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Abstra
t
Software repositories hold enormous amount of data that 
an be used for softwareevolution studies. Finding and removing bugs from software is a 
hallengingtask. Mining development history of software 
an improve the debugging pro
ess.Software 
on�guration management systems re
ord all software 
hanges that aremade during its evolution. A signi�
ant part of these 
hanges is used to �xbugs in software. Both bug �x and bug introdu
ing 
hanges 
an be extra
tedfrom software repositories. Bug introdu
ing 
hanges 
an be analyzed to study
hara
teristi
s of sour
e 
ode that result in bugs. This dissertation presents twoempiri
al studies that investigate the role of language 
onstru
ts in introdu
ingbugs and in�uen
e of programming language on post release bugs.Revision histories of eight open sour
e proje
ts developed in multiple lan-guages are pro
essed to extra
t bug-indu
ing language 
onstru
ts. Twenty sixdi�erent language 
onstru
ts and syntax elements are 
hosen for this study. Fun
-tion 
alls, assignments, 
onditions, pointers, use of NULL, variable de
laration,fun
tion de
laration and return statement are found to be the most frequentbug-indu
ing language 
onstru
ts. They are found in 38-62%, 30-42%, 17-40%,11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug indu
ing hunks respe
tively.These 
onstru
ts a

ount for more than 70 per
ent of bug-indu
ing hunks. Fun
-tion Calls are found to be the most dominant sour
e of errors in all proje
ts.Use of pointers and NULL is highly problemati
 in proje
ts developed in the lan-guage C. Di�erent proje
ts are statisti
ally 
orrelated in terms of frequen
ies ofbug-indu
ing language 
onstru
ts. Most of the developers tend to fa
e di�
ultieswith similar language 
onstru
ts. Statisti
al analysis indi
ates that the majorityof the developers indu
e similar kinds of bugs independent of the proje
t andprogramming language.Within our work the development history of Mozilla proje
t with a span of11 years had been extra
ted and di�erent 
ode and evolution metri
s had been
al
ulated. Mozilla is a heterogeneous proje
t developed in C, C++ and Java.Defe
t densities of �les written in the three languages are statisti
ally analyzedin order to �nd a relationship between defe
ts and programming languages. Lifeg



span of bugs within the three kind of programs is also 
al
ulated to 
omparethe e�orts required to �x bugs in the di�erent languages. Statisti
al analyses ofbug densities revealed that post release bugs are in�uen
ed by the programminglanguage. Results of hypothesis testing showed that Java programs are less errorprone than C or C++ programs, and that C programs are less error prone thanC++ programs in same proje
t. We found that the bug life time of Java programsis twi
e as long as for C or C++ programs.This thesis also introdu
es a new set of metri
s 
alled hunk metri
s and a te
h-nique to 
lassify hunks as buggy or bug-free. The hunk 
lassi�
ation approa
huses hunk metri
s as input variables to 
lassify hunks into buggy and bug-free.Classi�
ation models are built using logisti
 regression and random forests, andtheir performan
e is evaluated and 
ompared. Bug predi
tion abilities of individ-ual metri
s are also evaluated. The hunk 
lassi�
ation approa
h is evaluated oneight large open sour
e proje
ts. It 
an 
lassify hunks as buggy or bug-free with81% a

ura
y, 77% buggy hunk pre
ision and 67% buggy hunk re
all on average.Hunk metri
s related to 
hange and history are found to be better predi
tor ofbugs than 
ode related hunk metri
s. Predi
tors obtained from one proje
t whenapplied to a di�erent proje
t 
ould 
lassify hunks with more than 60% a

ura
y.



Zusammenfassung
Software-Repositories halten enorme Menge von Daten, die für die Software-Entwi
klung Studien verwendet werden. Su
hen und Entfernen von Software-Fehler ist eine anspru
hsvolle Aufgabe. Mining Entwi
klungsges
hi
hte von Soft-ware zur Verbesserung der Debugging-Prozess. Software Con�guration Management-Systeme erfassen alle Software-Änderungen, die während ihrer Entwi
klung gema
htwerden. Ein erhebli
her Teil dieser Veränderungen wird verwendet, um Fehler inder Software beheben. Beide Fehler zu beheben und Fehler der Einführung vonÄnderungen können von der Software-Repositories extrahiert werden. Bug derEinführung von Änderungen können analysiert werden, um Merkmale der Quell-
ode zu studieren, die zu Fehlern. Diese Dissertation präsentiert zwei empiris
heStudien, dass die Rolle der Spra
he zu untersu
hen Konstrukte bei der Einführungvon Bugs und der Ein�uss der Programmierspra
he über den Post Release Bugs.Revision Ges
hi
hten von a
ht Open-Sour
e-Projekte in mehreren Spra
henentwi
kelt werden verarbeitet, um Fehler zu extrahieren-induzierende Spra
hkon-strukte. Zwanzig se
hs vers
hiedenen Spra
hkonstrukte und Syntax Elementesind für diese Studie ausgewählt. Funktionsaufrufe, Zuweisungen, Bedingun-gen, Zeiger, die Verwendung von NULL, der Deklaration von Variablen, Funk-tion Erklärung und return-Anweisung gefunden werden, um die häu�gste Fehler-induzierende Spra
hkonstrukte. Sie sind gefunden in 38-62%, 30-42%, 17-40%, 11-30%, 1-22%, 11-25%, 8-12% und 8-15% der Fehler hunks bzw. veranlassen. DieseKonstrukte einen Anteil von mehr als 70 Prozent der Fehler-induzierende hunks.Fun
tion Calls �nden si
h als die wi
htigste Quelle von Fehlern in allen Projek-ten. Verwendung von Zeigern und NULL ist hö
hst problematis
h an Projektenin der Spra
he C. Vers
hiedene Projekte entwi
kelt werden, korreliert statistis
hin Bezug auf die Häu�gkeit der Fehler-induzierende Spra
hkonstrukte. Die meis-ten Entwi
kler neigen dazu, S
hwierigkeiten mit ähnli
hen Spra
he Gesi
ht Kon-strukte. Die statistis
he Analyse zeigt, dass die Mehrheit der Entwi
kler, ähn-li
he Arten von Bugs unabhängig von der Projekt-und Programmierspra
he zuinduzieren. i



Im Rahmen unserer Arbeit die Entwi
klung der Ges
hi
hte von Mozilla-Projektmit einer Spannweite von 11 Jahren wurde extrahiert und anderen Code-Metrikenund-entwi
klung war erre
hnet worden. Mozilla ist ein heterogenes Projekt in C,C ++ und Java. Defe
t Di
hten von Dateien in den drei Spra
hen ges
hrieben wer-den statistis
h ausgewertet, um einen Zusammenhang zwis
hen Fehler und Pro-grammierspra
hen zu �nden. Lebensdauer von Fehlern innerhalb der drei Artenvon Programmen ist au
h geeignet, die Anstrengungen erforderli
h, um Fehler inden vers
hiedenen Spra
hen �x verglei
hen. Statistis
he Analysen ergaben, dassFehler Di
hten na
h Freigabe dur
h die Fehler der Programmierspra
he beein-�usst werden. Ergebnisse der Hypothese Tests ergaben, dass Java-Programmeweniger fehleranfällig als C oder C ++ Programme sind, und daÿ C Programmesind weniger fehleranfällig als C ++ Programme in einem Projekt arbeiten. Wirhaben gefunden, dass der Fehler Lebensdauer von Java-Programmen ist doppeltso lang wie C oder C ++ Programmen.Diese wird au
h ein neues Set von Kennzahlen genannt hunk Metriken undeine Te
hnik, um hunks als Buggy oder Bug-frei einzustufen. Die Einstufunghunk Metriken Ansatz verwendet als Eingangsgröÿen hunks in Buggy und Bug-freieinzustufen. Klassi�kation Modelle werden mit Hilfe logistis
her Regression undzufällige Wälder, und ihre Leistung wird evaluiert und vergli
hen werden. BugVorhersage Fähigkeiten der einzelnen Kennzahlen werden ebenfalls bewertet. DieEinstufung hunk Ansatz basiert auf a
ht groÿen Open-Sour
e-Projekte ausgew-ertet. Es kann klassi�zieren hunks als Buggy oder Bug-frei mit 81% Genauigkeit,77% Buggy hunk Präzision und 67% Buggy hunk erinnern, im Dur
hs
hnitt. HunkMetriken im Zusammenhang mit der Veränderung und der Ges
hi
hte gefundenwerden, besser zu sein als Indikator für Fehler im Zusammenhang hunk Code-Metriken. Prädiktoren, erhalten aus einem Projekt, wenn ein anderes Projektkönnte hunks mit mehr als 60% Genauigkeit zu klassi�zieren angewendet.
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Chapter 1
Introdu
tion
Changes and bugs are interrelated in the software development pro
ess. Some
hanges are made to �x bugs, and on the other hand bugs are introdu
ed bymaking 
hanges to software. Change is a basi
 property of evolving software.When 
hanges are made, errors may be generated in the sour
e 
ode, whi
hresult in software failures. These errors in turn are 
orre
ted by making 
hanges,so 
hanges and bugs are in a sense 
omplementary to ea
h other. Changes are amust for long life of software. A

ording to Lehman's Law of Program Evolution,software needs to be 
ontinuously 
hanged otherwise it will be
ome progressivelyless useful [59℄Changes are made to the software due to several reasons su
h as �xing bugs,adding new fun
tionality, performan
e enhan
ement, improving 
ompatibility,refa
toring et
. Pressman has 
lassi�ed software 
hanges into four 
ategories,
orre
tion, adaptation, enhan
ement and prevention [63℄. Corre
tive 
hanges aremade to �x bugs, whereas adaptive 
hanges are required to adjust the software to
hanges in the external environment. Enhan
ements are required to extend thefun
tionality of the software. Preventive 
hanges are those made to enhan
e thelife of the software.Software undergoes the pro
ess of aging due to 
ontinuous 
hanges appliedto it. Parnas has 
alled the e�e
t of 
ontinuous 
hange as ignorant surgery.That means, di�erent developers 
hange the software at di�erent times, without athorough awareness of the software and its design [58℄. Usually bugs are to be �xedin short time periods. Due to this time pressure, developers 
annot understandthe software fully before �xing bugs. A software system is 
hanged by multipledevelopers. So 
hanges in
rease in
onsisten
y, 
omplexity, understandability andthe size of software. Sometimes these 
hanges introdu
e new bugs into the sour
e
ode [67℄.Bugs are 
reated due to mistakes or errors in the sour
e 
ode or design of soft-3



4 CHAPTER 1. INTRODUCTIONware. Software bugs vary in their 
omplexity and severity, and need to be dete
tedand removed before software deployment. Undete
ted bugs 
an be detrimentalfor life and resour
es [25℄. In 1985 Thera
-25, a radiation therapy devi
e malfun
-tioned due to a software bug. It delivered lethal radiation doses and resulted indeaths and injuries [25℄. In 1996 Ariane 5, the European Spa
e Agen
y's ro
ketwas destroyed a few se
onds after laun
h, due to a bug in the guidan
e 
omputerprogram. It resulted in a loss of 1 billion US$ [3℄.Lo
ating and removing bugs from software is a tedious and time-
onsumingpart of software development. Developers spend a lot of time and e�ort to �ndand remove bugs, whi
h is sometimes more expensive than writing new sour
e
ode [74℄. A bug life 
y
le 
onsists of bug identi�
ation, bug assignment, bug�xing, quality assuran
e and re-assignment of bugs. Bugs are assigned to relevantdevelopers, a pro
ess 
alled bug triage [5℄. Bugs with highest priority are �xed�rst and other known bugs are delivered with the software in ea
h release.Extensive resear
h is going on in software debugging to produ
e high quality,reliable and bug-free software. Mining software repositories is a new te
hnique tobe also applied for software testing and debugging. Many bugs are not dete
tedby the traditional testing te
hniques like regression testing, unit testing, 
odereviews and the use of debugging tools. Mining software repositories 
an exploreuseful hidden information from software repositories and bug databases [19, 65℄.Sin
e software repositories store histori
al information about 
hanges and bugs,important lessons 
an be learned by analyzing this information.Version 
ontrol systems re
ord 
hanges made to the sour
e 
ode as softwaredevelopment progresses. These systems maintain a log of the 
hanges, in
ludingdate and time of 
hange, identity of the developer and reason of the 
hange. Bugtra
king systems re
ord information related to bugs. These systems hold infor-mation about identi�
ation, assignment and resolution of bugs. Mailing lists and
ommuni
ation ar
hives re
ord 
onversation between developers about parti
ularde
isions throughout the life of a software proje
t. All this data 
an be pooled to
ondu
t empiri
al studies involving software evolution [7, 20℄. In this dissertationwe fo
us on three goals:The �rst goal of this resear
h is to identify the language 
onstru
ts whi
hintrodu
e bugs most of the time, thus helping in the debugging pro
ess.The se
ond goal of this resear
h is to study the in�uen
e of programminglanguage on the o

uren
e of post release bugs.The third goal of this resear
h is to help developers in identifying and removingbugs, thereby redu
ing the testing e�ort and maintenan
e 
osts.To meet these goals, this work proposes te
hniques to identify bug-indu
inglanguage 
onstru
ts and to predi
t bugs in terms of hunk 
lassi�
ation. In par-ti
ular this thesis 
ontributes to the following tasks:� Empiri
al analysis of language 
onstru
ts



5� Identi�
ation of frequent bug prone language 
onstru
ts� Analysis of di�erent proje
ts, developers and programming languages forthe frequen
ies of bug-indu
ing language 
onstru
ts� Analysis of bug densities of programs written in di�erent languages� Study of various evolution metri
s obtained from programs written in dif-ferent languages� Exploration of new software metri
s to be used as bug predi
tors� Development of hunk 
lassi�
ation models� Comparison of predi
tor models based on statisti
al and ma
hine learningte
hniquesThe 
on
eptual 
ontribution of this thesis fo
uses on mining software devel-opment history, identi�
ation and extra
tion of bug-indu
ing hunks, de�nitionof new software metri
s, and extra
tion of language 
onstru
ts. The te
hni
al
ontribution of this thesis fo
uses on development of bug predi
tion models basedon metri
s, approa
hes for 
hange 
lassi�
ation, and an analysis of language 
on-stru
ts for their role in introdu
tion of bugs. The empiri
al 
ontribution of thisthesis is the appli
ation and evaluation of the proposed te
hniques to the releasehistory of eight large, long lived open sour
e software proje
ts.The major 
ontributions of this thesis are:� An approa
h to extra
t bug-indu
ing hunks by pro
essing revision history ofa software proje
t. The approa
h makes use of 
on�guration managementsystems and bug databases.� Empiri
al analysis of bug-indu
ing language 
onstru
ts in terms of theirfrequen
ies.� Correlation analysis of di�erent proje
ts, developers and programming lan-guages in terms of frequen
ies of bug-indu
ing language 
onstru
ts.� Findings about the relationship between programming language and postrelease bugs� Comparative study of various evolution metri
s� De�nition of 27 hunk metri
s and an empiri
al analysis of these metri
s aspredi
tor of bugs.� Constru
tion of hunk 
lassi�
ation models and their evaluation.



6 CHAPTER 1. INTRODUCTION1.1 RoadmapThis se
tion des
ribes the layout of this thesis and relationship of ea
h 
hapterwith my sele
ted publi
ations.Chapter 2 des
ribes the te
hniques to extra
t data from software release history.We present the ar
hite
ture of the database used to store and analyze datafor this study. A simple approa
h is des
ribed to extra
t bug-indu
ing hunksfrom 
hange history of a proje
t.Chapter 3 presents an empiri
al analysis of language 
onstru
ts. We identifythe language 
onstru
ts that introdu
e bugs more frequently. We present a
orrelation analysis of di�erent proje
ts, developers and programming lan-guages for the frequen
ies of bug-indu
ing language 
onstru
ts. This work
ontributed to a publi
ation [16℄ that was presented at Working Conferen
eon Reverse Engineering (WCRE 2009).Chapter 4 presents a 
ase study to �nd the in�uen
e of programming langaugeon post release bugs. We 
al
ulate and 
ompare various evolution metri
sfor programs written in di�erent languages. This work 
ontributed to apubli
ation [4℄ that was presented at International Conferen
e on SoftwareEngineering Advan
es (ICSEA 2009).Chapter 5 des
ribes the hunk 
lassi�
ation approa
h. We de�ne hunk metri
sand present a te
hnique to 
al
ulate them. We use statisti
al and ma
hinelearning te
hniques to build 
lassi�
ation models. These models are evalu-ated on data of eight open sour
e proje
ts. This work 
ontributed to twopubli
ations [18, 17℄. First [18℄ was presented at International Conferen
eon Software Maintenan
e (ICSM 2009). Se
ond [17℄ is to be presented atInternational Conferen
e on Software Pro
ess and Produ
t Measurement(MENSURA 2009).Chapter 6 dis
usses the threats to validity. It des
ribes the limitations of thisstudy.Chapter 7 reviews the related work in the �eld of mining software 
hange his-tory, bug predi
tion, software 
hange extra
tion, software 
hange analysisand buggy 
ode features and lo
ations.Chapter 8 dis
usses the future work.Chapter 9 presents the 
on
lusions.



1.2. EMPIRICAL ANALYSIS OF LANGUAGE CONSTRUCTS 71.2 Empiri
al Analysis of Language Constru
ts
Redu
ing bugs in software is a key issue in software development. Many te
h-niques and tools have been developed to automati
ally identify bugs. These te
h-niques vary in their 
omplexity, a

ura
y and 
ost. Bug �nding tools use pre-de�ned bug patterns, model 
he
king and theorem proving to dete
t bugs. Per-forman
e of these tools 
an be enhan
ed by paying attention to those language
onstru
ts whi
h frequently 
ontribute to bugs. Testing e�ort 
an be fo
used onmore risky language 
onstru
ts. More test 
ases 
an be generated and models 
anbe developed for frequently bug-introdu
ing language 
onstru
ts. Code reviews
an be made with a 
areful examination of bug-introdu
ing language 
onstru
ts.In this way maintenan
e 
ost will be redu
ed as well as software quality will beimproved.Software repositories maintain re
ord of all 
hanges made to software. These
hanges are made to �x bugs, to add new features, to improve performan
e or torestru
ture the 
ode for easy maintenan
e. Bug �x 
hanges are identi�ed by a
omment re
orded by a developer in the 
on�guration management system. These
hanges 
an be tra
ed ba
k to the lo
ations, where the bug was a
tually intro-du
ed into the sour
e 
ode [67, 37℄. Bug-introdu
ing 
hanges 
an be extra
tedfrom software repositories and their properties 
an be studied.This thesis presents an empiri
al study of bug-indu
ing 
hanges with a fo
us onlanguage 
onstru
ts. One goal of this work is to identify syntax elements of a lan-guage whi
h frequently 
ontribute to introdu
tion of bugs. We try to �nd whi
hlanguage 
onstru
ts are more problemati
. Change history of eight open sour
eproje
ts is analyzed to �nd, whether there are 
ommon language 
onstru
ts whi
h
ontribute to bugs. These proje
ts are developed in di�erent languages in
ludingC, C++ and Java. We also analyze 
hanges made by di�erent developers to �nd,whether di�erent developers make similar mistakes.When developers make a 
hange, they 
hange 
lasses, fun
tions, variables, sele
-tion and 
ontrol stru
tures. We analyze the bug-indu
ing 
hanges to �nd the syn-tax elements whi
h 
ontribute to bugs. Twenty six di�erent language 
onstru
tsand syntax elements are 
hosen for this study. We �nd that most frequent bug-indu
ing language 
onstru
ts are fun
tion 
alls, assignments, 
onditions, pointers,use of NULL, variable de
laration, fun
tion de
laration and return statement.These 
onstru
ts a

ount for more than 70 per
ent of bug-indu
ing hunks. Dif-ferent proje
ts are statisti
ally 
orrelated in terms of frequen
ies of bug-indu
inglanguage 
onstru
ts. Developers within a proje
t and between di�erent proje
tsalso have similar frequen
ies of bug-indu
ing language 
onstru
ts.



8 CHAPTER 1. INTRODUCTION1.3 Programming Languages and BugsComparing pros and 
ons of various programming languages is an interesting de-bate among programmers and 
omputer s
ientist. There exist strong opinions forand against various programming languages. Some studies exist on 
omparisonof programming languages. Pre
helt evaluated programs written in di�erent lan-guages for memory 
onsumption, runtime e�
ien
y, reliability, program lengthand programming e�ort [62℄. A similar study was 
ondu
ted by Gar
ia et al.[24℄ on support for generi
 programming. The authors identi�ed eight languagefeatures that support generi
 programming. They found that generi
 features arene
essary to avoid awkward designs, poor maintainability, unne
essary run-time
he
ks, and painfully verbose 
ode.Most of the published work in empiri
al software engineering that deals withbug dete
tion or bug predi
tion does not 
ompare the number of post-releasebugs for programs written in di�erent programming languages. A number ofstudies exist on 
hara
teristi
s of bugs and defe
t prone modules [39, 42, 43, 49,51℄. Li et al. [43℄ used natural language text 
lassi�
ation te
hniques to analyzebug 
hara
teristi
s in two large open sour
e proje
ts. The authors found thatmemory-related bugs have de
reased ex
ept some simple memory-related bugssu
h as NULL pointer dereferen
es, whereas se
urity bugs with severe impa
tsare in
reasing. They also found that semanti
 bugs are the dominant root 
auses,requiring more e�orts to dete
t and �x them. Mohagheghi et al. [49℄ in anempiri
al study analyzed the impa
t of reuse on defe
t-density and stability, aswell as the impa
t of 
omponent size on defe
ts and defe
t-density in the 
ontextof reuse, using histori
al data on defe
ts, modi�
ation rate, and software size.This thesis presents an empiri
al study providing insight into post release bugs.In this study programming languages are 
ompared but in a new dimension that issoftware evolution. It fo
uses on exploring the in�uen
e of programming languageon post release bugs. Various evolution metri
s are 
ompared for three di�erentlanguages in
luding C, C++ and Java. Development history of Mozilla proje
tover the past 11 years is used for this study. It is found that Java is less errorprone than C language and C language is less error prone than C++ language, atleast for the Mozilla proje
t. Although these results are hard to generalize, theyprovide useful insight into the relationship between programming languages andbugs.1.4 Hunk Classi�
ationMaking 
hanges to software is a 
ru
ial task during di�erent phases of softwareevolution. Changes are required to add new features, to �x the bugs, to improveperforman
e or to restru
ture the 
ode for easy maintenan
e. These 
hanges areimplemented by adding, modifying or deleting the sour
e 
ode in di�erent �les



1.4. HUNK CLASSIFICATION 9of software. A �le 
an be 
hanged at one or more pla
es, 
alled deltas or hunks.These hunks of sour
e 
ode, whi
h are added either newly or after modi�
ations,may introdu
e bugs and result in failures later on. Ea
h hunk has a likelihood ofbeing buggy or bug-free.A large part of time and resour
es is 
onsumed in software testing and debuggingduring the evolution of software. We 
an save this e�ort if we 
an �nd the partsof the sour
e 
ode where the probability of bugs is more and apply these resour
eson �les whi
h require it most.In order to predi
t the number of bugs or to provide a predi
tor with regard to a
lassi�
ation s
hema there are two approa
hes possible. The �rst approa
h usesstatisti
al methods like multiple linear regression, logisti
 regression, and prin
i-pal 
omponents analysis [41, 52℄. Linear regression 
an be su

essfully used if thedependent variables 
hange linear with the independent variables. As most of themetri
s normally 
orrelate with ea
h other, there is a strong need to over
omethe multi
olinearity problem. Prin
ipal 
omponent analysis is used in this respe
tto redu
e the multi
olinearity e�e
t. Logisti
 regression 
an be used for binary
lassi�
ations.The se
ond approa
h relies on ma
hine learning te
hniques like de
ision tree in-du
tion, support ve
tor ma
hine, arti�
ial neural networks, k-nearest neighborsto mention some of them. Ma
hine learning te
hniques have the ability to learnfrom past data and these te
hniques 
an be employed in a variety of 
omplexsituations (see [72℄).A lot of resear
h has been 
arried out on bug predi
tion using di�erent approa
hesand at di�erent levels of granularity. Most of the resear
hers have used 
ode met-ri
s as predi
tors of bugs [29, 40, 52, 55, 15, 14℄, while others have used pro
essmetri
s as predi
tors of bugs [27, 35, 64℄. Previous resear
h was fo
used on dif-ferent levels of granularity su
h as modules, �les, 
lasses and methods. Someresear
hers predi
ted the number of faults for modules or �les [52, 55℄, while oth-ers fo
used on individual 
lasses and methods [29, 56℄.This dissertation presents a hunk 
lassi�
ation approa
h that predi
ts bugs insmallest units of a 
hange, whi
h are hunks. Two predi
tion models are 
on-stru
ted using statisti
al and ma
hine learning te
hniques. The models are builtusing hunk metri
s of previous buggy and bug-free hunks obtained by mining the
hange history of a software proje
t. Logisti
 regression and Random Forests areused to build the predi
tor models.Our 
lassi�
ation approa
h 
an 
lassify hunks as buggy or bug free with 82 per-
ent a

ura
y, 77 per
ent buggy hunk pre
ision and 67 per
ent buggy hunk re
allon average. Predi
tors obtained from one proje
t, based on hunk metri
s, 
an besu

essfully applied to other proje
ts.



