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Abstract

This thesis addresses the extension of Structure and Motion (SaM) towards Multi-

body Structure and Motion (MSaM). Beside the reconstruction of the (unknown)

scene and the observer pose estimation, MSaM identifies independent foreground

motion in a scene. In particular, the work described in this thesis not just identifies

foreground motion, but allows the classification of specific object classes. Further-

more, appearance change information is used to harvest good features to track for

the observer pose estimation. By that, MSaM is able to estimate the observer pose

with a small number of point features. All the algorithms used to build and extend

MSaM are tested in several experiments.
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Kurzfassung

Diese Arbeit befasst sich mit der Erweiterung von “Structure and Motion” (SaM)

hinsichtlich “Multibody Structure and Motion” (MSaM). Während SaM die Rekon-

struierung einer (unbekannten) Szene und die Schätzung der Pose des Betrachters

ermöglicht, bietet MSaM zusätzlich die Möglichkeit, unabhängige Objektbewegun-

gen im Szenen-Vordergrund zu erkennen. Neben dem Erkennen von Objektbewegun-

gen beschreibt diese Arbeit auch, wie Objekte klassifiziert werden können. Weiters

wird die visuelle Beschreibung von “Point features” genutzt, um “good features to

track” zu selektieren. Mithilfe dieser “good features to track” wird gezeigt, dass auch

mit einer kleinen Menge an “Point features” die Pose des Betrachters bestimmt wer-

den kann. Alle Algorithmen, die für MSaM entwickelt wurden beziehungseise MSaM

erweitern, werden in verschiedenen Experimenten getestet.
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1
Introduction

3D reconstruction of dynamic scenes and tracking of independent foreground mo-

tion play an important role in application areas such as video surveillance, robotics,

or augmented reality. In mobile surveillance, moving cameras substitute stationary

ones, and pose estimation of the observing camera is an essential task for such kind

of systems. In cases where uncrewed robots are the only possibility to explore the

environment (e.g. rescue operations), one is interested in building a map of the

environment as well as the poses of the mobile robot for navigation purposes. Struc-

ture and Motion (SaM) or Simultaneous Localization And Mapping (SLAM) are

vision-based approaches which address this task. They are able to reconstruct the

scene and estimate the observer pose. However, both approaches require stationary

scenes, i.e. their results deteriorate in case of foreground motion. SaM/SLAM are a

good choice for exploring empty rooms or collapsed environments (both mainly con-

tain a stationary scene structure). However, non-stationary places (e.g. streets with

opposing traffic or crowded places) are not the field of application for SaM/SLAM.

While SaM/SLAM are able to (i) reconstruct the scene and (ii) estimate the ob-

server pose, Multibody Structure and Motion (MSAM) additionally (iii) estimates

1



1.1. Motivation and Goals 2

independent foreground motion. I.e. MSaM deals with environments which con-

sist of both, stationary background and foreground motion. Obviously, SaM/SLAM

algorithms are a good starting point to build an MSaM algorithm, as the scene

reconstruction and observer pose estimation is already done by them.

1.1 Motivation and Goals

We are motivated by extending SaM or SLAM to MSaM systems, i.e. find a way

to analyze information to cope with foreground motion. Basically, SaM/SLAM

algorithms analyze point features. SaM/SLAM algorithms divide point features into

inliers and outliers. Inliers are point features located on the stationary background.

Outliers are point features which do not behave stationarily, i.e. a point feature

on a moving object is regarded as an outlier by SaM. State-of-the-art SaM/SLAM

algorithms use inliers for the scene reconstruction and the observer pose estimation.

Outlier information is detected but not processed in state-of-the-art SaM/SLAM

algorithms. However, in case of foreground motion, outliers can be used to model this

foreground motion. Furthermore, outliers can provide information of independently

moving foreground objects. By analyzing this outlier information, we are in the

position to extend conventional SaM algorithms to MSaM systems.

Existing SaM/SLAM algorithms use the entire inlier information for scene re-

construction and observer pose estimation. As a minimum of three stable point

features is sufficient for the observer pose estimation when using stereo or general

cameras, one can think about methods to reduce the amount of inliers for the pose

estimation. By that, one can speed up the pose estimation, which is a huge bene-

fit for online SaM/SLAM and MSaM. Additionally one gets rid of requiring more

inliers than outliers. Imagine a scenario with many independently moving fore-

ground objects. Such a scene provides fewer stationary background information

than outliers in the foreground. SaM/SLAM algorithms cannot distinguish between

the stationary background and the foreground motion in such a scenario, i.e. this

will deteriorate the result. The observation of the appearance information of point

features over time provides information on the stability of point features. I.e. we
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can use this information to retrieve a subset of point features located in stationary

background.

