Graz University of Technology
Faculty of Computer Science
Institute for Software Technology

TU

Grazm

Doctor of Philosophy Dissertation

An Empirical Investigation into
Changes and Bugs by Mining
Software Development
Histories

by

Javed Ferzund

Supervisor: Univ. Prof. Dipl.Ing. Dr.tech. Franz Wotawa

November 2009
Graz, Austria

To My Parents

Foreword

This dissertation was written as a partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Informatics at the Graz University of Technol-
ogy, Austria.

The research work presented in this thesis was carried out at the Institute
for Software Technology, Inffeldgasse 16b/2, 8010 Graz, Austria. This work was
started in December 2006 and involved both research and development.

The subject of this thesis is to evaluate software repositories in order to de-
velop novel approaches for software debugging. Software changes and bugs are
researched to develop models for bug preiction and to study the features of bug in-
troducing changes. A significant part of this dissertation was published at various
conferences.

This work was suggested and supervised by Prof. Franz Wotawa and was
partially funded by Higher Education Commission, Government of Pakistan.

Abstract

Software repositories hold enormous amount of data that can be used for software
evolution studies. Finding and removing bugs from software is a challenging
task. Mining development history of software can improve the debugging process.
Software configuration management systems record all software changes that are
made during its evolution. A significant part of these changes is used to fix
bugs in software. Both bug fix and bug introducing changes can be extracted
from software repositories. Bug introducing changes can be analyzed to study
characteristics of source code that result in bugs. This dissertation presents two
empirical studies that investigate the role of language constructs in introducing
bugs and influence of programming language on post release bugs.

Revision histories of eight open source projects developed in multiple lan-
guages are processed to extract bug-inducing language constructs. Twenty six
different language constructs and syntax elements are chosen for this study. Func-
tion calls, assignments, conditions, pointers, use of NULL, variable declaration,
function declaration and return statement are found to be the most frequent
bug-inducing language constructs. They are found in 38-62%, 30-42%, 17-40%,
11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug inducing hunks respectively.
These constructs account for more than 70 percent of bug-inducing hunks. Func-
tion Calls are found to be the most dominant source of errors in all projects.
Use of pointers and NULL is highly problematic in projects developed in the lan-
guage C. Different projects are statistically correlated in terms of frequencies of
bug-inducing language constructs. Most of the developers tend to face difficulties
with similar language constructs. Statistical analysis indicates that the majority
of the developers induce similar kinds of bugs independent of the project and
programming language.

Within our work the development history of Mozilla project with a span of
11 years had been extracted and different code and evolution metrics had been
calculated. Mozilla is a heterogeneous project developed in C, C++ and Java.
Defect densities of files written in the three languages are statistically analyzed
in order to find a relationship between defects and programming languages. Life

span of bugs within the three kind of programs is also calculated to compare
the efforts required to fix bugs in the different languages. Statistical analyses of
bug densities revealed that post release bugs are influenced by the programming
language. Results of hypothesis testing showed that Java programs are less error
prone than C or C++ programs, and that C programs are less error prone than
C++ programs in same project. We found that the bug life time of Java programs
is twice as long as for C or C+-+ programs.

This thesis also introduces a new set of metrics called hunk metrics and a tech-
nique to classify hunks as buggy or bug-free. The hunk classification approach
uses hunk metrics as input variables to classify hunks into buggy and bug-free.
Classification models are built using logistic regression and random forests, and
their performance is evaluated and compared. Bug prediction abilities of individ-
ual metrics are also evaluated. The hunk classification approach is evaluated on
eight large open source projects. It can classify hunks as buggy or bug-free with
81% accuracy, 77% buggy hunk precision and 67% buggy hunk recall on average.
Hunk metrics related to change and history are found to be better predictor of
bugs than code related hunk metrics. Predictors obtained from one project when
applied to a different project could classify hunks with more than 60% accuracy.

Zusammenfassung

Software-Repositories halten enorme Menge von Daten, die fiir die Software-
Entwicklung Studien verwendet werden. Suchen und Entfernen von Software-
Fehler ist eine anspruchsvolle Aufgabe. Mining Entwicklungsgeschichte von Soft-
ware zur Verbesserung der Debugging-Prozess. Software Configuration Management-
Systeme erfassen alle Software- Anderungen, die wihrend ihrer Entwicklung gemacht
werden. Ein erheblicher Teil dieser Verdnderungen wird verwendet, um Fehler in
der Software beheben. Beide Fehler zu beheben und Fehler der Einfiihrung von
Anderungen konnen von der Software-Repositories extrahiert werden. Bug der
Einfiihrung von Anderungen konnen analysiert werden, um Merkmale der Quell-
code zu studieren, die zu Fehlern. Diese Dissertation prisentiert zwei empirische
Studien, dass die Rolle der Sprache zu untersuchen Konstrukte bei der Einfiihrung
von Bugs und der Einfluss der Programmiersprache iiber den Post Release Bugs.
Revision Geschichten von acht Open-Source-Projekte in mehreren Sprachen
entwickelt werden verarbeitet, um Fehler zu extrahieren-induzierende Sprachkon-
strukte. Zwanzig sechs verschiedenen Sprachkonstrukte und Syntax Elemente
sind fiir diese Studie ausgew#hlt. Funktionsaufrufe, Zuweisungen, Bedingun-
gen, Zeiger, die Verwendung von NULL, der Deklaration von Variablen, Funk-
tion Erklarung und return-Anweisung gefunden werden, um die haufigste Fehler-
induzierende Sprachkonstrukte. Sie sind gefunden in 38-62%, 30-42%, 17-40%, 11-
30%, 1-22%, 11-25%, 8-12% und 8-15% der Fehler hunks bzw. veranlassen. Diese
Konstrukte einen Anteil von mehr als 70 Prozent der Fehler-induzierende hunks.
Function Calls finden sich als die wichtigste Quelle von Fehlern in allen Projek-
ten. Verwendung von Zeigern und NULL ist hochst problematisch an Projekten
in der Sprache C. Verschiedene Projekte entwickelt werden, korreliert statistisch
in Bezug auf die Héufigkeit der Fehler-induzierende Sprachkonstrukte. Die meis-
ten Entwickler neigen dazu, Schwierigkeiten mit dhnlichen Sprache Gesicht Kon-
strukte. Die statistische Analyse zeigt, dass die Mehrheit der Entwickler, dhn-
liche Arten von Bugs unabhéngig von der Projekt-und Programmiersprache zu

induzieren.

Im Rahmen unserer Arbeit die Entwicklung der Geschichte von Mozilla-Projekt
mit einer Spannweite von 11 Jahren wurde extrahiert und anderen Code-Metriken
und-entwicklung war errechnet worden. Mozilla ist ein heterogenes Projekt in C,
C ++ und Java. Defect Dichten von Dateien in den drei Sprachen geschrieben wer-
den statistisch ausgewertet, um einen Zusammenhang zwischen Fehler und Pro-
grammiersprachen zu finden. Lebensdauer von Fehlern innerhalb der drei Arten
von Programmen ist auch geeignet, die Anstrengungen erforderlich, um Fehler in
den verschiedenen Sprachen fix vergleichen. Statistische Analysen ergaben, dass
Fehler Dichten nach Freigabe durch die Fehler der Programmiersprache beein-
flusst werden. Ergebnisse der Hypothese Tests ergaben, dass Java-Programme
weniger fehleranfillig als C oder C ++ Programme sind, und dafs C Programme
sind weniger fehleranféllig als C ++ Programme in einem Projekt arbeiten. Wir
haben gefunden, dass der Fehler Lebensdauer von Java-Programmen ist doppelt
so lang wie C oder C ++ Programmen.

Diese wird auch ein neues Set von Kennzahlen genannt hunk Metriken und
eine Technik, um hunks als Buggy oder Bug-frei einzustufen. Die Einstufung
hunk Metriken Ansatz verwendet als Fingangsgréfien hunks in Buggy und Bug-frei
einzustufen. Klassifikation Modelle werden mit Hilfe logistischer Regression und
zufillige Wilder, und ihre Leistung wird evaluiert und verglichen werden. Bug
Vorhersage Féhigkeiten der einzelnen Kennzahlen werden ebenfalls bewertet. Die
Einstufung hunk Ansatz basiert auf acht groffen Open-Source-Projekte ausgew-
ertet. Es kann klassifizieren hunks als Buggy oder Bug-frei mit 81% Genauigkeit,
77% Buggy hunk Préazision und 67% Buggy hunk erinnern, im Durchschnitt. Hunk
Metriken im Zusammenhang mit der Verdnderung und der Geschichte gefunden
werden, besser zu sein als Indikator fiir Fehler im Zusammenhang hunk Code-
Metriken. Préadiktoren, erhalten aus einem Projekt, wenn ein anderes Projekt
konnte hunks mit mehr als 60% Genauigkeit zu klassifizieren angewendet.

Contents

................................ 6

L2 Empirical Analysis of Laneuage Constructd o o o o 7
[L3 Programming Laneuages and Bugd o o oot 8
[L4 Hunk Classificatiod 8
L5 Terminologd 10
13

13

15

16

17

19

23

1__Extraction of Lanenage Constructd 25
B2 Propartion of Different Hunk Twped 30
|3 3 Most Frequent Bug-Inducing Language (“(mﬂtrn(’t‘l 31
B4 Project Similaritied 34
B5 Developer Similaritiedo 36
B.6 Bue Latencd 40
B.7 Comparison with Non Bug-Inducing Hunkd 42
B8 Summard 45
U TLanguage Specific Bug Patternd 47
1 Research Hypothesid 48
W2 Project Studied 48
3 Evolution Metried 49

ii CONTENTS

50

57

61

62

63

64

65

65

68

69

69

71

71

72

73

Ea | Correlation between Hunk Metrics and Bued 73

.62 PCA and Logistic Regression 73

.63 Random Forestd 75

76

78

3 3 S 79

[5 6.7 Cross Project PrPdiPtinn] 82

.7 Applicationdo 84
6 Threats to Validity 87
lz_Related Workd 89
|7 1 Mining Software Change Histord o o o oo 89
icti 90

92

7.4 Bugey Code Features and Liocationd 95

R Future work 97
9_Conclusior 99
Bibliography] 103
IA List of Eublicatignsl 111
[List of Figured 113

L f Tables 115

iii

118

Acknowledgments

I feel immense pleasure to thank the many people who directly or indirectly made
this thesis possible.

[am greatly indebted to my supervisor, Prof. Franz Wotawa, for opening
the door to research for me. I am thankful to him for his continuous guidance
and support at each step of my research career. He gave me freedom to think
and work on interesting research topics. He always encouraged me and provided
advice whenever it was needed. Without his guidance, it would not have been
possible to finish this dissertation.

[am grateful to Prof. Shahram Dustdar for taking time out of his busy
schedule to act as second reviewer of my dissertation.

I am thankful to my colleague Syed Nadeem Ahsan for his valuable comments
and suggestions on my work. We worked on many research topics together and
solved the problems with discussions. We spent a very good time and enjoyed our
research work.

I would like to thank the people at IST for making me feel at home. Their
friendship and care made my stay comfortable. Especially, I am thankful to Petra
Pichler for providing help and support whenever I needed it.

I was lucky to have many good friends from Pakistan Community at Graz.
Their love and support made my life easy and joyful. We lived like a family and
enjoyed our stay in Graz.

[am grateful to my parents for their continuous love and support in every
matter of my life. They allowed me to do whatever I wanted. Whenever I felt
downhearted they encouraged me and supported me. Without their support and
guidance it would not have been possible for me to achieve precious milestones in
my life.

Javed Ferzund
Graz, Austria, November 2009

Chapter 1

Introduction

Changes and bugs are interrelated in the software development process. Some
changes are made to fix bugs, and on the other hand bugs are introduced by
making changes to software. Change is a basic property of evolving software.
When changes are made, errors may be generated in the source code, which
result in software failures. These errors in turn are corrected by making changes,
so changes and bugs are in a sense complementary to each other. Changes are a
must for long life of software. According to Lehman’s Law of Program Evolution,
software needs to be continuously changed otherwise it will become progressively
less useful [B9]

Changes are made to the software due to several reasons such as fixing bugs,
adding new functionality, performance enhancement, improving compatibility,
refactoring etc. Pressman has classified software changes into four categories,
correction, adaptation, enhancement and prevention [63]. Corrective changes are
made to fix bugs, whereas adaptive changes are required to adjust the software to
changes in the external environment. Enhancements are required to extend the
functionality of the software. Preventive changes are those made to enhance the
life of the software.

Software undergoes the process of aging due to continuous changes applied
to it. Parnas has called the effect of continuous change as ignorant surgery.
That means, different developers change the software at different times, without a
thorough awareness of the software and its design [568]. Usually bugs are to be fixed
in short time periods. Due to this time pressure, developers cannot understand
the software fully before fixing bugs. A software system is changed by multiple
developers. So changes increase inconsistency, complexity, understandability and
the size of software. Sometimes these changes introduce new bugs into the source

code [67].

Bugs are created due to mistakes or errors in the source code or design of soft-

4 CHAPTER 1. INTRODUCTION

ware. Software bugs vary in their complexity and severity, and need to be detected
and removed before software deployment. Undetected bugs can be detrimental
for life and resources [25]. In 1985 Therac-25, a radiation therapy device malfunc-
tioned due to a software bug. It delivered lethal radiation doses and resulted in
deaths and injuries [25]. In 1996 Ariane 5, the European Space Agency’s rocket
was destroyed a few seconds after launch, due to a bug in the guidance computer
program. It resulted in a loss of 1 billion US$ [3].

Locating and removing bugs from software is a tedious and time-consuming
part of software development. Developers spend a lot of time and effort to find
and remove bugs, which is sometimes more expensive than writing new source
code [74]. A bug life cycle consists of bug identification, bug assignment, bug
fixing, quality assurance and re-assignment of bugs. Bugs are assigned to relevant
developers, a process called bug triage [B]. Bugs with highest priority are fixed
first and other known bugs are delivered with the software in each release.

Extensive research is going on in software debugging to produce high quality,
reliable and bug-free software. Mining software repositories is a new technique to
be also applied for software testing and debugging. Many bugs are not detected
by the traditional testing techniques like regression testing, unit testing, code
reviews and the use of debugging tools. Mining software repositories can explore
useful hidden information from software repositories and bug databases [T9, [65].
Since software repositories store historical information about changes and bugs,
important lessons can be learned by analyzing this information.

Version control systems record changes made to the source code as software
development progresses. These systems maintain a log of the changes, including
date and time of change, identity of the developer and reason of the change. Bug
tracking systems record information related to bugs. These systems hold infor-
mation about identification, assignment and resolution of bugs. Mailing lists and
communication archives record conversation between developers about particular
decisions throughout the life of a software project. All this data can be pooled to
conduct empirical studies involving software evolution [, 20)]. In this dissertation
we focus on three goals:

The first goal of this research is to identify the language constructs which
introduce bugs most of the time, thus helping in the debugging process.

The second goal of this research is to study the influence of programming
language on the occurence of post release bugs.

The third goal of this research is to help developers in identifying and removing
bugs, thereby reducing the testing effort and maintenance costs.

To meet these goals, this work proposes techniques to identify bug-inducing
language constructs and to predict bugs in terms of hunk classification. In par-
ticular this thesis contributes to the following tasks:

e Empirical analysis of language constructs

e [dentification of frequent bug prone language constructs

e Analysis of different projects, developers and programming languages for
the frequencies of bug-inducing language constructs

e Analysis of bug densities of programs written in different languages

e Study of various evolution metrics obtained from programs written in dif-
ferent languages

e Exploration of new software metrics to be used as bug predictors
e Development of hunk classification models

e Comparison of predictor models based on statistical and machine learning
techniques

The conceptual contribution of this thesis focuses on mining software devel-
opment history, identification and extraction of bug-inducing hunks, definition
of new software metrics, and extraction of language constructs. The technical
contribution of this thesis focuses on development of bug prediction models based
on metrics, approaches for change classification, and an analysis of language con-
structs for their role in introduction of bugs. The empirical contribution of this
thesis is the application and evaluation of the proposed techniques to the release
history of eight large, long lived open source software projects.

The major contributions of this thesis are:

e An approach to extract bug-inducing hunks by processing revision history of
a software project. The approach makes use of configuration management
systems and bug databases.

e Empirical analysis of bug-inducing language constructs in terms of their
frequencies.

e Correlation analysis of different projects, developers and programming lan-
guages in terms of frequencies of bug-inducing language constructs.

e Findings about the relationship between programming language and post
release bugs

e Comparative study of various evolution metrics

e Definition of 27 hunk metrics and an empirical analysis of these metrics as
predictor of bugs.

e Construction of hunk classification models and their evaluation.

6 CHAPTER 1. INTRODUCTION

1.1 Roadmap

This section describes the layout of this thesis and relationship of each chapter
with my selected publications.

Chapter 2 describes the techniques to extract data from software release history.
We present the architecture of the database used to store and analyze data
for this study. A simple approach is described to extract bug-inducing hunks
from change history of a project.

Chapter 3 presents an empirical analysis of language constructs. We identify
the language constructs that introduce bugs more frequently. We present a
correlation analysis of different projects, developers and programming lan-
guages for the frequencies of bug-inducing language constructs. This work
contributed to a publication [T6] that was presented at Working Conference
on Reverse Engineering (WCRE 2009).

Chapter 4 presents a case study to find the influence of programming langauge
on post release bugs. We calculate and compare various evolution metrics
for programs written in different languages. This work contributed to a
publication [] that was presented at International Conference on Software
Engineering Advances (ICSEA 2009).

Chapter 5 describes the hunk classification approach. We define hunk metrics
and present a technique to calculate them. We use statistical and machine
learning techniques to build classification models. These models are evalu-
ated on data of eight open source projects. This work contributed to two
publications [I8, [[7]. First [I8] was presented at International Conference
on Software Maintenance (ICSM 2009). Second [I7] is to be presented at
International Conference on Software Process and Product Measurement
(MENSURA 2009).

Chapter 6 discusses the threats to validity. It describes the limitations of this
study.

Chapter 7 reviews the related work in the field of mining software change his-
tory, bug prediction, software change extraction, software change analysis
and buggy code features and locations.

Chapter 8 discusses the future work.

Chapter 9 presents the conclusions.

1.2. EMPIRICAL ANALYSIS OF LANGUAGE CONSTRUCTS 7

1.2 Empirical Analysis of Language Constructs

Reducing bugs in software is a key issue in software development. Many tech-
niques and tools have been developed to automatically identify bugs. These tech-
niques vary in their complexity, accuracy and cost. Bug finding tools use pre-
defined bug patterns, model checking and theorem proving to detect bugs. Per-
formance of these tools can be enhanced by paying attention to those language
constructs which frequently contribute to bugs. Testing effort can be focused on
more risky language constructs. More test cases can be generated and models can
be developed for frequently bug-introducing language constructs. Code reviews
can be made with a careful examination of bug-introducing language constructs.
In this way maintenance cost will be reduced as well as software quality will be
improved.

Software repositories maintain record of all changes made to software. These
changes are made to fix bugs, to add new features, to improve performance or to
restructure the code for easy maintenance. Bug fix changes are identified by a
comment recorded by a developer in the configuration management system. These
changes can be traced back to the locations, where the bug was actually intro-
duced into the source code [61, B7]. Bug-introducing changes can be extracted
from software repositories and their properties can be studied.

This thesis presents an empirical study of bug-inducing changes with a focus on
language constructs. One goal of this work is to identify syntax elements of a lan-
guage which frequently contribute to introduction of bugs. We try to find which
language constructs are more problematic. Change history of eight open source
projects is analyzed to find, whether there are common language constructs which
contribute to bugs. These projects are developed in different languages including
C, C++ and Java. We also analyze changes made by different developers to find,
whether different developers make similar mistakes.

When developers make a change, they change classes, functions, variables, selec-
tion and control structures. We analyze the bug-inducing changes to find the syn-
tax elements which contribute to bugs. Twenty six different language constructs
and syntax elements are chosen for this study. We find that most frequent bug-
inducing language constructs are function calls, assignments, conditions, pointers,
use of NULL, variable declaration, function declaration and return statement.
These constructs account for more than 70 percent of bug-inducing hunks. Dif-
ferent projects are statistically correlated in terms of frequencies of bug-inducing
language constructs. Developers within a project and between different projects
also have similar frequencies of bug-inducing language constructs.

8 CHAPTER 1. INTRODUCTION

1.3 Programming Languages and Bugs

Comparing pros and cons of various programming languages is an interesting de-
bate among programmers and computer scientist. There exist strong opinions for
and against various programming languages. Some studies exist on comparison
of programming languages. Prechelt evaluated programs written in different lan-
guages for memory consumption, runtime efficiency, reliability, program length
and programming effort [62]. A similar study was conducted by Garcia et al.
[24] on support for generic programming. The authors identified eight language
features that support generic programming. They found that generic features are
necessary to avoid awkward designs, poor maintainability, unnecessary run-time
checks, and painfully verbose code.

Most of the published work in empirical software engineering that deals with
bug detection or bug prediction does not compare the number of post-release
bugs for programs written in different programming languages. A number of
studies exist on characteristics of bugs and defect prone modules [39, B2, A3l B9,
bBI]. Li et al. [A3] used natural language text classification techniques to analyze
bug characteristics in two large open source projects. The authors found that
memory-related bugs have decreased except some simple memory-related bugs
such as NULL pointer dereferences, whereas security bugs with severe impacts
are increasing. They also found that semantic bugs are the dominant root causes,
requiring more efforts to detect and fix them. Mohagheghi et al. [@9] in an
empirical study analyzed the impact of reuse on defect-density and stability, as
well as the impact of component size on defects and defect-density in the context
of reuse, using historical data on defects, modification rate, and software size.

This thesis presents an empirical study providing insight into post release bugs.
In this study programming languages are compared but in a new dimension that is
software evolution. It focuses on exploring the influence of programming language
on post release bugs. Various evolution metrics are compared for three different
languages including C, C++ and Java. Development history of Mozilla project
over the past 11 years is used for this study. It is found that Java is less error
prone than C language and C language is less error prone than C+-+ language, at
least for the Mozilla project. Although these results are hard to generalize, they
provide useful insight into the relationship between programming languages and
bugs.

1.4 Hunk Classification

Making changes to software is a crucial task during different phases of software
evolution. Changes are required to add new features, to fix the bugs, to improve
performance or to restructure the code for easy maintenance. These changes are
implemented by adding, modifying or deleting the source code in different files

1.4. HUNK CLASSIFICATION 9

of software. A file can be changed at one or more places, called deltas or hunks.
These hunks of source code, which are added either newly or after modifications,
may introduce bugs and result in failures later on. Each hunk has a likelihood of
being buggy or bug-free.

A large part of time and resources is consumed in software testing and debugging
during the evolution of software. We can save this effort if we can find the parts
of the source code where the probability of bugs is more and apply these resources
on files which require it most.

In order to predict the number of bugs or to provide a predictor with regard to a
classification schema there are two approaches possible. The first approach uses
statistical methods like multiple linear regression, logistic regression, and princi-
pal components analysis [AT], 62]. Linear regression can be successfully used if the
dependent variables change linear with the independent variables. As most of the
metrics normally correlate with each other, there is a strong need to overcome
the multicolinearity problem. Principal component analysis is used in this respect
to reduce the multicolinearity effect. Logistic regression can be used for binary
classifications.

The second approach relies on machine learning techniques like decision tree in-
duction, support vector machine, artificial neural networks, k-nearest neighbors
to mention some of them. Machine learning techniques have the ability to learn
from past data and these techniques can be employed in a variety of complex
situations (see [[72]).

A lot of research has been carried out on bug prediction using different approaches
and at different levels of granularity. Most of the researchers have used code met-
rics as predictors of bugs [29, B0}, b2, b5, 5 4], while others have used process
metrics as predictors of bugs [27, B5, 64]. Previous research was focused on dif-
ferent levels of granularity such as modules, files, classes and methods. Some
researchers predicted the number of faults for modules or files [52, b3, while oth-
ers focused on individual classes and methods [29, b6

This dissertation presents a hunk classification approach that predicts bugs in
smallest units of a change, which are hunks. Two prediction models are con-
structed using statistical and machine learning techniques. The models are built
using hunk metrics of previous buggy and bug-free hunks obtained by mining the
change history of a software project. Logistic regression and Random Forests are
used to build the predictor models.

