
Graz University of Te
hnologyFa
ulty of Computer S
ien
eInstitute for Software Te
hnology
Do
tor of Philosophy Dissertation

An Empiri
al Investigation intoChanges and Bugs by MiningSoftware DevelopmentHistoriesbyJaved Ferzund
Supervisor: Univ. Prof. Dipl.Ing. Dr.te
h. Franz WotawaNovember 2009Graz, Austria

To My Parents

Foreword
This dissertation was written as a partial ful�llment of the requirements for thedegree of Do
tor of Philosophy in Informati
s at the Graz University of Te
hnol-ogy, Austria.The resear
h work presented in this thesis was
arried out at the Institutefor Software Te
hnology, In�eldgasse 16b/2, 8010 Graz, Austria. This work wasstarted in De
ember 2006 and involved both resear
h and development.The subje
t of this thesis is to evaluate software repositories in order to de-velop novel approa
hes for software debugging. Software
hanges and bugs areresear
hed to develop models for bug prei
tion and to study the features of bug in-trodu
ing
hanges. A signi�
ant part of this dissertation was published at various
onferen
es.This work was suggested and supervised by Prof. Franz Wotawa and waspartially funded by Higher Edu
ation Commission, Government of Pakistan.

e

Abstra
t
Software repositories hold enormous amount of data that
an be used for softwareevolution studies. Finding and removing bugs from software is a
hallengingtask. Mining development history of software
an improve the debugging pro
ess.Software
on�guration management systems re
ord all software
hanges that aremade during its evolution. A signi�
ant part of these
hanges is used to �xbugs in software. Both bug �x and bug introdu
ing
hanges
an be extra
tedfrom software repositories. Bug introdu
ing
hanges
an be analyzed to study
hara
teristi
s of sour
e
ode that result in bugs. This dissertation presents twoempiri
al studies that investigate the role of language
onstru
ts in introdu
ingbugs and in�uen
e of programming language on post release bugs.Revision histories of eight open sour
e proje
ts developed in multiple lan-guages are pro
essed to extra
t bug-indu
ing language
onstru
ts. Twenty sixdi�erent language
onstru
ts and syntax elements are
hosen for this study. Fun
-tion
alls, assignments,
onditions, pointers, use of NULL, variable de
laration,fun
tion de
laration and return statement are found to be the most frequentbug-indu
ing language
onstru
ts. They are found in 38-62%, 30-42%, 17-40%,11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug indu
ing hunks respe
tively.These
onstru
ts a

ount for more than 70 per
ent of bug-indu
ing hunks. Fun
-tion Calls are found to be the most dominant sour
e of errors in all proje
ts.Use of pointers and NULL is highly problemati
 in proje
ts developed in the lan-guage C. Di�erent proje
ts are statisti
ally
orrelated in terms of frequen
ies ofbug-indu
ing language
onstru
ts. Most of the developers tend to fa
e di�
ultieswith similar language
onstru
ts. Statisti
al analysis indi
ates that the majorityof the developers indu
e similar kinds of bugs independent of the proje
t andprogramming language.Within our work the development history of Mozilla proje
t with a span of11 years had been extra
ted and di�erent
ode and evolution metri
s had been
al
ulated. Mozilla is a heterogeneous proje
t developed in C, C++ and Java.Defe
t densities of �les written in the three languages are statisti
ally analyzedin order to �nd a relationship between defe
ts and programming languages. Lifeg

span of bugs within the three kind of programs is also
al
ulated to
omparethe e�orts required to �x bugs in the di�erent languages. Statisti
al analyses ofbug densities revealed that post release bugs are in�uen
ed by the programminglanguage. Results of hypothesis testing showed that Java programs are less errorprone than C or C++ programs, and that C programs are less error prone thanC++ programs in same proje
t. We found that the bug life time of Java programsis twi
e as long as for C or C++ programs.This thesis also introdu
es a new set of metri
s
alled hunk metri
s and a te
h-nique to
lassify hunks as buggy or bug-free. The hunk
lassi�
ation approa
huses hunk metri
s as input variables to
lassify hunks into buggy and bug-free.Classi�
ation models are built using logisti
 regression and random forests, andtheir performan
e is evaluated and
ompared. Bug predi
tion abilities of individ-ual metri
s are also evaluated. The hunk
lassi�
ation approa
h is evaluated oneight large open sour
e proje
ts. It
an
lassify hunks as buggy or bug-free with81% a

ura
y, 77% buggy hunk pre
ision and 67% buggy hunk re
all on average.Hunk metri
s related to
hange and history are found to be better predi
tor ofbugs than
ode related hunk metri
s. Predi
tors obtained from one proje
t whenapplied to a di�erent proje
t
ould
lassify hunks with more than 60% a

ura
y.

Zusammenfassung
Software-Repositories halten enorme Menge von Daten, die für die Software-Entwi
klung Studien verwendet werden. Su
hen und Entfernen von Software-Fehler ist eine anspru
hsvolle Aufgabe. Mining Entwi
klungsges
hi
hte von Soft-ware zur Verbesserung der Debugging-Prozess. Software Con�guration Management-Systeme erfassen alle Software-Änderungen, die während ihrer Entwi
klung gema
htwerden. Ein erhebli
her Teil dieser Veränderungen wird verwendet, um Fehler inder Software beheben. Beide Fehler zu beheben und Fehler der Einführung vonÄnderungen können von der Software-Repositories extrahiert werden. Bug derEinführung von Änderungen können analysiert werden, um Merkmale der Quell-
ode zu studieren, die zu Fehlern. Diese Dissertation präsentiert zwei empiris
heStudien, dass die Rolle der Spra
he zu untersu
hen Konstrukte bei der Einführungvon Bugs und der Ein�uss der Programmierspra
he über den Post Release Bugs.Revision Ges
hi
hten von a
ht Open-Sour
e-Projekte in mehreren Spra
henentwi
kelt werden verarbeitet, um Fehler zu extrahieren-induzierende Spra
hkon-strukte. Zwanzig se
hs vers
hiedenen Spra
hkonstrukte und Syntax Elementesind für diese Studie ausgewählt. Funktionsaufrufe, Zuweisungen, Bedingun-gen, Zeiger, die Verwendung von NULL, der Deklaration von Variablen, Funk-tion Erklärung und return-Anweisung gefunden werden, um die häu�gste Fehler-induzierende Spra
hkonstrukte. Sie sind gefunden in 38-62%, 30-42%, 17-40%, 11-30%, 1-22%, 11-25%, 8-12% und 8-15% der Fehler hunks bzw. veranlassen. DieseKonstrukte einen Anteil von mehr als 70 Prozent der Fehler-induzierende hunks.Fun
tion Calls �nden si
h als die wi
htigste Quelle von Fehlern in allen Projek-ten. Verwendung von Zeigern und NULL ist hö
hst problematis
h an Projektenin der Spra
he C. Vers
hiedene Projekte entwi
kelt werden, korreliert statistis
hin Bezug auf die Häu�gkeit der Fehler-induzierende Spra
hkonstrukte. Die meis-ten Entwi
kler neigen dazu, S
hwierigkeiten mit ähnli
hen Spra
he Gesi
ht Kon-strukte. Die statistis
he Analyse zeigt, dass die Mehrheit der Entwi
kler, ähn-li
he Arten von Bugs unabhängig von der Projekt-und Programmierspra
he zuinduzieren. i

Im Rahmen unserer Arbeit die Entwi
klung der Ges
hi
hte von Mozilla-Projektmit einer Spannweite von 11 Jahren wurde extrahiert und anderen Code-Metrikenund-entwi
klung war erre
hnet worden. Mozilla ist ein heterogenes Projekt in C,C ++ und Java. Defe
t Di
hten von Dateien in den drei Spra
hen ges
hrieben wer-den statistis
h ausgewertet, um einen Zusammenhang zwis
hen Fehler und Pro-grammierspra
hen zu �nden. Lebensdauer von Fehlern innerhalb der drei Artenvon Programmen ist au
h geeignet, die Anstrengungen erforderli
h, um Fehler inden vers
hiedenen Spra
hen �x verglei
hen. Statistis
he Analysen ergaben, dassFehler Di
hten na
h Freigabe dur
h die Fehler der Programmierspra
he beein-�usst werden. Ergebnisse der Hypothese Tests ergaben, dass Java-Programmeweniger fehleranfällig als C oder C ++ Programme sind, und daÿ C Programmesind weniger fehleranfällig als C ++ Programme in einem Projekt arbeiten. Wirhaben gefunden, dass der Fehler Lebensdauer von Java-Programmen ist doppeltso lang wie C oder C ++ Programmen.Diese wird au
h ein neues Set von Kennzahlen genannt hunk Metriken undeine Te
hnik, um hunks als Buggy oder Bug-frei einzustufen. Die Einstufunghunk Metriken Ansatz verwendet als Eingangsgröÿen hunks in Buggy und Bug-freieinzustufen. Klassi�kation Modelle werden mit Hilfe logistis
her Regression undzufällige Wälder, und ihre Leistung wird evaluiert und vergli
hen werden. BugVorhersage Fähigkeiten der einzelnen Kennzahlen werden ebenfalls bewertet. DieEinstufung hunk Ansatz basiert auf a
ht groÿen Open-Sour
e-Projekte ausgew-ertet. Es kann klassi�zieren hunks als Buggy oder Bug-frei mit 81% Genauigkeit,77% Buggy hunk Präzision und 67% Buggy hunk erinnern, im Dur
hs
hnitt. HunkMetriken im Zusammenhang mit der Veränderung und der Ges
hi
hte gefundenwerden, besser zu sein als Indikator für Fehler im Zusammenhang hunk Code-Metriken. Prädiktoren, erhalten aus einem Projekt, wenn ein anderes Projektkönnte hunks mit mehr als 60% Genauigkeit zu klassi�zieren angewendet.

Contents
Contents i1 Introdu
tion 31.1 Roadmap . 61.2 Empiri
al Analysis of Language Constru
ts 71.3 Programming Languages and Bugs 81.4 Hunk Classi�
ation . 81.5 Terminology . 102 Extra
tion of Data from Repositories 132.1 Ar
hite
ture . 132.2 Database S
hema . 152.3 Extra
tion of Hunks . 162.4 Identi�
ation of bug-indu
ing Hunks 172.5 Proje
ts Analyzed . 193 Empiri
al Analysis of Bug-Indu
ing Language Constru
ts 233.1 Extra
tion of Language Constru
ts 253.2 Proportion of Di�erent Hunk Types 303.3 Most Frequent Bug-Indu
ing Language Constru
ts 313.4 Proje
t Similarities . 343.5 Developer Similarities . 363.6 Bug Laten
y . 403.7 Comparison with Non Bug-Indu
ing Hunks 423.8 Summary . 454 Language Spe
i�
 Bug Patterns 474.1 Resear
h Hypothesis . 484.2 Proje
t Studied . 484.3 Evolution Metri
s . 49i

ii CONTENTS4.4 Results . 504.5 Proving hypothesis H1 . 574.6 Threats to Validity . 614.7 Summary . 625 Hunk Classi�
ation 635.1 The Approa
h . 645.2 Tools Used . 655.3 Hunk Metri
s . 655.4 Evaluation Criteria . 685.5 Classi�
ation Te
hniques . 695.5.1 Logisti
 Regression . 695.5.2 Random Forests . 715.5.3 Prin
ipal Component Analysis (PCA) 715.5.4 Point Biserial Correlation 725.6 Results . 735.6.1 Correlation between Hunk Metri
s and Bugs 735.6.2 PCA and Logisti
 Regression 735.6.3 Random Forests . 755.6.4 Comparison of Logisti
 Regression and Random Forests . . 765.6.5 Performan
e of Individual Metri
s 785.6.6 Performan
e of Combination of Metri
s 795.6.7 Cross Proje
t Predi
tions 825.7 Appli
ations . 846 Threats to Validity 877 Related Work 897.1 Mining Software Change History 897.2 Bug Predi
tion . 907.3 Software Change Extra
tion and Analysis 927.4 Buggy Code Features and Lo
ations 958 Future work 979 Con
lusion 99Bibliography 103A List of Publi
ations 111List of Figures 113List of Tables 115

iiiStatutory De
laration 118

A
knowledgments
I feel immense pleasure to thank the many people who dire
tly or indire
tly madethis thesis possible.I am greatly indebted to my supervisor, Prof. Franz Wotawa, for openingthe door to resear
h for me. I am thankful to him for his
ontinuous guidan
eand support at ea
h step of my resear
h
areer. He gave me freedom to thinkand work on interesting resear
h topi
s. He always en
ouraged me and providedadvi
e whenever it was needed. Without his guidan
e, it would not have beenpossible to �nish this dissertation.I am grateful to Prof. Shahram Dustdar for taking time out of his busys
hedule to a
t as se
ond reviewer of my dissertation.I am thankful to my
olleague Syed Nadeem Ahsan for his valuable
ommentsand suggestions on my work. We worked on many resear
h topi
s together andsolved the problems with dis
ussions. We spent a very good time and enjoyed ourresear
h work.I would like to thank the people at IST for making me feel at home. Theirfriendship and
are made my stay
omfortable. Espe
ially, I am thankful to PetraPi
hler for providing help and support whenever I needed it.I was lu
ky to have many good friends from Pakistan Community at Graz.Their love and support made my life easy and joyful. We lived like a family andenjoyed our stay in Graz.I am grateful to my parents for their
ontinuous love and support in everymatter of my life. They allowed me to do whatever I wanted. Whenever I feltdownhearted they en
ouraged me and supported me. Without their support andguidan
e it would not have been possible for me to a
hieve pre
ious milestones inmy life. Javed FerzundGraz, Austria, November 20091

Chapter 1
Introdu
tion
Changes and bugs are interrelated in the software development pro
ess. Some
hanges are made to �x bugs, and on the other hand bugs are introdu
ed bymaking
hanges to software. Change is a basi
 property of evolving software.When
hanges are made, errors may be generated in the sour
e
ode, whi
hresult in software failures. These errors in turn are
orre
ted by making
hanges,so
hanges and bugs are in a sense
omplementary to ea
h other. Changes are amust for long life of software. A

ording to Lehman's Law of Program Evolution,software needs to be
ontinuously
hanged otherwise it will be
ome progressivelyless useful [59℄Changes are made to the software due to several reasons su
h as �xing bugs,adding new fun
tionality, performan
e enhan
ement, improving
ompatibility,refa
toring et
. Pressman has
lassi�ed software
hanges into four
ategories,
orre
tion, adaptation, enhan
ement and prevention [63℄. Corre
tive
hanges aremade to �x bugs, whereas adaptive
hanges are required to adjust the software to
hanges in the external environment. Enhan
ements are required to extend thefun
tionality of the software. Preventive
hanges are those made to enhan
e thelife of the software.Software undergoes the pro
ess of aging due to
ontinuous
hanges appliedto it. Parnas has
alled the e�e
t of
ontinuous
hange as ignorant surgery.That means, di�erent developers
hange the software at di�erent times, without athorough awareness of the software and its design [58℄. Usually bugs are to be �xedin short time periods. Due to this time pressure, developers
annot understandthe software fully before �xing bugs. A software system is
hanged by multipledevelopers. So
hanges in
rease in
onsisten
y,
omplexity, understandability andthe size of software. Sometimes these
hanges introdu
e new bugs into the sour
e
ode [67℄.Bugs are
reated due to mistakes or errors in the sour
e
ode or design of soft-3

4 CHAPTER 1. INTRODUCTIONware. Software bugs vary in their
omplexity and severity, and need to be dete
tedand removed before software deployment. Undete
ted bugs
an be detrimentalfor life and resour
es [25℄. In 1985 Thera
-25, a radiation therapy devi
e malfun
-tioned due to a software bug. It delivered lethal radiation doses and resulted indeaths and injuries [25℄. In 1996 Ariane 5, the European Spa
e Agen
y's ro
ketwas destroyed a few se
onds after laun
h, due to a bug in the guidan
e
omputerprogram. It resulted in a loss of 1 billion US$ [3℄.Lo
ating and removing bugs from software is a tedious and time-
onsumingpart of software development. Developers spend a lot of time and e�ort to �ndand remove bugs, whi
h is sometimes more expensive than writing new sour
e
ode [74℄. A bug life
y
le
onsists of bug identi�
ation, bug assignment, bug�xing, quality assuran
e and re-assignment of bugs. Bugs are assigned to relevantdevelopers, a pro
ess
alled bug triage [5℄. Bugs with highest priority are �xed�rst and other known bugs are delivered with the software in ea
h release.Extensive resear
h is going on in software debugging to produ
e high quality,reliable and bug-free software. Mining software repositories is a new te
hnique tobe also applied for software testing and debugging. Many bugs are not dete
tedby the traditional testing te
hniques like regression testing, unit testing,
odereviews and the use of debugging tools. Mining software repositories
an exploreuseful hidden information from software repositories and bug databases [19, 65℄.Sin
e software repositories store histori
al information about
hanges and bugs,important lessons
an be learned by analyzing this information.Version
ontrol systems re
ord
hanges made to the sour
e
ode as softwaredevelopment progresses. These systems maintain a log of the
hanges, in
ludingdate and time of
hange, identity of the developer and reason of the
hange. Bugtra
king systems re
ord information related to bugs. These systems hold infor-mation about identi�
ation, assignment and resolution of bugs. Mailing lists and
ommuni
ation ar
hives re
ord
onversation between developers about parti
ularde
isions throughout the life of a software proje
t. All this data
an be pooled to
ondu
t empiri
al studies involving software evolution [7, 20℄. In this dissertationwe fo
us on three goals:The �rst goal of this resear
h is to identify the language
onstru
ts whi
hintrodu
e bugs most of the time, thus helping in the debugging pro
ess.The se
ond goal of this resear
h is to study the in�uen
e of programminglanguage on the o

uren
e of post release bugs.The third goal of this resear
h is to help developers in identifying and removingbugs, thereby redu
ing the testing e�ort and maintenan
e
osts.To meet these goals, this work proposes te
hniques to identify bug-indu
inglanguage
onstru
ts and to predi
t bugs in terms of hunk
lassi�
ation. In par-ti
ular this thesis
ontributes to the following tasks:� Empiri
al analysis of language
onstru
ts

5� Identi�
ation of frequent bug prone language
onstru
ts� Analysis of di�erent proje
ts, developers and programming languages forthe frequen
ies of bug-indu
ing language
onstru
ts� Analysis of bug densities of programs written in di�erent languages� Study of various evolution metri
s obtained from programs written in dif-ferent languages� Exploration of new software metri
s to be used as bug predi
tors� Development of hunk
lassi�
ation models� Comparison of predi
tor models based on statisti
al and ma
hine learningte
hniquesThe
on
eptual
ontribution of this thesis fo
uses on mining software devel-opment history, identi�
ation and extra
tion of bug-indu
ing hunks, de�nitionof new software metri
s, and extra
tion of language
onstru
ts. The te
hni
al
ontribution of this thesis fo
uses on development of bug predi
tion models basedon metri
s, approa
hes for
hange
lassi�
ation, and an analysis of language
on-stru
ts for their role in introdu
tion of bugs. The empiri
al
ontribution of thisthesis is the appli
ation and evaluation of the proposed te
hniques to the releasehistory of eight large, long lived open sour
e software proje
ts.The major
ontributions of this thesis are:� An approa
h to extra
t bug-indu
ing hunks by pro
essing revision history ofa software proje
t. The approa
h makes use of
on�guration managementsystems and bug databases.� Empiri
al analysis of bug-indu
ing language
onstru
ts in terms of theirfrequen
ies.� Correlation analysis of di�erent proje
ts, developers and programming lan-guages in terms of frequen
ies of bug-indu
ing language
onstru
ts.� Findings about the relationship between programming language and postrelease bugs� Comparative study of various evolution metri
s� De�nition of 27 hunk metri
s and an empiri
al analysis of these metri
s aspredi
tor of bugs.� Constru
tion of hunk
lassi�
ation models and their evaluation.

6 CHAPTER 1. INTRODUCTION1.1 RoadmapThis se
tion des
ribes the layout of this thesis and relationship of ea
h
hapterwith my sele
ted publi
ations.Chapter 2 des
ribes the te
hniques to extra
t data from software release history.We present the ar
hite
ture of the database used to store and analyze datafor this study. A simple approa
h is des
ribed to extra
t bug-indu
ing hunksfrom
hange history of a proje
t.Chapter 3 presents an empiri
al analysis of language
onstru
ts. We identifythe language
onstru
ts that introdu
e bugs more frequently. We present a
orrelation analysis of di�erent proje
ts, developers and programming lan-guages for the frequen
ies of bug-indu
ing language
onstru
ts. This work
ontributed to a publi
ation [16℄ that was presented at Working Conferen
eon Reverse Engineering (WCRE 2009).Chapter 4 presents a
ase study to �nd the in�uen
e of programming langaugeon post release bugs. We
al
ulate and
ompare various evolution metri
sfor programs written in di�erent languages. This work
ontributed to apubli
ation [4℄ that was presented at International Conferen
e on SoftwareEngineering Advan
es (ICSEA 2009).Chapter 5 des
ribes the hunk
lassi�
ation approa
h. We de�ne hunk metri
sand present a te
hnique to
al
ulate them. We use statisti
al and ma
hinelearning te
hniques to build
lassi�
ation models. These models are evalu-ated on data of eight open sour
e proje
ts. This work
ontributed to twopubli
ations [18, 17℄. First [18℄ was presented at International Conferen
eon Software Maintenan
e (ICSM 2009). Se
ond [17℄ is to be presented atInternational Conferen
e on Software Pro
ess and Produ
t Measurement(MENSURA 2009).Chapter 6 dis
usses the threats to validity. It des
ribes the limitations of thisstudy.Chapter 7 reviews the related work in the �eld of mining software
hange his-tory, bug predi
tion, software
hange extra
tion, software
hange analysisand buggy
ode features and lo
ations.Chapter 8 dis
usses the future work.Chapter 9 presents the
on
lusions.

1.2. EMPIRICAL ANALYSIS OF LANGUAGE CONSTRUCTS 71.2 Empiri
al Analysis of Language Constru
ts
Redu
ing bugs in software is a key issue in software development. Many te
h-niques and tools have been developed to automati
ally identify bugs. These te
h-niques vary in their
omplexity, a

ura
y and
ost. Bug �nding tools use pre-de�ned bug patterns, model
he
king and theorem proving to dete
t bugs. Per-forman
e of these tools
an be enhan
ed by paying attention to those language
onstru
ts whi
h frequently
ontribute to bugs. Testing e�ort
an be fo
used onmore risky language
onstru
ts. More test
ases
an be generated and models
anbe developed for frequently bug-introdu
ing language
onstru
ts. Code reviews
an be made with a
areful examination of bug-introdu
ing language
onstru
ts.In this way maintenan
e
ost will be redu
ed as well as software quality will beimproved.Software repositories maintain re
ord of all
hanges made to software. These
hanges are made to �x bugs, to add new features, to improve performan
e or torestru
ture the
ode for easy maintenan
e. Bug �x
hanges are identi�ed by a
omment re
orded by a developer in the
on�guration management system. These
hanges
an be tra
ed ba
k to the lo
ations, where the bug was a
tually intro-du
ed into the sour
e
ode [67, 37℄. Bug-introdu
ing
hanges
an be extra
tedfrom software repositories and their properties
an be studied.This thesis presents an empiri
al study of bug-indu
ing
hanges with a fo
us onlanguage
onstru
ts. One goal of this work is to identify syntax elements of a lan-guage whi
h frequently
ontribute to introdu
tion of bugs. We try to �nd whi
hlanguage
onstru
ts are more problemati
. Change history of eight open sour
eproje
ts is analyzed to �nd, whether there are
ommon language
onstru
ts whi
h
ontribute to bugs. These proje
ts are developed in di�erent languages in
ludingC, C++ and Java. We also analyze
hanges made by di�erent developers to �nd,whether di�erent developers make similar mistakes.When developers make a
hange, they
hange
lasses, fun
tions, variables, sele
-tion and
ontrol stru
tures. We analyze the bug-indu
ing
hanges to �nd the syn-tax elements whi
h
ontribute to bugs. Twenty six di�erent language
onstru
tsand syntax elements are
hosen for this study. We �nd that most frequent bug-indu
ing language
onstru
ts are fun
tion
alls, assignments,
onditions, pointers,use of NULL, variable de
laration, fun
tion de
laration and return statement.These
onstru
ts a

ount for more than 70 per
ent of bug-indu
ing hunks. Dif-ferent proje
ts are statisti
ally
orrelated in terms of frequen
ies of bug-indu
inglanguage
onstru
ts. Developers within a proje
t and between di�erent proje
tsalso have similar frequen
ies of bug-indu
ing language
onstru
ts.

