
Masterarbeit

Evaluation and Implementation of
Time-Synchronization for Distributed Systems

Martin Kammerhofer

————————————–

Institut für Technische Informatik
Technische Universität Graz

Vorstand: O. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Graz University of Technology

Begutachter: Univ.-Prof. Dipl.-Ing. Dr. techn. Bernhard Rinner
Betreuer: Dipl.-Ing. Dr. techn. Allan Tengg

Graz, im Oktober 2009

Abstract

Time synchronization of geographically dispersed clocks is a classical problem. An important
application is synchronization of distributed computer systems. The problem has been extensively
studied for the last 30 years and a large number of algorithms and protocols has been proposed.

This text structures the problem by decomposing it into three partial problems: Precise measurement of
the difference between the readings of remote clocks and a local clock, estimation and extrapolation of
inner states of the involved clocks, and continuous or periodic adjustment of the local clock to improve
future synchronization. Approaches to these partial problems from metrology, mathematics/statistics,
and control theory are outlined in a theoretical part and their use in synchronization protocols is
described.

The practical part discusses design and implementation of a time synchronization service for the
I-SENSE project. I-SENSE is an intelligent multi-sensor multi-level data-fusion framework for
distributed embedded systems. Synchronized clocks are mainly required for temporal ordering of
video frames from two or more cameras. An evaluation of the implementation on Pentium M and
TMS320C64X processors is presented and potential further improvements are discussed.

Kurzfassung

Die Synchronisation von geographisch verteilten Uhren ist ein klassisches Problem. Eine wichtige
Anwendung ist die Synchronisation von verteilten Computersystemen. Zu diesem Problem gibt es
sehr umfangreiche Literatur aus den letzten 30 Jahren in der zahlreiche Algorithmen und Protokolle
beschrieben werden.

In dieser Masterarbeit wird das Problem auf die folgenden drei Teilprobleme zurückgeführt: Präziser
Vergleich des Uhrenstandes einer lokalen Uhr mit entfernten Uhren, Abschätzung und Extrapolation
der Zustandsvariablen der beteiligten Uhren und Verbesserung der Synchronisation durch Regelung
der lokalen Uhr. Lösungsansätze zu diesen Teilproblemen kommen aus den Disziplinen Metrolo-
gie, Mathematik/Statistik und Regelungstechnik. Sie werden im Grundlagen-Teil zusammengefasst
dargestellt und ihre Anwendung in Synchronisations-Protokollen wird gezeigt.

Im praktischen Teil wurde für das I-SENSE Projekt ein Zeitsynchronisationsdienst entworfen und
implementiert. I-SENSE ist ein intelligentes Multi-Sensor Fusion Framework für verteilte eingebette-
te Systeme. Synchronisierte Uhren werden hauptsächlich für das zeitlich korrekte Kombinieren von
Einzelbildern verschiedener Videokameras benötigt. Eine Beschreibung und Evaluation der Imple-
mentierung auf Pentium M und TMS320C64X Prozessoren wird präsentiert und potentielle weitere
Verbesserungen werden diskutiert.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly marked all material which has been quoted either literally
or by content from the used sources.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten Quellen wörtlich und inhaltlich
entnommene Stellen als solche kenntlich gemacht habe.

Ort Datum Unterschrift

Danksagung

Diese Masterarbeit wurde im Jahr 2008 am Institut für Technische Informatik an der Technischen
Universität Graz durchgeführt.

Zu Beginn möchte ich mich bei meinem Betreuer Allan Tengg für seine tatkräftige und kontinuierliche
Unterstützung und die konstruktive Zusammenarbeit bedanken. Weiters danke ich meinem Begutachter
Herrn Prof. Dr. Bernhard Rinner für seine präzisen Verbesserungsvorschläge und seine Geduld.

An dieser Stelle auch ein herzliches Dankeschön an meine Eltern, deren Verdienste aufzuzählen den
Rahmen dieser Seite bei weitem sprengen würde. Ganz besonderer Dank gebührt meiner Partnerin
Susanne für den Rückhalt den sie mir gegeben hat und für alles was sie mir abgenommen hat bzw.
worauf sie verzichten musste, wenn ich an der Tastatur saß.

Ich widme diese Masterarbeit unserer Tochter Nika, die im Zeitraum des Verfassens geboren wurde.

Graz, im Oktober 2009 Martin Kammerhofer

Martin Kammerhofer
For Public Release

Martin Kammerhofer
Final

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objective . 2
1.3. Thesis Outline . 4

2. Background and Terminology 5
2.1. Time, Clocks and Timescales . 5

2.1.1. Properties of time . 5
2.1.2. Relativistic effects . 5
2.1.3. The second . 5
2.1.4. Timescales . 6

2.2. Characterization of Clocks . 9
2.2.1. Mathematical models of oscillators and clocks 9
2.2.2. Accuracy, precision, resolution, and stability 12

2.3. Hardware Clocks . 14
2.3.1. Crystal oscillators . 14
2.3.2. Other frequency sources . 16
2.3.3. Computer clocks . 17
2.3.4. External reference clocks . 20
2.3.5. Interfacing external clocks . 21

2.4. Software Clocks . 21
2.4.1. Operating system view . 21
2.4.2. Clock phase and rate adjustment . 22
2.4.3. Application view . 23

2.5. General Clock Synchronization Model . 24
2.5.1. Measurement of clock offset . 25
2.5.2. Estimation of the time and frequency error of the local clock 27
2.5.3. Adjusting the local clock to reduce future time differences 29

3. Synchronization Protocols for Computer Networks 30
3.1. Classification of Synchronization Protocols . 30

3.1.1. Communication model . 30
3.1.2. Time source . 31
3.1.3. Clock correction versus timescale transformation 31
3.1.4. Master-slave versus peer-to-peer . 31
3.1.5. Probabilistic versus deterministic . 32
3.1.6. Time instants versus time intervals . 32

i

3.1.7. Lifetime and scope . 32
3.1.8. Low level access . 32

3.2. Synchronization Protocol Survey . 33
3.2.1. Logical clocks . 33
3.2.2. Cristian’s algorithm . 35
3.2.3. The Berkeley algorithm . 36
3.2.4. Marzullo’s algorithm . 36
3.2.5. Fault tolerant protocols . 37
3.2.6. Protocols for wireless sensor networks . 37

3.3. The Network Time Protocol . 38
3.3.1. NTP classification . 38
3.3.2. History and background . 39
3.3.3. NTP implementations . 40
3.3.4. NTP sub-algorithms . 40
3.3.5. The Simple Network Time Protocol . 46

4. Time-Synchronization for the I-SENSE Framework 47
4.1. I-SENSE Architecture Overview . 47

4.1.1. Hardware architecture . 47
4.1.2. Software architecture . 48
4.1.3. The I-SENSE message subsystem . 49

4.2. Design Decisions and Their Rationale . 51
4.2.1. Choice of transport layer . 51
4.2.2. Choice of implementation layer . 52
4.2.3. Inter-node protocol and implementation selection 52
4.2.4. Intra-node protocol and implementation . 52

4.3. NTP Configuration . 53
4.4. Custom Intra-node Synchronization Protocol . 54

4.4.1. Implementation classes overview . 54
4.4.2. Timestamp format and timescales . 57
4.4.3. The custom algorithm . 58

5. Evaluation 61
5.1. Inter-node Evaluation . 61
5.2. Intra-node Evaluation . 63
5.3. End-to-end Evaluation . 65

6. Conclusion 69
6.1. Future Work . 69

A. List of Symbols 71

B. Abbreviations and Glossary 73

Bibliography 78

ii

List of Figures

1.1. I-SENSE node hardware architecture . 3
1.2. A simple fusion model . 3
1.3. Diurnal frequency variation of a computer clock . 4

2.1. Oscillator + Counter = Clock . 9
2.2. Accuracy, Precision, and Stability . 12
2.3. Graphical explanation of MTIE . 14
2.4. Frequency-Temperature vs. Angle-of-Cut for AT-cut crystal 15
2.5. Short term stability ranges of various frequency standards 18
2.6. Frequency variation of a computer clock over a week. 20
2.7. Clock adjustment sawtooth error . 22
2.8. Two-way time transfer . 25
2.9. Common-view method . 26
2.10. Offset and skew estimation in the Tiny-Sync protocol 28

3.1. Cristian’s remote clock reading method . 35
3.2. Marzullo’s interval intersections . 37
3.3. NTP architecture overview . 41
3.4. NTP timestamp exchange . 42
3.5. NTP clustering algorithm example . 43
3.6. NTP error budget calculations . 44
3.7. NTP clock discipline algorithm . 45

4.1. I-SENSE node . 48
4.2. I-SENSE middleware services . 49
4.3. DSP→x86→DSP round trip time histograms . 50
4.4. Additional I-SENSE framework classes . 54
4.5. Clock controller implementation . 56
4.6. Offset versus round-trip time scatter diagram. 58
4.7. Clock filter implementation . 58
4.8. Client (TMS320C64X) synchronization loop . 60
4.9. Server (Pentium M) synchronization loop . 60

5.1. Schematic circuit diagram of external test hardware 66
5.2. Client clock with spurious 1 ms steps . 67
5.3. NTP with stratum 1 server on same LAN . 67
5.4. Clock differences between x86 CPU and DSP . 67
5.5. Clock rates . 68
5.6. Clock difference between two local DSPs . 68
5.7. Clock difference between DSPs in distant sensor nodes 68

iii

List of Tables

2.1. Positive leap second . 8
2.2. Temporal orderings of ambiguous timestamps . 9
2.3. Frequency control device market (Estimates for 2006) 15
2.4. Resynchronization and recalibration intervals . 17
2.5. Time representations in various APIs . 23
2.6. Epochs of some computer timescales . 24
2.7. Message delivery processing steps . 27

4.1. I-SENSE inter-node communication channel delay 51
4.2. Inter-node synchronization message format . 59

5.1. Clock controller parameters . 64

iv

1. Introduction

Most distributed tasks require some sort of synchronization. A straightforward and intuitive way of
supplying synchronization is time synchronization. Synchronized clocks have many uses in distributed
systems. They simplify many distributed algorithms and improve their performance [Lis93].

Although time synchronization is a classical problem, there is no general solution. The literature on
the subject is vast—there are thousands of publications and research is still ongoing.1

Among the reasons for the abundance in literature and protocols are the strong dependency of time
synchronization implementations on specific properties of the hardware and software environment, and
the tremendously varying demands of individual applications. The focus on a specific use case—time
synchronization for the I-SENSE middleware—will therefore narrow down the broad path that is
implied by the title of this thesis.

This chapter will motivate why the I-SENSE framework needs a time synchronization implementation
in section 1.1, set the goals for this thesis in section 1.2, and sketch the structure of this text in
section 1.3.

1.1. Motivation

The major goal of the I-SENSE research project2 is a scalable and embedded architecture for various
multi-sensor applications [KRT06, TKR07, KTR08]. The project combines the scientific research
areas multi-sensor data fusion and pervasive embedded computing. The main idea is to provide a
generic architecture, which supports distributed realtime multi-level data fusion on an embedded
system.

The architecture of an I-SENSE sensor node is depicted in fig. 1.1 and a photo is shown in fig. 4.1 on
page 48.

Distributed fusion applications are described by a fusion model. The fusion model can be represented
as a weighted directed acyclic task graph. An example is shown in fig. 1.2. Several fusion tasks fi

process data from different sensors. Synchronized timestamps are a prerequisite for this multi-sensor
data fusion.3

1 A March 2009 CiteSeer query for “time synchronization” brought up 3046 results. A Google Scholar query for “synchro-
nization protocol” yielded 6190 articles. A significant part of the third millennium research is in the context of (wireless)
sensor networks.

2 http://www.iti.tugraz.at/en/research/isense/index.html
3 More exactly, while multi-sensor data fusion without time synchronization is doable, it requires more complex correlation

algorithms, more CPU and memory resources, and is therefore avoided.

1

http://www.iti.tugraz.at/en/research/isense/index.html
http://www.iti.tugraz.at/en/research/isense/index.html

2 CHAPTER 1. INTRODUCTION

As a case study for the I-SENSE approach, a traffic surveillance system has been developed. Video
cameras, microphones and light barriers are deployed as sensors. Sensor fusion is used to achieve
vehicle detection, tracking and classification. Video stream fusion requires temporal alignment at the
frame level. If any two clocks that generate frame timestamps differ by an offset less than

offset <
1

2∗highest frame rate
(1.1)

then matching of frames can be done in straightforward ways.4[DFH+08] With practical video frame
rates, equation 1.1 translates to a requirement of a few milliseconds for the upper clock error bound.

An ideal clock would proceed at a rate of 1 second per second of standard time. Practical clocks are
imperfect and deviate from this ideal rate. Crystal oscillator based computer clocks show manufactur-
ing dependent frequency tolerances, frequency deviations that depend on temperature, and frequency
aging effects. Unattended computer clocks therefore drift apart. Fig. 1.3 shows the clock skew of
a computer clock. The depicted clock is rather good.5 Frequency errors of a few hundred ppm are
not uncommon in cheap crystals oscillators for computer clocks [MD08]. Moreover, temperature
dependent clock rate variations can be expected to be much larger in outdoor deployed embedded
systems. A constant clock skew of only 1 ppm accumulates a clock offset error of 86,4 ms over a
day.

Time synchronization for the I-SENSE framework—although planned from the beginning of the
project—was still unimplemented prior to this thesis. Only an intra-node pre-synchronization feature
was available, i. e., the clocks of all processors within a sensor node (cf. fig. 1.1) were synchronized
during middleware startup, and pre-configured static rate corrections were applied. This was sufficient
for development and testing, but would not have worked over extended periods of time.

1.2. Objective

The goal of this thesis is to extend the functionality of the I-SENSE framework with a mechanism for
time synchronization. This extension must perform adequately, to allow fusion of two real time video
streams originating from different sensor nodes. The following subgoals are defined:

1. Investigation of existing procedures for time synchronization in distributed systems

2. Selection of a suitable mechanism or protocol

3. Implementation of the chosen solution on the Windows XP embedded (Pentium-M) and
DSP/BIOS (TMS320C64X) platforms

4. Evaluation of the implementation

To have some margin for higher frame rates, the aim for maximum clock offset error is 5 ms.6

4 This assumes that creation of timestamps is perfect, i. e., reading the clocks does not introduce additional time offset errors.
5 The machine is fitipc150, a commodity PC located in the ITI VLSI laboratory, which happened to be the main

development machine for the practical part of this thesis.
6 The 5 ms value follows from an assumed maximal frame rate of 100 Hz inserted into equation 1.1. The current traffic

surveillance use case performs well with frame rates of only 15. . . 30 Hz.

1.2. Objective 3

µP

Memory

CF-Card

Ethernet/
WLAN

Serial

P
C

I

DSP 1

DSP n

Memory

Memory

. .
 .

. .
 .

. .
 .

Sensing Processing Management
Communication

Sensor node

Preprocessing

Preprocessing

Preprocessing

Figure 1.1.: I-SENSE node hardware architecture

f1 f2 f3 f4 f5 f6 f7

f8

f10
f11 f12

f9

f13 f14

f15 f16 f17

f18

e1,8 e2,8

e3,11 e4,12

e5,9 e6,9

e7,14

e10,15 e11,15

e11,16

e12,16

e12,17

e14,19

e13,17

e15,19 e17,19e16,19

e8,10 e9,13

geographically distributed sensors

Figure 1.2.: A simple fusion model [TKR07]

4 CHAPTER 1. INTRODUCTION

-13.5

-13

-12.5

-12

-11.5

-11

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

C
lo

ck
sk

ew
(p

pm
)

Time of day (HH:MM UTC)

Jun 24
Jun 25
Jun 26

Figure 1.3.: Diurnal frequency variation of a computer clock over three consecutive days

1.3. Thesis Outline

Chapter 2 gives a thorough introduction into the problem of time synchronization. Important concepts
like timescales, clocks, measurement of remote clocks, and synchronization methods are explained.
Most of the chapter treats synchronization from a high level perspective, but details pertaining to
commonly used operating systems and current PC hardware are given too.

Chapter 3 explores the huge subject of synchronization protocols for distributed computer systems.
First a discussion of several important classification criteria explains, why the design space for
protocols is so large. The following protocol survey presents some key concepts of important
contributions to the field. For reasons of space, only the NTP and SNTP protocols are described in
detail, but references to important papers and survey literature are given.

Chapter 4 first describes aspects of the I-SENSE platform, which are relevant for time synchronization
implementation. The high level structure of the implementation is then explained with reference to
four important design decisions. Several object oriented clock abstractions are presented next, on
which the implementation is built. An implementation overview concludes the chapter.

Evaluation was somewhat constricted by lack of resources.7 However several experiments have been
conducted, which yielded very satisfying results. The setup and methodology of these experiments is
presented together with graphical results in chapter 5.

Chapter 6 concludes the thesis with a summary and suggestions for future work.

7 Hardware timestamping facilities and embedded I-SENSE nodes.

2. Background and Terminology

2.1. Time, Clocks and Timescales

2.1.1. Properties of time

Time is the physical quantity that can be measured with the highest accuracy; yet still there is no
satisfactory answer to the (philosophical and scientific) question “What is time?” [Sch94b]. We
cannot study the flow of time under a microscope, impede it or experiment with it. We do not know
what exactly happens when time passes. Important for our purposes are, that

• time differences can be measured with clocks, and

• time defines the (temporal) order of events.

2.1.2. Relativistic effects

Time is neither absolute nor independent from space. According to the theory of special relativity it is
possible, that different observers, even after correcting for propagation delays, find different orderings
for the same set of events.1 Time dilatation depends on the ratio of the relative speed between clocks v
to the speed of light c as [1− (v/c)2]−1/2 (Lorentz factor). A consequence of general relativity is, that
time flows slower in higher gravitational fields. Gravitational time dilatation makes a clock gain 9.4 ns
per day, when lifted up 1 km from sea level.2

The magnitudes of relativistic effects are very small at everyday live speeds (v� c) and locations
near the earth surface. The timing uncertainty of computer clocks is several orders of magnitude larger
than these effects. Newtonian space-time is therefore assumed for the rest of this thesis.

2.1.3. The second

Time interval is one of seven base quantities of the International System of Units (SI) [BIP06]. The
unit of time interval is the second.

Historically the second has been defined as the fraction 1/86400 of the mean solar day. Because
the spin rate of the earth is irregular on short time scales and decreasing on long time scales,3 from

1 This is known as relativity of simultaneity.
2 At latitude 40 ◦ the clock increases its rate by 1.091×10−16 m−1 [Vig07, p. 8-22].
3 The long-term average rate of increase in the length of the day is about 1.7 ms per century. Immanuel Kant suggested as

early as 1754 a steady deceleration of earth rotation due to tidal friction [NMM+01].

5

6 CHAPTER 2. BACKGROUND AND TERMINOLOGY

1960 to 1967 the SI second was defined as a certain fraction of the tropical year 1900 (ephemeris
second). Since 1967 the definition of the second is completely decoupled from astrometry. The current
definition of the SI second is derived from an atomic resonance of the 133Cs (caesium) atom:4

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the caesium 133 atom.

This definition refers to a caesium atom at rest at a temperature of zero Kelvin [BIP06].

Today a small number of national metrology laboratories realize the unit of time through primary
frequency standards. The best of these primary standards produce the SI second with a relative
standard uncertainty of some parts in 1016 [BIP07].

2.1.4. Timescales

Clocks only count intervals. To agree on dates, timescales are needed. A timescale is a system
of assigning labels (dates) to time instants (events). (The ISO 8601 standard specifies numeric
representations of date and time.) The origin (reference date) of a timescale is called the epoch. A
(global) timescale should have the following properties [Ari05]:

Reliability Clocks have a large MTBF. The timescale tolerates failure of clocks, i. e., there are
redundant clocks.

Frequency stability The unit of scale is constant. Two time scale readings determine the length of a
time interval.

Frequency accuracy The unit of scale is as close as possible to its definition.

Accessibility The timescale is universally accepted. It provides a way to date events for everyone.

Time is an immaterial quantity. Measurement of time is based on physical phenomena that depend on
time. There are two ways to get a timescale from a physical phenomenon.

Dynamic timescale A dynamical physical system is observed. The system has a mathematical model
in which time is the independent parameter. The model allows, given an observed state of the
system, to determine unambiguously the time of the observation. Particular states of the system
(events) serve as labels on the timescale. The unit of time is conveniently defined e. g., as a time
constant of the mathematical model or the interval between observable periodic events. The
Universal Time family of timescales (UT0, UT1, UT1R, UT2 and UT2R) are dynamic.

Integrative timescale The unit of time is a time interval defined by a reproducible physical phe-
nomenon. The timescale continuously accumulates (counts) the units of time.5 Other than a
well defined unit, a integrative timescale needs a convention about a fixed origin. All atomic
timescales are integrative.

4 When better frequency standards than caesium atomic clocks become widely available, the definition of the second will
certainly change again.

5 A realization of an integrative timescale accumulates errors in the realization of the unit too.

http://en.wikipedia.org/wiki/Astrometry

2.1. Time, Clocks and Timescales 7

Today global timescales are realized through international cooperation. In 1912 the Bureau Interna-
tional de l’Heure (BIH) was founded. Its responsibility for combining different time measurements
was taken over by the Bureau International des Poids et Mesures (BIPM) in 1987.

International atomic time (TAI)

National laboratories usually operate a number of atomic clocks. These clocks run independently.
Based on the results of local comparisons between these clocks a combined laboratory timescale is
created. The combined timescale is (usually) more accurate and stable than any of the contributing
clocks. These timescales are designated TA(k) for laboratory k.

The BIPM uses comparisons between some 300 atomic clocks in about 60 national time laboratories
to form International Atomic Time (TAI). The details of the algorithms used to compute TAI are quite
complex and have been changed several times in the past [GA05].

Methods of comparison of distant clocks are a prime requisite to calculate TAI. Frequency and time
transfers are made with GPS and by two-way satellite links. The uncertainty of clock comparison is
today between a few tens of nanoseconds and a nanosecond for the best links [GA05].

TAI is a “paper clock” not available in real time. TAI and UTC are disseminated every month by
Circular T, a monthly publication of the BIPM.

Version 4 of the Network Time Protocol (NTPv4) can be configured to disseminate the TAI−UTC
offset in addition to UTC [LM00].

Universal time (UT)

Universal time (UT1) is based on the rotation angle of the earth on its axis relative to the mean sun. It
is popularly, but erroneously, known as Greenwich Mean Time (GMT). The rotation of the Earth and
UT1 are now monitored by the International Earth Rotation Service (IERS).6 Modern techniques like
Very Large Baseline Interferometry (VLBI) allow the determination of UT1 with an uncertainty of
10µs [GA05].

UT1 has applications in astronomy, geodesy, space navigation and satellite tracking; but it is nowadays
of little importance for the general public.

Coordinated universal time (UTC)

UTC is today the basis for almost all official national timescales and therefore widely available. Since
1 January 1972 00:00:00 UTC the present system is in use. The UTC second ticks synchronously
with the TAI second. Leap seconds are infrequently added to the UTC timescale to keep the absolute
value of dUT1 = UT1 – UTC below 0.9 s.7 UTC – TAI is -34 s at the time of this writing. Scheduled

6 Knowing the universal time of a sextant sighting was historically very important for determining the longitude. A timing
error of 1 s leads to an error in longitude of 15 arc-seconds, i. e., 463 m on the equator.

7 In theory leap seconds can also be removed from the UTC timescale. This has never happened, and—according to present
knowledge about earth rotation—it is unlikely that it will ever happen.

http://tycho.usno.navy.mil/latestcircT

8 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Date UTC Time UTC – TAI [s] POSIX time [s] dUT1 [s]

2008 December 31 23h 59m 59s -33 1230767999 -0.592841
2008 December 31 23h 59m 60s -33 1230768000 -0.592841
2009 January 1 0h 0m 0s -34 1230768000 0.407159

Table 2.1.: Positive leap second

insertions of leap seconds are announced several months before the fact through the biannual IERS
“Bulletin C”.

Insertion of a 61st second into the last minute of the year 2008 is shown in table 2.1. Removal of a
second from UTC, i. e., a minute with only 59 seconds, is very unlikely to ever happen.

Because of the problems associated with leap seconds, a new definition of UTC is being discussed.
[NMM+01] Several international scientific organizations are currently evaluating the subject. The
U. S. submitted a proposition to abandon leap seconds (and replace them with leap hours) to the ITU-R
in 2004. No decision will will be made before 2011.

Representation of UTC in POSIX and Windows

Most operating systems cannot fully cope with leap seconds. Operating systems represent timestamps
internally as an integer count of (a constant fraction of) seconds. Structured representations—seconds,
minutes, hours and so on—are used only for input and output and are conveniently interpreted with
reference to the local time zone, with or without daylight saving time. Two assumptions are built
in:8

1. Timestamps are to be interpreted as the number of seconds between the specified time and the
epoch.

2. Each day (since the epoch) has a duration of exactly 86400 seconds.

These assumptions about the timescale contradict the definition of UTC.

The rationale for assumption 2 is to keep algorithmic conversions between the internal scalar repre-
sentation and the broken down representation simple. Otherwise, a faithful implementation of the
conversions would incur the overhead of consulting a leap second table.

It is impossible to implement a uniform and continuous UTC timescale based on the above assumptions.
Operating systems with UTC clocks have to handle leap seconds somehow. Some options for positive
leap second handling are:

1. ignore leap seconds

2. jump back 1 s at the beginning of the leap second

3. jump back 1 s at the end of the leap second

8 Specified e. g., in POSIX.1/IEEE 1003.1-1996 and handled the same way in Microsoft Windows operating systems.

http://hpiers.obspm.fr/eoppc/bul/bulc/bulletinc.dat
http://hpiers.obspm.fr/iers/info/gazette.48
http://www.cl.cam.ac.uk/~mgk25/time/leap/PropRevITU-RTF460-6.pdf
http://www.itu.int/ITU-R/index.asp?category=study-groups&rlink=rwp7a&lang=en

2.2. Characterization of Clocks 9

tA [s] tB [s] |tA− tB| [s]

L+0.5 L+0.6 0.1
L+0.5 L+1.6 1.1
L+1.5 L+0.6 0.9
L+1.5 L+1.6 0.1

Table 2.2.: Temporal orderings of ambiguous timestamps

+ =
1

2

3
4

567
8

9
10
11 12

1230768000

Figure 2.1.: Oscillator + Counter = Clock

4. stop the clock during the leap second

5. reduce the clock frequency in an interval around the leap second to gradually loose one second.9

POSIX as well as Windows use method 1 if no time service is configured, i. e., they loose synchro-
nization to UTC after the leap second.10 Method 3 is used when operating as an (S)NTP client
and/or server. Stepping back the clock violates the fundamental assumption of monotonic increasing
time.11 Clock steps introduce discontinuities to the timescale. A leap second inserted at time L causes
ambiguous timestamp during the interval [L, L+2]. As an example consider two sensor events A and
B with scalar timestamps L+0.5s and L+0.6s, respectively. Table 2.2 lists the possible temporal
orderings. In general relative errors in measured intervals are unbounded and sign inversions can
happen!

2.2. Characterization of Clocks

Any time measurement device must somehow realize the second. Practical clocks use an oscillating
device, to determine (a constant fraction of) the second, and a counter to accumulate these time
intervals (cf. fig 2.1).12 The vast majority of computer clocks uses crystal oscillators. Embedded
systems use ceramic resonators and RC-oscillators too.

2.2.1. Mathematical models of oscillators and clocks

The instantaneous output voltage v(t) of an oscillator is

v(t) = [V0 +∆V (t)]cos[2πν0 t +ϕ(t)] (2.1)

9 This was proposed as UTC-SLS (UTC with Smoothed Leap Seconds).
10 Provided the machine in question was previously synchronized by other means, e. g., with a one-shot clock adjustment

program like the ntpdate utility.
11 It breaks Lamport’s Happened-Before relation described in section 3.2.1 on page 33.
12 Other types of clocks exist, but play no practical role in time measurement.

http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/
http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdate.html

10 CHAPTER 2. BACKGROUND AND TERMINOLOGY

where constants V0 and ν0 represent nominal amplitude and frequency, respectively. Amplitude
fluctuations can be converted to phase fluctuations, but quality oscillators usually have small fractional
amplitude fluctuations that are neglected.

∆V (t)
V0

� 1 and therefore ∆V (t)≡ 0 is assumed (2.2)

The instantaneous frequency ν(t) is the derivative of the phase.

ν(t) = ν0 +
1

2π
dϕ(t)

dt
(2.3)

The dimensionless instantaneous fractional frequency deviation y(t) is defined as

y(t) =
∆ f
f

=
ν(t)−ν0

ν0
=

1
2πν0

dϕ(t)
dt

=
dx(t)

dt
(2.4)

Measuring instantaneous frequency is impossible, because it would require measurement equip-
ment with infinite bandwidth. Frequency measurement always involves two oscillators and some
sampling/averaging time τ .13 In practice fractional frequency deviation is averaged as

ȳ(t) =
x(t + τ)− x(t)

τ
(2.5)

When we consider an oscillator as a clock, the fractional phase fluctuation x(t) represents the accumu-
lated time error over the interval [0, t] 14

x(t) =
t∫

0

y(t ′)dt ′ =
ϕ(t)
2πν0

(2.6)

There are many ways how an oscillator can be interfaced to a counter to build a clock; hence the
counter frequency can be different from the oscillator frequency. Analog (PLL) and digital techniques
(prescaler, adder) are used for clock rate correction [Loy97, p. 30–34]. Most computer clocks either
count whole oscillator cycles (e. g., a PCC) or divide the oscillator frequency by a constant factor with
a fixed or programmable prescaler.

Almost all authors model clocks as continuous monotonic functions C(t) that map from real time to
clock time.15 To make the distinction between real time and clock readings clear, capital letters are
used for timestamps.

Ti =C(ti) (2.7)

The rate R of a clock is the first derivative of the clock function

R(t) =
dC(t)

dt
(2.8)

13 The sampling time τ could e. g., be the gate time of a counter.
14 Some authors use x(t) to denote the random part of time error only.
15 Also known as virtual time or logical time in the literature.

2.2. Characterization of Clocks 11

A perfect clock would have no rate deviations, i. e., R(t) ≡ 1. A clock with R > 1 is called fast or
early, and it is said to gain time. A clock with R < 1 is slow, late, and looses time. The rate is modeled
as

R(t) = 1+S+Dt +Ei(t)+υ(t) (2.9)

where S is the fractional frequency offset or skew, D is the linear fractional frequency drift rate due
to aging, Ei(t) is the frequency dependency on environmental conditions (temperature, etc.) and
υ(t) is the random rate fluctuation (frequency modulation noise).16 Linear frequency aging D is a
simplification, but higher order terms are hardly ever used.

The most commonly used model to represent clock noise in the frequency domain is the power-law
noise model. The power spectral density (PSD) of υ(t) is modeled as a linear combination [Bre97]

Sy =
2

∑
α=−2

hα f α f ≤ fh (2.10)

where f is the Fourier frequency and the five coefficients h−2, . . . ,h2 are device dependent parameters.
The upper cutoff frequency fh depends on the low-pass filtering of the oscillator, its output buffer
amplifier and the bandwidth of the measurement system.17 The relation between the PSDs of frequency
deviation (2.4) and time error (2.6) is [SAHW90, p. TN-34]

Sx =
1

(2π f)2 Sy =
1

4π2

2

∑
α=−2

hα f α−2 f ≤ fh (2.11)

Most oscillator data sheets however show a plot of the SSB phase noise to carrier power ratio18 in
dBc/Hz [Ril03]

L (f) = 10log
[

1
2

Sφ (f)
]
= 10log

[
1
2
(2πν0)

2Sx(f)
]

(2.12)

Future clock values can be predicted as

C(t1) =C(t0)+
t1∫

t0

R(t ′)dt ′ = T0 +(1+S)(t1− t0)+
1
2

D(t1− t0)2 +

t1∫

t0

[Ei(t ′)+υ(t ′)]dt ′ (2.13a)

Practical application of equation 2.13a requires a lot of knowledge about the clock in question, its
reactions to environmental conditions, and needs careful control and/or monitoring of those conditions.
Over short to medium intervals ∆t = (t1− t0) and for most clocks, the contributions of clock aging
D and noise υ(t) to the time error (T1−T0−∆t) are typically minuscule compared to skew S and
temperature sensitivity. A much simpler model of short-time clock prediction is

C(t1)≈C(t0)+ [1+S(t0)] (t1− t0) (2.13b)

In contrast to equation 2.13a it is assumed that the rate R(t) has only minor variation over interval
[t0, t1]. This is reasonable, provided that (t1− t0) is small enough, so that environment conditions are
stable and aging and noise are insignificant.

16 Unfortunately, the literature uses much inconsistent terminology. Especially the terms skew and drift denote many different
concepts.

17 In practice there is also a lower cutoff frequency fl due to the finite duration of the measurement.
18 Although L (f) is not recommended by the literature.

12 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Figure 2.2.: Accuracy, Precision, and Stability [Vig07, p. 4-2]

2.2.2. Accuracy, precision, resolution, and stability

A graphical explanation of the terms accuracy, precision, and stability is depicted in fig. 2.2.

Accuracy A measurement is accurate if the result is close to the true value of the measurand.

Precision Measurements are precise, if repeated measurements produce small variation in results.
Precision is the degree of specified detail which can be observed. It corresponds to the number
of significant digits in measurement results, which can be obtained repeatably and reliably.19

Resolution is the granularity of a measurement result, i. e., the minimum (digital) non-zero difference
between readings.

Stability is the quality of being free from change or variation. Stability is a property of an observed
quantity; it is not a property of its measurement.

Calibration can compensate a lack of frequency accuracy (i. e., a frequency offset). Good resolution
is accomplished with high counter frequency. Synchronization—setting the clock to the same time
as a reference clock—establishes time accuracy. Frequency stability determines, how long a clock
can keep the time error within specified bounds. Unstable clocks need much shorter resynchroniza-
tion/recalibration intervals than more stable clocks (cf. table 2.4).

Various variances and deviations (square roots of variances) are used to characterize the fluctuations
of a frequency source in the time domain. Riley lists 13 types of variances in [Ril08, p. 11].

19 NTP uses the term precision for the smallest possible increase of time that can be experienced by a program, i. e., the
elapsed time to read the system clock from userland.

2.2. Characterization of Clocks 13

The classic N-sample or standard variance

s2 =
1

N−1

N

∑
i=1

(ȳi− ȳ)2 where ȳ =
1
N

N

∑
i=1

ȳi (2.14)

should not be used, because it is non-convergent for some common noise types (cf. eq. 2.10).20

Five quantities are used by standardization bodies for characterization of time stability [IT96, p. 13]
[IEE99]. These are

1. Allan Deviation (ADEV) σy is the most common time domain measure of frequency stability. It
can be computed from the first differences of M (averaged) frequency samples ȳi or, equivalently,
from N = M+1 second differences of phase samples xi.

σ2
y (τ) =

1
2

〈(
∆y
)2
〉
∼= 1

2(M−1)

M−1

∑
i=1

(ȳi+1− ȳi)
2 (2.15a)

σ2
y (τ) =

1
2τ2

〈(
∆2x
)2
〉
∼= 1

2(N−2)τ2

N−2

∑
i=1

(xi+2−2xi+1 + xi)
2 (2.15b)

2. Modified Allan Deviation (MDEV) Mod.σy involves an additional phase averaging step

Mod.σ2
y (mτ0) =

1
2(mτ0)2

〈(
∆2x̄
)2
〉

∼= 1
2m4τ2

0 (N−3m+1)

N−3m+1

∑
j=1

[
j+m−1

∑
i= j

(xi+2m−2xi+m + xi)

]2 (2.16)

where m = 1,2, . . . ,bN/3c.
3. Time Deviation (TDEV) σx

σ2
x (τ) =

τ2

3
Mod.σ2

y (τ) (2.17)

4. Root mean square of Time Interval Error

T IErms(mτ0) =

√〈[
x(t +mτ0)− x(t)

]2〉 (2.18)

5. Maximum Time Interval Error (MTIE) The maximum time interval error MTIE(τ) is defined as
a specified percentile, β , of the random variable X .

X = max
0≤t0≤T−τ

(
max

t0≤t≤t0+τ
[x(t)] − min

t0≤t≤t0+τ
[x(t)]

)
(2.19)

Fig. 2.3 explains the MTIE definition graphically.

20 The problem with (2.14) is that the average ȳ is not stationary for α < 0 in (2.10) or D 6= 0 in (2.9) [Ril08, p. 14].

14 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Figure 2.3.: Graphical explanation of MTIE(τ,T) [BM00]

Double logarithmic plots of the (Modified) Allan Deviation over τ are used to identify power law
noise processes in clocks, i. e., the exponents α which dominate Sy in (2.10) can be determined by
observing the slope of the plot [IEE99, p. 12]. Allan Deviation σy does not distinguish between white
(α = 2) and flicker phase noise (α = 1) types. The Modified Allan Deviation and the Time Deviation
do not have this ambiguity [AAH97].

The Allan deviations are sensitive to systematic effects like diurnal variations, which might mask
noise effects [IT96]. Cyclic disturbance causes a distinctive pattern of maxima and minima at the half
period and period of the stimulus [Ril03, p. 47]. Unavoidable systematic effects must be adequately
filtered before calculating σy.

TIErms and MTIE are mainly used by the telecommunication industry [Bre97]. MTIE measures peak
time deviation and is therefore very sensitive to transients and outliers [Ril08, p. 33]. Straightforward
computation of MTIE scales as O(n2), but an optimized algorithm achieves O(n logn) [BM00].

2.3. Hardware Clocks

2.3.1. Crystal oscillators

The crystal oscillator is by far the most important frequency control device (cf. table 2.3). Even
inexpensive quartz crystals for wrist watches can have a frequency accuracy of 1 ppm and even better
stability σy [Lev99]. Low cost, small size, low energy consumption, robust design, and long life are
important considerations too.

Since the 1960-ies man-grown single crystals with relatively high purity are used as raw material for
resonators. Quartz is a highly anisotropic material. The electromechanical properties of a resonator
depend not only on the exact geometry of the resonator, but also strongly on the angles of cut
relative to the crystal lattice. An angular difference of one arc-minute makes a significant difference.

2.3. Hardware Clocks 15

Technology Units per year Avg. unit price Worldwide market
$ $ / year

Quartz crystal resonators & oscillators 3×109 1 4×109

Rubidium cell frequency standard 50000 2000 100×106

Caesium frequency standard 500 50000 25×106

Hydrogen maser 20 100000 2×106

Table 2.3.: Frequency control device market (Estimates for 2006) [Vig07, p. 1-2]

Figure 2.4.: Frequency-Temperature vs. Angle-of-Cut for AT-cut crystal [Vig07, p. 4-44]

Figure 2.4 displays temperature dependent frequency error curves of AT-cut crystals with angle of cut
as parameter.

Environmental effects (temperature, humidity, pressure, acceleration, vibration, electromagnetic
fields, ionizing radiation. . .) on frequency have been studied thoroughly [ABC+92, WG92]. Because
temperature is usually the dominating factor, only temperature compensated cuts are used for frequency
control devices. The AT-cut is most popular.21 Its frequency dependency on temperature is a cubic
parabola

∆ f
f

= a(T −T0)+b(T −T0)
2 + c(T −T0)

3 (2.20)

where T0 is 25 ◦C and coefficients a,b,c depend on angle of cut. The inflection point is conveniently
near room temperature (25 ◦C. . . 35 ◦C).

21 The letter ‘T’ in the AT- and BT-cuts (and others) stands for “temperature compensated”.

16 CHAPTER 2. BACKGROUND AND TERMINOLOGY

The acronyms XO and SPXO denote simple packaged crystal oscillators without any temperature
compensation or control. A number of schemes have been developed to mitigate their inherent
frequency instability caused by temperature changes.

Commonly used are the following:

TCXO use temperature sensitive reactances (thermistor/resistor networks and varactor diodes) to
compensate the frequency vs. temperature variations of the crystal. Peak to peak frequency
deviations are reduced by a factor of about 100, yielding about ±0.5 ppm over a temperature
range of -55 ◦C. . . 85 ◦C.22

MCXO utilize self-temperature sensing (dual mode) resonators to virtually eliminate thermometry
related errors.23 A microcomputer and digitally stored calibration coefficients are used to control
output frequency. About ±0.03 ppm (= 30 ppb) over a temperature range of -55 ◦C. . . 85 ◦C are
achieved.

OCXO For best frequency stability the crystal temperature must be stabilized. In an oven controlled
XO the crystal and other temperature sensitive components are enclosed in a thermally insulated
container along with a heating element and a temperature sensor.24 The oven is adjusted to a
temperature where the f vs. T graph of the crystal has zero slope.25 OCXOs reduce frequency
variations by a factor > 1000, but at the cost of much higher power consumption. About
±10 ppb temperature instability are common. High-end SC-cut units stay within ±0.1 ppb over
a wide temperature range, have short time stability σy(1s) = 10−12 and aging of 10−11 / day.

Several mechanisms (mass transfer due to contamination, stress relief in the mounting and bonding
structure, quartz out-gassing, diffusion, etc.) cause frequency aging [Vig07, p. 4-6]. High quality
OCXO and MCXO have considerable less aging than cheaper designs. Table 2.4 shows some typical
values and required resynchronization/recalibration intervals for a guaranteed maximum clock error of
25 ms.

2.3.2. Other frequency sources

Crystal oscillators are not well suited for applications where high frequency accuracy or long-term
frequency stability are important [Lev99]. The mechanical resonance frequency of a crystal depends
on the exact geometry of the artifact and is therefore hard to replicate.

Atomic frequency standards use atomic or molecular resonances. Their stability performance is
compared in fig. 2.5. Hydrogen masers provide best medium-time stability while caesium clocks offer
best long time stability. There is some overlap in stability and unit price between high end quartz and
low end rubidium devices. Rubidium frequency aging is small in comparison with quartz. Caesium
devices do not suffer from frequency aging at all.

22 In practice frequency calibration (to compensate aging) degrade f vs. T performance significantly [Vig07, p. 4-52].
23 The fundamental mode (f1) and third overtone are excited simultaneously. The beat frequency fβ = 3 f1− f3 depends nearly

linearly on crystal temperature. In principle two separate resonators in close thermal contact could be used too [SCF+08].
24 High performance units use a double oven design, where the outer oven stabilizes the ambient temperature of the inner oven.
25 Usually SC-cut (stress compensated) crystals are used. The inflection point of their f vs. T graph is about 95 ◦C. SC-cut

crystals have several advantages over AT-cut crystals. They are more expensive to produce because of their double-rotated
cut.