Our classification approach can classify hunks as buggy or bug free with 82 per-
cent accuracy, 77 percent buggy hunk precision and 67 percent buggy hunk recall
on average. Predictors obtained from one project, based on hunk metrics, can be
successfully applied to other projects.

10 CHAPTER 1. INTRODUCTION

1.5 Terminology
This chapter defines various terms used in this thesis.

Software Configuration Management (SCM): It is the process of handling
changes made to the software during its development. It is used to control
the evolution of software projects. SCM comprises four operations: Iden-
tification, control, status accounting and audit. (IEEE Guide to Software
Configuration Management. 1987. IEEE/ANSI Standard 1042-1987.)

Bug Tracking System: A bug tracking system is used to store and manage
information about bugs such as when a bug is reported, who reported a
bug, short description of a bug, severity of a bug, platform on which a bug
is reported, module in which a bug is reported and status of a bug.

Version or Revision: These two terms are used interchangeably. A version or
revision represents instance of a file at a particular time. As a software
system evolves, changes are made to the files. Revisions are used to identify
different instances of a changed file.

Version Control: It is an important feature of a software configuration man-
agement system, used to manage different revisions of files in a software
project.

Commit: It is the process of submitting changes to an SCM system. Initially
new files of a project are committed to the SCM system. Then each change
to a file is committed. A commit may involve a single file or multiple files
together.

Change: Software evolution is characterized by making changes to the files. A
change represents a single modification stored in the SCM repository.

Change Delta: It is the result of making a change to a file. The changed lines
in a file comprise a change delta.

Added Delta: It consists of the lines added for making a change.
Deleted Delta: It consists of the lines deleted for making a change.

Hunk: Changes are made to files in chunks of source code that are dispersed in
a file. These chunks of contiguous source code lines are called hunks. There
can be multiple hunks in a change delta.

Modification hunk: If source code lines are modified to make a change, the
resulting hunk is called a modification hunk.

1.5. TERMINOLOGY 11

Addition Hunk: If new source code lines are added to make a change, the re-
sulting hunk is called an addition hunk.

Deletion Hunk: If new source code lines are removed to make a change, the
resulting hunk is called a deletion hunk.

Change log: When a developer commits a change to the SCM system, she
records a message describing the purpose of the change. This message is
called change log. Change logs can be processed to identify different kinds
of changes.

Change Annotation: It is a basic feature of configuration management sys-
tems. An SCM system annotates each source code line with the date of
modification, author of the line and the revision in which that line was
changed.

Bug: A bug is characterized by a programming mistake or error in source code
that results in malfunctioning of software.

Fix: A fix is characterized by replacing erroneous source code with the correct
code. A fix is used to remove a bug from software.

Bug Fix Change: A change applied to software, to fix a bug is called a bug fix
change.

Bug-Inducing Change: A change which resulted in malfunctioning of software
later on is called a bug-inducing change or buggy change.

Bug Fix Hunk: A hunk which is part of a fix is called a bug fix hunk.

Bug-Inducing Hunk: A hunk which resulted in malfunctioning of software later
on is called a bug-inducing hunk.

Bug-Fix Developer: A developer who makes changes to fix a bug is called a
bug-fix developer.

Bug-Inducing Developer: A developer, modifications made by whom resulted
in malfunctioning of software, is called a bug-inducing developer.

Chapter 2

Extraction of Data from
Repositories

The work presented in this thesis is based on data obtained from mining soft-
ware release history. Information related to changes and bugs is extracted from
configuration management systems and bug databases. Source code and change
information is extracted from CVS and SVN repositories. All revisions of each file
are analyzed for changes made at different times. Bug information is extracted
from Bugzilla and this information is mapped to revisions of files from respective
software repositories.

We use our own developed modules to extract information from CVS and bug
databases. The extracted information is stored into a database. This database
is used for training hunk classification models as well as for analyzing language
constructs.

This chapter describes the architecture of the data extraction process, the steps
to extract and identify bug-inducing hunks and a schema of the database used to
store hunks.

2.1 Architecture

The data extraction process used in this study involves four modules along with
a fact database. The four modules are described shortly.

Log Parser It extracts log information from a software repository. Whenever a
change is committed to the repository, configuration management system
records the purpose of change and meta data of change. Log parser connects

13

14 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

to CVS and SVN, extracts log information for all revisions and stores this
information into the fact database.

Annotation Parser It takes annotations for every revision of all files in a project.
Configuration management systems annotate each line of code with author
and date information. This information is important for analysis of changes.
Annotation parser connects to CVS and SVN, extracts annotations for all
files and stores this information into the fact database.

Difference Parser It takes difference of two consecutive revisions of each source
file, extracts the change deltas and store this information into the fact
database.

Bug Parser It extracts bug reports from a bug database and stores this infor-
mation into the fact database.

Fact DataBase It holds all the information regarding files, revisions, developers,
bugs, transactions and changes.

Architecture of data extraction process is depicted in Figure Bl Data extrac-
tion is completed in four steps:

e Log information is extracted from CVS and SVN repositories. CVS main-
tains log for each revision of a file separately while SVN maintains log for
every revision of the project. So log information from SVN repositories is
further processed to relate the log to changed files only.

e Differences are extracted between two consecutive revisions for all files. CVS
and SVN provide the facility to view and get differences between two revi-
sions. This information reveals the code additions, deletions and modifica-
tions made during the evolution of software.

e Annotations are obtained for each line of code in all revisions. This infor-
mation is also extracted from CVS and SVN repositories. Annotations are
helpful in studying evolutionary aspects of software.

e Bug reports are extracted from bug databases. Bug reports hold important

information including descriptions, report and fix dates, developers involved
in fixing and patches of code.

Details for extraction and labelling of hunks are described in the next sections.

2.2. DATABASE SCHEMA 15

SCM Repository

2 1

Bug Database

Change Bug Report
Extractor LBt Extractor
I Hunk Preprocessing |

| Hunk Labeling |

Hunk Classification
4

| Metrics Calculation |

Language
v| Construct Analysis

4

e
Fact Database

Figure 2.1: Architecture for Data Extraction

2.2 Database Schema

A simple database is designed to hold the log, difference and annotation infor-
mation. This database is further analyzed to identify bug-inducing and bug-fix
hunks. The database consists of three tables, details of which are given below:

CVSLog holds information extracted from log messages for each revision. A
description of its attributes is given in Table 21

CVSDifference holds information about change deltas between every two con-
secutive revisions of each file. A description of its attributes is given in
Table

CVSAnnotations holds information extracted from annotations obtained for
each revision of every file. A description of its attributes is given in Table
2.0l

16 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

Table 2.1: CVSLog table description

Field Type Description

file varchar(255),not null Name and path of the file

revision varchar(10),not null ~ Revision number of a file

rdate date,not null Revision date and time

author varchar(50) Name of author who made the revision
state varchar(20) State of the revision

linesadd integer, not null Number of lines added to this revision
linesdel integer, not null Number of Lines deleted from this revision
comment longtext Comments added by the author

bug varchar(3),not null Indicates whether a bug is fixed

Table 2.2: CVSDifference table description

Field Type Description

file varchar(255),not null Name and path of the file

revision varchar(10),not null ~ Revision number of a file

hunk_id varchar(10),not null represents hunk identifier

hunk text text,not null Contains the actual source code in a hunk
bug induce varchar(3),not null Indicates a bug-induce hunk

bug_fix varchar(3),not null Indicates a bug-fix hunk

Table 2.3: CVSAnnotations table description

Field Type Description

file varchar(255),not null Name and path of the file
revision varchar(10),not null ~ Revision number of a file

line number integer, not null Position of a line in the revision
line revision varchar(10),not null line modification revision
author varchar(50) author of the line

date date date and time of modification
line code text Actual source code of the line

2.3 Extraction of Hunks

Evolution history of a project holds a lot of information including changes made
to it. A single change can be applied to one or multiple files. Changes are made in
small chunks of code, that are dispersed in a file. These chunks are called hunks.

To extract hunks from a software repository, steps illustrated in Figure
are used. Execution of these steps populates the tables mentioned in the previous
section.

In the first step, log information is obtained for all revisions of each file, using
the log command of CVS and SVN. A part of CVS log output is shown in Figure
B4l It contains date and time, author, state, lines added and deleted, commit
status and a comment added by the developer. The comment part is processed

2.4. IDENTIFICATION OF BUG-INDUCING HUNKS 17

1. For each file i in a project

2. For each revision j of file i

3. Take CVS log of revision j file i and store in a text file X.txt
4. Extract information from X.txt and store into CVSLog table
5. Process the comments to mark the revision as bug-fix or not

6. For eachfile i

7. For each revisionj of file i

8. Take diff of revision jand revision j-1 and store in a text file Y.txt
9. Extract information from Y.txt into CVSDifference table

10. For each bug-fix revision k of file i

1. Take CVS annotate of revision k-1 and store into a text file Z.txt

12. Extract information from Z.txt and store into CVSAnnotations table

Figure 2.2: Steps for Hunk Extraction

to identify bug-fix revisions as described in [A7], 20].

In the second step, a difference is taken between each pair of consecutive revisions
for all files, using the diff command of CVS and SVN. A sample of difference
output is shown in Figure EZOl Tt consists of different hunks, with each hunk
indicating the lines added, deleted or modified between the two revisions. The
lines starting with ’<” indicate the lines removed/modified from previous revi-
sion, whereas the lines starting with ’>? indicate the lines added into the current
revision. Lines starting with >>? are stored into the CVS difference table for each
revision. It indicates the code added either newly or after modifications. This
portion of code will be used for extraction of language constructs and syntax el-
ements.

In the third step annotations are obtained for all latest revisions preceding the
bug-fix revisions, using the annotate command of CVS and SVN. A sample of
annotations is shown in Figure It provides for each line, the last revision in
which this line was added or modified, the author who added this line, the date
when this line was last added or modified and the actual code. This information
helps to identify the origin of the bugs [67].

2.4 Identification of bug-inducing Hunks

Bug-inducing changes can be identified using SZZ algorithm [67), B7]. However
SZ7 algorithm identifies changes at file level. It does not recognize bug-inducing
hunks, rather it considers whole change as bug-inducing. A manual review of
bug-inducing changes have shown that not all hunks of a bug-inducing change

18 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

1. Get setA of bug fix file and revision pairs from CVSLog table

2 For each file and revision pairi in set A

3 Get a set B of hunk_ids from CVSDifference table

4. Mark each hunk_id as bug_fix

5 For each modification or deletion hunk_id j in set B

6 Filter the set C of lines which are modified or deleted in
hunk_id j

For each line k in set C

© ~N

Get the line_revision and line_code from

CVSAnnotations table

9. Get a set D of hunk_id and hunk_text pairs from the
CVSDifference table for line_revision obtained in step 8

10. Identify the hunk_text from set D which contains the

line_code from step 8, and mark it as bug_inducing.

Figure 2.3: Steps for identifying bug-inducing hunks

contribute to bugs. So a technique is required which can discriminate between
bug-inducing and non bug-inducing hunks.

This dissertation proposes a technique for identifying bug-inducing hunks. A
detail of the technique is illustrated in Figure EZ3l This technique makes use
of the database described earlier. The steps to identify bug-inducing hunks are
explained using an example. Suppose we have a file from Eclipse project named
JDTCompilerAdapter.java. In the first step log information is extracted from the
CVS repository. Figure Z4] shows a sample of log taken for the above mentioned
file. It contains information related to revision, author, date, time, lines added or
deleted, status and a comment added by the developer. Comments are processed
to find keywords Fix, Fixed, Patch, Bug or a numeric identifier of a bug. Such
comments are highlighted using boldface in Figure Z4l To illustrate the hunk
identification process, revision 1.66 is selected in which a bug is fixed, revision
1.66 is marked as bug fix revision. To fix a bug in this revision changes were
made to revision 1.65.

A difference is taken between revision 1.65 and 1.66. Figure shows the
difference of both revisions. There are two hunks in Figure 3, which are high-
lighted. First hunk indicates that lines 110-113 are changed in revision 1.65 to line
110 in revision 1.66. Lines starting with ><” indicate the lines removed /modified
from revision 1.65, whereas the lines starting with ’>? indicate the lines added
into revision 1.66.

To identify the latest revision in which these lines were added, annotations
are obtained for revision 1.65. Figure shows the annotations organized in
a tabular form. Comments are ignored and code of lines 110,115,116 and 117 is

2.5. PROJECTS ANALYZED 19

revizion 1 .06

date: 2006-11-28 18:37:52 H1100; author: oliviert; state: Exp; lineg: +9 -7. commatid:
Sa60456cT3ef4507,

HEAD - Fix for 165076

revigsion 1 .65

date: 2006-11-24 02:32.07 +0100; author: oltviert; state: Exp; lines: 42 -2, commatid:
G3d645664b6a4567

HEAD - Fix for 161975 and 161980

Figure 2.4: CVS Log

selected. These lines were recently modified or added in revision 1.38 and revision
1.29 as indicated in Figure L8l CVS difference table is queried to identify the
hunks in which these changes were made. Figure EZ7 shows all the added hunks
in revision 1.38. String comparison is used to identify the hunks in which lines
110,115 and 117 were added. The hunks containing these lines are highlighted in
Figure 7 and these hunks are marked as bug-inducing hunks.

2.5 Projects Analyzed

For this study 8 open source projects are selected. These projects are selected
due to easy availability of their development history and bug information. Table
P24 shows some statistics of these projects. We describe the projects shortly:

Apache HTTP 1.3 is the most popular web server on the Internet, providing
secure, efficient and extensible HTTP services (http://httpd.apache.org/).

Columba is an Email Client written in Java, featuring a user-friendly graphical
interface with wizards and internationalization support. We selected for our
study the main trunk of Columba.

(http://www.columbamail.org/drupal /)

Eclipse is an integrated development environment (IDE) for software develop-
ment. We selected JDT part of Eclipse project for our study, that provides
Java Development Tools (http://www.eclipse.org/).

Epiphany is a simple and easy to use web browser for GNOME desktop
(http://projects.gnome.org/epiphany/).

20 CHAPTER 2. EXTRACTION OF DATA FROM REPOSITORIES

Index: antadapteroghkclipsefjdticorelIDT Compilerf dapter jara

RS file: Jevsrootieclpselorg echipse jdt core At alapteriongleclipse fdtcore/ D T cmnplerAdapter ava, v
1ehiering revision 1 65
1w hiering revision 1 66

&iff -11 65 11 66

1 (s bootclaspath = morll & & this bootelsspath si=() 1= 03
lﬁ:
* Set the bootclasspathifor the Exlipee compier

*f
_1f{ thus bootclasspath = woll) {

cd ceatefopmnent() set Patlitlns bootelhsspath),

< }else{
< s mnchide JavaFiot e = tme
= if'ithy bootolasspath size{) 1=) {
= e
= * Set tle bootclasspatlfor the Eclipee comopier.
= *J
= cnd cieate gmneit) set Pathitlos bootelsspatly),
= telsed
= cnd create opmnert () setVale THIEMPTY STEING),
= i
Figure 2.5: CVS Difference
Line Mo |Fevision |Stamp Code
110 1.38 ipmulet 21-Tul-04) |af (this. bootclasspath I=null &&
thig bootclasspath. size () 1= 0) {

111 1.6 {othomann 05- *

Sep-02)
11z 16 {othomam 05- * Set the bootclasspath for the Eclipse

sep-020 compiler.
113 1.6 {othomann 05- *

wep-02)
115 1.38 (pmulet 21-Jul-04) | emd. create Argument() . setP ath(this b ootclas

spath);

116 1.29 {othomann 29- Telse |

Sep-03)
117 138 (pmulet 21-Jul-04) | this includeJavaFuntime = true;

Figure 2.6: CVS Annotations

2.5. PROJECTS ANALYZED 21

552 this attributes logA ot A dapteihlessage s getStringy ant jdtadapteri
nfo.using] DTCompiler), Project M3G_VERBOSE); /17 ON-
NLS-1%

G2ecal if (MremaltValue & this wetboze) |

D2ed2 Path clagzpathi= new Pathithis project),
D000 addExtdirethis extdirs, clagzpatl;

Figure 2.7: CVSDifference table entries

Table 2.4: Description of Projects

Project Software Type Language Period

Apache HTTP 1.3 HTTP Server C 01/1996-01/2008
Columba Email client Java 07/2006-12/2007
Eclipse JDT Java Development IDE Java 06,/2001-10/2008
Epiphany Web Browser C 12/2002-02/2009
Evolution Groupware Client C 04,/1998-06/2007
Mozilla Web Browser C/C++/Java 03/1998-07/2008
Nautilus File Manager C 10/1999-02,/2009
PostgreSQL DBMS C/Crt 07/1996-10/2008

Evolution provides integrated mail, address-book and calendaring functionality
to users of the GNOME desktop (http://projects.gnome.org/evolution/).

Nautilus is a powerful file manager.
(http://projects.gnome.org/nautilus/)

Mozilla is a popular and widely used web browser. (http://www.mozilla.org/)

PostgreSQL is a widely used database management system. (http://www.postgresql.org/)

Chapter 3

Empirical Analysis of
Bug-Inducing Language
Constructs

As a software evolves, changes are continuously applied to the source code. Soft-
ware configuration management systems record these changes made to the source
code. This information can be extracted and used for software evolution studies.
Log messages of a transaction help to identify reasons for software changes [47].
Bug databases hold important information related to bugs [I]. This information
can be used to study characteristics and behavior of bugs. Software configuration
management data combined with bug data provides a rich source for different
kinds of empirical studies. In the recent years research is focused on producing
good quality software with reduced costs. Particularly researchers are interested
in reducing testing effort and maintenance costs. Most of the work is aimed at
fault occurrence and fault prediction in the software [I3l, 27, B6, K4l 60 [7T]).

Software change history can be mined to discover interesting change patterns.
Research has been conducted on different levels of granularity to find change
patterns. Some researchers have studied file co-change patterns [73] , others have
studied logical couplings among different modules [T2, 23] and line co-change
patterns [[(6] . More fine grained research is also conducted to find application
specific patterns, to find item couplings, to predict change propagation and to
find signature change patterns [T, B2, [75].

In this chapter an empirical study of changes and bugs is presented. Soft-
ware change history of 8 open source projects is mined and characteristics of
bug-introducing changes are analyzed. A number of language constructs are ex-
tracted from bug-introducing changes and their abilities of bug-introduction are

23

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
24 CONSTRUCTS

studied. Different language constructs are compared and more bug-prone lan-
guage constructs are identified.

Revision histories of 8 open source projects are mined to extract bug-inducing
hunks. These hunks are processed to extract language constructs and syntax el-
ements which contribute to bugs. The objective of this study is to find language
constructs which are more problematic. If such bug-inducing syntactic elements
are identified, testing effort can be focused on the most frequent bug-inducing
elements. Further developers can be careful while making changes, keeping in
mind the frequent bug-inducing elements. When developers make a change, they
change classes, functions, variables, selection and control structures. My first re-
search objective is to find which language constructs or syntax elements introduce
bugs most of the time. This formulates my first research question:

e Research Question 1. What are the most frequent bug-inducing language
constructs.
Different projects are developed for specific purpose and by a different group
of developers. Further projects can be developed in different programming
languages. So it would be interesting to know which language constructs
commonly introduce bugs in different projects. It gives rise to the following
two research questions:

e Research Question 2. Is the frequency of bug-inducing language constructs
similar between projects developed in the same language.

e Research Question 3. Is the frequency of bug-inducing language constructs
similar between projects developed in different languages.
Different developers may have different programming skills, so they may feel
difficulty with different language constructs and hence introduce different
kinds of bugs. There can be domain specific features which increase the
difficulty of developers. This observation gives rise to the following research
questions:

e Research Question 4. Is the frequency of bug-inducing language constructs
similar between developers of the same project.

e Research Question 5. Is the frequency of bug-inducing language constructs
similar between developers of different projects.

e Research Question 6. Is the frequency of bug-inducing language constructs
similar between developers of the same programming language.

e Research Question 7. Is the frequency of bug-inducing language constructs
similar between developers of different programming languages.

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 25

To conduct this study, 8 open source projects developed in multiple languages and
having a long development history are selected. A description of these projects is
already given in Chapter 2.

3.1 Extraction of Language Constructs

Bug-inducing hunks are identified using the techniques mentioned in Chapter
2. A static source code parser is implemented in Java, which extracts different
syntax elements from a given hunk. It parses the hunk and finds the occurrence
of different language constructs. 26 different syntax elements are chosen, and the
parser is designed to find these elements. A detail of these syntax elements is
shown in Table Bl with examples extracted from Eclipse and Apache change
data. Syntax elements presented in last five rows of Table Bl are extracted for
Java files only, whereas pointers, include statement, define statement, structures,
assertions and goto statement are not extracted for Java files.
A short description of each language construct is presented below:

Conditions: Conditional expressions provide a selection mechanism in the pro-
gram. Developers implement conditions in a program to provide multi-
ple paths of execution. Conditions usually evaluate a Boolean expression
and depending on the evaluation result, execution path is selected. There
can be simple and complex conditions in a program. Simple conditions
involve single Boolean expression, whereas complex conditions involve mul-
tiple Boolean expressions. Further conditions are nested up to many levels.

As conditions involve Boolean expressions and use of relational operators,
developers can make a mistake in selecting appropriate relational or logical
operators. Usually equality operator is mistakenly used and it is sometimes
missed by testing tools.

Loops: Loops provide an iteration mechanism in a program. Developers use
loops to repeat a statement or group of statements many times. There
are three kinds of loops, one which executes statements for the specified
number of times, the other repeats statements until a specified condition
becomes false, and the third one executes statements at least once even if
the specified condition is false.

Developers may make a mistake in specifying the counter variable in the
loop, or the controlling condition may be set wrong.

Assignments: Assignments are used to set or change the value of a variable.
This value can be set using a constant, other variable or an expression. The
expression may be arithmetic, logical, object instantiation or some function
call.

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE

26 CONSTRUCTS
Table 3.1: Language Constructs

Syntax Element Symbols Examples

Conditions if, else, else if if (this.compileList.length 1= 1) {

Loops for, while, do while for (int i = 0, max = pathEle-
ments.length; i< max; i++) {

Assignments = this.target—true;

Function Calls Foo (); classpath.addExisting(new Path(null,
jre_lib.toOSString()))

Function Decl./Def. bar () { } private void addExtdirs(Path extDirs,
Path classpath) {

Variable Declaration int foo; Map customDefaultOptions;

Pointers Int * foo; char *fspec;

Logical Operators &&, |, ! if (Iresult Value && this.logFileName !=
null) {

Relational Operators <, >, ==, = <= >=if (this.accessRules == null) {

Return statement return a; return ClasspathDirectory + this.path;
//NON — NLS — 1

Use of NULL foo= NULL; private Map fileEncodings = null;

Include statement # include # include <sys/stat.h>

Define statement # define # define

MPE_ WITHOUT MPELX44

Structures struct foo { } struct utsname os_ version;

Assertions assert () assert(idx < APACHE ARG _MAX);

Arrays int foo |] String|] dirs = extDirs.list();

Case statement case foo: case READING_JAR:

Goto statement goto foo: goto return_from _multi;

Inc-dec operator +4, - if (len > 2 && errstr[len-3] == .) len-

Break statement break; state = destinatonPathStart; break;

Exception handlers try, catch try {zipFile.close();}
catch(IOException e) {

Class declaration class foo public class ClasspathDirectory imple-
ments FileSystem.Classpath {

New operator new foo() this(new ZipFile(file), true, null);

Throw statement

throw foo-exception;

throw new BuildException(Jdtcom ,e);
//NON — NLS — 1

Imports

import

import org.eclipse.core.runtime.IPath;

Inheritance

extends, implements

public class ClasspathJar extends
ClasspathLocation {

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 27

Developers can make mistakes in assignments by using wrong values or
inappropriate expressions.

Function Calls: Functions or methods are a way to modularize programs. In
object oriented programming methods act as interfaces to classes. Devel-
opers write methods or functions to perform certain tasks. Whenever that
task is required, they can make a call to it. A proper syntax of a method
call includes method name and its parameters. If the function or method
returns a value, it should be used in an assignment expression.