8 CHAPTER 1. INTRODUCTION1.3 Programming Languages and BugsComparing pros and
ons of various programming languages is an interesting de-bate among programmers and
omputer s
ientist. There exist strong opinions forand against various programming languages. Some studies exist on
omparisonof programming languages. Pre
helt evaluated programs written in di�erent lan-guages for memory
onsumption, runtime e�
ien
y, reliability, program lengthand programming e�ort [62℄. A similar study was
ondu
ted by Gar
ia et al.[24℄ on support for generi
 programming. The authors identi�ed eight languagefeatures that support generi
 programming. They found that generi
 features arene
essary to avoid awkward designs, poor maintainability, unne
essary run-time
he
ks, and painfully verbose
ode.Most of the published work in empiri
al software engineering that deals withbug dete
tion or bug predi
tion does not
ompare the number of post-releasebugs for programs written in di�erent programming languages. A number ofstudies exist on
hara
teristi
s of bugs and defe
t prone modules [39, 42, 43, 49,51℄. Li et al. [43℄ used natural language text
lassi�
ation te
hniques to analyzebug
hara
teristi
s in two large open sour
e proje
ts. The authors found thatmemory-related bugs have de
reased ex
ept some simple memory-related bugssu
h as NULL pointer dereferen
es, whereas se
urity bugs with severe impa
tsare in
reasing. They also found that semanti
 bugs are the dominant root
auses,requiring more e�orts to dete
t and �x them. Mohagheghi et al. [49℄ in anempiri
al study analyzed the impa
t of reuse on defe
t-density and stability, aswell as the impa
t of
omponent size on defe
ts and defe
t-density in the
ontextof reuse, using histori
al data on defe
ts, modi�
ation rate, and software size.This thesis presents an empiri
al study providing insight into post release bugs.In this study programming languages are
ompared but in a new dimension that issoftware evolution. It fo
uses on exploring the in�uen
e of programming languageon post release bugs. Various evolution metri
s are
ompared for three di�erentlanguages in
luding C, C++ and Java. Development history of Mozilla proje
tover the past 11 years is used for this study. It is found that Java is less errorprone than C language and C language is less error prone than C++ language, atleast for the Mozilla proje
t. Although these results are hard to generalize, theyprovide useful insight into the relationship between programming languages andbugs.1.4 Hunk Classi�
ationMaking
hanges to software is a
ru
ial task during di�erent phases of softwareevolution. Changes are required to add new features, to �x the bugs, to improveperforman
e or to restru
ture the
ode for easy maintenan
e. These
hanges areimplemented by adding, modifying or deleting the sour
e
ode in di�erent �les

1.4. HUNK CLASSIFICATION 9of software. A �le
an be
hanged at one or more pla
es,
alled deltas or hunks.These hunks of sour
e
ode, whi
h are added either newly or after modi�
ations,may introdu
e bugs and result in failures later on. Ea
h hunk has a likelihood ofbeing buggy or bug-free.A large part of time and resour
es is
onsumed in software testing and debuggingduring the evolution of software. We
an save this e�ort if we
an �nd the partsof the sour
e
ode where the probability of bugs is more and apply these resour
eson �les whi
h require it most.In order to predi
t the number of bugs or to provide a predi
tor with regard to a
lassi�
ation s
hema there are two approa
hes possible. The �rst approa
h usesstatisti
al methods like multiple linear regression, logisti
 regression, and prin
i-pal
omponents analysis [41, 52℄. Linear regression
an be su

essfully used if thedependent variables
hange linear with the independent variables. As most of themetri
s normally
orrelate with ea
h other, there is a strong need to over
omethe multi
olinearity problem. Prin
ipal
omponent analysis is used in this respe
tto redu
e the multi
olinearity e�e
t. Logisti
 regression
an be used for binary
lassi�
ations.The se
ond approa
h relies on ma
hine learning te
hniques like de
ision tree in-du
tion, support ve
tor ma
hine, arti�
ial neural networks, k-nearest neighborsto mention some of them. Ma
hine learning te
hniques have the ability to learnfrom past data and these te
hniques
an be employed in a variety of
omplexsituations (see [72℄).A lot of resear
h has been
arried out on bug predi
tion using di�erent approa
hesand at di�erent levels of granularity. Most of the resear
hers have used
ode met-ri
s as predi
tors of bugs [29, 40, 52, 55, 15, 14℄, while others have used pro
essmetri
s as predi
tors of bugs [27, 35, 64℄. Previous resear
h was fo
used on dif-ferent levels of granularity su
h as modules, �les,
lasses and methods. Someresear
hers predi
ted the number of faults for modules or �les [52, 55℄, while oth-ers fo
used on individual
lasses and methods [29, 56℄.This dissertation presents a hunk
lassi�
ation approa
h that predi
ts bugs insmallest units of a
hange, whi
h are hunks. Two predi
tion models are
on-stru
ted using statisti
al and ma
hine learning te
hniques. The models are builtusing hunk metri
s of previous buggy and bug-free hunks obtained by mining the
hange history of a software proje
t. Logisti
 regression and Random Forests areused to build the predi
tor models.Our
lassi�
ation approa
h
an
lassify hunks as buggy or bug free with 82 per-
ent a

ura
y, 77 per
ent buggy hunk pre
ision and 67 per
ent buggy hunk re
allon average. Predi
tors obtained from one proje
t, based on hunk metri
s,
an besu

essfully applied to other proje
ts.

10 CHAPTER 1. INTRODUCTION1.5 TerminologyThis
hapter de�nes various terms used in this thesis.Software Con�guration Management (SCM): It is the pro
ess of handling
hanges made to the software during its development. It is used to
ontrolthe evolution of software proje
ts. SCM
omprises four operations: Iden-ti�
ation,
ontrol, status a

ounting and audit. (IEEE Guide to SoftwareCon�guration Management. 1987. IEEE/ANSI Standard 1042-1987.)Bug Tra
king System: A bug tra
king system is used to store and manageinformation about bugs su
h as when a bug is reported, who reported abug, short des
ription of a bug, severity of a bug, platform on whi
h a bugis reported, module in whi
h a bug is reported and status of a bug.Version or Revision: These two terms are used inter
hangeably. A version orrevision represents instan
e of a �le at a parti
ular time. As a softwaresystem evolves,
hanges are made to the �les. Revisions are used to identifydi�erent instan
es of a
hanged �le.Version Control: It is an important feature of a software
on�guration man-agement system, used to manage di�erent revisions of �les in a softwareproje
t.Commit: It is the pro
ess of submitting
hanges to an SCM system. Initiallynew �les of a proje
t are
ommitted to the SCM system. Then ea
h
hangeto a �le is
ommitted. A
ommit may involve a single �le or multiple �lestogether.Change: Software evolution is
hara
terized by making
hanges to the �les. A
hange represents a single modi�
ation stored in the SCM repository.Change Delta: It is the result of making a
hange to a �le. The
hanged linesin a �le
omprise a
hange delta.Added Delta: It
onsists of the lines added for making a
hange.Deleted Delta: It
onsists of the lines deleted for making a
hange.Hunk: Changes are made to �les in
hunks of sour
e
ode that are dispersed ina �le. These
hunks of
ontiguous sour
e
ode lines are
alled hunks. There
an be multiple hunks in a
hange delta.Modi�
ation hunk: If sour
e
ode lines are modi�ed to make a
hange, theresulting hunk is
alled a modi�
ation hunk.

1.5. TERMINOLOGY 11Addition Hunk: If new sour
e
ode lines are added to make a
hange, the re-sulting hunk is
alled an addition hunk.Deletion Hunk: If new sour
e
ode lines are removed to make a
hange, theresulting hunk is
alled a deletion hunk.Change log: When a developer
ommits a
hange to the SCM system, shere
ords a message des
ribing the purpose of the
hange. This message is
alled
hange log. Change logs
an be pro
essed to identify di�erent kindsof
hanges.Change Annotation: It is a basi
 feature of
on�guration management sys-tems. An SCM system annotates ea
h sour
e
ode line with the date ofmodi�
ation, author of the line and the revision in whi
h that line was
hanged.Bug: A bug is
hara
terized by a programming mistake or error in sour
e
odethat results in malfun
tioning of software.Fix: A �x is
hara
terized by repla
ing erroneous sour
e
ode with the
orre
t
ode. A �x is used to remove a bug from software.Bug Fix Change: A
hange applied to software, to �x a bug is
alled a bug �x
hange.Bug-Indu
ing Change: A
hange whi
h resulted in malfun
tioning of softwarelater on is
alled a bug-indu
ing
hange or buggy
hange.Bug Fix Hunk: A hunk whi
h is part of a �x is
alled a bug �x hunk.Bug-Indu
ing Hunk: A hunk whi
h resulted in malfun
tioning of software lateron is
alled a bug-indu
ing hunk.Bug-Fix Developer: A developer who makes
hanges to �x a bug is
alled abug-�x developer.Bug-Indu
ing Developer: A developer, modi�
ations made by whom resultedin malfun
tioning of software, is
alled a bug-indu
ing developer.

Chapter 2
Extra
tion of Data fromRepositories
The work presented in this thesis is based on data obtained from mining soft-ware release history. Information related to
hanges and bugs is extra
ted from
on�guration management systems and bug databases. Sour
e
ode and
hangeinformation is extra
ted from CVS and SVN repositories. All revisions of ea
h �leare analyzed for
hanges made at di�erent times. Bug information is extra
tedfrom Bugzilla and this information is mapped to revisions of �les from respe
tivesoftware repositories.We use our own developed modules to extra
t information from CVS and bugdatabases. The extra
ted information is stored into a database. This databaseis used for training hunk
lassi�
ation models as well as for analyzing language
onstru
ts.This
hapter des
ribes the ar
hite
ture of the data extra
tion pro
ess, the stepsto extra
t and identify bug-indu
ing hunks and a s
hema of the database used tostore hunks.2.1 Ar
hite
tureThe data extra
tion pro
ess used in this study involves four modules along witha fa
t database. The four modules are des
ribed shortly.Log Parser It extra
ts log information from a software repository. Whenever a
hange is
ommitted to the repository,
on�guration management systemre
ords the purpose of
hange and meta data of
hange. Log parser
onne
ts13

14 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIESto CVS and SVN, extra
ts log information for all revisions and stores thisinformation into the fa
t database.Annotation Parser It takes annotations for every revision of all �les in a proje
t.Con�guration management systems annotate ea
h line of
ode with authorand date information. This information is important for analysis of
hanges.Annotation parser
onne
ts to CVS and SVN, extra
ts annotations for all�les and stores this information into the fa
t database.Di�eren
e Parser It takes di�eren
e of two
onse
utive revisions of ea
h sour
e�le, extra
ts the
hange deltas and store this information into the fa
tdatabase.Bug Parser It extra
ts bug reports from a bug database and stores this infor-mation into the fa
t database.Fa
t DataBase It holds all the information regarding �les, revisions, developers,bugs, transa
tions and
hanges.Ar
hite
ture of data extra
tion pro
ess is depi
ted in Figure 2.1. Data extra
-tion is
ompleted in four steps:� Log information is extra
ted from CVS and SVN repositories. CVS main-tains log for ea
h revision of a �le separately while SVN maintains log forevery revision of the proje
t. So log information from SVN repositories isfurther pro
essed to relate the log to
hanged �les only.� Di�eren
es are extra
ted between two
onse
utive revisions for all �les. CVSand SVN provide the fa
ility to view and get di�eren
es between two revi-sions. This information reveals the
ode additions, deletions and modi�
a-tions made during the evolution of software.� Annotations are obtained for ea
h line of
ode in all revisions. This infor-mation is also extra
ted from CVS and SVN repositories. Annotations arehelpful in studying evolutionary aspe
ts of software.� Bug reports are extra
ted from bug databases. Bug reports hold importantinformation in
luding des
riptions, report and �x dates, developers involvedin �xing and pat
hes of
ode.Details for extra
tion and labelling of hunks are des
ribed in the next se
tions.

2.2. DATABASE SCHEMA 15

Figure 2.1: Ar
hite
ture for Data Extra
tion2.2 Database S
hemaA simple database is designed to hold the log, di�eren
e and annotation infor-mation. This database is further analyzed to identify bug-indu
ing and bug-�xhunks. The database
onsists of three tables, details of whi
h are given below:CVSLog holds information extra
ted from log messages for ea
h revision. Ades
ription of its attributes is given in Table 2.1.CVSDi�eren
e holds information about
hange deltas between every two
on-se
utive revisions of ea
h �le. A des
ription of its attributes is given inTable 2.2.CVSAnnotations holds information extra
ted from annotations obtained forea
h revision of every �le. A des
ription of its attributes is given in Table2.3.

16 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIESTable 2.1: CVSLog table des
riptionField Type Des
ription�le var
har(255),not null Name and path of the �lerevision var
har(10),not null Revision number of a �lerdate date,not null Revision date and timeauthor var
har(50) Name of author who made the revisionstate var
har(20) State of the revisionlinesadd integer, not null Number of lines added to this revisionlinesdel integer, not null Number of Lines deleted from this revision
omment longtext Comments added by the authorbug var
har(3),not null Indi
ates whether a bug is �xedTable 2.2: CVSDi�eren
e table des
riptionField Type Des
ription�le var
har(255),not null Name and path of the �lerevision var
har(10),not null Revision number of a �lehunk_id var
har(10),not null represents hunk identi�erhunk_text text,not null Contains the a
tual sour
e
ode in a hunkbug_indu
e var
har(3),not null Indi
ates a bug-indu
e hunkbug_�x var
har(3),not null Indi
ates a bug-�x hunkTable 2.3: CVSAnnotations table des
riptionField Type Des
ription�le var
har(255),not null Name and path of the �lerevision var
har(10),not null Revision number of a �leline_number integer, not null Position of a line in the revisionline_revision var
har(10),not null line modi�
ation revisionauthor var
har(50) author of the linedate date date and time of modi�
ationline_
ode text A
tual sour
e
ode of the line2.3 Extra
tion of HunksEvolution history of a proje
t holds a lot of information in
luding
hanges madeto it. A single
hange
an be applied to one or multiple �les. Changes are made insmall
hunks of
ode, that are dispersed in a �le. These
hunks are
alled hunks.To extra
t hunks from a software repository, steps illustrated in Figure 2.2are used. Exe
ution of these steps populates the tables mentioned in the previousse
tion.In the �rst step, log information is obtained for all revisions of ea
h �le, usingthe log
ommand of CVS and SVN. A part of CVS log output is shown in Figure2.4. It
ontains date and time, author, state, lines added and deleted,
ommitstatus and a
omment added by the developer. The
omment part is pro
essed

2.4. IDENTIFICATION OF BUG-INDUCING HUNKS 17

Figure 2.2: Steps for Hunk Extra
tionto identify bug-�x revisions as des
ribed in [47, 20℄.In the se
ond step, a di�eren
e is taken between ea
h pair of
onse
utive revisionsfor all �les, using the diff
ommand of CVS and SVN. A sample of di�eren
eoutput is shown in Figure 2.5. It
onsists of di�erent hunks, with ea
h hunkindi
ating the lines added, deleted or modi�ed between the two revisions. Thelines starting with '<' indi
ate the lines removed/modi�ed from previous revi-sion, whereas the lines starting with '>' indi
ate the lines added into the
urrentrevision. Lines starting with '>' are stored into the CVS di�eren
e table for ea
hrevision. It indi
ates the
ode added either newly or after modi�
ations. Thisportion of
ode will be used for extra
tion of language
onstru
ts and syntax el-ements.In the third step annotations are obtained for all latest revisions pre
eding thebug-�x revisions, using the annotate
ommand of CVS and SVN. A sample ofannotations is shown in Figure 2.6. It provides for ea
h line, the last revision inwhi
h this line was added or modi�ed, the author who added this line, the datewhen this line was last added or modi�ed and the a
tual
ode. This informationhelps to identify the origin of the bugs [67℄.2.4 Identi�
ation of bug-indu
ing HunksBug-indu
ing
hanges
an be identi�ed using SZZ algorithm [67, 37℄. HoweverSZZ algorithm identi�es
hanges at �le level. It does not re
ognize bug-indu
inghunks, rather it
onsiders whole
hange as bug-indu
ing. A manual review ofbug-indu
ing
hanges have shown that not all hunks of a bug-indu
ing
hange

18 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

Figure 2.3: Steps for identifying bug-indu
ing hunks
ontribute to bugs. So a te
hnique is required whi
h
an dis
riminate betweenbug-indu
ing and non bug-indu
ing hunks.This dissertation proposes a te
hnique for identifying bug-indu
ing hunks. Adetail of the te
hnique is illustrated in Figure 2.3. This te
hnique makes useof the database des
ribed earlier. The steps to identify bug-indu
ing hunks areexplained using an example. Suppose we have a �le from E
lipse proje
t namedJDTCompilerAdapter.java. In the �rst step log information is extra
ted from theCVS repository. Figure 2.4 shows a sample of log taken for the above mentioned�le. It
ontains information related to revision, author, date, time, lines added ordeleted, status and a
omment added by the developer. Comments are pro
essedto �nd keywords Fix, Fixed, Pat
h, Bug or a numeri
 identi�er of a bug. Su
h
omments are highlighted using boldfa
e in Figure 2.4. To illustrate the hunkidenti�
ation pro
ess, revision 1.66 is sele
ted in whi
h a bug is �xed, revision1.66 is marked as bug �x revision. To �x a bug in this revision
hanges weremade to revision 1.65.A di�eren
e is taken between revision 1.65 and 1.66. Figure 2.5 shows thedi�eren
e of both revisions. There are two hunks in Figure 2.5, whi
h are high-lighted. First hunk indi
ates that lines 110-113 are
hanged in revision 1.65 to line110 in revision 1.66. Lines starting with '<' indi
ate the lines removed/modi�edfrom revision 1.65, whereas the lines starting with '>' indi
ate the lines addedinto revision 1.66.To identify the latest revision in whi
h these lines were added, annotationsare obtained for revision 1.65. Figure 2.6 shows the annotations organized ina tabular form. Comments are ignored and
ode of lines 110,115,116 and 117 is

2.5. PROJECTS ANALYZED 19

Figure 2.4: CVS Logsele
ted. These lines were re
ently modi�ed or added in revision 1.38 and revision1.29 as indi
ated in Figure 2.6. CVS di�eren
e table is queried to identify thehunks in whi
h these
hanges were made. Figure 2.7 shows all the added hunksin revision 1.38. String
omparison is used to identify the hunks in whi
h lines110,115 and 117 were added. The hunks
ontaining these lines are highlighted inFigure 2.7 and these hunks are marked as bug-indu
ing hunks.2.5 Proje
ts AnalyzedFor this study 8 open sour
e proje
ts are sele
ted. These proje
ts are sele
teddue to easy availability of their development history and bug information. Table2.4 shows some statisti
s of these proje
ts. We des
ribe the proje
ts shortly:Apa
he HTTP 1.3 is the most popular web server on the Internet, providingse
ure, e�
ient and extensible HTTP servi
es (http://httpd.apa
he.org/).Columba is an Email Client written in Java, featuring a user-friendly graphi
alinterfa
e with wizards and internationalization support. We sele
ted for ourstudy the main trunk of Columba.(http://www.
olumbamail.org/drupal/)E
lipse is an integrated development environment (IDE) for software develop-ment. We sele
ted JDT part of E
lipse proje
t for our study, that providesJava Development Tools (http://www.e
lipse.org/).Epiphany is a simple and easy to use web browser for GNOME desktop(http://proje
ts.gnome.org/epiphany/).

20 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

Figure 2.5: CVS Di�eren
e

Figure 2.6: CVS Annotations

2.5. PROJECTS ANALYZED 21

Figure 2.7: CVSDi�eren
e table entriesTable 2.4: Des
ription of Proje
tsProje
t Software Type Language PeriodApa
he HTTP 1.3 HTTP Server C 01/1996-01/2008Columba Email
lient Java 07/2006-12/2007E
lipse JDT Java Development IDE Java 06/2001-10/2008Epiphany Web Browser C 12/2002-02/2009Evolution Groupware Client C 04/1998-06/2007Mozilla Web Browser C/C++/Java 03/1998-07/2008Nautilus File Manager C 10/1999-02/2009PostgreSQL DBMS C/C++ 07/1996-10/2008Evolution provides integrated mail, address-book and
alendaring fun
tionalityto users of the GNOME desktop (http://proje
ts.gnome.org/evolution/).Nautilus is a powerful �le manager.(http://proje
ts.gnome.org/nautilus/)Mozilla is a popular and widely used web browser. (http://www.mozilla.org/)PostgreSQL is a widely used database management system. (http://www.postgresql.org/)

Chapter 3
Empiri
al Analysis ofBug-Indu
ing LanguageConstru
ts
As a software evolves,
hanges are
ontinuously applied to the sour
e
ode. Soft-ware
on�guration management systems re
ord these
hanges made to the sour
e
ode. This information
an be extra
ted and used for software evolution studies.Log messages of a transa
tion help to identify reasons for software
hanges [47℄.Bug databases hold important information related to bugs [1℄. This information
an be used to study
hara
teristi
s and behavior of bugs. Software
on�gurationmanagement data
ombined with bug data provides a ri
h sour
e for di�erentkinds of empiri
al studies. In the re
ent years resear
h is fo
used on produ
inggood quality software with redu
ed
osts. Parti
ularly resear
hers are interestedin redu
ing testing e�ort and maintenan
e
osts. Most of the work is aimed atfault o

urren
e and fault predi
tion in the software [13, 27, 36, 54, 60, 71℄.Software
hange history
an be mined to dis
over interesting
hange patterns.Resear
h has been
ondu
ted on di�erent levels of granularity to �nd
hangepatterns. Some resear
hers have studied �le
o-
hange patterns [73℄ , others havestudied logi
al
ouplings among di�erent modules [12, 23℄ and line
o-
hangepatterns [76℄ . More �ne grained resear
h is also
ondu
ted to �nd appli
ationspe
i�
 patterns, to �nd item
ouplings, to predi
t
hange propagation and to�nd signature
hange patterns [31, 32, 75℄.In this
hapter an empiri
al study of
hanges and bugs is presented. Soft-ware
hange history of 8 open sour
e proje
ts is mined and
hara
teristi
s ofbug-introdu
ing
hanges are analyzed. A number of language
onstru
ts are ex-tra
ted from bug-introdu
ing
hanges and their abilities of bug-introdu
tion are23

24 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSstudied. Di�erent language
onstru
ts are
ompared and more bug-prone lan-guage
onstru
ts are identi�ed.Revision histories of 8 open sour
e proje
ts are mined to extra
t bug-indu
inghunks. These hunks are pro
essed to extra
t language
onstru
ts and syntax el-ements whi
h
ontribute to bugs. The obje
tive of this study is to �nd language
onstru
ts whi
h are more problemati
. If su
h bug-indu
ing synta
ti
 elementsare identi�ed, testing e�ort
an be fo
used on the most frequent bug-indu
ingelements. Further developers
an be
areful while making
hanges, keeping inmind the frequent bug-indu
ing elements. When developers make a
hange, they
hange
lasses, fun
tions, variables, sele
tion and
ontrol stru
tures. My �rst re-sear
h obje
tive is to �nd whi
h language
onstru
ts or syntax elements introdu
ebugs most of the time. This formulates my �rst resear
h question:� Resear
h Question 1. What are the most frequent bug-indu
ing language
onstru
ts.Di�erent proje
ts are developed for spe
i�
 purpose and by a di�erent groupof developers. Further proje
ts
an be developed in di�erent programminglanguages. So it would be interesting to know whi
h language
onstru
ts
ommonly introdu
e bugs in di�erent proje
ts. It gives rise to the followingtwo resear
h questions:� Resear
h Question 2. Is the frequen
y of bug-indu
ing language
onstru
tssimilar between proje
ts developed in the same language.� Resear
h Question 3. Is the frequen
y of bug-indu
ing language
onstru
tssimilar between proje
ts developed in di�erent languages.Di�erent developers may have di�erent programming skills, so they may feeldi�
ulty with di�erent language
onstru
ts and hen
e introdu
e di�erentkinds of bugs. There
an be domain spe
i�
 features whi
h in
rease thedi�
ulty of developers. This observation gives rise to the following resear
hquestions:� Resear
h Question 4. Is the frequen
y of bug-indu
ing language
onstru
tssimilar between developers of the same proje
t.� Resear
h Question 5. Is the frequen
y of bug-indu
ing language
onstru
tssimilar between developers of di�erent proje
ts.� Resear
h Question 6. Is the frequen
y of bug-indu
ing language
onstru
tssimilar between developers of the same programming language.� Resear
h Question 7. Is the frequen
y of bug-indu
ing language
onstru
tssimilar between developers of di�erent programming languages.

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 25To
ondu
t this study, 8 open sour
e proje
ts developed in multiple languages andhaving a long development history are sele
ted. A des
ription of these proje
ts isalready given in Chapter 2.3.1 Extra
tion of Language Constru
tsBug-indu
ing hunks are identi�ed using the te
hniques mentioned in Chapter2. A stati
 sour
e
ode parser is implemented in Java, whi
h extra
ts di�erentsyntax elements from a given hunk. It parses the hunk and �nds the o

urren
eof di�erent language
onstru
ts. 26 di�erent syntax elements are
hosen, and theparser is designed to �nd these elements. A detail of these syntax elements isshown in Table 3.1, with examples extra
ted from E
lipse and Apa
he
hangedata. Syntax elements presented in last �ve rows of Table 3.1, are extra
ted forJava �les only, whereas pointers, in
lude statement, de�ne statement, stru
tures,assertions and goto statement are not extra
ted for Java �les.A short des
ription of ea
h language
onstru
t is presented below:Conditions: Conditional expressions provide a sele
tion me
hanism in the pro-gram. Developers implement
onditions in a program to provide multi-ple paths of exe
ution. Conditions usually evaluate a Boolean expressionand depending on the evaluation result, exe
ution path is sele
ted. There
an be simple and
omplex
onditions in a program. Simple
onditionsinvolve single Boolean expression, whereas
omplex
onditions involve mul-tiple Boolean expressions. Further
onditions are nested up to many levels.As
onditions involve Boolean expressions and use of relational operators,developers
an make a mistake in sele
ting appropriate relational or logi
aloperators. Usually equality operator is mistakenly used and it is sometimesmissed by testing tools.Loops: Loops provide an iteration me
hanism in a program. Developers useloops to repeat a statement or group of statements many times. Thereare three kinds of loops, one whi
h exe
utes statements for the spe
i�ednumber of times, the other repeats statements until a spe
i�ed
onditionbe
omes false, and the third one exe
utes statements at least on
e even ifthe spe
i�ed
ondition is false.Developers may make a mistake in spe
ifying the
ounter variable in theloop, or the
ontrolling
ondition may be set wrong.Assignments: Assignments are used to set or
hange the value of a variable.This value
an be set using a
onstant, other variable or an expression. Theexpression may be arithmeti
, logi
al, obje
t instantiation or some fun
tion
all.