2.3. Hardware Clocks 17

Osc. type Temp. Stability Aging / Day Resynchr. Recalibr.

SPXO 50×10−6 1×10−8 5 min 9 years
8 min 200 days

TCXO 1×10−6 1×10−8 10 min 10 years
4 h 80 days

OCXO 2×10−8 1×10−10 6 h 50 years
4 d 1.5 years

MCXO 2×10−8 5×10−11 6 h 94 years
4 d 3 years

RbXO 2×10−8 5×10−13 6 h not needed
4 d 300 years

Table 2.4.: Resynchronization and recalibration intervals (based on [Vig07, p. 8-10])

Research in optical frequency standards suggests, that reproducible relative frequency accuracies at the
10−17. . . 10−18 level should be achievable within a few years [Gil05]. Another current research area
is the chip-scale atomic clock for applications requiring atomic timing in portable battery-powered
devices [LRV+07].

Ceramic resonators perform worse than quartz crystals. Frequency tolerances at 25 ◦C and frequency
variation over the operating temperature range are both typically a few thousand ppm. They should
only be used for timing applications where very small savings in unit cost matter more than accuracy.

Several microcontrollers can optionally generate their clock signal from on-chip integrated RC-oscil-
lators.26 Frequency accuracy is limited to about 2 % (20000 ppm).

2.3.3. Computer clocks

Clocks built into computer systems are almost always of the crystal oscillator & counter type depicted
in fig. 2.1. Frequency accuracy and stability requirements for computers are typically low. Low price
bulk AT-cut crystals with large frequency tolerances are common.

The Intel x86 PC platform (and hence the general purpose processor of I-SENSE nodes) has several
timing sources:

RTC The real time clock is battery backed and keeps time when the PC is powered off. Since the
internal counter is not software accessible, the resolution is only one second. The RTC can
periodically interrupt the CPU. The interrupt frequency is programmable from 2 Hz to 8192 Hz
in powers of two.

PIT The Intel 8254 Programmable Interval Timer has three independent 16 bit counters. It has a
nominal frequency of 1193181.81 Hz.27 The nominal frequency can be divided by a programmed
16 bit value to generate periodic interrupts with frequencies down to 18.2 Hz.

26 Among them the popular Atmel AVR and Microchip Technology PIC families of microcontrollers.
27 This is one third of the NTSC color subcarrier frequency—reminiscent of the 1981 color graphics adapter (CGA).

18 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Figure 2.5.: Short term stability ranges of various frequency standards [Vig07, p. 7-5]

ACPI The Advanced Configuration and Power Interface Specification requires a 24 bit or 32 bit power
management timer running with a fixed frequency of 3.579545 MHz (NTSC-M color subcarrier
frequency).

TSC The Time Stamp Counter is 64 bit wide and available on all x86 processors since the Pentium.
It is a processor cycle counter (PCC). Its high resolution and the ability to read it in a single
machine instruction28 seem to make it the ideal timer on the PC platform. Unfortunately, power
saving measures like idle states and CPU throttling and can make the TSC frequency highly
variable.29 Moreover on multiprocessor systems the per-processor TSCs can proceed at different
rates. The TSC cannot be programmed to cause interrupts, which makes it unsuitable for a
scheduler clock.

APIC The local APIC (Advanced Programmable Interrupt Controller) timer can interrupt its associated
processor when a programmed count is reached. The timer is 32 bit wide. Its frequency is
derived from the processor bus clock, divided by a programmable value. It can be configured
for one-shot or periodic operation. Dependent on the actual CPU model, the timer may or may
not run at a constant rate in different power states and during power state transitions.

HPET The High Precision Event Timer (a. k. a. Multimedia Timer before 2002) is a monotonic 64 bit
counter running with at least 10 MHz. At least three comparators and match registers and one
periodic capable timer are provided. The specification permits large frequency instabilities of
±500 ppm over intervals≥ 1 ms and±2000 ppm over intervals≤ 100µs. HPET is not available
on older hardware and unsupported by older operating system releases.

Availability, resolution, width, interrupt features, and access/reprogramming speed vary a lot between
the above hardware timers. Besides, several of the timers are BIOS managed and quite a lot of broken

28 RDTSC or RDTSCP. The latter instruction prevents out of order execution.
29 Spread-spectrum clocking—a technique for electromagnetic interference reduction—introduces clock frequency modulation

too. [HFB94]

2.3. Hardware Clocks 19

implementations have been reported. It is therefore impossible to choose an optimal timer without
detailed knowledge of the actual hardware/BIOS combination and/or testing. Some operating systems
consequently choose the best system timer during the start-up process after probing the hardware
[Kam02].

Built-in clock hardware on other platforms varies, but the combination of crystal oscillator and counter
is always present. There is great variation in other hardware details like programmable prescalers or
PLLs, availability and number of comparators, one shot and periodic interrupt facilities, and speed
and level of software access to timer hardware registers. The timer hardware details of I-SENSE
signal processor boards are described in section 4.1.1 on page 47.

Many microcontrollers have even more elaborate timer hardware, like up/down counters, external
event counters, and PWM output modes. A highly useful feature for timekeeping purposes, which
is present in many microcontrollers,30 is the capture register. By capturing timestamps of (external)
events in hardware, the timing uncertainty associated with interrupt latency is avoided. Unfortunately,
neither commercial off the shelf (COTS) PC hardware nor the I-SENSE DSP boards are equipped
with capture registers.31

There is little recent literature about the quality of COTS computer clocks. Most of it does neither
include temperature data nor specify whether the machines have been operated in air conditioned
rooms.

Marouani and Dagenais report accuracy and stability data on the CPU clocks of some 30 Intel
and AMD systems with nominal CPU frequencies between 266 MHz and 2.4 GHz [MD08]. CPU
frequency offset from nominal frequency was a few thousand ppm. Frequency variation between
eight equal Pentium IV models spans 29 ppm. A temperature change from 28 ◦C to 47.25 ◦C caused a
-8.3 ppm change of CPU frequency, diurnal variation was 0.74 ppm.32

Kohno et al. used TCP timestamps to remotely measure clock frequency [KBC05]. They found that
individual machines show only 1–2 ppm clock skew over time, but found some 50 ppm variation
between individual machines, even identical models.

The static rate difference calibration mentioned in section 1.1 resulted in a maximum rate difference
of 142 ppm between a management PC and four I-SENSE DSP cards.

The author’s measurement of an I-SENSE node in a laboratory without air conditioning is depicted
in fig. 2.6. Frequency variation over 24 hours stayed below 2 ppm but was larger over several days.
The lower (blue) curve and the scale on the right y-axis show the normalized rate difference between
the system clock of the general purpose processor and a DSP node. Both processors/oscillators were
located within the same case and thus thermally coupled. This caused an effect similar to common
mode rejection—the change in skew between both clocks was only about 0.1 ppm.33

30 E. g., the Atmel AVR or TI MSP430 controllers.
31 A main reason why PC based precision timing applications always need more additional hardware (timing cards) than only

an external reference clock.
32 Only one system has been measured.
33 A constant bias of 22 ppm has been removed. The observed effect is helpful for inter-node synchronization, but it depends

entirely on the coincidental matching of the f-versus-T characteristics of both crystals. (cf. fig. 2.4 on page 15 and
[SCF+08].)

20 CHAPTER 2. BACKGROUND AND TERMINOLOGY

11

11.5

12

12.5

13

13.5

14

14.5

15

08/20
00:00

08/21
00:00

08/22
00:00

08/23
00:00

08/24
00:00

08/25
00:00

08/26
00:00

08/27
00:00

08/28
00:00

08/29
00:00

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

N
T

P
lo

ca
l
ra

te
co

rr
ec

ti
on

[p
pm

]

R
at

e
di

ffe
re

nc
e

(c
a.

22
pp

m
bi

as
re

m
ov

ed
)

[p
pm

]

local date/time [m/d H:M]

(NTP - sysclock) freq. offset [ppm]
Local clocks rate difference [ppm]

Figure 2.6.: Frequency variation of a computer clock over a week.

2.3.4. External reference clocks

Synchronization of computer networks to external timescales like UTC requires injection of reference
time into the network. The points of injection are external reference clocks that are interfaced to
network nodes. Many national time standard laboratories attach atomic clocks to public NTP servers
in order to inject their realizations of UTC into the Internet. Most external clocks are either radio
controlled clocks or GPS time receivers.

Radio clocks are synchronized to terrestrial time signals. Many countries operate longwave time
signal transmitters like WWVB at 60 kHz in the U. S., DCF77 at 77.5 kHz in Germany, and
TDF at 162 kHz in France. The signal range is between 2000 km (DCF77 50 kW) and 3500 km
(TDF 2 MW). Small indoor antennas are usually adequate. Cheap, narrow bandwidth receivers
have only accuracies in the 5–25 ms range. Commercial correlation receivers achieve about
50µs when they are calibrated for the transmitter to receiver distance.

GPS receivers can operate worldwide but antennas need good sky view (and therefore rooftop access
is frequently required). Even cheap units have 1µs accuracy. Commercial quality units achieve
about 50 ns accuracy and are equipped with Time Receiver Autonomous Integrity Monitoring
(TRAIM) to protect against faulty satellite signals.

LORAN (LOng RAnge Navigation) is a terrestrial longwave navigation system that uses high peak
power pulses at 100 kHz [RSJ+05]. It was introduced in 1957 and is used mainly by the U. S.,
Europe, and Japan. GPS performs much better than the present LORAN-C system, however the
U. S. have modernized the system to achieve better navigation and timing performance. The
enhanced LORAN (eLORAN) system can be used as a timing source with about 100 ns accu-
racy.34 The eLORAN time and frequency accuracy can support almost all civilian applications.
E-Loran can be used as a local backup/complement to GPS.

34 This requires receiver and antenna calibration and LORAN data channel (LDC) corrections.

2.4. Software Clocks 21

2.3.5. Interfacing external clocks

At the physical layer the clock-computer interface is frequently realized as pulse per second (PPS)
signals. Only minimal add-on hardware (a cable and sometimes a level converter) is needed, because
most computers can be programmed to trigger an interrupt when a signal flank arrives at certain
parallel or serial port pins.35 A PPS API has been defined and free implementations for some POSIX
systems exist.36[MMB+00, MK00] Since PPS signals only mark the start of a second but do not tell
which second begins, an additional serial or USB connection is needed.

Cheap radio clocks and several navigation-only GNSS receiver models (through the NMEA protocol)
use a serial link alone. Because of the relatively slow communication speed and (hardware and
software) buffering of serial data streams a large timing uncertainty of tens of milliseconds results.

Precision timing hardware (like PCI timing cards) normally uses IRIG-B time code signals to synchro-
nize with external reference clocks [IRI04].

2.4. Software Clocks

This section deals with clocks from the viewpoint of software. Application programs use time related
APIs rather than accessing timer hardware directly. System software isolates applications from
idiosyncrasies of actual timer hardware by providing clock abstractions.

2.4.1. Operating system view

Operating system provided clocks can be categorized into three classes:

Counter register read access is the most simple API. Examples are library wrappers around PCC
read instructions or the QueryPerformanceCounter function in Microsoft Windows. The
counter frequency is either available from an API37 or must be obtained from a hardware
specification. Since the epoch is the time of the last system reset, these clocks are rather used
for time interval measurements than for providing UTC. Because of low clock access overheads
and high frequencies, these clocks are ideal for execution time profiling and similar performance
measurements.

Periodic timer interrupts are used by virtually all operating systems. Windows system time is
implemented this way. The interrupt service routine increments a software counter. Both the
interrupt events and the intervals between them are conventionally called ticks. The timer
interrupt frequency limits clock precision. Most older Unix/Linux systems used 100 Hz (10 ms).
As processor speeds have increased, higher frequencies up to 1000 Hz are nowadays more

35 On commodity PCs either the DCD pin (carrier detect) of a serial port or the ACK pin of a parallel port is used.
36 The NTP reference implementation supports the PPS API on Windows too.
37 On many Windows systems the QueryPerformanceFrequency function returns 3.579545 MHz—the ACPI power

management timer frequency.

http://msdn.microsoft.com/en-us/library/ms644904%28VS.85%29.aspx
http://www.ntp.org/
http://groups.google.com/group/comp.protocols.time.ntp/browse_thread/thread/82486f845d282611
http://msdn.microsoft.com/en-us/library/ms644905(VS.85).aspx

22 CHAPTER 2. BACKGROUND AND TERMINOLOGY

common.38 At the time of this writing the Microsoft Windows system clock still uses either
100 Hz or 64 Hz.

Interpolation schemes combine the two previously described approaches in order to improve clock
resolution. A periodic interrupt is used for basic time keeping, and a high frequency counter is
used to interpolate between ticks.

To achieve increased resolution the Windows port of the NTP reference implementation does
system clock interpolation at the application layer (i. e., outside the kernel). The implementation
uses the multimedia timer API to get 1000 callbacks per second from the kernel. The perfor-
mance counter is used to interpolate between callback events. A drawback of this approach is
that callback invocation may be delayed for several milliseconds during phases of heavy system
load.39

2.4.2. Clock phase and rate adjustment

Figure 2.7.: Clock adjustment sawtooth error [Mil06b, p. 180].

The frequency offsets of computer hardware clocks are in a range from a few to a few hundreds ppm.
Since even a rate offset of 1 ppm leads to a time error of 86.4 ms/day, some means of correction is
needed—at least for clocks tracking wall clock time.40

Setting the time to a new value is problematic, because it violates assumptions about a continuous
timescale. Stepping time backwards is known to confuse application programs. Clock steps are
hence avoided and (small) phase corrections are made by changing the clock rate instead. The time a
clock needs to run with increased or decreased rate to achieve a given phase correction is called the
amortization interval.

Unix systems use the adjtime system call to make small adjustments to the system time. This
amortizes the given signed time offset by using an increment that is slightly larger or smaller than
normal. The kernel reverts automatically to the standard increment as soon as the adjustment is
complete. Unix typically increases or decreases the rate during adjustments by 500 ppm, i. e., it

38 Periodic interrupts on an otherwise idle machine cause wakeups from power-saving states, which is detrimental to power
efficiency. Clock ticks also add to “system noise”. The Linux kernel is therefore moving away from this traditional
design. [TEFK05, SPV07]

39 A slightly modified version of this interpolation clock is used for the I-SENSE synchronization process on general purpose
processor nodes.

40 Clocks that measure the system uptime(e. g., GetTickCount on Windows) usually cannot be phase or rate adjusted.

http://developer.apple.com/documentation/Darwin/Reference/Manpages/man2/adjtime.2.html
http://msdn.microsoft.com/en-us/library/ms724408(VS.85).aspx

2.4. Software Clocks 23

takes 2000 s (more than 33 minutes) to amortize one second. Only three clock rates are available, the
unadjusted rate with a frequency error (line BC in fig. 2.7), the same rate reduced by -500 ppm (line
AB), and increased by -500 ppm. The ABC sawtooth of fig. 2.7 has to be repeated permanently (and
adjtime calls made at A) in order to keep the offset error low.

The Windows scheme for clock adjustment offers more flexibility for rate control, but there is
no API for amortized offset corrections. The SetSystemTimeAdjustment function sets the
increment added to the time-of-day clock at each clock interrupt. This allows arbitrary system clock
rates, but since Windows system time has 100 ns resolution, the granularity of possible rates is only
10 ppm/6.4 ppm at the common 100 Hz/64 Hz tick rates.

POSIX systems with kernel support for NTP41 allow very fine grained rate settings and offset
corrections with the ntp_adjtime system call.

2.4.3. Application view

On general purpose operating systems direct access to the timer hardware is not possible.42 Clocks
that are provided by the OS are used.

Table 2.5.: Time representations in various APIs

OS Time format Size Resolution Precision Wrap around

Windows System Time 8 × 16 bit 1 ms ca. 10 ms 65536 years
File Time 2 × 32 bit 100 ns ca. 10 ms 58454 years
MS-DOS Time 2 × 16 bit 2 s 2 s 128 years
Windows Time 32 bit 1 ms ca. 10 ms 49.7 days a

MM Timers 32 bit 1 ms ≥1 ms 49.7 days
HR Timer 64 bit 279.4 ns 279.4 ns 163300 years b

DSP/BIOS Highres Timer 32 bit 13.33 ns 13.33 ns 57.27 sec c

Lores Timer 32 bit 1 ms 1 ms 49.7 days d

NTP internal formats 64. . . 128 bit 1µs or 1 ns ≥1 ns e

wire format 64 bit 232.8 ps 136 years

POSIX struct timeval 2 × 32 bit 1µs ≥1µs 136 years f

struct timespec 64 bit+32 bit 1 ns ≥1 ns >1011 years f

a Epoch is system boot, i. e., the system uptime is returned.
b Assuming QueryPerformanceFrequency() = 3.579545 MHz
c The timer frequency is fCPU/4 or fCPU/8 depending on CPU model. The values shown
are for an I-SENSE DSP node with a 600 MHz TMS320C64X CPU.
d The low-resolution timer period is configurable with a 1 ms default value.
e Either micro- or nanosecond resolution is used dependent on a status flag.
f The standard does not specify the size of the integer seconds part (time_t).

41 Solaris, *BSD, Linux, and Darwin.
42 Unless one goes through the hassles of developing, maintaining, and deploying a device driver.

http://msdn.microsoft.com/en-us/library/ms724943(VS.85).aspx
http://www.daemon-systems.org/man/ntp_adjtime.2.html

24 CHAPTER 2. BACKGROUND AND TERMINOLOGY

From the application programmer’s view, it is irritating that so many different date-time and time
interval representations with varying resolution and precision are provided. Table 2.5 shows some
examples. The I-SENSE time synchronization software has to deal with several of the tabled
time formats. Conversion between formats must scale resolutions and consider different epochs (cf.
table 2.6).43

Timescale Epoch

Windows 1601-01-01
MS-DOS 1980-01-01
NTP 1900-01-01
POSIX 1970-01-01
.NET 0001-01-01
MacOS 1904-01-01

Table 2.6.: Epochs of some computer timescales

API documentation is frequently lacking important specifications. Answers to the following questions
often require additional research or testing:

Precision What is the minimum time interval between clock increments?

Monotonicity Is the clock (strictly) monotonic?

Accuracy Is the clock disciplined, i. e., rate and offset controlled? If yes: How does this affect
monotonicity and rate accuracy? Can the synchronization state be obtained?

Obtaining answers to questions about clock reliability44 and clock access overhead most often requires
running test programs on the target hardware.

2.5. General Clock Synchronization Model

Since clocks (and ensembles of clocks) are dynamical systems, methods and terminology from control
theory can be applied to the synchronization problem. Synchronization solutions can be described as
closed-loop control systems. Essential components of the feedback control loop are detailed in the
following subsections.

43 Local time zones, synthetic time scales like profiling clocks, and time related APIs mandated by programming language
standards complicate the picture further. Java APIs e. g., use the POSIX timescale with 1 ms resolution but intervals can be
timed with 1 ns resolution (System.nanoTime).

44 There are reports on the Internet about Windows systems with broken/erratic QueryPerformanceCounter implemen-
tations.

http://msdn.microsoft.com/en-us/library/ms644904%28VS.85%29.aspx

2.5. General Clock Synchronization Model 25

Figure 2.8.: Two-way time transfer

2.5.1. Measurement of the time difference between a local clock and a remote clock

Determining the time difference of a local clock relative to a remote clock is called time transfer
in metrology [Lev99, Lev08]. All time distribution methods depend on the accuracy of communi-
cation channel delay. Dependent on time signal topology several time transfer techniques can be
distinguished:

One-way (broadcast) The reference clock broadcasts its time. Receivers must know the channel
delay. After receiving the broadcast they calculate the time of reception by adding the channel
delay to the transmit time of the sender. Radio controlled clocks and single channel GPS time
receivers make use of the one-way method. A real-world limitation is, that channel delay varies
over time, and that this variation is not entirely predictable.

Multi-hop paths over (possibly congested) Internet paths have large unpredictable delay fluc-
tuations. The one-way method is therefore unsuitable across the Internet. Broadcast message
propagation delay on LAN or single hop WLAN links is much more predictable.

Two-way (round trip) The channel delay can be estimated using a query/response scheme. The local
client sends a time request to a time server that sends its current time in reply.45 If the channel
is reciprocal, its one-way delay can be estimated as half the round trip time RT T = Tr−Tx.
The error of the method is proportional to the path asymmetry a. If we define asymmetry with
reference to fig. 2.8 as

a =
2(Ta−Tx)

RT T
−1 −1 < a < 1 (2.21)

then the timing error θe due to path asymmetry a will be

θe =
a
2

RT T |θe|<
RT T

2
(2.22)

In the depicted example the case of the faster request path (T ′a1) would cause the client clock
to be late by one quarter of the RTT, the even faster response path (T ′a3) would set it early by
3/8 RTT.

45 The two-way method does not mandate a client/server architecture. The NTP symmetric mode is a counter-example.
Two-way satellite methods (TWSTFT) operate even full-duplex with uncertainty below the nanosecond. [GA05]

26 CHAPTER 2. BACKGROUND AND TERMINOLOGY

Figure 2.9.: Common-view method

Common-view (third party broadcast signal) The method is depicted in fig. 2.9. Two receivers use
their local clocks to measure the arrival of the same third party broadcast signal. The receivers
then exchange their measurement results to obtain the mutual clock offset. The method requires
the receivers to be approximately equidistant from the third party, to make the channel delays
experienced by the receivers nearly equal.46 One advantage over the one-way method is, that
knowledge of absolute path delay is not required. Another advantage is, that fluctuations in the
channel delay cancel out if the paths are similar.47 The sender needs no precise clock; it does
not even need to “know” that it is being used for time transfer.

The common view method is only applicable to computer networks with a physical broadcast
channel. Although the technique can be used on a LAN,48 it is especially attractive on WLAN,
because the medium access delay of the sender does not matter [EGE02].

Two other time transfer techniques known in the metrology literature are the All-in-View and the
portable clock method.49 They are not relevant for computer network synchronization.

Decomposition of path delay

Message passing in distributed systems involves many more delays than only signal propagation across
a medium between two nodes. The speed of electromagnetic waves is about 300 m/µs in the atmosphere
and roughly 200 m/µs along cables. End-to-end message delivery delays of hundreds of microseconds
between (W)LAN nodes are dominated by processing rather than physical signal propagation.

Processing of a one-way message from the sender application layer down the network protocol stack
and vice versa in the receiver protocol stack is sketched in table 2.7. Additional software layers like
virtual machines or middleware transport services would add even more unpredictable delays.

46 In high precision applications some correction for the residual path difference is usually required.
47 Typically because the baseline between the receivers is small compared to the sender distance.
48 For example by utilizing already available broadcast packets like ARP requests as the third party signal.
49 The All-in-View or Melting-Pot technique uses synchronous one-way measurements of a clock ensemble. An example is a

multi-channel GPS time receiver. [Lev08]

2.5. General Clock Synchronization Model 27

Software layer Processing step

Sender application call time-of-day function, add timestamp to message
Sender application call send-message function
Sender OS copy message to kernel memory, invoke network stack
Sender stack assemble packet by several layers of network stack
Sender NIC driver wait for medium access
Sender NIC driver transmit packet, probably re-transmit in case of collision (CSMA/CD)

(Medium) Packet propagation
Intermediate router(s) Enqueue, process, and forward packet

Receiver NIC Store packet in NIC buffer, interrupt CPU
Receiver kernel wait until higher priority interrupts processed
Receiver NIC driver copy packet to kernel, invoke network stack
Receiver stack process packet by several network stack layers
Receiver OS wake up/notify receiving process
Receiver OS scheduling delay until receiving process is assigned CPU
Receiver OS context switch to receiving process
Receiver OS probably extra delay due to virtual memory paging
Receiver application read message (receive-message function returns)
Receiver application call time-of-day function to get receive timestamp

Table 2.7.: Message delivery processing steps

Additional processing delays are not, per se, a problem for synchronization, since they can be
abstracted into the end-to-end communication channel. The drawback of application-to-application
delay measurements stems from the unpredictable delays due to resource contention that may occur at
most of the steps in table 2.7. The combined delay uncertainties create a large overall uncertainty when
delay is measured at application level. The importance of taking timestamps at the lowest possible
layer is further substantiated in section 3.1.8.

2.5.2. Estimation of the time and frequency error of the local clock

Isolated offset measurements are only a rough estimate, because of the uncertainty associated with
remote clock reading. Only at system startup when the clock has to be set quickly, a single remote
clock reading (or the average of a few ones) is used as-is.50 In general, protocols try to reduce the
uncertainty of single measurements by applying mathematical methods to sets of measurements
[Joh04].

One effective method to remove outliers is based on eq. 2.22. In many cases, the samples with minimal
RTT have suffered from the smallest random delays and have little path delay asymmetry. Selecting
the low RTT samples therefore tends to remove outliers and decrease overall jitter [Mil06b, p. 43f].

50 The ntpdate program coming with the NTP reference implementation does this.

http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdate.html

28 CHAPTER 2. BACKGROUND AND TERMINOLOGY

a12

a12

a12

b12

b12

b12

Tr1

t′S

tC

T ′
a1

Tx1

Tr1Tr1

point 3

point 1

point 2

Figure 2.10.: Offset and skew estimation in the Tiny-Sync protocol [YVS07]

This characteristic of Internet paths is also present on I-SENSE intra-node links (between general
purpose processor and DSPs) and is depicted in the scatter diagram of fig. 4.6 on page 58.51

Other proposed methods are simple first order low-pass filtering, sliding averages, linear least squares
regression (LLR) techniques, statistical models in combination with parameter fitting, Kalman filters,
convex-hull, and linear programming approaches [ZLX02, Joh04, SM08].

As an example of a linear programming approach the algorithm used by the Tiny-Sync proto-
col [YVS07] is graphically explained in fig. 2.10. Based on the assumption of linear clock functions
(cf. eq. 2.13b on page 11) the client clock tC is a linear function of the server clock t ′S. Transformation
of a server timestamp T ′i to a client timestamp Ti requires two parameters: the client time b12 at t ′S = 0
and the relative rate a12 =

1+Sc
1+SS

. For each two-way measurement of fig. 2.8 the inequalities

Tx < a12T ′a +b12 < Tr (2.23)

must hold. New measurements may or may not reduce the possible parameter intervals. In fig. 2.10
data point 3 clearly raises the lower bound b12 and lowers the upper bound a12 but it changes b12 and
a12 only slightly. To avoid unbounded computational and storage requirements, Tiny-Sync stores only
four selected constraints at any time.

All estimation methods are based on assumptions about the properties of communication channels
and clocks. Making good assumptions about real-world network paths is hard, since they often show
complex non-Gaussian delay distributions. Varying network conditions are another complication, as
they may cause substantial change of delay distribution.

51 Minimum RTT filtering was hence effective in this case too.

2.5. General Clock Synchronization Model 29

Multiple clocks and fault tolerance

Multiple time sources add another layer of complexity. Clocks with different properties, some of them
possibly failing in Byzantine ways, create new challenges for protocols. Interval-comparison based
selection algorithms (cf. Marzullo’s algorithm in section 3.2.4), clustering algorithms [Mil06b, p. 50ff],
and weighted combinations are common building blocks for fault-tolerant averaging or convergence
functions.

The fault-tolerant midpoint algorithm [LL84] is a convergence function, which is e. g., used for time
synchronization in the automotive network communications protocol FlexRay [Fle05, pp. 169–193].
The algorithm works in rounds. In each round the list of n remote clock readings is first sorted, then the
f highest and the f lowest values are thrown away, and finally the time is estimated as the arithmetic
average of the highest and the lowest remaining value.52

Schneider [Sch87] compares eight fault-tolerant convergence functions. He points out, that all fault-
tolerant clock synchronization protocols can be viewed as refinements of a single paradigm. He also
formalizes four required properties of convergence functions: monotonicity, translation invariance,
precision enhancement, and accuracy preservation.

2.5.3. Adjusting the local clock to reduce future time differences

Not all protocols adjust the local clock, sometimes timescale transformations (cf. section 3.1.3) are
used instead.

In the common case of real-time synchronization, new time and frequency error estimates can be
computed when a new offset sample arrives. An overly simplistic clock adjustment algorithm would
correct the rate and phase of the clock immediately using APIs from section 2.4.2 above. Frequent
clock steps in both directions would result. In practice, however, clock steps are avoided and a smooth
and stable rate is desired to keep short interval measurement errors low.

The time constant used for rate smoothing is always a compromise. Optimizing the clock for good
interval measurement performance requires a rather large time constant to keep rate changes low.
Optimizing for phase accuracy needs a shorter time constant to reduce time offset errors more
quickly. The requirements for rate and phase performance—i. e., clock stability and accuracy—are
conflicting.

NTP alleviates the conflict with a dynamic time constant. The time constant is enlarged when the
estimated network jitter is below a threshold and shrinked otherwise [Mil06b, p. 71f]. This scheme
adapts to varying network conditions, but it does not help in the case of a drifting local clock, e. g.,
due to a temperature step [Mil98].

A solution to the stability-versus-accuracy tradeoff problem has been described by Ridoux and Veitch
[RV09]. They co-implemented two software clocks based on the same CPU clock hardware oscillator.
One clock is optimized for time differences and the other for absolute time.

52 In FlexRay if 3≤ n≤ 7 then f = 1, and if n > 7 then f = 2.

3. Synchronization Protocols for Computer
Networks

There is a huge body of work about synchronization protocols for computer networks. Countless
protocols have been proposed in thousands of publications. The presentation and citations in this
chapter are therefore restricted to a few classical papers and some survey papers. Much of the
theoretical work has been published throughout the 1980-ies and early 1990-ies. An (incomplete)
annotated bibliography on clock synchronization from that period is [Sch94a], an overview paper is
[SWL90].

Currently the subject of time synchronization protocols is again a hot research topic. The main reason
is that classical approaches do not fit the highly specific demands of wireless sensor networks very
well [ER03]. Pointers to WSN research literature are given in section 3.2.6. Although the WSN design
space is vast [RM04], I-SENSE does not fit into it.1 The advantages of WSN protocols in areas like
energy-efficiency, scalability, and ad hoc deployment—while interesting—are of little relevance for
the practical part of this thesis (cf. section 1.2).

Section 3.1 below is an annotated compilation of protocol classification criteria. It gives an overview
over the synchronization protocol design space. Section 3.2 briefly presents some examples of practical
algorithms and gives pointers to literature. Section 3.3 concludes this chapter with a more detailed
description of the NTP and SNTP protocols.

3.1. Classification of Synchronization Protocols

3.1.1. Communication model

The communication patterns for synchronizing time sources with clients have been discussed in
section 2.5.1. The common-view method requires a physical broadcast channel. The one-way method
can use broadcast addressing, but does not require it. The two-way method normally uses unicast, but
a broadcast request with unicast replies can be used too.

1 Current technology cannot support the energy requirements of I-SENSE nodes from reasonable sized batteries. I-SENSE
nodes are therefore tethered devices.

30

3.1. Classification of Synchronization Protocols 31

3.1.2. Time source

No time source The simplest form of synchronization is only concerned with event ordering. These
algorithms only compare clocks and do not attempt to synchronize them. Algorithms without
any physical clocks at all (cf. section 3.2.1) fall in this category too.

Internal synchronization Without an external time source the goal is consistency among the network
nodes., i. e., to minimize the differences between the readings of the local clocks.

External Synchronization Time is supplied from outside the network. The injected reference time
usually refers to a standardized global timescale like UTC. All nodes adjust to this reference
time. While internal synchronization may be implemented in peer-to-peer fashion, external
synchronization is always hierarchical.

3.1.3. Clock correction versus timescale transformation

Clock correction Most methods control rates and offsets of all clocks. The clock of each node is
corrected to achieve network synchronization.

Untethered clocks Each clock is free running, i. e., not adjusted or steered. Because each clock
implements its own timescale, timestamps must be converted when passed between nodes. These
timescale transformations need parameters relating the clocks against each other. The storage
overhead for these parameters and the computation overhead for maintaining parameters and
doing timestamp transformations are a disadvantage of the approach. It is nonetheless attractive
in the context of WSNs, where energy efficiency is paramount and wireless communication is
the most energy consuming activity. Timescale transformation is attractive in these scenarios,
because it significantly reduces the communication overhead for synchronization.

3.1.4. Master-slave versus peer-to-peer

Master-slave Master nodes require CPU and bandwidth resources proportional to the number of
slaves. Large networks therefore use hierarchical topologies, where certain higher level slaves
are masters for the next level.2

Peer-to-peer Any node is allowed to talk to any other node directly. Peer-to-peer protocols are more
flexible and node-failure tolerant than hierarchical protocols, but also more difficult to control.

2 In North-American telecommunication networks (cf. ANSI/T1.101-1987) the hierarchical synchronization levels are called
strata (sg: stratum). The NTP documentation uses that term too, but, unlike the ANSI standard, a NTP stratum carries only
topological significance and no accuracy and stability requirements are defined for the levels.

32 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

3.1.5. Probabilistic versus deterministic

Probabilistic synchronization Probabilistic clock synchronization algorithms do not require guar-
anteed bounds on message delays. Probabilistic protocols cannot guarantee a maximum clock
offset, but the probability of exceeding an offset can be bounded or determined.3

Deterministic synchronization Deterministic algorithms can guarantee bounds on clock offset. Most
algorithms in the literature are of this type. In order to make deterministic guarantees these
protocols have to make stringent assumptions about the properties of the involved clocks and
communication channels, e. g., lower and upper bounds for the channel delay and clock skew
must be known and guaranteed.

3.1.6. Time instants versus time intervals

Time instants A time instant (like t = 3) specifies a zero dimensional quantity with no margin for
error. Since measurement uncertainty is unavoidable, a time instant can never be exactly accurate.
Both time instants and intervals can be refined by quality statements. The processing of detailed
quality statements (like the probability distribution of offset error) would make protocols quite
complex. Therefore symmetric or asymmetric intervals together with a probability for the
correctness of the given interval are preferred.

Time intervals Using guaranteed intervals instead of instants allows to combine the intervals effi-
ciently and unambiguously by intersection. Guaranteed time bounds for sensor-data permit to
guarantee bounds on fusion results too.

3.1.7. Lifetime and scope

Most protocols are designed for continuous synchronization. For sensor network applications this may
be suboptimal. If inter-event intervals are long then on-demand synchronization may be much more
efficient. An example is post-facto synchronization where synchronization and timestamp generation
happen only after an event has been recorded [EGE02].

Only the collocated subset of network nodes that observes the triggering event needs to participate in
the synchronization.

3.1.8. Low level access

Standard approach Time stamping is done at the application layer. This avoids modifications to low
level software, but inevitable system noise degrades timestamp quality. Some operating systems
have built-in timestamping facilities implemented in the network stack.4 When these facilities
are available and used then application scheduling delay is entirely removed from timestamps.

3 Some authors make a further distinction between probabilistic and statistical algorithms. [AP98]
4 Among them Solaris, Linux, and the open source BSDs. Windows lacks this feature. The reference implementation of NTP

makes use of OS-provided UDP packet timestamps where available.

http://www.ntp.org/

3.2. Synchronization Protocol Survey 33

MAC-layer utilization Timestamping at application or network stack level is agnostic to media access
delay. Several WSN time synchronization protocols rely on direct access to the Media Access
Control (MAC) layer.

Low Level Hardware Timestamps Creating timestamps at the lowest possible software layer (device
driver / MAC) still incurs the timing uncertainties associated with interrupt latency. Sub
microsecond accuracies are possible with special network interface hardware. Examples of this
approach are the SynUTC project where a special UTCSU-ASIC (Universal Time Coordinated
Synchronization Unit, see [Loy97]) and an asymmetrical interval based protocol [Sch00] were
developed. A newer example is the IEEE 1588 standard, which specifies the Precision Time
Protocol (PTP) [IEE08]. It is commonly implemented with special Ethernet hardware, which
snoops the IEEE 802.3 MII-bus to the PHY transceiver chip [Hor04, pp. 55–60]. IEEE 1588 is
aimed at real time applications in automation [HSK03].5

3.2. Synchronization Protocol Survey

3.2.1. Logical clocks

Lamport points out in [Lam78] that the concept of time is derived from the more basic concept of
event ordering. He models distributed systems as collections of processes. Each process consists of
a sequence of events, e. g., the execution of a machine instruction or sending a message to another
process. He formalizes the concept of event ordering with the definition of the “happened-before”
relation, denoted by “→” and defined as follows:

Definition 1. The relation “→” on the set of events of a system is the smallest relation satisfying the
following three conditions:

1. If a and b are events in the same process, and a comes before b, then a→ b.

2. If a is the sending of a message by one process and b is the receipt of the same message by
another process, then a→ b.

3. If a→ b and b→ c then a→ c.

Two distinct events a and b are said to be concurrent, denoted by a ‖ b, if a9 b and b9 a.

No event can happen before itself, therefore a9 a holds for any event a. Thus the “happened-before”
relation is irreflexive, transitive, and antisymmetric. It defines a partial ordering on the set of all
events.

Another meaning of a→ b is that event a may causally affect event b, and a ‖ b means that neither
can causally affect the other.6 Two distributed computations are equivalent (have the same effect) if
they only differ by the order of concurrent operations.

5 See http://www.ieee1588.com/ and http://ieee1588.nist.gov/. Software only implementations of PTP
exist too [CBB05].

6 The above definition gives a causality relationship for message passing systems. In shared memory systems two operations
on the same data item, one of which is a write, are causally related too.

http://ieee1588.nist.gov/
http://www.ieee1588.com/
http://ieee1588.nist.gov/

34 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

Scalar clocks

Lamport introduces logical clocks in [Lam78] as just a way of assigning numbers to events, i. e., each
process Pi has a clock Ci which assigns a number Ci(a) to any event a in Pi. For any event b we define
its timestamp C(b) to be C j(b) if b is an event in Pj. A reasonable correctness condition for logical
clocks is that if event a happens before event b, then the clock value (timestamp) of a must be less
than the clock value of b. We state this more formally as follows:7

Consistency condition. If a→ b then C(a)<C(b)

Logical clocks satisfying this condition are remarkably easy to implement. Only per-process counters
and a timestamp field attached to messages are needed. The following two implementation rules are
sufficient:

1. Each process Pi increments Ci between successive events.

2. If a is the sending of a message m by process Pi to Pj, then the message contains a timestamp
Tm =Ci(a). When Pj receives m it sets C j := max(C j,Tm +1).

The partial ordering by “→” can be completed to a total ordering “⇒”. We can e. g., define that a⇒ b
if and only if either C(a)<C(b) or Ci(a) =C j(b) and i < j.8 A total ordering of events has many uses
in distributed systems, it can e. g., be used to implement synchronized access to shared resources.

Vector clocks

Logical clocks satisfying the consistency condition have a limitation. Comparing timestamps cannot
confirm a “happened before” relation. While C(a)<C(b) implies b9 a it does not tell us whether
events a and b are causally related (a→ b) or concurrent (a ‖ b). With the following stronger
consistency condition this is possible:

Strong consistency condition. If a→ b then C(a)<C(b) and if C(a)<C(b) then a→ b

Vector clocks satisfying the stronger consistency condition have been independently developed by
Fidge, Mattern, and Schmuck in 1988 [Fid88, Mat89]. With n processes each process Pi maintains
a vector vti[1..n]. The own clock of Pi is the vti[i] element. Element vti[k] where k 6= i represents the
latest knowledge of Pi about the logical clock value of process Pk. Again only two implementation
rules are required:

1. Process Pi updates its own clock before each local event vti[i] := vti[i]+d (d > 0)

2. Each process that is sending a message attaches the whole vector to the outgoing message. The
receiving process Pi updates its vector clock as follows before it delivers the message:

vti[k] := max(vti[k],vtmsg[k]) where 1≤ k ≤ n

vti[i] := max(vti[k])+d

7 Adding the converse condition—if a9 b then C(a)≮C(b)—would imply that any two concurrent events have to occur at
the same logical time.

8 The rule to handle the case when C(a) =C(b) is arbitrary. Any relation Pi ≺ Pj , which orders processes totally, is sufficient.

3.2. Synchronization Protocol Survey 35

Figure 3.1.: Cristian’s remote clock reading method [SBK05]

Comparison of two vector timestamps vh and vk is defined as follows.

vh ≤ vk if ∀x : vh[x]≤ vk[x]

vh < vk if vh≤ vk and ∃x : vh[x]< vk[x]

vh ‖ vk if vh� vk and vk � vh

Straightforward implementations of vector clocks scale badly with system size n, because each
message piggybacks n integers. More efficient implementations of vector clocks are known.

The differential technique of Singhal and Kshemkalyani sends only changed elements of the vti clock
vector in the form of (index,new counter) tuples. A direct implementation would need O(n2) storage
to keep the latest vectors sent to each process. The scheme in [SK92] uses only two vectors9, a
“last sent” vector LS[1..n] and a “last updated” vector LU [1..n]. Process Pi keeps in LSi[j] his vti[i]
timestamp from the last message sent to Pj. LUi[k] contains the vti[i] value from the last update to
vti[k]. Process Pi piggybacks only {(k,vti[k]) |LSi[j]< LUi[k]} to messages it sends to Pj.

Matrix clocks

The matrix clock is a third type of logical clock besides the scalar and vector clock. A matrix clock not
only keeps state about the current logical time of other processes, it also stores information about what
those other processes know about each others clocks. This is useful to identify (and delete) obsolete
information. Matrix clocks therefore have applications in areas like distributed checkpointing and
garbage collection. Efficient implementations exist, which reduce the O(n2) storage and bandwidth
complexities of a straightforward approach.

3.2.2. Cristian’s algorithm

Cristian describes in [Cri89] a simple probabilistic algorithm. The basic principle is depicted in fig. 3.1.
The remote clock reading method assumes that round-trip times are short compared to the required
accuracy. In order to read the clock of another node, a process initiates at local time T0 a timestamp
request. The queried time server replies with a message containing the server side timestamp Stime.

9 Not counting the clock vector vti itself.

36 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

When the reply is received the round-trip time is calculated as the difference T1−T0. The receiver
then estimates the server time S1 corresponding to T1 as

S1 = Stime +
T1−T0

2
(3.1)

This assumes that the server timestamp was created half in between the round-trip at local time
T0 +(T1−T0)/2.