The goal of this work is to implement an MSaM system, extending an SaM by

outlier analysis. The MSaM itself should be modularly expandable, such that the

foreground motion detection can be extended to object classification. Beside using

all the stationary background information for the observer pose estimation, another

goal is to use only a subset of stationary point features, which can be derived by

spatial temporal information.

1.2 My Contribution

My work contributes in four ways. First, we use SaM by Schweighofer et al. [SSP08]

to identify point features which are located in the stationary background and point

features which are not. With the stationary point features - inliers - we reconstruct

the 3D scene and estimate the observer pose. We use the non-stationary point

features - outliers - to identify and track independent foreground motion in scenes.

By that, we are able to extend an SaM implementation towards MSaM. Second, we

use our MSaM for object tracking. More precisely, we modularly extend our MSaM

to classify moving people. Third, we search for good features to track among the

inliers. By that, significantly fewer point features are sufficient for the observer pose

estimation. We retrieve the good features to track by analyzing appearance change

information of point features. We use the Space-Time Appearance (STA) descriptor

introduced by Brkic et al. [BPSK11]. We implement an online implementation of the

STA descriptor and evaluate the outcome by several histogram statistics evaluation

methods. Fourth, we integrate the good features to track approach in our MSaM.

We estimate the observer pose by various good features to track subsets and compare

them to the estimated poses retrieved by all inliers. In the next two paragraphs I

give a brief overview of the developed framework and its algorithms.

The developed framework is shown in Fig. 1.1. It extends an SaM

algorithm [SSP08] to MSaM by outlier analysis. The MSaM can be used for

moving object classification. In our case, we are interested in moving people.
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Furthermore the framework uses the Space-Time Appearance descriptor [BPSK11]

for retrieving good features to track. Together with the Space-Time Appearance

information, MSaM collects subsets of stationary background point features. We

pass this information back to the SaM to re-estimate the observer pose on a

subset of inliers only. Blocks indicate the core modules of the framework. Blocks

indicating a chapter number depict developed algorithms. The flow information is

illustrated by arrows.

Figure 1.1: Developed framework for extending SaM [SSP08] to MSaM and good features
to track detection by appearance change information with the STA descriptor [BPSK11].

Camera(s) provide images as input to a feature generator. The generated fea-

tures are passed to an online SaM [SSP08] algorithm which computes the 3D scene

structure and estimates an initial pose for the observer. As shown, we do not dis-

card outlier information, but generate an online object representation of potentially

moving objects. With this object representation we extend the used SaM towards

MSaM. We detect, track, and classify moving people by using MSaM together with

a human shape descriptor and a 2D tracker in a feedback control system. We cre-

ate spatial-temporal descriptors out of the set of inliers by using the Space-Time

Appearance (STA) descriptor [BPSK11]. By that, we can harvest stable, station-
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ary point features. This information is passed back to the SaM algorithm which

recomputes the observer’s pose by these good features to track.

1.3 Related work

The research field of SaM or SLAM reaches back several decades to the problem of

scene reconstruction from multi-viewpoint images. In 1952, Semple and Kneebone

published an introduction to projective geometry [SK52]. A milestone for SaM oc-

curred in 1981, when Longuet-Higgins [LH81] presented an approach to reconstruct

the scene from two calibrated camera views. By finding common point features

in the two projective views, the algorithm - known as the eight-point-algorithm

- estimates the scene structure. Several extensions for the linear relationship to

three [Har94, SiW95] and four views [FM95] followed, until Triggs [Tri95] showed in

1995, that there are no linear relationships for more than four views. In 1997, Hart-

ley [Har97] presented the normalized eight-point algorithm, which allows to estimate

the fundamental matrix from two uncalibrated camera views. For more than four

views, different research fields came into existence. Basically one can distinguish

between Structure and Motion (SaM) approaches and Simultaneous Localization

and Mapping (SLAM).

