

# Modulare Modellbildung und Simulation von hybriden Antriebssträngen

# Dissertation

zur Erlangung der Würde eines Doctor technicae (Dr. techn.)

Vorgelegt

an der Fakultät für Maschinenbau und Wirtschaftsingenieurwesen der Technischen Universität Graz

von

#### Gerald Kelz

Begutachter: Univ.-Prof. Dr.techn. Wolfgang Hirschberg
 Begutachter: Univ.-Prof. Dr.-Ing. habil. Walter Sextro

Meinem Vater

# Kurzfassung

Der Antriebsstrang eines Hybridfahrzeugs ist wesentlich komplexer aufgebaut als jener eines konventionellen Fahrzeugs mit Verbrennungsmotor. Während bei herkömmlichen Fahrzeugantriebssträngen die Topologie, also die Anordnung der einzelnen Komponenten, prinzipiell fest ist, gibt es bei innovativen Antriebssystemen eine Vielzahl von Möglichkeiten, diese geeignet anzuordnen. Ziel ist es, jene Konfiguration zu finden, die für einen definierten Einsatz den minimalen Verbrauch bei sehr guten Fahrleistungen liefert. Mit Hilfe von Längsdynamiksimulation lassen sich die Verbrauchspotenziale durch Variation der Komponentendimensionen und der Topologie ableiten und vergleichen. Diese Simulationsrechnungen werden meistens auf einer Software durchgeführt, die sich zumeist auf Standard-Antriebsstranganordnungen beschränken und nicht die Flexibilität bieten, um beliebige Topologien analysieren zu können.

Die vorliegende Arbeit behandelt die modulare Modellbildung und die Verbrauchssimulation von komplexen hybriden Antriebssträngen für Topologieuntersuchungen. Es wird eine Modellierungsmethode vorgestellt, mit der man beliebige hybride Antriebssysteme aufbauen kann. Der Fokus liegt dabei auf einer effizienten und schnellen Modellbildung, die dennoch genaue Simulationsergebnisse liefert. Die entwickelten Simulationsalgorithmen haben im Vergleich zu Standardverfahren kürzere Rechenzeiten und sind robuster. Als Beispiel wird der Antriebsstrang eines leistungsverzweigten Hybridfahrzeuges in Matlab/Simulink® bzgl. Treibstoffverbrauch optimiert. Der modifizierte Antriebsstrang spart in bestimmten Fahrsituationen bis zu 16 Prozent an Treibstoff ein.

### Abstract

The power train of a hybrid vehicle is considerably more complex than that of conventional vehicles. Whilst the topology of a conventional vehicle is generally fix, the arrangement of the power train components for hybrid propulsion systems is flexible. The aim is to find those configurations which are optimal for the intended use. Fuel consumption potentials can be derived with the aid of vehicle longitudinal dynamics simulation. Mostly these simulations are carried out using software which is optimized for the standard topology and do not offer the flexibility to calculate arbitrary topologies.

The present thesis deals with the modular modeling and the fuel consumption simulation of complex hybrid power trains for topology analysis. A method for modeling arbitrary drive trains with high complexity is introduced. The focus lies on an efficient and fast modeling which still provides exact simulation results. Compared with standard procedures, the simulation algorithms developed are faster and more robust. As an example, the drive train of a power-split hybrid vehicle is optimized using Matlab/Simulink<sup>®</sup>. With simple modification the drive train can save up to 16 percent of fuel consumption in certain driving situations.

# Danksagung

Die vorliegende Arbeit entstand im Zuge meiner Tätigkeiten als Wissenschaftlicher Assistent am Institut für Mechanik und am Institut für Fahrzeugtechnik an der Technischen Universität Graz.

Mein Dank gilt Univ.-Prof. Dr.-Ing. habil. Walter Sextro für die Hilfestellung auf dem Gebiet der Mechanik. Ein besonderer Dank ergeht an Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Hirschberg für die Anregung zu dieser Arbeit und die engagierte Betreuung. Ferner möchte ich mich bei ihm für das entgegengebrachte Interesse und das angenehme Arbeitsklima sehr herzlich bedanken.