Cristian observed that with his method the offset error θ is bounded by the half round-trip time.10

|θ | ≤ (T1−T0)

2
(3.2)

In Cristian’s scheme several clients are synchronized to an accurate time server using the remote clock
reading method. To improve accuracy several round-trips are made and only the one with the least
round-trip time is used.

3.2.3. The Berkeley algorithm

The Berkeley algorithm [GZ89] is like Cristian’s algorithm a master-slave protocol intended for
use within intranets. All computers run an instance of the timed daemon.11 Through an election
algorithm one of them is chosen as the master.12

The master reads the clocks of the slaves with Cristian’s remote clock reading method. A fault tolerant
averaging function is then used on the Cslave−Cmaster clock offsets. Fault tolerance is achieved by
averaging only the largest set of client clocks, which do not differ by more than a small constant γ
from each other. Finally the master asks each client to adjust its clock for the Cavg−Cslave difference.
The algorithm is repeated in regular intervals. The clock of the master plays no privileged role in this
internal synchronization algorithm.

3.2.4. Marzullo’s algorithm

Marzullo and Owicki considered distributed systems with clocks that differ in rate accuracy [MO83].
Their augmentation of timestamps with an indication of their accuracy lead to an interval based
algorithm.

Their error model assumes known upper bounds for clock skew S (cf. eq. 2.9) and for one-way
message delay. Because of skew the confidence intervals of clocks grow linearly with the time since
the last clock reset. To minimize the maximum error, interval intersection is used. If all clocks are
correct, the intersection of their confidence intervals must give a nonempty interval. If not, a nonempty
intersection interval is sought including all but a minimum number of incorrect clocks.

10 Rate differences between the clocks increase |θ |max slightly.
11 In Unix (and similar operating systems) a daemon is a server process running in the background without interactive user

control. By convention daemons have names ending with the letter ‘d’.
12 Should the master fail, a new election takes place after a timeout.

http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man8/timed.8.html

3.2. Synchronization Protocol Survey 37

Figure 3.2.: Marzullo’s interval intersections [Mil06b, p. 48]

An example with m = 4 confidence intervals is depicted in fig. 3.2. The algorithm finds the smallest
intersection interval that contains points of each of m− f confidence intervals, where f is the number
of incorrect clocks or falsetickers. The algorithm requires that f < m/2.

There are some border cases where Marzullo’s algorithm produces anomalistic results. A modified
version of the algorithm is thus used in NTP. The NTP version requires that the intersection of m− f
intervals contains at least m− f midpoints. The intersection generated by the NTP selection algorithm
is shown in fig. 3.2 too. The modified algorithm always results in an interval that includes the interval
produced by the original algorithm.

The asymptotic space usage of the algorithm is O(m). The time efficiency is O(m logm) for the first
run, and O(m) when only one source interval is updated.

3.2.5. Fault tolerant protocols

Many fault tolerant clock synchronization protocols have been proposed. Some examples are described
in [LL84, DHS84, LMS85]. Most of the literature refers to the Byzantine generals problem described
in [LSP82].

In analogy to the solutions given in [LSP82], without authenticated timestamp messages fault tolerance
is possible if and only if less than one third of the clocks fail.

The proposed deterministic protocols need a relatively high communication overhead in order to
achieve fault tolerance and a sufficient level of precision.

3.2.6. Protocols for wireless sensor networks

Wireless sensor networks (WSN) differ in many aspects from traditional distributed systems [RM04].
Protocols like NTP, which work well in the Internet, are not suitable for most WSN environments.
NTP was designed for large-scale networks with a rather static topology. NTP servers have to process
synchronization requests at all times. Energy efficient time division schemes, which would allow
servers to enter a low-power state outside assigned time slots, are therefore not possible with NTP.

The IEEE 801.11 standards already provide a time synchronization mechanism for the so-called
infrastructure mode. The mechanism uses a master/slave model of communication. The fixed master
node is the access point. To coordinate medium access for all reachable stations, the access point

http://pages.cs.wisc.edu/~sschang/OS-Qual/reliability/byzantine.htm

38 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

periodically sends a high-priority beacon frame.13 The beacon frame includes a timestamp for
synchronizing the clocks of the slaves.

The IEEE 801.11 scheme uses the one-way method described in section 2.5.1. This adds the uncertainty
of the time interval between the taking of the timestamp at the access point and the transmission of the
beacon frame to the time transfer. This uncertainty is orders of magnitude larger than the physical
signal propagation delay of WLANs. The sender-side uncertainty is eliminated by the common-view
method. Several authors have proposed common-view based synchronization protocols for WSNs,
e. g., the Reference Broadcast Synchronization Protocol (RBS) of Elson et. al [EGE02].

Many other protocols (using all three methods of section 2.5.1) for WSNs have been published. In
general they focus on energy efficiency, low storage and processing resources, and suitability for
dynamical and/or ad-hoc topologies. Two survey papers are [SY04] (a comparison of the RBS, TPSN,
Tiny-Sync/Mini-Sync, and LTS protocols) and [SBK05], the latter is a survey and analysis of nine
existing clock synchronization protocols for wireless sensor networks. A section of [RBM05]—a
good introductory text—also examines ten current synchronization algorithms.

3.3. The Network Time Protocol

3.3.1. NTP classification

NTP can be classified according to the criteria of section 3.1 as

• using either one-way or two-way time transfer or both (dependent on configuration)

• doing external synchronization

• adjusting the operating system clock

• using (mostly) hierarchical master/slave topologies14

• using probabilistic algorithms

• using maximum likelihood and worst case intervals

• operating continuously

• utilizing lower level timestamps where provided by the OS.

13 The beacon frame marks the switch from a contention period with CSMA based medium arbitration to a contention free
period with centralized arbitration.

14 The NTP symmetric mode is used between two equal peers.

3.3. The Network Time Protocol 39

3.3.2. History and background

NTP is claimed to be the longest running, continuously operating, distributed application in the
Internet [Mil06b, p. 253]. A first protocol specification appeared 1981 in RFC 778 [Mil81]. As the
protocol evolved revised specifications appeared.

NTPv0 The (now so called) NTP version 0 was implemented an documented in 1985 [Mil85].

NTPv1 Version 1 of the NTP specification appeared three years later and defined client/server and
symmetric modes [Mil88].

NTPv2 In 1989 the NTP version 2 specification introduced a formal model and state machine
describing the protocol. The NTP Control Message Protocol for management of NTP servers
and clients had been added. Another novelty was a cryptographic authentication scheme based
on symmetric key cryptography [Mil89].

NTPv3 The NTP version 3 specification appeared 1992 as RFC 1305. A modified version of
Marzullo’s interval-based agreement algorithm ([MO83]) had been integrated. The appendix
includes a formal error analysis. The error budget calculation includes all error contributions be-
tween the reference clock over intervening servers to the eventual time service client. Based on
this error model NTPv3 implementations provide maximum error and expected error statistics.
These statistics are used by the protocol as a metric for selecting the best server from a group of
available servers. Also a broadcast mode of operation (intended for use on LANs) had been
added. NTPv3 and NTPv2 implementations can inter-operate in a time distribution network
[Mil92].

NTPv4 The NTP protocol has evolved since NTPv3. New features and algorithm revisions have
been added while interoperability with older versions has been preserved. NTPv4 has not been
officially adopted by the IETF yet.

NTPv4 accommodates Internet Protocol version 6 by means of a modified protocol header. It
has also got a new security model and a self-configuring protocol called Autokey [Mil06a].
While the NTPv2 authentication has worked well, it suffers (like all symmetric key schemes)
from complicated key distribution. Autokey uses a combination of public key cryptography
for signing timestamps and a computationally less expensive pseudo-random keystream for
authenticating packets relative to the signed timestamp values.15

Other additions are a manycast mode, which permits client to discover nearby servers au-
tonomously, improvements to the clock discipline algorithm and (on some operating systems)
implementation of parts of it directly in the kernel [Mil06c].16

15 The rationale behind this design is to minimize the impact of CPU time (spent in asymmetric cryptography routines) on the
quality of timekeeping.

16 With a kernel PLL interfaced to an external reference clock the residual time error is on the order of 50 ns [MK00].

40 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

3.3.3. NTP implementations

The official NTP reference implementation along with documentation is available as open source
code releases (for UNIX-like systems) from the NTP project homepage17. The code is published by
the University of Delaware under a permissive BSD-style open source license. Dave Mill’s many
NTP-related publications are available on his homepage18.

The OpenNTPD project19 is a subproject of the OpenBSD project. The goal of the project is a free, easy
to use implementation of the Network Time Protocol. The project has a focus on security, simplicity
of implementation and configuration, and reasonable accuracy.20. There are two OpenNTPD teams.
One team does strictly OpenBSD-based development. Another team then takes the OpenBSD version
and makes it portable to other POSIX systems. Currently 10 operating systems are supported.

Other free third-party implementations, including pre-compiled versions for Windows NT / 2000 / XP,
Windows Server 2003, and Vista, are available (e. g., through links at the ntp.org homepage) too.

Microsoft Windows versions since Windows 2000 include the Windows Time Service (W32Time).
How Windows Time Service works is documented on Microsoft TechNet.21 The Microsoft imple-
mentations in Windows 2000 and Windows XP work only as SNTP clients. Windows versions since
Windows 2003 are documented by Microsoft to be compliant to [Mil92] (NTPv3). Windows systems
do not interpolate time between timer interrupts (ticks). This alone limits accuracy to ±16 ms (64 Hz).
Moreover a Microsoft support document titled “Support boundary to configure the Windows Time
service for high accuracy environments”22 states:

We do not guarantee and we do not support the accuracy of the W32Time service between
nodes on a network. The W32Time service is not a full-featured NTP solution that meets
time-sensitive application needs. The W32Time service is primarily designed to do the
following:

• Make the Kerberos version 5 authentication protocol work.

• Provide loose sync time for client computers.

The W32Time service cannot reliably maintain sync time to the range of 1 to 2 seconds.
Such tolerances are outside the design specification of the W32Time service.

3.3.4. NTP sub-algorithms

The presentation of this section follows [Mil06b, Mil06c] and describes NTPv4.

A NTP architecture overview is shown in fig. 3.3. The depicted process decomposition reflects the
internal software organization only. It is not mapped to operating system level processes. The NTP
reference implementation uses a single operating system process.

17 http://www.ntp.org/
18 http://www.eecis.udel.edu/~mills/
19 http://www.openntpd.org/
20 The project webpage states: ”We are not after the last microseconds.”
21 http://technet.microsoft.com/en-us/library/cc773013(WS.10).aspx
22 http://support.microsoft.com/kb/939322

http://www.ntp.org/
http://www.eecis.udel.edu/~mills/ntp/html/copyright.html
http://www.eecis.udel.edu/~mills/
http://www.openntpd.org/
http://www.openbsd.org/
http://www.openntpd.org/goals.html
http://www.ntp.org/
http://technet.microsoft.com/en-us/library/cc773013(WS.10).aspx
http://support.microsoft.com/kb/939322
http://support.microsoft.com/kb/939322
http://www.ntp.org/
http://www.eecis.udel.edu/~mills/
http://www.openntpd.org/
http://www.openntpd.org/goals.html
http://technet.microsoft.com/en-us/library/cc773013(WS.10).aspx
http://support.microsoft.com/kb/939322

3.3. The Network Time Protocol 41

Figure 3.3.: NTP architecture overview [Mil06b, p. 19]

The communication with remote servers and local reference clocks23 is handled by peer/poll processes.
Incoming clock samples on UDP/IP port 123 are filtered by the clock filter algorithm. The selection
algorithm separates the server population into truechimers and falsetickers. If more than three
truechimers are left the clustering algorithm casts off outliers. Offsets from the remaining survivors
are combined by the combining algorithm into the final system offset Θ that is input to the clock
discipline algorithm.

NTP timestamp exchange protocol

The exchange of NTP timestamps is shown in fig. 3.4. Depicted is the most general form with
symmetric modes. Other than Cristian’s remote clock reading method (cf. fig. 3.1) four timestamps
are taken per round trip and the scheme is symmetric. In client/server mode the server only copies two
timestamps and adds a new one, but it does not need to save any client state.

The round trip communication channel delay (RTTD) δ is

δ = (Tn+3−Tn)− (Tn+2−Tn+1) (3.3)

and with the usual assumption of a symmetric channel the offset θ is

θ =
1
2
[
(Tn+1−Tn)+(Tn+2−Tn+3)

]
(3.4)

Time stamp subtractions are done in 64 bit integer arithmetic to preserve precision. This leaves a
signed 31 bit integer seconds value. A NTP client must therefore know the time to within ±68 years
by means outside the NTP protocol. The reference implementation uses floating point arithmetic for
all further processing of the resulting time differences.

23 Local reference clocks are not shown in fig. 3.3. Drivers present them to the core software as additional servers with zero
channel delay.

42 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

Figure 3.4.: NTP timestamp exchange [Mil06b, p. 42]

NTP clock filter algorithm

The NTP clock filter algorithm stores the latest eight valid samples of each peer in a shift register. Its
output is the sample with the minimum RTTD δ . The method is based on eq. 2.22 and is explained in
section 2.5.2 above.

The 8-stage shift register actually stores (θ ,δ ,ε, t) tuples. The dispersion ε(t) represents the maximum
error due to frequency tolerance and clock reading precision.

ε(t) = ρR +ρ +Φ(t− t0) (3.5)

Here ρ is the minimum time needed to read the system clock and called precision in NTP termi-
nology.24 The maximum frequency tolerance of clocks Φ is a configurable constant and defaults to
15 ppm.25 The peer precision ρR is taken from the NTP packet header. The dispersion grows linearly
with the elapsed time since t0, i. e., since the timestamp in question was taken.

The clock filter algorithm sorts the eight tuples by increasing δ and averages the sampled ε values to
the peer dispersion26

ε =
8

∑
k=1

εk

2k (3.6)

24 This definition of precision is unfortunately different from the definition used in metrology and given in the glossary.
25 The 15 ppm number comes from the specification of Digital Alpha machines. It is quite arbitrary as undisciplined computer

clock tolerances can be up to 500 ppm in extreme cases. [Mil06b, p. 177]
26 As in the NTP documentation, the time dependency of ε is not made explicit by the notation.

3.3. The Network Time Protocol 43

Figure 3.5.: NTP clustering algorithm example [Mil06b, p. 52]

The sorted list of n valid tuples is further used to compute the peer jitter ϕP

ϕP =

√
1

n−1

n

∑
k=2

(θk−θ1)2 (3.7)

NTP selection algorithm

The NTP selection algorithm is variant of Marzullo’s algorithm and has been sketched in section 3.2.4.
The correctness intervals that are processed by the algorithm are of the form [θ −λ ,θ +λ] where λ
is the peer synchronization distance

λ =
(∆R +δ)

2
+ER + ε +ϕP (3.8)

The variables ∆R and ER are the accumulated root delay and root dispersion, respectively. They are
provided by the server in packet header fields.

NTP clustering algorithm

The truechimers from the selection algorithm are put on a survivor list and processed in a series
of rounds by the clustering algorithm. Each round removes a statistical outlier until either only
NMIN = 3 survivors are left or no further improvement is possible.

For each of the n survivors the selection jitter ϕS,i is computed

ϕS,i =

√
1

n−1

n

∑
k=1

(θk−θi)2 (3.9)

Then ϕmax = max(ϕS) and ϕmin = min(ϕP) are determined. If ϕmax < ϕmin or n < NMIN no further
improvement is possible and the algorithm terminates. Otherwise, the peer with the highest selection
jitter ϕS,i is removed from the survivor list, n is decremented, and a new round starts.

44 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

Figure 3.6.: NTP error budget calculations [Mil06b, p. 184]

The algorithm is illustrated by fig. 3.5. The diameters of the white circles represent ϕP and the gray
circle represents ϕS. In fig. 3.5a the gray ϕmax is greater than the smallest ϕP and peer 1 is removed.
The largest remaining selection jitter in fig. 3.5b is smaller than each ϕP, so the algorithm would even
terminate with NMIN < 3.

NTP combining algorithm

The survivors are used to form the combined system offset Θ

Θ = q∑
i

θi

λi
(3.10)

and combined peer jitter ϕr

ϕr =

√
q∑

i

ϕ2
P,i

λi
(3.11)

where q is the normalizing factor

q =

(
∑

i

1
λi

)−1

(3.12)

The survivor u with the lowest stratum and peer synchronization distance λ provides the best statistics
for performance evaluation and is promoted to the system peer. The system jitter ϑ is then computed
as

ϑ =
√

ϕ2
r +ϕ2

S,u (3.13)

The system jitter represents the best clock offset error estimate (or nominal error statistic) and is
available to application programs.

3.3. The Network Time Protocol 45

Figure 3.7.: NTP clock discipline algorithm [Mil06b, p. 65]

The computation of the system variables is summarized in fig. 3.6. The root delay ∆

∆ = ∆R +δ (3.14)

is the sum of all delays from the stratum 1 synchronization source down the path through the time
distribution hierarchy. The root dispersion E (with sampling interval µ) is

E = ER + ε +Φµ +ϕP,u + |Θ| (3.15)

and is also inherited along the path from the primary server. Both ∆ and E are passed down the
hierarchy to the next stratum as packet header variables ∆R and ER, respectively (cf. eq. 3.8).

Finally the system synchronization distance Λ

Λ =
∆
2
+E (3.16)

is provided to dependent applications as the maximum error statistic.

NTP clock discipline algorithm

The NTP clock discipline algorithm synchronizes the computer clock with respect to the system
offset Θ. In principle, it could be used with any protocol that provides periodic time corrections. On
some POSIX systems, parts of the clock discipline have been implemented for highest accuracy inside
the operating system kernel.27 The algorithm has evolved to a complex self-adapting state machine
and has been extensively tested with network simulators. This section gives only a coarse overview.
More detail is available from [Mil06b, pp. 63–76] and [Mil98].

The structure of the clock discipline is shown in fig. 3.7. The loop filter is implemented using two
sub-algorithms, a phase and a frequency locked loop. This hybrid PLL/FLL design had been originally
suggested by Levine [Lev95] and was adopted by NTP. It is based on the observation that a PLL
usually works better with shorter update intervals when network jitter dominates, while a FLL works
better with long intervals when oscillator frequency wander dominates.

27 This part is often referred to as the kernel PLL.

46 CHAPTER 3. SYNCHRONIZATION PROTOCOLS FOR COMPUTER NETWORKS

NTP uses poll intervals that are powers of two. NTPv3 uses default poll exponents τ between 6
(64 s) and 10 (1024 s). In NTPv4 τ can range from 4 (16 s) to 17 (131072 s). The poll exponent is
dynamically adjusted. A counter is incremented when Θ < 4ϕP and decremented otherwise.28 When
the counter reaches an upper or lower threshold, τ is incremented or decremented, respectively. This
scheme adapts to varying network conditions but does not catch oscillator wander.29

The clock discipline has to use relatively large time constants Tc. The time constant depends on the
poll interval 2τ . PLL stability requires that Tc is greater than twice the total loop delay. The 8-stage
shift register of the clock filter algorithm can cause a loop delay of 8×2τ . With the default initial
poll interval of 64 s it follows that Tc ≥ 2× 8× 64 =1024 s. With that Tc, a 63 % PLL response to
a frequency step takes 4.25 hours. After the NTP daemon has started, it could take many hours to
adapt to the frequency offset of the local clock.30 The reference implementation therefore saves the
frequency offset in a file once each hour.

Since time constants are large and POSIX system clocks typically provide only 1.8 s/hour amortization
(500 ppm), the reference implementation defines a step threshold and a stepout threshold. The clock
will be stepped (even backwards) when a system offset Θ greater than the step threshold persists for
a duration greater than the stepout threshold. The default for the step threshold is 128 ms, and the
default for the stepout threshold is 15 min.

3.3.5. The Simple Network Time Protocol

The NTP reference application is a relatively complex application with many elaborate sub-algorithms.
The Simple Network Time Protocol (SNTP) is a subset of NTP that can be used when the perfor-
mance of a full NTP implementation is neither needed nor justified. The current version is SNTPv4
defined in RFC 4330 [Mil06d], which obsoletes SNTPv3 defined in RFC 1769 [Mil95]. SNTPv4
implementations can inter-operate with both NTPv3 and NTPv4.

The major simplification of SNTP is that exactly one time source is used. SNTP servers are typically
dedicated products that include a reference clock, usually a GPS time receiver or a radio clock. SNTP
clients rely on a single NTP or SNTP server and cannot have clients of their own. Because there is only
one time source, SNTP does not need any of the selection, clustering, and combining algorithms.

SNTP clients are not fault tolerant. Failure of the server or the network path to the server cause
desynchronization.

An SNTP clients can receive the address of its server automatically, either an IPv4 address via the
DHCP protocol [AD97] or an IPv6 address via DHCPv6 [Kal05].

Several free SNTP implementations are available. A new reference implementation of the SNTPv4
client was written 2008. It is available as a part of the NTP reference implementation and shares much
code with it.

28 The coefficient 4 has been determined through simulations.
29 Moderate clock skew does not increase the measured peer jitter much, hence poll interval reduction is delayed until the

clock has accumulated an offset error Θ≥ 4ϕP.
30 At the time of this writing the ntp.org development version—but not the stable version—has a quick-start algorithm that

computes a first clock skew estimation after 15 minutes.

http://google-opensource.blogspot.com/2008/10/freebsds-fourth-google-summer-of-code.html
http://www.ntp.org/
http://www.ntp.org

4. Design and Implementation of
Time-Synchronization for the I-SENSE
Framework

4.1. I-SENSE Architecture Overview

4.1.1. Hardware architecture

The I-SENSE platform is a network of geographically distributed sensor nodes which are connected
via a common communication medium. Typically wired Ethernet is used, but other network tech-
nologies such as WLAN can be used as well [KRT06]. The structure of an I-SENSE node is shown
in fig. 1.1 on page 3. The sensor nodes are heterogeneous multi-processor systems. Digital signal
processors do most of the sensor data processing and a general purpose CPU handles communication
and management tasks.

Fig. 4.1 shows a photo of an I-SENSE node. The general purpose component is an embedded
Pentium-M PC conforming to the PICMG11.2 specification. It provides PC-typical interfaces (Video,
USB, Serial, Parallel, PS/2 mouse and keyboard, ATA), two 100Base-Tx Ethernet controllers and a
Compact Flash disc.

The video encoder card contains two TMS320DM642 video/imaging fixed-point digital signal proces-
sors. Each DSP can process up to six ITU-R BT.656 video streams without multiplexing. The signal
processors share only the power supply, clock signal generator, and the PCI bridge. The memory, buses
and peripherals are not shared [Put04].2 Each DSP has access to 128 MiB of on-board DRAM.3

The DSPs have no network interface hardware attached. All intra-node inter-processor communication
uses the PCI bus. Inter-node (Ethernet) communication is carried out only by general purpose
processors.

Timer hardware

The hardware clock facilities of the general purpose component are those of the PC platform and are
described in section 2.3.3 on page 17. Direct access to the timer hardware is reserved for the operating
system running on the x86 CPU.

1 http://www.picmg.org/
2 The general purpose processor can access the on-board memory via PCI (cf. section 4.1.3).
3 Several other models of TMS320C64X boards with TMS320C6416 processors or DSPs with floating point units are

supported by I-SENSE too.

47

http://www.picmg.org/
http://www.itu.int/rec/R-REC-BT.656/en
http://www.picmg.org/

48 CHAPTER 4. TIME-SYNCHRONIZATION FOR THE I-SENSE FRAMEWORK

Figure 4.1.: I-SENSE node

The TMS320C64X processors have three 32 bit hardware timers [Tex05]. The timers are either driven
from an internal clock source—the CPU clock divided by eight—or from an external signal. A
programmable timer period register can cause a reset of the timer count register and the generation
of a hardware interrupt when the programmed counter state has been reached. The TMS320C64X
timers have no hardware facility to capture the timer count upon an event. One of the timers is used by
the DSP/BIOS OS to drive the system clock and scheduling [Tex04c]. In the default configuration it
generates 1000 clock tick interrupts per second. The other two are free for application use.

4.1.2. Software architecture

The current I-SENSE middleware runs atop the Microsoft Windows XP embedded operating system
on the general purpose processors,4 and on DSP/BIOS on the TMS320C64X processors.

DSP/BIOS is a scalable real-time multi-tasking kernel, designed specifically for the TMS320C6000,
TMS320C5000, and TMS320C28x DSP platforms [Tex00]. DSP/BIOS provides standardized APIs
across the supported platforms [Tex04b]. It is designed as a collection of configurable modules to
minimize memory footprint. DSP/BIOS development for I-SENSE has been done with the Code
Composer Studio IDE, which includes a graphical tool for statical configuration of kernel modules
and objects. Where required, dynamical configuration using operating system calls has been used
too.

4 Actually other Windows variants like Windows XP or Windows 2000 work too, but their resource usage cannot be trimmed
down to the extent that is possible with the modular Windows XP embedded system.

4.1. I-SENSE Architecture Overview 49

Figure 4.2.: I-SENSE middleware services [TKR07]

Processor model dependent hardware details—especially the on-chip peripherals—are supported
through the C6000 Chip Support Library (CSL). It is a software layer below DSP/BIOS and also
available to applications [Tex04a].

The major I-SENSE middleware services are shown in fig. 4.2. This chapter is mainly concerned
with the implementation of Clock Synchronization Service on both operating systems.

4.1.3. The I-SENSE message subsystem

The design of any time synchronization solution and the achievable performance level depend on
the properties of the used clocks and communication channels. The (time related) properties of the
I-SENSE Message Router Service are therefore important.

The I-SENSE message subsystem provides the following features [Ten08] :

Physical network independence I-SENSE fusion tasks communicate with each other in a uniform
way, regardless of the underlying media (PCI bus, Ethernet, . . .)

Transport layer independence The I-SENSE message subsystem provides an overlay transport
layer. Fusion tasks communication is independent of the underlying operating system and
transport facility.

50 CHAPTER 4. TIME-SYNCHRONIZATION FOR THE I-SENSE FRAMEWORK

Connection independence Underlying transport connections are dynamic. Connection changes at
runtime are transparent to fusion tasks.

Location independence Fusion tasks may be migrated at runtime.5 After migration the framework
updates the communication links of the task with new connections, notifies linked nodes about
the tasks new location, and installs a temporary message forwarding proxy at the old location.

Internally the I-SENSE message subsystem uses FIFO buffers and dedicated TCP/IP and PCI threads.
The threads handle unidirectional traffic, i. e., there are always send/receive thread pairs.

The message subsystem is not only a necessary component for time synchronization—it is also a
consumer of synchronized time. The message headers contain a timestamp field, which is used
internally for message ordering.6

Message passing over the PCI bus is implemented with two shared memory ring buffers. To avoid
the copy-in and copy-out overhead an alternative method for large messages is implemented too.
The indirect method uses the ring buffer to inform the receiver about the message size. The receiver
responds with the address of a suitable memory buffer, and the message contents is then efficiently
transfered via DMA. The message size threshold for DMA transfer is currently 256 bytes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 500 600 700 800

pr
ob

ab
ili

ty

round trip transmission delay / microseconds

RTTD density (PC)
RTTD distribution (PC)

(a) Industry PC
DSP channel delay distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 500 600 700 800

pr
ob

ab
ili

ty

round trip transmission delay / microseconds

RTTD density (embedded PC)
RTTD distribution (embedded PC)

(b) Embedded PC
DSP channel delay distribution

Figure 4.3.: DSP→x86→DSP round trip time histograms

5 Fusion task migration is not transparent, i. e., upon migration notification a task must save its state and suspend processing.
6 The pre-synchronization workaround mentioned in section 1.1—i. e., resetting all clocks at middleware startup—avoids the

chicken-and-egg problem.

4.2. Design Decisions and Their Rationale 51

fraction δPC / µs δePC / µs

lowest value 329 597
bottom 25 % < 569 < 653

median 639 662
top 25 % > 653 > 677
top 5 % > 1060 > 961
top 1 % > 12675 > 17475

highest value 38678 78391

Table 4.1.: I-SENSE inter-node communication channel delay

When considering the buffering and scheduling inside the I-SENSE message subsystem, a relatively
large variation in message delivery delay can be expected. Measurement results from 26450 message
exchanges between a DSP and the general purpose CPU of its sensor node are shown in fig. 4.3.7

Histogram 4.3a shows measurement results from the development PC fitipc150, the second
histogram 4.3b was taken with a less powerful embedded PC. Identical DSP board models have been
used. The DSPs processed the same fusion tasks during the measurements. On both operating systems
the message exchanging threads were run with elevated scheduling priorities.8

Because the high-delay tails of the histograms are surprisingly long, about 5 % of the samples had to
be cut off on the right side. Some numerical data about the delay distributions is given in table 4.1.9

4.2. Design Decisions and Their Rationale

Each design process involves choices. This section gives a high level view of the I-SENSE synchro-
nization service design. Instead of giving only a description of the architecture, the design is explained
as a consequence of a few high level design decisions. All decisions have several pros and cons, which
are discussed only briefly.

4.2.1. Choice of transport layer

Any time synchronization protocol relies on some transport mechanism(s) for exchanging timestamp
and protocol information. For an I-SENSE DSP, there is no alternative to the I-SENSE communica-
tion subsystem, because no other transport layer exists.10 In contrast, for inter-node protocol exchange
there is the choice between using either the middleware facilities or directly the underlying Windows
XPe network stacks.

7 The histograms are vertically scaled to unit height. Depicted with the same scale, histogram (b) would be taller by a factor
of 2.82 —such that the filled areas were almost equal in both histograms.

8 On Windows the THREAD_PRIORITY_ABOVE_NORMAL priority was used. On DSP/BIOS TSK_MAXPRI (the top
priority for normal tasks) was used [Tex00]. The same priorities are used by the inter-node synchronization implementation.

9 Note that although the embedded machine needed 268µs more for the best round trip, there is only 23µs difference in the
median value!

10 Below the I-SENSE message subsystem there is only low level PCI communication support from device drivers.

52 CHAPTER 4. TIME-SYNCHRONIZATION FOR THE I-SENSE FRAMEWORK

It was decided to use the network stack of the operating system to avoid reduced performance. Time
synchronization is essentially reduction in time measurement uncertainty. Sections 2.5.1 and 3.1.8
explain why timestamps should be taken at the lowest possible layer to avoid unpredictable delays.
Internal buffering and context switching by the I-SENSE message subsystem would add to the system
noise and degrade timestamp quality. Figure 4.3 confirms that there is significant jitter even on local
PCI links.

4.2.2. Choice of implementation layer

Decision 4.2.1 leads to another pair of alternatives. Since inter-node synchronization messages do
not use the I-SENSE message subsystem, inter-node synchronization can be implemented below the
middleware layer rather than inside it.

Implementation outside the middleware has been chosen, because it allows to leverage existing
state-of-the-art solutions.

4.2.3. Inter-node protocol and implementation selection

Many aspects of the I-SENSE software environment on the general purpose processors are similar
to typical small server: A Windows variant on hardware that resembles a small COTS PC, Ethernet
connectivity, permanent operation, and no energy scarcity. The standard Internet time synchronization
protocols NTP and SNTP are known to work well under this circumstances.11

NTP has been chosen, because it is widely regarded as one of the most advanced and time-tested
protocols [RBM05] and good quality open source implementations are available.

The current stable release of the NTP reference implementation has been selected. Main reasons
for this choice were source and binary code availability, extensive documentation, flexible (although
complex) configuration possibilities, and valuable logging options.

Resource consumption was deemed acceptable. The binary has a size of 508 KB. The daemon uses—
even with an extensive ensemble of configured time servers—less than a megabyte of memory.12 CPU
usage is not noticeable.

4.2.4. Intra-node protocol and implementation

DSPs must synchronize their clocks with their local general purpose processor. The DSP (slave)
part of the protocol implementation should have a small memory footprint. Floating point arithmetic
operations are undesirable, as they require inefficient emulation by library code. Since no networking
hardware is attached to DSPs, compatibility with packet formats of existing protocols is irrelevant.

11 But NTP—and presumably most other application level protocols too—could still perform better on Windows, if there were
operating system support for low level network packet timestamping and a high frequency system clock.

12 As reported by the Windows task manager.

4.3. NTP Configuration 53

A custom protocol has been designed, which can be viewed as a modified version of SNTP. It uses the
I-SENSE communication subsystem instead of UDP/IP. Enhancements with respect to SNTP are
an improved clock filter algorithm, which was necessitated by the difficult I-SENSE channel delay
characteristics, and the ability to synchronize to more than one timescale. Among the simplifications
are the restriction to client/server mode, omission of the error model calculations, fixed polling
intervals, and a less complex clock discipline algorithm.

The implementation is object oriented, uses integer and fixed point arithmetic only, and has low
resource demands.

4.3. NTP Configuration

NTP supports five modes of operation and has a lot of tunable parameters. The NTP reference
implementation features a multitude of configuration options. It is optimized for a stable temperature
environment and some default settings favor frequency stability and low communication bandwidth
over accuracy. This section summarizes some of the lessons learned during the practical part of this
thesis, and gives configuration recommendations, which are tailored for the I-SENSE platform.

Two avoid a single point of failure, more than one server should be available inside the I-SENSE
network. Two or three nodes should together act as the (local) top level of the time distribution
hierarchy. They must be configured at the same stratum and synchronize with each other in symmetric
active mode.13 Lightly loaded machines are commonly recommended, because high system load is
known to degrade time server performance.14 This hint is probably less useful for I-SENSE, because
the middleware distributes fusion task load dynamically. The other I-SENSE nodes are synchronized
to the local server ensemble in client mode, i. e., they are in the next stratum.

If external synchronization is desired, UTC sources must be available to the local servers. If there is
Internet connectivity, thousands of public NTP servers are available. Otherwise commercial external
reference clocks can be attached to the server nodes15 or embedded LAN products can be deployed.
At least four or five time sources are generally recommended, to benefit from the NTP selection and
clustering algorithms. Without UTC sources, or when all such sources fail, there is only internal
synchronization.

The NTP default poll intervals and the hysteresis built into their dynamic adjustment algorithm limit
LAN performance. The resulting long clock discipline time constants (cf. section 3.3.4) delay the
response to time offsets too much. When minimization of inter-clock time offsets is more important
than local clock frequency stability, then it is best to clamp the poll interval exponent τ to the
minimum.16

13 Symmetric passive mode allows time injection from unknown sources and is therefore a security risk, except on very
controlled network environments or when used with cryptographic authentication.

14 NTP itself generates very little load. Fast COTS PCs can handle thousands of NTP clients.
15 The NTP reference implementation incorporates some 30 reference clock drivers.
16 The minimum τ (without recompilation) was 4 (16 s) in older stable versions and is at the time of this writing 3 (8 s).

54 CHAPTER 4. TIME-SYNCHRONIZATION FOR THE I-SENSE FRAMEWORK

4.4. Custom Intra-node Synchronization Protocol

4.4.1. Implementation classes overview

«abstract»

Clock
frequency
name
read()
getCount() = 0
getFrequency()
getName()
calibrate()

Simplified class diagram without
filters, auxiliary and adapter classes.

ConcreteClock

getCount()

ControlledClock
params
baseclock
extrapolate()
read_base()
setPhase()
setRate()

ControlledClock::Parameters
lock
countBase
countCorr
fracCorr
rate
xtal_rate
print()

ClockController
clock
contr_params
clock_params
xtalRateFilter
xtalSlewRateLimiter
clockRateFilter
getParameters()
tuneClock()

ClockController::Parameters
clock_frequency
time_constant
min_sample_interval
rate_tconstant
xtal_tconstant
xtal_slewrate_limit
slewrate_limit_delay
step_hysteresis
step_threshold
rate_adj_threshold
print()

Adjusted via call to
ClockController::tuneClock().

Initialized from instance
of ClockControllerSettings.

Typical one class per operating system API.
Win32: 6 types of clocks.
POSIX: 5 clock classes.
DSP/BIOS: 1 concrete class.

PhaseLockedClock
referenceClock
controller
last_tuning

Figure 4.4.: Additional I-SENSE framework classes

Figure 4.4 shows a condensed UML class diagram of the implementation. Almost all C++ code is
shared between the Windows and DSP/BIOS implementations. Operating system dependencies have
been factored out into specific implementations of abstract base classes.

Basic clocks

Section 2.4 pointed out that there is an irritating number of time formats and clock APIs—even within
a single operating system.17 Selection of the best available clock is hard, because clock performance
and reliability depend on the actual hardware, firmware, and system software combination. The
abstract Clock class shields the implementation from the idiosyncrasies of the underlying hardware
and system software. It represents the basic concept, that a clock is a combination of a fixed frequency
oscillator with a counter (cf. fig. 2.1). The implementation uses the Template Method design pattern.

17 Confer table 2.5 on page 23!

http://en.wikipedia.org/wiki/Template_method_pattern

4.4. Custom Intra-node Synchronization Protocol 55

Most ConcreteClock classes are extremely terse. They implement the abstract getCount method—
typically by calling the underlying clock API and returning a 64 bit value. On DSP/BIOS one of three
32 bit hardware timers is encapsulated by the DSPClock class. On Windows there are more concrete
clock classes:

SysClock The windows system time (GetSystemTimeAsFileTime) is queried. Windows up-
dates the system time only 64 or 100 times per second.

GT1Clock This clock uses a multimedia timer API (timeGetTime) to get the system time with a
precision of 1 ms.

TCClock This clock has a resolution of 1 ms (GetTickCount) but it tracks the time since the
system was booted instead of UTC.

PCClock The performance counter is queried. This is the highest resolution clock available on
Windows and recommended for short interval measurements. Unfortunately, the performance
counter behaves erratic on some systems.

MMClock The multimedia timer is the primary time source. The performance counter is used to
interpolate between the multimedia timer callback events. The same scheme is used by the
Windows port of the NTP reference implementation.

Encapsulation of clock APIs offers much flexibility. Switching to an alternative concrete clock is
simply a matter of changing one constructor call.18

Adjustable software clocks

The concept of an adjustable clock is captured by the ControlledClock class. Since most of
the concrete basic clocks are read only, the implementation of adjustability is done in software. As
a consequence, a controlled clock is not only a specialization of a concrete clock, it also holds a
reference to an underlying concrete clock instance. This immutable baseclock member provides the
time information and the controlled clock instance only applies rate and offset corrections when it is
read.

Piecewise linear extrapolation relative to a settable reference time (T0,T ′0) with a rate adjustment rc is
used.19

T ′A(TB) = T ′0 +(1+ rc)(TB−T0) (4.1)

The rate correction rc is a signed 32 bit value, which represents parts per 232. This allows rate
corrections of ±50 % with a granularity of 0.233 ppb.20 Sawtooth errors (cf. sec 2.4.2 on page 22) are
hereby avoided.

18 Run-time switching between clock implementations (as described in [Kam02]) could be implemented too. To be useful,
code for automatic clock sanity checks and performance evaluation would be needed though.

19 The primes (′) in equation 4.1 mark timestamps on the timescale of the adjusted clock.
20 Greater frequency ratios are handled by the PrescaleClock adapter class.

http://msdn.microsoft.com/en-us/library/ms724397(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms713418(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724408(VS.85).aspx

56 CHAPTER 4. TIME-SYNCHRONIZATION FOR THE I-SENSE FRAMEWORK

[
θ
TB

]

i

rx

rxrθ

rc

|r| ≤ Rmax
LPF

τx

| dr
d t | ≤ R′max

|r| ≤ Rmax
LPF

τc

+

∆θ
∆T + rc

θ
τθ

Figure 4.5.: Clock controller implementation

Filters

Only a few basic filter types are used to filter (timestamp,value) tuples. They are subclasses of the
TimedFilter class. The classes are generic, i. e., arbitrary arithmetic data types may be used for
the timestamp and value type, respectively.21 The MinMaxFilter and MedianFilter return
the minimum/maximum/median of the last N tuples, where N is a parameter to the constructor. The
SlewRateLimitFilter limits value change rates. The ExpAvgFilter filter type is a first
order low pass filter. The filter output ai is

ai =





v0 if i = 0,
τavg ai−1 +(ti− ti−1)vi

τavg + ti− ti−1
if i≥ 1,

(4.2a)

and for faster start-up behavior the exponential averaging interval τavg

τavg = min(τK , ti− t0) (4.2b)

is used instead of simply the constant filter parameter τK .

Clock controller

If a ControlledClock instance is to be synchronized with another clock, it must be part of a
control loop. Output from the clock filter (cf. fig. 4.7) is fed in the form of (TB,θ) tuples (baseclock
timestamp and offset sample) into the clock controller. Numerous approaches for clock offset and
rate estimation with varying implementation complexity exist; section 2.5.2 lists some of them. The
ClockController class currently uses a low-complexity approach. The computations behind the
tuneClock method are depicted in fig. 4.5.

The clock controller assures a minimum time interval between any two samples used for tuning the
controlled clock. If we use equation 2.13b for clock prediction, then the accumulated difference in
offset error ∆θ since the last sample ∆T ago, must be due to the clock skew difference ∆S. If we add

21 They are implemented as C++ templates with type parameters TimeT and ValueT.

4.4. Custom Intra-node Synchronization Protocol 57

the previous rate correction rc, i. e., the rate adjustment that has been applied to the baseclock during
the last interval (cf. eq. 4.1), then we obtain the rate difference rx between the sampled reference clock
and the baseclock.

rx =
θi−θi−1

T ′i −T ′i−1
+ rc (4.3)

Inevitable measurement noise introduces an error that is inversely proportional to ∆T ′. The estimated
rate difference rx is therefore limited, exponentially averaged, and change-rate limited in turn.22

Applying the resulting rx rate adjustment to the baseclock, would only correct the rate difference
between the controlled clock and the reference clock. To reduce the offset an additional term

rθ =
θi

τθ
(4.4)

is added.

The rx term models the clock skew difference ∆S between the reference clock and the baseclock. It
is therefore averaged with a relatively large time constant τx. The actual rx value is correlated with
the local crystal oscillator temperature and can be retrieved from the controller object. As a future
extension, rx can be modified according to local temperature sensor data in order to improve controller
responsiveness to temperature changes.

Large offsets are reduced by a superimposed two-point controller, which applies a constant rate
of ±Rmax (±500 ppm) while |θ | > θthresh. Like in NTP, huge offsets are corrected by stepping the
controlled clock, because continuous amortization would last too long.

