
GRAZ UNIVERSITY OF TECHNOLOGY

DOCTORAL SCHOOL
MECHANICAL ENGINEERING

P H D T H E S I S

to obtain the degree

Dr. techn.

of Graz University of Technology

Specialty : Computational Fluid Dynamics

Defended by

Michael Buchmayr

Development of Fully Implicit Block

Coupled Solvers For Incompressible

Turbulent Flows

Thesis Supervisor: Prof. Wolfgang Sanz

Thesis Co-Supervisor: Dr. Luca Mangani

prepared at ANDRITZ AG Graz

January, 2014

Reviewers : Prof. Wolfgang Sanz - Graz University of Technology

Prof. Marwan Darwish - American University Beirut

Supervisor : Prof. Wolfgang Sanz - Graz University of Technology

Co-Supervisor : Dr. Luca Mangani - Hochschule Luzern

Examiners : Prof. Wolfgang Sanz - Graz University of Technology

Prof. Marwan Darwish - American University Beirut

Dedication

In love, admiration and gratitude to my parents, Gabi and Bruno.

Statement

The code that is presented in this PhD thesis has been elaborated in a joint effort between

Luca Mangani, Marwan Darwish and the author himself. The author holds to stress that the

outcome of this project could not have been achieved without the input of each of them, and

that in his view all of them have equal merit to the success of the project. The author has

made substantial contributions to almost all of the features outlined in this work. However,

in order to present a complete view of the solver’s internals, the author opted to outline also

parts in which he has not been or has only marginally been involved. The author did this with

the consent of his partners. In such a case, a note is made at the beginning of the respective

chapter to indicate the merit of the main responsible.

ii

Eidesstattliche Erklärung

Ich erläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die

angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

iii

Abstract

This work presents the development of a set of fully implicit block coupled solvers for incom-

pressible turbulent fluid flows (steady-state, rotational frame, transient solver). The method is

based on the finite volume approach for arbitrarily unstructured collocated grids. The Navier-

Stokes equations are solved simultaneously employing Rhie and Chow’s interpolation technique

to overcome the saddle point problem of the resulting discretised block coupled system of

equations. The method is based on the work of Darwish et al. and extends their approach

to three-dimensional turbulent flows. The elaborated code is written in object oriented C++

making use of the open source CFD library OpenFOAM. The proposed method is benchmarked

against a state-of-the-art segregated SIMPLEC solver by Mangani and it proves to outperform

the segregated solver in terms of convergence speed and robustness. Most importantly it has

been shown that the outlined approach exhibits excellent mesh size scalability, a property that

segregated solvers, such as the benchmark solver, fail to show for intrinsic reasons. Three

different solvers are presented, namely a steady-state solver for inertial reference frames, a

steady-state solver for rotational reference frames, and a transient solver for moving control

volumes in arbitrary Lagrange Euler (ALE) formulation. A detailed derivation of the govern-

ing equations for all of these reference frames, as well as a detailed description of their block

implicit discretisation is given. Finally turbomachinery related test cases including a transient

simulation of a centrifugal pump, that has been compared to experimental particle image ve-

locimetry (PIV) measurements, are outlined to show the code’s well functioning, and in order

to present a validation in respect to flow physics capturing.

iv

Acknowledgements

I would like to express my sincere gratitude to my doctoral father Prof. Wolfgang Sanz for his

help and patience throughout the elaboration of this thesis. Especially in tougher times during

the past years his support and advice gave me strength to overcome these moments, which I

am genuinely thankful for. He has also always had an open ear for issues not related to my

PhD project and took time to help me out whenever I needed it.

I am also grateful to my family and my girlfriend Magali for their patience during these years.

Their support made it easy for me to pursue this challenge. Being able to share my achievements

with them and to see them feeling happy for me too, gives me the greatest joy.

I am infinitly grateful for having met Prof. Marwan Darwish and Dr. Luca Mangani. They

have literally saved my ass. I believe that the goal that I had set for this project, namely the

elaboration of a set of block implicit coupled solvers, would have been far too difficult for me

to reach without working as a team with these two experts. It has been a collaboration full of

fun, confidence and mutual respect. For me working with them was enriching on a professional

as well as on a personal level, and I am very thankful that today I can call them my friends. I

hope to be able to continue this journey that we have started some years ago.

A special thank you goes to all the programmers that provide and maintain the OpenFOAM

CFD library, and in particular to Prof. Hrvoje Jasak and Dr. Ivor Clifford for providing their

block coupling features.

I also want to thank Prof. Celigoj, Prof. Brenn, Prof. Steiner, Prof. Steinbach and Prof.

Ehrlacher for being role models, for getting me into continuum mechanics, and for providing

me with sound foundations for this particular project and hopefully for many more to come.

Without the support of my employer I could not have undertaken this endeavour. Therefore,

I want to thank the responsible persons at Andritz AG’s pump department for initiating and

financing this project. A special thank you goes to Dr. Arno Gehrer who has been supervising

this project and who has continuously been pushing me on the right track. Along with Arno

I want to thank my ’mentors’ at Andritz, namely DI Josef Werderits, Dr. Etienne Parkinson,

Arnold Egger and Dr. Jean-Christophe Marongiu, who gave me the possibility to work and

learn in an excellent environment, and who have introduced me to the exciting field of hydraulic

v

machines.

I want to thank Prof. Woisetschläger and DI Stefan Hödl for providing valuable PIV measure-

ments that I used for evaluating the code.

I also want to thank the colleagues from my office for enduring my moods during the past years.

The financial aid granted by the Austrian research fund FFG, for project 828688 - HydroSim,

is greatly acknowledged.

vi

Nomenclature

A,a coefficient matrix, coefficient matrix coefficient

b,b source vector, source vector coefficient

u velocity vector

u,v,w velocity components

p pressure

k turbulence kinetic energy

ω turbulence frequency

ρ density constant

D Rhie-Chow numerical dissipation tensor

V ,V̇ volume scalar, volume flux scalar

S,S surface scalar, surface normal vector

g geometric interpolation weighting factor

ν kinematic viscosity scalar

φ general scalar quantity, solution vector

Superscripts

u,v,w refers to velocity components

vii

n current iteration

φ linear interpolation to the face

Γ diffusion tensor

µ dynamic viscosity

ν kinematic viscosity

n surface normal vector

x instantaneous position of material point

X reference position of material point at time t=0

phi volume flux

viii

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Continuum Mechanics 5

2.1 Geometry and Kinematics of Bodies . 6

2.1.1 Continuous Bodies and their Configurations 6

2.1.2 Material Configurations . 8

2.1.3 Reference Configurations . 8

2.2 Constitutive Laws . 10

3 Derivation Of Governing Equations For Incompressible Fluid Flows 13

3.1 Non-Moving Reference Volumes In Inertial Frame Of Reference 15

3.1.1 The Reynolds Transport Theorem for Non-Moving Reference Volumes in

Inertial Frame of Reference . 15

3.1.2 Governing Equations for Non-Moving Reference Volumes in Inertial

Frame of Reference . 22

ix

x CONTENTS

3.2 Moving Reference Volumes In Inertial Frame Of Reference 30

3.2.1 The Transport Theorem for Moving Reference Cells in Inertial Frame of

Reference . 30

3.2.2 Governing Equations for Moving Reference Volumes in Inertial Frame of

Reference . 33

3.3 Non-Moving Reference Volumes In Rotating Frame Of Reference 36

3.3.1 The Kinematics of Relative Motion . 36

3.3.2 The Reynolds Transport Theorem for Non-Moving Reference Volumes in

Relative Frame of Reference . 42

3.3.3 Governing Equations for Non-Moving Reference Volumes in Relative Ro-

tational Frame of Reference . 44

4 Numerical Algorithms for Incompressible Flows 49

4.1 Historical Background . 50

4.2 Sequential Solution . 52

4.3 Coupled Algorithms . 58

4.4 Sequential vs. Simultaneous Solution . 62

5 Discretisation Of Governing Equations 65

5.1 Finite Volume Discretisation in OpenFOAM . 66

5.2 Discretisation of Governing Equations for Inertial Frames 70

5.2.1 Discretisation of Momentum Equation 71

5.2.2 Discretisation of Continuity Equation . 85

CONTENTS xi

5.3 Discretisation of Governing Equations for Moving Control Volumes 93

5.3.1 Discretisation of Momentum Equation 93

5.3.2 Discretisation of Continuity Equation . 95

5.4 Discretisation of Governing Equations for Rotating Frames 96

5.4.1 Discretisation of Momentum Equation 96

5.4.2 Discretisation of Continuity Equation . 99

6 Discretisation At Boundary Faces 101

6.1 Dirichlet Boundary Condition . 103

6.2 Neumann Boundary Condition . 104

6.3 Wall Boundary Condition . 105

6.4 Moving Wall Boundary Condition . 108

6.5 Slip Wall Boundary Condition . 110

7 Implementation Of Block Coupled Interfaces 111

7.1 Arbitrary Mesh Interface (AMI) . 112

7.2 Processor Interfaces . 116

8 Block Algebraic Multigrid Solver 119

8.1 Additive Correction Block Algebraic Multi-Grid Method 121

8.1.1 Additive Correction Concept . 121

8.1.2 Restriction . 124

8.1.3 Prolongation . 126

xii CONTENTS

8.2 Agglomeration . 127

8.2.1 Agglomeration Methods . 127

8.3 Block ILU(0) Smoother . 129

8.4 Block AMG cycles . 136

9 Turbulence Models for Unsteady Computations 137

9.1 The k-Omega SST (U)RANS Model . 139

10 Case Studies 141

10.1 Stationary frame of reference . 143

10.1.1 Backward facing step . 143

10.1.2 Draft tube . 146

10.1.3 Pelton distributor . 150

10.2 Rotational frame of reference . 152

10.2.1 Pump runner . 152

10.2.2 Francis turbine runner . 155

10.2.3 Kaplan turbine runner . 158

10.3 Transient dynamic mesh . 161

10.3.1 Centrifugal Pump . 161

11 Conclusion 165

11.1 Summary of Thesis Achievements . 165

11.2 Applications . 167

11.3 Future Work . 168

A NVD/TVD 171

A.1 NVD Schemes . 173

A.2 TVD Schemes . 180

B Gauss Divergence Theorem 183

Bibliography 185

xiii

xiv

List of Tables

10.1 Backward facing step - Performance comparison of the coupled (C) and segre-

gated (S) algorithm . 143

10.2 Draft tube - Performance comparison of the coupled (C) and segregated (S)

algorithm . 147

10.3 Pelton Distributor - Mesh size scaling of the coupled (C) algorithm 150

10.4 Pump - Performance comparison of the coupled (C) and segregated (S) algorithm153

10.5 Francis - Performance comparison of the coupled (C) and segregated (S) algorithm156

10.6 Kaplan - Performance comparison of the coupled (C) and segregated (S) algorithm159

xv

xvi

List of Figures

2.1 Material control volume and static reference volume 7

3.1 Material control volume and static reference volume 15

3.2 Material control volume Vx, moving reference control volume Vχ and static con-

trol volume VX . 30

3.3 Material point in inertial and relative reference frames 37

3.4 General vector in inertial and relative reference frames 40

3.5 Material control volume and static reference volume in a relative reference frame 42

4.1 Concept of SIMPLE solution procedure . 55

4.2 Concept of block coupled solution procedure . 59

4.3 Concept of steady state block coupled solution procedure 60

4.4 Concept of transient block coupled solution procedure 61

4.5 Concept comparison between simultaneous and sequential algorithm 63

5.1 Collocated grid arrangement used in OpenFOAM 67

5.2 (a) list adressing structure; (b) corresponding 2 cell domain 68

5.3 Mesh arrangement, surface normal vector pointing from owner to neighbour cell 69

xvii

xviii LIST OF FIGURES

5.4 Control volumes with local coordinate directions 81

5.5 Surface normal vector split for orthogonal correction approach [1] 84

5.6 Control volumes with local coordinate directions 90

6.1 Velocity profile in the near wall region of a non-moving wall 105

6.2 Velocity profile in the near wall region of a moving wall 108

7.1 Non-conforming AMI interface . 112

7.2 Non-conforming cyclic AMI interface . 114

7.3 Processor interface . 116

7.4 AMG processor interface . 118

8.1 Algebraic or Geometric Multi-Grid Agglomeration 122

8.2 ACM correction indexing for restriction . 125

8.3 Algebraic or Geometric Multigrid Agglomeration 127

8.4 Block Matrix Structure - light grey, lower block coeffs - grey, diagonal block

coeffs - dark grey, upper block coeffs . 133

8.5 Block Matrix Structure - light grey, lower block coeffs - grey, diagonal block

coeffs - dark grey, upper block coeffs . 133

8.6 F-Cycle . 136

8.7 W-Cycle . 136

10.1 Backward facing step - mesh size scaling . 144

10.2 Velocity profiles. Segregated(S) - dotted lines, coupled(C) - full lines 144

LIST OF FIGURES xix

10.3 Convergence histories for Backward facing step test case. Segregated(S) - dotted

lines, coupled(C) - full lines . 145

10.4 Computational grid of Draft tube test case . 146

10.5 Draft tube - mesh size scaling . 147

10.6 Convergence histories for Draft tube test case. Segregated(S) - dotted lines,

coupled(C) - full lines . 148

10.7 Velocity contour plot of Draft tube test case. (S) left, (C) right 149

10.8 Pelton Distributor . 150

10.9 Pelton Distributor - mesh size scaling . 151

10.10Convergence history for Pelton distributor test case (2.726 k cells) 151

10.11Pump configuration . 152

10.12Pump - velocity profiles close to trailing edge. Segregated(S) - dotted lines,

coupled(C) - full lines . 153

10.13Convergence histories for Pump test case. Segregated(S) - dotted lines, cou-

pled(C) - full lines . 154

10.14Pump configuration . 155

10.15Fancis - velocity profiles close to trailing edge 155

10.16Francis - mesh size scaling . 156

10.17Convergence histories for Francis test case. Segregated(S) - dotted lines, cou-

pled(C) - full lines . 157

10.18Kaplan turbine configuration . 158

10.19Kaplan - velocity profiles close to trailing edge 159

10.20Convergence histories for Kaplan test case. Segregated(S) - dotted lines, cou-

pled(C) - full lines . 160

10.21Centrifugal pump - velocity profiles close to trailing edge [2] 161

10.22Centrifugal pump configuration . 162

10.23left - PIV measurements, right - Block coupled transient solver results 163

A.1 NVD diagram by Jasak[3] . 174

A.2 Convection Boundedness Criterion . 175

A.3 Modified Convection Boundedness Criterion for unstructured meshes 176

A.4 NVD diagram for Upwind Differencing scheme (UD) and Central Differencing

scheme (CD) at the left, Gamma NVD scheme on the right 179

A.5 van Leer’s limiter function (blue line) in Sweby’s diagram [4], with second order

TVD region (grey) . 181

xx

Chapter 1

Introduction

At the beginning of the project that has lead to the elaboration of this thesis there was the

idea of improving the quality of prediction of instabilities occurring at part load operation

conditions in centrifugal pumps. This could have been done proceeding an analytical approach,

however since it was commonly believed that such instabilities are triggered by unsteady flow

phenomena it has been decided to opt for a numerical solution to the problem.

Furthermore the author and the decision makers in his company decided to rely on the open

source CFD library OpenFOAM, which back then attracted growing interest in both industrial

and scientific communities, for these numerical studies, with the initial perception that strongly

needed features for simulations of required type were met by this CFD package. Furthermore,

the ability to add additional or missing features to the code led to the final decision to base

envisaged research on this platform.

The vision was to establish a tool chain that would allow hydraulic designers henceforth to

use the CFD codes resulting from this project in everyday design. The assumption that the

new tool would be accepted by designers if, and only if, it was better or at least as good as

their existing commercial tool resulted in a set of goals for this project that served as a rule for

development throughout the project. It has also been assumed that all of these goals were to

be met for a successful conclusion of the project. These goals were:

1

2 Chapter 1. Introduction

• Calculation Speed

• Robustness

• Accuracy

• Flexibility

• Maintainability

• No License Costs

The very beginning of the OpenFOAM framework goes back to a handful researchers at Imperial

College, gathering around Henry Weller in the late 90’s, who started to write a new object-

oriented framework for mostly finite volume based continuum mechanics. The driving force was

their frustration about existing CFD codes written in a rather sequential manner. The objective

was to create a modular framework, that would permit ease of extension and maintenance. The

pursuance of this strategy, which still prevails in the code today, lead to a fast expansion of

the code and an exponential increase in the number of users as it went viral, after having been

made available under GPL licence.

Apart from the concepts of polymorphism and templating, the concept of operator overloading

that allows the assembly, discretisation and solution of equations by simply defining equations

at the top level of the solver, was particularly attractive. Its elegant implementation was only

possible, because the coefficients for segregated approaches could be gathered into a unique

homogeneous coding structure. This however put a restriction to the framework, namely that

it was, until very recently, not possible to use its potential for block coupling of equations.

After a first testing phase of the framework it became apparent that four of the six goals

mentioned above could be met. It was physically accurate, flexible, easy to maintain due to its

object-oriented structure and the big community providing bug-fixes. Due to the GPL licence

the problem of license cost could also be avoided. However concerning calculation time and

robustness it was found that the framework could by far not meet the desired standards. It

3

was also found that both shortcomings were related to the segregated solution approach that

was intrinsic to the framework.

The author decided out of necessity that for a successful conclusion of the project it was im-

perative to leave the paradigm of segregated solvers and turn towards the implementation of

fully block coupled implicit pressure based solvers within the OpenFOAM framework. This

unexpected deficiency of the OpenFOAM framework hence led to an adjustment of the original

plan of solely investigating the physical origin of pump instabilities to almost pure code devel-

opment. The developed fully implicit block coupled solvers will hence be the central part of

this thesis, the evaluation of instabilities in pump operation will also be shown in a case study.

The author is convinced that mentioned development of a fully implicit block coupled solver

would not have been possible without collaborating with a team of experts. For this work credit

goes to Luca Mangani and Marwan Darwish, who have equal merit in the successful elaboration

of this project. Credit also goes to Hrvoje Jasak and Ivor Clifford for providing a block matrix

framework, that was of great value for this project.

The author’s sincere gratitude goes to all them.

4 Chapter 1. Introduction

The structure of this thesis is supposed to lead the lecturer from the very derivation of governing

equations to the results of an actual simulation. When developing a CFD code, one has to go

through different phases or let us say work packages. This thesis has been structured in a way

that reflects the author’s chronology of developing the resulting CFD solvers. It starts with a

description of underlaying physics and kinematics (chapter 2). After that, transport theorems

for three different reference frames are derived, and the governing equations for all reference

frames are derived thereof (chapter 3). The resulting governing equations have to be approached

employing a numerical algorithm. The selected block coupled pressure based incompressible

algorithm is therefore presented and compared to commonly used CFD algorithms (chapter 4).

In what follows the discretisation of the governing equations is presented for the employed block

coupled algorithm in all three derived reference frames (chapters 5,6,7). For an efficient solution

of the resulting linear system of equations a special linear equation solver is necessary (block

AMG solver, chapter 8). To refine physical accuracy of the derived algorithm a turbulence

model was added, which is presented subsequently (chapter 9). Finally the outcome of all steps

mentioned above is a very robust, fast and accurate set of solvers, results of which are presented

at the end to evaluate the code and to round up this thesis (chapter 10).

Chapter 2

Continuum Mechanics

Contents

2.1 Geometry and Kinematics of Bodies 6

2.1.1 Continuous Bodies and their Configurations 6

2.1.2 Material Configurations . 8

2.1.3 Reference Configurations . 8

2.2 Constitutive Laws . 10

In what follows a kinematic description of continuous bodies moving in different frames of

reference is given and the constitutive laws of Newtonian fluids are presented. The notions

presented in this chapter serve as foundation for the derivation of the governing equations in

different reference frames formulated subsequently in chaper 3.

5

6 Chapter 2. Continuum Mechanics

2.1 Geometry and Kinematics of Bodies

The aim of this section is introduce certain notations from basic continuum mechanics theory.

The basic ideas of the motion of continuous bodies will be outlined referring to Marsden and

Hughes[5], and Stoker [6]. The notations that will be pointed out in this section will be used

in chapter 3 where transport theorems will be derived.

2.1.1 Continuous Bodies and their Configurations

A simple continuous body or volume VX normally occupies an open subset of three dimensional

space R3. Subsequently it will not be distinguished between Eucledian space and R3. A config-

uration or displacement of VX in time is a mapping. Those mappings will be useful in chapter 3

where we will need them to perform coordinate transformations through Jacobian determinants.

Motions and displacements can be specified in various descriptions:

· The Lagrangian Description, where the intensive variables are a function of the material

coordinate X at time t0 (reference time). The material coordinate X being constant in

respect to time.

· The Eulerian Description, where the intensive variables are a function of the current

coordinate x at time t. This is the coordinate of a material particle at time t, that was

at X at reference time. Only one particle can be at a position at a time, and its motion is unique.

· The Referential Description, where the intensive variables are a function of the spatial

coordinate χ at time t. Coordinates χ and X are related through a function of motion, which

can be, but must not be, the material particle motion. In special cases coordinate χ will be the

one where evaluations will be made (e.g. moving mesh calculations).

2.1. Geometry and Kinematics of Bodies 7

As stated before the different types of coordinate systems can be related through mapping

functions. The mapping functions can be known, or have to be estimated. Mapping functions

on bodies or volumes are also called configurations.

The material configuration ψ is given by:

x = ψ(X, t) (2.1)

The material configuration follows the paths of the material points with time.

The spatial or reference configuration Ψ is given by:

χ = Ψ(X, t) (2.2)

The reference configuration defines paths through R3 in time. These paths usually do not

coincide with the material points’ paths.

Figure 2.1: Material control volume and static reference volume

8 Chapter 2. Continuum Mechanics

2.1.2 Material Configurations

We recall that the material configurations of a material point X are given by.

x = ψ(X, t) (2.3)

Typically one does not know a priori which path a material point will follow through a domain

with time. Therefore it is necessary to estimate its configuration. Commonly a linearisation

approach is used.

By linearisation:

x1 = X1 + u1 ·∆t

x2 = X2 + u2 ·∆t

x3 = X3 + u3 ·∆t (2.4)

2.1.3 Reference Configurations

We recall that the reference configurations of a material point X are given by.

χ = Ψ(X, t) (2.5)

Sometimes it is interesting or even necessary to know how fluid properties evolve with time

over a selected path. In CFD this is e.g. the case when the meshes in a calculation domain

move or deform. Then the fluid properties can not be evaluated at a static point, such as it is

the case with non-moving and non-deforming numerical grids.

If it is difficult to define a smooth function for the reference configuration beforehand, the

simplest approach is again linearisation.

2.1. Geometry and Kinematics of Bodies 9

χ1 = X1 + ug1 ·∆t

χ2 = X2 + ug2 ·∆t

χ3 = X3 + ug3 ·∆t (2.6)

At this point a very special configuration shall be examined, which will be needed to derive a

transport theorem for rotating control volumes.

χ = R(X− r) + r (2.7)

R is a 3-dimensional rotation matrix and r the distance from the origin to the centre of rotation.

For generality the rotation matrix is chosen as a rotation about an arbitrary axis in R3. Hence

the configuration reproduces exactly the rotation of the angle Θ = ω∆t at a point about a unit

rotation vector n. The function of motion is known. The rotation matrix reads:

R = (2.8)


c(Θ) + nx

2(1− c(Θ)) nxny(1− c(Θ))− nzs(Θ) nxnz(1− c(Θ)) + nys(Θ)

nxny(1− c(Θ) + nzs(Θ)) c(Θ) + ny
2(1− c(Θ)) nynz(1− c(Θ))− nxs(Θ)

nxnz(1− c(Θ))− nys(Θ)) nynz(1− c(Θ))− nxs(Θ) c(Θ) + nz
2(1− c(Θ))



10 Chapter 2. Continuum Mechanics

2.2 Constitutive Laws

Newton-Stokes Hypothesis

In order to relate the movement of the fluid to the resulting stresses acting on the fluid, a

constitutive law is needed. Therefore Newton’s assumption, which linearly relies the strain rate

tensor and stresses, combined with Stokes’ hypothesis yields a framework for isotropic fluids

such as water or ideal gas.

The total stress tensor σij can be written as follows [7]:

σij = −pδij −
2

3
µSkkδij + 2µSij (2.9)

The first term on the RHS is the pressure that acts normal to the confined fluid volume, the

second term represents the dilatation of the fluid volume and the third term represents the

shear stresses that arise from the linearised strain rate of the fluid volume.

Hereby the strain rate tensor Sij is given as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.10)

and following Einstein’s summation:

Skk =
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

(2.11)

Fourier Heat Conduction

In the scope of this thesis we shall consider isotropic heat conduction and will choose Fourier’s

approach that states that the heat flux is proportional to the temperature gradient and a scalar

coefficient λ.

2.2. Constitutive Laws 11

qj = −λ ∂T
∂xj

(2.12)

Specific Heat Coefficients

In order to be able to link the internal energy e and the enthalpy h, we shall use constant

specific heat coefficients at constant pressure cp or at constant volume cv under the assumption

of ideal gas, or an incompressible fluid (i.e. water) respectively.

e = cvT (2.13)

h = cpT (2.14)

12 Chapter 2. Continuum Mechanics

Chapter 3

Derivation Of Governing Equations For

Incompressible Fluid Flows

Contents

3.1 Non-Moving Reference Volumes In Inertial Frame Of Reference . 15

3.1.1 The Reynolds Transport Theorem for Non-Moving Reference Volumes

in Inertial Frame of Reference . 15

3.1.2 Governing Equations for Non-Moving Reference Volumes in Inertial

Frame of Reference . 22

3.2 Moving Reference Volumes In Inertial Frame Of Reference 30

3.2.1 The Transport Theorem for Moving Reference Cells in Inertial Frame

of Reference . 30

3.2.2 Governing Equations for Moving Reference Volumes in Inertial Frame

of Reference . 33

3.3 Non-Moving Reference Volumes In Rotating Frame Of Reference 36

3.3.1 The Kinematics of Relative Motion . 36

3.3.2 The Reynolds Transport Theorem for Non-Moving Reference Volumes

in Relative Frame of Reference . 42

13

14 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

3.3.3 Governing Equations for Non-Moving Reference Volumes in Relative

Rotational Frame of Reference . 44

In the previous chapter (2) the foundations of continuum mechanics were presented. These

foundation included the kinematics of bodies in different frames of reference as well as the

constitutive laws for Newtonian fluids. In this chapter these notions are taken up and transport

theorems are derived for all reference frames. Finally, using these transport theorems, the

governing equations for three reference frames are derived. In the next chapter (4) a block-

coupled pressure-based incompressible numerical algorithm for the derived governing equations

is presented.

