A bias voltage
� = μl − μr is applied between the leads.

describes the correlated layer. 〈i,j 〉 stands for neighboring
i and j sites, c

†
i,σ creates an electron at the ith site of the

correlated layer with spin σ = ↑,↓ and niσ = c
†
iσ ciσ denote

the corresponding occupation-number operators. The leads are
described by the Hamiltonian

Hα = −tα
∑
〈ij〉,σ

c
†
αiσ cαjσ + εα

∑
iσ

c
†
αiσ cαiσ . (3)

Here, c
†
αiσ creates an electron at ith site of the lead α. An

applied bias voltage � shifts the energies εα and chemical
potentials μα of the leads in opposite directions by the amount
�/2. Finally,

Hcoup = −
∑

〈ij〉,α,σ

vα(c†iσ cαjσ + H.c.) (4)

describes the hybridization between the correlated layer and
leads. The hopping vα takes place between neighboring sites
of the lead and the correlated layer.

Previously similar models with many correlated layers
were also investigated in Refs. [37,38,64,65]. In Refs. [37,38]
steady-state behavior, while in Refs. [64,65] full time evolution
were investigated. For this purpose, the authors used DMFT
(Refs. [37,38,64]) and time-dependent Gutzwiller approxima-
tion (Ref. [65]). In Refs. [37,38] the impurity problem is
treated by an equation-of-motion approach with a suitable
decoupling scheme for the higher-order Green’s functions,
while in Ref. [64] the noncrossing approximation is invoked.
On the other hand, our treatment of the impurity solver is
controlled and can achieve extremely accurate results [63]
with a moderate number of bath sites.

B. Steady-state nonequilibrium Green’s functions

We consider an initial situation in which at times τ < 0
the leads are disconnected from the correlated layer and all
three parts of the system (l, c, r) are in equilibrium with
different values for the chemical potential μl = εl , μc = εc,
and μr = εr , respectively.

Due to the fact that the system is transitionally invariant
in the xy plane, it is more convenient to perform a Fourier
transformation and express the Green’s functions in terms
of the momentum k‖ = (kx,ky). The retarded equilibrium
Green’s function for the disconnected noninteracting central
layer reads as

gR
0 (ω,k‖) = 1

ω + i0+ − εc − Ec(k‖)
, (5)

with Ec(k‖) = −2tc(cos kx + cos ky). On the other hand, the
Green’s functions for the edge layers of the left (α = l) and
the right (α = r) lead, when they are disconnected from the
central layer can be expressed as [66–68]

gR
α (ω,k‖) = ω − εα − Eα(k‖)

2t2
α

− i

√
4t2

α − [ω − εα − Eα(k‖)]2

2t2
α

, (6)

with Eα(k‖) = −2tα(cos kx + cos ky). The sign of the square
root for negative argument must be chosen such that the
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Green’s function has the correct 1/ω behavior for |ω| → ∞.
To investigate the system out of the equilibrium, we need
to work within the Keldysh Green’s function formalism
[40,42,43,69,70]. Therefore, as a starting point, we need
the corresponding noninteracting, disconnected Keldysh com-
ponents. Since the disconnected systems are separately in
equilibrium, we can obtain these from the retarded ones via
the fluctuation dissipation theorem [69]

gK
α (ω,k‖) = 2i[1 − 2fα(ω)] Im gR

α (ω,k‖) . (7)

Here, fα(ω) is the Fermi distribution for chemical potential
μα and temperature Tα . For the noninteracting isolated central
layer, the inverse Keldysh Green’s function [g−1

0
(ω,k||)]K is

infinitesimal and can be neglected in a steady state in which
the layer is connected to the leads. In our notation, we use an
underline to denote block matrices within the nonequilibrium
Green’s function (Keldysh) formalism:

X =
(

XR XK

0 XA

)
(8)

with XA = (XR)†. At time τ = 0, the leads get connected
to the correlated layer. After a sufficiently long time, a steady
state is reached. The latter is expected to exist and to be unique
unless the system has bound states. Our goal is to investigate
its properties under the bias voltage �.

Since the steady state is time-translation invariant, we can
Fourier transform in time and express all Green’s functions
in terms of a real frequency ω. The Green’s function for
the correlated layer, when connected with the leads, can be
expressed via Dyson’s equation

G−1(ω,k‖) = G−1
0 (ω,k‖) − 	(ω,k‖) , (9)

where 	(ω,k‖) is the self-energy of the correlated layer. The
Green’s function of the noninteracting nonequilibrium system
G0(ω,k‖) in turn can be expressed as

G−1
0 (ω,k‖) = g−1

0
(ω,k‖) −

∑
α=l,r

v2
αg

α
(ω,k‖), (10)

where g
0
(ω,k‖) is the Green’s function of the noninteracting

decoupled layer, i.e., U = 0,vα = 0 and the components of the
Green’s function of the isolated leads g

α
(ω,k‖) are given in

Eqs. (6) and (7). Note that all quantities are underscored, i.e.,
they are Keldysh block matrices.

C. Dynamical mean-field theory

As usual, to obtain the self-energy 	(ω,k‖) is the difficult
step in the calculation of G(ω,k‖) and of various steady-state
properties of the system. As there is no closed expression
for it, one has to resort to some approximation. Here, we
employ DMFT [19–21,32,33,37,61] in its nonequilibrium,
time-independent version. In this approach, the self-energy
is approximated by a local quantity 	(ω,k‖) = 	(ω) which
can be determined by solving a (nonequilibrium) quantum
impurity model with the same Hubbard interaction U and
onsite energy εc coupled to a self-consistently determined bath.
The latter is specified by its hybridization function obtained as

�(ω) = g−1
0

(ω) − G−1
loc(ω) − 	(ω), (11)

where g−1
0

(ω) is the noninteracting Green’s function of the
disconnected impurity (i.e., of a single correlated site) and

Gloc(ω) =
∫

BZ

dk‖
(2π )2

G(ω,k‖). (12)

The self-consistent DMFT loop works similarly to the
equilibrium case, except that in the present case the Green’s
functions are 2 × 2 block matrices [33,37,38]: One starts
with an initial guess for the self-energy 	(ω), then based
on Eqs. (5)–(12) calculates the bath hybridization function
�(ω). We then evaluate the corresponding auxiliary Green’s
functions Gaux,0(ω) and Gaux(ω), in the noninteracting and in
the interacting case, respectively. The solution of the impurity
problem is, as usual, the bottleneck of DMFT. Our scheme
consists, as outlined in detail in Sec. II D, in replacing the
impurity problem with an auxiliary one, which is as close as
possible to the one described by (11) but is exactly solvable
by numerical methods. The self-consistent loop is then closed
by determining the new value of the self-energy

	(ω) = G−1
aux,0(ω) − G−1

aux(ω). (13)

We repeat this procedure until convergence is reached, i.e.,
until Gaux(ω) ≈ Gloc(ω) [71].

D. Impurity solver: Auxiliary master equation approach

As already mentioned, the main obstacle of DMFT is the
solution of the impurity problem. One widespread approach to
approximate its solution for the equilibrium case is ED-DMFT,
whereby one replaces the infinite bath with an auxiliary finite
one. However, this approach cannot be used straightforwardly
in a nonequilibrium steady-state case, as this cannot be
described correctly with a finite number of sites [62]. One way
to overcome this problem, as some of us already suggested in
Refs. [61,62], is to introduce, in addition to the finite number
Nb of bath sites which are coupled to the impurity in the form
of two chain segments, two Markovian environments, which
can be seen as a particle sink and reservoir, respectively (see
Fig. 2). This makes the impurity model effectively infinitely
large, which is necessary in order to be able to reach a steady
state. Our strategy, similar to the equilibrium ED-DMFT case,
is to choose the parameters of the auxiliary model so as to
provide an optimal fit to the bath hybridization function (11).