4.4.2. Timestamp format and timescales

For any given timestamp size there is a tradeoff between resolution and maximum interval length.
There are many examples of timestamp formats that have been defined too small by “historical
accident”.23 The I-SENSE time synchronization service therefore uses and provides 64 bit timestamps.
An integer format with a resolution of 1µs has been chosen, because that is computationally efficient
(compared with the split-resolution structure types of table 2.5) and human-friendly as well. Since
264 µs is about 585× 103 years, there are no wrap-around issues to be expected in the foreseeable
future. Applications that are concerned with short intervals only, are free to use the least significant
32 bits instead, which gives a wrap around interval of 1 h11 m35 s.

The preliminary synchronization service placeholder had used a 32 bit format with a 10µs resolution
that wrapped around in less then 12 hours. That resolution would have limited achievable performance,
since accuracies of a few tens of microseconds are possible for COTS PCs connected over a fast LAN
under ideal circumstances [Mil06b, p. 10] [RV09].

Applications have different timescale requirements. Unfortunately, the timescale properties of accuracy,
stability, and (strict) monotonicity require implementation tradeoffs. An experimental second timescale
(besides UTC) has therefore been added to the intra-node synchronization protocol. This interval or
scheduling timescale guarantees strict monotonicity and offers better frequency stability over short

22 The slew rate limiter is activated after a delay, to allow the low pass filter output to settle first.
23 For example the Y2K problem or the year 2038 problem caused by 32 bit POSIX time_t types.

http://en.wikipedia.org/wiki/Year_2038_problem

58 CHAPTER 4. TIME-SYNCHRONIZATION FOR THE I-SENSE FRAMEWORK

and medium time periods than the UTC realization. The timescale uses the Windows performance
counter as its source.

Due to the object oriented design, the addition of a second timescale was very easy. Basically an
additional timestamp had been added to the protocol data unit and another clock object with its
associated controller had been instantiated. Since those objects keep only very little internal state, the
impact on memory use is minimal.

Alternatively, the second clock can be connected to the same timescale. With this setup different
clock filters and/or controllers—either implementations or parameter settings—can be evaluated and
compared concurrently in real time.

4.4.3. The custom algorithm

-1000

-500

0

500

1000

0 500 1000 1500 2000

O
ffs

et
[m

ic
ro

se
co

nd
s]

Round-Trip-Time [microseconds]

Figure 4.6.: Offset versus round-trip time scatter diagram.

The modified SNTP algorithm has a structure similar to fig. 3.7. Two-way time measurement
implements the phase detector. The measurement error of the phase difference samples θi depends on
the transmission delay δ and is bounded by equation 2.22. By using the NTP clock filter, samples
from the left (low error) part of the scatter wedge in fig. 4.6 are selected. The scatter diagram was
taken on fitipc150 and corresponds with the histogram 4.3a and the middle column of table 4.1,
respectively.




θU
θI
δ
T4







θU
θI
T4




[
θU

T4,U

]

[
θI

T4,I

]

N=8

δmin

N=7

θmedian

Figure 4.7.: Clock filter implementation

4.4. Custom Intra-node Synchronization Protocol 59

protocol field clock size / bytes

origin timestamp T1 H 8
receive timestamp T2,I I 8
receive timestamp T2,U U 8
Processing delay d = T3,I−T2,I I 4
sequence number - 4
Protocol version - 8

sum 40

Table 4.2.: Inter-node synchronization message format

Analysis of a few 105 samples showed, that there was only little incremental improvement for N > 5
filter stages. Nevertheless N = 8 stages (like in NTP) are used. Plots of the clock filter output
revealed that it contained a small percentage of outliers, sometimes even adjacent ones.24 These
outliers are removed by the seven stage median filter shown in fig. 4.7. The median filter output is not
chronological ordered. Reordered samples are ignored by the clock controllers.

A ClockController instance corresponds to the loop filter block of fig. 3.7. It adjusts the rate of
its controlled clock object. The clock object corresponds to the VCO.

The protocol data unit is shown in table 4.2. If the software is compiled for debugging and evaluation,25

internal state variables and PPS timestamps are also present in the PDU and its size increases to
156 bytes. The T1 timestamp would be only required in symmetric mode and is currently not used by
the (x86) server side of the protocol. The three involved clocks are the DSP hardware clock (H), the
UTC clock (U), and the interval clock (I). The hardware clock is the base clock for the other clocks on
the DSP. On the general purpose processor, the UTC clock is the NTP-controlled Windows system
clock and the interval clock is derived from the performance counter.

The client and servers synchronization loops are shown in fig. 4.8 and fig. 4.9, respectively. The
offset and delay calculations are equivalent to the NTP timestamp exchange protocol (cf. fig. 3.4 and
equations 3.3 and 3.4). They appear different because two minor optimizations have been made:

1. Instead of transmitting both timestamps T3,I and T3,U separately the processing delay of the
server d = T3,I−T2,I = T3,U −T2,U is replied.

2. On the DSP all three clocks are read synchronously by first reading the hardware baseclock,
and then passing the obtained value to the extrapolate method of the controlled clock
instances.

24 The NTP reference implementation contains a so called popcorn spike filter [Mil06b, p. 72]. This filter uses a dynamic
suppression threshold, which is 3ϕP. It cannot suppress adjacent outliers reliably.

25 With the DEBUG_CLOCKSYNC preprocessor symbol defined to a non-zero value.

60 CHAPTER 4. TIME-SYNCHRONIZATION FOR THE I-SENSE FRAMEWORK

initialization ;
while true do

sleep (poll-interval) ;
prepare synchronization message ;
T1,H := hardware-clock.read () ;
send_to_x86 () ;
(T2,I, T2,U , d) = receive_from_x86() ;
T4,H := hardware-clock.read () ;
T4,I := interval-clock.extrapolate (T4,H) ;
T4,U := UTC-clock.extrapolate (T4,H) ;
rtt := T4,H −T1,H ; // round trip time
δ := rtt−d ; // sum of both channel delays
rcv-to-rcv := (rtt+d)/2 ; // interval between x86 and DSP recv
θI := T2,I + rcv-to-rcv−T4,I ;
θU := T2,U + rcv-to-rcv−T4,U ;
if first message then

interval-clock.add_offset (θI) ;
UTC-clock.add_offset (θU) ;
θI := 0 ;
θU := 0 ;

endif
(T4,H,min, θI,min, θU,min) := minimum-δ -filter.process (δ , T4,H , θI, θU) ;
if new δ minimum then

pass (T4,H , θI, θU) to median-θ -filter ;
pass filter output to clock controllers ;

endif
endw

Figure 4.8.: Client (TMS320C64X) synchronization loop

initialization ;
while true do

receive_from_DSP () ;
T2,I := interval-clock.read () ;
T2,U := UTC-clock.read () ;
prepare reply message ;
d := interval-clock.read()−T2,I ; // processing delay of server
send_to_DSP (T2,I, T2,U , d) ;
if compiled for packet logging then

store packet data in ring buffer ;
if ring buffer more than half full then asynchronously notify logger thread ;

endif
endw

Figure 4.9.: Server (Pentium M) synchronization loop

5. Evaluation

The protocols have been evaluated first separately and then together. NTP performance is evaluated in
section 5.1 and the custom protocol in section 5.2. An end-to-end evaluation, which compares the
clocks of signal processors in separate I-SENSE nodes, is presented in section 5.3.

Because of its large time constants, NTP converges only slowly. NTP startup behavior does not affect
the inter-node and end-to-end results, because the displayed data has been recorded after several hours
of continuous operation.1 In contrast to NTP, the intra-node protocol converges quickly. Its startup
transients are displayed in the section 5.2 diagrams (i. e., figures 5.4, 5.5, and 5.6).

5.1. Inter-node Evaluation

Evaluation of inter-node synchronization was complicated by the fact, that external precision time
and time-interval measurement equipment2 was not available. The lack for low level timestamping
support in Windows was another drawback.

Although the NTP reference implementation is widely used, no suitable scientific publications about
its performance over a LAN between Windows machines could be located. All assessed NTP related
publications are either in the context of Unix/Linux operating systems or look at the Microsoft
implementation. A paper comparing the NTP performance of the NTP reference implementation on
Linux with the Microsoft implementation concludes [SA06]

• that the synchronization accuracy on Linux is limited by the clock discipline time constant, and

• that the MS Windows implementation is severely restricted by the coarse granularity of the
Windows system time clock.

In June 2009 experimental support for the PPS API [MMB+00] was added to the Windows port of the
ntp.org development version. The results of two experiments, which took advantage of the PPS
timestamping facility, are shown in figures 5.2 and 5.3.

In both experiments the PPS output of a GPS time receiver3 was connected to the Data Carrier Detect
(DCD) pin on a serial-line interface of both PCs. The triggered interrupts are timestamped by a patched
Windows serial line driver. Alternative hardware had to be used, because in the ITI VLSI laboratory
unobstructed sky view, which is required for GPS signal reception, was not available within antenna
cable range. To match the capabilities of embedded hardware, two older COTS PC models were
used and interconnected with a 100 Mbit/s Ethernet. The machines mark and space are equipped

1 It is assumed that (re)starts are rare events, since sensor networks are typically operated continuously.
2 Like an external reference clock and one of the many commercial PCI time and frequency measurement products.
3 The used Motorola Oncore UT+ GPS receiver provides output pulses that are ±50 ns (1 σ) accurate to UTC.

61

http://groups.google.com/group/comp.protocols.time.ntp/browse_thread/thread/82486f845d282611
http://www.ntp.org/

62 CHAPTER 5. EVALUATION

with Intel Celeron processors with clock frequencies of only 800 MHz and 900 MHz, respectively.
They were operated without ambient temperature control in a domestic environment and only lightly
loaded during the experiments. The general purpose processors of current I-SENSE nodes are Intel
Pentium-M models with clock frequency options up to 1.6 GHz—limited only by passive cooling.

In the first experiment both machines were running the latest NTP reference implementation on
Windows XP. Machine mark was synchronized to the GPS receiver and served its time via NTP to
space. On the client the PPS signal was used for evaluation only, not for synchronization.

The black and blue curves of fig. 5.2 display clock offset from UTC for the server and client,
respectively. They have have been measured with low level PPS timestamps. The roughly 0.1 ms
(peak to peak) jitter that is visible on both curves comes from the Windows kernel. In order to work
around the low resolution of the Windows system time clock the NTP reference implementation uses
an interpolated clock like the MMClock described on page 55. The Windows kernel delivers the
timer event callbacks with limited precision and this causes the jitter. Operating systems with a high
resolution system clock (e. g., Linux and many Unix variants) do not have this limitation.4

The red curve labeled “Client - Server” fig. 5.2 displays the filtered offset samples that have been
made by NTP, i. e., the output of the clock filter algorithm. This is the client’s notion of its clock offset
relative to the server. Because of the clock filter delay some samples are stale, i. e., they are used
several minutes after their measurement.

The experiment revealed a bug in the Windows system clock implementation on client space. During
the six hour experiment it occurred 10 times that a millisecond was lost—presumably due to lost
interrupts. This problem makes fig. 5.2 quite instructive, because the response to a 1 ms offset step is
clearly visible. Until 06:35 the protocol was run with default settings. Then the client daemon was
reconfigured with a fixed poll interval of 8 s and restarted. The reduced clock discipline time constant
caused a much quicker response to offset errors. Also visible before 06:35 is the effect of the dynamic
poll interval adjustment algorithm, i. e., the sampling interval varies (cf. page 46).

For the second experiment FreeBSD 7.2 was installed on space, which resolved the problem with
lost milliseconds. This time space was synchronized to UTC with the GPS receiver and provided its
system time via NTP across the LAN to client mark. Again, the client poll interval was clamped to
8 s. Results are shown in fig. 5.3.5 The good timekeeping support of the FreeBSD kernel is reflected
by less than 3µs RMS short time jitter of the black “Server - UTC” curve. Again, most of the roughly
100µs peak-to-peak jitter of the blue “Client - UTC” curve is presumably caused by application level
clock interpolation (cf. section 2.4.1 on page 21), since interrupt latencies are considerable smaller
in magnitude and PPS signal jitter was less than 1µs. The even higher jitter of the red “Client -
Server” NTP clock filter output—i. e., the input to the client side NTP sub-algorithms—results from
accumulated timing uncertainties during the NTP timestamp exchanges (cf. table 2.7). The fairly
constant ≈ 50µs average offset between client and server shows that the path-reciprocity assumption
behind equation 3.4 was only approximately correct. On average, the delay of the request path was
approximately 100µs larger than the delay of the response path (cf. eq. 2.22).

4 The magnitude of the jitter is small compared to the 5 ms accuracy required by I-SENSE. However under very heavy system
load the Windows kernel may delay the delivery of timer event callbacks by several milliseconds. This may cause transient
clock reading errors of corresponding magnitude.

5 Note the change in y-axis (time offset) scale!

5.2. Intra-node Evaluation 63

During the shown six hours, both absolute time offsets from UTC and relative time offsets between
client and server have been below half a millisecond by a wide margin. With a Windows server
(instead of Unix) the≈ 0.1 ms clock interpolation jitter of the server clock would increase offset errors
slightly.

Because NTP time constants are large, it can take a few hours from service start-up until the clock
discipline settles. During this period offsets are generally larger.

A series of similar experiments6 showed that maximum absolute offset is positively correlated

1. with the speed of temperature change, and

2. with the length of the clock discipline time constant.7

Configured with shortened time constants, the maximum absolute offsets between clients and a server
stayed below 2.5 ms during two weeks of experimentation. Desktop PCs in a domestic network had
been used. The experiments took place in Winter. Ambient temperature drops from about 25 ◦C
to 10 ◦C had been induced by extensive airing of heated rooms. An old 100 MHz PC with only a
10 Mbit/s NIC showed the largest offsets.

5.2. Intra-node Evaluation

The setup for evaluation of the custom intra-node protocol needed facilities for timestamping of
external signals on Windows and DSP/BIOS. Both had to be created first.

No suitable Windows parallel or serial port device driver with low level timestamping support
could be located. A RFC 2783 compatible PPS API [MMB+00] was therefore implemented.8 This
implementation does not require kernel level support. A user level thread with a time critical scheduling
priority is notified about selected serial line status changes via the Windows WaitCommEvent
function and creates timestamps. Compared with a kernel level implementation, there is some loss
of precision because of scheduling latency. In practice the facility performs quite well. Few outliers
occur and it is easy to identify them on a plot. About 20µs jitter have been removed from the plots by
computing a sliding window average of 11 samples (5.5 s).

On the DSPs interrupt handlers had been added, which fetched a timestamp from the hardware clock
and stored it for later retrieval with the getLastTimingPulseEvent function. The hardware
interface consisted of an optocoupler connected to an open-collector interrupt line on an external
extension board connector.

A 2 Hz rectangular signal (2PPS) interrupted all CPUs synchronously. The signal was created by
dividing the 32.768 kHz output of a simple crystal oscillator with a 14-stage binary counter. Because
the common-view technique is utilized, the timing characteristics of the 2PPS signal are irrelevant (cf.
section 2.5.1). A schematic diagram of the used external hardware is shown in fig. 5.1.9

6 This experiments had a similar setup, but used only Unix/Linux machines and recorded temperature data from on-board and
CPU sensors too.

7 The time constant cannot be made arbitrarily short, as this would cause an instable and oscillating control loop.
8 The implementation used in section 5.1 did not exist at the time of the evaluation.
9 The remote DSP board was not connected for the intra-node evaluation. The voltage level for logical zero on the DCD pin

http://msdn.microsoft.com/en-us/library/ms685100%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms685100%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa363479%28VS.85%29.aspx

64 CHAPTER 5. EVALUATION

Parameter UTC clock Interval clock

τx 15 min 30 min
τθ 45 sec 2 min
τc 15 sec 30 sec
Rmax 500 ppm 500 ppm
R′max 10 ppm

min 1 ppm
min

Table 5.1.: Clock controller parameters

Machine fitipc150 was used for the experiment. Results of the first hour are shown in fig. 5.4. A
sample interval of 457 ms and the clock controller parameters of table 5.1 have been used (cf. fig. 4.5).
The parameters had been obtained empirically.

The black curve of fig. 5.4 shows the true offset error as measured with the common external signal.
The DSP clock was between 0.1 ms and 0.3 ms early compared to the Pentium clock.10 The red curve
shows the same offset as measured without external hardware, i. e., by two-way timestamp exchanges.
It is the offset that is “seen” by the protocol and that the controller tries to reduce.

The shift of ≈170µs between the red two-way (protocol) and the black 2PPS (hardware assisted)
measurements reveals non-reciprocity of paths. The DSP clocks are ahead of the x86 clocks, because
the reply path to the DSPs is faster. Probably the relatively large asymmetry is due to the fact that
there was much more traffic on the DSP-to-x86 leg because of video streaming.11

The blue curve of fig. 5.4 shows two-way measurement results of the interval clock offset between
DSP and Pentium M. The red UTC clock offset curve is less smooth than the blue interval clock offset
curve, because of the following reasons:

• The source clock on Windows has a more complicated implementation with callbacks and
interpolation,

• the source clock is adjusted once per second by NTP, and

• the UTC clock controller on the DSP uses shorter time constants.

Internal clock controller state (cf. fig. 4.5) during the experiment is plotted in fig. 5.5. Both rates—
the correction rc applied to the baseclock and the controllers notion rx of the baseclock skew—are
displayed for both clocks. The interval clock needed only a small ≈1 ppm swing for a few minutes
before it settled to a very smooth rate. The UTC clock controller keeps correcting with about ±2 ppm
rate adjustments.

Time offset between two DSPs is shown in fig. 5.6. The curve is very precise, since interrupt latency
variation is the largest remaining cause of measurement error. There is very good common mode
noise rejection, as both DSPs use the same software over the same physical communication channel
(PCI bus) to query the same time server.12 After the controllers have settled, offset stayed below

does not conform to the RS-232 standard, which mandates -3 V to -15 V. In practice this did not cause any problem.
10 The few isolated spikes are measurement errors due to scheduling latency as mentioned above.
11 This question cannot be decided with the available data, because fusion tasks were running on all DSPs in all experiments.
12 However each DSP communicates independently with the Pentium M processor.

5.3. End-to-end Evaluation 65

approximately 20µs. Relative synchronization between DSPs within the same I-SENSE node is
excellent!

5.3. End-to-end Evaluation

The end-to-end experiment used a similar hardware setup as the intra-node experiment. A second
optocoupler was used to interrupt the DSPs on an embedded I-SENSE node.13 The infrared-emitting
diodes of the optocouplers had been connected in series, to ensure that all DSPs were interrupted
synchronously (cf. fig. 5.1). Because no Windows XP embedded license was available at the time of
the tests, Windows 2000 had been installed on the embedded I-SENSE node as a workaround. Also
an earlier version of the clock controller without the output low pass filter (cf. fig. 4.5) was used.14

A six hours window of the results is shown in fig. 5.7. The data has been sub-sampled with a 2 min
interval.

Maximum offset was ≈3.15 ms. Although this intermediate result is a bit worse than what could be
expected by extrapolation of the separate NTP and intra-node experimental results,15 it fulfills the
goals of the project as set in section 1.2.

13 Such an additional wired infrastructure could be used for synchronization too. An example of such an approach is described
in [NPON02].

14 The experiment could not be repeated with the final design, because no embedded I-SENSE node was available then.
15 Adding the inter-node and two times the intra-node offset errors suggests that end-to-end offsets below 1 ms should be

possible. Intra-node offsets with the same sign (i. e., both positive or both negative) would even partially cancel each other.

66
C

H
A

PT
E

R
5.

E
VA

L
U

A
T

IO
N

R1

15M

R2
330k

R3

10k

R4

390R

R5
1k2

X1

32.768kHz

C1
10pF

C2
40pF

+11V

T1

BC547B

+11V

C3
4µ7

1

2

3

4

5

6

7

8

9

10
GND
20

+VDC
19

INTB
18

INTA
17

16

15

14

13

12

11

MDR20 K1
Local DSP-Board

1

2

3

4

5

6

7

8

9

10
GND

20

+VDC
19

INTB
18

INTA
17

16

15

14

13

12

11

MDR20 K2
Remote DSP-Board

1
23

4

Q1
K817P 1

2 3
4

Q2
K817P

DSR
6

RTS
7

CTS
8

RI
9

RxD
2

TxD
3

DTR
4

GND
5

DCD
1

K3
Local Pentium-M

D1
LED

+11V

P
0

10

V
dd

16
V

ss
8

P
1

11

Q14
3

CD4060B
RESET

12

U1
CD4060

Power is supplied by DSP-Board

Title

Author

File

Revision

Document

Date Sheets

End-to-End Time Synchronization Tester

Martin Kammerhofer
(for I-SENSE Project)

Q:\Dokumente und Einstellungen\mk\Eigene Dateien\Masterarbeit\images\extra\test-schematic.dsn

1.0

S1

2009-09-11 1 of 1

Figure 5.1.: Schematic circuit diagram of external test hardware

5.3. End-to-end Evaluation 67

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

08/02
03:00

08/02
04:00

08/02
05:00

08/02
06:00

08/02
07:00

08/02
08:00

08/02
09:00

tim
e

of
fs

et
/m

ill
is

ec
on

ds

Server - UTC (PPS)
Client - Server (2-way)

Client - UTC (PPS)

Figure 5.2.: Client clock with spurious 1 ms steps

-0.3

-0.2

-0.1

0

0.1

0.2

08/07
03:00

08/07
04:00

08/07
05:00

08/07
06:00

08/07
07:00

08/07
08:00

08/07
09:00

tim
e

of
fs

et
/m

ill
is

ec
on

ds

Client - Server (2-way)
Client - UTC (PPS)
Server - UTC (PPS)

Figure 5.3.: NTP with stratum 1 server on same LAN

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

18:40 18:50 19:00 19:10 19:20 19:30

cl
oc

k
of

fs
et

(D
SP

-x
86

)/
m

ill
is

ec
on

ds

time of day / HH:MM

UTC clock (common 2PPS)
UTC clock (2-way)

Interval clock (2-way)

Figure 5.4.: Clock differences between x86 CPU and DSP

68 CHAPTER 5. EVALUATION

56

57

58

59

60

61

62

18:40 18:50 19:00 19:10 19:20 19:30
76

77

78

79

80

81

82

U
T

C
cl

oc
k

ra
te

/p
pm

In
te

rv
al

cl
oc

k
ra

te
/p

pm

Time of day / HH:MM

Interval clock rc
Interval clock rx

UTC clock rc
UTC clock rx

Figure 5.5.: Clock rates

-0.05

0

0.05

0.1

0.15

18:40 18:50 19:00 19:10 19:20 19:30

U
T

C
cl

oc
k

of
fs

et
/m

ill
is

ec
on

ds

time of day / HH:MM

DSP1 - DSP2 (common 2PPS)

Figure 5.6.: Clock difference between two local DSPs

-4

-3

-2

-1

0

1

14:00 15:00 16:00 17:00 18:00 19:00 20:00

tim
e

of
fs

et
/m

ill
is

ec
on

ds

time of day / HH:MM

Figure 5.7.: Clock difference between DSPs in distant sensor nodes

6. Conclusion

This thesis presents an overview to the recurring problem of time synchronization. The fundamentals
of time, timescales, clocks, remote clock reading, and synchronization are described. Especially
clocks are treated thoroughly from several theoretical and practical perspectives.

An introduction to the wide design space of synchronization protocols is given, selected important
contributions to the field are presented, and the sophisticated standard protocol for time synchronization
in the Internet is described.

The architecture of the I-SENSE middleware shaped the design of its synchronization service. The
design is a two level hierarchy. On the top level, state-of-the-art NTP software synchronizes the
system time of the general purpose (Pentium M) processors. Redundant top level servers provide a
high degree of fail safety. Internal or external synchronization is possible, with networked or directly
attached time sources.

The second hierarchical level synchronizes the TMS320C64X signal processors within each sensor
node to the local Pentium M processor. A custom protocol that combines the essentials of SNTP
with some extensions is deployed. Its implementation is centered around a few object oriented clock
abstractions. Its moderate complexity, the low resource demands, and the restriction to fixed point
arithmetic fit well into embedded environments.

First evaluations confirmed that the implementation goal—time offsets between clocks of less than
5 ms—has been met. Most experiments even yielded sub-millisecond offsets.

6.1. Future Work

Evaluation methodology Further evaluation in a hard- and software environment that is closer (or
identical) to actual outdoor deployment should be carried out. Measurement uncertainty could
be reduced with calibrated time measurement hardware. Temperature data should be taken too,
because rapid temperature changes are a challenge for synchronization.

Simulations Effects of ambient temperature changes in outdoor deployments could be evaluated
with simulations. Either by full simulation in virtual time, or by injection of clock frequency
disturbances into the present implementation in real time.

Confidence intervals NTP computes expected and maximum error intervals. This data is not used at
present. If there is demand, intervals could be provided via an API to fusion tasks.

69

70 CHAPTER 6. CONCLUSION

Interval clock The current implementation of the UTC timescale cannot guarantee strict monotonicity.
Under rare circumstances (e. g., leap seconds, broken servers, intermittent network connectivity,
startup with a broken RTC) backward steps in time can happen. For applications that cannot
tolerate timescale discontinuities, a strictly monotonic second clock is provided. Its usefulness
needs to be evaluated. Currently interval clocks are only synchronized within each I-SENSE
sensor node. Inter-node synchronization could be added.

Low level timestamps At present Microsoft Windows operating systems have no support for low
level timestamping of network packets. WinPCap, an open source packet capture library,1

can provide packet timestamps with 1µs resolution to applications. More accurate timestamps
would improve synchronization precision.2

Controller design The present intra-node clock discipline is a preliminary ad-hoc design. Although
it works well, a more elaborate design could increase synchronization precision.

1 WinPCap is a Windows port of the widely used libpcap (packet capture) library for UNIX-like systems.
2 If that approach is viable, the design decisions of section 4.2 might even be reconsidered.

http://www.winpcap.org/

A. List of Symbols

ϕ(t) oscillator phase deviation [rad]

L SSB phase noise to carrier power ratio [dBc Hz−1]

MT IE Maximum Time Interval Error [s]

Sx PSD of time fluctuations [s2 Hz−1]

Sφ PSD of phase fluctuations [rad2 Hz−1]

Sy PSD of fractional frequency fluctuations [Hz−1]

〈X〉 Statistical expectation value of X (a. k. a. E[X])

∆ difference

∆2 second order difference

bxc floor function

σ2
x Time Variance [s2]

σ2
y Two-Sample or Allan Variance [1]

Mod.σ2
y Modified Allan Variance [1]

T IErms root mean square of Time Interval Error [s]

τ0 shortest sampling period [s]

τ (sub)sampling period [s]

θ clock offset error [s]

V0 nominal amplitude [V]

∆V (t) amplitude fluctuations [V]

v(t) oscillator output voltage [V]

ν0 nominal oscillator frequency [Hz]

x(t) time error (of oscillator phase) [s]

y(t) fractional frequency deviation [1]

ȳ(t) average fractional frequency deviation over a period [1]

R(t) clock rate [s/s]

71

72 APPENDIX A. LIST OF SYMBOLS

S clock skew (fractional frequency offset) [s/s]

D clock rate drift due to aging [s/s2]

Ei(t) rate error due to environmental conditions [s/s]

υ(t) random rate fluctuation (FM noise) [s/s]

→ happened-before relation

9 not happened-before

⇒ total order based on happened-before relation

‖ concurrent

:= assignment operator

≈ approximately equal

δ NTP round trip communication delay [s]

∆ NTP root delay [s]

ε NTP dispersion [s]

E NTP root dispersion [s]

λ NTP peer synchronization distance (i. e., max. abs. offset error) [s]

Λ NTP system synchronization distance [s]

ρ NTP precision [s]

Φ NTP frequency tolerance constant = 15 ppm

ϕ NTP jitter [s]

∆R NTP root delay [s]

ER NTP root dispersion [s]

Θ NTP combined system clock offset [s]

θ NTP system jitter [s]

τ NTP poll exponent [log2 s]

B. Abbreviations and Glossary

Accuracy Closeness of agreement between a measured quantity value and a true quantity value
of a measurand [BIP08].

ACPI Advanced Configuration and Power Interface

AM Amplitude Modulation

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

ASIC Application Specific Integrated Circuit

ATA Advanced Technology Attachment

BEV Bundesamt für Eich- und Vermessungswesen. (The Austrian→NMI.)

BIH Bureau International de l’Heure

BIOS The Basic Input Output System is the firmware for x86 PCs.

BIPM The Bureau International des Poids et Mesures located in Sevres (near Paris) main-
tains the timescales TAI and UTC.

CDMA Code Division Multiple Access

CGPM Conférence générale des poids et mesures

COTS commercial off the shelf

DNS Domain Name System

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DTSS Digital Time Synchronization Service

DUT1 UT1 – UTC

EIA Electronic Industries Alliance

FIFO First-In First-Out

FLL Frequency Locked Loop

FPGA Field Programmable Logic Array

FPU Floating Point Unit

73

http://www.bev.gv.at/
http://www.bipm.org/
http://www.eia.org/

74 APPENDIX B. ABBREVIATIONS AND GLOSSARY

Frequency Instability The frequency change, typically averaged for an interval, t, with respect to
another frequency. Generally one distinguishes between frequency drift effects and
stochastic frequency fluctuations. Special variances have been developed for the
characterization of these fluctuations [AAH97].

GMT Greenwich Mean Time was the official name for world time until 1972.

GNSS Global Navigation Satellite System

GPS Global Positioning System. The 24 satellites of the space segment carry accurate
atomic clocks. Their signals allow high precision timing applications.

HPET High Precision Event Timer

IAU International Astronomical Union

IDE Integrated Development Environment

IEK Imaging Evaluation Kit

IERS International Earth Rotation and Reference Systems Service

IETF Internet Engineering Task Force

IGS International→GNSS Service

IP Internet Protocol

IQR Inter Quartile Range

IRIG Inter-Range Instrumentation Group

ISM band The industrial, scientific, and medical radio bands are defined by the→ITU-R.

ISO International Standards Organization

ITU The International Telecommunication Union is located in Geneva, Switzerland. The
ITU is made up of three sectors:

ITU-T Telecommunication Standardization Sector,
ITU-R Radiocommunication Sector, and
ITU-D Telecommunication Development Sector.

JD Julian Day number of mean solar days (and decimal fractions thereof) elapsed since
JD 0.0 which was at Greenwich mean noon of -4712 January 1.

LAN Local Area Network

LLR Linear Least Squares Regression

LORAN-C LOng Range Aid to Navigation is a terrestrial radio navigation system using low
frequency radio.

MAC Media Access Control

MCXO Microcomputer Compensated Crystal Oscillator

http://www.iau.org/
http://www.iers.org/
http://www.ietf.org/
http://igscb.jpl.nasa.gov/
http://www.iso.org/
http://www.itu.int/

75

Metrology The science of measurement and its application [BIP08].

MII Media Independent Interface

MPEG Motion Picture Experts Group

MJD Modified Julian Day. MJD was defined in the 1950s as (JD - 2400000.5). MJD 0.0
corresponds to 1858-11-17T00:00:00.

MTBF Mean Time Between Failures

MTIE Maximum Time Interval Error

NIC Network Interface Card

NMEA U. S. National Maritime Electronics Association

NMI National Metrology Institute

NIST U. S. National Institute of Standards and Technology

NTP Network Time Protocol

NTSC National Television System Committee

NVDK Network Video Developer’s Kit

OCXO Oven Controlled Crystal Oscillator

PCC Processor Cycle Counter

PCI Peripheral Component Interconnect

PDU Protocol Data Unit

PICMG PCI industrial computer manufacturers group

PIT Originally the Programmable Interval Timer was an Intel 8353 or 8354 chip. Now it
is integrated into the x86 PC chipsets.

PLL Phase Locked Loop

PM Phase Modulation

POSIX Portable Operating System Interface is a family of related standards specified by
the IEEE to define the application programming interface for software compatible
with variants of the Unix operating system. Formally designated as IEEE 1003 or
ISO/IEC 9945.

PPS Pulse Per Second

Precision Closeness of agreement between indications or measured quantity values obtained
by replicate measurements on the same or similar objects under specified condi-
tions [BIP08]. Caveat: “Precision” means many things throughout the literature.
Often used as a synonym for→accuracy. In the context of→NTP [Mil06b]: Mini-
mum time required to read the system clock.

http://www.nmea.org/
http://www.nist.gov/
http://www.ntp.org/
http://www.picmg.org/

76 APPENDIX B. ABBREVIATIONS AND GLOSSARY

PRN Pseudo Random Noise

PSD Power Spectral Density

PTP The Precision Time Protocol is specified by the IEEE 1588 standard [IEE08].

PWM Pulse width modulation

QoS Quality of Service

RbXO Rubidium-Crystal Oscillator

Resolution Smallest change in a quantity being measured that causes a perceptible change in
the corresponding indication [BIP08].

RFC Request For Comments

RMS Root Mean Square (
√
〈X2〉)

Second A basic unit of measurement of time in the International System of Units [BIP06].
It is defined as the duration of 9,192,631,770 cycles of microwave light absorbed
or emitted by the hyperfine transition of caesium-133 atoms in their ground state
undisturbed by external fields.

RTC Real Time Clock. On the PC platform originally a Motorola MC146818A or Dallas
Semiconductor DS122887 chip providing a battery backed time-of-day clock and
50/114 bytes of non-volatile RAM.

RTT Round Trip Time

RTTD Round Trip Transmission Delay, i. e.,→RTT minus the interval between receiving
the request and sending the response.

SI International System of Units (abbreviated from the French “Le Système interna-
tional d’Unités”)

SPXO Simple Packaged Crystal Oscillator

SSB Single Side Band

SSC Spread Spectrum Clocking

Stability →Frequency Instability

Stratum A level or layer in a hierarchical time or frequency distribution system.

Synchronization The times of clocks are in synchronization if their readings are the same after
accounting for reference frame delays and relativistic effects. Synchronization needs
to be specified to within some level of uncertainty [AAH97].

Syntonization The rates or frequencies of clocks are in syntonization if the rates are the same after
accounting for reference frame corrections and relativistic effects. Syntonization
needs to be specified to within some level of uncertainty [AAH97].

TAI International Atomic Time

http://ieee1588.nist.gov/

77

TCP Transmission Control Protocol

TCXO Temperature Compensated XO

TDMA Time Division Multiple Access

Tick In system programming a tick is the event of a periodic timer interrupt which is used
for timekeeping and scheduling purposes.

TIE Time Interval Error

Timescale Continuum of monotone-increasing values that denote time in some frame of refer-
ence.

Timestamp An unambiguous representation of some instant in time. Timestamps refer to a
→timescale.

TRAIM Time Receiver Autonomous Integrity Monitoring

TSC Time Stamp Counter. A→PCC built into Intel x86 CPUs since the Pentium.

TUG Graz University of Technology

TWSTFT Two Way Satellite Time and Frequency Transfer

UDP User Datagram Protocol

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

Uncertainty Parameter, associated with the result of a measurement, that characterizes the
dispersion of values that could reasonably be attributed to the measurand [BIP08].

USB Universal Serial Bus

UTC Coordinated Universal Time as maintained by the→BIPM.

UT1 A timescale based on the rotation angle of earth and corrected for polar motion as
maintained by the→IERS.

VCO Voltage Controlled Oscillator

VLBI Very Long Baseline Interferometry

WAN Wide Area Network

WSN Wireless Sensor Network

XO Quartz crystal oscillator

http://www.tugraz.at/

Bibliography

[AAH97] David W. Allan, Neil Ashby, and Cliff C. Hodge. The science of timekeeping. Technical
report, Hewlett Packard Application Note 1289, 1997.

[ABC+92] David W. Allan, James A. Barnes, Franco Cordara, Michael Garvey, William Hanson,
Jack Kusters, Robert Smythe, and Fred L. Walls. Precision oscillators: Dependence
of frequency on temperature, humidity and pressure. In Proceedings of the 46th IEEE
Frequency Control Symposium, pages 782–793, Hershey, PA, USA, May 27–29 1992.

[AD97] Steve Alexander and Ralph Droms. DHCP options and BOOTP vendor extensions.
RFC2132, March 1997.

[AP98] Emmanuelle Anceaume and Isabelle Puaut. Performance evaluation of clock synchro-
nization algorithms. Technical Report n3526, INRIA Rennes, October 1998.

[Ari05] Elisa Felicitas Arias. The metrology of time. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 363(1834):2289–2305,
2005.

[BIP06] BIPM. The international system of units. http://www.bipm.org/utils/
common/pdf/si_brochure_8_en.pdf, May 2006. 8th edition.

[BIP07] BIPM. The international system of units. - appendix 2: Practical realization of the
definition of the unit of time. Published in electronic form only: http://www.bipm.
org/utils/en/pdf/SIApp2_s_en.pdf, April 2007.

[BIP08] BIPM. International vocabulary of metrology - basic and general concepts and as-
sociated terms (vim). http://www.bipm.org/utils/common/documents/
jcgm/JCGM_200_2008.pdf, 2008.

[BM00] Stefano Bregni and Stefano Maccabruni. Fast computation of maximum time interval
error by binary decomposition. IEEE Transactions on Instrumentation and Measurement,
49(6):1240–1244, December 2000.

[Bre97] Stefano Bregni. Clock stability characterization and measurement in telecommunications.
IEEE Transactions on Instrumentation and Measurement, 46(6):1284–1294, December
1997.

[CBB05] Kendall Correll, Nick Barendt, and Michael Branicky. Design considerations for software
only implementations of the IEEE 1588 precision time protocol. In Conference on
IEEE 1588 Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems, Zurich, Switzerland, October 2005. NIST.