10 CHAPTER 1. INTRODUCTION1.5 TerminologyThis 
hapter de�nes various terms used in this thesis.Software Con�guration Management (SCM): It is the pro
ess of handling
hanges made to the software during its development. It is used to 
ontrolthe evolution of software proje
ts. SCM 
omprises four operations: Iden-ti�
ation, 
ontrol, status a

ounting and audit. (IEEE Guide to SoftwareCon�guration Management. 1987. IEEE/ANSI Standard 1042-1987.)Bug Tra
king System: A bug tra
king system is used to store and manageinformation about bugs su
h as when a bug is reported, who reported abug, short des
ription of a bug, severity of a bug, platform on whi
h a bugis reported, module in whi
h a bug is reported and status of a bug.Version or Revision: These two terms are used inter
hangeably. A version orrevision represents instan
e of a �le at a parti
ular time. As a softwaresystem evolves, 
hanges are made to the �les. Revisions are used to identifydi�erent instan
es of a 
hanged �le.Version Control: It is an important feature of a software 
on�guration man-agement system, used to manage di�erent revisions of �les in a softwareproje
t.Commit: It is the pro
ess of submitting 
hanges to an SCM system. Initiallynew �les of a proje
t are 
ommitted to the SCM system. Then ea
h 
hangeto a �le is 
ommitted. A 
ommit may involve a single �le or multiple �lestogether.Change: Software evolution is 
hara
terized by making 
hanges to the �les. A
hange represents a single modi�
ation stored in the SCM repository.Change Delta: It is the result of making a 
hange to a �le. The 
hanged linesin a �le 
omprise a 
hange delta.Added Delta: It 
onsists of the lines added for making a 
hange.Deleted Delta: It 
onsists of the lines deleted for making a 
hange.Hunk: Changes are made to �les in 
hunks of sour
e 
ode that are dispersed ina �le. These 
hunks of 
ontiguous sour
e 
ode lines are 
alled hunks. There
an be multiple hunks in a 
hange delta.Modi�
ation hunk: If sour
e 
ode lines are modi�ed to make a 
hange, theresulting hunk is 
alled a modi�
ation hunk.



1.5. TERMINOLOGY 11Addition Hunk: If new sour
e 
ode lines are added to make a 
hange, the re-sulting hunk is 
alled an addition hunk.Deletion Hunk: If new sour
e 
ode lines are removed to make a 
hange, theresulting hunk is 
alled a deletion hunk.Change log: When a developer 
ommits a 
hange to the SCM system, shere
ords a message des
ribing the purpose of the 
hange. This message is
alled 
hange log. Change logs 
an be pro
essed to identify di�erent kindsof 
hanges.Change Annotation: It is a basi
 feature of 
on�guration management sys-tems. An SCM system annotates ea
h sour
e 
ode line with the date ofmodi�
ation, author of the line and the revision in whi
h that line was
hanged.Bug: A bug is 
hara
terized by a programming mistake or error in sour
e 
odethat results in malfun
tioning of software.Fix: A �x is 
hara
terized by repla
ing erroneous sour
e 
ode with the 
orre
t
ode. A �x is used to remove a bug from software.Bug Fix Change: A 
hange applied to software, to �x a bug is 
alled a bug �x
hange.Bug-Indu
ing Change: A 
hange whi
h resulted in malfun
tioning of softwarelater on is 
alled a bug-indu
ing 
hange or buggy 
hange.Bug Fix Hunk: A hunk whi
h is part of a �x is 
alled a bug �x hunk.Bug-Indu
ing Hunk: A hunk whi
h resulted in malfun
tioning of software lateron is 
alled a bug-indu
ing hunk.Bug-Fix Developer: A developer who makes 
hanges to �x a bug is 
alled abug-�x developer.Bug-Indu
ing Developer: A developer, modi�
ations made by whom resultedin malfun
tioning of software, is 
alled a bug-indu
ing developer.





Chapter 2
Extra
tion of Data fromRepositories
The work presented in this thesis is based on data obtained from mining soft-ware release history. Information related to 
hanges and bugs is extra
ted from
on�guration management systems and bug databases. Sour
e 
ode and 
hangeinformation is extra
ted from CVS and SVN repositories. All revisions of ea
h �leare analyzed for 
hanges made at di�erent times. Bug information is extra
tedfrom Bugzilla and this information is mapped to revisions of �les from respe
tivesoftware repositories.We use our own developed modules to extra
t information from CVS and bugdatabases. The extra
ted information is stored into a database. This databaseis used for training hunk 
lassi�
ation models as well as for analyzing language
onstru
ts.This 
hapter des
ribes the ar
hite
ture of the data extra
tion pro
ess, the stepsto extra
t and identify bug-indu
ing hunks and a s
hema of the database used tostore hunks.2.1 Ar
hite
tureThe data extra
tion pro
ess used in this study involves four modules along witha fa
t database. The four modules are des
ribed shortly.Log Parser It extra
ts log information from a software repository. Whenever a
hange is 
ommitted to the repository, 
on�guration management systemre
ords the purpose of 
hange and meta data of 
hange. Log parser 
onne
ts13



14 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIESto CVS and SVN, extra
ts log information for all revisions and stores thisinformation into the fa
t database.Annotation Parser It takes annotations for every revision of all �les in a proje
t.Con�guration management systems annotate ea
h line of 
ode with authorand date information. This information is important for analysis of 
hanges.Annotation parser 
onne
ts to CVS and SVN, extra
ts annotations for all�les and stores this information into the fa
t database.Di�eren
e Parser It takes di�eren
e of two 
onse
utive revisions of ea
h sour
e�le, extra
ts the 
hange deltas and store this information into the fa
tdatabase.Bug Parser It extra
ts bug reports from a bug database and stores this infor-mation into the fa
t database.Fa
t DataBase It holds all the information regarding �les, revisions, developers,bugs, transa
tions and 
hanges.Ar
hite
ture of data extra
tion pro
ess is depi
ted in Figure 2.1. Data extra
-tion is 
ompleted in four steps:� Log information is extra
ted from CVS and SVN repositories. CVS main-tains log for ea
h revision of a �le separately while SVN maintains log forevery revision of the proje
t. So log information from SVN repositories isfurther pro
essed to relate the log to 
hanged �les only.� Di�eren
es are extra
ted between two 
onse
utive revisions for all �les. CVSand SVN provide the fa
ility to view and get di�eren
es between two revi-sions. This information reveals the 
ode additions, deletions and modi�
a-tions made during the evolution of software.� Annotations are obtained for ea
h line of 
ode in all revisions. This infor-mation is also extra
ted from CVS and SVN repositories. Annotations arehelpful in studying evolutionary aspe
ts of software.� Bug reports are extra
ted from bug databases. Bug reports hold importantinformation in
luding des
riptions, report and �x dates, developers involvedin �xing and pat
hes of 
ode.Details for extra
tion and labelling of hunks are des
ribed in the next se
tions.
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Figure 2.1: Ar
hite
ture for Data Extra
tion2.2 Database S
hemaA simple database is designed to hold the log, di�eren
e and annotation infor-mation. This database is further analyzed to identify bug-indu
ing and bug-�xhunks. The database 
onsists of three tables, details of whi
h are given below:CVSLog holds information extra
ted from log messages for ea
h revision. Ades
ription of its attributes is given in Table 2.1.CVSDi�eren
e holds information about 
hange deltas between every two 
on-se
utive revisions of ea
h �le. A des
ription of its attributes is given inTable 2.2.CVSAnnotations holds information extra
ted from annotations obtained forea
h revision of every �le. A des
ription of its attributes is given in Table2.3.



16 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIESTable 2.1: CVSLog table des
riptionField Type Des
ription�le var
har(255),not null Name and path of the �lerevision var
har(10),not null Revision number of a �lerdate date,not null Revision date and timeauthor var
har(50) Name of author who made the revisionstate var
har(20) State of the revisionlinesadd integer, not null Number of lines added to this revisionlinesdel integer, not null Number of Lines deleted from this revision
omment longtext Comments added by the authorbug var
har(3),not null Indi
ates whether a bug is �xedTable 2.2: CVSDi�eren
e table des
riptionField Type Des
ription�le var
har(255),not null Name and path of the �lerevision var
har(10),not null Revision number of a �lehunk_id var
har(10),not null represents hunk identi�erhunk_text text,not null Contains the a
tual sour
e 
ode in a hunkbug_indu
e var
har(3),not null Indi
ates a bug-indu
e hunkbug_�x var
har(3),not null Indi
ates a bug-�x hunkTable 2.3: CVSAnnotations table des
riptionField Type Des
ription�le var
har(255),not null Name and path of the �lerevision var
har(10),not null Revision number of a �leline_number integer, not null Position of a line in the revisionline_revision var
har(10),not null line modi�
ation revisionauthor var
har(50) author of the linedate date date and time of modi�
ationline_
ode text A
tual sour
e 
ode of the line2.3 Extra
tion of HunksEvolution history of a proje
t holds a lot of information in
luding 
hanges madeto it. A single 
hange 
an be applied to one or multiple �les. Changes are made insmall 
hunks of 
ode, that are dispersed in a �le. These 
hunks are 
alled hunks.To extra
t hunks from a software repository, steps illustrated in Figure 2.2are used. Exe
ution of these steps populates the tables mentioned in the previousse
tion.In the �rst step, log information is obtained for all revisions of ea
h �le, usingthe log 
ommand of CVS and SVN. A part of CVS log output is shown in Figure2.4. It 
ontains date and time, author, state, lines added and deleted, 
ommitstatus and a 
omment added by the developer. The 
omment part is pro
essed
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Figure 2.2: Steps for Hunk Extra
tionto identify bug-�x revisions as des
ribed in [47, 20℄.In the se
ond step, a di�eren
e is taken between ea
h pair of 
onse
utive revisionsfor all �les, using the diff 
ommand of CVS and SVN. A sample of di�eren
eoutput is shown in Figure 2.5. It 
onsists of di�erent hunks, with ea
h hunkindi
ating the lines added, deleted or modi�ed between the two revisions. Thelines starting with '<' indi
ate the lines removed/modi�ed from previous revi-sion, whereas the lines starting with '>' indi
ate the lines added into the 
urrentrevision. Lines starting with '>' are stored into the CVS di�eren
e table for ea
hrevision. It indi
ates the 
ode added either newly or after modi�
ations. Thisportion of 
ode will be used for extra
tion of language 
onstru
ts and syntax el-ements.In the third step annotations are obtained for all latest revisions pre
eding thebug-�x revisions, using the annotate 
ommand of CVS and SVN. A sample ofannotations is shown in Figure 2.6. It provides for ea
h line, the last revision inwhi
h this line was added or modi�ed, the author who added this line, the datewhen this line was last added or modi�ed and the a
tual 
ode. This informationhelps to identify the origin of the bugs [67℄.2.4 Identi�
ation of bug-indu
ing HunksBug-indu
ing 
hanges 
an be identi�ed using SZZ algorithm [67, 37℄. HoweverSZZ algorithm identi�es 
hanges at �le level. It does not re
ognize bug-indu
inghunks, rather it 
onsiders whole 
hange as bug-indu
ing. A manual review ofbug-indu
ing 
hanges have shown that not all hunks of a bug-indu
ing 
hange
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Figure 2.3: Steps for identifying bug-indu
ing hunks
ontribute to bugs. So a te
hnique is required whi
h 
an dis
riminate betweenbug-indu
ing and non bug-indu
ing hunks.This dissertation proposes a te
hnique for identifying bug-indu
ing hunks. Adetail of the te
hnique is illustrated in Figure 2.3. This te
hnique makes useof the database des
ribed earlier. The steps to identify bug-indu
ing hunks areexplained using an example. Suppose we have a �le from E
lipse proje
t namedJDTCompilerAdapter.java. In the �rst step log information is extra
ted from theCVS repository. Figure 2.4 shows a sample of log taken for the above mentioned�le. It 
ontains information related to revision, author, date, time, lines added ordeleted, status and a 
omment added by the developer. Comments are pro
essedto �nd keywords Fix, Fixed, Pat
h, Bug or a numeri
 identi�er of a bug. Su
h
omments are highlighted using boldfa
e in Figure 2.4. To illustrate the hunkidenti�
ation pro
ess, revision 1.66 is sele
ted in whi
h a bug is �xed, revision1.66 is marked as bug �x revision. To �x a bug in this revision 
hanges weremade to revision 1.65.A di�eren
e is taken between revision 1.65 and 1.66. Figure 2.5 shows thedi�eren
e of both revisions. There are two hunks in Figure 2.5, whi
h are high-lighted. First hunk indi
ates that lines 110-113 are 
hanged in revision 1.65 to line110 in revision 1.66. Lines starting with '<' indi
ate the lines removed/modi�edfrom revision 1.65, whereas the lines starting with '>' indi
ate the lines addedinto revision 1.66.To identify the latest revision in whi
h these lines were added, annotationsare obtained for revision 1.65. Figure 2.6 shows the annotations organized ina tabular form. Comments are ignored and 
ode of lines 110,115,116 and 117 is
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Figure 2.4: CVS Logsele
ted. These lines were re
ently modi�ed or added in revision 1.38 and revision1.29 as indi
ated in Figure 2.6. CVS di�eren
e table is queried to identify thehunks in whi
h these 
hanges were made. Figure 2.7 shows all the added hunksin revision 1.38. String 
omparison is used to identify the hunks in whi
h lines110,115 and 117 were added. The hunks 
ontaining these lines are highlighted inFigure 2.7 and these hunks are marked as bug-indu
ing hunks.2.5 Proje
ts AnalyzedFor this study 8 open sour
e proje
ts are sele
ted. These proje
ts are sele
teddue to easy availability of their development history and bug information. Table2.4 shows some statisti
s of these proje
ts. We des
ribe the proje
ts shortly:Apa
he HTTP 1.3 is the most popular web server on the Internet, providingse
ure, e�
ient and extensible HTTP servi
es (http://httpd.apa
he.org/).Columba is an Email Client written in Java, featuring a user-friendly graphi
alinterfa
e with wizards and internationalization support. We sele
ted for ourstudy the main trunk of Columba.(http://www.
olumbamail.org/drupal/)E
lipse is an integrated development environment (IDE) for software develop-ment. We sele
ted JDT part of E
lipse proje
t for our study, that providesJava Development Tools (http://www.e
lipse.org/).Epiphany is a simple and easy to use web browser for GNOME desktop(http://proje
ts.gnome.org/epiphany/).
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Figure 2.5: CVS Di�eren
e

Figure 2.6: CVS Annotations
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Figure 2.7: CVSDi�eren
e table entriesTable 2.4: Des
ription of Proje
tsProje
t Software Type Language PeriodApa
he HTTP 1.3 HTTP Server C 01/1996-01/2008Columba Email 
lient Java 07/2006-12/2007E
lipse JDT Java Development IDE Java 06/2001-10/2008Epiphany Web Browser C 12/2002-02/2009Evolution Groupware Client C 04/1998-06/2007Mozilla Web Browser C/C++/Java 03/1998-07/2008Nautilus File Manager C 10/1999-02/2009PostgreSQL DBMS C/C++ 07/1996-10/2008Evolution provides integrated mail, address-book and 
alendaring fun
tionalityto users of the GNOME desktop (http://proje
ts.gnome.org/evolution/).Nautilus is a powerful �le manager.(http://proje
ts.gnome.org/nautilus/)Mozilla is a popular and widely used web browser. (http://www.mozilla.org/)PostgreSQL is a widely used database management system. (http://www.postgresql.org/)





Chapter 3
Empiri
al Analysis ofBug-Indu
ing LanguageConstru
ts
As a software evolves, 
hanges are 
ontinuously applied to the sour
e 
ode. Soft-ware 
on�guration management systems re
ord these 
hanges made to the sour
e
ode. This information 
an be extra
ted and used for software evolution studies.Log messages of a transa
tion help to identify reasons for software 
hanges [47℄.Bug databases hold important information related to bugs [1℄. This information
an be used to study 
hara
teristi
s and behavior of bugs. Software 
on�gurationmanagement data 
ombined with bug data provides a ri
h sour
e for di�erentkinds of empiri
al studies. In the re
ent years resear
h is fo
used on produ
inggood quality software with redu
ed 
osts. Parti
ularly resear
hers are interestedin redu
ing testing e�ort and maintenan
e 
osts. Most of the work is aimed atfault o

urren
e and fault predi
tion in the software [13, 27, 36, 54, 60, 71℄.Software 
hange history 
an be mined to dis
over interesting 
hange patterns.Resear
h has been 
ondu
ted on di�erent levels of granularity to �nd 
hangepatterns. Some resear
hers have studied �le 
o-
hange patterns [73℄ , others havestudied logi
al 
ouplings among di�erent modules [12, 23℄ and line 
o-
hangepatterns [76℄ . More �ne grained resear
h is also 
ondu
ted to �nd appli
ationspe
i�
 patterns, to �nd item 
ouplings, to predi
t 
hange propagation and to�nd signature 
hange patterns [31, 32, 75℄.In this 
hapter an empiri
al study of 
hanges and bugs is presented. Soft-ware 
hange history of 8 open sour
e proje
ts is mined and 
hara
teristi
s ofbug-introdu
ing 
hanges are analyzed. A number of language 
onstru
ts are ex-tra
ted from bug-introdu
ing 
hanges and their abilities of bug-introdu
tion are23