Both, SaM and SLAM algorithms mainly rely on point features and can simul-

taneously reconstruct 3D scene information and observer motion. Additionally, the

pose estimation approach of Ansar and Daniilidis [AD03] can handle either points

or lines. Both SaM (in computer vision) and SLAM (in robotics terminology) are

general approaches because they are purely geometry-based, but SLAM requires

real-time performance. Due to the active control of the robots and additional sen-

sors, SLAM can use additional information for the structure and motion estima-

tion. Both approaches, SaM and SLAM, do not need prior model information,

but their range of applications is limited to stationary scenes only. SaM/SLAM

fails or produces erroneous reconstruction results in case of (dominant) indepen-

dent foreground motion in the scene. A way to deal with noise or foreground mo-

tion was introduced by Nistér et al. [NNB04] in 2004. They estimate the relative
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pose for a calibrated perspective camera by using the five-point algorithm [Nis04]

and using a preemptive RANSAC [Nis03] to deal with noise or not-wanted fore-

ground motion. Followed by iterative refinement, Nistér estimates the observer

pose. However, he is discarding any information related to foreground motion or

noise. Newcombe and Davison [ND10] introduce the combination of state-of-the-art

components to solve real-time monocular dense reconstruction of cluttered natural

scenes. By combining SLAM with variational optical flow, accurate depth maps

are generated. This approach is computationally expensive, as it needs a Desktop

PC with a GPU. SaM/SLAM algorithms can roughly be categorized into continu-

ous tracking approaches [NNB04, DRMS07, SSP08] and keyframe-based approaches

[KM07, WKR07, KM08, WKR11]. While the continuous tracking uses all frames

for structure and motion estimation, the idea of the keyframe-approach is to cre-

ate a static map out of frames at certain time intervals. This allows a very fast

re-localization, once the map is set up. However, the keyframe-approaches are not

applicable to deal with foreground motion, as the map is generated at discrete time

steps. Even a continuous map-update will not solve this problem. While continuous

tracking introduces an increasing error, the keyframe-approach keeps the error con-

stant due to the a priori generated map. Specific SaM or SLAM applications such

as Geiger et al. and Kitt et al. [GRU10, KGL10] are applicable for on-road vehicle

motion only. They use stereo image sequences in conjunction with outlier rejection

by a specific RANSAC [SFS09] for egomotion estimation.

Multibody Structure and Motion (MSaM) is an extension of SaM/SLAM. The

term MSaM was introduced by Fitzgibbon and Zisserman [FZ00] in 2000. It ports

the functionality of SaM/SLAM (i.e. scene reconstruction and observer pose esti-

mation) to non-static scenes. I.e., MSaM systems are able to distinguish between

stable, static background and dominant foreground motion. They further extend

the functionality of SaM/SLAM. The core tasks of MSaM are (i) the detection

and tracking of independently moving foreground objects by spatial-temporal tra-

jectories, (ii) the reconstruction of the (unknown) scene structure, (iii) the pose

estimation of the moving observer. In MSaM, Schindler et al. [SSW08] distinguish

between algebraic methods and non-algebraic methods. Most of the algebraic meth-
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ods are based on matrix factorization (e.g. [CK95, CK98, YP06]). An iterative alge-

braic method was introduced by Li et al. [LKSV07]. In contrast to algebraic meth-

ods, non-algebraic methods combine rigid SaM with segmentation. Non-algebraic

methods handling multi-view perspective sequences in dynamic scenes are addressed

by [FZ00, SSW08, OSG10]. But most existing MSaM methods are computationally

expensive and thus not applicable in real-time. Schindler et al. [SSW08] and Ozden

et al. [OSG10] for example cluster objects in the image plane, as this decreases the

run time compared to full 3D information processing. Online MSaM systems, such

as Leibe et al. [LSCG08] and Ess et al. [ELSvG08a] differ from basic SaM because

their approaches are not purely geometry-based and require quite elaborated object

detection algorithms. Furthermore, they are restricted to the processing of certain

classes of objects only, cars and people.

Basing on the concept of point features, one has to think about the quality of

the tracked point features. In 1994, Shi and Tomasi [ST94] came up with the idea

of analyzing the appearance change of point features over time. They introduced a

measure of feature dissimilarity. By that, they analyze the space-time information

of a point feature and are able to identify good features to track. The Space-Time

Appearance (STA) descriptor of Brkic et al. [BPSK11] introduces a concept similar

to Dollár et al. [DRCB05], Laptev and Perez [LP07], and Luo et al. [LKZF10]. It

allows the retrieval of appearance change information of point features.