26 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS
Table 3.1: Language Constru
tsSyntax Element Symbols ExamplesConditions if, else, else if if (this.
ompileList.length != 1) {Loops for, while, do while for (int i = 0, max = pathEle-ments.length; i< max; i++) {Assignments = this.target=true;Fun
tion Calls Foo ();
lasspath.addExisting(new Path(null,jre_lib.toOSString()))Fun
tion De
l./Def. bar () { } private void addExtdirs(Path extDirs,Path
lasspath) {Variable De
laration int foo; Map
ustomDefaultOptions;Pointers Int * foo;
har *fspe
;Logi
al Operators &&, ||, ! if (!resultValue && this.logFileName !=null) {Relational Operators <, >, ==, !=, <=, >= if (this.a

essRules == null) {Return statement return a; return ClasspathDire
tory + this.path;//NON − NLS − 1Use of NULL foo= NULL; private Map �leEn
odings = null;In
lude statement # in
lude # in
lude <sys/stat.h>De�ne statement # de�ne # de�neMPE_WITHOUT_MPELX44Stru
tures stru
t foo { } stru
t utsname os_version;Assertions assert () assert(idx < APACHE_ARG_MAX);Arrays int foo [℄ String[℄ dirs = extDirs.list();Case statement
ase foo:
ase READING_JAR:Goto statement goto foo: goto return_from_multi;In
-de
 operator ++,- - if (len > 2 && errstr[len-3℄ == .) len--;Break statement break; state = destinatonPathStart; break;Ex
eption handlers try,
at
h try {zipFile.
lose();}
at
h(IOEx
eption e) {Class de
laration
lass foo publi

lass ClasspathDire
tory imple-ments FileSystem.Classpath {New operator new foo() this(new ZipFile(�le), true, null);Throw statement throw foo-ex
eption; throw new BuildEx
eption(Jdt
om ,e);//NON − NLS − 1Imports import import org.e
lipse.
ore.runtime.IPath;Inheritan
e extends, implements publi

lass ClasspathJar extendsClasspathLo
ation {

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 27Developers
an make mistakes in assignments by using wrong values orinappropriate expressions.Fun
tion Calls: Fun
tions or methods are a way to modularize programs. Inobje
t oriented programming methods a
t as interfa
es to
lasses. Devel-opers write methods or fun
tions to perform
ertain tasks. Whenever thattask is required, they
an make a
all to it. A proper syntax of a method
all in
ludes method name and its parameters. If the fun
tion or methodreturns a value, it should be used in an assignment expression.Programmers
an make a mistake in providing the
orre
t parameters orarguments to a fun
tion
all, or they
an make a
all at the wrong pla
e.Fun
tion De�nitions: Fun
tions or methods are required to be de�ned beforethey
an be
alled in a program. Method de�nitions are an essential partof obje
t oriented programming. Classes are in
omplete without methods.Method de�nitions
onsist of signature of the method and a body of themethod. Signature of a method
onsists of an a

ess spe
i�er, return type,method name and a list of parameters. Method body
onsists of a set ofstatements.Developers
an make mistakes in writing signature of a method.Variable De
larations: Variables are used to o

upy memory lo
ations for hold-ing data. Variables
an be de
lared or de�ned in a program. Variable de
la-ration involves a data type and a variable name, whereas variable de�nitionadditionally involves an assignment of initial value to the variable. Variables
an be of simple data types or
omplex user de�ned data types. In obje
toriented programming, variables are also used to hold instan
es of
lasses.Developers
an make wrong de
larations or in
orre
t instantiations, whi
hmay lead to errors in programs.Pointers: Pointers are a kind of variables whi
h hold memory addresses. Devel-opers use pointers to refer di�erent memory lo
ations in a program. Pointersare extensively used in programs developed in C language. Pointers
an bede
lared of any data type and they
an point to memory lo
ations of thesame type.Major draw ba
k of pointers is memory management. Pointers
an referto wrong lo
ations or they
an o

upy memory when it is no more needed.Developers
an make mistakes in pointer initializations or pointer updations.They
an also forget to free memory after using it.Logi
al and Relational Operators: Logi
al operators are used to
ombine Booleanexpressions whereas relational operators are used to
onstru
t Boolean ex-pressions. They are normally used as part of the
onditions and loops.

28 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSDevelopers
an make a mistake in using the appropriate operator at theappropriate pla
e.Return Statement: Return statement is used in a method or fun
tion to returna value. If a return type is mentioned in method signatures, it should havea return statement in its body. Return statement is a way to use the resultsof a fun
tion exe
ution outside the body of a fun
tion.Developers
an forget to return a value or they
an make a mistake inreturning the
orre
t value.Use of Null: Null is treated as 0 or void in C and C++. In Java it is a spe
ialliteral of the null type and it doesn't ne
essarily have value zero. It isimpossible to
ast to the null type or de
lare a variable of this type.Developers
an make invalid use of null or they
an make mistakes in as-signing null.In
lude Statement: In
lude statement is used to
ombine library �les or otheruser written �les in a C or C++ program.De�ne Statement: De�ne statement is used to de�ne ma
ros in a C or C++program.Stru
tures: Stru
tures are a way to
ombine di�erent data types into a singledata type. In pro
edural languages stru
tures are used to
ombine variablesand fun
tions. A stru
ture represents a
omplex data type
onsisting ofmultiple simple data types.Developers
an make a mistake in de�ning the stru
ture or assessing theelements of the stru
tures.Assertions: In large programs, before pro
eeding further it is useful to knowwhether a
ondition or set of
onditions is true. To start a parti
ular
om-putation, developers usually make sure that the program is in a state, inwhi
h they believe it to be. It is a

omplished by use of a statement
alledassertion. If an assertion fails, a diagnosti
 message
an be displayed andthe program is terminated.Programmers
an make mistakes in using valid assertions.Arrays: Arrays provide a way to store
olle
tion of data items of same typeat
ontiguous memory lo
ations. Individual elements
an be a

essed byspe
ifying the index of that element. Obje
t oriented languages providefun
tions related to arrays that
an be used to manipulate arrays.Developers
an make mistakes in de
laring arrays or a

essing the elementsof an array.

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 29Case Statement: Swit
h statement provides a way to have multiple exe
utionpaths based on the value of a single variable. Di�erent values of the swit
hvariable are provided by using
ase statement. During the exe
ution of aprogram, statements after the mat
hing
ase are exe
uted. A default
aseis also provided, whi
h is exe
uted when none of the
ases mat
h with the
urrent value of the swit
h variable.Developers
an make in
orre
t use of
ases.Goto Statement: Goto statement is used to shift
ontrol from one pla
e toanother pla
e in a program. It is used in programs written in C language.Labels are used to mark lo
ations in a program, goto statement
an shift
ontrol to these labels.Programmers
an make erroneous use of goto statement.In
rement-de
rement Operator: In
rement operator when applied to a vari-able, in
reases its value by adding one to it. Similarly de
rement operatorwhen applied to a variable, de
reases its value by subtra
ting one from it.These operators are short notation of an assignment expression, doing thesame. Use of the operator on left or right side of the operand produ
esdi�erent results.Programmers sometimes do not make use of in
rement-de
rement operator
arefully and unexpe
ted results are produ
ed.Break Statement: Break statement is used in loops to stop the iterations ofa loop based on some
ondition. Sometimes you do not want the loop to
omplete the spe
i�ed iterations, and stop the repetition based on the stateof an external variable. Break statement helps in su
h kind of situations.Mishandling of break statement
an produ
e unexpe
ted results.Class De
laration and De�nition: Classes are the
ore of obje
t oriented pro-gramming languages. Classes implement the data en
apsulation, inheri-tan
e and polymorphism, that are typi
al features of obje
t oriented pro-gramming. Classes are
omposed of data members and methods, with pub-li
, private and prote
ted a

ess spe
i�ers for these two. A
lass
an be usedin a program by
reating instan
es of it, whi
h are
alled obje
ts.Programmers
an make several types of mistakes while de�ning
lasses.New Operator: New operator is used when a new instan
e of a
lass is required.New operator reserves memory for an instan
e of a
lass and names it withthe variable for whi
h that instan
e is
reated.Programmers
an mistakenly
reate wrong instantiations, or they may usewrong arguments to the
onstru
tor of a
lass.

30 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSImport Statement: Import statement is used to in
lude di�erent pa
kages ina program. It is not very mu
h
on
erned with errors, however it mayindire
tly involve in
reation of bugs.Inheritan
e: It is a typi
al feature of obje
t oriented programming. A
lass
aninherit either from a single
lass or multiple
lasses. C++ supports multipleinheritan
e, whereas in Java interfa
es are used to implement multiple in-heritan
e. By using inheritan
e, features of the parent
lass are transferredto the
hild
lass. The
hild
lass
an have additional features of its own.Improper handling of inheritan
e
an result in multitude of errors whi
h
ause failure of the program.Ex
eption Handlers: Ex
eption handling is a way to trap known errors in aprogram. It is implemented by a try and
at
h me
hanism. Parts of the
ode whi
h are known to generate errors are pla
ed in a try blo
k. Ea
htry blo
k is a

ompanied by a
at
h blo
k, in whi
h error handling
ode ispla
ed. Ex
eption handling prevents a program from terminating, when anerror o

urs.An ex
eption may not be trapped by the
at
h blo
ks provided and resultin program failures.Throw Statement: Throw statement is used to throw an ex
eption of a spe
i-�ed type.Invalid throw statement
an result in errors,
ausing malfun
tioning of aprogram.3.2 Proportion of Di�erent Hunk TypesExtra
ted hunks are grouped into four
ategories based on the bug information.These hunk types are:Bug-Fix Hunks These hunks are part of bug-�x
hanges. A bug-�x hunk is
reated when a developer �xes a bug.Bug-Indu
ing Hunks These hunks are origin of bugs. A bug-indu
ing hunk is
reated when a developer makes a
hange, whi
h results in failure later on.Bug-Fix-Indu
ing Hunks These hunks are part of bug-�x
hanges but intro-du
e bugs later on. A bug-�x-indu
ing hunk is
reated when a developer�xes a bug but at the same time introdu
es another bug.Clean Hunks These hunks are neither part of bug �xes nor introdu
e any bug.

3.3. MOST FREQUENT BUG-INDUCING LANGUAGE CONSTRUCTS 31

Figure 3.1: Proportion of hunk types in di�erent proje
tsAs development of software progresses new features are added and size of soft-ware grows. Chan
es of errors are in
reased as the number of
hanges in
reases.Bug-indu
ing hunks
onstitute a signi�
ant proportion of total hunks made inthe development history of a proje
t. Figure 3.1 shows the proportion of di�erenttypes of hunks in 8 proje
ts. Mozilla proje
t is des
ribed with three languagesseparately.All proje
ts have more than 20% bug-�x hunks. Proportion of bug-indu
inghunks is higher in proje
ts developed in C language. Mozilla and Nautilus havea higher per
entage of bug-�x-indu
ing hunks. Proje
ts developed in JAVA have
omparatively higher per
entage of
lean hunks.3.3 Most Frequent Bug-Indu
ing Language Constru
tsFrequen
ies of language
onstru
ts in bug-indu
ing hunks are
al
ulated. A ma-jority of the bug-indu
ing hunks involved a
hange to more than one language
onstru
t. To answer the resear
h question 1, for ea
h language
onstru
t, theproportion of total bug-indu
ing hunks, it was involved in is
al
ulated. Themost frequent bug-indu
ing language
onstru
ts are fun
tion
alls, assignments,
onditions, pointers, use of NULL, variable de
laration, fun
tion de
laration andreturn statement. Table 3.2 and 3.3 show the proportion of total bug-indu
inghunks whi
h
ontain a given language
onstru
t, expressed as per
entage val-ues. Columns from 2 to 8 in Table 3.2 indi
ate the per
entage of total hunksinvolving a spe
i�
 language
onstru
t for Apa
he, Epiphany, Evolution, C �lesof Mozilla, C++ �les of Mozilla, Nautilus and PostgreSQL respe
tively. In Table

32 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSTable 3.2: Frequen
ies of Bug-Indu
ing Language Constru
ts(a)Syntax Element Ap. Ep. Ev. Moz-C Moz-CPP Nau. Pg-SQLConditions 40 22 29 28 28 21 17Loops 11 4 7 5 4 4 6Assignments 38 39 42 35 31 31 25Fun
tion Calls 54 57 62 38 47 59 36Fun
tion De
laration 12 12 11 8 8 11 7Variable De
laration 14 24 25 16 14 18 13Pointers 30 24 29 15 11 24 12Logi
al Operators 30 16 18 17 15 15 10Relational Operators 23 17 15 12 14 14 9Return statement 15 9 11 13 14 8 7Use of NULL 19 22 22 11 0.8 18 6In
lude statement 0.69 7 5 1 2 5 1De�ne statement 2 2 1 1 0.65 2 0.57Stru
tures 2 1 3 0.83 0.2 0.58 1Assertions 0.09 0 0 0.01 0.01 0 0.07Arrays 10 5 4 11 3 2 6Case statement 2 2 3 2 1 1 5Goto statement 0.38 0.35 0.57 3 0.19 0.22 0.23In
-de
 operator 2 0.45 0.63 4 2 0.37 3Break statement 3 2 3 3 1 1 2
3.3
olumns from 2 to 4 provide values for Columba, E
lipse and Java �les ofMozilla respe
tively.Fun
tion
alls range from 38-62%, assignments range from 30-42%,
onditionsrange from 17-40%, pointers range from 11-30%, use of NULL ranges from 1-22%, variable de
larations range from 11-25%, fun
tion de
larations range from8-12% and return statement ranges from 8-15% in the studied proje
ts. Columba
ontains a high number of bug-indu
ing hunks involving imports and obje
t in-stantiations (use of new operator). Use of in
rement-de
rement operator,
asestatement and obje
t instantiations is high in bug-indu
ing hunks of E
lipse. Ar-rays have
aused more problems in Apa
he, E
lipse and C �les of Mozilla. Numberof goto statement is higher in bug-indu
ing hunks of Mozilla C �les as
omparedto other proje
ts.More than 50% bug indu
ing hunks of Apa
he involve fun
tion
alls and about40% bug indu
ing hunks have
onditions and assignments. Pointers are present in30% bug indu
ing hunks of Apa
he. Fun
tion de
larations, variable de
larations,null, return statement and loops are present in 12%, 14%, 19%,15% and 11% bugindu
ing hunks of Apa
he respe
tively. About 10% bug indu
ing hunks of Apa
he

3.3. MOST FREQUENT BUG-INDUCING LANGUAGE CONSTRUCTS 33Table 3.3: Frequen
ies of Bug-Indu
ing Language Constru
ts(b)Syntax Element Columba E
lipse Mozilla-JConditions 20 31 17Loops 8 7 4Assignments 37 33 30Fun
tion Calls 50 41 39Fun
tion De
laration 8 11 10Variable De
laration 20 12 11Logi
al Operators 9 17 11Relational Operators 12 15 10Return statement 10 14 9Use of NULL 5 7 4Arrays 4 11 7Case statement 0.59 11 5In
-de
 operator 0.59 8 5Break statement 0.59 3 3Ex
eption handlers 4 2 2Class de
laration 4 2 2New operator 17 10 6Throw statement 3 2 4Imports 12 3 0.47Inheritan
e 4 1 1also involve use of arrays. Remaining language
onstru
ts are present in less than3% bug indu
ing hunks of Apa
he.Epiphany has almost similar proportion of language
onstru
ts to Apa
he,present in bug indu
ing hunks. However proportion of
onditions, pointers, loopsand return statement is
omparatively less with 22%, 24%, 4% and 9% bug in-du
ing hunks involving these
onstru
ts. Variable de
larations are present in 24%bug indu
ing hunks of Epiphany. Surprisingly, proportion of in
lude statementsis higher in bug indu
ing hunks of Epiphany.More than 60% bug indu
ing hunks of Evolution involve fun
tion
alls and
onditions are found in 29% bug indu
ing hunks. Proportion of other language
onstru
ts is similar to Apa
he, with slightly higher number of in
lude statements.C and C++ �les of Mozilla have similar proportion of language
onstru
ts inbug indu
ing hunks. Both kinds of �les vary in fun
tion
alls, use of null andarrays. Number of fun
tion
alls is higher in C++ �les whereas use of null andnumber of arrays is higher in bug indu
ing hunks of C �les. Fun
tion
alls arepresent in 47% and 38% bug indu
ing hunks of C++ and C �les respe
tively. Nullis used in 11% bug indu
ing hunks of C++ �les, whereas in C �les this proportionis less than 1%. Arrays are present in 11% bug indu
ing hunks of C �les and 3%

34 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSof C++ �les.Conditions, loops, assignments, fun
tion de
larations, variable de
larations,return statement and pointers are present in 28%, 5%, 35%, 8%, 16%, 13% and15% bug indu
ing hunks of Mozilla C �les respe
tively. C++ �les have similarproportion of these
onstru
ts.Nautilus has similar proportion of language
onstru
ts as found in bug indu
-ing hunks of Apa
he.PostgreSQL has slightly lower proportion of language
onstru
ts in its bugindu
ing hunks as
ompared to other proje
ts. Fun
tion
alls are present in 36%and assignments in 25% bug indu
ing hunks. Use of null and fun
tion de
larationsis very low in PostgreSQL as
ompared to other proje
ts. Conditions are foundin 17% bug indu
ing hunks of PostgreSQL. Other language
onstru
ts are presentin less than 10% bug indu
ing hunks.In Columba proje
t, 50% bug indu
ing hunks involve fun
tion
alls, whereasassignments,
onditions, loops, variable de
larations, fun
tion de
larations andreturn statement are present in 37%, 20%, 8%, 20%, 8% and 10% bug indu
inghunks respe
tively. Columba proje
t surprisingly has higher number of importstatement in its bug indu
ing hunks. About 12% bug indu
ing hunks
ontainimport statement. Columba also takes a lead in the use of new operator. Obje
tinstantiations have
reated more bugs in Columba as
ompared to other proje
ts.E
lipse and Java �les of Mozilla have more or less similar proportion of dif-ferent language
onstru
ts in bug indu
ing hunks. Conditions, return statementand use of null have
reated more problems in E
lipse as
ompared to Java �lesof Mozilla. E
lipse also leads in the use of
ase statement and arrays in its bugindu
ing hunks. About 11% bug indu
ing hunks of E
lipse
ontain
ase statement.In
rement-de
rement operator is present in 8% bug indu
ing hunks of E
lipse.This per
entage is highest among all proje
ts. Fun
tion
alls, assignments and
onditions are present in 39%, 30% and 17% bug indu
ing hunks of Mozilla Java�les. Other language
onstru
ts are present in less than 11% bug indu
ing hunks.3.4 Proje
t SimilaritiesIn order to answer resear
h questions 2 and 3, we analyzed the data using PearsonCorrelation. There are some language
onstru
ts spe
i�
 to a parti
ular language,so we sele
ted the language
onstru
ts whi
h are
ommon to C, C++ and Javalanguages. Table 3.4 shows the values of
orrelation
oe�
ients with p<0.001.Columns from 2 to 11 represent
orrelation values for Apa
he (Ap.), Columba(Col.), E
lipse (E
l.), Epiphany (Epi.), Evolution (Evo.), Mozilla Java �les (Mz-J), Mozilla C �les (Mz-C), Mozilla C++ �les (Mz-CPP), Nautilus (Nau.) andPostgreSQL (Pg-SQL).The
orrelation
oe�
ients range from 0.84-0.99, indi
ating that all proje
ts

3.4. PROJECT SIMILARITIES 35Table 3.4: Correlation
oe�
ients for di�erent proje
tsProje
t Ap. Col. E
l. Epi. Evo. Mz-J Mz-C Mz-CPP Nau. Pg-SQLAp. 1.0 0.84 0.90 0.92 0.92 0.90 0.92 0.90 0.90 0.93Col. 1.0 0.87 0.92 0.94 0.93 0.89 0.88 0.93 0.95E
l. 1.0 0.86 0.87 0.96 0.91 0.93 0.84 0.93Epi. 1.0 0.99 0.92 0.94 0.85 0.98 0.95Evo. 1.0 0.93 0.94 0.89 0.98 0.96Mz-J 1.0 0.96 0.94 0.91 0.96Mz-C 1.0 0.90 0.89 0.97Mz-CPP 1.0 0.85 0.92Nau. 1.0 0.93Pg-SQL 1.0

Figure 3.2: Bug-indu
ing language
onstru
ts in di�erent proje
ts (a)are statisti
ally
orrelated for the frequen
ies of bug-indu
ing language
onstru
ts.Proje
ts developed in the same programming language are highly
orrelated ex-
ept E
lipse and Columba, for whi
h
orrelation
oe�
ient is 0.87. Proje
tsdeveloped in di�erent languages are signi�
antly
orrelated but the
orrelation
oe�
ients are slightly lower as
ompared to proje
ts developed in the same pro-gramming language. We
an see in Figure 3.2 and 3.3 that all proje
ts havesimilar patterns of bug-indu
ing language
onstru
ts.Highest
orrelation is found between Evolution and Epiphany and lowest
or-relation between Columba and Apa
he. Apa
he is statisti
ally
orrelated to otherproje
ts, for frequen
ies of bug indu
ing language
onstru
ts with a
orrelation
oe�
ient of greater than 0.9. Columba has strong
orrelation with Epiphany,Evolution, Nautilus and PostgreSQL having more than 90%
orrelation.E
lipse is highly
orrelated with Mozilla and PostgreSQL. It has 86%, 87%and 84%
orrelation with Epiphany, Evolution and Nautilus.Mozilla is also highly
orrelated with all other proje
ts having
orrelationvalues above 90%.

36 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.3: Bug-indu
ing language
onstru
ts in di�erent proje
ts (b)Nautilus has strong
orrelation with all proje
ts ex
ept E
lipse and Mozilla.It has 84% and 85%
orrelation with E
lipse and Mozilla C++ �les. Other
or-relations are above 90%.PostgreSQL has strong relationships with all proje
ts, having
orrelation val-ues above 92%.3.5 Developer SimilaritiesIn order to answer resear
h questions 4, 5, 6, and 7, we
al
ulated the frequen-
ies of bug-indu
ing language
onstru
ts for ea
h developer of all proje
ts. Wesele
ted the 10 most bug-indu
ing developers from ea
h proje
t, ex
ept Columbain whi
h
ase only 5 developers were involved in bug-indu
ing hunks, and appliedthe Pearson
orrelation on the sele
ted data. Table 3.5 shows the
orrelation
oe�
ients between developers of the same proje
t, whereas
orrelation amongdevelopers of di�erent proje
ts is given in Table 3.6. Due to the spa
e
onstraintswe mention only the minimum and maximum values of the
orrelation
oe�
ients.For detailed frequen
y distribution of
orrelation
oe�
ients see Figure 3.4 and3.5. Results of
orrelation analysis presented in Table 3.5 and 3.6 are obtainedfor 10 sele
ted developers from ea
h proje
t. However the
orrelation
oe�
ientsdepi
ted in Figure 3.4 and 3.5 are
al
ulated for all developers. Some developersare very a
tive and others
ontribute at irregular intervals. Developers havingminor
ontributions will have weak
orrelation with the a
tive developers. So the
orrelations in Figure 3.4 and 3.5 are as low as 0.15 and -0.1. However majorityof the
orrelations are above 80% for developers from di�erent proje
ts and above90% for developers from the same proje
t.Most of the developers of di�erent proje
ts have similar frequen
ies of bug-indu
ing language
onstru
ts. Table 3.6 shows the minimum and maximum val-ues of
orrelation
oe�
ients obtained. Developers of the proje
ts developed in

3.5. DEVELOPER SIMILARITIES 37Table 3.5: Correlation Coe�
ients (developers of same proje
t)Proje
t Min. Value Max. ValueApa
he 0.82 0.98Columba 0.54 0.89E
lipse 0.70 0.98Epiphany 0.64 0.98Evolution 0.95 0.99Mozilla-J 0.76 0.97Mozilla-C 0.31 0.97Mozilla-CPP 0.88 0.98Nautilus 0.89 0.99PostgreSQL 0.33 0.97

Figure 3.4: Frequen
y distribution of
orrelation
oe�
ients (same proje
t)the same language have higher
orrelation values as
ompared to developers ofthe proje
ts developed in the di�erent languages. However there are a very fewdevelopers, who vary in frequen
ies of bug-indu
ing language
onstru
ts, with
orrelation values as low as 0.19.Developers of the same programming language have strong
orrelations, with a fewex
eptions for ea
h language. Table 3.7 shows the minimum and maximum valuesof the
orrelation
oe�
ient obtained for developers of ea
h language. There arevery few developers of ea
h language whi
h vary from other developers of thesame language.� Answer to Resear
h Question 4. Pearson
orrelation analysis shows thatdevelopers within the same proje
t are strongly
orrelated for the frequen
ies

38 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.5: Frequen
y distribution of
orrelation
oe�
ients (di�erent proje
t)of bug indu
ing language
onstru
ts. The
orrelation
oe�
ients within thesame proje
t range from 0.31 to 0.99.Minimum
orrelation among any pair of developers of Apa
he is 0.82 andmaximum
orrelation found is 0.98. Similarly, minimum
orrelation amongany pair of developers of Columba is 0.54 with a maximum
orrelation of0.89.Results of
orrelation analysis on developers of E
lipse indi
ate a minimum
orrelation
oe�
ient of 0.7 and a maximum
orrelation
oe�
ient of 0.98.For developers of Java �les in Mozilla similar results are found.Developers of Evolution are strongly
orrelated having
orrelation
oe�
ientabove 0.94.Developers of C �les in Mozilla and PostgreSQL have shown similar results.In both
ases, minimum
orrelation found among any developers is about0.3 and the maximum
orrelation
oe�
ient is 0.97.Correlation analysis of frequen
ies of bug indu
ing language
onstru
ts fordevelopers of Nautilus and C++ �les in Mozilla has produ
ed similar results.Minimum
orrelation among any pair of developers of these proje
ts is 0.88and maximum
orrelation
oe�
ient found is 0.99.Note that these results are for top ten developers from ea
h proje
t. Fromea
h proje
t ten developers are sele
ted whi
h have introdu
ed most of thebugs.

3.5. DEVELOPER SIMILARITIES 39Table 3.6: Correlation Coe�
ients (developers of di�erent proje
ts)Proje
t Language Min. Value Max. ValueSame 0.82 0.98Di�erent 0.19 0.89� Answer to Resear
h Question 5. A
orrelation analysis is applied on data ofdevelopers from di�erent proje
ts. These proje
ts are developed in C, C++and Java. Results obtained indi
ate a minimum
orrelation
oe�
ient of0.82 among any pair of developers of di�erent proje
ts but developed in thesame language. The maximum
orrelation
oe�
ient found is 0.98 for thesame set of developers.Correlation analyses of developers of di�erent proje
ts that are developedin di�erent languages indi
ate a minimum
orrelation
oe�
ient of 0.19,whereas maximum
orrelation
oe�
ient is 0.89 for the same set of data.� Answer to Resear
h Question 6. Developers are grouped into three
at-egories depending on the programming language. Developers of Java aregrouped together irrespe
tive of the proje
t, similarly developers of C aregrouped together and developers of C++ are grouped separately. A
orre-lation analysis is applied on ea
h group in order to know the relationshipsamong developers of the same programming language. Table 3.7 shows theminimum and maximum values of the
orrelation
oe�
ient obtained fordevelopers of ea
h language.Results obtained indi
ate a minimum
orrelation of 0.62 among any pair ofdevelopers of C language, whereas maximum
orrelation
oe�
ient found is0.97 for the same set.Correlation analyses of developers of C++ language indi
ate a minimum
orrelation
oe�
ient of 0.88 and a maximum
orrelation
oe�
ient of 0.98.Minimum
orrelation
oe�
ient among any pair of developers of Java lan-guage is 0.54 and maximum
orrelation found is 0.98.� Answer to Resear
h Question 7. Developers of di�erent programming lan-guages are pooled together and a
orrelation analysis is applied on thegrouped data. Last row of Table 3.6 shows the minimum and maximumvalues of
orrelation
oe�
ients obtained among developers of di�erent lan-guages. Results of the
orrelation analysis indi
ate a minimum
orrelation
oe�
ient of 0.19 among any pair of developers of di�erent programminglanguages. Highest
orrelation
oe�
ient found is 0.89 among developers ofdi�erent programming languages.