Programmers can make a mistake in providing the correct parameters or
arguments to a function call, or they can make a call at the wrong place.

Function Definitions: Functions or methods are required to be defined before
they can be called in a program. Method definitions are an essential part
of object oriented programming. Classes are incomplete without methods.
Method definitions consist of signature of the method and a body of the
method. Signature of a method consists of an access specifier, return type,
method name and a list of parameters. Method body consists of a set of
statements.

Developers can make mistakes in writing signature of a method.

Variable Declarations: Variables are used to occupy memory locations for hold-
ing data. Variables can be declared or defined in a program. Variable decla-
ration involves a data type and a variable name, whereas variable definition
additionally involves an assignment of initial value to the variable. Variables
can be of simple data types or complex user defined data types. In object
oriented programming, variables are also used to hold instances of classes.

Developers can make wrong declarations or incorrect instantiations, which
may lead to errors in programs.

Pointers: Pointers are a kind of variables which hold memory addresses. Devel-
opers use pointers to refer different memory locations in a program. Pointers
are extensively used in programs developed in C language. Pointers can be
declared of any data type and they can point to memory locations of the
same type.

Major draw back of pointers is memory management. Pointers can refer
to wrong locations or they can occupy memory when it is no more needed.
Developers can make mistakes in pointer initializations or pointer updations.
They can also forget to free memory after using it.

Logical and Relational Operators: Logical operators are used to combine Boolean
expressions whereas relational operators are used to construct Boolean ex-
pressions. They are normally used as part of the conditions and loops.

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
28 CONSTRUCTS

Developers can make a mistake in using the appropriate operator at the
appropriate place.

Return Statement: Return statement is used in a method or function to return
a value. If a return type is mentioned in method signatures, it should have
a return statement in its body. Return statement is a way to use the results
of a function execution outside the body of a function.

Developers can forget to return a value or they can make a mistake in
returning the correct value.

Use of Null: Null is treated as 0 or void in C and C++. In Java it is a special
literal of the null type and it doesn’t necessarily have value zero. It is
impossible to cast to the null type or declare a variable of this type.

Developers can make invalid use of null or they can make mistakes in as-

signing null.

Include Statement: Include statement is used to combine library files or other
user written files in a C or C+-+ program.

Define Statement: Define statement is used to define macros in a C or C++
program.

Structures: Structures are a way to combine different data types into a single
data type. In procedural languages structures are used to combine variables
and functions. A structure represents a complex data type consisting of
multiple simple data types.

Developers can make a mistake in defining the structure or assessing the
elements of the structures.

Assertions: In large programs, before proceeding further it is useful to know
whether a condition or set of conditions is true. To start a particular com-
putation, developers usually make sure that the program is in a state, in
which they believe it to be. It is accomplished by use of a statement called
assertion. If an assertion fails, a diagnostic message can be displayed and
the program is terminated.

Programmers can make mistakes in using valid assertions.

Arrays: Arrays provide a way to store collection of data items of same type
at contiguous memory locations. Individual elements can be accessed by
specifying the index of that element. Object oriented languages provide
functions related to arrays that can be used to manipulate arrays.

Developers can make mistakes in declaring arrays or accessing the elements
of an array.

3.1. EXTRACTION OF LANGUAGE CONSTRUCTS 29

Case Statement: Switch statement provides a way to have multiple execution
paths based on the value of a single variable. Different values of the switch
variable are provided by using case statement. During the execution of a
program, statements after the matching case are executed. A default case
is also provided, which is executed when none of the cases match with the
current value of the switch variable.

Developers can make incorrect use of cases.

Goto Statement: Goto statement is used to shift control from one place to
another place in a program. It is used in programs written in C language.
Labels are used to mark locations in a program, goto statement can shift
control to these labels.

Programmers can make erroneous use of goto statement.

Increment-decrement Operator: Increment operator when applied to a vari-
able, increases its value by adding one to it. Similarly decrement operator
when applied to a variable, decreases its value by subtracting one from it.
These operators are short notation of an assignment expression, doing the
same. Use of the operator on left or right side of the operand produces
different results.

Programmers sometimes do not make use of increment-decrement operator
carefully and unexpected results are produced.

Break Statement: Break statement is used in loops to stop the iterations of
a loop based on some condition. Sometimes you do not want the loop to
complete the specified iterations, and stop the repetition based on the state
of an external variable. Break statement helps in such kind of situations.

Mishandling of break statement can produce unexpected results.

Class Declaration and Definition: Classes are the core of object oriented pro-
gramming languages. Classes implement the data encapsulation, inheri-
tance and polymorphism, that are typical features of object oriented pro-
gramming. Classes are composed of data members and methods, with pub-
lic, private and protected access specifiers for these two. A class can be used
in a program by creating instances of it, which are called objects.

Programmers can make several types of mistakes while defining classes.
New Operator: New operator is used when a new instance of a class is required.

New operator reserves memory for an instance of a class and names it with
the variable for which that instance is created.

Programmers can mistakenly create wrong instantiations, or they may use
wrong arguments to the constructor of a class.

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
30 CONSTRUCTS

Import Statement: Import statement is used to include different packages in
a program. It is not very much concerned with errors, however it may
indirectly involve in creation of bugs.

Inheritance: It is a typical feature of object oriented programming. A class can
inherit either from a single class or multiple classes. C++ supports multiple
inheritance, whereas in Java interfaces are used to implement multiple in-
heritance. By using inheritance, features of the parent class are transferred
to the child class. The child class can have additional features of its own.

Improper handling of inheritance can result in multitude of errors which
cause failure of the program.

Exception Handlers: Exception handling is a way to trap known errors in a
program. It is implemented by a try and catch mechanism. Parts of the
code which are known to generate errors are placed in a try block. Each
try block is accompanied by a catch block, in which error handling code is
placed. Exception handling prevents a program from terminating, when an
error occurs.

An exception may not be trapped by the catch blocks provided and result
in program failures.

Throw Statement: Throw statement is used to throw an exception of a speci-
fied type.

Invalid throw statement can result in errors, causing malfunctioning of a
program.
3.2 Proportion of Different Hunk Types

Extracted hunks are grouped into four categories based on the bug information.
These hunk types are:

Bug-Fix Hunks These hunks are part of bug-fix changes. A bug-fix hunk is
created when a developer fixes a bug.

Bug-Inducing Hunks These hunks are origin of bugs. A bug-inducing hunk is
created when a developer makes a change, which results in failure later on.

Bug-Fix-Inducing Hunks These hunks are part of bug-fix changes but intro-
duce bugs later on. A bug-fix-inducing hunk is created when a developer
fixes a bug but at the same time introduces another bug.

Clean Hunks These hunks are neither part of bug fixes nor introduce any bug.

3.3. MOST FREQUENT BUG-INDUCING LANGUAGE CONSTRUCTS 31

Proportion of Different Hunk Types

G0
50 BMEclipse
M Apache
. 40 OPgsgl
= M Columba
z 30 W E volution
= OEpiphany
= a0 W Mautilus
= OModlla-C
== 10 W Modlla-Java
EModlla-CPP
]
Bug-Fix Bug-Ined Bug-Fix-Ine Clean
Hunk T ype

Figure 3.1: Proportion of hunk types in different projects

As development of software progresses new features are added and size of soft-
ware grows. Chances of errors are increased as the number of changes increases.
Bug-inducing hunks constitute a significant proportion of total hunks made in
the development history of a project. Figure Bl shows the proportion of different
types of hunks in 8 projects. Mozilla project is described with three languages
separately.

All projects have more than 20% bug-fix hunks. Proportion of bug-inducing
hunks is higher in projects developed in C language. Mozilla and Nautilus have
a higher percentage of bug-fix-inducing hunks. Projects developed in JAVA have
comparatively higher percentage of clean hunks.

3.3 Most Frequent Bug-Inducing Language Constructs

Frequencies of language constructs in bug-inducing hunks are calculated. A ma-
jority of the bug-inducing hunks involved a change to more than one language
construct. To answer the research question 1, for each language construct, the
proportion of total bug-inducing hunks, it was involved in is calculated. The
most frequent bug-inducing language constructs are function calls, assignments,
conditions, pointers, use of NULL, variable declaration, function declaration and
return statement. Table and show the proportion of total bug-inducing
hunks which contain a given language construct, expressed as percentage val-
ues. Columns from 2 to 8 in Table indicate the percentage of total hunks
involving a specific language construct for Apache, Epiphany, Evolution, C files
of Mozilla, C++ files of Mozilla, Nautilus and PostgreSQL respectively. In Table

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
32 CONSTRUCTS

Table 3.2: Frequencies of Bug-Inducing Language Constructs(a)

Syntax Element Ap. | Ep. | Ev. | Moz-C | Moz-CPP | Nau. | Pg-SQL
Conditions 40 22 29 28 28 21 17
Loops 11 4 7 5) 4 4 6
Assignments 38 39 42 35 31 31 25
Function Calls 54 57 62 38 47 59 36
Function Declaration 12 12 11 8 8 11 7
Variable Declaration 14 24 25 16 14 18 13
Pointers 30 24 29 15 11 24 12
Logical Operators 30 16 18 17 15 15 10
Relational Operators 23 17 15 12 14 14 9
Return statement 15 9 11 13 14 8 7
Use of NULL 19 22 22 11 0.8 18 6
Include statement 0.69 7 5 1 2 5 1
Define statement 2 2 1 1 0.65 2 0.57
Structures 2 1 3 0.83 0.2 | 0.58 1
Assertions 0.09 0 0 0.01 0.01 0 0.07
Arrays 10 5 4 11 3 2 6
Case statement 2 2 3 2 1 1 5
Goto statement 0.38 | 0.35 | 0.57 3 0.19 | 0.22 0.23
Inc-dec operator 21045 | 0.63 4 0.37 3
Break statement 3 2 3 3 1 1 2

columns from 2 to 4 provide values for Columba, Eclipse and Java files of
Mozilla respectively.

Function calls range from 38-62%, assignments range from 30-42%, conditions
range from 17-40%, pointers range from 11-30%, use of NULL ranges from 1-
22%, variable declarations range from 11-25%, function declarations range from
8-12% and return statement ranges from 8-15% in the studied projects. Columba
contains a high number of bug-inducing hunks involving imports and object in-
stantiations (use of new operator). Use of increment-decrement operator, case
statement and object instantiations is high in bug-inducing hunks of Eclipse. Ar-
rays have caused more problems in Apache, Eclipse and C files of Mozilla. Number
of goto statement is higher in bug-inducing hunks of Mozilla C files as compared
to other projects.

More than 50% bug inducing hunks of Apache involve function calls and about
40% bug inducing hunks have conditions and assignments. Pointers are present in
30% bug inducing hunks of Apache. Function declarations, variable declarations,
null, return statement and loops are present in 12%, 14%, 19%,15% and 11% bug
inducing hunks of Apache respectively. About 10% bug inducing hunks of Apache

3.3. MOST FREQUENT BUG-INDUCING LANGUAGE CONSTRUCTS 33

Table 3.3: Frequencies of Bug-Inducing Language Constructs(b)

Syntax Element Columba | Eclipse | Mozilla-J
Conditions 20 31 17
Loops 8 7 4
Assignments 37 33 30
Function Calls 50 41 39
Function Declaration 8 11 10
Variable Declaration 20 12 11
Logical Operators 9 17 11
Relational Operators 12 15 10
Return statement 10 14 9
Use of NULL 5 7 4
Arrays 4 11 7
Case statement 0.59 11 5
Inc-dec operator 0.59 8 5
Break statement 0.59 3 3
Exception handlers 4 2 2
Class declaration 4 2
New operator 17 10 6
Throw statement 3 2 4
Imports 12 3 0.47
Inheritance 4 1 1

also involve use of arrays. Remaining language constructs are present in less than
3% bug inducing hunks of Apache.

Epiphany has almost similar proportion of language constructs to Apache,
present in bug inducing hunks. However proportion of conditions, pointers, loops
and return statement is comparatively less with 22%, 24%, 4% and 9% bug in-
ducing hunks involving these constructs. Variable declarations are present in 24%
bug inducing hunks of Epiphany. Surprisingly, proportion of include statements
is higher in bug inducing hunks of Epiphany.

More than 60% bug inducing hunks of Evolution involve function calls and
conditions are found in 29% bug inducing hunks. Proportion of other language
constructs is similar to Apache, with slightly higher number of include statements.

C and C++ files of Mozilla have similar proportion of language constructs in
bug inducing hunks. Both kinds of files vary in function calls, use of null and
arrays. Number of function calls is higher in C++ files whereas use of null and
number of arrays is higher in bug inducing hunks of C files. Function calls are
present in 47% and 38% bug inducing hunks of C++ and C files respectively. Null
is used in 11% bug inducing hunks of C++ files, whereas in C files this proportion
is less than 1%. Arrays are present in 11% bug inducing hunks of C files and 3%

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
34 CONSTRUCTS

of C++ files.

Conditions, loops, assignments, function declarations, variable declarations,
return statement and pointers are present in 28%, 5%, 35%, 8%, 16%, 13% and
15% bug inducing hunks of Mozilla C files respectively. C++ files have similar
proportion of these constructs.

Nautilus has similar proportion of language constructs as found in bug induc-
ing hunks of Apache.

PostgreSQL has slightly lower proportion of language constructs in its bug
inducing hunks as compared to other projects. Function calls are present in 36%
and assignments in 25% bug inducing hunks. Use of null and function declarations
is very low in PostgreSQL as compared to other projects. Conditions are found
in 17% bug inducing hunks of PostgreSQL. Other language constructs are present
in less than 10% bug inducing hunks.

In Columba, project, 50% bug inducing hunks involve function calls, whereas
assignments, conditions, loops, variable declarations, function declarations and
return statement are present in 37%, 20%, 8%, 20%, 8% and 10% bug inducing
hunks respectively. Columba project surprisingly has higher number of import
statement in its bug inducing hunks. About 12% bug inducing hunks contain
import statement. Columba also takes a lead in the use of new operator. Object
instantiations have created more bugs in Columba as compared to other projects.

Eclipse and Java files of Mozilla have more or less similar proportion of dif-
ferent language constructs in bug inducing hunks. Conditions, return statement
and use of null have created more problems in Eclipse as compared to Java files
of Mozilla. Eclipse also leads in the use of case statement and arrays in its bug
inducing hunks. About 11% bug inducing hunks of Eclipse contain case statement.

Increment-decrement operator is present in 8% bug inducing hunks of Eclipse.
This percentage is highest among all projects. Function calls, assignments and
conditions are present in 39%, 30% and 17% bug inducing hunks of Mozilla Java
files. Other language constructs are present in less than 11% bug inducing hunks.

3.4 Project Similarities

In order to answer research questions 2 and 3, we analyzed the data using Pearson
Correlation. There are some language constructs specific to a particular language,
so we selected the language constructs which are common to C, C++ and Java
languages. Table B4l shows the values of correlation coefficients with p<0.001.
Columns from 2 to 11 represent correlation values for Apache (Ap.), Columba
(Col.), Eclipse (Ecl.), Epiphany (Epi.), Evolution (Evo.), Mozilla Java files (Mz-
J), Mozilla C files (Mz-C), Mozilla C++ files (Mz-CPP), Nautilus (Nau.) and
PostgreSQL (Pg-SQL).

The correlation coefficients range from 0.84-0.99, indicating that all projects

3.4. PROJECT SIMILARITIES 35

Table 3.4: Correlation coefficients for different projects

Project Ap. Col. FEcl. Epi. Evo. MzJ MzC MzCPP Nau. Pg-SQL

Ap. 1.0 0.84 090 092 092 090 0.92 0.90 0.90
Col. 1.0 0.87 092 094 093 0.89 0.88 0.93
Ecl. 1.0 0.86 0.87 096 0.91 0.93 0.84
Epi. 1.0 099 092 094 0.85 0.98
Evo. 1.0 093 094 0.89 0.98
Mz-J 1.0 0.96 0.94 091
Mz-C 1.0 0.90 0.89
Mz-CPP 1.0 0.85
Nau. 1.0
Pg-SQL

0.93
0.95
0.93
0.95
0.96
0.96
0.97
0.92
0.93

1.0

BugInducing Language Constructs

BApache
= “Colimba
] T Eclpse
= -&Epiphany
&l +-Evalution
z5 <+ Modilla-Java
e #hlozilla-C
= £ Modilla-CPP
s W Nautilus
ES 4PostgreSQL

Function Cals Assigrments Paoirters Logical Operators Return Staterment
Conditions Function Dedaration “ariable Declargtion Loops Relational Operators Mull Statement

Language Construct

Figure 3.2: Bug-inducing language constructs in different projects (a)

are statistically correlated for the frequencies of bug-inducing language constructs.
Projects developed in the same programming language are highly correlated ex-
cept Eclipse and Columba, for which correlation coefficient is 0.87. Projects
developed in different languages are significantly correlated but the correlation
coefficients are slightly lower as compared to projects developed in the same pro-
gramming language. We can see in Figure and that all projects have
similar patterns of bug-inducing language constructs.

Highest correlation is found between Evolution and Epiphany and lowest cor-
relation between Columba and Apache. Apache is statistically correlated to other
projects, for frequencies of bug inducing language constructs with a correlation
coefficient of greater than 0.9. Columba has strong correlation with Epiphany,
Evolution, Nautilus and PostgreSQL having more than 90% correlation.

Eclipse is highly correlated with Mozilla and PostgreSQL. It has 86%, 87%
and 84% correlation with Epiphany, Evolution and Nautilus.

Morilla is also highly correlated with all other projects having correlation
values above 90%.

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
36 CONSTRUCTS

Bug-Inducing Language Constructs

w
z W Apache
I -+Colunba
El ¥ Eclipse
g hvd -&-Epiphany
= “+Evolition
= 4 Mozlla-Java
E <] Hlozilla-C
= o ozilla-CPP
: g v =
s o B o d d
Case Statement Bresk Statement Mew Cperaor Throw Statement Irheritance Statement
Arrays Inc-dec Cperator Exception Handlers Class Dedaration Import Statement

Language Construd

Figure 3.3: Bug-inducing language constructs in different projects (b)

Nautilus has strong correlation with all projects except Eclipse and Mozilla.
It has 84% and 85% correlation with Eclipse and Mozilla C++ files. Other cor-
relations are above 90%.

PostgreSQL has strong relationships with all projects, having correlation val-
ues above 92%.

3.5 Developer Similarities

In order to answer research questions 4, 5, 6, and 7, we calculated the frequen-
cies of bug-inducing language constructs for each developer of all projects. We
selected the 10 most bug-inducing developers from each project, except Columba
in which case only 5 developers were involved in bug-inducing hunks, and applied
the Pearson correlation on the selected data. Table shows the correlation
coefficients between developers of the same project, whereas correlation among
developers of different projects is given in Table B8l Due to the space constraints
we mention only the minimum and maximum values of the correlation coefficients.
For detailed frequency distribution of correlation coefficients see Figure B4 and
BA Results of correlation analysis presented in Table and are obtained
for 10 selected developers from each project. However the correlation coefficients
depicted in Figure B4l and are calculated for all developers. Some developers
are very active and others contribute at irregular intervals. Developers having
minor contributions will have weak correlation with the active developers. So the
correlations in Figure B4l and are as low as 0.15 and -0.1. However majority
of the correlations are above 80% for developers from different projects and above
90% for developers from the same project.

Most of the developers of different projects have similar frequencies of bug-
inducing language constructs. Table shows the minimum and maximum val-
ues of correlation coefficients obtained. Developers of the projects developed in

3.5. DEVELOPER SIMILARITIES 37

Table 3.5: Correlation Coefficients (developers of same project)

Project Min. Value Max. Value
Apache 0.82 0.98
Columba, 0.54 0.89
Eclipse 0.70 0.98
Epiphany 0.64 0.98
Evolution 0.95 0.99
Mozilla-J 0.76 0.97
Mozilla-C 0.31 0.97
Mozilla-CPP 0.88 0.98
Nautilus 0.89 0.99
PostgreSQL 0.33 0.97
e
_— unwwm%mmnmn [

015 039 054 063 073 078 085 091 087

Coefficients

Figure 3.4: Frequency distribution of correlation coefficients (same project)

the same language have higher correlation values as compared to developers of
the projects developed in the different languages. However there are a very few
developers, who vary in frequencies of bug-inducing language constructs, with
correlation values as low as 0.19.

Developers of the same programming language have strong correlations, with a few
exceptions for each language. Table Bl shows the minimum and maximum values
of the correlation coefficient obtained for developers of each language. There are
very few developers of each language which vary from other developers of the

same language.

e Answer to Research Question 4. Pearson correlation analysis shows that
developers within the same project are strongly correlated for the frequencies

38

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
CONSTRUCTS

Frequency
150 200 250
] 1 |

100
|

50
1

01 012 023 034 045 056 067 078 089 1
Coefficients

Figure 3.5: Frequency distribution of correlation coefficients (different project)

of bug inducing language constructs. The correlation coefficients within the
same project range from 0.31 to 0.99.

Minimum correlation among any pair of developers of Apache is 0.82 and
maximum correlation found is 0.98. Similarly, minimum correlation among
any pair of developers of Columba is 0.54 with a maximum correlation of
0.89.

Results of correlation analysis on developers of Eclipse indicate a minimum
correlation coefficient of 0.7 and a maximum correlation coefficient of 0.98.
For developers of Java files in Mozilla similar results are found.

Developers of Evolution are strongly correlated having correlation coefficient
above 0.94.

Developers of C files in Mozilla and PostgreSQL have shown similar results.
In both cases, minimum correlation found among any developers is about
0.3 and the maximum correlation coefficient is 0.97.

Correlation analysis of frequencies of bug inducing language constructs for
developers of Nautilus and C++ files in Mozilla has produced similar results.
Minimum correlation among any pair of developers of these projects is 0.88
and maximum correlation coefficient found is 0.99.

Note that these results are for top ten developers from each project. From
each project ten developers are selected which have introduced most of the
bugs.

3.5. DEVELOPER SIMILARITIES 39

Table 3.6: Correlation Coefficients (developers of different projects)

Project Language Min. Value Max. Value
Same 0.82 0.98
Different 0.19 0.89

o Answer to Research Question 5. A correlation analysis is applied on data of
developers from different projects. These projects are developed in C, C++
and Java. Results obtained indicate a minimum correlation coefficient of
0.82 among any pair of developers of different projects but developed in the
same language. The maximum correlation coefficient found is 0.98 for the
same set of developers.

Correlation analyses of developers of different projects that are developed
in different languages indicate a minimum correlation coefficient of 0.19,
whereas maximum correlation coefficient is 0.89 for the same set of data.

o Answer to Research Question 6. Developers are grouped into three cat-
egories depending on the programming language. Developers of Java are
grouped together irrespective of the project, similarly developers of C are
grouped together and developers of C++ are grouped separately. A corre-
lation analysis is applied on each group in order to know the relationships
among developers of the same programming language. Table B shows the
minimum and maximum values of the correlation coefficient obtained for
developers of each language.

Results obtained indicate a minimum correlation of 0.62 among any pair of
developers of C language, whereas maximum correlation coefficient found is
0.97 for the same set.

Correlation analyses of developers of C+-+ language indicate a minimum
correlation coefficient of 0.88 and a maximum correlation coefficient of 0.98.

Minimum correlation coefficient among any pair of developers of Java lan-
guage is 0.54 and maximum correlation found is 0.98.

e Answer to Research Question 7. Developers of different programming lan-
guages are pooled together and a correlation analysis is applied on the
grouped data. Last row of Table shows the minimum and maximum
values of correlation coefficients obtained among developers of different lan-
guages. Results of the correlation analysis indicate a minimum correlation
coefficient of 0.19 among any pair of developers of different programming
languages. Highest correlation coefficient found is 0.89 among developers of
different programming languages.

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
40 CONSTRUCTS

Table 3.7: Correlation Coefficients (developers of same language)

Programming Language Min. Value Max. Value

C 0.62 0.97
C++ 0.88 0.98
Java 0.54 0.98

3.6 Bug Latency

When a developer makes a change to fix a bug, configuration management system
records the date and time of the commit. During the process of finding bug-
inducing changes, as described in Chapter 2, date of modification for each bug-
inducing change can be extracted. Interval between bug-induce date and bug-fix
date can be calculated in number of days, as well as in number of revisions. In
this study number of revisions made between bug-induce date and bug-fix date is
calculated. This value is called bug life time or bug latency and calculated for each
bug-inducing language construct. CVS maintains revisions of each file, whereas
SVN maintains revisions at the project level. Whenever a change is made, CVS
updates the revision of the changed file, whereas SVN increments the revision of
whole project.