78

% This file was created with JabRef 2.4.2.
% Encoding: ISO8859_1
% $Id: Zeitsynchronisation.bib,v 1.28 2009/10/07 04:08:33 martin Exp $

@INPROCEEDINGS{Abali1995,
 author = {B. Abali and C. B. Stunkel},
 title = {Time Synchronization on {SP}1 and {SP}2 Parallel Systems},
 booktitle = {Proc. 9th International Parallel Processing Symposium ({IPPS}-95)},
 year = {1995},
 pages = {666--672}
}

@MISC{RFC2132,
 author = {Steve Alexander and Ralph Droms},
 title = {{DHCP} Options and {BOOTP} Vendor Extensions},
 howpublished = {RFC2132},
 month = {March},
 year = {1997},
 abstract = {The Dynamic Host Configuration Protocol (DHCP) [1] provides a framework
	for passing configuration information to hosts on a TCP/IP network.
	Configuration parameters and other control information are carried
	in tagged data items that are stored in the 'options' field of the
	DHCP message. The data items themselves are also called "options."
	This document specifies the current set of DHCP options. Future options
	will be specified in separate RFCs. The current list of valid options
	is also available in ftp://ftp.isi.edu/in- notes/iana/assignments
	[22]. All of the vendor information extensions defined in RFC 1497
	[2] may be used as DHCP options. The definitions given in RFC 1497
	are included in this document, which supersedes RFC 1497. All of
	the DHCP options defined in this document, except for those specific
	to DHCP as defined in section 9, may be used as BOOTP vendor information
	extensions.},
 owner = {martin},
 timestamp = {2008.09.19},
 url = {http://tools.ietf.org/html/rfc3121}
}

@TECHREPORT{Allan1997,
 author = {David W. Allan and Neil Ashby and Cliff C. Hodge},
 title = {The Science of Timekeeping},
 institution = {Hewlett Packard Application Note 1289},
 year = {1997},
 owner = {martin},
 timestamp = {2008.11.17},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.4009&rep=rep1&type=pdf}
}

@INPROCEEDINGS{Allan1992,
 author = {David W. Allan and James A. Barnes and Franco Cordara and Michael
	Garvey and William Hanson and Jack Kusters and Robert Smythe and
	Fred L. Walls},
 title = {Precision Oscillators: Dependence of Frequency on Temperature, Humidity
	and Pressure},
 booktitle = {Proceedings of the 46th IEEE Frequency Control Symposium},
 year = {1992},
 pages = {782-793},
 address = {Hershey, PA, USA},
 month = {May 27--29},
 abstract = {Tractable (non-burdensome) guidelines, standards, and precautions
	for test methods used in determining the dependence of the output
	frequency of precision oscillators on temperature, humidity, and
	pressure are presented. A perspective for the manufacturer, the designer,
	and the user is offered so that clear understanding and communication
	can occur. The guidelines, standards and precautions encourage consistency
	and repeatability for measurement and specification of environmental
	sensitivities. It is argued that very large cost savings will be
	appreciated if these guidelines, standards and precautions are followed},
 doi = {10.1109/FREQ.1992.269959},
 keywords = {crystal resonators, frequency stability, standardsconsistency, environmental
	sensitivities, humidity, output frequency, precision oscillators,
	pressure, repeatability, standards, temperature, test methods},
 owner = {martin},
 timestamp = {2008.10.05},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=269959&isnumber=6712}
}

@TECHREPORT{Anceaume1998,
 author = {Emmanuelle Anceaume and Isabelle Puaut},
 title = {Performance Evaluation of Clock Synchronization Algorithms},
 institution = {INRIA Rennes},
 year = {1998},
 number = {n3526},
 month = {October},
 abstract = {Clock synchronization algorithms ensure that physically dispersed
	processors have a common knowledge of time. This report proposes
	a survey of software fault-tolerant clock synchronization algorithms:
	deterministic, probabilistic and statistical ; internal and external
	; and resilient from crash to Byzantine failures. Our survey is based
	on a classiøcation of clock synchronization algorithms (according
	to their internal structure and to three orthogonal and independent
	basic building blocks we have identifed), and on a performance evaluation
	of algorithms constructed from these building blocks. The performance
	evaluation is achieved through the simulation of a panel of fault-tolerant
	clock synchronization algorithms [LL88, ST87, PB95, GZ89]. The algorithms
	behavior is analyzed in the presence of various kinds of failures
	(crash, omission, timing, performance, Byzantine), both when the
	number and type of failures respect the fault assumptions made by
	the algorithm and when fault assum...},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.6853},
 owner = {mk},
 timestamp = {2009.08.04},
 url = {http://www.win.tue.nl/~johanl/educ/2Q341/Clocks%20synchronization/1998-anceaume.pdf}
}

@ARTICLE{Arias2005,
 author = {Elisa Felicitas Arias},
 title = {The metrology of time},
 journal = {Philosophical Transactions of the Royal Society A: Mathematical,
	Physical and Engineering Sciences},
 year = {2005},
 volume = {363},
 pages = {2289--2305},
 number = {1834},
 owner = {mk},
 publisher = {The Royal Society},
 timestamp = {2009.02.20}
}

@MISC{GPS2000,
 author = {{ARINC Research Corporation}},
 title = {{Navstar GPS Space Segment/Navigation User Interfaces, Interface
	Control Document (ICD)}},
 month = {April},
 year = {2000},
 address = {El Segundo, CA},
 owner = {mk},
 timestamp = {2009.02.28},
 url = {http://www.navcen.uscg.gov/pubs/gps/icd200/icd200cw1234.pdf}
}

@CONFERENCE{Bezet2005,
 author = {Olivier Bezet and V\'{e}ronique Cherfaoui},
 title = {On-line timestamping synchronization in distributed sensor architectures},
 booktitle = {Proc. of the 11th IEEE Real Time and Embedded Technology and Applications
	Symposium (RTAS 05)},
 year = {2005},
 pages = {396--404},
 abstract = {This paper describes a solution for on-line timestamping in a distributed
	architecture embedded in an experimental vehicle. Interval timestamping
	is used, taking into consideration sensor latency, transmission delay
	and clock granularity. This solution does not change local system
	clocks, so that the network configuration can change without affecting
	timestamping precision. All nodes of the network are connected via
	a synchronous bus network (here, the FireWire, IEEE 1394). The bus
	clock is used to estimate the drift of all computer clocks and to
	exchange data timestamps with high precision. Experimental simulations
	show the advantages of this solution. The method is well adapted
	to dynamic applications, where data timestamping is important for
	real time considerations. An application in the field of intelligent
	vehicles is then described.},
 owner = {mk},
 timestamp = {2009.09.10},
 url = {http://www-verimag.imag.fr/~bezet/RTAS05.pdf}
}

@MISC{VIM,
 author = {BIPM},
 title = {International vocabulary of metrology - Basic and general concepts
	and associated terms (VIM)},
 howpublished = {\url{http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf}},
 year = {2008},
 owner = {martin},
 pages = {90},
 publisher = {{International Bureau of Weights and Measures (BIPM)}},
 timestamp = {2008.09.05},
 url = {http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf}
}

@MISC{SI2,
 author = {BIPM},
 title = {The International System of Units. - Appendix 2: Practical realization
	of the definition of the unit of time},
 howpublished = {Published in electronic form only: \url{http://www.bipm.org/utils/en/pdf/SIApp2_s_en.pdf}},
 month = {April},
 year = {2007},
 owner = {martin},
 timestamp = {2008.09.05},
 url = {http://www.bipm.org/utils/en/pdf/SIApp2_s_en.pdf}
}

@MISC{SI,
 author = {BIPM},
 title = {The International System of Units},
 howpublished = {\url{http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf}},
 month = {May},
 year = {2006},
 note = {8th edition},
 comment = {ISBN 92-822-2213-6},
 owner = {martin},
 timestamp = {2008.09.05},
 url = {http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf}
}

@ARTICLE{Bregni1997,
 author = {Stefano Bregni},
 title = {Clock Stability Characterization and Measurement in Telecommunications},
 journal = {IEEE Transactions on Instrumentation and Measurement},
 year = {1997},
 volume = {46},
 pages = {1284-1294},
 number = {6},
 month = {December},
 citeseerurl = {http://citeseer.ist.psu.edu/bregni97clock.html},
 doi = {10.1109/19.668274},
 issn = {0018-9456},
 keywords = {clocks, digital instrumentation, phase noise, random processes, stability,
	synchronisation, synchronous digital hierarchy, telecommunication
	control, telecommunication standards, time-domain analysis, timingclock
	stability, digital measurement, digital switching exchanges, error
	sampling, international standards, measurement configuration, measurement
	standards, phase locked loops, phase noise, reference model, stand-alone
	slave clocks, synchronization networks, synchronous digital hierarchy,
	telecommunications, telecommunications networks, time domain measurement,
	timing signal, timing signal reference model},
 owner = {mk},
 timestamp = {2009.03.04},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.26.893&rep=rep1&type=pdf}
}

@ARTICLE{Bregni1996,
 author = {Bregni, Stefano},
 title = {Measurement of Maximum Time Interval Error for Telecommunications
	Clock Stability Characterization},
 journal = {IEEE Transactions on Instrumentation and Measurement},
 year = {1996},
 volume = {45},
 pages = {900--906},
 number = {5},
 month = {October},
 owner = {mk},
 timestamp = {2009.03.04}
}

@ARTICLE{Bregni2000,
 author = {Bregni, Stefano and Maccabruni, Stefano},
 title = {Fast computation of maximum time interval error by binary decomposition},
 journal = {IEEE Transactions on Instrumentation and Measurement},
 year = {2000},
 volume = {49},
 pages = {1240-1244},
 number = {6},
 month = {December},
 abstract = {Maximum time interval error (MTIE) is historically one of the main
	time-domain quantities for the specification of clock stability requirements
	in telecommunications standards. Nevertheless, plain computation
	of the MTIE standard estimator proves cumbersome in most cases of
	practical interest, due to its heavy computational weight. In this
	paper, MTIE is first introduced according to its standard definition.
	Then, a fast algorithm based on binary decomposition to compute the
	MTIE standard estimator is described. The computational weight of
	the binary decomposition algorithm is compared to that of the estimator
	plain calculation, showing that the number of operations needed is
	reduced to a term proportional to Nlog2N instead of N2. A heavy computational
	saving is therefore achieved, thus making feasible MTIE evaluation
	based on even long sequences of time error samples.},
 doi = {10.1109/19.893262},
 issn = {0018-9456},
 keywords = {SONET, binary sequences, clocks, computational complexity, digital
	communication, frequency stability, synchronisation, synchronous
	digital hierarchy, telecommunication computing, time-domain analysis,
	timing jitterSONET, binary decomposition, clock stability requirements,
	computational weight, digital communication, fast computation, jitter,
	long sequences, maximum time interval error, standard estimator,
	synchronisation, synchronous digital hierarchy, telecommunications
	standards, time error samples, time-domain quantities, timing signal},
 owner = {mk},
 timestamp = {2009.03.04}
}

@INPROCEEDINGS{Carroll2003,
 author = {Carroll, Kevin M. and Celano, Tom},
 title = {Timing via the new {LORAN-C} system},
 booktitle = {Frequency Control Symposium and PDA Exhibition Jointly with the 17th
	European Frequency and Time Forum, 2003. Proceedings of the 2003
	IEEE International},
 year = {2003},
 pages = {245--249},
 month = {May},
 abstract = {In 1999, the United States Federal Radionavigation Plan extended the
	life of the U.S. LORAN-C system while the long term benefits as a
	GPS backup are investigated. Since 1999, U.S. Congress has continued
	to provide funds via the federal aviation administration (FAA) to
	develop and recapitalize the LORAN-C infrastructure. As a result
	of this recapitalization, the timing systems at the LORAN-C transmitting
	stations are being upgraded from its 1960's technology. This paper
	re-introduces LORAN-C with an emphasis on the improvements that are
	being provided to the LORAN-C user community and the timing performance
	and applications of the new system. These improvements include new
	timing systems, new transmitters and new user equipment. The paper
	begins with an introduction to the LORAN-C recapitalization project
	(LRP). Next a comparison of the technology and performance of the
	new LORAN-C system and the existing systems is presented with an
	emphasis on timing performance. The new time and frequency equipment
	(TFE) suite is presented with details on the local timescale computation,
	UTC recovery, and transmitter timing adjustment loop. Performance
	of the new system will be presented from the factory acceptance testing
	and field trials. Additional details will be presented on the timing
	performance of the new transmitter. The paper concludes with a summary
	of the ongoing efforts and results from the LORAN-C accuracy panel.},
 doi = {10.1109/FREQ.2003.1275097},
 issn = {1075-6787},
 keywords = { Global Positioning System, astronomical techniques, radionavigation,
	time measurement FAA, Loran C, federal aviation administration, federal
	radionavigation plan, global positioning system, local timescale
	computation, long rang aid to navigation, long rang aid to navigation-c
	accuracy panel, long rang aid to navigation-c infrastructure, long
	rang aid to navigation-c recapitalization project, long rang aid
	to navigation-c system, long rang aid to navigation-c transmitting
	station, radionavigation, time-frequency equipment, timing system,
	transmitter timing adjustment loop},
 owner = {mk},
 timestamp = {2009.07.20},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1275097&isnumber=28531}
}

@INPROCEEDINGS{Castro1999,
 author = {Castro, Miguel and Liskov, Barbara},
 title = {Practical Byzantine Fault Tolerance},
 booktitle = {Proceedings of the Third Symposium on Operating Systems Design and
	Implementation (OSDI-99)},
 year = {1999},
 address = {New Orleans, USA},
 month = {February},
 publisher = {USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS},
 abstract = {This paper describes a new replication algorithm that is able to tolerate
	Byzantine faults. We believe that Byzantine-fault-tolerant algorithms
	will be increasingly important in the future because malicious attacks
	and software errors are increasingly common and can cause faulty
	nodes to exhibit arbitrary behavior. Whereas previous algorithms
	assumed a synchronous system or were too slow to be used in practice,
	the algorithm described in this paper is practical: it works in asynchronous...},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5238},
 citeulike-article-id = {2138569},
 citeulike-linkout-0 = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.5238},
 keywords = {byzantine, fault, tolerance},
 owner = {mk},
 posted-at = {2007-12-17 22:44:21},
 priority = {0},
 timestamp = {2009.08.04},
 url = {http://www.pmg.lcs.mit.edu/papers/osdi99.pdf}
}

@INPROCEEDINGS{Corell2006,
 author = {Erik Corell and Philip Saxholm and Darryl Veitch},
 title = {A user friendly {TSC} clock},
 booktitle = {Proceedings of Passive and Active Measurement Conference},
 year = {2006},
 address = {Adelaide, Australia},
 month = {March},
 publisher = {PAM},
 abstract = {Recently a new software clock and synchronisation algorithm based
	on the TSC register (clock cycle counter) was developed, with several
	advantages over the existing system clock. However, as it uses a
	modified kernel to support driver timestamping, installation is non-trivial,
	limiting its use. We present a modified TSC clock without the need
	for kernel modifications, using only user-level timestamps and existing
	system kernel timestamps exploited in a careful way. Using weeks
	of test data, we show how the system performance is virtually identical
	to that of a kernel implementation. Compared against a GPS synchronised
	DAG card reference, it performs very well under both BSD and Linux.
	We also show how the system can replace ntpd to improve the existing
	system clock. The software allows for significantly improved timestamping
	for both packet and internal system events, and is trivial to install.
	It is publicly available.},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.2949},
 owner = {mk},
 timestamp = {2009.04.12},
 url = {http://www.pamconf.org/2006/papers/s6-corell.pdf}
}

@INPROCEEDINGS{Correll2005,
 author = {Kendall Correll and Nick Barendt and Michael Branicky},
 title = {Design Considerations for Software Only Implementations of the {IEEE}
	1588 Precision Time Protocol},
 booktitle = {Conference on IEEE 1588 Standard for a Precision Clock Synchronization
	Protocol for Networked Measurement and Control Systems},
 year = {2005},
 address = {Zurich, Switzerland},
 month = {October},
 organization = {NIST},
 abstract = {This paper investigates adjusting computer clock frequency and time
	to provide a precise clock for test andmeasurement systems. In particular,
	it is concerned with theprecision achievable using IEEE 1588 Precision
	Time Protocolsystems without the support of specialized hardware.
	This paperoutlines the design of a free IEEE 1588 implementation
	namedPTPd. Particular attention is paid to the design of the clockservo---the
	system that steers the clock rate. This paper evaluatesthe implementation
	by the precision of the time coordinationbetween networked test and
	measurement systems.},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.4565},
 owner = {mk},
 timestamp = {2009.02.26},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.4565&rep=rep1&type=pdf}
}

@ARTICLE{Cristian1989,
 author = {Flaviu Cristian},
 title = {Probabilistic clock synchronization},
 journal = {Distributed Computing},
 year = {1989},
 volume = {3},
 pages = {146-158}
}

@MISC{RFC1165,
 author = {J. Crowcroft and J. P. Onions},
 title = {Network Time Protocol ({NTP}) over the {OSI} Remote Operations Service},
 howpublished = {{Network Working Group Request for Comments: 1165}},
 month = {June},
 year = {1990},
 abstract = {This memo suggests an Experimental Protocol for the OSI and Internet
	communities. Hosts in either community, and in particular those on
	both are encouraged to experiment with this mechanism.},
 pages = {1--10},
 url = {http://tools.ietf.org/html/rfc1165}
}

@CONFERENCE{Diduch2008,
 author = {Diduch, L. and Fillinger, A. and Hamchi, I. and Hoarau, M. and Stanford,
	V.},
 title = {Synchronization of data streams in distributed realtime multimodal
	signal processing environments using commodity hardware},
 booktitle = {2008 IEEE International Conference on Multimedia \& Expo},
 year = {2008},
 pages = {1145--1148},
 address = {Hannover, Germany},
 month = {June},
 abstract = {We describe an API built on top of the NIST Data Flow
	
	System II, a sensor-net middleware, which allows to synchronize
	
	high volume data streams in real-time, using commodity
	
	hardware in distributed computation environments. Experiences
	
	with synchronization issues arising from working with
	
	multiple data streams in applications such as real-time multisensor
	
	data fusion and ad hoc video processing are addressed.},
 keywords = {Multimedia Signal Processing, Data
	
	Transport Middle-ware, Distributed Sensor Networks, Multimodal
	
	Interfaces, Smart-spaces, Ambient Assisted Living},
 owner = {mk},
 timestamp = {2009.03.23},
 url = {http://www.nist.gov/smartspace/downloads/ICME08_paper.pdf}
}

@INPROCEEDINGS{Dolev1984,
 author = {Dolev, Danny and Halpern, Joe and Strong, H. Raymond},
 title = {On the possibility and impossibility of achieving clock synchronization},
 booktitle = {Proceedings of the sixteenth annual ACM Symposium on Theory of Computing
	(STOC-84)},
 year = {1984},
 pages = {504--511},
 address = {New York, NY, USA},
 abstract = {It is known that clock synchronization can be achieved in the presence
	of faulty clocks numbering more than one-third of the total number
	of participating clocks provided that some authentication technique
	is used. Without authentication the number of faults that can be
	tolerated has been an open question. Here we show that if we restrict
	logical clocks to running within some linear function of real time,
	then clock synchronization is impossible, without authentication,
	when one-third or more of the processors are faulty. However, if
	there is a bound on the rate at which a processor can generate messages,
	then we show that clock synchronization is achievable, without authentication,
	as long as the faults do not disconnect the network. Finally, we
	provide a lower bound on the closeness to which simultaneity can
	be achieved in the network as a function of the transmission and
	processing delay properties of the network.},
 doi = {http://doi.acm.org/10.1145/800057.808720},
 isbn = {0-89791-133-4},
 owner = {mk},
 timestamp = {2009.08.04},
 url = {http://w3.cs.huji.ac.il/~dolev/pubs/clock-synch-impossibility.pdf}
}

@CONFERENCE{Dolev1983,
 author = {D. Dolev and N. Lynch and S. Pinter and E. Stark and W. Weihl},
 title = {Reaching approximate agreement in the presence of faults},
 booktitle = {Proceedings of the Third Symposium on Reliability in Distributed
	Software and Database Systems},
 year = {1983},
 pages = {145-154},
 month = {October}
}

@ARTICLE{Elson2002a,
 author = {Jeremy Elson and Lewis Girod and Deborah Estrin},
 title = {Fine-grained network time synchronization using reference broadcasts},
 journal = {ACM SIGOPS Operating Systems Review},
 year = {2002},
 volume = {36},
 pages = {147--163},
 abstract = {Recent advances in miniaturization and low-cost, lowpower design have
	led to active research in large-scale networks of small, wireless,
	low-power sensors and actuators. Time synchronization is critical
	in sensor networks for diverse purposes including sensor data fusion,
	coordinated actuation, and power-efficient duty cycling. Though the
	clock accuracy and precision requirements are often stricter than
	in traditional distributed systems, strict energy constraints limit
	the resources available to meet these goals. We present Reference-Broadcast
	Synchronization, a scheme in which nodes send reference beacons to
	their neighbors using physical-layer broadcasts. A reference broadcast
	does not contain an explicit timestamp; instead, receivers use its
	arrival time as a point of reference for comparing their clocks.
	In this paper, we use measurements from two wireless implementations
	to show that removing the sender's nondeterminism from the critical
	path in this way produces high-precision clock agreement (1.85+/-1.28usec,
	using off-the-shelf 802.11 wireless Ethernet), while using minimal
	energy. We also describe a novel algorithm that uses this same broadcast
	property to federate clocks across broadcast domains with a slow
	decay in precision (3.68+/-2.57usec after 4 hops). RBS can be used
	without external references, forming a precise relative timescale,
	or can maintain microsecond-level synchronization to an external
	timescale such as UTC. We show a significant improvement over the
	Network Time Protocol (NTP) under similar conditions.},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.7382},
 owner = {mk},
 publisher = {ACM New York, NY, USA},
 timestamp = {2009.02.18},
 url = {http://www.usenix.org/events/osdi02/tech/full_papers/elson/elson.pdf}
}

@ARTICLE{Elson2003a,
 author = {Jeremy Elson and Kay R\"{o}mer},
 title = {Wireless Sensor Networks: A New Regime for Time Synchronization},
 journal = {SIGCOMM Computer Communication Review},
 year = {2003},
 volume = {33},
 pages = {149--154},
 number = {1},
 abstract = {Wireless sensor networks (WSNs) consist of large populations of wirelessly
	connected nodes, capable of computation, communication, and sensing.
	Sensor nodes cooperate in order to merge individual sensor readings
	into a high-level sensing result, such as integrating a time series
	of position measurements into a velocity estimate. The physical time
	of sensor readings is a key element in this process called data fusion.
	Hence, time synchronization is a crucial component of WSNs. We argue
	that time synchronization schemes developed for traditional networks
	such as NTP are ill-suited for WSNs and suggest more appropriate
	approaches.},
 address = {New York, NY, USA},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.18.8078},
 doi = {http://doi.acm.org/10.1145/774763.774787},
 issn = {0146-4833},
 owner = {mk},
 publisher = {ACM},
 timestamp = {2009.02.17},
 url = {http://lecs.cs.ucla.edu/Publications/papers/wsn-ts.pdf}
}

@PHDTHESIS{Elson2003,
 author = {Jeremy Eric Elson},
 title = {Time Synchronization in Wireless Sensor Networks},
 school = {University of California Los Angeles},
 year = {2003},
 owner = {martin},
 timestamp = {2009.02.06}
}

@CONFERENCE{F.Cristian1986,
 author = {F. Cristian, H. Aghili and R. Strong},
 title = {Clock synchronization in the presence of omission and performance
	faults, and processor joins},
 booktitle = {Proceedings of the Sixteenth International Symposium on Fault-Tolerant
	Computing},
 year = {1986},
 pages = {218-223},
 month = {July}
}

@MISC{FS1037C,
 author = {{Federal Standard 1037C}},
 title = {Glossary of Telecommunication Terms},
 howpublished = {\url{http://www.its.bldrdoc.gov/fs-1037/}},
 month = {August},
 year = {1996},
 comment = {Replaced by non-free ANS T1.523-2001},
 organization = {General Services Administration},
 owner = {mk},
 timestamp = {2009.02.21},
 url = {http://www.its.bldrdoc.gov/fs-1037/}
}

@INPROCEEDINGS{Fidge1988,
 author = {Colin J. Fidge},
 title = {Timestamps in Message-Passing Systems that Preserve the Partial Ordering},
 booktitle = {Proceedings of the 11th Australian Computer Science Conference (ACSC'88)},
 year = {1988},
 editor = {K. Raymond},
 pages = {56--66},
 address = {Queensland, Australia},
 month = {February},
 owner = {mk},
 timestamp = {2009.02.13},
 url = {http://sky.fit.qut.edu.au/~fidgec/Publications/fidge88a.pdf}
}

@MISC{FlexRay,
 author = {{FlexRay Consortium}},
 title = {{FlexRay Communications System Protocol Specification Version~2.1
	Revision~A}},
 howpublished = {Available from \url{http://www.flexray.com/}},
 month = {December},
 year = {2005},
 abstract = {The FlexRay communication protocol described in this document is specified
	for a dependable automotive network. Some of the basic characteristics
	of the FlexRay protocol are synchronous and asynchronous frame transfer,
	guaranteed frame latency and jitter during synchronous transfer,
	prioritization of frames during asynchronous transfer, multi-master
	clock synchronization, error detection and signaling, error containment
	on the physical layer through the use of a bus guardian device, and
	scalable fault tolerance.},
 owner = {mk},
 timestamp = {2009.09.11}
}

@INPROCEEDINGS{Fowler1990,
 author = {Jerry Fowler and Willy Zwaenepoel},
 title = {Causal Distributed Breakpoints},
 booktitle = {In Proceedings of the 10th International Conference on Distributed
	Computing Systems},
 year = {1990},
 pages = {134--141},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.6001},
 doi = {10.1.1.56.6001},
 owner = {mk},
 timestamp = {2009.02.14},
 url = {http://www.cs.rice.edu/~willy/papers/icdcs90a.ps.gz}
}

@INPROCEEDINGS{Galleani2003,
 author = {Galleani, L. and Tavella, P.},
 title = {The characterization of clock behavior with the dynamic {Allan} variance},
 booktitle = {Frequency Control Symposium and PDA Exhibition Jointly with the 17th
	European Frequency and Time Forum, 2003. Proceedings of the 2003
	IEEE International},
 year = {2003},
 pages = {239--244},
 month = {May},
 abstract = { We introduce the dynamic Allan variance, a quantity that characterizes
	the variation in time of the stability of an atomic clock. We connect
	the dynamic Allan variance to the Wigner spectrum, a time-frequency
	representation that can reveal the time-varying frequencies generally
	present in the clock error noise under nonstationary conditions.
	We also propose a practical implementation of the dynamic Allan variance
	for quasi-stationary clock noises, and we show numerical results
	that prove the validity of our approach, both on simulated and real
	data.},
 doi = {10.1109/FREQ.2003.1275096},
 issn = {1075-6787},
 keywords = { atomic clocks, frequency stability, phase noise, random processes,
	stochastic processes, time-frequency analysis, white noise Wigner
	spectrum, atomic clock, clock error noise, dynamic Allan variance,
	quasistationary clock noises, stability, time-frequency representation,
	time-varying frequencies},
 owner = {mk},
 timestamp = {2009.07.20},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1275096&isnumber=28531}
}

@ARTICLE{Gill2005,
 author = {Patrick Gill},
 title = {Optical frequency standards},
 journal = {Metrologia},
 year = {2005},
 volume = {42},
 pages = {S125-S137},
 number = {3},
 month = {June},
 abstract = {The evolution of atomic frequency standards since Essen's atomic clock
	fifty years ago has been considerable both in respect of microwave
	and optical standards. In particular, the development of trapping
	and laser cooling techniques for both atoms and ions has played a
	major role. This paper reviews the status of the development of single
	cold trapped ion and cold trapped atom optical frequency standards.
	Recent results show comb measurements of trapped ion optical frequency
	standards with accuracies close to Cs fountain limited operation.
	The factors affecting future stability and reproducibility are discussed.
	The opportunities for future standards capable of approaching reproducibility
	at the 10**-18 level are outlined, together with the likely limitations
	arising.},
 owner = {mk},
 timestamp = {2009.04.11},
 url = {http://stacks.iop.org/0026-1394/42/S125}
}

@ARTICLE{Guinot2005,
 author = {Bernard Guinot and Arias, Elisa Felicitas},
 title = {Atomic time-keeping from 1955 to the present},
 journal = {Metrologia},
 year = {2005},
 volume = {42},
 pages = {20-30},
 month = {June},
 doi = {10.1088/0026-1394/42/3/S04},
 owner = {martin},
 timestamp = {2008.09.05},
 url = {stacks.iop.org/me/42/S20}
}

@ARTICLE{Gusella1989,
 author = {Gusella,, R. and Zatti,, S.},
 title = {The Accuracy of the Clock Synchronization Achieved by {TEMPO} in
	{B}erkeley {UNIX} 4.3{BSD}},
 journal = {IEEE Transactions on Software Engineering},
 year = {1989},
 volume = {15},
 pages = {847--853},
 number = {7},
 address = {Piscataway, NJ, USA},
 doi = {http://dx.doi.org/10.1109/32.29484},
 issn = {0098-5589},
 owner = {mk},
 publisher = {IEEE Press},
 timestamp = {2009.02.11}
}

@INPROCEEDINGS{Holler2003,
 author = {Roland H\"{o}ller and Thilo Sauter and Nikolaus Ker\"{o}},
 title = {Embedded {SynUTC} and {IEEE} 1588 clock synchronization for industrial
	Ethernet},
 booktitle = {Proc. of the 9th IEEE International Conference on Emerging Technologies
	and Factory Automation (ETFA '03)},
 year = {2003},
 volume = {1},
 pages = {422-426},
 address = {Lisbon, Portugal},
 month = {September},
 abstract = {This article describes the architecture and implementation of two
	systems on a chip, which support high accuracy clock synchronization
	over Ethernet networks. The synchronization is based on the SynUTC
	technology and on the novel IEEE 1588 standard for a precision clock
	synchronization protocol for networked measurement and control systems.
	The network interface node on one hand provides all necessary hardware
	support to be flexibly used in a broad range of applications. The
	switch add-on on the other hand accounts for the packet delay uncertainties
	of Ethernet switches and is crucial for high accuracy clock synchronization.},
 doi = {10.1109/ETFA.2003.1247737},
 keywords = { field programmable gate arrays, local area networks, network interfaces,
	packet switching, protocols, synchronisation, system buses, system-on-chip
	Ethernet switches, FPGA, IEEE 1588 clock synchronization, clock synchronization
	protocol, embedded synchronized universal time coordinated technology,
	field programmable gate arrays, hardware support, industrial Ethernet,
	network interface node, packet delay uncertainties, system-on-chip},
 owner = {mk},
 timestamp = {2009.03.02},
 url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1247737}
}

@CONFERENCE{Halpern1984,
 author = {Joseph Halpern and Barbara Simons and Ray Strong and Danny Dolev},
 title = {Fault-tolerant clock synchronization},
 booktitle = {Proceedings of Symposium on Principles of Distributed Computing},
 year = {1984},
 pages = {89--102},
 month = {August},
 organization = {ACM SIGPLAN/SIGOPS}
}

@TECHREPORT{Hanzlik2006,
 author = {Alexander Hanzlik},
 title = {A Case Study of Clock Synchronization in {FlexRay}},
 institution = {Technische Universit{\"a}t Wien, Institut f{\"u}r Technische Informatik},
 year = {2006},
 type = {Research Report},
 number = {31/2006},
 address = {Treitlstr. 1-3/182-1, 1040 Vienna, Austria},
 abstract = {This paper presents a case study on the performance of a distributed
	clock synchronization algorithm used in Flexray, a communication
	protocol designed to meet the requirements of dependable, fault-tolerant
	real-time applications.
	
	The Flexray industry consortium drives forward the standardization
	of a fault-tolerant communication system for advanced automotive
	applications. In this case study we will analyze two different configurations
	for typical automotive applications by means of simulation. The focus
	of the simulation experiments is the assessment of performance and
	stability of the Flexray clock synchronization algorithm in the presence
	of varying clock drift rates. For the analysis we will use SIDERA,
	a simulation model for time-triggered distributed systems.},
 owner = {mk},
 timestamp = {2009.09.10},
 url = {http://www7.informatik.uni-erlangen.de/~dulz/fkom/06/Material/10/flexray_synchro.pdf}
}

@INPROCEEDINGS{Hardin1994,
 author = {Hardin, K.B. and Fessler, J.T. and Bush, D.R.},
 title = {Spread spectrum clock generation for the reduction of radiated emissions},
 booktitle = {IEEE International Symposium on Electromagnetic Compatibility},
 year = {1994},
 pages = {227-231},
 address = {Chicago, IL, USA},
 month = {August},
 abstract = {A method is presented for reducing the radiated emissions of an electronic
	device by frequency modulating (FM) the system clock. This method,
	referred to as spread spectrum clock generation, or SSCG, is applicable
	to most microprocessor based systems. A unique waveform used to frequency
	modulate a digital clock signal results in a spectrum with sideband
	harmonics that are nearly uniform in amplitude when measured with
	an EMI receiver. This has the effect of spreading the energy of a
	discrete frequency harmonic over a wider bandwidth, thereby reducing
	the amplitudes of the harmonics. Attenuation as high as 13 dB is
	presented using an experimental setup, an actual SSCG integrated
	circuit, and theoretically computed results},
 doi = {10.1109/ISEMC.1994.385656},
 keywords = {clocks, electromagnetic interference, frequency modulation, interference
	suppression, monolithic integrated circuits, pseudonoise codes, spread
	spectrum communicationEMI receiver, FM, attenuation, bandwidth, digital
	clock signal, discrete frequency harmonic, experimental setup, frequency
	modulation, integrated circuit, microprocessor based systems, radiated
	emissions reduction, sideband harmonics, spread spectrum clock generation,
	system clock},
 owner = {mk},
 timestamp = {2009.07.20},
 url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=385656}
}

@PHDTHESIS{Horauer2004,
 author = {Martin Horauer},
 title = {{Clock Synchronization in Distributed Systems}},
 school = {Vienna University of Technology},
 year = {2004},
 address = {Vienna, Austria},
 month = {February},
 abstract = {A system-wide global time base with known precision is of pivotal
	importance for the design and operation of distributed systems as
	well as an enabling technology for applications like location-based
	services. The increasing requirements of these driving applications
	and the large scale of the underlying systems demand clock synchronization
	down to the ns-range. To date, for many applications this cannot
	be established with present software synchronization strategies;
	specialized hardware support and the use of GPS-timing receivers
	is mandatory. The applicability of these solutions, however, is limited
	by the high cost for the additional, dedicated cabling and the antennas
	for the GPS receivers, which require clear-view of sky for proper
	operation.
	
	Recently the IEEE approved the 1588 standard for a precision clock
	synchronization protocol for networked measurement and control systems.
	By equipping existing computer networks with moderate hardware extensions
	at the network interfaces and a standard protocol software stack,
	an average precision below the us-range can be achieved.
	
	Independently from the balloting process and based on relevant scientific
	literature the research project SynUTC established a clock synchronization
	framework with sound theoretical concepts and well engineered hard-
	and software.
	
	This thesis proposes an architecture for network interfaces and networked
	devices that will render a worst-case precision in the 100 ns-range
	possible. The proposed mechanism, which is applicable for any packet-oriented
	data network, inserts time information into data packets at the interface
	between the physical layer transceiver and the network controller
	upon packet transmission and reception, respectively. Local time
	is supplied by a high-resolution rate-adjustable adder-based clock,
	which also contains hardware support easing interval-based external
	clock synchronization, like maintaining time and accuracy intervals
	and interfaces to GPS receivers. This architecture allows an improvement
	of at least an order of magnitude over other existing solutions;
	it is accomplished by small modifications of existing commercial-off-the-shelf
	devices, without impairment of their original functionality. Part
	of the principle of operation is verified with a prototype implementation
	that was also used in conjunction with other devices for an experimental
	evaluation. The results of the presented experiments validate the
	proposed techniques and reveal actual values for the worst-case precision
	that might be achieved. The presented solution provides a synchronization
	that can otherwise be achieved only with the help of specialized
	GPS timing receivers, thus excellently complementing these solutions
	when increased fault-tolerance is required or when access to an antenna
	is not feasible.},
 journal = {PhD Theses, Vienna University of Technology, Institute of Computer
	Technology},
 owner = {mk},
 publisher = {Citeseer},
 timestamp = {2009.09.10},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.6664&rep=rep1&type=pdf}
}

@MISC{IEEE1139,
 author = {{IEEE Std 1139-1999}},
 title = {{IEEE Standard Definitions of Physical Quantities for Fundamental
	Frequency and Time Metrology---Random Instabilities}},
 month = {July},
 year = {1999},
 abstract = {Methods of describing random instabilities of importance to frequency
	and time metrology is covered in this standard. Quantities covered
	include frequency, amplitude, and phase instabilities; spectral densities
	of frequency, amplitude, and phase fluctuations; and time-domain
	variances of frequency fluctuations. In addition, recommendations
	are made for the reporting of measurements of frequency, amplitude
	and phase instabilities, especially as regards the recording of experimental
	parameters, experimental conditions, and calculation techniques},
 keywords = {IEEE standards, amplitude modulation, fluctuations, frequency modulation,
	frequency stability, frequency standards, measurement uncertainty,
	phase noise, time measurement, time-domain analysisAM noise, FM noise,
	IEEE standard definitions, amplitude fluctuations, amplitude instabilities,
	frequency fluctuations, frequency instabilities, frequency metrology,
	phase fluctuation, phase instabilities, phase modulation, phase noise,
	physical quantities, random instabilities, spectral densities, time
	metrology, time-domain variances},
 owner = {mk},
 timestamp = {2009.04.17},
 url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&isnumber=17468&arnumber=807679&punumber=6545}
}

@MISC{IEEE1193,
 author = {{IEEE Std 1193-2003}},
 title = {{IEEE Guide for Measurement of Environmental Sensitivities of Standard
	Frequency Generators}},
 howpublished = {(Revision of IEEE Std 1193-1994)},
 month = {March 12},
 year = {2004},
 abstract = {Standard frequency generators that include all atomic frequency standards,
	quartz oscillators, dielectric resonator oscillators, yttrium-iron-garnet
	oscillators, cavity oscillators, sapphire oscillators, and thin-film
	resonator based oscillators are addressed.},
 issn = { },
 keywords = {atomic clock, atomic frequency standard, environmental sensitivities,
	frequency standard, oscillator, quartz crystal oscillator, standard
	frequency generator},
 owner = {mk},
 timestamp = {2009.04.17},
 url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&isnumber=28593&arnumber=1278832&punumber=9006}
}

@MISC{IEEE1588,
 author = {{IEEE Std 1588-2008}},
 title = {{Standard for a Precision Clock Synchronization Protocol for Networked
	Measurement and Control Systems}},
 howpublished = {(Revision of IEEE Std 1588-2002)},
 month = {July},
 year = {2008},
 abstract = {A protocol is provided in this standard that enables precise synchronization
	of clocks in measurement and control systems implemented with technologies
	such as network communication, local computing, and distributed objects.
	The protocol is applicable to systems communicating via packet networks.
	Heterogeneous systems are enabled that include clocks of various
	inherent precision, resolution, and stability to synchronize. System-wide
	synchronization accuracy and precision in the sub-microsecond range
	are supported with minimal network and local clock computing resources.
	Simple systems are installed and operated without requiring the management
	attention of users because the default behavior of the protocol allows
	for it.},
 doi = {10.1109/IEEESTD.2008.4579760},
 keywords = {IEEE standards, distributed control, protocols, synchronisationIEEE
	standard, distributed objects, heterogeneous systems, local clock
	computing resources, network communication, networked control systems,
	networked measurement, packet networks, precision clock synchronization
	protocol, system-wide synchronization accuracy},
 organization = {IEEE},
 owner = {mk},
 revision = {2008},
 timestamp = {2009.04.17},
 url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&isnumber=4579759&arnumber=4579760&punumber=4579757}
}

@TECHREPORT{IRIG,
 author = {{IRIG Standard 200-04}},
 title = {{Serial Time Code Formats}},
 institution = {Inter-Range Instrumentation Group},
 year = {2004},
 type = {{U.\,S. Army}},
 address = {White Sands Missile Range, New Mexico},
 month = {September},
 organization = {Range Commanders Council, Inter-range instrumentation group},
 owner = {mk},
 timestamp = {2009.03.07},
 url = {https://wsmrc2vger.wsmr.army.mil/rcc/manuals/200-04/TT-45.pdf}
}

@MISC{ITU460,
 author = {ITU-R},
 title = {Recommendation 460: Standard-Frequency and Time-Signal Emissions},
 year = {2002},
 owner = {mk},
 timestamp = {2009.02.22},
 url = {http://kyc.ntsc.ac.cn/gb/ITU-R-REC-TF.460-6-200202-I!!PDF-E.pdf}
}

@MISC{ITU810,
 author = {ITU-T},
 title = {Recommendation {G}.810: Definitions and terminology for synchronization
	networks},
 month = {August},
 year = {1996},
 owner = {mk},
 timestamp = {2009.02.26},
 url = {http://eu.sabotage.org/www/ITU/G/G0810e.pdf}
}

@MISC{Jasperneite2004,
 author = {J. Jasperneite and K. Shehab and K. Weber},
 title = {Enhancements to the Time Synchronization Standard {IEEE}-1588},
 howpublished = {In 5th IEEE International Workshop on Factory Communication Systems
	{WFCS'2004}},
 year = {2004},
 citeseerurl = {http://citeseer.ist.psu.edu/jasperneite04enhancements.html},
 owner = {martin},
 text = {J. Jasperneite, K. Shehab, and K. Weber. Enhancements to the Time
	Synchronization Standard IEEE-1588. In 5th IEEE International Workshop
	on Factory Communication Systems (WFCS'2004.},
 timestamp = {2008.09.05},
 url = {citeseer.ist.psu.edu/jasperneite04enhancements.html}
}

@ARTICLE{Jefferson1985,
 author = {David R. Jefferson},
 title = {Virtual Time},
 journal = {ACM Transactions on Programming Languages and Systems (TOPLAS)},
 year = {1985},
 volume = {7},
 pages = {404-425},
 number = {3},
 month = jul,
 keywords = {virtual time, simulation, time warp}
}

@ARTICLE{Johannessen2004,
 author = {Svein Johannessen},
 title = {Time Synchronization in a Local Area Network},
 journal = {IEEE Control Systems Magazine},
 year = {2004},
 volume = {24},
 pages = {61--69},
 number = {2},
 month = {April},
 abstract = {In this article we examine the problem of synchronizing the time-of-day
	clock in one node of an automation network system with a reference
	clock. The emphasis of this article is on switched, highly loaded
	networks, where unpredictable delays introduce excessive synchronization
	noise. PC clocks are accurate enough when connected within a network,
	but a new requirement is for them to be synchronized, which means
	that they should show the same time at the same instant. The most
	prominent time-synchronization method is the network time protocol
	proposed by Mills and Internet engineering task force group. A complete
	solution of the high-precision time-synchronization problem must
	reduce the randomness associated with the RTOS. The methods discussed
	in this article can help determine the frequency and time offset
	of a local time-of-day clock. The next challenge is to construct
	a local time-of-day clock and apply the synchronization information
	to it.},
 owner = {martin},
 timestamp = {2008.09.05},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1275432}
}

@MISC{RFC4075,
 author = {V. Kalusivalingam},
 title = {Simple Network Time Protocol ({SNTP}) Configuration Option for {DHCP}v6},
 howpublished = {RFC4075},
 month = {May},
 year = {2005},
 abstract = {This document describes a new DHCPv6 option for passing a list of
	Simple Network Time Protocol (SNTP) server addresses to a client.},
 owner = {martin},
 timestamp = {2008.09.19},
 url = {http://tools.ietf.org/html/rfc4075}
}

@MASTERSTHESIS{Kammerhofer2009,
 author = {Martin Kammerhofer},
 title = {{Evaluation and Implementation of Time-Synchronization for Distributed
	Systems}},
 school = {Graz University of Technology},
 year = {2009},
 address = {Austria},
 month = {October},
 abstract = {Time synchronization of geographically dispersed clocks is a classical
	problem. An important application is synchronization of distributed
	computer systems. The problem has been extensively studied for the
	last 30 years and the large number of proposed algorithms and protocols
	is hardly assessable.
	
	This text structures the problem by decomposing it into three partial
	problems. First, precise measurement of the difference between the
	readings of remote clocks and a local clock. Second, using the measurement
	results to calculate estimations of the inner states of the involved
	clocks, and computation of extrapolations of these states. Third,
	continuous or periodic adjustment of the local clock to improve future
	synchronization. Approaches to solve these partial problems from
	metrology, mathematics/statistics, and control theory are outlined
	in a theoretical part, and their use in synchronization protocols
	is described.
	