In this thesis we develop an MSaM system which is - compared to the non-

factorization and factorization-based MSaM algorithms - applicable in real-time.

Our MSaM system processes 3D information and is not restricted to a certain class

of objects. Instead, it works for any rigidly moving foreground object. Additionally

we follow the idea of Shi and Tomasi, identifying good features to track [ST94]. We

introduce evaluation methods of space-time information to identify certain subsets

of static background point features for the observer pose estimation. Compared

to the full set of background point features, the subsets contain significantly fewer

point features but still provide useable results on observer pose estimation.
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1.4 Outline

First, chapter 2 gives an overview of the used datasets. Chapter 3 introduces the

Online Rigid Object Representation together with the Multibody Structure and Mo-

tion (MSaM). With this approach, we are able to reconstruct independent foreground

motion. In chapter 4, the introduced MSaM algorithm is extended by appearance-

based detectors and trackers to classify moving objects. In detail, we show how to

detect and track moving people. In chapter 5 we are focusing on the Space-Time

Appearance (STA) descriptors of point features. We analyze the appearance change

of point features over time. By that, we try to find Good Features To Track (GFTT)

for pose estimation. Chapter 6 fuses MSaM with the Space-Time Appearance (STA)

descriptors. Having different subsets of Good Features To Track (GFTT), we are

able to decrease the required inlier/outlier ratio considerably, i.e. we can reliably es-

timate the observer pose out of a subset of the background information only. Finally,

chapter 7 concludes this thesis, providing a summary and discussing the results of

this work.



2
Datasets

Ideally, it should be possible to use any public dataset available, including un-

calibrated and monocular videos. However, our MSaM requires calibrated stereo

datasets. This is due to the underlying SaM by Schweighofer et al. [SSP08], which

does not accept uncalibrated or monocular datasets. By that, we are limited to few

available public stereo datasets. But such stereo datasets seem to experience an

upswing, especially high resolution datasets in combination with groundtruth data

(e.g. GPS information).

In this work, also monocular datasets are used in chapter 5 (among stereo

datasets). This is possible, as chapter 5 does not rely on the MSaM introduced

in chapters 3 and 4. It shows analysis on space-time appearance changes of point

features. However, the performed analysis is used together with MSaM in chapter 6,

where solely stereo datasets are used again.

There exist many monocular datasets. Most of them are related to person detec-

tion (Caltech pedestrian dataset [Cal], INRIA person dataset [Dal05], KTH action

dataset [SLC04], Daimler pedestrian datasets [EG09]). A few stereo datasets for

person detection are also available (ETH stereo datasets for multi-person track-

9
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ing [ELSvG08b], Middlebury stereo dataset [SS02]). The ETH datasets contain

wide angle images. The sequences consist of solely forward motion, which causes

moving objects (people) to disappear rapidly. The Middlebury stereo dataset [SS02]

consists of a maximum of seven views per sequence without calibration informa-

tion. From the public video surveillance datasets (BEHAVE Interactions Test Case

Scenarios [BF09], PETS datasets [PET]), most do not provide a moving observer.

Another interesting dataset is introduced by Aanæs et al. [ADP12]. It provides 60

scenes with high-resolution images and precise ground truth information for both,

camera positioning and the 3D surface. Additionally, the scenes were recorded with

different artificially relighting conditions. However, the camera positions are too

diverse. It is not possible to use them for continuous camera motion, i.e. it is not

possible to use this dataset in chapter 5.

Beside the monocular and stereo datasets recorded by our own, we decided to

use the KIT datasets [Gei]. The KIT datasets provide high-resolution stereo video

sequences recorded from a moving car in Karlsruhe. Additionally, the datasets

provide GPS observer pose information. Having both, GPS information and high-

resolution stereo datasets, is the main reason why we chose the KIT datasets.

2.1 VMG Bike 01

This monocular dataset consists of 76 color images and covers a street sequence.

Each image has a resolution of 1280 x 960 pixels. The sequence was recorded by

our own with a wide-angle camera mounted on the helmet of the biker. The moving

observer - a biker - is overtaken by a car. Figure 2.1 shows frames 1, 24, and 72

of the sequence. For the space-time appearance change analysis of point features,

this sequence is interesting in terms of the different point features, located on the

static background passing by (either nearby or far from the observer) and on the

overtaking car.



2.2. VMG Bike 02 11

Figure 2.1: Frames 1, 24, and 72 of experiment VMG Bike 01.