Bug latency values for Apache, Columba, Epiphany, Evolution and Nautilus
are calculated by taking difference of project revision numbers and for the rest
of the projects by taking difference of file revision numbers. Table shows the
average bug latency values, calculated in terms of number of revisions the bug
existed, for five language constructs. Columns 2 to 6 indicate bug latencies for
conditions, assignments, function calls, variable declarations and function decla-
rations respectively.

In Apache project function calls are fixed on an average earlier than other
language constructs. Conditions have more average bug latency than other con-
structs.

For Columba conditions are found more critical and they are fixed on an
average earlier than other constructs. Assignments and function calls have equal
bug latency and buggy variable declarations persist longer in Columba.

In Eclipse project function declarations are fixed on an average earlier than
other language constructs. Conditions and function calls have equal bug latency
values, similarly assignments and variable declarations have on average equal bug
latency. Buggy assignments and variable declarations persist longer in Eclipse on
an average.

Conditions and function calls are more critical in Epiphany and Evolution, as
compared to other constructs. Function declarations persist longer in Epiphany
and variable declarations persist longer in Evolution.

In Morzilla project function declarations are fixed on an average earlier than

3.6. BUG LATENCY 41

Table 3.8: Bug Latency (Average Values)

Project Conds. Assig. Funct-Calls Var-Decl. Funct-Decl.
Apache HTTPS 1.3 3389 2944 2562 3127 2695
Columba 206 209 209 227 213
Eclipse JDT 159 187 159 187 114
Epiphany 1979 2125 2018 2212 2832
Evolution 4532 4675 4515 5031 4987
Mozilla 124 101 106 116 91
Nautilus 1518 1739 1671 1656 1731
PostgreSQL 109 107 111 85 103

Table 3.9: Bug Latency Correlation Values between Language Constructs

Conds. Assig. Funct-Calls Var-Decl. Funct-Decl.

Conditions 1.0 0.99 0.98 0.99 0.96
Assignments 1.0 0.99 0.99 0.98
Function Calls 1.0 0.99 0.99
Variable Declaration 1.0 0.98
Function Declaration 1.0

other language constructs. Conditions took more time to be fixed compared to
other constructs.

For Nautilus conditions have on average short bug latency and assignments
have long bug latency. Bug latency values of other constructs lie between these
two constructs.

Variable declarations are more critical in PostgreSQL with shorter bug laten-
cies, whereas conditions have longer bug latencies. Function calls, conditions and
assignments have nearly similar bug latencies in PostgreSQL.

A correlation analysis is applied on average bug latency values of conditions,
assignments, function calls, variable declarations and function declarations in the
studied projects. Results of the correlation analysis are presented in Table B3
These language constructs are statistically correlated for bug latency. Most of the
correlation coefficients are above 0.95.

It indicates that bug latencies for individual language constructs vary in sim-
ilar fashion in different projects. Short bug latency indicates that the bug is
critical and needs to be fixed soon. Long bug latency indicates that either the
bug is minor having low priority or it is more complex to be fixed. In this study
average values are used, so a more detailed study is required for some concrete
conclusions. However this study represents a brief picture of bug latencies of
different language constructs.

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
42 CONSTRUCTS

Apache
&0

50 §
40

30

? %§§§§

Function Calls Assignmerts Return Staement
Conditions Function Declaraion “arishle Declaration Use of Mul

Language Constructs

B Clean
[Buggy

% of TotalHunks

Figure 3.6: Comparison of Bug-Inducing and Clean Hunks (Apache)

3.7 Comparison with Non Bug-Inducing Hunks

Bug inducing and clean hunks are compared for the occurrence of conditions,
function calls, function declaration, assignments, variable declarations, return
statement and use of null. Although these constructs are also present in non
bug-inducing hunks, there percentage is higher in bug-inducing hunks. Among
all these constructs function declarations have different trend, they are present in
higher percentage of clean hunks in all projects. It can not be stated that each
time one of these constructs is used, bugs will be introduced. The context in
which these constructs are used is important. However we can say these are the
risky language constructs because most of the bug-inducing hunks involve these
constructs.

Figure shows that the percentage of bug inducing hunks containing condi-
tions is about double of clean hunks in Apache project. There is a large difference
between percentages of bug inducing and clean hunks involving function calls.
Other constructs also constitute large proportion of bug inducing hunks as com-
pared to clean hunks.

In Eclipse project conditions are present in more than 30% of bug inducing
hunks whereas in clean hunks this proportion is less than 20%, as depicted in
Figure Bl Function calls are present in more than 40% bug inducing hunks and
30% clean hunks. Return statement is present in equal proportions in both kinds
of hunks. For the remaining constructs differences are not large but bug inducing
hunks have higher percentages as compared to clean hunks.

Figure shows that the percentage of bug inducing hunks containing re-
turn statement and using null is about double of clean hunks in Mozilla project.
Remaining constructs are present in comparatively higher percentage of bug in-
ducing hunks. Conditions constitute 20% of clean hunks and 29% of bug inducing

3.7. COMPARISON WITH NON BUG-INDUCING HUNKS 43

Eclipse

45

40 §

35
= 30 § §
S 5
E 20 B Clean
2 H Buggy
E 15
210 —
BQ —

; =\ =N

0

Funiction Cals Assignmerts Return Staement
Conditions Function Declaration Varighle Declargion Use of Mul
Language Constructs
Figure 3.7: Comparison of Bug-Inducing and Clean Hunks (Eclipse)
Viozilla

45

40

35 § §
w30
=
5 25
% 20 ggﬁﬂ
i gy
E 15
2 10
=

5

[¥]

Function Cdls Assignmerts Retun Staement
Conditions Function Declargion “arighle Declaration Use of MNul

Language Constructs

Figure 3.8: Comparison of Bug-Inducing and Clean Hunks (Mozilla)

hunks. Assignments constitute 30% of clean hunks and about 36% of bug inducing
hunks.

In PostgreSQL percentage of bug inducing hunks containing return statement
is about double of clean hunks, as shown in Figure B Use of null is almost double
in bug inducing hunks as compared to clean hunks. Conditions are present in
about 11% of clean hunks and 18% of bug inducing hunks. Assignments constitute
17% of clean hunks and 25% of bug inducing hunks. Function calls are found in
36% of bug inducing hunks and 25% of clean hunks.

Figure BI0 depicts that conditions are present in 30% bug inducing hunks
and less than 20% clean hunks of Evolution. Assignments are found in 30% clean
hunks and more than 40% bug inducing hunks. More than 60% bug inducing
hunks contain function calls whereas in clean hunks this proportion is less than

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
44 CONSTRUCTS

FPostgreSaL

B Clean
[Buggy

% ofTotal Hunks
™

Function Cdls Assignments Return Staement
Conditions Function Declaration Varighle Declaration Use of Mul

Language Construct

Figure 3.9: Comparison of Bug-Inducing and Clean Hunks (PostgreSQL)

Evaolution

60 §

50

40
B Clean

30
HBuaggy

% E 4l o

Function Calls Assignments Return Staement
Cenditions Function Declargion Varighle Declaration Use of Mul

Language Constructs

% of Total Hunks

Figure 3.10: Comparison of Bug-Inducing and Clean Hunks (Evolution)

50%. Use of return statement is almost double in bug inducing hunks as compared
to clean hunks.

Use of null and conditions is almost double in bug inducing hunks of Epiphany
as compared to clean hunks, see Figure BIIl Assignments are found in 26% of
clean hunks and 40% of bug inducing hunks, whereas function calls are present
in 58% of bug inducing hunks and 42% of clean hunks.

In Columba use of null and conditions is almost double in bug inducing hunks
as compared to clean hunks, see Figure Return statements are equally
present in both kinds of hunks. Variable declarations are found in higher percent-
age of clean hunks, in contrast to other projects. Assignments constitute 24% of
clean hunks and 38% of bug inducing hunks. Function calls are found in 50% of
bug inducing hunks and 39% of clean hunks.

3.8. SUMMARY 45

Epiphany

&0

=0 §
w40
=
5
z ¥ B Clean
m
= G Buggy
E 20
= —
10 — ﬁ

0 =
Function Calls Assignments Retun Staement
Conditions Function Declaraion “arighle Declaration Use of MNul

Language Constructs

Figure 3.11: Comparison of Bug-Inducing and Clean Hunks (Epiphany)

Columba
&0
w40
=
5
T 30 B Clean
[
= B Bugay
=20
‘©
0 _
Function Cals Assignments Return Staemeant
Conelitions Function Declaraion Yariable Declaraion Use of Mul

Language Constructs

Figure 3.12: Comparison of Bug-Inducing and Clean Hunks (Columba)

Figure shows that conditions are present in 21% bug inducing hunks and
less than 14% clean hunks of Nautilus. Assignments are found in 23% clean hunks
and more than 30% bug inducing hunks. About 60% bug inducing hunks contain
function calls whereas in clean hunks this proportion is less than 48%. Return
statement constitutes 5% of clean hunks and 9% of bug inducing hunks whereas
null is used in 19% of bug inducing hunks and 12% of clean hunks.

3.8 Summary

This chapter presented an investigation into language constructs and syntax ele-
ments. In particular bug-inducing hunks were analyzed to find the frequencies of
different language constructs. It is found that most of the bugs are created due

CHAPTER 3. EMPIRICAL ANALYSIS OF BUG-INDUCING LANGUAGE
46 CONSTRUCTS

MNautilus
70

60 §
30
40

B Clean

30
H Bugay

AT R e e

Function Cdls Assignmerts Return Staement
Conditions Function Declaration “arighle Declaration Use of Mul

Language Constructs

% of Total Hunks

Figure 3.13: Comparison of Bug-Inducing and Clean Hunks (Nautilus)

to errors in function calls, assignments, conditions, pointers, variable declaration,
function declaration and return statement. Statistical analysis showed that dif-
ferent projects and developers are correlated for the frequencies of bug-inducing
language constructs.

These findings can be helpful during the testing and debugging process. De-
velopers can make a priority list for testing. They can first apply testing on
function calls, then on assignments, followed by conditions and so on. Applying
testing resources on the frequent bug-inducing language constructs can save time
and resources. Similarly if a patch of code is identified as buggy, problematic
constructs can be easily identified from it. In short this study provided a means
of reducing cost and improving quality of software.

Chapter 4

Language Specific Bug
Patterns

During the last years there has been a growing interest in analyzing and mining
the available information that is collected during all phases of the software life
cycle. The used information sources are for example bug reports, which are stored
in bug databases, or source code evolution information from configuration man-
agement systems (CMS). Most of the published studies focus on software quality.
Researchers have tried to explore the distribution and characteristic of faults in
programs |3, [[3].

Most work in the empirical software engineering domain has been using open
source software because of several factors. First, the source code, CMS, and
bug data base information is freely available for everyone. Second, the projects
like Mozilla have been developed in a distributed way. Hence, there is a larger
variability in programming. Third, some of the open source programs comprise
several thousands kilo lines of code (kLoc) and several thousands files. They are
large enough to test available techniques in a realistic setting that would also
occur in industrial practice. Because of this reasons results obtained from such
projects might be generalizable which is not always the case.

Modern software projects are developed using object oriented programming
languages, however a number of projects still exist in procedural languages. C
language is commonly used for development of open source software projects. Dif-
ferent programming languages facilitate developers in writing efficient and clean
code. There are some programming features specific to a particular programming
language e.g; JAVA provides automatic memory management and a good excep-
tion handling mechanism. There is no multiple inheritance and no pointers in

JAVA.

47

48 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Programs written in different languages may have different distribution of
bugs. The main goal of this chapter is to analyze whether post-release bugs
are influenced by a programming language. A case study is presented to reveal
whether the number of bugs per lines of code (LOC) is the same for programs
written in different programming languages or not. In addition various evolution
metrics are calculated and compared for different programming languages. Three
common programming languages are chosen for this study, including C, C++ and
JAVA.

4.1 Research Hypothesis

The research objective of this study is formulated in the following hypothesis:

Hypothesis H1: Programs written in a programming language A are more er-
ror prone in terms of more bugs per LOC than programs written in a different
language B.

Hypothesis H1 can be rejected when proving that programs written in a lan-
guage A are more fault prone than programs in a language B by means of statis-
tical inference. In this chapter hypothesis H1 is validated up to a certain degree
of significance, when applied to some languages.

When using statistical inference care has to be taken of the available informa-
tion and methods. In this case proving H1 would require to state that the mean
or median of the post-release bugs per LOC of programs written in one language
is really larger or smaller than the same value obtained from the programs writ-
ten in the other programming language. Since, the distribution of the underlying
probability variable is not known in advance, a statistical test is required that
considers this case. For this purpose rank-sum test is used because it is well
known to be independent on the underlying probability distribution [69.

4.2 Project Studied

For this study, Mozilla project is used because it is a heterogeneous project de-
veloped in C, C++ and JAVA. Further, it has a long development history and its
information is easily available. Data is extracted from CVS and bug repositories
of Mozilla using the techniques mentioned in Chapter 2. Development history
of Mozilla is analyzed from 1998 to 2008. Table Tl shows the number of files
written in different languages C, C++, and Java, as well as the lines of code for
each year.

4.3. EVOLUTION METRICS 49

Table 4.1: Number of Source Files and Total LOC

Year Number of Files Total LOC (KLoc)

C | C++ | JAVA C| C++ | JAVA
1998 | 1118 792 193 | 843 063 25
1999 | 1754 | 3365 1390 | 1043 | 1977 265
2000 | 2395 | 4958 2309 | 1457 | 2593 385
2001 | 2437 | 5207 | 3070 | 1495 | 2587 230
2002 | 2500 | 4762 2980 | 1490 | 2477 490
2003 | 2200 | 4845 2750 | 1362 | 2519 442
2004 | 2072 | 4776 2716 | 1274 | 2450 444
2005 | 2111 | 5141 2485 | 1447 | 2342 433
2006 | 2010 | 5183 | 2583 | 1549 | 2226 420
2007 | 2162 | 5016 | 2117 | 1353 | 2391 478
2008 | 2096 | 4704 | 1923 | 1416 | 2430 491

4.3 Evolution Metrics

In addition to the bug density, some other evolution metrics are calculated for
each language. These metrics are used to study bug features and code evolution
specific to a programming language. Bug features are studied in terms of bug
density, bug frequency, bug severity, bug fix time and platform specific bug oc-
curence. Code evolution is studied in terms of additions, deletions, code gain,
number of authors and file revision frequency. Following metrics are calculated
for programms written in the selected languages:

e Authors: The authors contributing to the file.

e Revision frequency: The number of revisions for each year

e Bug frequency: The number of corrected bugs per each year.
e Bug density: The number of bugs per thousand LOC (kLoc).

e (ode gain: The sum of lines added reduced by the sum of lines removed in
each file.

e Bug fixr time: The time between fixing a bug, which is mentioned in the
CVS log file, and the time where the bug was detected, which is obtained
from the bug report.

e Bug lifetime: The time between fixing a bug and the time where the bug
was introduced. The latter can be obtained from the CVS [33), [Z0].

e Number of changes: The number of changes per each file and year.

50 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Average Bug Densities

z
-
E 20 “4C++
o 15 / T JANVA
3
ST kv &
. v v
0 ki i
1998 1999 2000 200 2002 2003 2004 2005 2006 2007 2008
Year
Figure 4.1: Average bug densities
4.4 Results

In this section evolution of the Mozilla project over the past years is discussed. In
particular evolution metrics are compared for the three languages. Because the
Mozilla project comprises C, C++-, and Java files, values of different measurement
categories are obtained for the three languages.

e Average bug density: To compute the bug density in bugs per 1000 LOC,
i.e., kLOC, following equation is used:

number of bugs
LOC

The obtained results are depicted in Figure EETl Tt is evident from the

figure that C++ files have higher bug densities than files written in other

languages. Java files have the least bug density values except in 2007 and
2008.

- 1000

bug density =

e Percentage of faulty files: Figure shows the percentage of faulty
files in each year of development. From the figure it can be concluded that
C-++ files have a higher percentage of faulty files than the other languages.
Java files are least likely to be faulty except in the years 1998, 2004, and
2007.

e Average LOC per faulty file: The results of this measure are given in
Figure 3 On average faulty files in Java are smaller than faulty C++
files. Programs written in C have a different behavior with respect to the
average number of LOC per faulty file. The size of the faulty files decreases
in the initial years of Mozilla development and abruptly increase in 2004.
This might be due to fixing a high number of major bugs in C files in this
year.

4.4. RESULTS ol

Percentage of Buggy Files

SUv

70 B
GO0
g7 ¢ ¥
sul\.\ &
E 40 4 C++
= TUAVA
5 a0
=
o TR

10 W

’ v - v v »

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

Figure 4.2: Percentage of faulty files

Avg. LOC in Buggy Files

1600

1400
1200
1000
&
50 4Ot

Loc

TUAVA

1998 189689 2000 2001 2002 2003 2004 2005 2006 2007 2008
Year

Figure 4.3: Average LOC of faulty files

e Average revision frequencies: Figure L4l shows the revision frequencies
over the years. Java files show a stable behavior having a low revision
frequency with exceptions in 2003 and 2006. In these years Java files have
a higher revision frequency. C+-+ files have a higher revision frequency
than the other languages. C files have revision frequency in-between C++
and Java with one exception in 2006 where C files have the highest average

revision frequency.

e Average code gain per file: The code gain describes the increase of size
of a file and is an indicator of its stability. The average code gain for the
files of the Mozilla project is shown in Figure EQ. It can be seen that Java
files are more or less stable in growth whereas C++ files show a continuous
decline in average code gain. C files show a mixed behavior with a high rise
in code gain in 2006, which may be due to the high number of bug fixes.

52

CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Avg. Mumber of Revisions/Year
18
16
14

w
=
el
& 10 B
i
g 4T+
? TJAVA
z G
E z
. T v v
iy v v v
o
1998 1999 2000 2001 2oz 2003 2004 2005 2008 2007 2008
Year
Figure 4.4: Average revision frequency
Avg. Code Gain/File
&+
8 T4+
-

TJANVA

¢

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Figure 4.5: Average code gain per file

e Bug severity distribution: Beside the number of bugs someone is also

interested in the severity of bugs and its distribution. Figure shows the
bug distribution according to severity levels. All three languages contributed
a major fraction of normal bugs. Java takes the lead when considering
trivial and major bugs. Most of the bugs due to enhancements are made
in Java files followed by C and C++ files respectively. Most of the blocker
bugs occurred in C files followed by C++ files. C++ files have the largest
number of critical bugs followed by C files. From this distribution we might
conclude that C and C++ are used as the programming language of choice
in the kernel of Mozilla. Hence, critical or blocking bugs are created by C
and C++ files.

Average bug lifetime: Figure 7 shows the average bug lifetime for each
bug severity level. It can be seen that bugs due to enhancements took more
time to be fixed for C++ files. Minor bugs to be fixed took more time when

4.4. RESULTS 93

Bug Severity Distribution

100% P— _

9%

{0

0% Wtrivial
;."'1 B0R% Enurn‘ﬁl
m minor
5 0% M major
L 4l O entancement
2 3 M critical

0% W blocker

1%

0%

c C++ JAVA
Programming Language

Figure 4.6: Bug severity distribution

Java was used. If we have a look at Figure LTIl and Figure B0 we see
that a large number of additions and deletions are made in Java files to fix
minor bugs. Blocker and trivial bugs took more time to be fixed in Java files
when compared with C and C++ files. Hence, what we see is that different
languages have a different bug lifetime for bugs of different severity.

From the bug severity distribution and the knowledge of the number of
days to fix a bug, average bug lifetime can be computed for the different
languages as follows:

bug lifetime = Z p(x) - fix time(x)

bug severity x

where p(z) denotes the probability of a bug severity, which follows from the
bug severity distribution. and fiz time(x) is the average number of days
necessary to fix a bug.

For the Mozilla project average bug lifetime is 175 days for C files, 192
days for C++ files, and 333 days for Java files. From this follows that bugs
remain almost twice as long in the source code of Java files. This result is in
line with the previous result where bugs in C and C++ files also contribute
to the class of blocking and critical bugs, which have to be corrected first.

e Average code additions: Figure shows a declining trend of code ad-
ditions in case of C++ files. Whereas in case of C there is a decline in the
first year, a stable rate for the following 5 years, and a peak in 2006 followed
by a fall. Java files are almost stable with two peaks in 2003 and 2006.

54

CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Average Bug Fix Time

G500

v

w
S
|
§ 4Tt
2 TIAVA
£
=3
=
[u]
blocker critica enhancement major minar rorma trivid
Bug Type
Figure 4.7: Average bug lifetime
Average LOC Additions
GO0
500
400
&/*C
3m Tt

Loc

TUAVA
200

100 7
N 7 v v
0¥ i v Vv
1908 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008
Year

Figure 4.8: Average code additions

Average code deletions: Code deletions have almost the same pattern
across the time line as code additions. However deletions are less in number
than additions as shown in Figure

Average code deletions per bug fix: Blocker and critical bugs involved
more deletions in C++ followed by C and Java. However enhancements,
major, normal and trivial bugs involved more deletions in C files followed
by C++. Minor bugs involved highest deletions of all bugs and these were
in Java files as shown in Figure ELT0

Average code additions per bug fix: Code additions have almost the
same trend as code deletions. However additions are larger in number than
deletions as shown in Figure BTl

Average number of change deltas: In the initial years of development
C-++ files have higher number of change deltas. This number decreases
continuously in the following years. C files have lower number of change

4.4. RESULTS

Loc
= =
8 8 8 8B
<]
<]

70

60

=0

40

Loc

30

20

a0
a0
70
60
a0
40
30
20
10

Loc

blocker

Average LOC Deletions

B/
~C+
TJAVA

W v v v
1908 2000 2001 202 2003 2004 2005 2008 2007 2008
‘Year

Figure 4.9: Average code deletions

Avg. Bug Fix Deletions

v

B/
Tt
TUAVA

v 9<:

critical enhancement rajor minar normal trivial
Bug Severity

v

Figure 4.10: Average Code Deletions / Bug Fix

Avg. Bug Fix Additions
7

B/
AT+t

TJAVA
o .l\.
—%

critical enhancement majr minor rorma trivia
Bug Severity

W

Figure 4.11: Average code additions per bug fix

95

o6

CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Avg. Number of Change Deltas

140
120
P 100
3 a0 ¥
[a} vl -
S 60 Tt
@ T-JANVA
E
E w0 \“‘ﬁ*,_
=
20
v 7 v ¥
1]
1909 2000 2001 2002 2003 2004 2005 2006 2007 2008
Year
Figure 4.12: Average number of changes
Flatform Specific Bug Distribution
100%
QiR
80%
B PocketPC
7% Osadl
[s]
5 6% WDEC
m O Sun
F 5% mCtrer
£ A EHP
5 3% O Macdintosh
& mrFC
0% WAl
10%
0%
c Ce JANA

Programming Language

Figure 4.13: Distribution of bugs on different platforms

deltas but the pattern is different from C+-+ files, with ups and downs in
the entire development period. Java files have very low number of change
deltas with an exception in 2004 and 2005 as shown in Figure

Platform specific bugs distribution: Most of the bugs generated by
three languages are reported on all platforms. However a major proportion
of the bugs reported on PC and Macintosh are related to C+-+ files whereas
majority of the bugs reported on Sun are related to C and Java. Figure EE13]
depicts different platforms on which programs written in the three languages
caused failures.

Operating System specific bugs distribution: A large proportion of
the bugs in three languages is reported on all operating systems. However
C++ is on top in the number of bugs reported on Linux and Windows
followed by C language. Java files have very few bugs reported on Macintosh
while C and C++ have an equal proportion of bugs reported on Macintosh.

4.5. PROVING HYPOTHESIS H1 57

Operating Sy stem Specific Bug Distribution

| |si=]
100% BIRIX
ames OosFA
E OpenVMS
B0 BEsD
" 0% H Neuring
S 6% E Be(S
m oSz
= 0% W Solaris
EooAme ESun0s
= e WAL
TIHP-LX
20% W Cther
10% W Mac
0% OwWirdlows
c o Java ELinux
|]

Programming Language

Figure 4.14: Distribution of bugs on different operating systems

Figure EET4 depicts the types of operating systems and the proportion of
bugs generated on these systems by programs of different languages.