40 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTSTable 3.7: Correlation Coe�
ients (developers of same language)Programming Language Min. Value Max. ValueC 0.62 0.97C++ 0.88 0.98Java 0.54 0.983.6 Bug Laten
yWhen a developer makes a
hange to �x a bug,
on�guration management systemre
ords the date and time of the
ommit. During the pro
ess of �nding bug-indu
ing
hanges, as des
ribed in Chapter 2, date of modi�
ation for ea
h bug-indu
ing
hange
an be extra
ted. Interval between bug-indu
e date and bug-�xdate
an be
al
ulated in number of days, as well as in number of revisions. Inthis study number of revisions made between bug-indu
e date and bug-�x date is
al
ulated. This value is
alled bug life time or bug laten
y and
al
ulated for ea
hbug-indu
ing language
onstru
t. CVS maintains revisions of ea
h �le, whereasSVN maintains revisions at the proje
t level. Whenever a
hange is made, CVSupdates the revision of the
hanged �le, whereas SVN in
rements the revision ofwhole proje
t.Bug laten
y values for Apa
he, Columba, Epiphany, Evolution and Nautilusare
al
ulated by taking di�eren
e of proje
t revision numbers and for the restof the proje
ts by taking di�eren
e of �le revision numbers. Table 3.8 shows theaverage bug laten
y values,
al
ulated in terms of number of revisions the bugexisted, for �ve language
onstru
ts. Columns 2 to 6 indi
ate bug laten
ies for
onditions, assignments, fun
tion
alls, variable de
larations and fun
tion de
la-rations respe
tively.In Apa
he proje
t fun
tion
alls are �xed on an average earlier than otherlanguage
onstru
ts. Conditions have more average bug laten
y than other
on-stru
ts.For Columba
onditions are found more
riti
al and they are �xed on anaverage earlier than other
onstru
ts. Assignments and fun
tion
alls have equalbug laten
y and buggy variable de
larations persist longer in Columba.In E
lipse proje
t fun
tion de
larations are �xed on an average earlier thanother language
onstru
ts. Conditions and fun
tion
alls have equal bug laten
yvalues, similarly assignments and variable de
larations have on average equal buglaten
y. Buggy assignments and variable de
larations persist longer in E
lipse onan average.Conditions and fun
tion
alls are more
riti
al in Epiphany and Evolution, as
ompared to other
onstru
ts. Fun
tion de
larations persist longer in Epiphanyand variable de
larations persist longer in Evolution.In Mozilla proje
t fun
tion de
larations are �xed on an average earlier than

3.6. BUG LATENCY 41Table 3.8: Bug Laten
y (Average Values)Proje
t Conds. Assig. Fun
t-Calls Var-De
l. Fun
t-De
l.Apa
he HTTPS 1.3 3389 2944 2562 3127 2695Columba 206 209 209 227 213E
lipse JDT 159 187 159 187 114Epiphany 1979 2125 2018 2212 2832Evolution 4532 4675 4515 5031 4987Mozilla 124 101 106 116 91Nautilus 1518 1739 1671 1656 1731PostgreSQL 109 107 111 85 103
Table 3.9: Bug Laten
y Correlation Values between Language Constru
tsConds. Assig. Fun
t-Calls Var-De
l. Fun
t-De
l.Conditions 1.0 0.99 0.98 0.99 0.96Assignments 1.0 0.99 0.99 0.98Fun
tion Calls 1.0 0.99 0.99Variable De
laration 1.0 0.98Fun
tion De
laration 1.0

other language
onstru
ts. Conditions took more time to be �xed
ompared toother
onstru
ts.For Nautilus
onditions have on average short bug laten
y and assignmentshave long bug laten
y. Bug laten
y values of other
onstru
ts lie between thesetwo
onstru
ts.Variable de
larations are more
riti
al in PostgreSQL with shorter bug laten-
ies, whereas
onditions have longer bug laten
ies. Fun
tion
alls,
onditions andassignments have nearly similar bug laten
ies in PostgreSQL.A
orrelation analysis is applied on average bug laten
y values of
onditions,assignments, fun
tion
alls, variable de
larations and fun
tion de
larations in thestudied proje
ts. Results of the
orrelation analysis are presented in Table 3.9.These language
onstru
ts are statisti
ally
orrelated for bug laten
y. Most of the
orrelation
oe�
ients are above 0.95.It indi
ates that bug laten
ies for individual language
onstru
ts vary in sim-ilar fashion in di�erent proje
ts. Short bug laten
y indi
ates that the bug is
riti
al and needs to be �xed soon. Long bug laten
y indi
ates that either thebug is minor having low priority or it is more
omplex to be �xed. In this studyaverage values are used, so a more detailed study is required for some
on
rete
on
lusions. However this study represents a brief pi
ture of bug laten
ies ofdi�erent language
onstru
ts.

42 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.6: Comparison of Bug-Indu
ing and Clean Hunks (Apa
he)3.7 Comparison with Non Bug-Indu
ing HunksBug indu
ing and
lean hunks are
ompared for the o

urren
e of
onditions,fun
tion
alls, fun
tion de
laration, assignments, variable de
larations, returnstatement and use of null. Although these
onstru
ts are also present in nonbug-indu
ing hunks, there per
entage is higher in bug-indu
ing hunks. Amongall these
onstru
ts fun
tion de
larations have di�erent trend, they are present inhigher per
entage of
lean hunks in all proje
ts. It
an not be stated that ea
htime one of these
onstru
ts is used, bugs will be introdu
ed. The
ontext inwhi
h these
onstru
ts are used is important. However we
an say these are therisky language
onstru
ts be
ause most of the bug-indu
ing hunks involve these
onstru
ts.Figure 3.6 shows that the per
entage of bug indu
ing hunks
ontaining
ondi-tions is about double of
lean hunks in Apa
he proje
t. There is a large di�eren
ebetween per
entages of bug indu
ing and
lean hunks involving fun
tion
alls.Other
onstru
ts also
onstitute large proportion of bug indu
ing hunks as
om-pared to
lean hunks.In E
lipse proje
t
onditions are present in more than 30% of bug indu
inghunks whereas in
lean hunks this proportion is less than 20%, as depi
ted inFigure 3.7. Fun
tion
alls are present in more than 40% bug indu
ing hunks and30%
lean hunks. Return statement is present in equal proportions in both kindsof hunks. For the remaining
onstru
ts di�eren
es are not large but bug indu
inghunks have higher per
entages as
ompared to
lean hunks.Figure 3.8 shows that the per
entage of bug indu
ing hunks
ontaining re-turn statement and using null is about double of
lean hunks in Mozilla proje
t.Remaining
onstru
ts are present in
omparatively higher per
entage of bug in-du
ing hunks. Conditions
onstitute 20% of
lean hunks and 29% of bug indu
ing

3.7. COMPARISON WITH NON BUG-INDUCING HUNKS 43

Figure 3.7: Comparison of Bug-Indu
ing and Clean Hunks (E
lipse)

Figure 3.8: Comparison of Bug-Indu
ing and Clean Hunks (Mozilla)hunks. Assignments
onstitute 30% of
lean hunks and about 36% of bug indu
inghunks.In PostgreSQL per
entage of bug indu
ing hunks
ontaining return statementis about double of
lean hunks, as shown in Figure 3.9. Use of null is almost doublein bug indu
ing hunks as
ompared to
lean hunks. Conditions are present inabout 11% of
lean hunks and 18% of bug indu
ing hunks. Assignments
onstitute17% of
lean hunks and 25% of bug indu
ing hunks. Fun
tion
alls are found in36% of bug indu
ing hunks and 25% of
lean hunks.Figure 3.10 depi
ts that
onditions are present in 30% bug indu
ing hunksand less than 20%
lean hunks of Evolution. Assignments are found in 30%
leanhunks and more than 40% bug indu
ing hunks. More than 60% bug indu
inghunks
ontain fun
tion
alls whereas in
lean hunks this proportion is less than

44 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.9: Comparison of Bug-Indu
ing and Clean Hunks (PostgreSQL)

Figure 3.10: Comparison of Bug-Indu
ing and Clean Hunks (Evolution)50%. Use of return statement is almost double in bug indu
ing hunks as
omparedto
lean hunks.Use of null and
onditions is almost double in bug indu
ing hunks of Epiphanyas
ompared to
lean hunks, see Figure 3.11. Assignments are found in 26% of
lean hunks and 40% of bug indu
ing hunks, whereas fun
tion
alls are presentin 58% of bug indu
ing hunks and 42% of
lean hunks.In Columba use of null and
onditions is almost double in bug indu
ing hunksas
ompared to
lean hunks, see Figure 3.12. Return statements are equallypresent in both kinds of hunks. Variable de
larations are found in higher per
ent-age of
lean hunks, in
ontrast to other proje
ts. Assignments
onstitute 24% of
lean hunks and 38% of bug indu
ing hunks. Fun
tion
alls are found in 50% ofbug indu
ing hunks and 39% of
lean hunks.

3.8. SUMMARY 45

Figure 3.11: Comparison of Bug-Indu
ing and Clean Hunks (Epiphany)

Figure 3.12: Comparison of Bug-Indu
ing and Clean Hunks (Columba)Figure 3.13 shows that
onditions are present in 21% bug indu
ing hunks andless than 14%
lean hunks of Nautilus. Assignments are found in 23%
lean hunksand more than 30% bug indu
ing hunks. About 60% bug indu
ing hunks
ontainfun
tion
alls whereas in
lean hunks this proportion is less than 48%. Returnstatement
onstitutes 5% of
lean hunks and 9% of bug indu
ing hunks whereasnull is used in 19% of bug indu
ing hunks and 12% of
lean hunks.3.8 SummaryThis
hapter presented an investigation into language
onstru
ts and syntax ele-ments. In parti
ular bug-indu
ing hunks were analyzed to �nd the frequen
ies ofdi�erent language
onstru
ts. It is found that most of the bugs are
reated due

46 CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGECONSTRUCTS

Figure 3.13: Comparison of Bug-Indu
ing and Clean Hunks (Nautilus)to errors in fun
tion
alls, assignments,
onditions, pointers, variable de
laration,fun
tion de
laration and return statement. Statisti
al analysis showed that dif-ferent proje
ts and developers are
orrelated for the frequen
ies of bug-indu
inglanguage
onstru
ts.These �ndings
an be helpful during the testing and debugging pro
ess. De-velopers
an make a priority list for testing. They
an �rst apply testing onfun
tion
alls, then on assignments, followed by
onditions and so on. Applyingtesting resour
es on the frequent bug-indu
ing language
onstru
ts
an save timeand resour
es. Similarly if a pat
h of
ode is identi�ed as buggy, problemati

onstru
ts
an be easily identi�ed from it. In short this study provided a meansof redu
ing
ost and improving quality of software.

Chapter 4
Language Spe
i�
 BugPatterns
During the last years there has been a growing interest in analyzing and miningthe available information that is
olle
ted during all phases of the software life
y
le. The used information sour
es are for example bug reports, whi
h are storedin bug databases, or sour
e
ode evolution information from
on�guration man-agement systems (CMS). Most of the published studies fo
us on software quality.Resear
hers have tried to explore the distribution and
hara
teristi
 of faults inprograms [53, 13℄.Most work in the empiri
al software engineering domain has been using opensour
e software be
ause of several fa
tors. First, the sour
e
ode, CMS, andbug data base information is freely available for everyone. Se
ond, the proje
tslike Mozilla have been developed in a distributed way. Hen
e, there is a largervariability in programming. Third, some of the open sour
e programs
ompriseseveral thousands kilo lines of
ode (kLo
) and several thousands �les. They arelarge enough to test available te
hniques in a realisti
 setting that would alsoo

ur in industrial pra
ti
e. Be
ause of this reasons results obtained from su
hproje
ts might be generalizable whi
h is not always the
ase.Modern software proje
ts are developed using obje
t oriented programminglanguages, however a number of proje
ts still exist in pro
edural languages. Clanguage is
ommonly used for development of open sour
e software proje
ts. Dif-ferent programming languages fa
ilitate developers in writing e�
ient and
lean
ode. There are some programming features spe
i�
 to a parti
ular programminglanguage e.g; JAVA provides automati
 memory management and a good ex
ep-tion handling me
hanism. There is no multiple inheritan
e and no pointers inJAVA. 47

48 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNSPrograms written in di�erent languages may have di�erent distribution ofbugs. The main goal of this
hapter is to analyze whether post-release bugsare in�uen
ed by a programming language. A
ase study is presented to revealwhether the number of bugs per lines of
ode (LOC) is the same for programswritten in di�erent programming languages or not. In addition various evolutionmetri
s are
al
ulated and
ompared for di�erent programming languages. Three
ommon programming languages are
hosen for this study, in
luding C, C++ andJAVA.4.1 Resear
h HypothesisThe resear
h obje
tive of this study is formulated in the following hypothesis:Hypothesis H1: Programs written in a programming language A are more er-ror prone in terms of more bugs per LOC than programs written in a di�erentlanguage B.Hypothesis H1
an be reje
ted when proving that programs written in a lan-guage A are more fault prone than programs in a language B by means of statis-ti
al inferen
e. In this
hapter hypothesis H1 is validated up to a
ertain degreeof signi�
an
e, when applied to some languages.When using statisti
al inferen
e
are has to be taken of the available informa-tion and methods. In this
ase proving H1 would require to state that the meanor median of the post-release bugs per LOC of programs written in one languageis really larger or smaller than the same value obtained from the programs writ-ten in the other programming language. Sin
e, the distribution of the underlyingprobability variable is not known in advan
e, a statisti
al test is required that
onsiders this
ase. For this purpose rank-sum test is used be
ause it is wellknown to be independent on the underlying probability distribution [69℄.4.2 Proje
t StudiedFor this study, Mozilla proje
t is used be
ause it is a heterogeneous proje
t de-veloped in C, C++ and JAVA. Further, it has a long development history and itsinformation is easily available. Data is extra
ted from CVS and bug repositoriesof Mozilla using the te
hniques mentioned in Chapter 2. Development historyof Mozilla is analyzed from 1998 to 2008. Table 4.1 shows the number of �leswritten in di�erent languages C, C++, and Java, as well as the lines of
ode forea
h year.

4.3. EVOLUTION METRICS 49Table 4.1: Number of Sour
e Files and Total LOCYear Number of Files Total LOC (KLo
)C C++ JAVA C C++ JAVA1998 1118 792 193 843 563 251999 1754 3365 1390 1043 1977 2652000 2395 4958 2309 1457 2593 3852001 2437 5207 3070 1495 2587 5302002 2500 4762 2980 1490 2477 4902003 2200 4845 2750 1362 2519 4422004 2072 4776 2716 1274 2450 4442005 2111 5141 2485 1447 2342 4332006 2010 5183 2583 1549 2226 4202007 2162 5016 2117 1353 2391 4782008 2096 4704 1923 1416 2430 4914.3 Evolution Metri
sIn addition to the bug density, some other evolution metri
s are
al
ulated forea
h language. These metri
s are used to study bug features and
ode evolutionspe
i�
 to a programming language. Bug features are studied in terms of bugdensity, bug frequen
y, bug severity, bug �x time and platform spe
i�
 bug o
-
uren
e. Code evolution is studied in terms of additions, deletions,
ode gain,number of authors and �le revision frequen
y. Following metri
s are
al
ulatedfor programms written in the sele
ted languages:� Authors: The authors
ontributing to the �le.� Revision frequen
y: The number of revisions for ea
h year� Bug frequen
y: The number of
orre
ted bugs per ea
h year.� Bug density: The number of bugs per thousand LOC (kLo
).� Code gain: The sum of lines added redu
ed by the sum of lines removed inea
h �le.� Bug �x time: The time between �xing a bug, whi
h is mentioned in theCVS log �le, and the time where the bug was dete
ted, whi
h is obtainedfrom the bug report.� Bug lifetime: The time between �xing a bug and the time where the bugwas introdu
ed. The latter
an be obtained from the CVS [33, 70℄.� Number of
hanges: The number of
hanges per ea
h �le and year.

50 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.1: Average bug densities4.4 ResultsIn this se
tion evolution of the Mozilla proje
t over the past years is dis
ussed. Inparti
ular evolution metri
s are
ompared for the three languages. Be
ause theMozilla proje
t
omprises C, C++, and Java �les, values of di�erent measurement
ategories are obtained for the three languages.� Average bug density: To
ompute the bug density in bugs per 1000 LOC,i.e., kLOC, following equation is used:
bug density =

number of bugs

LOC
· 1000The obtained results are depi
ted in Figure 4.1. It is evident from the�gure that C++ �les have higher bug densities than �les written in otherlanguages. Java �les have the least bug density values ex
ept in 2007 and2008.� Per
entage of faulty �les: Figure 4.2 shows the per
entage of faulty�les in ea
h year of development. From the �gure it
an be
on
luded thatC++ �les have a higher per
entage of faulty �les than the other languages.Java �les are least likely to be faulty ex
ept in the years 1998, 2004, and2007.� Average LOC per faulty �le: The results of this measure are given inFigure 4.3. On average faulty �les in Java are smaller than faulty C++�les. Programs written in C have a di�erent behavior with respe
t to theaverage number of LOC per faulty �le. The size of the faulty �les de
reasesin the initial years of Mozilla development and abruptly in
rease in 2004.This might be due to �xing a high number of major bugs in C �les in thisyear.

4.4. RESULTS 51

Figure 4.2: Per
entage of faulty �les

Figure 4.3: Average LOC of faulty �les� Average revision frequen
ies: Figure 4.4 shows the revision frequen
iesover the years. Java �les show a stable behavior having a low revisionfrequen
y with ex
eptions in 2003 and 2006. In these years Java �les havea higher revision frequen
y. C++ �les have a higher revision frequen
ythan the other languages. C �les have revision frequen
y in-between C++and Java with one ex
eption in 2006 where C �les have the highest averagerevision frequen
y.� Average
ode gain per �le: The
ode gain des
ribes the in
rease of sizeof a �le and is an indi
ator of its stability. The average
ode gain for the�les of the Mozilla proje
t is shown in Figure 4.5. It
an be seen that Java�les are more or less stable in growth whereas C++ �les show a
ontinuousde
line in average
ode gain. C �les show a mixed behavior with a high risein
ode gain in 2006, whi
h may be due to the high number of bug �xes.

52 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.4: Average revision frequen
y

Figure 4.5: Average
ode gain per �le� Bug severity distribution: Beside the number of bugs someone is alsointerested in the severity of bugs and its distribution. Figure 4.6 shows thebug distribution a

ording to severity levels. All three languages
ontributeda major fra
tion of normal bugs. Java takes the lead when
onsideringtrivial and major bugs. Most of the bugs due to enhan
ements are madein Java �les followed by C and C++ �les respe
tively. Most of the blo
kerbugs o

urred in C �les followed by C++ �les. C++ �les have the largestnumber of
riti
al bugs followed by C �les. From this distribution we might
on
lude that C and C++ are used as the programming language of
hoi
ein the kernel of Mozilla. Hen
e,
riti
al or blo
king bugs are
reated by Cand C++ �les.� Average bug lifetime: Figure 4.7 shows the average bug lifetime for ea
hbug severity level. It
an be seen that bugs due to enhan
ements took moretime to be �xed for C++ �les. Minor bugs to be �xed took more time when

4.4. RESULTS 53

Figure 4.6: Bug severity distributionJava was used. If we have a look at Figure 4.11 and Figure 4.10 we seethat a large number of additions and deletions are made in Java �les to �xminor bugs. Blo
ker and trivial bugs took more time to be �xed in Java �leswhen
ompared with C and C++ �les. Hen
e, what we see is that di�erentlanguages have a di�erent bug lifetime for bugs of di�erent severity.From the bug severity distribution and the knowledge of the number ofdays to �x a bug, average bug lifetime
an be
omputed for the di�erentlanguages as follows:
bug lifetime =

∑

bug severity x

p(x) · fix time(x)where p(x) denotes the probability of a bug severity, whi
h follows from thebug severity distribution. and fix time(x) is the average number of daysne
essary to �x a bug.For the Mozilla proje
t average bug lifetime is 175 days for C �les, 192days for C++ �les, and 333 days for Java �les. From this follows that bugsremain almost twi
e as long in the sour
e
ode of Java �les. This result is inline with the previous result where bugs in C and C++ �les also
ontributeto the
lass of blo
king and
riti
al bugs, whi
h have to be
orre
ted �rst.� Average
ode additions: Figure 4.8 shows a de
lining trend of
ode ad-ditions in
ase of C++ �les. Whereas in
ase of C there is a de
line in the�rst year, a stable rate for the following 5 years, and a peak in 2006 followedby a fall. Java �les are almost stable with two peaks in 2003 and 2006.

54 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.7: Average bug lifetime

Figure 4.8: Average
ode additions� Average
ode deletions: Code deletions have almost the same patterna
ross the time line as
ode additions. However deletions are less in numberthan additions as shown in Figure 4.9.� Average
ode deletions per bug �x: Blo
ker and
riti
al bugs involvedmore deletions in C++ followed by C and Java. However enhan
ements,major, normal and trivial bugs involved more deletions in C �les followedby C++. Minor bugs involved highest deletions of all bugs and these werein Java �les as shown in Figure 4.10.� Average
ode additions per bug �x: Code additions have almost thesame trend as
ode deletions. However additions are larger in number thandeletions as shown in Figure 4.11.� Average number of
hange deltas: In the initial years of developmentC++ �les have higher number of
hange deltas. This number de
reases
ontinuously in the following years. C �les have lower number of
hange

4.4. RESULTS 55

Figure 4.9: Average
ode deletions

Figure 4.10: Average Code Deletions / Bug Fix

Figure 4.11: Average
ode additions per bug �x

56 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.12: Average number of
hanges

Figure 4.13: Distribution of bugs on di�erent platformsdeltas but the pattern is di�erent from C++ �les, with ups and downs inthe entire development period. Java �les have very low number of
hangedeltas with an ex
eption in 2004 and 2005 as shown in Figure 4.12.� Platform spe
i�
 bugs distribution: Most of the bugs generated bythree languages are reported on all platforms. However a major proportionof the bugs reported on PC and Ma
intosh are related to C++ �les whereasmajority of the bugs reported on Sun are related to C and Java. Figure 4.13depi
ts di�erent platforms on whi
h programs written in the three languages
aused failures.� Operating System spe
i�
 bugs distribution: A large proportion ofthe bugs in three languages is reported on all operating systems. HoweverC++ is on top in the number of bugs reported on Linux and Windowsfollowed by C language. Java �les have very few bugs reported on Ma
intoshwhile C and C++ have an equal proportion of bugs reported on Ma
intosh.

4.5. PROVING HYPOTHESIS H1 57

Figure 4.14: Distribution of bugs on di�erent operating systemsFigure 4.14 depi
ts the types of operating systems and the proportion ofbugs generated on these systems by programs of di�erent languages.The obtained results show that the evolution metri
s have di�erent patternsfor Java, C, and C++ �les in the Mozilla proje
t. This might be due to the spe
i�
proje
t. However, at least the results of the bug density should be generalizablebe
ause of the large number of available sour
e �les and involved programmers. Inthe next se
tion, it is statisti
ally proved that the number of bugs to be expe
tedis in�uen
ed by the used programming language.4.5 Proving hypothesis H1In order to test hypothesis H1 for the languages C, C++, and Java, hypothesistesting (a methodology from probability theory to draw stati
 inferen
e fromavailable data under given assumptions) is used. Hypothesis testing is
loselyrelated to the pro
edure of interval estimation [69℄. In both
ases a
on
lusion
an be drawn, whi
h is
orre
t for the given data set, the used statisti
 andprobability distribution, and the desired level of signi�
an
e usually denoted by
α. In hypothesis testing a hypothesis H0 is going to be proven. If the probabilitythat the given data set X1, . . . ,Xn under the test statisti
 T falls within an area
A, whi
h is provided by the hypothesis H0, is equal or larger than 1 − α, thehypothesis H0
an be a

epted. Otherwise, H0 is said to be reje
ted be
ause theobservations di�er signi�
antly from the expe
tations.To prove the in�uen
e of a programming language on the number of post-release bugs per LOC, we have the number of bugs and the size of the �les wherethe bugs have been �xed. There might be remaining bugs in the �les, however,sin
e every �le regardless of the used programming language is used in the sameprogram and assuming that they are all used during program exe
ution, there isan equal probability of dete
ting a bug. Hen
e, the probability that a bug goes

58 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNSundete
ted in one �le is equivalent for all �les with no ex
eption regarding oneprogramming language used. As a
onsequen
e for ea
h language
H0 : fX(x) = fY (x) versus H1 : fX(x) = fY (x + c)where c is a positive
onstant. These tests are also referred to as tests for theequality of two population medians, whi
h is �ne in this
ase. If we know that themedian of the bugs per LOC is lower for Java programs than for C++ programs,hypothesis H1
an be a

epted for those languages.The following rank-sum is one test for
omparing two population means. Inthis
ase two independent random samples x1, . . . , xn and y1, . . . , ym are assumed.In the �rst step the samples are
ombined and ranked a

ordingly to in
reasingvalues. Hen
e, an ordered
olle
tion of size n+m is obtained. Then ea
h resultingelement is assigned a rank r from 1 to n + m. The statisti
 that
an be used to
ompare the two means is de�ned as follows:

W =

m
∑

i=1

r(yi)Hen
e, in this
ase only the elements, whi
h belong to the random sample
y1, . . . , ym are
onsidered. Using
ombinatorial theory a probability fun
tion forstatisti
 W
an be
omputed, and the signi�
an
e level α is determined by:

P (W ≥ w|H0) ≤ αKnowing the equivalen
e P (W ≥ w|H0) = 1 − P (W < w|H0), followinginequality is determined, whi
h must hold in order to a

ept H0:
P (W < w|H0) > 1 − αIn this spe
ial
ase where both n and m are larger than 10, W
an be approx-imated with a normal distribution. In this
ase the mean and the varian
e aregiven by:

µ = E[W] =
n(n + m + 1)

2

σ2 = V ar[W] =
nm(n + m + 1)

12Assuming a signi�
an
e level α = 0.01 we are able to obtain a value w = 2.33if W is a Standard Normal Random Variable. Sin
e the statisti
 W in gen-eral is not Standard Normal we have to standardize it using µ and σ. For val-ues of W (x1, . . . , xn, y1, . . . , ym) that are smaller than 2.33σ + µ, we are ableto a

ept H0 at the signi�
an
e level of 0.01. Note that in this
ase the
on-�den
e in the de
ision is 99 per
ent. Alternatively, we
an
ompute a value
Z = W (x1,...,xn,y1,...,ym)−µ

σ
. If Z > 2.33 we a

ept H0, and otherwise we reje
t it.