The governing equations of fluid mechanics are based on three principles:

• Mass is conserved

• Newton’s second law (momentum is conserved)

• Energy is conserved

For turbomachinery applications we generally deal with problems that involve rotating ma-

chines. Flows in such machines can be treated using different numerical approaches. Therefore,

the governing equations will be outlined in what follows, for inertial frames of reference, moving

control volumes and rotating reference frames. In a first step the respective transport theo-

rems for each type of configuration will be derived, and thereof the governing equations will be

established.

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 15

3.1 Non-Moving Reference Volumes In Inertial Frame

Of Reference

3.1.1 The Reynolds Transport Theorem for Non-Moving Reference

Volumes in Inertial Frame of Reference

The Reynolds Transport Theorem (RTT) for non-moving reference volumes is derived at this

point in order to subsequently derive the governing equations of fluid mechanics in an inertial

frame for non-moving numerical grids. The Reynolds Transport Theorem can be considered as

the time rate of change of any given quantity Φ, which is the integral of an intensive property

φ over a material control volume. A material control volume contains material points and

deforms as those material points move, so that the material points always stay inside the volume.

Figure 3.1: Material control volume and static reference volume

Let us consider a quantity of an extensive fluid property Φ. This quantity is the integral of

a volume specific quantity (the intensive fluid property φ) over a given material volume. Or

16 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

more general:

Φ(t) =

∫
Vx(t)

φ(x, t) dVx (3.1)

Hence, the time rate of change of the fluid property is:

dΦ(t)

dt
=

d

dt

∫
Vx(t)

φ(x, t) dVx (3.2)

The limits of integration vary with time. Therefore the time derivative cannot be taken di-

rectly inside the integral. We can overcome this problem by introducing a mapping func-

tion, that relates the material volume at time t with a reference material volume at time t0.

The mapping function ψ of a domain is a function of the reference position of the material

points and time.

x = ψ(X, t) (3.3)

The deformation gradient matrix F is defined as:

F =
∂xi
∂Xj

ei ⊗ ej (3.4)

F =


∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x3

∂X2

∂x1

∂X3

∂x2

∂X3

∂x3

∂X3

 (3.5)

The Jacobian determinant Jm, is defined as:

Jm = det(F) (3.6)

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 17

Jm =

∣∣∣∣∣∣∣∣∣∣
∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x3

∂X2

∂x1

∂X3

∂x2

∂X3

∂x3

∂X3

∣∣∣∣∣∣∣∣∣∣
given x = ψ(X, t) (3.7)

The material volume at time t relates to the reference material volume through the Jacobian

determinant:

dVx = JmdVX (3.8)

The intensive quantity φ can be expressed in terms of the material coordinates by:

φ(x, t) = φ [ψ(X, t), t] = φ(X, t) (3.9)

Using the above derivations equation (3.2) can be expressed as follows:

dΦ(t)

dt
=

d

dt

∫
VX

{φ(X, t)Jm} dVX (3.10)

Now VX is independent of time, and the material derivative can be taken inside the integral.

Using the chain rule we obtain:

dΦ(t)

dt
=

∫
VX

{
dφ(X, t)

dt
Jm + φ(X, t)

dJm
dt

}
dVX (3.11)

Now equation (3.11) shall be simplified. The material derivative of φ can be decomposed into

a local time derivative and a convective derivative using the chain rule.

dφ(X, t)

dt
=
dφ(x, t)

dt
=
∂φ(x, t)

∂t
+ (u · ∇x)φ (3.12)

18 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

To simplify the given set of equations the following equality shall be used.

dJm
dt

= Jm (∇X · u) (3.13)

By deriving the equation (3.13) it shall be shown, which assumptions

have to be made to get there and which terms have been neglected.

Through a linearised approach x = ψ(X, t) can be expressed as follows:

x1 = X1 + u1 · dt

x2 = X2 + u2 · dt

x3 = X3 + u3 · dt (3.14)

One always has to keep in mind that the so-derived transport theorem is an approximation,

due to the fact that the deformation is assumed to be linear in respect to the velocity of any

material point at reference time. But this is only the first assumption that we have to make to

derive the transport theorem. The second assumption will be outlined later (equation (3.21)).

Let us now fill up the deformation tensor F by taken the derivative of the material particles’

motion over the reference coordinates.

∂xi
∂Xj

=

 1 + ∂ui
∂Xj

dt if i=j

∂ui
∂Xj

dt if i 6= j
(3.15)

Hence the deformation tensor reads,

F =


1 + ∂u1

∂X1
dt ∂u2

∂X1
dt ∂u3

∂X1
dt

∂u1

∂X2
dt 1 + ∂u2

∂X2
dt ∂u3

∂X2
dt

∂u1

∂X3
dt ∂u2

∂X3
dt 1 + ∂u3

∂X3
dt

 (3.16)

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 19

And the Jacobian becomes,

Jm = det(F) =

(
1 +

∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)(
1 +

∂u3

∂X3

dt

)
+O(dt2) (3.17)

dJm
dt

=
∂u1

∂X1

(
1 +

∂u2

∂X2

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u2

∂X2

(
1 +

∂u1

∂X1

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u3

∂X3

(
1 +

∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)
+O(dt) (3.18)

(3.19)

At this stage we know the time derivative of the Jacobian. Now it stays to show how the

ominous equality of equation (3.13) is obtained.

Jm (∇X · u) =

(
1 +

∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)(
1 +

∂u3

∂X3

dt

)(
∂u1

∂X1

+
∂u2

∂X2

+
∂u3

∂X3

)
Jm (∇X · u) =

∂u1

∂X1

(
1 +

∂u2

∂X2

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u2

∂X2

(
1 +

∂u1

∂X1

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u3

∂X3

(
1 +

∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)
+
∂u1

∂X1

(
∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u2

∂X2

(
∂u2

∂X2

dt

)(
1 +

∂u1

∂X1

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u3

∂X3

(
∂u3

∂X3

dt

)(
1 +

∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)
(3.20)

Hence,

20 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

Jm (∇X · u) =
dJm
dt
−O(dt) (3.21)

+
∂u1

∂X1

(
∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u2

∂X2

(
∂u2

∂X2

dt

)(
1 +

∂u1

∂X1

dt

)(
1 +

∂u3

∂X3

dt

)
+
∂u3

∂X3

(
∂u3

∂X3

dt

)(
1 +

∂u1

∂X1

dt

)(
1 +

∂u2

∂X2

dt

)
(3.22)

dJm
dt

= Jm (∇X · u) +O(dt) (3.23)

Thus, equation (3.13) is first order accurate in time, when a linearisation is chosen to describe

the particle motion ψ(X, t) (see (3.14).

dJm
dt
≈ Jm (∇X · u) (3.24)

With the help of this relation equation (3.11) can be rearranged.

dΦ(t)

dt
=

∫
VX

{
∂φ(x, t)

∂t
+ (u · ∇X)φ(x, t) + φ(x, t)(∇X · u)

}
Jm dVX (3.25)

dΦ(t)

dt
=

∫
Vx(t)

{
∂φ(x, t)

∂t
+ (u · ∇X)φ(x, t) + φ(x, t)(∇X · u)

}
dVx (3.26)

dΦ(t)

dt
=

∫
Vx(t)

{
∂φ(x, t)

∂t
+∇X · (uφ(x, t))

}
dVx (3.27)

Employing Gauss’ Theorem equation (3.27) reads,

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 21

dΦ(t)

dt
=

∫
Vx(t)

∂φ(x, t)

∂t
dVx +

∮
Sx(t)

n · (uφ(x, t)) dSx (3.28)

Equation (3.28) is commonly referred to as Reynolds Transport Theorem (RTT).

Using the RTT it is possible to evaluate the total time derivative of an exten-

sive fluid quantity inside a moving control volume through integration over a vol-

ume Vx(t). Hence the Lagrangian description of a quantity in a moving volume

is replaced by a Eulerian description of a quantity that locally changes with time.

Recall that the RTT is obtained by the linearisation of the material particle motion (3.14), and

by neglecting higher order terms in equation (3.23).

The substantial (or material) derivative:

At this stage the definition of the so-called substantial (or material derivative) shall be recalled,

since it is often used to transform the RTT when it is injected into the governing equations.

It is obtained using the chain rule:

Dφ

Dt
=
dφ

dt
=
∂φ

∂t
+
∂φ

∂x1

dx1

dt
+
∂φ

∂x2

dx2

dt
+
∂φ

∂x3

dx3

dt
(3.29)

Or in Einstein notation:

Dφ

Dt
=
∂φ

∂t
+ uj

∂φ

∂xj
(3.30)

The RTT as given in equation (3.27) can now be reformulated. Consider that the intensive

variable φ is the product of the density ρ with another intensive variable Υ. Then the RTT

reads,

22 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

∫
Vx(t)

{
∂ρΥ(x, t)

∂t
+∇ · (uρΥ(x, t))

}
dVx (3.31)

This can be rearranged using the chain rule.

∫
Vx(t)

{
ρ

(
∂Υ(x, t)

∂t
+ u · ∇(Υ(x, t))

)
+ Υ

(
∂ρ(x, t)

∂t
+∇ · (ρ(x, t)u)

)}
dVx (3.32)

As will be seen in the following section, the term in the second round brackets represents the

continuity equation, which is equal to zero. Thus the RTT can be rewritten to yield,

∫
Vx(t)

{
ρ
DΥ(x, t)

Dt

}
dVx (3.33)

Hence, whenever the intensive variable is a product of ρ with some other extensive variable,

one ends up with an equation like equation (3.33. The author believes that this is probably the

reason why the substancial derivative is also called material derivative, because this simplifica-

tion of the RTT is due to the adherence of some intensive variable to a set of mass points in

a confined volume. The momentum and energy equations are the most prominent examples of

intensive variables that are a product of ρ and another primitive variable.

3.1.2 Governing Equations for Non-Moving Reference Volumes in

Inertial Frame of Reference

From equation (3.28), we can now derive the governing equations for non-moving reference

volumes in inertial frame of reference.

• Conservation of Mass

φ = ρ

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 23

d

dt

∫
Vx(t)

ρdVx = 0 (3.34)

or,

∫
Vx(t)

∂ρ

∂t
dVx +

∮
Sx(t)

n · (ρu) dSx = 0 (3.35)

or,

∂ρ

∂t
+∇ · (ρu) = 0 (3.36)

24 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

• Conservation of Momentum

φ = ρu

d

dt

∫
Vx(t)

ρu dVx =

∮
Sx(t)

n · σdSx +

∫
Vx(t)

ρgdVx (3.37)

or,

∫
Vx(t)

∂ρu

∂t
dVx +

∮
Sx(t)

n · (ρuu) dSx =

∮
Sx(t)

n · σdSx +

∫
Vx(t)

ρgdVx (3.38)

or,

∫
Vx(t)

ρ
Du

Dt
dVx =

∮
Sx(t)

n · σdSx +

∫
Vx(t)

ρgdVx (3.39)

or,

ρ
Du

Dt
= ∇ · σ + ρg (3.40)

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 25

• Conservation of Energy

φ = e+ u2

2

d

dt

∫
Vx(t)

ρ

(
e+

u2

2

)
dVx =

∮
Vx(t)

n · (σ ·u)dSx +

∫
Vx(t)

ρg ·udVx−
∮

Vx(t)

n ·qdSx +

∫
Vx(t)

Q dVx (3.41)

or,

∫
Vx(t)

∂ρ
(
e+ u2

2

)
∂t

dVx+

∮
Sx(t)

n

(
ρ ·
(
e+

u2

2

))
dSx =

∮
Sx(t)

n·(σ·u)dSx+

∫
Vx(t)

ρg·udVx−
∮

Sx(t)

n·qdSx+

∫
Vx(t)

Q dVx

(3.42)

or,

∫
Vx(t)

ρ
D
(
e+ u2

2

)
Dt

dVx =

∮
Sx(t)

n · (σ · u)dSx +

∫
Vx(t)

ρg · udVx −
∮

Sx(t)

n · qdSx +

∫
Vx(t)

Q dVx (3.43)

or,

ρ
D
(
e+ u2

2

)
Dt

= ∇ · (σ · u) + (ρg) · u−∇ · q +Q (3.44)

26 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

Governing Equations with Newton-Stokes Hypothesis

Now the constitutive laws of the fluid shall be included (following Newton’s and Stokes hy-

pothesises), and then we shall reformulate the energy equation to obtain a simple and nice

to handle form of it, as written down by Steiner [8] or Anderson [9]. We shall also derive an

equation for the total enthalpy, since it is of practical importance. To make our lives easier the

Navier-Stokes equations shall be outlined in Einstein notation.

Dρ

Dt
+ ρ

∂uj
∂xj

= 0 (3.45)

ρ
Dui
Dt

=
∂

∂xj

(
−pδij −

2

3
µ
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

))
+ ρgi (3.46)

ρ
D
(
e+ u2

2

)
Dt

=
∂

∂xj

(
ui

(
−pδij −

2

3
µ
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)))
+ (ρgi)ui −

∂qj
∂xj

+Q (3.47)

Conservation of Energy

It is very often desirable to get rid of the ρ
D u2

2

Dt
term in the energy equation (3.44).

It can easily be seen that this is equivalent to:

ρ
Du2

2

Dt
= ρui

Dui
Dt

(3.48)

Which is nothing else than the velocity dotted with the LHS of the momentum equation (3.40).

Hence:

ρ
Du2

2

Dt
= ui

(
∂

∂xj

(
−pδij −

2

3
µ
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

))
+ ρgi

)
(3.49)

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 27

It can be seen that when equation (3.49) is inserted into equation (3.44) the part of the potential

energy in the energy equation will vanish.

ρ
De

Dt
=

∂

∂xj
(uiσij)− ui

(
∂

∂xj
σij

)
− ∂qj
∂xj

+Q (3.50)

Applying the chain rule to the first two terms on the RHS yields:

ρ
De

Dt
=
∂ui
∂xj

(
−pδij −

2

3
µ
∂uk
∂xk

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

))
− ∂qj
∂xj

+Q (3.51)

And finally the energy equation can be written in a short and convenient form:

ρ
De

Dt
= −p∂uj

∂xj
− 2

3
µ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj
− ∂qj
∂xj

+Q (3.52)

Now 5 equations have been derived (continuity, momentum in three directions, energy) for 7

unknowns (u1, u2, u3, p, e, q, ρ). In this work only fluids with constant density shall be consid-

ered, hence only two more relations need to be added, which will link the temperature T to the

internal energy e and the heat flux q. Therefore we shall apply Fourier’s law of heat transfer

and specific heat coefficients as outlined in equations(2.13,2.14,2.12).

ρcv
DT

Dt
= −p∂uj

∂xj
− 2

3
µ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj
− λ ∂2T

∂xj∂xj
+Q (3.53)

For the special case of incompressible flow with constant density we obtain:

ρcv
DT

Dt
= µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

+ λ
∂2T

∂xj2
+Q (3.54)

Conservation of Enthalpy

Sometimes it is more convenient to write the energy equation in terms of enthalpy.

28 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

The specific total enthalpy is defined as:

h = e+
p

ρ
(3.55)

Hence the extensive total enthalpy reads:

Htot =

∫
Vx(t)

ρhtot dVx (3.56)

Following Steiner [8], the substantial derivatives of equation(3.55,3.56) can be related with the

internal energy as follows:

ρ
Dh

Dt
= ρ

De

Dt
+ ρ

D
(
p
ρ

)
Dt

(3.57)

Rearranging this equation applying the chain rule to the third term on the RHS yields:

ρ
De

Dt
= ρ

Dh

Dt
− Dp

Dt
+
p

ρ

Dρ

Dt
(3.58)

Using the conservation of continuity (equation (3.45)) gives:

ρ
De

Dt
= ρ

Dh

Dt
− Dp

Dt
− p∂uj

∂xj
(3.59)

The LHS of equation(3.59) is already familiar to us, since it is equivalent to the LHS of equation

(3.52). Therefore the RHS of equation(3.59) just has to be set equal to the RHS of equation

(3.52) to obtain,

ρ
Dh

Dt
− Dp

Dt
− p∂uj

∂xj
= −p∂uj

∂xj
− 2

3
µ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj
− ∂qj
∂xj

+Q (3.60)

3.1. Non-Moving Reference Volumes In Inertial Frame Of Reference 29

Rearranging above equation and applying the chain rule finally leads to a short and convenient

form for the enthalpy equation.

ρ
Dh

Dt
=
∂p

∂t
+ uj

∂p

∂xj
− 2

3
µ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj
− ∂qj
∂xj

+Q (3.61)

Introducing Fourier’s law and specific heat coefficients at constant pressure cp, an equation that

closes the system of Navier-Stokes equations is obtained.

ρcp
DT

Dt
=
∂p

∂t
+ uj

∂p

∂xj
− 2

3
µ

(
∂uk
∂xk

)2

+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

+ λ
∂2T

∂xj2
+Q (3.62)

For the special case of incompressible flow with constant density the following formulation is

obtained.

ρcp
DT

Dt
=
∂p

∂t
+ uj

∂p

∂xj
+ µ

(
∂ui
∂xj

+
∂uj
∂xi

)
∂ui
∂xj

+ λ
∂2T

∂xj2
+Q (3.63)

30 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

3.2 Moving Reference Volumes In Inertial Frame Of Ref-

erence

3.2.1 The Transport Theorem for Moving Reference Cells in Inertial

Frame of Reference

The aim of this section is to obtain a transport theorem with which an integration over a static

material reference volume can be replaced by an integration over a moving spatial reference

volume (moving mesh cell).

Figure 3.2: Material control volume Vx, moving reference control volume Vχ and static control

volume VX

The transport theorem (RTT equation(3.27)) that we have obtained previously shall now be

adapted in a way that allows us to calculate the local time rate of change of a control volume,

which moves arbitrarily in space. Therefore we shall recall the RTT, equation(3.27).

dΦ(t)

dt
=

∫
Vx(t)

{
∂φ(x, t)

∂t
+∇ · (φ(x, t)u)

}
dVx (3.64)

3.2. Moving Reference Volumes In Inertial Frame Of Reference 31

The local rate of change ∂φ(x,t)
∂t

can be seen as the local time rate of change of a static control

volume in absolute frame of reference. This control volume does not change its position in time,

nor does it change its shape. If we now want to evaluate the integral of the intensive variable

φ over a moving control volume Vx we have to relate the local time rate of change from the

Eulerian reference volume (at fixed coordinate X) with the local time rate of change seen from

within a moving reference volume (at coordinate χ). Following Gehrer [10] this can be done as

follows,

(
∂φ(x, t)

∂t

)
χ

=
φ (χ(t), t+ dt)− φ (χ(t), t)

dt
=
φ (X + dx, t+ dt)− φ (X, t)

dt
(3.65)

By doing a Taylor series expansion we get,

(
∂φ(x, t)

∂t

)
χ

=
φ (X, t) + ∂φ(X,t)

∂t
dt+ ∂φ(X,t)

∂x1
dx1 + ∂φ(X,t)

∂x2
dx2 + ∂φ(X,t)

∂x2
dx3 − φ (X, t)

dt
(3.66)

Through a linearised approach χ = Ψ(X, t) can be expressed as follows:

χ1 = X1 + ug,1dt

χ2 = X2 + ug,2dt

χ3 = X3 + ug,3dt (3.67)

From equation(3.67) it can be seen that dx in equation(3.66) can be replaced by ug · dt. Equa-

tion(3.66) can be further simplified to yield,

(
∂φ(x, t)

∂t

)
χ

=

∂φ(X,t)
∂t

dt+ ∂φ(X,t)
∂x1

ug1dt+ ∂φ(X,t)
∂x2

ug2dt+ ∂φ(X,t)
∂x3

ug3dt

dt
(3.68)

Thereof we obtain the relation for the local time rate of change between the absolute and the

32 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

moving reference control volumes.

(
∂φ(x, t)

∂t

)
χ

=

(
∂φ(x, t)

∂t

)
X

+∇φ (x, t) · ug (3.69)

Or respectively,

(
∂φ(x, t)

∂t

)
X

=

(
∂φ(x, t)

∂t

)
χ

−∇φ (x, t) · ug (3.70)

inserting this into equation(3.64) yields,

dΦ(t)

dt
=

∫
Vx(t)

{(
∂φ(x, t)

∂t

)
χ

−∇φ (x, t) · ug +∇ · (φ(x, t)u)

}
dVx (3.71)

The second term on the RHS of equation(3.71) can be transformed to yield,

dΦ(t)

dt
=

∫
Vx(t)


(
∂φ(x, t)

∂t

)
χ

−∇ · (φ (x, t) ug)︸ ︷︷ ︸
∗

+φ∇ · ug︸ ︷︷ ︸
∗∗

+∇ · (φ(x, t)u)

 dVx (3.72)

The additional term that had been introduced due to the motion of the reference volume has

been split in two parts in equation (3.72). The first term (*) accounts for the movement of the

control volume, the second term (**) accounts for the control volume dilatation.

Equation (3.72) can be further simplified to yield:

dΦ(t)

dt
=

∫
Vx(t)

{(
∂φ(x, t)

∂t

)
χ

+∇ · (φ(x, t) (u− ug)) + φ∇ · ug

}
dVx (3.73)

And finally a transport theorem for a moving control volume in the inertial frame of reference

is obtained.

3.2. Moving Reference Volumes In Inertial Frame Of Reference 33

dΦ(t)

dt
=

∫
Vx(t)

(
∂φ(x, t)

∂t

)
χ

dVx +

∮
Sx(t)

n · (φ(x, t) (u− ug)) dSx +

∫
Vx(t)

φ∇ · ug dVx (3.74)

This description is commonly known as Arbitrary Lagrange Euler (ALE) description, since the

Lagrangian description is obtained if ug = u, and the Eulerian description is obtained if ug = 0.

3.2.2 Governing Equations for Moving Reference Volumes in Iner-

tial Frame of Reference

In this subsection the governing equations for moving reference volumes in inertial frame of

reference shall be derived. This means that the equations are valid for the integration over

volumes that move within the inertial reference frame’s domain.

• Conservation of Mass

φ = ρ

d

dt

∫
Vx(t)

ρdVx = 0 (3.75)

or,

∫
Sx(t)

∂ρ

∂t
dVx +

∮
Sx(t)

n · (ρ (u− ug)) dSx +

∫
Vx(t)

ρ∇ · ug dVx = 0 (3.76)

or,

∂ρ

∂t
+∇ · (ρ (u− ug)) + ρ∇ · ug = 0 (3.77)

34 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

In the case of non-deforming meshes and rigid body motion the continuity equation in integral

form reduces to.

∫
Vx(t)

∂ρ

∂t
dVx +

∮
Sx(t)

n · (ρu) dSx = 0 (3.78)

3.2. Moving Reference Volumes In Inertial Frame Of Reference 35

• Conservation of Momentum

φ = ρu

d

dt

∫
Vx(t)

ρu dVx =

∮
Sx(t)

n · σdSx +

∫
Vx(t)

ρgdVx (3.79)

or,

∫
Vx(t)

∂ρu

∂t
dVx +

∮
Vx(t)

n · (ρu (u− ug)) dSx +

∫
Vx(t)

ρu∇·ug dVx =

∮
Sx(t)

n ·σdSx +

∫
Vx(t)

ρgdVx (3.80)

or,

∂ρu

∂t
+∇ · (ρu (u− ug)) + ρu∇ · ug = ∇ · σ + ρg (3.81)

In the case of non-deforming meshes and rigid body motion the momentum equation in integral

form reduces to.

∫
Vx(t)

∂ρu

∂t
dVx +

∮
Sx(t)

n · (ρu (u− ug)) dSx =

∮
Sx(t)

n · σdSx +

∫
Vx(t)

ρgdVx (3.82)

36 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

3.3 Non-Moving Reference Volumes In Rotating Frame

Of Reference

In this section the equations of motion for incompressible flows with constant density shall

be derived. Therefore the kinematics of relative rotational motion, which relates velocities

and accelerations seen from an inertial frame and a rotational reference frame will be outlined

following Hauger et al. [11]. Subsequently the Reynolds transport theorem will be adapted to

obtain a transport theorem for non-moving reference volumes in rotational frame notation.

3.3.1 The Kinematics of Relative Motion

Following closely Hauger [11] we shall start deriving the motion of a point in space in respect

to an inertial Cartesian coordinate system (with coordinates x,y,z) and a relative coordinate

system (with coordinates ξ, η, ζ and basis vectors eξ, eη, eζ). The relative coordinate system

performs a motion decomposed into a translational and rotational part. Figure 3.3 shows a

material point P and its positioning in respect to each coordinate system.

3.3. Non-Moving Reference Volumes In Rotating Frame Of Reference 37

Figure 3.3: Material point in inertial and relative reference frames

The position vector is defined as,

r = r0 + r0P (3.83)

where r0 relates the origins of both coordinate systems and r0P defines the position of the

material point seen from the relative reference frames perspective. Written in basis vector

notation this reads,

r0P = ξeξ + ηeη + ζeζ (3.84)

The absolute velocity (the velocity measured in the inertial reference system) of a material

point that moves in space can be written as,

ua = ṙ = ṙ0 + ṙ0P (3.85)

38 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

The first term on the RHS of equation (3.85) is the translational velocity of the origin of the

relative reference frame in respect to the inertial reference frame.

ṙ0 = u0 (3.86)

Since the direction of the relative system’s basis vectors changes with time due to a rotation

relative to the inertial frame the second term on the RHS yields,

ṙ0P = (ξ̇eξ + η̇eη + ζ̇eζ) + (ξėξ + ηėη + ζėζ) (3.87)

The relative system rotates with an angular velocity Ω. Hence the time rate of change of the

relative basis vectors reads,

ėξ = Ω× eξ ėη = Ω× eη ėζ = Ω× eζ (3.88)

The second term on the RHS of equation (3.87) can therefore be rewritten,

(ξėξ + ηėη + ζėζ) =ξΩ× eξ + ηΩ× eη + ζΩ× eζ

Ω× (ξeξ + ηeη + ζeζ) = Ω× r0P

(3.89)

The first term on the RHS of equation (3.87) denotes the time rate of change of the material

point P in respect to the relative reference system (*).

d∗r0P

dt
= (ξ̇eξ + η̇eη + ζ̇eζ) (3.90)

Inserting equations (3.89)(3.90)(3.86) in equation (3.85) yields:

3.3. Non-Moving Reference Volumes In Rotating Frame Of Reference 39

ua = u0 + Ω× r0P +
d∗r0P

dt
(3.91)

The first two terms on the RHS of equation (3.91) are the relative translational and rotational

velocities, which describe the movement of the relative reference system in respect to the inertial

reference system. These two velocities shall be called leading velocities ul. The time rate of

change of r0P is nothing else than the velocity measured from within the relative reference

system and shall be denoted relative velocity ur.