The obtained results show that the evolution metrics have different patterns
for Java, C, and C+ -+ files in the Mozilla project. This might be due to the specific
project. However, at least the results of the bug density should be generalizable
because of the large number of available source files and involved programmers. In
the next section, it is statistically proved that the number of bugs to be expected
is influenced by the used programming language.

4.5 Proving hypothesis H1

In order to test hypothesis HI for the languages C, C++, and Java, hypothesis
testing (a methodology from probability theory to draw static inference from
available data under given assumptions) is used. Hypothesis testing is closely
related to the procedure of interval estimation [69]. In both cases a conclusion
can be drawn, which is correct for the given data set, the used statistic and
probability distribution, and the desired level of significance usually denoted by
«. In hypothesis testing a hypothesis Hy is going to be proven. If the probability
that the given data set Xi,...,X,, under the test statistic T" falls within an area
A, which is provided by the hypothesis Hy, is equal or larger than 1 — «, the
hypothesis Hy can be accepted. Otherwise, Hy is said to be rejected because the
observations differ significantly from the expectations.

To prove the influence of a programming language on the number of post-
release bugs per LOC, we have the number of bugs and the size of the files where
the bugs have been fixed. There might be remaining bugs in the files, however,
since every file regardless of the used programming language is used in the same
program and assuming that they are all used during program execution, there is
an equal probability of detecting a bug. Hence, the probability that a bug goes

58 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

undetected in one file is equivalent for all files with no exception regarding one
programming language used. As a consequence for each language

Hy: fx(z) = fy(x) versus Hy : fx(z) = fy(x +¢)

where c is a positive constant. These tests are also referred to as tests for the
equality of two population medians, which is fine in this case. If we know that the
median of the bugs per LOC is lower for Java programs than for C++ programs,
hypothesis HI can be accepted for those languages.

The following rank-sum is one test for comparing two population means. In
this case two independent random samples x1,...,x, and y1, ..., ¥, are assumed.
In the first step the samples are combined and ranked accordingly to increasing
values. Hence, an ordered collection of size n+m is obtained. Then each resulting
element is assigned a rank r from 1 to n + m. The statistic that can be used to
compare the two means is defined as follows:

W= Z 7(¥:)
i=1

Hence, in this case only the elements, which belong to the random sample
Yl,-- -, Ym are considered. Using combinatorial theory a probability function for
statistic W can be computed, and the significance level « is determined by:

P(W > w|Hy) < «

Knowing the equivalence P(W > w|Hy) = 1 — P(W < w|Hy), following
inequality is determined, which must hold in order to accept Hy:

P(W <w|Hy) >1—«

In this special case where both n and m are larger than 10, W can be approx-
imated with a normal distribution. In this case the mean and the variance are

given by:
nn+m-+1
1
o2 = Var[w] = " J{zm)

Assuming a significance level a = 0.01 we are able to obtain a value w = 2.33
if W is a Standard Normal Random Variable. Since the statistic W in gen-
eral is not Standard Normal we have to standardize it using p and o. For val-
ues of W(z1,...,Zn,Y1,...,Ym) that are smaller than 2.330 + u, we are able
to accept Hp at the significance level of 0.01. Note that in this case the con-

fidence in the decision is 99 percent. Alternatively, we can compute a value
Z — W(Il7"'7zn7y17"'7ym)

lea

2 If Z > 2.33 we accept Hp, and otherwise we reject it.

4.5. PROVING HYPOTHESIS H1 59

Hypothesis | Sum of ranks W | pu o? Z Decision
H1} 582,319,897 610,240,013 | 1,519,019 | -18,38 | reject
H13 747,866,055 940,156,771 | 2,761,791 | -69,63 | reject
H1} 682,409,176 809,540,221 | 2,562,772 | -49,61 | reject

Table 4.2: Results of the rank-sum test

In the following rank-sum-test is used for testing three instances of hypothesis
HT1 using the available data sets obtained from the Mozilla project:

H1J : frava(w) = fo(z) versus H1} : frava(z) = fo(z +)

H13 : frava(e) = foit(x) versus H1T: frava() = feit(z +¢)

H13: fo(x) = fois(x) versus H13 : fo(z) = forq (x4 ¢)

The size of the samples for each programming language is given as follows:

Language | Sample size
Java 25,387
C++ 48,074
C 22,687

Note that in this case every revision of every source file is counted as one
sample. Using this information and the samples, results given in Table can be
computed.

From Table following results can be concluded:

e The first hypothesis must be rejected with confidence 0.99. From this follows
that we have to accept the alternative hypothesis that states Java programs
as less error-prone than C programs.

e The second hypothesis must also be rejected. Hence, again Java programs
are less error prone than C++ programs.

e The third hypothesis has to be rejected as well. It can be concluded that C
files are less error prone than C+-+ files.

The bug density distributions given in Figure EET5, and EETT] also justify
the results of the rank-sum test.

60 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

Histogram
JAVA
25,000
20,000
E;'1 5,000
c
a
3
o
i
10,000
5 000
Mean =1.23
Std, Dev, =5 588
l W =25,387
0 T T T T
50 100 130 200
Bug-density

Figure 4.15: The bug density distribution of files written in Java

Histogram
C
25 000 -]
20,000
1500
c T
[
=3
o
£
10,000 -
5,000
Mean =168
Std. Dev. =6.819
M =22687
o T T T T
100 200 300 400
Bug-density

Figure 4.16: The bug density distribution of files written in C

4.6.

THREATS TO VALIDITY 61

Histogram

cPp

50,000+

40,000

30,00+

Frequency

20,000+

10,00

Mean =5.91
Stel Dev. =18.338
N =48,678

T T T T T T
0 200 400 600 800 1000 1200

Bug-density

Figure 4.17: The bug density distribution of files written in C+4+

4.6 Threats to Validity

There are certain threats to the validity of this study. Among some of these are:

e Only one project is selected for this study, so the error patterns may be re-

sulted from the Mozilla community rather than the programming languages.

Although Morzilla is a heterogeneous project, the choice of programming
languages for this study may be biased to a specific problem. So it is
possible that the results reflect the problem rather than the programming
language itself.

No consideration is made for the features implemented in different lan-
guages. The nature of the functionality implemented in one language may

have an impact on the various metrics than just the language.

JAVA is a complete development environment, so results may be biased to
the development methodology.

There may be changes in the pool of qualified programmers for specific
languages over 11 years of Mozilla development.

There are changes in the tool support for specific languages over the years.

62 CHAPTER 4. LANGUAGE SPECIFIC BUG PATTERNS

4.7 Summary

In this chapter empirical results obtained from 11 years of development of the
open source software project Mozilla are presented. Moreover, statistical findings
obtained from the development history of Mozilla are discussed. The main focus
of this study is post-release bugs. In particular the hypothesis is tested whether
the number of post-release bugs are influenced by the used programming language.
The Mozilla project comprises source code written in Java, C, and C++ and is
therefore the right project to look for in order to test the hypothesis.
In summary, this chapter has the following contributions:

e It is shown that bug lifetime is about twice as long for Java than for C and
C++.

e The programming language has an influence on the number of bugs, at least
for the Mozilla project. It is statistically proved that Java programs are less
error prone than C or C++ programs, and C programs are less error prone
than C+-+ programs within same project.

Although, the findings might not be generalizable they indicate a connection
between post-release bugs and programming languages.

Chapter 5

Hunk Classification

Making changes to software is a crucial task during different phases of software
evolution. Changes are required to add new features, to fix the bugs, to improve
performance or to restructure the code for easy maintenance. These changes are
implemented by adding, modifying or deleting the source code in different files of
software.

A file can be changed at one or more places, called deltas or hunks. These
hunks of source code which are added either newly or after modifications may
introduce bugs and result in failures later on. Each hunk has a likelihood of
being buggy or bug-free. This chapter describes a technique for predicting the
probability of a hunk being buggy or bug-free. Software engineers and researchers
face the challenge of reducing bugs to improve the quality of software. A lot of
research has been carried out on bug prediction using different approaches and at
different levels of granularity. Most of the researchers have used code metrics as
predictors of bugs [29), B0}, b2, bA, 5, 4], while others have used process metrics
as predictors of bugs [27), Bol, 64].

Previous research was focused on different levels of granularity such as mod-
ules, files, classes and methods. Some researchers predicted the number of faults
for modules or files [52, B3], while others focused on individual classes and methods
29, 56].

Change management is an important activity in software maintenance. Changes
are made to the source code as software evolves. In the past, researchers have
used different change properties to predict the failure probability of changes. Re-
searchers have shown that change properties such as size, duration, diffusion,
developer expertise and type of change have strong impact on the risk of failure
3.

Features extracted from complete source code of files, change metadata and
complexity metrics can be used to classify changes as clean or buggy [34]. We

63

64 CHAPTER 5. HUNK CLASSIFICATION

Table 5.1: Statistics of Projects

Project # of Developers # of Revisions # of Hunks
Apache HTTP 1.3 54 7,246 17,287
Columba 8 2,471 2,694
Eclipse JDT 17 58,565 215,824
Epiphany 52 5,217 9,035
Evolution 134 20,709 40,450
Mozilla 833 325,920 1,382,747
Nautilus 131 11,104 29,303
PostgreSQL 25 54,012 466,106

further narrow down the problem of change classification to individual units of a
change, the hunks. We classify individual hunks as buggy or bug-free.

We have defined a set of hunk metrics and constructed models for hunk classi-

fication using these metrics as predictors. We used logistic regression and Random
Forests to construct hunk classification models.
Kim et al. [34] conducted a similar study to classify software changes as clean
or buggy, but our research objectives are different and go a step forward. While
Kim et al. classified individual changes and used features extracted from complete
source code, change meta data, log messages, file names and file complexity met-
rics, we classify individual hunks, which is a unit of change, and use only the hunk
metrics. Our approach is simple and works at the smallest level of granularity.

5.1 The Approach

This chapter provides an overview of calculation of hunk metrics, labeling of
hunks, preparation of data for training, hunk classification, and evaluation of
classifiers.

To evaluate our approach, we extracted the change history of 8 open source
projects listed in Table Bl The period indicates the time span used to extract
the change history. The # of revisions column indicates the number of revisions
extracted and the # of hunks indicates the number of hunks extracted. The # of
developers indicates the number of developers involved in making these hunks.

To construct a hunk classification model following steps are used:

Preparation of Data Set Data is prepared befor it can be fed into a classifier.
Data instances are created in the following way:

e Extract hunks from 8 open source project histories using the process
mentioned in Chapter 2.

e Identify the bug fix hunks for each file by using the algorithm given in
Chapter 2.

5.2. TOOLS USED 65

Identify bug-introducing hunks by using the pseudo code given in
Chapter 2.

Label the bug-introducing hunks as buggy and others as bug-free.

Calculate hunk metrics for each hunk.

Combine the set of metrics of each hunk with its label indicating buggy
or bug-free hunk, to make a single instance for each hunk.

Classification After preparation of data, statistical and machine learning clas-
sifiers are trained on this data.

e Train classifiers for each project, using the labeled instances.

e Evaluate classification performance of each classifier, using the mea-
sures of accuracy, recall, precision, and F-value.

Identification of Significant Metrics Some metrics may be better predictors
of bugs than others, so those metrics should be selected which produce
better results.

e Individual and groups of metrics are used to construct models and their
performance is evaluated.

5.2 Tools Used

The random forest algorithm implemented in WEKA [2] is used for this study. To
apply logistic regression, the statistical tool R is used. Random forest is used due
to its ability to quickly handle large number of input variables. Output of random
forest is the mode of all outputs of individual trees, so it produces better results
than other machine learning classifiers. Logistic regression is used because there
are two possible predictions for a hunk, buggy or bug-free. Predictive capabilities
of individual as well as combination of metrics are studied.

5.3 Hunk Metrics

Software metrics deals with the measurement of the software product and the
process by which it is developed. We briefly describe the categories of software
metrics used so far, followed by an introduction to hunk metrics.

Classification of Software Metrics Software metrics can be classified into two

major categories, product metrics and process metrics.

e Product metrics deals with the measurements of the software product
itself. These metrics include measures at various stages of software
development starting from requirements to installed system. Product

66 CHAPTER 5. HUNK CLASSIFICATION

Table 5.2: Measurement Types

Type of Data Possible Operations Description of Data

Nominal = % Categories
Ordinal <> Rankings
Interval +,- Differences
Ratio / Absolute zero

metrics may include the software design complexity, the size of the
final source or object code, or the number of documentation pages
produced.

e Process metrics deals with the measurements of the software develop-
ment process used. These metrics may include total development time,
type of methodology used, or the level of expertise of the programmers
involved.

Categories of Metrics Metrics can be categorized as primitive metrics or com-
puted metrics

e Primitive metrics can be directly measured and do not need any compu-
tations. This category may include the program size metrics observed
as total lines of code, number of defects found during testing, or the
total development time.

e Computed metrics cannot be directly measured and require other met-
rics for their computation. These metrics may include productiv-
ity metrics such as LOC produced per person-month (LOC/person-
month), or quality metrics such as number of defects per thousand
lines of code.

Measurement Scales for Software Metrics For statistical analysis, measured
data can be classified into four basic types that are nominal, ordinal, inter-
val, and ratio. It is important to know the type of information involved
before any data collection. Software metrics should belong to these cate-
gories, for their optimum utilization in empirical studies.

Good metrics should hold capabilities to be used in the development of effi-
cient predictor models. An ideal metrics should be capable of predicting software
product or process features. Thus good metrics should be simple, precise, easy to
obtain, valid and robust.

In this study following hunk metrics are considered:

e No. of Conditions (NOCN) is the total number of conditional statements
in a hunk, such as if, else if and else statement.

5.3. HUNK METRICS 67

e No. of Loops (NOL) is the total number of loops in a hunk, such as for,
while and do while loop.

e No. of Function Calls (NOFC) is the total number of functions called in a
hunk.

e No. of Function Declarations (NOFD) is the total number of functions
declared or defined in a hunk.

e No. of Variable Declarations (NOV) is the total number of variables declared
or defined in a hunk.

e No. of Assignments (NOA) is the total number of assignment statements
used in a hunk.

e No. of Logical Operators (NOLO) is the total number of logical operators
used in a hunk.

e No. of Relational Operators (NORO) is the total number of relational op-
erators used in a hunk.

e No. of Return Statements (NORS) is the total number of return statements
used in a hunk.

e No. of Arrays (NOAR) is the total number of array declaration or access
statements used in a hunk.

e No. of Null Statement (NON) is the total number of times NULL is used
in a hunk.

e No. of Case Statements (NOCS) is the total number of case statements
used in a hunk.

e No. of Break Statements (NOB) is the total number of break statements
used in a hunk.

e No. of Classes (NOC) is the total number of classes declared in a hunk.

e No. of Object Instantiations (NOO) is the total number of objects instanti-
ated using the new operator in a hunk.

e No. of Imports (NOIP) is the total number of import statements used in a
hunk.

e No. of Inheritance Statements (NOIH) is the total number of inheritance
statements such as extends, implements used in a hunk.

e No. of Exception Handlers (NOE) is the total number of exception handlers
used in a hunk.

68 CHAPTER 5. HUNK CLASSIFICATION

No. of Throw statements (NOTH) is the total number of throw statements
used in a hunk.

Total Hunks (NOH) is the total number of hunks made in a revision.

No. of Previous Buggy Hunks (NOBH) is the total number of buggy hunks
made in the previous revisions of a file.

5.4 Evaluation Criteria

Four measures are commonly used to assess the performance of a classifier in-
cluding accuracy, precision, recall and F-Measure. Accuracy is the percentage
of correctly classified instances. We explain these measures with the use of the

following confusion matrix.

Predicted
No Yes
No n11 ni2
Yes noa1 n99

Observed

We represent buggy hunks with Yes and bug-free hunks with No. Accuracy is
the ratio of the correct classifications to the total number of instances. Correct
classifications is the sum of actual buggy hunks classified as byggy and the actual
bug-free hunks classified as bug-free. Accuracy can be calculated by the following

formula:
(n11 + n22)

ni1 + ni2 + nao1 + Na2

* 100

Accuracy =

Buggy hunk precision is the ratio of actual buggy hunks predicted as buggy to
the total number of hunks predicted as buggy.

122

Buggy Hunk Precision = ———————
Nog + N2

Buggy hunk recall is the ratio of actual buggy hunks predicted as buggy to the
total number of actual buggy hunks.

n22

Buggy Hunk Recall = —————
N22 + N2y

Bug-free hunk precision is the ratio of actual bug-free hunks predicted as bug-free
to the total number of hunks predicted as bug-free.

nii

Bug — Free Hunk Precision = ————
nip + na1

5.5. CLASSIFICATION TECHNIQUES 69

Bug-free hunk recall is the ratio of actual bug-free hunks predicted as bug-free to
the total number of actual bug-free hunks.

Bug — Free Hunk Recall = L
nip + ni2

F-Measure combines both precision and recall and is a ratio of the 2 times product

of precision and recall to the sum of precision and recall.

2 x Precision * Recall

F—-M =
casure Precision + Recall

5.5 Classification Techniques

Many machine learning algorithms are available to be used as classifiers.

5.5.1 Logistic Regression

Logistic regression is used when the dependent variable is a binary categorical
variable and the independent variables are continuous and/or categorical [38].
Logistic regression can determine the percent of variance in dependent variable
explained by the independent variables and the relative importance of indepen-
dents.

Linear regression cannot work when the response variable is binary. In situ-
ations where response variable is a probability that takes values between 0 and
1, logistic regression is used. It bounds the response variable to values between 0
and 1, in contrast to linear regression which allows arbitrary large or small values.

Logistic regression assumes that the response variable follows the Logit-function
shown in Figure Bl

To understand logit-function we should know the concept of odds. The odds
of an event that occurs with probability P is defined as

Odds = P/ (1— P) (5.1)

Figure depicts the odds function. We can see the odds of an event goes from
0 to infinity when the probability for that event goes from 0 to 1.
In terms of odds, the logit-function can be written as

logit(P) = log(odds(P)) = log(P/(1— P)) (5.2)

If we use logit-function, we can bound values of P between 0 and 1 with a linear
representation for input variable X.

logit(P) = o + f * X (5.3)

Multivariate logistic regression can be represented by the equation:

eCo+C1.Xiy +..4+Cn Xy,
P(Xy,Xo,...,Xp)

- 1 4+ eCo+C1-Xiy .. 4Cn Xy, (5.4)

70 CHAPTER 5. HUNK CLASSIFICATION

Figure 5.1: Logit Function

Figure 5.2: Odds Function

5.5. CLASSIFICATION TECHNIQUES 71

The X;s are the hunk metrics in our case and P is the probability of a hunk being
buggy.

5.5.2 Random Forests

The Random Forest is a meta-learner comprised of many trees and operates
quickly on large datasets. It uses random samples to build each tree in the for-
est. Attributes at each node of a tree are selected randomly and then attributes
providing the highest level of learning are selected.

A detail of the working of Random Forests is out of the scope of this thesis.
However a brief overview is presented here as described in [9]. Random forests
use a combination of tree predictors with each tree depending on the values of a
random vector sampled independently and with the same distribution for all trees
in the forest. To classify a new object from an input vector, each input vector is
put down each of the trees in the forest. Each tree gives a classification or votes
for that class. The forest chooses the classification having the most votes among
all the trees in the forest.

Each tree in the forest grows as follows:

e Suppose N is the number of cases in the training set, randomly IN cases
are sampled with replacement from the original data. This sample acts as
training set for growing the tree.

e Suppose M is the number of input variables, a number m< M is specified
in such a way that m variables are selected randomly out of M at each
node and the best split on these m is used to split the node. The value of
m is kept constant as the tree grows.

e No pruning is applied and each tree in the forest grows to the largest extent
possible.

The error rate of random forest depends on two things:

e High correlation between any two trees increases the error rate of random
forest.

e Higher strength of individual trees decreases the error rate of random forest.

We used the random forest algorithm implemented in WEKA [2].

5.5.3 Principal Component Analysis (PCA)

Principal component analysis is used to identify patterns in data, and express the
data in such a way as to highlight the similarities and differences among patterns.
It is difficult to find patterns in high dimensional data, so PCA helps to analyze

72 CHAPTER 5. HUNK CLASSIFICATION

such kind of data. PCA helps to find patterns in data and compress the data to
reduce the number of dimensions, without much loss of information. To apply
PCA mean (average across each dimension) is subtracted from each of the data
dimensions. X is subtracted from all X values and Y is subtracted from all Y
values. In this way we get a dataset having mean zero. In the next step a co-
variance matrix is calculated for the data. Then eigenvectors and eigenvalues are
calculated for the covariance matrix. By taking the eigenvectors of the covari-
ance matrix, we can extract lines that characterize the data. Then the data is
transformed so that it can be expressed in terms of these lines.

Eigenvectors are ordered by eigenvalues from highest to lowest, producing
components in order of significance. Components with lesser significance can be
ignored to reduce the data dimensions. If we have n dimensions in data and there
are n calculated eigenvectors and eigenvalues, and we choose first m eigenvectors
then the final data will have m dimensions. A feature vector is made by forming
a matrix with the chosen eigenvectors.

Feature vector = (eigl eig2 eig3 --- eign) (5.5)

Finally transpose of the feature vector is multiplied on the left of the transposed
original data set.

Final Data = RowFeatureVector x RowDataAdjust (5.6)

Where RowFeatureVector is the matrix with the eigenvectors in the columns trans-
posed, and RowDataAdjust is the mean-adjusted data transposed. In this way
data is represented in terms of vectors which describe patterns in the data.

Some of the hunk metrics are correlated with each other. These inter-correlations
can be overcome using the principal component analysis (PCA). PCA reduces the
number of dimensions without much loss of information. Principal components
are extracted by using a variance maximizing rotation of the original variables.
We used the extracted principal components in logistic regression.

5.5.4 Point Biserial Correlation

The point biserial correlation measures the association between a continuous vari-
able and a binary variable [28]. It can take values between -1 and +1. Assuming
X as a continuous variable and Y as categorical with values 0 and 1, point biserial
correlation can be calculated using the formula

(X1 — Xo)y/p(1 —p)
S

T =

where X is the mean of X when Y=1 ,
X is the mean of X when Y=0 ,

5.6. RESULTS 73

S, is the standard deviation of X |

and p is the proportion of values where Y—1 .

Positive point biserial correlation indicates that large values of X are associated
with Y=1 and small values of X are associated with Y=0. Point biserial correla-
tion values greater than 0.2 are considered good.

5.6 Results

This section presents the results obtained by classifying hunks using random
forests and logistic regression. Performance of individual as well as group of
hunk metrics is evaluated for hunk classification. Classification accuracies are
compared for random forests and logistic regression. Hunk metrics are analyzed,
and those metrics are identified which can serve as better predictor of bugs.

5.6.1 Correlation between Hunk Metrics and Bugs

As a hunk can be either buggy or bug-free, point biserial correlation is calculated
between each hunk metrics and the hunk type i.e buggy or bug-free. Most of the
hunk metrics have positive point biserial correlation with hunk type except NOI,
NOTH and NOIP having negative correlation, see Table The majority of
the correlation values are greater than 0.15, indicating that hunk metrics can dis-
criminate between buggy and bug-free hunks. NOH has higher correlation values
in all projects as compared to other metrics. It means NOH can better discrimi-
nate between buggy and bug-free hunks. NOBH has higher values for Eclipse and
Mozilla as compare to other projects, the reason may be large number of revisions
of these projects as compared to other projects.

Some projects have similar correlation values like Apache, Epiphany and Evolu-
tion are similar for most of the hunk metrics. Similarly Nautilus and PostgreSQL
have almost similar values. It indicates the possibility of a single classification
model which can be applied to different projects.