2.2 VMG Bike 02

This monocular dataset consists of 300 color images with a biker as moving observer.

Again, the sequence was recorded by our own with a wide-angle camera mounted

on the helmet of the biker. Each image has a resolution of 1280 x 960 pixels. The

sequence shows the observer - a biker - driving along a winding street. Figure 2.2

shows frames 1, 210, and 281 of the sequence. This sequence provides detailed

information on the appearance change due to the length of the sequence. We chose

this sequence, because of its changing light conditions as well as the long fence

appearing on the right hand in the sequence (see 2.2, frame 210).

Figure 2.2: Frames 1, 210, and 281 of experiment VMG Bike 02.

2.3 VMG Lab 01

This stereo dataset consists of 180 black and white images per camera which were

recorded by our own. The image dimensions are 752 x 480 pixels. The frames were

captured with two µeye 1220C USB cameras with 6.5 mm Cosmicar lenses mounted
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on a stereo rig and a baseline of approximately 30 cm. We used a constant frame

rate of 20 Hz.

The sequence is recorded by a moving observer and shows an indoor scene con-

taining textured background and two moving objects in the foreground, a toy cow

and a cup. While the cup is moved from the left to the right by pulling a cord, the

toy cow is moved behind the cup from the right to the left. Figure 2.3 shows frames

42, 107, and 135 of the sequence.

We selected this experiment, because it shows the potential of our MSaM in

a controlled setup. It consists of multiple foreground motion (cup and toy cow),

textured background, and a moving observer.

Figure 2.3: Frames 42, 107, and 135 of experiment VMG Lab 01.

2.4 VMG Person 01

This stereo dataset consists of 99 black and white images per camera which were

recorded by our own. The image dimensions are 752 x 480 pixels. The frames were

captured with two µeye 1220C USB cameras with 6.5 mm Cosmicar lenses mounted

on a stereo rig and a baseline of approximately 30 cm. We used a constant frame

rate of 20 Hz.

The sequence consists of a moving observer focusing on a moving person, which

moves from the left to the right. Figure 2.4 shows frames 42, 58, 85, and 92 of the

sequence.

Due to the lack of stereo people datasets, we decided to record a couple of datasets

by our own. This sequence is interesting, as the observer focuses on a sidewards

passing person. I.e., in contrast to the ETH datasets [ELSvG08b], sidewards motion

of the observer is considered.
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Figure 2.4: Frames 42, 58, 85, and 92 of experiment VMG Person 01.

2.5 VMG Person 02

This stereo dataset consists of 161 black and white images per camera which where

recorded by our own. The image dimensions are 752 x 480 pixels. The frames were

captured with two µeye 1220C USB cameras with 6.5 mm Cosmicar lenses mounted

on a stereo rig and a baseline of approximately 30 cm. We used a constant frame

rate of 20 Hz.

The sequence consists of a moving observer observing a person walking towards

the camera. Figure 2.5 shows frames 28, 93, 119, and 148 of the sequence.

This experiment was chosen due to the scale-change of the observed person. In

contrast to the ETH dataset [ELSvG08b], the observer is not moving fast forward,

i.e. less motion blur occurs and the observed person is long enough in the scene to

enable tracking.

Figure 2.5: Frames 28, 93, 119, and 148 of experiment VMG Person 02.

2.6 VMG Person 03

This stereo dataset consists of 55 color images per camera. The image dimensions are

752 x 480 pixels. The frames were captured with two µeye 1220C USB cameras with
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6.5 mm Cosmicar lenses mounted on a stereo rig and a baseline of approximately

30 cm. We used a constant frame rate of 20 Hz.

The moving observer focuses on a person far from the observer. The person

walks from right to the left, partially occluded by bikes. Figure 2.6 shows frames 1,

26, and 50 of the sequence.

We chose this sequence to demonstrate the detection and tracking capabilities

of our MSaM. The observed person is uniformly colored, small scaled, and partially

occluded. Still we want to demonstrate, that detection and (partial) tracking is

possible by outlier analysis.

Figure 2.6: Frames 1, 26, and 50 of experiment VMG Person 03.