The absolute velocity of a material point P can therefore be written as:

ua = ul + ur (3.92)

With,

ul = u0 + Ω× r0P

ur =
d∗r0P

dt

(3.93)

Before deriving the relation of the absolute and relative acceleration of a material point,the

relation between the time rate of change of a general vector v in the inertial and relative

reference frames shall be pointed out. The notations of Figure 3.4 are taken to derive this

relation.

40 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

Figure 3.4: General vector in inertial and relative reference frames

A general vector is defined as:

v = (r0P2 − r0)− (r0P1 − r0) = r0P2 − r0P1 (3.94)

The time rate of change of a vector in absolute reference frame written with basis vectors is:

v̇ = (v̇ξeξ + v̇ηeη + v̇ζeζ) + (vξėξ + vηėη + vζ ėζ) (3.95)

The first term on the RHS of equation (3.95) is the time rate of change of a vector v seen from

the relative frame of reference. The second term on the right hand side can be reformulated

using equation (3.88). This yields,

v̇ =
d∗v

dt
+ Ω× v (3.96)

3.3. Non-Moving Reference Volumes In Rotating Frame Of Reference 41

Now that the relation, between the time rate of change of a general vector seen from an inertial

and a relative point of view, has been derived, the derivation of the relation for the accelerations

can be laid out.

The absolute acceleration, which is defined as the time rate of change of the absolute velocity

in respect to the inertial reference frame.

aa = u̇l + u̇r = u̇0 + ˙(Ω× r0P) + u̇r (3.97)

Equation (3.97) shall now be developed, starting by introducing the relation of equation (3.96)

to the third term on the RHS of equation (3.97),

aa = u̇0 + ˙(Ω× r0P) +
d∗ur
dt

+ Ω× ur

= u̇0 + Ω̇× r0P + Ω× ˙r0P +
d∗ur
dt

+ Ω× ur

= u̇0 + Ω̇× r0P + Ω×
(
d∗r0P

dt
+ Ω× r0P

)
+
d∗ur
dt

+ Ω× ur

= u̇0 + Ω̇× r0P + Ω× (ur + Ω× r0P) +
d∗ur
dt

+ Ω× ur

= u̇0 + Ω̇× r0P + Ω× (Ω× r0P)︸ ︷︷ ︸
al

+
d∗ur
dt︸ ︷︷ ︸
ar

+ 2Ω× ur︸ ︷︷ ︸
ac

(3.98)

In short notation,

aa = al + ar + ac (3.99)

with,

al = u̇0 + Ω̇× r0P + Ω× (Ω× r0P) (3.100)

The so-called leading acceleration al is the acceleration that the material point would experience

42 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

if it was rigidly connected with the relative coordinate system. The relative acceleration ar is

the acceleration that would be measured from within the relative coordinate system. The

remaining term is the well-known Coriolis acceleration ac.

3.3.2 The Reynolds Transport Theorem for Non-Moving Reference

Volumes in Relative Frame of Reference

The Reynolds Transport Theorem for non-moving reference volumes in relative frame

of reference is derived almost identically to the RTT described in section (3.1).

The only difference being the mapping function that relates the fixed coordinates

X of the non-moving volumes in the relative reference frame with the Lagrangian

coordinates of the material points, which change as these material points move.

Figure 3.5: Material control volume and static reference volume in a relative reference frame

The mapping function that relates the moving material control volume with the static reference

volume is given as,

3.3. Non-Moving Reference Volumes In Rotating Frame Of Reference 43

x = ψ(X, t) (3.101)

Keeping in mind that, in contrast to the derivation of the RTT for inertial reference frames,

the coordinate X is now being fixed within the relative coordinate system. The name of the

coordinate has not been changed for the sake of brevity.

Through a linearised approach the mapping function x = ψ(X, t) can be expressed as follows:

x1 = X1 + ur,1 ·∆t

x2 = X2 + ur,2 ·∆t

x3 = X3 + ur,3 ·∆t (3.102)

The mapping function is almost identical to the mapping function chosen in section (3.1), the

only difference being that the mapping is defined with the relative velocity ur instead of the

inertial velocity u.

From here onwards the derivation of the RTT for relative frames of reference is identical to that

for inertial frames. Only the inertial velocity u has to be substituted with the relative velocity

ur, this yields:

dΦ(t)

dt
=

∫
Vx(t)

∂φ(x, t)

∂t
dVx +

∮
Vx(t)

∇ · (φ(x, t)ur) dVx (3.103)

dΦ(t)

dt
=

∫
Vx(t)

∂φ(x, t)

∂t
dVx +

∮
Sx(t)

n · (φ(x, t)ur) dSx (3.104)

44 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

3.3.3 Governing Equations for Non-Moving Reference Volumes in

Relative Rotational Frame of Reference

In this subsection we shall derived the governing equations for non-moving reference volumes in

relative rotational frame of reference. This means that the equations are valid for the integration

over volumes which are fixed in respect to a relative rotational coordinate system. The relative

rotational frame of reference is a special case of the relative frame of reference, where the origin

of the relative coordinate system doesn’t move (u0 = 0). Hence equation(3.91) simplifies to,

ua = ur + Ω× r0P (3.105)

Furthermore the rotational velocity Ω shall not vary in time.

Ω̇ = 0 (3.106)

From equation (3.28), we can now derive the governing equations for non-moving reference

volumes in relative rotational frame of reference.

• Conservation of Mass

φ = ρ

d

dt

∫
Vx(t)

ρdVx = 0 (3.107)

or,

∫
Vx(t)

∂ρ

∂t
dVx +

∮
Sx(t)

n · (ρur) dSx = 0 (3.108)

3.3. Non-Moving Reference Volumes In Rotating Frame Of Reference 45

Using the relation of equation (3.105) the continuity equation can also be written in terms of

absolute velocities.

∫
Vx(t)

∂ρ

∂t
dVx +

∫
Vx(t)

∇ · (ρ(ur)) dSx = 0

∫
Vx(t)

∂ρ

∂t
dVx +

∫
Vx(t)

∇ · (ρ(ua − (Ω× r0P))) dVx = 0

∫
Vx(t)

∂ρ

∂t
dVx +

∫
Vx(t)

∇ · (ρua)−∇ · (ρ(Ω× r0P))︸ ︷︷ ︸
0

dVx = 0

Finally the continuity equation reads:

∫
Vx(t)

∂ρ

∂t
dVx +

∫
Vx(t)

∇ · (ρua) dVx = 0 (3.109)

or,

∫
Vx(t)

∂ρ

∂t
dVx +

∮
Sx(t)

n · (ρua) dSx = 0 (3.110)

46 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

• Conservation of Momentum

φ = ρua

Starting from the Lagrangian perspective, for a mass point the momentum equation reads,

d (ρua)

dt
=
∑

F (3.111)

Taking the continuity equation into account,

dρ

dt︸︷︷︸
0

ua + ρ
dua
dt

=
∑

F (3.112)

ρaa =
∑

F (3.113)

Equations (3.99)(3.100) inserted into equation (3.113) gives:

ρ

(
u̇0 + Ω̇× r0P + Ω× (Ω× r0P) +

d∗ur
dt

+ 2Ω× ur

)
=
∑

F (3.114)

For a non-moving relative rotational coordinate origin and a constant rotational velocity the

first two terms inside the brackets vanish.

ρ

(
Ω× (Ω× r0P) +

d∗ur
dt

+ 2Ω× ur

)
=
∑

F (3.115)

And rearranged:

ρ

(
d∗ur
dt

+ Ω× (Ω× r0P) + 2Ω× ur

)
=
∑

F (3.116)

Now the obtained Lagrangian equation for a single mass point are transformed to an integral

form.

3.3. Non-Moving Reference Volumes In Rotating Frame Of Reference 47

ρ

d∗
dt

∫
Vx(t)

ur dVx +

∫
Vx(t)

Ω× (Ω× r0P) + 2Ω× ur dVx

 =
∑

F (3.117)

Applying the RTT of equation (3.104) to the first term inside the brackets yields:

ρ

 ∫
Vx(t)

∂ur
∂t

+∇ · (urur) dVx +

∫
Vx(t)

Ω× (Ω× r0P) + 2Ω× ur dVx

 =
∑

F (3.118)

Now the LHS of above equation can be transformed in order to obtain a set of momentum

equations for rotational frames written in terms of absolute velocity.

ρ

 ∫
Vx(t)

∂ur
∂t

+∇ · (ur [ua − Ω× r0P]) + Ω× (Ω× r0P) + 2Ω× ur dVx



ρ

 ∫
Vx(t)

∂ur
∂t

+∇ · (urua)−∇ · ur (Ω× r0P)︸ ︷︷ ︸
0

−ur · ∇ (Ω× r0P) + Ω× (Ω× r0P) + 2Ω× ur dVx



ρ

 ∫
Vx(t)

∂ur
∂t

+∇ · (urua)− Ω× ur + Ω× (Ω× r0P) + 2Ω× ur dVx



ρ

 ∫
Vx(t)

∂ur
∂t

+∇ · (urua) + Ω× ur + Ω× (Ω× r0P) dVx



ρ

 ∫
Vx(t)

∂ur
∂t

+∇ · (urua) + Ω× (ur + Ω× r0P) dVx



48 Chapter 3. Derivation Of Governing Equations For Incompressible Fluid Flows

ρ

 ∫
Vx(t)

∂ua
∂t

+
∂(Ω× r0P)

∂t︸ ︷︷ ︸
0

+∇ · (urua) + Ω× (ur + Ω× r0P) dVx



ρ

 ∫
Vx(t)

∂ua
∂t

+∇ · (urua) + Ω× (ur + Ω× r0P) dVx


And finally,

ρ

 ∫
Ωx(t)

∂ua
∂t

+∇ · (urua) + Ω× ua dVx

 (3.119)

The momentum equations for rotational reference frames and non-moving meshes, with constant

rotational velocity and fixed rotation center can now be written as:

ρ

 ∫
Ωx(t)

∂ua
∂t

+∇ · (urua) + Ω× ua dVx

 =

∮
∂Ωx(t)

n · σdSx +

∫
Ωx(t)

ρgdVx (3.120)

Or,

ρ

 ∫
Ωx(t)

∂ua
∂t

dVx +

∮
∂Ωx(t)

n · (urua) dSx +

∫
Ωx(t)

Ω× ua dVx

 =

∮
∂Ωx(t)

n · σ dSx +

∫
Ωx(t)

ρgdVx

(3.121)

Chapter 4

Numerical Algorithms for

Incompressible Flows

Contents

4.1 Historical Background . 50

4.2 Sequential Solution . 52

4.3 Coupled Algorithms . 58

4.4 Sequential vs. Simultaneous Solution 62

All roads lead to Rome. The same holds true for the solution of the Navier-Stokes equations.

The solution procedure depends on many things, like the physical properties of the flow, the

discretisation used, demanded accuracy, computational restrictions or whether steady or un-

steady solutions are sought. There might even be many more parameters that define which

algorithm is the most practical for a given problem. In the scope of this work, focus is laid

on incompressible, single-phase flows, as they occur in hydraulic turbomachines. Effects like

cavitation (multi-phase flow) shall not be taken into account. Also the gravitational force can

be discarded since the Froud number, which relates inertial forces to gravitational forces, is

very big in turbomachinery flows. For incompressible flows of constant density the to be solved

variables of the Navier-Stokes equations reduce to velocity and pressure. This pressure-velocity

49

50 Chapter 4. Numerical Algorithms for Incompressible Flows

coupling is at the heart of commonly used incompressible algorithms. The resulting system of

equations can be solved sequentially or simultaneously. Both approaches have their strengths

and weaknesses. In this work a simultaneous coupled approach is presented, but before diving

into the deep waters of numerics, the author believes that it makes sense to give an overview

and background of mentioned procedures.

4.1 Historical Background

In computational fluid dynamics (CFD) two main paradigms exist on how to efficiently solve

incompressible flows, namely sequential (segregated) algorithms and simultaneous (coupled)

algorithms. No general answer can be found to the question, which of them is better, since both

approaches have their problem-depending advantages and shortcomings. Segregated algorithms

evaluate the momentum and continuity equation sequentially and couple them weakly by means

of sub-looping. On the other hand coupled (also called block coupled) approaches solve both

the continuity and the momentum equations simultaneously, which results in a strong variable

coupling.

Ever since computers have been available for research, scientists have been developing methods

for the numerical solution of the Navier-Stokes equations. This system of equations has the

curious property that, for incompressible flows, the coupling of the primitive variables (pressure

and velocity) between equations is weak, in the sense that the continuity equation does not

contain the pressure variable. When compressible flows are treated, it is possible to come up

with a system of equations, where each variable (primitive or conservative) is present in every

governing equation. This property leads to coupled algorithms that are neatly derived and

understood in a purely mathematical sense. However for incompressible flows, the coupling

of equations is far of being a trivial matter (which shall not mean that compressible flows

are trivial). The most productive period of algorithm development in the field of CFD was

probably between the mid 60s and the mid 80s. A multitude of solvers that are still used

today originate from that time. A glimpse on the developments that were made in the course

4.1. Historical Background 51

of those years can be found in a review[12] about Brian Spalding, a CFD pioneer, who was

the head of a CFD group at Imperial College London back than. Segregated solvers, but also

coupled solvers for incompressible flows have been developed and investigated there at the

same time. Along with L.S. Caretto, who was working as a visiting researcher at IC at that

time, Spalding published a paper that outlined the SIVA (simultaneous variable arrangement)

algorithm [13], which was a pressure-based coupled solver for primitive variables. However

shortly after, in the very same year, a young PhD student, named Suhas Patankar, joined the

group, and came up with a segregated solution procedure that would impact CFD algorithms for

decades, namely the SIMPLE algorithm (Semi Implicit Method for Pressure Linked Equations)

[14]. The algorithm gave accurate results in a reasonable amount of time, without using a

lot of memory space. This was clearly a huge advantage in regards to coupled algorithms

that needed considerably more memory space. This fact probably also led to the premature

abandonment of the development of block coupled solvers at Imperial College. Although the

superiority of block coupled algorithms for strongly coupled flows was shown e.g. by Vanka[15],

the SIMPLE algorithm kept dominating CFD until approximately the year 2000, when memory

space became less of an issue. Today, SIMPLE and its derivatives can still be found in almost

every commercial CFD software package, although it is being more and more replaced. When

memory space became less of an issue and with increasing knowledge about the numerical

solution of non-linear coupled systems of equations, some groups of researchers started to

investigate again the simultaneous solution of the Navier-Stokes equations. Thereby Galpin

and Raithy [16], Deng et al. [17] and Vanka [15] made a major step forward, which led to

the introduction of block coupled algorithms into commercial software packages at the end of

the 20th century. The algorithm that is outlined in this thesis leans on the scientific findings

of mentioned researchers, transferring them to another block coupled discretisation framework

proposed by Darwish [18].

52 Chapter 4. Numerical Algorithms for Incompressible Flows

4.2 Sequential Solution

Whenever the equations’ inter-variable coupling is loose and when the system of equations is

non-linear it might be preferable to treat each of the equations separately leaving only a single

variable as unknown and temporarily treating all other variables as known, taking previously

found values for them. The sequentially obtained solution field, however, will not satisfy the

set of equations, because the variables that were assumed to be known, had been substituted

by guessed approximate values. For this reason these guessed values have to be updated after

each iteration in order to obtain a final solution field that satisfies the constituting equations,

which makes outer iteration cycles necessary.

For the solution of the Navier-Stokes equations the most prominent of these solvers is the ’Semi-

Implicit Method for Pressure Linked Equations’ (SIMPLE) by Patankar [14]. In this sequential

(segregated) algorithm the momentum equations are solved implicitly for each velocity com-

ponent at a time, holding the remaining velocity components and the pressure constant and

treating them explicitly. This leads to solution fields for velocities and pressure that do not

satisfy the continuity equation. In order to assure mass conservation a pressure correction

equation has to be solved. With the obtained pressure correction field, the pressure as well

as the velocity component are updated, and a mass conserving solution is obtained. However,

now the momentum equations are not satisfied any more, but the newly obtained velocities

represent a better guess for the temporarily constant variables of the momentum equations. In

this manner outer iterations have to be performed with the objective of updating non-linearities

and solution fields until solution fields are obtained which satisfy the whole set of equations.

Since this method projects a solution arising from solving the momentum equations, which

subsequently has to be corrected, the SIMPLE algorithm can be seen as a projection method.

A variety of SIMPLE-based projection methods exists, which can be seen as enhancements of

the original approach. The main concept, however, remains unchanged. The most prominent

variations of SIMPLE are the SIMPLER (SIMPLE revised) [19] and the SIMPLEC (SIMPLE

corrected/consistent) [20] algorithms. Now the derivation and solution procedure of the SIM-

PLE algorithm based on Ferzinger [21] shall be outlined. Ferzinger therein denotes intermediate

4.2. Sequential Solution 53

(outer iteration) steps with m. By means of sub-looping the intermediate solution fields at it-

eration m will approach the final iteration value at time n + 1 which satisfies the governing

equations.

At time n+ 1 the following discretised momentum equation shall be fulfilled:

auiC u
n+1
i,C +

∑
fint

auineiu
n+1
i,nei = Qn+1

u,i −
(
δpn+1

δxi

)
C

(4.1)

Implicitly discretising the momentum equations, treating only a single velocity component in

each equation as unknown, and setting the remaining variables constant yields for a control

volume C following discretisation for the momentum equations:

auiC u
m∗

i,C +
∑
fint

auineiu
m∗

i,nei = Qm−1
u,i −

(
δpm−1

δxi

)
C

(4.2)

Therein the source term Qm−1
u,i contains the discretised terms of the velocity components which

are treated as constants at the intermediate outer iteration step m. The solution (at m∗)

obtained by equation(4.2) does not satisfy the continuity equation and therefore the corrections

have to be added to the used variables um
∗

and pm−1.

umi = um
∗

i + u′i pm = pm−1 + p′ (4.3)

Injecting the correction equations(4.3) into equation(4.2) yields the following equation:

auiC
(
umi,C − u′i,C

)
+
∑
fint

auinei
(
umi,nei − u′i,nei

)
= Qm−1

u,i −
(
δpm

δxi

)
C

+

(
δp′

δxi

)
C

(4.4)

This can be reordered to give:

54 Chapter 4. Numerical Algorithms for Incompressible Flows

auiC u
′
i,C +

∑
fint

auineiu
′
i,nei +

(
δp′

δxi

)
C

= auiC u
m
i,C +

∑
fint

auineiu
m
i,nei +

(
δpm

δxi

)
C

−Qm−1
u,i︸ ︷︷ ︸

→0

(4.5)

The terms on the RHS of equation (4.4) represent the momentum equations at the intermediate

time step m. Since we are looking for a correction equation that fulfils the momentum equations

the RHS should vanish. Reordering the LHS and setting the RHS to zero yields:

u′i,C = −

∑
fint

auineiu
′
i,nei

auiC︸ ︷︷ ︸
ũ′i,C

− 1

auiC

(
δp′

δxi

)
C

(4.6)

An additional condition that has to be introduced to the correction equation is the continuity

equation. At time m the velocity field shall abide the continuity equation:

δumi
δxi

=
δum

∗
i

δxi
+
δu′i
δxi

= 0 (4.7)

Injecting equation(4.6) into equation(4.7) yields a correction equation for the pressure.

δ

δxi

[
1

auiC

(
δp′

δxi

)]
C

=

[
δum∗i
δxi

]
C

−
[
δũ′i
δxi

]
C︸ ︷︷ ︸

<<

(4.8)

Since the neighbour velocity corrections u′i,nei are unknown at this point and since it is difficult to

obtain them, SIMPLE neglects the second term on the RHS of equation(4.8). Other algorithms

like SIMPLEC and SIMPLER are less brutal and try to find an estimate of this term.

With this set of equations we can now write down a procedure to obtain a solution, which

satisfies the governing equations through sub-looping.

Solution procedure:

• Assemble and calculate preliminary velocity fields um
∗

i (equation (4.2))

4.2. Sequential Solution 55

• Assemble and calculate a pressure correction field p′ (equation (4.8))

• Calculate velocity correction fields u′i (equation (4.6))

• Update preliminary velocity and pressure fields with corrections (equation (4.3))

• Go back to step one and repeat outer iterations until um−1
i ≈ umi and pm−1 ≈ pm

• If um−1
i ≈ umi and pm−1 ≈ pm: assemble and calculate turbulence equations

• Update properties and volume flux and go to next time step n+ 1

Figure 4.1 shows a conceptual scheme of the SIMPLE solution procedure including under-

relaxation factors and turbulence model.

Figure 4.1: Concept of SIMPLE solution procedure

When the inter-variable coupling is important, the loose coupling between variables can be very

detrimental to convergence rate and stability. For this reason only fractions of the correction

fields are added to the preliminary solution fields, while carrying out the sub-loops to assure

stable convergence. However, the optimal magnitudes for the necessary under-relaxation factors

have to be found by testing since they vary depending on the case treated.

Additionally it is beneficial to implicitly under-relax the intermediate momentum equa-

tions(4.2).

56 Chapter 4. Numerical Algorithms for Incompressible Flows

Following Ferzinger [21] and Patankar [19] implicit relaxation for the intermediate momentum

equations(4.2) yields:

auiC
α
um
∗

i,C +
∑
fint

auineiu
m∗

i,nei = Qm−1
u,i −

(
δpm−1

δxi

)
C

+
1− α
α

auiC u
m−1
i,C (4.9)

In respect to equation (4.2) this signifies that a term has been added that is somewhat similar

to a time derivative term of momentum.

auiC
1− α
α

(
um
∗

i,C − um−1
i,C

)
(4.10)

An thought time derivation of momentum would give:

δVC
δt

(
um
∗

i,C − um−1
i,C

)
(4.11)

A plausibility analysis juxtaposing equations (4.10,4.11),and assuming that α is constant, we

obtain:

δVC
δt
∝ auiC (4.12)

If auiC is dominated by convection we can further write:

δVC
δt
∝ δSC (4.13)

So implicit under-relaxation can be seen as a time derivative with an imaginary time step δt

of:

δt ∝ δVC
δSC

∝ δxC (4.14)

4.2. Sequential Solution 57

Thereof implicit under-relaxation can be interpreted as an imaginary time derivative in which

different time steps are used for different nodes. Furthermore it can be seen that with increasing

mesh sizes and decreasing grid spacing the imaginary time step also decreases. This also means

that for a given iteration the fluid flow information propagates very slowly depending on the

mesh spacing δxC . Furthermore this signifies that a simulation on a fine mesh will need more

iterations than the same simulation on a coarse mesh, using the same under-relaxation factors.

For this reason sequential algorithms, which have to use implicit relaxation, always have the

inherent shortcoming of bad mesh size scaling in terms of convergence time per control volume.

58 Chapter 4. Numerical Algorithms for Incompressible Flows

4.3 Coupled Algorithms

When the inter-variable coupling of a set of equations is tight, the natural way of treating

these equations is solving them simultaneously, all at the same time. The big advantage of

this approach is that a variable at a specific point in the domain directly feels the influence

of all variables. When dealing with a set of linear equations nobody would think of any other

solution procedure then a coupled one. However, when treating sets of non-linear equations, the

question arises whether a sequential solution procedure wouldn’t be faster, since the linearised

set of non-linear equations has to be updated several times and solving a huge set of linearised

equations simultaneously multiple times could be slower than including the non-linear updating

into a sequential solution process. For tightly coupled problems, it seems that solving linearised

sets of non-linear equations simultaneously is beneficial.

As already mentioned in section 4.1 the main proponents of coupled solutions for the Navier-

Stokes equations were Galpin and Raithy [16], Deng et al. [17] and Vanka [15]. The coupled

solution approach elaborated in the scope of this thesis leans on the method for unstructured,

collocated grids originally proposed by Darwish [18] for two-dimensional flows.

The discretisation and solution procedure of a set of algorithms that have been elaborated, will

be outlined in the following sections.

A problem that all proposed coupled algorithms have in common is the saddle point problem

[22], which arises from the non-existence of the pressure in the continuity equation. The absence

of the pressure in this equation leads to zero entry in the diagonal of the discretised matrix

system. A cure for this condition was proposed by Rhie and Chow [23].

A generic simultaneous solution procedure for the incompressible Navier-Stokes equations is

given below, and a conceptual scheme of the simultaneous procedure presented in this work is

shown in Figure 4.2.

4.3. Coupled Algorithms 59

Solution procedure (for steady-state calculation):

• Assemble and calculate governing equations simultaneously

• Assemble and calculate turbulence equations

• Update properties and volume flux and go to next iteration n+ 1

Figure 4.2: Concept of block coupled solution procedure

At this point a more detailed description shall be given additionally, because the block cou-

pled pressure based incompressible algorithm outlined here shall be the model for subsequent

descretisation (chapters 5,6,7).

For steady state simulations it is sufficient to update non-linearities and preliminary field values

within the same loop. The resulting procedure is given in Figure 4.3.

60 Chapter 4. Numerical Algorithms for Incompressible Flows

Figure 4.3: Concept of steady state block coupled solution procedure

For transient simulations an additional inner loop is needed to make sure that for each time

step non-linearities and non-orthogonal correction parts have converged sufficiently. Figure 4.4

shows such a procedure.

4.3. Coupled Algorithms 61

Figure 4.4: Concept of transient block coupled solution procedure

62 Chapter 4. Numerical Algorithms for Incompressible Flows

4.4 Sequential vs. Simultaneous Solution

The difference between loose and tight coupling is determinant for the properties defining

simultaneous and sequential algorithms. It can be basically said that simultaneous solution

procedures deduce their advantages compared to sequential solution algorithms from the tight

inter-variable coupling. Their disadvantages arise due to their block coupled matrix structure,

which tends to make the solution procedure more challenging. Starting with the benefits

obtained by block coupling it can be said that robustness and convergence speed naturally tend

to be better when using block coupled algorithms. This is especially significant when solutions

are sought starting with a very bad initial guess. In these cases segregated solvers suffer a lot

because the error introduced by the initial solution is carried along with the iterations, and

the smoothing process until a reasonable guess is found can take very long. CFD developers

often argue that this advantage becomes obsolete when dealing with transient simulations,

because the solution fields at the previous time step are very close to the fields for the next

time step. This, however, only holds true when no abrupt transient change such as pressure

and velocity fluctuations occur. Furthermore the simultaneous solution procedure’s robustness

is superior because the tight inter-variable coupling hinders the variables to start oscillating.