Für die zahlreichen fachlichen Diskussionen bedanke ich mich bei Dipl.-Ing. Dr.techn. Johannes Hölzl und Prof. Dipl.-Ing. Steffen Bernhard.

Des Weiteren gilt mein Dank all jenen, die mich bei der Erstellung dieser Arbeit unterstützt haben, vor allem meiner Lebensgefährtin Daniela für ihre Geduld und ihr Verständnis.

Graz, im Oktober 2010

Gerald Kelz

# **Inhaltsverzeichnis**

| Abbildungsverzeichnis vii |                        |         |                                            |      |
|---------------------------|------------------------|---------|--------------------------------------------|------|
| Ta                        | Tabellenverzeichnis ix |         |                                            |      |
| 1                         | Einl                   | eitung  |                                            | 1    |
|                           | 1.1                    |         | llung der Hybridfahrzeuge                  | . 2  |
|                           |                        | 1.1.1   | Serieller Hybrid                           | . 3  |
|                           |                        | 1.1.2   | Paralleler Hybrid                          | . 4  |
|                           |                        | 1.1.3   | Kombinierter Hybrid                        | . 5  |
|                           |                        | 1.1.4   | Leistungsverzweigter Hybrid                | . 5  |
|                           | 1.2                    | Proble  | emstellung und Ziel der Arbeit             | . 5  |
| 2                         | Sim                    | ulation | von Antriebssträngen                       | 7    |
|                           | 2.1                    | Einlei  | tung                                       | . 7  |
|                           | 2.2                    | Längs   | dynamiksimulation                          | . 8  |
|                           | 2.3                    | Fahrz   | yklen                                      | . 9  |
|                           | 2.4                    | Fahrw   | viderstände                                | . 11 |
|                           |                        | 2.4.1   | Luftwiderstand                             | . 12 |
|                           |                        | 2.4.2   | Rollwiderstand                             | . 12 |
|                           |                        | 2.4.3   | Steigungswiderstand                        | . 13 |
|                           | 2.5                    | Simul   | ationsprogramme zur Längsdynamiksimulation | . 14 |
|                           |                        | 2.5.1   | Anforderung an eine Längsdynamiksimulation | . 14 |
|                           |                        | 2.5.2   | Auswahl der Simulationsumgebung            | . 17 |
|                           | 2.6                    | Simul   | ationsmethoden                             | . 18 |
|                           |                        | 2.6.1   | Rückwärtssimulation                        | . 18 |
|                           |                        | 2.6.2   | Vorwärtssimulation                         | . 27 |
|                           |                        | 2.6.3   | Kombinierte Simulationsmethode             | . 29 |
|                           |                        | 2.6.4   | Bewertung und Auswahl                      | . 30 |
| 3                         | Мо                     | dulare  | Beschreibung von hybriden Antriebsträngen  | 32   |
|                           | 3.1                    | Syster  | mbegriff und Blockdarstellung              | . 32 |
|                           | 3.2                    |         | ndsraumdarstellung                         |      |
|                           | 3.3                    |         | der Modulkopplung                          |      |
|                           |                        | 3.3.1   | Signalflussorientierte Kopplung            |      |
|                           |                        | 3.3.2   | Torsionselastische Kopplung                |      |
|                           |                        | 3.3.3   | Differential algebraische Kopplung         |      |
|                           |                        | 3.3.4   | Reduktion auf Minimalform                  | . 39 |

