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Abstract

Time synchronization of geographically dispersed clocks is a classical problem. An important
application is synchronization of distributed computer systems. The problem has been extensively
studied for the last 30 years and a large number of algorithms and protocols has been proposed.

This text structures the problem by decomposing it into three partial problems: Precise measurement of
the difference between the readings of remote clocks and a local clock, estimation and extrapolation of
inner states of the involved clocks, and continuous or periodic adjustment of the local clock to improve
future synchronization. Approaches to these partial problems from metrology, mathematics/statistics,
and control theory are outlined in a theoretical part and their use in synchronization protocols is
described.

The practical part discusses design and implementation of a time synchronization service for the
I-SENSE project. I-SENSE is an intelligent multi-sensor multi-level data-fusion framework for
distributed embedded systems. Synchronized clocks are mainly required for temporal ordering of
video frames from two or more cameras. An evaluation of the implementation on Pentium M and
TMS320C64X processors is presented and potential further improvements are discussed.



Kurzfassung

Die Synchronisation von geographisch verteilten Uhren ist ein klassisches Problem. Eine wichtige
Anwendung ist die Synchronisation von verteilten Computersystemen. Zu diesem Problem gibt es
sehr umfangreiche Literatur aus den letzten 30 Jahren in der zahlreiche Algorithmen und Protokolle
beschrieben werden.

In dieser Masterarbeit wird das Problem auf die folgenden drei Teilprobleme zurückgeführt: Präziser
Vergleich des Uhrenstandes einer lokalen Uhr mit entfernten Uhren, Abschätzung und Extrapolation
der Zustandsvariablen der beteiligten Uhren und Verbesserung der Synchronisation durch Regelung
der lokalen Uhr. Lösungsansätze zu diesen Teilproblemen kommen aus den Disziplinen Metrolo-
gie, Mathematik/Statistik und Regelungstechnik. Sie werden im Grundlagen-Teil zusammengefasst
dargestellt und ihre Anwendung in Synchronisations-Protokollen wird gezeigt.

Im praktischen Teil wurde für das I-SENSE Projekt ein Zeitsynchronisationsdienst entworfen und
implementiert. I-SENSE ist ein intelligentes Multi-Sensor Fusion Framework für verteilte eingebette-
te Systeme. Synchronisierte Uhren werden hauptsächlich für das zeitlich korrekte Kombinieren von
Einzelbildern verschiedener Videokameras benötigt. Eine Beschreibung und Evaluation der Imple-
mentierung auf Pentium M und TMS320C64X Prozessoren wird präsentiert und potentielle weitere
Verbesserungen werden diskutiert.
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1. Introduction

Most distributed tasks require some sort of synchronization. A straightforward and intuitive way of
supplying synchronization is time synchronization. Synchronized clocks have many uses in distributed
systems. They simplify many distributed algorithms and improve their performance [Lis93].

Although time synchronization is a classical problem, there is no general solution. The literature on
the subject is vast—there are thousands of publications and research is still ongoing.1

Among the reasons for the abundance in literature and protocols are the strong dependency of time
synchronization implementations on specific properties of the hardware and software environment, and
the tremendously varying demands of individual applications. The focus on a specific use case—time
synchronization for the I-SENSE middleware—will therefore narrow down the broad path that is
implied by the title of this thesis.

This chapter will motivate why the I-SENSE framework needs a time synchronization implementation
in section 1.1, set the goals for this thesis in section 1.2, and sketch the structure of this text in
section 1.3.

1.1. Motivation

The major goal of the I-SENSE research project2 is a scalable and embedded architecture for various
multi-sensor applications [KRT06, TKR07, KTR08]. The project combines the scientific research
areas multi-sensor data fusion and pervasive embedded computing. The main idea is to provide a
generic architecture, which supports distributed realtime multi-level data fusion on an embedded
system.

The architecture of an I-SENSE sensor node is depicted in fig. 1.1 and a photo is shown in fig. 4.1 on
page 48.

Distributed fusion applications are described by a fusion model. The fusion model can be represented
as a weighted directed acyclic task graph. An example is shown in fig. 1.2. Several fusion tasks fi

process data from different sensors. Synchronized timestamps are a prerequisite for this multi-sensor
data fusion.3

1 A March 2009 CiteSeer query for “time synchronization” brought up 3046 results. A Google Scholar query for “synchro-
nization protocol” yielded 6190 articles. A significant part of the third millennium research is in the context of (wireless)
sensor networks.

2 http://www.iti.tugraz.at/en/research/isense/index.html
3 More exactly, while multi-sensor data fusion without time synchronization is doable, it requires more complex correlation

algorithms, more CPU and memory resources, and is therefore avoided.

1

http://www.iti.tugraz.at/en/research/isense/index.html
http://www.iti.tugraz.at/en/research/isense/index.html


2 CHAPTER 1. INTRODUCTION

As a case study for the I-SENSE approach, a traffic surveillance system has been developed. Video
cameras, microphones and light barriers are deployed as sensors. Sensor fusion is used to achieve
vehicle detection, tracking and classification. Video stream fusion requires temporal alignment at the
frame level. If any two clocks that generate frame timestamps differ by an offset less than

offset <
1

2∗highest frame rate
(1.1)

then matching of frames can be done in straightforward ways.4[DFH+08] With practical video frame
rates, equation 1.1 translates to a requirement of a few milliseconds for the upper clock error bound.

An ideal clock would proceed at a rate of 1 second per second of standard time. Practical clocks are
imperfect and deviate from this ideal rate. Crystal oscillator based computer clocks show manufactur-
ing dependent frequency tolerances, frequency deviations that depend on temperature, and frequency
aging effects. Unattended computer clocks therefore drift apart. Fig. 1.3 shows the clock skew of
a computer clock. The depicted clock is rather good.5 Frequency errors of a few hundred ppm are
not uncommon in cheap crystals oscillators for computer clocks [MD08]. Moreover, temperature
dependent clock rate variations can be expected to be much larger in outdoor deployed embedded
systems. A constant clock skew of only 1 ppm accumulates a clock offset error of 86,4 ms over a
day.

Time synchronization for the I-SENSE framework—although planned from the beginning of the
project—was still unimplemented prior to this thesis. Only an intra-node pre-synchronization feature
was available, i. e., the clocks of all processors within a sensor node (cf. fig. 1.1) were synchronized
during middleware startup, and pre-configured static rate corrections were applied. This was sufficient
for development and testing, but would not have worked over extended periods of time.

1.2. Objective

The goal of this thesis is to extend the functionality of the I-SENSE framework with a mechanism for
time synchronization. This extension must perform adequately, to allow fusion of two real time video
streams originating from different sensor nodes. The following subgoals are defined:

1. Investigation of existing procedures for time synchronization in distributed systems

2. Selection of a suitable mechanism or protocol

3. Implementation of the chosen solution on the Windows XP embedded (Pentium-M) and
DSP/BIOS (TMS320C64X) platforms

4. Evaluation of the implementation

To have some margin for higher frame rates, the aim for maximum clock offset error is 5 ms.6

4 This assumes that creation of timestamps is perfect, i. e., reading the clocks does not introduce additional time offset errors.
5 The machine is fitipc150, a commodity PC located in the ITI VLSI laboratory, which happened to be the main

development machine for the practical part of this thesis.
6 The 5 ms value follows from an assumed maximal frame rate of 100 Hz inserted into equation 1.1. The current traffic

surveillance use case performs well with frame rates of only 15. . . 30 Hz.
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1.3. Thesis Outline

Chapter 2 gives a thorough introduction into the problem of time synchronization. Important concepts
like timescales, clocks, measurement of remote clocks, and synchronization methods are explained.
Most of the chapter treats synchronization from a high level perspective, but details pertaining to
commonly used operating systems and current PC hardware are given too.

Chapter 3 explores the huge subject of synchronization protocols for distributed computer systems.
First a discussion of several important classification criteria explains, why the design space for
protocols is so large. The following protocol survey presents some key concepts of important
contributions to the field. For reasons of space, only the NTP and SNTP protocols are described in
detail, but references to important papers and survey literature are given.

Chapter 4 first describes aspects of the I-SENSE platform, which are relevant for time synchronization
implementation. The high level structure of the implementation is then explained with reference to
four important design decisions. Several object oriented clock abstractions are presented next, on
which the implementation is built. An implementation overview concludes the chapter.

Evaluation was somewhat constricted by lack of resources.7 However several experiments have been
conducted, which yielded very satisfying results. The setup and methodology of these experiments is
presented together with graphical results in chapter 5.

Chapter 6 concludes the thesis with a summary and suggestions for future work.

7 Hardware timestamping facilities and embedded I-SENSE nodes.



2. Background and Terminology

2.1. Time, Clocks and Timescales

2.1.1. Properties of time

Time is the physical quantity that can be measured with the highest accuracy; yet still there is no
satisfactory answer to the (philosophical and scientific) question “What is time?” [Sch94b]. We
cannot study the flow of time under a microscope, impede it or experiment with it. We do not know
what exactly happens when time passes. Important for our purposes are, that

• time differences can be measured with clocks, and

• time defines the (temporal) order of events.

2.1.2. Relativistic effects

Time is neither absolute nor independent from space. According to the theory of special relativity it is
possible, that different observers, even after correcting for propagation delays, find different orderings
for the same set of events.1 Time dilatation depends on the ratio of the relative speed between clocks v
to the speed of light c as [1− (v/c)2]−1/2 (Lorentz factor). A consequence of general relativity is, that
time flows slower in higher gravitational fields. Gravitational time dilatation makes a clock gain 9.4 ns
per day, when lifted up 1 km from sea level.2

The magnitudes of relativistic effects are very small at everyday live speeds (v� c) and locations
near the earth surface. The timing uncertainty of computer clocks is several orders of magnitude larger
than these effects. Newtonian space-time is therefore assumed for the rest of this thesis.

2.1.3. The second

Time interval is one of seven base quantities of the International System of Units (SI) [BIP06]. The
unit of time interval is the second.

Historically the second has been defined as the fraction 1/86400 of the mean solar day. Because
the spin rate of the earth is irregular on short time scales and decreasing on long time scales,3 from

1 This is known as relativity of simultaneity.
2 At latitude 40 ◦ the clock increases its rate by 1.091×10−16 m−1 [Vig07, p. 8-22].
3 The long-term average rate of increase in the length of the day is about 1.7 ms per century. Immanuel Kant suggested as

early as 1754 a steady deceleration of earth rotation due to tidal friction [NMM+01].

5
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1960 to 1967 the SI second was defined as a certain fraction of the tropical year 1900 (ephemeris
second). Since 1967 the definition of the second is completely decoupled from astrometry. The current
definition of the SI second is derived from an atomic resonance of the 133Cs (caesium) atom:4

The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the caesium 133 atom.

This definition refers to a caesium atom at rest at a temperature of zero Kelvin [BIP06].

Today a small number of national metrology laboratories realize the unit of time through primary
frequency standards. The best of these primary standards produce the SI second with a relative
standard uncertainty of some parts in 1016 [BIP07].

2.1.4. Timescales

Clocks only count intervals. To agree on dates, timescales are needed. A timescale is a system
of assigning labels (dates) to time instants (events). (The ISO 8601 standard specifies numeric
representations of date and time.) The origin (reference date) of a timescale is called the epoch. A
(global) timescale should have the following properties [Ari05]:

Reliability Clocks have a large MTBF. The timescale tolerates failure of clocks, i. e., there are
redundant clocks.

Frequency stability The unit of scale is constant. Two time scale readings determine the length of a
time interval.

Frequency accuracy The unit of scale is as close as possible to its definition.

Accessibility The timescale is universally accepted. It provides a way to date events for everyone.

Time is an immaterial quantity. Measurement of time is based on physical phenomena that depend on
time. There are two ways to get a timescale from a physical phenomenon.

Dynamic timescale A dynamical physical system is observed. The system has a mathematical model
in which time is the independent parameter. The model allows, given an observed state of the
system, to determine unambiguously the time of the observation. Particular states of the system
(events) serve as labels on the timescale. The unit of time is conveniently defined e. g., as a time
constant of the mathematical model or the interval between observable periodic events. The
Universal Time family of timescales (UT0, UT1, UT1R, UT2 and UT2R) are dynamic.

Integrative timescale The unit of time is a time interval defined by a reproducible physical phe-
nomenon. The timescale continuously accumulates (counts) the units of time.5 Other than a
well defined unit, a integrative timescale needs a convention about a fixed origin. All atomic
timescales are integrative.

4 When better frequency standards than caesium atomic clocks become widely available, the definition of the second will
certainly change again.

5 A realization of an integrative timescale accumulates errors in the realization of the unit too.

http://en.wikipedia.org/wiki/Astrometry
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Today global timescales are realized through international cooperation. In 1912 the Bureau Interna-
tional de l’Heure (BIH) was founded. Its responsibility for combining different time measurements
was taken over by the Bureau International des Poids et Mesures (BIPM) in 1987.

International atomic time (TAI)

National laboratories usually operate a number of atomic clocks. These clocks run independently.
Based on the results of local comparisons between these clocks a combined laboratory timescale is
created. The combined timescale is (usually) more accurate and stable than any of the contributing
clocks. These timescales are designated TA(k) for laboratory k.

The BIPM uses comparisons between some 300 atomic clocks in about 60 national time laboratories
to form International Atomic Time (TAI). The details of the algorithms used to compute TAI are quite
complex and have been changed several times in the past [GA05].

Methods of comparison of distant clocks are a prime requisite to calculate TAI. Frequency and time
transfers are made with GPS and by two-way satellite links. The uncertainty of clock comparison is
today between a few tens of nanoseconds and a nanosecond for the best links [GA05].

TAI is a “paper clock” not available in real time. TAI and UTC are disseminated every month by
Circular T, a monthly publication of the BIPM.

Version 4 of the Network Time Protocol (NTPv4) can be configured to disseminate the TAI−UTC
offset in addition to UTC [LM00].

Universal time (UT)

Universal time (UT1) is based on the rotation angle of the earth on its axis relative to the mean sun. It
is popularly, but erroneously, known as Greenwich Mean Time (GMT). The rotation of the Earth and
UT1 are now monitored by the International Earth Rotation Service (IERS).6 Modern techniques like
Very Large Baseline Interferometry (VLBI) allow the determination of UT1 with an uncertainty of
10µs [GA05].

UT1 has applications in astronomy, geodesy, space navigation and satellite tracking; but it is nowadays
of little importance for the general public.

Coordinated universal time (UTC)

UTC is today the basis for almost all official national timescales and therefore widely available. Since
1 January 1972 00:00:00 UTC the present system is in use. The UTC second ticks synchronously
with the TAI second. Leap seconds are infrequently added to the UTC timescale to keep the absolute
value of dUT1 = UT1 – UTC below 0.9 s.7 UTC – TAI is -34 s at the time of this writing. Scheduled

6 Knowing the universal time of a sextant sighting was historically very important for determining the longitude. A timing
error of 1 s leads to an error in longitude of 15 arc-seconds, i. e., 463 m on the equator.

7 In theory leap seconds can also be removed from the UTC timescale. This has never happened, and—according to present
knowledge about earth rotation—it is unlikely that it will ever happen.

http://tycho.usno.navy.mil/latestcircT
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Date UTC Time UTC – TAI [s] POSIX time [s] dUT1 [s]

2008 December 31 23h 59m 59s -33 1230767999 -0.592841
2008 December 31 23h 59m 60s -33 1230768000 -0.592841
2009 January 1 0h 0m 0s -34 1230768000 0.407159

Table 2.1.: Positive leap second

insertions of leap seconds are announced several months before the fact through the biannual IERS
“Bulletin C”.

Insertion of a 61st second into the last minute of the year 2008 is shown in table 2.1. Removal of a
second from UTC, i. e., a minute with only 59 seconds, is very unlikely to ever happen.

Because of the problems associated with leap seconds, a new definition of UTC is being discussed.
[NMM+01] Several international scientific organizations are currently evaluating the subject. The
U. S. submitted a proposition to abandon leap seconds (and replace them with leap hours) to the ITU-R
in 2004. No decision will will be made before 2011.

Representation of UTC in POSIX and Windows

Most operating systems cannot fully cope with leap seconds. Operating systems represent timestamps
internally as an integer count of (a constant fraction of) seconds. Structured representations—seconds,
minutes, hours and so on—are used only for input and output and are conveniently interpreted with
reference to the local time zone, with or without daylight saving time. Two assumptions are built
in:8

1. Timestamps are to be interpreted as the number of seconds between the specified time and the
epoch.

2. Each day (since the epoch) has a duration of exactly 86400 seconds.

These assumptions about the timescale contradict the definition of UTC.

The rationale for assumption 2 is to keep algorithmic conversions between the internal scalar repre-
sentation and the broken down representation simple. Otherwise, a faithful implementation of the
conversions would incur the overhead of consulting a leap second table.

It is impossible to implement a uniform and continuous UTC timescale based on the above assumptions.
Operating systems with UTC clocks have to handle leap seconds somehow. Some options for positive
leap second handling are:

1. ignore leap seconds

2. jump back 1 s at the beginning of the leap second

3. jump back 1 s at the end of the leap second

8 Specified e. g., in POSIX.1/IEEE 1003.1-1996 and handled the same way in Microsoft Windows operating systems.

http://hpiers.obspm.fr/eoppc/bul/bulc/bulletinc.dat
http://hpiers.obspm.fr/iers/info/gazette.48
http://www.cl.cam.ac.uk/~mgk25/time/leap/PropRevITU-RTF460-6.pdf
http://www.itu.int/ITU-R/index.asp?category=study-groups&rlink=rwp7a&lang=en
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tA [s] tB [s] |tA− tB| [s]

L+0.5 L+0.6 0.1
L+0.5 L+1.6 1.1
L+1.5 L+0.6 0.9
L+1.5 L+1.6 0.1

Table 2.2.: Temporal orderings of ambiguous timestamps
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Figure 2.1.: Oscillator + Counter = Clock

4. stop the clock during the leap second

5. reduce the clock frequency in an interval around the leap second to gradually loose one second.9

POSIX as well as Windows use method 1 if no time service is configured, i. e., they loose synchro-
nization to UTC after the leap second.10 Method 3 is used when operating as an (S)NTP client
and/or server. Stepping back the clock violates the fundamental assumption of monotonic increasing
time.11 Clock steps introduce discontinuities to the timescale. A leap second inserted at time L causes
ambiguous timestamp during the interval [L, L+2]. As an example consider two sensor events A and
B with scalar timestamps L+0.5s and L+0.6s, respectively. Table 2.2 lists the possible temporal
orderings. In general relative errors in measured intervals are unbounded and sign inversions can
happen!