The dynamics of this auxiliary impurity model is described
by the Lindblad quantum master equation, which controls the
time (τ ) dependence of the reduced density matrix ρ of the

1 2 3 0 4 5 6

UE22 E45
Γ
(1)
11

Γ
(2)
56

S

I

N

K

R
E
S
E
R
V
O
I
R

FIG. 2. (Color online) Sketch of the auxiliary open quantum
impurity problem consisting of the impurity site at position i = 0
(red circle), Nb = 6 bath sites (cyan circles), and two Markovian
environments sink (blue) and reservoir (green). Parameters Eij and
�ij are explained in the main text.
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model [72,73]

d

dτ
ρ = Lρ, (14)

where

L = LH + LD (15)

is a Lindblad superoperator, which consists of two terms: a
unitary contribution LH and a dissipative one LD .

The unitary contribution

LH ρ = −i[Haux,ρ] (16)

is generated by the auxiliary Hamiltonian

Haux =
Nb∑

i,j=0,σ

Eij d
†
iσ djσ + U nd

0↑nd
0↓, (17)

where d
†
iσ creates a particle with spin σ at the impurity

(i = 0) or at a bath site (i = 1, . . . ,Nb). nd
0σ = d

†
0σ d0σ is the

occupation number operator for particles at the impurity site
with spin σ . E00 = εc, while all other Eij are parameters
used to fit �(ω), whereby one can restrict to onsite and
nearest-neighbor (NN) terms only (see Fig. 2). The nonunitary
(dissipative) term

LDρ = 2
Nb∑

i,j=0

∑
σ

[
�

(1)
ij

(
diσ ρ d

†
jσ − 1

2
{ρ,d

†
jσ diσ }

)

+�
(2)
ij

(
d
†
jσ ρ diσ − 1

2
{ρ,diσ d

†
jσ }

)]
(18)

describes the coupling to a Markovian environment. The
dissipation matrices �(κ), κ = 1,2 (with matrix elements �

(κ)
ij ),

are Hermitian and positive semidefinite [72] and are again used
as fit parameters. In order to fix the large-ω behavior of �, all
�

(κ)
ij with at least one index on the impurity must vanish. On

the other hand, in contrast to E, �(κ) are not restricted to NN
terms. This is of great advantage for the fit, as discussed in
Sec. III A.

To carry out the self-consistent DMFT loop, we need to
evaluate both the noninteracting and the interacting Green’s
functions of the auxiliary model. First, the noninteracting
calculation (U = 0), which is fast in comparison to the
interacting one, produces the bath hybridization function
�aux(ω) of the auxiliary impurity model, which is fitted to
(11) in order to obtain the optimal parameters E and �(κ).
These are used in the interacting model in order to determine
the self-energy 	(ω), which is then inserted in (9).

A convenient way to solve the auxiliary problem is to
rewrite Eq. (14), expressed by superoperators, into a standard
operator problem [74–77]. For this purpose, one enlarges the
original Fock space, spanned by the operators (di,σ /d

†
i,σ ), by

doubling the number of levels via so-called tilde operators
d̃i,σ /d̃

†
i,σ . In addition, one introduces a so-called left vacuum

|I 〉 =
∑

S

(−1)NS |S〉 ⊗ |S̃〉, (19)

where |S〉 are many-body states of the original Fock space,
|S̃〉 the corresponding ones of the tilde space [75], and NS the

number of particles in S. In this formalism, the reduced density
operator is mapped onto the state vector

|ρ(τ )〉 = ρ|I 〉, (20)

and the Lindblad equation is mapped onto a Schrödinger-type
equation [75]

d

dτ
|ρ(τ )〉 = L|ρ(τ )〉, (21)

where

L = L0 + LI (22)

is an ordinary operator in the augmented space. Its noninter-
acting part L0 reads as

iL0 =
∑

σ

(d†
σ hdσ − Tr(E + i�)), (23)

where Tr denotes the matrix trace, and

d†
σ = (

d
†
0,σ , . . . ,d

†
Nb,σ

,d̃0,σ , . . . ,d̃Nb,σ

)
(24)

is a vector of creation/annihilation operators and the matrix h
is given by

h =
(

E + i� 2�(2)

−2�(1) E − i�

)
(25)

with

� = �(2) + �(1), � = �(2) − �(1). (26)

Its interacting part has the form

iLI = Un0↑n0↓ − Uñ0↑ñ0↓, (27)

with ñ0σ := d̃
†
0σ d̃0σ . To evaluate Green’s functions, one needs

to calculate expectation values of the form

GBA = −itrU [B(τ2)A(τ1)ρU (τ1)], (28)

where ρU (τ1) is the density operator of the “universe” U
composed of the “system” (the chain in Fig. 2) and the
Markovian environment and tr U = tr ⊗ tr E is the trace over
the “universe,” which is the tensor product of the trace over
the “system” (tr) and the trace over the environment (tr E).
After straightforward calculations, we obtain (more details
see Ref. [62]) for the noninteracting retarded Green’s function

GR
aux,0 = (ω − E + i�)−1 (29)

while its Keldysh part reads as

GK
aux,0 = 2iGR

aux,0�GA
aux,0. (30)

Therefore, we obtain the following expressions for the retarded
auxiliary hybridization function

�R
aux = ω − εc − 1[

GR
aux,0

]
00

(31)

and its Keldysh part

�K
aux =

[
GK

aux,0

]
00∣∣[GR

aux,0

]
00

∣∣2 . (32)

Here, X00 denotes the 00 element (i.e., the one on the impurity)
of the matrix X.
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To calculate the impurity Green’s function for the interact-
ing system, we use Krylov-space based exact diagonalization.
A full diagonalization is prohibitive for NB � 3 due to the
fact that the Hilbert space is exponentially large. Particle
conservation translates here into conservation of Nσ − Ñσ .
To calculate the steady state |ρ∞〉 we use an Arnoldi time
evolution [78], while for the calculation of Green’s functions
we employ the two-sided Lanczos algorithm [62].

To obtain the retarded and the Keldysh Green’s functions,
we use the following relations (for details see Ref. [62]):

GR = G>+ + G<+†
, (33)

GK = G>+ + G<+ − H.c. (34)

The expressions for the greater and lesser Green’s functions
are [79]

G>+
aux,ijσ (ω) =

∑
n

〈I |diσ

∣∣R(+1)
n

〉〈
L(+1)

n

∣∣d†
jσ |ρ∞〉

ω − l
(+1)
n

(35)

and

G<+
aux,ijσ (ω) =

∑
n

〈I |d†
iσ

∣∣R(−1)
n

〉〈
L(−1)

n

∣∣djσ |ρ∞〉
ω − l

(−1)
n

, (36)

with the right (|R(±1)
n 〉) and left (〈L(±1)

n |) eigenstates and
eigenvalues l(±1)

n of the operator L [Eq. (22)], in the sectors
Nσ − Ñσ = ±1.

Once self-consistency in the DMFT loop (cf. Sec. II C)
is achieved, one can calculate desired physical quantities,
e.g., the steady-state current. For this purpose, we use the
Meir-Wingreen expression [69,80,81] in its symmetrized form,
where summation over spin is implicitly assumed:

J = i

∫
BZ

dk‖
(2π )2

∫ ∞

−∞

dω

2π
[(γl(ω,k‖)

− γr (ω,k‖))G<(ω,k‖) + (γ̄l(ω,k‖)

− γ̄r (ω,k‖))(GR(ω,k‖) − GA(ω,k‖))], (37)

where γα(ω,k‖) = −2v2
αIm gα(ω,k‖) and γ̄α(ω,k‖) = f (ω −

μα)γα(ω,k‖).