4.5. PROVING HYPOTHESIS H1 59Hypothesis Sum of ranks W µ σ2 Z De
ision
H11

0 582,319,897 610,240,013 1,519,019 -18,38 reje
t
H12

0 747,866,055 940,156,771 2,761,791 -69,63 reje
t
H13

0 682,409,176 809,540,221 2,562,772 -49,61 reje
tTable 4.2: Results of the rank-sum testIn the following rank-sum-test is used for testing three instan
es of hypothesisH1 using the available data sets obtained from the Mozilla proje
t:
H11

0 : fJava(x) = fC(x) versus H11
1 : fJava(x) = fC(x + c)

H12
0 : fJava(x) = fC++(x) versus H12

1 : fJava(x) = fC++(x + c)

H13
0 : fC(x) = fC++(x) versus H13

1 : fC(x) = fC++(x + c)The size of the samples for ea
h programming language is given as follows:Language Sample sizeJava 25,387C++ 48,074C 22,687Note that in this
ase every revision of every sour
e �le is
ounted as onesample. Using this information and the samples, results given in Table 4.2
an be
omputed.From Table 4.2 following results
an be
on
luded:� The �rst hypothesis must be reje
ted with
on�den
e 0.99. From this followsthat we have to a

ept the alternative hypothesis that states Java programsas less error-prone than C programs.� The se
ond hypothesis must also be reje
ted. Hen
e, again Java programsare less error prone than C++ programs.� The third hypothesis has to be reje
ted as well. It
an be
on
luded that C�les are less error prone than C++ �les.The bug density distributions given in Figure 4.15, 4.16 and 4.17 also justifythe results of the rank-sum test.

60 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Figure 4.15: The bug density distribution of �les written in Java

Figure 4.16: The bug density distribution of �les written in C

4.6. THREATS TO VALIDITY 61

Figure 4.17: The bug density distribution of �les written in C++4.6 Threats to ValidityThere are
ertain threats to the validity of this study. Among some of these are:� Only one proje
t is sele
ted for this study, so the error patterns may be re-sulted from the Mozilla
ommunity rather than the programming languages.� Although Mozilla is a heterogeneous proje
t, the
hoi
e of programminglanguages for this study may be biased to a spe
i�
 problem. So it ispossible that the results re�e
t the problem rather than the programminglanguage itself.� No
onsideration is made for the features implemented in di�erent lan-guages. The nature of the fun
tionality implemented in one language mayhave an impa
t on the various metri
s than just the language.� JAVA is a
omplete development environment, so results may be biased tothe development methodology.� There may be
hanges in the pool of quali�ed programmers for spe
i�
languages over 11 years of Mozilla development.� There are
hanges in the tool support for spe
i�
 languages over the years.

62 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS4.7 SummaryIn this
hapter empiri
al results obtained from 11 years of development of theopen sour
e software proje
t Mozilla are presented. Moreover, statisti
al �ndingsobtained from the development history of Mozilla are dis
ussed. The main fo
usof this study is post-release bugs. In parti
ular the hypothesis is tested whetherthe number of post-release bugs are in�uen
ed by the used programming language.The Mozilla proje
t
omprises sour
e
ode written in Java, C, and C++ and istherefore the right proje
t to look for in order to test the hypothesis.In summary, this
hapter has the following
ontributions:� It is shown that bug lifetime is about twi
e as long for Java than for C andC++.� The programming language has an in�uen
e on the number of bugs, at leastfor the Mozilla proje
t. It is statisti
ally proved that Java programs are lesserror prone than C or C++ programs, and C programs are less error pronethan C++ programs within same proje
t.Although, the �ndings might not be generalizable they indi
ate a
onne
tionbetween post-release bugs and programming languages.

Chapter 5
Hunk Classi�
ation
Making
hanges to software is a
ru
ial task during di�erent phases of softwareevolution. Changes are required to add new features, to �x the bugs, to improveperforman
e or to restru
ture the
ode for easy maintenan
e. These
hanges areimplemented by adding, modifying or deleting the sour
e
ode in di�erent �les ofsoftware.A �le
an be
hanged at one or more pla
es,
alled deltas or hunks. Thesehunks of sour
e
ode whi
h are added either newly or after modi�
ations mayintrodu
e bugs and result in failures later on. Ea
h hunk has a likelihood ofbeing buggy or bug-free. This
hapter des
ribes a te
hnique for predi
ting theprobability of a hunk being buggy or bug-free. Software engineers and resear
hersfa
e the
hallenge of redu
ing bugs to improve the quality of software. A lot ofresear
h has been
arried out on bug predi
tion using di�erent approa
hes and atdi�erent levels of granularity. Most of the resear
hers have used
ode metri
s aspredi
tors of bugs [29, 40, 52, 55, 15, 14℄, while others have used pro
ess metri
sas predi
tors of bugs [27, 35, 64℄.Previous resear
h was fo
used on di�erent levels of granularity su
h as mod-ules, �les,
lasses and methods. Some resear
hers predi
ted the number of faultsfor modules or �les [52, 55℄, while others fo
used on individual
lasses and methods[29, 56℄.Change management is an important a
tivity in software maintenan
e. Changesare made to the sour
e
ode as software evolves. In the past, resear
hers haveused di�erent
hange properties to predi
t the failure probability of
hanges. Re-sear
hers have shown that
hange properties su
h as size, duration, di�usion,developer expertise and type of
hange have strong impa
t on the risk of failure[48℄.Features extra
ted from
omplete sour
e
ode of �les,
hange metadata and
omplexity metri
s
an be used to
lassify
hanges as
lean or buggy [34℄. We63

64 CHAPTER 5. HUNK CLASSIFICATIONTable 5.1: Statisti
s of Proje
tsProje
t # of Developers # of Revisions # of HunksApa
he HTTP 1.3 54 7,246 17,287Columba 8 2,471 2,694E
lipse JDT 17 58,565 215,824Epiphany 52 5,217 9,035Evolution 134 20,709 40,450Mozilla 833 325,920 1,382,747Nautilus 131 11,104 29,303PostgreSQL 25 54,012 466,106further narrow down the problem of
hange
lassi�
ation to individual units of a
hange, the hunks. We
lassify individual hunks as buggy or bug-free.We have de�ned a set of hunk metri
s and
onstru
ted models for hunk
lassi-�
ation using these metri
s as predi
tors. We used logisti
 regression and RandomForests to
onstru
t hunk
lassi�
ation models.Kim et al. [34℄
ondu
ted a similar study to
lassify software
hanges as
leanor buggy, but our resear
h obje
tives are di�erent and go a step forward. WhileKim et al.
lassi�ed individual
hanges and used features extra
ted from
ompletesour
e
ode,
hange meta data, log messages, �le names and �le
omplexity met-ri
s, we
lassify individual hunks, whi
h is a unit of
hange, and use only the hunkmetri
s. Our approa
h is simple and works at the smallest level of granularity.5.1 The Approa
hThis
hapter provides an overview of
al
ulation of hunk metri
s, labeling ofhunks, preparation of data for training, hunk
lassi�
ation, and evaluation of
lassi�ers.To evaluate our approa
h, we extra
ted the
hange history of 8 open sour
eproje
ts listed in Table 5.1. The period indi
ates the time span used to extra
tthe
hange history. The # of revisions
olumn indi
ates the number of revisionsextra
ted and the # of hunks indi
ates the number of hunks extra
ted. The # ofdevelopers indi
ates the number of developers involved in making these hunks.To
onstru
t a hunk
lassi�
ation model following steps are used:Preparation of Data Set Data is prepared befor it
an be fed into a
lassi�er.Data instan
es are
reated in the following way:� Extra
t hunks from 8 open sour
e proje
t histories using the pro
essmentioned in Chapter 2.� Identify the bug �x hunks for ea
h �le by using the algorithm given inChapter 2.

5.2. TOOLS USED 65� Identify bug-introdu
ing hunks by using the pseudo
ode given inChapter 2.� Label the bug-introdu
ing hunks as buggy and others as bug-free.� Cal
ulate hunk metri
s for ea
h hunk.� Combine the set of metri
s of ea
h hunk with its label indi
ating buggyor bug-free hunk, to make a single instan
e for ea
h hunk.Classi�
ation After preparation of data, statisti
al and ma
hine learning
las-si�ers are trained on this data.� Train
lassi�ers for ea
h proje
t, using the labeled instan
es.� Evaluate
lassi�
ation performan
e of ea
h
lassi�er, using the mea-sures of a

ura
y, re
all, pre
ision, and F-value.Identi�
ation of Signi�
ant Metri
s Some metri
s may be better predi
torsof bugs than others, so those metri
s should be sele
ted whi
h produ
ebetter results.� Individual and groups of metri
s are used to
onstru
t models and theirperforman
e is evaluated.5.2 Tools UsedThe random forest algorithm implemented in WEKA [2℄ is used for this study. Toapply logisti
 regression, the statisti
al tool R is used. Random forest is used dueto its ability to qui
kly handle large number of input variables. Output of randomforest is the mode of all outputs of individual trees, so it produ
es better resultsthan other ma
hine learning
lassi�ers. Logisti
 regression is used be
ause thereare two possible predi
tions for a hunk, buggy or bug-free. Predi
tive
apabilitiesof individual as well as
ombination of metri
s are studied.5.3 Hunk Metri
sSoftware metri
s deals with the measurement of the software produ
t and thepro
ess by whi
h it is developed. We brie�y des
ribe the
ategories of softwaremetri
s used so far, followed by an introdu
tion to hunk metri
s.Classi�
ation of Software Metri
s Software metri
s
an be
lassi�ed into twomajor
ategories, produ
t metri
s and pro
ess metri
s.� Produ
t metri
s deals with the measurements of the software produ
titself. These metri
s in
lude measures at various stages of softwaredevelopment starting from requirements to installed system. Produ
t

66 CHAPTER 5. HUNK CLASSIFICATIONTable 5.2: Measurement TypesType of Data Possible Operations Des
ription of DataNominal = , 6= CategoriesOrdinal <,> RankingsInterval +,- Di�eren
esRatio / Absolute zerometri
s may in
lude the software design
omplexity, the size of the�nal sour
e or obje
t
ode, or the number of do
umentation pagesprodu
ed.� Pro
ess metri
s deals with the measurements of the software develop-ment pro
ess used. These metri
s may in
lude total development time,type of methodology used, or the level of expertise of the programmersinvolved.Categories of Metri
s Metri
s
an be
ategorized as primitive metri
s or
om-puted metri
s� Primitive metri
s
an be dire
tly measured and do not need any
ompu-tations. This
ategory may in
lude the program size metri
s observedas total lines of
ode, number of defe
ts found during testing, or thetotal development time.� Computed metri
s
annot be dire
tly measured and require other met-ri
s for their
omputation. These metri
s may in
lude produ
tiv-ity metri
s su
h as LOC produ
ed per person-month (LOC/person-month), or quality metri
s su
h as number of defe
ts per thousandlines of
ode.Measurement S
ales for Software Metri
s For statisti
al analysis, measureddata
an be
lassi�ed into four basi
 types that are nominal, ordinal, inter-val, and ratio. It is important to know the type of information involvedbefore any data
olle
tion. Software metri
s should belong to these
ate-gories, for their optimum utilization in empiri
al studies.Good metri
s should hold
apabilities to be used in the development of e�-
ient predi
tor models. An ideal metri
s should be
apable of predi
ting softwareprodu
t or pro
ess features. Thus good metri
s should be simple, pre
ise, easy toobtain, valid and robust.In this study following hunk metri
s are
onsidered:� No. of Conditions (NOCN) is the total number of
onditional statementsin a hunk, su
h as if, else if and else statement.

5.3. HUNK METRICS 67� No. of Loops (NOL) is the total number of loops in a hunk, su
h as for,while and do while loop.� No. of Fun
tion Calls (NOFC) is the total number of fun
tions
alled in ahunk.� No. of Fun
tion De
larations (NOFD) is the total number of fun
tionsde
lared or de�ned in a hunk.� No. of Variable De
larations (NOV) is the total number of variables de
laredor de�ned in a hunk.� No. of Assignments (NOA) is the total number of assignment statementsused in a hunk.� No. of Logi
al Operators (NOLO) is the total number of logi
al operatorsused in a hunk.� No. of Relational Operators (NORO) is the total number of relational op-erators used in a hunk.� No. of Return Statements (NORS) is the total number of return statementsused in a hunk.� No. of Arrays (NOAR) is the total number of array de
laration or a

essstatements used in a hunk.� No. of Null Statement (NON) is the total number of times NULL is usedin a hunk.� No. of Case Statements (NOCS) is the total number of
ase statementsused in a hunk.� No. of Break Statements (NOB) is the total number of break statementsused in a hunk.� No. of Classes (NOC) is the total number of
lasses de
lared in a hunk.� No. of Obje
t Instantiations (NOO) is the total number of obje
ts instanti-ated using the new operator in a hunk.� No. of Imports (NOIP) is the total number of import statements used in ahunk.� No. of Inheritan
e Statements (NOIH) is the total number of inheritan
estatements su
h as extends, implements used in a hunk.� No. of Ex
eption Handlers (NOE) is the total number of ex
eption handlersused in a hunk.

68 CHAPTER 5. HUNK CLASSIFICATION� No. of Throw statements (NOTH) is the total number of throw statementsused in a hunk.� Total Hunks (NOH) is the total number of hunks made in a revision.� No. of Previous Buggy Hunks (NOBH) is the total number of buggy hunksmade in the previous revisions of a �le.5.4 Evaluation CriteriaFour measures are
ommonly used to assess the performan
e of a
lassi�er in-
luding a

ura
y, pre
ision, re
all and F-Measure. A

ura
y is the per
entageof
orre
tly
lassi�ed instan
es. We explain these measures with the use of thefollowing
onfusion matrix. Predi
tedObserved No YesNo n11 n12Yes n21 n22We represent buggy hunks with Yes and bug-free hunks with No. A

ura
y isthe ratio of the
orre
t
lassi�
ations to the total number of instan
es. Corre
t
lassi�
ations is the sum of a
tual buggy hunks
lassi�ed as byggy and the a
tualbug-free hunks
lassi�ed as bug-free. A

ura
y
an be
al
ulated by the followingformula:
Accuracy =

(n11 + n22)

n11 + n12 + n21 + n22
∗ 100Buggy hunk pre
ision is the ratio of a
tual buggy hunks predi
ted as buggy tothe total number of hunks predi
ted as buggy.

Buggy Hunk Precision =
n22

n22 + n12Buggy hunk re
all is the ratio of a
tual buggy hunks predi
ted as buggy to thetotal number of a
tual buggy hunks.
Buggy Hunk Recall =

n22

n22 + n21Bug-free hunk pre
ision is the ratio of a
tual bug-free hunks predi
ted as bug-freeto the total number of hunks predi
ted as bug-free.
Bug − Free Hunk Precision =

n11

n11 + n21

5.5. CLASSIFICATION TECHNIQUES 69Bug-free hunk re
all is the ratio of a
tual bug-free hunks predi
ted as bug-free tothe total number of a
tual bug-free hunks.
Bug − Free Hunk Recall =

n11

n11 + n12F-Measure
ombines both pre
ision and re
all and is a ratio of the 2 times produ
tof pre
ision and re
all to the sum of pre
ision and re
all.
F − Measure =

2 ∗ Precision ∗ Recall

Precision + Recall5.5 Classi�
ation Te
hniquesMany ma
hine learning algorithms are available to be used as
lassi�ers.5.5.1 Logisti
 RegressionLogisti
 regression is used when the dependent variable is a binary
ategori
alvariable and the independent variables are
ontinuous and/or
ategori
al [38℄.Logisti
 regression
an determine the per
ent of varian
e in dependent variableexplained by the independent variables and the relative importan
e of indepen-dents.Linear regression
annot work when the response variable is binary. In situ-ations where response variable is a probability that takes values between 0 and1, logisti
 regression is used. It bounds the response variable to values between 0and 1, in
ontrast to linear regression whi
h allows arbitrary large or small values.Logisti
 regression assumes that the response variable follows the Logit-fun
tionshown in Figure 5.1.To understand logit-fun
tion we should know the
on
ept of odds. The oddsof an event that o

urs with probability P is de�ned as
Odds = P / (1 − P) (5.1)Figure 5.2 depi
ts the odds fun
tion. We
an see the odds of an event goes from0 to in�nity when the probability for that event goes from 0 to 1.In terms of odds, the logit-fun
tion
an be written as

logit(P) = log(odds(P)) = log(P/(1 − P)) (5.2)If we use logit-fun
tion, we
an bound values of P between 0 and 1 with a linearrepresentation for input variable X.
logit(P) = α + β ∗ X (5.3)Multivariate logisti
 regression
an be represented by the equation:

P (X1,X2, . . . ,Xn) =
eC0+C1.Xi1

+...+Cn.Xin

1 + eC0+C1.Xi1
+...+Cn.Xin

(5.4)

70 CHAPTER 5. HUNK CLASSIFICATION

Figure 5.1: Logit Fun
tion

Figure 5.2: Odds Fun
tion

5.5. CLASSIFICATION TECHNIQUES 71The Xis are the hunk metri
s in our
ase and P is the probability of a hunk beingbuggy.5.5.2 Random ForestsThe Random Forest is a meta-learner
omprised of many trees and operatesqui
kly on large datasets. It uses random samples to build ea
h tree in the for-est. Attributes at ea
h node of a tree are sele
ted randomly and then attributesproviding the highest level of learning are sele
ted.A detail of the working of Random Forests is out of the s
ope of this thesis.However a brief overview is presented here as des
ribed in [9℄. Random forestsuse a
ombination of tree predi
tors with ea
h tree depending on the values of arandom ve
tor sampled independently and with the same distribution for all treesin the forest. To
lassify a new obje
t from an input ve
tor, ea
h input ve
tor isput down ea
h of the trees in the forest. Ea
h tree gives a
lassi�
ation or votesfor that
lass. The forest
hooses the
lassi�
ation having the most votes amongall the trees in the forest.Ea
h tree in the forest grows as follows:� Suppose N is the number of
ases in the training set, randomly N
asesare sampled with repla
ement from the original data. This sample a
ts astraining set for growing the tree.� Suppose M is the number of input variables, a number m≪M is spe
i�edin su
h a way that m variables are sele
ted randomly out of M at ea
hnode and the best split on these m is used to split the node. The value ofm is kept
onstant as the tree grows.� No pruning is applied and ea
h tree in the forest grows to the largest extentpossible.The error rate of random forest depends on two things:� High
orrelation between any two trees in
reases the error rate of randomforest.� Higher strength of individual trees de
reases the error rate of random forest.We used the random forest algorithm implemented in WEKA [2℄.5.5.3 Prin
ipal Component Analysis (PCA)Prin
ipal
omponent analysis is used to identify patterns in data, and express thedata in su
h a way as to highlight the similarities and di�eren
es among patterns.It is di�
ult to �nd patterns in high dimensional data, so PCA helps to analyze

72 CHAPTER 5. HUNK CLASSIFICATIONsu
h kind of data. PCA helps to �nd patterns in data and
ompress the data toredu
e the number of dimensions, without mu
h loss of information. To applyPCA mean (average a
ross ea
h dimension) is subtra
ted from ea
h of the datadimensions. X̄ is subtra
ted from all X values and Ȳ is subtra
ted from all Yvalues. In this way we get a dataset having mean zero. In the next step a
o-varian
e matrix is
al
ulated for the data. Then eigenve
tors and eigenvalues are
al
ulated for the
ovarian
e matrix. By taking the eigenve
tors of the
ovari-an
e matrix, we
an extra
t lines that
hara
terize the data. Then the data istransformed so that it
an be expressed in terms of these lines.Eigenve
tors are ordered by eigenvalues from highest to lowest, produ
ing
omponents in order of signi�
an
e. Components with lesser signi�
an
e
an beignored to redu
e the data dimensions. If we have n dimensions in data and thereare n
al
ulated eigenve
tors and eigenvalues, and we
hoose �rst m eigenve
torsthen the �nal data will have m dimensions. A feature ve
tor is made by forminga matrix with the
hosen eigenve
tors.
Feature vector = (eig1 eig2 eig3 · · · eign) (5.5)Finally transpose of the feature ve
tor is multiplied on the left of the transposedoriginal data set.

Final Data = RowFeatureV ector ∗ RowDataAdjust (5.6)Where RowFeatureVe
tor is the matrix with the eigenve
tors in the
olumns trans-posed, and RowDataAdjust is the mean-adjusted data transposed. In this waydata is represented in terms of ve
tors whi
h des
ribe patterns in the data.Some of the hunk metri
s are
orrelated with ea
h other. These inter-
orrelations
an be over
ome using the prin
ipal
omponent analysis (PCA). PCA redu
es thenumber of dimensions without mu
h loss of information. Prin
ipal
omponentsare extra
ted by using a varian
e maximizing rotation of the original variables.We used the extra
ted prin
ipal
omponents in logisti
 regression.5.5.4 Point Biserial CorrelationThe point biserial
orrelation measures the asso
iation between a
ontinuous vari-able and a binary variable [28℄. It
an take values between -1 and +1. AssumingX as a
ontinuous variable and Y as
ategori
al with values 0 and 1, point biserial
orrelation
an be
al
ulated using the formula
r =

(X̄1 − X̄0)
√

p(1 − p)

Sxwhere X̄1 is the mean of X when Y=1 ,
X̄0 is the mean of X when Y=0 ,

5.6. RESULTS 73
Sx is the standard deviation of X ,and p is the proportion of values where Y=1 .Positive point biserial
orrelation indi
ates that large values of X are asso
iatedwith Y=1 and small values of X are asso
iated with Y=0. Point biserial
orrela-tion values greater than 0.2 are
onsidered good.5.6 ResultsThis se
tion presents the results obtained by
lassifying hunks using randomforests and logisti
 regression. Performan
e of individual as well as group ofhunk metri
s is evaluated for hunk
lassi�
ation. Classi�
ation a

ura
ies are
ompared for random forests and logisti
 regression. Hunk metri
s are analyzed,and those metri
s are identi�ed whi
h
an serve as better predi
tor of bugs.5.6.1 Correlation between Hunk Metri
s and BugsAs a hunk
an be either buggy or bug-free, point biserial
orrelation is
al
ulatedbetween ea
h hunk metri
s and the hunk type i.e buggy or bug-free. Most of thehunk metri
s have positive point biserial
orrelation with hunk type ex
ept NOI,NOTH and NOIP having negative
orrelation, see Table 5.3. The majority ofthe
orrelation values are greater than 0.15, indi
ating that hunk metri
s
an dis-
riminate between buggy and bug-free hunks. NOH has higher
orrelation valuesin all proje
ts as
ompared to other metri
s. It means NOH
an better dis
rimi-nate between buggy and bug-free hunks. NOBH has higher values for E
lipse andMozilla as
ompare to other proje
ts, the reason may be large number of revisionsof these proje
ts as
ompared to other proje
ts.Some proje
ts have similar
orrelation values like Apa
he, Epiphany and Evolu-tion are similar for most of the hunk metri
s. Similarly Nautilus and PostgreSQLhave almost similar values. It indi
ates the possibility of a single
lassi�
ationmodel whi
h
an be applied to di�erent proje
ts.5.6.2 PCA and Logisti
 RegressionWe applied logisti
 regression both with and without using PCA, but the resultsare almost similar in both
ases. However one advantage of using PCA is thatnumber of input variables is redu
ed. Logisti
 regression provides the probabilityof a hunk being buggy and the values range between 1 and 0. We used a
uto�value of 0.5 to
lassify hunks as buggy, it means that if P > 0.5, the hunk is
lassi�ed as buggy and bug-free otherwise. A

ura
y, pre
ision and re
all valuesare
al
ulated for ea
h proje
t (both C and JAVA �les are pro
essed for Mozilla).The a

ura
y values vary from 60 per
ent for Nautilus to 74 per
ent for Mozilla.The F-Measure for buggy hunks varies from 0.11 for Mozilla to 0.61 for Nautilus