# Inhaltsverzeichnis

|   |      | 3.3.5   | Vergleich und Bewertung                     | . 41  |
|---|------|---------|---------------------------------------------|-------|
|   | 3.4  | Basisn  | modul                                       | . 41  |
|   |      | 3.4.1   | Struktur eines Mehrkörpersystems            | . 42  |
|   |      | 3.4.2   | Kinematik                                   | . 42  |
|   |      | 3.4.3   | Dynamik                                     | . 46  |
|   |      | 3.4.4   | Koppelgrößen                                |       |
|   |      | 3.4.5   | Strukturvariabilität                        | . 50  |
|   |      | 3.4.6   | Eingeprägte Kraftgrößen aus Kennfeldern     | . 53  |
|   |      | 3.4.7   | Reduktion der Dimensionen                   | . 55  |
|   |      | 3.4.8   | Zusammenfassung                             | . 56  |
|   |      | 3.4.9   | Freiheitsgrade eines Moduls                 | . 58  |
|   | 3.5  | Koppl   | lung der Basismodule                        | . 58  |
|   |      | 3.5.1   | Globale Modellstruktur                      | . 58  |
|   |      | 3.5.2   | Zusammenbau des Gesamtmodells               |       |
|   |      | 3.5.3   | Zwangskräfte                                | . 65  |
|   |      | 3.5.4   | Freiheitsgrade des Gesamtsystems            | . 66  |
| 4 | Lösı | ıng dei | r Systemgleichungen                         | 68    |
|   | 4.1  |         | rationsverfahren                            | . 68  |
|   |      | 4.1.1   | Einschrittverfahren                         |       |
|   |      | 4.1.2   | Mehrschrittverfahren                        | . 72  |
|   |      | 4.1.3   | Numerische Steifigkeit                      | . 72  |
|   |      | 4.1.4   | Unstetigkeiten                              |       |
|   | 4.2  | Integr  | ration unstetiger Systeme                   | . 77  |
|   |      | 4.2.1   | Glättende Methoden                          | . 78  |
|   |      | 4.2.2   | Schaltende Modelle                          | . 78  |
|   |      | 4.2.3   | Ereignisbasierte Integrationsverfahren      | . 80  |
|   | 4.3  | Time-   | stepping Methoden                           | . 81  |
|   |      | 4.3.1   | Time-Stepping mit LCP                       | . 83  |
|   |      | 4.3.2   | Time-Stepping mit Augmented Lagrangian      | . 89  |
|   |      | 4.3.3   | Vergleich der Lösungsverfahren              |       |
|   |      | 4.3.4   | Auswahl des Lösungsverfahrens               | . 113 |
| 5 | Sim  | ulation | eines leistungsverzweigten Hybridfahrzeuges | 114   |
|   | 5.1  | Komp    | ponenten                                    | . 114 |
|   |      | 5.1.1   | Verbrennungsmotor                           | . 114 |
|   |      | 5.1.2   | Elektromotor                                | . 115 |
|   |      | 5.1.3   | Batterie                                    | . 116 |
|   | 5.2  | Leistu  | ingsverzweigter Antriebsstrang              | . 117 |
|   |      | 5.2.1   | Umsetzung in Matlab/Simulink                |       |
|   |      | 5.2.2   | Ergebnisse                                  |       |
|   | 5.3  | Topole  | ogie des OneMode <sup>+</sup>               | . 121 |
|   |      | 5.3.1   | Umsetzung in Matlab/Simulink                |       |
|   | 5.4  | Ergeb   |                                             |       |

# Inhaltsverzeichnis

| 6   | Zusammenfassung   | 124 |
|-----|-------------------|-----|
| Lit | eraturverzeichnis | 127 |