III. RESULTS

Here, we present results for the steady-state properties of the
system displayed in Fig. 1 consisting of a correlated layer, with
Hubbard interaction U and onsite energy εc = −U/2, coupled
to two metallic leads. We restrict to the particle-hole symmetric
case. The hopping inside the correlated layer tc is taken equal
to 1 unless stated otherwise, while the hopping inside the
leads is tl = tr = 2.5. The hybridizations between leads and
the correlated layer are vl = vr = 0.5 and 2vl is used as unit
of energy. The applied bias voltage � enters the values of the
onsite energies and the chemical potentials as εl/r = μl/r =
±�/2. All results presented following are calculated for zero
temperature in the leads (Tl = Tr = 0) [see Eq. (7)]. Similar
models have been studied, e.g., in Refs. [37,38,65,82,83].
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FIG. 3. (Color online) Retarded GR and Keldysh GK Green’s
functions for the correlated layer, for Hubbard interaction U = 2 and
bias voltage � = 5 (upper panel) and for U = 12 and � = 10 (lower
panel). Other parameters are tc = 1, tl = tr = 2.5, vl = vr = 0.5 (2vl

is our unit of energy). Solid, dashed, and dotted lines are obtained
with Nb = 6, 4, and 2 correspondingly.

A. Convergence with respect to the number
of auxiliary bath sites Nb

First, we investigate how the number of bath sites Nb

of the auxiliary impurity problem influences the results. We
compare calculations for the Green’s functions (Fig. 3) and
for the current (Fig. 4), obtained with Nb = 2,4,6. We find
that the retarded component is well converged already for
Nb = 4 even for U = 12. For the Keldysh Green’s functions,
the convergence in terms of Nb is reasonable, but not as fast
as for the retarded Green’s function. Correspondingly, it is not
surprising that also the current voltage characteristics exhibit
a fairly good convergence (see Fig. 4). On the whole, the
convergence for weak interaction (U = 2) is faster than for
strong interaction (U = 12).

These results indicate that Nb = 4 bath sites already
produce reasonable results away from the Kondo regime.
Therefore, in view of the exponential increase of the numerical
effort with Nb, we mainly restrict the following discussion to
Nb = 4. Only to discuss the low-energy Kondo physics we
will present results with Nb = 6. The reason for the rapid
convergence in Nb is due to the fact that the number of Lindblad
parameters increases quadratically with Nb, in contrast to the
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FIG. 4. (Color online) Current J vs bias voltage � for different
U . The solid red curve represents the U = 0 result. The three curves
peaked at about � = 4 are for U = 2 and the remaining three curves
show the U = 12 results. Solid, dashed, and dotted lines correspond
to Nb = 6, 4, and 2, respectively. Other parameters are as in Fig. 3.

energy and hopping parameters E. It is, thus, important, to
consider also long-ranged � terms (cf. Ref. [62]).

B. Steady-state current

In this section, we discuss the steady-state current in
detail. The results for the current as a function of bias
voltage are presented in Fig. 4 for different values of the
Hubbard interaction U . In the noninteracting case (U = 0),
particles pass the interface without scattering and therefore
the momentum k‖ is conserved. Correspondingly, the problem
becomes one dimensional and the current vanishes for bias
voltages larger than the one-dimensional bandwidth, i.e.,
for Wz = 4tl/r = 10, which is corroborated by Fig. 4. For
nonzero interaction different k‖ are mixed due to scattering
and thus all states of the leads are possible final states.
Subsequently, the current vanishes for bias voltages larger
than the three-dimensional bandwidth, i.e., W = 3Wz = 30.
In equilibrium, an isolated two-dimensional Hubbard layer is
in the metallic phase for weak interaction. As can be seen
from Fig. 4, in this case (U = 2) the current displays, as
expected, a metallic behavior, i.e., a linear increase of the
current for small voltages. The overall shape is similar to
the U = 0 case, however, with a longer tail at large � due to the
scattering mechanism discussed above. For strong interaction
(U = 12), an isolated two-dimensional Hubbard layer is a Mott
insulator, but in our model there is no insulating phase due
to the hybridization to the noninteracting leads. Therefore,
strictly speaking the current is always linear in � for � → 0.
Nevertheless, due to the vicinity of the Mott insulator the
current is strongly suppressed [84]. A similar behavior also
was observed in Refs. [37,38]. On the other hand, for higher
bias voltages (� � 12) the picture is reversed and the current
is more suppressed for U = 2 than for U = 12.

We investigate this issue in detail and plot the current as
a function of Hubbard interaction U for low (� = 3.5) and
high (� = 15) bias voltage in Fig. 5. For the low-voltage
case, we find a monotonic Gaussian decrease. The origin of
the current reduction with increasing U are backscattering
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FIG. 5. (Color online) Current J vs interaction U for two values
of �. Calculations are performed for Nb = 4. Other parameters are
as in Fig. 3.

processes that reduce the transmission coefficient. For high-
bias voltage, in the region where the current is zero for U = 0,
the current first increases with increasing interaction, reaches
its maximum at approximately U � 6, and then decreases
again [85]. Qualitatively, this can be explained by the fact
that there are two competing effects as a function of U .
On the one hand, with increasing U the transport increases
due to scattering to different k‖ as discussed above, which
enhances the current, but on the other hand, large U means
increased backscattering which suppresses transport across the
correlated layer. For high-bias voltages and weak interactions,
the first effect dominates due to the finite bandwidth of the
leads.

C. Nonequilibrium spectral function

To gain further insight into the properties of the steady
state we also investigate the nonequilibrium spectral function,
which can be calculated from the Green’s function via
A(ω) = − 1

π
Im GR(ω). The results are shown in Fig. 6 for

U = 2 and 12. For weak interaction (U = 2), the spectral
function A(ω) displays for all bias voltages a peak at ω = 0 and
hardly visible Hubbard satellites at the approximate position
ω = ±U/2. The spectral function for U = 2 [Fig. 6(a)]
depends only very weakly on bias voltage. This is in contrast to
the spectral density of the one-dimensional SIAM for which,
it is found that, the Kondo peak splits up as a function of
voltage and two resonances are observed at the corresponding
chemical potentials of the two leads [46,55,62,86–94]. The
difference between the two situations is that in the case of
the single-impurity model, the resonance and the Hubbard
subbands are clearly separated. In contrast, for the correlated
layer and for the set of parameters considered here, when the
isolated correlated layer is metallic, they overlap due to the
broadening induced by the hopping tc within the correlated
layer. And, indeed if we artificially reduce tc to 0.1 (keeping
all other parameters fixed) we observe, for � = 0 a resonance,
which is clearly separated from the Hubbard subbands (cf.
Fig. 7). In this case, the isolated layer would be insulating
and the broadening of the resonance is not any more due to
tc, but to an effective energy scale TK , which can be seen as
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FIG. 6. (Color online) Single-particle spectral function for Nb = 4, different values of �, U = 2 (a), and U = 12 (b). Other parameters
are as in Fig. 3.

a Kondo temperature. This originates from a combination of
coherent scattering from the leads into the insulating layer,
as well as from a self-consistent DMFT process as discussed
in Ref. [95]. In addition to the broadening mentioned above,
there is also a spurious broadening due to the limited accuracy
of our calculation. Nevertheless, our resolution is sufficient
in order to observe a splitting of the resonance into two
peaks at μl/r = ±VB/2 as a function of voltage as in the
single-impurity case.