74 CHAPTER 5. HUNK CLASSIFICATIONTable 5.3: Point biserial
orrelation between hunk metri
s and hunk typeMetri
s Apa
he E
lipse Epiphany Evolution Mozilla Nautilus PostgreSQLNOCN 0.32 0.23 0.25 0.24 0.20 0.17 0.22NOL 0.25 0.09 0.23 0.30 0.16 0.14 0.18NOA 0.26 0.12 0.25 0.27 0.15 0.17 0.19NOFC 0.36 0.16 0.28 0.28 0.15 0.25 0.22NOFD 0.16 0.12 0.23 0.25 0.13 0.23 0.19NOV 0.18 0.09 0.25 0.26 0.09 0.18 0.18NOP 0.27 � 0.27 0.28 0.19 0.24 0.21NOLO 0.31 0.15 0.22 0.22 0.15 0.12 0.18NORO 0.28 0.13 0.23 0.16 0.11 0.11 0.15NORS 0.27 0.02 0.14 0.22 0.17 0.14 0.22NON 0.32 0.15 0.26 0.21 0.20 0.15 0.16NOI -0.17 � 0.14 -0.03 -0.03 -0.02 -0.11NOD 0.04 � 0.16 0.06 0.03 0.11 0.07NOS 0.20 � 0.12 0.28 0.11 0.16 0.12NOAS 0.02 � 0.01 0.01 -0.17 0.01 0.15NOAR 0.25 0.08 0.21 0.16 0.16 0.06 0.14NOCS 0.25 0.31 0.18 0.16 0.13 0.19 0.04NOG 0.36 � 0.22 0.23 0.14 0.26 0.13NOB 0.29 0.16 0.23 0.22 0.21 0.20 0.15NOE � 0.08 � � 0.14 � �NOC � 0.09 � � -0.01 � �NOO � 0.04 � � 0.05 � �NOTH � -0.03 � � 0.09 � �NOIP � -0.01 � � -0.31 � �NOIH � 0.15 � � -0.09 � �NOH 0.33 0.28 0.28 0.34 0.36 0.22 0.37NOBH 0.10 0.61 0.05 0.11 0.27 0.05 0.06and the F-Measure for bug-free hunks varies from 0.58 for Nautilus to 0.85 forMozilla. Pre
ision and Re
all values are lower for buggy hunk as
ompare tobug-free hunks, see Table 5.5. We
an adjust pre
ision and re
all values for buggyand bug-free hunks by
hanging the
uto� value. If we use
uto� value of 0.3, thepre
ision and re
all for buggy hunks is improved.Appli
ation of PCA has not improved the results, see Table 5.4. The reason isthat in majority of the hunk instan
es most of the hunk metri
s are 0. Althoughthere is
orrelation between hunk metri
s but the
orrelation values are not sohigh.Regression analysis have shown that NOCN, NOA, NOFC, NORS, NOBH andNOH are signi�
ant predi
tors of buggy hunks at signi�
an
e level 1 % in mostof the proje
ts, see Table 5.6 and 5.7 . NOH are found signi�
ant for
lassifyingthe hunks as buggy or bug-free in all proje
ts. NORO, NON, NOAR, NOB, and

5.6. RESULTS 75Table 5.4: Pre
ision P, Re
all R and A

ura
y A using LR with PCAProje
t A Buggy Hunk Bug-Free HunkP R F1 P R F1Apa
he 0.65 0.68 0.36 0.47 0.88 0.64 0.74E
lipse 0.69 0.73 0.17 0.28 0.97 0.69 0.80Epiphany 0.68 0.63 0.20 0.30 0.94 0.69 0.79Evolution 0.67 0.65 0.24 0.35 0.92 0.67 0.78Mozilla-C 0.74 0.55 0.05 0.09 0.99 0.75 0.85Mozilla-J 0.69 0.72 0.33 0.46 0.92 0.68 0.78Nautilus 0.60 0.62 0.66 0.64 0.53 0.57 0.55PostgreSQL 0.61 0.66 0.40 0.50 0.84 0.62 0.71Table 5.5: Pre
ision P, Re
all R and A

ura
y A using LR without PCAProje
t A Buggy Hunk Bug-Free HunkP R F1 P R F1Apa
he 0.66 0.69 0.37 0.48 0.87 0.65 0.74E
lipse 0.69 0.74 0.17 0.28 0.97 0.69 0.81Epiphany 0.66 0.57 0.09 0.15 0.96 0.67 0.79Evolution 0.66 0.65 0.19 0.30 0.94 0.66 0.77Mozilla-C 0.74 0.56 0.06 0.11 0.98 0.75 0.85Mozilla-J 0.69 0.73 0.33 0.45 0.92 0.68 0.78Nautilus 0.60 0.64 0.60 0.61 0.60 0.56 0.58PostgreSQL 0.62 0.67 0.42 0.52 0.83 0.61 0.70NOFD are also signi�
ant in half of the proje
ts. The set of signi�
ant hunkmetri
s is di�erent in all proje
ts with one ex
eption, that is NOH.
5.6.3 Random ForestsRandom forests have produ
ed the most a

urate results. We used 10-fold
rossvalidation to build the
lassi�
ation model. In 10-fold
ross validation the data isbroken down into 10 sets of size n/10. The
lassi�er is trained on 9 data sets andtested on 1 data set. This pro
edure is repeated 10 times and a mean a

ura
y istaken [72℄. The a

ura
y values produ
ed by our model vary from 74 per
ent forEpiphany to 87 per
ent for E
lipse, see Table 5.8. The F-measure for buggy hunksvaries from 0.57 for Epiphany to 0.81 for E
lipse and the F-measure for bug-freehunks varies from 0.75 for Nautilus to 0.91 for E
lipse and Mozilla. Pre
isionvalues for buggy hunks are between 66% and 84%, and the re
all values for buggyhunks are between 51% and 78%.

76 CHAPTER 5. HUNK CLASSIFICATIONTable 5.6: Results of Multivariate Logisti
 Regression (a)Metri
s Apa
he Epiphany Evolution NautilusCoe�. p-value Coe�. p-value Coe�. p-value Coe�. p-value
onstant -0.87 0.000 -1.21 0.000 -1.11 0.000 -0.15 0.000NOP 0.02 0.01 0.04 0.01 0.02 0.003 0.02 0.02NOCN 0.07 0.000 0.07 0.04 0.02 0.15 0.02 0.22NOL -0.03 0.52 -0.01 0.94 0.01 0.8 -0.03 0.62NOLO 0.03 0.05 -0.01 0.76 -0.06 0.000 -0.11 0.000NORO -0.06 0.002 0.12 0.003 0.07 0.000 0.03 0.15NOA -0.11 0.000 -0.07 0.02 0.01 0.26 -0.08 0.000NOFC 0.12 0.000 0.07 0.001 0.07 0.000 0.09 0.000NORS -0.02 0.58 -0.47 0.000 -0.03 0.2 -0.14 0.000NON 0.07 0.01 0.06 0.04 -0.01 0.26 -0.09 0.000NOS 0.03 0.79 -0.05 0.87 0.08 0.22 -0.13 0.38NOAR 0.04 0.08 -0.07 0.37 -0.07 0.002 -0.06 0.03NOCS 0.16 0.03 -0.08 0.46 -0.1 0.001 0.14 0.02NOG 1.04 0.01 -0.16 0.59 0.22 0.1 0.82 0.02NOB -0.36 0.000 0.21 0.23 0.07 0.14 0.08 0.43NOV -0.03 0.2 0.05 0.06 0.02 0.06 -0.01 0.34NOFD -0.08 0.002 0.16 0.000 0.09 0.000 0.14 0.000NOBH 0 0.91 0 0 0.001 0.26 0.001 0.000NOH 0.02 0.000 0.05 0.000 0.03 0.000 0.01 0.0005.6.4 Comparison of Logisti
 Regression and Random ForestsRandom forests have produ
ed better results as
ompared to logisti
 regression.A

ura
ies obtained by training and applying both models are shown in Figure 5.3.Maximum and minimum a

ura
ies obtained by applying random forests are 87%and 74% respe
tively. For E
lipse, Mozilla and PostgreSQL it has
lassi�ed morethan 80% hunks a

urately. Appli
ation of logisti
 regression produ
es maximumand minimum a

ura
ies of 74% and 60% respe
tively. In most of the proje
ts,logisti
 regression
an
lassify less than 70% hunks a

urately.Figure 5.4 shows the buggy hunk pre
ision obtained by training and apply-ing both models. Again random forest has out
lassed logisti
 regression and itprodu
es maximum and minimum buggy hunk pre
ision of 84% and 66% respe
-tively. It produ
es more than 80% buggy hunk pre
ision for E
lipse, Mozilla andPostgreSQL. Maximum and minimum buggy hunk pre
ision obtained by applyinglogisti
 regression is 74% and 56% respe
tively. Using logisti
 regression, buggyhunk pre
ision falls between 60% and 70% for most of the proje
ts.Buggy hunk re
all obtained by applying both models is shown in Figure 5.5.Logisti
 regression has produ
ed very poor re
all. However in more than halfproje
ts random forest has produ
ed more than 70% buggy hunk re
all. Maxi-mum and minimum re
all obtained by applying random forests is 78% and 51%

5.6. RESULTS 77Table 5.7: Results of Multivariate Logisti
 Regression (b)Metri
s PostgreSQL E
lipse MozillaCoe�. p-value Coe�. p-value Coe�. p-value
onstant -0.72 0.000 -1 0.000 -0.99 0.000NOP 0.08 0.000 � � 0.04 0.000NOCN 0.15 0.000 0.04 0.000 0.07 0.000NOL 0.1 0.01 -0.01 0.37 -0.09 0.067NOLO 0.03 0.1 0.01 0.09 0.04 0.021NORO -0.16 0.000 -0.01 0.1 -0.1 0.000NOA 0.04 0.000 -0.02 0.000 0.01 0.157NOFC 0.06 0.000 0.04 0.000 0.05 0.000NORS 0.3 0.000 -0.06 0.000 0.05 0.000NON -0.09 0.000 0.19 0.000 -0.06 0.109NOS 0.14 0.02 � � � �NOAR -0.14 0.000 -0.04 0.000 0.12 0.000NOCS -0.24 0.000 0.02 0.002 -0.03 0.041NOG -1.08 0.000 � � � �NOB 0.28 0.000 -0.14 0.000 -0.01 0.625NOV 0.07 0.000 0.01 0.03 0.02 0.044NOFD 0 0.68 0 0.85 0.01 0.610NOE � � -0.09 0.000 0.03 0.382NOO � � 0.01 0.4 -0.15 0.000NOC � � -0.02 0.56 0.3 0.002NOTH � � -0.1 0.000 -0.09 0.001NOIP � � 0 0.78 -0.5 0.000NOIH � � 0.15 0.001 -0.4 0.000NOBH 0 0.000 0 0.000 0 0.000NOH 0 0.000 0 0.000 0.01 0.000Table 5.8: Pre
ision P, Re
all R and A

ura
y A using random forestsProje
t A Buggy Hunk Bug-Free HunkP R F1 P R F1Apa
he 0.76 0.75 0.65 0.70 0.76 0.84 0.80E
lipse 0.87 0.84 0.78 0.81 0.89 0.92 0.91Epiphany 0.74 0.66 0.51 0.57 0.77 0.86 0.81Evolution 0.75 0.70 0.53 0.63 0.77 0.85 0.81Mozilla-C 0.86 0.81 0.62 0.70 0.88 0.95 0.91Mozilla-J 0.84 0.83 0.76 0.79 0.85 0.90 0.87Nautilus 0.77 0.79 0.78 0.78 0.75 0.76 0.75PostgreSQL 0.83 0.81 0.72 0.76 0.84 0.89 0.86

78 CHAPTER 5. HUNK CLASSIFICATION

Figure 5.3: A

ura
ies using Random Forest and Logisti
 Regression

Figure 5.4: Buggy Hunk Pre
ision using Random Forest and Logisti
 Regressionrespe
tively. Buggy hunk re
all obtained by applying logisti
 regression is lessthan 40% for most of the proje
ts. It produ
es maximum and minimum buggyhunk re
all of 60% and 6% respe
tively.5.6.5 Performan
e of Individual Metri
sTo evaluate the performan
e of individual metri
s, we used single hunk metri
 asthe independent variable and presen
e or absen
e of bug as the dependent variable.Our obje
tive was to evaluate ea
h metri
 separately as predi
tor of bugs. Mostof the
ode related hunk metri
s have produ
ed similar results. Hunks may di�erin their
ode
ontents, so di�erent metri
s may
lassify the same hunk di�erently.However overall a

ura
ies are almost similar for
ode related metri
s, see Table5.9 and 5.10. Two hunk metri
s have produ
ed better results as
ompared to other

5.6. RESULTS 79

Figure 5.5: Buggy Hunk Re
all using Random Forest and Logisti
 Regressionmetri
s. One of these metri
s is related to size of
hange that is total number ofhunks in a revision (NOH). Other is related to history that is number of buggyhunks found in the previous history of a �le (NOBH).Individual metri
s
an distinguish between buggy and bug-free hunks with60% a

ura
y on an average, see Figure 5.6. For Mozilla proje
t, fun
tion de
la-rations, return statement, number of total hunks and number of previous buggyhunks have shown better buggy hunk pre
ision. Whereas for E
lipse proje
t,loops, fun
tion
alls, return statements, arrays, break statement and
lasses haveshown better buggy hunk pre
ision, as depi
ted in Figure 5.7.Individual metri
s have produ
ed very poor re
all values. Among the
oderelated hunk metri
s, fun
tion
alls, Null statement and
ase statement haveprodu
ed better buggy hunk re
all for the Mozilla proje
t. Change and historyrelated hunk metri
s have produ
ed best buggy hunk re
all for both proje
ts, seeFigure 5.8.5.6.6 Performan
e of Combination of Metri
sTo evaluate the performan
e of metri
s groups, we
ombined related metri
s intothree groups. The �rst group was
omposed of hunk metri
s related to methods.The se
ond group was related to
lasses and the third group was related to
hangesize and history. Following is a detail of the groups:� Group 1. NOCN, NOL, NOA, NOFC, NOFD, NOV, NOLO, NORO,NORS, NON, NOAR and NOB.� Group 2. NOC, NOO, NOIP and NOIH.� Group 3. NOH and NOBH.

80 CHAPTER 5. HUNK CLASSIFICATIONTable 5.9: Pre
ision , Re
all and A

ura
y for Mozilla using individual metri
sMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1NOCN 0.59 0.566 0.066 0.119 0.59 0.963 0.732NOL 0.58 0.527 0.036 0.068 0.585 0.977 0.732NOA 0.58 0.516 0.008 0.016 0.583 0.995 0.735NOFC 0.60 0.577 0.144 0.231 0.601 0.924 0.728NOFD 0.58 0.615 0.017 0.034 0.584 0.992 0.736NOV 0.58 0.303 0.001 0.002 0.582 0.999 0.735NOLO 0.58 0.479 0.006 0.011 0.582 0.996 0.735NORO 0.58 0.516 0.008 0.016 0.583 0.995 0.735NORS 0.58 0.667 0.005 0.01 0.583 0.998 0.736NON 0.60 0.562 0.156 0.223 0.591 0.914 0.731NOAR 0.58 0.558 0.018 0.035 0.584 0.99 0.735NOCS 0.58 0.586 0.166 0.219 0.591 0.951 0.722NOB 0.58 0.558 0.024 0.046 0.585 0.986 0.734NOC 0.58 0 0 0 0.582 1 0.736NOO 0.58 0.489 0.004 0.007 0.582 0.997 0.735NOIP 0.58 0.5 0 0 0.582 1 0.736NOIH 0.58 0 0 0 0.582 1 0.736NOH 0.73 0.829 0.461 0.592 0.706 0.932 0.804NOBH 0.77 0.783 0.624 0.695 0.764 0.876 0.816Table 5.10: Pre
ision , Re
all and A

ura
y for E
lipse using individual metri
sMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1NOCN 0.65 0.541 0.01 0.02 0.656 0.995 0.791NOL 0.66 0.638 0.006 0.011 0.656 0.998 0.791NOA 0.66 0.554 0.009 0.018 0.656 0.996 0.791NOFC 0.66 0.619 0.009 0.018 0.656 0.997 0.791NOFD 0.66 0.596 0.008 0.015 0.656 0.997 0.791NOV 0.66 0.593 0.005 0.011 0.655 0.998 0.791NOLO 0.66 0.578 0.01 0.02 0.656 0.996 0.791NORO 0.66 0.604 0.008 0.016 0.656 0.997 0.791NORS 0.66 0.625 0.006 0.011 0.656 0.998 0.791NON 0.65 0.532 0.06 0.08 0.666 0.985 0.788NOAR 0.66 0.616 0.003 0.006 0.655 0.999 0.791NOB 0.66 0.601 0.007 0.015 0.656 0.997 0.791NOC 0.65 0.639 0.001 0.003 0.655 1 0.791NOO 0.66 0.62 0.006 0.012 0.656 0.998 0.791NOIP 0.65 0.473 0.002 0.005 0.655 0.999 0.791NOIH 0.66 0.548 0.008 0.015 0.656 0.997 0.791NOH 0.75 0.839 0.326 0.47 0.731 0.967 0.833NOBH 0.79 0.781 0.553 0.648 0.796 0.918 0.853

5.6. RESULTS 81

Figure 5.6: A

ura
ies using Individual Metri
s

Figure 5.7: Buggy Hunk Pre
ision using Individual Metri
s

Figure 5.8: Buggy Hunk Re
all using Individual Metri
s

82 CHAPTER 5. HUNK CLASSIFICATIONTable 5.11: Pre
ision , Re
all and A

ura
y for Mozilla using metri
s groupsMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1Group1 0.60 0.583 0.174 0.268 0.606 0.911 0.727Group2 0.58 0.543 0.006 0.011 0.583 0.997 0.735Group3 0.84 0.84 0.768 0.803 0.843 0.895 0.868Table 5.12: Pre
ision , Re
all and A

ura
y for E
lipse using metri
s groupsMetri
s A

ura
y Buggy Hunk Bug-Free HunkPre
ision Re
all F1 Pre
ision Re
all F1Group1 0.68 0.619 0.189 0.289 0.687 0.939 0.793Group2 0.66 0.696 0.01 0.02 0.656 0.998 0.792Group3 0.87 0.869 0.723 0.789 0.866 0.943 0.902We used ea
h group of metri
s as explanatory variables and trained and testedthe
lassi�er. Group 2 produ
ed poor results, see Table 5.11 and 5.12. One reasonmay be few hunks involving
lass de
larations and inheritan
e statements. Group1 produ
es better a

ura
y but re
all values are poor. Group 3 produ
ed the bestresults. It indi
ates that buggy �les
ontinue to introdu
e bugs in later releases.Hunk metri
s related to methods and
lasses
an distinguish between buggyand bug-free hunks with similar a

ura
ies, see Figure 5.9. They are equallypre
ise also in identifying buggy hunks, as depi
ted in Figure 5.10. However
lassrelated hunk metri
s have very poor buggy hunk re
all value. Method related hunkmetri
s have produ
ed slightly better results with average buggy hunk re
all of18%, as shown in Figure 5.11. The reason may be a few number of hunks involving
hanges to
lasses as
ompared to hunks involving
hanges to methods.History and
hange related hunk mtri
s have outperformed other two groups.History related group
an distinguish buggy and bug-free hunks with 85% a

u-ra
y on an average. It has produ
ed mu
h better buggy hunk pre
ision and re
allvalues that are 85% and 74% respe
tively.5.6.7 Cross Proje
t Predi
tionsIn order to know whether a predi
tor obtained from one proje
t
an be appliedto other proje
ts, we tested the
onstru
ted models a
ross di�erent proje
ts. Wetested the models built using random forests, be
ause they produ
ed better resultsfor the same proje
t. Proje
ts developed in JAVA language have some additionalmetri
s related to obje
ts, so we made two groups. One group having JAVAproje
ts and the other having C proje
ts. Table 5.13 shows the
lassi�
ationa

ura
ies obtained by applying predi
tor obtained from one proje
t, to otherproje
ts. The a

ura
y values range from 49 per
ent to 75 per
ent, with most ofthe values greater than 60 per
ent. It indi
ates that predi
tors obtained from one

5.6. RESULTS 83

Figure 5.9: A

ura
ies using Metri
s Groups

Figure 5.10: Buggy Hunk Pre
ision using Metri
s Groups

Figure 5.11: Buggy Hunk Re
all using Metri
s Groups

84 CHAPTER 5. HUNK CLASSIFICATIONTable 5.13: Classi�
ation a

ura
ies using models from a di�erent proje
tProje
t Apa
he E
lipse Epiphany EvolutionMozilla-CMozilla-J Nautilus PostgreSQLApa
he � � 0.67 0.64 0.74 � 0.52 0.65E
lipse � � � � � 0.61 � �Epiphany 0.65 � � 0.63 0.69 � 0.54 0.63Evolution 0.63 � 0.63 � 0.69 � 0.54 0.62Mozilla-C 0.75 � 0.63 0.61 � � 0.52 0.63Mozilla-J � 0.65 � � � � � �Nautilus 0.53 � 0.60 0.59 0.60 � � 0.49PostgreSQL 0.64 � 0.64 0.63 0.71 � 0.52 �proje
t based on hunk metri
s
an be su

essfully applied to other proje
ts.Predi
tor obtained from Apa
he proje
t
ould
lassify hunks from Epiphany,Evolution and PostgreSQL with a similar a

ura
y of 64%. It
ould
lassify only50% hunks of Nautilus a

urately. However it showed better results for Mozillaproje
t with an a

ura
y of 75%.Predi
tor obtained from
hange data of Epiphany
ould
lassify hunks fromother proje
ts with an average a

ura
y of 63%, whereas predi
tor obtained fromEvolution proje
t
ould
lassify 62% of hunks from other proje
ts
orre
tly.Classi�er trained on histori
 data of Mozilla showed better results
omparedto other
lassi�ers. On an average it
ould
lassify 69% hunks
orre
tly, with besta

ura
ies for Apa
he and PostgreSQL.Predi
tor obtained from PostgreSQL showed results similar to the predi
torobtained from Apa
he proje
t. It
ould
lassify hunks from Apa
he, Epiphanyand Evolution with a similar a

ura
y of 64%. It
ould
lassify only 50% hunksof Nautilus a

urately, whereas for Mozilla proje
t it also showed better resultswith an a

ura
y of 71%.Classi�ers obtained from E
lipse and Mozilla, when applied on ea
h other,produ
ed similar results. In both
ases the a

ura
y of
lassi�
ation was about60%.5.7 Appli
ationsHunk
lassi�
ation approa
h
an be used in di�erent ways:� Hunk
lassi�
ation approa
h
an identify buggy hunks immediately after ahunk is made. It
an alarm the developers about the bad
ode. Developers
an review the
ode
hanges they have made before
ommitting them to therepository. So hunk
lassi�er
an be used as a
ommit inspe
tor.� It
an be used as part of the software development pro
ess. Developers
anmake
hanges to the sour
e
ode, apply hunk
lassi�er to
he
k the
hanges,

5.7. APPLICATIONS 85re
eive noti�
ation about the
hange, modify the
hanges if required andrepeat the same
y
le again. One advantage of using hunk
lassi�er is thesmallest level of granularity. Developers have to inspe
t a few lines of
oderather than the whole
hange.

Chapter 6
Threats to Validity
This
hapter des
ribes the threats to the validity of this work.All analyzed proje
ts are open sour
e: The software systems used in thisempiri
al study are all open sour
e, hen
e they follow a di�erent develop-ment methodology. Commer
ial software proje
ts use di�erent developmentand maintenan
e te
hniques, so there may be di�erent patterns of
hangesand bugs. Commer
ial proje
ts use skilled programmers and analysts, sobug introdu
tion patterns may be slightly di�erent. Time pressure is alsoa major di�eren
e between open sour
e and
ommer
ial proje
ts whi
h
anin�uen
e the
hange patterns.Studied proje
ts might not be representative: Although eight large opensour
e proje
ts belonging to di�erent domains are used in this study, they
annot represent all kinds of software. Proje
ts with better bug reportingand bug linking fa
ilities may produ
e better results for
lassi�
ation a

u-ra
ies. Real time and distributed software may have di�erent
hange andbug patterns and hen
e di�erent buggy hunk
lassi�
ation a

ura
ies.Quality of log
omments: A
areful pro
essing is used to extra
t
ommentsfrom
on�guration management systems and to identify bug �xes. Howeverquality of the log
omments
an in�uen
e the results. A developer may notproperly
omment the
hange, so some bug �xes may be missed. All proje
tsdo not use a standard way of writing
omments. Some proje
ts follow anumeri
 bug identi�er s
heme to represent �x
omments while others usekeywords like �x, bug or pat
h in their
omments. So some
ommits maybe mistakenly identi�ed as �xes. 87

88 CHAPTER 6. THREATS TO VALIDITYGranularity of Versioning Systems: Con�guration management systems re
ord
hanges on line level. So it is di�
ult to identify whi
h individual syntaxelement is modi�ed during a
hange. There may be either a single syntaxelement
hanged in a line or multiple elements. Better te
hniques for iden-ti�
ation of individual syntax elements may further enhan
e the a

ura
iesof results.Software Design Issues: In this study,
hanges and bugs of proje
ts are
on-sidered whi
h have a development history. No emphasis is given to softwaredesign and design time �aws. Di�erent software designs may produ
e dif-ferent
hange and bug patterns. It would be ni
e to in
lude design timemetri
s and information for study of
hanges and bugs.Although it is di�
ult to extra
t pre
ise data from software repositoriesbe
ause of several reasons that may be mapping between bugs and sour
e
ode lo
ations, extra
tion of
hanged
ode or mapping of
hanges and bugsto the developers, we
an not say that the derived
on
lusions are entirelywrong. Using a publi
 data set we have to
ompromise on the validity ofdata to a
ertain extent. Keeping in view the available data sour
es, theseresults are a

eptable.