24 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSstudied. Di�erent language 
onstru
ts are 
ompared and more bug-prone lan-guage 
onstru
ts are identi�ed.Revision histories of 8 open sour
e proje
ts are mined to extra
t bug-indu
inghunks. These hunks are pro
essed to extra
t language 
onstru
ts and syntax el-ements whi
h 
ontribute to bugs. The obje
tive of this study is to �nd language
onstru
ts whi
h are more problemati
. If su
h bug-indu
ing synta
ti
 elementsare identi�ed, testing e�ort 
an be fo
used on the most frequent bug-indu
ingelements. Further developers 
an be 
areful while making 
hanges, keeping inmind the frequent bug-indu
ing elements. When developers make a 
hange, they
hange 
lasses, fun
tions, variables, sele
tion and 
ontrol stru
tures. My �rst re-sear
h obje
tive is to �nd whi
h language 
onstru
ts or syntax elements introdu
ebugs most of the time. This formulates my �rst resear
h question:� Resear
h Question 1. What are the most frequent bug-indu
ing language
onstru
ts.Di�erent proje
ts are developed for spe
i�
 purpose and by a di�erent groupof developers. Further proje
ts 
an be developed in di�erent programminglanguages. So it would be interesting to know whi
h language 
onstru
ts
ommonly introdu
e bugs in di�erent proje
ts. It gives rise to the followingtwo resear
h questions:� Resear
h Question 2. Is the frequen
y of bug-indu
ing language 
onstru
tssimilar between proje
ts developed in the same language.� Resear
h Question 3. Is the frequen
y of bug-indu
ing language 
onstru
tssimilar between proje
ts developed in di�erent languages.Di�erent developers may have di�erent programming skills, so they may feeldi�
ulty with di�erent language 
onstru
ts and hen
e introdu
e di�erentkinds of bugs. There 
an be domain spe
i�
 features whi
h in
rease thedi�
ulty of developers. This observation gives rise to the following resear
hquestions:� Resear
h Question 4. Is the frequen
y of bug-indu
ing language 
onstru
tssimilar between developers of the same proje
t.� Resear
h Question 5. Is the frequen
y of bug-indu
ing language 
onstru
tssimilar between developers of di�erent proje
ts.� Resear
h Question 6. Is the frequen
y of bug-indu
ing language 
onstru
tssimilar between developers of the same programming language.� Resear
h Question 7. Is the frequen
y of bug-indu
ing language 
onstru
tssimilar between developers of di�erent programming languages.
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ondu
t this study, 8 open sour
e proje
ts developed in multiple languages andhaving a long development history are sele
ted. A des
ription of these proje
ts isalready given in Chapter 2.3.1 Extra
tion of Language Constru
tsBug-indu
ing hunks are identi�ed using the te
hniques mentioned in Chapter2. A stati
 sour
e 
ode parser is implemented in Java, whi
h extra
ts di�erentsyntax elements from a given hunk. It parses the hunk and �nds the o

urren
eof di�erent language 
onstru
ts. 26 di�erent syntax elements are 
hosen, and theparser is designed to �nd these elements. A detail of these syntax elements isshown in Table 3.1, with examples extra
ted from E
lipse and Apa
he 
hangedata. Syntax elements presented in last �ve rows of Table 3.1, are extra
ted forJava �les only, whereas pointers, in
lude statement, de�ne statement, stru
tures,assertions and goto statement are not extra
ted for Java �les.A short des
ription of ea
h language 
onstru
t is presented below:Conditions: Conditional expressions provide a sele
tion me
hanism in the pro-gram. Developers implement 
onditions in a program to provide multi-ple paths of exe
ution. Conditions usually evaluate a Boolean expressionand depending on the evaluation result, exe
ution path is sele
ted. There
an be simple and 
omplex 
onditions in a program. Simple 
onditionsinvolve single Boolean expression, whereas 
omplex 
onditions involve mul-tiple Boolean expressions. Further 
onditions are nested up to many levels.As 
onditions involve Boolean expressions and use of relational operators,developers 
an make a mistake in sele
ting appropriate relational or logi
aloperators. Usually equality operator is mistakenly used and it is sometimesmissed by testing tools.Loops: Loops provide an iteration me
hanism in a program. Developers useloops to repeat a statement or group of statements many times. Thereare three kinds of loops, one whi
h exe
utes statements for the spe
i�ednumber of times, the other repeats statements until a spe
i�ed 
onditionbe
omes false, and the third one exe
utes statements at least on
e even ifthe spe
i�ed 
ondition is false.Developers may make a mistake in spe
ifying the 
ounter variable in theloop, or the 
ontrolling 
ondition may be set wrong.Assignments: Assignments are used to set or 
hange the value of a variable.This value 
an be set using a 
onstant, other variable or an expression. Theexpression may be arithmeti
, logi
al, obje
t instantiation or some fun
tion
all.
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Table 3.1: Language Constru
tsSyntax Element Symbols ExamplesConditions if, else, else if if (this.
ompileList.length != 1) {Loops for, while, do while for (int i = 0, max = pathEle-ments.length; i< max; i++) {Assignments = this.target=true;Fun
tion Calls Foo ( ); 
lasspath.addExisting(new Path(null,jre_lib.toOSString()))Fun
tion De
l./Def. bar ( ) { } private void addExtdirs(Path extDirs,Path 
lasspath) {Variable De
laration int foo; Map 
ustomDefaultOptions;Pointers Int * foo; 
har *fspe
;Logi
al Operators &&, ||, ! if (!resultValue && this.logFileName !=null) {Relational Operators <, >, ==, !=, <=, >= if (this.a

essRules == null) {Return statement return a; return ClasspathDire
tory + this.path;//NON − NLS − 1Use of NULL foo= NULL; private Map �leEn
odings = null;In
lude statement # in
lude # in
lude <sys/stat.h>De�ne statement # de�ne # de�neMPE_WITHOUT_MPELX44Stru
tures stru
t foo { } stru
t utsname os_version;Assertions assert ( ) assert(idx < APACHE_ARG_MAX);Arrays int foo [℄ String[℄ dirs = extDirs.list();Case statement 
ase foo: 
ase READING_JAR:Goto statement goto foo: goto return_from_multi;In
-de
 operator ++,- - if (len > 2 && errstr[len-3℄ == .) len--;Break statement break; state = destinatonPathStart; break;Ex
eption handlers try, 
at
h try {zipFile.
lose();}
at
h(IOEx
eption e) {Class de
laration 
lass foo publi
 
lass ClasspathDire
tory imple-ments FileSystem.Classpath {New operator new foo() this(new ZipFile(�le), true, null);Throw statement throw foo-ex
eption; throw new BuildEx
eption( Jdt
om ,e);//NON − NLS − 1Imports import import org.e
lipse.
ore.runtime.IPath;Inheritan
e extends, implements publi
 
lass ClasspathJar extendsClasspathLo
ation {



3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 27Developers 
an make mistakes in assignments by using wrong values orinappropriate expressions.Fun
tion Calls: Fun
tions or methods are a way to modularize programs. Inobje
t oriented programming methods a
t as interfa
es to 
lasses. Devel-opers write methods or fun
tions to perform 
ertain tasks. Whenever thattask is required, they 
an make a 
all to it. A proper syntax of a method
all in
ludes method name and its parameters. If the fun
tion or methodreturns a value, it should be used in an assignment expression.Programmers 
an make a mistake in providing the 
orre
t parameters orarguments to a fun
tion 
all, or they 
an make a 
all at the wrong pla
e.Fun
tion De�nitions: Fun
tions or methods are required to be de�ned beforethey 
an be 
alled in a program. Method de�nitions are an essential partof obje
t oriented programming. Classes are in
omplete without methods.Method de�nitions 
onsist of signature of the method and a body of themethod. Signature of a method 
onsists of an a

ess spe
i�er, return type,method name and a list of parameters. Method body 
onsists of a set ofstatements.Developers 
an make mistakes in writing signature of a method.Variable De
larations: Variables are used to o

upy memory lo
ations for hold-ing data. Variables 
an be de
lared or de�ned in a program. Variable de
la-ration involves a data type and a variable name, whereas variable de�nitionadditionally involves an assignment of initial value to the variable. Variables
an be of simple data types or 
omplex user de�ned data types. In obje
toriented programming, variables are also used to hold instan
es of 
lasses.Developers 
an make wrong de
larations or in
orre
t instantiations, whi
hmay lead to errors in programs.Pointers: Pointers are a kind of variables whi
h hold memory addresses. Devel-opers use pointers to refer di�erent memory lo
ations in a program. Pointersare extensively used in programs developed in C language. Pointers 
an bede
lared of any data type and they 
an point to memory lo
ations of thesame type.Major draw ba
k of pointers is memory management. Pointers 
an referto wrong lo
ations or they 
an o

upy memory when it is no more needed.Developers 
an make mistakes in pointer initializations or pointer updations.They 
an also forget to free memory after using it.Logi
al and Relational Operators: Logi
al operators are used to 
ombine Booleanexpressions whereas relational operators are used to 
onstru
t Boolean ex-pressions. They are normally used as part of the 
onditions and loops.
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an make a mistake in using the appropriate operator at theappropriate pla
e.Return Statement: Return statement is used in a method or fun
tion to returna value. If a return type is mentioned in method signatures, it should havea return statement in its body. Return statement is a way to use the resultsof a fun
tion exe
ution outside the body of a fun
tion.Developers 
an forget to return a value or they 
an make a mistake inreturning the 
orre
t value.Use of Null: Null is treated as 0 or void in C and C++. In Java it is a spe
ialliteral of the null type and it doesn't ne
essarily have value zero. It isimpossible to 
ast to the null type or de
lare a variable of this type.Developers 
an make invalid use of null or they 
an make mistakes in as-signing null.In
lude Statement: In
lude statement is used to 
ombine library �les or otheruser written �les in a C or C++ program.De�ne Statement: De�ne statement is used to de�ne ma
ros in a C or C++program.Stru
tures: Stru
tures are a way to 
ombine di�erent data types into a singledata type. In pro
edural languages stru
tures are used to 
ombine variablesand fun
tions. A stru
ture represents a 
omplex data type 
onsisting ofmultiple simple data types.Developers 
an make a mistake in de�ning the stru
ture or assessing theelements of the stru
tures.Assertions: In large programs, before pro
eeding further it is useful to knowwhether a 
ondition or set of 
onditions is true. To start a parti
ular 
om-putation, developers usually make sure that the program is in a state, inwhi
h they believe it to be. It is a

omplished by use of a statement 
alledassertion. If an assertion fails, a diagnosti
 message 
an be displayed andthe program is terminated.Programmers 
an make mistakes in using valid assertions.Arrays: Arrays provide a way to store 
olle
tion of data items of same typeat 
ontiguous memory lo
ations. Individual elements 
an be a

essed byspe
ifying the index of that element. Obje
t oriented languages providefun
tions related to arrays that 
an be used to manipulate arrays.Developers 
an make mistakes in de
laring arrays or a

essing the elementsof an array.
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h statement provides a way to have multiple exe
utionpaths based on the value of a single variable. Di�erent values of the swit
hvariable are provided by using 
ase statement. During the exe
ution of aprogram, statements after the mat
hing 
ase are exe
uted. A default 
aseis also provided, whi
h is exe
uted when none of the 
ases mat
h with the
urrent value of the swit
h variable.Developers 
an make in
orre
t use of 
ases.Goto Statement: Goto statement is used to shift 
ontrol from one pla
e toanother pla
e in a program. It is used in programs written in C language.Labels are used to mark lo
ations in a program, goto statement 
an shift
ontrol to these labels.Programmers 
an make erroneous use of goto statement.In
rement-de
rement Operator: In
rement operator when applied to a vari-able, in
reases its value by adding one to it. Similarly de
rement operatorwhen applied to a variable, de
reases its value by subtra
ting one from it.These operators are short notation of an assignment expression, doing thesame. Use of the operator on left or right side of the operand produ
esdi�erent results.Programmers sometimes do not make use of in
rement-de
rement operator
arefully and unexpe
ted results are produ
ed.Break Statement: Break statement is used in loops to stop the iterations ofa loop based on some 
ondition. Sometimes you do not want the loop to
omplete the spe
i�ed iterations, and stop the repetition based on the stateof an external variable. Break statement helps in su
h kind of situations.Mishandling of break statement 
an produ
e unexpe
ted results.Class De
laration and De�nition: Classes are the 
ore of obje
t oriented pro-gramming languages. Classes implement the data en
apsulation, inheri-tan
e and polymorphism, that are typi
al features of obje
t oriented pro-gramming. Classes are 
omposed of data members and methods, with pub-li
, private and prote
ted a

ess spe
i�ers for these two. A 
lass 
an be usedin a program by 
reating instan
es of it, whi
h are 
alled obje
ts.Programmers 
an make several types of mistakes while de�ning 
lasses.New Operator: New operator is used when a new instan
e of a 
lass is required.New operator reserves memory for an instan
e of a 
lass and names it withthe variable for whi
h that instan
e is 
reated.Programmers 
an mistakenly 
reate wrong instantiations, or they may usewrong arguments to the 
onstru
tor of a 
lass.



30 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSImport Statement: Import statement is used to in
lude di�erent pa
kages ina program. It is not very mu
h 
on
erned with errors, however it mayindire
tly involve in 
reation of bugs.Inheritan
e: It is a typi
al feature of obje
t oriented programming. A 
lass 
aninherit either from a single 
lass or multiple 
lasses. C++ supports multipleinheritan
e, whereas in Java interfa
es are used to implement multiple in-heritan
e. By using inheritan
e, features of the parent 
lass are transferredto the 
hild 
lass. The 
hild 
lass 
an have additional features of its own.Improper handling of inheritan
e 
an result in multitude of errors whi
h
ause failure of the program.Ex
eption Handlers: Ex
eption handling is a way to trap known errors in aprogram. It is implemented by a try and 
at
h me
hanism. Parts of the
ode whi
h are known to generate errors are pla
ed in a try blo
k. Ea
htry blo
k is a

ompanied by a 
at
h blo
k, in whi
h error handling 
ode ispla
ed. Ex
eption handling prevents a program from terminating, when anerror o

urs.An ex
eption may not be trapped by the 
at
h blo
ks provided and resultin program failures.Throw Statement: Throw statement is used to throw an ex
eption of a spe
i-�ed type.Invalid throw statement 
an result in errors, 
ausing malfun
tioning of aprogram.3.2 Proportion of Di�erent Hunk TypesExtra
ted hunks are grouped into four 
ategories based on the bug information.These hunk types are:Bug-Fix Hunks These hunks are part of bug-�x 
hanges. A bug-�x hunk is
reated when a developer �xes a bug.Bug-Indu
ing Hunks These hunks are origin of bugs. A bug-indu
ing hunk is
reated when a developer makes a 
hange, whi
h results in failure later on.Bug-Fix-Indu
ing Hunks These hunks are part of bug-�x 
hanges but intro-du
e bugs later on. A bug-�x-indu
ing hunk is 
reated when a developer�xes a bug but at the same time introdu
es another bug.Clean Hunks These hunks are neither part of bug �xes nor introdu
e any bug.
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Figure 3.1: Proportion of hunk types in di�erent proje
tsAs development of software progresses new features are added and size of soft-ware grows. Chan
es of errors are in
reased as the number of 
hanges in
reases.Bug-indu
ing hunks 
onstitute a signi�
ant proportion of total hunks made inthe development history of a proje
t. Figure 3.1 shows the proportion of di�erenttypes of hunks in 8 proje
ts. Mozilla proje
t is des
ribed with three languagesseparately.All proje
ts have more than 20% bug-�x hunks. Proportion of bug-indu
inghunks is higher in proje
ts developed in C language. Mozilla and Nautilus havea higher per
entage of bug-�x-indu
ing hunks. Proje
ts developed in JAVA have
omparatively higher per
entage of 
lean hunks.3.3 Most Frequent Bug-Indu
ing Language Constru
tsFrequen
ies of language 
onstru
ts in bug-indu
ing hunks are 
al
ulated. A ma-jority of the bug-indu
ing hunks involved a 
hange to more than one language
onstru
t. To answer the resear
h question 1, for ea
h language 
onstru
t, theproportion of total bug-indu
ing hunks, it was involved in is 
al
ulated. Themost frequent bug-indu
ing language 
onstru
ts are fun
tion 
alls, assignments,
onditions, pointers, use of NULL, variable de
laration, fun
tion de
laration andreturn statement. Table 3.2 and 3.3 show the proportion of total bug-indu
inghunks whi
h 
ontain a given language 
onstru
t, expressed as per
entage val-ues. Columns from 2 to 8 in Table 3.2 indi
ate the per
entage of total hunksinvolving a spe
i�
 language 
onstru
t for Apa
he, Epiphany, Evolution, C �lesof Mozilla, C++ �les of Mozilla, Nautilus and PostgreSQL respe
tively. In Table
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ies of Bug-Indu
ing Language Constru
ts(a)Syntax Element Ap. Ep. Ev. Moz-C Moz-CPP Nau. Pg-SQLConditions 40 22 29 28 28 21 17Loops 11 4 7 5 4 4 6Assignments 38 39 42 35 31 31 25Fun
tion Calls 54 57 62 38 47 59 36Fun
tion De
laration 12 12 11 8 8 11 7Variable De
laration 14 24 25 16 14 18 13Pointers 30 24 29 15 11 24 12Logi
al Operators 30 16 18 17 15 15 10Relational Operators 23 17 15 12 14 14 9Return statement 15 9 11 13 14 8 7Use of NULL 19 22 22 11 0.8 18 6In
lude statement 0.69 7 5 1 2 5 1De�ne statement 2 2 1 1 0.65 2 0.57Stru
tures 2 1 3 0.83 0.2 0.58 1Assertions 0.09 0 0 0.01 0.01 0 0.07Arrays 10 5 4 11 3 2 6Case statement 2 2 3 2 1 1 5Goto statement 0.38 0.35 0.57 3 0.19 0.22 0.23In
-de
 operator 2 0.45 0.63 4 2 0.37 3Break statement 3 2 3 3 1 1 2
3.3 
olumns from 2 to 4 provide values for Columba, E
lipse and Java �les ofMozilla respe
tively.Fun
tion 
alls range from 38-62%, assignments range from 30-42%, 
onditionsrange from 17-40%, pointers range from 11-30%, use of NULL ranges from 1-22%, variable de
larations range from 11-25%, fun
tion de
larations range from8-12% and return statement ranges from 8-15% in the studied proje
ts. Columba
ontains a high number of bug-indu
ing hunks involving imports and obje
t in-stantiations (use of new operator). Use of in
rement-de
rement operator, 
asestatement and obje
t instantiations is high in bug-indu
ing hunks of E
lipse. Ar-rays have 
aused more problems in Apa
he, E
lipse and C �les of Mozilla. Numberof goto statement is higher in bug-indu
ing hunks of Mozilla C �les as 
omparedto other proje
ts.More than 50% bug indu
ing hunks of Apa
he involve fun
tion 
alls and about40% bug indu
ing hunks have 
onditions and assignments. Pointers are present in30% bug indu
ing hunks of Apa
he. Fun
tion de
larations, variable de
larations,null, return statement and loops are present in 12%, 14%, 19%,15% and 11% bugindu
ing hunks of Apa
he respe
tively. About 10% bug indu
ing hunks of Apa
he
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ies of Bug-Indu
ing Language Constru
ts(b)Syntax Element Columba E
lipse Mozilla-JConditions 20 31 17Loops 8 7 4Assignments 37 33 30Fun
tion Calls 50 41 39Fun
tion De
laration 8 11 10Variable De
laration 20 12 11Logi
al Operators 9 17 11Relational Operators 12 15 10Return statement 10 14 9Use of NULL 5 7 4Arrays 4 11 7Case statement 0.59 11 5In
-de
 operator 0.59 8 5Break statement 0.59 3 3Ex
eption handlers 4 2 2Class de
laration 4 2 2New operator 17 10 6Throw statement 3 2 4Imports 12 3 0.47Inheritan
e 4 1 1also involve use of arrays. Remaining language 
onstru
ts are present in less than3% bug indu
ing hunks of Apa
he.Epiphany has almost similar proportion of language 
onstru
ts to Apa
he,present in bug indu
ing hunks. However proportion of 
onditions, pointers, loopsand return statement is 
omparatively less with 22%, 24%, 4% and 9% bug in-du
ing hunks involving these 
onstru
ts. Variable de
larations are present in 24%bug indu
ing hunks of Epiphany. Surprisingly, proportion of in
lude statementsis higher in bug indu
ing hunks of Epiphany.More than 60% bug indu
ing hunks of Evolution involve fun
tion 
alls and
onditions are found in 29% bug indu
ing hunks. Proportion of other language
onstru
ts is similar to Apa
he, with slightly higher number of in
lude statements.C and C++ �les of Mozilla have similar proportion of language 
onstru
ts inbug indu
ing hunks. Both kinds of �les vary in fun
tion 
alls, use of null andarrays. Number of fun
tion 
alls is higher in C++ �les whereas use of null andnumber of arrays is higher in bug indu
ing hunks of C �les. Fun
tion 
alls arepresent in 47% and 38% bug indu
ing hunks of C++ and C �les respe
tively. Nullis used in 11% bug indu
ing hunks of C++ �les, whereas in C �les this proportionis less than 1%. Arrays are present in 11% bug indu
ing hunks of C �les and 3%



34 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSof C++ �les.Conditions, loops, assignments, fun
tion de
larations, variable de
larations,return statement and pointers are present in 28%, 5%, 35%, 8%, 16%, 13% and15% bug indu
ing hunks of Mozilla C �les respe
tively. C++ �les have similarproportion of these 
onstru
ts.Nautilus has similar proportion of language 
onstru
ts as found in bug indu
-ing hunks of Apa
he.PostgreSQL has slightly lower proportion of language 
onstru
ts in its bugindu
ing hunks as 
ompared to other proje
ts. Fun
tion 
alls are present in 36%and assignments in 25% bug indu
ing hunks. Use of null and fun
tion de
larationsis very low in PostgreSQL as 
ompared to other proje
ts. Conditions are foundin 17% bug indu
ing hunks of PostgreSQL. Other language 
onstru
ts are presentin less than 10% bug indu
ing hunks.In Columba proje
t, 50% bug indu
ing hunks involve fun
tion 
alls, whereasassignments, 
onditions, loops, variable de
larations, fun
tion de
larations andreturn statement are present in 37%, 20%, 8%, 20%, 8% and 10% bug indu
inghunks respe
tively. Columba proje
t surprisingly has higher number of importstatement in its bug indu
ing hunks. About 12% bug indu
ing hunks 
ontainimport statement. Columba also takes a lead in the use of new operator. Obje
tinstantiations have 
reated more bugs in Columba as 
ompared to other proje
ts.E
lipse and Java �les of Mozilla have more or less similar proportion of dif-ferent language 
onstru
ts in bug indu
ing hunks. Conditions, return statementand use of null have 
reated more problems in E
lipse as 
ompared to Java �lesof Mozilla. E
lipse also leads in the use of 
ase statement and arrays in its bugindu
ing hunks. About 11% bug indu
ing hunks of E
lipse 
ontain 
ase statement.In
rement-de
rement operator is present in 8% bug indu
ing hunks of E
lipse.This per
entage is highest among all proje
ts. Fun
tion 
alls, assignments and
onditions are present in 39%, 30% and 17% bug indu
ing hunks of Mozilla Java�les. Other language 
onstru
ts are present in less than 11% bug indu
ing hunks.3.4 Proje
t SimilaritiesIn order to answer resear
h questions 2 and 3, we analyzed the data using PearsonCorrelation. There are some language 
onstru
ts spe
i�
 to a parti
ular language,so we sele
ted the language 
onstru
ts whi
h are 
ommon to C, C++ and Javalanguages. Table 3.4 shows the values of 
orrelation 
oe�
ients with p<0.001.Columns from 2 to 11 represent 
orrelation values for Apa
he (Ap.), Columba(Col.), E
lipse (E
l.), Epiphany (Epi.), Evolution (Evo.), Mozilla Java �les (Mz-J), Mozilla C �les (Mz-C), Mozilla C++ �les (Mz-CPP), Nautilus (Nau.) andPostgreSQL (Pg-SQL).The 
orrelation 
oe�
ients range from 0.84-0.99, indi
ating that all proje
ts
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oe�
ients for di�erent proje
tsProje
t Ap. Col. E
l. Epi. Evo. Mz-J Mz-C Mz-CPP Nau. Pg-SQLAp. 1.0 0.84 0.90 0.92 0.92 0.90 0.92 0.90 0.90 0.93Col. 1.0 0.87 0.92 0.94 0.93 0.89 0.88 0.93 0.95E
l. 1.0 0.86 0.87 0.96 0.91 0.93 0.84 0.93Epi. 1.0 0.99 0.92 0.94 0.85 0.98 0.95Evo. 1.0 0.93 0.94 0.89 0.98 0.96Mz-J 1.0 0.96 0.94 0.91 0.96Mz-C 1.0 0.90 0.89 0.97Mz-CPP 1.0 0.85 0.92Nau. 1.0 0.93Pg-SQL 1.0