2.2. Characterization of Clocks

Any time measurement device must somehow realize the second. Practical clocks use an oscillating
device, to determine (a constant fraction of) the second, and a counter to accumulate these time
intervals (cf. fig 2.1).12 The vast majority of computer clocks uses crystal oscillators. Embedded
systems use ceramic resonators and RC-oscillators too.

2.2.1. Mathematical models of oscillators and clocks

The instantaneous output voltage v(t) of an oscillator is

v(t) = [V0 +∆V (t)]cos[2πν0 t +ϕ(t)] (2.1)

9 This was proposed as UTC-SLS (UTC with Smoothed Leap Seconds).
10 Provided the machine in question was previously synchronized by other means, e. g., with a one-shot clock adjustment

program like the ntpdate utility.
11 It breaks Lamport’s Happened-Before relation described in section 3.2.1 on page 33.
12 Other types of clocks exist, but play no practical role in time measurement.

http://www.cl.cam.ac.uk/~mgk25/time/utc-sls/
http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdate.html
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where constants V0 and ν0 represent nominal amplitude and frequency, respectively. Amplitude
fluctuations can be converted to phase fluctuations, but quality oscillators usually have small fractional
amplitude fluctuations that are neglected.

∆V (t)
V0

� 1 and therefore ∆V (t)≡ 0 is assumed (2.2)

The instantaneous frequency ν(t) is the derivative of the phase.

ν(t) = ν0 +
1

2π
dϕ(t)

dt
(2.3)

The dimensionless instantaneous fractional frequency deviation y(t) is defined as

y(t) =
∆ f
f

=
ν(t)−ν0

ν0
=

1
2πν0

dϕ(t)
dt

=
dx(t)

dt
(2.4)

Measuring instantaneous frequency is impossible, because it would require measurement equip-
ment with infinite bandwidth. Frequency measurement always involves two oscillators and some
sampling/averaging time τ .13 In practice fractional frequency deviation is averaged as

ȳ(t) =
x(t + τ)− x(t)

τ
(2.5)

When we consider an oscillator as a clock, the fractional phase fluctuation x(t) represents the accumu-
lated time error over the interval [0, t] 14

x(t) =
t∫

0

y(t ′)dt ′ =
ϕ(t)
2πν0

(2.6)

There are many ways how an oscillator can be interfaced to a counter to build a clock; hence the
counter frequency can be different from the oscillator frequency. Analog (PLL) and digital techniques
(prescaler, adder) are used for clock rate correction [Loy97, p. 30–34]. Most computer clocks either
count whole oscillator cycles (e. g., a PCC) or divide the oscillator frequency by a constant factor with
a fixed or programmable prescaler.

Almost all authors model clocks as continuous monotonic functions C(t) that map from real time to
clock time.15 To make the distinction between real time and clock readings clear, capital letters are
used for timestamps.

Ti =C(ti) (2.7)

The rate R of a clock is the first derivative of the clock function

R(t) =
dC(t)

dt
(2.8)

13 The sampling time τ could e. g., be the gate time of a counter.
14 Some authors use x(t) to denote the random part of time error only.
15 Also known as virtual time or logical time in the literature.
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A perfect clock would have no rate deviations, i. e., R(t) ≡ 1. A clock with R > 1 is called fast or
early, and it is said to gain time. A clock with R < 1 is slow, late, and looses time. The rate is modeled
as

R(t) = 1+S+Dt +Ei(t)+υ(t) (2.9)

where S is the fractional frequency offset or skew, D is the linear fractional frequency drift rate due
to aging, Ei(t) is the frequency dependency on environmental conditions (temperature, etc.) and
υ(t) is the random rate fluctuation (frequency modulation noise).16 Linear frequency aging D is a
simplification, but higher order terms are hardly ever used.

The most commonly used model to represent clock noise in the frequency domain is the power-law
noise model. The power spectral density (PSD) of υ(t) is modeled as a linear combination [Bre97]

Sy =
2

∑
α=−2

hα f α f ≤ fh (2.10)

where f is the Fourier frequency and the five coefficients h−2, . . . ,h2 are device dependent parameters.
The upper cutoff frequency fh depends on the low-pass filtering of the oscillator, its output buffer
amplifier and the bandwidth of the measurement system.17 The relation between the PSDs of frequency
deviation (2.4) and time error (2.6) is [SAHW90, p. TN-34]

Sx =
1

(2π f )2 Sy =
1

4π2

2

∑
α=−2

hα f α−2 f ≤ fh (2.11)

Most oscillator data sheets however show a plot of the SSB phase noise to carrier power ratio18 in
dBc/Hz [Ril03]

L ( f ) = 10log
[

1
2

Sφ ( f )
]
= 10log

[
1
2
(2πν0)

2Sx( f )
]

(2.12)

Future clock values can be predicted as

C(t1) =C(t0)+
t1∫

t0

R(t ′)dt ′ = T0 +(1+S)(t1− t0)+
1
2

D(t1− t0)2 +

t1∫

t0

[Ei(t ′)+υ(t ′)]dt ′ (2.13a)

Practical application of equation 2.13a requires a lot of knowledge about the clock in question, its
reactions to environmental conditions, and needs careful control and/or monitoring of those conditions.
Over short to medium intervals ∆t = (t1− t0) and for most clocks, the contributions of clock aging
D and noise υ(t) to the time error (T1−T0−∆t) are typically minuscule compared to skew S and
temperature sensitivity. A much simpler model of short-time clock prediction is

C(t1)≈C(t0)+ [1+S(t0)] (t1− t0) (2.13b)

In contrast to equation 2.13a it is assumed that the rate R(t) has only minor variation over interval
[t0, t1]. This is reasonable, provided that (t1− t0) is small enough, so that environment conditions are
stable and aging and noise are insignificant.

16 Unfortunately, the literature uses much inconsistent terminology. Especially the terms skew and drift denote many different
concepts.

17 In practice there is also a lower cutoff frequency fl due to the finite duration of the measurement.
18 Although L ( f ) is not recommended by the literature.
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Figure 2.2.: Accuracy, Precision, and Stability [Vig07, p. 4-2]

2.2.2. Accuracy, precision, resolution, and stability

A graphical explanation of the terms accuracy, precision, and stability is depicted in fig. 2.2.

Accuracy A measurement is accurate if the result is close to the true value of the measurand.

Precision Measurements are precise, if repeated measurements produce small variation in results.
Precision is the degree of specified detail which can be observed. It corresponds to the number
of significant digits in measurement results, which can be obtained repeatably and reliably.19

Resolution is the granularity of a measurement result, i. e., the minimum (digital) non-zero difference
between readings.

Stability is the quality of being free from change or variation. Stability is a property of an observed
quantity; it is not a property of its measurement.

Calibration can compensate a lack of frequency accuracy (i. e., a frequency offset). Good resolution
is accomplished with high counter frequency. Synchronization—setting the clock to the same time
as a reference clock—establishes time accuracy. Frequency stability determines, how long a clock
can keep the time error within specified bounds. Unstable clocks need much shorter resynchroniza-
tion/recalibration intervals than more stable clocks (cf. table 2.4).

Various variances and deviations (square roots of variances) are used to characterize the fluctuations
of a frequency source in the time domain. Riley lists 13 types of variances in [Ril08, p. 11].

19 NTP uses the term precision for the smallest possible increase of time that can be experienced by a program, i. e., the
elapsed time to read the system clock from userland.
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The classic N-sample or standard variance

s2 =
1

N−1

N

∑
i=1

(ȳi− ȳ)2 where ȳ =
1
N

N

∑
i=1

ȳi (2.14)

should not be used, because it is non-convergent for some common noise types (cf. eq. 2.10).20

Five quantities are used by standardization bodies for characterization of time stability [IT96, p. 13]
[IEE99]. These are

1. Allan Deviation (ADEV) σy is the most common time domain measure of frequency stability. It
can be computed from the first differences of M (averaged) frequency samples ȳi or, equivalently,
from N = M+1 second differences of phase samples xi.

σ2
y (τ) =

1
2

〈(
∆y
)2
〉
∼= 1

2(M−1)

M−1

∑
i=1

(ȳi+1− ȳi)
2 (2.15a)

σ2
y (τ) =

1
2τ2

〈(
∆2x
)2
〉
∼= 1

2(N−2)τ2

N−2

∑
i=1

(xi+2−2xi+1 + xi)
2 (2.15b)

2. Modified Allan Deviation (MDEV) Mod.σy involves an additional phase averaging step

Mod.σ2
y (mτ0) =

1
2(mτ0)2

〈(
∆2x̄
)2
〉

∼= 1
2m4τ2

0 (N−3m+1)

N−3m+1

∑
j=1

[
j+m−1

∑
i= j

(xi+2m−2xi+m + xi)

]2 (2.16)

where m = 1,2, . . . ,bN/3c.
3. Time Deviation (TDEV) σx

σ2
x (τ) =

τ2

3
Mod.σ2

y (τ) (2.17)

4. Root mean square of Time Interval Error

T IErms(mτ0) =

√〈[
x(t +mτ0)− x(t)

]2〉 (2.18)

5. Maximum Time Interval Error (MTIE) The maximum time interval error MTIE(τ) is defined as
a specified percentile, β , of the random variable X .

X = max
0≤t0≤T−τ

(
max

t0≤t≤t0+τ
[x(t)] − min

t0≤t≤t0+τ
[x(t)]

)
(2.19)

Fig. 2.3 explains the MTIE definition graphically.

20 The problem with (2.14) is that the average ȳ is not stationary for α < 0 in (2.10) or D 6= 0 in (2.9) [Ril08, p. 14].
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Figure 2.3.: Graphical explanation of MTIE(τ,T ) [BM00]

Double logarithmic plots of the (Modified) Allan Deviation over τ are used to identify power law
noise processes in clocks, i. e., the exponents α which dominate Sy in (2.10) can be determined by
observing the slope of the plot [IEE99, p. 12]. Allan Deviation σy does not distinguish between white
(α = 2) and flicker phase noise (α = 1) types. The Modified Allan Deviation and the Time Deviation
do not have this ambiguity [AAH97].

The Allan deviations are sensitive to systematic effects like diurnal variations, which might mask
noise effects [IT96]. Cyclic disturbance causes a distinctive pattern of maxima and minima at the half
period and period of the stimulus [Ril03, p. 47]. Unavoidable systematic effects must be adequately
filtered before calculating σy.

TIErms and MTIE are mainly used by the telecommunication industry [Bre97]. MTIE measures peak
time deviation and is therefore very sensitive to transients and outliers [Ril08, p. 33]. Straightforward
computation of MTIE scales as O(n2), but an optimized algorithm achieves O(n logn) [BM00].

2.3. Hardware Clocks

2.3.1. Crystal oscillators

The crystal oscillator is by far the most important frequency control device (cf. table 2.3). Even
inexpensive quartz crystals for wrist watches can have a frequency accuracy of 1 ppm and even better
stability σy [Lev99]. Low cost, small size, low energy consumption, robust design, and long life are
important considerations too.

Since the 1960-ies man-grown single crystals with relatively high purity are used as raw material for
resonators. Quartz is a highly anisotropic material. The electromechanical properties of a resonator
depend not only on the exact geometry of the resonator, but also strongly on the angles of cut
relative to the crystal lattice. An angular difference of one arc-minute makes a significant difference.
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Technology Units per year Avg. unit price Worldwide market
$ $ / year

Quartz crystal resonators & oscillators 3×109 1 4×109

Rubidium cell frequency standard 50000 2000 100×106

Caesium frequency standard 500 50000 25×106

Hydrogen maser 20 100000 2×106

Table 2.3.: Frequency control device market (Estimates for 2006) [Vig07, p. 1-2]

Figure 2.4.: Frequency-Temperature vs. Angle-of-Cut for AT-cut crystal [Vig07, p. 4-44]

Figure 2.4 displays temperature dependent frequency error curves of AT-cut crystals with angle of cut
as parameter.

Environmental effects (temperature, humidity, pressure, acceleration, vibration, electromagnetic
fields, ionizing radiation. . . ) on frequency have been studied thoroughly [ABC+92, WG92]. Because
temperature is usually the dominating factor, only temperature compensated cuts are used for frequency
control devices. The AT-cut is most popular.21 Its frequency dependency on temperature is a cubic
parabola

∆ f
f

= a(T −T0)+b(T −T0)
2 + c(T −T0)

3 (2.20)

where T0 is 25 ◦C and coefficients a,b,c depend on angle of cut. The inflection point is conveniently
near room temperature (25 ◦C. . . 35 ◦C).

21 The letter ‘T’ in the AT- and BT-cuts (and others) stands for “temperature compensated”.
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The acronyms XO and SPXO denote simple packaged crystal oscillators without any temperature
compensation or control. A number of schemes have been developed to mitigate their inherent
frequency instability caused by temperature changes.

Commonly used are the following:

TCXO use temperature sensitive reactances (thermistor/resistor networks and varactor diodes) to
compensate the frequency vs. temperature variations of the crystal. Peak to peak frequency
deviations are reduced by a factor of about 100, yielding about ±0.5 ppm over a temperature
range of -55 ◦C. . . 85 ◦C.22

MCXO utilize self-temperature sensing (dual mode) resonators to virtually eliminate thermometry
related errors.23 A microcomputer and digitally stored calibration coefficients are used to control
output frequency. About ±0.03 ppm (= 30 ppb) over a temperature range of -55 ◦C. . . 85 ◦C are
achieved.

OCXO For best frequency stability the crystal temperature must be stabilized. In an oven controlled
XO the crystal and other temperature sensitive components are enclosed in a thermally insulated
container along with a heating element and a temperature sensor.24 The oven is adjusted to a
temperature where the f vs. T graph of the crystal has zero slope.25 OCXOs reduce frequency
variations by a factor > 1000, but at the cost of much higher power consumption. About
±10 ppb temperature instability are common. High-end SC-cut units stay within ±0.1 ppb over
a wide temperature range, have short time stability σy(1s) = 10−12 and aging of 10−11 / day.

Several mechanisms (mass transfer due to contamination, stress relief in the mounting and bonding
structure, quartz out-gassing, diffusion, etc.) cause frequency aging [Vig07, p. 4-6]. High quality
OCXO and MCXO have considerable less aging than cheaper designs. Table 2.4 shows some typical
values and required resynchronization/recalibration intervals for a guaranteed maximum clock error of
25 ms.

2.3.2. Other frequency sources

Crystal oscillators are not well suited for applications where high frequency accuracy or long-term
frequency stability are important [Lev99]. The mechanical resonance frequency of a crystal depends
on the exact geometry of the artifact and is therefore hard to replicate.

Atomic frequency standards use atomic or molecular resonances. Their stability performance is
compared in fig. 2.5. Hydrogen masers provide best medium-time stability while caesium clocks offer
best long time stability. There is some overlap in stability and unit price between high end quartz and
low end rubidium devices. Rubidium frequency aging is small in comparison with quartz. Caesium
devices do not suffer from frequency aging at all.

22 In practice frequency calibration (to compensate aging) degrade f vs. T performance significantly [Vig07, p. 4-52].
23 The fundamental mode ( f1) and third overtone are excited simultaneously. The beat frequency fβ = 3 f1− f3 depends nearly

linearly on crystal temperature. In principle two separate resonators in close thermal contact could be used too [SCF+08].
24 High performance units use a double oven design, where the outer oven stabilizes the ambient temperature of the inner oven.
25 Usually SC-cut (stress compensated) crystals are used. The inflection point of their f vs. T graph is about 95 ◦C. SC-cut

crystals have several advantages over AT-cut crystals. They are more expensive to produce because of their double-rotated
cut.
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Osc. type Temp. Stability Aging / Day Resynchr. Recalibr.

SPXO 50×10−6 1×10−8 5 min 9 years
8 min 200 days

TCXO 1×10−6 1×10−8 10 min 10 years
4 h 80 days

OCXO 2×10−8 1×10−10 6 h 50 years
4 d 1.5 years

MCXO 2×10−8 5×10−11 6 h 94 years
4 d 3 years

RbXO 2×10−8 5×10−13 6 h not needed
4 d 300 years

Table 2.4.: Resynchronization and recalibration intervals (based on [Vig07, p. 8-10])

Research in optical frequency standards suggests, that reproducible relative frequency accuracies at the
10−17. . . 10−18 level should be achievable within a few years [Gil05]. Another current research area
is the chip-scale atomic clock for applications requiring atomic timing in portable battery-powered
devices [LRV+07].

Ceramic resonators perform worse than quartz crystals. Frequency tolerances at 25 ◦C and frequency
variation over the operating temperature range are both typically a few thousand ppm. They should
only be used for timing applications where very small savings in unit cost matter more than accuracy.

Several microcontrollers can optionally generate their clock signal from on-chip integrated RC-oscil-
lators.26 Frequency accuracy is limited to about 2 % (20000 ppm).

2.3.3. Computer clocks

Clocks built into computer systems are almost always of the crystal oscillator & counter type depicted
in fig. 2.1. Frequency accuracy and stability requirements for computers are typically low. Low price
bulk AT-cut crystals with large frequency tolerances are common.

The Intel x86 PC platform (and hence the general purpose processor of I-SENSE nodes) has several
timing sources:

RTC The real time clock is battery backed and keeps time when the PC is powered off. Since the
internal counter is not software accessible, the resolution is only one second. The RTC can
periodically interrupt the CPU. The interrupt frequency is programmable from 2 Hz to 8192 Hz
in powers of two.

PIT The Intel 8254 Programmable Interval Timer has three independent 16 bit counters. It has a
nominal frequency of 1193181.81 Hz.27 The nominal frequency can be divided by a programmed
16 bit value to generate periodic interrupts with frequencies down to 18.2 Hz.

26 Among them the popular Atmel AVR and Microchip Technology PIC families of microcontrollers.
27 This is one third of the NTSC color subcarrier frequency—reminiscent of the 1981 color graphics adapter (CGA).
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Figure 2.5.: Short term stability ranges of various frequency standards [Vig07, p. 7-5]

ACPI The Advanced Configuration and Power Interface Specification requires a 24 bit or 32 bit power
management timer running with a fixed frequency of 3.579545 MHz (NTSC-M color subcarrier
frequency).