Chapter 7
Related Work
In this
hapter work related to this thesis is dis
ussed. First di�erent approa
hesand te
hniques are dis
ussed for extra
ting valuable fa
ts from software repos-itories. Next di�erent bug predi
tion models and te
hniques are dis
ussed and
ompared with the hunk
lassi�
ation te
hnique. Then a dis
ussion is made on
hange extra
tion and
hange analysis. Finally a review of buggy
ode featuresand
ode lo
ations is presented.7.1 Mining Software Change HistoryHipikat is a tool that forms impli
it group memory for a proje
t by inferring linksbetween stored artifa
ts and that then re
ommends relevant part of the groupmemory to a developer working on the task [12℄. It groups four types of artifa
ts:bug and feature des
riptions, sour
e �le revisions, messages posted on developerforums, and other proje
t do
uments. It helps new
omer/developer in opensour
e proje
t by providing an e�
ient and e�e
tive a

ess to the group memoryfor a software development proje
t. Hipikat
an be viewed as a re
ommendersystem for software developers that draws its re
ommendation from a proje
tsdevelopment history.Kenyon is a tool that provides automated
on�guration retrieval from SCM toa lo
al �le system and applies fa
t extra
tors on ea
h retrieved
on�guration andthen saves the extra
ted information into a relational database using an obje
-t/relation mapping (ORM) system [8℄. It redu
es the time of resear
h, automates
on�guration retrieval and allows user
ontrol on
on�guration times. Di�erentSCM systems and multiple data input sour
es are supported. Kenyon providese�
ient, a

essible, and optional storage of extra
ted fa
ts. It uses Hibernate tomap its Java obje
ts to a relational database. Hibernate provides a solution to89

90 CHAPTER 7. RELATED WORKmap database tables to a
lass. It
opies the database data to a
lass. In theother dire
tion it supports to save obje
ts to the database. In this pro
ess theobje
t is transformed to one or more tables. Our modules do a similar job of fa
textra
tion from
on�guration management systems.Sliwerski et al. [66℄ developed a prototype HATARI to dete
t lo
ations inthe software development history where
hanges have been risky in the past. Itrelates version ar
hives (su
h as CVS) to a bug database (su
h as BUGZILLA)to identify and lo
ate the risky
ode lo
ations. HATARI makes this risk visiblefor developers by annotating sour
e
ode with
olor bars. Furthermore, HATARIprovides views to browse through the most risky lo
ations and to analyze the riskhistory of a parti
ular lo
ation.7.2 Bug Predi
tionDefe
t predi
tion studies involve di�erent approa
hes in
luding produ
t-
entri
,pro
ess-
entri
 and a
ombination of both. Produ
t-
entri
 approa
hes use mea-sures obtained from stati
 and dynami
 stru
ture of sour
e
ode or measuresextra
ted from requirements and design do
uments. A number of studies exist onthe use of produ
t-
entri
 approa
h.Gyimothy et al. [29℄ validated the obje
t-oriented metri
s for fault predi
tionin open sour
e software. The authors used logisti
 regression and ma
hine learn-ing te
hniques to identify faulty
lasses in Mozilla. They used Chidamber andKemerer metri
s in their study. The authors evaluated eight metri
s in
ludingweighted methods per
lass, depth of inheritan
e tree, response for a
lass, numberof
hildren,
oupling between obje
t
lasses, la
k of
ohesion on methods, la
k of
ohesion on methods allowing negative value and lines of
ode. Bugzilla databasewas pro
essed and bugs were asso
iated with
lasses. The authors found that
oupling between obje
t
lasses is the best
hoi
e for predi
ting faulty
lasses.Lines of
ode metri
s also performed well in predi
ting faulty
lasses.Porter and Selby [61℄ used
lassi�
ation trees based on metri
s from previ-ous releases to identify
omponents having high-risk properties. The authorsdeveloped a method of automati
ally generating measurement-based models ofhigh-risk
omponents.Koru and Liu [40℄
ombined stati
 software measure with defe
t data at
lasslevel and applied di�erent ma
hine learning te
hniques to develop bug predi
tormodel. The authors analyzed the CM1, JM1, KC1, KC2, and PC1 data sets in thePROMISE repository, whi
h belong to �ve software produ
ts developed by NASA.Several models were built to predi
t the defe
tive modules in these produ
ts, usingthe stati
 measures as predi
tor variables and the binary defe
tiveness indi
atoras the response variable. The authors
on
luded that the predi
tion performan
ewas not dis
ouraging but not very satisfa
tory either. However the authors have

7.2. BUG PREDICTION 91proposed defe
t predi
tion guidelines based on their experien
e. They suggest toobtain stati
 measures, aggregate measurs,
olle
t defe
t data, build a predi
tionmodel, predi
t defe
t prone
lasses and improve predi
tion models. These stepsare similar to our approa
h however we obtain defe
t data on the level of hunksand our model is automati
ally improved as more history data be
omes availablefor a proje
t.Moser et al. [50℄ presented a
omparative analysis of the predi
tive power ofprodu
t and pro
ess metri
s for defe
t predi
tion. The authors
lassi�ed Java�les of E
lipse proje
t as defe
tive or defe
t-free. They built
lassi�
ation modelsusing logisti
 regression, Naive Bayes and de
ision trees. The authors performeda
ost sensitive
lassi�
ation to allow di�erent
osts for predi
tion errors. They
on
luded that
hange data and pro
ess related metri
s
ontain more dis
rimina-tory and meaningful information about distribution of defe
ts in software thanthe sour
e
ode itself. The authors used 18
hange metri
s to train a de
isiontree learner and obtained greater than 75% a

ura
y, 80% re
all and less than30% false positive rate. The
hange metri
s in
luded in their study are number ofrevisions, number of refa
torings, number of bug �xes, number of authors, LOCadded, LOC deleted, Code
hurn,
hange set and age of a �le. Their �ndings aresimilar to us as
hange and history related hunk metri
s produ
e better resultsthan the
ode related hunk metri
s. Note that in
ontrast to defe
t predi
tion for�les, our te
hnique produ
es predi
tions for individual hunks.Pan et al. [56℄ introdu
ed program sli
ing metri
s to be used as bug predi
tors.They used program sli
e information to measure the size,
omplexity,
ouplingand
ohesion properties of C language programs. The sli
ing metri
s used intheir study in
lude sli
e
ount, verti
es
ount, edges
ount, edges to verti
es ratio,sli
e verti
es sum, maximum sli
e verti
es, global input, global output, dire
t fanin, dire
t fan out, indire
t fan in, indire
t fan out and la
k of
ohesion. Theauthors
ompared bug
lassi�
ation
apabilities of program sli
ing metri
s withUnderstand for C++ suite of metri
s in a number of experiments. They foundthat program sli
ing metri
s produ
e slightly better
lassi�
ation a

ura
ies thanUnderstand for C++ metri
s at the �le level.Nagappan et al. [52℄ applied prin
ipal
omponent analysis on
ode metri
s anddeveloped regression models to predi
t the post-release defe
ts. The authors foundthat there is no single set of
omplexity metri
s that
ould a
t as a universallybest defe
t predi
tor. The authors also found that predi
tors obtained from oneproje
t were signi�
ant for other similar proje
ts.Menzies et al. [46℄ showed that predi
tors obtained from stati

ode attributesare useful in defe
t predi
tion with a mean probability of dete
tion of 71 per
entand mean false alarms of 25 per
ent. The authors found that it is more important,how the attributes are used to build predi
tors than whi
h parti
ular attributesare used. A number of attributes were used in this study in
luding M

abe and

92 CHAPTER 7. RELATED WORKHalstead
omplexity metri
s.Ostrand et al. [55℄ used
ode of the �le in
urrent release and fault andmodi�
ation history of the previous releases to predi
t the expe
ted number offaults in ea
h �le of the next release.Pro
ess-
entri
 approa
hes use measures extra
ted from the software history su
has
hanges made to software, developers involved, size and time of
hanges, andage of software. Various studies are found in literature using pro
ess artifa
ts.Ratzinger et al. [64℄ used regression models and de
ision trees to predi
t de-fe
ts in short time frames of two months. The authors used features extra
tedfrom version
ontrol and feature tra
king systems to build their models. The au-thors also investigated the predi
tability of several severities of defe
ts in softwareproje
ts.Kim et al. [35℄ proposed a bug �nding algorithm using the proje
t-spe
i�
bug and �x knowledge base developed by analyzing the history of bug �xes. Theauthors implemented a tool BugMem for dete
ting potential bugs and suggesting
orresponding �xes.Hassan and Holt [30℄ presented an approa
h named, The Top Ten List, to pre-di
t the ten most sus
eptible subsystems having a fault. The authors used someheuristi
s to
reate the Top Ten List. These heuristi
s were based on the
hara
-teristi
s of software system su
h as re
en
y, frequen
y and size of modi�
ationsas well as
ode metri
s and
o-modi�
ations.7.3 Software Change Extra
tion and AnalysisFluri and Gall [21℄ proposed an approa
h for analyzing and
lassifying
hangetypes based on
ode revisions. Using that approa
h,
hanges on the method or
lass level
ould be di�erentiated and their signi�
an
e in terms of the impa
t ofthe
hange types on other sour
e
ode entities be assessed. The authors found thatin many
ases large numbers of lines added and/or deleted are not a

ompaniedby signi�
ant
hanges but small textual adaptations. The authors presented ataxonomy of sour
e
ode
hanges to be used for
hange
oupling analysis and usedtree edit operations in the AST to
lassify
hanges. Their
lassi�
ation approa
h
ould assess error-proneness of sour
e
ode entities, qualify
hange
ouplings, oridentify programming patterns.Canfora et al. [11℄ proposed a te
hnique to identify
hanges at sour
e
ode linelevel from CVS repositories. They used Ve
tor Spa
e Models and the Levenshteinedit distan
e to determine if CVS/SVN di�s are due to line additions/deletionsor if they are due to line modi�
ations. A tokenizer was used instead of a parserto extra
t symbols and then
ompute the
osine similarity. Appli
ation of thete
hnique on a random sample of ArgoUML snapshots indi
ated high pre
ision(96%) and a high re
all as well (95%). We use a di�erent approa
h to identify

7.3. SOFTWARE CHANGE EXTRACTION AND ANALYSIS 93the bug-indu
ing hunks and the
hanged sour
e
ode lines.Fluri et al. [22℄ in an empiri
al study found that
hange type patterns dodes
ribe development a
tivities and a�e
t the
ontrol �ow, the ex
eption �ow,or
hange the API. The authors used agglomerative hierar
hi
al
lustering todis
over patterns of
hange types. To explore whether
hange types appear fre-quently and
ommonly, the authors extra
ted data from one
ommer
ial and twoopen sour
e software systems. In
ontrast to general
hange types we study thefeatures of bug-indu
ing
hanges.Stoerzer et al. [68℄ presented an approa
h for
hange
lassi�
ation that helpsprogrammers identify the
hanges responsible for test failures. The authors pro-posed several
hange
lassi�ers that asso
iate the
olors Red, Yellow, or Greenwith
hanges, a

ording to the likelihood that they were responsible for test fail-ures. The authors used a model of atomi

hanges, with
hange
ategories su
h asadded
lasses (AC), deleted
lasses (DC), added methods (AM), deleted methods(DM),
hanged method bodies (CM), added �elds (AF), deleted �elds (DF), andlookup
hanges (LC) (i.e.,
hanges to dynami
 dispat
h). The authors
onsidered
hanges to method bodies as one CM
hange regardless of the number of state-ments
hanged within the respe
tive method's body. They
ondu
ted two
asestudies to investigate whether or not
hange
lassi�
ation
an be a useful tool forfo
using the attention of programmers on failure-indu
ing
hanges. In
ontrast we
onsider atomi

hanges as
hanges to individual language
onstru
ts and pro
essthe
hange history of a proje
t rather than test information. We study whi
hlanguage
onstru
ts have more likelihood of generating bugs.Mo
kus and Weiss [48℄ presented a model to predi
t the risk of new
hanges,based on histori
 information. The authors modeled the probability of
ausingfailure of a
hange made to software. They used properties of a
hange as modelparameters su
h as size in lines of
oded added, deleted or unmodi�ed, di�usion ofthe
hange re�e
ted by the number of �les, modules or subsystems tou
hed, severalmeasures of developer experien
e and the type of
hange. The authors found that
hange di�usion and developer experien
e are essential to predi
t failures.Aversano et al. [6℄ developed a model to predi
t if a new
hange may intro-du
e a bug or not. The authors extra
ted bug-introdu
ing
hanges from software
hange history and
onstru
ted feature ve
tors from the sour
e
ode. They rep-resented software
hanges as elements of an n-dimensional ve
tor spa
e of terms.The
onstru
ted ve
tors were used to train di�erent
lassi�ers on data of two opensour
e proje
ts. The authors used K-Nearest Neighbor, simple logisti
, Multi-Boosting, C4.5 and Support Ve
tor Ma
hines as
lassi�ers. K-Nearest Neighborprodu
ed better results as
ompared to other
lassi�ers. This work is similar toour work but the results of
hange
lassi�
ation are poor with 63% pre
ision and40% re
all for buggy
hanges. Our te
hnique produ
es mu
h better results andworks at �nest level of granularity.

94 CHAPTER 7. RELATED WORKKim et al. [34℄ introdu
ed a te
hnique for
lassifying a software
hange as
lean or buggy. The authors trained a ma
hine learning
lassi�er using featuresextra
ted from revision history of a software proje
t. The features used in
ludeall terms in the
omplete sour
e
ode, the lines modi�ed in ea
h
hange (delta),
hange metadata su
h as author,
hange time, and
omplexity metri
s. Theproposed model
ould
lassify
hanges as
lean or buggy with 70 per
ent a

ura
yand 60 per
ent buggy
hange re
all on average. The authors predi
ted faults atthe �le
hange level whereas our approa
h predi
ts faults at the smallest level ofgranularity, that is a hunk. Furthermore, hunk
lassi�
ation approa
h uses veryless data for
lassi�
ation, so it is simple and easy to apply. It produ
es betterresults as
ompared to [34℄ while using less number of input variables.Graves et al. [27℄ pro
essed
hange management data to predi
t distributionof faults over modules of a software system. The authors found that the numberof times a
ode has been
hanged is a good predi
tor of faults. The authorsfurther found that modules whi
h
hanged re
ently may have more faults thanthose modules whi
h are not
hanged sin
e a longer time.Hassan and Holt [31℄ analyzed the development history of �ve open sour
eproje
ts to study
hange propagation. They proposed several heuristi
s to predi
t
hange propagation and validated their results using the obtained histori
al data.German [26℄ studied the
hara
teristi
s of modi�
ation requests with respe
tto sour
e �les and their authors. The author proposed several metri
s to quantifymodi�
ation requests and used these metri
s to
reate visualization graphs forunderstanding interrelationships.Gall et al. [23℄ developed an approa
h using release history information ofa system to identify logi
al
ouplings and
hange patterns among modules. Theauthors used stru
tural information about programs, modules, and subsystems,together with their version numbers and
hange reports to un
over hidden depen-den
ies in the sour
e
ode.Ying et al. [73℄ mined software
hange history data to �nd �le
o-
hangepatterns. The authors proposed that
hange patterns
an be used to re
ommendpotentially relevant sour
e
ode to a developer performing a modi�
ation task.Weiβgerber and Diehl presented a te
hnique to dete
t
hanges that are likelyto be refa
torings and rank them a

ording to the likelihood. The evaluationof the te
hnique showed a high re
all and a high pre
ision, it �nds most of therefa
torings, and most of the found refa
toring
andidates are really refa
torings.The proposed te
hnique is able to �nd stru
tural and lo
al refa
torings. Stru
turalrefa
torings in
lude Move Class, Move Interfa
e, Move Field, Move Method, andRename Class, whereas lo
al refa
torings in
lude Rename Method, Hide Method,Unhide Method, Add Parameter, and Remove Parameter.

7.4. BUGGY CODE FEATURES AND LOCATIONS 957.4 Buggy Code Features and Lo
ationsPan et al. [57℄ de�ned bug �x patterns using the syntax
omponents and
ontextof the sour
e
ode involved in bug �x
hanges. Software repositories of seven opensour
e proje
ts, developed in JAVA, were used to extra
t the bug �x patterns.The authors found 45.7% to 63.3% of the total bug �x hunk pairs in these proje
tshaving the de�ned bug �x patterns. The most
ommon individual patterns aremethod
all with di�erent a
tual parameter values,
hange in if
onditional, and
hange of assignment expression. Correlation analysis of seven proje
ts and �vedevelopers showed similar frequen
ies of bug �x patterns. This study is similar toours, but we
onsider bug-indu
ing
hanges instead of bug-�x
hanges. Further-more, we use software systems developed in di�erent languages rather than samelanguage.Kim et al. [36℄ analyzed the version history of seven software systems topredi
t the most fault prone entities and �les. The authors implemented a
a
hefor holding lo
ations that are likely to have faults: starting from the lo
ation ofa known (�xed) fault, the lo
ation itself, any lo
ations
hanged together withthe fault, re
ently added lo
ations, and re
ently
hanged lo
ations. A developer
an dete
t likely fault-prone lo
ations by
onsulting the
a
he whenever a faultis �xed. The developed algorithm is evaluated on seven open sour
e proje
ts,and it is 73%-95% a

urate at predi
ting future faults at the �le level and 46%-72% a

urate at the entity level with optimal options. The predi
tion algorithmis exe
uted over the
hange history of a software proje
t, whi
h yields a smallsubset (usually 10%) of the proje
t?s �les or fun
tions/methods that are mostfault-prone. The authors base their algorithm on the observation that most faultsare lo
al, they do not o

ur uniformly in time a
ross the history of a fun
tion,rather they appear in bursts. Four di�erent kinds of lo
ality are
onsidered forbug o

urren
es in
luding
hanged-entity lo
ality, new-entity lo
ality, temporallo
ality and spatial lo
ality.Brun and Ernst [10℄ proposed a te
hnique for identifying program propertiesthat indi
ate errors. They trained ma
hine learning models on program propertiesthat resulted from errors and then applied these models to program properties ofuser written
ode to
lassify and rank properties that
ould lead to errors. Given aset of properties produ
ed by the program analysis, the te
hnique sele
ts a subsetof properties that are most likely to reveal an error. Dynami
 invariant dete
tionis used to generate program properties and two ma
hine learning tools are used to
lassify those properties. The authors used support ve
tor ma
hine and de
isiontree in their experiments, and found that this te
hnique in
reases the relevan
e(the
on
entration of fault-revealing properties) by a fa
tor of 50 on average forthe C programs, and 4.8 for the Java programs. The authors
on
luded thatmost of the fault-revealing properties do lead a programmer to an error. Theysuggested that ranking and sele
ting the top properties is more advantageous than

96 CHAPTER 7. RELATED WORKsele
ting all properties
onsidered faultrevealing by the ma
hine learner. For Cprograms, on average 45% of the top 80 properties are fault-revealing, whereas, forJava programs, 59% of the top 80 properties are faultrevealing. In the preliminaryexperiments most of the fault-revealing properties lead a programmer to the error,but it is not ne
essary for all properties.Li and Zhou [44℄ proposed a method
alled PR-Miner to e�
iently extra
timpli
it programming rules from large software
ode written in an industrial pro-gramming language su
h as C. It uses a data mining te
hnique
alled frequentitemset mining and requires little e�ort from programmers without any priorknowledge of the software. PR-Miner
an extra
t programming rules in generalforms (without being
onstrained by any �xed rule templates) that
an
ontainmultiple program elements of various types su
h as fun
tions, variables and datatypes. The authors also proposed an e�
ient algorithm to automati
ally dete
tviolations to the extra
ted programming rules, whi
h
an be strong indi
ations ofbugs. PR-Miner was evaluated with large software
ode, in
luding Linux, Post-greSQL Server and the Apa
he HTTP Server, having 84K-3M lines of
ode ea
h.Experiments showed that PR-Miner
an e�
iently extra
t thousands of generalprogramming rules and dete
t violations within 2 minutes.Livshits and Zimmermann [45℄ proposed a tool
alled DynaMine, that analyzessour
e
ode
he
k-ins to �nd highly
orrelated method
alls as well as
ommonbug �xes in order to automati
ally dis
over appli
ation-spe
i�

oding patterns.Potential patterns dis
overed through mining are passed to a dynami
 analysistool for validation and the results of dynami
 analysis are presented to the user.The authors
ombined revision history mining and dynami
 analysis te
hniquesfor dis
overing appli
ation spe
i�
 patterns and for �nding errors. DynaMineis evaluated on two widely-used, mature, highly extensible appli
ations, E
lipseand jEdit, that
olle
tively
onsist of more than 3,600,000 lines of
ode. Theauthors dis
overed 56 previously unknown, highly appli
ation-spe
i�
 patterns,out of whi
h 21 were dynami
ally
on�rmed as very likely valid patterns, andfound 263 pattern violations by mining history data of E
lipse and jEdit.

Chapter 8
Future work
A stati
 parser was used to extra
t language
onstru
ts and syntax elements.A bug indu
ing hunk may
ontain multiple language
onstru
ts. It is possiblethat only one
onstru
t is
hanged, or there may be multiple
onstru
ts
hangedin a single hunk. Currently all language
onstru
ts in a bug indu
ing hunk are
onsidered bug indu
ing be
ause
on�guration management systems provide in-formation on the line level. We plan to develop te
hniques to identify the exa
tindividual language
onstru
t whi
h
ontributes to a bug within a hunk.In this study, only frequen
ies of bug indu
ing language
onstru
ts are exam-ined. No
ontext information is extra
ted from the sour
e
ode. Our parser s
ansthe
ode of bug indu
ing hunks and extra
ts the language
onstru
ts involved.We would like to know the
ontext in whi
h di�erent language
onstru
ts intro-du
e bugs. We also want to study the
oupling between language
onstru
ts forintrodu
tion of bugs.Our parser
an only extra
t synta
ti
 elements and no
onsideration is givento semanti
s of the program. As same language
onstru
ts are present in thebug indu
ing and
lean hunks, it would be interesting to know the situationsin whi
h a parti
ular language
onstru
t
an introdu
e bugs. For this purpose,we plan to in
lude program
ontrol �ow and data dependen
e information withea
h
onstru
t. We will enhan
e the parser with program analysis
apabilities infuture.To study the in�uen
e of programming language on post release bugs,
asestudy of Mozilla proje
t is used. Although Mozilla is a large, heterogeneousproje
t, generalized
on
lusions
an not be drawn from a single proje
t. We wantto extend this study to a diverse set of proje
ts as a future work.To study the relationship between the programming language and the defe
tdensity, whole program �les are used without any
onsideration of implementedfun
tionality. We want to analyze the features implemented in di�erent languages97

98 CHAPTER 8. FUTURE WORKas a future work. We would like to split this study on module level and ar
hite
-tural units in future. Although hunk
lassi�
ation approa
h has produ
ed ex
el-lent results, there still exists room for improvement. Among the ma
hine learning
lassi�ers, only random forest is used in this study. Other ma
hine learning algo-rithms
an also be tried and their a

ura
ies evaluated. It may be possible thatother ma
hine learning tools produ
e better pre
ision and re
all.Ma
hine learning algorithms
an be modi�ed to suit the spe
i�
 problemneeds. Modi�ed algorithms may produ
e better results than existing ones interms of a

ura
y, pre
ision and re
all. Hunk
lassi�
ation approa
h has usedtwo
hange and history related metri
s. Exploration of other pro
ess relatedhunk metri
s remains as future work. It is possible that some other pro
ess re-lated hunk metri
s may better
lassify hunks as buggy or bug-free.Online ma
hine learning algorithms
an be used to train a
lassi�
ation modeland provide the results during the development of the proje
t. It would be great tohave a
lassi�er whi
h
an be updated online. We plan to integrate this te
hniquein an integrated development environment.

Chapter 9
Con
lusion
This dissertation presented an empiri
al analysis of
hanges and bugs by miningsoftware development history. Main fo
us of this study was to analyze features ofbug indu
ing
hanges and develop a bug predi
tion model. Changes were studiedat the �nest granularity level of hunks. A te
hnique was introdu
ed in this thesisto identify bug indu
ing hunks. Di�erent language
onstru
ts and syntax elementswere extra
ted from bug indu
ing hunks and their frequen
ies were
ompared. Astatisti
al analysis of proje
ts and developers was presented for the frequen
iesof bug indu
ing language
onstru
ts. Bug laten
y values for individual language
onstru
ts were
al
ulated and statisti
ally analyzed. Bug densities of programswritten in di�erent languages were statisti
ally analyzed to �nd the in�uen
e ofprogramming language on post release bugs. A number of evolution metri
s were
al
ulated and
ompared for programs written in di�erent languages. Finallya new set of metri
s was introdu
ed
alled hunk metri
s and a te
hnique waspresented to
lassify hunks as buggy or bug free.Bug introdu
ing
hanges hold important information about the
reator ofbugs and the time of
reation. Further bug indu
ing
hanges
an be used tostudy features of sour
e
ode whi
h result in bugs. An algorithm for identifyingbug indu
ing
hanges was proposed by Sliwerski et al. [67℄ . It was further en-han
ed by Kim et al. [37℄. this algorithm
an identify
hanges at �le level. Anapproa
h was presented in this thesis that
an identify bug indu
ing hunks. Itexamines all hunks involved in a
hange and marks only those hunks as buggywhi
h a
tually
ontributed to bugs. Language
onstru
ts and syntax elementswere extra
ted from bug indu
ing hunks of eight open sour
e proje
ts. Twentysix di�erent language
onstru
ts were
hosen for this study. The results show thatmost frequent bug-indu
ing language
onstru
ts are fun
tion
alls, assignments,
onditions, pointers, use of NULL, variable de
laration, fun
tion de
laration andreturn statement. These eight
onstru
ts are found in 38-62%, 30-42%, 17-40%,99

100 CHAPTER 9. CONCLUSION11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug indu
ing hunks respe
tively.Overall these eight elements a

ount for more than 70% of the bug-indu
inghunks. Fun
tion Calls is found to be the most dominant sour
e of errors in allproje
ts. Use of pointers and NULL is highly problemati
 in proje
ts developedin C language.A
orrelation analysis was applied on bug indu
ing language
onstru
ts of dif-ferent proje
ts. The results show that di�erent proje
ts are statisti
ally
orrelatedfor the frequen
ies of bug indu
ing language
onstru
ts. The obtained
orrelation
oe�
ients are signi�
ant at p<0.001. It indi
ates that most of the time similarlanguage
onstru
ts
reate problem in di�erent proje
ts.Results of the
orrelation analysis show that di�erent developers are signif-i
antly
orrelated for the frequen
ies of bug indu
ing language
onstru
ts. The
orrelation
oe�
ients obtained within the same proje
t range from 0.31 to 0.99.Results obtained indi
ate a minimum
orrelation
oe�
ient of 0.82 among anypair of developers of di�erent proje
ts but developed in the same language. Themaximum
orrelation
oe�
ient found is 0.98 for the same set of developers. How-ever majority of the
orrelation
oe�
ients found either within the same proje
tor di�erent proje
ts are above 0.80. The results show that most of the developerstend to fa
e di�
ulties with similar language
onstru
ts. Statisti
al analysis in-di
ates that majority of the developers indu
e similar kinds of bugs independentof the proje
t and programming language.Bug laten
y values were
al
ulated for
onditions, assignments, fun
tion
alls,variable de
larations and fun
tion de
larations. Correlation analysis of these
on-stru
ts shows that these language
onstru
ts are statisti
ally
orrelated for buglaten
y. Most of the obtained
orrelation
oe�
ients are above 0.95. It
an be
on
luded that bug laten
ies for individual language
onstru
ts vary in similarfashion in di�erent proje
ts.Statisti
al analyses of bug densities have revealed that post release bugs arein�uen
ed by programming language. Results of hypothesis testing have shownthat Java programs are less error prone than C or C++ programs, and C programsare less error prone than C++ programs within same proje
t. It is found thatbug life time for Java is twi
e as long as for C or C++.This thesis introdu
ed hunk metri
s and a te
hnique to
lassify hunks as buggyor bug-free based on these metri
s. A hunk is the smallest unit of a
hange andthis te
hnique works for this �nest level of granularity with an average a

ura
yof 81%. Bug predi
tion models were built using logisti
 regression and randomforests. Results have shown that random forests
an better dis
riminate betweenbuggy and bug-free hunks. The hunk
lassi�
ation te
hnique was evaluated oneight large open sour
e proje
ts. It
lassi�ed hunks with 77% buggy hunk pre
isionand 67% buggy hunk re
all on average.Individual hunk metri
s were analyzed for their bug predi
tion
apabilities.