Figure 3.2: Bug-indu
ing language 
onstru
ts in di�erent proje
ts (a)are statisti
ally 
orrelated for the frequen
ies of bug-indu
ing language 
onstru
ts.Proje
ts developed in the same programming language are highly 
orrelated ex-
ept E
lipse and Columba, for whi
h 
orrelation 
oe�
ient is 0.87. Proje
tsdeveloped in di�erent languages are signi�
antly 
orrelated but the 
orrelation
oe�
ients are slightly lower as 
ompared to proje
ts developed in the same pro-gramming language. We 
an see in Figure 3.2 and 3.3 that all proje
ts havesimilar patterns of bug-indu
ing language 
onstru
ts.Highest 
orrelation is found between Evolution and Epiphany and lowest 
or-relation between Columba and Apa
he. Apa
he is statisti
ally 
orrelated to otherproje
ts, for frequen
ies of bug indu
ing language 
onstru
ts with a 
orrelation
oe�
ient of greater than 0.9. Columba has strong 
orrelation with Epiphany,Evolution, Nautilus and PostgreSQL having more than 90% 
orrelation.E
lipse is highly 
orrelated with Mozilla and PostgreSQL. It has 86%, 87%and 84% 
orrelation with Epiphany, Evolution and Nautilus.Mozilla is also highly 
orrelated with all other proje
ts having 
orrelationvalues above 90%.
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Figure 3.3: Bug-indu
ing language 
onstru
ts in di�erent proje
ts (b)Nautilus has strong 
orrelation with all proje
ts ex
ept E
lipse and Mozilla.It has 84% and 85% 
orrelation with E
lipse and Mozilla C++ �les. Other 
or-relations are above 90%.PostgreSQL has strong relationships with all proje
ts, having 
orrelation val-ues above 92%.3.5 Developer SimilaritiesIn order to answer resear
h questions 4, 5, 6, and 7, we 
al
ulated the frequen-
ies of bug-indu
ing language 
onstru
ts for ea
h developer of all proje
ts. Wesele
ted the 10 most bug-indu
ing developers from ea
h proje
t, ex
ept Columbain whi
h 
ase only 5 developers were involved in bug-indu
ing hunks, and appliedthe Pearson 
orrelation on the sele
ted data. Table 3.5 shows the 
orrelation
oe�
ients between developers of the same proje
t, whereas 
orrelation amongdevelopers of di�erent proje
ts is given in Table 3.6. Due to the spa
e 
onstraintswe mention only the minimum and maximum values of the 
orrelation 
oe�
ients.For detailed frequen
y distribution of 
orrelation 
oe�
ients see Figure 3.4 and3.5. Results of 
orrelation analysis presented in Table 3.5 and 3.6 are obtainedfor 10 sele
ted developers from ea
h proje
t. However the 
orrelation 
oe�
ientsdepi
ted in Figure 3.4 and 3.5 are 
al
ulated for all developers. Some developersare very a
tive and others 
ontribute at irregular intervals. Developers havingminor 
ontributions will have weak 
orrelation with the a
tive developers. So the
orrelations in Figure 3.4 and 3.5 are as low as 0.15 and -0.1. However majorityof the 
orrelations are above 80% for developers from di�erent proje
ts and above90% for developers from the same proje
t.Most of the developers of di�erent proje
ts have similar frequen
ies of bug-indu
ing language 
onstru
ts. Table 3.6 shows the minimum and maximum val-ues of 
orrelation 
oe�
ients obtained. Developers of the proje
ts developed in



3.5. DEVELOPER SIMILARITIES 37Table 3.5: Correlation Coe�
ients (developers of same proje
t)Proje
t Min. Value Max. ValueApa
he 0.82 0.98Columba 0.54 0.89E
lipse 0.70 0.98Epiphany 0.64 0.98Evolution 0.95 0.99Mozilla-J 0.76 0.97Mozilla-C 0.31 0.97Mozilla-CPP 0.88 0.98Nautilus 0.89 0.99PostgreSQL 0.33 0.97

Figure 3.4: Frequen
y distribution of 
orrelation 
oe�
ients (same proje
t)the same language have higher 
orrelation values as 
ompared to developers ofthe proje
ts developed in the di�erent languages. However there are a very fewdevelopers, who vary in frequen
ies of bug-indu
ing language 
onstru
ts, with
orrelation values as low as 0.19.Developers of the same programming language have strong 
orrelations, with a fewex
eptions for ea
h language. Table 3.7 shows the minimum and maximum valuesof the 
orrelation 
oe�
ient obtained for developers of ea
h language. There arevery few developers of ea
h language whi
h vary from other developers of thesame language.� Answer to Resear
h Question 4. Pearson 
orrelation analysis shows thatdevelopers within the same proje
t are strongly 
orrelated for the frequen
ies
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Figure 3.5: Frequen
y distribution of 
orrelation 
oe�
ients (di�erent proje
t)of bug indu
ing language 
onstru
ts. The 
orrelation 
oe�
ients within thesame proje
t range from 0.31 to 0.99.Minimum 
orrelation among any pair of developers of Apa
he is 0.82 andmaximum 
orrelation found is 0.98. Similarly, minimum 
orrelation amongany pair of developers of Columba is 0.54 with a maximum 
orrelation of0.89.Results of 
orrelation analysis on developers of E
lipse indi
ate a minimum
orrelation 
oe�
ient of 0.7 and a maximum 
orrelation 
oe�
ient of 0.98.For developers of Java �les in Mozilla similar results are found.Developers of Evolution are strongly 
orrelated having 
orrelation 
oe�
ientabove 0.94.Developers of C �les in Mozilla and PostgreSQL have shown similar results.In both 
ases, minimum 
orrelation found among any developers is about0.3 and the maximum 
orrelation 
oe�
ient is 0.97.Correlation analysis of frequen
ies of bug indu
ing language 
onstru
ts fordevelopers of Nautilus and C++ �les in Mozilla has produ
ed similar results.Minimum 
orrelation among any pair of developers of these proje
ts is 0.88and maximum 
orrelation 
oe�
ient found is 0.99.Note that these results are for top ten developers from ea
h proje
t. Fromea
h proje
t ten developers are sele
ted whi
h have introdu
ed most of thebugs.
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ients (developers of di�erent proje
ts)Proje
t Language Min. Value Max. ValueSame 0.82 0.98Di�erent 0.19 0.89� Answer to Resear
h Question 5. A 
orrelation analysis is applied on data ofdevelopers from di�erent proje
ts. These proje
ts are developed in C, C++and Java. Results obtained indi
ate a minimum 
orrelation 
oe�
ient of0.82 among any pair of developers of di�erent proje
ts but developed in thesame language. The maximum 
orrelation 
oe�
ient found is 0.98 for thesame set of developers.Correlation analyses of developers of di�erent proje
ts that are developedin di�erent languages indi
ate a minimum 
orrelation 
oe�
ient of 0.19,whereas maximum 
orrelation 
oe�
ient is 0.89 for the same set of data.� Answer to Resear
h Question 6. Developers are grouped into three 
at-egories depending on the programming language. Developers of Java aregrouped together irrespe
tive of the proje
t, similarly developers of C aregrouped together and developers of C++ are grouped separately. A 
orre-lation analysis is applied on ea
h group in order to know the relationshipsamong developers of the same programming language. Table 3.7 shows theminimum and maximum values of the 
orrelation 
oe�
ient obtained fordevelopers of ea
h language.Results obtained indi
ate a minimum 
orrelation of 0.62 among any pair ofdevelopers of C language, whereas maximum 
orrelation 
oe�
ient found is0.97 for the same set.Correlation analyses of developers of C++ language indi
ate a minimum
orrelation 
oe�
ient of 0.88 and a maximum 
orrelation 
oe�
ient of 0.98.Minimum 
orrelation 
oe�
ient among any pair of developers of Java lan-guage is 0.54 and maximum 
orrelation found is 0.98.� Answer to Resear
h Question 7. Developers of di�erent programming lan-guages are pooled together and a 
orrelation analysis is applied on thegrouped data. Last row of Table 3.6 shows the minimum and maximumvalues of 
orrelation 
oe�
ients obtained among developers of di�erent lan-guages. Results of the 
orrelation analysis indi
ate a minimum 
orrelation
oe�
ient of 0.19 among any pair of developers of di�erent programminglanguages. Highest 
orrelation 
oe�
ient found is 0.89 among developers ofdi�erent programming languages.
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ients (developers of same language)Programming Language Min. Value Max. ValueC 0.62 0.97C++ 0.88 0.98Java 0.54 0.983.6 Bug Laten
yWhen a developer makes a 
hange to �x a bug, 
on�guration management systemre
ords the date and time of the 
ommit. During the pro
ess of �nding bug-indu
ing 
hanges, as des
ribed in Chapter 2, date of modi�
ation for ea
h bug-indu
ing 
hange 
an be extra
ted. Interval between bug-indu
e date and bug-�xdate 
an be 
al
ulated in number of days, as well as in number of revisions. Inthis study number of revisions made between bug-indu
e date and bug-�x date is
al
ulated. This value is 
alled bug life time or bug laten
y and 
al
ulated for ea
hbug-indu
ing language 
onstru
t. CVS maintains revisions of ea
h �le, whereasSVN maintains revisions at the proje
t level. Whenever a 
hange is made, CVSupdates the revision of the 
hanged �le, whereas SVN in
rements the revision ofwhole proje
t.Bug laten
y values for Apa
he, Columba, Epiphany, Evolution and Nautilusare 
al
ulated by taking di�eren
e of proje
t revision numbers and for the restof the proje
ts by taking di�eren
e of �le revision numbers. Table 3.8 shows theaverage bug laten
y values, 
al
ulated in terms of number of revisions the bugexisted, for �ve language 
onstru
ts. Columns 2 to 6 indi
ate bug laten
ies for
onditions, assignments, fun
tion 
alls, variable de
larations and fun
tion de
la-rations respe
tively.In Apa
he proje
t fun
tion 
alls are �xed on an average earlier than otherlanguage 
onstru
ts. Conditions have more average bug laten
y than other 
on-stru
ts.For Columba 
onditions are found more 
riti
al and they are �xed on anaverage earlier than other 
onstru
ts. Assignments and fun
tion 
alls have equalbug laten
y and buggy variable de
larations persist longer in Columba.In E
lipse proje
t fun
tion de
larations are �xed on an average earlier thanother language 
onstru
ts. Conditions and fun
tion 
alls have equal bug laten
yvalues, similarly assignments and variable de
larations have on average equal buglaten
y. Buggy assignments and variable de
larations persist longer in E
lipse onan average.Conditions and fun
tion 
alls are more 
riti
al in Epiphany and Evolution, as
ompared to other 
onstru
ts. Fun
tion de
larations persist longer in Epiphanyand variable de
larations persist longer in Evolution.In Mozilla proje
t fun
tion de
larations are �xed on an average earlier than



3.6. BUG LATENCY 41Table 3.8: Bug Laten
y (Average Values)Proje
t Conds. Assig. Fun
t-Calls Var-De
l. Fun
t-De
l.Apa
he HTTPS 1.3 3389 2944 2562 3127 2695Columba 206 209 209 227 213E
lipse JDT 159 187 159 187 114Epiphany 1979 2125 2018 2212 2832Evolution 4532 4675 4515 5031 4987Mozilla 124 101 106 116 91Nautilus 1518 1739 1671 1656 1731PostgreSQL 109 107 111 85 103
Table 3.9: Bug Laten
y Correlation Values between Language Constru
tsConds. Assig. Fun
t-Calls Var-De
l. Fun
t-De
l.Conditions 1.0 0.99 0.98 0.99 0.96Assignments 1.0 0.99 0.99 0.98Fun
tion Calls 1.0 0.99 0.99Variable De
laration 1.0 0.98Fun
tion De
laration 1.0

other language 
onstru
ts. Conditions took more time to be �xed 
ompared toother 
onstru
ts.For Nautilus 
onditions have on average short bug laten
y and assignmentshave long bug laten
y. Bug laten
y values of other 
onstru
ts lie between thesetwo 
onstru
ts.Variable de
larations are more 
riti
al in PostgreSQL with shorter bug laten-
ies, whereas 
onditions have longer bug laten
ies. Fun
tion 
alls, 
onditions andassignments have nearly similar bug laten
ies in PostgreSQL.A 
orrelation analysis is applied on average bug laten
y values of 
onditions,assignments, fun
tion 
alls, variable de
larations and fun
tion de
larations in thestudied proje
ts. Results of the 
orrelation analysis are presented in Table 3.9.These language 
onstru
ts are statisti
ally 
orrelated for bug laten
y. Most of the
orrelation 
oe�
ients are above 0.95.It indi
ates that bug laten
ies for individual language 
onstru
ts vary in sim-ilar fashion in di�erent proje
ts. Short bug laten
y indi
ates that the bug is
riti
al and needs to be �xed soon. Long bug laten
y indi
ates that either thebug is minor having low priority or it is more 
omplex to be �xed. In this studyaverage values are used, so a more detailed study is required for some 
on
rete
on
lusions. However this study represents a brief pi
ture of bug laten
ies ofdi�erent language 
onstru
ts.
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Figure 3.6: Comparison of Bug-Indu
ing and Clean Hunks (Apa
he)3.7 Comparison with Non Bug-Indu
ing HunksBug indu
ing and 
lean hunks are 
ompared for the o

urren
e of 
onditions,fun
tion 
alls, fun
tion de
laration, assignments, variable de
larations, returnstatement and use of null. Although these 
onstru
ts are also present in nonbug-indu
ing hunks, there per
entage is higher in bug-indu
ing hunks. Amongall these 
onstru
ts fun
tion de
larations have di�erent trend, they are present inhigher per
entage of 
lean hunks in all proje
ts. It 
an not be stated that ea
htime one of these 
onstru
ts is used, bugs will be introdu
ed. The 
ontext inwhi
h these 
onstru
ts are used is important. However we 
an say these are therisky language 
onstru
ts be
ause most of the bug-indu
ing hunks involve these
onstru
ts.Figure 3.6 shows that the per
entage of bug indu
ing hunks 
ontaining 
ondi-tions is about double of 
lean hunks in Apa
he proje
t. There is a large di�eren
ebetween per
entages of bug indu
ing and 
lean hunks involving fun
tion 
alls.Other 
onstru
ts also 
onstitute large proportion of bug indu
ing hunks as 
om-pared to 
lean hunks.In E
lipse proje
t 
onditions are present in more than 30% of bug indu
inghunks whereas in 
lean hunks this proportion is less than 20%, as depi
ted inFigure 3.7. Fun
tion 
alls are present in more than 40% bug indu
ing hunks and30% 
lean hunks. Return statement is present in equal proportions in both kindsof hunks. For the remaining 
onstru
ts di�eren
es are not large but bug indu
inghunks have higher per
entages as 
ompared to 
lean hunks.Figure 3.8 shows that the per
entage of bug indu
ing hunks 
ontaining re-turn statement and using null is about double of 
lean hunks in Mozilla proje
t.Remaining 
onstru
ts are present in 
omparatively higher per
entage of bug in-du
ing hunks. Conditions 
onstitute 20% of 
lean hunks and 29% of bug indu
ing
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Figure 3.7: Comparison of Bug-Indu
ing and Clean Hunks (E
lipse)

Figure 3.8: Comparison of Bug-Indu
ing and Clean Hunks (Mozilla)hunks. Assignments 
onstitute 30% of 
lean hunks and about 36% of bug indu
inghunks.In PostgreSQL per
entage of bug indu
ing hunks 
ontaining return statementis about double of 
lean hunks, as shown in Figure 3.9. Use of null is almost doublein bug indu
ing hunks as 
ompared to 
lean hunks. Conditions are present inabout 11% of 
lean hunks and 18% of bug indu
ing hunks. Assignments 
onstitute17% of 
lean hunks and 25% of bug indu
ing hunks. Fun
tion 
alls are found in36% of bug indu
ing hunks and 25% of 
lean hunks.Figure 3.10 depi
ts that 
onditions are present in 30% bug indu
ing hunksand less than 20% 
lean hunks of Evolution. Assignments are found in 30% 
leanhunks and more than 40% bug indu
ing hunks. More than 60% bug indu
inghunks 
ontain fun
tion 
alls whereas in 
lean hunks this proportion is less than
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Figure 3.9: Comparison of Bug-Indu
ing and Clean Hunks (PostgreSQL)

Figure 3.10: Comparison of Bug-Indu
ing and Clean Hunks (Evolution)50%. Use of return statement is almost double in bug indu
ing hunks as 
omparedto 
lean hunks.Use of null and 
onditions is almost double in bug indu
ing hunks of Epiphanyas 
ompared to 
lean hunks, see Figure 3.11. Assignments are found in 26% of
lean hunks and 40% of bug indu
ing hunks, whereas fun
tion 
alls are presentin 58% of bug indu
ing hunks and 42% of 
lean hunks.In Columba use of null and 
onditions is almost double in bug indu
ing hunksas 
ompared to 
lean hunks, see Figure 3.12. Return statements are equallypresent in both kinds of hunks. Variable de
larations are found in higher per
ent-age of 
lean hunks, in 
ontrast to other proje
ts. Assignments 
onstitute 24% of
lean hunks and 38% of bug indu
ing hunks. Fun
tion 
alls are found in 50% ofbug indu
ing hunks and 39% of 
lean hunks.
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Figure 3.11: Comparison of Bug-Indu
ing and Clean Hunks (Epiphany)

Figure 3.12: Comparison of Bug-Indu
ing and Clean Hunks (Columba)Figure 3.13 shows that 
onditions are present in 21% bug indu
ing hunks andless than 14% 
lean hunks of Nautilus. Assignments are found in 23% 
lean hunksand more than 30% bug indu
ing hunks. About 60% bug indu
ing hunks 
ontainfun
tion 
alls whereas in 
lean hunks this proportion is less than 48%. Returnstatement 
onstitutes 5% of 
lean hunks and 9% of bug indu
ing hunks whereasnull is used in 19% of bug indu
ing hunks and 12% of 
lean hunks.3.8 SummaryThis 
hapter presented an investigation into language 
onstru
ts and syntax ele-ments. In parti
ular bug-indu
ing hunks were analyzed to �nd the frequen
ies ofdi�erent language 
onstru
ts. It is found that most of the bugs are 
reated due
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Figure 3.13: Comparison of Bug-Indu
ing and Clean Hunks (Nautilus)to errors in fun
tion 
alls, assignments, 
onditions, pointers, variable de
laration,fun
tion de
laration and return statement. Statisti
al analysis showed that dif-ferent proje
ts and developers are 
orrelated for the frequen
ies of bug-indu
inglanguage 
onstru
ts.These �ndings 
an be helpful during the testing and debugging pro
ess. De-velopers 
an make a priority list for testing. They 
an �rst apply testing onfun
tion 
alls, then on assignments, followed by 
onditions and so on. Applyingtesting resour
es on the frequent bug-indu
ing language 
onstru
ts 
an save timeand resour
es. Similarly if a pat
h of 
ode is identi�ed as buggy, problemati

onstru
ts 
an be easily identi�ed from it. In short this study provided a meansof redu
ing 
ost and improving quality of software.



Chapter 4
Language Spe
i�
 BugPatterns
During the last years there has been a growing interest in analyzing and miningthe available information that is 
olle
ted during all phases of the software life
y
le. The used information sour
es are for example bug reports, whi
h are storedin bug databases, or sour
e 
ode evolution information from 
on�guration man-agement systems (CMS). Most of the published studies fo
us on software quality.Resear
hers have tried to explore the distribution and 
hara
teristi
 of faults inprograms [53, 13℄.Most work in the empiri
al software engineering domain has been using opensour
e software be
ause of several fa
tors. First, the sour
e 
ode, CMS, andbug data base information is freely available for everyone. Se
ond, the proje
tslike Mozilla have been developed in a distributed way. Hen
e, there is a largervariability in programming. Third, some of the open sour
e programs 
ompriseseveral thousands kilo lines of 
ode (kLo
) and several thousands �les. They arelarge enough to test available te
hniques in a realisti
 setting that would alsoo

ur in industrial pra
ti
e. Be
ause of this reasons results obtained from su
hproje
ts might be generalizable whi
h is not always the 
ase.Modern software proje
ts are developed using obje
t oriented programminglanguages, however a number of proje
ts still exist in pro
edural languages. Clanguage is 
ommonly used for development of open sour
e software proje
ts. Dif-ferent programming languages fa
ilitate developers in writing e�
ient and 
lean
ode. There are some programming features spe
i�
 to a parti
ular programminglanguage e.g; JAVA provides automati
 memory management and a good ex
ep-tion handling me
hanism. There is no multiple inheritan
e and no pointers inJAVA. 47



48 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNSPrograms written in di�erent languages may have di�erent distribution ofbugs. The main goal of this 
hapter is to analyze whether post-release bugsare in�uen
ed by a programming language. A 
ase study is presented to revealwhether the number of bugs per lines of 
ode (LOC) is the same for programswritten in di�erent programming languages or not. In addition various evolutionmetri
s are 
al
ulated and 
ompared for di�erent programming languages. Three
ommon programming languages are 
hosen for this study, in
luding C, C++ andJAVA.4.1 Resear
h HypothesisThe resear
h obje
tive of this study is formulated in the following hypothesis:Hypothesis H1: Programs written in a programming language A are more er-ror prone in terms of more bugs per LOC than programs written in a di�erentlanguage B.Hypothesis H1 
an be reje
ted when proving that programs written in a lan-guage A are more fault prone than programs in a language B by means of statis-ti
al inferen
e. In this 
hapter hypothesis H1 is validated up to a 
ertain degreeof signi�
an
e, when applied to some languages.When using statisti
al inferen
e 
are has to be taken of the available informa-tion and methods. In this 
ase proving H1 would require to state that the meanor median of the post-release bugs per LOC of programs written in one languageis really larger or smaller than the same value obtained from the programs writ-ten in the other programming language. Sin
e, the distribution of the underlyingprobability variable is not known in advan
e, a statisti
al test is required that
onsiders this 
ase. For this purpose rank-sum test is used be
ause it is wellknown to be independent on the underlying probability distribution [69℄.4.2 Proje
t StudiedFor this study, Mozilla proje
t is used be
ause it is a heterogeneous proje
t de-veloped in C, C++ and JAVA. Further, it has a long development history and itsinformation is easily available. Data is extra
ted from CVS and bug repositoriesof Mozilla using the te
hniques mentioned in Chapter 2. Development historyof Mozilla is analyzed from 1998 to 2008. Table 4.1 shows the number of �leswritten in di�erent languages C, C++, and Java, as well as the lines of 
ode forea
h year.