TSC The Time Stamp Counter is 64 bit wide and available on all x86 processors since the Pentium.
It is a processor cycle counter (PCC). Its high resolution and the ability to read it in a single
machine instruction28 seem to make it the ideal timer on the PC platform. Unfortunately, power
saving measures like idle states and CPU throttling and can make the TSC frequency highly
variable.29 Moreover on multiprocessor systems the per-processor TSCs can proceed at different
rates. The TSC cannot be programmed to cause interrupts, which makes it unsuitable for a
scheduler clock.

APIC The local APIC (Advanced Programmable Interrupt Controller) timer can interrupt its associated
processor when a programmed count is reached. The timer is 32 bit wide. Its frequency is
derived from the processor bus clock, divided by a programmable value. It can be configured
for one-shot or periodic operation. Dependent on the actual CPU model, the timer may or may
not run at a constant rate in different power states and during power state transitions.

HPET The High Precision Event Timer (a. k. a. Multimedia Timer before 2002) is a monotonic 64 bit
counter running with at least 10 MHz. At least three comparators and match registers and one
periodic capable timer are provided. The specification permits large frequency instabilities of
±500 ppm over intervals≥ 1 ms and±2000 ppm over intervals≤ 100µs. HPET is not available
on older hardware and unsupported by older operating system releases.

Availability, resolution, width, interrupt features, and access/reprogramming speed vary a lot between
the above hardware timers. Besides, several of the timers are BIOS managed and quite a lot of broken

28 RDTSC or RDTSCP. The latter instruction prevents out of order execution.
29 Spread-spectrum clocking—a technique for electromagnetic interference reduction—introduces clock frequency modulation

too. [HFB94]
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implementations have been reported. It is therefore impossible to choose an optimal timer without
detailed knowledge of the actual hardware/BIOS combination and/or testing. Some operating systems
consequently choose the best system timer during the start-up process after probing the hardware
[Kam02].

Built-in clock hardware on other platforms varies, but the combination of crystal oscillator and counter
is always present. There is great variation in other hardware details like programmable prescalers or
PLLs, availability and number of comparators, one shot and periodic interrupt facilities, and speed
and level of software access to timer hardware registers. The timer hardware details of I-SENSE
signal processor boards are described in section 4.1.1 on page 47.

Many microcontrollers have even more elaborate timer hardware, like up/down counters, external
event counters, and PWM output modes. A highly useful feature for timekeeping purposes, which
is present in many microcontrollers,30 is the capture register. By capturing timestamps of (external)
events in hardware, the timing uncertainty associated with interrupt latency is avoided. Unfortunately,
neither commercial off the shelf (COTS) PC hardware nor the I-SENSE DSP boards are equipped
with capture registers.31

There is little recent literature about the quality of COTS computer clocks. Most of it does neither
include temperature data nor specify whether the machines have been operated in air conditioned
rooms.

Marouani and Dagenais report accuracy and stability data on the CPU clocks of some 30 Intel
and AMD systems with nominal CPU frequencies between 266 MHz and 2.4 GHz [MD08]. CPU
frequency offset from nominal frequency was a few thousand ppm. Frequency variation between
eight equal Pentium IV models spans 29 ppm. A temperature change from 28 ◦C to 47.25 ◦C caused a
-8.3 ppm change of CPU frequency, diurnal variation was 0.74 ppm.32

Kohno et al. used TCP timestamps to remotely measure clock frequency [KBC05]. They found that
individual machines show only 1–2 ppm clock skew over time, but found some 50 ppm variation
between individual machines, even identical models.

The static rate difference calibration mentioned in section 1.1 resulted in a maximum rate difference
of 142 ppm between a management PC and four I-SENSE DSP cards.

The author’s measurement of an I-SENSE node in a laboratory without air conditioning is depicted
in fig. 2.6. Frequency variation over 24 hours stayed below 2 ppm but was larger over several days.
The lower (blue) curve and the scale on the right y-axis show the normalized rate difference between
the system clock of the general purpose processor and a DSP node. Both processors/oscillators were
located within the same case and thus thermally coupled. This caused an effect similar to common
mode rejection—the change in skew between both clocks was only about 0.1 ppm.33

30 E. g., the Atmel AVR or TI MSP430 controllers.
31 A main reason why PC based precision timing applications always need more additional hardware (timing cards) than only

an external reference clock.
32 Only one system has been measured.
33 A constant bias of 22 ppm has been removed. The observed effect is helpful for inter-node synchronization, but it depends

entirely on the coincidental matching of the f-versus-T characteristics of both crystals. (cf. fig. 2.4 on page 15 and
[SCF+08].)
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Figure 2.6.: Frequency variation of a computer clock over a week.

2.3.4. External reference clocks

Synchronization of computer networks to external timescales like UTC requires injection of reference
time into the network. The points of injection are external reference clocks that are interfaced to
network nodes. Many national time standard laboratories attach atomic clocks to public NTP servers
in order to inject their realizations of UTC into the Internet. Most external clocks are either radio
controlled clocks or GPS time receivers.

Radio clocks are synchronized to terrestrial time signals. Many countries operate longwave time
signal transmitters like WWVB at 60 kHz in the U. S., DCF77 at 77.5 kHz in Germany, and
TDF at 162 kHz in France. The signal range is between 2000 km (DCF77 50 kW) and 3500 km
(TDF 2 MW). Small indoor antennas are usually adequate. Cheap, narrow bandwidth receivers
have only accuracies in the 5–25 ms range. Commercial correlation receivers achieve about
50µs when they are calibrated for the transmitter to receiver distance.

GPS receivers can operate worldwide but antennas need good sky view (and therefore rooftop access
is frequently required). Even cheap units have 1µs accuracy. Commercial quality units achieve
about 50 ns accuracy and are equipped with Time Receiver Autonomous Integrity Monitoring
(TRAIM) to protect against faulty satellite signals.

LORAN (LOng RAnge Navigation) is a terrestrial longwave navigation system that uses high peak
power pulses at 100 kHz [RSJ+05]. It was introduced in 1957 and is used mainly by the U. S.,
Europe, and Japan. GPS performs much better than the present LORAN-C system, however the
U. S. have modernized the system to achieve better navigation and timing performance. The
enhanced LORAN (eLORAN) system can be used as a timing source with about 100 ns accu-
racy.34 The eLORAN time and frequency accuracy can support almost all civilian applications.
E-Loran can be used as a local backup/complement to GPS.

34 This requires receiver and antenna calibration and LORAN data channel (LDC) corrections.
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2.3.5. Interfacing external clocks

At the physical layer the clock-computer interface is frequently realized as pulse per second (PPS)
signals. Only minimal add-on hardware (a cable and sometimes a level converter) is needed, because
most computers can be programmed to trigger an interrupt when a signal flank arrives at certain
parallel or serial port pins.35 A PPS API has been defined and free implementations for some POSIX
systems exist.36[MMB+00, MK00] Since PPS signals only mark the start of a second but do not tell
which second begins, an additional serial or USB connection is needed.

Cheap radio clocks and several navigation-only GNSS receiver models (through the NMEA protocol)
use a serial link alone. Because of the relatively slow communication speed and (hardware and
software) buffering of serial data streams a large timing uncertainty of tens of milliseconds results.

Precision timing hardware (like PCI timing cards) normally uses IRIG-B time code signals to synchro-
nize with external reference clocks [IRI04].

2.4. Software Clocks

This section deals with clocks from the viewpoint of software. Application programs use time related
APIs rather than accessing timer hardware directly. System software isolates applications from
idiosyncrasies of actual timer hardware by providing clock abstractions.

2.4.1. Operating system view

Operating system provided clocks can be categorized into three classes:

Counter register read access is the most simple API. Examples are library wrappers around PCC
read instructions or the QueryPerformanceCounter function in Microsoft Windows. The
counter frequency is either available from an API37 or must be obtained from a hardware
specification. Since the epoch is the time of the last system reset, these clocks are rather used
for time interval measurements than for providing UTC. Because of low clock access overheads
and high frequencies, these clocks are ideal for execution time profiling and similar performance
measurements.

Periodic timer interrupts are used by virtually all operating systems. Windows system time is
implemented this way. The interrupt service routine increments a software counter. Both the
interrupt events and the intervals between them are conventionally called ticks. The timer
interrupt frequency limits clock precision. Most older Unix/Linux systems used 100 Hz (10 ms).
As processor speeds have increased, higher frequencies up to 1000 Hz are nowadays more

35 On commodity PCs either the DCD pin (carrier detect) of a serial port or the ACK pin of a parallel port is used.
36 The NTP reference implementation supports the PPS API on Windows too.
37 On many Windows systems the QueryPerformanceFrequency function returns 3.579545 MHz—the ACPI power

management timer frequency.

http://msdn.microsoft.com/en-us/library/ms644904%28VS.85%29.aspx
http://www.ntp.org/
http://groups.google.com/group/comp.protocols.time.ntp/browse_thread/thread/82486f845d282611
http://msdn.microsoft.com/en-us/library/ms644905(VS.85).aspx
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common.38 At the time of this writing the Microsoft Windows system clock still uses either
100 Hz or 64 Hz.

Interpolation schemes combine the two previously described approaches in order to improve clock
resolution. A periodic interrupt is used for basic time keeping, and a high frequency counter is
used to interpolate between ticks.

To achieve increased resolution the Windows port of the NTP reference implementation does
system clock interpolation at the application layer (i. e., outside the kernel). The implementation
uses the multimedia timer API to get 1000 callbacks per second from the kernel. The perfor-
mance counter is used to interpolate between callback events. A drawback of this approach is
that callback invocation may be delayed for several milliseconds during phases of heavy system
load.39

2.4.2. Clock phase and rate adjustment

Figure 2.7.: Clock adjustment sawtooth error [Mil06b, p. 180].

The frequency offsets of computer hardware clocks are in a range from a few to a few hundreds ppm.
Since even a rate offset of 1 ppm leads to a time error of 86.4 ms/day, some means of correction is
needed—at least for clocks tracking wall clock time.40

Setting the time to a new value is problematic, because it violates assumptions about a continuous
timescale. Stepping time backwards is known to confuse application programs. Clock steps are
hence avoided and (small) phase corrections are made by changing the clock rate instead. The time a
clock needs to run with increased or decreased rate to achieve a given phase correction is called the
amortization interval.

Unix systems use the adjtime system call to make small adjustments to the system time. This
amortizes the given signed time offset by using an increment that is slightly larger or smaller than
normal. The kernel reverts automatically to the standard increment as soon as the adjustment is
complete. Unix typically increases or decreases the rate during adjustments by 500 ppm, i. e., it

38 Periodic interrupts on an otherwise idle machine cause wakeups from power-saving states, which is detrimental to power
efficiency. Clock ticks also add to “system noise”. The Linux kernel is therefore moving away from this traditional
design. [TEFK05, SPV07]

39 A slightly modified version of this interpolation clock is used for the I-SENSE synchronization process on general purpose
processor nodes.

40 Clocks that measure the system uptime(e. g., GetTickCount on Windows) usually cannot be phase or rate adjusted.

http://developer.apple.com/documentation/Darwin/Reference/Manpages/man2/adjtime.2.html
http://msdn.microsoft.com/en-us/library/ms724408(VS.85).aspx
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takes 2000 s (more than 33 minutes) to amortize one second. Only three clock rates are available, the
unadjusted rate with a frequency error (line BC in fig. 2.7), the same rate reduced by -500 ppm (line
AB), and increased by -500 ppm. The ABC sawtooth of fig. 2.7 has to be repeated permanently (and
adjtime calls made at A) in order to keep the offset error low.

The Windows scheme for clock adjustment offers more flexibility for rate control, but there is
no API for amortized offset corrections. The SetSystemTimeAdjustment function sets the
increment added to the time-of-day clock at each clock interrupt. This allows arbitrary system clock
rates, but since Windows system time has 100 ns resolution, the granularity of possible rates is only
10 ppm/6.4 ppm at the common 100 Hz/64 Hz tick rates.

POSIX systems with kernel support for NTP41 allow very fine grained rate settings and offset
corrections with the ntp_adjtime system call.

2.4.3. Application view

On general purpose operating systems direct access to the timer hardware is not possible.42 Clocks
that are provided by the OS are used.

Table 2.5.: Time representations in various APIs

OS Time format Size Resolution Precision Wrap around

Windows System Time 8 × 16 bit 1 ms ca. 10 ms 65536 years
File Time 2 × 32 bit 100 ns ca. 10 ms 58454 years
MS-DOS Time 2 × 16 bit 2 s 2 s 128 years
Windows Time 32 bit 1 ms ca. 10 ms 49.7 days a

MM Timers 32 bit 1 ms ≥1 ms 49.7 days
HR Timer 64 bit 279.4 ns 279.4 ns 163300 years b

DSP/BIOS Highres Timer 32 bit 13.33 ns 13.33 ns 57.27 sec c

Lores Timer 32 bit 1 ms 1 ms 49.7 days d

NTP internal formats 64. . . 128 bit 1µs or 1 ns ≥1 ns e

wire format 64 bit 232.8 ps 136 years

POSIX struct timeval 2 × 32 bit 1µs ≥1µs 136 years f

struct timespec 64 bit+32 bit 1 ns ≥1 ns >1011 years f

a Epoch is system boot, i. e., the system uptime is returned.
b Assuming QueryPerformanceFrequency() = 3.579545 MHz
c The timer frequency is fCPU/4 or fCPU/8 depending on CPU model. The values shown
are for an I-SENSE DSP node with a 600 MHz TMS320C64X CPU.
d The low-resolution timer period is configurable with a 1 ms default value.
e Either micro- or nanosecond resolution is used dependent on a status flag.
f The standard does not specify the size of the integer seconds part (time_t).

41 Solaris, *BSD, Linux, and Darwin.
42 Unless one goes through the hassles of developing, maintaining, and deploying a device driver.

http://msdn.microsoft.com/en-us/library/ms724943(VS.85).aspx
http://www.daemon-systems.org/man/ntp_adjtime.2.html
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From the application programmer’s view, it is irritating that so many different date-time and time
interval representations with varying resolution and precision are provided. Table 2.5 shows some
examples. The I-SENSE time synchronization software has to deal with several of the tabled
time formats. Conversion between formats must scale resolutions and consider different epochs (cf.
table 2.6).43

Timescale Epoch

Windows 1601-01-01
MS-DOS 1980-01-01
NTP 1900-01-01
POSIX 1970-01-01
.NET 0001-01-01
MacOS 1904-01-01

Table 2.6.: Epochs of some computer timescales

API documentation is frequently lacking important specifications. Answers to the following questions
often require additional research or testing:

Precision What is the minimum time interval between clock increments?

Monotonicity Is the clock (strictly) monotonic?

Accuracy Is the clock disciplined, i. e., rate and offset controlled? If yes: How does this affect
monotonicity and rate accuracy? Can the synchronization state be obtained?

Obtaining answers to questions about clock reliability44 and clock access overhead most often requires
running test programs on the target hardware.

2.5. General Clock Synchronization Model

Since clocks (and ensembles of clocks) are dynamical systems, methods and terminology from control
theory can be applied to the synchronization problem. Synchronization solutions can be described as
closed-loop control systems. Essential components of the feedback control loop are detailed in the
following subsections.

43 Local time zones, synthetic time scales like profiling clocks, and time related APIs mandated by programming language
standards complicate the picture further. Java APIs e. g., use the POSIX timescale with 1 ms resolution but intervals can be
timed with 1 ns resolution (System.nanoTime).

44 There are reports on the Internet about Windows systems with broken/erratic QueryPerformanceCounter implemen-
tations.

http://msdn.microsoft.com/en-us/library/ms644904%28VS.85%29.aspx
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Figure 2.8.: Two-way time transfer

2.5.1. Measurement of the time difference between a local clock and a remote clock

Determining the time difference of a local clock relative to a remote clock is called time transfer
in metrology [Lev99, Lev08]. All time distribution methods depend on the accuracy of communi-
cation channel delay. Dependent on time signal topology several time transfer techniques can be
distinguished:

One-way (broadcast) The reference clock broadcasts its time. Receivers must know the channel
delay. After receiving the broadcast they calculate the time of reception by adding the channel
delay to the transmit time of the sender. Radio controlled clocks and single channel GPS time
receivers make use of the one-way method. A real-world limitation is, that channel delay varies
over time, and that this variation is not entirely predictable.

Multi-hop paths over (possibly congested) Internet paths have large unpredictable delay fluc-
tuations. The one-way method is therefore unsuitable across the Internet. Broadcast message
propagation delay on LAN or single hop WLAN links is much more predictable.

Two-way (round trip) The channel delay can be estimated using a query/response scheme. The local
client sends a time request to a time server that sends its current time in reply.45 If the channel
is reciprocal, its one-way delay can be estimated as half the round trip time RT T = Tr−Tx.
The error of the method is proportional to the path asymmetry a. If we define asymmetry with
reference to fig. 2.8 as

a =
2(Ta−Tx)

RT T
−1 −1 < a < 1 (2.21)

then the timing error θe due to path asymmetry a will be

θe =
a
2

RT T |θe|<
RT T

2
(2.22)

In the depicted example the case of the faster request path (T ′a1) would cause the client clock
to be late by one quarter of the RTT, the even faster response path (T ′a3) would set it early by
3/8 RTT.

45 The two-way method does not mandate a client/server architecture. The NTP symmetric mode is a counter-example.
Two-way satellite methods (TWSTFT) operate even full-duplex with uncertainty below the nanosecond. [GA05]
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Figure 2.9.: Common-view method

Common-view (third party broadcast signal) The method is depicted in fig. 2.9. Two receivers use
their local clocks to measure the arrival of the same third party broadcast signal. The receivers
then exchange their measurement results to obtain the mutual clock offset. The method requires
the receivers to be approximately equidistant from the third party, to make the channel delays
experienced by the receivers nearly equal.46 One advantage over the one-way method is, that
knowledge of absolute path delay is not required. Another advantage is, that fluctuations in the
channel delay cancel out if the paths are similar.47 The sender needs no precise clock; it does
not even need to “know” that it is being used for time transfer.

The common view method is only applicable to computer networks with a physical broadcast
channel. Although the technique can be used on a LAN,48 it is especially attractive on WLAN,
because the medium access delay of the sender does not matter [EGE02].

Two other time transfer techniques known in the metrology literature are the All-in-View and the
portable clock method.49 They are not relevant for computer network synchronization.