Now, we turn to strong interactions (U = 12), for which
the results are depicted in Figs. 6(b) and 8. In equilibrium,
i.e., for � = 0, the hybridization with the leads produces a
weak Kondo resonance at the Fermi energy (ω = 0) [96]. A
nonzero bias voltage splits the resonance into two peaks at
μl/r = ±�/2 (see Fig. 8). For � � 3, the peaks merge into
the Hubbard subbands and the spectral function A(ω) consists
of two Hubbard subbands at the approximate position ω =
±U/2, while A(ω = 0) is strongly suppressed. For these larger
values of �, the effect of the bias voltage is small: it modifies
only slightly the position and height of the Hubbard subbands.
Notice that in order to resolve the Kondo peak and its splitting
at low bias, we need to use an auxiliary system with Nb = 6.
While this allows to resolve the peaks, the limited accuracy
makes them broader than they should be and therefore the
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FIG. 7. (Color online) Single-particle spectral function for Nb =
6, U = 2, tc = 0.1 and for different values of �. Other parameters
are as in Fig. 3.

Friedel sum rule is not satisfied even for equilibrium. The
reason for this is that a spurious broadening originating from
the limitation of our approach reduces the height of the peak at
the Fermi level [97]. To fulfill this, one would have to use more
bath sites, and consequently adopt a matrix product state based
solution of the auxiliary system, as we did in Ref. [63] for the
Anderson impurity model. This, however, in combination with
the DMFT self-consistency, would increase considerably the
required computation time.

Next, we study the dependence on the Hubbard interaction
U in more detail. Results for equilibrium (� = 0), low-
(� = 3.5) and high- (� = 15) bias voltages are presented in
Fig. 9. As one can see, in the equilibrium case for large U only
small excitations are visible at ω = 0. Here, the Friedel sum
rule would require the ω = 0 peak to display a U -independent
height [98]. However, as discussed above for large U , our
approach cannot resolve Tk and the peak becomes strongly
suppressed, and for intermediate U the sum rule is not satisfied,
as for Fig. 8. Still, Fig. 9(a) displays a crossover from a
regime in which the local Fermi liquid peak is already present
in the isolated correlated layer (for U below the 2D Mott
transition), into a Kondo-Fermi liquid regime in which the
peak is produced by coherent spin-flip processes across the
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FIG. 8. (Color online) Single-particle spectral function for Nb =
6, U = 12, tc = 1 and for different values of �. Other parameters are
as in Fig. 3.
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(a) (b) (c)

FIG. 9. (Color online) Single-particle spectral function for Nb = 4, different values of U , � = 0 (a), � = 3.5 (b), and � = 15 (c). Other
parameters are as in Fig. 3.

Mott insulator, originating from the Fermi levels of the leads.
Outside of the Kondo regime, the behavior is qualitatively
similar in the three cases. In the nonequilibrium cases, upon
increasing the interaction the height of the spectral function at
ω = 0 decreases and for U � 6 the spectral function displays
a local minimum at ω = 0 instead of a maximum, which
becomes vanishingly small with increasing U . Comparison
of Figs. 9(b) and 9(c) shows that for higher-bias voltages,
this resonance disappears at smaller U . Also, for higher-bias
voltages (� > 10), the noninteracting spectral function has a
sharper peak at ω = 0. This is due to the fact that for high-bias
voltage, the leads’ density of states does not overlap any more
and correspondingly states close to the Fermi level do not
dissipate any more into the leads, therefore, the density of states
close to the Fermi level is just the two-dimensional density
of states, which features a logarithmic divergence. Another
effect, clearly visible in Figs. 9(a)–9(c), is the linear shift of
the position of the Hubbard subbands with increasing U . The
peak position is given by ω± � ±U/2.

IV. CONCLUSIONS

We have presented an improved application of a DMFT
technique for nonequilibrium situations that allows to study
directly steady-state properties of strongly correlated devices.
Like in equilibrium DMFT, the only approximation is the local-
ity of the self-energy, while the accuracy of the nonequilibrium
impurity problem is controlled by the number of bath sites Nb

which are attached to Lindblad environments. We find that the
accuracy increases exponentially with Nb, both in and out of
equilibrium. The approach is benchmarked for a strongly cor-
related layer coupled to two metallic leads. While the results in
Ref. [61] for this model were obtained by full diagonalization
of the auxiliary impurity problem and were, thus, restricted
to Nb = 2, here we invoked the non-Hermitian Krylov-space
method, which allows us to use larger values for Nb.

With the Krylov-space solver we were able to go up to Nb =
6. For more bath sides (up to Nb � 14), the MPS solver [63]

could be used, but the Krylov-space solver has the advantage
to be quicker and more flexible, which is important for the
DMFT iteration. For the single-layer device studied here, we
found that Nb = 4 already yields very reliable results in most
parameter cases. Only the Kondo regime requires larger values
for Nb, but with Nb = 6 at least semiquantitative results can
be achieved.

We have investigated the current-voltage characteristics
across a correlated layer. At low-bias voltages, we have
observed a linear behavior for weak interactions, while the
current was exponentially suppressed for strong interactions
[84]. On the other hand, for higher-bias voltages we have
observed a reversed picture, whereby the current is larger in
the strongly interacting case. In addition, we have investigated
the current J as a function of the local Hubbard interaction for
low- as well as for high-bias voltages. For lower-bias voltages
we found that the J decreases monotonically with U , while
for higher-bias voltages, the current first increases, reaches
its maximum, and then decreases again. The origin of this
behavior can be explained by different scattering processes.

In addition to the current we have also investigated the
steady-state spectral function. Our results show that for the set
of parameters considered in this paper, the spectral function
is only weakly dependent on the bias voltage in contrast to
the single-impurity problem. This is due to the fact that the
splitting of the Kondo resonance as a function of � is strongly
broadened due to the hopping within the correlated layer. As
to be expected, the Hubbard satellites depend almost linearly
on U , like in the equilibrium case.
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3.4.1. Preamble

The article titled Quasiparticle excitations in steady state transport across a correlated
layer was published in Journal of Physics: Conference Series, 696, 012003, April 2016 [4].

This work was done by Antonius Dorda (AD) as first author and Irakli Titvinidze (IT)
as co-author, under the supervision of Enrico Arrigoni (EA). From a numerical point of
view, essentially the same program as developed before was used, i.e. the one from Sec. 3.3,
Ref. [3]. EA, AD and IT decided on putting the main focus of this work on investigating
the underlying low-energy physics of the considered single layer situation. Therefore, AD
searched for an appropriate parameter regime in order to be able to resolve the low-energy
physics in more detail. In addition, different nonzero temperatures were introduced in
the leads for the purpose of studying the competition of temperature- and bias-induced
decoherence on the quasiparticle peak. After first tests conducted by IT, AD carried
out the calculations in the article below and wrote a first paper draft, which IT and EA
revised. All authors contributed to discussing results and the manuscript itself.

3.4.2. Original article

(see next page)
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Quasiparticle excitations in steady state transport

across a correlated layer

Antonius Dorda, Irakli Titvinidze, and Enrico Arrigoni

Institute of Theoretical and Computational Physics, Graz University of Technology, 8010
Graz, Austria

E-mail: dorda@tugraz.at, arrigoni@tugraz.at

Abstract. In this work we investigate the spectral and transport properties of a single
correlated layer attached to two metallic leads, with particular focus on the low-energy physics.
A steady state current is driven across the layer by applying a bias voltage between the leads.
Extending previous work we introduce a nonzero temperature in the leads, which enables us to
study the influence of quasiparticle excitations on the transport characteristics in detail. Even
though the system is clearly three dimensional we obtain current-voltage curves that closely
resemble those of single quantum dots. Furthermore, a splitting of the quasiparticle excitation
with bias voltage is observed in the spectral function.