# Abbildungsverzeichnis

| 1.1  | Topologien von Hybridfahrzeugen                                      | 3  |
|------|----------------------------------------------------------------------|----|
| 2.1  | Schema einer Längsdynamiksimulation                                  | 8  |
| 2.2  | Fahrzyklen                                                           | 10 |
| 2.3  | Fahrwiderstände am Fahrzeug                                          | 12 |
| 2.4  | Umrechung der exzentrischen Radaufstandskraft                        | 13 |
| 2.5  | Schema der Rückwärtssimulation                                       | 19 |
| 2.6  | Blockdarstellung eines konventionellen Antriebsstranges              | 19 |
| 2.7  | Mechanisches quasistatisches Übertragungsglied                       | 20 |
| 2.8  | Radmodell bei der quasistatischen Simulation                         | 22 |
| 2.9  | Reifenlängskraft-Schlupf-Kennline                                    | 23 |
| 2.10 | Drehmomentenkennlinie eines Elektromotors                            | 24 |
|      | Kinematische Verzweigung am Beispiel einer Stirnradverzweigung       | 25 |
|      | Schema der iterativen Rückwärtssimulation                            | 26 |
|      | Schema der Vorwärtssimulation                                        | 27 |
|      | Schema der iterativen Vorwärtssimulation                             | 29 |
| 2.15 | Schema der kombinierten Simulationsmethode                           | 30 |
| 3.1  | Systembegriff nach ÖNORM DIN 19226, Teil 1 [62]                      | 32 |
| 3.1  | Blockdarstellung eines Übertragungsgliedes                           | 33 |
| 3.3  | Blockdarstellung eines physikalischen Modells                        | 36 |
| 3.4  | Signalflussorientierte Kopplung                                      | 37 |
| 3.5  | Torsionselastische Kopplung                                          | 38 |
| 3.6  | Kopplung mit algebraischen Gleichungen                               | 39 |
| 3.7  | Kopplung durch Reduktion auf ein Minimalsystem                       | 40 |
| 3.8  | Elemente eines Mehrkörpersystems                                     | 42 |
| 3.9  | Lage eines starren Körpers im Raum                                   | 43 |
| 3.10 | Eingänge und Ausgänge eines Moduls                                   | 48 |
| 3.11 | Freikörperbild einer Kupplung                                        | 51 |
| 3.12 |                                                                      |    |
|      | Verlustmomentberechnung mittels Wirkungsgradkennfeld                 | 54 |
|      | Kopplung von zwei Bremsmodulen                                       | 67 |
| 0.14 |                                                                      |    |
| 4.1  | Einteilung der Integrationsverfahren [72]                            | 70 |
| 4.2  | Fehlerordnung von expliziten Runge-Kutta-Verfahren                   | 72 |
| 4.3  | Schließvorgang des Kupplungmodells mit explizitem Euler-Integrator . | 76 |
| 4.4  | Geglättete Kupplungskennline                                         | 78 |

# Abbildungs verzeichn is

| Schaltlogik für ein Kupplungsmodell                                                |
|------------------------------------------------------------------------------------|
| Freilauf                                                                           |
| Zerlegung des Coulombschen Reibgesetzes                                            |
| Lösungsschema beim LCP-Verfahren                                                   |
| Graphische Darstellung der Projektionsfunktion                                     |
| Regularisierung der Freilauf-Charakteristik                                        |
| Regularisierung der Kupplungskennlinie                                             |
| Einzelbeispiele zur Analyse des Konvergenzverhaltens                               |
| Konvergenzverhalten des Fixpunktverfahren beim Freilaufmodell 94                   |
| Lösungsverhalten des Freilaufbeispiels für $\kappa \leq 0 \ldots \ldots \ldots 95$ |
| Lösungsverhalten des Freilaufbeispiels für $\kappa>0$                              |
| Konvergenzverhalten des Fixpunktverfahrens beim Kupplungsmodell $$ . 97            |
| Lösungsverhalten für $\chi < -\mu r_m F_n$                                         |
| Lösungsverhalten für $-\mu r_m F_n \le \chi \le \mu r_m F_n$                       |
| Lösungsverhalten für $\chi > \mu r_m F_N$                                          |
| Lösungsschema beim Augmented Lagrangian Verfahren                                  |
| Schließvorgang des Kupplungmodells mit dem LCP-Verfahren $\ \ldots \ \ldots \ 103$ |
| Schließen der Kupplung mit dem Augmented Lagrangian Verfahren $$ 104               |
| Doppelkupplungsbeispiel mit Freilauf                                               |
| Verlustkennfeld                                                                    |
| Verlauf des Eingangsmomentes $l_e$                                                 |
| Verlauf der Kupplungsnormalkräfte                                                  |
| Simulationsergebnis des Doppelkupplungsbeispiels                                   |
| Relativdrehzahlen der Doppelkupplung und des Freilaufs                             |
| Kupplungsmomente und Freilaufmoment                                                |
| Abweichungen von $\omega_1$ aufgrund verschiedener Schrittweiten 109               |
| Abweichungen von $\omega_2$ aufgrund verschiedener Schrittweiten                   |
| Abweichungen von $\omega_3$ aufgrund verschiedener Schrittweiten                   |
| Abweichung von $\omega_1$ aufgrund der iterationsfreien Berechnung 112             |
| Abweichung von $\omega_2$ aufgrund der iterationsfreien Berechnung 112             |
| Abweichung von $\omega_3$ aufgrund der iterationsfreien Berechnung 113             |
| Generisches Modell eines Verbrennungsmotors                                        |
| Generisches Modell eines Elektromotors                                             |
| Batteriemodell                                                                     |
| Topologie eines leistungsverzweigten Hybridfahrzeuges                              |
| Koppelplan zum leistungsverzweigten Antriebsstrang                                 |
| Leistungsverzweigter Hybrid im Hyzem Motorway Zyklus                               |
| Topologie des One $Mode^+$                                                         |
| Koppelplan des OneMode <sup>+</sup> Antriebsstranges                               |
|                                                                                    |