Decomposition of path delay

Message passing in distributed systems involves many more delays than only signal propagation across
a medium between two nodes. The speed of electromagnetic waves is about 300 m/µs in the atmosphere
and roughly 200 m/µs along cables. End-to-end message delivery delays of hundreds of microseconds
between (W)LAN nodes are dominated by processing rather than physical signal propagation.

Processing of a one-way message from the sender application layer down the network protocol stack
and vice versa in the receiver protocol stack is sketched in table 2.7. Additional software layers like
virtual machines or middleware transport services would add even more unpredictable delays.

46 In high precision applications some correction for the residual path difference is usually required.
47 Typically because the baseline between the receivers is small compared to the sender distance.
48 For example by utilizing already available broadcast packets like ARP requests as the third party signal.
49 The All-in-View or Melting-Pot technique uses synchronous one-way measurements of a clock ensemble. An example is a

multi-channel GPS time receiver. [Lev08]
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Software layer Processing step

Sender application call time-of-day function, add timestamp to message
Sender application call send-message function
Sender OS copy message to kernel memory, invoke network stack
Sender stack assemble packet by several layers of network stack
Sender NIC driver wait for medium access
Sender NIC driver transmit packet, probably re-transmit in case of collision (CSMA/CD)

(Medium) Packet propagation
Intermediate router(s) Enqueue, process, and forward packet

Receiver NIC Store packet in NIC buffer, interrupt CPU
Receiver kernel wait until higher priority interrupts processed
Receiver NIC driver copy packet to kernel, invoke network stack
Receiver stack process packet by several network stack layers
Receiver OS wake up/notify receiving process
Receiver OS scheduling delay until receiving process is assigned CPU
Receiver OS context switch to receiving process
Receiver OS probably extra delay due to virtual memory paging
Receiver application read message (receive-message function returns)
Receiver application call time-of-day function to get receive timestamp

Table 2.7.: Message delivery processing steps

Additional processing delays are not, per se, a problem for synchronization, since they can be
abstracted into the end-to-end communication channel. The drawback of application-to-application
delay measurements stems from the unpredictable delays due to resource contention that may occur at
most of the steps in table 2.7. The combined delay uncertainties create a large overall uncertainty when
delay is measured at application level. The importance of taking timestamps at the lowest possible
layer is further substantiated in section 3.1.8.

2.5.2. Estimation of the time and frequency error of the local clock

Isolated offset measurements are only a rough estimate, because of the uncertainty associated with
remote clock reading. Only at system startup when the clock has to be set quickly, a single remote
clock reading (or the average of a few ones) is used as-is.50 In general, protocols try to reduce the
uncertainty of single measurements by applying mathematical methods to sets of measurements
[Joh04].

One effective method to remove outliers is based on eq. 2.22. In many cases, the samples with minimal
RTT have suffered from the smallest random delays and have little path delay asymmetry. Selecting
the low RTT samples therefore tends to remove outliers and decrease overall jitter [Mil06b, p. 43f].

50 The ntpdate program coming with the NTP reference implementation does this.

http://www.eecis.udel.edu/~ntp/ntp_spool/html/ntpdate.html
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Figure 2.10.: Offset and skew estimation in the Tiny-Sync protocol [YVS07]

This characteristic of Internet paths is also present on I-SENSE intra-node links (between general
purpose processor and DSPs) and is depicted in the scatter diagram of fig. 4.6 on page 58.51

Other proposed methods are simple first order low-pass filtering, sliding averages, linear least squares
regression (LLR) techniques, statistical models in combination with parameter fitting, Kalman filters,
convex-hull, and linear programming approaches [ZLX02, Joh04, SM08].

As an example of a linear programming approach the algorithm used by the Tiny-Sync proto-
col [YVS07] is graphically explained in fig. 2.10. Based on the assumption of linear clock functions
(cf. eq. 2.13b on page 11) the client clock tC is a linear function of the server clock t ′S. Transformation
of a server timestamp T ′i to a client timestamp Ti requires two parameters: the client time b12 at t ′S = 0
and the relative rate a12 =

1+Sc
1+SS

. For each two-way measurement of fig. 2.8 the inequalities

Tx < a12T ′a +b12 < Tr (2.23)

must hold. New measurements may or may not reduce the possible parameter intervals. In fig. 2.10
data point 3 clearly raises the lower bound b12 and lowers the upper bound a12 but it changes b12 and
a12 only slightly. To avoid unbounded computational and storage requirements, Tiny-Sync stores only
four selected constraints at any time.

All estimation methods are based on assumptions about the properties of communication channels
and clocks. Making good assumptions about real-world network paths is hard, since they often show
complex non-Gaussian delay distributions. Varying network conditions are another complication, as
they may cause substantial change of delay distribution.

51 Minimum RTT filtering was hence effective in this case too.
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Multiple clocks and fault tolerance

Multiple time sources add another layer of complexity. Clocks with different properties, some of them
possibly failing in Byzantine ways, create new challenges for protocols. Interval-comparison based
selection algorithms (cf. Marzullo’s algorithm in section 3.2.4), clustering algorithms [Mil06b, p. 50ff],
and weighted combinations are common building blocks for fault-tolerant averaging or convergence
functions.

The fault-tolerant midpoint algorithm [LL84] is a convergence function, which is e. g., used for time
synchronization in the automotive network communications protocol FlexRay [Fle05, pp. 169–193].
The algorithm works in rounds. In each round the list of n remote clock readings is first sorted, then the
f highest and the f lowest values are thrown away, and finally the time is estimated as the arithmetic
average of the highest and the lowest remaining value.52

Schneider [Sch87] compares eight fault-tolerant convergence functions. He points out, that all fault-
tolerant clock synchronization protocols can be viewed as refinements of a single paradigm. He also
formalizes four required properties of convergence functions: monotonicity, translation invariance,
precision enhancement, and accuracy preservation.

2.5.3. Adjusting the local clock to reduce future time differences

Not all protocols adjust the local clock, sometimes timescale transformations (cf. section 3.1.3) are
used instead.

In the common case of real-time synchronization, new time and frequency error estimates can be
computed when a new offset sample arrives. An overly simplistic clock adjustment algorithm would
correct the rate and phase of the clock immediately using APIs from section 2.4.2 above. Frequent
clock steps in both directions would result. In practice, however, clock steps are avoided and a smooth
and stable rate is desired to keep short interval measurement errors low.

The time constant used for rate smoothing is always a compromise. Optimizing the clock for good
interval measurement performance requires a rather large time constant to keep rate changes low.
Optimizing for phase accuracy needs a shorter time constant to reduce time offset errors more
quickly. The requirements for rate and phase performance—i. e., clock stability and accuracy—are
conflicting.

NTP alleviates the conflict with a dynamic time constant. The time constant is enlarged when the
estimated network jitter is below a threshold and shrinked otherwise [Mil06b, p. 71f]. This scheme
adapts to varying network conditions, but it does not help in the case of a drifting local clock, e. g.,
due to a temperature step [Mil98].

A solution to the stability-versus-accuracy tradeoff problem has been described by Ridoux and Veitch
[RV09]. They co-implemented two software clocks based on the same CPU clock hardware oscillator.
One clock is optimized for time differences and the other for absolute time.

52 In FlexRay if 3≤ n≤ 7 then f = 1, and if n > 7 then f = 2.



3. Synchronization Protocols for Computer
Networks

There is a huge body of work about synchronization protocols for computer networks. Countless
protocols have been proposed in thousands of publications. The presentation and citations in this
chapter are therefore restricted to a few classical papers and some survey papers. Much of the
theoretical work has been published throughout the 1980-ies and early 1990-ies. An (incomplete)
annotated bibliography on clock synchronization from that period is [Sch94a], an overview paper is
[SWL90].

Currently the subject of time synchronization protocols is again a hot research topic. The main reason
is that classical approaches do not fit the highly specific demands of wireless sensor networks very
well [ER03]. Pointers to WSN research literature are given in section 3.2.6. Although the WSN design
space is vast [RM04], I-SENSE does not fit into it.1 The advantages of WSN protocols in areas like
energy-efficiency, scalability, and ad hoc deployment—while interesting—are of little relevance for
the practical part of this thesis (cf. section 1.2).

Section 3.1 below is an annotated compilation of protocol classification criteria. It gives an overview
over the synchronization protocol design space. Section 3.2 briefly presents some examples of practical
algorithms and gives pointers to literature. Section 3.3 concludes this chapter with a more detailed
description of the NTP and SNTP protocols.

3.1. Classification of Synchronization Protocols

3.1.1. Communication model

The communication patterns for synchronizing time sources with clients have been discussed in
section 2.5.1. The common-view method requires a physical broadcast channel. The one-way method
can use broadcast addressing, but does not require it. The two-way method normally uses unicast, but
a broadcast request with unicast replies can be used too.

1 Current technology cannot support the energy requirements of I-SENSE nodes from reasonable sized batteries. I-SENSE
nodes are therefore tethered devices.
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3.1.2. Time source

No time source The simplest form of synchronization is only concerned with event ordering. These
algorithms only compare clocks and do not attempt to synchronize them. Algorithms without
any physical clocks at all (cf. section 3.2.1) fall in this category too.

Internal synchronization Without an external time source the goal is consistency among the network
nodes., i. e., to minimize the differences between the readings of the local clocks.

External Synchronization Time is supplied from outside the network. The injected reference time
usually refers to a standardized global timescale like UTC. All nodes adjust to this reference
time. While internal synchronization may be implemented in peer-to-peer fashion, external
synchronization is always hierarchical.

3.1.3. Clock correction versus timescale transformation

Clock correction Most methods control rates and offsets of all clocks. The clock of each node is
corrected to achieve network synchronization.

Untethered clocks Each clock is free running, i. e., not adjusted or steered. Because each clock
implements its own timescale, timestamps must be converted when passed between nodes. These
timescale transformations need parameters relating the clocks against each other. The storage
overhead for these parameters and the computation overhead for maintaining parameters and
doing timestamp transformations are a disadvantage of the approach. It is nonetheless attractive
in the context of WSNs, where energy efficiency is paramount and wireless communication is
the most energy consuming activity. Timescale transformation is attractive in these scenarios,
because it significantly reduces the communication overhead for synchronization.

3.1.4. Master-slave versus peer-to-peer

Master-slave Master nodes require CPU and bandwidth resources proportional to the number of
slaves. Large networks therefore use hierarchical topologies, where certain higher level slaves
are masters for the next level.2

Peer-to-peer Any node is allowed to talk to any other node directly. Peer-to-peer protocols are more
flexible and node-failure tolerant than hierarchical protocols, but also more difficult to control.

2 In North-American telecommunication networks (cf. ANSI/T1.101-1987) the hierarchical synchronization levels are called
strata (sg: stratum). The NTP documentation uses that term too, but, unlike the ANSI standard, a NTP stratum carries only
topological significance and no accuracy and stability requirements are defined for the levels.
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3.1.5. Probabilistic versus deterministic

Probabilistic synchronization Probabilistic clock synchronization algorithms do not require guar-
anteed bounds on message delays. Probabilistic protocols cannot guarantee a maximum clock
offset, but the probability of exceeding an offset can be bounded or determined.3

Deterministic synchronization Deterministic algorithms can guarantee bounds on clock offset. Most
algorithms in the literature are of this type. In order to make deterministic guarantees these
protocols have to make stringent assumptions about the properties of the involved clocks and
communication channels, e. g., lower and upper bounds for the channel delay and clock skew
must be known and guaranteed.

3.1.6. Time instants versus time intervals

Time instants A time instant (like t = 3) specifies a zero dimensional quantity with no margin for
error. Since measurement uncertainty is unavoidable, a time instant can never be exactly accurate.
Both time instants and intervals can be refined by quality statements. The processing of detailed
quality statements (like the probability distribution of offset error) would make protocols quite
complex. Therefore symmetric or asymmetric intervals together with a probability for the
correctness of the given interval are preferred.

Time intervals Using guaranteed intervals instead of instants allows to combine the intervals effi-
ciently and unambiguously by intersection. Guaranteed time bounds for sensor-data permit to
guarantee bounds on fusion results too.

3.1.7. Lifetime and scope

Most protocols are designed for continuous synchronization. For sensor network applications this may
be suboptimal. If inter-event intervals are long then on-demand synchronization may be much more
efficient. An example is post-facto synchronization where synchronization and timestamp generation
happen only after an event has been recorded [EGE02].

Only the collocated subset of network nodes that observes the triggering event needs to participate in
the synchronization.

3.1.8. Low level access

Standard approach Time stamping is done at the application layer. This avoids modifications to low
level software, but inevitable system noise degrades timestamp quality. Some operating systems
have built-in timestamping facilities implemented in the network stack.4 When these facilities
are available and used then application scheduling delay is entirely removed from timestamps.

3 Some authors make a further distinction between probabilistic and statistical algorithms. [AP98]
4 Among them Solaris, Linux, and the open source BSDs. Windows lacks this feature. The reference implementation of NTP

makes use of OS-provided UDP packet timestamps where available.

http://www.ntp.org/
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MAC-layer utilization Timestamping at application or network stack level is agnostic to media access
delay. Several WSN time synchronization protocols rely on direct access to the Media Access
Control (MAC) layer.

Low Level Hardware Timestamps Creating timestamps at the lowest possible software layer (device
driver / MAC) still incurs the timing uncertainties associated with interrupt latency. Sub
microsecond accuracies are possible with special network interface hardware. Examples of this
approach are the SynUTC project where a special UTCSU-ASIC (Universal Time Coordinated
Synchronization Unit, see [Loy97]) and an asymmetrical interval based protocol [Sch00] were
developed. A newer example is the IEEE 1588 standard, which specifies the Precision Time
Protocol (PTP) [IEE08]. It is commonly implemented with special Ethernet hardware, which
snoops the IEEE 802.3 MII-bus to the PHY transceiver chip [Hor04, pp. 55–60]. IEEE 1588 is
aimed at real time applications in automation [HSK03].5

3.2. Synchronization Protocol Survey

3.2.1. Logical clocks

Lamport points out in [Lam78] that the concept of time is derived from the more basic concept of
event ordering. He models distributed systems as collections of processes. Each process consists of
a sequence of events, e. g., the execution of a machine instruction or sending a message to another
process. He formalizes the concept of event ordering with the definition of the “happened-before”
relation, denoted by “→” and defined as follows:

Definition 1. The relation “→” on the set of events of a system is the smallest relation satisfying the
following three conditions:

1. If a and b are events in the same process, and a comes before b, then a→ b.

2. If a is the sending of a message by one process and b is the receipt of the same message by
another process, then a→ b.

3. If a→ b and b→ c then a→ c.

Two distinct events a and b are said to be concurrent, denoted by a ‖ b, if a9 b and b9 a.

No event can happen before itself, therefore a9 a holds for any event a. Thus the “happened-before”
relation is irreflexive, transitive, and antisymmetric. It defines a partial ordering on the set of all
events.

Another meaning of a→ b is that event a may causally affect event b, and a ‖ b means that neither
can causally affect the other.6 Two distributed computations are equivalent (have the same effect) if
they only differ by the order of concurrent operations.

5 See http://www.ieee1588.com/ and http://ieee1588.nist.gov/. Software only implementations of PTP
exist too [CBB05].

6 The above definition gives a causality relationship for message passing systems. In shared memory systems two operations
on the same data item, one of which is a write, are causally related too.

http://ieee1588.nist.gov/
http://www.ieee1588.com/
http://ieee1588.nist.gov/
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Scalar clocks

Lamport introduces logical clocks in [Lam78] as just a way of assigning numbers to events, i. e., each
process Pi has a clock Ci which assigns a number Ci(a) to any event a in Pi. For any event b we define
its timestamp C(b) to be C j(b) if b is an event in Pj. A reasonable correctness condition for logical
clocks is that if event a happens before event b, then the clock value (timestamp) of a must be less
than the clock value of b. We state this more formally as follows:7

Consistency condition. If a→ b then C(a)<C(b)

Logical clocks satisfying this condition are remarkably easy to implement. Only per-process counters
and a timestamp field attached to messages are needed. The following two implementation rules are
sufficient:

1. Each process Pi increments Ci between successive events.

2. If a is the sending of a message m by process Pi to Pj, then the message contains a timestamp
Tm =Ci(a). When Pj receives m it sets C j := max(C j,Tm +1).

The partial ordering by “→” can be completed to a total ordering “⇒”. We can e. g., define that a⇒ b
if and only if either C(a)<C(b) or Ci(a) =C j(b) and i < j.8 A total ordering of events has many uses
in distributed systems, it can e. g., be used to implement synchronized access to shared resources.

Vector clocks

Logical clocks satisfying the consistency condition have a limitation. Comparing timestamps cannot
confirm a “happened before” relation. While C(a)<C(b) implies b9 a it does not tell us whether
events a and b are causally related (a→ b) or concurrent (a ‖ b). With the following stronger
consistency condition this is possible:

Strong consistency condition. If a→ b then C(a)<C(b) and if C(a)<C(b) then a→ b

Vector clocks satisfying the stronger consistency condition have been independently developed by
Fidge, Mattern, and Schmuck in 1988 [Fid88, Mat89]. With n processes each process Pi maintains
a vector vti[1..n]. The own clock of Pi is the vti[i] element. Element vti[k] where k 6= i represents the
latest knowledge of Pi about the logical clock value of process Pk. Again only two implementation
rules are required:

1. Process Pi updates its own clock before each local event vti[i] := vti[i]+d (d > 0)

2. Each process that is sending a message attaches the whole vector to the outgoing message. The
receiving process Pi updates its vector clock as follows before it delivers the message:

vti[k] := max(vti[k],vtmsg[k]) where 1≤ k ≤ n

vti[i] := max(vti[k])+d

7 Adding the converse condition—if a9 b then C(a)≮C(b)—would imply that any two concurrent events have to occur at
the same logical time.

8 The rule to handle the case when C(a) =C(b) is arbitrary. Any relation Pi ≺ Pj , which orders processes totally, is sufficient.
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Figure 3.1.: Cristian’s remote clock reading method [SBK05]

Comparison of two vector timestamps vh and vk is defined as follows.

vh ≤ vk if ∀x : vh[x]≤ vk[x]

vh < vk if vh≤ vk and ∃x : vh[x]< vk[x]

vh ‖ vk if vh� vk and vk � vh

Straightforward implementations of vector clocks scale badly with system size n, because each
message piggybacks n integers. More efficient implementations of vector clocks are known.