4.3. EVOLUTION METRICS 49Table 4.1: Number of Sour
e Files and Total LOCYear Number of Files Total LOC (KLo
)C C++ JAVA C C++ JAVA1998 1118 792 193 843 563 251999 1754 3365 1390 1043 1977 2652000 2395 4958 2309 1457 2593 3852001 2437 5207 3070 1495 2587 5302002 2500 4762 2980 1490 2477 4902003 2200 4845 2750 1362 2519 4422004 2072 4776 2716 1274 2450 4442005 2111 5141 2485 1447 2342 4332006 2010 5183 2583 1549 2226 4202007 2162 5016 2117 1353 2391 4782008 2096 4704 1923 1416 2430 4914.3 Evolution Metri
sIn addition to the bug density, some other evolution metri
s are 
al
ulated forea
h language. These metri
s are used to study bug features and 
ode evolutionspe
i�
 to a programming language. Bug features are studied in terms of bugdensity, bug frequen
y, bug severity, bug �x time and platform spe
i�
 bug o
-
uren
e. Code evolution is studied in terms of additions, deletions, 
ode gain,number of authors and �le revision frequen
y. Following metri
s are 
al
ulatedfor programms written in the sele
ted languages:� Authors: The authors 
ontributing to the �le.� Revision frequen
y: The number of revisions for ea
h year� Bug frequen
y: The number of 
orre
ted bugs per ea
h year.� Bug density: The number of bugs per thousand LOC (kLo
).� Code gain: The sum of lines added redu
ed by the sum of lines removed inea
h �le.� Bug �x time: The time between �xing a bug, whi
h is mentioned in theCVS log �le, and the time where the bug was dete
ted, whi
h is obtainedfrom the bug report.� Bug lifetime: The time between �xing a bug and the time where the bugwas introdu
ed. The latter 
an be obtained from the CVS [33, 70℄.� Number of 
hanges: The number of 
hanges per ea
h �le and year.
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Figure 4.1: Average bug densities4.4 ResultsIn this se
tion evolution of the Mozilla proje
t over the past years is dis
ussed. Inparti
ular evolution metri
s are 
ompared for the three languages. Be
ause theMozilla proje
t 
omprises C, C++, and Java �les, values of di�erent measurement
ategories are obtained for the three languages.� Average bug density: To 
ompute the bug density in bugs per 1000 LOC,i.e., kLOC, following equation is used:
bug density =

number of bugs

LOC
· 1000The obtained results are depi
ted in Figure 4.1. It is evident from the�gure that C++ �les have higher bug densities than �les written in otherlanguages. Java �les have the least bug density values ex
ept in 2007 and2008.� Per
entage of faulty �les: Figure 4.2 shows the per
entage of faulty�les in ea
h year of development. From the �gure it 
an be 
on
luded thatC++ �les have a higher per
entage of faulty �les than the other languages.Java �les are least likely to be faulty ex
ept in the years 1998, 2004, and2007.� Average LOC per faulty �le: The results of this measure are given inFigure 4.3. On average faulty �les in Java are smaller than faulty C++�les. Programs written in C have a di�erent behavior with respe
t to theaverage number of LOC per faulty �le. The size of the faulty �les de
reasesin the initial years of Mozilla development and abruptly in
rease in 2004.This might be due to �xing a high number of major bugs in C �les in thisyear.
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Figure 4.2: Per
entage of faulty �les

Figure 4.3: Average LOC of faulty �les� Average revision frequen
ies: Figure 4.4 shows the revision frequen
iesover the years. Java �les show a stable behavior having a low revisionfrequen
y with ex
eptions in 2003 and 2006. In these years Java �les havea higher revision frequen
y. C++ �les have a higher revision frequen
ythan the other languages. C �les have revision frequen
y in-between C++and Java with one ex
eption in 2006 where C �les have the highest averagerevision frequen
y.� Average 
ode gain per �le: The 
ode gain des
ribes the in
rease of sizeof a �le and is an indi
ator of its stability. The average 
ode gain for the�les of the Mozilla proje
t is shown in Figure 4.5. It 
an be seen that Java�les are more or less stable in growth whereas C++ �les show a 
ontinuousde
line in average 
ode gain. C �les show a mixed behavior with a high risein 
ode gain in 2006, whi
h may be due to the high number of bug �xes.
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Figure 4.4: Average revision frequen
y

Figure 4.5: Average 
ode gain per �le� Bug severity distribution: Beside the number of bugs someone is alsointerested in the severity of bugs and its distribution. Figure 4.6 shows thebug distribution a

ording to severity levels. All three languages 
ontributeda major fra
tion of normal bugs. Java takes the lead when 
onsideringtrivial and major bugs. Most of the bugs due to enhan
ements are madein Java �les followed by C and C++ �les respe
tively. Most of the blo
kerbugs o

urred in C �les followed by C++ �les. C++ �les have the largestnumber of 
riti
al bugs followed by C �les. From this distribution we might
on
lude that C and C++ are used as the programming language of 
hoi
ein the kernel of Mozilla. Hen
e, 
riti
al or blo
king bugs are 
reated by Cand C++ �les.� Average bug lifetime: Figure 4.7 shows the average bug lifetime for ea
hbug severity level. It 
an be seen that bugs due to enhan
ements took moretime to be �xed for C++ �les. Minor bugs to be �xed took more time when
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Figure 4.6: Bug severity distributionJava was used. If we have a look at Figure 4.11 and Figure 4.10 we seethat a large number of additions and deletions are made in Java �les to �xminor bugs. Blo
ker and trivial bugs took more time to be �xed in Java �leswhen 
ompared with C and C++ �les. Hen
e, what we see is that di�erentlanguages have a di�erent bug lifetime for bugs of di�erent severity.From the bug severity distribution and the knowledge of the number ofdays to �x a bug, average bug lifetime 
an be 
omputed for the di�erentlanguages as follows:
bug lifetime =

∑

bug severity x

p(x) · fix time(x)where p(x) denotes the probability of a bug severity, whi
h follows from thebug severity distribution. and fix time(x) is the average number of daysne
essary to �x a bug.For the Mozilla proje
t average bug lifetime is 175 days for C �les, 192days for C++ �les, and 333 days for Java �les. From this follows that bugsremain almost twi
e as long in the sour
e 
ode of Java �les. This result is inline with the previous result where bugs in C and C++ �les also 
ontributeto the 
lass of blo
king and 
riti
al bugs, whi
h have to be 
orre
ted �rst.� Average 
ode additions: Figure 4.8 shows a de
lining trend of 
ode ad-ditions in 
ase of C++ �les. Whereas in 
ase of C there is a de
line in the�rst year, a stable rate for the following 5 years, and a peak in 2006 followedby a fall. Java �les are almost stable with two peaks in 2003 and 2006.
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Figure 4.7: Average bug lifetime

Figure 4.8: Average 
ode additions� Average 
ode deletions: Code deletions have almost the same patterna
ross the time line as 
ode additions. However deletions are less in numberthan additions as shown in Figure 4.9.� Average 
ode deletions per bug �x: Blo
ker and 
riti
al bugs involvedmore deletions in C++ followed by C and Java. However enhan
ements,major, normal and trivial bugs involved more deletions in C �les followedby C++. Minor bugs involved highest deletions of all bugs and these werein Java �les as shown in Figure 4.10.� Average 
ode additions per bug �x: Code additions have almost thesame trend as 
ode deletions. However additions are larger in number thandeletions as shown in Figure 4.11.� Average number of 
hange deltas: In the initial years of developmentC++ �les have higher number of 
hange deltas. This number de
reases
ontinuously in the following years. C �les have lower number of 
hange
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Figure 4.9: Average 
ode deletions

Figure 4.10: Average Code Deletions / Bug Fix

Figure 4.11: Average 
ode additions per bug �x
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Figure 4.12: Average number of 
hanges

Figure 4.13: Distribution of bugs on di�erent platformsdeltas but the pattern is di�erent from C++ �les, with ups and downs inthe entire development period. Java �les have very low number of 
hangedeltas with an ex
eption in 2004 and 2005 as shown in Figure 4.12.� Platform spe
i�
 bugs distribution: Most of the bugs generated bythree languages are reported on all platforms. However a major proportionof the bugs reported on PC and Ma
intosh are related to C++ �les whereasmajority of the bugs reported on Sun are related to C and Java. Figure 4.13depi
ts di�erent platforms on whi
h programs written in the three languages
aused failures.� Operating System spe
i�
 bugs distribution: A large proportion ofthe bugs in three languages is reported on all operating systems. HoweverC++ is on top in the number of bugs reported on Linux and Windowsfollowed by C language. Java �les have very few bugs reported on Ma
intoshwhile C and C++ have an equal proportion of bugs reported on Ma
intosh.
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Figure 4.14: Distribution of bugs on di�erent operating systemsFigure 4.14 depi
ts the types of operating systems and the proportion ofbugs generated on these systems by programs of di�erent languages.The obtained results show that the evolution metri
s have di�erent patternsfor Java, C, and C++ �les in the Mozilla proje
t. This might be due to the spe
i�
proje
t. However, at least the results of the bug density should be generalizablebe
ause of the large number of available sour
e �les and involved programmers. Inthe next se
tion, it is statisti
ally proved that the number of bugs to be expe
tedis in�uen
ed by the used programming language.4.5 Proving hypothesis H1In order to test hypothesis H1 for the languages C, C++, and Java, hypothesistesting (a methodology from probability theory to draw stati
 inferen
e fromavailable data under given assumptions) is used. Hypothesis testing is 
loselyrelated to the pro
edure of interval estimation [69℄. In both 
ases a 
on
lusion
an be drawn, whi
h is 
orre
t for the given data set, the used statisti
 andprobability distribution, and the desired level of signi�
an
e usually denoted by
α. In hypothesis testing a hypothesis H0 is going to be proven. If the probabilitythat the given data set X1, . . . ,Xn under the test statisti
 T falls within an area
A, whi
h is provided by the hypothesis H0, is equal or larger than 1 − α, thehypothesis H0 
an be a

epted. Otherwise, H0 is said to be reje
ted be
ause theobservations di�er signi�
antly from the expe
tations.To prove the in�uen
e of a programming language on the number of post-release bugs per LOC, we have the number of bugs and the size of the �les wherethe bugs have been �xed. There might be remaining bugs in the �les, however,sin
e every �le regardless of the used programming language is used in the sameprogram and assuming that they are all used during program exe
ution, there isan equal probability of dete
ting a bug. Hen
e, the probability that a bug goes
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ted in one �le is equivalent for all �les with no ex
eption regarding oneprogramming language used. As a 
onsequen
e for ea
h language
H0 : fX(x) = fY (x) versus H1 : fX(x) = fY (x + c)where c is a positive 
onstant. These tests are also referred to as tests for theequality of two population medians, whi
h is �ne in this 
ase. If we know that themedian of the bugs per LOC is lower for Java programs than for C++ programs,hypothesis H1 
an be a

epted for those languages.The following rank-sum is one test for 
omparing two population means. Inthis 
ase two independent random samples x1, . . . , xn and y1, . . . , ym are assumed.In the �rst step the samples are 
ombined and ranked a

ordingly to in
reasingvalues. Hen
e, an ordered 
olle
tion of size n+m is obtained. Then ea
h resultingelement is assigned a rank r from 1 to n + m. The statisti
 that 
an be used to
ompare the two means is de�ned as follows:

W =

m
∑

i=1

r(yi)Hen
e, in this 
ase only the elements, whi
h belong to the random sample
y1, . . . , ym are 
onsidered. Using 
ombinatorial theory a probability fun
tion forstatisti
 W 
an be 
omputed, and the signi�
an
e level α is determined by:

P (W ≥ w|H0) ≤ αKnowing the equivalen
e P (W ≥ w|H0) = 1 − P (W < w|H0), followinginequality is determined, whi
h must hold in order to a

ept H0:
P (W < w|H0) > 1 − αIn this spe
ial 
ase where both n and m are larger than 10, W 
an be approx-imated with a normal distribution. In this 
ase the mean and the varian
e aregiven by:

µ = E[W ] =
n(n + m + 1)

2

σ2 = V ar[W ] =
nm(n + m + 1)

12Assuming a signi�
an
e level α = 0.01 we are able to obtain a value w = 2.33if W is a Standard Normal Random Variable. Sin
e the statisti
 W in gen-eral is not Standard Normal we have to standardize it using µ and σ. For val-ues of W (x1, . . . , xn, y1, . . . , ym) that are smaller than 2.33σ + µ, we are ableto a

ept H0 at the signi�
an
e level of 0.01. Note that in this 
ase the 
on-�den
e in the de
ision is 99 per
ent. Alternatively, we 
an 
ompute a value
Z = W (x1,...,xn,y1,...,ym)−µ

σ
. If Z > 2.33 we a

ept H0, and otherwise we reje
t it.



4.5. PROVING HYPOTHESIS H1 59Hypothesis Sum of ranks W µ σ2 Z De
ision
H11

0 582,319,897 610,240,013 1,519,019 -18,38 reje
t
H12

0 747,866,055 940,156,771 2,761,791 -69,63 reje
t
H13

0 682,409,176 809,540,221 2,562,772 -49,61 reje
tTable 4.2: Results of the rank-sum testIn the following rank-sum-test is used for testing three instan
es of hypothesisH1 using the available data sets obtained from the Mozilla proje
t:
H11

0 : fJava(x) = fC(x) versus H11
1 : fJava(x) = fC(x + c)

H12
0 : fJava(x) = fC++(x) versus H12

1 : fJava(x) = fC++(x + c)

H13
0 : fC(x) = fC++(x) versus H13

1 : fC(x) = fC++(x + c)The size of the samples for ea
h programming language is given as follows:Language Sample sizeJava 25,387C++ 48,074C 22,687Note that in this 
ase every revision of every sour
e �le is 
ounted as onesample. Using this information and the samples, results given in Table 4.2 
an be
omputed.From Table 4.2 following results 
an be 
on
luded:� The �rst hypothesis must be reje
ted with 
on�den
e 0.99. From this followsthat we have to a

ept the alternative hypothesis that states Java programsas less error-prone than C programs.� The se
ond hypothesis must also be reje
ted. Hen
e, again Java programsare less error prone than C++ programs.� The third hypothesis has to be reje
ted as well. It 
an be 
on
luded that C�les are less error prone than C++ �les.The bug density distributions given in Figure 4.15, 4.16 and 4.17 also justifythe results of the rank-sum test.
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Figure 4.15: The bug density distribution of �les written in Java

Figure 4.16: The bug density distribution of �les written in C
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Figure 4.17: The bug density distribution of �les written in C++4.6 Threats to ValidityThere are 
ertain threats to the validity of this study. Among some of these are:� Only one proje
t is sele
ted for this study, so the error patterns may be re-sulted from the Mozilla 
ommunity rather than the programming languages.� Although Mozilla is a heterogeneous proje
t, the 
hoi
e of programminglanguages for this study may be biased to a spe
i�
 problem. So it ispossible that the results re�e
t the problem rather than the programminglanguage itself.� No 
onsideration is made for the features implemented in di�erent lan-guages. The nature of the fun
tionality implemented in one language mayhave an impa
t on the various metri
s than just the language.� JAVA is a 
omplete development environment, so results may be biased tothe development methodology.� There may be 
hanges in the pool of quali�ed programmers for spe
i�
languages over 11 years of Mozilla development.� There are 
hanges in the tool support for spe
i�
 languages over the years.
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hapter empiri
al results obtained from 11 years of development of theopen sour
e software proje
t Mozilla are presented. Moreover, statisti
al �ndingsobtained from the development history of Mozilla are dis
ussed. The main fo
usof this study is post-release bugs. In parti
ular the hypothesis is tested whetherthe number of post-release bugs are in�uen
ed by the used programming language.The Mozilla proje
t 
omprises sour
e 
ode written in Java, C, and C++ and istherefore the right proje
t to look for in order to test the hypothesis.In summary, this 
hapter has the following 
ontributions:� It is shown that bug lifetime is about twi
e as long for Java than for C andC++.� The programming language has an in�uen
e on the number of bugs, at leastfor the Mozilla proje
t. It is statisti
ally proved that Java programs are lesserror prone than C or C++ programs, and C programs are less error pronethan C++ programs within same proje
t.Although, the �ndings might not be generalizable they indi
ate a 
onne
tionbetween post-release bugs and programming languages.



Chapter 5
Hunk Classi�
ation
Making 
hanges to software is a 
ru
ial task during di�erent phases of softwareevolution. Changes are required to add new features, to �x the bugs, to improveperforman
e or to restru
ture the 
ode for easy maintenan
e. These 
hanges areimplemented by adding, modifying or deleting the sour
e 
ode in di�erent �les ofsoftware.A �le 
an be 
hanged at one or more pla
es, 
alled deltas or hunks. Thesehunks of sour
e 
ode whi
h are added either newly or after modi�
ations mayintrodu
e bugs and result in failures later on. Ea
h hunk has a likelihood ofbeing buggy or bug-free. This 
hapter des
ribes a te
hnique for predi
ting theprobability of a hunk being buggy or bug-free. Software engineers and resear
hersfa
e the 
hallenge of redu
ing bugs to improve the quality of software. A lot ofresear
h has been 
arried out on bug predi
tion using di�erent approa
hes and atdi�erent levels of granularity. Most of the resear
hers have used 
ode metri
s aspredi
tors of bugs [29, 40, 52, 55, 15, 14℄, while others have used pro
ess metri
sas predi
tors of bugs [27, 35, 64℄.Previous resear
h was fo
used on di�erent levels of granularity su
h as mod-ules, �les, 
lasses and methods. Some resear
hers predi
ted the number of faultsfor modules or �les [52, 55℄, while others fo
used on individual 
lasses and methods[29, 56℄.Change management is an important a
tivity in software maintenan
e. Changesare made to the sour
e 
ode as software evolves. In the past, resear
hers haveused di�erent 
hange properties to predi
t the failure probability of 
hanges. Re-sear
hers have shown that 
hange properties su
h as size, duration, di�usion,developer expertise and type of 
hange have strong impa
t on the risk of failure[48℄.Features extra
ted from 
omplete sour
e 
ode of �les, 
hange metadata and
omplexity metri
s 
an be used to 
lassify 
hanges as 
lean or buggy [34℄. We63



64 CHAPTER 5. HUNK CLASSIFICATIONTable 5.1: Statisti
s of Proje
tsProje
t # of Developers # of Revisions # of HunksApa
he HTTP 1.3 54 7,246 17,287Columba 8 2,471 2,694E
lipse JDT 17 58,565 215,824Epiphany 52 5,217 9,035Evolution 134 20,709 40,450Mozilla 833 325,920 1,382,747Nautilus 131 11,104 29,303PostgreSQL 25 54,012 466,106further narrow down the problem of 
hange 
lassi�
ation to individual units of a
hange, the hunks. We 
lassify individual hunks as buggy or bug-free.We have de�ned a set of hunk metri
s and 
onstru
ted models for hunk 
lassi-�
ation using these metri
s as predi
tors. We used logisti
 regression and RandomForests to 
onstru
t hunk 
lassi�
ation models.Kim et al. [34℄ 
ondu
ted a similar study to 
lassify software 
hanges as 
leanor buggy, but our resear
h obje
tives are di�erent and go a step forward. WhileKim et al. 
lassi�ed individual 
hanges and used features extra
ted from 
ompletesour
e 
ode, 
hange meta data, log messages, �le names and �le 
omplexity met-ri
s, we 
lassify individual hunks, whi
h is a unit of 
hange, and use only the hunkmetri
s. Our approa
h is simple and works at the smallest level of granularity.5.1 The Approa
hThis 
hapter provides an overview of 
al
ulation of hunk metri
s, labeling ofhunks, preparation of data for training, hunk 
lassi�
ation, and evaluation of
lassi�ers.To evaluate our approa
h, we extra
ted the 
hange history of 8 open sour
eproje
ts listed in Table 5.1. The period indi
ates the time span used to extra
tthe 
hange history. The # of revisions 
olumn indi
ates the number of revisionsextra
ted and the # of hunks indi
ates the number of hunks extra
ted. The # ofdevelopers indi
ates the number of developers involved in making these hunks.To 
onstru
t a hunk 
lassi�
ation model following steps are used:Preparation of Data Set Data is prepared befor it 
an be fed into a 
lassi�er.Data instan
es are 
reated in the following way:� Extra
t hunks from 8 open sour
e proje
t histories using the pro
essmentioned in Chapter 2.� Identify the bug �x hunks for ea
h �le by using the algorithm given inChapter 2.



5.2. TOOLS USED 65� Identify bug-introdu
ing hunks by using the pseudo 
ode given inChapter 2.� Label the bug-introdu
ing hunks as buggy and others as bug-free.� Cal
ulate hunk metri
s for ea
h hunk.� Combine the set of metri
s of ea
h hunk with its label indi
ating buggyor bug-free hunk, to make a single instan
e for ea
h hunk.Classi�
ation After preparation of data, statisti
al and ma
hine learning 
las-si�ers are trained on this data.� Train 
lassi�ers for ea
h proje
t, using the labeled instan
es.� Evaluate 
lassi�
ation performan
e of ea
h 
lassi�er, using the mea-sures of a

ura
y, re
all, pre
ision, and F-value.Identi�
ation of Signi�
ant Metri
s Some metri
s may be better predi
torsof bugs than others, so those metri
s should be sele
ted whi
h produ
ebetter results.� Individual and groups of metri
s are used to 
onstru
t models and theirperforman
e is evaluated.5.2 Tools UsedThe random forest algorithm implemented in WEKA [2℄ is used for this study. Toapply logisti
 regression, the statisti
al tool R is used. Random forest is used dueto its ability to qui
kly handle large number of input variables. Output of randomforest is the mode of all outputs of individual trees, so it produ
es better resultsthan other ma
hine learning 
lassi�ers. Logisti
 regression is used be
ause thereare two possible predi
tions for a hunk, buggy or bug-free. Predi
tive 
apabilitiesof individual as well as 
ombination of metri
s are studied.5.3 Hunk Metri
sSoftware metri
s deals with the measurement of the software produ
t and thepro
ess by whi
h it is developed. We brie�y des
ribe the 
ategories of softwaremetri
s used so far, followed by an introdu
tion to hunk metri
s.Classi�
ation of Software Metri
s Software metri
s 
an be 
lassi�ed into twomajor 
ategories, produ
t metri
s and pro
ess metri
s.� Produ
t metri
s deals with the measurements of the software produ
titself. These metri
s in
lude measures at various stages of softwaredevelopment starting from requirements to installed system. Produ
t



66 CHAPTER 5. HUNK CLASSIFICATIONTable 5.2: Measurement TypesType of Data Possible Operations Des
ription of DataNominal = , 6= CategoriesOrdinal <,> RankingsInterval +,- Di�eren
esRatio / Absolute zerometri
s may in
lude the software design 
omplexity, the size of the�nal sour
e or obje
t 
ode, or the number of do
umentation pagesprodu
ed.� Pro
ess metri
s deals with the measurements of the software develop-ment pro
ess used. These metri
s may in
lude total development time,type of methodology used, or the level of expertise of the programmersinvolved.Categories of Metri
s Metri
s 
an be 
ategorized as primitive metri
s or 
om-puted metri
s� Primitive metri
s 
an be dire
tly measured and do not need any 
ompu-tations. This 
ategory may in
lude the program size metri
s observedas total lines of 
ode, number of defe
ts found during testing, or thetotal development time.� Computed metri
s 
annot be dire
tly measured and require other met-ri
s for their 
omputation. These metri
s may in
lude produ
tiv-ity metri
s su
h as LOC produ
ed per person-month (LOC/person-month), or quality metri
s su
h as number of defe
ts per thousandlines of 
ode.Measurement S
ales for Software Metri
s For statisti
al analysis, measureddata 
an be 
lassi�ed into four basi
 types that are nominal, ordinal, inter-val, and ratio. It is important to know the type of information involvedbefore any data 
olle
tion. Software metri
s should belong to these 
ate-gories, for their optimum utilization in empiri
al studies.Good metri
s should hold 
apabilities to be used in the development of e�-
ient predi
tor models. An ideal metri
s should be 
apable of predi
ting softwareprodu
t or pro
ess features. Thus good metri
s should be simple, pre
ise, easy toobtain, valid and robust.In this study following hunk metri
s are 
onsidered:� No. of Conditions (NOCN) is the total number of 
onditional statementsin a hunk, su
h as if, else if and else statement.