101Results of multivariate logisti
 regression have shown that NOCN, NOA, NOFC,NORS, NOBH and NOH are signi�
ant for
lassifying hunks in most of theproje
ts. Hunk metri
s related to
hange and history are found to be betterpredi
tor of bugs than
ode related hunk metri
s.Predi
tors based on hunk metri
s were also used for
ross proje
t predi
tions.Predi
tors obtained from one proje
t when applied to a di�erent proje
t
ould
lassify hunks with more than 60% a

ura
y.Overall, work presented in this thesis has strengthened the existing body ofknowledge on bug predi
tion and
hange analysis. I hope this work will provide abase for further work on bug indu
ing
hanges and sour
e
ode analysis. Miningof software
hange history
an
reate awareness among developers for buggy
odefeatures and it
an improve the debugging pro
ess.

Bibliography
[1℄ Bugzilla. http://www.bugzilla.org/. [
ited at p. 23℄[2℄ Weka. http://www.
s.waikato.a
.nz/ml/weka/. [
ited at p. 65, 71℄[3℄ Software bug, 2006. http://en.wikipedia.org/wiki/Computer_bug. [
ited at p. 4℄[4℄ S. N. Ahsan, J. Ferzund, and F. Wotawa. Are there language spe
i�
 bug patterns?results obtained from a
ase study using mozilla. In Pro
. of Fourth InternationalConferen
e on Software Engineering Advan
es (ICSEA'09), Porto, Portugal, 2009.[
ited at p. 6℄[5℄ S. N. Ahsan, J. Ferzund, and F. Wotawa. Automati
 software bug triage system(bts) based on latent semanti
 indexing and support ve
tor ma
hine. In Pro
. ofFourth International Conferen
e on Software Engineering Advan
es (ICSEA'09),Porto, Portugal, 2009. [
ited at p. 4℄[6℄ Lerina Aversano, Luigi Cerulo, and Con
ettina Del Grosso. Learning from bug-introdu
ing
hanges to prevent fault prone
ode. In Pro
. Ninth international work-shop on Prin
iples of software evolution, pages 19�26, Dubrovnik, Croatia, 2007.[
ited at p. 93℄[7℄ T. Ball, J. Kim, A. A. Porter, and H. P. Siy. If your version
ontrol system
ouldtalk. In Pro
. ICSE Workshop Pro
ess Modelling and Empiri
al Studies of SoftwareEng., 1997. [
ited at p. 4℄[8℄ J. Bevan, E. J. Whitehead Jr., S. Kim, and M. Godfrey. Fa
ilitating software evolu-tion with kenyon. In Pro
. Of the 2005 European Software Engineering Conferen
eand 2005 Foundations of Software Engineering (ESEC/FSE 2005), pages 177�186,Lisbon, Portugal, 2005. [
ited at p. 89℄[9℄ L. Breiman. Random forests. Ma
hine Learning, 45:5�32, O
tober 2001.[
ited at p. 71℄[10℄ Y. Brun and M. D. Ernst. Finding latent
ode errors via ma
hine learning over pro-gram exe
utions. In Pro
. of 26th International Conferen
e on Software Engineering(ICSE 2004), pages 480�490, S
otland, UK, 2004. [
ited at p. 95℄103

http://www.bugzilla.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://en.wikipedia.org/wiki/Computer_bug

104 BIBLIOGRAPHY[11℄ G. Canfora, L. Cerulo, and M.D. Penta. Identifying
hanged sour
e
ode lines fromversion repositories. In Pro
. Int?l Workshop Mining Software Repositories, pages14�21, 2007. [
ited at p. 92℄[12℄ D. Cubrani
 and G. C. Murphy. Hipikat: Re
ommending pertinent software devel-opment artifa
ts. In Pro
. 25th International Conferen
e on Software Engineering(ICSE), pages 408�418, Portland, Oregon, 2003. [
ited at p. 23, 89℄[13℄ N.E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a
omplexsoftware system. IEEE Trans. On Software Engineering, 26:797�814, Aug 2000.[
ited at p. 23, 47℄[14℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Analysing bug predi
tion
apabilities ofstati

ode metri
s in open sour
e software. In Pro
. of International Conferen
eon Software Pro
ess and Produ
t Measurement, LNCS Vol. 5338, pages 331�343,Muni
h, Germany, 2008. [
ited at p. 9, 63℄[15℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Automated
lassi�
ation of faults in pro-gramms using ma
hine learning te
hniques. In Pro
. of Arti�
ial Intelligen
e Te
h-niques in Software Engineering Workshop, ECAI, Patras, Gree
e, 2008. [
ited at p. 9,63℄[16℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Bug-indu
ing language
onstru
ts. In Pro
.of 16th Working Conferen
e on Reverse Engineering (WCRE'09), Lille, Fran
e,2009. [
ited at p. 6℄[17℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Empiri
al evaluation of hunk metri
sas bug predi
tors. In Pro
. of International Conferen
e on Software Pro
ess andProdu
t Measurement, Amsterdam, Netherlands, 2009. [
ited at p. 6℄[18℄ J. Ferzund, S. N. Ahsan, and F. Wotawa. Software
hange
lassi�
ation using hunkmetri
s. In Pro
. of 25th IEEE International Conferen
e on Software Maintenan
e(ICSM'09), Edmonton, Alberta, Canada, 2009. [
ited at p. 6℄[19℄ M. Fis
her, M. Pinzger, and H. Gall. Analyzing and relating bug report data forfeature tra
king. In Pro
. 10th Working Conferen
e on Reverse Engineering (WCRE2003), Vi
toria, British Columbia, Canada, 2003. [
ited at p. 4℄[20℄ M. Fis
her, M. Pinzger, and H. Gall. Populating a release history database fromversion
ontrol and bug tra
king systems. In Pro
. 19th Int'l Conferen
e on SoftwareMaintenan
e, pages 23�32, Amsterdam, The Netherlands, 2003. [
ited at p. 4, 17℄[21℄ B. Fluri and H. C. Gall. Classifying
hange types for qualifying
hange
ouplings. InPro
eedings of the 9th International Conferen
e on Program Comprehension, pages35�45, 2006. [
ited at p. 92℄[22℄ B. Fluri, E. Giger, and H. C. Gall. Dis
overing patterns of
hange types. In Pro-
eedings of the 23rd International Conferen
e on Automated Software Engineering,2008. [
ited at p. 93℄[23℄ H. Gall, K. Hajek, and M. Jazayeri. Dete
tion of logi
al
oupling based on produ
trelease history. In In Pro
. Int'l Conf. Software Maintenan
e (ICSM'98), pages190�198, 1998. [
ited at p. 23, 94℄

105[24℄ R. Gar
ia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Will
o
k. A
omparativestudy of language support for generi
 programming. In Pro
. of the 18th annualACM SIGPLAN
onferen
e on Obje
t-oriented programing, systems, languages, andappli
ations, Anaheim, California, USA, 2003. [
ited at p. 8℄[25℄ S. Gar�nkel. History's worst software bugs, 2005.http://wired.
om/news/te
hnology/bugs/0,2924,69355,00.html. [
ited at p. 4℄[26℄ D.M. German. An empiri
al study of �ne-grained software modi�
ations. InPro
. 20th Int'l Conf. Software Maintenan
e (ICSM'04), pages 316�325, 2004.[
ited at p. 94℄[27℄ T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predi
ting fault in
iden
e usingsoftware
hange history. IEEE Transa
tions on Software Engineering, 26:653�661,July 2000. [
ited at p. 9, 23, 63, 94℄[28℄ J. P. Guilford and B. Fru
hter. Fundamental Statisti
s in Psy
hology and Edu
ation.M
Graw-Hill, New York, 1973. [
ited at p. 72℄[29℄ T. Gyimothy, R. Feren
, and I. Siket. Empiri
al validation of obje
t-oriented metri
son open sour
e software for fault predi
tion. IEEE Trans. Software Eng., 31(10):897�910, O
t 2005. [
ited at p. 9, 63, 90℄[30℄ A. E. Hassan and R. C. Holt. The top ten list: Dynami
 fault predi
tion. In Pro
.21st Int'l Conf. Software Maintenan
e, pages 263�272, 2005. [
ited at p. 92℄[31℄ A.E. Hassan and R.C. Holt. Predi
ting
hange propagation in software systems. InPro
. Int'l Conf. Software Maintenan
e (ICSM 2004), 2004. [
ited at p. 23, 94℄[32℄ S. Kim, Jr. E. J. Whitehead, and J. Bevan. Properties of signature
hange patterns.In Pro
. of International Conferen
e on Software Maintenan
e (ICSM 2006), pages4�14, Dublin, Ireland, 2006. [
ited at p. 23℄[33℄ S. Kim and E. J. Whitehead Jr. How long did it take to �x bugs? In Pro
.international workshop on Mining software repositories, pages 173�174, Shanghai,China, 2006. [
ited at p. 49℄[34℄ S. Kim, E. J. Whitehead Jr., and Y. Zhang. Classifying software
hanges: Clean orbuggy? IEEE Trans. Software Eng., 34(2):181�196, Mar/Apr 2008. [
ited at p. 63,64, 94℄[35℄ S. Kim, K. Pan, and E. J. Whitehead Jr. Memories of bug �xes. In Pro
. 14th ACMSymp. Foundations of Software Eng., pages 35�45, 2006. [
ited at p. 9, 63, 92℄[36℄ S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predi
ting faultsfrom
a
hed history. In Pro
. 29th Int'l Conferen
e on Software Engineering (ICSE2007), pages 489�498, Minneapolis, USA, 2007. [
ited at p. 23, 95℄[37℄ S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr. Automati
 identi�
ationof bug-introdu
ing
hanges. In Pro
. 21st IEEE/ACM International Conferen
e onAutomated Software Engineering, pages 81�90, 2006. [
ited at p. 7, 17, 99℄[38℄ D. G. Kleinbaum and M. Klein. Logisti
 Regression �A Self-Learning Text. Springer-Verlag, New York, 2002. [
ited at p. 69℄

http://wired.com/news/technology/bugs/0,2924,69355,00.html

106 BIBLIOGRAPHY[39℄ A. G. Koru and J. Tian. An empiri
al
omparison and
hara
terization of highdefe
t and high
omplexity modules. Journal of Systems and Software, 67:153�163,Sep 2003. [
ited at p. 8℄[40℄ A.G. Koru and H. Liu. Building e�e
tive defe
t-predi
tion models in pra
ti
e. IEEESoftware, 22:23�29, November/De
ember 2005. [
ited at p. 9, 63, 90℄[41℄ F. Lanubile and G. Visaggio. Evaluating predi
tive quality models derived fromsoftware measures: lessons learned. Journal of Systems and Software, 38:225�234,Sep 1997. [
ited at p. 9℄[42℄ Y. Levendel. Reliability analysis of large software systems: Defe
t data modeling.IEEE Transa
tions on Software Engineering, 16:141�152, Feb 1990. [
ited at p. 8℄[43℄ Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things
hanged now?: anempiri
al study of bug
hara
teristi
s in modern open sour
e software. In Pro
. 1stworkshop on Ar
hite
tural and system support for improving software dependability,pages 25�33, San Jose, California, 2006. [
ited at p. 8℄[44℄ Z. Li and Y. Zhou. Pr-miner: Automati
ally extra
ting impli
it programming rulesand dete
ting violations in large software
ode. In Pro
. of 13th International Sym-posium on Foundations of Software Engineering, pages 306�315, Lisbon, Portugal,2005. [
ited at p. 96℄[45℄ B. Livshits and T. Zimmermann. Dynamine: Finding
ommon error patternsby mining software revision histories. In Pro
. of 13th International Symposiumon Foundations of Software Engineering, pages 296�305, Lisbon, Portugal, 2005.[
ited at p. 96℄[46℄ T. Menzies, J. Greenwald, and A. Frank. Data mining stati

ode attributes to learndefe
t predi
tors. IEEE Trans. Software Eng., 33(1):2�13, Jan 2007. [
ited at p. 91℄[47℄ A. Mo
kus and L. G. Votta. Identifying reasons for software
hanges using histori
databases. In Pro
. 16th Int'l Conferen
e on Software Maintenan
e, pages 120�130,San Jose, California, USA, 2000. [
ited at p. 17, 23℄[48℄ A. Mo
kus and D. M. Weiss. Predi
ting risk of software
hanges. Bell Labs Te
hni
alJ., 5(2):169�180, 2002. [
ited at p. 63, 93℄[49℄ P. Mohagheghi, R. Conradi, O. M. Killi, and H. S
hwarz. An empiri
al study of soft-ware reuse vs. defe
t-density and stability. In Pro
. 26th International Conferen
eon Software Engineering, pages 282�292, 2004. [
ited at p. 8℄[50℄ R. Moser, W. Pedry
z, and G. Su

i. A
omparative analysis of the e�
ien
y of
hange metri
s and stati

ode attributes for defe
t predi
tion. In Pro
. of Inter-national Conferen
e on Software Engineering (ICSE'08), pages 181�190, Leipzig,Germany, 2008. [
ited at p. 91℄[51℄ J. C. Munson and T. M. Khoshgoftaar. The dete
tion of fault-prone programs.IEEE Transa
tions on Software Engineering, 18:423�433, May 1992. [
ited at p. 8℄[52℄ N. Nagappan, T. Ball, and A. Zeller. Mining metri
s to predi
t
omponent failures.In Pro
. of 28th Int'l Conferen
e on Software Engineering, Shanghai, China, 2006.[
ited at p. 9, 63, 91℄

107[53℄ T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large industrial soft-ware system. In Pro
. 2002 ACM SIGSOFT international symposium on Softwaretesting and analysis, pages 55�64, 2002. [
ited at p. 47℄[54℄ T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are. In Pro
. of 2004ACM SIGSOFT International Symposium on Software Testing and Analysis, pages86�96, Boston, Massa
husetts, USA, 2004. [
ited at p. 23℄[55℄ T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predi
ting the lo
ation and numberof faults in large software systems. IEEE Trans. Software Eng., 31(4):340�355, 2005.[
ited at p. 9, 63, 92℄[56℄ K. Pan, S. Kim, and Jr. E. J. Whitehead. Bug
lassi�
ation using program sli
ingmetri
s. In Pro
. Sixth IEEE Int'l Workshop Sour
e Code Analysis and Manipula-tion, 2006. [
ited at p. 9, 63, 91℄[57℄ K. Pan, S. Kim, and E. J. Whitehead Jr. Toward an understanding of bug �xpatterns. Empiri
al Software Engineering, 14:286�315, June 2009. [
ited at p. 95℄[58℄ D. L. Parnas. Software aging. In Pro
. 16th International Conferen
e on SoftwareEngineering, pages 279�287, 1994. [
ited at p. 3℄[59℄ S. L. P�eeger and J.M. Atlee. Software Engineering �Theory and Pra
ti
e. PearsonEdu
ation, In
., 3rd edition, 2006. [
ited at p. 3℄[60℄ M. Pighin and A. Marzona. An empiri
al analysis of fault persisten
e throughsoftware releases. In Pro
. IEEE/ACM ISESE, pages 206�212, 2003. [
ited at p. 23℄[61℄ A. A. Porter and W. R. Selby. Empiri
ally-guided software development usingmetri
-based
lassi�
ation trees. IEEE Software, 7:46�54, Mar 1990. [
ited at p. 90℄[62℄ L. Pre
helt. An empiri
al
omparison of seven programming languages. IEEEComputer, 33:23�29, 2000. [
ited at p. 8℄[63℄ R. S. Pressman. Software Engineering �A Pra
titioner's Approa
h. M
Graw-HillHigher Edu
ation, 5th edition, 2001. [
ited at p. 3℄[64℄ J. Ratzinger, M. Pinzger, and H. Gall. Eq-mine: Predi
ting short-term defe
tsfor software evolution. In Pro
. of FASE'07, pages 12�26, Braga, Portugal, 2007.[
ited at p. 9, 63, 92℄[65℄ A. S
hroter, T. Zimmermann, R. Premraj, and A. Zeller. If your bug database
ouldtalk. In Pro
. 5th International Symposium on Empiri
al Software Engineering,pages 18�20, 2006. [
ited at p. 4℄[66℄ J. Sliwerski, T. Zimmermann, and A. Zeller. Hatari: Raising risk awareness. InPro
. 10th European Software Eng. Conf. and 13th ACM SIGSOFT SymposiumFoundations Software Eng., pages 107�110, 2005. [
ited at p. 90℄[67℄ J. Sliwerski, T. Zimmermann, and A. Zeller. When do
hanges indu
e �xes? InPro
. of Int'l Workshop on Mining Software Repositories, pages 24�28, Saint Louis,Missouri, USA, 2005. [
ited at p. 3, 7, 17, 99℄

108 BIBLIOGRAPHY[68℄ M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding failure-indu
ing
hanges injava programs using
hange
lassi�
ation. In Pro
. Symposium Foundations SoftwareEng, pages 57�68, 2006. [
ited at p. 93℄[69℄ K. S. Trividi. Probability Statisti
s with Reliability, Queuing, And Computer S
ien
eAppli
ations. Prenti
e-Hall In
., Englewood Cli�s, NJ, 1982. [
ited at p. 48, 57℄[70℄ C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to �xthis bug? In Pro
. international workshop on Mining software repositories, 2007.[
ited at p. 49℄[71℄ C. C. Williams and J. K. Hollingsworth. Automati
 mining of sour
e
ode reposito-ries to improve bug �nding te
hniques. IEEE Trans. Software Eng., 31(6):466�480,2005. [
ited at p. 23℄[72℄ I. H. Witten and E. Frank. Data Mining: Pra
ti
al ma
hine learning tools andte
hniques. Morgan Kaufmann, San Fran
is
o, 2005. [
ited at p. 9, 75℄[73℄ A.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Predi
ting sour
e
ode
hanges by mining
hange history. IEEE Trans. Software Eng., 30:574�586, Sept2004. [
ited at p. 23, 94℄[74℄ A. Zeller. Why Programs Fail: A Guide to Systemati
 Debugging. Elsevier, 2006.[
ited at p. 4℄[75℄ T. Zimmerman, P. Weissgerber, S. Diehl, and A. Zeller. Mining version histories toguide software
hanges. In Pro
. of Int'l Conferen
e on Software Engineering (ICSE'04), pages 563�572, Edinburgh, S
otland, UK, 2004. [
ited at p. 23℄[76℄ T. Zimmermann, S. Kim, A. Zeller, and Jr. E. J. Whitehead. Mining version ar
hivesfor
o-
hanged lines. In Pro
. of Int'l Workshop on Mining Software Repositories(MSR 2006), pages 72�75, Shanghai, China, 2006. [
ited at p. 23℄

Appendi
es

109

Appendix A
List of Publi
ations
The work
overed by this thesis led to following publi
ations:� J. Ferzund, S. N. Ahsan, and F. Wotawa. Bug-indu
ing language
onstru
ts.In Pro
. of 16th Working Conferen
e on Reverse Engineering (WCRE'09),Lille, Fran
e, 2009.� S. N. Ahsan, J. Ferzund, and F. Wotawa. Are there language spe
i�
bug patterns? results obtained from a
ase study using mozilla. In Pro
.of Fourth International Conferen
e on Software Engineering Advan
es (IC-SEA'09), Porto, Portugal, 2009.� J. Ferzund, S. N. Ahsan, and F. Wotawa. Software
hange
lassi�
ationusing hunk metri
s. In Pro
. of 25th IEEE International Conferen
e onSoftware Maintenan
e (ICSM'09), Edmonton, Alberta, Canada, 2009.� J. Ferzund, S. N. Ahsan, and F. Wotawa. Empiri
al evaluation of hunkmetri
s as bug predi
tors. In Pro
. of International Conferen
e on SoftwarePro
ess and Produ
t Measurement, Amsterdam, Netherlands, 2009.

111

List of Figures
2.1 Ar
hite
ture for Data Extra
tion . 152.2 Steps for Hunk Extra
tion . 172.3 Steps for identifying bug-indu
ing hunks 182.4 CVS Log . 192.5 CVS Di�eren
e . 202.6 CVS Annotations . 202.7 CVSDi�eren
e table entries . 213.1 Proportion of hunk types in di�erent proje
ts 313.2 Bug-indu
ing language
onstru
ts in di�erent proje
ts (a) 353.3 Bug-indu
ing language
onstru
ts in di�erent proje
ts (b) 363.4 Frequen
y distribution of
orrelation
oe�
ients (same proje
t) 373.5 Frequen
y distribution of
orrelation
oe�
ients (di�erent proje
t) . . 383.6 Comparison of Bug-Indu
ing and Clean Hunks (Apa
he) 423.7 Comparison of Bug-Indu
ing and Clean Hunks (E
lipse) 433.8 Comparison of Bug-Indu
ing and Clean Hunks (Mozilla) 433.9 Comparison of Bug-Indu
ing and Clean Hunks (PostgreSQL) 443.10 Comparison of Bug-Indu
ing and Clean Hunks (Evolution) 443.11 Comparison of Bug-Indu
ing and Clean Hunks (Epiphany) 453.12 Comparison of Bug-Indu
ing and Clean Hunks (Columba) 453.13 Comparison of Bug-Indu
ing and Clean Hunks (Nautilus) 464.1 Average bug densities . 504.2 Per
entage of faulty �les . 514.3 Average LOC of faulty �les . 514.4 Average revision frequen
y . 524.5 Average
ode gain per �le . 524.6 Bug severity distribution . 534.7 Average bug lifetime . 54113

114 LIST OF FIGURES4.8 Average
ode additions . 544.9 Average
ode deletions . 554.10 Average Code Deletions / Bug Fix . 554.11 Average
ode additions per bug �x . 554.12 Average number of
hanges . 564.13 Distribution of bugs on di�erent platforms 564.14 Distribution of bugs on di�erent operating systems 574.15 The bug density distribution of �les written in Java 604.16 The bug density distribution of �les written in C 604.17 The bug density distribution of �les written in C++ 615.1 Logit Fun
tion . 705.2 Odds Fun
tion . 705.3 A

ura
ies using Random Forest and Logisti
 Regression 785.4 Buggy Hunk Pre
ision using Random Forest and Logisti
 Regression . 785.5 Buggy Hunk Re
all using Random Forest and Logisti
 Regression . . . 795.6 A

ura
ies using Individual Metri
s . 815.7 Buggy Hunk Pre
ision using Individual Metri
s 815.8 Buggy Hunk Re
all using Individual Metri
s 815.9 A

ura
ies using Metri
s Groups . 835.10 Buggy Hunk Pre
ision using Metri
s Groups 835.11 Buggy Hunk Re
all using Metri
s Groups 83

List of Tables
2.1 CVSLog table des
ription . 162.2 CVSDi�eren
e table des
ription . 162.3 CVSAnnotations table des
ription . 162.4 Des
ription of Proje
ts . 213.1 Language Constru
ts . 263.2 Frequen
ies of Bug-Indu
ing Language Constru
ts(a) 323.3 Frequen
ies of Bug-Indu
ing Language Constru
ts(b) 333.4 Correlation
oe�
ients for di�erent proje
ts 353.5 Correlation Coe�
ients (developers of same proje
t) 373.6 Correlation Coe�
ients (developers of di�erent proje
ts) 393.7 Correlation Coe�
ients (developers of same language) 403.8 Bug Laten
y (Average Values) . 413.9 Bug Laten
y Correlation Values between Language Constru
ts 414.1 Number of Sour
e Files and Total LOC 494.2 Results of the rank-sum test . 595.1 Statisti
s of Proje
ts . 645.2 Measurement Types . 665.3 Point biserial
orrelation between hunk metri
s and hunk type 745.4 Pre
ision P, Re
all R and A

ura
y A using LR with PCA 755.5 Pre
ision P, Re
all R and A

ura
y A using LR without PCA 755.6 Results of Multivariate Logisti
 Regression (a) 765.7 Results of Multivariate Logisti
 Regression (b) 775.8 Pre
ision P, Re
all R and A

ura
y A using random forests 775.9 Pre
ision , Re
all and A

ura
y for Mozilla using individual metri
s . 805.10 Pre
ision , Re
all and A

ura
y for E
lipse using individual metri
s . . 805.11 Pre
ision , Re
all and A

ura
y for Mozilla using metri
s groups . . . 825.12 Pre
ision , Re
all and A

ura
y for E
lipse using metri
s groups . . . 82115

116 LIST OF TABLES5.13 Classi�
ation a

ura
ies using models from a di�erent proje
t 84

	Contents
	Introduction
	Roadmap
	Empirical Analysis of Language Constructs
	Programming Languages and Bugs
	Hunk Classification
	Terminology

	Extraction of Data from Repositories
	Architecture
	Database Schema
	Extraction of Hunks
	Identification of bug-inducing Hunks
	Projects Analyzed

	Empirical Analysis of Bug-Inducing Language Constructs
	Extraction of Language Constructs
	Proportion of Different Hunk Types
	Most Frequent Bug-Inducing Language Constructs
	Project Similarities
	Developer Similarities
	Bug Latency
	Comparison with Non Bug-Inducing Hunks
	Summary

	Language Specific Bug Patterns
	Research Hypothesis
	Project Studied
	Evolution Metrics
	Results
	Proving hypothesis H1
	Threats to Validity
	Summary

	Hunk Classification
	The Approach
	Tools Used
	Hunk Metrics
	Evaluation Criteria
	Classification Techniques
	Logistic Regression
	Random Forests
	Principal Component Analysis (PCA)
	Point Biserial Correlation

	Results
	Correlation between Hunk Metrics and Bugs
	PCA and Logistic Regression
	Random Forests
	Comparison of Logistic Regression and Random Forests
	Performance of Individual Metrics
	Performance of Combination of Metrics
	Cross Project Predictions

	Applications

	Threats to Validity
	Related Work
	Mining Software Change History
	Bug Prediction
	Software Change Extraction and Analysis
	Buggy Code Features and Locations

	Future work
	Conclusion
	Bibliography
	List of Publications
	List of Figures
	List of Tables
	Statutory Declaration