The differential technique of Singhal and Kshemkalyani sends only changed elements of the vti clock
vector in the form of (index,new counter) tuples. A direct implementation would need O(n2) storage
to keep the latest vectors sent to each process. The scheme in [SK92] uses only two vectors9, a
“last sent” vector LS[1..n] and a “last updated” vector LU [1..n]. Process Pi keeps in LSi[ j] his vti[i]
timestamp from the last message sent to Pj. LUi[k] contains the vti[i] value from the last update to
vti[k]. Process Pi piggybacks only {(k,vti[k]) |LSi[ j]< LUi[k]} to messages it sends to Pj.

Matrix clocks

The matrix clock is a third type of logical clock besides the scalar and vector clock. A matrix clock not
only keeps state about the current logical time of other processes, it also stores information about what
those other processes know about each others clocks. This is useful to identify (and delete) obsolete
information. Matrix clocks therefore have applications in areas like distributed checkpointing and
garbage collection. Efficient implementations exist, which reduce the O(n2) storage and bandwidth
complexities of a straightforward approach.

3.2.2. Cristian’s algorithm

Cristian describes in [Cri89] a simple probabilistic algorithm. The basic principle is depicted in fig. 3.1.
The remote clock reading method assumes that round-trip times are short compared to the required
accuracy. In order to read the clock of another node, a process initiates at local time T0 a timestamp
request. The queried time server replies with a message containing the server side timestamp Stime.

9 Not counting the clock vector vti itself.
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When the reply is received the round-trip time is calculated as the difference T1−T0. The receiver
then estimates the server time S1 corresponding to T1 as

S1 = Stime +
T1−T0

2
(3.1)

This assumes that the server timestamp was created half in between the round-trip at local time
T0 +(T1−T0)/2.

Cristian observed that with his method the offset error θ is bounded by the half round-trip time.10

|θ | ≤ (T1−T0)

2
(3.2)

In Cristian’s scheme several clients are synchronized to an accurate time server using the remote clock
reading method. To improve accuracy several round-trips are made and only the one with the least
round-trip time is used.

3.2.3. The Berkeley algorithm

The Berkeley algorithm [GZ89] is like Cristian’s algorithm a master-slave protocol intended for
use within intranets. All computers run an instance of the timed daemon.11 Through an election
algorithm one of them is chosen as the master.12

The master reads the clocks of the slaves with Cristian’s remote clock reading method. A fault tolerant
averaging function is then used on the Cslave−Cmaster clock offsets. Fault tolerance is achieved by
averaging only the largest set of client clocks, which do not differ by more than a small constant γ
from each other. Finally the master asks each client to adjust its clock for the Cavg−Cslave difference.
The algorithm is repeated in regular intervals. The clock of the master plays no privileged role in this
internal synchronization algorithm.

3.2.4. Marzullo’s algorithm

Marzullo and Owicki considered distributed systems with clocks that differ in rate accuracy [MO83].
Their augmentation of timestamps with an indication of their accuracy lead to an interval based
algorithm.

Their error model assumes known upper bounds for clock skew S (cf. eq. 2.9) and for one-way
message delay. Because of skew the confidence intervals of clocks grow linearly with the time since
the last clock reset. To minimize the maximum error, interval intersection is used. If all clocks are
correct, the intersection of their confidence intervals must give a nonempty interval. If not, a nonempty
intersection interval is sought including all but a minimum number of incorrect clocks.

10 Rate differences between the clocks increase |θ |max slightly.
11 In Unix (and similar operating systems) a daemon is a server process running in the background without interactive user

control. By convention daemons have names ending with the letter ‘d’.
12 Should the master fail, a new election takes place after a timeout.

http://developer.apple.com/mac/library/documentation/Darwin/Reference/ManPages/man8/timed.8.html


3.2. Synchronization Protocol Survey 37

Figure 3.2.: Marzullo’s interval intersections [Mil06b, p. 48]

An example with m = 4 confidence intervals is depicted in fig. 3.2. The algorithm finds the smallest
intersection interval that contains points of each of m− f confidence intervals, where f is the number
of incorrect clocks or falsetickers. The algorithm requires that f < m/2.

There are some border cases where Marzullo’s algorithm produces anomalistic results. A modified
version of the algorithm is thus used in NTP. The NTP version requires that the intersection of m− f
intervals contains at least m− f midpoints. The intersection generated by the NTP selection algorithm
is shown in fig. 3.2 too. The modified algorithm always results in an interval that includes the interval
produced by the original algorithm.

The asymptotic space usage of the algorithm is O(m). The time efficiency is O(m logm) for the first
run, and O(m) when only one source interval is updated.

3.2.5. Fault tolerant protocols

Many fault tolerant clock synchronization protocols have been proposed. Some examples are described
in [LL84, DHS84, LMS85]. Most of the literature refers to the Byzantine generals problem described
in [LSP82].

In analogy to the solutions given in [LSP82], without authenticated timestamp messages fault tolerance
is possible if and only if less than one third of the clocks fail.

The proposed deterministic protocols need a relatively high communication overhead in order to
achieve fault tolerance and a sufficient level of precision.

3.2.6. Protocols for wireless sensor networks

Wireless sensor networks (WSN) differ in many aspects from traditional distributed systems [RM04].
Protocols like NTP, which work well in the Internet, are not suitable for most WSN environments.
NTP was designed for large-scale networks with a rather static topology. NTP servers have to process
synchronization requests at all times. Energy efficient time division schemes, which would allow
servers to enter a low-power state outside assigned time slots, are therefore not possible with NTP.

The IEEE 801.11 standards already provide a time synchronization mechanism for the so-called
infrastructure mode. The mechanism uses a master/slave model of communication. The fixed master
node is the access point. To coordinate medium access for all reachable stations, the access point

http://pages.cs.wisc.edu/~sschang/OS-Qual/reliability/byzantine.htm
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periodically sends a high-priority beacon frame.13 The beacon frame includes a timestamp for
synchronizing the clocks of the slaves.

The IEEE 801.11 scheme uses the one-way method described in section 2.5.1. This adds the uncertainty
of the time interval between the taking of the timestamp at the access point and the transmission of the
beacon frame to the time transfer. This uncertainty is orders of magnitude larger than the physical
signal propagation delay of WLANs. The sender-side uncertainty is eliminated by the common-view
method. Several authors have proposed common-view based synchronization protocols for WSNs,
e. g., the Reference Broadcast Synchronization Protocol (RBS) of Elson et. al [EGE02].

Many other protocols (using all three methods of section 2.5.1) for WSNs have been published. In
general they focus on energy efficiency, low storage and processing resources, and suitability for
dynamical and/or ad-hoc topologies. Two survey papers are [SY04] (a comparison of the RBS, TPSN,
Tiny-Sync/Mini-Sync, and LTS protocols) and [SBK05], the latter is a survey and analysis of nine
existing clock synchronization protocols for wireless sensor networks. A section of [RBM05]—a
good introductory text—also examines ten current synchronization algorithms.

3.3. The Network Time Protocol

3.3.1. NTP classification

NTP can be classified according to the criteria of section 3.1 as

• using either one-way or two-way time transfer or both (dependent on configuration)

• doing external synchronization

• adjusting the operating system clock

• using (mostly) hierarchical master/slave topologies14

• using probabilistic algorithms

• using maximum likelihood and worst case intervals

• operating continuously

• utilizing lower level timestamps where provided by the OS.

13 The beacon frame marks the switch from a contention period with CSMA based medium arbitration to a contention free
period with centralized arbitration.

14 The NTP symmetric mode is used between two equal peers.
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3.3.2. History and background

NTP is claimed to be the longest running, continuously operating, distributed application in the
Internet [Mil06b, p. 253]. A first protocol specification appeared 1981 in RFC 778 [Mil81]. As the
protocol evolved revised specifications appeared.

NTPv0 The (now so called) NTP version 0 was implemented an documented in 1985 [Mil85].

NTPv1 Version 1 of the NTP specification appeared three years later and defined client/server and
symmetric modes [Mil88].

NTPv2 In 1989 the NTP version 2 specification introduced a formal model and state machine
describing the protocol. The NTP Control Message Protocol for management of NTP servers
and clients had been added. Another novelty was a cryptographic authentication scheme based
on symmetric key cryptography [Mil89].

NTPv3 The NTP version 3 specification appeared 1992 as RFC 1305. A modified version of
Marzullo’s interval-based agreement algorithm ([MO83]) had been integrated. The appendix
includes a formal error analysis. The error budget calculation includes all error contributions be-
tween the reference clock over intervening servers to the eventual time service client. Based on
this error model NTPv3 implementations provide maximum error and expected error statistics.
These statistics are used by the protocol as a metric for selecting the best server from a group of
available servers. Also a broadcast mode of operation (intended for use on LANs) had been
added. NTPv3 and NTPv2 implementations can inter-operate in a time distribution network
[Mil92].

NTPv4 The NTP protocol has evolved since NTPv3. New features and algorithm revisions have
been added while interoperability with older versions has been preserved. NTPv4 has not been
officially adopted by the IETF yet.

NTPv4 accommodates Internet Protocol version 6 by means of a modified protocol header. It
has also got a new security model and a self-configuring protocol called Autokey [Mil06a].
While the NTPv2 authentication has worked well, it suffers (like all symmetric key schemes)
from complicated key distribution. Autokey uses a combination of public key cryptography
for signing timestamps and a computationally less expensive pseudo-random keystream for
authenticating packets relative to the signed timestamp values.15

Other additions are a manycast mode, which permits client to discover nearby servers au-
tonomously, improvements to the clock discipline algorithm and (on some operating systems)
implementation of parts of it directly in the kernel [Mil06c].16

15 The rationale behind this design is to minimize the impact of CPU time (spent in asymmetric cryptography routines) on the
quality of timekeeping.

16 With a kernel PLL interfaced to an external reference clock the residual time error is on the order of 50 ns [MK00].
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3.3.3. NTP implementations

The official NTP reference implementation along with documentation is available as open source
code releases (for UNIX-like systems) from the NTP project homepage17. The code is published by
the University of Delaware under a permissive BSD-style open source license. Dave Mill’s many
NTP-related publications are available on his homepage18.

The OpenNTPD project19 is a subproject of the OpenBSD project. The goal of the project is a free, easy
to use implementation of the Network Time Protocol. The project has a focus on security, simplicity
of implementation and configuration, and reasonable accuracy.20. There are two OpenNTPD teams.
One team does strictly OpenBSD-based development. Another team then takes the OpenBSD version
and makes it portable to other POSIX systems. Currently 10 operating systems are supported.

Other free third-party implementations, including pre-compiled versions for Windows NT / 2000 / XP,
Windows Server 2003, and Vista, are available (e. g., through links at the ntp.org homepage) too.

Microsoft Windows versions since Windows 2000 include the Windows Time Service (W32Time).
How Windows Time Service works is documented on Microsoft TechNet.21 The Microsoft imple-
mentations in Windows 2000 and Windows XP work only as SNTP clients. Windows versions since
Windows 2003 are documented by Microsoft to be compliant to [Mil92] (NTPv3). Windows systems
do not interpolate time between timer interrupts (ticks). This alone limits accuracy to ±16 ms (64 Hz).
Moreover a Microsoft support document titled “Support boundary to configure the Windows Time
service for high accuracy environments”22 states:

We do not guarantee and we do not support the accuracy of the W32Time service between
nodes on a network. The W32Time service is not a full-featured NTP solution that meets
time-sensitive application needs. The W32Time service is primarily designed to do the
following:

• Make the Kerberos version 5 authentication protocol work.

• Provide loose sync time for client computers.

The W32Time service cannot reliably maintain sync time to the range of 1 to 2 seconds.
Such tolerances are outside the design specification of the W32Time service.

3.3.4. NTP sub-algorithms

The presentation of this section follows [Mil06b, Mil06c] and describes NTPv4.

A NTP architecture overview is shown in fig. 3.3. The depicted process decomposition reflects the
internal software organization only. It is not mapped to operating system level processes. The NTP
reference implementation uses a single operating system process.

17 http://www.ntp.org/
18 http://www.eecis.udel.edu/~mills/
19 http://www.openntpd.org/
20 The project webpage states: ”We are not after the last microseconds.”
21 http://technet.microsoft.com/en-us/library/cc773013(WS.10).aspx
22 http://support.microsoft.com/kb/939322

http://www.ntp.org/
http://www.eecis.udel.edu/~mills/ntp/html/copyright.html
http://www.eecis.udel.edu/~mills/
http://www.openntpd.org/
http://www.openbsd.org/
http://www.openntpd.org/goals.html
http://www.ntp.org/
http://technet.microsoft.com/en-us/library/cc773013(WS.10).aspx
http://support.microsoft.com/kb/939322
http://support.microsoft.com/kb/939322
http://www.ntp.org/
http://www.eecis.udel.edu/~mills/
http://www.openntpd.org/
http://www.openntpd.org/goals.html
http://technet.microsoft.com/en-us/library/cc773013(WS.10).aspx
http://support.microsoft.com/kb/939322


3.3. The Network Time Protocol 41

Figure 3.3.: NTP architecture overview [Mil06b, p. 19]

The communication with remote servers and local reference clocks23 is handled by peer/poll processes.
Incoming clock samples on UDP/IP port 123 are filtered by the clock filter algorithm. The selection
algorithm separates the server population into truechimers and falsetickers. If more than three
truechimers are left the clustering algorithm casts off outliers. Offsets from the remaining survivors
are combined by the combining algorithm into the final system offset Θ that is input to the clock
discipline algorithm.

NTP timestamp exchange protocol

The exchange of NTP timestamps is shown in fig. 3.4. Depicted is the most general form with
symmetric modes. Other than Cristian’s remote clock reading method (cf. fig. 3.1) four timestamps
are taken per round trip and the scheme is symmetric. In client/server mode the server only copies two
timestamps and adds a new one, but it does not need to save any client state.

The round trip communication channel delay (RTTD) δ is

δ = (Tn+3−Tn)− (Tn+2−Tn+1) (3.3)

and with the usual assumption of a symmetric channel the offset θ is

θ =
1
2
[
(Tn+1−Tn)+(Tn+2−Tn+3)

]
(3.4)

Time stamp subtractions are done in 64 bit integer arithmetic to preserve precision. This leaves a
signed 31 bit integer seconds value. A NTP client must therefore know the time to within ±68 years
by means outside the NTP protocol. The reference implementation uses floating point arithmetic for
all further processing of the resulting time differences.

23 Local reference clocks are not shown in fig. 3.3. Drivers present them to the core software as additional servers with zero
channel delay.
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Figure 3.4.: NTP timestamp exchange [Mil06b, p. 42]

NTP clock filter algorithm

The NTP clock filter algorithm stores the latest eight valid samples of each peer in a shift register. Its
output is the sample with the minimum RTTD δ . The method is based on eq. 2.22 and is explained in
section 2.5.2 above.

The 8-stage shift register actually stores (θ ,δ ,ε, t) tuples. The dispersion ε(t) represents the maximum
error due to frequency tolerance and clock reading precision.

ε(t) = ρR +ρ +Φ(t− t0) (3.5)

Here ρ is the minimum time needed to read the system clock and called precision in NTP termi-
nology.24 The maximum frequency tolerance of clocks Φ is a configurable constant and defaults to
15 ppm.25 The peer precision ρR is taken from the NTP packet header. The dispersion grows linearly
with the elapsed time since t0, i. e., since the timestamp in question was taken.

The clock filter algorithm sorts the eight tuples by increasing δ and averages the sampled ε values to
the peer dispersion26

ε =
8

∑
k=1

εk

2k (3.6)

24 This definition of precision is unfortunately different from the definition used in metrology and given in the glossary.
25 The 15 ppm number comes from the specification of Digital Alpha machines. It is quite arbitrary as undisciplined computer

clock tolerances can be up to 500 ppm in extreme cases. [Mil06b, p. 177]
26 As in the NTP documentation, the time dependency of ε is not made explicit by the notation.
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Figure 3.5.: NTP clustering algorithm example [Mil06b, p. 52]

The sorted list of n valid tuples is further used to compute the peer jitter ϕP

ϕP =

√
1

n−1

n

∑
k=2

(θk−θ1)2 (3.7)

NTP selection algorithm

The NTP selection algorithm is variant of Marzullo’s algorithm and has been sketched in section 3.2.4.
The correctness intervals that are processed by the algorithm are of the form [θ −λ ,θ +λ ] where λ
is the peer synchronization distance

λ =
(∆R +δ )

2
+ER + ε +ϕP (3.8)

The variables ∆R and ER are the accumulated root delay and root dispersion, respectively. They are
provided by the server in packet header fields.

NTP clustering algorithm

The truechimers from the selection algorithm are put on a survivor list and processed in a series
of rounds by the clustering algorithm. Each round removes a statistical outlier until either only
NMIN = 3 survivors are left or no further improvement is possible.

For each of the n survivors the selection jitter ϕS,i is computed

ϕS,i =

√
1

n−1

n

∑
k=1

(θk−θi)2 (3.9)

Then ϕmax = max(ϕS) and ϕmin = min(ϕP) are determined. If ϕmax < ϕmin or n < NMIN no further
improvement is possible and the algorithm terminates. Otherwise, the peer with the highest selection
jitter ϕS,i is removed from the survivor list, n is decremented, and a new round starts.
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Figure 3.6.: NTP error budget calculations [Mil06b, p. 184]

The algorithm is illustrated by fig. 3.5. The diameters of the white circles represent ϕP and the gray
circle represents ϕS. In fig. 3.5a the gray ϕmax is greater than the smallest ϕP and peer 1 is removed.
The largest remaining selection jitter in fig. 3.5b is smaller than each ϕP, so the algorithm would even
terminate with NMIN < 3.

NTP combining algorithm

The survivors are used to form the combined system offset Θ

Θ = q∑
i

θi

λi
(3.10)

and combined peer jitter ϕr

ϕr =

√
q∑

i

ϕ2
P,i

λi
(3.11)

where q is the normalizing factor

q =

(
∑

i

1
λi

)−1

(3.12)

The survivor u with the lowest stratum and peer synchronization distance λ provides the best statistics
for performance evaluation and is promoted to the system peer. The system jitter ϑ is then computed
as

ϑ =
√

ϕ2
r +ϕ2

S,u (3.13)

The system jitter represents the best clock offset error estimate (or nominal error statistic) and is
available to application programs.
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Figure 3.7.: NTP clock discipline algorithm [Mil06b, p. 65]

The computation of the system variables is summarized in fig. 3.6. The root delay ∆

∆ = ∆R +δ (3.14)

is the sum of all delays from the stratum 1 synchronization source down the path through the time
distribution hierarchy. The root dispersion E (with sampling interval µ) is

E = ER + ε +Φµ +ϕP,u + |Θ| (3.15)

and is also inherited along the path from the primary server. Both ∆ and E are passed down the
hierarchy to the next stratum as packet header variables ∆R and ER, respectively (cf. eq. 3.8).