To overcome the issue of robustness sequential solution algorithms commonly have to introduce

under-relaxation. This under-relaxation however leads to convergence rates which are mesh size

dependent. Since simultaneous solution procedures do not need to introduce under-relaxation

they show mesh size independent convergence rates. The shortcomings of simultaneous solutions

arising from the block coupled matrix solution system are related to the solution of the linear

equation system itself. Due to the solution of all variables in the same matrix system, the

memory requirement is higher than that of sequential solution methods. Additionally the

block matrix’ condition number is much worse than those of the sequential method’s matrices.

This is because of the occurrence of additional implicit extra-diagonal coefficients that decrease

the diagonal dominance of the block matrix. It can even happen that the block coupled system

of equations is not diagonally dominant any more. Due to this property only very special linear

solvers can be used for block matrix systems, whereas for the solution of sequential algorithms’

4.4. Sequential vs. Simultaneous Solution 63

matrix systems usually almost any iterative solver can be used. Figure 4.5 shows a comparison

between simultaneous and sequential solution methods.

Figure 4.5: Concept comparison between simultaneous and sequential algorithm

64 Chapter 4. Numerical Algorithms for Incompressible Flows

Chapter 5

Discretisation Of Governing Equations

Contents

5.1 Finite Volume Discretisation in OpenFOAM 66

5.2 Discretisation of Governing Equations for Inertial Frames 70

5.2.1 Discretisation of Momentum Equation 71

5.2.2 Discretisation of Continuity Equation 85

5.3 Discretisation of Governing Equations for Moving Control Volumes 93

5.3.1 Discretisation of Momentum Equation 93

5.3.2 Discretisation of Continuity Equation 95

5.4 Discretisation of Governing Equations for Rotating Frames 96

5.4.1 Discretisation of Momentum Equation 96

5.4.2 Discretisation of Continuity Equation 99

In the previous chapter (4) the concept of a block-coupled pressure-based incompressible algo-

rithm was presented. According to this concept, the discretisation of all terms of the governing

equations for three different reference frames (chapter 3) shall be outlined in what follows. For

this purpose the addressing concept for unstructured meshes, which is the basis for discretisa-

tion of the OpenFOAM CFD library, is also presented in some detail.

65

66 Chapter 5. Discretisation Of Governing Equations

5.1 Finite Volume Discretisation in OpenFOAM

Finite volume discretisation in OpenFOAM follows the arbitrarily unstructured collocated grid

approach. This means that all variables are solved at points at the cell centres. Moreover, these

points are located at the centroids of each cell [1], such that:

∫
V

(x− xC) dV = 0 (5.1)

The mean value of the values at each point inside a control volume, is projected to the centroid

of the volume. This approximation is commonly known as ’Mean Value Theorem’, and it is

second order accurate as can be derived with following Taylor series expansion.

φC =
1

VC

∫
V

(φ) dV

1

VC

∫
V

[
φC + (x− xC) · ∇ (φ)C +O(∆x2)

]
dV

φC
1

VC

∫
V

dV +
1

VC

∫
V

(x− xC) dV · (∇φ)C +
1

VC

∫
V

O(∆x2)dV

(5.2)

If φC is evaluated at the centroid, the second term on the RHS vanishes.

φC ≈ φC +
1

VC

∫
V

O(∆x2)dV (5.3)

Figure 5.1 shows the general arrangement of the grid structure, as it can be found in Open-

FOAM. In order to diminish memory space OpenFOAM’s grid structure consists of owner cells

(centroid xown) and neighbour cells (centroid xnei), which share a common surface. Each sur-

face has a surface normal vector pointing from the owner to the neighbour. Cells may also

have boundary faces (face center xbou). Notations, as employed in OpenFOAM can be seen in

Figure 5.1. They shall subsequently be used to derive and analyse the discretised terms of the

5.1. Finite Volume Discretisation in OpenFOAM 67

governing equations.

Figure 5.1: Collocated grid arrangement used in OpenFOAM

The basic mesh structure in OpenFOAM is computationally stored in 4 lists. This structure

has been chosen in order to minimize memory storage.

• A point list: A list of point coordinates

• A face list: A list of point indices, corresponding to the point list

• An owner list: A list of cells owning a face, where the list’s index corresponds to the

owned face and the list’s value corresponds to the index of the owning cell. The owner list

does not only contain information about internal faces, but it contains also information

about boundary faces. Hence at the beginning the list’s index corresponds to internal

faces. After that the index corresponds to the label of the respective boundary face.

68 Chapter 5. Discretisation Of Governing Equations

• A neighbour list: A list of cells neighbouring faces without being their owner, where

the list’s index corresponds to the neighboured face and the list’s value corresponds to

the label of the neighbouring cell.

Figure 5.2 shows an example of how this list addressing works.

Figure 5.2: (a) list adressing structure; (b) corresponding 2 cell domain

This means that each face is shared by two cells. Information and values at each face are

however only stored once to avoid duplicating information. However it becomes necessary to

differentiate between the two cells sharing a common face, introducing the notion of owner and

neighbour cells. The reason for this differentiation become more apparent having a look at the

following examples.

It is important to know that surface normal vectors Sf always point from a face’s owner cell

to its neighbour cell. Furthermore surface related values , such as the linear distance weighting

factor gf (see equation (5.14)), are stored only once per face. Hence it is important to know,

who the owner (factor gf) and the neighbour (factor 1−gf) cell of the face are. Figure 5.3 shall

help to explain how mesh information is stored in OpenFOAM. For each face, the adjacent cell

with the lower index is also the owner of the face.

5.1. Finite Volume Discretisation in OpenFOAM 69

Figure 5.3: Mesh arrangement, surface normal vector pointing from owner to neighbour cell

One has to be aware, that the use of arbitrarily unstructured meshes, as nice as it may be from

a user’s perspective, brings some disadvantages in terms of discretisation. Because of memory

restrictions, a cell object in OpenFOAM only knows its first neighbours, but not its second (the

neighbours’ neighbours) or even third neighbours.

This restriction is a big disadvantage compared to structured hexahedral grids, where due to

the mesh structure, information on cell indices can easily be extracted. For instance when an

integration over a cell surface is carried out in OpenFOAM, first a face value is calculated at the

surface center, which depends only on the two adjacent cells. This procedure can have a con-

siderably inferior accuracy compared to an integration where cell values of far neighbours are

also extrapolated to the face edges. Keep in mind that the small computational molecule, that

usually comes along with an arbitrarily unstructured collocated grid approach has some short-

comings that cannot be circumvented without deteriorating memory usage and computational

speed.

70 Chapter 5. Discretisation Of Governing Equations

5.2 Discretisation of Governing Equations for Inertial

Frames

The aim of this section is to identify all matrix coefficients and source terms that determine

the discretised and linearized system of equations that shall be solved. Since we want to solve

the equations for conservation of mass and momentum simultaneously the resulting matrix will

be a matrix of submatrices (matrix coefficients) containing the following entries.



appown apuown apvown apwown

aupown auuown auvown auwown

avpown avuown avvown avwown

awpown awuown awvown awwown





pown

uown

vown

wown


+
∑
fint



appnei apunei apvnei apwnei

aupnei auunei auvnei auwnei

avpnei avunei avvnei avwnei

awpnei awunei awvnei awwnei





pnei

unei

vnei

wnei



+
∑
fbou



appbou apubou apvbou apwbou

aupbou auubou auvbou auwbou

avpbou avubou avvbou avwbou

awpbou awubou awvbou awwbou





pown

uown

vown

wown


=



bpown

buown

bvown

bwown


+



bpbou

bubou

bvbou

bwbou



(5.4)

This leads to a sparse linear system of equations of the form:

A · Φ = B (5.5)

The matrix consists of matrix coefficients a, and it is sparse having as many off-diagonal entries

5.2. Discretisation of Governing Equations for Inertial Frames 71

per row as the owner cell has neighbours.



(
a11

)
· · · ·

· · · · ·(
anei

)
·
(

aown,bou

) (
anei

)
·

· · · · ·

· · · ·
(

ann

)


·



(
φ1

)
·(

φown

)
·(
φn

)


· =



(
b1

)
·(

bown,bou

)
·(

bn

)


(5.6)

The boundary conditions will mostly give contributions to the diagonal block matrix coefficients

aii or to the source vectors bi or both. However, there are some boundary conditions that are

less easy to implement, since they yield off-diagonal coefficients. In the following sections we

will treat only the derivation of coefficients arising from a cell’s neighbouring cells. Boundary

conditions will be treated in detail in chapter 6.

5.2.1 Discretisation of Momentum Equation

The momentum Equation in integral form can be written as:

∫
V

∂u

∂t
dV +

∫
V

∇ · (uu) dV = −
∫
V

∇pdV +

∫
V

∇ · (νeff∇u) dV (5.7)

Note that in OpenFOAM the pressure variable actually corresponds to a pressure divided by a

constant density.

Gauss’ Theorem leads to:

∫
V

∂u

∂t
dV +

∮
S

n · (uu)f dS = −
∮
S

npf dS +

∮
S

n ·
(
νeff (∇u)f

)
dS (5.8)

Semi-discretised form:

72 Chapter 5. Discretisation Of Governing Equations

δu

δt
δV +

∑
faces

Sf · (uu)f = −
∑
faces

Sfpf +
∑
faces

Sf ·
(
νeff (∇u)f

)
(5.9)

Introducing the volume face flux phif = Sf · uf this equation can be transformed to:

δu

δt
δV +

∑
faces

phifuf +
∑
faces

Sfpf −
∑
faces

Sf ·
(
νeff (∇u)f

)
= 0 (5.10)

And it can be written in terms of specific forces.

δu

δt
δV +

∑
faces

FC
f +

∑
faces

FP
f −

∑
faces

FD
f = 0 (5.11)

5.2. Discretisation of Governing Equations for Inertial Frames 73

Time discretisation

For transient simulations the discretisation in time should be of the same order as the spatial

discretisation. The first time discretisation scheme that comes into mind when thinking of

second order time discretisation is usually the Cranck-Nicholson scheme. Using the Cranck-

Nicholson scheme implies that spatial discretisation has to be carried out implicitly for the

current time step as well as explicitly for the former time step. This circumstance, however,

imposes a challenge, since the dual discretisation also has to be accounted for at boundaries, at

interfaces, during the flux update and when performing non-linear corrections. In order to keep

a simple coding structure, it is therefore preferable to use the backward differencing formulae

(BDF) for time discretisation, since the spatial discretisation has to be performed only for the

current time step.

The easiest backward differencing formula (BDF1) is the Euler backward method (equation

5.12). However, for transient simulations where temporal accuracy is important, the BDF2

method (equation 5.13) has been used in this work. This method is second order accurate, and

can be seen as a trade-off between accuracy and simplicity of coding.

In any case, for both approaches the non-linear coefficients and non-orthogonal terms, that

arise from the second order spatial derivatives, have to be updated through sub-looping.

For steady state calculations the time derivative of the momentum equations vanishes. However,

to accelerate convergence a so-called false transient term can be added. For the false transient

term usually the backward differencing formula (BDF1) is used. For steady state computations

the sub-looping for the non-linear components and non-orthogonal terms is not necessary. At

convergence the solution field at time n+1 is equal to that of n. Hence, the contribution of

the false transient term cancels out, and the non-linear and non-orthogonal coefficients take a

constant value.

The first order implicit backward Euler time scheme(BDF1) reads:

74 Chapter 5. Discretisation Of Governing Equations

Ddt term:

δu

δt
δV + f(t) ≈ un+1 − un

∆t
∆V + fn+1 (5.12)

The BDF2 formula for time discretisation reads, Second Order Ddt term:

δu

δt
δV + f(t) ≈

3
2
un+1 − 2un + 1

2
un−1

∆t
∆V + fn+1 (5.13)

Since the effective dynamic viscosity depends on the turbulence variables, it is not known at

time (n+1). Therefore it also has to be updated through sub-looping for transient simulations.

5.2. Discretisation of Governing Equations for Inertial Frames 75

Spatial discretisation

Discretisation in space makes use of Gauss’ divergence theorem and some kind of surface in-

terpolation. Due to OpenFOAM’s mesh addressing method implicit surface interpolation only

depends on the surfaces’ adjacent cells.

Keeping in mind that either the Second-Order-Backward or the first order Euler time scheme

is used, spatial discretisation of all terms only shall be carried out implicitly for time (n+1).

Due to the explicit non-orthogonal contribution for second order derivatives both, implicit and

explicit contributions, will be obtained.

All spatial discretisation schemes use some common interpolation factors, these factors shall be

outlined next.

The linear interpolation weighting factors at surfaces gf in OpenFOAM can be expressed by

means of bow length evaluation:

gf =
mag [Sf · (xnei − xf)]

mag [Sf · (xf − xown)] +mag [Sf · (xnei − xf)]
(5.14)

The distance vectors d are used to evaluate gradients at surfaces. The vectors are pointing

from owner centroids to neighbour centroids.

d = xnei − xown (5.15)

76 Chapter 5. Discretisation Of Governing Equations

Pressure gradient term:

The pressure gradient is discretised using Gauss’ Theorem and a linear interpolation between

two adjacent cells. This method is second order accurate in space.

The semi-discretised pressure gradient term reads,

∑
faces

Sfpf (5.16)

And the pressure force over a surface is:

FP
f = Sfpf (5.17)

The pressure at face f between two cells is,

pf = pown gf + pnei (1− gf) (5.18)

An implicit contribution in form of matrix coefficients for each cell is finally obtained.

aupown =
∑
fint

Sfx gf aupnei = Sfx (1− gf)

avpown =
∑
fint

Sfy gf avpnei = Sfy (1− gf)

awpown =
∑
fint

Sfz gf awpnei = Sfz (1− gf)

(5.19)

5.2. Discretisation of Governing Equations for Inertial Frames 77

Convective term:

It is well known in CFD that convection schemes of order greater than one in general do not

fulfill the convection boundedness criterion (CBC). In order to obtain second order accuracy

to some extent it is necessary to somehow bound second order schemes. Usually this is done

by means of limiters, which amongst others depend on the far upwind cells. As OpenFOAM

operates on unstructured meshes these far upwind cells may not be unique. Therefore some high

order schemes (NVD/TVD) as they are implemented in OpenFOAM are outlined in appendix

(A).

For the present work the author decided to go for a deferred corrected van Leer TVD scheme

(vanLeerVDC) as his convection scheme of choice. It is not derived at this point for the sake

of brevity. The reader is referred to appendix (A) for a complete derivation of the scheme. At

this point, only the resulting coefficients shall be presented.

Recall that the convective term (5.21) of the governing equations in semi-discretised form is

given by:

∑
faces

phifuf (5.20)

And the specific convective force over a surface is:

FC
f = phifuf (5.21)

Where the volume flux phif over the cell faces is considered to be known. The linearisation of

the convection term using the known volume flux from the old time step is only first order accu-

rate in time and convergence of outer iterations could be improved using a full Newton-Raphson

linearisation for the face volume flux phif [24]. Since a full Newton-Raphson linearisation can

however bring about numerical problems, the easier first order linearisation has been imple-

mented in the frame of this work.

78 Chapter 5. Discretisation Of Governing Equations

In order to be second order accurate the variable vectors uf at faces f for limited schemes

(NVD or TVD) can be written as:

case phif ≥ 0 :

uf = uown + (1− gf) Υ (rf) (unei − uown)

case phif < 0 :

uf = unei + gfΥ (rf) (uown − unei)

(5.22)

Subsequently implicit contributions will be outlined using above approach with van Leer’s TVD

limiter.

Note that, unlike upwind differencing, high resolution schemes do not deliver diagonally equal

matrix coefficients for the implicit part of equation (5.21), unless a deferred correction ap-

proach is chosen. Deferred correction means that the upwind part of equation (5.22) is added

implicitly to the matrix, which gives diagonal equality, and the higher order contribution is

added explicitly to the source term. This approach can be important to preserve diagonal and

block-diagonal dominance of a system of equations, as we will see in chapter (8).

Since the volume flux phin+1 is not known beforehand, it is replaced by phi∗, which has to be

updated through sub-looping until phi∗ ≈ phin+1.

For a deferred corrected van Leer TVD scheme, for the implicit part of equation (5.21) at

time n+1, a contribution in form of matrix coefficients and a contribution to the source vector

(arising from the deferred correction) is obtained for each cell.

5.2. Discretisation of Governing Equations for Inertial Frames 79

auuown =
∑
fint

‖phi∗f , 0‖ auunei = −‖ − phi∗f , 0‖

avvown =
∑
fint

‖phi∗f , 0‖ avvnei = −‖ − phi∗f , 0‖

awwown =
∑
fint

‖phi∗f , 0‖ awwnei = −‖ − phi∗f , 0‖

(5.23)

buown = −
∑
fint

‖phi∗f , 0‖ (1− gf) Υ (u∗nei − u∗own)− ‖ − phi∗f , 0‖gfΥ (u∗own − u∗nei)

bvown = −
∑
fint

‖phi∗f , 0‖ (1− gf) Υ (v∗nei − v∗own)− ‖ − phi∗f , 0‖gfΥ (v∗own − v∗nei)

bwown = −
∑
fint

‖phi∗f , 0‖ (1− gf) Υ (w∗nei − w∗own)− ‖ − phi∗f , 0‖gfΥ (w∗own − w∗nei)

(5.24)

80 Chapter 5. Discretisation Of Governing Equations

Viscous term:

The diffusion term is the effective dynamic viscosity times a Laplacian of the velocity vector.

It is discretised using Gauss’ divergence theorem and a linear corrected interpolation. This

interpolation is second order accurate in space when two adjacent cells are orthogonally aligned.

The order of accuracy decreases with increasing non-orthogonality of the grid. OpenFOAM

implements an over-relaxed orthogonal correction approach for Laplacian operators (such as

the viscous term), which shall be briefly outlined in the following section. The resulting matrix

coefficients will be diagonally equal. The following derivations can be seen in more detail with

a thorough error analysis in Jasak [1] and also in Ferzinger and Perić [21] and Muzaferija [25].

The semi-discretised diffusion term reads,

−
∑
f

Sf ·
(
νeff (∇u)f

)
(5.25)

And the viscous force over a surface is:

FD
f = Sf ·

(
νeff (∇u)f

)
(5.26)

Equation (5.26) can be written as:

FD
f = νeff |Sf |


∂u
∂x
nx + ∂u

∂y
ny + ∂u

∂z
nz

∂v
∂x
nx + ∂v

∂y
ny + ∂v

∂z
nz

∂w
∂x
nx + ∂w

∂y
ny + ∂w

∂z
nz


f

= νeff |Sf |
(
∂u

∂x
nx +

∂u

∂y
ny +

∂u

∂z
nz

)
f

(5.27)

The far right expression on the RHS can be written in local basis vectors [21].

n · (∇u)f =
∂u

∂x
nx +

∂u

∂y
ny +

∂u

∂z
nz =

∂u

∂r
er +

∂u

∂s
es +

∂u

∂t
et (5.28)

5.2. Discretisation of Governing Equations for Inertial Frames 81

Keeping in mind, that OpenFOAM can only do implicit evaluation based on the information

of two adjacent points, the basis vectors of equation(5.28) are chosen such that the first basis

vector is aligning with the line connecting the owners’ and the neighbours’ centroids. ξ is

the direction of the line connecting the owner and the neighbour centroids, and direction η is

defined as:

η = n− eξ (5.29)

Hence,

n · (∇u)f =
∂u

∂x
nx +

∂u

∂y
ny +

∂u

∂z
nz =

∂u

∂ξ
eξ +

∂u

∂η
eη (5.30)

Figure 5.4: Control volumes with local coordinate directions

The first term on the RHS of equation (5.30) will be treated implicitly, whereas the second term

can only be evaluated explicitly due to a limited implicit stencil. Discretisation contributions

arising from second neighbours are not added implicitly. The practicle reason for this is that

the addressing of second neighbours in an unstructured grid framework would be cumbersome,

the numerical reason is that due to additional off-diagonal matrix elements the resulting sparse

matrix could lose diagonal dominance. We shall rewrite equation (5.30) to see that the diffusive

flux at time (n+1) is evaluated correctly as explicit variable values at time (n,*) approach

82 Chapter 5. Discretisation Of Governing Equations

variable values at time (n+1).

n ·
(
∇un+1

)
f

=
∂un+1

∂n
=
∂un+1

∂ξ
eξ +

∂un+1

∂η
eη ≈

(
∂un+1

∂ξ

)
eξ +

(
∂u∗

∂n
en −

∂u∗

∂ξ
eξ

)
(5.31)

Through sub-looping the explicit part with variable values at time (*) approaches values at

time (n+1). Hence, when the variables for the explicit part approach values at time (n+1),

equation (5.31) becomes implicit. Since the explicit part stems from the non-orthogonalities of

the grid, this approach is also called non-orthogonal correction.

Now equation (5.27) can be rearranged.

FD
f = νeff |Sf |

(
∂u

∂ξ
eξ +

∂u

∂η
eη

)
(5.32)

FD
f = νeff |Sf |

(
∂u

∂ξ
eξ +

(n− eξ)

|n− eξ|
· (∇u)f eη

)
(5.33)

FD
f = νeff |Sf |

(
∂u

∂ξ
eξ + (n− eξ) · (∇u)f

)
(5.34)

FD
f = νeff |Sf | eξ

∂u

∂ξ
+ νeff |Sf |

(
n− d

|d|
eξ

)
· (∇u)f (5.35)

Equation (5.35) shows how the diffusive fluxes can be split into two parts. The first part on

the RHS can be treated implicitly, whereas the second term on the RHS is calculated explicitly

such as in equation(5.43). It is also easy to see that the influence of the explicit and the implicit

parts can be adjusted since the choice of the length of the basis vector eξ is arbitrary.

In the over-relaxed approach, as it is implemented in OpenFOAM, the magnitude of eξ is chosen

in a way that causes the first term on the RHS of equation (5.35) to increase with increasing

5.2. Discretisation of Governing Equations for Inertial Frames 83

non-orthogonality [1].

eξ =
|d|

d · Sf
|Sf | (5.36)

Hence equation (5.35) can be written as:

FD
f = νeff |Sf |

|d|
d · Sf

|Sf |
∂u

∂ξ
+ νeff |Sf |

(
Sf
|Sf |
− d

|d|
|d|

d · Sf
|Sf |

)
· (∇u)f (5.37)

and finally:

FD
f = νeff

|d|
d · Sf

|Sf |2
(

unei − uown
|d|

)
+ νeff

(
Sf −

d

d · Sf
|Sf |2

)
· (∇u)f (5.38)

Jasak [1] writes these expressions as follows:

FD
f = νeff |E|

(
unei − uown
|d|

)
+ νeffT · (∇u)f (5.39)

where,

E =
d

d · Sf
|Sf |2 (5.40)

and

T = Sf − E (5.41)

It can be easily seen that equation (5.40) gets singular when the angle between d and Sf is 90

degrees. Figure 5.5 shows the surface vectors E and T splitting the contribution for the implicit

and explicit part of equation (5.39) for the over-relaxed, non-orthogonal correction approach.

84 Chapter 5. Discretisation Of Governing Equations

Figure 5.5: Surface normal vector split for orthogonal correction approach [1]

The first term on the RHS of equation(5.39) gives an implicit contribution and the second part

is evaluated explicitly. Hereby the explicit part will be updated through sub-looping with the

latest variable value (in this case u∗f). Calculating the explicit gradients for the second part of

the RHS is done as outlined following equations (5.42,5.43, 5.44).

(∇u)cell =
1

Vcell

∑
f

Sfuf (5.42)

and

(
∇u
)
f

= gf (∇u)own + (1− gf) (∇u)nei (5.43)

The gradient of the second term on the RHS can be now evaluated explicitly. In order to

be consistent the gradient calculation in direction of d has to be equal to the implicit term’s.

Hence we subtract the directional part of the interpolated gradient and add the direct surface

gradient evaluation in direction of d. This yields,

(∇u)f =
(
∇u
)
f
−
((
∇u
)
f
· d

|d|

)
d

|d|
+

(unei − uown)

|d|
d

|d|
(5.44)

Jasak [1] states that non-orthogonal correction potentially causes unboundedness. To prevent

oscillations and unboundedness the explicit term (non-orthogonal correction) can be limited,

however to the detriment of accuracy.

5.2. Discretisation of Governing Equations for Inertial Frames 85

auuown =
∑
fint

ν∗eff ·
|E|
|d|

auunei = −ν∗eff
|E|
|d|

avvown =
∑
fint

ν∗eff ·
|E|
|d|

avvnei = −ν∗eff
|E|
|d|

awwown =
∑
fint

ν∗eff ·
|E|
|d|

awwnei = −ν∗eff
|E|
|d|

(5.45)

buown =
∑
fint

ν∗eff

(
Tx
∂u

∂x

∗
+ Ty

∂u

∂y

∗
+ Tz

∂u

∂y

∗)
buown =

∑
fint

ν∗eff

(
Tx
∂v

∂x

∗
+ Ty

∂v

∂y

∗
+ Tz

∂v

∂y

∗)
buown =

∑
fint

ν∗eff

(
Tx
∂w

∂x

∗
+ Ty

∂w

∂y

∗
+ Tz

∂w

∂y

∗) (5.46)

5.2.2 Discretisation of Continuity Equation

The continuity equation in integral form can be written as:

∫
V

∇ · u dV = 0 (5.47)

Gauss’ Theorem leads to,

∮
S

(n · uf) dS = 0 (5.48)

Semi-discretised form,

∑
faces

Sf · uf = 0 (5.49)

The equation can be written in terms of volume fluxes,

86 Chapter 5. Discretisation Of Governing Equations

∑
faces

FV = 0 (5.50)

The non-occurrence of the pressure in the continuity equation for incompressible flows, leads

to an ill conditioned matrix, since zero entries remain in its diagonal. Rhie and Chow [23]

suggest an interpolation technique for the face velocities uf that includes pressure gradients.