5.3. HUNK METRICS 67� No. of Loops (NOL) is the total number of loops in a hunk, su
h as for,while and do while loop.� No. of Fun
tion Calls (NOFC) is the total number of fun
tions 
alled in ahunk.� No. of Fun
tion De
larations (NOFD) is the total number of fun
tionsde
lared or de�ned in a hunk.� No. of Variable De
larations (NOV) is the total number of variables de
laredor de�ned in a hunk.� No. of Assignments (NOA) is the total number of assignment statementsused in a hunk.� No. of Logi
al Operators (NOLO) is the total number of logi
al operatorsused in a hunk.� No. of Relational Operators (NORO) is the total number of relational op-erators used in a hunk.� No. of Return Statements (NORS) is the total number of return statementsused in a hunk.� No. of Arrays (NOAR) is the total number of array de
laration or a

essstatements used in a hunk.� No. of Null Statement (NON) is the total number of times NULL is usedin a hunk.� No. of Case Statements (NOCS) is the total number of 
ase statementsused in a hunk.� No. of Break Statements (NOB) is the total number of break statementsused in a hunk.� No. of Classes (NOC) is the total number of 
lasses de
lared in a hunk.� No. of Obje
t Instantiations (NOO) is the total number of obje
ts instanti-ated using the new operator in a hunk.� No. of Imports (NOIP) is the total number of import statements used in ahunk.� No. of Inheritan
e Statements (NOIH) is the total number of inheritan
estatements su
h as extends, implements used in a hunk.� No. of Ex
eption Handlers (NOE) is the total number of ex
eption handlersused in a hunk.



68 CHAPTER 5. HUNK CLASSIFICATION� No. of Throw statements (NOTH) is the total number of throw statementsused in a hunk.� Total Hunks (NOH) is the total number of hunks made in a revision.� No. of Previous Buggy Hunks (NOBH) is the total number of buggy hunksmade in the previous revisions of a �le.5.4 Evaluation CriteriaFour measures are 
ommonly used to assess the performan
e of a 
lassi�er in-
luding a

ura
y, pre
ision, re
all and F-Measure. A

ura
y is the per
entageof 
orre
tly 
lassi�ed instan
es. We explain these measures with the use of thefollowing 
onfusion matrix. Predi
tedObserved No YesNo n11 n12Yes n21 n22We represent buggy hunks with Yes and bug-free hunks with No. A

ura
y isthe ratio of the 
orre
t 
lassi�
ations to the total number of instan
es. Corre
t
lassi�
ations is the sum of a
tual buggy hunks 
lassi�ed as byggy and the a
tualbug-free hunks 
lassi�ed as bug-free. A

ura
y 
an be 
al
ulated by the followingformula:
Accuracy =

(n11 + n22)

n11 + n12 + n21 + n22
∗ 100Buggy hunk pre
ision is the ratio of a
tual buggy hunks predi
ted as buggy tothe total number of hunks predi
ted as buggy.

Buggy Hunk Precision =
n22

n22 + n12Buggy hunk re
all is the ratio of a
tual buggy hunks predi
ted as buggy to thetotal number of a
tual buggy hunks.
Buggy Hunk Recall =

n22

n22 + n21Bug-free hunk pre
ision is the ratio of a
tual bug-free hunks predi
ted as bug-freeto the total number of hunks predi
ted as bug-free.
Bug − Free Hunk Precision =

n11

n11 + n21
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all is the ratio of a
tual bug-free hunks predi
ted as bug-free tothe total number of a
tual bug-free hunks.
Bug − Free Hunk Recall =

n11

n11 + n12F-Measure 
ombines both pre
ision and re
all and is a ratio of the 2 times produ
tof pre
ision and re
all to the sum of pre
ision and re
all.
F − Measure =

2 ∗ Precision ∗ Recall

Precision + Recall5.5 Classi�
ation Te
hniquesMany ma
hine learning algorithms are available to be used as 
lassi�ers.5.5.1 Logisti
 RegressionLogisti
 regression is used when the dependent variable is a binary 
ategori
alvariable and the independent variables are 
ontinuous and/or 
ategori
al [38℄.Logisti
 regression 
an determine the per
ent of varian
e in dependent variableexplained by the independent variables and the relative importan
e of indepen-dents.Linear regression 
annot work when the response variable is binary. In situ-ations where response variable is a probability that takes values between 0 and1, logisti
 regression is used. It bounds the response variable to values between 0and 1, in 
ontrast to linear regression whi
h allows arbitrary large or small values.Logisti
 regression assumes that the response variable follows the Logit-fun
tionshown in Figure 5.1.To understand logit-fun
tion we should know the 
on
ept of odds. The oddsof an event that o

urs with probability P is de�ned as
Odds = P / (1 − P ) (5.1)Figure 5.2 depi
ts the odds fun
tion. We 
an see the odds of an event goes from0 to in�nity when the probability for that event goes from 0 to 1.In terms of odds, the logit-fun
tion 
an be written as

logit(P ) = log(odds(P )) = log(P/(1 − P )) (5.2)If we use logit-fun
tion, we 
an bound values of P between 0 and 1 with a linearrepresentation for input variable X.
logit(P ) = α + β ∗ X (5.3)Multivariate logisti
 regression 
an be represented by the equation:

P (X1,X2, . . . ,Xn) =
eC0+C1.Xi1

+...+Cn.Xin

1 + eC0+C1.Xi1
+...+Cn.Xin

(5.4)
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Figure 5.1: Logit Fun
tion

Figure 5.2: Odds Fun
tion



5.5. CLASSIFICATION TECHNIQUES 71The Xis are the hunk metri
s in our 
ase and P is the probability of a hunk beingbuggy.5.5.2 Random ForestsThe Random Forest is a meta-learner 
omprised of many trees and operatesqui
kly on large datasets. It uses random samples to build ea
h tree in the for-est. Attributes at ea
h node of a tree are sele
ted randomly and then attributesproviding the highest level of learning are sele
ted.A detail of the working of Random Forests is out of the s
ope of this thesis.However a brief overview is presented here as des
ribed in [9℄. Random forestsuse a 
ombination of tree predi
tors with ea
h tree depending on the values of arandom ve
tor sampled independently and with the same distribution for all treesin the forest. To 
lassify a new obje
t from an input ve
tor, ea
h input ve
tor isput down ea
h of the trees in the forest. Ea
h tree gives a 
lassi�
ation or votesfor that 
lass. The forest 
hooses the 
lassi�
ation having the most votes amongall the trees in the forest.Ea
h tree in the forest grows as follows:� Suppose N is the number of 
ases in the training set, randomly N 
asesare sampled with repla
ement from the original data. This sample a
ts astraining set for growing the tree.� Suppose M is the number of input variables, a number m≪M is spe
i�edin su
h a way that m variables are sele
ted randomly out of M at ea
hnode and the best split on these m is used to split the node. The value ofm is kept 
onstant as the tree grows.� No pruning is applied and ea
h tree in the forest grows to the largest extentpossible.The error rate of random forest depends on two things:� High 
orrelation between any two trees in
reases the error rate of randomforest.� Higher strength of individual trees de
reases the error rate of random forest.We used the random forest algorithm implemented in WEKA [2℄.5.5.3 Prin
ipal Component Analysis (PCA)Prin
ipal 
omponent analysis is used to identify patterns in data, and express thedata in su
h a way as to highlight the similarities and di�eren
es among patterns.It is di�
ult to �nd patterns in high dimensional data, so PCA helps to analyze
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h kind of data. PCA helps to �nd patterns in data and 
ompress the data toredu
e the number of dimensions, without mu
h loss of information. To applyPCA mean (average a
ross ea
h dimension) is subtra
ted from ea
h of the datadimensions. X̄ is subtra
ted from all X values and Ȳ is subtra
ted from all Yvalues. In this way we get a dataset having mean zero. In the next step a 
o-varian
e matrix is 
al
ulated for the data. Then eigenve
tors and eigenvalues are
al
ulated for the 
ovarian
e matrix. By taking the eigenve
tors of the 
ovari-an
e matrix, we 
an extra
t lines that 
hara
terize the data. Then the data istransformed so that it 
an be expressed in terms of these lines.Eigenve
tors are ordered by eigenvalues from highest to lowest, produ
ing
omponents in order of signi�
an
e. Components with lesser signi�
an
e 
an beignored to redu
e the data dimensions. If we have n dimensions in data and thereare n 
al
ulated eigenve
tors and eigenvalues, and we 
hoose �rst m eigenve
torsthen the �nal data will have m dimensions. A feature ve
tor is made by forminga matrix with the 
hosen eigenve
tors.
Feature vector = (eig1 eig2 eig3 · · · eign) (5.5)Finally transpose of the feature ve
tor is multiplied on the left of the transposedoriginal data set.

Final Data = RowFeatureV ector ∗ RowDataAdjust (5.6)Where RowFeatureVe
tor is the matrix with the eigenve
tors in the 
olumns trans-posed, and RowDataAdjust is the mean-adjusted data transposed. In this waydata is represented in terms of ve
tors whi
h des
ribe patterns in the data.Some of the hunk metri
s are 
orrelated with ea
h other. These inter-
orrelations
an be over
ome using the prin
ipal 
omponent analysis (PCA). PCA redu
es thenumber of dimensions without mu
h loss of information. Prin
ipal 
omponentsare extra
ted by using a varian
e maximizing rotation of the original variables.We used the extra
ted prin
ipal 
omponents in logisti
 regression.5.5.4 Point Biserial CorrelationThe point biserial 
orrelation measures the asso
iation between a 
ontinuous vari-able and a binary variable [28℄. It 
an take values between -1 and +1. AssumingX as a 
ontinuous variable and Y as 
ategori
al with values 0 and 1, point biserial
orrelation 
an be 
al
ulated using the formula
r =

(X̄1 − X̄0)
√

p(1 − p)

Sxwhere X̄1 is the mean of X when Y=1 ,
X̄0 is the mean of X when Y=0 ,
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Sx is the standard deviation of X ,and p is the proportion of values where Y=1 .Positive point biserial 
orrelation indi
ates that large values of X are asso
iatedwith Y=1 and small values of X are asso
iated with Y=0. Point biserial 
orrela-tion values greater than 0.2 are 
onsidered good.5.6 ResultsThis se
tion presents the results obtained by 
lassifying hunks using randomforests and logisti
 regression. Performan
e of individual as well as group ofhunk metri
s is evaluated for hunk 
lassi�
ation. Classi�
ation a

ura
ies are
ompared for random forests and logisti
 regression. Hunk metri
s are analyzed,and those metri
s are identi�ed whi
h 
an serve as better predi
tor of bugs.5.6.1 Correlation between Hunk Metri
s and BugsAs a hunk 
an be either buggy or bug-free, point biserial 
orrelation is 
al
ulatedbetween ea
h hunk metri
s and the hunk type i.e buggy or bug-free. Most of thehunk metri
s have positive point biserial 
orrelation with hunk type ex
ept NOI,NOTH and NOIP having negative 
orrelation, see Table 5.3. The majority ofthe 
orrelation values are greater than 0.15, indi
ating that hunk metri
s 
an dis-
riminate between buggy and bug-free hunks. NOH has higher 
orrelation valuesin all proje
ts as 
ompared to other metri
s. It means NOH 
an better dis
rimi-nate between buggy and bug-free hunks. NOBH has higher values for E
lipse andMozilla as 
ompare to other proje
ts, the reason may be large number of revisionsof these proje
ts as 
ompared to other proje
ts.Some proje
ts have similar 
orrelation values like Apa
he, Epiphany and Evolu-tion are similar for most of the hunk metri
s. Similarly Nautilus and PostgreSQLhave almost similar values. It indi
ates the possibility of a single 
lassi�
ationmodel whi
h 
an be applied to di�erent proje
ts.5.6.2 PCA and Logisti
 RegressionWe applied logisti
 regression both with and without using PCA, but the resultsare almost similar in both 
ases. However one advantage of using PCA is thatnumber of input variables is redu
ed. Logisti
 regression provides the probabilityof a hunk being buggy and the values range between 1 and 0. We used a 
uto�value of 0.5 to 
lassify hunks as buggy, it means that if P > 0.5, the hunk is
lassi�ed as buggy and bug-free otherwise. A

ura
y, pre
ision and re
all valuesare 
al
ulated for ea
h proje
t (both C and JAVA �les are pro
essed for Mozilla).The a

ura
y values vary from 60 per
ent for Nautilus to 74 per
ent for Mozilla.The F-Measure for buggy hunks varies from 0.11 for Mozilla to 0.61 for Nautilus
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orrelation between hunk metri
s and hunk typeMetri
s Apa
he E
lipse Epiphany Evolution Mozilla Nautilus PostgreSQLNOCN 0.32 0.23 0.25 0.24 0.20 0.17 0.22NOL 0.25 0.09 0.23 0.30 0.16 0.14 0.18NOA 0.26 0.12 0.25 0.27 0.15 0.17 0.19NOFC 0.36 0.16 0.28 0.28 0.15 0.25 0.22NOFD 0.16 0.12 0.23 0.25 0.13 0.23 0.19NOV 0.18 0.09 0.25 0.26 0.09 0.18 0.18NOP 0.27 � 0.27 0.28 0.19 0.24 0.21NOLO 0.31 0.15 0.22 0.22 0.15 0.12 0.18NORO 0.28 0.13 0.23 0.16 0.11 0.11 0.15NORS 0.27 0.02 0.14 0.22 0.17 0.14 0.22NON 0.32 0.15 0.26 0.21 0.20 0.15 0.16NOI -0.17 � 0.14 -0.03 -0.03 -0.02 -0.11NOD 0.04 � 0.16 0.06 0.03 0.11 0.07NOS 0.20 � 0.12 0.28 0.11 0.16 0.12NOAS 0.02 � 0.01 0.01 -0.17 0.01 0.15NOAR 0.25 0.08 0.21 0.16 0.16 0.06 0.14NOCS 0.25 0.31 0.18 0.16 0.13 0.19 0.04NOG 0.36 � 0.22 0.23 0.14 0.26 0.13NOB 0.29 0.16 0.23 0.22 0.21 0.20 0.15NOE � 0.08 � � 0.14 � �NOC � 0.09 � � -0.01 � �NOO � 0.04 � � 0.05 � �NOTH � -0.03 � � 0.09 � �NOIP � -0.01 � � -0.31 � �NOIH � 0.15 � � -0.09 � �NOH 0.33 0.28 0.28 0.34 0.36 0.22 0.37NOBH 0.10 0.61 0.05 0.11 0.27 0.05 0.06and the F-Measure for bug-free hunks varies from 0.58 for Nautilus to 0.85 forMozilla. Pre
ision and Re
all values are lower for buggy hunk as 
ompare tobug-free hunks, see Table 5.5. We 
an adjust pre
ision and re
all values for buggyand bug-free hunks by 
hanging the 
uto� value. If we use 
uto� value of 0.3, thepre
ision and re
all for buggy hunks is improved.Appli
ation of PCA has not improved the results, see Table 5.4. The reason isthat in majority of the hunk instan
es most of the hunk metri
s are 0. Althoughthere is 
orrelation between hunk metri
s but the 
orrelation values are not sohigh.Regression analysis have shown that NOCN, NOA, NOFC, NORS, NOBH andNOH are signi�
ant predi
tors of buggy hunks at signi�
an
e level 1 % in mostof the proje
ts, see Table 5.6 and 5.7 . NOH are found signi�
ant for 
lassifyingthe hunks as buggy or bug-free in all proje
ts. NORO, NON, NOAR, NOB, and



5.6. RESULTS 75Table 5.4: Pre
ision P, Re
all R and A

ura
y A using LR with PCAProje
t A Buggy Hunk Bug-Free HunkP R F1 P R F1Apa
he 0.65 0.68 0.36 0.47 0.88 0.64 0.74E
lipse 0.69 0.73 0.17 0.28 0.97 0.69 0.80Epiphany 0.68 0.63 0.20 0.30 0.94 0.69 0.79Evolution 0.67 0.65 0.24 0.35 0.92 0.67 0.78Mozilla-C 0.74 0.55 0.05 0.09 0.99 0.75 0.85Mozilla-J 0.69 0.72 0.33 0.46 0.92 0.68 0.78Nautilus 0.60 0.62 0.66 0.64 0.53 0.57 0.55PostgreSQL 0.61 0.66 0.40 0.50 0.84 0.62 0.71Table 5.5: Pre
ision P, Re
all R and A

ura
y A using LR without PCAProje
t A Buggy Hunk Bug-Free HunkP R F1 P R F1Apa
he 0.66 0.69 0.37 0.48 0.87 0.65 0.74E
lipse 0.69 0.74 0.17 0.28 0.97 0.69 0.81Epiphany 0.66 0.57 0.09 0.15 0.96 0.67 0.79Evolution 0.66 0.65 0.19 0.30 0.94 0.66 0.77Mozilla-C 0.74 0.56 0.06 0.11 0.98 0.75 0.85Mozilla-J 0.69 0.73 0.33 0.45 0.92 0.68 0.78Nautilus 0.60 0.64 0.60 0.61 0.60 0.56 0.58PostgreSQL 0.62 0.67 0.42 0.52 0.83 0.61 0.70NOFD are also signi�
ant in half of the proje
ts. The set of signi�
ant hunkmetri
s is di�erent in all proje
ts with one ex
eption, that is NOH.
5.6.3 Random ForestsRandom forests have produ
ed the most a

urate results. We used 10-fold 
rossvalidation to build the 
lassi�
ation model. In 10-fold 
ross validation the data isbroken down into 10 sets of size n/10. The 
lassi�er is trained on 9 data sets andtested on 1 data set. This pro
edure is repeated 10 times and a mean a

ura
y istaken [72℄. The a

ura
y values produ
ed by our model vary from 74 per
ent forEpiphany to 87 per
ent for E
lipse, see Table 5.8. The F-measure for buggy hunksvaries from 0.57 for Epiphany to 0.81 for E
lipse and the F-measure for bug-freehunks varies from 0.75 for Nautilus to 0.91 for E
lipse and Mozilla. Pre
isionvalues for buggy hunks are between 66% and 84%, and the re
all values for buggyhunks are between 51% and 78%.



76 CHAPTER 5. HUNK CLASSIFICATIONTable 5.6: Results of Multivariate Logisti
 Regression (a)Metri
s Apa
he Epiphany Evolution NautilusCoe�. p-value Coe�. p-value Coe�. p-value Coe�. p-value
onstant -0.87 0.000 -1.21 0.000 -1.11 0.000 -0.15 0.000NOP 0.02 0.01 0.04 0.01 0.02 0.003 0.02 0.02NOCN 0.07 0.000 0.07 0.04 0.02 0.15 0.02 0.22NOL -0.03 0.52 -0.01 0.94 0.01 0.8 -0.03 0.62NOLO 0.03 0.05 -0.01 0.76 -0.06 0.000 -0.11 0.000NORO -0.06 0.002 0.12 0.003 0.07 0.000 0.03 0.15NOA -0.11 0.000 -0.07 0.02 0.01 0.26 -0.08 0.000NOFC 0.12 0.000 0.07 0.001 0.07 0.000 0.09 0.000NORS -0.02 0.58 -0.47 0.000 -0.03 0.2 -0.14 0.000NON 0.07 0.01 0.06 0.04 -0.01 0.26 -0.09 0.000NOS 0.03 0.79 -0.05 0.87 0.08 0.22 -0.13 0.38NOAR 0.04 0.08 -0.07 0.37 -0.07 0.002 -0.06 0.03NOCS 0.16 0.03 -0.08 0.46 -0.1 0.001 0.14 0.02NOG 1.04 0.01 -0.16 0.59 0.22 0.1 0.82 0.02NOB -0.36 0.000 0.21 0.23 0.07 0.14 0.08 0.43NOV -0.03 0.2 0.05 0.06 0.02 0.06 -0.01 0.34NOFD -0.08 0.002 0.16 0.000 0.09 0.000 0.14 0.000NOBH 0 0.91 0 0 0.001 0.26 0.001 0.000NOH 0.02 0.000 0.05 0.000 0.03 0.000 0.01 0.0005.6.4 Comparison of Logisti
 Regression and Random ForestsRandom forests have produ
ed better results as 
ompared to logisti
 regression.A

ura
ies obtained by training and applying both models are shown in Figure 5.3.Maximum and minimum a

ura
ies obtained by applying random forests are 87%and 74% respe
tively. For E
lipse, Mozilla and PostgreSQL it has 
lassi�ed morethan 80% hunks a

urately. Appli
ation of logisti
 regression produ
es maximumand minimum a

ura
ies of 74% and 60% respe
tively. In most of the proje
ts,logisti
 regression 
an 
lassify less than 70% hunks a

urately.Figure 5.4 shows the buggy hunk pre
ision obtained by training and apply-ing both models. Again random forest has out 
lassed logisti
 regression and itprodu
es maximum and minimum buggy hunk pre
ision of 84% and 66% respe
-tively. It produ
es more than 80% buggy hunk pre
ision for E
lipse, Mozilla andPostgreSQL. Maximum and minimum buggy hunk pre
ision obtained by applyinglogisti
 regression is 74% and 56% respe
tively. Using logisti
 regression, buggyhunk pre
ision falls between 60% and 70% for most of the proje
ts.Buggy hunk re
all obtained by applying both models is shown in Figure 5.5.Logisti
 regression has produ
ed very poor re
all. However in more than halfproje
ts random forest has produ
ed more than 70% buggy hunk re
all. Maxi-mum and minimum re
all obtained by applying random forests is 78% and 51%