	The practical part discusses design and implementation of a time synchronization
	service for the \isense project. \isense is an intelligent multi-sensor
	data-fusion framework for distributed embedded systems. Synchronized
	clocks are mainly required for correct chronological combination
	of video stream frames from two or more cameras. An evaluation of
	the implementation on Pentium~M and \tms processors is presented,
	and potential further improvements are discussed.},
 keywords = {time-synchronization NTP sensor-network sensor-fusion distributed-systems},
 owner = {mk},
 timestamp = {2009.09.14}
}

@CONFERENCE{Kamp2002,
 author = {Poul-Henning Kamp},
 title = {Timecounters: Efficient and precise timekeeping in {SMP} kernels},
 booktitle = {Proceedings of the BSDCon Europe},
 year = {2002},
 address = {Amsterdam, the Netherlands},
 month = {November},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.6775},
 owner = {mk},
 timestamp = {2009.02.20},
 url = {http://2002.eurobsdcon.org/papers/kamp.pdf}
}

@INPROCEEDINGS{Klausner2007b,
 author = {Andreas Klausner and Stefan Erb and Allan Tengg and Bernhard Rinner},
 title = {{DSP} Based Acoustic Vehicle Classification for Multi-Sensor Real-Time
	Traffic Surveillance},
 booktitle = {Proc. of the 15th European Signal Processing Conference (EUSIPCO'07)},
 year = {2007},
 address = {Pozna\'n, Poland},
 month = {September},
 abstract = {Vehicles may be recognized from the sound they emit when driving along
	a road. Characteristic acoustic finger prints and audio features
	can be used to increase the robustness of existing video based vehicle
	tracking and classification algorithms. Using this information in
	a multisensor surveillance system helps to improve various parameters
	such as recognition rates, detection times and robustness. We propose
	a two-fold approach, where vehicle detection and classification are
	handled separately. We demonstrate the feasibility of the proposed
	method using outdoor audio sequences of traffic situations.},
 owner = {mk},
 timestamp = {2009.02.27},
 url = {http://www.iti.tugraz.at/de/research/isense/publications/eusipco07.pdf}
}

@INPROCEEDINGS{Klausner2006,
 author = {A. Klausner and B. Rinner and A. Tengg},
 title = {{I-SENSE}: Intelligent embedded multi-sensor fusion},
 booktitle = {Proceedings of the 4th IEEE International Workshop on Intelligent
	Solutions in Embedded Systems (WISES'06)},
 year = {2006},
 pages = {105--116},
 address = {Vienna, Austria},
 month = {June},
 abstract = {I-SENSE demonstrates the potential of combining the scientific research
	areas multi-sensor data fusion and pervasive embedded computing.
	The main idea is to provide a generic architecture which supports
	a distributed online data fusion on an embedded system. Due to their
	high onboard processing and communication power our proposed architecture
	is designed to perform sophisticated data fusion tasks in realtime.
	Another goal of I-SENSE is to dynamically change the configuration,
	thus, to be able able to react to changes in the systems environment.
	This paper describes ongoing work in developing necessary hard- and
	software components in order to perform realtime multi-level data
	fusion. We present the distributed I-SENSE platform and introduce
	our multi-level fusion framework. First experimental results on embedded
	image fusion demonstrates the feasibility of our approach.},
 keywords = {sensor data fusion, multi-level fusion, distributed embedded systems,
	pervasive computing, traffic surveillance},
 owner = {martin},
 timestamp = {2009.02.27},
 url = {http://www.iti.tugraz.at/download/publications/klausner06.pdf}
}

@INPROCEEDINGS{Klausner2007a,
 author = {Andreas Klausner and Allan Tengg and Christian Leistner and Stefan
	Erb and Bernhard Rinner},
 title = {An audio-visual sensor fusion approach for feature based vehicle
	identification},
 booktitle = {Proc. of the IEEE Conference on Advanced Video and Signal Based Surveillance
	(AVSS'07)},
 year = {2007},
 pages = {111--116},
 address = {London, UK},
 month = {September},
 abstract = {In this article we present our software framework for embedded online
	data fusion, called I-SENSE. We discuss the fusion model and the
	decision modeling approach using Support Vector Machines. Due to
	the system complexity and the genetic approach a data oriented model
	is introduced. The main focus of the article is targeted at our techniques
	for extracting features of acoustic- and visual-data. Experimental
	results of our ``traffic surveillance'' case study demonstrate the
	feasibility of our multi-level data fusion approach.},
 doi = {10.1109/AVSS.2007.4425295},
 keywords = {computer vision, feature extraction, road traffic, sensor fusion,
	traffic engineering computingI-SENSE, acoustic feature extraction,
	audio-visual sensor fusion, decision modeling, embedded online data
	fusion, feature based vehicle identification, fusion model, genetic
	approach, multilevel data fusion, support vector machines, traffic
	surveillance, visual feature extraction},
 owner = {mk},
 timestamp = {2009.02.27},
 url = {http://www.iti.tugraz.at/de/research/isense/publications/avss07.pdf}
}

@ARTICLE{Klausner2008,
 author = {Andreas Klausner and Allan Tengg and Bernhard Rinner},
 title = {Distributed Multilevel Data Fusion for Networked Embedded Systems},
 journal = {IEEE Journal of Selected Topics in Signal Processing},
 year = {2008},
 volume = {2},
 pages = {538-555},
 number = {4},
 month = {August},
 abstract = {Recently much research has been conducted in visual sensor networks.
	Compared to traditional sensor networks, vision networks differ in
	various aspects such as the amount of data to be processed and transmitted,
	the requirements on quality-of-service, and the level of collaboration
	among the sensor nodes. This paper deals with sensor fusion on visual
	sensor networks. We focus here on methods for fusing data from various
	distributed sensors and present a generic framework for fusion on
	embedded sensor nodes. This paper extends our previous work on distributed
	smart cameras and presents our approach toward the transformation
	of smart cameras into a distributed, embedded multisensor network.
	Our generic fusion model has been completely implemented on a distributed
	embedded system. It provides a middleware which supports automatic
	mapping of our fusion model to the target hardware. This middleware
	features dynamic reconfiguration to support modification of the fusion
	application at runtime without loss of sensor data. The feasibility
	and reusability of the I-SENSE concept is demonstrated with experimental
	results of two case studies: vehicle classification and bulk good
	separation. Qualitative and quantitative benefits of multilevel information
	fusion are outlined in this article.},
 doi = {10.1109/JSTSP.2008.925988},
 issn = {1932-4553},
 keywords = {distributed sensors, image sensors, intelligent sensors, middleware,
	quality of service, sensor fusiondistributed multilevel data fusion,
	distributed sensors, distributed smart cameras, middleware, multilevel
	information fusion, networked embedded systems, quality-of-service,
	sensor fusion, visual sensor networks},
 owner = {mk},
 timestamp = {2009.10.05},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4629864&isnumber=4629863}
}

@INPROCEEDINGS{Klausner2007,
 author = {Andreas Klausner and Allan Tengg and Bernhard Rinner},
 title = {Enhanced Least Squares Support Vector Machines for Decision Modeling
	in a Multi-Sensor Fusion Framework},
 booktitle = {Proc. of the International Conference on Artificial Intelligence
	and Pattern Recognition (AIPR'07)},
 year = {2007},
 pages = {546--552},
 address = {Orlando, Florida, USA},
 month = {July},
 abstract = {In this article we introduce a software framework for embedded online
	data fusion on different levels of data abstraction. We present our
	data oriented fusion model and introduce the main functional units.
	The paper is focused to the decision modeling process. In our approach
	we use Support Vector Machines (SVM) as well as Least Squares SVM
	(LS-SVM) for decision modeling. Due to the computation complexity
	and the necessary memory requirements we prefer LS-SVM for the classification
	tasks. The main disadvantage of LS-SVM is the loss of sparseness
	by using equality constraints instead of inequality constraints in
	the cost function. We introduce a novel method for intelligent data
	preselection (PTD LS-SVM) to compensate for this short coming. Experimental
	results demonstrate the feasibility of this approach.},
 owner = {mk},
 timestamp = {2009.02.27},
 url = {http://www.iti.tugraz.at/de/research/isense/publications/aipr07.pdf}
}

@CONFERENCE{Klausner2007c,
 author = {Andreas Klausner and Allan Tengg and Bernhard Rinner},
 title = {Vehicle Classification on Multi-Sensor Smart Cameras Using Feature-
	and Decision-Fusion},
 booktitle = {Proc. of the first ACM/IEEE International Conference on Distributed
	Smart Cameras (ICDSC'07)},
 year = {2007},
 pages = {67--74},
 address = {Vienna, Austria},
 month = {September},
 abstract = {In the proposed project we are working towards multi-sensor smart
	cameras, i.e., we augment vision-based cameras by additional sensors
	such as infrared and audio and, thus, transform a single smart camera
	into an embedded multi-sensor node. Our software framework for embedded
	online data fusion, called I-SENSE, which supports data fusion on
	different levels of data abstraction is presented. Further our fusion
	model is presented with the focus set on four main parts, namely
	(i) the acoustic and visual feature extraction, (ii) feature based
	data fusion and the feature selection algorithm, (iii) feature based
	decision modeling based on Support Vector Machines (SVM) and (iv)
	decision modeling based on a modified Dempster-Shafer approach is
	discussed. Finally we demonstrate the feasibility of our multilevel
	data fusion approach with experimental results of our ``vehicle classification''
	case study.},
 doi = {10.1109/ICDSC.2007.4357507},
 keywords = {sensor data fusion, multi-level fusion, vehicle classification, smart
	camera, traffic surveillance},
 owner = {mk},
 timestamp = {2009.02.27},
 url = {http://www.iti.tugraz.at/de/research/isense/publications/icdsc07.pdf}
}

@ARTICLE{Kohno2005,
 author = {Kohno, T. and Broido, A. and Claffy, K.C.},
 title = {Remote physical device fingerprinting},
 journal = {IEEE Transactions on Dependable and Secure Computing},
 year = {2005},
 volume = {2},
 pages = {93--108},
 number = {2},
 month = {April--June},
 abstract = {We introduce the area of remote physical device fingerprinting, or
	fingerprinting a physical device, as opposed to an operating system
	or class of devices, remotely, and without the fingerprinted device's
	known cooperation. We accomplish this goal by exploiting small, microscopic
	deviations in device hardware: clock skews. Our techniques do not
	require any modification to the fingerprinted devices. Our techniques
	report consistent measurements when the measurer is thousands of
	miles, multiple hops, and tens of milliseconds away from the fingerprinted
	device and when the fingerprinted device is connected to the Internet
	from different locations and via different access technologies. Further,
	one can apply our passive and semipassive techniques when the fingerprinted
	device is behind a NAT or firewall, and. also when the device's system
	time is maintained via NTP or SNTP. One can use our techniques to
	obtain information about whether two devices on the Internet, possibly
	shifted in time or IP addresses, are actually the same physical device.
	Example applications include: computer forensics; tracking, with
	some probability, a physical device as it connects to the Internet
	from different public access points; counting the number of devices
	behind a NAT even when the devices use constant or random IP IDs;
	remotely probing a block of addresses to determine if the addresses
	correspond to virtual hosts, e.g., as part of a virtual honeynet;
	and unanonymizing anonymized network traces.},
 doi = {10.1109/TDSC.2005.26},
 issn = {1545-5971},
 keywords = { Internet, authorisation, data privacy, telecommunication security
	IP addresses, Internet, NAT, NTP, SNTP, clock skews, computer forensics,
	constant IP ID, firewall, network level protection, network level
	security, random IP ID, remote physical device fingerprinting, unanonymizing
	anonymized network traces, virtual honeynet, virtual hosts},
 owner = {mk},
 timestamp = {2009.07.20},
 url = {http://www.cs.washington.edu/homes/yoshi/papers/PDF/KoBrCl2005PDF-Extended-lowres.pdf}
}

@ARTICLE{Kopetz2003,
 author = {Hermann Kopetz and G\"{u}nther Bauer},
 title = {The time-triggered architecture},
 journal = {Proceedings of the IEEE},
 year = {2003},
 volume = {91},
 pages = {112--126},
 number = {1},
 abstract = {The time-triggered architecture (TTA) provides a computing infrastructure
	for the design and implementation of dependable distributed embedded
	systems. A large real-time application is decomposed into nearly
	autonomous clusters and nodes, and a fault-tolerant global time base
	of known precision is generated at every node. In the TTA, this global
	time is used to precisely specify the interfaces among the nodes,
	to simplify the communication and agreement protocols, to perform
	prompt error detection, and to guarantee the timeliness of real-time
	applications. The TTA supports a two-phased design methodology, architecture
	design, and component design. During the architecture design phase,
	the interactions among the distributed components and the interfaces
	of the components are fully specified in the value domain and in
	the temporal domain. In the succeeding component implementation phase,
	the components are built, taking these interface specifications as
	constraints. This two-phased design methodology is a prerequisite
	for the composability of applications implemented in the TTA and
	for the reuse of prevalidated components within the TTA. This paper
	presents the architecture model of the TTA, explains the design rationale,
	discusses the time-triggered communication protocols TTP/C and TTP/A,
	and illustrates how transparent fault tolerance can be implemented
	in the TTA.},
 owner = {mk},
 timestamp = {2009.09.10},
 url = {http://w3.isis.vanderbilt.edu/Janos/CS388/Reading%20List/Papers/Kopetz.pdf}
}

@ARTICLE{Kopetz1987,
 author = {Kopetz, Hermann and Ochsenreiter, Wilhelm},
 title = {Clock Synchronization in Distributed Real-Time Systems},
 journal = {IEEE Transactions on Computers},
 year = {1987},
 volume = {36},
 pages = {933--940},
 number = {8},
 month = {August},
 abstract = {The generation of a fault-tolerant global time base with known accuracy
	of synchronization is one of the important operating system functions
	in a distributed real-time system. Depending on the types and number
	of tolerated faults, this paper presents upper bounds on the achievable
	synchronization accuracy for external and internal synchronization
	in a distributed real-time system. The concept of continuous versus
	instantaneous synchronization is introduced in order to generate
	a uniform common time base for local, global, and external time measurements.
	In the last section, the functions of a VLSI clock synchronization
	unit, which improves the synchronization accuracy and reduces the
	CPU load, are described. With this unit, the CPU overhead and the
	network traffic for clock synchronization in state-of-the-art distributed
	real-time systems can be reduced to less than 1 percent.},
 address = {Washington, DC, USA},
 doi = {10.1109/TC.1987.5009516},
 issn = {0018-9340},
 owner = {mk},
 publisher = {IEEE Computer Society},
 timestamp = {2009.08.04},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5009516&isnumber=5009508}
}

@ARTICLE{Lamport1978,
 author = {Leslie Lamport},
 title = {Time, Clocks, and the Ordering of Events in a Distributed System},
 journal = {Communications of the ACM},
 year = {1978},
 volume = {21},
 pages = {558-565},
 number = {7},
 abstract = {The concept of one event happening before another in a distributed
	system is examined, and is shown to define a partial ordering of
	the events. A distributed algorithm is given for synchronizing a
	system of logical clocks which can be used to totally order the events.
	The use of the total ordering is illustrated with a method for solving
	synchronization problems. The algorithm is then specialized for synchronizing
	physical clocks, and a bound is derived on how far out of synchrony
	the clocks can become.},
 bibsource = {DBLP, http://dblp.uni-trier.de},
 citeseerurl = {http://portal.acm.org/citation.cfm?doid=359545.359563},
 owner = {kammerhm},
 timestamp = {2008.09.10},
 url = {http://research.microsoft.com/en-us/um/people/lamport/pubs/time-clocks.pdf}
}

@ARTICLE{Lamport1985,
 author = {Leslie Lamport and P. M. Melliar-Smith},
 title = {Synchronizing clocks in the presence of faults},
 journal = {Journal of the ACM},
 year = {1985},
 volume = {32},
 pages = {52--78},
 number = {1},
 abstract = {Algorithms are described for maintaining clock synchrony in a distributed
	multiprocess system where each process has its own clock. These algorithms
	work in the presence, of arbitrary clock orprocess failures, including
	"two-faced clocks" that present different values to different processes.
	Twoof the algorithms require that fewer than one-third of the processes
	be faulty. A third algorithm worksif fewer than half the processes
	are faulty, but requires digital signatures.},
 address = {New York, NY, USA},
 doi = {http://doi.acm.org/10.1145/2455.2457},
 issn = {0004-5411},
 owner = {dada},
 publisher = {ACM},
 timestamp = {2008.09.11},
 url = {http://www.win.tue.nl/~johanl/educ/2Q341/Clocks%20synchronization/1985-lamport.pdf}
}

@ARTICLE{Lamport1982,
 author = {Leslie Lamport and Robert Shostak and Marshall Pease},
 title = {The Byzantine Generals Problem},
 journal = {ACM Transactions on Programming Languages and Systems},
 year = {1982},
 volume = {4},
 pages = {382--401},
 number = {3},
 month = {July},
 abstract = {Reliable computer systems must handle malfunctioning components that
	give conflicting information to different parts of the system. This
	situation can be expressed abstractly in terms of a group of generals
	of the Byzantine army camped with their troops around an enemy city.
	Communicating only by messenger, the generals must agree upon a common
	battle plan. However, one of more of them may be traitors who will
	try to confuse the others. The problem is to find an algorithm to
	ensure that the loyal generals will reach agreement. It is shown
	that, using only oral messages, this problem is solvable if and only
	if more than two-thirds of the generals are loyal; so a single traitor
	can confound two loyal generals. With unforgeable written messages,
	the problem is solvable for any number of generals and possible traitors.
	Applications of the solutions to reliable computer systems are then
	discussed.},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.1697},
 doi = {10.1145/357172.357176},
 owner = {mk},
 timestamp = {2009.08.04},
 url = {http://pages.cs.wisc.edu/~bart/739/papers/byzantine.pdf}
}

@ARTICLE{Levine2008,
 author = {Judah Levine},
 title = {A review of time and frequency transfer methods},
 journal = {Metrologia},
 year = {2008},
 volume = {45},
 pages = {S162--S174},
 number = {6},
 month = {December},
 abstract = {I will discuss the three general methods that are commonly used to
	transmit time and frequency information: one-way methods, which measure
	or model the path delay using ancillary data, two-way methods, which
	depend on the symmetry of the delays in opposite directions along
	the same path, and common view, in which several stations receive
	data from a common source over paths whose delays are approximately
	equal. I will describe the advantages and limitations of the different
	methods including uncertainty estimates for systems that are based
	on them.},
 doi = {http://dx.doi.org/10.1088/0026-1394/45/6/S22},
 owner = {mk},
 publisher = {Institute of Physics Publishing},
 timestamp = {2009.10.05},
 url = {http://www.iop.org/EJ/article/0026-1394/45/6/S22/met8_6_S22.pdf}
}

@INPROCEEDINGS{Levine2006,
 author = {Judah Levine},
 title = {Time and Frequency Transfer},
 booktitle = {IEEE International Frequency Control Symposium and Exposition},
 year = {2006},
 address = {Miami, FL, USA},
 month = {June 4},
 note = {Tutorial session presentation},
 abstract = {In this tutorial I will discuss the different methods of transmitting
	time and frequency information. All of the methods that I will discuss
	are based on 3 fundamental techniques: (1) transmitting signals in
	one direction between an active transmitter and a passive receiver,
	(2) two-way transmissions between stations both of which are active
	and (3) commonview methods based on more than one passive receiver
	listening to the signals from one transmitter. I will compare the
	capabilities of these techniques in principle, and I will illustrate
	these capabilities using examples derived from systems that currently
	use each of these techniques. I will then turn to a more detailed
	discussion of the methods that are in common use, including those
	that use the telephone system, the Internet, radio broadcasts, and
	both active and passive satellite systems. Finally, I will introduce
	the various methods of disciplining a local oscillator---that is,
	what to do with the time information after it has been received.},
 doi = {10.1109/FREQ.2006.275329},
 owner = {mk},
 timestamp = {2009.07.25},
 url = {http://www.ieee-uffc.org/frequency_control/teaching/pdf/Levine.pdf}
}

@ARTICLE{Levine1999,
 author = {Judah Levine},
 title = {Introduction to time and frequency metrology},
 journal = {Review of Scientific Instruments},
 year = {1999},
 volume = {70},
 pages = {2567-2596},
 number = {6},
 abstract = {In this article, I will review the definition of time and time interval,
	and I will describe some of the devices that are used to realize
	these definitions. I will then introduce the principles of time and
	frequency metrology, including a discussion of some of the types
	of measurement hardware in common use and the statistical machinery
	that is used to analyze these data. I will also introduce various
	techniques of distributing time and frequency information, with special
	emphasis on the global positioning system satellites. I will then
	discuss the advantages of clock ensembles and a prototype time-scale
	algorithm. I will conclude with a discussion of how clocks are synchronized
	to remote servers using noisy and poorly characterized transmission
	channels.},
 owner = {martin},
 timestamp = {2008.10.05}
}

@ARTICLE{Levine1995,
 author = {Judah Levine},
 title = {An algorithm to synchronize the time of a computer to {U}niversal
	{T}ime},
 journal = {IEEE/ACM Transactions on Networking (TON)},
 year = {1995},
 volume = {3},
 pages = {42--50},
 number = {1},
 month = {February},
 citeseerurl = {http://portal.acm.org/citation.cfm?id=218350},
 owner = {mk},
 publisher = {IEEE Press Piscataway, NJ, USA},
 timestamp = {2009.08.11},
 url = {http://tf.nist.gov/general/pdf/1064.pdf}
}

@CONFERENCE{Levine2000,
 author = {Judah Levine and David L. Mills},
 title = {Using the network time protocol ({NTP}) to transmit international
	atomic time ({TAI})},
 booktitle = {Proceedings of the 32nd Annual Precise Time and Time Interval ({PTTI})
	Meeting},
 year = {2000},
 pages = {431--437},
 address = {Reston, VA, USA},
 month = {November},
 abstract = {Although Coordinated Universal Time (UTC) is the time scale that is
	transmitted by almost all time services, this scale is awkward to
	use in the vicinity of a leap second. Many computer systems cannot
	represent the epoch corresponding to a positive leap second (23:59:60),
	and remain synchronized to UTC by stopping the clock at 23:59:59
	for I extra second whenever a leap second is to be added. This makes
	it impossible to assign unambiguous time tags to events that happen
	during this period. In addition, computing the length of a time interval
	that includes a leap second of either sign is difficult because simply
	subtracting the two UTC time stamps at the end-points of the interval
	does not account for the time interval occupied by the leap second
	itself.
	
	To address these issues, we have augmented the Network Time Protocol
	to allow a client system to reconstruct TAI from UTC and a table
	of leap seconds. This time scale has no discontinuity during the
	leap second. Intervals computed using TAI are unaffected by the additional
	time occupied by the UTC leap second, and the TAI time scale provides
	an unambiguous time tag to any event -- even one that happens during
	a UTC leap second. Although our solution is unique to servers that
	support the Network Time Protocol, it could be adapted to other time
	services and formats. Such systems could support time tags using
	either UTC or TAI, and would signifiantly reduce the problems that
	result from using UTC alone.},
 owner = {mk},
 timestamp = {2009.08.26},
 url = {http://www.pttimeeting.org/archivemeetings/2000papers/paper34.pdf}
}

@ARTICLE{Liskov1993,
 author = {Barbara Liskov},
 title = {Practical Uses of Synchronized Clocks in Distributed Systems},
 journal = {Distributed Computing},
 year = {1993},
 volume = {6},
 pages = {211-219},
 number = {4},
 owner = {martin},
 timestamp = {2008.09.11}
}

@CONFERENCE{Lombardi2006,
 author = {Lombardi, M.A. and Norman, C. and Walsh, WJ},
 title = {The Role of {LORAN} Timing in Telecommunications},
 booktitle = {Proceedings of the Annual Meeting and Conference of the Radio Technical
	Commission for Maritime Services (RTCM'06)},
 year = {2006},
 volume = {21},
 month = {May 10},
 owner = {mk},
 timestamp = {2009.07.20},
 url = {http://tf.nist.gov/general/pdf/2142.pdf}
}

@PHDTHESIS{Loy1997,
 author = {Dietmar Loy},
 title = {GPS-Linked High Accuracy NTP Time Processor for Distributed Fault-Tolerant
	Real-Time Systems},
 school = {TU Vienna},
 year = {1997},
 address = {\"{O}sterreichischer Kunst- und Kulturverlag, Vienna, Austria},
 comment = {ISBN 3-85437-056-3},
 owner = {martin},
 timestamp = {2008.09.06}
}

@CONFERENCE{Lundelius1984,
 author = {Jennifer Lundelius and Nancy Lynch},
 title = {A new fault-tolerant algorithm for clock synchronization},
 booktitle = {Proceedings of the Third ACM SIGACT/SIGOPS Symposium on Principles
	of Distributed Computing},
 year = {1984},
 pages = {75-88},
 address = {Vancouver, B.\,C., Canada},
 month = {August},
 abstract = {We describe a new fault-tolerant algorithm for solving a variantof
	Lamport's clock synchronization problem. The algorithm isdesigned
	for a system of distributed processes that communicateby sending
	messages.
	
	Each process has its own read-only physical clock whose drift rate
	front real time is very small. By adding a value to its physical
	clock time, the process obtains itslocal time.
	
	The algorithm solves the problem of maintaining closely synchronized
	local times, assuming that processes' local times are closely synchronized
	initially. The algorithm is able to tolerate the failure of just
	under a third of the participating processes.
	
	It maintains synchronization to within a small constant, whose magnitude
	depends upon the rate of clock drift, the message delivery time,
	and the inital closeness of synchronization. We also give a characterization
	of how far the clocks drift from real time. Reintegration of a repaired
	process can be accomplished using a slight modification of the basic
	algorithm. A similar style algorithm can also be used to achieve
	synchronization initially.},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.3441},
 url = {http://groups.csail.mit.edu/tds/papers/Lynch/podc84.pdf}
}

@CONFERENCE{Lutwak2007,
 author = {Lutwak, R. and Rashed, A. and Varghese, M. and Tepolt, G. and LeBlanc,
	J. and Mescher, M. and Serkland, DK and Geib, KM and Peake, GM and
	R{\"o}misch, S.},
 title = {The chip-scale atomic clock -- prototype evaluation},
 booktitle = {Proceedings of the 39th Annual Precise Time and Time Interval ({PTTI})
	Meeting},
 year = {2007},
 pages = {269--290},
 address = {Long Beach, CA, USA},
 month = {November},
 owner = {mk},
 timestamp = {2009.02.26},
 url = {http://www.pttimeeting.org/archivemeetings/2007papers/paper27.pdf}
}

@INPROCEEDINGS{Mahaney1985,
 author = {Stephen R. Mahaney and Fred B. Schneider},
 title = {Inexact Agreement: Accuracy, Precision, and Graceful Degradation},
 booktitle = {Proc. of the Fourth ACM SIGACT-SIGOPS Symposium on Principles of
	Distributed Computing},
 year = {1985},
 pages = {237--249},
 publisher = {ACM},
 bibsource = {DBLP, http://dblp.uni-trier.de},
 owner = {mk},
 timestamp = {2009.10.04},
 url = {https://eprints.kfupm.edu.sa/45815/1/45815.pdf}
}

@INPROCEEDINGS{Maroti2004,
 author = {Mikl\'{o}s Mar\'{o}ti and Branislav Kusy and Gyula Simon and L\'{e}deczi,
	\'{A}kos},
 title = {The flooding time synchronization protocol},
 booktitle = {Proceedings of the 2nd international conference on Embedded networked
	sensor systems (SenSys '04)},
 year = {2004},
 pages = {39--49},
 address = {New York, NY, USA},
 publisher = {ACM},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.4385},
 doi = {http://doi.acm.org/10.1145/1031495.1031501},
 isbn = {1-58113-879-2},
 location = {Baltimore, MD, USA},
 owner = {mk},
 timestamp = {2009.02.18},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.4385&rep=rep1&type=pdf}
}

@ARTICLE{Marouani2008,
 author = {Hicham Marouani and Michel R. Dagenais},
 title = {Internal Clock Drift Estimation in Computer Clusters},
 journal = {Journal of Computer Systems, Networks, and Communications},
 year = {2008},
 volume = {vol.~2008, Article ID~583162, 7~pages},
 eid = {Article ID 583162},
 abstract = {Most computers have several high-resolution timing sources, from the
	programmable interrupt timer to the cycle counter. Yet, even at a
	precision of one cycle in ten millions, clocks may drift significantly
	in a single second at a clock frequency of several GHz. When tracing
	the low-level system events in computer clusters, such as packet
	sending or reception, each computer system records its own events
	using an internal clock. In order to properly understand the global
	system behavior and performance, as reported by the events recorded
	on each computer, it is important to estimate precisely the clock
	differences and drift between the different computers in the system.
	This article studies the clock precision and stability of several
	computer systems, with different architectures. It also studies the
	typical network delay characteristics, since time synchronization
	algorithms rely on the exchange of network packets and are dependent
	on the symmetry of the delays. A very precise clock, based on the
	atomic time provided by the GPS satellite network, was used as a
	reference to measure clock drifts and network delays. The results
	obtained are of immediate use to all applications which depend on
	computer clocks or network time synchronization accuracy.},
 address = {New York, NY, United States},
 doi = {http://dx.doi.org/10.1155/2008/583162},
 issn = {1687-7381},
 owner = {martin},
 publisher = {Hindawi Publishing Corp.},
 timestamp = {2008.10.05},
 url = {http://www.hindawi.com/journals/jcsnc/2008/583162.html}
}

@INPROCEEDINGS{Marzullo1983,
 author = {Keith Marzullo and Susan Owicki},
 title = {Maintaining the time in a distributed system},
 booktitle = {PODC '83: Proceedings of the second annual ACM symposium on Principles
	of distributed computing},
 year = {1983},
 pages = {295--305},
 address = {New York, NY, USA},
 publisher = {ACM},
 doi = {http://doi.acm.org/10.1145/800221.806730},
 isbn = {0-89791-110-5},
 location = {Montreal, Quebec, Canada},
 owner = {dada},
 timestamp = {2008.09.11}
}

@INCOLLECTION{Mattern1989,
 author = {Friedemann Mattern},
 title = {Virtual Time and Global States of Distributed Systems},
 booktitle = {Parallel and Distributed Algorithms: proceedings of the International
	Workshop on Parallel and Distributed Algorithms},
 publisher = {Elsevier Science Publishers B.\,V.},
 year = {1989},
 editor = {M. Cosnard et. al.},
 pages = {215--226},
 abstract = {A distributed system can be characterized by the fact that the global
	state is distributed and that a common time base does not exist.
	However, the notion of time is an important concept in every day
	life of our decentralized \"real world\" and helps to solve
	problems like getting a consistent population census or determining
	the potential causality between events. We argue that a linearly
	ordered structure of time is not (always) adequate for distributed
	systems and propose a generalized...},
 citeulike-article-id = {1041601},
 comment = {summary about the cacmurrent rage in logical clocks (vector clocks)},
 keywords = {algorithms, communications, concurrency-control, database, design,
	distributed, software-engineering},
 owner = {mk},
 posted-at = {2007-07-26 00:48:26},
 priority = {2},
 timestamp = {2009.02.11},
 url = {http://citeseer.ist.psu.edu/mattern89virtual.html}
}

@ARTICLE{McCarthy1991,
 author = {McCarthy, Dennis D.},
 title = {Astronomical time},
 journal = {Proceedings of the IEEE},
 year = {1991},
 volume = {79},
 pages = {915-920},
 number = {7},
 month = {July},
 owner = {martin},
 timestamp = {2008.09.05}
}

@PHDTHESIS{Meier2005,
 author = {Lennart Lauri Rudolf Meier},
 title = {Interval-Based Time Synchronization for Mobile Ad-Hoc Networks},
 school = {Swiss Federal Institute of Technology Zurich},
 year = {2005},
 address = {Zurich},
 month = {December},
 owner = {mk},
 timestamp = {2009.02.18}
}

@INPROCEEDINGS{Miao2007,
 author = {Miao Miao and Wei Zhou},
 title = {Comparison between Analog and Digital Time and Frequency Measurement
	Techniques},
 booktitle = {Frequency Control Symposium, 2007 Joint with the 21st European Frequency
	and Time Forum. IEEE International},
 year = {2007},
 pages = {801-804},
 month = {29 2007-June 1},
 abstract = {Along with the accuracy enhancement of different kinds of frequency
	standards, more demands are made on the measurement precision. In
	time and frequency measurement instruments, both digital and analog
	processing techniques and circuits are used widely. The paper focuses
	primarily on the limitations of the technology and the principle
	in the use of the analog and the digital measurement approaches.
	Based on the principle of the conventional method measuring the period
	of frequency difference between the reference and the measured frequency
	standards, the analog and the digital measurement techniques are
	compared in actual realization, configuration, precision and error
	sources etc. A number of experiments indicate that the precision
	of the analog method is as high as 10-13/tau and the precision of
	the digital method about 10-12/tau or lower. Furthermore, the digital
	scheme in TTL circuits has great influence of trigger error and quantified
	error on measurement result; while in ECL circuits, trigger error
	is held down and the precision is greatly enhanced. Moreover, this
	paper proposes some improvement step. One had better appropriately
	combine ultra-high speed devices with the digital method to obtain
	a high precision frequency measurement device.},
 doi = {10.1109/FREQ.2007.4319186},
 issn = {1075-6787},
 keywords = {analogue processing circuits, frequency measurement, time measurementTTL
	circuits, analog frequency measurement, analog time measurement,
	digital frequency measurement, digital time measurement, ultrahigh
	speed devices},
 owner = {dada},
 timestamp = {2008.09.11}
}

@BOOK{Mills2006,
 title = {Computer Network Time Synchronization -- The Network Time Protocol},
 publisher = {Taylor \& Francis},
 year = {2006},
 author = {David L. Mills},
 pages = {286 pages},
 address = {Boca Raton, FL},
 comment = {ISBN 0-8493-5805-1},
 owner = {martin},
 timestamp = {2008.09.05}
}

@TECHREPORT{Mills2006a,
 author = {David L. Mills},
 title = {The Autokey security architecture, protocol and algorithms},
 institution = {Network Working Group, University of Delaware},
 year = {2006},
 number = {06-1-1},
 month = {January},
 abstract = {This report is an update of a previous report TR 03-2-1 of the same
	name and author andpublished in February, 2003. It describes the
	Autokey security model for authenticating serversto clients using
	the Network Time Protocol (NTP) and public key cryptography. its
	design isbased on the premise that IPSEC schemes cannot be adopted
	intact, since that would precludestateless servers and severely compromise
	timekeeping accuracy. In addition, PKI schemes presume authenticated
	time values are always available to enforce certificate lifetimes;
	however, cryptographically verified timestamps require interaction
	between the timekeeping function and authentication function in ways
	not yet considered by the IETF.
	
	 This report includes the Autokey requirements analysis, design principles
	and protocol specification. A detailed description of the protocol
	states, events and transition functions isincluded. A prototype of
	the Autokey design based on this report has been implemented, testedand
	documented in the NTP Version 4 (NTPv4) software distribution for
	Unix, Windows andVMS at http://www.ntp.org.},
 owner = {User},
 timestamp = {2009.07.17},
 url = {http://www.eecis.udel.edu/%7Emills/database/reports/stime1/stime.pdf}
}

@TECHREPORT{Mills2006b,
 author = {David L. Mills},
 title = {Network Time Protocol Version 4 Reference and Implementation Guide},
 institution = {NTP Working Group, University of Delaware},
 year = {2006},
 number = {06-6-1},
 month = {June},
 abstract = {This document describes the Network Time Protocol Version 4 (NTPv4),
	which is widely used to synchronize the time for Internet hosts,
	routers and ancillary devices to Coordinated UniversalTime (UTC)
	as disseminated by national standards laboratories. It describes
	the corearchitecture, protocol, state machine, data structures and
	algorithms. It explains the fundamental on-wire protocol used to
	exchange time values between peers, servers and clients. It summarizes
	the clock offset, roundtrip delay and various other statistics used
	by the mitigation algorithms to calculate the maximum error and nominal
	error inherent in computing these values. It describes several changes
	from Version 3 of NTP (NTPv3) originally described in RFC 1305, including
	the introduction of a modified protocol header to accommodate Internet
	Protocol Version 6 and a new header extension field to support the
	Autokey public key authentication scheme.
	
	 This document is based on the reference implementation available
	at www.ntp.org. It is intended as a reference and implementation
	guide, not as a formal standard. The main body of thedocument describes
	the basic model data structures and algorithms necessary for an implementation
	which can interoperate properly with another implementation faithful
	to this model. This document describes a number of crafted mitigation
	algorithms which can improve the accuracy and stability of the timekeeping
	function, especially in NTP subnets with many servers and clients.
	It also describes the clock discipline function used to adjust the
	system clock in time and frequency to agree with the available sources
	of synchronization.
	
	 As an implementation aid, a code skeleton for the reference implementation
	is presented in an appendix. It includes most of the data structures
	and algorithms of that program, but certain features, such as the
	control and monitoring protocol, Autokey public key authentication
	scheme, huff-'n-puff scheme and server discovery schemes are not
	included. These are discussed in companion documents on the Web and
	in print.},
 owner = {User},
 timestamp = {2009.07.17},
 url = {http://www.eecis.udel.edu/~mills/database/reports/ntp4/ntp4.pdf}
}

@MISC{RFC4330,
 author = {David L. Mills},
 title = {Simple Network Time Protocol ({SNTP}) Version 4 for {IP}v4, {IP}v6
	and {OSI}},
 howpublished = {RFC4330},
 month = {January},
 year = {2006},
 abstract = {This memorandum describes the Simple Network Time Protocol Version
	4 (SNTPv4), which is a subset of the Network Time Protocol (NTP)
	used to synchronize computer clocks in the Internet. SNTPv4 can be
	used when the ultimate performance of a full NTP implementation based
	on RFC 1305 is neither needed nor justified. When operating with
	current and previous NTP and SNTP versions, SNTPv4 requires no changes
	to the specifications or known implementations, but rather clarifies
	certain design features that allow operation in a simple, stateless
	remote-procedure call (RPC) mode with accuracy and reliability expectations
	similar to the UDP/TIME protocol described in RFC 868. This memorandum
	obsoletes RFC 1769, which describes SNTP Version 3 (SNTPv3), and
	RFC 2030, which describes SNTPv4. Its purpose is to correct certain
	inconsistencies in the previous documents and to clarify header formats
	and protocol operations for NTPv3 (IPv4) and SNTPv4 (IPv4, IPv6,
	and OSI), which are also used for SNTP. A further purpose is to provide
	guidance for home and business client implementations for routers
	and other consumer devices to protect the server population from
	abuse. A working knowledge of the NTPv3 specification, RFC 1305,
	is not required for an implementation of SNTP.},
 owner = {martin},
 timestamp = {2008.09.18},
 url = {http://tools.ietf.org/html/rfc4330}
}

@ARTICLE{Mills1998,
 author = {David L. Mills},
 title = {Adaptive Hybrid Clock Discipline Algorithm for the Network Time Protocol},
 journal = {IEEE/ACM Transactions on Networking},
 year = {1998},
 volume = {6},
 pages = {505--514},
 owner = {martin},
 timestamp = {2009.02.06}
}

@CONFERENCE{Mills1996,
 author = {David L. Mills},
 title = {The network computer as precision timekeeper},
 booktitle = {Proc. Precision Time and Time Interval (PTTI) Applications and Planning
	Meeting},
 year = {1996},
 pages = {96--108},
 address = {Reston, VA},
 month = {December},
 abstract = {This paper describes algorithms to discipline a computer clock to
	a source of standard time, such as a GPS receiver or another computer
	synchronized to such a source. The algorithms are designed for use
	in the Network Time Protocol (NTP), which is used to synchronize
	computer clocks in the global Internet. They have been incorporated
	in the NTP software for Unix and Windows and, for the highest accuracy,
	in the operating system kernels for Sun, DEC and HP workstations.
	RMS errors on LANs are usually less than 10 us and on global Internet
	paths usually less than 5 ms. However, rare disruptions of one kind
	or another can cause error spikes up to 100 us on LANs and 100 ms
	on Internet paths.},
 owner = {mk},
 timestamp = {2009.04.16},
 url = {http://www.cis.udel.edu/~mills/database/papers/ptti.pdf}
}

@MISC{RFC1769,
 author = {David L. Mills},
 title = {Simple Network Time Protocol ({SNTP})},
 howpublished = {RFC1769},
 month = {March},
 year = {1995},
 abstract = {This memorandum describes the Simple Network Time Protocol (SNTP),
	which is an adaptation of the Network Time Protocol (NTP) used to
	synchronize computer clocks in the Internet. SNTP can be used when
	the ultimate performance of the full NTP implementation described
	in RFC-1305 is not needed or justified. It can operate in both unicast
	modes (point to point) and broadcast modes (point to multipoint).
	It can also operate in IP multicast mode where this service is available.
	SNTP involves no change to the current or previous NTP specification
	versions or known implementations, but rather a clarification of
	certain design features of NTP which allow operation in a simple,
	stateless remote-procedure call (RPC) mode with accuracy and reliability
	expectations similar to the UDP/TIME protocol described in RFC-868.
	