The interpolation technique stems from the momentum equation, and will subsequently be laid

out.

The discretised momentum equations for each cell then read:


auownT

0 0

0 avownT
0

0 0 awownT

 · uown +


auownCD

0 0

0 avownCD
0

0 0 awownCD

 · uown

+
∑
int


auneiCD

0 0

0 avneiCD
0

0 0 awneiCD

 · unei +
∑
bou


aubouCD

0 0

0 avbouCD
0

0 0 awbouCD

 · uown

= −∇p∆Vown +


buownT

+ buownCD
+ bubou

bvownT
+ bvownCD

+ bvbou

bwownT
+ bwownCD

+ bwbou



(5.51)

aown
∆Vown

uown +∇p = uown −
∑
int

anei
∆Vown

unei −
∑
bou

1

∆Vown
abou · uown +

1

∆Vown
b (5.52)

These equations are valid for each cell of the domain, Rhie and Chow [23] propose to interpolate

these equations to the surface (denoted by an overline ·) to obtain an expression for uf . This

is done in the following way:

(
ATCD

∆V

)
f

uf +∇pf ≈
(

ATCD

∆V

)
f

uf +∇pf (5.53)

5.2. Discretisation of Governing Equations for Inertial Frames 87

ATCD,f being a 3x3 submatrix that contains the implicit velocity coefficients of the previ-

ously descritised momentum equations. Assuming that
(
ATCD

∆V

)
f
≈
(
ATCD

∆V

)
f
, the Rhie-Chow

interpolation gives:

uf = uf +

(
ATCD

∆V

)−1

f

·
(
∇pf −∇pf

)
(5.54)

Hence the continuity equation (5.49) adapted by the Rhie-Chow interpolation reads:

∑
faces

Sf ·
(
uf + Df ·

(
∇pf −∇pf

))
= 0 (5.55)

The pressure gradient terms on the RHS introduce an artificial diffusion. Equation (5.55)

remains still conservative. It can be seen that the diffusion error decreases with decreasing grid

spacing. Subsequently we shall denote:

Df =

(
ATCD

∆V

)−1

f

(5.56)

Time discretisation

We want equation (5.55) to be valid for time (n+1). We obtain:

∑
faces

Sf ·
(
un+1
f + Dn+1

f ·
(
∇pf

∗ −∇pn+1,∗
f

))
= 0 (5.57)

The terms Dn+1
f ·∇p∗f and Dn+1

f ·∇pn+1,∗
f cannot or can only partially be discretised implicitly.

Therefore they will be updated to approach time state (n+1) by means of sublooping. It can be

seen, that theoretically the pressure gradients on the RHS of equation (5.57) should vanish as

time state (*) approaches time state(n+1), hence equation(5.57) will fall back to equation(5.49).

Practically this is not the case since Dn+1
f · ∇p∗f and Dn+1

f · ∇pn+1,∗
f are discretised differently.

It follows that a small amount of diffusion will always effect the continuity equation. For the

88 Chapter 5. Discretisation Of Governing Equations

limit of vanishing diffusion the continuity equations is second order accurate if uf is obtained

by central differencing.

Spatial discretisation

Again, due to OpenFOAM’s mesh addressing method implicit surface interpolation will only

depend on two adjacent cells.

Time (*) denotes a state of the variable that is somewhere between time state (n) and time

state(n+1), starting at time (n) and approaching time state (n+1) by means of sublooping.

Spatial discretisation for time (*) will be purely explicit. For time (n+1) both, implicit and

explicit contributions may be obtained.

Velocity term (Divergence):

The velocity term in equation (5.49) is the remainder of the actual continuity equation for

incompressible fluids, and it represents the divergence of the velocity over a closed control

volume.

Term Sf · uf is obtained by central differencing and we obtain:

Sf · uf = Sf · (uown gf + unei (1− gf)) (5.58)

This yields the following matrix coefficients:

apuown =
∑
fint

Sfx gf apunei = Sfx (1− gf)

apvown =
∑
fint

Sfy gf apvnei = Sfy (1− gf)

apwown =
∑
fint

Sfz gf apwnei = Sfz (1− gf)

(5.59)

5.2. Discretisation of Governing Equations for Inertial Frames 89

Numerical diffusion terms:

Numerical diffusion arises from the Rhie-Chow interpolation. The numerical diffusion tensor in

equation (5.55) is anisotropic. The pressure terms in equation (5.55) correspond to two Lapla-

cian derivatives. The first Laplacian term shall be expressed implicitly to avoid having zeros

in the matrix diagonal. Otherwise the matrix would be ill-conditioned. The second Laplacian

term will first be evaluated explicitly at the cell centres, before being linearly interpolated to

the cell faces. The implicit Laplacian discretisation will be similar to that of the viscous term

in the momentum equations (5.39) where an over-relaxed orthogonal correction approach for

Laplacian operators and scalar viscosity was introduced. The non-orthogonal correction ap-

proach shall now be derived, in which the anisotropy of the diffusion tensor shall be taken into

account. The derivation follows the methodology of Ferzinger and Perić [21] and will yield the

coefficients outlined by Darwish [18].

Implicit numerical diffusion term (implicit Rhie-Chow term):

FRC,im = −Sf ·Df · ∇pf (5.60)

eγ =
Sf ·Df

|Sf ·Df |
(5.61)

FRC,im = −|Sf ·Df |eγ · ∇pf (5.62)

FRC,im = −|Sf ·Df |eγ · ∇pf (5.63)

FRC,im = −|Sf ·Df |
(
∂p

∂x
eγ,x +

∂p

∂y
eγ,y +

∂p

∂z
eγ,z

)
f

(5.64)

The far right expression on the RHS can be written in local basis vectors [21].

90 Chapter 5. Discretisation Of Governing Equations

eγ · ∇pf =
∂p

∂x
eγ,x +

∂p

∂y
eγ,y +

∂p

∂z
eγ,z = (5.65)

Keeping in mind, that OpenFOAM can only do implicit evaluation based on the information of

two adjacent points, the basis vectors of equation(5.28) are chosen such that the first basis vector

is aligning with line connecting the owners’ and the neighbours’ centroids. ξ is the direction of

the line connecting the owner and the neighbour centroids, and direction η is defined as:

iη = eγ − iξ (5.66)

Hence,

eγ · ∇pf =
∂p

∂x
eγ,x +

∂p

∂y
eγ,y +

∂p

∂z
eγ,z =

∂p

∂ξ
iξ +

∂p

∂η
iη (5.67)

Figure 5.6: Control volumes with local coordinate directions

FRC,im = −|Sf ·Df |
(
∂p

∂ξ
iξ +

∂p

∂η
iη

)
(5.68)

FRC,im = −|Sf ·Df |
(
∂p

∂ξ
iξ +

(eγ − iξ)

|eγ − iξ|
· ∇pf iη

)
(5.69)

5.2. Discretisation of Governing Equations for Inertial Frames 91

FRC,im = −|Sf ·Df |
(
∂p

∂ξ
iξ + (eγ − iξ) · ∇pf

)
(5.70)

FRC,im = −|Sf ·Df |iξ
∂p

∂ξ
− |Sf ·Df |

(
eγ −

d

|d|
iξ

)
· ∇pf (5.71)

Equation (5.71) shows how the diffusive flux can be split into two parts. The first part on the

RHS can be treated implicitly, whereas the second term on the RHS is calculated explicitly

such as in equation(5.39). It is also easy to see that the influence of the explicit and the implicit

parts can be adjusted since the choice of the length of the basis vector iξ is arbitrary. As for

the momentum equation’s diffusion term the over-relaxed approach has been chosen.

iξ =
|d|

d · Sf
|Sf | (5.72)

Hence equation(5.71) can be written as:

FRC,im = −|Sf ·Df |
|d|

d · Sf
|Sf |

∂p

∂ξ
− |Sf ·Df |

(
Sf ·Df

|Sf ·Df |
− d

|d|
|d|

d · Sf
|Sf |

)
· (∇p)f (5.73)

Equation(5.73) can be further simplified to yield.

FRC,im = −|Sf ·Df | |Sf |
d · Sf

(pnei − pown)−
(

Sf ·Df −
|Sf ·Df | |Sf |

d · Sf
d

)
︸ ︷︷ ︸

Np,f

· (∇p)f (5.74)

The first term of equation(5.74) gives an implicit contribution, whereas the second term has to

be evaluated explicitly. Hereby the explicit part will be updated through sub-looping with the

latest variable value (in this case p∗f). Calculating the explicit gradients for the second term is

done as follows.

92 Chapter 5. Discretisation Of Governing Equations

(∇p)cell =
1

Vcell

∑
f

Sfpf (5.75)

and

(∇p)f = gf (∇p)own + (1− gf) (∇p)nei (5.76)

As already shown for the momentum equations, for the sake of consistency we have to subtract

the directional part of the interpolated gradient and add the direct surface gradient evaluation

in direction of d. This yields,

(∇p)f =
(
∇p
)
f
−
((
∇p
)
f
· d

|d|

)
d

|d|
+

(pnei − pown)

|d|
d

|d|
(5.77)

appown =
∑
fint

|Sf ·Df | |Sf |
d · Sf

appnei = −|Sf ·Df | |Sf |
d · Sf (5.78)

bpown =
∑
fint

Np,f · (∇p)f (5.79)

Explicit numerical diffusion term (explicit Rhie-Chow term):

FRC,ex = Sf ·Df · ∇pf (5.80)

bpown =
∑
fint

Sf ·Df · ∇pf (5.81)

5.3. Discretisation of Governing Equations for Moving Control Volumes 93

5.3 Discretisation of Governing Equations for Moving

Control Volumes

Regarding the discretisation of the momentum and continuity equation for moving control vol-

umes, mesh deformations shall not be subject of this section. Only a look at the remaining

terms, as given by equation (3.82) shall be taken. In the case of non-deforming meshes per-

forming a rigid body motion, the governing equations for moving control volumes are identical

to those of non-moving control volumes, except for the momentum equations’ convection term.

5.3.1 Discretisation of Momentum Equation

This term can easily be evaluated by explicitly calculating an ALE (Arbitrary Lagrange Euler)

flux relative to the mesh motion. The upwind cell is determined by the relative ALE flux and

not by the absolute flux.

Recalling equation(3.82) the momentum equation reads,

∫
Vx(t)

∂ρu

∂t
dVx +

∮
Sx(t)

n · (ρ (u− ug) u) dSx =

∮
Sx(t)

n · σdSx +

∫
Vx(t)

ρgdVx (5.82)

The semi-discretised form then reads,

δu

δt
δV +

∑
faces

Sf · ((u− ug)u)f = −
∑
faces

Sfpf +
∑
faces

Sf ·
(
νeff (∇u)f

)
(5.83)

Convective Term:

∑
faces

Sf · ((u− ug)u)f (5.84)

Introducing the ALE flux phiALE,

94 Chapter 5. Discretisation Of Governing Equations

∑
faces

phiALEuf (5.85)

The ALE flux therein being,

phiALE = Sf · u− Sf · ug (5.86)

Hence the ALE flux consist of the absolute volume flux subtracted by the grid movement flux.

phiALE = phif − phig (5.87)

For a deferred corrected van Leer TVD scheme for the implicit part of equation (5.84) we obtain

a contribution in form of matrix coefficients and a contribution to the source (arising from the

deferred correction) for each cell,

auuown =
∑
fint

‖phi∗ALE, 0‖ auunei = −‖ − phi∗ALE, 0‖

avvown =
∑
fint

‖phi∗ALE, 0‖ avvnei = −‖ − phi∗ALE, 0‖

awwown =
∑
fint

‖phi∗ALE, 0‖ awwnei = −‖ − phi∗ALE, 0‖

(5.88)

buown = −
∑
fint

‖phi∗ALE, 0‖ (1− gf) Υ (u∗nei − u∗own)− ‖ − phi∗ALE, 0‖gfΥ (u∗own − u∗nei)

bvown = −
∑
fint

‖phi∗ALE, 0‖ (1− gf) Υ (v∗nei − v∗own)− ‖ − phi∗ALE, 0‖gfΥ (v∗own − v∗nei)

bwown = −
∑
fint

‖phi∗ALE, 0‖ (1− gf) Υ (w∗nei − w∗own)− ‖ − phi∗ALE, 0‖gfΥ (w∗own − w∗nei)

(5.89)

5.3. Discretisation of Governing Equations for Moving Control Volumes 95

5.3.2 Discretisation of Continuity Equation

The continuity equation for moving control volumes given by equation (3.76) simplified for

non-deforming meshes, rigid body motion and constant density reduces to:

∑
faces

Sf · uf = 0 (5.90)

This is the same continuity equation as found for inertial frames. The only difference that

occurs during the discretisation is that instead of the volume flux phi the relative ALE volume

flux phiALE now influences the numerical diffusion tensor D for the Rhie-Chow interpolation.

96 Chapter 5. Discretisation Of Governing Equations

5.4 Discretisation of Governing Equations for Rotating

Frames

In respect to the governing equations in inertial reference frame, there are only three things

that are different. Namely the convection term of the momentum equations, the additional

rotational term of the momentum equations, and the diffusion tensor obtained by Rhie-Chow

interpolation, which is derived differently.

5.4.1 Discretisation of Momentum Equation

Following equation (3.121) the momentum equations in integral form can be written as:

∫
V

∂ua
∂t

dV +

∫
V

∇ · (urua) dV +

∫
V

Ω× ua dV = −
∫
V

∇pdV +

∫
V

∇ · (νeff∇u) dV (5.91)

Note that in OpenFOAM the pressure variable actually corresponds to a pressure divided by a

constant density.

Gauss’ Theorem leads to:

∫
V

∂ua
∂t

dV +

∮
S

n · (urua)f dS +

∫
V

Ω× ua dV = −
∮
S

npf dS +

∮
S

n ·
(
νeff (∇ua)f

)
dS (5.92)

Semi-discretised form:

δua
δt
δV +

∑
faces

Sf · (urua)f + (Ω× ua) δV = −
∑
faces

Sfpf +
∑
faces

Sf ·
(
νeff (∇ua)f

)
(5.93)

5.4. Discretisation of Governing Equations for Rotating Frames 97

The convection term can be developed as follows:

∑
faces

Sf · (urua)f (5.94)

∑
faces

(Sf · ur,f) ua (5.95)

Introducing the relative flux phir,f gives:

∑
faces

phir,fua (5.96)

The relative flux phir,f can be obtained by extracting the absolute flux phia,f from the matrix

coefficients of the continuity equation and using the following relation.

phir,f = Sf · ur,f = Sf · ua,f − Sf · (Ω× r0P) (5.97)

phir,f = phia,f − Sf · (Ω× r0P) (5.98)

This equation can be transformed to:

δua
δt
δV +

∑
faces

phir,fua,f + (Ω× ua) δV +
∑
faces

Sfpf −
∑
faces

Sf ·
(
νeff (∇ua)f

)
= 0 (5.99)

And it can be written in terms of forces,

δua
δt
δV + (Ω× ua) δV +

∑
faces

FC
f +

∑
faces

FP
f −

∑
faces

FD
f = 0 (5.100)

98 Chapter 5. Discretisation Of Governing Equations

Convective Term:

In this work the convective term has been linearising using the relative volume fluxes of the

previous time step (or iteration). The upwind part of the convection term reads,

∑
fint

auuown = |phi∗r,f , 0| auunei = −| − phi∗r,f , 0|

∑
fint

avvown = |phi∗r,f , 0| avvnei = −| − phi∗r,f , 0|

∑
fint

awwown = |phi∗r,f , 0| awwnei = −| − phi∗r,f , 0|

(5.101)

The deferred correction part yields following explicit contribution,

buown = −
∑
fint

||phi∗r,f , 0|| (1− gf) Υ (u∗nei − u∗own)− || − phi∗r,f , 0||gfΥ (u∗own − u∗nei)

bvown = −
∑
fint

||phi∗r,f , 0|| (1− gf) Υ (v∗nei − v∗own)− || − phi∗r,f , 0||gfΥ (v∗own − v∗nei)

bwown = −
∑
fint

||phi∗r,f , 0|| (1− gf) Υ (w∗nei − w∗own)− || − phi∗r,f , 0||gfΥ (w∗own − w∗nei)

(5.102)

Rotational Term:

The rotational force term that arises for the momentum equations in rotational frame formu-

lation leads to the following implicit coefficients.

auvown = −Ωz ∆V auwown = Ωy ∆V

avuown = Ωz ∆V avwown = −Ωx ∆V

awuown = −Ωy ∆V awvown = Ωx ∆V

(5.103)

5.4. Discretisation of Governing Equations for Rotating Frames 99

5.4.2 Discretisation of Continuity Equation

The continuity equation for rotating reference frames was derived in section (3.3), were it has

been shown that it is equal to the continuity equation (5.49) for the inertial reference frame.

Recall the semi-discretised form:

∑
faces

Sf · uf = 0 (5.104)

Numerical diffusion tensor:

As already laid out for the inertial reference frame, the non-occurrence of the pressure in the

continuity equation for incompressible flows, leads to an ill conditioned matrix. The previously

suggested Rhie and Chow [23] interpolation technique (equation (5.53)) for the face velocities

uf , which is obtained by contrasting juxtaposition of the pressure term with the (false) transient

(T), the convection (C) and the diffusion terms (D), can be extended to momentum equations

in rotating reference frames. Thereby the contrasting juxtaposition also has to include the

additional rotational term (R) that occurs in the momentum equations.

Following Rhie and Chow[23] the surface interpolation to obtain uf shall take the physics of

the momentum equations into account. Hereby it is assumed that the momentum equations

evaluated at a face is approximately equal to the linear interpolation to the face of the evaluated

momentum equations at the cells adjacent to that face. For steady incompressible flows in

rotational reference frame without body forces this yields,

(
ATCDR

∆V

)
f

uf +∇pf ≈
(

ATCDR

∆V

)
f

uf +∇pf (5.105)

ATCDR,f being a 3x3 submatrix that contains the convection coefficients, diffusion coefficients

and the rotational term’s coefficients of the previously descritised momentum equations. As-

suming that
(
ATCDR

∆V

)
f
≈
(
ATCDR

∆V

)
f
, we obtain,

100 Chapter 5. Discretisation Of Governing Equations

uf = uf +

(
ATCDR

∆V

)−1

f

·
(
∇pf −∇pf

)
(5.106)

Hence the continuity equation adapted by the Rhie-Chow interpolation reads:

∑
faces

Sf ·
(
uf + Df ·

(
∇pf −∇pf

))
= 0 (5.107)

The resulting discretised terms for the implicit and explicit Laplacian of the pressure are iden-

tical to the ones of equations (5.80)(5.60) with the diffusion tensor Df being the one obtained

by the above formulation.

Chapter 6

Discretisation At Boundary Faces

Contents

6.1 Dirichlet Boundary Condition . 103

6.2 Neumann Boundary Condition . 104

6.3 Wall Boundary Condition . 105

6.4 Moving Wall Boundary Condition 108

6.5 Slip Wall Boundary Condition . 110

As a continuation of the previous chapter (5) the discretisation at boundaries shall be introduced

in what follows, according to the concept of block coupled algorithms (chapter 4).

The discretisation of the governing equations at boundary faces can be a trivial matter. How-

ever, some boundary conditions may need special attention, especially when dealing with block

coupled systems of equations. In this case off-diagonal coefficients may have to be inserted

into the block coefficients of the cell adjacent to the boundary face. Examples for boundary

conditions, for which coupling terms arise are i.e. the total pressure boundary condition, or the

no-slip wall boundary condition (shear stress). The proper implementation of such boundary

conditions is of utmost importance, since it highly effects the numerical properties of the sys-

tem, and therefore its robustness and convergence speed. In the following sections boundary

conditions with and without coupling terms shall be outlined. Simpler boundary conditions

101

102 Chapter 6. Discretisation At Boundary Faces

that only inject diagonal (say segregated) elements into the solution matrix have already been

implemented in the OpenFOAM framework and can be used without change for the outlined

coupled algorithms. The most important segregated boundary conditions shall be outlined

quickly. Subsequently boundary conditions with coupling terms shall be outlined following

Darwish et al. [26]. The author attaches importance to mention the contribution of Luca

Mangani and Marwan Darwish to the implementation of the coupled boundary conditions in

the coupled framework of OpenFOAM.

6.1. Dirichlet Boundary Condition 103

6.1 Dirichlet Boundary Condition

The Dirichlet (or first type) boundary condition applied to the block coupled pressure velocity

system is very simple to implement. For the continuity and momentum equations it does not

introduce any coupling terms.

Mathematically it can be described as:

y(x, t) = f(x, t) ∀x ∈ S (6.1)

y(x, t) is the primitive variable that is to be solved for. Hence a field of the primitive variable

has to be prescribed at the surface. The field value in conjunction with the derived discretised

coefficients gives a contribution of the boundary face to its adjacent cell. This contribution can

be directly added to the source term of the respective linearised equation.

104 Chapter 6. Discretisation At Boundary Faces

6.2 Neumann Boundary Condition

The Neumann (or second type) boundary condition applied to the block coupled pressure

velocity system is also very simple to implement. Like the Dirichlet boundary condition it does

not introduce coupling terms.

Mathematically it can be described as:

∂y

∂n
(x, t) = f(x, t) ∀x ∈ S. (6.2)

y(x, t) is the primitive variable that is to be solved for. Hence the surface normal derivative

has to be prescribed at the boundary face. A special type of the Neumann boundary condition

is the zero gradient boundary condition. This means that a thought cell next to the boundary

cell has the same primitive variable value as the boundary cell itself. The resulting coefficients

can be added implicitly.

6.3. Wall Boundary Condition 105

6.3 Wall Boundary Condition

At a wall the volume flux phi over the boundary face is zero. Hence, there is no contribution

of the wall to the continuity equation. Furthermore the contribution of the convection term in

the momentum equations will be zero.

The pressure and shear forces will obviously give contributions to the momentum equations.

Figure 6.1: Velocity profile in the near wall region of a non-moving wall

In the current approach a zero order extrapolation of the pressure at the boundary cell to its

boundary face has been chosen to evaluate the pressure forces.

Fpressure = pb Sb = pc Sb (6.3)

The resulting coefficients can be added implicitly to the linearised equations and read:

aupown = Sbx avpown = Sby awpown = Sbz (6.4)

Darwish [26] suggests a more accurate extrapolation to the wall. This first order accurate

approach could lead to a better prediction of the pressure at the wall, and finally to a better

prediction of detachments.

106 Chapter 6. Discretisation At Boundary Faces

Following [26] the shear stress can be computed as:

Fshear = τb ||Sb|| (6.5)

with the shear stress at the boundary being:

τb
ρ

= −ν ∂u

∂n
(6.6)

For non-moving walls discretisation yields:

τb
ρ

= −ν
u‖
d⊥

(6.7)

Using the surface normal unit vector, the parallel velocity can be obtained as:

u‖ = u− (u · nb) nb (6.8)

Hence,

Fshear

ρ
= −ν ||Sf ||

d⊥


u− (u · nb,x + v · nb,y + w · nb,z)nb,x

v − (u · nb,x + v · nb,y + w · nb,z)nb,y

w − (u · nb,x + v · nb,y + w · nb,z)nb,z

 (6.9)

The shear force term yields both diagonal (segregated) and off-diagonal contributions to the

coefficient matrix. The coefficients for a boundary cell, arising from the shear force at the

boundary, hence read:

6.3. Wall Boundary Condition 107

auuown =
ν ||Sb||
d⊥

(
1− n2

b,x

)
auvown = −ν ||Sb||

d⊥
nb,xnb,y auwown = −ν ||Sb||

d⊥
nb,xnb,z

avuown = −ν ||Sb||
d⊥

nb,ynb,x avvown =
ν ||Sb||
d⊥

(
1− n2

b,y

)
avwown = −ν ||Sb||

d⊥
nb,ynb,z

awuown = −ν ||Sb||
d⊥

nb,znb,x awvown = −ν ||Sb||
d⊥

nb,znb,y awwown =
ν ||Sb||
d⊥

(
1− n2

b,z

) (6.10)

108 Chapter 6. Discretisation At Boundary Faces

6.4 Moving Wall Boundary Condition

The moving wall boundary condition is very similar to the wall boundary condition. The

difference being that the shear stress is now defined by the relative parallel velocity (u‖−u‖,wall)

between the boundary cell and the wall.

Figure 6.2: Velocity profile in the near wall region of a moving wall

At the wall the volume flux phi over the boundary face is again zero. Hence, there is no contri-

bution of the wall to the continuity equation. Furthermore the contribution of the convection

term in the momentum equations are zero.

The pressure and shear forces again give contributions to the momentum equations.

As for the pure wall boundary condition a zero order extrapolation of the pressure is chosen to

evaluate the pressure forces.

Fpressure = pb Sb = pc Sb (6.11)

The resulting implicit coefficients are:

aupown = Sbx avpown = Sby awpown = Sbz (6.12)

6.4. Moving Wall Boundary Condition 109

Following [26] the shear stress reads:

Fshear = τb ||Sf || (6.13)

with the shear stress at the boundary being:

τb
ρ

= −ν ∂u

∂n
(6.14)

For moving walls discretisation yields:

τb
ρ

= −ν
u‖ − u‖,wall

d⊥
(6.15)

The parallel velocity vector at the boundary cell is obtained as in equation (6.8). The parallel

wall velocity is obtained the same way. The implicit contribution remains unchanged in respect

to the pure wall boundary condition. An explicit contribution is however added, which accounts

for the parallel wall velocity. The implicit and explicit coefficients read:

auuown =
ν ||Sb||
d⊥

(
1− n2

b,x

)
auvown = −ν ||Sb||

d⊥
nb,xnb,y auwown = −ν ||Sb||

d⊥
nb,xnb,z

avuown = −ν ||Sb||
d⊥

nb,ynb,x avvown =
ν ||Sb||
d⊥

(
1− n2

b,y

)
avwown = −ν ||Sb||

d⊥
nb,ynb,z

awuown = −ν ||Sb||
d⊥

nb,znb,x awvown = −ν ||Sb||
d⊥

nb,znb,y awwown =
ν ||Sb||
d⊥

(
1− n2

b,z

) (6.16)

buown =
ν ||Sb||
d⊥

· (uwall − (uwall · nb,x + vwall · nb,y + wwall · nb,z)nb,x)

bvown =
ν ||Sb||
d⊥

· (vwall − (uwall · nb,x + vwall · nb,y + wwall · nb,z)nb,y)

bwown =
ν ||Sb||
d⊥

· (wwall − (uwall · nb,x + vwall · nb,y + wwall · nb,z)nb,z)

(6.17)

110 Chapter 6. Discretisation At Boundary Faces

6.5 Slip Wall Boundary Condition

At a wall the volume flux phi over the boundary face is again zero. Hence, there is again no

contribution to the continuity equation. Furthermore the contribution of the convection term

in the momentum equations is zero. By definition of the slip wall boundary condition, there is

no shear stress at the wall, thus there is no contribution coming from the shear stress tensor.