5.6. RESULTS 77Table 5.7: Results of Multivariate Logisti
 Regression (b)Metri
s PostgreSQL E
lipse MozillaCoe�. p-value Coe�. p-value Coe�. p-value
onstant -0.72 0.000 -1 0.000 -0.99 0.000NOP 0.08 0.000 � � 0.04 0.000NOCN 0.15 0.000 0.04 0.000 0.07 0.000NOL 0.1 0.01 -0.01 0.37 -0.09 0.067NOLO 0.03 0.1 0.01 0.09 0.04 0.021NORO -0.16 0.000 -0.01 0.1 -0.1 0.000NOA 0.04 0.000 -0.02 0.000 0.01 0.157NOFC 0.06 0.000 0.04 0.000 0.05 0.000NORS 0.3 0.000 -0.06 0.000 0.05 0.000NON -0.09 0.000 0.19 0.000 -0.06 0.109NOS 0.14 0.02 � � � �NOAR -0.14 0.000 -0.04 0.000 0.12 0.000NOCS -0.24 0.000 0.02 0.002 -0.03 0.041NOG -1.08 0.000 � � � �NOB 0.28 0.000 -0.14 0.000 -0.01 0.625NOV 0.07 0.000 0.01 0.03 0.02 0.044NOFD 0 0.68 0 0.85 0.01 0.610NOE � � -0.09 0.000 0.03 0.382NOO � � 0.01 0.4 -0.15 0.000NOC � � -0.02 0.56 0.3 0.002NOTH � � -0.1 0.000 -0.09 0.001NOIP � � 0 0.78 -0.5 0.000NOIH � � 0.15 0.001 -0.4 0.000NOBH 0 0.000 0 0.000 0 0.000NOH 0 0.000 0 0.000 0.01 0.000Table 5.8: Pre
ision P, Re
all R and A

ura
y A using random forestsProje
t A Buggy Hunk Bug-Free HunkP R F1 P R F1Apa
he 0.76 0.75 0.65 0.70 0.76 0.84 0.80E
lipse 0.87 0.84 0.78 0.81 0.89 0.92 0.91Epiphany 0.74 0.66 0.51 0.57 0.77 0.86 0.81Evolution 0.75 0.70 0.53 0.63 0.77 0.85 0.81Mozilla-C 0.86 0.81 0.62 0.70 0.88 0.95 0.91Mozilla-J 0.84 0.83 0.76 0.79 0.85 0.90 0.87Nautilus 0.77 0.79 0.78 0.78 0.75 0.76 0.75PostgreSQL 0.83 0.81 0.72 0.76 0.84 0.89 0.86
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Figure 5.3: A

ura
ies using Random Forest and Logisti
 Regression

Figure 5.4: Buggy Hunk Pre
ision using Random Forest and Logisti
 Regressionrespe
tively. Buggy hunk re
all obtained by applying logisti
 regression is lessthan 40% for most of the proje
ts. It produ
es maximum and minimum buggyhunk re
all of 60% and 6% respe
tively.5.6.5 Performan
e of Individual Metri
sTo evaluate the performan
e of individual metri
s, we used single hunk metri
 asthe independent variable and presen
e or absen
e of bug as the dependent variable.Our obje
tive was to evaluate ea
h metri
 separately as predi
tor of bugs. Mostof the 
ode related hunk metri
s have produ
ed similar results. Hunks may di�erin their 
ode 
ontents, so di�erent metri
s may 
lassify the same hunk di�erently.However overall a

ura
ies are almost similar for 
ode related metri
s, see Table5.9 and 5.10. Two hunk metri
s have produ
ed better results as 
ompared to other
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Figure 5.5: Buggy Hunk Re
all using Random Forest and Logisti
 Regressionmetri
s. One of these metri
s is related to size of 
hange that is total number ofhunks in a revision (NOH). Other is related to history that is number of buggyhunks found in the previous history of a �le (NOBH).Individual metri
s 
an distinguish between buggy and bug-free hunks with60% a

ura
y on an average, see Figure 5.6. For Mozilla proje
t, fun
tion de
la-rations, return statement, number of total hunks and number of previous buggyhunks have shown better buggy hunk pre
ision. Whereas for E
lipse proje
t,loops, fun
tion 
alls, return statements, arrays, break statement and 
lasses haveshown better buggy hunk pre
ision, as depi
ted in Figure 5.7.Individual metri
s have produ
ed very poor re
all values. Among the 
oderelated hunk metri
s, fun
tion 
alls, Null statement and 
ase statement haveprodu
ed better buggy hunk re
all for the Mozilla proje
t. Change and historyrelated hunk metri
s have produ
ed best buggy hunk re
all for both proje
ts, seeFigure 5.8.5.6.6 Performan
e of Combination of Metri
sTo evaluate the performan
e of metri
s groups, we 
ombined related metri
s intothree groups. The �rst group was 
omposed of hunk metri
s related to methods.The se
ond group was related to 
lasses and the third group was related to 
hangesize and history. Following is a detail of the groups:� Group 1. NOCN, NOL, NOA, NOFC, NOFD, NOV, NOLO, NORO,NORS, NON, NOAR and NOB.� Group 2. NOC, NOO, NOIP and NOIH.� Group 3. NOH and NOBH.
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ision , Re
all and A

ura
y for Mozilla using individual metri
sMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1NOCN 0.59 0.566 0.066 0.119 0.59 0.963 0.732NOL 0.58 0.527 0.036 0.068 0.585 0.977 0.732NOA 0.58 0.516 0.008 0.016 0.583 0.995 0.735NOFC 0.60 0.577 0.144 0.231 0.601 0.924 0.728NOFD 0.58 0.615 0.017 0.034 0.584 0.992 0.736NOV 0.58 0.303 0.001 0.002 0.582 0.999 0.735NOLO 0.58 0.479 0.006 0.011 0.582 0.996 0.735NORO 0.58 0.516 0.008 0.016 0.583 0.995 0.735NORS 0.58 0.667 0.005 0.01 0.583 0.998 0.736NON 0.60 0.562 0.156 0.223 0.591 0.914 0.731NOAR 0.58 0.558 0.018 0.035 0.584 0.99 0.735NOCS 0.58 0.586 0.166 0.219 0.591 0.951 0.722NOB 0.58 0.558 0.024 0.046 0.585 0.986 0.734NOC 0.58 0 0 0 0.582 1 0.736NOO 0.58 0.489 0.004 0.007 0.582 0.997 0.735NOIP 0.58 0.5 0 0 0.582 1 0.736NOIH 0.58 0 0 0 0.582 1 0.736NOH 0.73 0.829 0.461 0.592 0.706 0.932 0.804NOBH 0.77 0.783 0.624 0.695 0.764 0.876 0.816Table 5.10: Pre
ision , Re
all and A

ura
y for E
lipse using individual metri
sMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1NOCN 0.65 0.541 0.01 0.02 0.656 0.995 0.791NOL 0.66 0.638 0.006 0.011 0.656 0.998 0.791NOA 0.66 0.554 0.009 0.018 0.656 0.996 0.791NOFC 0.66 0.619 0.009 0.018 0.656 0.997 0.791NOFD 0.66 0.596 0.008 0.015 0.656 0.997 0.791NOV 0.66 0.593 0.005 0.011 0.655 0.998 0.791NOLO 0.66 0.578 0.01 0.02 0.656 0.996 0.791NORO 0.66 0.604 0.008 0.016 0.656 0.997 0.791NORS 0.66 0.625 0.006 0.011 0.656 0.998 0.791NON 0.65 0.532 0.06 0.08 0.666 0.985 0.788NOAR 0.66 0.616 0.003 0.006 0.655 0.999 0.791NOB 0.66 0.601 0.007 0.015 0.656 0.997 0.791NOC 0.65 0.639 0.001 0.003 0.655 1 0.791NOO 0.66 0.62 0.006 0.012 0.656 0.998 0.791NOIP 0.65 0.473 0.002 0.005 0.655 0.999 0.791NOIH 0.66 0.548 0.008 0.015 0.656 0.997 0.791NOH 0.75 0.839 0.326 0.47 0.731 0.967 0.833NOBH 0.79 0.781 0.553 0.648 0.796 0.918 0.853
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Figure 5.6: A

ura
ies using Individual Metri
s

Figure 5.7: Buggy Hunk Pre
ision using Individual Metri
s

Figure 5.8: Buggy Hunk Re
all using Individual Metri
s
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ision , Re
all and A

ura
y for Mozilla using metri
s groupsMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1Group1 0.60 0.583 0.174 0.268 0.606 0.911 0.727Group2 0.58 0.543 0.006 0.011 0.583 0.997 0.735Group3 0.84 0.84 0.768 0.803 0.843 0.895 0.868Table 5.12: Pre
ision , Re
all and A

ura
y for E
lipse using metri
s groupsMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1Group1 0.68 0.619 0.189 0.289 0.687 0.939 0.793Group2 0.66 0.696 0.01 0.02 0.656 0.998 0.792Group3 0.87 0.869 0.723 0.789 0.866 0.943 0.902We used ea
h group of metri
s as explanatory variables and trained and testedthe 
lassi�er. Group 2 produ
ed poor results, see Table 5.11 and 5.12. One reasonmay be few hunks involving 
lass de
larations and inheritan
e statements. Group1 produ
es better a

ura
y but re
all values are poor. Group 3 produ
ed the bestresults. It indi
ates that buggy �les 
ontinue to introdu
e bugs in later releases.Hunk metri
s related to methods and 
lasses 
an distinguish between buggyand bug-free hunks with similar a

ura
ies, see Figure 5.9. They are equallypre
ise also in identifying buggy hunks, as depi
ted in Figure 5.10. However 
lassrelated hunk metri
s have very poor buggy hunk re
all value. Method related hunkmetri
s have produ
ed slightly better results with average buggy hunk re
all of18%, as shown in Figure 5.11. The reason may be a few number of hunks involving
hanges to 
lasses as 
ompared to hunks involving 
hanges to methods.History and 
hange related hunk mtri
s have outperformed other two groups.History related group 
an distinguish buggy and bug-free hunks with 85% a

u-ra
y on an average. It has produ
ed mu
h better buggy hunk pre
ision and re
allvalues that are 85% and 74% respe
tively.5.6.7 Cross Proje
t Predi
tionsIn order to know whether a predi
tor obtained from one proje
t 
an be appliedto other proje
ts, we tested the 
onstru
ted models a
ross di�erent proje
ts. Wetested the models built using random forests, be
ause they produ
ed better resultsfor the same proje
t. Proje
ts developed in JAVA language have some additionalmetri
s related to obje
ts, so we made two groups. One group having JAVAproje
ts and the other having C proje
ts. Table 5.13 shows the 
lassi�
ationa

ura
ies obtained by applying predi
tor obtained from one proje
t, to otherproje
ts. The a

ura
y values range from 49 per
ent to 75 per
ent, with most ofthe values greater than 60 per
ent. It indi
ates that predi
tors obtained from one
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Figure 5.9: A

ura
ies using Metri
s Groups

Figure 5.10: Buggy Hunk Pre
ision using Metri
s Groups

Figure 5.11: Buggy Hunk Re
all using Metri
s Groups



84 CHAPTER 5. HUNK CLASSIFICATIONTable 5.13: Classi�
ation a

ura
ies using models from a di�erent proje
tProje
t Apa
he E
lipse Epiphany EvolutionMozilla-CMozilla-J Nautilus PostgreSQLApa
he � � 0.67 0.64 0.74 � 0.52 0.65E
lipse � � � � � 0.61 � �Epiphany 0.65 � � 0.63 0.69 � 0.54 0.63Evolution 0.63 � 0.63 � 0.69 � 0.54 0.62Mozilla-C 0.75 � 0.63 0.61 � � 0.52 0.63Mozilla-J � 0.65 � � � � � �Nautilus 0.53 � 0.60 0.59 0.60 � � 0.49PostgreSQL 0.64 � 0.64 0.63 0.71 � 0.52 �proje
t based on hunk metri
s 
an be su

essfully applied to other proje
ts.Predi
tor obtained from Apa
he proje
t 
ould 
lassify hunks from Epiphany,Evolution and PostgreSQL with a similar a

ura
y of 64%. It 
ould 
lassify only50% hunks of Nautilus a

urately. However it showed better results for Mozillaproje
t with an a

ura
y of 75%.Predi
tor obtained from 
hange data of Epiphany 
ould 
lassify hunks fromother proje
ts with an average a

ura
y of 63%, whereas predi
tor obtained fromEvolution proje
t 
ould 
lassify 62% of hunks from other proje
ts 
orre
tly.Classi�er trained on histori
 data of Mozilla showed better results 
omparedto other 
lassi�ers. On an average it 
ould 
lassify 69% hunks 
orre
tly, with besta

ura
ies for Apa
he and PostgreSQL.Predi
tor obtained from PostgreSQL showed results similar to the predi
torobtained from Apa
he proje
t. It 
ould 
lassify hunks from Apa
he, Epiphanyand Evolution with a similar a

ura
y of 64%. It 
ould 
lassify only 50% hunksof Nautilus a

urately, whereas for Mozilla proje
t it also showed better resultswith an a

ura
y of 71%.Classi�ers obtained from E
lipse and Mozilla, when applied on ea
h other,produ
ed similar results. In both 
ases the a

ura
y of 
lassi�
ation was about60%.5.7 Appli
ationsHunk 
lassi�
ation approa
h 
an be used in di�erent ways:� Hunk 
lassi�
ation approa
h 
an identify buggy hunks immediately after ahunk is made. It 
an alarm the developers about the bad 
ode. Developers
an review the 
ode 
hanges they have made before 
ommitting them to therepository. So hunk 
lassi�er 
an be used as a 
ommit inspe
tor.� It 
an be used as part of the software development pro
ess. Developers 
anmake 
hanges to the sour
e 
ode, apply hunk 
lassi�er to 
he
k the 
hanges,
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eive noti�
ation about the 
hange, modify the 
hanges if required andrepeat the same 
y
le again. One advantage of using hunk 
lassi�er is thesmallest level of granularity. Developers have to inspe
t a few lines of 
oderather than the whole 
hange.





Chapter 6
Threats to Validity
This 
hapter des
ribes the threats to the validity of this work.All analyzed proje
ts are open sour
e: The software systems used in thisempiri
al study are all open sour
e, hen
e they follow a di�erent develop-ment methodology. Commer
ial software proje
ts use di�erent developmentand maintenan
e te
hniques, so there may be di�erent patterns of 
hangesand bugs. Commer
ial proje
ts use skilled programmers and analysts, sobug introdu
tion patterns may be slightly di�erent. Time pressure is alsoa major di�eren
e between open sour
e and 
ommer
ial proje
ts whi
h 
anin�uen
e the 
hange patterns.Studied proje
ts might not be representative: Although eight large opensour
e proje
ts belonging to di�erent domains are used in this study, they
annot represent all kinds of software. Proje
ts with better bug reportingand bug linking fa
ilities may produ
e better results for 
lassi�
ation a

u-ra
ies. Real time and distributed software may have di�erent 
hange andbug patterns and hen
e di�erent buggy hunk 
lassi�
ation a

ura
ies.Quality of log 
omments: A 
areful pro
essing is used to extra
t 
ommentsfrom 
on�guration management systems and to identify bug �xes. Howeverquality of the log 
omments 
an in�uen
e the results. A developer may notproperly 
omment the 
hange, so some bug �xes may be missed. All proje
tsdo not use a standard way of writing 
omments. Some proje
ts follow anumeri
 bug identi�er s
heme to represent �x 
omments while others usekeywords like �x, bug or pat
h in their 
omments. So some 
ommits maybe mistakenly identi�ed as �xes. 87



88 CHAPTER 6. THREATS TO VALIDITYGranularity of Versioning Systems: Con�guration management systems re
ord
hanges on line level. So it is di�
ult to identify whi
h individual syntaxelement is modi�ed during a 
hange. There may be either a single syntaxelement 
hanged in a line or multiple elements. Better te
hniques for iden-ti�
ation of individual syntax elements may further enhan
e the a

ura
iesof results.Software Design Issues: In this study, 
hanges and bugs of proje
ts are 
on-sidered whi
h have a development history. No emphasis is given to softwaredesign and design time �aws. Di�erent software designs may produ
e dif-ferent 
hange and bug patterns. It would be ni
e to in
lude design timemetri
s and information for study of 
hanges and bugs.Although it is di�
ult to extra
t pre
ise data from software repositoriesbe
ause of several reasons that may be mapping between bugs and sour
e
ode lo
ations, extra
tion of 
hanged 
ode or mapping of 
hanges and bugsto the developers, we 
an not say that the derived 
on
lusions are entirelywrong. Using a publi
 data set we have to 
ompromise on the validity ofdata to a 
ertain extent. Keeping in view the available data sour
es, theseresults are a

eptable.



Chapter 7
Related Work
In this 
hapter work related to this thesis is dis
ussed. First di�erent approa
hesand te
hniques are dis
ussed for extra
ting valuable fa
ts from software repos-itories. Next di�erent bug predi
tion models and te
hniques are dis
ussed and
ompared with the hunk 
lassi�
ation te
hnique. Then a dis
ussion is made on
hange extra
tion and 
hange analysis. Finally a review of buggy 
ode featuresand 
ode lo
ations is presented.7.1 Mining Software Change HistoryHipikat is a tool that forms impli
it group memory for a proje
t by inferring linksbetween stored artifa
ts and that then re
ommends relevant part of the groupmemory to a developer working on the task [12℄. It groups four types of artifa
ts:bug and feature des
riptions, sour
e �le revisions, messages posted on developerforums, and other proje
t do
uments. It helps new 
omer/developer in opensour
e proje
t by providing an e�
ient and e�e
tive a

ess to the group memoryfor a software development proje
t. Hipikat 
an be viewed as a re
ommendersystem for software developers that draws its re
ommendation from a proje
tsdevelopment history.Kenyon is a tool that provides automated 
on�guration retrieval from SCM toa lo
al �le system and applies fa
t extra
tors on ea
h retrieved 
on�guration andthen saves the extra
ted information into a relational database using an obje
-t/relation mapping (ORM) system [8℄. It redu
es the time of resear
h, automates
on�guration retrieval and allows user 
ontrol on 
on�guration times. Di�erentSCM systems and multiple data input sour
es are supported. Kenyon providese�
ient, a

essible, and optional storage of extra
ted fa
ts. It uses Hibernate tomap its Java obje
ts to a relational database. Hibernate provides a solution to89



90 CHAPTER 7. RELATED WORKmap database tables to a 
lass. It 
opies the database data to a 
lass. In theother dire
tion it supports to save obje
ts to the database. In this pro
ess theobje
t is transformed to one or more tables. Our modules do a similar job of fa
textra
tion from 
on�guration management systems.Sliwerski et al. [66℄ developed a prototype HATARI to dete
t lo
ations inthe software development history where 
hanges have been risky in the past. Itrelates version ar
hives (su
h as CVS) to a bug database (su
h as BUGZILLA)to identify and lo
ate the risky 
ode lo
ations. HATARI makes this risk visiblefor developers by annotating sour
e 
ode with 
olor bars. Furthermore, HATARIprovides views to browse through the most risky lo
ations and to analyze the riskhistory of a parti
ular lo
ation.7.2 Bug Predi
tionDefe
t predi
tion studies involve di�erent approa
hes in
luding produ
t-
entri
,pro
ess-
entri
 and a 
ombination of both. Produ
t-
entri
 approa
hes use mea-sures obtained from stati
 and dynami
 stru
ture of sour
e 
ode or measuresextra
ted from requirements and design do
uments. A number of studies exist onthe use of produ
t-
entri
 approa
h.Gyimothy et al. [29℄ validated the obje
t-oriented metri
s for fault predi
tionin open sour
e software. The authors used logisti
 regression and ma
hine learn-ing te
hniques to identify faulty 
lasses in Mozilla. They used Chidamber andKemerer metri
s in their study. The authors evaluated eight metri
s in
ludingweighted methods per 
lass, depth of inheritan
e tree, response for a 
lass, numberof 
hildren, 
oupling between obje
t 
lasses, la
k of 
ohesion on methods, la
k of
ohesion on methods allowing negative value and lines of 
ode. Bugzilla databasewas pro
essed and bugs were asso
iated with 
lasses. The authors found that
oupling between obje
t 
lasses is the best 
hoi
e for predi
ting faulty 
lasses.Lines of 
ode metri
s also performed well in predi
ting faulty 
lasses.Porter and Selby [61℄ used 
lassi�
ation trees based on metri
s from previ-ous releases to identify 
omponents having high-risk properties. The authorsdeveloped a method of automati
ally generating measurement-based models ofhigh-risk 
omponents.Koru and Liu [40℄ 
ombined stati
 software measure with defe
t data at 
lasslevel and applied di�erent ma
hine learning te
hniques to develop bug predi
tormodel. The authors analyzed the CM1, JM1, KC1, KC2, and PC1 data sets in thePROMISE repository, whi
h belong to �ve software produ
ts developed by NASA.Several models were built to predi
t the defe
tive modules in these produ
ts, usingthe stati
 measures as predi
tor variables and the binary defe
tiveness indi
atoras the response variable. The authors 
on
luded that the predi
tion performan
ewas not dis
ouraging but not very satisfa
tory either. However the authors have