5.6.2 PCA and Logistic Regression

We applied logistic regression both with and without using PCA, but the results
are almost similar in both cases. However one advantage of using PCA is that
number of input variables is reduced. Logistic regression provides the probability
of a hunk being buggy and the values range between 1 and 0. We used a cutoff
value of 0.5 to classify hunks as buggy, it means that if P > 0.5, the hunk is
classified as buggy and bug-free otherwise. Accuracy, precision and recall values
are calculated for each project (both C and JAVA files are processed for Mozilla).
The accuracy values vary from 60 percent for Nautilus to 74 percent for Mozilla.
The F-Measure for buggy hunks varies from 0.11 for Mozilla to 0.61 for Nautilus

74

CHAPTER 5. HUNK CLASSIFICATION

Table 5.3: Point biserial correlation between hunk metrics and hunk type

Metrics | Apache | Eclipse | Epiphany | Evolution | Mozilla | Nautilus | PostgreSQL
NOCN 0.32 0.23 0.25 0.24 0.20 0.17 0.22
NOL 0.25 0.09 0.23 0.30 0.16 0.14 0.18
NOA 0.26 0.12 0.25 0.27 0.15 0.17 0.19
NOFC 0.36 0.16 0.28 0.28 0.15 0.25 0.22
NOFD 0.16 0.12 0.23 0.25 0.13 0.23 0.19
NOV 0.18 0.09 0.25 0.26 0.09 0.18 0.18
NOP 0.27 — 0.27 0.28 0.19 0.24 0.21
NOLO 0.31 0.15 0.22 0.22 0.15 0.12 0.18
NORO 0.28 0.13 0.23 0.16 0.11 0.11 0.15
NORS 0.27 0.02 0.14 0.22 0.17 0.14 0.22
NON 0.32 0.15 0.26 0.21 0.20 0.15 0.16
NOI -0.17 — 0.14 -0.03 -0.03 -0.02 -0.11
NOD 0.04 — 0.16 0.06 0.03 0.11 0.07
NOS 0.20 — 0.12 0.28 0.11 0.16 0.12
NOAS 0.02 — 0.01 0.01 -0.17 0.01 0.15
NOAR 0.25 0.08 0.21 0.16 0.16 0.06 0.14
NOCS 0.25 0.31 0.18 0.16 0.13 0.19 0.04
NOG 0.36 — 0.22 0.23 0.14 0.26 0.13
NOB 0.29 0.16 0.23 0.22 0.21 0.20 0.15
NOE — 0.08 — — 0.14 — —
NOC — 0.09 — — -0.01 — —
NOO — 0.04 — — 0.05 — —
NOTH — -0.03 — — 0.09 — —
NOIP — -0.01 — — -0.31 — —
NOTH — 0.15 — — -0.09 — —
NOH 0.33 0.28 0.28 0.34 0.36 0.22 0.37
NOBH 0.10 0.61 0.05 0.11 0.27 0.05 0.06

and the F-Measure for bug-free hunks varies from 0.58 for Nautilus to 0.85 for
Mozilla. Precision and Recall values are lower for buggy hunk as compare to
bug-free hunks, see Table We can adjust precision and recall values for buggy
and bug-free hunks by changing the cutoff value. If we use cutoff value of 0.3, the
precision and recall for buggy hunks is improved.

Application of PCA has not improved the results, see Table B4l The reason is
that in majority of the hunk instances most of the hunk metrics are 0. Although
there is correlation between hunk metrics but the correlation values are not so
high.

Regression analysis have shown that NOCN, NOA, NOFC, NORS, NOBH and
NOH are significant predictors of buggy hunks at significance level 1 % in most
of the projects, see Table and BE71. NOH are found significant for classifying
the hunks as buggy or bug-free in all projects. NORO, NON, NOAR, NOB, and

5.6. RESULTS 75

Table 5.4: Precision P, Recall R and Accuracy A using LR with PCA
Buggy Hunk Bug-Free Hunk

Project AP TRIF P ITRIE
Apache 0.65 | 0.68 | 0.36 | 0.47 | 0.88 | 0.64 | 0.74
Eclipse 069 | 073 0.17 | 0.28 | 0.97 | 0.69 | 0.80

Epiphany | 0.68 | 0.63 | 0.20 | 0.30 | 0.94 | 0.69 | 0.79
Evolution | 0.67 | 0.65 | 0.24 | 0.35 | 0.92 | 0.67 | 0.78
Mozilla-C | 0.74 | 0.55 | 0.05 | 0.09 | 0.99 | 0.75 | 0.85
Mozilla-J | 0.69 | 0.72 | 0.33 | 0.46 | 0.92 | 0.68 | 0.78
Nautilus 0.60 | 0.62 | 0.66 | 0.64 | 0.53 | 0.57 | 0.55
PostgreSQL | 0.61 | 0.66 | 0.40 | 0.50 | 0.84 | 0.62 | 0.71

Table 5.5: Precision P, Recall R and Accuracy A using LR without PCA
Buggy Hunk Bug-Free Hunk

Project AP TRIF TP ITRIE
Apache 0.66 | 0.69 | 0.37 | 0.48 | 0.87 | 0.65 | 0.74
Eclipse 0.69 | 0.74 | 0.17 | 0.28 | 0.97 | 0.69 | 0.81

Epiphany 0.66 | 0.57 | 0.09 | 0.15 | 0.96 | 0.67 | 0.79
Evolution 0.66 | 0.65 | 0.19 | 0.30 | 0.94 | 0.66 | 0.77
Mozilla-C 0.74 1 0.56 | 0.06 | 0.11 | 0.98 | 0.75 | 0.85
Mozilla-J 0.69 | 0.73 | 0.33 | 0.45 | 0.92 | 0.68 | 0.78
Nautilus 0.60 | 0.64 | 0.60 | 0.61 | 0.60 | 0.56 | 0.58
PostgreSQL | 0.62 | 0.67 | 0.42 | 0.52 | 0.83 | 0.61 | 0.70

NOFD are also significant in half of the projects. The set of significant hunk
metrics is different in all projects with one exception, that is NOH.

5.6.3 Random Forests

Random forests have produced the most accurate results. We used 10-fold cross
validation to build the classification model. In 10-fold cross validation the data is
broken down into 10 sets of size n/10. The classifier is trained on 9 data sets and
tested on 1 data set. This procedure is repeated 10 times and a mean accuracy is
taken [[72]. The accuracy values produced by our model vary from 74 percent for
Epiphany to 87 percent for Eclipse, see Table The F-measure for buggy hunks
varies from 0.57 for Epiphany to 0.81 for Eclipse and the F-measure for bug-free
hunks varies from 0.75 for Nautilus to 0.91 for Eclipse and Mozilla. Precision
values for buggy hunks are between 66% and 84%, and the recall values for buggy
hunks are between 51% and 78%.

76

CHAPTER 5. HUNK CLASSIFICATION

Table 5.6: Results of Multivariate Logistic Regression (a)

Metrics Apache Epiphany Evolution Nautilus
Coeff. | p-value | Coeff. | p-value | Coeff. | p-value | Coeff. | p-value
constant | -0.87 | 0.000 | -1.21 | 0.000 | -1.11 | 0.000 | -0.15| 0.000
NOP 0.02 0.01 0.04 0.01 0.02 0.003 0.02 0.02
NOCN 0.07 | 0.000 0.07 0.04 0.02 0.15 0.02 0.22
NOL -0.03 0.52 | -0.01 0.94 0.01 0.8 | -0.03 0.62
NOLO 0.03 0.05 | -0.01 0.76 | -0.06 | 0.000 | -0.11 | 0.000
NORO -0.06 0.002 0.12 0.003 0.07 | 0.000 0.03 0.15
NOA -0.11 | 0.000 | -0.07 0.02 0.01 0.26 | -0.08 | 0.000
NOFC 0.12 | 0.000 0.07 0.001 0.07 | 0.000 0.09 | 0.000
NORS -0.02 0.58 | -0.47 | 0.000 | -0.03 0.2 | -0.14 | 0.000
NON 0.07 0.01 0.06 0.04 | -0.01 0.26 | -0.09 | 0.000
NOS 0.03 0.79 | -0.05 0.87 0.08 0.22 | -0.13 0.38
NOAR 0.04 0.08 | -0.07 0.37 | -0.07 0.002 | -0.06 0.03
NOCS 0.16 0.03 | -0.08 0.46 -0.1 0.001 0.14 0.02
NOG 1.04 0.01 -0.16 0.59 0.22 0.1 0.82 0.02
NOB -0.36 | 0.000 0.21 0.23 0.07 0.14 0.08 0.43
NOV -0.03 0.2 0.05 0.06 0.02 0.06 | -0.01 0.34
NOFD -0.08 0.002 0.16 | 0.000 0.09 | 0.000 0.14 | 0.000
NOBH 0 0.91 0 0| 0.001 0.26 | 0.001 | 0.000
NOH 0.02 | 0.000 0.05 | 0.000 0.03 | 0.000 0.01 | 0.000

5.6.4 Comparison of Logistic Regression and Random Forests

Random forests have produced better results as compared to logistic regression.
Accuracies obtained by training and applying both models are shown in Figure B3]
Maximum and minimum accuracies obtained by applying random forests are 87%
and 74% respectively. For Eclipse, Mozilla and PostgreSQL it has classified more
than 80% hunks accurately. Application of logistic regression produces maximum
and minimum accuracies of 74% and 60% respectively. In most of the projects,
logistic regression can classify less than 70% hunks accurately.

Figure B4 shows the buggy hunk precision obtained by training and apply-
ing both models. Again random forest has out classed logistic regression and it
produces maximum and minimum buggy hunk precision of 84% and 66% respec-
tively. It produces more than 80% buggy hunk precision for Eclipse, Mozilla and
PostgreSQL. Maximum and minimum buggy hunk precision obtained by applying
logistic regression is 74% and 56% respectively. Using logistic regression, buggy
hunk precision falls between 60% and 70% for most of the projects.

Buggy hunk recall obtained by applying both models is shown in Figure B
Logistic regression has produced very poor recall. However in more than half
projects random forest has produced more than 70% buggy hunk recall. Maxi-
mum and minimum recall obtained by applying random forests is 78% and 51%

5.6. RESULTS

Table 5.7: Results of Multivariate Logistic Regression (b)

. PostgreSQL Eclipse Mozilla
Metrics Coeff. | p-value | Coeff. | p-value | Coeff. | p-value
constant | -0.72 | 0.000 -1 | 0.000 | -0.99 | 0.000
NOP 0.08 | 0.000 — — 0.04 | 0.000
NOCN 0.15 | 0.000 0.04 | 0.000 0.07 | 0.000
NOL 0.1 0.01 | -0.01 0.37 | -0.09 0.067
NOLO 0.03 0.1 0.01 0.09 0.04 0.021
NORO -0.16 | 0.000 | -0.01 0.1 -0.1 | 0.000
NOA 0.04 | 0.000 | -0.02 | 0.000 0.01 0.157
NOFC 0.06 | 0.000 0.04 | 0.000 0.05 | 0.000
NORS 0.3 | 0.000 | -0.06 | 0.000 0.05 | 0.000
NON -0.09 | 0.000 0.19 | 0.000 | -0.06 0.109
NOS 0.14 0.02 — — — —
NOAR -0.14 | 0.000 | -0.04 | 0.000 0.12 | 0.000
NOCS -0.24 | 0.000 0.02 0.002 | -0.03 0.041
NOG -1.08 | 0.000 — — — —
NOB 0.28 | 0.000 | -0.14 | 0.000 | -0.01 0.625
NOV 0.07 | 0.000 0.01 0.03 0.02 0.044
NOFD 0 0.68 0 0.85 0.01 0.610
NOE — — | -0.09 | 0.000 0.03 0.382
NOO — — 0.01 0.4 1] -0.15| 0.000
NOC — — | -0.02 0.56 0.3 0.002
NOTH — — -0.1 | 0.000 | -0.09 0.001
NOIP — — 0 0.78 -0.5 | 0.000
NOIH — — 0.15 0.001 -0.4 | 0.000
NOBH 0| 0.000 0| 0.000 0| 0.000
NOH 0| 0.000 0| 0.000 0.01 | 0.000

Table 5.8: Precision P, Recall R and Accuracy A using random forests

Buggy Hunk Bug-Free Hunk

Project AP TRIF P ITRIE
Apache 0.76 | 0.75 | 0.65 | 0.70 | 0.76 | 0.84 | 0.80
Eclipse 0.87 | 0.84 | 0.78 | 0.81 | 0.89 | 0.92 | 0.91

Epiphany | 0.74 | 0.66 | 0.51 | 0.57 | 0.77 | 0.86 | 0.81
Evolution | 0.75 | 0.70 | 0.53 | 0.63 | 0.77 | 0.85 | 0.81
Mozilla-C | 0.86 | 0.81 | 0.62 | 0.70 | 0.88 | 0.95 | 0.91
Mozilla-] | 0.84 | 0.83 | 0.76 | 0.79 | 0.85 | 0.90 | 0.87
Nautilus 0.77 [0.79 | 0.78 | 0.78 | 0.75 | 0.76 | 0.75
PostgreSQL | 0.83 | 0.81 | 0.72 | 0.76 | 0.84 | 0.89 | 0.86

78 CHAPTER 5. HUNK CLASSIFICATION

Accuracies using Random Forest and Logistic Regression

0.9

0.8
=y
= 07
g 08
= 05 B Rardom Forests
% 04 @ Logistic Regression
o
% 03
& 02
“ od

0

Apache Edipse Bpiphany Evoluion Meozilk-C Mozila-d Mautlus PostgreSoL
Project
Figure 5.3: Accuracies using Random Forest and Logistic Regression
Buggy Hunk Precision using Random Forests and Logistic Regression

09

08

07

06
S os
& B Rardom Forests
o 04 [Logistic Regression
& 03

0z

0.1

0

Apache Edipse Bpiphany Evoluion Mozilla-C Mozille-J Mautius PostgeSGL
Project

Figure 5.4: Buggy Hunk Precision using Random Forest and Logistic Regression

respectively. Buggy hunk recall obtained by applying logistic regression is less
than 40% for most of the projects. It produces maximum and minimum buggy
hunk recall of 60% and 6% respectively.

5.6.5 Performance of Individual Metrics

To evaluate the performance of individual metrics, we used single hunk metric as
the independent variable and presence or absence of bug as the dependent variable.
Our objective was to evaluate each metric separately as predictor of bugs. Most
of the code related hunk metrics have produced similar results. Hunks may differ
in their code contents, so different metrics may classify the same hunk differently.
However overall accuracies are almost similar for code related metrics, see Table
and IO Two hunk metrics have produced better results as compared to other

5.6. RESULTS 79

Bugagy Hunk Recall using Random Forests and Logistic Regression
09

o0&

0T
06
05
B Rarclom Forests

0.4 M Logjistic Regression
03
0.2
04

[u]

Apache Edipse Bpiphany Evoluion Mozila-C Mozile-J Nautlus PostgreScL
Project

Recall

Figure 5.5: Buggy Hunk Recall using Random Forest and Logistic Regression

metrics. One of these metrics is related to size of change that is total number of
hunks in a revision (NOH). Other is related to history that is number of buggy
hunks found in the previous history of a file (NOBH).

Individual metrics can distinguish between buggy and bug-free hunks with
60% accuracy on an average, see Figure For Mozilla project, function decla-
rations, return statement, number of total hunks and number of previous buggy
hunks have shown better buggy hunk precision. Whereas for Eclipse project,
loops, function calls, return statements, arrays, break statement and classes have
shown better buggy hunk precision, as depicted in Figure BE7

Individual metrics have produced very poor recall values. Among the code
related hunk metrics, function calls, Null statement and case statement have
produced better buggy hunk recall for the Mozilla project. Change and history
related hunk metrics have produced best buggy hunk recall for both projects, see
Figure B8

5.6.6 Performance of Combination of Metrics

To evaluate the performance of metrics groups, we combined related metrics into
three groups. The first group was composed of hunk metrics related to methods.
The second group was related to classes and the third group was related to change
size and history. Following is a detail of the groups:

e Group 1. NOCN, NOL, NOA, NOFC, NOFD, NOV, NOLO, NORO,
NORS, NON, NOAR and NOB.

e Group 2. NOC, NOO, NOIP and NOIH.

e Group 8. NOH and NOBH.

80 CHAPTER 5. HUNK CLASSIFICATION

Table 5.9: Precision , Recall and Accuracy for Mozilla using individual metrics

. Bu Hunk Bug-Free Hunk
Metrics | Accuracy Precision ggi:{ecall F1 Precisior% Recall F1
NOCN 0.59 0.566 0.066 | 0.119 0.59 0.963 | 0.732
NOL 0.58 0.527 0.036 | 0.068 0.585 0.977 | 0.732
NOA 0.58 0.516 0.008 | 0.016 0.583 0.995 | 0.735
NOFC 0.60 0.577 0.144 | 0.231 0.601 0.924 | 0.728
NOFD 0.58 0.615 0.017 | 0.034 0.584 0.992 | 0.736
NOV 0.58 0.303 0.001 | 0.002 0.582 0.999 | 0.735
NOLO 0.58 0.479 0.006 | 0.011 0.582 0.996 | 0.735
NORO 0.58 0.516 0.008 | 0.016 0.583 0.995 | 0.735
NORS 0.58 0.667 0.005 | 0.01 0.583 0.998 | 0.736
NON 0.60 0.562 0.156 | 0.223 0.591 0.914 | 0.731
NOAR 0.58 0.558 0.018 | 0.035 0.584 0.99 | 0.735
NOCS 0.58 0.586 0.166 | 0.219 0.591 0.951 | 0.722
NOB 0.58 0.558 0.024 | 0.046 0.585 0.986 | 0.734
NOC 0.58 0 0 0 0.582 1 0.736
NOO 0.58 0.489 0.004 | 0.007 0.582 0.997 | 0.735
NOIP 0.58 0.5 0 0 0.582 1 0.736
NOIH 0.58 0 0 0 0.582 1 0.736
NOH 0.73 0.829 0.461 | 0.592 0.706 0.932 | 0.804
NOBH 0.77 0.783 0.624 | 0.695 0.764 0.876 | 0.816

Table 5.10: Precision , Recall and Accuracy for Eclipse using individual metrics

. Buggy Hunk Bug-Free Hunk
Metrics | Accuracy Precision | Recall F1 Precision | Recall F1
NOCN 0.65 0.541 0.01 0.02 0.656 0.995 | 0.791
NOL 0.66 0.638 0.006 | 0.011 0.656 0.998 | 0.791
NOA 0.66 0.554 0.009 | 0.018 0.656 0.996 | 0.791
NOFC 0.66 0.619 0.009 | 0.018 0.656 0.997 | 0.791
NOFD 0.66 0.596 0.008 | 0.015 0.656 0.997 | 0.791
NOV 0.66 0.593 0.005 | 0.011 0.655 0.998 | 0.791
NOLO 0.66 0.578 0.01 0.02 0.656 0.996 | 0.791
NORO 0.66 0.604 0.008 | 0.016 0.656 0.997 | 0.791
NORS 0.66 0.625 0.006 | 0.011 0.656 0.998 | 0.791
NON 0.65 0.532 0.06 0.08 0.666 0.985 | 0.788
NOAR 0.66 0.616 0.003 | 0.006 0.655 0.999 | 0.791
NOB 0.66 0.601 0.007 | 0.015 0.656 0.997 | 0.791
NOC 0.65 0.639 0.001 | 0.003 0.655 1 0.791
NOO 0.66 0.62 0.006 | 0.012 0.656 0.998 | 0.791
NOIP 0.65 0.473 0.002 | 0.005 0.655 0.999 | 0.791
NOIH 0.66 0.548 0.008 | 0.015 0.656 0.997 | 0.791
NOH 0.75 0.839 0.326 | 0.47 0.731 0.967 | 0.833
NOBH 0.79 0.781 0.553 | 0.648 0.796 0.918 | 0.853

5.6.

Predsion Classification Accuracy

Recall

RESULTS

0g
0g
07
06
0s
04
03
0z
01

0

0a
0&
0.7
08
05
0.4
03
02
01

1]

07
06
0s
0.4
03
0z
01

MNOCH

MOL MNOFC K1Y NORO NOR MOB MNOC

MNCCH

MNCL MNOFC MY MNORO MOM NOB NOO

Accuracies using Individual Metrics

MNOIH

NOBH
T MOFD MOLO MORS MOAR NOC MOIP MOH
Hunk Metrics
MOBH

Figure 5.6: Accuracies using Individual Metrics

MNOIH
MOA MOFD MOLO MORS MOAR MOC NOIP MNOH

Hunk Metiics

Bugagy Hunk Precision using Individual Metrics

Figure 5.7: Buggy Hunk Precision using Individual Metrics

MNOL MO MO NORO MOM NOB OBH

MOCH

Bugagy Hunk Recall using Individual Metrics

FC [§[e]e] MOIH
MOA MNOFD MOLO MNORS MOAR NOC MNOIP MOH

Hunk Metics

Figure 5.8: Buggy Hunk Recall using Individual Metrics

W niozlla
BEcipse

W iezila
HEEcipse

WEiodla
HEclpse

82

CHAPTER 5. HUNK CLASSIFICATION

Table 5.11: Precision , Recall and Accuracy for Mozilla using metrics groups

. Bu Hunk Bug-Free Hunk
Metrics | Accuracy Precision ggéecall F1 Precisior% Recall F1
Groupl 0.60 0.583 0.174 | 0.268 0.606 0.911 | 0.727
Group?2 0.58 0.543 0.006 | 0.011 0.583 0.997 | 0.735
Group3 0.84 0.84 0.768 | 0.803 0.843 0.895 | 0.868

Table 5.12: Precision , Recall and Accuracy for Eclipse using metrics groups

. Bu Hunk Bug-Free Hunk
Metrics | Accuracy Precision ggéecall F1 Precisior% Recall F1
Groupl 0.68 0.619 0.189 | 0.289 0.687 0.939 | 0.793
Group?2 0.66 0.696 0.01 0.02 0.656 0.998 | 0.792
Group3 0.87 0.869 0.723 | 0.789 0.866 0.943 | 0.902

We used each group of metrics as explanatory variables and trained and tested
the classifier. Group 2 produced poor results, see Table B.TTl and One reason
may be few hunks involving class declarations and inheritance statements. Group
1 produces better accuracy but recall values are poor. Group 3 produced the best
results. It indicates that buggy files continue to introduce bugs in later releases.

Hunk metrics related to methods and classes can distinguish between buggy
and bug-free hunks with similar accuracies, see Figure B9 They are equally
precise also in identifying buggy hunks, as depicted in Figure BI0l However class
related hunk metrics have very poor buggy hunk recall value. Method related hunk
metrics have produced slightly better results with average buggy hunk recall of
18%, as shown in Figure[TTl The reason may be a few number of hunks involving
changes to classes as compared to hunks involving changes to methods.

History and change related hunk mtrics have outperformed other two groups.
History related group can distinguish buggy and bug-free hunks with 85% accu-
racy on an average. It has produced much better buggy hunk precision and recall
values that are 85% and 74% respectively.

5.6.7 Cross Project Predictions

In order to know whether a predictor obtained from one project can be applied
to other projects, we tested the constructed models across different projects. We
tested the models built using random forests, because they produced better results
for the same project. Projects developed in JAVA language have some additional
metrics related to objects, so we made two groups. One group having JAVA
Table shows the classification

accuracies obtained by applying predictor obtained from one project, to other

projects and the other having C projects.

projects. The accuracy values range from 49 percent to 75 percent, with most of
the values greater than 60 percent. It indicates that predictors obtained from one

5.6. RESULTS

Classification Accuracy
[=]
[4;]

0g
08
o7
08
0s
04
03
0z
01

Precision

Accuracies using Group of Mefrics

Group1

EMozilla
BEcipse

Group2 Group3
Metrics Group

Figure 5.9: Accuracies using Metrics Groups

Bugagy Hunk Precision using Group of Metrics

Group1

W Mozlla
W Eclpse

Group2 Group3
Metrics Group

Figure 5.10: Buggy Hunk Precision using Metrics Groups

as
og
07
06
0s
o4
03
0z
01

Recall

Bugay Hunk Recall using Group of Metrics

Group

BEiozla
HEEclpse

Group2 Group3
Metrics Group

Figure 5.11: Buggy Hunk Recall using Metrics Groups

83

84 CHAPTER 5. HUNK CLASSIFICATION

Table 5.13: Classification accuracies using models from a different project

Project Apache Eclipse Epiphany Evolution Mozilla-C Mozilla-J Nautilus PostgreSQL

Apache — — 0.67 0.64 0.74 — 0.52 0.65
Eclipse — — — — — 0.61 — —
Epiphany 0.65 — — 0.63 0.69 — 0.54 0.63
Evolution 0.63 — 0.63 — 0.69 — 0.54 0.62
Morzilla-C 0.75 — 0.63 0.61 — — 0.52 0.63
Mozilla-J — 0.65 — — — — — —
Nautilus 0.53 — 0.60 0.59 0.60 — — 0.49
PostgreSQL 0.64 — 0.64 0.63 0.71 — 0.52 —

project based on hunk metrics can be successfully applied to other projects.