1. Introduction
Correlated systems out of equilibrium and in particular electronic transport through quantum
dots [1–4] and correlated heterostructures [5–10] have recently attracted increasing interest.
Related model systems of paramount importance are the single impurity Anderson model
(SIAM) [11] and the Hubbard model [12–14]. At the present time the equilibrium properties of
these systems are understood to large extent [15–19]. The so-called dynamical mean field theory
(DMFT) [18–21] was a key step in the theoretical description and understanding of Hubbard-
like models and furthermore, established a link between correlated lattice systems which exhibit
a Mott transition and the Kondo physics of a SIAM. Within this framework, the coherent
quasiparticle excitations are described as a self-consistent Kondo effect [19]. The close relation
between the SIAM and the Hubbard model poses the question whether analogous behavior is
seen in the transport characteristics of the two systems. Exactly this question is the topic of
the investigation presented here.

At the heart of DMFT lies the self-consistent solution of a quantum impurity model,
the SIAM. An accurate description of the nonequilibrium physics of the SIAM and the
related Kondo model is challenging by itself and currently intensively studied with different
methods. To mention just a few, central aspects could be established with the noncrossing
approximation [22–24], perturbative renormalization group (RG) [25, 26], flow equations [27,
28], real-time RG [29, 30], time-dependent density matrix RG [31–34], numerical RG [35, 36]
and Monte Carlo methods [37–39]. A method recently introduced by some of us, which is
well-suited for an application within nonequilibrium DMFT, is the so-called auxiliary master
equation approach (AMEA) [40, 41]. AMEA has proven to be an accurate method for the
study of the nonequilibrium steady state physics of the SIAM [41, 42]. Special emphasis was
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consisting of a part for the central system Hc, a part for each decoupled lead Hl/r and a coupling
between the leads and the correlated layer Hcoup. In the detail the Hamiltonian reads

Hc = −tc
∑

〈ij〉,σ
c†iσcjσ + U

∑

i

ni↑ni↓ + εc
∑

i,σ

niσ , (2)

Hα = −tα
∑

〈ij〉σ
c†αiσcαjσ + εα

∑

iσ

c†αiσcαiσ , (3)

Hcoup =
∑

〈ij〉ασ
vα

(
c†iσcαjσ + h.c.

)
, (4)

where 〈i, j〉 indicates neighboring sites, c†i,σ creates an electron at the i-th site of the correlated

layer with spin σ =↑, ↓, and niσ = c†iσciσ denote the corresponding occupation number operators.

The analogous fermionic creation/annihilation operators of lead α are labeled by c†αiσ/cαiσ. For
the particular parameters see Fig. 1.

3. Method
In the following we outline the method only briefly and for details we refer to Ref. [40, 41, 51].

Nonequilibrium dynamics are conveniently formulated in terms of Keldysh Green’s
functions [52–57], whereby for the steady state limit it suffices to consider 2 × 2 objects on
the Keldysh contour

G =

(
GR GK

0 GA

)
, (5)

which we denote by an underscore. Here, the retarded GR and the Keldysh component GK are
independent functions in a generic nonequilibrium situation, and the advanced part is given by
GA = (GR)†. The spectral function is defined as usual: A = i/2π (GR −GA).

Since the model outlined in Sec. 2 is translationally invariant in the in-plane direction,
it is convenient to introduce the corresponding momentum variable k||. Furthermore, time
translational invariance applies in the steady state limit and the governing equations can be
formulated in the frequency domain ω. With this the Green’s function of the correlated layer is
given in terms of Dyson’s equation by

G−1(ω,k||) = g−1
0

(ω,k||)−
∑

α=l,r

v2α g
α
(ω,k||)− Σ(ω,k||) . (6)

Here, the decoupled non-interacting Green’s function of the layer is denoted by g
0
(ω,k||), and

those of the leads by g
α
(ω,k||). The non-interacting Green’s functions are known exactly but

the determination of the self-energy of the correlated layer Σ(ω,k||) is challenging and one has
to resort to approximations. In particular we neglect spatial correlations and restrict ourselves
to a local self-energy Σ(ω,k||) = Σ(ω), as usually done in the context of DMFT [18–21, 43, 47].
Within DMFT, the local quantity Σ(ω) is determined by mapping the lattice problem onto
an equivalent quantum impurity model, with the same local parameters U and εc. However,
the bath degrees of freedom of the impurity model depend on Σ(ω), such that a self-consistent
solution is needed, which is commonly obtained in an iterative manner. The bath for the
impurity model is fully specified by the hybridization function

∆ph(ω) = g−1
0

(ω)−G−1
loc(ω)− Σ(ω) , (7)
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where g−1
0

(ω) is the non-interacting Green’s function of the disconnected impurity and the local
Green’s function is obtained by

Gloc(ω) =

∫

BZ

dk||
(2π)2

G(ω,k||) . (8)

In order to solve the nonequilibrium impurity problem we resort to AMEA, cf. [40, 41],
which maps the original impurity problem onto an auxiliary one, with a finite number of
bath sites NB and additional Markovian environments. The resulting open quantum system
is described by a Lindblad equation and is small enough to be solved accurately by numerical
techniques. In contrast to other approaches, the parameters of the Lindblad equation are not
obtained perturbatively but through an optimization procedure. In particular, we consider the
hybridization function of the auxiliary system ∆aux(ω) and vary the auxiliary bath parameters
in order to minimize the difference to the physical hybridization function ∆ph(ω), Eq. (7). In
the limit of large NB the approach becomes exact but even for small values of NB we obtain
∆aux(ω) ≈ ∆ph(ω) to very good approximation. Typically, an exponential convergence with
increasing NB is achieved. After the mapping procedure, which can be done in a U = 0
calculation, the interacting impurity problem is solved. For this we introduced two different
strategies in previous work: On the one hand, an implementation of AMEA which makes use
of Krylov space methods, cf. Ref. [41], and on the other hand, a matrix product states based
solution, cf. Ref. [42]. The latter allows for a highly accurate solution of the impurity problem but
requires a rather large amount of CPU time. The former is not as accurate at low temperatures
but faster in many cases and is used in the present work. The Krylov space solver enables us to
consider up to NB = 6 bath sites, which suffices to treat cases with strong Kondo or quasiparticle
excitations reliably, cf. Ref. [41, 51]. Once the many-body problem of the auxiliary system is
solved one obtains an approximation for the self-energy

Σ(ω) = G−1
aux,0(ω)−G−1

aux(ω) , (9)

from the knowledge of the non-interacting and the interacting auxiliary Green’s functions. By
inserting Σ(ω) from Eq. (9) into Eqs. (6),(7),(8) we close the DMFT cycle and iterate until a
self-consistent point is reached.

4. Results
In the following we present results for the transport and spectral properties of a correlated
layer in a nonequilibrium steady state situation. The particular model is defined in Sec. 2 and
depicted in Fig. 1. We place special emphasis on the low-energy properties and consider cases
with rather low bias voltages φ. To investigate the role of resonant quasiparticle excitations,
different temperatures T = Tl = Tr are introduced in the leads. In contrast to previous work
[51], a nonzero temperature is considered in the leads and additionally, the hopping parameters
are chosen such that each correlated site has an equal hopping amplitude to neighboring sites
(vl = vr = tc). By this we expect to be in a regime in which a competition between the physics
of an isolated 2D layer and the one of single quantum dots occurs.

In Fig. 2 the current-voltage characteristics j(φ) together with the differential conductance
∂j/∂φ are displayed for various T . At low bias voltages φ . 2 tc the temperature has large
influence on j(φ) and ∂j/∂φ, whereas for larger voltages φ & 2.5 tc we find quantitatively
similar current values for all of the temperatures. This is in close analogy to what was observed
in Ref. [42] for the nonequilibrium properties of a quantum dot. In ∂j/∂φ we obtain for
φ . 1 tc a strong dependence on T . Again, the behavior is similar to what is known from
Kondo systems [3, 4, 29, 30]. However, the accuracy of the present calculations does not permit
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Figure 2. Current j(φ) and differential conductance ∂j/∂φ as a function of bias voltage φ and
for different temperatures T . For the particular model parameters see Fig. 1. Calculations for
T = 1.6 tc were performed with NB = 4 and all others with NB = 6.