Finally the system synchronization distance Λ

Λ =
∆
2
+E (3.16)

is provided to dependent applications as the maximum error statistic.

NTP clock discipline algorithm

The NTP clock discipline algorithm synchronizes the computer clock with respect to the system
offset Θ. In principle, it could be used with any protocol that provides periodic time corrections. On
some POSIX systems, parts of the clock discipline have been implemented for highest accuracy inside
the operating system kernel.27 The algorithm has evolved to a complex self-adapting state machine
and has been extensively tested with network simulators. This section gives only a coarse overview.
More detail is available from [Mil06b, pp. 63–76] and [Mil98].

The structure of the clock discipline is shown in fig. 3.7. The loop filter is implemented using two
sub-algorithms, a phase and a frequency locked loop. This hybrid PLL/FLL design had been originally
suggested by Levine [Lev95] and was adopted by NTP. It is based on the observation that a PLL
usually works better with shorter update intervals when network jitter dominates, while a FLL works
better with long intervals when oscillator frequency wander dominates.

27 This part is often referred to as the kernel PLL.
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NTP uses poll intervals that are powers of two. NTPv3 uses default poll exponents τ between 6
(64 s) and 10 (1024 s). In NTPv4 τ can range from 4 (16 s) to 17 (131072 s). The poll exponent is
dynamically adjusted. A counter is incremented when Θ < 4ϕP and decremented otherwise.28 When
the counter reaches an upper or lower threshold, τ is incremented or decremented, respectively. This
scheme adapts to varying network conditions but does not catch oscillator wander.29

The clock discipline has to use relatively large time constants Tc. The time constant depends on the
poll interval 2τ . PLL stability requires that Tc is greater than twice the total loop delay. The 8-stage
shift register of the clock filter algorithm can cause a loop delay of 8×2τ . With the default initial
poll interval of 64 s it follows that Tc ≥ 2× 8× 64 =1024 s. With that Tc, a 63 % PLL response to
a frequency step takes 4.25 hours. After the NTP daemon has started, it could take many hours to
adapt to the frequency offset of the local clock.30 The reference implementation therefore saves the
frequency offset in a file once each hour.

Since time constants are large and POSIX system clocks typically provide only 1.8 s/hour amortization
(500 ppm), the reference implementation defines a step threshold and a stepout threshold. The clock
will be stepped (even backwards) when a system offset Θ greater than the step threshold persists for
a duration greater than the stepout threshold. The default for the step threshold is 128 ms, and the
default for the stepout threshold is 15 min.

3.3.5. The Simple Network Time Protocol

The NTP reference application is a relatively complex application with many elaborate sub-algorithms.
The Simple Network Time Protocol (SNTP) is a subset of NTP that can be used when the perfor-
mance of a full NTP implementation is neither needed nor justified. The current version is SNTPv4
defined in RFC 4330 [Mil06d], which obsoletes SNTPv3 defined in RFC 1769 [Mil95]. SNTPv4
implementations can inter-operate with both NTPv3 and NTPv4.

The major simplification of SNTP is that exactly one time source is used. SNTP servers are typically
dedicated products that include a reference clock, usually a GPS time receiver or a radio clock. SNTP
clients rely on a single NTP or SNTP server and cannot have clients of their own. Because there is only
one time source, SNTP does not need any of the selection, clustering, and combining algorithms.

SNTP clients are not fault tolerant. Failure of the server or the network path to the server cause
desynchronization.

An SNTP clients can receive the address of its server automatically, either an IPv4 address via the
DHCP protocol [AD97] or an IPv6 address via DHCPv6 [Kal05].

Several free SNTP implementations are available. A new reference implementation of the SNTPv4
client was written 2008. It is available as a part of the NTP reference implementation and shares much
code with it.

28 The coefficient 4 has been determined through simulations.
29 Moderate clock skew does not increase the measured peer jitter much, hence poll interval reduction is delayed until the

clock has accumulated an offset error Θ≥ 4ϕP.
30 At the time of this writing the ntp.org development version—but not the stable version—has a quick-start algorithm that

computes a first clock skew estimation after 15 minutes.

http://google-opensource.blogspot.com/2008/10/freebsds-fourth-google-summer-of-code.html
http://www.ntp.org/
http://www.ntp.org


4. Design and Implementation of
Time-Synchronization for the I-SENSE
Framework

4.1. I-SENSE Architecture Overview

4.1.1. Hardware architecture

The I-SENSE platform is a network of geographically distributed sensor nodes which are connected
via a common communication medium. Typically wired Ethernet is used, but other network tech-
nologies such as WLAN can be used as well [KRT06]. The structure of an I-SENSE node is shown
in fig. 1.1 on page 3. The sensor nodes are heterogeneous multi-processor systems. Digital signal
processors do most of the sensor data processing and a general purpose CPU handles communication
and management tasks.

Fig. 4.1 shows a photo of an I-SENSE node. The general purpose component is an embedded
Pentium-M PC conforming to the PICMG11.2 specification. It provides PC-typical interfaces (Video,
USB, Serial, Parallel, PS/2 mouse and keyboard, ATA), two 100Base-Tx Ethernet controllers and a
Compact Flash disc.

The video encoder card contains two TMS320DM642 video/imaging fixed-point digital signal proces-
sors. Each DSP can process up to six ITU-R BT.656 video streams without multiplexing. The signal
processors share only the power supply, clock signal generator, and the PCI bridge. The memory, buses
and peripherals are not shared [Put04].2 Each DSP has access to 128 MiB of on-board DRAM.3

The DSPs have no network interface hardware attached. All intra-node inter-processor communication
uses the PCI bus. Inter-node (Ethernet) communication is carried out only by general purpose
processors.

Timer hardware

The hardware clock facilities of the general purpose component are those of the PC platform and are
described in section 2.3.3 on page 17. Direct access to the timer hardware is reserved for the operating
system running on the x86 CPU.

1 http://www.picmg.org/
2 The general purpose processor can access the on-board memory via PCI (cf. section 4.1.3).
3 Several other models of TMS320C64X boards with TMS320C6416 processors or DSPs with floating point units are

supported by I-SENSE too.
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http://www.picmg.org/
http://www.itu.int/rec/R-REC-BT.656/en
http://www.picmg.org/
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Figure 4.1.: I-SENSE node

The TMS320C64X processors have three 32 bit hardware timers [Tex05]. The timers are either driven
from an internal clock source—the CPU clock divided by eight—or from an external signal. A
programmable timer period register can cause a reset of the timer count register and the generation
of a hardware interrupt when the programmed counter state has been reached. The TMS320C64X
timers have no hardware facility to capture the timer count upon an event. One of the timers is used by
the DSP/BIOS OS to drive the system clock and scheduling [Tex04c]. In the default configuration it
generates 1000 clock tick interrupts per second. The other two are free for application use.

4.1.2. Software architecture

The current I-SENSE middleware runs atop the Microsoft Windows XP embedded operating system
on the general purpose processors,4 and on DSP/BIOS on the TMS320C64X processors.

DSP/BIOS is a scalable real-time multi-tasking kernel, designed specifically for the TMS320C6000,
TMS320C5000, and TMS320C28x DSP platforms [Tex00]. DSP/BIOS provides standardized APIs
across the supported platforms [Tex04b]. It is designed as a collection of configurable modules to
minimize memory footprint. DSP/BIOS development for I-SENSE has been done with the Code
Composer Studio IDE, which includes a graphical tool for statical configuration of kernel modules
and objects. Where required, dynamical configuration using operating system calls has been used
too.

4 Actually other Windows variants like Windows XP or Windows 2000 work too, but their resource usage cannot be trimmed
down to the extent that is possible with the modular Windows XP embedded system.
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Figure 4.2.: I-SENSE middleware services [TKR07]

Processor model dependent hardware details—especially the on-chip peripherals—are supported
through the C6000 Chip Support Library (CSL). It is a software layer below DSP/BIOS and also
available to applications [Tex04a].

The major I-SENSE middleware services are shown in fig. 4.2. This chapter is mainly concerned
with the implementation of Clock Synchronization Service on both operating systems.

4.1.3. The I-SENSE message subsystem

The design of any time synchronization solution and the achievable performance level depend on
the properties of the used clocks and communication channels. The (time related) properties of the
I-SENSE Message Router Service are therefore important.

The I-SENSE message subsystem provides the following features [Ten08] :

Physical network independence I-SENSE fusion tasks communicate with each other in a uniform
way, regardless of the underlying media (PCI bus, Ethernet, . . . )

Transport layer independence The I-SENSE message subsystem provides an overlay transport
layer. Fusion tasks communication is independent of the underlying operating system and
transport facility.
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Connection independence Underlying transport connections are dynamic. Connection changes at
runtime are transparent to fusion tasks.

Location independence Fusion tasks may be migrated at runtime.5 After migration the framework
updates the communication links of the task with new connections, notifies linked nodes about
the tasks new location, and installs a temporary message forwarding proxy at the old location.

Internally the I-SENSE message subsystem uses FIFO buffers and dedicated TCP/IP and PCI threads.
The threads handle unidirectional traffic, i. e., there are always send/receive thread pairs.

The message subsystem is not only a necessary component for time synchronization—it is also a
consumer of synchronized time. The message headers contain a timestamp field, which is used
internally for message ordering.6

Message passing over the PCI bus is implemented with two shared memory ring buffers. To avoid
the copy-in and copy-out overhead an alternative method for large messages is implemented too.
The indirect method uses the ring buffer to inform the receiver about the message size. The receiver
responds with the address of a suitable memory buffer, and the message contents is then efficiently
transfered via DMA. The message size threshold for DMA transfer is currently 256 bytes.
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Figure 4.3.: DSP→x86→DSP round trip time histograms

5 Fusion task migration is not transparent, i. e., upon migration notification a task must save its state and suspend processing.
6 The pre-synchronization workaround mentioned in section 1.1—i. e., resetting all clocks at middleware startup—avoids the

chicken-and-egg problem.
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fraction δPC / µs δePC / µs

lowest value 329 597
bottom 25 % < 569 < 653

median 639 662
top 25 % > 653 > 677
top 5 % > 1060 > 961
top 1 % > 12675 > 17475

highest value 38678 78391

Table 4.1.: I-SENSE inter-node communication channel delay

When considering the buffering and scheduling inside the I-SENSE message subsystem, a relatively
large variation in message delivery delay can be expected. Measurement results from 26450 message
exchanges between a DSP and the general purpose CPU of its sensor node are shown in fig. 4.3.7

Histogram 4.3a shows measurement results from the development PC fitipc150, the second
histogram 4.3b was taken with a less powerful embedded PC. Identical DSP board models have been
used. The DSPs processed the same fusion tasks during the measurements. On both operating systems
the message exchanging threads were run with elevated scheduling priorities.8

Because the high-delay tails of the histograms are surprisingly long, about 5 % of the samples had to
be cut off on the right side. Some numerical data about the delay distributions is given in table 4.1.9

4.2. Design Decisions and Their Rationale

Each design process involves choices. This section gives a high level view of the I-SENSE synchro-
nization service design. Instead of giving only a description of the architecture, the design is explained
as a consequence of a few high level design decisions. All decisions have several pros and cons, which
are discussed only briefly.

4.2.1. Choice of transport layer

Any time synchronization protocol relies on some transport mechanism(s) for exchanging timestamp
and protocol information. For an I-SENSE DSP, there is no alternative to the I-SENSE communica-
tion subsystem, because no other transport layer exists.10 In contrast, for inter-node protocol exchange
there is the choice between using either the middleware facilities or directly the underlying Windows
XPe network stacks.

7 The histograms are vertically scaled to unit height. Depicted with the same scale, histogram (b) would be taller by a factor
of 2.82 —such that the filled areas were almost equal in both histograms.

8 On Windows the THREAD_PRIORITY_ABOVE_NORMAL priority was used. On DSP/BIOS TSK_MAXPRI (the top
priority for normal tasks) was used [Tex00]. The same priorities are used by the inter-node synchronization implementation.

9 Note that although the embedded machine needed 268µs more for the best round trip, there is only 23µs difference in the
median value!

10 Below the I-SENSE message subsystem there is only low level PCI communication support from device drivers.
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It was decided to use the network stack of the operating system to avoid reduced performance. Time
synchronization is essentially reduction in time measurement uncertainty. Sections 2.5.1 and 3.1.8
explain why timestamps should be taken at the lowest possible layer to avoid unpredictable delays.
Internal buffering and context switching by the I-SENSE message subsystem would add to the system
noise and degrade timestamp quality. Figure 4.3 confirms that there is significant jitter even on local
PCI links.

4.2.2. Choice of implementation layer

Decision 4.2.1 leads to another pair of alternatives. Since inter-node synchronization messages do
not use the I-SENSE message subsystem, inter-node synchronization can be implemented below the
middleware layer rather than inside it.

Implementation outside the middleware has been chosen, because it allows to leverage existing
state-of-the-art solutions.

4.2.3. Inter-node protocol and implementation selection

Many aspects of the I-SENSE software environment on the general purpose processors are similar
to typical small server: A Windows variant on hardware that resembles a small COTS PC, Ethernet
connectivity, permanent operation, and no energy scarcity. The standard Internet time synchronization
protocols NTP and SNTP are known to work well under this circumstances.11

NTP has been chosen, because it is widely regarded as one of the most advanced and time-tested
protocols [RBM05] and good quality open source implementations are available.

The current stable release of the NTP reference implementation has been selected. Main reasons
for this choice were source and binary code availability, extensive documentation, flexible (although
complex) configuration possibilities, and valuable logging options.

Resource consumption was deemed acceptable. The binary has a size of 508 KB. The daemon uses—
even with an extensive ensemble of configured time servers—less than a megabyte of memory.12 CPU
usage is not noticeable.

4.2.4. Intra-node protocol and implementation

DSPs must synchronize their clocks with their local general purpose processor. The DSP (slave)
part of the protocol implementation should have a small memory footprint. Floating point arithmetic
operations are undesirable, as they require inefficient emulation by library code. Since no networking
hardware is attached to DSPs, compatibility with packet formats of existing protocols is irrelevant.

11 But NTP—and presumably most other application level protocols too—could still perform better on Windows, if there were
operating system support for low level network packet timestamping and a high frequency system clock.

12 As reported by the Windows task manager.
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A custom protocol has been designed, which can be viewed as a modified version of SNTP. It uses the
I-SENSE communication subsystem instead of UDP/IP. Enhancements with respect to SNTP are
an improved clock filter algorithm, which was necessitated by the difficult I-SENSE channel delay
characteristics, and the ability to synchronize to more than one timescale. Among the simplifications
are the restriction to client/server mode, omission of the error model calculations, fixed polling
intervals, and a less complex clock discipline algorithm.

The implementation is object oriented, uses integer and fixed point arithmetic only, and has low
resource demands.

4.3. NTP Configuration

NTP supports five modes of operation and has a lot of tunable parameters. The NTP reference
implementation features a multitude of configuration options. It is optimized for a stable temperature
environment and some default settings favor frequency stability and low communication bandwidth
over accuracy. This section summarizes some of the lessons learned during the practical part of this
thesis, and gives configuration recommendations, which are tailored for the I-SENSE platform.

Two avoid a single point of failure, more than one server should be available inside the I-SENSE
network. Two or three nodes should together act as the (local) top level of the time distribution
hierarchy. They must be configured at the same stratum and synchronize with each other in symmetric
active mode.13 Lightly loaded machines are commonly recommended, because high system load is
known to degrade time server performance.14 This hint is probably less useful for I-SENSE, because
the middleware distributes fusion task load dynamically. The other I-SENSE nodes are synchronized
to the local server ensemble in client mode, i. e., they are in the next stratum.

If external synchronization is desired, UTC sources must be available to the local servers. If there is
Internet connectivity, thousands of public NTP servers are available. Otherwise commercial external
reference clocks can be attached to the server nodes15 or embedded LAN products can be deployed.
At least four or five time sources are generally recommended, to benefit from the NTP selection and
clustering algorithms. Without UTC sources, or when all such sources fail, there is only internal
synchronization.

The NTP default poll intervals and the hysteresis built into their dynamic adjustment algorithm limit
LAN performance. The resulting long clock discipline time constants (cf. section 3.3.4) delay the
response to time offsets too much. When minimization of inter-clock time offsets is more important
than local clock frequency stability, then it is best to clamp the poll interval exponent τ to the
minimum.16

13 Symmetric passive mode allows time injection from unknown sources and is therefore a security risk, except on very
controlled network environments or when used with cryptographic authentication.

14 NTP itself generates very little load. Fast COTS PCs can handle thousands of NTP clients.
15 The NTP reference implementation incorporates some 30 reference clock drivers.
16 The minimum τ (without recompilation) was 4 (16 s) in older stable versions and is at the time of this writing 3 (8 s).
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4.4. Custom Intra-node Synchronization Protocol

4.4.1. Implementation classes overview

«abstract»

Clock
frequency
name
read()
getCount() = 0
getFrequency()
getName()
calibrate()

Simplified class diagram without
filters, auxiliary and adapter classes.

ConcreteClock

getCount()

ControlledClock
params
baseclock
extrapolate()
read_base()
setPhase()
setRate()

ControlledClock::Parameters
lock
countBase
countCorr
fracCorr
rate
xtal_rate
print()

ClockController
clock
contr_params
clock_params
xtalRateFilter
xtalSlewRateLimiter
clockRateFilter
getParameters()
tuneClock()

ClockController::Parameters
clock_frequency
time_constant
min_sample_interval
rate_tconstant
xtal_tconstant
xtal_slewrate_limit
slewrate_limit_delay
step_hysteresis
step_threshold
rate_adj_threshold
print()

Adjusted via call to
ClockController::tuneClock().

Initialized from instance
of ClockControllerSettings.

Typical one class per operating system API.
Win32: 6 types of clocks.
POSIX: 5 clock classes.
DSP/BIOS: 1 concrete class.

PhaseLockedClock
referenceClock
controller
last_tuning

Figure 4.4.: Additional I-SENSE framework classes

Figure 4.4 shows a condensed UML class diagram of the implementation. Almost all C++ code is
shared between the Windows and DSP/BIOS implementations. Operating system dependencies have
been factored out into specific implementations of abstract base classes.