Predictor obtained from Apache project could classify hunks from Epiphany,
Evolution and PostgreSQL with a similar accuracy of 64%. It could classify only
50% hunks of Nautilus accurately. However it showed better results for Mozilla
project with an accuracy of 75%.

Predictor obtained from change data of Epiphany could classify hunks from
other projects with an average accuracy of 63%, whereas predictor obtained from
Evolution project could classify 62% of hunks from other projects correctly.

Classifier trained on historic data of Mozilla. showed better results compared
to other classifiers. On an average it could classify 69% hunks correctly, with best
accuracies for Apache and PostgreSQL.

Predictor obtained from PostgreSQL showed results similar to the predictor
obtained from Apache project. It could classify hunks from Apache, Epiphany
and Evolution with a similar accuracy of 64%. It could classify only 50% hunks
of Nautilus accurately, whereas for Mozilla project it also showed better results
with an accuracy of 71%.

Classifiers obtained from Eclipse and Mozilla, when applied on each other,
produced similar results. In both cases the accuracy of classification was about
60%.

5.7 Applications

Hunk classification approach can be used in different ways:

e Hunk classification approach can identify buggy hunks immediately after a
hunk is made. It can alarm the developers about the bad code. Developers
can review the code changes they have made before committing them to the
repository. So hunk classifier can be used as a commit inspector.

e It can be used as part of the software development process. Developers can
make changes to the source code, apply hunk classifier to check the changes,

5.7. APPLICATIONS 85

receive notification about the change, modify the changes if required and
repeat the same cycle again. One advantage of using hunk classifier is the
smallest level of granularity. Developers have to inspect a few lines of code
rather than the whole change.

Chapter 6

Threats to Validity

This chapter describes the threats to the validity of this work.

All analyzed projects are open source: The software systems used in this
empirical study are all open source, hence they follow a different develop-
ment methodology. Commercial software projects use different development
and maintenance techniques, so there may be different patterns of changes
and bugs. Commercial projects use skilled programmers and analysts, so
bug introduction patterns may be slightly different. Time pressure is also
a major difference between open source and commercial projects which can
influence the change patterns.

Studied projects might not be representative: Although eight large open
source projects belonging to different domains are used in this study, they
cannot represent all kinds of software. Projects with better bug reporting
and bug linking facilities may produce better results for classification accu-
racies. Real time and distributed software may have different change and
bug patterns and hence different buggy hunk classification accuracies.

Quality of log comments: A careful processing is used to extract comments
from configuration management systems and to identify bug fixes. However
quality of the log comments can influence the results. A developer may not
properly comment the change, so some bug fixes may be missed. All projects
do not use a standard way of writing comments. Some projects follow a
numeric bug identifier scheme to represent fix comments while others use
keywords like fix, bug or patch in their comments. So some commits may
be mistakenly identified as fixes.

87

88 CHAPTER 6. THREATS TO VALIDITY

Granularity of Versioning Systems: Configuration management systems record
changes on line level. So it is difficult to identify which individual syntax
element is modified during a change. There may be either a single syntax
element changed in a line or multiple elements. Better techniques for iden-
tification of individual syntax elements may further enhance the accuracies
of results.

Software Design Issues: In this study, changes and bugs of projects are con-
sidered which have a development history. No emphasis is given to software
design and design time flaws. Different software designs may produce dif-
ferent change and bug patterns. It would be nice to include design time
metrics and information for study of changes and bugs.

Although it is difficult to extract precise data from software repositories
because of several reasons that may be mapping between bugs and source
code locations, extraction of changed code or mapping of changes and bugs
to the developers, we can not say that the derived conclusions are entirely
wrong. Using a public data set we have to compromise on the validity of
data to a certain extent. Keeping in view the available data sources, these
results are acceptable.

Chapter 7

Related Work

In this chapter work related to this thesis is discussed. First different approaches
and techniques are discussed for extracting valuable facts from software repos-
itories. Next different bug prediction models and techniques are discussed and
compared with the hunk classification technique. Then a discussion is made on
change extraction and change analysis. Finally a review of buggy code features
and code locations is presented.

7.1 Mining Software Change History

Hipikat is a tool that forms implicit group memory for a project by inferring links
between stored artifacts and that then recommends relevant part of the group
memory to a developer working on the task [T2]. It groups four types of artifacts:
bug and feature descriptions, source file revisions, messages posted on developer
forums, and other project documents. It helps new comer/developer in open
source project by providing an efficient and effective access to the group memory
for a software development project. Hipikat can be viewed as a recommender
system for software developers that draws its recommendation from a projects
development history.

Kenyon is a tool that provides automated configuration retrieval from SCM to
a local file system and applies fact extractors on each retrieved configuration and
then saves the extracted information into a relational database using an objec-
t /relation mapping (ORM) system [§]. It reduces the time of research, automates
configuration retrieval and allows user control on configuration times. Different
SCM systems and multiple data input sources are supported. Kenyon provides
efficient, accessible, and optional storage of extracted facts. It uses Hibernate to
map its Java objects to a relational database. Hibernate provides a solution to

89

90 CHAPTER 7. RELATED WORK

map database tables to a class. It copies the database data to a class. In the
other direction it supports to save objects to the database. In this process the
object is transformed to one or more tables. Our modules do a similar job of fact
extraction from configuration management systems.

Sliwerski et al. [66] developed a prototype HATARI to detect locations in
the software development history where changes have been risky in the past. It
relates version archives (such as CVS) to a bug database (such as BUGZILLA)
to identify and locate the risky code locations. HATARI makes this risk visible
for developers by annotating source code with color bars. Furthermore, HATARI
provides views to browse through the most risky locations and to analyze the risk
history of a particular location.

7.2 Bug Prediction

Defect prediction studies involve different approaches including product-centric,
process-centric and a combination of both. Product-centric approaches use mea-
sures obtained from static and dynamic structure of source code or measures
extracted from requirements and design documents. A number of studies exist on
the use of product-centric approach.

Gyimothy et al. [29] validated the object-oriented metrics for fault prediction
in open source software. The authors used logistic regression and machine learn-
ing techniques to identify faulty classes in Mozilla. They used Chidamber and
Kemerer metrics in their study. The authors evaluated eight metrics including
weighted methods per class, depth of inheritance tree, response for a class, number
of children, coupling between object classes, lack of cohesion on methods, lack of
cohesion on methods allowing negative value and lines of code. Bugzilla database
was processed and bugs were associated with classes. The authors found that
coupling between object classes is the best choice for predicting faulty classes.
Lines of code metrics also performed well in predicting faulty classes.

Porter and Selby [6I] used classification trees based on metrics from previ-
ous releases to identify components having high-risk properties. The authors
developed a method of automatically generating measurement-based models of
high-risk components.

Koru and Liu [40)] combined static software measure with defect data at class
level and applied different machine learning techniques to develop bug predictor
model. The authors analyzed the CM1, JM1, KC1, KC2, and PC1 data sets in the
PROMISE repository, which belong to five software products developed by NASA.
Several models were built to predict the defective modules in these products, using
the static measures as predictor variables and the binary defectiveness indicator
as the response variable. The authors concluded that the prediction performance
was not discouraging but not very satisfactory either. However the authors have

7.2. BUG PREDICTION 91

proposed defect prediction guidelines based on their experience. They suggest to
obtain static measures, aggregate measurs, collect defect data, build a prediction
model, predict defect prone classes and improve prediction models. These steps
are similar to our approach however we obtain defect data on the level of hunks
and our model is automatically improved as more history data becomes available
for a project.

Moser et al. [B0] presented a comparative analysis of the predictive power of
product and process metrics for defect prediction. The authors classified Java
files of Eclipse project as defective or defect-free. They built classification models
using logistic regression, Naive Bayes and decision trees. The authors performed
a cost sensitive classification to allow different costs for prediction errors. They
concluded that change data and process related metrics contain more discrimina-
tory and meaningful information about distribution of defects in software than
the source code itself. The authors used 18 change metrics to train a decision
tree learner and obtained greater than 75% accuracy, 80% recall and less than
30% false positive rate. The change metrics included in their study are number of
revisions, number of refactorings, number of bug fixes, number of authors, LOC
added, LOC deleted, Codechurn, change set and age of a file. Their findings are
similar to us as change and history related hunk metrics produce better results
than the code related hunk metrics. Note that in contrast to defect prediction for
files, our technique produces predictions for individual hunks.

Pan et al. [56] introduced program slicing metrics to be used as bug predictors.
They used program slice information to measure the size, complexity, coupling
and cohesion properties of C language programs. The slicing metrics used in
their study include slice count, vertices count, edges count, edges to vertices ratio,
slice vertices sum, maximum slice vertices, global input, global output, direct fan
in, direct fan out, indirect fan in, indirect fan out and lack of cohesion. The
authors compared bug classification capabilities of program slicing metrics with
Understand for C++ suite of metrics in a number of experiments. They found
that program slicing metrics produce slightly better classification accuracies than
Understand for C++ metrics at the file level.

Nagappan et al. |62 applied principal component analysis on code metrics and
developed regression models to predict the post-release defects. The authors found
that there is no single set of complexity metrics that could act as a universally
best defect predictor. The authors also found that predictors obtained from one
project were significant for other similar projects.

Menzies et al. [A6] showed that predictors obtained from static code attributes
are useful in defect prediction with a mean probability of detection of 71 percent
and mean false alarms of 25 percent. The authors found that it is more important,
how the attributes are used to build predictors than which particular attributes
are used. A number of attributes were used in this study including Mccabe and

92 CHAPTER 7. RELATED WORK

Halstead complexity metrics.

Ostrand et al. [BD] used code of the file in current release and fault and
modification history of the previous releases to predict the expected number of
faults in each file of the next release.

Process-centric approaches use measures extracted from the software history such
as changes made to software, developers involved, size and time of changes, and
age of software. Various studies are found in literature using process artifacts.

Ratzinger et al. [64] used regression models and decision trees to predict de-
fects in short time frames of two months. The authors used features extracted
from version control and feature tracking systems to build their models. The au-
thors also investigated the predictability of several severities of defects in software
projects.

Kim et al. [35] proposed a bug finding algorithm using the project-specific
bug and fix knowledge base developed by analyzing the history of bug fixes. The
authors implemented a tool BugMem for detecting potential bugs and suggesting
corresponding fixes.

Hassan and Holt [30] presented an approach named, The Top Ten List, to pre-
dict the ten most susceptible subsystems having a fault. The authors used some
heuristics to create the Top Ten List. These heuristics were based on the charac-
teristics of software system such as recency, frequency and size of modifications
as well as code metrics and co-modifications.

7.3 Software Change Extraction and Analysis

Fluri and Gall [2T] proposed an approach for analyzing and classifying change
types based on code revisions. Using that approach, changes on the method or
class level could be differentiated and their significance in terms of the impact of
the change types on other source code entities be assessed. The authors found that
in many cases large numbers of lines added and/or deleted are not accompanied
by significant changes but small textual adaptations. The authors presented a
taxonomy of source code changes to be used for change coupling analysis and used
tree edit operations in the AST to classify changes. Their classification approach
could assess error-proneness of source code entities, qualify change couplings, or
identify programming patterns.

Canfora et al. [IT] proposed a technique to identify changes at source code line
level from CVS repositories. They used Vector Space Models and the Levenshtein
edit distance to determine if CVS/SVN diffs are due to line additions/deletions
or if they are due to line modifications. A tokenizer was used instead of a parser
to extract symbols and then compute the cosine similarity. Application of the
technique on a random sample of ArgoUML snapshots indicated high precision
(96%) and a high recall as well (95%). We use a different approach to identify

7.3. SOFTWARE CHANGE EXTRACTION AND ANALYSIS 93

the bug-inducing hunks and the changed source code lines.

Fluri et al. [22] in an empirical study found that change type patterns do
describe development activities and affect the control flow, the exception flow,
or change the API. The authors used agglomerative hierarchical clustering to
discover patterns of change types. To explore whether change types appear fre-
quently and commonly, the authors extracted data from one commercial and two
open source software systems. In contrast to general change types we study the
features of bug-inducing changes.

Stoerzer et al. [68] presented an approach for change classification that helps
programmers identify the changes responsible for test failures. The authors pro-
posed several change classifiers that associate the colors Red, Yellow, or Green
with changes, according to the likelihood that they were responsible for test fail-
ures. The authors used a model of atomic changes, with change categories such as
added classes (AC), deleted classes (DC), added methods (AM), deleted methods
(DM), changed method bodies (CM), added fields (AF), deleted fields (DF), and
lookup changes (LC) (i.e., changes to dynamic dispatch). The authors considered
changes to method bodies as one CM change regardless of the number of state-
ments changed within the respective method’s body. They conducted two case
studies to investigate whether or not change classification can be a useful tool for
focusing the attention of programmers on failure-inducing changes. In contrast we
consider atomic changes as changes to individual language constructs and process
the change history of a project rather than test information. We study which
language constructs have more likelihood of generating bugs.

Mockus and Weiss [48] presented a model to predict the risk of new changes,
based on historic information. The authors modeled the probability of causing
failure of a change made to software. They used properties of a change as model
parameters such as size in lines of coded added, deleted or unmodified, diffusion of
the change reflected by the number of files, modules or subsystems touched, several
measures of developer experience and the type of change. The authors found that
change diffusion and developer experience are essential to predict failures.

Aversano et al. [6] developed a model to predict if a new change may intro-
duce a bug or not. The authors extracted bug-introducing changes from software
change history and constructed feature vectors from the source code. They rep-
resented software changes as elements of an n-dimensional vector space of terms.
The constructed vectors were used to train different classifiers on data of two open
source projects. The authors used K-Nearest Neighbor, simple logistic, Multi-
Boosting, C4.5 and Support Vector Machines as classifiers. K-Nearest Neighbor
produced better results as compared to other classifiers. This work is similar to
our work but the results of change classification are poor with 63% precision and
40% recall for buggy changes. Our technique produces much better results and
works at finest level of granularity.

94 CHAPTER 7. RELATED WORK

Kim et al. [34] introduced a technique for classifying a software change as
clean or buggy. The authors trained a machine learning classifier using features
extracted from revision history of a software project. The features used include
all terms in the complete source code, the lines modified in each change (delta),
change metadata such as author, change time, and complexity metrics. The
proposed model could classify changes as clean or buggy with 70 percent accuracy
and 60 percent buggy change recall on average. The authors predicted faults at
the file change level whereas our approach predicts faults at the smallest level of
granularity, that is a hunk. Furthermore, hunk classification approach uses very
less data for classification, so it is simple and easy to apply. It produces better
results as compared to [34] while using less number of input variables.

Graves et al. [27)] processed change management data to predict distribution
of faults over modules of a software system. The authors found that the number
of times a code has been changed is a good predictor of faults. The authors
further found that modules which changed recently may have more faults than
those modules which are not changed since a longer time.

Hassan and Holt [B1] analyzed the development history of five open source
projects to study change propagation. They proposed several heuristics to predict
change propagation and validated their results using the obtained historical data.

German [26] studied the characteristics of modification requests with respect
to source files and their authors. The author proposed several metrics to quantify
modification requests and used these metrics to create visualization graphs for
understanding interrelationships.

Gall et al. [23] developed an approach using release history information of
a system to identify logical couplings and change patterns among modules. The
authors used structural information about programs, modules, and subsystems,
together with their version numbers and change reports to uncover hidden depen-
dencies in the source code.

Ying et al. [73] mined software change history data to find file co-change
patterns. The authors proposed that change patterns can be used to recommend
potentially relevant source code to a developer performing a modification task.

Weifgerber and Diehl presented a technique to detect changes that are likely
to be refactorings and rank them according to the likelihood. The evaluation
of the technique showed a high recall and a high precision, it finds most of the
refactorings, and most of the found refactoring candidates are really refactorings.
The proposed technique is able to find structural and local refactorings. Structural
refactorings include Move Class, Move Interface, Move Field, Move Method, and
Rename Class, whereas local refactorings include Rename Method, Hide Method,
Unhide Method, Add Parameter, and Remove Parameter.

7.4. BUGGY CODE FEATURES AND LOCATIONS 95

7.4 Buggy Code Features and Locations

Pan et al. [57] defined bug fix patterns using the syntax components and context
of the source code involved in bug fix changes. Software repositories of seven open
source projects, developed in JAVA, were used to extract the bug fix patterns.
The authors found 45.7% to 63.3% of the total bug fix hunk pairs in these projects
having the defined bug fix patterns. The most common individual patterns are
method call with different actual parameter values, change in if conditional, and
change of assignment expression. Correlation analysis of seven projects and five
developers showed similar frequencies of bug fix patterns. This study is similar to
ours, but we consider bug-inducing changes instead of bug-fix changes. Further-
more, we use software systems developed in different languages rather than same
language.

Kim et al. [36] analyzed the version history of seven software systems to
predict the most fault prone entities and files. The authors implemented a cache
for holding locations that are likely to have faults: starting from the location of
a known (fixed) fault, the location itself, any locations changed together with
the fault, recently added locations, and recently changed locations. A developer
can detect likely fault-prone locations by consulting the cache whenever a fault
is fixed. The developed algorithm is evaluated on seven open source projects,
and it is 73%-95% accurate at predicting future faults at the file level and 46%-
72% accurate at the entity level with optimal options. The prediction algorithm
is executed over the change history of a software project, which yields a small
subset (usually 10%) of the project?s files or functions/methods that are most
fault-prone. The authors base their algorithm on the observation that most faults
are local, they do not occur uniformly in time across the history of a function,
rather they appear in bursts. Four different kinds of locality are considered for
bug occurrences including changed-entity locality, new-entity locality, temporal
locality and spatial locality.

Brun and Ernst [I0] proposed a technique for identifying program properties
that indicate errors. They trained machine learning models on program properties
that resulted from errors and then applied these models to program properties of
user written code to classify and rank properties that could lead to errors. Given a
set of properties produced by the program analysis, the technique selects a subset
of properties that are most likely to reveal an error. Dynamic invariant detection
is used to generate program properties and two machine learning tools are used to
classify those properties. The authors used support vector machine and decision
tree in their experiments, and found that this technique increases the relevance
(the concentration of fault-revealing properties) by a factor of 50 on average for
the C programs, and 4.8 for the Java programs. The authors concluded that
most of the fault-revealing properties do lead a programmer to an error. They
suggested that ranking and selecting the top properties is more advantageous than

96 CHAPTER 7. RELATED WORK

selecting all properties considered faultrevealing by the machine learner. For C
programs, on average 45% of the top 80 properties are fault-revealing, whereas, for
Java programs, 59% of the top 80 properties are faultrevealing. In the preliminary
experiments most of the fault-revealing properties lead a programmer to the error,
but it is not necessary for all properties.

Li and Zhou [#4] proposed a method called PR-Miner to efficiently extract
implicit programming rules from large software code written in an industrial pro-
gramming language such as C. It uses a data mining technique called frequent
itemset mining and requires little effort from programmers without any prior
knowledge of the software. PR-Miner can extract programming rules in general
forms (without being constrained by any fixed rule templates) that can contain
multiple program elements of various types such as functions, variables and data
types. The authors also proposed an efficient algorithm to automatically detect
violations to the extracted programming rules, which can be strong indications of
bugs. PR-Miner was evaluated with large software code, including Linux, Post-
greSQL Server and the Apache HTTP Server, having 84K-3M lines of code each.
Experiments showed that PR-Miner can efficiently extract thousands of general
programming rules and detect violations within 2 minutes.

Livshits and Zimmermann [A5] proposed a tool called DynaMine, that analyzes
source code check-ins to find highly correlated method calls as well as common
bug fixes in order to automatically discover application-specific coding patterns.
Potential patterns discovered through mining are passed to a dynamic analysis
tool for validation and the results of dynamic analysis are presented to the user.
The authors combined revision history mining and dynamic analysis techniques
for discovering application specific patterns and for finding errors. DynaMine
is evaluated on two widely-used, mature, highly extensible applications, Eclipse
and jEdit, that collectively consist of more than 3,600,000 lines of code. The
authors discovered 56 previously unknown, highly application-specific patterns,
out of which 21 were dynamically confirmed as very likely valid patterns, and
found 263 pattern violations by mining history data of Eclipse and jEdit.

Chapter 8

Future work

A static parser was used to extract language constructs and syntax elements.
A bug inducing hunk may contain multiple language constructs. It is possible
that only one construct is changed, or there may be multiple constructs changed
in a single hunk. Currently all language constructs in a bug inducing hunk are
considered bug inducing because configuration management systems provide in-
formation on the line level. We plan to develop techniques to identify the exact
individual language construct which contributes to a bug within a hunk.

In this study, only frequencies of bug inducing language constructs are exam-
ined. No context information is extracted from the source code. Our parser scans
the code of bug inducing hunks and extracts the language constructs involved.
We would like to know the context in which different language constructs intro-
duce bugs. We also want to study the coupling between language constructs for
introduction of bugs.

Our parser can only extract syntactic elements and no consideration is given
to semantics of the program. As same language constructs are present in the
bug inducing and clean hunks, it would be interesting to know the situations
in which a particular language construct can introduce bugs. For this purpose,
we plan to include program control flow and data dependence information with
each construct. We will enhance the parser with program analysis capabilities in
future.

To study the influence of programming language on post release bugs, case
study of Mozilla project is used. Although Mozilla is a large, heterogeneous
project, generalized conclusions can not be drawn from a single project. We want
to extend this study to a diverse set of projects as a future work.

To study the relationship between the programming language and the defect
density, whole program files are used without any consideration of implemented
functionality. We want to analyze the features implemented in different languages

97

98 CHAPTER 8. FUTURE WORK

as a future work. We would like to split this study on module level and architec-
tural units in future. Although hunk classification approach has produced excel-
lent results, there still exists room for improvement. Among the machine learning
classifiers, only random forest is used in this study. Other machine learning algo-
rithms can also be tried and their accuracies evaluated. It may be possible that
other machine learning tools produce better precision and recall.

Machine learning algorithms can be modified to suit the specific problem
needs. Modified algorithms may produce better results than existing ones in
terms of accuracy, precision and recall. Hunk classification approach has used
two change and history related metrics. Exploration of other process related
hunk metrics remains as future work. It is possible that some other process re-
lated hunk metrics may better classify hunks as buggy or bug-free.

Online machine learning algorithms can be used to train a classification model
and provide the results during the development of the project. It would be great to
have a classifier which can be updated online. We plan to integrate this technique
in an integrated development environment.

Chapter 9

Conclusion

This dissertation presented an empirical analysis of changes and bugs by mining
software development history. Main focus of this study was to analyze features of
bug inducing changes and develop a bug prediction model. Changes were studied
at the finest granularity level of hunks. A technique was introduced in this thesis
to identify bug inducing hunks. Different language constructs and syntax elements
were extracted from bug inducing hunks and their frequencies were compared. A
statistical analysis of projects and developers was presented for the frequencies
of bug inducing language constructs. Bug latency values for individual language
constructs were calculated and statistically analyzed. Bug densities of programs
written in different languages were statistically analyzed to find the influence of
programming language on post release bugs. A number of evolution metrics were
calculated and compared for programs written in different languages. Finally
a new set of metrics was introduced called hunk metrics and a technique was
presented to classify hunks as buggy or bug free.