Figure 3. Spectral function A(ω) as a function of bias voltage φ and for different temperatures
T . The parameters are the same as in Fig. 2
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Figure 4. Retarded self-energy ΣR(ω) as a function of bias voltage φ and for different
temperatures T . The parameters are the same as in Fig. 2

us to investigate the scaling with φ in detail, in particular if a logarithmic dependence as in
quantum dots is present. Still, one observes that the experimentally well-accessible quantity
∂j/∂φ exhibits a strong temperature dependence and clear signatures of a Kondo-like behavior
are visible for low T . From a technical point of view one should note that slight kinks or jumps
in j(φ) are present, at different values of φ for the various T . These artefacts originate in the
mapping procedure and appear at values φ = φc at which more than one parameter set for the
auxiliary system minimizes the difference to the physical hybridization function. Usually, one
of these minima is better for φ < φc while the other one for φ > φc. Therefore, such a crossing
of minima leads to an abrupt change in parameters of the auxiliary system and may result in
a slight shift of spectral weight, cf. Ref. [41]. In general, this effect is smallest in situations in
which the difference between ∆aux(ω) and ∆ph(ω) is small in any case and thus, is reduced upon
increasing the number of bath sites NB.

A more detailed picture of the state of the system is obtained by investigating the spectral
function, see Fig. 3. In the equilibrium case, φ = 0, we find a strong quasiparticle excitation
at ω = 0 for T = 0.2 tc, which is attenuated with increasing temperature (T = 0.4 tc and
T = 0.8 tc) and is completely suppressed for T = 1.6 tc.[58] Especially interesting are the low
temperature situations T = 0.2 tc and T = 0.4 tc in which a strong zero frequency excitation
is visible in equilibrium, and for which we observe with increasing φ at first a reduction of the
peak height before a splitting sets in. Similar to a quantum dot system [41, 42], we find two
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resonant excitations at the Fermi-energies of the two leads and thus a linear splitting with φ.
For the case of T = 0.2 tc the excitations are still clearly visible at rather large voltages up to
φ ≈ 5 tc. The results for T = 0.8 tc and T = 1.6 tc reveal dissimilar spectral functions at low
bias voltages, but surprisingly, the obtained current values in Fig. 2 are comparable. The reason
for this is that the high temperatures average out details in A(ω) to large extent.

The presence of resonant excitations is also clearly visible in the retarded part of the self-
energy, displayed in Fig. 4. For φ = 0 we find for temperatures up to T = 0.8 tc a local minimum
in −ℑ{ΣR(ω)} at ω = 0, indicating a quasiparticle excitation. But only in the cases T = 0.2 tc
and T = 0.4 tc the temperature induced decoherence is weak enough to obtain a splitting of the
single minimum when increasing the bias voltage. In contrast, the self-energy for T = 1.6 tc is
rather featureless and only weakly dependent on the bias voltage.

5. Conclusions
In this work we investigated the steady state properties of a correlated layer sandwiched between
two metallic leads at different chemical potentials, induced by an externally applied bias voltage.
For this we made use of a nonequilibrium DMFT approach together with AMEA as impurity
solver. In addition to previous work [51], we studied the influence of temperature on the
transport characteristics and on the bias-dependent spectral function, with focus on the low-bias
regime. The parameters of the system were chosen such that a certain direction was not preferred
in advance. In particular, all of the hopping amplitudes of a correlated site to its neighbors were
of equal size. From investigating the spectral function and the differential conductance as a
function of bias voltage and for various temperatures, we found that the considered system bore
close analogy to the case of a single quantum dot. A result like this could be expected when
considering the limit in which the hopping parallel to the 2D layer is much smaller than the
longitudinal one, regarding the layer and the leads. But, since the hoppings to correlated sites
were isotropic the result is not intuitive nor trivial.
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3.5. Further publications and work in progress

Besides these publications on AMEA, AD contributed in the course of this thesis as co-
author to the publication Ref. [5] and the preprint Ref. [6]. In Ref. [5] a systematic
improvement of nonequilibrium cluster perturbation theory (nCPT) was introduced and
studied. A principal problem in nCPT, in contrast to its equilibrium counterpart, is, that
an ambiguity exists in choosing the appropriate reference state for the decoupled cluster.
In equilibrium, it is natural to choose the same temperature and chemical potential as
in the final, coupled system. However, in nonequilibrium such macroscopic quantities
are not well-defined. A possible solution to this problem was introduced by constructing
an appropriate reference state through a quantum master equation. Its importance for
transport phenomena in molecular junctions such as current blocking was demonstrated.

The main goal of Ref. [6] was to present a systematic approach on how to extend the
ideas of NRG to the nonequilibrium regime. For this a bath discretization with additional
Lindblad drivings was introduced, which could then be mapped on a linear chain with
nearest neighbor couplings only. One of the crucial steps hereby was to achieve that the
Lindblad drivings remain local in the unitary transformation from a star to a chain geom-
etry. This could be done by replacing partially filled bath sites by a linear combination of
twice as many filled and empty sites, whereby each of the two sets separately had identical
on-site Lindblad drivings. As a result, the Lindblad terms were not affected when map-
ping the filled and empty sites separately onto two Wilson chains, and one thus retained
a local setup. In a first study this approach was thoroughly tested in the noninteracting
limit. For this, an alternative and compact derivation of the noninteracting Green’s func-
tions for a Lindblad lattice problem was presented in addition. It avoided the necessity
to introduce an augmented fermion Fock space, cf. Refs. [70], [1] and [2]. After this pre-
liminary study, the group of Jan von Delft at LMU Munich is currently investigating the
challenging nonequilibrium Kondo regime with the approach, by employing MPS methods
to solve the interacting Lindblad problem.

In the context of AMEA, further extensions of the method and further applications to
different physical situations are on the way. At first, a manuscript is in preparation which
is devoted to more details on the mapping procedure itself, together with an analysis
of different geometries for the auxiliary system. Secondly, on the level of the SIAM,
we currently investigate and prepare manuscripts for the thermoelectric properties in a
true nonequilibrium state, and also for nonequilibrium Kondo physics in magnetic fields.
On the level of DMFT, a paper is in preparation which addresses transport through
heterostructures of correlated layers. Also, optical driving in the framework of Floquet
and DMFT is an interesting topic which is currently investigated in the group.
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4. Summary and outlook

Development of the auxiliary master equation approach (AMEA): The main topic of
this dissertation was the development and improvement of AMEA, and its application to
strongly correlated quantum manybody systems out of equilibrium. The approach itself
was originally put forward by Arrigoni et al. in Ref. [106], where the basic idea and
first results for transport through a correlated layer within dynamical mean field theory
(DMFT) were presented. The key step in AMEA is to map a general nonequilibrium
impurity problem, as encountered for instance in the self-consistent DMFT cycle, onto an
auxiliary open quantum system. For the open quantum system a finite number NB of bath
sites embedded in Markovian environments is chosen, whose dynamics is governed by a
Lindblad equation. By this, the original physical impurity model IMph, which is interacting
and of infinite size, is mapped onto this auxiliary system IMaux, which is of finite size only
and can thus be solved exactly or at least with high numerical precision. The two major
steps in the approach are firstly the mapping procedure, in which the parameters of IMaux

are adjusted to the particular IMph, and secondly, the manybody solution, in which the
interacting IMaux is solved and by this an approximate solution of IMph is obtained. The
overall accuracy is controlled by the parameter NB and can be systematically improved by
increasing it. In fact, in practice we found already for small values of NB ≈ O(10) a very
good mapping and even an exponential convergence when incrementing NB, which enabled
us to obtain very accurate spectral functions and observables. In order to make optimal
use of the chosen number of bath sites for IMaux, efficient optimization algorithms are
needed for the mapping procedure. Moreover, sophisticated manybody solution strategies
must be employed to solve the interacting Lindblad problem precisely. As is commonly
true, the solution of the interacting nonequilibrium manybody problem is a difficult task
and sets also within AMEA the main limitation to the accessible values of NB.