	This memorandum obsoletes RFC-1361 of the same title. Its purpose
	is to explain the protocol model for operation in broadcast mode,
	to provide additional clarification in some places and to correct
	a few typographical errors. A working knowledge of the NTP Version
	3 specification RFC-1305 is not required for an implementation of
	SNTP.},
 owner = {martin},
 timestamp = {2008.09.18},
 url = {http://tools.ietf.org/html/rfc1769}
}

@MISC{RFC1305,
 author = {David L. Mills},
 title = {Network Time Protocol (Version 3) Specification, Implementation and
	Analysis.},
 howpublished = {RFC1305},
 month = {March},
 year = {1992},
 abstract = {This document describes the Network Time Protocol (NTP), specifies
	its formal structure and summarizes information useful for its implementation.
	NTP provides the mechanisms to synchronize time and coordinate time
	distribution in a large, diverse internet operating at rates from
	mundane to lightwave. It uses a returnable-time design in which a
	distributed subnet of time servers operating in a self- organizing,
	hierarchical-master-slave configuration synchronizes local clocks
	within the subnet and to national time standards via wire or radio.
	The servers can also redistribute reference time via local routing
	algorithms and time daemons.},
 owner = {martin},
 timestamp = {2008.09.18},
 url = {http://www.faqs.org/ftp/rfc/rfc1305.pdf}
}

@MISC{RFC1119,
 author = {David L. Mills},
 title = {Network Time Protocol (version 2) specification and implementation},
 howpublished = {{Network Working Group Request for Comments: 1119}},
 month = sep,
 year = {1989},
 abstract = {This document describes the Network Time Protocol (NTP), specifies
	its formal structure and summarizes information useful for its implementation.
	NTP provides the mechanisms to synchronize time and coordinate time
	distribution in a large, diverse internet operating at rates from
	mundane to lightwave. It uses a returnable-time design in which a
	distributed subnet of time servers operating in a self-organizing,
	hierarchical-master-slave configuration synchronizes local clocks
	within the subnet and to national time standards via wire or radio.
	The servers can also redistribute reference time via local routing
	algorithms and time daemons.},
 keywords = {(Obsoletes RFC 1059, RFC 958)},
 pages = {1--64},
 url = {http://tools.ietf.org/html/rfc1119}
}

@MISC{RFC1128,
 author = {David L. Mills},
 title = {Measured performance of the Network Time Protocol in the Internet
	system},
 howpublished = {{Network Working Group Request for Comments: 1128}},
 month = oct,
 year = {1989},
 abstract = {This paper describes a series of experiments involving over 100,000
	hosts of the Internet system and located in the U.S., Europe and
	the Pacific. The experiments are designed to evaluate the availability,
	accuracy and reliability of international standard time distribution
	using the DARPA/NSF Internet and the Network Time Protocol (NTP),
	which is specified as an Internet Standard in RFC-1119. NTP is designed
	specifically for use in a large, diverse internet system operating
	at speeds from mundane to lightwave. In NTP a distributed subnet
	of time servers operating in a self-organizing, hierarchical, master-slave
	configuration exchange precision times- tamps in order to synchronize
	subnet clocks to each other and national time standards via wire
	or radio. The experiments are designed to locate Internet hosts and
	gateways that provide time by one of three time distribution protocols
	and evaluate the accuracy of their indications. For those hosts that
	support NTP, the experiments determine the distribution of errors
	and other statistics over paths spanning major portions of the globe.
	Finally, the experiments evaluate the accuracy and reliability of
	precision timekeeping using NTP and typical Internet paths involving
	DARPA, NSFNET and other agency networks. The experiments demonstrate
	that timekeeping accuracy throughout most portions of the Internet
	can be ordinarily maintained to within a few tens of milliseconds,
	even in cases of failure or disruption of clocks, time servers or
	networks. },
 pages = {1--20},
 url = {http://tools.ietf.org/html/rfc1128}
}

@MISC{RFC1129,
 author = {David L. Mills},
 title = {Internet time synchronization: The Network Time Protocol},
 howpublished = {{Network Working Group Request for Comments: 1129}},
 month = oct,
 year = {1989},
 abstract = {This memo describes the Network Time Protocol (NTP) designed to distribute
	time information in a large, diverse internet system operating at
	speeds from mundane to lightwave. It uses a returnable- time architecture
	in which a distributed subnet of time servers operating in a self-organizing,
	hierarchical, master-slave configuration synchronizes local clocks
	within the subnet and to national time standards via wire or radio.
	The servers can also redistribute time information within a network
	via local routing algorithms and time daemons. The architectures,
	algorithms and protocols which have evolved to NTP over several years
	of implementation and refinement are described in this paper. The
	synchronization subnet which has been in regular operation in the
	Internet for the last several years is described along with performance
	data which shows that timekeeping accuracy throughout most portions
	of the Internet can be ordinarily maintained to within a few tens
	of milliseconds, even in cases of failure or disruption of clocks,
	time servers or networks. },
 pages = {1--29},
 url = {http://tools.ietf.org/html/rfc1129}
}

@MISC{RFC1059,
 author = {David L. Mills},
 title = {Network Time Protocol (version 1) specification and implementation},
 howpublished = {{Network Working Group Request for Comments: 1059}},
 month = jul,
 year = {1988},
 abstract = {This memo describes the Network Time Protocol (NTP), specifies its
	formal structure and summarizes information useful for its implementation.
	NTP provides the mechanisms to synchronize time and coordinate time
	distribution in a large, diverse internet operating at rates from
	mundane to lightwave. It uses a returnable-time design in which a
	distributed subnet of time servers operating in a self- organizing,
	hierarchical master-slave configuration synchronizes logical clocks
	within the subnet and to national time standards via wire or radio.
	The servers can also redistribute reference time via local routing
	algorithms and time daemons. The NTP architectures, algorithms and
	protocols which have evolved over several years of implementation
	and refinement are described in this document. The prototype system,
	which has been in regular operation in the Internet for the last
	two years, is described in an Appendix along with performance data
	which shows that timekeeping accuracy throughout most portions of
	the Internet can be ordinarily maintained to within a few tens of
	milliseconds, even in cases of failure or disruption of clocks, time
	servers or nets.},
 keywords = {(Obsoleted by RFC 1119)},
 pages = {1--58},
 url = {http://tools.ietf.org/html/rfc1059}
}

@MISC{RFC956,
 author = {David L. Mills},
 title = {Algorithms for synchronizing network clocks},
 howpublished = {{Network Working Group Request for Comments: 956}},
 month = sep,
 year = {1985},
 abstract = {This RFC discussed clock synchronization algorithms for the ARPA-Internet
	community, and requests discussion and suggestions for improvements.},
 pages = {1--26},
 url = {http://tools.ietf.org/html/rfc956}
}

@MISC{RFC957,
 author = {David L. Mills},
 title = {Experiments in network clock synchronization},
 howpublished = {{Network Working Group Request for Comments: 957}},
 month = sep,
 year = {1985},
 abstract = {This RFC discusses some experiments in clock synchronization in the
	ARPA-Internet community, and requests discussion and suggestions
	for improvements.},
 pages = {1--27},
 url = {http://tools.ietf.org/html/rfc957}
}

@MISC{RFC958,
 author = {David L. Mills},
 title = {Network Time Protocol ({NTP})},
 howpublished = {{Network Working Group Request for Comments: 958}},
 month = {September},
 year = {1985},
 abstract = {This RFC suggests a proposed protocol for the ARPA-Internet community,
	and requests discussion and suggestions for improvements.},
 keywords = {(Obsoleted by RFC 1119)},
 pages = {1--14},
 url = {http://tools.ietf.org/html/rfc958}
}

@MISC{RFC778,
 author = {David L. Mills},
 title = {{DCnet} {I}nternet Clock Service},
 howpublished = {RFC778},
 month = {April},
 year = {1981},
 abstract = {Following is a description of the Internet Clock Service (ICS) provided
	by all DCNET hosts. The service, intended primarily for clock synchronization
	and one-way delay measurements with cooperating internet hosts, is
	provided using the Timestamp and Timestamp Reply messages of the
	proposed Internet Control Message Protocol (ICMP). In addition, in
	order to maintain compatability with present systems, this service
	will be provided for a limited time using the Echo and Echo Reply
	messages of the Gateway-Gateway Protocol (GGP). It should be understood
	that ICMP and GGP datagrams are normally considered tightly bound
	to the Internet Protocol (IP) itself and not directly accessable
	to the user on a TOPS-20 system, for example. These datagrams are
	treated somewhat differently from user datagrams in gateways and
	DCNET hosts in that certain internal queueing mechanisms are bypassed.
	Thus, they can be a useful tool in providing the most accurate and
	stable time reference. The prime motivation for this note is to promote
	the development of this service in other internet hosts and gateways
	so that the feasibility for its use thoughout the community can be
	assessed.},
 owner = {martin},
 timestamp = {2008.09.18},
 url = {http://tools.ietf.org/html/rfc778}
}

@INPROCEEDINGS{Mills2000,
 author = {David L. Mills and Poul-Henning Kamp},
 title = {The Nanokernel},
 booktitle = {Proc. Precision Time and Time Interval (PTTI) Applications and Planning
	Meeting},
 year = {2000},
 pages = {423--430},
 address = {Reston, VA, USA},
 month = {November},
 owner = {martin},
 text = {D.L. Mills and P.-H. Kamp. The nanokernel, Proc. Precision Time and
	Time Interval (PTTI) Applications and Planning Meeting, Reston VA,
	November 2000.},
 timestamp = {2008.09.05},
 url = {http://www.pttimeeting.org/archivemeetings/2000papers/paper33.pdf}
}

@MISC{RFC2783,
 author = {J. Mogul and D. Mills and J. Brittenson and J. Stone and U. Windl},
 title = {Pulse-Per-Second {API} for {UNIX}-like Operating Systems, {V}ersion
	1.0},
 howpublished = {RFC2783},
 month = {March},
 year = {2000},
 abstract = {RFC 1589 describes a UNIX kernel implementation model for high- precision
	time-keeping. This model is meant for use in conjunction with the
	Network Time Protocol (NTP, RFC 1305), or similar time synchronization
	protocols. One aspect of this model is an accurate interface to the
	high-accuracy, one pulse-per-second (PPS) output typically available
	from precise time sources (such as a GPS or GOES receiver). RFC 1589
	did not define an API for managing the PPS facility, leaving implementors
	without a portable means for using PPS sources. This document specifies
	such an API.},
 owner = {martin},
 timestamp = {2008.09.18},
 url = {http://tools.ietf.org/html/rfc2783}
}

@ARTICLE{Morgan1985,
 author = {C. Morgan},
 title = {Global and Logical Time in distributed algorithms},
 journal = {Information Processing Letters},
 year = {1985},
 volume = {20},
 pages = {189--194},
 keywords = {good example on the use of logical clocks}
}

@CONFERENCE{Murdoch2006,
 author = {Steven J. Murdoch},
 title = {Hot or not: revealing hidden services by their clock skew},
 booktitle = {Proceedings of the 13th ACM conference on Computer and communications
	security},
 year = {2006},
 pages = {27--36},
 organization = {ACM New York, NY, USA},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.9298},
 owner = {mk},
 timestamp = {2009.02.26},
 url = {http://www.cl.cam.ac.uk/~sjm217/papers/ccs06hotornot.pdf}
}

@INPROCEEDINGS{Murta2006,
 author = {Cristina D. Murta and Pedro R. Torres-Jr. and Prasant Mohapatra},
 title = {Characterizing quality of time and topology in a time synchronization
	network},
 booktitle = {In 49th IEEE Global Telecommunications Conference, IEEE GLOBECOM},
 year = {2006},
 address = {San Francisco},
 month = {November},
 abstract = {As Internet computing gains speed, complexity, and becomes ubiquitous,
	the need for precise and accurate time synchronization increases.
	In this paper, we present a characterization of a clock synchronization
	network managed by Network Time Protocol (NTP), composed by thousands
	of nodes, including hundreds of Stratum 1 servers, based on data
	collected recently by a robot. NTP is the most common protocol for
	time synchronization in the Internet. Many aspects that define the
	quality of timekeeping are analyzed, as well as topological characteristics
	of the network. The results are compared to previous characterizations
	of the NTP network, showing the evolution of clock synchronization
	in the last fifteen years.},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.77.4571},
 owner = {mk},
 timestamp = {2009.04.16},
 url = {http://www.cs.ucdavis.edu/~prasant/pubs/conf/globecom06.pdf}
}

@CONFERENCE{Neiger1987,
 author = {Gil Neiger and Sam Toueg},
 title = {Substituting for Real Time and Common Knowledge in Asynchronous Distributed
	Systems},
 booktitle = {Proceedings of the Symposium on Principles of Distributed Computing},
 year = {1987},
 pages = {281--293},
 organization = {ACM SIGPLAN/SIGOPS},
 keywords = {shows how standard Lamport logical clocks (with simple modifications)
	can be used to simulate synchronized clocks}
}

@ARTICLE{Nelson2001,
 author = {R. A. Nelson and D. D. McCarthy and S. Malys and J. Levine and B.
	Guinot and H. F. Fliegel and R. L. Beard and T. R. Bartholomew},
 title = {The leap second: its history and possible future},
 journal = {Metrologia},
 year = {2001},
 volume = {38},
 pages = {509-529},
 abstract = {This paper reviews the theoretical motivation for the leap second
	in the context of the historical evolution of time measurement. The
	periodic insertion of a leap second step into the scale of Coordinated
	Universal Time (UTC) necessitates frequent changes in complex timekeeping
	systems and is currently the subject of discussion in working groups
	of various international scientific organizations. UTC is an atomic
	time scale that agrees in rate with International Atomic Time (TAI),
	but differs by an integral number of seconds, and is the basis of
	civil time. In contrast, Universal Time (UT1) is an astronomical
	time scale defined by the Earth's rotation and is used in celestial
	navigation. UTC is presently maintained to within 0.9 s of UT1. As
	the needs of celestial navigation that depend on UT1 can now be met
	by satellite systems, such as the Global Positioning System (GPS),
	options for revising the definition of UTC and the possible role
	of leap seconds in the future are considered.},
 owner = {martin},
 timestamp = {2008.10.05}
}

@BOOK{Neubig1997,
 title = {Das große Quarzkochbuch},
 publisher = {Franzis},
 year = {1997},
 author = {Bernd Neubig and Wolfgang Briese},
 pages = {383 pages},
 address = {Munich},
 isbn = {3772358535},
 owner = {martin},
 timestamp = {2009.02.06}
}

@INPROCEEDINGS{Nonaka2002,
 author = {Jorji Nonaka and Gerson H. Pfitscher and Katsumi Onisi and Hideo
	Nakano},
 title = {Low-Cost Hybrid Internal Clock Synchronization Mechanism for COTS
	PC Cluster (Research Note)},
 booktitle = {Euro-Par '02: Proceedings of the 8th International Euro-Par Conference
	on Parallel Processing},
 year = {2002},
 pages = {121--124},
 address = {London, UK},
 publisher = {Springer-Verlag},
 isbn = {3-540-44049-6},
 owner = {kammerhm},
 timestamp = {2008.09.18}
}

@MISC{Noro1998,
 author = {Raffaele Noro and Jean-Pierre Hubaux},
 title = {Clock Synchronization of {MPEG}-2 Services over Packet Networks},
 month = {March},
 year = {1998},
 owner = {martin},
 timestamp = {2008.09.07}
}

@INPROCEEDINGS{Pasztor2002,
 author = {P\'{a}sztor, Attila and Veitch, Darryl},
 title = {{PC} based precision timing without {GPS}},
 booktitle = {Proceedings of the 2002 ACM SIGMETRICS International Conference on
	Measurement and Modeling of Computer Systems (SIGMETRICS'02)},
 year = {2002},
 pages = {1--10},
 address = {New York, NY, USA},
 month = {June},
 publisher = {ACM},
 abstract = {A highly accurate monitoring solution for active network measurement
	is provided without the need for GPS, based on an alternative software
	clock for PCs running Unix. With respect to clock rate, its performance
	exceeds common GPS and NTP synchronized software clock accuracy.
	It is based on the TSC register counting CPU cycles and offers a
	resolution of around 1ns, a rate stability of 0.1PPM equal to that
	of the underlying hardware, and a processing overhead well under
	1us per timestamp. It is scalable and can be run in parallel with
	the usual clock. It is argued that accurate rate, and not synchronised
	offset, is the key requirement of a clock for network measurement.
	The clock requires an accurate estimation of the CPU cycle period.
	Two calibration methods which do not require a reference clock at
	the calibration point are given. To the TSC clock we add timestamping
	optimisations to create two high accuracy monitors, one based on
	Linux and the other on Real-Time Linux. The TSC-RT-Linux monitor
	has offset fluctuations of the order of 1us. The clock is ideally
	suited for high precision active measurement.},
 citeseerurl = {http://citeseer.ist.psu.edu/pasztor02pc.html},
 doi = {http://doi.acm.org/10.1145/511334.511336},
 location = {Marina Del Rey, California},
 url = {https://eprints.kfupm.edu.sa/57372/1/57372.pdf}
}

@CONFERENCE{Peterson1987,
 author = {Larry L. Peterson},
 title = {Preserving Context Information in an {IPC} Abstraction},
 booktitle = {Proceedings of the 6th symposium on Reliability in Distributed Software
	and Database Systems},
 year = {1987},
 pages = {22--31},
 month = {March},
 keywords = {example on the use of vector clocks}
}

@UNPUBLISHED{Putz2004,
 author = {Otmar Putz},
 title = {{Hardware Dokumentation PCI-MF-Encoder Board}},
 note = {Austrian Research Center Seibersdorf. Unpublished hardware documentation
	(in German)},
 month = {v1.0, Juni},
 year = {2004},
 abstract = {Das PCI-Multiformat Encoder Board, in Folge auch kurz PMFE benannt,
	basiert auf einer PCI-Karte mit sechs Videoeingängen, die in einem
	Standard PC-Mainboard als Video-Encoder eingesetzt werden kann. In
	einem Standard-PC können bis zu fünf PCI-Multiformat Platinen eingesetzt
	werden (abhängig vom verwendeten Mainboard), damit können bis zu
	30 Videokameras im nicht gemultiplexten Betrieb angeschlossen werden.
	Der PCI-Multiformat Encoder unterstützt die Bildkomprimierung in
	M-JPEG, JVS (Delta-Komprimierung) und MPEG-4. On Board erfolgt auch
	die Motion Detection.
	
	Der PCI-Multiformat Encoder ist ein integraler Bestandteil im bereits
	bestehenden DVS (Digitales Video System) und ist eine Erweiterung
	in der Funktionalität zum existierenden Video-Mux (Video Multiplexer).
	
	Die wesentlichen Vorteile sind: * Neues Komprimierungsverfahren MPEG-4
	* Keine Performanceverluste bei JVS (Delta-Komprimierung) * Hohe
	Rechenleistung am Interfaceboard (Dual DSP mit je bis zu 4800 MIPS)
	* Flexible Eingangskanal-Konfiguration und variable Komprimierung
	* Transcoderfunktionalität (zB. Konvertierung von JPEG auf MPEG-4)
	* Zugriff auf codierte und uncodierte Bilder (für Bildverarbeitung
	am Board und im PC) * Zukunftsweisende Technologie * Weitere Komprimierungsformate
	wie MPEG-2, JPEG2000, Wavelet, etc. können implementiert werden (entsprechende
	Codecs erforderlich)
	
	Die zusätzlichen Funktionen wie MPEG-4 Encodierung, mehrere Komprimierungsquellen
	von einer Videosource, Multicast und QoS können ohne Einfluss auf
	die Hardware durch Upgrade der Firmware des DSP und Upgrade der Software
	im DVS realisiert werden.},
 comment = {Vertraulich!},
 owner = {mk},
 timestamp = {2009.08.17}
}

@INBOOK{Romer2005,
 chapter = {Time synchronization and calibration in wireless sensor networks},
 pages = {199--237},
 title = {Handbook of Sensor Networks: Algorithms and Architectures},
 publisher = {Wiley-Interscience},
 year = {2005},
 author = {Kay R\"{o}mer and Philipp Blum and Lennart Meier},
 abstract = {networks. We will first consider time synchronization in Sections
	1.1-1.6, before turning to calibration in Section 1.7. We will show
	that time synchronization can beconsidered as a calibration problem
	and many observations about time synchronizationcan be transferred
	to calibration.
	
	In Section 1.1, we discuss applications of synchronized time in sensor
	networks,present challenges of sensor networks, and discuss why traditional
	synchronizationapproaches fail to meet these challenges. Section
	1.2 presents models of sensornodes, of hardware clocks, and of communication.
	Section 1.3 gives an overviewof the various classes of synchronization.
	In Section 1.4, we present common synchronizationtechniques. Section
	1.5 examines current synchronization algorithms. Section 1.6 presents
	common techniques for evaluating synchronization algorithms and selected
	evaluation results.},
 journal = {Handbook of Sensor Networks: Algorithms and Architectures},
 owner = {mk},
 timestamp = {2009.08.06},
 url = {ftp://ftp.tik.ee.ethz.ch/pub/people/thiele/paper/RBM05a.pdf}
}

@ARTICLE{Romer2004,
 author = {Kay R\"{o}mer and Friedemann Mattern},
 title = {The design space of wireless sensor networks},
 journal = {IEEE Wireless Communications},
 year = {2004},
 volume = {11},
 pages = {54--61},
 number = {6},
 owner = {mk},
 timestamp = {2009.02.17},
 url = {http://www.inf.ethz.ch/vs/publ/papers/wsn-designspace.pdf}
}

@ARTICLE{Ramanathan1990a,
 author = {P Ramanathan and D. D. Kandlur and K. G. Shin},
 title = {Hardware-assisted software clock synchronization for homogeneous
	distributed systems},
 journal = {IEEE Transactions on Computers},
 year = {1990},
 volume = {C-39},
 pages = {514--524},
 number = {4},
 month = {April}
}

@ARTICLE{Ramanathan1990,
 author = {Parameswaran Ramanathan and Kang G. Shin and Ricky W. Butler},
 title = {Fault-Tolerant Clock Synchronization in Distributed Systems},
 journal = {Computer},
 year = {1990},
 volume = {23},
 pages = {33--42},
 number = {10},
 address = {Los Alamitos, CA, USA},
 doi = {http://dx.doi.org/10.1109/2.58235},
 issn = {0018-9162},
 owner = {dada},
 publisher = {IEEE Computer Society Press},
 timestamp = {2008.09.11},
 url = {http://minds.wisconsin.edu/bitstream/handle/1793/9162/file_1.pdf?sequence=1}
}

@ARTICLE{Ridoux2009,
 author = {Julien Ridoux and Darryl Veitch},
 title = {Ten Microseconds Over LAN, for Free (Extended)},
 journal = {IEEE Transactions on Instrumentation and Measurement (TIM)},
 year = {2009},
 volume = {58},
 pages = {1841--1848},
 number = {6},
 month = {June},
 abstract = {The status quo for time stamping in personal computers (PCs) is ntpd,
	which, under general conditions, is accurate to 1 ms at best. For
	precision applications, it is inadequate, but it is a low-cost solution
	that suits many generic applications. IEEE-1588 provides mechanisms
	for submicrosecond accuracy, but to achieve this, more hardware is
	needed. We have developed the TSCclock, which gives the performance
	between these two solutions [about 10 microseconds on a local area
	network (LAN)] beyond submilliseconds using commodity hardware. We
	benchmark the TSCclock to show its potential as an inexpensive yet
	accurate software clock, which can be used with IEEE-1588 for LANs
	but has wider applicability as a replacement to ntpd.},
 citeseerurl = {http://ieeexplore.ieee.org/xpls/pre_abs_all.jsp?isnumber=4407674&arnumber=4785500},
 doi = {10.1109/TIM.2009.2013653},
 issn = {0018-9456},
 owner = {mk},
 timestamp = {2009.04.13},
 url = {http://www.cubinlab.ee.unimelb.edu.au/~darryl/Publications/TIM_2008_camera.pdf}
}

@INPROCEEDINGS{Ridoux2008,
 author = {Ridoux, Julien and Veitch, Darryl},
 title = {The Cost of Variability},
 booktitle = {IEEE International Symposium on Precision Clock Synchronization for
	Measurement, Control and Communication (ISPCS 2008)},
 year = {2008},
 pages = {29-36},
 address = {Ann Arbor, Michigan, USA},
 month = {September},
 abstract = {We explore the robustness of synchronization performed in the presence
	of variable latencies using two software clocks: the TSCclock, designed
	to replace ntpd for Internet synchronisation, and ptpd, a software
	implementation of IEEE-1588. Using a precise comparison methodology
	the TSCclock is shown to be more accurate and far more robust. We
	discuss the reasons why and the implications for IEEE-1588 more generally.},
 doi = {10.1109/ISPCS.2008.4659208},
 keywords = {IEEE standards, clocks, scheduling, synchronisation, task analysisIEEE-1588,
	Internet synchronisation, TSCclock, ptpd, software clocks},
 owner = {mk},
 timestamp = {2009.04.12},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4659208&isnumber=4659195}
}

@INPROCEEDINGS{Ridoux2007,
 author = {Ridoux, Julien and Veitch, Darryl},
 title = {Ten Microseconds Over {LAN}, for Free},
 booktitle = {IEEE International Symposium on Precision Clock Synchronization for
	Measurement, Control and Communication (ISPCS 2007).},
 year = {2007},
 pages = {105-109},
 address = {Vienna, Austria},
 month = {October},
 abstract = {The status quo for timestamping in PCs is ntpd, which is accurate
	to 1[ms] at best. For precision applications this is inadequate,
	but it is a low cost solution which suits many generic applications.
	IEEE-1588 provides mechanisms for sub-microsecond accuracy, but to
	achieve this more hardware is needed. We have developed the TSCclock,
	which gives performance between these two, around 10 microseconds
	on LAN, sub millisecond beyond, but using commodity hardware. We
	begin detailed benchmarking of the TSCclock to show its potential
	as an inexpensive yet accurate software clock, which could be used
	with IEEE-1588 for LANs, but has wider applicability as a replacement
	to ntpd.},
 doi = {10.1109/ISPCS.2007.4383782},
 keywords = {IEEE standards, local area networks, synchronisationIEEE-1588, LAN,
	TSCclock, software clock, time 1 ms, time 10 mus, timestamping},
 owner = {mk},
 timestamp = {2009.04.12},
 url = {http://www.cubinlab.ee.unimelb.edu.au/~darryl/Publications/ISPCS07_camera.pdf}
}

@INPROCEEDINGS{Ridoux2007a,
 author = {Ridoux, Julien and Veitch, Darryl},
 title = {A Methodology for Clock Benchmarking},
 booktitle = {3rd International Conference on Testbeds and Research Infrastructure
	for the Development of Networks and Communities (TridentCom 2007)},
 year = {2007},
 pages = {1-10},
 month = {May},
 organization = {Orlando, Florida},
 abstract = {Accurate timestamping is a basic need in traffic monitoring as well
	as distributed computing in the broad sense, and is destined to become
	increasingly important as network latency becomes a hard barrier
	to improved performance across networks. Software clocks need to
	be improved to meet this challenge, however evaluating their performance
	is non trivial, as they are imbedded inside computing systems. We
	present a methodology for clock validation which allows many of the
	difficult problems to be resolved. Our method involves a combination
	of external and internal validation strategies, and makes use of
	GPS synchronized DAG cards and system clocks. We illustrate in detail
	how it may be applied using real data collected from 3 clocks implemented
	in UNIX PCs.},
 doi = {10.1109/TRIDENTCOM.2007.4444689},
 keywords = {Global Positioning System, graph theory, synchronisation, telecommunication
	computing, telecommunication trafficGPS, UNIX, accurate timestamping,
	directed acyclic graph card, distributed computing, network latency,
	software clock benchmarking, traffic monitoring},
 owner = {mk},
 timestamp = {2009.04.12},
 url = {http://www.cubinlab.ee.unimelb.edu.au/~jrid/Publications/ridoux_tridentcom07.pdf}
}

@BOOK{Riley2008,
 title = {Handbook of Frequency Stability Analysis},
 publisher = {U.\,S. Dept. of Commerce, National Institute of Standards and Technology},
 year = {2008},
 author = {William J. Riley},
 series = {NIST Special Publication 1065},
 month = {July},
 comment = {CODEN: NSPUE2},
 owner = {mk},
 timestamp = {2009.03.03},
 url = {http://tf.nist.gov/timefreq/general/pdf/2220.pdf}
}

@CONFERENCE{Riley2003,
 author = {William J. Riley},
 title = {Techniques for Frequency Stability Analysis},
 booktitle = {IEEE International Frequency Control Symposium},
 year = {2003},
 address = {Tampa, FL},
 owner = {mk},
 timestamp = {2009.03.06},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.84.3351&rep=rep1&type=pdf}
}

@INPROCEEDINGS{Roth2005,
 author = {Roth, G. Linn and Schick, Paul and Jacoby, James and Schweitzer,
	Chad and Gervasi, Dean and Wiley, Eric},
 title = {{Enhanced or eLoran for time and frequency applications}},
 booktitle = {Proceedings of the 2005 IEEE International Frequency Control Symposium
	and Exposition},
 year = {2005},
 address = {Vancouver, B.\,C.},
 month = {August},
 journal = {sta},
 owner = {mk},
 timestamp = {2009.07.20},
 url = {http://tycho.usno.navy.mil/ptti/ptti2005/paper93.pdf}
}

@ARTICLE{Rothke1998,
 author = {Ben Rothke},
 title = {The Criticality of Network Time Synchronization and its Effect on
	Information Systems Security},
 journal = {Computer Security Institute Journal},
 year = {1998}
}

@PHDTHESIS{Rosch2006,
 author = {Otto Jürgen R{\"o}sch},
 title = {Regelung dynamischer Systeme mit stochastischer Zeitverz{\"o}gerung
	durch ein Kommunikationsnetzwerk},
 school = {Universität Siegen},
 year = {2006},
 abstract = {Communication networks are commonly used in the automation technology
	for the wiring of large plant. Special designed bus systems are generally
	used which support a real-time capability and areusable for control
	purposes of dynamic systems. Actuators, sensors and control units
	can directlybe connected by such bus systems. The integration of
	communication-networks for large machinesis in general cheaper, reduces
	weight and power, easier to install and maintain and has a higherreliability
	in comparison to classical point-to-point connections. The bus system
	can be shared bydifferent applications of such connected plants.
	The largest cross-linked network itself is theinternet. Existing
	networks like the internet are used for large distance connections,
	because theinstallation of special networks might be too expensive,
	e.g. a transatlantic connection. The increased data transfer rate
	and reaction time of communication networks enables remote control
	of plants through the internet. The industry shows an increasing
	usage of controlapplications through communication networks. Sensors
	and actuators with TCP/IP interfaces weredeveloped, to directly integrate
	it into networks. By using the internet, the infrastructure is in
	general already available and no additional installation is necessary.
	But it has to be considered, thatthe real-time performance with control
	through the internet is bad and stochastical time delaysappear. These
	delays could result in unwanted system behaviour and must be considered
	in thecontroller design. When controlling a dynamical system over
	the internet it must be distinguished whether the datanetwork is
	integrated in the control loop, or if it is only used for a remote
	system start with thepossibility of editing control parameters (e.g.
	the desired value or some controller gain-values)where the control
	loop itself runs locally. If only a local control loop exists, no
	delay problemsoccur by using the network. But if the internet is
	integrated in the control loop, stochastical timedelays appear through
	the network connection.
	
	New controller designs are neccesarry for a stable control of dynamical
	systems with stochastically varying time delays in the control loop.
	The following work points out different approaches for thedesign
	of controllers for input delay systems with stochastically varying
	time delays. Static and adaptive control laws are considered in the
	further work.},
 owner = {mk},
 timestamp = {2009.08.04},
 url = {http://dokumentix.ub.uni-siegen.de/opus/volltexte/2007/279/pdf/roesch.pdf}
}

@CONFERENCE{Sato2006,
 author = {Katsuhisa Sato and Kazuyoshi Asari},
 title = {Characteristics of time synchronization response of {NTP} clients
	on {MS W}indows os and {L}inux},
 booktitle = {Proceedings of the 38th Annual Precise Time and Time Interval ({PTTI})
	Meeting},
 year = {2006},
 pages = {175--183},
 address = {Washington D.C., USA},
 month = {December},
 abstract = {The clock offset between a GPS-based NTP time server and NTP time
	client software, installed in the MS Windows Operating System (OS)
	and the Linux OS on PCs, are measured and evaluated. The clock offset
	on MS Windows 98 OS shows a trend with a range of about 55 ms. The
	NTP time client software on MS Windows OS adjusts the internal clock
	with the Application Program Interface (API) timer function. The
	resolution of the API timer function depends on the hardware interrupt
	of the PC system timer, which is 54.9 ms of IRQ0 for MS Windows 98
	OS. Thus, this range of the trend in the clock offset is considered
	to be caused by the resolution of API timer function. The clock offset
	on MS Windows XP OS shows time resolutions of 1 ms for the 1 ms API
	timer mode and 10 ms for the 10 ms API timer mode. The resolution
	of 1 ms is dependent on a hardware interrupt of IRQ8 (976 us) that
	is generated by a PC real-time clock. The resolution of the system
	timer on MS-windows XP depends on the hardware platform and shows
	10 ms or 15ms. The clock offset on Linux OS also has a trend as well
	as a periodic divergence. The trend interval of the drift is estimated
	to be about 35 minutes. The origin of this trend in interval is presumed
	to be the loop constant of the kernel Phase Lock Loop (PLL). The
	Standard Deviation of this clock offset for 24 hours is 0.95 ms.
	Evidently, both MS Windows OS and Linux OS adopt different algorithms
	for keeping the internal clock. The accuracy of time synchronization
	by NTP is restricted by the algorithms. The limitation of the time
	synchronization accuracy on MS Windows OS is related to the resolution
	of API that depends on a hardware interrupt generated in the PC hardware
	system timer and real-time clock. On the other hand, the loop constant
	of the kernel clock algorithm restricts the time synchronization
	accuracy by NTP on Linux OS.},
 owner = {mk},
 review = {Evaluates the MS implementation not the ntp.org reference implementation.},
 timestamp = {2009.02.26},
 url = {http://www.pttimeeting.org/archivemeetings/2006papers/paper12.pdf}
}

@INPROCEEDINGS{Schmid2008,
 author = {Schmid, Thomas and Charbiwala, Zainul and Friedman, Jonathan and
	Cho, Young H. and Srivastava, Mani B.},
 title = {Exploiting manufacturing variations for compensating environment-induced
	clock drift in time synchronization},
 booktitle = {Proceedings of the 2008 ACM SIGMETRICS international conference on
	Measurement and modeling of computer systems (SIGMETRICS'08)},
 year = {2008},
 pages = {97--108},
 address = {Annapolis, Maryland, USA},
 month = {June},
 abstract = {Time synchronization is an essential service in distributed computing
	and control systems. It is used to enable tasks such as synchronized
	data sampling and accurate time-of-flight estimation, which can be
	used to locate nodes. The deviation in nodes' knowledge of time and
	inter-node resynchronization rate are affected by three sources of
	time stamping errors: network wireless communication delays, platform
	hardware and software delays, and environment-dependent frequency
	drift characteristics of the clock source. The focus of this work
	is on the last source of error, the clock source, which becomes a
	bottleneck when either required time accuracy or available energy
	budget and bandwidth (and thus feasible resynchronization rate) are
	too stringent. Traditionally, this has required the use of expensive
	clock sources (such as temperature compensation using precise sensors
	and calibration models) that are not cost-effective in low-end wireless
	sensor nodes. Since the frequency of a crystal is a product of manufacturing
	and environmental parameters, we describe an approach that exploits
	the subtle manufacturing variation between a pair of inexpensive
	oscillators placed in close proximity to algorithmically compensate
	for the drift produced by the environment. The algorithm effectively
	uses the oscillators themselves as a sensor that can detect changes
	in frequency caused by a variety of environmental factors. We analyze
	the performance of our approach using behavioral models of crystal
	oscillators in our algorithm simulation. Then we apply the algorithm
	to an actual temperature dataset collected at the James Wildlife
	Reserve in Riverside County, California, and test the algorithms
	on a waveform generator based testbed. The result of our experiments
	show that the technique can effectively improve the frequency stability
	of an inexpensive uncompensated crystal 5 times with the potential
	for even higher gains in future implementations.},
 doi = {http://doi.acm.org/10.1145/1375457.1375469},
 isbn = {978-1-60558-005-0},
 location = {Annapolis, MD, USA},
 owner = {mk},
 timestamp = {2009.04.10},
 url = {http://portal.acm.org/ft_gateway.cfm?id=1375469&type=pdf&coll=GUIDE&dl=GUIDE&CFID=29740006&CFTOKEN=13889099}
}

@TECHREPORT{Schmid1994,
 author = {Ulrich Schmid},
 title = {An Annotated Bibliography on Clock Synchronization in Distributed
	Systems},
 institution = {Technische Universit\"{a}t Wien, Department of Automation},
 year = {1994},
 number = {183/1-45},
 address = {Vienna, Austria},
 month = {December},
 owner = {mk},
 pages = {14 pages},
 timestamp = {2009.02.14},
 url = {http://www.ecs.tuwien.ac.at/projects/SynUTC/documents/Sch94b.ps}
}

@TECHREPORT{Schmid2001,
 author = {Ulrich Schmid and Martin Horauer and Nikolaus Ker\"o},
 title = {{H}ochgenaue {U}hrensynchronisation in {V}erteilten {S}ystemen},
 institution = {Vienna University of Technology, Department of Automation},
 year = {2001},
 number = {183/1-117},
 month = {October},
 notes = {(Bewerbung Morris-Preis)},
 owner = {mk},
 pages = {14 pages},
 timestamp = {2009.02.15},
 url = {http://www.auto.tuwien.ac.at/bib/pdf_TR/TR0117.pdf}
}

@PHDTHESIS{Schmuck1988,
 author = {Schmuck, Frank Bernhard},
 title = {The use of efficient broadcast protocols in asynchronous distributed
	systems},
 school = {Cornell University},
 year = {1988},
 address = {Ithaca, NY, USA},
 order_no = {AAI8900827},
 owner = {mk},
 timestamp = {2009.02.14},
 url = {http://portal.acm.org/citation.cfm?id=914532&coll=GUIDE&dl=GUIDE&CFID=22362266&CFTOKEN=22297069}
}

@TECHREPORT{Schneider1987,
 author = {Fred B. Schneider},
 title = {Understanding Protocols for Byzantine Clock Synchronization},
 institution = {Cornell University},
 year = {1987},
 number = {TR 87--859},
 address = {Dept. of Computer Science, Upson Hall, Ithaca, NY 14853},
 month = {August},
 keywords = {survey on clock synchronization algorithms, including lots of references}
}

@PHDTHESIS{Schossmaier2000,
 author = {Klaus Schossmaier},
 title = {Interval-Based Clock State and Rate Synchronization},
 school = {TU Vienna},
 year = {2000},
 address = {\"{O}sterreichischer Kunst- und Kulturverlag, Vienna, Austria},
 comment = {ISBN 3-85437-201-9},
 owner = {martin},
 timestamp = {2008.09.06}
}

@TECHREPORT{Schossmaier1996,
 author = {Klaus Schossmaier},
 title = {Understanding Interval-based Clock Rate Synchronization Algorithms},
 institution = {Vienna University of Technology, Department of Automation},
 year = {1996},
 number = {183/1-70},
 month = {December},
 note = {{\em Proc. ACM PODC '97}},
 owner = {mk},
 timestamp = {2009.02.15},
 url = {http://www.auto.tuwien.ac.at/bib/pdf_TR/TR0070.pdf}
}

@INCOLLECTION{Schreiber1994,
 author = {Fabio A. Schreiber},
 title = {{Is Time a Real Time? - An Overview of Time Ontology in Informatics}},
 booktitle = {Real Time Computing},
 publisher = {Springer},
 year = {1994},
 editor = {W. A. Halang and A. D. Stoyenko},
 pages = {283--307},
 address = {Berlin, Heidelberg},
 abstract = {this paper is to introduce several aspects of time in the heterogeneous
	world of Informatics and define ontologies for time in different
	domains of computers and their applications, and not to discuss the
	very nature of time by itself, a philosophical problem which is to
	remain open forever. However, in sections 1.1 and 1.2 we are going
	to give some philosophical and physical background, because, from
	the richness of often contrasting ideas, developed in the framework
	of these disciplines, many useful concepts have been derived},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.7411},
 owner = {mk},
 timestamp = {2009.09.10}
}

@CONFERENCE{Siddha2007,
 author = {Suresh Siddha and Venkatesh Pallipadi and Arjan Van De Ven},
 title = {Getting maximum mileage out of tickless},
 booktitle = {Proceedings of the Linux Symposium},
 year = {2007},
 pages = {201--208},
 address = {Ottawa, Ontario, Canada},
 month = {June 27--30},
 abstract = {Now that the tickless(/dynticks) infrastructure is integrated into
	the base kernel, this paper talks about variousadd on changes that
	makes tickless kernels moreeffective. Tickless kernel pose some hardware
	challenges thatwere primarily exposed by the requirement of continuouslyrunning
	per-CPU timer. We will discuss how thisissue was resolved by using
	HPET in a new mode. Eliminatingidle periodic ticks causes kernel
	process schedulernot do idle balance as frequently as it would do
	otherwise.We provide insight into how this tricky issue ofsaving
	power with minimal impact on performance, isresolved in tickless
	kernel. We will also look at the kernel and user level daemonsand
	drivers, polling for things with their own timers andits side effect
	on overall system idle time, with suggestionson how to make these
	daemons and driverstickless-friendly.},
 owner = {mk},
 timestamp = {2009.07.22},
 url = {http://www.kernel.org/doc/ols/2007/ols2007v2-pages-201-208.pdf}
}

@CONFERENCE{Simon2004,
 author = {Simon, G. and Mar{\'o}ti, M. and L{\'e}deczi, {\'A}. and Balogh,
	G. and Kusy, B. and N{\'a}das, A. and Pap, G. and Sallai, J. and
	Frampton, K.},
 title = {Sensor network-based countersniper system},
 booktitle = {Proceedings of the 2nd international conference on Embedded networked
	sensor systems (SenSys-04)},
 year = {2004},
 pages = {1--12},
 address = {New York, NY, USA},
 organization = {ACM New York},
 publisher = {ACM},
 citeseerurl = {http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.80.6827},
 doi = {http://doi.acm.org/10.1145/1031495.1031497},
 isbn = {1-58113-879-2},
 location = {Baltimore, MD, USA},
 owner = {mk},
 timestamp = {2009.02.17},
 url = {http://www.stanford.edu/~kusy/pubs/countersniper.pdf}
}

@INCOLLECTION{Simons1990,
 author = {Barbara Simons and Jennifer Lundelius Welch and Nancy Lynch},
 title = {An overview of clock synchronization},
 booktitle = {Fault-tolerant distributed computing},
 publisher = {Springer-Verlag},
 year = {1990},
 volume = {448},
 series = {Springer Lecture Notes In Computer Science},
 pages = {84--96},
 address = {London, UK},
 abstract = {This is a summary of the theoretical work to date involving synchronizing
	clocks in distributed computer systems. It is based on talks given
	by Nancy Lynch and BarbaraSimons at the IBM Fault-Tolerant Computing
	Workshop held at Asilomar, California,March 1986.},
 book = {Fault-tolerant distributed computing},
 isbn = {0-387-97385-0},
 owner = {dada},
 timestamp = {2008.09.11},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.1023&rep=rep1&type=pdf}
}

@ARTICLE{Singhal1992,
 author = {Mukesh Singhal and Ajay Kshemkalyani},
 title = {An efficient implementation of vector clocks},
 journal = {Information Processing Letters},
 year = {1992},
 volume = {43},
 pages = {47--52},
 number = {1},
 address = {Amsterdam, The Netherlands, The Netherlands},
 doi = {http://dx.doi.org/10.1016/0020-0190(92)90028-T},
 issn = {0020-0190},
 owner = {mk},
 publisher = {Elsevier North-Holland, Inc.},
 timestamp = {2009.02.11}
}

@ARTICLE{Sirdey2008,
 author = {Renaud Sirdey and François Maurice},
 title = {A linear programming approach to highly precise clock synchronization
	over a packet network},
 journal = {4OR: A Quarterly Journal of Operations Research},
 year = {2008},
 volume = {6},
 pages = {393--401},
 number = {4},
 month = {December},
 abstract = {In this paper, we propose a linear programming-based method suitable
	for precise and reliable estimation of the skew of a slave clock
	respective to a master clock using timing information carried over
	an asynchronous packet network. Solving this problem is key to the
	viability of deploying low-cost IP-based transport technology in
	existing GSM networks. The paper is concluded by empirical evidence
	suggesting that the proposed method indeed has the potential to meet
	the stringent GSM precision requirements.},
 doi = {10.1007/s10288-007-0060-6},
 keywords = {Linear programming - Clock synchronization - OR in telecommunications},
 owner = {mk},
 timestamp = {2009.07.25},
 url = {http://www.springerlink.com/content/jv875623v734346q/}
}

@ARTICLE{Sivrikaya2004,
 author = {Fikret Sivrikaya and Bülent Yener},
 title = {Time Synchronization in Sensor Networks: A Survey},
 journal = {IEEE Network},
 year = {2004},
 volume = {18},
 pages = {45-50},
 number = {4},
 month = {July/August},
 comment = {Rensselaer Polytech. Inst., Troy, NY, USA},
 doi = {10.1109/MNET.2004.1316761},
 owner = {martin},
 timestamp = {2008.09.05},
 url = {http://intranet.daiict.ac.in/~ranjan/isn2005/papers/01316761.pdf}
}

@CONFERENCE{Skinner2001,
 author = {Harry G. Skinner and Kevin P. Slattery},
 title = {Why Spread Spectrum Clocking of Computing Devices is Not Cheating},
 booktitle = {2001 IEEE International Symposium on Electromagnetic Compatibility
	(EMC'01)},
 year = {2001},
 volume = {1},
 pages = {537--540},
 address = {Montreal, Quebec, Canada},
 abstract = {Spread spectrum clocking (SSC), also known as clock dithering, is
	a widely accepted and utilized method of reducing electromagnetic
	emissions to meet regulatory requirements. By intentionally spreading
	the energy of the clock harmonics into a band several megahertz wide,
	the amplitude of the radiated signals can be decreased by factors
	as high as 20 dB. Unfortunately some members of the radio and telecommunications
	industries (as well as the EMC community) view this technique as
	a "cheat". It has been claimed that the reduction in emissions gained
	by the use of SSC does not translate to a lower probability of interference,
	and that accordingly, devices that use clock dithering should adhere
	to stricter regulations. This paper addresses those concerns, and
	explains why they are not valid.},
 doi = {10.1109/ISEMC.2001.950699},
 owner = {mk},
 timestamp = {2009.03.07},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=950699&isnumber=20566}
}