The pressure forces are the only terms that give contributions to the momentum equations.

Zero order extrapolation of the pressure yields:

Fpressure = pb Sf = pc Sb (6.18)

The resulting coefficients can be added implicitly to the linearised equations and read:

aupown = Sbx avpown = Sby awpown = Sbz (6.19)

After solving the resulting set of equations a velocity field is obtained. The velocity vectors

adjacent to the slip boundary are not necessarily parallel to the wall, therefore they are corrected

by subtracting the part normal to the boundary.

Chapter 7

Implementation Of Block Coupled

Interfaces

Contents

7.1 Arbitrary Mesh Interface (AMI) . 112

7.2 Processor Interfaces . 116

In what follows the implicit discretisation of block interfaces according to the concept of block

coupled algorithms (chapter 4) shall be outlined.

In the present work two block interfaces that are of utmost importance in CFD have been

implemented, namely, an arbitrary mesh interface (AMI) with non-conforming faces (which

can also be periodic) and a processor interface for block coefficients. Both shall be outlined in

the following sections.

111

112 Chapter 7. Implementation Of Block Coupled Interfaces

7.1 Arbitrary Mesh Interface (AMI)

Arbitrary mesh interfaces are patches that connect adjacent blocks of a mesh. Blocks can have

patches that match conformally adjacent counterparts on neighbouring blocks. The faces of a

patch, however, do not necessarily have to match the faces of its counter-patch conformally. In

the case of non-conforming faces the surface discretisation has to account for this overlapping

using face fraction weights wf . Figure 7.1 shows such a patch pair with non-conforming faces.

The surface discretisation over these faces is carried out over each weighted sub-surface of the

respective master surface, all of which have been obtained using a special face cutting algorithm.

Figure 7.1: Non-conforming AMI interface

The AMI discretisation of the pressure Laplacian given by equation (5.74), shall provide an

example of how a conservative discretisation over a weighted sub-surface is carried out. Con-

sidering one such sub-surface with a face fraction weight wf1 we have:

7.1. Arbitrary Mesh Interface (AMI) 113

−wf1Sf ·Df · ∇pf =− |wf1Sf ·Df ||wf1Sf |
df1 · wf1Sf

(pNB1 − pC)

−
(
wf1Sf ·Df −

|wf1Sf ·Df | |wf1Sf |
df1 · wf1Sf

df1

)
︸ ︷︷ ︸

Np,f

·∇pf
(7.1)

The implicit part (the first term on the RHS of equation(7.1)) can be linearised as:

appC = wf1

|Sf ·Df | |Sf |
df1 · Sf

appNB1
= −wf1

|Sf ·Df | |Sf |
df1 · Sf

(7.2)

Whereas the explicit part is moved to the RHS.

The discretisation at periodic interfaces is equivalent to connecting two adjacent blocks (even

though effectively only a patch of a block is connected to another patch of the same block).

These periodic interfaces can also have non-conforming faces and can even be cyclic. The

discretisation procedure of these so-called cyclic AMI interfaces follows the same routine as

that of an ordinary AMI. However, rotational transformations are necessary to account for the

cyclic periodicity.

Therefore, before discretising over a master patch the cell centroid of the slave patches’ cells as

well as the slaves’ face points have to be transformed (rotated).

Based on these newly obtained geometric positions a face cutting algorithm is carried out to

evaluate the surface fraction weights wf . Then other geometric quantities such as the centroid

distance vectors d have to be calculated. Once all the geometric entities are readily processed,

the usual discretisation can be carried out, followed by a transformation to account for the

velocity’s rotation.

114 Chapter 7. Implementation Of Block Coupled Interfaces

Figure 7.2: Non-conforming cyclic AMI interface

A sketch of a cyclic AMI interface with rotational periodicity and non-conforming faces is shown

in Figure 7.2. To obtain a conservative implicit discretisation for a patch pair the following steps

have to be carried out. First the adjacent cells’ face points and cell centres of each patch (master

and slave side) have to be transformed (rotated). Based on these newly obtained geometric

positions a face cutting algorithm is carried out to evaluate the surface fraction weights wf .

Once all the geometric entities are readily processed, the respective cell centre distance vectors,

distance weights and surface normal vectors for each neighbouring cell pair can be calculated.

Implicit block coefficients can now be calculated for each term in the governing equations.

These coefficients are conservative since the surface integration is carried out for each face

fraction separately. This yields preliminary coefficients ANB,geom, which have to be dotted with

a transformation tensor in order to account for the primitive variables’ rotation (if the primitive

variables are vector components).

ANB = ANB,geom ·TNB (7.3)

For given pressure-velocity matrix system the following 4x4 transformation tensor for the neigh-

7.1. Arbitrary Mesh Interface (AMI) 115

bouring primitive variables (u and p) is valid for a rotation about a unit rotation vector ω and

a rotation angle α.

TNB =

c(α) + ω2
x(1− c(α)) ωxωy(1− c(α))− ωzs(α) ωys(α) + ωxωz(1− c(α)) 0

ωzs(α) + ωxωy(1− c(α)) c(α) + ω2
y(1− c(α)) −ωxs(α) + ωyωz(1− c(α)) 0

−ωys(α) + ωxωz(1− c(α)) ωxs(α) + ωyωz(1− c(α)) c(α) + ω2
z(1− c(α)) 0

0 0 0 1


(7.4)

We can say that the coefficient and addressing arrays are ”extended” since the coefficients of

the cyclic AMI interfaces are added to the coefficient pattern arising from the discretisation at

internal faces.

Injecting the implicit coefficients arising from the interfaces directly into the block matrix

structure instead of treating them separately yields some advantages. First of all, there is

no need to create interpolated cyclic AMI interfaces for coarse grid AMG levels, which would

have been necessary if interfaces had been treated explicitly using a ghost cell approach. In

other words, the algebraic agglomeration doesn’t notice any interface, which has a very positive

effect on the convergence of the linear solver. Additionally the assembly for the direct solver

at the coarsest AMG level is also straight forward, since all coefficients are injected into the

block matrix and the sparse matrix addressing pattern (including that of the injected interface

coefficients) is known. Finally the update of the fluxes can be carried out by multiplying the

variable vector directly with the continuity equation’s matrix coefficients, avoiding possible

inconsistencies in their reconstruction.

116 Chapter 7. Implementation Of Block Coupled Interfaces

7.2 Processor Interfaces

Parallel processing in OpenFOAM is done via domain decomposition and the MPI (Message

Passing Interface) library. The domain is divided into subsets and each subset is treated by a

separate processor. The boundary conditions that have been applied to the complete domain

are carried over to the subsets, and at the intersection between two subsets new boundaries,

so-called processor interfaces are added (see Figure 7.3). The basic Gaussian face discretisation

at these interfaces is done for all terms as if the interfaces’ faces were internal faces. Explicit

coefficients are directly added to the source term of the respective cells adjacent to these

faces. Implicit diagonal coefficients can also be added to the matrix directly. However, since

the solution vector for a specific processor does not contain the solution of a neighbouring

processor’s cells (i.e. the solution of cells adjacent to the processor’s interface) the extra-

diagonal coefficients arising from these neighbours can not directly be injected into the matrix

of a subset, hence they are stored in a separate coefficient structure Aproc

Figure 7.3: Processor interface

If we want to solve the system A · x = b we can use iterative solvers. These iterative solvers

employ successive calls of A · x multiplications. These multiplications can now be divided into

7.2. Processor Interfaces 117

a so-called core multiplication and a subsequent processor multiplication update.

Acore · xcore + Aproc · xproc = b (7.5)

In the case of the block AMG solver outlined in chapter (8) the solution step is carried out

using block ILU(0) smoothers (section 8.3) on various grid levels. There, two problems are to

be addressed. First, how are the interface coefficients added in the block ILU(0)’s algorithm

(see 8.3)? Second, how are interface coefficients calculated and accounted for at coarse grid

levels?

The answer to the first question goes as follows:

The to be solved system (equation (7.5)) is brought to the following correction form.

Acore · x′core = b−Acore · xoldcore −Aproc · xoldproc (7.6)

Hence the influence of the processor coefficients and their adjacent cell values acts explicitly to

the RHS.

Then the newly found system is evaluated by means of an approximate block ILU(0) smoother

(for details see section(8.3)).

The newly found ILU system reads:

Lcore ·Ucore · x′core = b−Acore · xoldcore −Aproc · xoldproc (7.7)

The correction x′core of the processors’ solution vectors are subsequently added to the previous

preliminary solution xoldcore. Several such sweeps are carried out and after each iteration the RHS

is adapted with the newly found solution vector at the interface xoldproc. Like this the information

coming from an adjacent processor keeps being added in a semi-implicit fashion.

The answer to the second question goes as follows:

118 Chapter 7. Implementation Of Block Coupled Interfaces

During the agglomeration process of the block AMG solver, also the block coefficients of cells

adjacent to processor interfaces are additively merged. Figure 7.4 shows agglomerated cells at

both sides of a processor interface. At processor 1 the agglomerated cell A now matches two cells

(agglom. cell B and agglom. cell C). However due to the additive agglomeration process only

a single neighbour block coefficient is stored for the agglomerated cell A. Therefore a ”ghost”

cell solution vector (denoted neighbour ghost cell) is calculated matching the boundary face of

the agglomerated cell A. This is done through simple weighted averaging using face weights of

the opposite cells.

Figure 7.4: AMG processor interface

The obtained field of ”ghost” cell solution vectors shall be called patch neighbour field (short

pnf). The resulting ILU system corresponding to equation (7.7) hence reads:

Lcore,AMG ·Ucore,AMG · x′core,AMG = bAMG −Acore,AMG · xoldcore,AMG −Aproc,AMG · xoldpnf (7.8)

Chapter 8

Block Algebraic Multigrid Solver

Contents

8.1 Additive Correction Block Algebraic Multi-Grid Method 121

8.1.1 Additive Correction Concept . 121

8.1.2 Restriction . 124

8.1.3 Prolongation . 126

8.2 Agglomeration . 127

8.2.1 Agglomeration Methods . 127

8.3 Block ILU(0) Smoother . 129

8.4 Block AMG cycles . 136

The solution procedure for a block coupled linear system of equations, as obtained employing

the block coupled algorithm presented in chapter 4, is of utmost importance. Therefore a block

algebraic multi-grid linear solver was implemented in this work. In what follows the concept of

this solver is presented in detail.

The motivation for using a multi-grid solver is that it is probably the fastest method for

solving large sets of linear equations. Thereby this type of linear equation solver exhibits

a very good scalability in respect to the number of equations that are to be solved. This

property is in general very important for solving large scale problems, and it becomes even more

119

120 Chapter 8. Block Algebraic Multigrid Solver

important when dealing with block matrix systems. For single variable systems N equations

are obtained after discretising a computational domain, where N is the number of cells. For

block algorithms however, n x N equations are obtained, where n is the number of variables.

Hence, for a block algorithm the scaling property of a linear solver is even more crucial to its

overall efficiency. Bad scaling would completely annihilate the gain that is obtained from the

strong inter-equation coupling. Therefore an additive-correction algebraic multi-grid method

for block coupled systems of equations has been implemented in the scope of this work for the

proposed block coupled algorithms. This shall be outlined next.

8.1. Additive Correction Block Algebraic Multi-Grid Method 121

8.1 Additive Correction Block Algebraic Multi-Grid

Method

8.1.1 Additive Correction Concept

The concept of the algebraic multi-grid method is very simple to understand, and it can be

easily applied to block equation systems. The particular multi-grid technique that has been

implemented in the scope of this thesis is called additive correction method (or ACM). It was

proposed by Hutchinson and Raithby[27] and it is applied to block equation systems in this

work.

The basic idea of each multi-grid method is to solve fields of a specific computational domain

on various grids with different grid sizes. The reason for this is that classical iterative methods,

such as Jacobi or Gauss Seidel, exhibit a bad overall convergence behaviour, but they actually

reduce frequency errors of the size of the numerical grid spacing very rapidly. Hence the

idea is solving the same equations on various grids with different spacing, and passing on the

information (or solution) from coarser to finer grids [28].

For the ACM method the discretisation is only carried out on the finest grid. Thereof coarse

grid equations are generated, summing up coefficients of the fine grid equations, to coarse grid

”blocks”. The coarse grid cluster addressing for the coarse levels have to be agglomerated

beforehand. The adding up of the fine grid’s coefficients results in new coefficients, and a new

addressing at the next coarser grid level. Since the coarse grid coefficients have been obtained

in essence by summing up equations of cells within a cluster, which are integrally conservative,

the coarse grid coefficients and therewith the equations for a coarse grid cluster are conservative

themselves. The equation on the coarse grids are in fact derived from a correction equation of

the respective finer grids. After obtaining a coarse grid solution, this solution is added as a

correction to the next finer grid solution[28]. The overall concept is illustrated in Figure 8.1.

122 Chapter 8. Block Algebraic Multigrid Solver

Figure 8.1: Algebraic or Geometric Multi-Grid Agglomeration

Let us now go through the concept of the ACM step by step.

After discretising the PDE(s) on the finest grid, a coefficient matrix Afine, a source vector

bfine, as well as an initial guess x̃fine for the exact solution of the system Afine · xfine = bfine

are obtained.

Afine ·
(
x̃fine + x′fine

)
= bfine (8.1)

Where x′fine is the correction added to the preliminary solution x̃fine to obtain the exact solution

xfine.

Starting with the initially guessed solution a pre-smoothing step is carried out using an ap-

proximative Block ILU(0) smoother (see section 8.3). This will yield a preliminary solution of

the fine system which is already closer to its exact solution. The system can then be rewritten

in residual (or prime form),

Afine · x′fine = bfine −Afine · x̃fine (8.2)

Afine · x′fine = Resfine (8.3)

8.1. Additive Correction Block Algebraic Multi-Grid Method 123

Now an estimation of x′fine on a coarser grid system can be calculated. Therefore equation (8.3)

is projected to the next coarser grid. The projection is done through the so-called restriction

R, which maps the coefficients of Afine and the residual vector Resfine to the coarser grid.

R (Afine) = Acoarse

R (Resfine) = bcoarse

(8.4)

This yields the new system:

Acoarse · (x̃coarse + x′coarse) = bcoarse (8.5)

Again smoothing loops are carried out (initializing x̃coarse = 0) to obtain an approximate

solution for x̃coarse.

Now equation (8.5) can again be written in residual form like in (8.3) and projected to the next

coarser grid.

This process can be carried out until the coarsest grid level has been reached, in a cascade-like

manner.

Finally the solution for the coarsest grid correction is obtained using a direct solver and LU

decomposition. Thereby all coefficients have to be gathered and put into a full linear matrix.

This can be difficult when dealing with parallel interfaces. The gathering algorithm shall not

be laid out here for the sake of brevity. Once the coarsest level solution has been obtained, this

solution can be projected to the next finer level. This so-called prolongation maps the obtained

correction of the coarser levels to the correction of the finer levels, which is subsequently added

to the preliminary solution of the finer levels to yield a better approximation of it. This is also

done from the top to the bottom in a cascade-like fashion. The prolongation is done using a

direct zero-order injection of the before calculated corrections.

First the coarse grid solution is prolonged (mapped) to the fine grid correction.

124 Chapter 8. Block Algebraic Multigrid Solver

P (x̃coarse) = x′fine (8.6)

Then it is added to the preliminary approximation of x̃fine.

x̃fine = x̃fine + x′fine (8.7)

Finally post-smoothing loops are carried out to drive x̃fine even closer to the accurate solution.

In what follows the restriction and prolongation procedure for the ACM will be outlined. Sep-

arate subsections are dedicated to the agglomeration (section 8.2) and smoothing (section 8.3)

process.

The outlined restriction and prolongation processes are not limited to so-called V-Cycles as

illustrated in Figure 8.1. They can also be easily applied to more sophisticated types of cycles

(see section 8.4).

8.1.2 Restriction

The ACM method is based on creating a correction equation, the correction vector of which is

supposed to be evaluated on a reduced set of equations which shall represent a ”coarser grid”.

In reality, the set correction equations on a fine grid is only reduced by algebraically adding

up some of these equations which should represent a confined set of cells. Assuming that the

corrections of all fine grid cells within the same coarse grid cell have approximately the same

value, a piecewise constant interpolation (x′i = x′I).

This assumption along with the process of adding up the matrix coefficients and the source

term is commonly called restriction.

Splitting equation (8.1) into a cell’s diagonal and neighbour contribution yield a more detailed

view of the correction equation. For a particular cell following formulation of equation (8.1)

can be written:

8.1. Additive Correction Block Algebraic Multi-Grid Method 125

ai · (x̃i + x′i) +
∑
nei(i)

anei(i) · (x̃nei + x′nei) = bi (8.8)

Brought to residual form equation (8.8) reads:

ai · x′i +
∑
nei(i)

anei(i) · x′nei = bi − ai · x̃i +
∑
nei(i)

anei(i) · x̃nei︸ ︷︷ ︸
Resi

(8.9)

Depending on the agglomeration, various equations will be added up to build a new ”clustered”

equation. Cluster I contains i equations (or cells). Therefore the coefficients of all of these

equations are summed up to obtain corrections for the newly clustered coarse grid equations.

While summing up the neighbours nei are divided into inner neighbours nb of a cell i (neighbours

that are part of the same cluster) and outer neighbours NB of a cell i, which are not part of

the same cluster.

Figure 8.2: ACM correction indexing for restriction

∑
i(I)

ai · x′i +
∑
i(I)

∑
nb(i)

anb · x′nb +
∑
i(I)

∑
NB(i)

aNB · x′NB =
∑
i(I)

Resi (8.10)

126 Chapter 8. Block Algebraic Multigrid Solver

Assuming a piecewise constant interpolation, the corrections of all equations within a cluster I

are constant. This signifies that x′i = x′nb = x′I , which leads to the following expression.

∑
i(I)

ai · x′I +
∑
i(I)

∑
nb(i)

anb · x′I +
∑
i(I)

∑
NB(i)

aNB · x′NB =
∑
i(I)

Resi (8.11)

The first two terms on the LHS contribute to the diagonal block coefficient aI , whereas the

third term constitutes the off-diagonal block coefficients of the new coarse cell neighbours.

aI =
∑
i(I)

ai +
∑
i(I)

∑
nb(i)

anb (8.12)

Now the fine grid corrections x′I,fine constitute the new coarse grid variables x̃I,coarse that shall

be solved for in the coarse grid system. After performing some pre-smoothing loops on this

system, a new preliminary solution for the coarse grid corrections x̃I,coarse is found, which

can itself be improved by restricting the system to the next coarser grid and solving for the

coarse grid corrections x′I,coarse. The whole procedure can be carried out until the coarsest

level equation system has been reached. Thereafter corrections have to be added (prolonged)

successively from coarser to finer levels.

8.1.3 Prolongation

After some post smoothing loops have been carried out on the coarse grid system, the coarse

grid solution has to be mapped to the fine grid correction. The interpolation to the fine grid is

again done using a piecewise constant interpolation.

x′i,fine = x′I,fine = P(x̃I,coarse) = x̃I,coarse (8.13)

8.2. Agglomeration 127

8.2 Agglomeration

Figure 8.3: Algebraic or Geometric Multigrid Agglomeration

8.2.1 Agglomeration Methods

Agglomeration methods for algebraic multi grid solvers can be divided into two categories:

• Algebraic Agglomeration Methods

• Geometric Agglomeration Methods

While algorithms for geometric agglomeration methods make use of geometric entities such as

cell volumes, cell faces, or cluster directionality, algebraic agglomeration focuses on the actual

physics of the flow, taking discretised coefficients as agglomeration weights.

Within the scope of this work approximately a dozen agglomeration algorithms, of both ge-

ometric and algebraic nature, have been implemented. In general the development of a well

functioning agglomeration algorithm is a mix of physically senseful ideas, testing and luck.

The level of complexity of such algorithms can rapidly become very high. The most efficient

agglomeration method that has been implemented within the scope of this work is based on

the algebraic approach of Hutchinson and Raithby [27] [29]. This method has been used for all

test cases carried out in section 10. The main concept of agglomeration is based on two rules

(following [30]), which are:

128 Chapter 8. Block Algebraic Multigrid Solver

RULE 1 ”A neighbour of a parent control volume is ’eligible’ to be a child if the coefficient for

the face between the neighbour and parent is of the same order or larger than the coefficient

for the face between the parent and the grandparent.”

Where a parent control volume can be seen as the seeing cell for child control volumes, which

shall be attached to the parent’s control volume cluster. A grandparent control volume is hence

the seeding cell of the parent control volume and is also part of the same cluster.

This translates to:

Algorithm 1 Rule 1

1: for neighbourCell j = 1→ nNeighboursOf(i) do
2: if max(aij, aji) ≥ 1

2
max(aih, ahi) then

3: cell j is child of i
4: end if
5: end for

Where h is the grandparent index.

RULE 2 ”An eligible child can become a child (be agglomerated with the parent) if the coeffi-

cient between the parent and the eligible child is of the same order or larger than the maximum

coefficient between the eligible child and its other neighbours”

This translates to:

Algorithm 2 Rule 2

1: for neighbourCell j = 1→ nNeighboursOf(k) do
2: if j 6= i AND max(aij, aji) ≥ 1

2
max(aik, aki) then

3: cell j is child of i
4: end if
5: end for

Where the parent index is i

Elias [30] gives even additional guidelines for the proper implementation of such an algorithm.

8.3. Block ILU(0) Smoother 129

8.3 Block ILU(0) Smoother

The pre- and post-smoothing loops within the multi-grid solver could be carried out with

any iterative solver. However it is important that the smoothing operation acts as efficiently

as possible since it accounts for the by far biggest computational part within the proposed

method. It is essential that the smoothing operation itself can be carried out fast, and that

the residual is dropped rapidly and in a stable manner. Often standard iterative solvers, such

as Jacobi or Gauss Seidel are used, but also Krylov subspace solvers such as GMRES. Many

papers show however, that the most efficient smoothers for many multi-grid algorithms are

ILU (incomplete lower upper) smoothers. Since ILU smoothers are incomplete solvers, it is not

possible to find an exact solution with them. However, if the linear system is reformulated,

and written in correction form A · x′ = Res, it is only important to decrease the correction x′

gradually, which ILU Smoothers manage to do for a wide range of numerical problems.

LU Solver

Factorization

It is possible to decompose a matrix A into the dot product a lower triangular matrix L and a

upper triangular matrix U of the form,

A = L ·U (8.14)

where the diagonal coefficients of the upper triangular matrix are equal to 1.

L =


l00 0 0

l10 l11 0

l20 l21 l22

 U =


1 u01 u02

0 1 u12

0 0 1

 (8.15)

Since it is known beforehand that the diagonal coefficients of the upper triangular matrix are

130 Chapter 8. Block Algebraic Multigrid Solver

equal to 1, the coefficients of the both upper and lower matrix can be stored in one single

coefficient matrix.

The factorization (decomposition) algorithm can be derived from the Gauss elimination proce-

dure and reads:

Algorithm 3 LU Factorization

1: for i = 1→ n do
2: for k = 0→ i− 1 do
3: if akk 6= 0 then
4: aik ← aik/akk
5: for j = k + 1→ n do
6: if aij 6= 0 then
7: aij ← aij − aik ∗ akj
8: end if
9: end for

10: end if
11: end for
12: end for

Forward and backward substitution

After decomposing the matrix A into an upper matrix U and a lower matrix L, the solution

of the equation system can be obtained by subsequent forward and backward substitution.

L ·U · x = b (8.16)

We can write.

U · x = Y (8.17)

Inserting equation (8.17) in equation(8.16) we obtain.

L ·Y = b (8.18)

Now we can easily evaluate Y through forward substitution in equation(8.18), and subsequently

8.3. Block ILU(0) Smoother 131

we obtain the solution vector x through backward substitution in equation (8.17).

Algorithm 4 LU forward substitution

1: for i = 0→ n do
2: Y (i)← b(i)
3: for j = 0→ i− 1 do
4: Y (i)← Y (i)− aij · Y (j)
5: end for
6: end for

Algorithm 5 LU backward substitution

1: for i = n→ 0 do
2: x(i)← 1

aii
· Y (i)

3: for j = i+ 1→ n do
4: x(i)← x(i)− aij

aii
· x(j)

5: end for
6: end for

ILU(0) Solver

For very large systems of equations the LU decomposition turns out to be too expensive, since

its factorization takes O(n3) computational time. Therefore for sparse matrices it can make

sense to calculate an approximate solution, for which the computational time is far less (e.g.

O(n)). This can be achieved by modifying the factorization of the LU algorithm. The dot

product of the obtained lower and upper matrix will then be equal to the original matrix plus

an error term R that will be neglected.

A = L ·U + R (8.19)

Factorization

There are various possible types of factorizations to obtain an incomplete LU decomposition.

A very powerful one is the ILU(0) factorization. This factorization adapts the original LU

decomposition algorithm in a way that preserves the sparsity pattern of the original matrix.

This results in a very fast decomposition process, that it very favourable in terms of memory

requirements. Algorithm 6 shows a pseudo code of such a decomposition.

132 Chapter 8. Block Algebraic Multigrid Solver

Algorithm 6 ILU(0) Factorisation

1: for i = 1→ n do
2: for k = 0→ i− 1 do
3: if aik 6= 0 and akk 6= 0 then
4: aik ← aik/akk
5: for j = k + 1→ n do
6: if aij 6= 0 then
7: aij ← aij − aik ∗ akj
8: end if
9: end for

10: end if
11: end for
12: end for

Forward and backward substitution

The forward and backward substitution steps are the same as in algorithms (4) and (5).

Modified Block ILU(0) Solver

As for the scalar ILU(0) decomposition the existing sparse matrix structure shall be conserved.

Since the OpenFOAM library uses an lower/upper addressing based on faces shared by two

adjacent cells, the matrix structure is symmetric. This means that for each face the matrix’

row and column position for the lower, upper and diagonal coefficients are known. However

due to addressing structure it is very expensive to gather information about e.g. the existence

of further coefficients that might be eligible for the ILU decomposition process. An example for

this is given in Figure 8.4, where a matrix structure constructed from four cells is illustrated.