The mapping procedure is build upon the demand that the hybridization function of
IMaux, ∆aux(ω), reproduces the one of IMph, ∆ph(ω), as accurately as possible for a chosen
number of bath sites NB. This is analogous to what is known as exact diagonalization
DMFT in equilibrium [52], only that the criterion is here generalized to the nonequilib-
rium regime by formulating the equations in the framework of Keldysh Green’s functions.
Therefore, the retarded as well as the Keldysh part of the hybridization function must be
considered simultaneously. Since the hybridization function contains per definition only
the bath degrees of freedom of an impurity model and is independent of the interaction
terms on the impurity site, it can be obtained through a noninteracting calculation. This
greatly speeds up computations in practice and allows us to quickly compute ∆aux(ω)
for different parameters of IMaux and by this, to optimally fit ∆aux(ω) to ∆ph(ω). The
number of parameters in IMaux increases hereby up to quadratically with NB, which re-
sults in a multi-dimensional optimization problem for the mapping procedure. Different
techniques for this were tested in the course of the thesis. Gradient-based minimization
routines turned out to be well-applicable for rather small system sizes (NB . 6), and for
larger values of NB Monte Carlo schemes were tested and implemented. Their advantage
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is the ability to overcome local minima. In particular, a parallel tempering routine with
feedback optimization has proven most efficient for our purposes and enabled us to accu-
rately perform the mapping procedure with as many as 30− 60 optimization parameters
in IMaux. This was one important step in the development of the approach and made it
possible to obtain a high overall accuracy.

For the solution of the interacting Lindblad problem two different strategies were pur-
sued. In the first published work in this thesis, Ref. [1], Sec. 3.1, an exact diagonalization
(ED) approach was chosen, and in the second work in Ref. [2], Sec. 3.2, a drastic improve-
ment of the method was achieved by making use of matrix product states (MPS). In the
work on the ED-solver we employed Krylov space methods for non-Hermitian sparse ma-
trices in order to compute the desired interacting Green’s functions. Already in Ref. [106]
an ED-approach was used, however, with a full diagonalization which allowed only for two
bath sites at most. Due to the Krylov space techniques we could extend the range up to
NB = 6. One has to bear in mind the exponential dependence of the Hilbert space size NH
on NB, so that NB = 2 corresponds to NH ≈ 400 whereas NB = 6 to NH ≈ 107. Due to
this and due to the exponential increase in accuracy in the mapping procedure with NB,
the application of Krylov space techniques can be seen as a first important improvement
of the approach. Another important advancement of AMEA was achieved with MPS tech-
niques. In Ref. [2], Sec. 3.2, we explored possible modifications in the geometry of IMaux

in order to reduce the bipartite entanglement entropy, which increased the applicability
of MPS methods. As a result, it was possible for us to treat as large systems as NB = 16
bath sites, and by this we could greatly improve the achievable accuracy within AMEA.

Results: From the physical point of view the achievements in this thesis were twofold.
On the one hand, in the course of the development of solution strategies for AMEA the sin-
gle impurity Anderson model (SIAM) driven by a bias voltage was investigated, and on the
other hand, transport through a correlated layer was studied within DMFT. All of these
calculations were performed for steady state equilibrium and especially nonequilibrium
situations. Details are provided in the papers included in this thesis, Sec. 3. Regarding
the first application, in the work on the ED-solver Ref. [1], Sec. 3.1, the spectral properties
of the nonequilibrium SIAM and corresponding observables such as the current density
were examined for a large range of external parameters. In particular, we could accu-
rately capture interaction effects on the current-voltage characteristics and obtained a
close agreement with quasi-exact reference values. Furthermore, we achieved to resolve a
distinct Kondo resonance in the spectral function in the equilibrium regime and studied
its linear splitting with applied bias voltage. This behavior was confirmed with the MPS-
solver and the calculations performed in Ref. [2], Sec. 3.2. In addition, owing to the greatly
increased accuracy of the latter solver we were able to accurately capture Kondo physics
and we could resolve the behavior on small energy scales in detail. In particular, a com-
parison against a numerical renormalization group (NRG) calculation in the equilibrium
limit revealed a very close agreement, for a situation with large values of the interaction
and at temperatures well below the Kondo scale. Furthermore, the suppression and sub-
sequent splitting of the Kondo peak at voltages just above the Kondo temperature could
be precisely resolved. To our knowledge this was one of the most accurate calculations
of the spectral properties of the nonequilibrium SIAM in the steady state up to this time
and demonstrated the great capabilities and potential of AMEA.

In the investigations of transport through a correlated layer within DMFT, reported in
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Ref. [3], Sec. 3.3, and Ref. [4], Sec. 3.4, we examined the spectral and transport properties
and found distinct signatures for the transition from a nearly insulating Mott state to a
strongly correlated metal when varying the interaction strength U . In the current-voltage
characteristics the transition became particularly apparent at low bias voltages, but also
in the high-bias regime drastic effects of the electron-electron interactions were found. In
the equilibrium limit, the spectral properties revealed a quasi-gapped density of states at
large U and the build-up of a Kondo or quasiparticle peak at the Fermi level when lowering
U . Similar to the single impurity case, also here we found a splitting of the Kondo peak
with increasing bias voltage and furthermore, the temperature dependence of the current-
voltage characteristics bore close analogy to those of a SIAM. In all of these calculations
we employed the above mentioned ED-solver. It is well-suited for the purposes of the
self-consistent DMFT iteration since a single solution of the impurity problem is rather
quick and the solver still provides a good accuracy.

Outlook: Possible extensions of the method in future are numerous. On the level
of DMFT improved results could be obtained by employing the developed MPS-solver.
This would require a higher computational effort but could provide a greatly improved
accuracy, especially in situations with prominent Kondo physics for instance. Further
extensions in the context of DMFT such as transport through multilayer heterostructures,
the calculation of thermoelectric properties and also optical driving is current work in
progress. These are interesting questions on their own and additionally first steps towards
a treatment of multilayer heterostructures under light incidence. Such studies would yield
important information for the applicability of strongly correlated heterostructures as solar
cells [107]. In order to realize ab-initio calculations of real materials the combination with
density functional theory would be a key step. This is possible in principle, however, for
real materials one often needs a multi-orbital description. Therefore, further improvements
on the level of the impurity solver are needed.

Other solution strategies for the auxiliary impurity problem still have to be studied
and could yield important advances, in particular for multi-level impurity models and
also for the inclusion of phonons. The latter represents a realistic dissipation mechanism
and is important for any room temperature situation. Possible candidates for alternative
manybody solution techniques are for instance stochastic wave functions, configuration
interaction or quantum Monte Carlo schemes. The first is also known as quantum jumps
and constitutes a well-known and effective approach for open quantum systems [66–69,84],
which could be implemented for the purposes of AMEA either within ED or MPS. Such
alternative solution strategies are an interesting topic to be explored and could greatly
improve the applicability of AMEA to different physical situations.