# **Tabellenverzeichnis**

| 2.1        | Bewertungsmatrix der Simulationsmethoden           |
|------------|----------------------------------------------------|
| 3.1        | Bewertungsmatrix der Kopplungssmethoden 41         |
| 4.2<br>4.3 | Simulationsstatistik beim Schließen einer Kupplung |
| 5.1        | Berechnete Einsparung des OneMode <sup>+</sup>     |

# Liste der verwendeten Symbole

# Abkürzungen

| Symbol | Beschreibung                                              |
|--------|-----------------------------------------------------------|
| OEM    | Original Equipment Manufacturer, Erstausrüster            |
| ESV    | Einschrittverfahren                                       |
| MSV    | Mehrschrittverfahren                                      |
| BDF    | Backward-Differentiation-Formula                          |
| LCP    | Lineares Komplementaritätsproblem                         |
| MKS    | Mehrkörpersystem                                          |
| NVH    | Noise, Vibration and Harshness                            |
| DAE    | Differential Algebraisches Gleichungssystem               |
| SOC    | State of Charge, Ladezustand der Batterie                 |
| E-CVT  | Electric Continuously Variable Transmission               |
| NEDC   | New European Driving Cycle, Neuer Europäischer Fahrzyklus |
| LA92   | Los Angeles Fahrzyklus aus dem Jahr 1992                  |
| Pkw    | Personenkraftwagen                                        |
| Lkw    | Lastkraftwagen                                            |
| EU     | Europäische Union                                         |
| LU     | LU-Zerlegung                                              |
| RKF45  | Runge-Kutta-Fehlberg Methode                              |

#### Mathematische Zeichen, Operatoren und Indizes:

#### Symbol Beschreibung

für alle  $\land$ und  $\exists$ existiert

 $\approx$ ungefähr gleich :=, =:Definition

 $\mathbb{R}$ Menge der reellen Zahlen  $\mathbb{C}$ Menge der komplexen Zahlen

{...} Menge

Mengenoperator  $\in$  $\delta a$ Variation von a

differentielle Änderung von adatotale zeitliche Ableitung von a $\dot{a}$  $a^{+}$ rechtsseitiger Grenzwert von  $\boldsymbol{a}$ linksseitiger Grenzwert von a $a^{-}$ 

Re(a)Realteil von a $max\{\}$ maximaler Wert mam-tes Modul

schiefsymmetrische Matrix  $ilde{m{a}}$ 

 $\| \cdot \|$ Norm

euklidische Norm  $\|\cdot\|_2$ eine skalare Größe aeinen  $n \times 1$ -Vektor  $\boldsymbol{a}$ 