There the interaction of block coefficients (3,2) and (0,2) should be taken into account in

the original ILU(0) factorisation process. However, the OpenFOAM structure doesn’t provide

the information that these two cells are in the same row. Therefore the ILU(0) algorithm

has been modified, and coefficient couples like the one described are not taken into account.

In any case, these couples rarely occur in large matrix systems arising from our discretisation

process, and therefore the resulting modified ILU(0) factorisation will lead to an almost identical

decomposition as the original ILU(0) decomposition.

8.3. Block ILU(0) Smoother 133

Figure 8.4: Block Matrix Structure - light grey, lower block coeffs - grey, diagonal block coeffs

- dark grey, upper block coeffs

Figure 8.5: Block Matrix Structure - light grey, lower block coeffs - grey, diagonal block coeffs

- dark grey, upper block coeffs

Other than the symmetry of the block coefficients, we can also use the quadratic structure of

the block coefficients themselves to quickly address scalar coefficients for the modified ILU(0)

factorisation. In algorithm (6) it can be seen that in line 7 coefficient akj is requested for the

factorisation. This coefficient can either be zero (or not filled) or it can be filled. However, as it

would be costly in our framework to gather the information if this coefficient is actually filled,

we will not perform an information-gathering search algorithm. Instead we shall limit our ILU

facorisation on coefficients akj of which we know that they are filled. There are three cases for

which we know the existence and the addressing of coefficient akj.

134 Chapter 8. Block Algebraic Multigrid Solver

The existence of akj is always known if:

• aik and aij are in the same lower block coefficient.

• aij is part of a diagonal block coefficient.

• aik is part of the lower triangle of a diagonal block coefficient.

Thereof results the following modified ILU(0) factorisation algorithm:

Algorithm 7 Modified Block ILU(0) Factorisation

1: for I = 1→ N do
2: for i = 0→ n do
3: for K = 0→ I − 1 do
4: if AIK is known and AII is known and AKK is known then
5: for k = 0→ k < n do
6: AIK(i, k)← AIK(i, k)/AKK(k, k)
7: for j = k + 1→ n do
8: AIK(i, j)← AIK(i, j)− AIK(i, k) ∗ AKK(k, j)
9: end for

10: for j = 0→ n do
11: AII(i, j)← AII(i, j)− AIK(i, k) ∗ AKI(k, j)
12: end for
13: end for
14: end if
15: end for
16: for k = 0→ k < i do
17: AII(i, k)← AII(i, k)/AII(k, k)
18: for j = k + 1→ n do
19: AII(i, j)← AII(i, j)− AII(i, k)/AII(k, j)
20: end for
21: for J = I + 1→ N do
22: if AIJ is known and AII is known then
23: for j = 0→ n do
24: AII(i, k)← AII(i, k)/AII(k, k)
25: for j = k + 1→ n do
26: AIJ(i, j)← AII(i, k)/AIJ(k, j)
27: end for
28: end for
29: end if
30: end for
31: end for
32: end for
33: end for

Forward and backward substitution

8.3. Block ILU(0) Smoother 135

The algorithms for forward and backward substitution in block equation systems are written

below.

Algorithm 8 Modified Block ILU(0) forward substitution

1: for I = 0→ N do
2: for i = 0→ n do
3: YI(i)← bI(i)
4: for j = 0→ i− 1 do
5: YI(i)← YI(i)− AII(i, j) · YI(j)
6: end for
7: for J = 0→ J < I do
8: for j = 0→ n do
9: YI(i)← YI(i)− AIJ(i, j) · YJ(j)

10: end for
11: end for
12: end for
13: end for

Algorithm 9 Modified Block ILU(0) backward substitution

1: for I = N → 0 do
2: for i = n→ 0 do
3: XI(i)← 1

AII(i,i)
YI(i)

4: for j = i+ 1→ n do
5: XI(i)← XI(i)− AII(i,j)

AII(i,i)
·XI(j)

6: end for
7: for J = I + 1→ N do
8: for j = 0→ n do
9: XI(i)← XI(i)− AIJ (i,j)

AII(i,i)
·XJ(j)

10: end for
11: end for
12: end for
13: end for

136 Chapter 8. Block Algebraic Multigrid Solver

8.4 Block AMG cycles

The outlined restriction and prolongation processes are not limited to so-called V-Cycles as

illustrated in Figure 8.1. They can also be easily applied to F- or W-Cycles.

Figure 8.6: F-Cycle

Figure 8.7: W-Cycle

Chapter 9

Turbulence Models for Unsteady

Computations

Contents

9.1 The k-Omega SST (U)RANS Model 139

The most important aim of current thesis was to model flow physics as accurate as possible

to be able to correctly predict instabilities of flows in hydraulic turbomachines. To this end

the author has done extensive literature studies to find out which state-of-the art turbulence

models would give the best compromise between computational cost and accuracy, keeping in

mind that ultimately hydraulic designers should use the resulting code to develop hydraulic

machines.

The design process usually imposes restrictions in terms of time but also in terms of computa-

tional capacity, limiting the choice of turbulence models to those that could do the job accurately

enough within a reasonable amount of time. Taking these considerations into account, the au-

thor opted for Menter’s k-Omega SST model [31] as turbulence models of choice. However, the

author believes that it would be worthwhile trying a lot of other turbulence models, such as the

k-Omega SST/SAS model [32], Reynolds stress models([33]), the v2f model([34]), or even DES

models([35]). The reasons why this hasn’t been done in this work was that there wasn’t enough

137

138 Chapter 9. Turbulence Models for Unsteady Computations

time left to do so, but also that some of the mentioned models require very small time steps

and thus computational time to capture the flow phenomena accurately. For very small time

steps segregated algorithms may however be more suitable than block coupled ones, because

they will probably outperform them in terms of computation time and memory requirement.

For the outlined pressure-based coupled algorithm the turbulence models are solved after the

updated solution of the pressure-velocity system is obtained. A dynamic turbulent viscosity

field νt is obtained by solving the turbulence equations. Subsequently, this turbulent viscosity

will be added to the laminar viscosity ν to yield an effective viscosity νeff for the diffusion

coefficients in the momentum equations. For steady state simulations this loose coupling will

finally result in a converged solution. For transient simulations the non-linearity introduced by

the treatment of the turbulence equations should also be accounted for by sub-looping (loose

coupling) for each time step.

9.1. The k-Omega SST (U)RANS Model 139

9.1 The k-Omega SST (U)RANS Model

As closure model for the turbulent fluctuations an eddy viscosity model, the well known k− ω

Shear Stress Transport - SST model, has been considered. This model has been implemented

by Luca Mangani and used for all test cases in section(10). The model, originally proposed

by Menter [31], is based on a modification to the standard k − ω model, which overcomes its

sensitivity to quite arbitrary free-stream values of ω.

In the sub- and logarithmic boundary layer region the model adopted is the standard k − ω

model, because of its robustness and the non-existence of a damping function and Dirichlet

type boundary conditions. For the rest of the domain the standard k − ε model, written in

terms of ω, has been preferred due to its good ability in predicting different kinds of flows. The

steady-state transport equations for k and ω are outlined below.

The k equation reads,

∂k

∂t
+∇ · (uk)−∇ · [(ν + νtαK)∇k] = Pk − β∗ωk (9.1)

The omega equation reads,

∂ω

∂t
+∇ · (uω)−∇ · [(ν + νtαV)∇ω] =

C1Pk
νt
− C2ω

2 +
2αε(1− F1)

ω
∇k · ∇ω (9.2)

The resulting turbulent dynamic viscosity νt which subsequently has to be added to the laminar

kinematic viscosity ν to yield the effective kinematic viscosity νeff is given by,

νt =
cµk

max(cµω, SF2)
(9.3)

The original model is based on a Low Reynolds formulation and therefore it requires a fine

mesh resolution at walls in order to satisfy the necessary condition y+ ≈ 1. In flow simulations

of a certain complexity in terms of geometry and fluid structures this requirement leads to a

140 Chapter 9. Turbulence Models for Unsteady Computations

strict constraint. Therefore, in order to increase grid independence a mixed approach between

wall-function and Low-Reynolds approach was added to the k − ω SST model. The idea (see

[31]) is to blend the two approaches via a blending function Γ, which is calculated algebraically

from the non-dimensional wall distance. Both turbulent production and turbulent specific

dissipation are imposed on the first node mixing the effects of the Low Reynolds and High

Reynolds contributions:

Pawt,p = PLR,pe
−Γ + PHR,pe

− 1
Γ , (9.4)

ωawt,p = ωLR,pe
−Γ + ωHR,pe

− 1
Γ , (9.5)

where Γ is calculated with an algebraic expression for y+ defined with uτ = max(uτ,LR, uτ,HR)

. A blending function is applied following Kader’s universal law [36].

Chapter 10

Case Studies

Contents

10.1 Stationary frame of reference . 143

10.1.1 Backward facing step . 143

10.1.2 Draft tube . 146

10.1.3 Pelton distributor . 150

10.2 Rotational frame of reference . 152

10.2.1 Pump runner . 152

10.2.2 Francis turbine runner . 155

10.2.3 Kaplan turbine runner . 158

10.3 Transient dynamic mesh . 161

10.3.1 Centrifugal Pump . 161

The case studies in this chapter shall demonstrate the performance of the coupled approach

outlined in chapter 4 in terms of convergence speed, mesh size scalability and robustness by

comparing results to those obtained with a state-of-the-art segregated SIMPLE-C benchmark

solver by Mangani [37]. The first three test cases, namely the Backward facing step, Draft

tube and Pelton distributor represent industrial-size steady simulations in stationary reference

frame, whose results have already been published in Mangani et al. [38], and are taken thereof.

141

142 Chapter 10. Case Studies

The next three test cases, namely the Pump runner, Francis turbine runner and Kaplan turbine

runner represent industrial-size steady simulations in rotational reference frames. The results

have been taken from Mangani et al. [39]. As closure model for turbulent fluctuations in all

simulations Menter’s k − ω SST model was used as outlined in section 9.1.

The performance of all steady calculations has been evaluated at a defined RMS (equation 10.1)

convergence threshold of 1e− 5.

RMS(φ) =

√
1
N

N∑
i=0

(
res(φ(i))/aφφC

)2

max(φ, 0)−min(φ, 0)
(10.1)

Mesh size scaling property was evaluated on some test cases using a normalized scale factor

(equation (10.2)).

Scale Factor =
(time/c.v.)nCells

(time/c.v.)nCells,ref
(10.2)

The scale factor thus describes ratio between the calculation time per control volume given a

certain mesh refinement (nCells) and the calculation time per control volume given a reference

mesh refinement (nCells,ref).

All steady simulations were carried out using a first order upwind discretisation for the convec-

tion term.

In addition to the steady simulations in stationary and rotational frame a transient simulation

of the flow in a centrifugal pump has been carried out in section 10.3, using the k − omega

SST model and a second order vanLeer scheme (section A) for the convection term. Obtained

results have been compared to PIV measurements to prove the accuracy of proposed method.

10.1. Stationary frame of reference 143

10.1 Stationary frame of reference

10.1.1 Backward facing step

The Backward facing step test case was chosen to demonstrate the good scalability of the

outlined solver in respect to the number of grid cells. The geometry of the test case can be seen

in Figure 10.2. The test case has been carried out with 3 different grid sizes. For all grid sizes the

same flow field has been obtained for both the block coupled and the segregated algorithm. The

difference in performance and scalability, evaluated at the defined RMS convergence threshold,

is outlined in Table 10.1.

Table 10.1: Backward facing step - Performance comparison of the coupled (C) and segregated

(S) algorithm

CV (C)time[s] (C)time/CV[s] (S)time[s] (S)time/CV[s] S/C

12k 4.3 0.000351 32.5 0.002653 7.6

48k 24.1 0.000493 393.7 0.008051 16.3

195k 139.9 0.000715 5888.0 0.030102 42.1

From Table 10.1 it can be clearly seen that the block coupled algorithm outperforms the seg-

regated algorithm in terms of convergence speed. More importantly the Backward facing step

test case proves the superiority of the coupled solver over the segregated solver in respect to

scalability with increasing grid size. In Figure 10.1 a scaling factor is plotted as a function of the

grid size. It can be seen that the coupled solver scales almost linearly, whereas the segregated

solver’s convergence behaviour deteriorates a lot with increasing mesh sizes.

144 Chapter 10. Case Studies

Figure 10.1: Backward facing step - mesh size scaling

Figure 10.2 compares the velocity profiles at the indicated position of the coupled and the

segregated approach. The small difference of the flow field is related to a slightly different

boundary treatment.

Figure 10.2: Velocity profiles. Segregated(S) - dotted lines, coupled(C) - full lines

In respect to convergence behaviour the coupled solver shows a smooth and steady convergence

with a very good convergence rate. In Figure 10.3 it can be seen that the segregated solver

10.1. Stationary frame of reference 145

on the other hand converges slowly and its convergence shows fluctuating behaviour. These

fluctuations of the outer iterations, which arise from the weak variable coupling, are considered

to be a sign of bad robustness.

Figure 10.3: Convergence histories for Backward facing step test case. Segregated(S) - dotted

lines, coupled(C) - full lines

146 Chapter 10. Case Studies

10.1.2 Draft tube

Draft tubes are very huge constructional elements that are placed behind hydraulic turbines in

order to minimize efficiency losses at the turbine runner outlet by decreasing there the static

pressure using a diffuser. Hence, the Draft tube test case is a particularly difficult test case,

because of its diffuser characteristic, which leads to flow detachment at its separation pier. The

geometry, shown in Figure 10.4, has sharp edges and the mesh contains highly skewed cells at

the butt of the pier. At the inlet a swirling flow is prescribed, meaning that not only a non-

uniform axial velocity field is prescribed, but also a circumferential velocity field that accounts

for the pre-swirl generated by a thought turbine runner. For the pressure a zero gradient

boundary condition is set at the inlet. The turbulence quantities at the inlet are chosen to

be constant for the sake of simplicity. At the outlet a zero gradient condition is used for the

velocity and turbulence quantities and a constant field is applied for the pressure. At the walls

blended wall functions are used to evaluate the shear stress accordingly.

Figure 10.4: Computational grid of Draft tube test case

The difference in performance and scalability is outlined in Table 10.2, evaluated at the defined

RMS convergence threshold. The segregated method seems not to attain this convergence

level for the finest grid, or only very slowly. Table 10.2 indicates that the coupled solver

10.1. Stationary frame of reference 147

converges much faster than its segregated counterpart and that the segregated solver is being

outperformed in terms of scaling.

Table 10.2: Draft tube - Performance comparison of the coupled (C) and segregated (S) algo-

rithm

CV (C)time[s] (C)time/CV[s] (S)time[s] (S)time/CV[s] S/C

232k 535.9 0.002304 1342.2 0.005771 2.50

491k 988.6 0.002013 3656.7 0.007447 3.70

1090k 1997.0 0.001831 x x x

Astonishingly the mesh size scalability is even sub-linear for the Draft tube test case (see Figure

10.5). The reason for this over-performance is due to extremely skewed cells in the butt region

of the pier (see Figure 10.4). Since the quality of the mesh is increased with an increasing

number of cells, the convergence rate also seems to increase for finer meshes.

Figure 10.5: Draft tube - mesh size scaling

Figure 10.6 illustrates the good performance of the coupled approach in respect to the segregated

approach. For the fine mesh configuration the segregated solver’s convergence rate almost stalls.

148 Chapter 10. Case Studies

Figure 10.6: Convergence histories for Draft tube test case. Segregated(S) - dotted lines, cou-

pled(C) - full lines

The velocity contour plot of a slice through the draft tube shows very similar flow patterns. The

differences again arise from the alternate boundary treatment which leads to slightly different

detachment positions.

10.1. Stationary frame of reference 149

Figure 10.7: Velocity contour plot of Draft tube test case. (S) left, (C) right

150 Chapter 10. Case Studies

10.1.3 Pelton distributor

The function of a Pelton turbine distributor is to distribute water coming from a high altitude

basin to a couple of injector nozzles that shall continuously apply high-speed jets of water

to a Pelton turbine runner. The flow in Pelton turbine distributors is very demanding for

CFD applications, because plenty of detachment zones exist, that can lead to difficulties in

convergence for steady state flow. I.e. there are flow detachment areas at the beginning of the

distributor’s injectors and furthermore the grid contains highly skewed cells at the bifurcations.

The Pelton Distributor test case is evaluated with two different mesh sizes in order to investigate

the mesh size scaling properties of the coupled solver. The mesh sizes are computationally quite

demanding (with 2.7 and 6.3 mio. cells respectively).

Figure 10.8: Pelton Distributor

The difference in performance in respect to the benchmark solver by Mangani [37] is outlined

in Table 10.3, evaluated at the defined RMS convergence threshold.

Table 10.3: Pelton Distributor - Mesh size scaling of the coupled (C) algorithm

CV (C)time[s] (C)time/CV[s]

2726k 2932 0.001075

6253k 6068 0.000970

10.1. Stationary frame of reference 151

Figure 10.9: Pelton Distributor - mesh size scaling

Table 10.3 and Figure 10.9 demonstrate again that the coupled solver scales excellently with

increasing numbers of cells, even for very big meshes. As it has been the case for the Draft tube

(section 10.1.2), the coupled solver even over-performs since the time per control volume for

the bigger mesh case is even smaller than for the smaller mesh case. However for the fine grid

case, the coupled algorithm experiences a slowdown in convergence rate after passing the 1e-5

threshold of the RMS residuals.

Figure 10.10: Convergence history for Pelton distributor test case (2.726 k cells)

152 Chapter 10. Case Studies

10.2 Rotational frame of reference

10.2.1 Pump runner

The set-up for the pump runner test case consists of a single blade channel with cyclic AMI

interfaces (section 7.1). Hub, shroud and blade are moving with a prescribed absolute velocity,

so the shear stress at these patches is treated as outlined in section (6.4). For these walls a zero

gradient boundary condition is prescribed for the pressure while the blended wall functions

are used for turbulence quantities. At inlet velocity and turbulence quantities are specified,

while a zero gradient boundary condition is applied to the pressure. For the outlet a Neumann

boundary condition is applied to the velocity and turbulence quantities, while a specified value

condition is used for the pressure field.

Figure 10.11: Pump configuration

The investigated operating point is close to the optimal operating point, and almost no sec-

ondary flow occurs inside the runner channel. The pump has a medium specific speed charac-

teristic, and its relatively high deceleration rate makes it an aggressive diffuser.

For validation purpose the velocity profiles evaluated from hub to shroud at the trailing edge

computed with the coupled solver were compared to those computed with the segregated bench-

mark solver. The profiles in Figure 10.12 show good conformance.

10.2. Rotational frame of reference 153

Figure 10.12: Pump - velocity profiles close to trailing edge. Segregated(S) - dotted lines,

coupled(C) - full lines

To evaluate the performance and scalability three different mesh sizes with increasing numbers

of cells are used. Results in Table 10.4 clearly show that the coupled solver scales near linearly

with mesh size while the segregated solver suffers a bit as the number of elements increases.

The convergence characteristics can be seen in Table 10.4 and in Figure 10.13.

Table 10.4: Pump - Performance comparison of the coupled (C) and segregated (S) algorithm

CV (C)time[s] (C)time/CV[s] (S)time[s] (S)time/CV[s] S/C

309k 652.4 0.002111 x x x

802k 2399.2 0.002991 20351.7 0.025250 8.48

1260k 3144.5 0.002495 36360.9 0.028858 11.56

It is worth noting that the segregated solver did not converge to the desired level on the coarsest

grid. In all runs the coupled solver substantially outperformed the segregated solver.

154 Chapter 10. Case Studies

Figure 10.13: Convergence histories for Pump test case. Segregated(S) - dotted lines, cou-

pled(C) - full lines

10.2. Rotational frame of reference 155

10.2.2 Francis turbine runner

The Francis turbine test case’s set-up is somewhat similar to the pump runner’s setup, since

all boundary conditions are applied in the same way, the only difference being the direction

of the flow. Again only a single blade channel is modelled using a cyclic AMI interface. The

turbine has a relatively high-head low-debit characteristic, and the flow is being accelerated

rather than decelerated (as it was the case for the pump runner). This fact should a priori

improve convergence behaviour in respect to the pump.

Figure 10.14: Pump configuration

Velocity profiles evaluated from hub to shroud at the trailing edge again show good conformance

in respect to the segregated approach (see Figure 10.15). Small discrepancies for the u com-

ponent of the velocity are very probable due to a small difference in the turbulence treatment

especially at the boundary.

Figure 10.15: Fancis - velocity profiles close to trailing edge

156 Chapter 10. Case Studies

In terms of mesh size scalability Table 10.5 indicates again that the coupled solver scales almost

linearly, whereas the segregated solver does not. The runtime until a specified evaluation

threshold was reached can be seen in Table 10.5 as well as in Figure 10.17.

Table 10.5: Francis - Performance comparison of the coupled (C) and segregated (S) algorithm

CV (C)time[s] (C)time/CV[s] (S)time[s] (S)time/CV[s] S/C

205k 136.2 0.000665 2568.9 0.012543 18.86

566k 411.4 0.000726 14442.5 0.025499 35.11

1026k 1109.8 0.001082 34936.7 0.034051 31.48

Figure 10.16: Francis - mesh size scaling

Figure 10.17 shows that the coupled solver outperforms the segregated one in terms of conver-

gence speed and scalability. However its convergence stalls quite early hinting at potential for

improvement. The reason for the plateauing of the convergence is due to oscillations of the

algorithm’s outer iterations, which can be caused by bad mesh quality, increasing the weight

of the explicit non-orthogonal correction of Laplacian terms in momentum, pressure and tur-

bulence equations. Although it is difficult at this stage to point down the actual origin of this

problem, it is thought to be related to the implementation of the turbulence model, which could

still be improved.

10.2. Rotational frame of reference 157

Figure 10.17: Convergence histories for Francis test case. Segregated(S) - dotted lines, cou-

pled(C) - full lines

158 Chapter 10. Case Studies

10.2.3 Kaplan turbine runner

A last turbomachinery test case shall be shown to demonstrate the good functioning of proposed

method. It is a Kaplan turbine whose mesh consists of several blocks. This is because for this

type of turbine gaps exist between the hub and the inner part of the blades, as well as between

the shroud and the outer part of the blades. These gaps are meshed separately and the meshes

are subsequently connected to the main part of the computational domain which comprises a

circumferential horizontal intake, the blade region and the outlet region. The gaps and the main

part of the mesh are connected with non-conformal AMI interfaces (as outlined in section 7.1).

It is essential that the discretisation at these non-conformal interfaces is done in a conservative

fashion in order to obtain stability of convergence. Therefore this test case is very demanding.

Since the test case is also rotationally symmetric only one blade channel is being modelled using

cyclic AMI interfaces. The remainder of the boundaries is treated identically to the boundaries

in section (10.2.2).

Figure 10.18: Kaplan turbine configuration

Velocity profiles evaluated from hub to shroud at the trailing edge again show good conformance

in respect to the segregated approach (see Figure 10.19).

10.2. Rotational frame of reference 159

Figure 10.19: Kaplan - velocity profiles close to trailing edge

For this test case the coupled and segregated methods are only compared for one grid size.

Table 10.6 and Figure 10.20 again prove the superiority of the coupled solver over the segregated

solver.

Table 10.6: Kaplan - Performance comparison of the coupled (C) and segregated (S) algorithm

CV (C)time[s] (C)time/CV[s] (S)time[s] (S)time/CV[s] S/C

275k 960.7 0.003489 5840.6 0.021215 6.08

The coupled approach’s fast convergence rate of the Kaplan test case and its relative smoothness

in convergence indicate that not only the method is faster than the segregated method, but also

that the solver is very robust due to the strong inter-equation and inter-component coupling,

as well as due to the fully implicit implementation of the coupled interfaces (cyclic AMIs).

160 Chapter 10. Case Studies

Figure 10.20: Convergence histories for Kaplan test case. Segregated(S) - dotted lines, cou-

pled(C) - full lines

10.3. Transient dynamic mesh 161

10.3 Transient dynamic mesh

10.3.1 Centrifugal Pump

The physical accuracy of the transient block-coupled solver for rotating meshes was tested

by comparing results of a centrifugal pump with experimental data from PIV (particle image

velocimetry) measurements carried out by Stefan Hödl [2]. Therefore a special pump model

was built with a spiral casing that consisted of two halves, one of which was entirely made of

plexiglass as can be seen in Figure 10.21 (d). A laser-light-section was introduced at a plane

perpendicular to the rotation axis through the plexiglass section of the spiral casing. The model

set-up with the corresponding laser-light section is seen in Figures 10.21 (a) and (b).

Figure 10.21: Centrifugal pump - velocity profiles close to trailing edge [2]

At a section of this plane (Figure 10.21 (c)) time-averaged velocity profiles were generated at

various runner positions.

Corresponding to this set-up and a transient simulation with a dynamically rotating mesh

162 Chapter 10. Case Studies

(runner) was carried out. The simulation’s set-up consists of a static intake part, a rotating

runner part, and a static spiral casing part. Velocity profiles were taken at the same plane as

for the experimental model. The computational set-up is seen in Figure 10.22

Figure 10.22: Centrifugal pump configuration

The computational model consists of an intake pipe, the walls of which are not rotating. A

rotating runner, whose inlet is connected to the intake pipe via non-conformal AMI interfaces

(as outlined in section 7.1). The runner’s blades as well as its hub are rotating with a prescribed

rotational velocity. The shroud is non-rotating. The runner’s outlet is connected to the spiral

casing via non-conformal AMI interfaces. The spiral casing’s wall are static. At the inlet a

constant velocity profile is prescribe that complies with the operating point’s volume flux rate,

and a zero gradient boundary condition is applied for the pressure. At the outlet a constant

pressure field and a zero gradient condition for the velocity field are prescribed.

In what follows experimental and numerical velocity profiles at the section seen in Figure 10.21

10.3. Transient dynamic mesh 163

(c) are compared for the optimum load operation point.

Figure 10.23: left - PIV measurements, right - Block coupled transient solver results

Experimental and numerical results shown in Figure 10.23 exhibit overall a relatively good qual-

itative concordance. Stagnation points are relatively well captured and the main flow features

around the spur coincide quite well. The scaling in may have been slightly different between

PIV measurements and numerical results. A more thorough investigation is in preparation,

including comparisons at off-design operation conditions.