Bug introducing changes hold important information about the creator of
bugs and the time of creation. Further bug inducing changes can be used to
study features of source code which result in bugs. An algorithm for identifying
bug inducing changes was proposed by Sliwerski et al. [67] . It was further en-
hanced by Kim et al. [37]. this algorithm can identify changes at file level. An
approach was presented in this thesis that can identify bug inducing hunks. It
examines all hunks involved in a change and marks only those hunks as buggy
which actually contributed to bugs. Language constructs and syntax elements
were extracted from bug inducing hunks of eight open source projects. Twenty
six different language constructs were chosen for this study. The results show that
most frequent bug-inducing language constructs are function calls, assignments,
conditions, pointers, use of NULL, variable declaration, function declaration and
return statement. These eight constructs are found in 38-62%, 30-42%, 17-40%,

99

100 CHAPTER 9. CONCLUSION

11-30%, 1-22%, 11-25%, 8-12% and 8-15% of bug inducing hunks respectively.
Overall these eight elements account for more than 70% of the bug-inducing
hunks. Function Calls is found to be the most dominant source of errors in all
projects. Use of pointers and NULL is highly problematic in projects developed
in C language.

A correlation analysis was applied on bug inducing language constructs of dif-
ferent projects. The results show that different projects are statistically correlated
for the frequencies of bug inducing language constructs. The obtained correlation
coefficients are significant at p<0.001. It indicates that most of the time similar
language constructs create problem in different projects.

Results of the correlation analysis show that different developers are signif-
icantly correlated for the frequencies of bug inducing language constructs. The
correlation coefficients obtained within the same project range from 0.31 to 0.99.
Results obtained indicate a minimum correlation coefficient of 0.82 among any
pair of developers of different projects but developed in the same language. The
maximum correlation coefficient found is 0.98 for the same set of developers. How-
ever majority of the correlation coefficients found either within the same project
or different projects are above 0.80. The results show that most of the developers
tend to face difficulties with similar language constructs. Statistical analysis in-
dicates that majority of the developers induce similar kinds of bugs independent
of the project and programming language.

Bug latency values were calculated for conditions, assignments, function calls,
variable declarations and function declarations. Correlation analysis of these con-
structs shows that these language constructs are statistically correlated for bug
latency. Most of the obtained correlation coefficients are above 0.95. It can be
concluded that bug latencies for individual language constructs vary in similar
fashion in different projects.

Statistical analyses of bug densities have revealed that post release bugs are
influenced by programming language. Results of hypothesis testing have shown
that Java programs are less error prone than C or C++ programs, and C programs
are less error prone than C-++ programs within same project. It is found that
bug life time for Java is twice as long as for C or C++.

This thesis introduced hunk metrics and a technique to classify hunks as buggy
or bug-free based on these metrics. A hunk is the smallest unit of a change and
this technique works for this finest level of granularity with an average accuracy
of 81%. Bug prediction models were built using logistic regression and random
forests. Results have shown that random forests can better discriminate between
buggy and bug-free hunks. The hunk classification technique was evaluated on
eight large open source projects. It classified hunks with 77% buggy hunk precision
and 67% buggy hunk recall on average.

Individual hunk metrics were analyzed for their bug prediction capabilities.

101

Results of multivariate logistic regression have shown that NOCN, NOA, NOFC,
NORS, NOBH and NOH are significant for classifying hunks in most of the
projects. Hunk metrics related to change and history are found to be better
predictor of bugs than code related hunk metrics.

Predictors based on hunk metrics were also used for cross project predictions.
Predictors obtained from one project when applied to a different project could
classify hunks with more than 60% accuracy.

Overall, work presented in this thesis has strengthened the existing body of
knowledge on bug prediction and change analysis. I hope this work will provide a
base for further work on bug inducing changes and source code analysis. Mining
of software change history can create awareness among developers for buggy code
features and it can improve the debugging process.

Bibliography

1]
2]
[3]
[4]

[5]

[6]

7]

18]

[9]

[10]

Bugzilla. http://wuww.bugzilla.org/. [cited at p. 23]
Weka. http://www.cs.waikato.ac.nz/ml/weka/. [cited at p. 65, 71]
Software bug, 2006. http://en.wikipedia.org/wiki/Computer_bug. [cited at p. 4]

S. N. Ahsan, J. Ferzund, and F. Wotawa. Are there language specific bug patterns?
results obtained from a case study using mozilla. In Proc. of Fourth International
Conference on Software Engineering Advances (ICSEA’09), Porto, Portugal, 20009.
[cited at p. 6]

S. N. Ahsan, J. Ferzund, and F. Wotawa. Automatic software bug triage system
(bts) based on latent semantic indexing and support vector machine. In Proc. of
Fourth International Conference on Software Engineering Advances (ICSEA’09),
Porto, Portugal, 2009. [cited at p. 4]

Lerina Aversano, Luigi Cerulo, and Concettina Del Grosso. Learning from bug-
introducing changes to prevent fault prone code. In Proc. Ninth international work-
shop on Principles of software evolution, pages 19-26, Dubrovnik, Croatia, 2007.
[cited at p. 93]

T. Ball, J. Kim, A. A. Porter, and H. P. Siy. If your version control system could
talk. In Proc. ICSE Workshop Process Modelling and Empirical Studies of Software
Eng., 1997. [cited at p. 4]

J. Bevan, E. J. Whitehead Jr., S. Kim, and M. Godfrey. Facilitating software evolu-
tion with kenyon. In Proc. Of the 2005 FEuropean Software Engineering Conference
and 2005 Foundations of Software Engineering (ESEC/FSE 2005), pages 177-186,
Lisbon, Portugal, 2005. [cited at p. 89)

L. Breiman. Random forests. Machine Learning, 45:5-32, October 2001.
[cited at p. 71]

Y. Brun and M. D. Ernst. Finding latent code errors via machine learning over pro-
gram executions. In Proc. of 26th International Conference on Software Engineering
(ICSE 2004), pages 480-490, Scotland, UK, 2004. [cited at p. 95]

103

http://www.bugzilla.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://en.wikipedia.org/wiki/Computer_bug

104

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

G. Canfora, L. Cerulo, and M.D. Penta. Identifying changed source code lines from
version repositories. In Proc. Int?l Workshop Mining Software Repositories, pages
14-21, 2007. [cited at p. 92]

D. Cubranic and G. C. Murphy. Hipikat: Recommending pertinent software devel-
opment artifacts. In Proc. 25th International Conference on Software Engineering
(ICSE), pages 408-418, Portland, Oregon, 2003. [cited at p. 23, 89

N.E. Fenton and N. Ohlsson. Quantitative analysis of faults and failures in a complex
software system. IEEFE Trans. On Software Engineering, 26:797-814, Aug 2000.
[cited at p. 23, 47]

J. Ferzund, S. N. Ahsan, and F. Wotawa. Analysing bug prediction capabilities of
static code metrics in open source software. In Proc. of International Conference
on Software Process and Product Measurement, LNCS Vol. 5338, pages 331-343,
Munich, Germany, 2008. [cited at p. 9, 63]

J. Ferzund, S. N. Ahsan, and F. Wotawa. Automated classification of faults in pro-
gramms using machine learning techniques. In Proc. of Artificial Intelligence Tech-
niques in Software Engineering Workshop, ECAI Patras, Greece, 2008. [cited at p. 9,
63

J. Ferzund, S. N. Ahsan, and F. Wotawa. Bug-inducing language constructs. In Proc.
of 16th Working Conference on Reverse Engineering (WCRE’09), Lille, France,
2009. [cited at p. 6]

J. Ferzund, S. N. Ahsan, and F. Wotawa. Empirical evaluation of hunk metrics
as bug predictors. In Proc. of International Conference on Software Process and
Product Measurement, Amsterdam, Netherlands, 2009. [cited at p. 6]

J. Ferzund, S. N. Ahsan, and F. Wotawa. Software change classification using hunk
metrics. In Proc. of 25th IEEE International Conference on Software Maintenance
(ICSM’09), Edmonton, Alberta, Canada, 2009. [cited at p. 6]

M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report data for
feature tracking. In Proc. 10th Working Conference on Reverse Engineering (WCRE
2003), Victoria, British Columbia, Canada, 2003. [cited at p. 4]

M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from
version control and bug tracking systems. In Proc. 19th Int’l Conference on Software
Maintenance, pages 23-32, Amsterdam, The Netherlands, 2003. [cited at p. 4, 17]

B. Fluri and H. C. Gall. Classifying change types for qualifying change couplings. In
Proceedings of the 9th International Conference on Program Comprehension, pages
3545, 2006. [cited at p. 92]

B. Fluri, E. Giger, and H. C. Gall. Discovering patterns of change types. In Pro-
ceedings of the 23rd International Conference on Automated Software Engineering,
2008. [cited at p. 93]

H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product
release history. In In Proc. Int’l Conf. Software Maintenance (ICSM’98), pages
190-198, 1998. [cited at p. 23, 94]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

105

R. Garcia, J. Jarvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A comparative
study of language support for generic programming. In Proc. of the 18th annual
ACM SIGPLAN conference on Object-oriented programing, systems, languages, and
applications, Anaheim, California, USA, 2003. [cited at p. 8]

S. Garfinkel. History’s worst software bugs, 2005.
http://wired.com/news/technology/bugs/0,2924,69355,00.html. [cited at p. 4]

D.M. German. An empirical study of fine-grained software modifications. In
Proc. 20th Int’l Conf. Software Maintenance (ICSM’04), pages 316-325, 2004.
[cited at p. 94]

T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering, 26:653—661,
July 2000. [cited at p. 9, 23, 63, 94]

J. P. Guilford and B. Fruchter. Fundamental Statistics in Psychology and Education.
McGraw-Hill, New York, 1973. [cited at p. 72]

T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Software Eng., 31(10):897—
910, Oct 2005. [cited at p. 9, 63, 90]

A. E. Hassan and R. C. Holt. The top ten list: Dynamic fault prediction. In Proc.
21st Int’l Conf. Software Maintenance, pages 263-272, 2005. [cited at p. 92]

A E. Hassan and R.C. Holt. Predicting change propagation in software systems. In
Proc. Int’l Conf. Software Maintenance (ICSM 2004), 2004. [cited at p. 23, 94]

S. Kim, Jr. E. J. Whitehead, and J. Bevan. Properties of signature change patterns.
In Proc. of International Conference on Software Maintenance (ICSM 2006), pages
4-14, Dublin, Ireland, 2006. [cited at p. 23]

S. Kim and E. J. Whitehead Jr. How long did it take to fix bugs? In Proc.
international workshop on Mining software repositories, pages 173-174, Shanghai,
China, 2006. [cited at p. 49]

S. Kim, E. J. Whitehead Jr., and Y. Zhang. Classifying software changes: Clean or
buggy? IEEE Trans. Software Eng., 34(2):181-196, Mar/Apr 2008. [cited at p. 63,
64, 94]

S. Kim, K. Pan, and E. J. Whitehead Jr. Memories of bug fixes. In Proc. 1/th ACM
Symp. Foundations of Software Eng., pages 35—45, 2006. [cited at p. 9, 63, 92]

S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller. Predicting faults
from cached history. In Proc. 29th Int’l Conference on Software Engineering (ICSE
2007), pages 489-498, Minneapolis, USA, 2007. [cited at p. 23, 95]

S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr. Automatic identification
of bug-introducing changes. In Proc. 21st IEEE/ACM International Conference on
Automated Software Engineering, pages 81-90, 2006. [cited at p. 7, 17, 99]

D. G. Kleinbaum and M. Klein. Logistic Regression —A Self-Learning Text. Springer-
Verlag, New York, 2002. [cited at p. 69]

http://wired.com/news/technology/bugs/0,2924,69355,00.html

106

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

A. G. Koru and J. Tian. An empirical comparison and characterization of high
defect and high complexity modules. Journal of Systems and Software, 67:153-163,
Sep 2003. [cited at p. 8]

A.G. Koru and H. Liu. Building effective defect-prediction models in practice. IEEE
Software, 22:23-29, November /December 2005. [cited at p. 9, 63, 90]

F. Lanubile and G. Visaggio. Evaluating predictive quality models derived from
software measures: lessons learned. Journal of Systems and Software, 38:225-234,
Sep 1997. [cited at p. 9]

Y. Levendel. Reliability analysis of large software systems: Defect data modeling.
IEEE Transactions on Software Engineering, 16:141-152, Feb 1990. [cited at p. 8]

Z.Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things changed now?: an
empirical study of bug characteristics in modern open source software. In Proc. 1st
workshop on Architectural and system support for improving software dependability,
pages 25-33, San Jose, California, 2006. [cited at p. 8]

Z. Li and Y. Zhou. Pr-miner: Automatically extracting implicit programming rules
and detecting violations in large software code. In Proc. of 13th International Sym-
posium. on Foundations of Software Engineering, pages 306-315, Lisbon, Portugal,
2005. [cited at p. 96]

B. Livshits and T. Zimmermann. Dynamine: Finding common error patterns
by mining software revision histories. In Proc. of 13th International Symposium
on Foundations of Software Engineering, pages 296-305, Lisbon, Portugal, 2005.
[cited at p. 96]

T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn
defect predictors. IEEE Trans. Software Eng., 33(1):2-13, Jan 2007. [cited at p. 91]

A. Mockus and L. G. Votta. Identifying reasons for software changes using historic
databases. In Proc. 16th Int’l Conference on Software Maintenance, pages 120-130,
San Jose, California, USA, 2000. [cited at p. 17, 23]

A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical
J., 5(2):169-180, 2002. [cited at p. 63, 93]

P. Mohagheghi, R. Conradi, O. M. Killi, and H. Schwarz. An empirical study of soft-
ware reuse vs. defect-density and stability. In Proc. 26th International Conference
on Software Engineering, pages 282292, 2004. [cited at p. 8]

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In Proc. of Inter-
national Conference on Software Engineering (ICSE’08), pages 181-190, Leipzig,
Germany, 2008. [cited at p. 91]

J. C. Munson and T. M. Khoshgoftaar. The detection of fault-prone programs.
IEEFE Transactions on Software Engineering, 18:423-433, May 1992. [cited at p. 8]

N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures.
In Proc. of 28th Int’l Conference on Software Engineering, Shanghai, China, 2006.
[cited at p. 9, 63, 91]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

107

T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large industrial soft-
ware system. In Proc. 2002 ACM SIGSOFT international symposium on Software
testing and analysis, pages 55—64, 2002. [cited at p. 47]

T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs are. In Proc. of 200/
ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
86-96, Boston, Massachusetts, USA, 2004. [cited at p. 23]

T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the location and number
of faults in large software systems. IEEE Trans. Software Eng., 31(4):340-355, 2005.
[cited at p. 9, 63, 92]

K. Pan, S. Kim, and Jr. E. J. Whitehead. Bug classification using program slicing
metrics. In Proc. Sixth IEEE Int’l Workshop Source Code Analysis and Manipula-
tion, 2006. [cited at p. 9, 63, 91]

K. Pan, S. Kim, and E. J. Whitehead Jr. Toward an understanding of bug fix
patterns. Empirical Software Engineering, 14:286-315, June 2009. [cited at p. 95]

D. L. Parnas. Software aging. In Proc. 16th International Conference on Software
Engineering, pages 279-287, 1994. [cited at p. 3]

S. L. Pfleeger and J.M. Atlee. Software Engineering —Theory and Practice. Pearson
Education, Inc., 3rd edition, 2006. [cited at p. 3]

M. Pighin and A. Marzona. An empirical analysis of fault persistence through
software releases. In Proc. IEEE/ACM ISESE, pages 206-212, 2003. [cited at p. 23]

A. A. Porter and W. R. Selby. Empirically-guided software development using
metric-based classification trees. IEEE Software, 7:46-54, Mar 1990. [cited at p. 90]

L. Prechelt. An empirical comparison of seven programming languages. IEEE
Computer, 33:23-29, 2000. [cited at p. 8]

R. S. Pressman. Software Engineering —A Practitioner’s Approach. McGraw-Hill
Higher Education, 5th edition, 2001. [cited at p. 3]

J. Ratzinger, M. Pinzger, and H. Gall. Eqg-mine: Predicting short-term defects
for software evolution. In Proc. of FASE’07, pages 12-26, Braga, Portugal, 2007.
[cited at p. 9, 63, 92]

A. Schroter, T. Zimmermann, R. Premraj, and A. Zeller. If your bug database could
talk. In Proc. 5th International Symposium on Empirical Software Engineering,
pages 18-20, 2006. [cited at p. 4]

J. Sliwerski, T. Zimmermann, and A. Zeller. Hatari: Raising risk awareness. In
Proc. 10th European Software Eng. Conf. and 13th ACM SIGSOFT Symposium
Foundations Software Eng., pages 107-110, 2005. [cited at p. 90]

J. Sliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In
Proc. of Int’l Workshop on Mining Software Repositories, pages 24—28, Saint Louis,
Missouri, USA, 2005. [cited at p. 3, 7, 17, 99]

108

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

BIBLIOGRAPHY

M. Stoerzer, B. G. Ryder, X. Ren, and F. Tip. Finding failure-inducing changes in
java programs using change classification. In Proc. Symposium Foundations Software
Eng, pages 5768, 2006. [cited at p. 93]

K. S. Trividi. Probability Statistics with Reliability, Queuing, And Computer Science
Applications. Prentice-Hall Inc., Englewood Cliffs, NJ, 1982. [cited at p. 48, 57]

C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take to fix
this bug? In Proc. international workshop on Mining software repositories, 2007.
[cited at p. 49]

C. C. Williams and J. K. Hollingsworth. Automatic mining of source code reposito-
ries to improve bug finding techniques. IEEE Trans. Software Eng., 31(6):466-480,
2005. [cited at p. 23]

I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, San Francisco, 2005. [cited at p. 9, 75]

A.T. Ying, G.C. Murphy, R. Ng, and M.C. Chu-Carroll. Predicting source code
changes by mining change history. IEEE Trans. Software Eng., 30:574-586, Sept
2004. [cited at p. 23, 94]

A. Zeller. Why Programs Fail: A Guide to Systematic Debugging. Elsevier, 2006.
[cited at p. 4]

T. Zimmerman, P. Weissgerber, S. Diehl, and A. Zeller. Mining version histories to
guide software changes. In Proc. of Int’l Conference on Software Engineering (ICSE
'04), pages 563572, Edinburgh, Scotland, UK, 2004. [cited at p. 23]

T. Zimmermann, S. Kim, A. Zeller, and Jr. E. J. Whitehead. Mining version archives
for co-changed lines. In Proc. of Int’l Workshop on Mining Software Repositories
(MSR 2006), pages 72-75, Shanghai, China, 2006. [cited at p. 23]

Appendices

109

Appendix A

List of Publications

The work covered by this thesis led to following publications:

J. Ferzund, S. N. Ahsan, and F. Wotawa. Bug-inducing language constructs.
In Proc. of 16th Working Conference on Reverse Engineering (WCRE’09),
Lille, France, 2009.

S. N. Ahsan, J. Ferzund, and F. Wotawa. Are there language specific
bug patterns? results obtained from a case study using morzilla. In Proc.
of Fourth International Conference on Software Engineering Advances (IC-
SEA’09), Porto, Portugal, 2009.

J. Ferzund, S. N. Ahsan, and F. Wotawa. Software change classification
using hunk metrics. In Proc. of 25th IEEE International Conference on
Software Maintenance (ICSM’09), Edmonton, Alberta, Canada, 2009.

J. Ferzund, S. N. Ahsan, and F. Wotawa. FEmpirical evaluation of hunk
metrics as bug predictors. In Proc. of International Conference on Software
Process and Product Measurement, Amsterdam, Netherlands, 2009.

111

List of Figures

lZ 1___Architecture for Data F’/xtm(’timl
|2 2 Steps for Hunk F‘xtm(’timl

.6 CVS Annotationd
|2 7 ___CVSDifference table Pntrip‘l

|3 4 Frequency distribution of correlation coefficients (same m‘niP(’t* e

B5 Frequency distribution of correlation coefficients (different project] . .
B.6 Comparison of Bug-Inducing and Clean Hunks (Apache)|
B.7 Comparison of Bug-Inducing and Clean Hunks (Eclipse)|
B.8 Comparison of Bug-Inducing and Clean Hunks (Mozilla)|
B.9 Comparison of Bug-Inducing and Clean Hunks (PostereSQI)
B.10 Comparison of Bug-Inducing and Clean Hunks (Evolution)|
B.11 Comparison of Bug-Inducing and Clean Hunks (Epiphanv)|
B.12 Comparison of Bug-Inducing and Clean Hunks (Columba)|
B.13 Comparison of Bug-Inducing and Clean Hunks (Nantilus)|

|4 1__Average bug ("]P'nQiﬁPFI
|4 2 Percentage of fanlty ﬁ]PFI
U3 Average LOC of fanltv filed o o

W4 Average revision frequencd o o0

W5 Averace cade gain per ild
|4 6 Bug severity diqtrihntiml
W7 Average bue lifetimd

114 LIST OF FIGURES

4 Bueev Hunk Precision using Random Forest and Logistic Regression . 78

List of Tables

h 7__Correlation Coefficients (developers of same]ang‘nae‘(d
BR Bue Latency (Average Valuesl. . . . o o o oo

|3 9 Bug Latency Correlation Values between Language (“nnﬂtrn(’t‘l

U1 Number of Source Files and Total LOC
|4 2 Resnlts of the rank-sum tPQiI

b1 Statistics of Prajects]
B2 Measurement Typed . . . o o oo
.3 Point hiserial correlation hetween hunk metrics and hunk typd L.
.4 Precision P. Recall R and Accuracy A using LR with pcAl ...
b5 Precision P. Recall R and Accuracy A usine LR without PCA
b6 Results of Multivariate Laogistic Regression (a)

Iﬁ 7 Resnlts of Multivariate Logistic Reeression (h*

.8 Precision P. Recall R and Accuracy A usine random forestd

Iﬁ 9 Precision . Recall and Accuracy for Mozilla. using individual mptri("l

Iﬁ 10 Precision , Recall and Accuracy for Eclipse using individual mptri(’sl ..

l’) 11_Precision . Recall and Accuracy for Mozilla using metrics g‘rmmsl R

Iﬁ 12 Precision , Recall and Accuracy for Eclipse using metrics g‘r‘mmsl

115

49
99

64
66
74
75
75
76
7
7
80
80
82
82

116 LIST OF TABLES

IF) 13 Classification accuracies nsine models from a._different nmi@(‘tl 84

Ty

Graz Unkersty of Technaingy

Senat

Deutsche Fassung:
Beschluss der Curricula-Kommission fir Bachelor-, Master- und Diplomstudien vom 10.11.2008
Genehmigung des Senates am 1.12.2008

EIDESSTATTLICHE ERKLARUNG

Ich erkidre an Eides statt, dass ich die vorliegende Arbeit selbststidndig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wértlich und inhaltlich

entnommene Stellen als solche kenntlich gemacht habe.

(Unterschrift)

Englische Fassung:

STATUTORY DECLARATION

| declare that | have authored this thesis independently, that | have not used other than the declared
sources / resources, and that | have explicitly marked all material which has been guoted either

literally or by content from the used sources.

.d.ale. e e i (.Sign.a[u}e)” suerey

	Contents
	Introduction
	Roadmap
	Empirical Analysis of Language Constructs
	Programming Languages and Bugs
	Hunk Classification
	Terminology

	Extraction of Data from Repositories
	Architecture
	Database Schema
	Extraction of Hunks
	Identification of bug-inducing Hunks
	Projects Analyzed

	Empirical Analysis of Bug-Inducing Language Constructs
	Extraction of Language Constructs
	Proportion of Different Hunk Types
	Most Frequent Bug-Inducing Language Constructs
	Project Similarities
	Developer Similarities
	Bug Latency
	Comparison with Non Bug-Inducing Hunks
	Summary

	Language Specific Bug Patterns
	Research Hypothesis
	Project Studied
	Evolution Metrics
	Results
	Proving hypothesis H1
	Threats to Validity
	Summary

	Hunk Classification
	The Approach
	Tools Used
	Hunk Metrics
	Evaluation Criteria
	Classification Techniques
	Logistic Regression
	Random Forests
	Principal Component Analysis (PCA)
	Point Biserial Correlation

	Results
	Correlation between Hunk Metrics and Bugs
	PCA and Logistic Regression
	Random Forests
	Comparison of Logistic Regression and Random Forests
	Performance of Individual Metrics
	Performance of Combination of Metrics
	Cross Project Predictions

	Applications

	Threats to Validity
	Related Work
	Mining Software Change History
	Bug Prediction
	Software Change Extraction and Analysis
	Buggy Code Features and Locations

	Future work
	Conclusion
	Bibliography
	List of Publications
	List of Figures
	List of Tables
	Statutory Declaration