*i*-tes Element  $a_i$ 

 $\boldsymbol{A}$ eine  $n \times m$ -Matrix

#### Lateinische Kleinbuchstaben:

 $n_m$ 

 $n_{mb}$ 

Symbol Beschreibung Beschleunigung Polynomkoeffizienten des Rollwiderstandsbeiwertes  $a_0,\ldots,a_4$ Beschleunigungsvektor Luftwiderstandsbeiwert  $C_{n}$ Exzentrizität  $f_i^e$ Vektor der eingeprägten Kräfte  $m{f}_i^r$ Vektor der Reaktionskräfte Vektor der Schnittkräfte am linken Schnittufer  $f^{z_y}$ Vektor der Schnittkräfte am rechten Schnittufer minimaler Freiheitsgrad  $f_{min}$ maximaler Freiheitsgrad  $f_{max}$ Rollwiderstandsbeiwert  $f_r$ Gravitationskonstante galgebraische Gleichungen (Kapitel 3.2)  $\boldsymbol{g}$ holonomer Lagebindungsvektor  $\boldsymbol{g}$  $\dot{g}$ Bindung auf Geschwindigkeitsebene Schrittweite hiIndex Übersetzung  $i_{12}$ Index j Zeitschrittindex k $\boldsymbol{k}$ verallgemeinerte Kreiselkräfte 1 Moment Vektor der eingeprägten Momente des i-ten Körpers Elektromotormoment  $l_{em}$  $l_i^r$ Vektor der Reaktionsmomente des i-ten Körpers Sollmoment  $l_{soll}$ Verbrennungsmotormoment $l_{vkm}$ Vektor der Schnittmomente am linken Schnittufer  $L^{z_y}$ Vektor der Schnittmomente am rechten Schnittufer Masse  $m_i$ verallgemeinerte Fahrzeugmasse  $m_{eff}$ Fahrzeugmasse  $m_v$ Schrittzahl eines Integrationsverfahrens (Kapitel 4.1) nAnzahl der holonomen Bindungen  $n_h$ Anzahl der einseitigen Bindungen  $n_e$ Anzahl der Freiläufe  $n_f$ Anzahl der holonomen Bindungen  $n_g$ Anzahl der Kupplungen  $n_k$ Anzahl der Module des Gesamtsystems

Anzahl der Modulbindungen

# Lateinische Kleinbuchstaben:

| Latemisei          | ie Riembuchstaben.                                          |
|--------------------|-------------------------------------------------------------|
| Symbol             | Beschreibung                                                |
| $n_p$              | Anzahl der Körper eines Moduls                              |
| $n_q$              | Anzahl der verallgemeinerten Lagen                          |
| $n_u$              | Anzahl der Eingangsgrößen                                   |
| $n_x$              | Anzahl der Zustandsgrößen                                   |
| $n_y$              | Anzahl der Ausgangsgrößen                                   |
| $n_z$              | Anzahl der verallgemeinerten Geschwindigkeiten              |
| $n_{z_{max}}$      | Anzahl der Geschwindigkeiten des ungebundenen Gesamtsystems |
| $n_H$              | Anzahl der dynamischen Deskriptorgleichungen                |
| p                  | Konsistenzordnung (Kapitel 4.1)                             |
| $\boldsymbol{p}$   | Lagevektor                                                  |
| q                  | Vektor der verallgemeinerten Lagekoordinaten                |
| $\boldsymbol{q}_e$ | Vektor der verallgemeinerten eingeprägten Kräfte            |
| $\boldsymbol{q}_v$ | Vektor der verallgemeinerten Verluste                       |
| $oldsymbol{q}_z$   | Vektor der verallgemeinerten Schnittkräfte                  |
| r                  | Regularisierungsparameter                                   |
| $r_m$              | mittlere Reibradius                                         |
| $oldsymbol{r}_i$   | Ortsvektor                                                  |
| $r_i$              | Innenradius der Reibbeläge                                  |
| $r_a$              | Außenradius der Reibbeläge                                  |
| $r_s$              | statischer Reifenradius                                     |
| $r_d$              | dynamischer Abrollradius                                    |
| $r_f$              | Regularisierungsparameter eines Freilaufs                   |
| $r_k$              | Regularisierungsparameter einer Kupplung                    |
| $r_{opt}$          | optimaler Regularisierungsparameter                         |
| S                  | Anzahl der Stufen des Runge-Kutta-Verfahrens                |
| t                  | Zeit                                                        |
| $t_k$              | Zeitpunkt $t = kh$                                          |
| $\boldsymbol{t}_i$ | Drehvektor des i-ten Körpers                                |
| v                  | Geschwindigkeit                                             |
| u                  | Eingangsvektor                                              |
| $u_i$              | Eingangsgröße                                               |
| $\hat{m{u}}$       | Konnektoren der linken Modulseiten                          |
| $oldsymbol{u}_A$   | Eingangsgrößen beim Referenzzustand                         |
| $u_{12}$           | Ubersetzung                                                 |
| $oldsymbol{v}_i$   | Geschwindigkeitsvektor                                      |
| verb               | Verbrauch                                                   |
| $\boldsymbol{w}_f$ | Bindungsvektor der Kupplung                                 |
| $oldsymbol{w}_k$   | Bindungsvektor des Freilaufs                                |
| $oldsymbol{x}$     | Zustandsvektor                                              |
| $oldsymbol{x}_A$   | Referenzzustand                                             |