Basic clocks

Section 2.4 pointed out that there is an irritating number of time formats and clock APIs—even within
a single operating system.17 Selection of the best available clock is hard, because clock performance
and reliability depend on the actual hardware, firmware, and system software combination. The
abstract Clock class shields the implementation from the idiosyncrasies of the underlying hardware
and system software. It represents the basic concept, that a clock is a combination of a fixed frequency
oscillator with a counter (cf. fig. 2.1). The implementation uses the Template Method design pattern.

17 Confer table 2.5 on page 23!

http://en.wikipedia.org/wiki/Template_method_pattern
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Most ConcreteClock classes are extremely terse. They implement the abstract getCount method—
typically by calling the underlying clock API and returning a 64 bit value. On DSP/BIOS one of three
32 bit hardware timers is encapsulated by the DSPClock class. On Windows there are more concrete
clock classes:

SysClock The windows system time (GetSystemTimeAsFileTime) is queried. Windows up-
dates the system time only 64 or 100 times per second.

GT1Clock This clock uses a multimedia timer API (timeGetTime) to get the system time with a
precision of 1 ms.

TCClock This clock has a resolution of 1 ms (GetTickCount) but it tracks the time since the
system was booted instead of UTC.

PCClock The performance counter is queried. This is the highest resolution clock available on
Windows and recommended for short interval measurements. Unfortunately, the performance
counter behaves erratic on some systems.

MMClock The multimedia timer is the primary time source. The performance counter is used to
interpolate between the multimedia timer callback events. The same scheme is used by the
Windows port of the NTP reference implementation.

Encapsulation of clock APIs offers much flexibility. Switching to an alternative concrete clock is
simply a matter of changing one constructor call.18

Adjustable software clocks

The concept of an adjustable clock is captured by the ControlledClock class. Since most of
the concrete basic clocks are read only, the implementation of adjustability is done in software. As
a consequence, a controlled clock is not only a specialization of a concrete clock, it also holds a
reference to an underlying concrete clock instance. This immutable baseclock member provides the
time information and the controlled clock instance only applies rate and offset corrections when it is
read.

Piecewise linear extrapolation relative to a settable reference time (T0,T ′0) with a rate adjustment rc is
used.19

T ′A(TB) = T ′0 +(1+ rc)(TB−T0) (4.1)

The rate correction rc is a signed 32 bit value, which represents parts per 232. This allows rate
corrections of ±50 % with a granularity of 0.233 ppb.20 Sawtooth errors (cf. sec 2.4.2 on page 22) are
hereby avoided.

18 Run-time switching between clock implementations (as described in [Kam02]) could be implemented too. To be useful,
code for automatic clock sanity checks and performance evaluation would be needed though.

19 The primes (′) in equation 4.1 mark timestamps on the timescale of the adjusted clock.
20 Greater frequency ratios are handled by the PrescaleClock adapter class.

http://msdn.microsoft.com/en-us/library/ms724397(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms713418(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724408(VS.85).aspx
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Figure 4.5.: Clock controller implementation

Filters

Only a few basic filter types are used to filter (timestamp,value) tuples. They are subclasses of the
TimedFilter class. The classes are generic, i. e., arbitrary arithmetic data types may be used for
the timestamp and value type, respectively.21 The MinMaxFilter and MedianFilter return
the minimum/maximum/median of the last N tuples, where N is a parameter to the constructor. The
SlewRateLimitFilter limits value change rates. The ExpAvgFilter filter type is a first
order low pass filter. The filter output ai is

ai =





v0 if i = 0,
τavg ai−1 +(ti− ti−1)vi

τavg + ti− ti−1
if i≥ 1,

(4.2a)

and for faster start-up behavior the exponential averaging interval τavg

τavg = min(τK , ti− t0) (4.2b)

is used instead of simply the constant filter parameter τK .

Clock controller

If a ControlledClock instance is to be synchronized with another clock, it must be part of a
control loop. Output from the clock filter (cf. fig. 4.7) is fed in the form of (TB,θ) tuples (baseclock
timestamp and offset sample) into the clock controller. Numerous approaches for clock offset and
rate estimation with varying implementation complexity exist; section 2.5.2 lists some of them. The
ClockController class currently uses a low-complexity approach. The computations behind the
tuneClock method are depicted in fig. 4.5.

The clock controller assures a minimum time interval between any two samples used for tuning the
controlled clock. If we use equation 2.13b for clock prediction, then the accumulated difference in
offset error ∆θ since the last sample ∆T ago, must be due to the clock skew difference ∆S. If we add

21 They are implemented as C++ templates with type parameters TimeT and ValueT.
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the previous rate correction rc, i. e., the rate adjustment that has been applied to the baseclock during
the last interval (cf. eq. 4.1), then we obtain the rate difference rx between the sampled reference clock
and the baseclock.

rx =
θi−θi−1

T ′i −T ′i−1
+ rc (4.3)

Inevitable measurement noise introduces an error that is inversely proportional to ∆T ′. The estimated
rate difference rx is therefore limited, exponentially averaged, and change-rate limited in turn.22

Applying the resulting rx rate adjustment to the baseclock, would only correct the rate difference
between the controlled clock and the reference clock. To reduce the offset an additional term

rθ =
θi

τθ
(4.4)

is added.

The rx term models the clock skew difference ∆S between the reference clock and the baseclock. It
is therefore averaged with a relatively large time constant τx. The actual rx value is correlated with
the local crystal oscillator temperature and can be retrieved from the controller object. As a future
extension, rx can be modified according to local temperature sensor data in order to improve controller
responsiveness to temperature changes.

Large offsets are reduced by a superimposed two-point controller, which applies a constant rate
of ±Rmax (±500 ppm) while |θ | > θthresh. Like in NTP, huge offsets are corrected by stepping the
controlled clock, because continuous amortization would last too long.

4.4.2. Timestamp format and timescales

For any given timestamp size there is a tradeoff between resolution and maximum interval length.
There are many examples of timestamp formats that have been defined too small by “historical
accident”.23 The I-SENSE time synchronization service therefore uses and provides 64 bit timestamps.
An integer format with a resolution of 1µs has been chosen, because that is computationally efficient
(compared with the split-resolution structure types of table 2.5) and human-friendly as well. Since
264 µs is about 585× 103 years, there are no wrap-around issues to be expected in the foreseeable
future. Applications that are concerned with short intervals only, are free to use the least significant
32 bits instead, which gives a wrap around interval of 1 h11 m35 s.

The preliminary synchronization service placeholder had used a 32 bit format with a 10µs resolution
that wrapped around in less then 12 hours. That resolution would have limited achievable performance,
since accuracies of a few tens of microseconds are possible for COTS PCs connected over a fast LAN
under ideal circumstances [Mil06b, p. 10] [RV09].

Applications have different timescale requirements. Unfortunately, the timescale properties of accuracy,
stability, and (strict) monotonicity require implementation tradeoffs. An experimental second timescale
(besides UTC) has therefore been added to the intra-node synchronization protocol. This interval or
scheduling timescale guarantees strict monotonicity and offers better frequency stability over short

22 The slew rate limiter is activated after a delay, to allow the low pass filter output to settle first.
23 For example the Y2K problem or the year 2038 problem caused by 32 bit POSIX time_t types.

http://en.wikipedia.org/wiki/Year_2038_problem
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and medium time periods than the UTC realization. The timescale uses the Windows performance
counter as its source.

Due to the object oriented design, the addition of a second timescale was very easy. Basically an
additional timestamp had been added to the protocol data unit and another clock object with its
associated controller had been instantiated. Since those objects keep only very little internal state, the
impact on memory use is minimal.

Alternatively, the second clock can be connected to the same timescale. With this setup different
clock filters and/or controllers—either implementations or parameter settings—can be evaluated and
compared concurrently in real time.

4.4.3. The custom algorithm
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Figure 4.6.: Offset versus round-trip time scatter diagram.

The modified SNTP algorithm has a structure similar to fig. 3.7. Two-way time measurement
implements the phase detector. The measurement error of the phase difference samples θi depends on
the transmission delay δ and is bounded by equation 2.22. By using the NTP clock filter, samples
from the left (low error) part of the scatter wedge in fig. 4.6 are selected. The scatter diagram was
taken on fitipc150 and corresponds with the histogram 4.3a and the middle column of table 4.1,
respectively.
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Figure 4.7.: Clock filter implementation
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protocol field clock size / bytes

origin timestamp T1 H 8
receive timestamp T2,I I 8
receive timestamp T2,U U 8
Processing delay d = T3,I−T2,I I 4
sequence number - 4
Protocol version - 8

sum 40

Table 4.2.: Inter-node synchronization message format

Analysis of a few 105 samples showed, that there was only little incremental improvement for N > 5
filter stages. Nevertheless N = 8 stages (like in NTP) are used. Plots of the clock filter output
revealed that it contained a small percentage of outliers, sometimes even adjacent ones.24 These
outliers are removed by the seven stage median filter shown in fig. 4.7. The median filter output is not
chronological ordered. Reordered samples are ignored by the clock controllers.

A ClockController instance corresponds to the loop filter block of fig. 3.7. It adjusts the rate of
its controlled clock object. The clock object corresponds to the VCO.

The protocol data unit is shown in table 4.2. If the software is compiled for debugging and evaluation,25

internal state variables and PPS timestamps are also present in the PDU and its size increases to
156 bytes. The T1 timestamp would be only required in symmetric mode and is currently not used by
the (x86) server side of the protocol. The three involved clocks are the DSP hardware clock (H), the
UTC clock (U), and the interval clock (I). The hardware clock is the base clock for the other clocks on
the DSP. On the general purpose processor, the UTC clock is the NTP-controlled Windows system
clock and the interval clock is derived from the performance counter.

The client and servers synchronization loops are shown in fig. 4.8 and fig. 4.9, respectively. The
offset and delay calculations are equivalent to the NTP timestamp exchange protocol (cf. fig. 3.4 and
equations 3.3 and 3.4). They appear different because two minor optimizations have been made:

1. Instead of transmitting both timestamps T3,I and T3,U separately the processing delay of the
server d = T3,I−T2,I = T3,U −T2,U is replied.

2. On the DSP all three clocks are read synchronously by first reading the hardware baseclock,
and then passing the obtained value to the extrapolate method of the controlled clock
instances.

24 The NTP reference implementation contains a so called popcorn spike filter [Mil06b, p. 72]. This filter uses a dynamic
suppression threshold, which is 3ϕP. It cannot suppress adjacent outliers reliably.

25 With the DEBUG_CLOCKSYNC preprocessor symbol defined to a non-zero value.
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initialization ;
while true do

sleep (poll-interval) ;
prepare synchronization message ;
T1,H := hardware-clock.read () ;
send_to_x86 () ;
(T2,I, T2,U , d) = receive_from_x86() ;
T4,H := hardware-clock.read () ;
T4,I := interval-clock.extrapolate (T4,H) ;
T4,U := UTC-clock.extrapolate (T4,H) ;
rtt := T4,H −T1,H ; // round trip time
δ := rtt−d ; // sum of both channel delays
rcv-to-rcv := (rtt+d)/2 ; // interval between x86 and DSP recv
θI := T2,I + rcv-to-rcv−T4,I ;
θU := T2,U + rcv-to-rcv−T4,U ;
if first message then

interval-clock.add_offset (θI) ;
UTC-clock.add_offset (θU ) ;
θI := 0 ;
θU := 0 ;

endif
(T4,H,min, θI,min, θU,min) := minimum-δ -filter.process (δ , T4,H , θI, θU ) ;
if new δ minimum then

pass (T4,H , θI, θU) to median-θ -filter ;
pass filter output to clock controllers ;

endif
endw

Figure 4.8.: Client (TMS320C64X) synchronization loop

initialization ;
while true do

receive_from_DSP () ;
T2,I := interval-clock.read () ;
T2,U := UTC-clock.read () ;
prepare reply message ;
d := interval-clock.read()−T2,I ; // processing delay of server
send_to_DSP (T2,I, T2,U , d) ;
if compiled for packet logging then

store packet data in ring buffer ;
if ring buffer more than half full then asynchronously notify logger thread ;

endif
endw

Figure 4.9.: Server (Pentium M) synchronization loop



5. Evaluation

The protocols have been evaluated first separately and then together. NTP performance is evaluated in
section 5.1 and the custom protocol in section 5.2. An end-to-end evaluation, which compares the
clocks of signal processors in separate I-SENSE nodes, is presented in section 5.3.

Because of its large time constants, NTP converges only slowly. NTP startup behavior does not affect
the inter-node and end-to-end results, because the displayed data has been recorded after several hours
of continuous operation.1 In contrast to NTP, the intra-node protocol converges quickly. Its startup
transients are displayed in the section 5.2 diagrams (i. e., figures 5.4, 5.5, and 5.6).

5.1. Inter-node Evaluation

Evaluation of inter-node synchronization was complicated by the fact, that external precision time
and time-interval measurement equipment2 was not available. The lack for low level timestamping
support in Windows was another drawback.

Although the NTP reference implementation is widely used, no suitable scientific publications about
its performance over a LAN between Windows machines could be located. All assessed NTP related
publications are either in the context of Unix/Linux operating systems or look at the Microsoft
implementation. A paper comparing the NTP performance of the NTP reference implementation on
Linux with the Microsoft implementation concludes [SA06]

• that the synchronization accuracy on Linux is limited by the clock discipline time constant, and

• that the MS Windows implementation is severely restricted by the coarse granularity of the
Windows system time clock.

In June 2009 experimental support for the PPS API [MMB+00] was added to the Windows port of the
ntp.org development version. The results of two experiments, which took advantage of the PPS
timestamping facility, are shown in figures 5.2 and 5.3.

In both experiments the PPS output of a GPS time receiver3 was connected to the Data Carrier Detect
(DCD) pin on a serial-line interface of both PCs. The triggered interrupts are timestamped by a patched
Windows serial line driver. Alternative hardware had to be used, because in the ITI VLSI laboratory
unobstructed sky view, which is required for GPS signal reception, was not available within antenna
cable range. To match the capabilities of embedded hardware, two older COTS PC models were
used and interconnected with a 100 Mbit/s Ethernet. The machines mark and space are equipped

1 It is assumed that (re)starts are rare events, since sensor networks are typically operated continuously.
2 Like an external reference clock and one of the many commercial PCI time and frequency measurement products.
3 The used Motorola Oncore UT+ GPS receiver provides output pulses that are ±50 ns (1 σ ) accurate to UTC.
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with Intel Celeron processors with clock frequencies of only 800 MHz and 900 MHz, respectively.
They were operated without ambient temperature control in a domestic environment and only lightly
loaded during the experiments. The general purpose processors of current I-SENSE nodes are Intel
Pentium-M models with clock frequency options up to 1.6 GHz—limited only by passive cooling.

In the first experiment both machines were running the latest NTP reference implementation on
Windows XP. Machine mark was synchronized to the GPS receiver and served its time via NTP to
space. On the client the PPS signal was used for evaluation only, not for synchronization.

The black and blue curves of fig. 5.2 display clock offset from UTC for the server and client,
respectively. They have have been measured with low level PPS timestamps. The roughly 0.1 ms
(peak to peak) jitter that is visible on both curves comes from the Windows kernel. In order to work
around the low resolution of the Windows system time clock the NTP reference implementation uses
an interpolated clock like the MMClock described on page 55. The Windows kernel delivers the
timer event callbacks with limited precision and this causes the jitter. Operating systems with a high
resolution system clock (e. g., Linux and many Unix variants) do not have this limitation.4

The red curve labeled “Client - Server” fig. 5.2 displays the filtered offset samples that have been
made by NTP, i. e., the output of the clock filter algorithm. This is the client’s notion of its clock offset
relative to the server. Because of the clock filter delay some samples are stale, i. e., they are used
several minutes after their measurement.

The experiment revealed a bug in the Windows system clock implementation on client space. During
the six hour experiment it occurred 10 times that a millisecond was lost—presumably due to lost
interrupts. This problem makes fig. 5.2 quite instructive, because the response to a 1 ms offset step is
clearly visible. Until 06:35 the protocol was run with default settings. Then the client daemon was
reconfigured with a fixed poll interval of 8 s and restarted. The reduced clock discipline time constant
caused a much quicker response to offset errors. Also visible before 06:35 is the effect of the dynamic
poll interval adjustment algorithm, i. e., the sampling interval varies (cf. page 46).

For the second experiment FreeBSD 7.2 was installed on space, which resolved the problem with
lost milliseconds. This time space was synchronized to UTC with the GPS receiver and provided its
system time via NTP across the LAN to client mark. Again, the client poll interval was clamped to
8 s. Results are shown in fig. 5.3.5 The good timekeeping support of the FreeBSD kernel is reflected
by less than 3µs RMS short time jitter of the black “Server - UTC” curve. Again, most of the roughly
100µs peak-to-peak jitter of the blue “Client - UTC” curve is presumably caused by application level
clock interpolation (cf. section 2.4.1 on page 21), since interrupt latencies are considerable smaller
in magnitude and PPS signal jitter was less than 1µs. The even higher jitter of the red “Client -
Server” NTP clock filter output—i. e., the input to the client side NTP sub-algorithms—results from
accumulated timing uncertainties during the NTP timestamp exchanges (cf. table 2.7). The fairly
constant ≈ 50µs average offset between client and server shows that the path-reciprocity assumption
behind equation 3.4 was only approximately correct. On average, the delay of the request path was
approximately 100µs larger than the delay of the response path (cf. eq. 2.22).

4 The magnitude of the jitter is small compared to the 5 ms accuracy required by I-SENSE. However under very heavy system
load the Windows kernel may delay the delivery of timer event callbacks by several milliseconds. This may cause transient
clock reading errors of corresponding magnitude.

5 Note the change in y-axis (time offset) scale!
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During the shown six hours, both absolute time offsets from UTC and relative time offsets between
client and server have been below half a millisecond by a wide margin. With a Windows server
(instead of Unix) the≈ 0.1 ms clock interpolation jitter of the server clock would increase offset errors
slightly.

Because NTP time constants are large, it can take a few hours from service start-up until the clock
discipline settles. During this period offsets are generally larger.