7.2. BUG PREDICTION 91proposed defe
t predi
tion guidelines based on their experien
e. They suggest toobtain stati
 measures, aggregate measurs, 
olle
t defe
t data, build a predi
tionmodel, predi
t defe
t prone 
lasses and improve predi
tion models. These stepsare similar to our approa
h however we obtain defe
t data on the level of hunksand our model is automati
ally improved as more history data be
omes availablefor a proje
t.Moser et al. [50℄ presented a 
omparative analysis of the predi
tive power ofprodu
t and pro
ess metri
s for defe
t predi
tion. The authors 
lassi�ed Java�les of E
lipse proje
t as defe
tive or defe
t-free. They built 
lassi�
ation modelsusing logisti
 regression, Naive Bayes and de
ision trees. The authors performeda 
ost sensitive 
lassi�
ation to allow di�erent 
osts for predi
tion errors. They
on
luded that 
hange data and pro
ess related metri
s 
ontain more dis
rimina-tory and meaningful information about distribution of defe
ts in software thanthe sour
e 
ode itself. The authors used 18 
hange metri
s to train a de
isiontree learner and obtained greater than 75% a

ura
y, 80% re
all and less than30% false positive rate. The 
hange metri
s in
luded in their study are number ofrevisions, number of refa
torings, number of bug �xes, number of authors, LOCadded, LOC deleted, Code
hurn, 
hange set and age of a �le. Their �ndings aresimilar to us as 
hange and history related hunk metri
s produ
e better resultsthan the 
ode related hunk metri
s. Note that in 
ontrast to defe
t predi
tion for�les, our te
hnique produ
es predi
tions for individual hunks.Pan et al. [56℄ introdu
ed program sli
ing metri
s to be used as bug predi
tors.They used program sli
e information to measure the size, 
omplexity, 
ouplingand 
ohesion properties of C language programs. The sli
ing metri
s used intheir study in
lude sli
e 
ount, verti
es 
ount, edges 
ount, edges to verti
es ratio,sli
e verti
es sum, maximum sli
e verti
es, global input, global output, dire
t fanin, dire
t fan out, indire
t fan in, indire
t fan out and la
k of 
ohesion. Theauthors 
ompared bug 
lassi�
ation 
apabilities of program sli
ing metri
s withUnderstand for C++ suite of metri
s in a number of experiments. They foundthat program sli
ing metri
s produ
e slightly better 
lassi�
ation a

ura
ies thanUnderstand for C++ metri
s at the �le level.Nagappan et al. [52℄ applied prin
ipal 
omponent analysis on 
ode metri
s anddeveloped regression models to predi
t the post-release defe
ts. The authors foundthat there is no single set of 
omplexity metri
s that 
ould a
t as a universallybest defe
t predi
tor. The authors also found that predi
tors obtained from oneproje
t were signi�
ant for other similar proje
ts.Menzies et al. [46℄ showed that predi
tors obtained from stati
 
ode attributesare useful in defe
t predi
tion with a mean probability of dete
tion of 71 per
entand mean false alarms of 25 per
ent. The authors found that it is more important,how the attributes are used to build predi
tors than whi
h parti
ular attributesare used. A number of attributes were used in this study in
luding M

abe and
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omplexity metri
s.Ostrand et al. [55℄ used 
ode of the �le in 
urrent release and fault andmodi�
ation history of the previous releases to predi
t the expe
ted number offaults in ea
h �le of the next release.Pro
ess-
entri
 approa
hes use measures extra
ted from the software history su
has 
hanges made to software, developers involved, size and time of 
hanges, andage of software. Various studies are found in literature using pro
ess artifa
ts.Ratzinger et al. [64℄ used regression models and de
ision trees to predi
t de-fe
ts in short time frames of two months. The authors used features extra
tedfrom version 
ontrol and feature tra
king systems to build their models. The au-thors also investigated the predi
tability of several severities of defe
ts in softwareproje
ts.Kim et al. [35℄ proposed a bug �nding algorithm using the proje
t-spe
i�
bug and �x knowledge base developed by analyzing the history of bug �xes. Theauthors implemented a tool BugMem for dete
ting potential bugs and suggesting
orresponding �xes.Hassan and Holt [30℄ presented an approa
h named, The Top Ten List, to pre-di
t the ten most sus
eptible subsystems having a fault. The authors used someheuristi
s to 
reate the Top Ten List. These heuristi
s were based on the 
hara
-teristi
s of software system su
h as re
en
y, frequen
y and size of modi�
ationsas well as 
ode metri
s and 
o-modi�
ations.7.3 Software Change Extra
tion and AnalysisFluri and Gall [21℄ proposed an approa
h for analyzing and 
lassifying 
hangetypes based on 
ode revisions. Using that approa
h, 
hanges on the method or
lass level 
ould be di�erentiated and their signi�
an
e in terms of the impa
t ofthe 
hange types on other sour
e 
ode entities be assessed. The authors found thatin many 
ases large numbers of lines added and/or deleted are not a

ompaniedby signi�
ant 
hanges but small textual adaptations. The authors presented ataxonomy of sour
e 
ode 
hanges to be used for 
hange 
oupling analysis and usedtree edit operations in the AST to 
lassify 
hanges. Their 
lassi�
ation approa
h
ould assess error-proneness of sour
e 
ode entities, qualify 
hange 
ouplings, oridentify programming patterns.Canfora et al. [11℄ proposed a te
hnique to identify 
hanges at sour
e 
ode linelevel from CVS repositories. They used Ve
tor Spa
e Models and the Levenshteinedit distan
e to determine if CVS/SVN di�s are due to line additions/deletionsor if they are due to line modi�
ations. A tokenizer was used instead of a parserto extra
t symbols and then 
ompute the 
osine similarity. Appli
ation of thete
hnique on a random sample of ArgoUML snapshots indi
ated high pre
ision(96%) and a high re
all as well (95%). We use a di�erent approa
h to identify
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ing hunks and the 
hanged sour
e 
ode lines.Fluri et al. [22℄ in an empiri
al study found that 
hange type patterns dodes
ribe development a
tivities and a�e
t the 
ontrol �ow, the ex
eption �ow,or 
hange the API. The authors used agglomerative hierar
hi
al 
lustering todis
over patterns of 
hange types. To explore whether 
hange types appear fre-quently and 
ommonly, the authors extra
ted data from one 
ommer
ial and twoopen sour
e software systems. In 
ontrast to general 
hange types we study thefeatures of bug-indu
ing 
hanges.Stoerzer et al. [68℄ presented an approa
h for 
hange 
lassi�
ation that helpsprogrammers identify the 
hanges responsible for test failures. The authors pro-posed several 
hange 
lassi�ers that asso
iate the 
olors Red, Yellow, or Greenwith 
hanges, a

ording to the likelihood that they were responsible for test fail-ures. The authors used a model of atomi
 
hanges, with 
hange 
ategories su
h asadded 
lasses (AC), deleted 
lasses (DC), added methods (AM), deleted methods(DM), 
hanged method bodies (CM), added �elds (AF), deleted �elds (DF), andlookup 
hanges (LC) (i.e., 
hanges to dynami
 dispat
h). The authors 
onsidered
hanges to method bodies as one CM 
hange regardless of the number of state-ments 
hanged within the respe
tive method's body. They 
ondu
ted two 
asestudies to investigate whether or not 
hange 
lassi�
ation 
an be a useful tool forfo
using the attention of programmers on failure-indu
ing 
hanges. In 
ontrast we
onsider atomi
 
hanges as 
hanges to individual language 
onstru
ts and pro
essthe 
hange history of a proje
t rather than test information. We study whi
hlanguage 
onstru
ts have more likelihood of generating bugs.Mo
kus and Weiss [48℄ presented a model to predi
t the risk of new 
hanges,based on histori
 information. The authors modeled the probability of 
ausingfailure of a 
hange made to software. They used properties of a 
hange as modelparameters su
h as size in lines of 
oded added, deleted or unmodi�ed, di�usion ofthe 
hange re�e
ted by the number of �les, modules or subsystems tou
hed, severalmeasures of developer experien
e and the type of 
hange. The authors found that
hange di�usion and developer experien
e are essential to predi
t failures.Aversano et al. [6℄ developed a model to predi
t if a new 
hange may intro-du
e a bug or not. The authors extra
ted bug-introdu
ing 
hanges from software
hange history and 
onstru
ted feature ve
tors from the sour
e 
ode. They rep-resented software 
hanges as elements of an n-dimensional ve
tor spa
e of terms.The 
onstru
ted ve
tors were used to train di�erent 
lassi�ers on data of two opensour
e proje
ts. The authors used K-Nearest Neighbor, simple logisti
, Multi-Boosting, C4.5 and Support Ve
tor Ma
hines as 
lassi�ers. K-Nearest Neighborprodu
ed better results as 
ompared to other 
lassi�ers. This work is similar toour work but the results of 
hange 
lassi�
ation are poor with 63% pre
ision and40% re
all for buggy 
hanges. Our te
hnique produ
es mu
h better results andworks at �nest level of granularity.



94 CHAPTER 7. RELATED WORKKim et al. [34℄ introdu
ed a te
hnique for 
lassifying a software 
hange as
lean or buggy. The authors trained a ma
hine learning 
lassi�er using featuresextra
ted from revision history of a software proje
t. The features used in
ludeall terms in the 
omplete sour
e 
ode, the lines modi�ed in ea
h 
hange (delta),
hange metadata su
h as author, 
hange time, and 
omplexity metri
s. Theproposed model 
ould 
lassify 
hanges as 
lean or buggy with 70 per
ent a

ura
yand 60 per
ent buggy 
hange re
all on average. The authors predi
ted faults atthe �le 
hange level whereas our approa
h predi
ts faults at the smallest level ofgranularity, that is a hunk. Furthermore, hunk 
lassi�
ation approa
h uses veryless data for 
lassi�
ation, so it is simple and easy to apply. It produ
es betterresults as 
ompared to [34℄ while using less number of input variables.Graves et al. [27℄ pro
essed 
hange management data to predi
t distributionof faults over modules of a software system. The authors found that the numberof times a 
ode has been 
hanged is a good predi
tor of faults. The authorsfurther found that modules whi
h 
hanged re
ently may have more faults thanthose modules whi
h are not 
hanged sin
e a longer time.Hassan and Holt [31℄ analyzed the development history of �ve open sour
eproje
ts to study 
hange propagation. They proposed several heuristi
s to predi
t
hange propagation and validated their results using the obtained histori
al data.German [26℄ studied the 
hara
teristi
s of modi�
ation requests with respe
tto sour
e �les and their authors. The author proposed several metri
s to quantifymodi�
ation requests and used these metri
s to 
reate visualization graphs forunderstanding interrelationships.Gall et al. [23℄ developed an approa
h using release history information ofa system to identify logi
al 
ouplings and 
hange patterns among modules. Theauthors used stru
tural information about programs, modules, and subsystems,together with their version numbers and 
hange reports to un
over hidden depen-den
ies in the sour
e 
ode.Ying et al. [73℄ mined software 
hange history data to �nd �le 
o-
hangepatterns. The authors proposed that 
hange patterns 
an be used to re
ommendpotentially relevant sour
e 
ode to a developer performing a modi�
ation task.Weiβgerber and Diehl presented a te
hnique to dete
t 
hanges that are likelyto be refa
torings and rank them a

ording to the likelihood. The evaluationof the te
hnique showed a high re
all and a high pre
ision, it �nds most of therefa
torings, and most of the found refa
toring 
andidates are really refa
torings.The proposed te
hnique is able to �nd stru
tural and lo
al refa
torings. Stru
turalrefa
torings in
lude Move Class, Move Interfa
e, Move Field, Move Method, andRename Class, whereas lo
al refa
torings in
lude Rename Method, Hide Method,Unhide Method, Add Parameter, and Remove Parameter.
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ationsPan et al. [57℄ de�ned bug �x patterns using the syntax 
omponents and 
ontextof the sour
e 
ode involved in bug �x 
hanges. Software repositories of seven opensour
e proje
ts, developed in JAVA, were used to extra
t the bug �x patterns.The authors found 45.7% to 63.3% of the total bug �x hunk pairs in these proje
tshaving the de�ned bug �x patterns. The most 
ommon individual patterns aremethod 
all with di�erent a
tual parameter values, 
hange in if 
onditional, and
hange of assignment expression. Correlation analysis of seven proje
ts and �vedevelopers showed similar frequen
ies of bug �x patterns. This study is similar toours, but we 
onsider bug-indu
ing 
hanges instead of bug-�x 
hanges. Further-more, we use software systems developed in di�erent languages rather than samelanguage.Kim et al. [36℄ analyzed the version history of seven software systems topredi
t the most fault prone entities and �les. The authors implemented a 
a
hefor holding lo
ations that are likely to have faults: starting from the lo
ation ofa known (�xed) fault, the lo
ation itself, any lo
ations 
hanged together withthe fault, re
ently added lo
ations, and re
ently 
hanged lo
ations. A developer
an dete
t likely fault-prone lo
ations by 
onsulting the 
a
he whenever a faultis �xed. The developed algorithm is evaluated on seven open sour
e proje
ts,and it is 73%-95% a

urate at predi
ting future faults at the �le level and 46%-72% a

urate at the entity level with optimal options. The predi
tion algorithmis exe
uted over the 
hange history of a software proje
t, whi
h yields a smallsubset (usually 10%) of the proje
t?s �les or fun
tions/methods that are mostfault-prone. The authors base their algorithm on the observation that most faultsare lo
al, they do not o

ur uniformly in time a
ross the history of a fun
tion,rather they appear in bursts. Four di�erent kinds of lo
ality are 
onsidered forbug o

urren
es in
luding 
hanged-entity lo
ality, new-entity lo
ality, temporallo
ality and spatial lo
ality.Brun and Ernst [10℄ proposed a te
hnique for identifying program propertiesthat indi
ate errors. They trained ma
hine learning models on program propertiesthat resulted from errors and then applied these models to program properties ofuser written 
ode to 
lassify and rank properties that 
ould lead to errors. Given aset of properties produ
ed by the program analysis, the te
hnique sele
ts a subsetof properties that are most likely to reveal an error. Dynami
 invariant dete
tionis used to generate program properties and two ma
hine learning tools are used to
lassify those properties. The authors used support ve
tor ma
hine and de
isiontree in their experiments, and found that this te
hnique in
reases the relevan
e(the 
on
entration of fault-revealing properties) by a fa
tor of 50 on average forthe C programs, and 4.8 for the Java programs. The authors 
on
luded thatmost of the fault-revealing properties do lead a programmer to an error. Theysuggested that ranking and sele
ting the top properties is more advantageous than
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ting all properties 
onsidered faultrevealing by the ma
hine learner. For Cprograms, on average 45% of the top 80 properties are fault-revealing, whereas, forJava programs, 59% of the top 80 properties are faultrevealing. In the preliminaryexperiments most of the fault-revealing properties lead a programmer to the error,but it is not ne
essary for all properties.Li and Zhou [44℄ proposed a method 
alled PR-Miner to e�
iently extra
timpli
it programming rules from large software 
ode written in an industrial pro-gramming language su
h as C. It uses a data mining te
hnique 
alled frequentitemset mining and requires little e�ort from programmers without any priorknowledge of the software. PR-Miner 
an extra
t programming rules in generalforms (without being 
onstrained by any �xed rule templates) that 
an 
ontainmultiple program elements of various types su
h as fun
tions, variables and datatypes. The authors also proposed an e�
ient algorithm to automati
ally dete
tviolations to the extra
ted programming rules, whi
h 
an be strong indi
ations ofbugs. PR-Miner was evaluated with large software 
ode, in
luding Linux, Post-greSQL Server and the Apa
he HTTP Server, having 84K-3M lines of 
ode ea
h.Experiments showed that PR-Miner 
an e�
iently extra
t thousands of generalprogramming rules and dete
t violations within 2 minutes.Livshits and Zimmermann [45℄ proposed a tool 
alled DynaMine, that analyzessour
e 
ode 
he
k-ins to �nd highly 
orrelated method 
alls as well as 
ommonbug �xes in order to automati
ally dis
over appli
ation-spe
i�
 
oding patterns.Potential patterns dis
overed through mining are passed to a dynami
 analysistool for validation and the results of dynami
 analysis are presented to the user.The authors 
ombined revision history mining and dynami
 analysis te
hniquesfor dis
overing appli
ation spe
i�
 patterns and for �nding errors. DynaMineis evaluated on two widely-used, mature, highly extensible appli
ations, E
lipseand jEdit, that 
olle
tively 
onsist of more than 3,600,000 lines of 
ode. Theauthors dis
overed 56 previously unknown, highly appli
ation-spe
i�
 patterns,out of whi
h 21 were dynami
ally 
on�rmed as very likely valid patterns, andfound 263 pattern violations by mining history data of E
lipse and jEdit.



Chapter 8
Future work
A stati
 parser was used to extra
t language 
onstru
ts and syntax elements.A bug indu
ing hunk may 
ontain multiple language 
onstru
ts. It is possiblethat only one 
onstru
t is 
hanged, or there may be multiple 
onstru
ts 
hangedin a single hunk. Currently all language 
onstru
ts in a bug indu
ing hunk are
onsidered bug indu
ing be
ause 
on�guration management systems provide in-formation on the line level. We plan to develop te
hniques to identify the exa
tindividual language 
onstru
t whi
h 
ontributes to a bug within a hunk.In this study, only frequen
ies of bug indu
ing language 
onstru
ts are exam-ined. No 
ontext information is extra
ted from the sour
e 
ode. Our parser s
ansthe 
ode of bug indu
ing hunks and extra
ts the language 
onstru
ts involved.We would like to know the 
ontext in whi
h di�erent language 
onstru
ts intro-du
e bugs. We also want to study the 
oupling between language 
onstru
ts forintrodu
tion of bugs.Our parser 
an only extra
t synta
ti
 elements and no 
onsideration is givento semanti
s of the program. As same language 
onstru
ts are present in thebug indu
ing and 
lean hunks, it would be interesting to know the situationsin whi
h a parti
ular language 
onstru
t 
an introdu
e bugs. For this purpose,we plan to in
lude program 
ontrol �ow and data dependen
e information withea
h 
onstru
t. We will enhan
e the parser with program analysis 
apabilities infuture.To study the in�uen
e of programming language on post release bugs, 
asestudy of Mozilla proje
t is used. Although Mozilla is a large, heterogeneousproje
t, generalized 
on
lusions 
an not be drawn from a single proje
t. We wantto extend this study to a diverse set of proje
ts as a future work.To study the relationship between the programming language and the defe
tdensity, whole program �les are used without any 
onsideration of implementedfun
tionality. We want to analyze the features implemented in di�erent languages97



98 CHAPTER 8. FUTURE WORKas a future work. We would like to split this study on module level and ar
hite
-tural units in future. Although hunk 
lassi�
ation approa
h has produ
ed ex
el-lent results, there still exists room for improvement. Among the ma
hine learning
lassi�ers, only random forest is used in this study. Other ma
hine learning algo-rithms 
an also be tried and their a

ura
ies evaluated. It may be possible thatother ma
hine learning tools produ
e better pre
ision and re
all.Ma
hine learning algorithms 
an be modi�ed to suit the spe
i�
 problemneeds. Modi�ed algorithms may produ
e better results than existing ones interms of a

ura
y, pre
ision and re
all. Hunk 
lassi�
ation approa
h has usedtwo 
hange and history related metri
s. Exploration of other pro
ess relatedhunk metri
s remains as future work. It is possible that some other pro
ess re-lated hunk metri
s may better 
lassify hunks as buggy or bug-free.Online ma
hine learning algorithms 
an be used to train a 
lassi�
ation modeland provide the results during the development of the proje
t. It would be great tohave a 
lassi�er whi
h 
an be updated online. We plan to integrate this te
hniquein an integrated development environment.



Chapter 9
Con
lusion
This dissertation presented an empiri
al analysis of 
hanges and bugs by miningsoftware development history. Main fo
us of this study was to analyze features ofbug indu
ing 
hanges and develop a bug predi
tion model. Changes were studiedat the �nest granularity level of hunks. A te
hnique was introdu
ed in this thesisto identify bug indu
ing hunks. Di�erent language 
onstru
ts and syntax elementswere extra
ted from bug indu
ing hunks and their frequen
ies were 
ompared. Astatisti
al analysis of proje
ts and developers was presented for the frequen
iesof bug indu
ing language 
onstru
ts. Bug laten
y values for individual language
onstru
ts were 
al
ulated and statisti
ally analyzed. Bug densities of programswritten in di�erent languages were statisti
ally analyzed to �nd the in�uen
e ofprogramming language on post release bugs. A number of evolution metri
s were
al
ulated and 
ompared for programs written in di�erent languages. Finallya new set of metri
s was introdu
ed 
alled hunk metri
s and a te
hnique waspresented to 
lassify hunks as buggy or bug free.Bug introdu
ing 
hanges hold important information about the 
reator ofbugs and the time of 
reation. Further bug indu
ing 
hanges 
an be used tostudy features of sour
e 
ode whi
h result in bugs. An algorithm for identifyingbug indu
ing 
hanges was proposed by Sliwerski et al. [67℄ . It was further en-han
ed by Kim et al. [37℄. this algorithm 
an identify 
hanges at �le level. Anapproa
h was presented in this thesis that 
an identify bug indu
ing hunks. Itexamines all hunks involved in a 
hange and marks only those hunks as buggywhi
h a
tually 
ontributed to bugs. Language 
onstru
ts and syntax elementswere extra
ted from bug indu
ing hunks of eight open sour
e proje
ts. Twentysix di�erent language 
onstru
ts were 
hosen for this study. The results show thatmost frequent bug-indu
ing language 
onstru
ts are fun
tion 
alls, assignments,
onditions, pointers, use of NULL, variable de
laration, fun
tion de
laration andreturn statement. These eight 
onstru
ts are found in 38-62%, 30-42%, 17-40%,99



100 CHAPTER 9. CONCLUSION11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug indu
ing hunks respe
tively.Overall these eight elements a

ount for more than 70% of the bug-indu
inghunks. Fun
tion Calls is found to be the most dominant sour
e of errors in allproje
ts. Use of pointers and NULL is highly problemati
 in proje
ts developedin C language.A 
orrelation analysis was applied on bug indu
ing language 
onstru
ts of dif-ferent proje
ts. The results show that di�erent proje
ts are statisti
ally 
orrelatedfor the frequen
ies of bug indu
ing language 
onstru
ts. The obtained 
orrelation
oe�
ients are signi�
ant at p<0.001. It indi
ates that most of the time similarlanguage 
onstru
ts 
reate problem in di�erent proje
ts.Results of the 
orrelation analysis show that di�erent developers are signif-i
antly 
orrelated for the frequen
ies of bug indu
ing language 
onstru
ts. The
orrelation 
oe�
ients obtained within the same proje
t range from 0.31 to 0.99.Results obtained indi
ate a minimum 
orrelation 
oe�
ient of 0.82 among anypair of developers of di�erent proje
ts but developed in the same language. Themaximum 
orrelation 
oe�
ient found is 0.98 for the same set of developers. How-ever majority of the 
orrelation 
oe�
ients found either within the same proje
tor di�erent proje
ts are above 0.80. The results show that most of the developerstend to fa
e di�
ulties with similar language 
onstru
ts. Statisti
al analysis in-di
ates that majority of the developers indu
e similar kinds of bugs independentof the proje
t and programming language.Bug laten
y values were 
al
ulated for 
onditions, assignments, fun
tion 
alls,variable de
larations and fun
tion de
larations. Correlation analysis of these 
on-stru
ts shows that these language 
onstru
ts are statisti
ally 
orrelated for buglaten
y. Most of the obtained 
orrelation 
oe�
ients are above 0.95. It 
an be
on
luded that bug laten
ies for individual language 
onstru
ts vary in similarfashion in di�erent proje
ts.Statisti
al analyses of bug densities have revealed that post release bugs arein�uen
ed by programming language. Results of hypothesis testing have shownthat Java programs are less error prone than C or C++ programs, and C programsare less error prone than C++ programs within same proje
t. It is found thatbug life time for Java is twi
e as long as for C or C++.This thesis introdu
ed hunk metri
s and a te
hnique to 
lassify hunks as buggyor bug-free based on these metri
s. A hunk is the smallest unit of a 
hange andthis te
hnique works for this �nest level of granularity with an average a

ura
yof 81%. Bug predi
tion models were built using logisti
 regression and randomforests. Results have shown that random forests 
an better dis
riminate betweenbuggy and bug-free hunks. The hunk 
lassi�
ation te
hnique was evaluated oneight large open sour
e proje
ts. It 
lassi�ed hunks with 77% buggy hunk pre
isionand 67% buggy hunk re
all on average.Individual hunk metri
s were analyzed for their bug predi
tion 
apabilities.



101Results of multivariate logisti
 regression have shown that NOCN, NOA, NOFC,NORS, NOBH and NOH are signi�
ant for 
lassifying hunks in most of theproje
ts. Hunk metri
s related to 
hange and history are found to be betterpredi
tor of bugs than 
ode related hunk metri
s.Predi
tors based on hunk metri
s were also used for 
ross proje
t predi
tions.Predi
tors obtained from one proje
t when applied to a di�erent proje
t 
ould
lassify hunks with more than 60% a

ura
y.Overall, work presented in this thesis has strengthened the existing body ofknowledge on bug predi
tion and 
hange analysis. I hope this work will provide abase for further work on bug indu
ing 
hanges and sour
e 
ode analysis. Miningof software 
hange history 
an 
reate awareness among developers for buggy 
odefeatures and it 
an improve the debugging pro
ess.
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