### Lateinische Kleinbuchstaben:

| Symbol           | Beschreibung                               |
|------------------|--------------------------------------------|
| $oldsymbol{y}$   | Ausgangsvektor                             |
| $y_i$            | Ausgangsgröße                              |
| $\hat{m{y}}$     | Konnektoren der rechten Modulseiten        |
| z                | Geschwindigkeitsvektor                     |
| $oldsymbol{z}_r$ | abhängiger Geschwindigkeitsvektor          |
| $oldsymbol{z}_t$ | temporäre verallgemeinerte Geschwindigkeit |

### Lateinische Großbuchstaben:

| Symbol                 | Beschreibung                                   |
|------------------------|------------------------------------------------|
| $A_F$                  | Querspantfläche                                |
| $\boldsymbol{A}$       | Systemmatrix                                   |
| B                      | Eingangsmatrix                                 |
| $\boldsymbol{C}$       | Ausgangsmatrix                                 |
| D                      | Durchgriffsmatrix                              |
| $oldsymbol{E}$         | Einheitsmatrix                                 |
| F                      | Verfahrensfunktion                             |
| $F_x$                  | Reifenlängskraft                               |
| $F_l$                  | Luftwiderstandskraft                           |
| $F_r$                  | Rollwiderstandskraft                           |
| $F_s$                  | Steigungswiderstandskraft                      |
| $F_W$                  | Widerstandskräfte                              |
| $F_N$                  | Normalkraft                                    |
| $F_z$                  | Radaufstandskraft                              |
| $\boldsymbol{G}$       | holonome Bindungsmatrix                        |
| H                      | dynamische Deskriptorgleichung                 |
| $I_{Batt}$             | Batteriestrom                                  |
| $oldsymbol{I}_i$       | Trägheitstensor des i-ten Körpers              |
| J                      | Trägheitsmoment                                |
| J                      | Jacobimatrix                                   |
| $J_R$                  | Trägheitsmoment eines Rades                    |
| $\boldsymbol{K}$       | Kinematikmatrix                                |
| $\boldsymbol{K}_{M}$   | Kinematikmatrix der Module                     |
| $oldsymbol{L}$         | untere Dreiecksmatrix                          |
| L                      | Lipschitzkonstante                             |
| $\boldsymbol{L}_{T_i}$ | Jacobimatrix der Translation des i-ten Körpers |
| $\boldsymbol{L}_{R_i}$ | Jacobimatrix der Rotation des i-ten Körpers    |
| $\boldsymbol{L_u}$     | Jacobimatrix der linken Modulseite             |
| $oldsymbol{L_y}$       | Jacobimatrix der rechten Modulseite            |
| M                      | Massenmatrix                                   |