@CONFERENCE{Solis2006,
 author = {Solis, R. and Borkar, V. and Kumar, P. R.},
 title = {A new distributed time synchronization protocol for multihop wireless
	networks},
 booktitle = {Proc. of the 45th IEEE Conference on Decison and Control},
 year = {2006},
 owner = {mk},
 timestamp = {2009.02.18},
 url = {http://black.csl.uiuc.edu/~prkumar/ps_files/solborkum06.pdf}
}

@INPROCEEDINGS{Sommer2008,
 author = {Philipp Sommer and Roger Wattenhofer},
 title = {Symmetric clock synchronization in sensor networks},
 booktitle = {REALWSN '08: Proceedings of the workshop on Real-world wireless sensor
	networks},
 year = {2008},
 pages = {11--15},
 address = {New York, NY, USA},
 publisher = {ACM},
 doi = {http://doi.acm.org/10.1145/1435473.1435477},
 isbn = {978-1-60558-123-1},
 location = {Glasgow, Scotland},
 owner = {mk},
 timestamp = {2009.02.18},
 url = {http://dcg.ethz.ch/publications/realwsn08.pdf}
}

@ARTICLE{Srikanth1987,
 author = {T. K. Srikanth and Sam Toueg},
 title = {Optimal Clock Synchronization},
 journal = {Journal of the ACM},
 year = {1987},
 volume = {34},
 pages = {626--645},
 number = {3},
 month = {July}
}

@ARTICLE{Strom1985,
 author = {Robert E. Strom and Shaula A. Yemini},
 title = {Optimistic Recovery in Distributed Systems},
 journal = {ACM Transactions on Computer Systems},
 year = {1985},
 volume = {3},
 pages = {204--226},
 number = {3},
 month = {August},
 keywords = {combines the optimistic principle underlying Jefferson's work with
	the time-as-partial-order ideas of Lamport}
}

@ARTICLE{Sullivan1991,
 author = {Sullivan, D.B. and Levine, J.},
 title = {Time Generation and Distribution},
 journal = {Proceedings of the IEEE},
 year = {1991},
 volume = {79},
 pages = {906-914},
 number = {7},
 month = {July},
 doi = {10.1109/5.84966},
 owner = {martin},
 timestamp = {2008.09.05}
}

@BOOK{Sullivan1990,
 title = {Characterization of Clocks and Oscillators},
 publisher = {NIST Technical Note 1337},
 year = {1990},
 author = {D. B. Sullivan and D. W. Allan and D. A. Howe and F. L. Walls},
 month = {March},
 owner = {mk},
 review = {A collection of published papers assembled as a reference for those
	involved in characterizing and specifying high-performance clocks
	and oscillators. Includes extensive information about measurement
	techniques and data analysis. 352 pages.},
 timestamp = {2009.01.11},
 url = {http://tf.nist.gov/timefreq/general/pdf/868.pdf}
}

@ARTICLE{Sundararaman2005,
 author = {Bharath Sundararaman and Ugo Buy and Ajay D. Kshemkalyani},
 title = {Clock Synchronization for Wireless Sensor Networks: A Survey},
 journal = {Ad-Hoc Networks},
 year = {2005},
 volume = {3},
 pages = {281-323},
 number = {3},
 month = {March},
 owner = {kammerhm},
 timestamp = {2008.09.10},
 url = {http://www.cs.uic.edu/~ajayk/ext/ClockSyncWSNsurvey.pdf}
}

@UNPUBLISHED{Tengg2008,
 author = {Allan Tengg},
 title = {{The I-SENSE Communication}},
 note = {Unpublished technical documentation, 10~pages},
 year = {2008},
 comment = {Hardcopy 2008 von Allan erhalten.},
 owner = {mk},
 timestamp = {2009.08.16}
}

@INPROCEEDINGS{Tengg2007,
 author = {Allan Tengg and Andreas Klausner and Bernhard Rinner},
 title = {{I-SENSE}: A Light-Weight Middleware for Embedded Multi-Sensor Data-Fusion},
 booktitle = {Proc. of the 5th Workshop on Intelligent Solutions in Embedded Systems
	(WISES'07)},
 year = {2007},
 pages = {165-177},
 address = {Madrid, Spain},
 month = {June},
 abstract = {In our I-SENSE project we demonstrate the combination the scientific
	research areas multi-sensor data fusion and pervasive embedded computing.
	The main idea is to provide a generic architecture which supports
	a distributed data fusion on an embedded system. Due to the high
	onboard processing and communication power of the used hardware,
	our proposed architecture is designed to perform sophisticated data
	fusion tasks. Another goal of I-SENSE research project addresses
	the reconfiguration of a distributed system at runtime, thus, to
	be able to react to changes in the system's environment dynamically.
	This paper though gives an overlook of our developed middleware which
	eases the development of distributed fusion applications on embedded
	systems and which includes reconfiguration facilities. We further
	present some experimental results obtained using our middleware and
	give an outlook of our ongoing research.},
 doi = {10.1109/WISES.2007.4408489},
 keywords = {middleware, sensor fusion, ubiquitous computingembedded multi-sensor
	data-fusion, embedded system, light-weight middleware, pervasive
	embedded computing, sophisticated data fusion tasks},
 owner = {mk},
 timestamp = {2009.02.27},
 url = {http://www.iti.tugraz.at/de/research/isense/publications/wises07.pdf}
}

@MANUAL{SPRU582,
 title = {TMS320C6000 DSP 32-Bit Timer Reference Guide},
 author = {{Texas Instruments}},
 address = {SPRU582B},
 month = {January},
 year = {2005},
 owner = {mk},
 timestamp = {2009.08.12}
}

@MANUAL{SPRU401,
 title = {TMS320C6000 Chip Support Library API Reference Guide},
 author = {{Texas Instruments}},
 address = {SPRU401J},
 month = {August},
 year = {2004},
 owner = {mk},
 timestamp = {2009.08.12}
}

@MANUAL{SPRU403,
 title = {TMS320C6000 DSP/BIOS Application Programming Interface (API) Reference
	Guide},
 author = {{Texas Instruments}},
 address = {SPRU403G},
 month = {April},
 year = {2004},
 owner = {mk},
 timestamp = {2009.08.12}
}

@MANUAL{SPRU423,
 title = {TMS320C6000 DSP/BIOS User's Guide},
 author = {{Texas Instruments}},
 address = {SPRU423D},
 month = {April},
 year = {2004},
 owner = {mk},
 timestamp = {2009.08.12}
}

@MANUAL{SPRA646,
 title = {DSP/BIOS II Technical Overview},
 author = {{Texas Instruments}},
 address = {SPRA646},
 month = {March},
 year = {2000},
 owner = {mk},
 timestamp = {2009.08.12}
}

@CONFERENCE{Tsafrir2005,
 author = {Tsafrir, D. and Etsion, Y. and Feitelson, D.G. and Kirkpatrick, S.},
 title = {System noise, {OS} clock ticks, and fine-grained parallel applications},
 booktitle = {Proceedings of the 19th annual international conference on Supercomputing},
 year = {2005},
 pages = {303--312},
 organization = {ACM New York, NY, USA},
 abstract = {As parallel jobs get bigger in size and finer in granularity, "system
	noise" is increasingly becoming a problem. In fact,fine-grained jobs
	on clusters with thousands of SMP nodesrun faster if a processor
	is intentionally left idle (per node),thus enabling a separation
	of "system noise" from the computation.Paying a cost in average processing
	speed at anode for the sake of eliminating occasional processes delaysis
	(unfortunately) beneficial, as such delays are enormouslymagnified
	when one late process holds up thousands of peerswith which it synchronizes.
	We provide a probabilistic argument showing that, undercertain conditions,
	the effect of such noise is linearly proportionalto the size of the
	cluster (as is often empiricallyobserved). We then identify a major
	source of noise to beindirect overhead of periodic OS clock interrupts
	("ticks"),that are used by all general-purpose OSs as a means of
	maintainingcontrol. This is shown for various grain sizes, platforms,tick
	frequencies, and OSs. To eliminate such noise,we suggest replacing
	ticks with an alternative mechanismwe call "smart timers". This turns
	out to also be in linewith needs of desktop and mobile computing,
	increasing thechances of the suggested change to be accepted.},
 owner = {mk},
 timestamp = {2009.07.22},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.1420&rep=rep1&type=pdf}
}

@ARTICLE{Varghese1997,
 author = {George Varghese and Anthony Lauck},
 title = {Hashed and hierarchical timing wheels: efficient data structures
	for implementing a timer facility},
 journal = {IEEE/ACM Transactions on Networking (TON)},
 year = {1997},
 volume = {5},
 pages = {824--834},
 number = {6},
 month = {December},
 abstract = {The performance of timer algorithms is crucial to many network protocol
	implementations that use timers for failure recovery and rate control.
	Conventional algorithms to implement an Operating System timer module
	take O(n) time to start or maintain a timer, where n is the number
	of outstanding timers: this is expensive for large n. This paper
	shows that by using a circular buffer or timing wheel, it takes O(1)
	time to start, stop, and maintain timers within the range of the
	wheel. Two extensions for larger values of the interval are described.
	In the first, the timer interval is hashed into a slot on the timing
	wheel. In the second, a hierarchy of timing wheels with different
	granularities is used to span a greater range of intervals. The performance
	of these two schemes and various implementation tradeoffs are discussed.
	We have used one of our schemes to replace the current BSD UNIX callout
	and timer facilities. Our new implementation can support thousands
	of outstanding timers without much overhead. Our timer schemes have
	also been implemented in other operating systems and network protocol
	packages.},
 owner = {mk},
 publisher = {IEEE Press Piscataway, NJ, USA},
 timestamp = {2009.07.22},
 url = {http://www.comsoc.org/net/private/1997/dec/pdf/05net06-varghese.pdf}
}

@INPROCEEDINGS{Veitch2004,
 author = {Darryl Veitch and Satish Babu and Attila Pásztor},
 title = {Robust Synchronization of Software Clocks Across the {Internet}},
 booktitle = {Proc. ACM SIGCOMM Internet Measurement Conf.},
 year = {2004},
 pages = {219-232},
 address = {Taormina, Italy},
 month = {Oct},
 abstract = {Accurate, reliable timestamping which is also convenient and inexpensive
	is needed in many important areas including real-time network applications
	and network measurement. Recently the TSC register, which counts
	CPU cycles in popular PC architectures, was proposed as the basis
	of a new software clock which in terms of rate performance performs
	as well as more expensive GPS alternatives. Smooth and precise clock
	rate is essential to measure time differences accurately. We show
	how to define a TSC based clock which is also accurate with respect
	to absolute time. The clock is calibrated by processing, in a novel
	way, timestamps contained in the usual flow of Network Time Protocol
	(NTP) packets between a NTP server and the existing software clock,
	and TSC timestamps made independently on the host side. Using real
	measurements over 4 months, validated with a GPS synchronized hardware
	timing solution, the algorithm measured absolute time with a median
	error of only 30 microseconds when using a nearby stratum-1 NTP server.
	Results for two other servers are given. We also provide new algorithms
	for the robust determination of clock rate. We exploit the reliability
	of the available hardware to design synchronization algorithms which
	are inherently robust to many factors including packet loss, server
	outages, route changes, temperature environment, and network congestion.},
 owner = {mk},
 slides = {http://www.cubinlab.ee.unimelb.edu.au/~darryl/Publications/IMC2004_talk.pdf},
 timestamp = {2009.04.15},
 url = {http://www.cubinlab.ee.unimelb.edu.au/~darryl/Publications/synch_IMC-2004_camera.pdf}
}

@ARTICLE{Veitch2009,
 author = {Darryl Veitch and Julien Ridoux and Satish Babu Korada},
 title = {Robust Synchronization of Absolute and Difference Clocks Over Networks},
 journal = {IEEE/ACM Transactions on Networking},
 year = {2009},
 volume = {17},
 pages = {417--430},
 number = {2},
 month = {April},
 abstract = {We present a detailed re-examination of the problem of inexpensive
	yet accurate clock synchronization for networked devices. Based on
	an empirically validated, parsimonious abstraction of the CPU oscillator
	as a timing source, accessible via the TSC register in popular PC
	architectures, we build on the key observation that the measurement
	of time differences, and absolute time, requires separate clocks,
	both at a conceptual level and practically, with distinct algorithmic,
	robustness, and accuracy characteristics. Combined with round-trip
	time based filtering of network delays between the host and the remote
	time server, we define robust algorithms for the synchronization
	of the absolute and difference TSCclocks over a network. We demonstrate
	the effectiveness of the principles, and algorithms using months
	of real data collected using multiple servers. We give detailed performance
	results for a full implementation running live and unsupervised under
	numerous scenarios, which show very high reliability, and accuracy
	approaching fundamental limits due to host system noise. Our synchronization
	algorithms are inherently robust to many factors including packet
	loss, server outages, route changes, and network congestion.},
 citeseerurl = {http://ieeexplore.ieee.org/xpls/pre_abs_all.jsp?isnumber=4359146&arnumber=4569868},
 doi = {10.1109/TNET.2008.926505},
 issn = {1063-6692},
 owner = {mk},
 timestamp = {2009.04.12},
 url = {http://infoscience.epfl.ch/record/129594/files/synch_ToN.pdf}
}

@TECHREPORT{Vig2007,
 author = {John R. Vig},
 title = {Quartz Crystal Resonators and Oscillators for Frequency Control and
	Timing Applications ({R}ev.~8.5.3.6)},
 institution = {US Army Communications-Electronics Research, Development \& Engineering
	Center, Fort Monmouth, NJ, USA},
 year = {2007},
 month = {January},
 abstract = {Subjects covered include: applications of frequency standards; types
	of oscillators (quartz and atomic); quartz resonator properties;
	quartz growing, sweeping, and material characteristics; Q and its
	significance; resonator and oscillator stability, including aging,
	short-term instability, frequency vs. temperature characteristics,
	oscillator circuit caused instabilities, frequency vs. drive level
	effects, acceleration effects, the effect of shock, and radiation
	effects; emerging technologies; atomic frequency standards; comparison
	of the major oscillator types; oscillator specifications and selection
	guidelines; time and timekeeping; clock errors; relativistic time;
	time transfer; time and frequency subsystem; and other applications
	of quartz resonators. The goal of this document is to assist in presenting
	to the nonspecialist the most frequently encountered concepts in
	frequency control and timing. The document originated as a set of
	hard copies of presentation visual graphs(i.e., vugraphs).... Quartz,
	Quartz crystal, Quartz resonator, Quartz oscillator, Resonator, Oscillator,
	Stability, Aging, Allan variance, Phase noise, Frequency control,
	Frequency standard, Clock, Time, Timekeeping, Atomic frequency standard,
	Rubidium standard, Cesium standard, Atomic resonator, Radiation effects,
	Vibration effects.},
 keywords = {CRYSTALLOGRAPHY, *CRYSTALS, *QUARTZ RESONATORS, *TIMING DEVICES, OSCILLATORS,
	CONTROL, TEMPERATURE, STABILITY, VIBRATION, CLOCKS, SPECIFICATIONS,
	MATERIALS, ACCELERATION, COMPARISON, GRAPHS, CESIUM, PHASE, TIME,
	SHOCK, ERRORS, STANDARDS, RESONATORS, CIRCUITS, NOISE, SELECTION,
	INSTABILITY, INSTRUCTION MANUALS, RADIATION EFFECTS, RUBIDIUM, FREQUENCY
	STANDARDS., PE62705A},
 owner = {martin},
 timestamp = {2008.11.17},
 url = {http://www.ieee-uffc.org/frequency_control/teaching/vig/vig3.ppt}
}

@INCOLLECTION{Vig2000,
 author = {Vig, John R. and Ballato, Arthur},
 title = {Frequency control devices},
 booktitle = {Ultrasonic Instruments and Devices: Reference for Modern Instrumentation,
	Techniques, and Technology},
 publisher = {Academic Press},
 year = {2000},
 editor = {Emmanuel P. Papadakis},
 pages = {637--701},
 edition = {1st Edition},
 month = {January},
 owner = {mk},
 timestamp = {2009.02.26},
 url = {http://www.ieee-uffc.org/frequency_control/teaching/pdf/fcdevices.pdf}
}

@MISC{VMware2008,
 author = {{VMware Incorporated}},
 title = {Timekeeping in VMware Virtual Machines},
 howpublished = {Technical whitepaper},
 month = {August},
 year = {2008},
 abstract = {This paper describes how timekeeping hardware works in physical machines,
	how typical guest operating systems use this hardware to keep time,
	and how VMware products virtualize the hardware.},
 owner = {mk},
 timestamp = {2009.09.07},
 url = {http://www.vmware.com/pdf/vmware_timekeeping.pdf}
}

@ARTICLE{Walls1992,
 author = {Walls, F.L. and Gagnepain, J.-J.},
 title = {Environmental sensitivities of quartz oscillators},
 journal = {IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control},
 year = {1992},
 volume = {39},
 pages = {241-249},
 number = {2},
 month = {March},
 doi = {10.1109/58.139120},
 owner = {martin},
 timestamp = {2008.09.05}
}

@ARTICLE{Welch1987,
 author = {Jennifer Lundelius Welch},
 title = {Simulating Synchronous Processors},
 journal = {Information and Computation},
 year = {1987},
 volume = {74},
 pages = {159--171},
 number = {2},
 month = aug,
 keywords = {similar results to Neiger and Toueg}
}

@ARTICLE{Yang1993,
 author = {Zhonghua Yang and T. Anthony Marsland},
 title = {Annotated bibliography on global states and times in distributed
	systems},
 journal = {SIGOPS Oper. Syst. Rev.},
 year = {1993},
 volume = {27},
 pages = {55--74},
 number = {3},
 address = {New York, NY, USA},
 doi = {http://doi.acm.org/10.1145/155870.155878},
 issn = {0163-5980},
 owner = {dada},
 publisher = {ACM},
 timestamp = {2008.09.11}
}

@ARTICLE{Yoon2007,
 author = {Suyoung Yoon and Chanchai Verrarittiphan and Mihail L. Sichitiu},
 title = {Tiny-Sync: Tight Time Synchronization for Wireless Sensor Networks},
 journal = {ACM Transactions on Sensor Networks},
 year = {2007},
 volume = {3},
 pages = {34p},
 number = {2},
 month = {June},
 doi = {10.1145/1240226.1240228},
 owner = {martin},
 timestamp = {2008.09.06},
 url = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.6600&rep=rep1&type=pdf}
}

@INPROCEEDINGS{Zhang2002,
 author = {Li Zhang and Zhen Liu and Cathy Honghui Xia},
 title = {Clock synchronization algorithms for network measurements},
 booktitle = {Proceedings of the Twenty-First Annual Joint Conference of the IEEE
	Computer and Communications Societies (INFOCOM'02)},
 year = {2002},
 volume = {1},
 pages = {160--169},
 abstract = {Packet delay traces are important measurements for analyzing end-to-end
	performance and for designing traffic control algorithms in computer
	networks. Due to the fact that the clocks at the end systems are
	usually not synchronized and running at different speeds, these measurements
	can be quite inaccurate. We propose several algorithms to estimate
	and remove the relative clock skews from delay measurements based
	on the computation of convex hulls. Compared with existing techniques,
	such as linear regression and linear programming, the convex-hull
	approach provides better insight and allows us to handle more error
	metrics. We obtain algorithms which are linear in the number of measurement
	points for the case with no clock resets. For the more challenging
	case with clock resets, i.e., the clocks are reset to some reference
	times during the measurement period, we develop linear algorithms
	to identity the clock resets, and derive the best clock skew lines.
	We extend this analysis to environments in which at least one of
	the clocks is controlled by NTP (network time protocol). These algorithms
	can greatly improve the accuracy of the measurements, and can be
	used both online and offline. They can also be extended for active
	clock synchronization, to replace or further improve NTP. Numerical
	experiments are presented to demonstrate the robustness of the algorithms.},
 doi = {10.1109/INFCOM.2002.1019257},
 issn = {0743-166X },
 keywords = {computer networks, delays, parameter estimation, synchronisation,
	telecommunication congestion control, telecommunication traffic recording,
	time measurement clock resets, clock skew estimation, clock synchronization
	algorithms, computer networks, convex hulls, end-to-end performance,
	error metrics, linear programming, linear regression, network measurements,
	network time protocol, packet delay traces, traffic control algorithms},
 owner = {mk},
 timestamp = {2009.07.25},
 url = {http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1019257}
}

@INPROCEEDINGS{Zhang2008,
 author = {Minghu Zhang and Senzu Shen and Jian Shi and Ting Zhang},
 title = {Simple clock synchronization for distributed real-time systems},
 booktitle = {IEEE International Conference on Industrial Technology (ICIT 2008)},
 year = {2008},
 pages = {1-5},
 month = {April},
 abstract = {In distributed real-time systems, most of the end-to-end delay fluctuations,
	especially the delay fluctuations in the network, are bounded provided
	that the global network traffic loads are manually controlled to
	be light-weighted. This paper introduces a simple clock synchronization
	method in distributed real-time systems by using the traffic smoothing
	technique which is implemented at each end node and blocks selected
	types of messages during the clock synchronization duration. Only
	three messages are needed to synchronize all end nodes in a single-hop
	switched Ethernet during one clock synchronization round. At the
	same time, this approach can be applied to multihop distributed real-time
	systems. Performance measuring results show that this approach can
	provide clock synchronization precision less than 10 microseconds
	and is appropriate for most distributed real-time systems.},
 doi = {10.1109/ICIT.2008.4608549},
 keywords = {local area networks, real-time systems, synchronisation, telecommunication
	switching, telecommunication trafficclock synchronization, delay
	fluctuations, global network traffic loads, multihop distributed
	real-time systems, single-hop switched Ethernet, traffic smoothing},
 owner = {mk},
 timestamp = {2009.08.04},
 url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4608549&isnumber=4608308}
}

@TECHREPORT{Zhou2008,
 author = {Hui Zhou and Charles Nicholls and Thomas Kunz and Howard Schwartz},
 title = {Frequency Accuracy \& Stability Dependencies of Crystal Oscillators},
 institution = {Carleton University},
 year = {2008},
 number = {SCE-08-12},
 address = {Ottawa, Canada},
 month = {November},
 abstract = {Quartz crystal based oscillators are used as clock sources in the
	synchronization and syntonization of distributed systems to a common
	time or frequency scale. One such system is that of a cellular network
	in which base station transceivers are operated within a specified
	time or frequency accuracy with reference to a system reference.
	The accuracy of the entrainment of the distributed clocks to the
	reference clock is subject to the design of the servo control system.
	In the event the servo fails the slave clock accuracy is a function
	of the local environmental and electrical stimuli applied to the
	clock. As loss of the servo signal is a practical issue in a real
	system, this ultimate system entrainment accuracy is dependent on
	the accuracy with which the free running clocks can be corrected.
	It is the subject of the current paper to review the fundamental
	physical properties of crystal oscillators and in so doing determine
	all significant frequency perturbing stimuli. Identification and
	quantification of these stimuli in terms of analytical expressions
	is the first stage in the creation of an accurate clock model suitable
	for compensation of the clock in the absence of the servo signal
	from the reference. Thus a fundamental understanding of the parameters
	affecting the clock drift becomes paramount to determining the overall
	synchronization accuracy achievable by the system.},
 owner = {mk},
 timestamp = {2009.03.06},
 url = {http://kunz-pc.sce.carleton.ca/Thesis/CrystalOscillators.pdf}
}

@comment{jabref-meta: selector_publisher:}

@comment{jabref-meta: selector_author:}

@comment{jabref-meta: selector_journal:}

@comment{jabref-meta: selector_keywords:}

Martin Kammerhofer
BibTeX source
An extended bibliography with hyperlinks to online resources (in BibTeX format).

http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
http://www.bipm.org/utils/en/pdf/SIApp2_s_en.pdf
http://www.bipm.org/utils/en/pdf/SIApp2_s_en.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf

Bibliography 79

[Cri89] Flaviu Cristian. Probabilistic clock synchronization. Distributed Computing, 3:146–158,
1989.

[DFH+08] L. Diduch, A. Fillinger, I. Hamchi, M. Hoarau, and V. Stanford. Synchronization of
data streams in distributed realtime multimodal signal processing environments using
commodity hardware. In 2008 IEEE International Conference on Multimedia & Expo,
pages 1145–1148, Hannover, Germany, June 2008.

[DHS84] Danny Dolev, Joe Halpern, and H. Raymond Strong. On the possibility and impossi-
bility of achieving clock synchronization. In Proceedings of the sixteenth annual ACM
Symposium on Theory of Computing (STOC-84), pages 504–511, New York, NY, USA,
1984.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchroniza-
tion using reference broadcasts. ACM SIGOPS Operating Systems Review, 36:147–163,
2002.

[ER03] Jeremy Elson and Kay Römer. Wireless sensor networks: A new regime for time
synchronization. SIGCOMM Computer Communication Review, 33(1):149–154, 2003.

[Fid88] Colin J. Fidge. Timestamps in message-passing systems that preserve the partial ordering.
In K. Raymond, editor, Proceedings of the 11th Australian Computer Science Conference
(ACSC’88), pages 56–66, Queensland, Australia, February 1988.

[Fle05] FlexRay Consortium. FlexRay Communications System Protocol Specification Ver-
sion 2.1 Revision A. Available from http://www.flexray.com/, December
2005.

[GA05] Bernard Guinot and Elisa Felicitas Arias. Atomic time-keeping from 1955 to the present.
Metrologia, 42:20–30, June 2005.

[Gil05] Patrick Gill. Optical frequency standards. Metrologia, 42(3):S125–S137, June 2005.

[GZ89] R. Gusella and S. Zatti. The accuracy of the clock synchronization achieved by TEMPO
in Berkeley UNIX 4.3BSD. IEEE Transactions on Software Engineering, 15(7):847–853,
1989.

[HFB94] K.B. Hardin, J.T. Fessler, and D.R. Bush. Spread spectrum clock generation for the
reduction of radiated emissions. In IEEE International Symposium on Electromagnetic
Compatibility, pages 227–231, Chicago, IL, USA, August 1994.

[Hor04] Martin Horauer. Clock Synchronization in Distributed Systems. PhD thesis, Vienna
University of Technology, Vienna, Austria, February 2004.

[HSK03] Roland Höller, Thilo Sauter, and Nikolaus Kerö. Embedded SynUTC and IEEE 1588
clock synchronization for industrial ethernet. In Proc. of the 9th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA ’03), volume 1,
pages 422–426, Lisbon, Portugal, September 2003.

[IEE99] IEEE Std 1139-1999. IEEE Standard Definitions of Physical Quantities for Fundamental
Frequency and Time Metrology—Random Instabilities, July 1999.

http://www.flexray.com/

80 Bibliography

[IEE08] IEEE Std 1588-2008. Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems. (Revision of IEEE Std 1588-2002), July
2008.

[IRI04] IRIG Standard 200-04. Serial Time Code Formats. U. S. Army, Inter-Range Instrumen-
tation Group, White Sands Missile Range, New Mexico, September 2004.

[IT96] ITU-T. Recommendation G.810: Definitions and terminology for synchronization
networks, August 1996.

[Joh04] Svein Johannessen. Time synchronization in a local area network. IEEE Control Systems
Magazine, 24(2):61–69, April 2004.

[Kal05] V. Kalusivalingam. Simple network time protocol (SNTP) configuration option for
DHCPv6. RFC4075, May 2005.

[Kam02] Poul-Henning Kamp. Timecounters: Efficient and precise timekeeping in SMP kernels.
In Proceedings of the BSDCon Europe, Amsterdam, the Netherlands, November 2002.

[KBC05] T. Kohno, A. Broido, and K.C. Claffy. Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing, 2(2):93–108, April–June 2005.

[KRT06] A. Klausner, B. Rinner, and A. Tengg. I-SENSE: Intelligent embedded multi-sensor
fusion. In Proceedings of the 4th IEEE International Workshop on Intelligent Solutions
in Embedded Systems (WISES’06), pages 105–116, Vienna, Austria, June 2006.

[KTR08] Andreas Klausner, Allan Tengg, and Bernhard Rinner. Distributed multilevel data fusion
for networked embedded systems. IEEE Journal of Selected Topics in Signal Processing,
2(4):538–555, August 2008.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[Lev95] Judah Levine. An algorithm to synchronize the time of a computer to Universal Time.
IEEE/ACM Transactions on Networking (TON), 3(1):42–50, February 1995.

[Lev99] Judah Levine. Introduction to time and frequency metrology. Review of Scientific
Instruments, 70(6):2567–2596, 1999.

[Lev08] Judah Levine. A review of time and frequency transfer methods. Metrologia, 45(6):S162–
S174, December 2008.

[Lis93] Barbara Liskov. Practical uses of synchronized clocks in distributed systems. Distributed
Computing, 6(4):211–219, 1993.

[LL84] Jennifer Lundelius and Nancy Lynch. A new fault-tolerant algorithm for clock synchro-
nization. In Proceedings of the Third ACM SIGACT/SIGOPS Symposium on Principles
of Distributed Computing, pages 75–88, Vancouver, B. C., Canada, August 1984.

[LM00] Judah Levine and David L. Mills. Using the network time protocol (NTP) to transmit
international atomic time (TAI). In Proceedings of the 32nd Annual Precise Time and
Time Interval (PTTI) Meeting, pages 431–437, Reston, VA, USA, November 2000.

Bibliography 81

[LMS85] Leslie Lamport and P. M. Melliar-Smith. Synchronizing clocks in the presence of faults.
Journal of the ACM, 32(1):52–78, 1985.

[Loy97] Dietmar Loy. GPS-Linked High Accuracy NTP Time Processor for Distributed Fault-
Tolerant Real-Time Systems. PhD thesis, TU Vienna, Österreichischer Kunst- und
Kulturverlag, Vienna, Austria, 1997.

[LRV+07] R. Lutwak, A. Rashed, M. Varghese, G. Tepolt, J. LeBlanc, M. Mescher, DK Serkland,
KM Geib, GM Peake, and S. Römisch. The chip-scale atomic clock – prototype
evaluation. In Proceedings of the 39th Annual Precise Time and Time Interval (PTTI)
Meeting, pages 269–290, Long Beach, CA, USA, November 2007.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed systems. In M. Cosnard
et. al., editor, Parallel and Distributed Algorithms: proceedings of the International
Workshop on Parallel and Distributed Algorithms, pages 215–226. Elsevier Science
Publishers B. V., 1989.

[MD08] Hicham Marouani and Michel R. Dagenais. Internal clock drift estimation in computer
clusters. Journal of Computer Systems, Networks, and Communications, vol. 2008,
Article ID 583162, 7 pages, 2008.

[Mil81] David L. Mills. DCnet Internet clock service. RFC778, April 1981.

[Mil85] David L. Mills. Network time protocol (NTP). Network Working Group Request for
Comments: 958, September 1985.

[Mil88] David L. Mills. Network time protocol (version 1) specification and implementation.
Network Working Group Request for Comments: 1059, July 1988.

[Mil89] David L. Mills. Network time protocol (version 2) specification and implementation.
Network Working Group Request for Comments: 1119, September 1989.

[Mil92] David L. Mills. Network time protocol (version 3) specification, implementation and
analysis. RFC1305, March 1992.

[Mil95] David L. Mills. Simple network time protocol (SNTP). RFC1769, March 1995.

[Mil98] David L. Mills. Adaptive hybrid clock discipline algorithm for the network time protocol.
IEEE/ACM Transactions on Networking, 6:505–514, 1998.

[Mil06a] David L. Mills. The autokey security architecture, protocol and algorithms. Technical
Report 06-1-1, Network Working Group, University of Delaware, January 2006.

[Mil06b] David L. Mills. Computer Network Time Synchronization – The Network Time Protocol.
Taylor & Francis, Boca Raton, FL, 2006.

[Mil06c] David L. Mills. Network time protocol version 4 reference and implementation guide.
Technical Report 06-6-1, NTP Working Group, University of Delaware, June 2006.

82 Bibliography

[Mil06d] David L. Mills. Simple network time protocol (SNTP) version 4 for IPv4, IPv6 and OSI.
RFC4330, January 2006.

[MK00] David L. Mills and Poul-Henning Kamp. The nanokernel. In Proc. Precision Time and
Time Interval (PTTI) Applications and Planning Meeting, pages 423–430, Reston, VA,
USA, November 2000.

[MMB+00] J. Mogul, D. Mills, J. Brittenson, J. Stone, and U. Windl. Pulse-per-second API for
UNIX-like operating systems, Version 1.0. RFC2783, March 2000.

[MO83] Keith Marzullo and Susan Owicki. Maintaining the time in a distributed system. In PODC
’83: Proceedings of the second annual ACM symposium on Principles of distributed
computing, pages 295–305, New York, NY, USA, 1983. ACM.

[NMM+01] R. A. Nelson, D. D. McCarthy, S. Malys, J. Levine, B. Guinot, H. F. Fliegel, R. L. Beard,
and T. R. Bartholomew. The leap second: its history and possible future. Metrologia,
38:509–529, 2001.

[NPON02] Jorji Nonaka, Gerson H. Pfitscher, Katsumi Onisi, and Hideo Nakano. Low-cost hybrid
internal clock synchronization mechanism for cots pc cluster (research note). In Euro-Par

’02: Proceedings of the 8th International Euro-Par Conference on Parallel Processing,
pages 121–124, London, UK, 2002. Springer-Verlag.

[Put04] Otmar Putz. Hardware Dokumentation PCI-MF-Encoder Board. Austrian Research
Center Seibersdorf. Unpublished hardware documentation (in German), v1.0, Juni 2004.

[RBM05] Kay Römer, Philipp Blum, and Lennart Meier. Handbook of Sensor Networks: Al-
gorithms and Architectures, chapter Time synchronization and calibration in wireless
sensor networks, pages 199–237. Wiley-Interscience, 2005.

[Ril03] William J. Riley. Techniques for frequency stability analysis. In IEEE International
Frequency Control Symposium, Tampa, FL, 2003.

[Ril08] William J. Riley. Handbook of Frequency Stability Analysis. NIST Special Publication
1065. U. S. Dept. of Commerce, National Institute of Standards and Technology, July
2008.

[RM04] Kay Römer and Friedemann Mattern. The design space of wireless sensor networks.
IEEE Wireless Communications, 11(6):54–61, 2004.

[RSJ+05] G. Linn Roth, Paul Schick, James Jacoby, Chad Schweitzer, Dean Gervasi, and Eric
Wiley. Enhanced or eLoran for time and frequency applications. In Proceedings of the
2005 IEEE International Frequency Control Symposium and Exposition, Vancouver,
B. C., August 2005.

[RV09] Julien Ridoux and Darryl Veitch. Ten microseconds over lan, for free (extended). IEEE
Transactions on Instrumentation and Measurement (TIM), 58(6):1841–1848, June 2009.

Bibliography 83

[SA06] Katsuhisa Sato and Kazuyoshi Asari. Characteristics of time synchronization response
of NTP clients on MS Windows os and Linux. In Proceedings of the 38th Annual
Precise Time and Time Interval (PTTI) Meeting, pages 175–183, Washington D.C., USA,
December 2006.

[SAHW90] D. B. Sullivan, D. W. Allan, D. A. Howe, and F. L. Walls. Characterization of Clocks
and Oscillators. NIST Technical Note 1337, March 1990.

[SBK05] Bharath Sundararaman, Ugo Buy, and Ajay D. Kshemkalyani. Clock synchronization
for wireless sensor networks: A survey. Ad-Hoc Networks, 3(3):281–323, March 2005.

[SCF+08] Thomas Schmid, Zainul Charbiwala, Jonathan Friedman, Young H. Cho, and Mani B.
Srivastava. Exploiting manufacturing variations for compensating environment-induced
clock drift in time synchronization. In Proceedings of the 2008 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems (SIGMET-
RICS’08), pages 97–108, Annapolis, Maryland, USA, June 2008.

[Sch87] Fred B. Schneider. Understanding protocols for byzantine clock synchronization. Tech-
nical Report TR 87–859, Cornell University, Dept. of Computer Science, Upson Hall,
Ithaca, NY 14853, August 1987.

[Sch94a] Ulrich Schmid. An annotated bibliography on clock synchronization in distributed
systems. Technical Report 183/1-45, Technische Universität Wien, Department of
Automation, Vienna, Austria, December 1994.

[Sch94b] Fabio A. Schreiber. Is Time a Real Time? - An Overview of Time Ontology in Informat-
ics. In W. A. Halang and A. D. Stoyenko, editors, Real Time Computing, pages 283–307.
Springer, Berlin, Heidelberg, 1994.

[Sch00] Klaus Schossmaier. Interval-Based Clock State and Rate Synchronization. PhD thesis,
TU Vienna, Österreichischer Kunst- und Kulturverlag, Vienna, Austria, 2000.

[SK92] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation of vector clocks.
Information Processing Letters, 43(1):47–52, 1992.

[SM08] Renaud Sirdey and François Maurice. A linear programming approach to highly precise
clock synchronization over a packet network. 4OR: A Quarterly Journal of Operations
Research, 6(4):393–401, December 2008.

[SPV07] Suresh Siddha, Venkatesh Pallipadi, and Arjan Van De Ven. Getting maximum mileage
out of tickless. In Proceedings of the Linux Symposium, pages 201–208, Ottawa, Ontario,
Canada, June 27–30 2007.

[SWL90] Barbara Simons, Jennifer Lundelius Welch, and Nancy Lynch. An overview of clock
synchronization. In Fault-tolerant distributed computing, volume 448 of Springer
Lecture Notes In Computer Science, pages 84–96. Springer-Verlag, London, UK, 1990.

[SY04] Fikret Sivrikaya and Bülent Yener. Time synchronization in sensor networks: A survey.
IEEE Network, 18(4):45–50, July/August 2004.

84 Bibliography

[TEFK05] D. Tsafrir, Y. Etsion, D.G. Feitelson, and S. Kirkpatrick. System noise, OS clock ticks,
and fine-grained parallel applications. In Proceedings of the 19th annual international
conference on Supercomputing, pages 303–312. ACM New York, NY, USA, 2005.

[Ten08] Allan Tengg. The I-SENSE Communication. Unpublished technical documentation,
10 pages, 2008.

[Tex00] Texas Instruments. DSP/BIOS II Technical Overview. SPRA646, March 2000.

[Tex04a] Texas Instruments. TMS320C6000 Chip Support Library API Reference Guide.
SPRU401J, August 2004.

[Tex04b] Texas Instruments. TMS320C6000 DSP/BIOS Application Programming Interface (API)
Reference Guide. SPRU403G, April 2004.

[Tex04c] Texas Instruments. TMS320C6000 DSP/BIOS User’s Guide. SPRU423D, April 2004.

[Tex05] Texas Instruments. TMS320C6000 DSP 32-Bit Timer Reference Guide. SPRU582B,
January 2005.

[TKR07] Allan Tengg, Andreas Klausner, and Bernhard Rinner. I-SENSE: A light-weight middle-
ware for embedded multi-sensor data-fusion. In Proc. of the 5th Workshop on Intelligent
Solutions in Embedded Systems (WISES’07), pages 165–177, Madrid, Spain, June 2007.

[Vig07] John R. Vig. Quartz crystal resonators and oscillators for frequency control and timing
applications (Rev. 8.5.3.6). Technical report, US Army Communications-Electronics
Research, Development & Engineering Center, Fort Monmouth, NJ, USA, January 2007.

[WG92] F.L. Walls and J.-J. Gagnepain. Environmental sensitivities of quartz oscillators. IEEE
Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 39(2):241–249,
March 1992.

[YVS07] Suyoung Yoon, Chanchai Verrarittiphan, and Mihail L. Sichitiu. Tiny-sync: Tight time
synchronization for wireless sensor networks. ACM Transactions on Sensor Networks,
3(2):34p, June 2007.

[ZLX02] Li Zhang, Zhen Liu, and Cathy Honghui Xia. Clock synchronization algorithms for
network measurements. In Proceedings of the Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM’02), volume 1, pages
160–169, 2002.

	Contents
	Introduction
	Motivation
	Objective
	Thesis Outline

	Background and Terminology
	Time, Clocks and Timescales
	Properties of time
	Relativistic effects
	The second
	Timescales

	Characterization of Clocks
	Mathematical models of oscillators and clocks
	Accuracy, precision, resolution, and stability

	Hardware Clocks
	Crystal oscillators
	Other frequency sources
	Computer clocks
	External reference clocks
	Interfacing external clocks

	Software Clocks
	Operating system view
	Clock phase and rate adjustment
	Application view

	General Clock Synchronization Model
	Measurement of clock offset
	Estimation of the time and frequency error of the local clock
	Adjusting the local clock to reduce future time differences

	Synchronization Protocols for Computer Networks
	Classification of Synchronization Protocols
	Communication model
	Time source
	Clock correction versus timescale transformation
	Master-slave versus peer-to-peer
	Probabilistic versus deterministic
	Time instants versus time intervals
	Lifetime and scope
	Low level access

	Synchronization Protocol Survey
	Logical clocks
	Cristian's algorithm
	The Berkeley algorithm
	Marzullo's algorithm
	Fault tolerant protocols
	Protocols for wireless sensor networks

	The Network Time Protocol
	NTP classification
	History and background
	NTP implementations
	NTP sub-algorithms
	The Simple Network Time Protocol

	Time-Synchronization for the I-SENSE Framework
	I-SENSE Architecture Overview
	Hardware architecture
	Software architecture
	The I-SENSE message subsystem

	Design Decisions and Their Rationale
	Choice of transport layer
	Choice of implementation layer
	Inter-node protocol and implementation selection
	Intra-node protocol and implementation

	NTP Configuration
	Custom Intra-node Synchronization Protocol
	Implementation classes overview
	Timestamp format and timescales
	The custom algorithm

	Evaluation
	Inter-node Evaluation
	Intra-node Evaluation
	End-to-end Evaluation

	Conclusion
	Future Work

	List of Symbols
	Abbreviations and Glossary
	Bibliography