A series of similar experiments6 showed that maximum absolute offset is positively correlated

1. with the speed of temperature change, and

2. with the length of the clock discipline time constant.7

Configured with shortened time constants, the maximum absolute offsets between clients and a server
stayed below 2.5 ms during two weeks of experimentation. Desktop PCs in a domestic network had
been used. The experiments took place in Winter. Ambient temperature drops from about 25 ◦C
to 10 ◦C had been induced by extensive airing of heated rooms. An old 100 MHz PC with only a
10 Mbit/s NIC showed the largest offsets.

5.2. Intra-node Evaluation

The setup for evaluation of the custom intra-node protocol needed facilities for timestamping of
external signals on Windows and DSP/BIOS. Both had to be created first.

No suitable Windows parallel or serial port device driver with low level timestamping support
could be located. A RFC 2783 compatible PPS API [MMB+00] was therefore implemented.8 This
implementation does not require kernel level support. A user level thread with a time critical scheduling
priority is notified about selected serial line status changes via the Windows WaitCommEvent
function and creates timestamps. Compared with a kernel level implementation, there is some loss
of precision because of scheduling latency. In practice the facility performs quite well. Few outliers
occur and it is easy to identify them on a plot. About 20µs jitter have been removed from the plots by
computing a sliding window average of 11 samples (5.5 s).

On the DSPs interrupt handlers had been added, which fetched a timestamp from the hardware clock
and stored it for later retrieval with the getLastTimingPulseEvent function. The hardware
interface consisted of an optocoupler connected to an open-collector interrupt line on an external
extension board connector.

A 2 Hz rectangular signal (2PPS) interrupted all CPUs synchronously. The signal was created by
dividing the 32.768 kHz output of a simple crystal oscillator with a 14-stage binary counter. Because
the common-view technique is utilized, the timing characteristics of the 2PPS signal are irrelevant (cf.
section 2.5.1). A schematic diagram of the used external hardware is shown in fig. 5.1.9

6 This experiments had a similar setup, but used only Unix/Linux machines and recorded temperature data from on-board and
CPU sensors too.

7 The time constant cannot be made arbitrarily short, as this would cause an instable and oscillating control loop.
8 The implementation used in section 5.1 did not exist at the time of the evaluation.
9 The remote DSP board was not connected for the intra-node evaluation. The voltage level for logical zero on the DCD pin

http://msdn.microsoft.com/en-us/library/ms685100%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ms685100%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa363479%28VS.85%29.aspx
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Parameter UTC clock Interval clock

τx 15 min 30 min
τθ 45 sec 2 min
τc 15 sec 30 sec
Rmax 500 ppm 500 ppm
R′max 10 ppm

min 1 ppm
min

Table 5.1.: Clock controller parameters

Machine fitipc150 was used for the experiment. Results of the first hour are shown in fig. 5.4. A
sample interval of 457 ms and the clock controller parameters of table 5.1 have been used (cf. fig. 4.5).
The parameters had been obtained empirically.

The black curve of fig. 5.4 shows the true offset error as measured with the common external signal.
The DSP clock was between 0.1 ms and 0.3 ms early compared to the Pentium clock.10 The red curve
shows the same offset as measured without external hardware, i. e., by two-way timestamp exchanges.
It is the offset that is “seen” by the protocol and that the controller tries to reduce.

The shift of ≈170µs between the red two-way (protocol) and the black 2PPS (hardware assisted)
measurements reveals non-reciprocity of paths. The DSP clocks are ahead of the x86 clocks, because
the reply path to the DSPs is faster. Probably the relatively large asymmetry is due to the fact that
there was much more traffic on the DSP-to-x86 leg because of video streaming.11

The blue curve of fig. 5.4 shows two-way measurement results of the interval clock offset between
DSP and Pentium M. The red UTC clock offset curve is less smooth than the blue interval clock offset
curve, because of the following reasons:

• The source clock on Windows has a more complicated implementation with callbacks and
interpolation,

• the source clock is adjusted once per second by NTP, and

• the UTC clock controller on the DSP uses shorter time constants.

Internal clock controller state (cf. fig. 4.5) during the experiment is plotted in fig. 5.5. Both rates—
the correction rc applied to the baseclock and the controllers notion rx of the baseclock skew—are
displayed for both clocks. The interval clock needed only a small ≈1 ppm swing for a few minutes
before it settled to a very smooth rate. The UTC clock controller keeps correcting with about ±2 ppm
rate adjustments.

Time offset between two DSPs is shown in fig. 5.6. The curve is very precise, since interrupt latency
variation is the largest remaining cause of measurement error. There is very good common mode
noise rejection, as both DSPs use the same software over the same physical communication channel
(PCI bus) to query the same time server.12 After the controllers have settled, offset stayed below

does not conform to the RS-232 standard, which mandates -3 V to -15 V. In practice this did not cause any problem.
10 The few isolated spikes are measurement errors due to scheduling latency as mentioned above.
11 This question cannot be decided with the available data, because fusion tasks were running on all DSPs in all experiments.
12 However each DSP communicates independently with the Pentium M processor.
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approximately 20µs. Relative synchronization between DSPs within the same I-SENSE node is
excellent!

5.3. End-to-end Evaluation

The end-to-end experiment used a similar hardware setup as the intra-node experiment. A second
optocoupler was used to interrupt the DSPs on an embedded I-SENSE node.13 The infrared-emitting
diodes of the optocouplers had been connected in series, to ensure that all DSPs were interrupted
synchronously (cf. fig. 5.1). Because no Windows XP embedded license was available at the time of
the tests, Windows 2000 had been installed on the embedded I-SENSE node as a workaround. Also
an earlier version of the clock controller without the output low pass filter (cf. fig. 4.5) was used.14

A six hours window of the results is shown in fig. 5.7. The data has been sub-sampled with a 2 min
interval.

Maximum offset was ≈3.15 ms. Although this intermediate result is a bit worse than what could be
expected by extrapolation of the separate NTP and intra-node experimental results,15 it fulfills the
goals of the project as set in section 1.2.

13 Such an additional wired infrastructure could be used for synchronization too. An example of such an approach is described
in [NPON02].

14 The experiment could not be repeated with the final design, because no embedded I-SENSE node was available then.
15 Adding the inter-node and two times the intra-node offset errors suggests that end-to-end offsets below 1 ms should be

possible. Intra-node offsets with the same sign (i. e., both positive or both negative) would even partially cancel each other.
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6. Conclusion

This thesis presents an overview to the recurring problem of time synchronization. The fundamentals
of time, timescales, clocks, remote clock reading, and synchronization are described. Especially
clocks are treated thoroughly from several theoretical and practical perspectives.

An introduction to the wide design space of synchronization protocols is given, selected important
contributions to the field are presented, and the sophisticated standard protocol for time synchronization
in the Internet is described.

The architecture of the I-SENSE middleware shaped the design of its synchronization service. The
design is a two level hierarchy. On the top level, state-of-the-art NTP software synchronizes the
system time of the general purpose (Pentium M) processors. Redundant top level servers provide a
high degree of fail safety. Internal or external synchronization is possible, with networked or directly
attached time sources.

The second hierarchical level synchronizes the TMS320C64X signal processors within each sensor
node to the local Pentium M processor. A custom protocol that combines the essentials of SNTP
with some extensions is deployed. Its implementation is centered around a few object oriented clock
abstractions. Its moderate complexity, the low resource demands, and the restriction to fixed point
arithmetic fit well into embedded environments.

First evaluations confirmed that the implementation goal—time offsets between clocks of less than
5 ms—has been met. Most experiments even yielded sub-millisecond offsets.

6.1. Future Work

Evaluation methodology Further evaluation in a hard- and software environment that is closer (or
identical) to actual outdoor deployment should be carried out. Measurement uncertainty could
be reduced with calibrated time measurement hardware. Temperature data should be taken too,
because rapid temperature changes are a challenge for synchronization.

Simulations Effects of ambient temperature changes in outdoor deployments could be evaluated
with simulations. Either by full simulation in virtual time, or by injection of clock frequency
disturbances into the present implementation in real time.

Confidence intervals NTP computes expected and maximum error intervals. This data is not used at
present. If there is demand, intervals could be provided via an API to fusion tasks.
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Interval clock The current implementation of the UTC timescale cannot guarantee strict monotonicity.
Under rare circumstances (e. g., leap seconds, broken servers, intermittent network connectivity,
startup with a broken RTC) backward steps in time can happen. For applications that cannot
tolerate timescale discontinuities, a strictly monotonic second clock is provided. Its usefulness
needs to be evaluated. Currently interval clocks are only synchronized within each I-SENSE
sensor node. Inter-node synchronization could be added.

Low level timestamps At present Microsoft Windows operating systems have no support for low
level timestamping of network packets. WinPCap, an open source packet capture library,1

can provide packet timestamps with 1µs resolution to applications. More accurate timestamps
would improve synchronization precision.2

Controller design The present intra-node clock discipline is a preliminary ad-hoc design. Although
it works well, a more elaborate design could increase synchronization precision.

1 WinPCap is a Windows port of the widely used libpcap (packet capture) library for UNIX-like systems.
2 If that approach is viable, the design decisions of section 4.2 might even be reconsidered.

http://www.winpcap.org/


A. List of Symbols

ϕ(t) oscillator phase deviation [rad]

L SSB phase noise to carrier power ratio [dBc Hz−1]

MT IE Maximum Time Interval Error [s]

Sx PSD of time fluctuations [s2 Hz−1]

Sφ PSD of phase fluctuations [rad2 Hz−1]

Sy PSD of fractional frequency fluctuations [Hz−1]

〈X〉 Statistical expectation value of X (a. k. a. E[X ])

∆ difference

∆2 second order difference

bxc floor function

σ2
x Time Variance [s2]

σ2
y Two-Sample or Allan Variance [1]

Mod.σ2
y Modified Allan Variance [1]

T IErms root mean square of Time Interval Error [s]

τ0 shortest sampling period [s]

τ (sub)sampling period [s]

θ clock offset error [s]

V0 nominal amplitude [V]

∆V (t) amplitude fluctuations [V]

v(t) oscillator output voltage [V]

ν0 nominal oscillator frequency [Hz]

x(t) time error (of oscillator phase) [s]

y(t) fractional frequency deviation [1]

ȳ(t) average fractional frequency deviation over a period [1]

R(t) clock rate [s/s]
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S clock skew (fractional frequency offset) [s/s]

D clock rate drift due to aging [s/s2]

Ei(t) rate error due to environmental conditions [s/s]

υ(t) random rate fluctuation (FM noise) [s/s]

→ happened-before relation

9 not happened-before

⇒ total order based on happened-before relation

‖ concurrent

:= assignment operator

≈ approximately equal

δ NTP round trip communication delay [s]

∆ NTP root delay [s]

ε NTP dispersion [s]

E NTP root dispersion [s]

λ NTP peer synchronization distance (i. e., max. abs. offset error) [s]

Λ NTP system synchronization distance [s]

ρ NTP precision [s]

Φ NTP frequency tolerance constant = 15 ppm

ϕ NTP jitter [s]

∆R NTP root delay [s]

ER NTP root dispersion [s]

Θ NTP combined system clock offset [s]

θ NTP system jitter [s]

τ NTP poll exponent [log2 s]



B. Abbreviations and Glossary

Accuracy Closeness of agreement between a measured quantity value and a true quantity value
of a measurand [BIP08].

ACPI Advanced Configuration and Power Interface

AM Amplitude Modulation

API Application Programming Interface

APIC Advanced Programmable Interrupt Controller

ASIC Application Specific Integrated Circuit

ATA Advanced Technology Attachment

BEV Bundesamt für Eich- und Vermessungswesen. (The Austrian→NMI.)

BIH Bureau International de l’Heure

BIOS The Basic Input Output System is the firmware for x86 PCs.

BIPM The Bureau International des Poids et Mesures located in Sevres (near Paris) main-
tains the timescales TAI and UTC.

CDMA Code Division Multiple Access

CGPM Conférence générale des poids et mesures

COTS commercial off the shelf

DNS Domain Name System

DRAM Dynamic Random Access Memory

DSP Digital Signal Processor

DTSS Digital Time Synchronization Service

DUT1 UT1 – UTC

EIA Electronic Industries Alliance

FIFO First-In First-Out

FLL Frequency Locked Loop

FPGA Field Programmable Logic Array

FPU Floating Point Unit
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Frequency Instability The frequency change, typically averaged for an interval, t, with respect to
another frequency. Generally one distinguishes between frequency drift effects and
stochastic frequency fluctuations. Special variances have been developed for the
characterization of these fluctuations [AAH97].

GMT Greenwich Mean Time was the official name for world time until 1972.

GNSS Global Navigation Satellite System

GPS Global Positioning System. The 24 satellites of the space segment carry accurate
atomic clocks. Their signals allow high precision timing applications.

HPET High Precision Event Timer

IAU International Astronomical Union

IDE Integrated Development Environment

IEK Imaging Evaluation Kit

IERS International Earth Rotation and Reference Systems Service

IETF Internet Engineering Task Force

IGS International→GNSS Service

IP Internet Protocol

IQR Inter Quartile Range

IRIG Inter-Range Instrumentation Group

ISM band The industrial, scientific, and medical radio bands are defined by the→ITU-R.

ISO International Standards Organization

ITU The International Telecommunication Union is located in Geneva, Switzerland. The
ITU is made up of three sectors:

ITU-T Telecommunication Standardization Sector,
ITU-R Radiocommunication Sector, and
ITU-D Telecommunication Development Sector.

JD Julian Day number of mean solar days (and decimal fractions thereof) elapsed since
JD 0.0 which was at Greenwich mean noon of -4712 January 1.

LAN Local Area Network

LLR Linear Least Squares Regression

LORAN-C LOng Range Aid to Navigation is a terrestrial radio navigation system using low
frequency radio.

MAC Media Access Control

MCXO Microcomputer Compensated Crystal Oscillator

http://www.iau.org/
http://www.iers.org/
http://www.ietf.org/
http://igscb.jpl.nasa.gov/
http://www.iso.org/
http://www.itu.int/
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Metrology The science of measurement and its application [BIP08].

MII Media Independent Interface

MPEG Motion Picture Experts Group

MJD Modified Julian Day. MJD was defined in the 1950s as ( JD - 2400000.5 ). MJD 0.0
corresponds to 1858-11-17T00:00:00.

MTBF Mean Time Between Failures

MTIE Maximum Time Interval Error

NIC Network Interface Card

NMEA U. S. National Maritime Electronics Association

NMI National Metrology Institute

NIST U. S. National Institute of Standards and Technology

NTP Network Time Protocol

NTSC National Television System Committee

NVDK Network Video Developer’s Kit

OCXO Oven Controlled Crystal Oscillator

PCC Processor Cycle Counter

PCI Peripheral Component Interconnect

PDU Protocol Data Unit

PICMG PCI industrial computer manufacturers group

PIT Originally the Programmable Interval Timer was an Intel 8353 or 8354 chip. Now it
is integrated into the x86 PC chipsets.

PLL Phase Locked Loop

PM Phase Modulation

POSIX Portable Operating System Interface is a family of related standards specified by
the IEEE to define the application programming interface for software compatible
with variants of the Unix operating system. Formally designated as IEEE 1003 or
ISO/IEC 9945.

PPS Pulse Per Second

Precision Closeness of agreement between indications or measured quantity values obtained
by replicate measurements on the same or similar objects under specified condi-
tions [BIP08]. Caveat: “Precision” means many things throughout the literature.
Often used as a synonym for→accuracy. In the context of→NTP [Mil06b]: Mini-
mum time required to read the system clock.

http://www.nmea.org/
http://www.nist.gov/
http://www.ntp.org/
http://www.picmg.org/
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PRN Pseudo Random Noise

PSD Power Spectral Density

PTP The Precision Time Protocol is specified by the IEEE 1588 standard [IEE08].

PWM Pulse width modulation

QoS Quality of Service

RbXO Rubidium-Crystal Oscillator

Resolution Smallest change in a quantity being measured that causes a perceptible change in
the corresponding indication [BIP08].

RFC Request For Comments

RMS Root Mean Square (
√
〈X2〉)

Second A basic unit of measurement of time in the International System of Units [BIP06].
It is defined as the duration of 9,192,631,770 cycles of microwave light absorbed
or emitted by the hyperfine transition of caesium-133 atoms in their ground state
undisturbed by external fields.

RTC Real Time Clock. On the PC platform originally a Motorola MC146818A or Dallas
Semiconductor DS122887 chip providing a battery backed time-of-day clock and
50/114 bytes of non-volatile RAM.

RTT Round Trip Time

RTTD Round Trip Transmission Delay, i. e.,→RTT minus the interval between receiving
the request and sending the response.

SI International System of Units (abbreviated from the French “Le Système interna-
tional d’Unités”)

SPXO Simple Packaged Crystal Oscillator

SSB Single Side Band

SSC Spread Spectrum Clocking

Stability →Frequency Instability

Stratum A level or layer in a hierarchical time or frequency distribution system.

Synchronization The times of clocks are in synchronization if their readings are the same after
accounting for reference frame delays and relativistic effects. Synchronization needs
to be specified to within some level of uncertainty [AAH97].

Syntonization The rates or frequencies of clocks are in syntonization if the rates are the same after
accounting for reference frame corrections and relativistic effects. Syntonization
needs to be specified to within some level of uncertainty [AAH97].

TAI International Atomic Time

http://ieee1588.nist.gov/
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TCP Transmission Control Protocol

TCXO Temperature Compensated XO

TDMA Time Division Multiple Access

Tick In system programming a tick is the event of a periodic timer interrupt which is used
for timekeeping and scheduling purposes.

TIE Time Interval Error

Timescale Continuum of monotone-increasing values that denote time in some frame of refer-
ence.

Timestamp An unambiguous representation of some instant in time. Timestamps refer to a
→timescale.

TRAIM Time Receiver Autonomous Integrity Monitoring

TSC Time Stamp Counter. A→PCC built into Intel x86 CPUs since the Pentium.

TUG Graz University of Technology

TWSTFT Two Way Satellite Time and Frequency Transfer

UDP User Datagram Protocol

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

Uncertainty Parameter, associated with the result of a measurement, that characterizes the
dispersion of values that could reasonably be attributed to the measurand [BIP08].

USB Universal Serial Bus

UTC Coordinated Universal Time as maintained by the→BIPM.

UT1 A timescale based on the rotation angle of earth and corrected for polar motion as
maintained by the→IERS.

VCO Voltage Controlled Oscillator

VLBI Very Long Baseline Interferometry

WAN Wide Area Network

WSN Wireless Sensor Network

XO Quartz crystal oscillator

http://www.tugraz.at/
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