### Lateinische Großbuchstaben:

| Symbol             | Beschreibung                                 |
|--------------------|----------------------------------------------|
| $M_R$              | Radmoment bei der quasistatischen Simulation |
| N                  | Anzahl der Zeitschritte                      |
| P                  | Zeilenpermutationsmatrix                     |
| $P_f$              | Proximalfunktion eines Freilaufs             |
| $P_k$              | Proximalfunktion einer Kupplung              |
| $P_{mech}$         | Mechanische Leistung des Elektromotors       |
| $P_v$              | Verlustleistung des Elektromotors            |
| Q                  | Permutationsmatrix                           |
| $R_i$              | Innenwiderstand der Batterie                 |
| $\boldsymbol{S}_k$ | Inzidenzmatrix                               |
| $oldsymbol{T}_i$   | Drehtensor des i-ten Körpers                 |
| $oldsymbol{U}$     | obere Dreiecksmatrix                         |
| $U_0$              | Leerlaufspannung der Batterie                |
| $U_{Batt}$         | Batteriespannung                             |
| W                  | Bindungsmatrix                               |
| $oldsymbol{W}_f$   | Gesamtbindungsmatrix der Freiläufe           |
| $oldsymbol{W}_k$   | Gesamtbindungsmatrix der Kupplungen          |

# Griechische Buchstaben:

| Symbol                      | Beschreibung                                                  |
|-----------------------------|---------------------------------------------------------------|
| $\alpha_s$                  | Steigung                                                      |
| $oldsymbol{lpha}_i$         | Vektor der Winkelbeschleunigung                               |
| $\gamma_f$                  | Relativgeschwindigkeit eines Freilaufs                        |
| $\gamma_k$                  | Relativgeschwindigkeit einer Kupplung                         |
| $\delta oldsymbol{y}$       | Vektor der virtuellen Änderung der verallg. Lagekoordinaten   |
| $\delta z$                  | Vektor der virtuellen Änderung der verallg. Geschwindigkeiten |
| $\epsilon$                  | Diskretisierungsfehler                                        |
| $\kappa$                    | Steifigkeitsindex                                             |
| $\lambda$                   | Eigenwert der Testgleichung                                   |
| $\lambda_f$                 | Freilaufmoment                                                |
| $\lambda_k$                 | Kupplungsmoment                                               |
| $\lambda_G$                 | Eigenwert der Matrix $G$                                      |
| $\lambda$                   | Lagrangemultiplikator                                         |
| $oldsymbol{\lambda}_f$      | Freilaufmomente                                               |
| $oldsymbol{\lambda}_k$      | Kupplungsmomente                                              |
| $oldsymbol{\lambda}_z$      | Koppelgrößen                                                  |
| $oldsymbol{\Lambda}_f$      | Freilaufimpuls                                                |
| $oldsymbol{\Lambda}_k$      | Kupplungsimpuls                                               |
| $\mu_0$                     | Haftungskoeffizient                                           |
| $\mu_g$                     | Gleitreibungskoeffizient                                      |
| $\mu$                       | übertragbare Reibmomente der Kupplungen                       |
| $ ho_L$                     | Luftdichte                                                    |
| arphi                       | holonome Bindungsfunktion                                     |
| $\Phi$                      | Vektorfunktion des Übertragungsverhaltens (Kapitel 3.1)       |
| $\Phi$                      | Kopplungsmatrix der Module                                    |
| $\dot{\omega}$              | Winkelbeschleunigung                                          |
| $\omega$                    | Winkelgeschwindigkeit                                         |
| $\omega_{em}$               | Elektromotordrehzahl                                          |
| $\omega_{vkm}$              | Verbrennungsmotordrehzahl                                     |
| $oldsymbol{\omega}_i$       | Winkelgeschwindigkeitsvektor des i-ten Körpers                |
| $oldsymbol{\Sigma}_{T_u}$   | Zuordnungsmatrix der Translationen am Moduleingang            |
| $\boldsymbol{\Sigma}_{R_u}$ | Zuordnungsmatrix der Rotationen am Moduleingang               |
| $oldsymbol{\Sigma}_{T_y}$   | Zuordnungsmatrix der Translationen am Modulausgang            |
| $\boldsymbol{\Sigma}_{R_y}$ | Zuordnungsmatrix der Rotationen am Modulausgang               |