164 Chapter 10. Case Studies

Chapter 11

Conclusion

Contents

11.1 Summary of Thesis Achievements 165

11.2 Applications . 167

11.3 Future Work . 168

11.1 Summary of Thesis Achievements

The work presented in this thesis comprises the development of a set of fully coupled incom-

pressible pressure-based solvers, using the OpenFOAM CFD library. A steady state solver for

inertial reference frames, a solver for rotational reference frames and transient solvers, including

the Arbitrary Lagrange Euler formulation for moving meshes have been presented. Efficient

solution strategies for solving block coupled linear equation systems have been outlined, in-

cluding a block multi-grid solver based on an additive correction approach. The governing

equations for various configurations of reference frames have been derived. The discretisation

of all arising terms has been presented for polygonal meshes. In this context the discretisation

at domain interfaces has been outlined in sufficient detail. Caution has been given to assure

that also at these interfaces implicit coefficients were derived to preserve the benefit of strong

variable coupling. Finally all code features have been implemented to allow parallelization by

165

166 Chapter 11. Conclusion

means of domain decomposition and parallel interfaces. Furthermore a variety of test cases has

been carried out. Thereby a k − Ω SST turbulence model has been tested and comparisons

to results of a segregated solver have been made. Finally simulations of fully transient pump

flows have been carried out and compared to particle image velocimetry (PIV) measurements.

The meticulous implementation of mentioned features resulted in a set of solvers that are

able to handle even very big industrial applications. The developed set of solvers was found to

outperform state-of-the-art segregated solvers in terms of convergence speed, parallel scalability,

mesh size scalability and robustness.

11.2. Applications 167

11.2 Applications

The block coupled solvers that have been presented in this work can be used in a wide range

of applications. From a designer’s point of view, the main advantage of these solvers in respect

to commercial codes codes is their flexibility to implement new physical models and features.

A further big advantage is the absence of license costs.

The most prominent applications for which the solvers are used at Andritz Hydro are outlined

next.

Standard Static Part Calculations

These calculations include parts such as spiral casings, Pelton turbine distributors, draft tubes

or bulb turbine distributors.

Multiple Reference Frame Calculations

The developed solver for steady solutions in rotational reference frames is employed to calculate

fluid flows in pumps, pump-turbines as well as in Kaplan and Francis turbines.

Coupled solver as Navier Stokes Engine for Genetic Optimizer

The robustness of outlined solvers makes them particularly attractive for use as a Navier-Stokes

engine for genetic optimization.

Transient Calculations

Transient calculations with dynamic meshes are well suited for detailed studies of flow phenom-

ena inside rotating turbomachinery. Robustness is often an issue for this kind of application.

There the coupled solver solver shows its strength arising from tight inter-equation coupling.

168 Chapter 11. Conclusion

11.3 Future Work

The author believes that the implementation of the block coupled solvers has reached a certain

state of maturity. All solvers are very stable and fast. Hence the achieved state of the code

should give a very good basis for future developments. In present work only a 2-equation

(U)RANS turbulence model has been considered. The author believes that it makes sense to

implement alternative turbulence models within the coupled framework. One may run into

numerical difficulties when trying to couple turbulence equations more implicitly because of

their very non-linear nature. However, some terms of these equations may be suitable for

extra-diagonal implicit coupling.

A further point of interest may be the implementation of averaging interfaces (mixing plane

interfaces) between the single rotor channel and the stator of turbomachines to alleviate the

computational cost of such calculations.

Although the author believes that the object-oriented code structure of the developed block

coupled features and solvers is quite well organized there is still space for improvement. Since

the OpenFOAM library has originally been designed for segregated algorithms the developers

of the basic block coupling objects have been trying to stick as much as possible to existing

features. Additional features that have been lined out in this work do also stick to this, say,

segregated base structure. At some point, however, programming within segregated solver

driven framework becomes tedious and parts of the main code structure and some object

structures pose serious obstacles for the programming of coupled features. This results in

hard-coded implementations that make the code less readable and more difficult to maintain.

For that reason, the author and his colleagues, Luca Mangani and Marwan Darwish, have i.e.

struggled a lot with the implementation of coupled boundary conditions and coupled interfaces,

such as periodic interfaces, arbitrary mesh interfaces, or parallel interfaces. The implementation

of off-diagonal coupling parts has also been done in a hard coded fashion. It is a difficult task to

improve the existing block coupling framework that is available within the OpenFOAM library

and to make it fully templated and object based. Restructuring the code is still considered

worthwhile in order to have a neat object-oriented structure providing ease of maintenance.

11.3. Future Work 169

This would further increase the potential of this block coupled OpenFOAM framework.

Additional improvements in terms of computational performance could be made by applying

even better and innovative solution strategies for the solution of coupled linear systems of

equations. This also includes the development of tailor-made preconditioners for a given system.

Finally the author believes that the coupled framework may be suitable for a wide range of

other applications such as multiphase solvers. Any system of equations that contains strongly

coupled components may benefit of a tighter variable coupling.

170 Chapter 11. Conclusion

Appendix A

NVD/TVD

The convection term is discretised using Gauss’ Theorem and a limited surface interpolation

scheme. Two distinct discretisation methods, namely the normalised variable diagram schemes

(NVD) and the total variation diminishing schemes (TVD) are implemented in OpenFOAM.

Both methods are based on limiters, which guarantee the schemes’ boundedness. In both cases

the limiters intrinsically carry the information of two consecutive upwind gradients. In this

section the discretisation of the NVD and TVD schemes, as they are employed in OpenFOAM

will be outlined, following Jasak et al.[3] and Darwish et al. [40]. For a more detailed description

of the schemes the reader is refered to the mentioned papers. As an example for the NVD

schemes, the Gamma scheme by Jasak et al. [3] will be outlined. Van Leer’s limiter will be

used as an example for TVD schemes. This scheme will subsequently be used to further derive

the discretisation of the governing equations. It shall also be stated at this point that a deferred

correction approach has to be taken for both schemes in order to assure that the sum of implicit

off-diagonal coefficient values, arising from the discretisation, is not bigger then the diagonal

coefficient value. For time (n+1) the scheme will produce upwind coefficients, fulfilling this

plus a limited surface interpolation contribution to the source term. This limited contribution

has to be updated using subloops. The deferred corrected van Leer TVD scheme is between

first and second order accurate.

Usually NVD and TVD schemes are derived for structured grids, and they use the far upwind

171

172 Appendix A. NVD/TVD

cells to calculate an unboundedness indicator at cell faces. Bearing in mind that OpenFOAM’s

code structure is based on unstructured grid, and that it can only address a cell’s neighbours,

a way has to be found to circumvent the missing far upwind cell’s information.

At this point OpenFOAM’s implementation of NVD schemes shall be laid out, following [3].

Additionally TVD schemes for unstructured grids, as they are implemented in OpenFOAM will

be derived based on [40] [4] [41].

A.1. NVD Schemes 173

A.1 NVD Schemes

Let us consider a convected scalar φ around a cell surface as seen in figure (A.2). Following the

notations of figure (A.2) the normalized variable can be defined as:

φ̃ =
φ− φU
φD − φU

(A.1)

U and D are the far upwind and downwind indices respectively, C is the upwind cell index and

f is the face index at the face under consideration (surface integration).

We state that,

φ̃f = f
(
φ̃C

)
(A.2)

where

φ̃C =
φC − φU
φD − φU

(A.3)

and

φ̃f =
φf − φU
φD − φU

(A.4)

To avoid unphysical oscillations, φC and consequently φf have to be locally bounded, such that

φU ≤ φC ≤ φD (A.5)

or

φU ≥ φC ≥ φD (A.6)

174 Appendix A. NVD/TVD

The convection boundedness criterion (CBC) by Leonard [42] states that:

0 ≤ φ̃C ≤ 1 (A.7)

Hence,

φ̃C = 0⇒ φC = φU

φ̃C = 1⇒ φC = φD

(A.8)

Figure (A.1) a) shows φ̃f as a function of φ̃C . Therein the shaded region is the region where

the CBC is fulfilled [43].

Figure A.1: NVD diagram by Jasak[3]

mod

A.1. NVD Schemes 175

Figure A.2: Convection Boundedness Criterion

As the CBC uses variable values φU of the far upwind cell, the CBC has to be modified for

arbitrary unstructured meshes, which do not know its far upwind node. Independent of the

grid structure, the information available for each face comprises the gradients of φ on the face

as well as the gradients at the centroids of its adjacent cells. This information will be used to

replace the missing far upwind information. Figure (A.3) is similar to figure (A.2), but now

values φ+
f and φ−f are introduced at the cell faces. If φC is bounded by φU and φD it will also

be bounded by φ−f and φ+
f .Hence,

φ̃C =
φC − φ−f
φ+
f − φ

−
f

= 1−
φ+
f − φC
φ+
f − φ

−
f

(A.9)

176 Appendix A. NVD/TVD

Figure A.3: Modified Convection Boundedness Criterion for unstructured meshes

The goal now is to reformulate (A.9), using face and cell gradients in a way that avoids the use

of far upwind values φ−f and φU .

The linear interpolation factor at a face gf is given by:

gf =
dface,D
dC,D

(A.10)

or more generally for non-orthogonal grids

gf =
mag [Sf+ · (xD − xf+)]

mag [Sf+ · (xf+ − xC)] +mag [Sf+ · (xD − xf+)]
(A.11)

Furthermore the numerator of the fraction at the right hand side of (A.9) can be written as

φ+
f − φC = gf

φD − φC
xD − xC

(xD − xC) = gf (∇φ)f+ · d̂C,D (xD − xC) (A.12)

with

A.1. NVD Schemes 177

φD − φC
xD − xC

= (∇φ)f+ · d̂

d̂C,D =
dC,D
|dC,D|

(A.13)

The denominator of the fraction at the right hand side of (A.9) can be written as

φ+
f − φ

−
f =

φ+
f − φ

−
f

x+
f − xf−

= (∇φ)C · d̂C,D
(
x+
f − x

−
f

)
(A.14)

Reinserting the numerator (A.12) and the denominator (A.14) into (A.9) we obtain.

φ̃C = 1−
gf (∇φ)f+ · d̂C,D (xD − xC)

(∇φ)C · d̂C,D
(
x+
f − x

−
f

) (A.15)

Given that the upwind cell’s value is placed at its centroid, it will be assumed that an imaginary

far upwind cell’s centroid is situated as far away of the upwind cell’s centroid as the downwind

cell’s centroid. Hence,

x+
f − x

−
f

xD − xC
= 2

x+
f − xC
xD − xC

= 2gf (A.16)

Merging equations (A.15) and (A.16) gives

φ̃C = 1−
gf (∇φ)f+ · d̂C,D
2 (∇φ)C · d̂C,D

(A.17)

with

(∇φ)f+ · d̂C,D = φD − φC (A.18)

we obtain

178 Appendix A. NVD/TVD

φ̃C = 1− φD − φC
2 (∇φ)C · d̂C,D

(A.19)

An example of a NVD scheme implemented in OpenFOAM is the Gamma scheme.

Following Jasak et al.[3] the correlation φ̃f = f
(
φ̃C

)
is expressed in three parts. for φ̃C ≤ 0 or

φ̃C ≥ 0 (UD):

φ̃f = φ̃C (A.20)

for 0 ≤ βm ≤ 1 (blended UD-CD):

φ̃f =
1

2
+

1

2
φ̃C (A.21)

for βm ≤ 0 ≤ 1 (CD):

φ̃f =
1

2
+

1

2
φ̃C (A.22)

βm is a blending factor. If it is set to zero, the differencing scheme jumps apruptly from central

differencing to upwind differencing when the scheme detects a unboundedness limit. This jump

however, as can be seen in figure (A.4) a) can deteriorate convergence rates significantly. Hence

a smoother transition from UD to CD is preferred (figure (A.4) b)). Jasak et al. [3] propose a

value of 0.5 for βm.

Figure (A.1) shows how the Gamma NVD scheme acts in the NVD diagram. Outside the unity

rectangle the scheme limits itself to an upwind scheme. Inside the unity rectangle the scheme

blends smoothly towards the central differencing scheme.

A.1. NVD Schemes 179

Figure A.4: NVD diagram for Upwind Differencing scheme (UD) and Central Differencing

scheme (CD) at the left, Gamma NVD scheme on the right

180 Appendix A. NVD/TVD

A.2 TVD Schemes

Following Roe [41], TVD schemes’ flux can be written as a linear combination of a diffusive but

stable upwind part, and an antidiffusive (second order) part, which is multiplied by the flux

limiter function Υ (rf), which is a non-linear function of rf [40], the upwind ratio of consecutive

gradients. The factor gf (equ: A.29) accounts for non-homogenious grid spacing.

φf = φC + (1− gf) Υ (rf) (φD − φC) (A.23)

This upwind ratio of consecutive gradients Υ (rf) is defined in a slightly different way as its

equivalent φ̃C for the NVD schemes (equ. (A.3))

rf =
φC − φU
φD − φC

=
− (φD + φC) + (φD − φC)

φD − φC
(A.24)

rf =
φD − φU
φD − φC

− 1 (A.25)

Where rf is a scalar field adherent to the surfaces of the grid. The values would be computable

if the far upwind node was replaced by a known term [40]. This can be done similarly to (A.19).

φD − φU = ∇φC · dU,D = 2∇φC · dC,D (A.26)

Vector dC,D is the distance vector between the downwind and upwind node. Vector dU,D is

here assumed to be along vector dC,D with the upwind cell’s centroid C being in the middle of

the downwind and an imaginary far upwind node. Hence we obtain,

rf =
2∇φC · dC,D
φD − φC

− 1 (A.27)

Note that this notation is also valid for cells neighboring boundary faces.

A.2. TVD Schemes 181

The van Leer TVD scheme shall be outlined as an example for TVD schemes in OpenFOAM.

It will also be used in subsequent derivations as it is the convection scheme chosen for the

testcases in chapter (10).

The van Leer limiter function is given by:

Υ (rf) =
rf + |rf |
1 + |rf |

(A.28)

Figure (A.5) illustrates van Leer’s limiter function in Sweby’s diagram [4]. The grey region

is the region where boundedness is guaranteed, and is therefore the admissible limiter region

for second order convection schemes [4]. Note that all stable second order limiters have to go

through point (1,1) to guarantee the TVD criterion. In figure (A.5) it can be seen that van

Leer’s limiter is a smooth function, which effects convergence in a positive way. Furthermore,

for all negative values of rf the limiter function Υ (rf) is null, hence the scheme contracts to

an upwind scheme.

Figure A.5: van Leer’s limiter function (blue line) in Sweby’s diagram [4], with second order

TVD region (grey)

182 Appendix A. NVD/TVD

OpenFOAM formulation:

All equations so far were written for cells U, C, D (upwind, central, downwind). We shall now

generalize the equations to match OpenFOAM’s code structure. Remember that OpenFOAM’s

code structure is based on owner and neighbour cells. Depending on the face flux direction,

the upwind cell can be a neighbor cell and the downwind cell an owner cell, and vice versa.

The linear interpolation factor at a face gf in OpenFOAM can be expressed in general terms

as:

gf =
mag [Sf · (xnei − xf)]

mag [Sf · (xf − xown)] +mag [Sf · (xnei − xf)]
(A.29)

And equation (A.23) in OpenFOAM language yields:

case flow direction is positive :

φf = φown + (1− gf) Υ (rf) (φnei − φown)

case flow direction is negative :

φf = φnei + gfΥ (rf) (φown − φnei)

(A.30)

Appendix B

Gauss Divergence Theorem

Gauss’ theorem relates a volume to a surface integral [44]. For vector fields every CFD engineer

knows the divergence theorem by heart. The author however believes that it is good to give a

short roundup also for scalar and tensor fields.

Let φ, u and T be continuous scalar, vector and tensor fields, that are at least once differentiable

within a volume Ω, which is bounded by a continuous surface S with outward-pointing unit

normal vectors n [44].

Gauss’ theorem for scalar fields φ yields:

∫
Ω

(∇ · φ) dΩ =

∮
S

(nφf) dS =

∮
S

Sfφf (B.1)

Gauss’ theorem for vector fields u yields:

∫
Ω

(∇ · u) dΩ =

∮
S

(n · u) dS =

∮
S

Sf · u (B.2)

Gauss’ theorem for tensor fields T yields:

∫
Ω

(∇ ·T) dΩ =

∮
S

(n ·T) dS =

∮
S

Sf ·T (B.3)

183

184 Appendix B. Gauss Divergence Theorem

and for the transpose:

∫
Ω

(∇ ·T)T dΩ =

∮
S

(n ·T)T dS =

∮
S

(Sf ·T)T (B.4)

Bibliography

[1] H. Jasak, Error analysis and estimation in the Finite Volume method with applications to

fluid flows. PhD thesis, Imperial College London, 1996.

[2] S. Hödl, “Particle Image Velocimetry Messung an einer Kreiselpumpe nq30,” Master’s

thesis, Graz University of Technology, 2011.

[3] H. Jasak, H. Weller, and A. Grosman, “High resolution NVD differencing scheme for

arbitrarily unstructured meshes,” International journal for numerical methods in fluids,

1999.

[4] P. Sweby, “High resolution schemes using flux limiters for hyperbolic conservation laws,”

SIAM Journal of Numerical Analysis, 1984.

[5] J. Marsden and T. Hughes, Mathematical Foundations of Elasticity. Dover Publications

Inc., NY, 1994.

[6] C. Stoker, Developments of the Arbitrary Lagrangian-Eulerian method in non-linear solid

mechanics. PhD thesis, Universiteit Twente, 1999.

[7] G. Batchelor, An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

[8] H. Steiner, “Höhere Strömungslehre und Wärmeuebertragung.” Lecture script, 2011.

[9] J. Anderson, Computational Fluid Dynamics. McGraw Hill, 1995.

[10] A. Gehrer, Entwicklung eines 3D-Navier-Stokes Codes zur numerischen Berechnung der

Turbomaschinenströmung. PhD thesis, TU Graz, 1998.

185

186 BIBLIOGRAPHY

[11] W. Hauger, W. Schnell, and D. Gross, Technische Mechanik 3. Springer, Berlin, 2002.

[12] A. Runchal, “Brian Spalding: CFD and Reality,” in ICHMT International Symposium on

Advances in Computational Heat Transfer, 2008.

[13] L. Caretto, R. Curr, and D. Spalding, “Two Numerical Methods for Three-Dimensional

Boundary Layers,” Computer Methods in Applied Mechanics and Engineering, 1972.

[14] S. Patankar and D. Spalding, “A calculation procedure for heat, mass and momentum

transfer in three-dimensional parabolic flows,” International Journal of Heat and Mass

Transfer, 1972.

[15] P. Vanka, “Block-Implicit Multigrid Solution of Navier-Stokes Equations in Primitive Vari-

ables,” Journal of Computational Physics, 1986.

[16] P. Galpin and G. Raithby, “Numerical Solution of problems in incompressible fluid flow,”

Numerical Heat Transfer, 1986.

[17] G. Deng, J. Piquet, P. Queutey, and M. Visonneau, “Incompressible flow calculations with

a consistent physical interpolation finite volume approach,” Computers and Fluids, 1994.

[18] M. Darwish, I. Sraj, and F. Moukalled, “A coupled finite volume solver for the solution of

incompressible flows on unstructured grids,” Journal of Computational Physics, 2008.

[19] S. Patankar, Numerical Heat Transfer and fluid flow. McGraw-Hill, 1980.

[20] J. V. Doormal and G. Vanka, “Enhancements of the SIMPLE method for predicting in-

compressible fluid flow,” Numerical Heat Transfer, 1984.

[21] J. Ferziger and M. Peric, Computational Methods for Fluid Dynamics. Springer, Berlin,

1994.

[22] M. Benzi and G. G. aand J. Liesen, “Numerical solution of saddle point problems,” Acta

Numerica, 2005.

[23] C. Rhie and W. Chow, “A numerical study of turbulent flow past an isolated airfoil with

trailing edge separation,” AIAA Journal, 1983.

BIBLIOGRAPHY 187

[24] P. Galpin and G. Raithby, “Treatment of non-linearities in the numerical solution of the

incompressible Navier-Stokes equations,” International Journal for Numerical Methods in

Fluids, 1986.

[25] S. Muzaferija, Adaptive finite volume method for flow predictions using unstructured meshes

and multigrid approach. PhD thesis, University of London, 1994.

[26] M. Darwish and F. Moukalled, “A Review of Boundary Conditions and Their Implemen-

tations in CFD Codes,” International Journal for Numerical Methods in Fluids, 2000.

[27] B. Hutchinson and G. Raithby, “A Multigrid Method based on the Additive Correction

Strategy,” Numerical Heat Transfer, 1986.

[28] S. Keller, “The additive correction multigrid method for unstructured grids.” SINMEC

Laboratory of Numerical Simulation in Fluid Dynamics and Computational Heat Transfer.

[29] B. Hutchinson, P. Galpin, and G. Raithby, “Application of additive correction multigrid

to coupled fluid flow equations,” Numerical Heat Transfer, 1988.

[30] S. Elias, G. Stubley, and G. Raithby, “An additive agglomeration method for additive

correction multigrid,” International Journal for Numerical Methods in Engineering, 1997.

[31] F. Menter, M. Kuntz, and R. Langtry, “Ten Years of Industrial Experience with the SST

Turbulence Model,” Turbulence, Heat and Mass Transfer, 2003.

[32] F. Menter and Y. Egorov, “A scale-adaptive simulation model using two equation models,”

AIAA paper 20051095, 2005.

[33] K. Hanjalic and B. Launder, “A Reynolds stress model of turbulence and its application

to thin shear flows,” Journal of Fluid Mechanics, 1972.

[34] P. Durbin, “Near-wall turbulence closure modeling without damping functions,” Theoret-

ical and Computational Fluid Dynamics, 1991.

[35] P. Spalart, W.-H. Jou, M. Strelets, and S. Allmaras, “Comments on the feasibility of LES

for wings, and on a hybrid RANS/LES approach,” 1st AFOSR Int. Conf. on DNS/LES.

In: Advances in DNS/LES, 1997.

188 BIBLIOGRAPHY

[36] B. Kader, “Temperature and concentration profiles in fully turbulent boundary layers,”

International Journal of Heat and Mass Transfer, 1981.

[37] E. Casartelli, L. Mangani, and S. Hug, “Numerical comparison between model and pro-

totype flow in a pump-turbine distributor,” in International Conference and Exhibition

Innovative Approaches to Global Challenges 29 to 31, 2012.

[38] L. Mangani, M. Buchmayr, and M. Darwish, “Development of a novel Fully Coupled

Block Solver in OpenFOAM: Steady State Incompressible Turbulent Flows,” submitted to

Numerical Heat Transfer Part B: Fundamentals, 2014.

[39] L. Mangani, M. Buchmayr, and M. Darwish, “Development of a novel Fully Coupled

Block Solver in OpenFOAM: Steady State Incompressible Turbulent Flows in Rotational

Reference Frames,” submitted to Numerical Heat Transfer Part B: Fundamentals, 2014.

[40] M. Darwish and F. Moukalled, “TVD Schemes for unstructured grids,” International Jour-

nal of Heat and Mass Transfer, 2003.

[41] P. Roe, “Some contributions to the modeling of discontinous fluids,” in Proceedings of the

AMS/SIAM Seminar, San Diego, 1983.

[42] B. Leonard, “Simple high-accuracy resolution program for convective modeling of discon-

tinuities,” International journal for numerical methods in fluids, 1988.

[43] P. Gaskell and A. Lau, “Curvature-compensated convective transport: SMART, a new

boundedness-preserving transport algorithm,” International journal for numerical methods

in fluids, 1988.

[44] P. Rajinder, Rheology of Particulate Dispersions and Composites. CRC Press, 2007.

	Abstract
	Acknowledgements
	Introduction
	Continuum Mechanics
	Geometry and Kinematics of Bodies
	Continuous Bodies and their Configurations
	Material Configurations
	Reference Configurations

	Constitutive Laws

	Derivation Of Governing Equations For Incompressible Fluid Flows
	Non-Moving Reference Volumes In Inertial Frame Of Reference
	The Reynolds Transport Theorem for Non-Moving Reference Volumes in Inertial Frame of Reference
	Governing Equations for Non-Moving Reference Volumes in Inertial Frame of Reference

	Moving Reference Volumes In Inertial Frame Of Reference
	The Transport Theorem for Moving Reference Cells in Inertial Frame of Reference
	Governing Equations for Moving Reference Volumes in Inertial Frame of Reference

	Non-Moving Reference Volumes In Rotating Frame Of Reference
	The Kinematics of Relative Motion
	The Reynolds Transport Theorem for Non-Moving Reference Volumes in Relative Frame of Reference
	Governing Equations for Non-Moving Reference Volumes in Relative Rotational Frame of Reference

	Numerical Algorithms for Incompressible Flows
	Historical Background
	Sequential Solution
	Coupled Algorithms
	Sequential vs. Simultaneous Solution

	Discretisation Of Governing Equations
	Finite Volume Discretisation in OpenFOAM
	Discretisation of Governing Equations for Inertial Frames
	Discretisation of Momentum Equation
	Discretisation of Continuity Equation

	Discretisation of Governing Equations for Moving Control Volumes
	Discretisation of Momentum Equation
	Discretisation of Continuity Equation

	Discretisation of Governing Equations for Rotating Frames
	Discretisation of Momentum Equation
	Discretisation of Continuity Equation

	Discretisation At Boundary Faces
	Dirichlet Boundary Condition
	Neumann Boundary Condition
	Wall Boundary Condition
	Moving Wall Boundary Condition
	Slip Wall Boundary Condition

	Implementation Of Block Coupled Interfaces
	Arbitrary Mesh Interface (AMI)
	Processor Interfaces

	Block Algebraic Multigrid Solver
	Additive Correction Block Algebraic Multi-Grid Method
	Additive Correction Concept
	Restriction
	Prolongation

	Agglomeration
	Agglomeration Methods

	Block ILU(0) Smoother
	Block AMG cycles

	Turbulence Models for Unsteady Computations
	The k-Omega SST (U)RANS Model

	Case Studies
	Stationary frame of reference
	Backward facing step
	Draft tube
	Pelton distributor

	Rotational frame of reference
	Pump runner
	Francis turbine runner
	Kaplan turbine runner

	Transient dynamic mesh
	Centrifugal Pump

	Conclusion
	Summary of Thesis Achievements
	Applications
	Future Work

	NVD/TVD
	NVD Schemes
	TVD Schemes

	Gauss Divergence Theorem
	Bibliography