With the present ED- and especially the MPS-solver many unresolved properties of the
nonequilibrium SIAM still have to be studied. Of advantage is hereby the freedom in
AMEA to choose different parameters in the physical impurity problem and the accurate
resolution over the whole frequency domain. This enables us to directly extend the range
and to look into other parameter regimes away from particle-hole symmetry as well. In
particular, the interesting situation of the SIAM in magnetic fields is currently examined,
which is furthermore very relevant for experiments. In general, since the developed solvers
allow us to address the nonequilibrium Anderson and not only the Kondo model, a realistic
effective description of true experimental systems up to larger energy scales can probably
be achieved. Such comparisons are presently undertaken and may give valuable input for
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experiments. Besides the nonequilibrium SIAM in a magnetic field, also its thermoelectric
properties are currently investigated. This is an interesting fundamental issue and further-
more, is again relevant for experiments due to the controlled realization in semiconductor
quantum dots for instance. In addition to these steady state properties, AMEA is gener-
alized on the impurity level in a straight-forward manner to the time-dependent case, in
order to treat quench dynamics or periodically driven systems for instance. The temporal
modulation of the bias voltage or impurity parameters is directly realizable, and would
enable one to investigate transient dynamics away from equilibrium and the resolution of
the involved time scales. With device applications in view this constitutes important infor-
mation since any molecular transistor or single electron device should ultimately operate
at high frequencies.

In general, the development of AMEA is still at an early stage and the first studies
presented in this thesis have demonstrated that the approach has great potential for the
solution of general nonequilibrium impurity problems. It is probably not exaggerated to
optimistically look forward to extensions of the method and to hope that it may contribute
to improve the understanding of nonequilibrium impurity problems and to the application
of the very successful DMFT idea to nonequilibrium systems.
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A. Appendix

A.1. Comments on the chosen Lindblad equation

Here, we briefly want to show that the form of the Lindblad operator stated in Sec. 2.1.2
is the most general one for our purposes. The summation in Eq. (2.8) runs over all system
sites so that the number of Lindblad operators scales polynomially in NB. Usually, the
most general Lindblad equation for a system with Hilbert space size NH contains all
possible trace-less system operators and thus on the whole N2

H − 1. This comes about

by combining a complete set of local operators on one site, e.g. {c†i , ci , ni,1} in the spin-
less case, with every other site and by forming trace-less expressions [53, 54]. From this
one would arrive at a number of Lindblad operators that scales exponentially in NB and
therefore, Eq. (2.8) might seem too restrictive at the first glance. However, since the bath
of a generic IMph is noninteracting we need to demand for consistency reasons the same
for IMaux, so that the Markovian environments are only allowed to be quadratic in the
fermionic operators. Furthermore, spin-flip terms in IMph and thus also in IMaux are not
considered, and in order to treat a normal conducting bath anomalous terms are excluded.
By this we arrive exactly at the expression as stated in Eq. (2.8).1

For the purpose of better understanding the physical picture behind Eqs. (2.6) and (2.8)
we briefly consider an arbitrary dissipator written in the usual diagonal form [53,54]

Ldiag.
D ρ =

∑

kσ

2LkσρL
†
kσ − {ρ, L

†
kσLkσ} , (A.1)

whereby Lkσ denotes some set of Lindblad operators. Eq. (2.8) can be brought into this
form by diagonalizing the combined coefficient matrix Γ(1) ⊕ Γ(2). For simplicity we

consider only the second term Γ
(2)
ij =

∑
k Uikγ

(2)
k U †kj for which we find the corresponding

Lindblad operators

L
(2)
kσ =

∑

i

√
γ

(2)
k Uikc

†
iσ , (A.2)

which are apparently a linear combination of fermionic creation operators. The anti-
commutator in Eq. (A.1) affects the propagation of particles inside the system similar

to Eq. (2.6) and LkσρL
†
kσ is commonly referred to as jump operator [53, 54] due to its

simultaneous action on both sides of the density operator, see also Ref. [66–69, 84]. For

our particular case, L
(1/2)
kσ ρL

(1/2)†
kσ mediates between sectors of different particle number,

whereby terms with Γ(2) correspond to particle insertion into the system and terms with
Γ(1) to particle extraction. This may further be interpreted as couplings of the system to
Markovian environments which are either completely filled or completely empty. Its linear
combination eventually determines the particular filling of the system.

1Note that terms such as 2niρ1j − {ρ,1jni} = [ni, ρ] are absorbed in the unitary part Eq. (2.6).
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A. Appendix

A.2. Unitary transformations in the auxiliary impurity problem

As noted in Sec. 2.1.2 and Sec. 2.2.1 in the main text, IMaux is fully specified by the bath
parameters E, Γ(1) and Γ(2), but, on the level of the impurity site an equivalent IMaux is
obtained when performing a unitary transformation among bath sites only. Consider an
arbitrary transformation UU † = U †U = 1 with Uif = δif and Ufk = δfk to new fermionic
operators

c†kσ =
∑

i

c†iσUik , (A.3)

which results in an analogous IMaux with modified bath parameters E′ = U †EU , Γ(1)′ =
U †Γ(1)U and Γ(2)′ = U †Γ(2)U . Inserting this into Eq. (2.18) yields

GR
0
′
(ω) = U †GR

0 (ω)U ,

GK
0
′
(ω) = U †GK

0 (ω)U , (A.4)

which leaves the ff -component of the impurity site unchanged. Since all three matrices
E, Γ(1) and Γ(2) are transformed simultaneously it is in general not possible to bring all
three into sparse form. Without loss of generality we choose E to be sparse, so that Γ(1)

and Γ(2) are in the most general case dense matrices with O(N2
B) parameters. Hereby

the particular geometry does not matter and equivalent forms for IMaux are obtained
when choosing E to be diagonal for bath sites, i.e. a so-called star geometry, or to contain
nearest neighbor couplings only, i.e. a single or double chain of bath sites, as long as the Γ-
matrices are transformed accordingly. Such a general geometry with O(N2

B) is used for the
ED-solver described in Sec. 2.2.2.1, since it gives the best possible map ∆aux(ω) ≈ ∆ph(ω)
for a chosen system size NB + 1. However, for the MPS-solver described in Sec. 2.2.2.2
it is of great advantage to deal with a IMaux with nearest neighbor terms only, i.e. with
tridiagonal matrices E, Γ(1) and Γ(2). Since in this case all matrices are sparse, auxiliary
systems with a single or a double chain are not equivalent anymore. Also a star geometry
with on-site Γ-terms is possible within MPS, in principle. However, tests revealed that the
best mapping is obtained in the double chain geometry with nearest neighbor couplings in
all three matrices. And interestingly, when further restricting IMaux to a setup where Γ(1)

has nonzero terms only in one of the chains and Γ(2) in the other, nearly identical results
are obtained. Since this can be interpreted as a filled/empty geometry, see also Sec. 2.2.2.2,
it indicates that only O(NB) bath parameters are needed to represent a filled/empty bath.
To show this, let us briefly consider the toy-model that ∆ph(ω) is completely filled, so

that ∆K
ph(ω) = −2i=∆R

ph(ω) by virtue of Eq. (1.12), which we try to represent with a

IMaux with Γ(1) = 0. For any thereby obtained IMaux we can always perform a non-
unitary transformation V V −1 = V −1V = 1 among bath sites only which diagonalizes
E − iΓ(2) for bath indices. In analogous manner as for Eq. (A.4), one finds that GR

0 on
the impurity site is not changed by this and thus depends solely on O(NB) parameters.
Since ∆K

aux(ω) = −2i=∆R
aux(ω) no extra degrees of freedom are available for the Keldysh

component in this case. On the whole, one thus has effectively O(NB) bath parameters
to represent a completely filled or empty ∆ph(ω).
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