2.7 KIT Seq 01

This experiment is a subsequence of the Karlsruhe stereo dataset [Gei] sequence

2009 09 08 drive 10. The complete scene consists of 180 black and white

images per camera. Frame 1 of this experiment match with frame 1 of the

sequence 2009 09 08 drive 10. The image dimensions are 1344 x 372 pixels. The

sequence was recorded by Pointgrey Flea2 firewire cameras and stored as rectified

images. The KIT dataset sequences were recorded with a frame rate of 10 Hz. The

stereo baseline is approximately 57 cm. The GPS information was collected with

an OXTS RT 3000 GPS/IMU system.

The scene contains one moving observer, one car ahead, and one pedestrian.

Figure 2.7 shows frames 16, 51, and 117 of the sequence. Beside the high resolution

of the images and the available GPS information, we are interested in this sequence
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because of it’s multiple moving objects (person and car) and the fast moving ob-

server.

Figure 2.7: Frames 16, 51, and 117 of experiment KIT Seq 01.

2.8 KIT Seq 02

This experiment is a subsequence of the Karlsruhe dataset [Gei] sequence

2009 09 08 drive 10. The sequence of this experiment consists of 85 black and

white images per camera. Frame 1 of this experiment is frame 715 of the sequence

2009 09 08 drive 10. The image dimensions are 1344 x 372 pixels. The sequence

was recorded by Pointgrey Flea2 firewire cameras and stored as rectified images.

The KIT dataset sequences were recorded with a frame rate of 10 Hz. The stereo

baseline is approximately 57 cm. The GPS information was collected with an

OXTS RT 3000 GPS/IMU system.
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The scene contains one moving observer and a group of three pedestrians. Fig-

ure 2.8 illustrates frames 2, 39, and 65 of the sequence. We are interested in this

scene, as a group of people is observed. As the people move jointly, we are interested

how our MSaM is clustering the objects, i.e. detecting the group vs. the individual

people.

Figure 2.8: Frames 2, 39, and 65 of experiment KIT Seq 02.

2.9 KIT Seq 03

This experiment is a subsequence of the Karlsruhe dataset [Gei] sequence

2010 03 09 drive 82. This experiment’s sequence consists of 98 black and white

images per camera. Frame 1 of this experiment is frame 15 of the sequence

2010 03 09 drive 82. The image dimensions are 1344 x 372 pixels. The sequence

was recorded by Pointgrey Flea2 firewire cameras and stored as rectified images.
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The KIT dataset sequences were recorded with a frame rate of 10 Hz. The stereo

baseline is approximately 57 cm. The GPS information was collected with an

OXTS RT 3000 GPS/IMU system.

The scene contains one moving observer, one car passing from left to right, and

one car passing from right to left. Figure 2.9 illustrates frames 21, 46, and 74 of

the sequence. The observer moves fast and at a 90◦-turn, motion blur occurs. This

scene was chosen to show the capabilities of our MSaM and the impact of the image

quality on the MSaM results.

Figure 2.9: Frames 21, 46, and 74 of experiment KIT Seq 03.
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2.10 KIT Seq 04

Again, this experiment consists of a subsequence of the KIT dataset. The experi-

ment’s sequence consists of 230 black and white images per camera. Frame 1 of this

experiment is frame 272 of the sequence 2010 03 09 drive 82. The image dimensions

are 1344 x 372 pixels. The sequence was recorded by Pointgrey Flea2 firewire cam-

eras and stored as rectified images. The KIT dataset sequences were recorded with

a frame rate of 10 Hz. The stereo baseline is approximately 57 cm. The GPS in-

formation was collected with an OXTS RT 3000 GPS/IMU system. It shows static,

textured background, two moving trams, one biker, and four people. Figure 2.10

shows frames 28, 62, and 115 of the sequence. We chose this sequence, as it bundles

properties of multiple datasets described above. Motion blur occurs due to multiple

moving trams and people moving individually and in groups.

Figure 2.10: Frames 28, 62 and 115 of experiment KIT Seq 04.



3
Extending Structure and Motion towards

Multibody Structure and Motion∗

Multibody Structure and Motion (MSaM) extends Structure and Motion (SaM)

or Simultaneous Localization and Mapping (SLAM) algorithms. SaM/SLAM algo-

rithms provide (i) the reconstruction of the (unknown) scene structure and (ii) the

pose estimation of the moving camera (observer). MSaM extends this approach by

detecting and tracking foreground motion. In general, MSaM describes the problem

of simultaneously solving the segmentation of independently moving objects (in-

cluding the observer) along with the motion estimation for each object. Schindler et

al. [SUW06, SSW08] apply MSaM to image sequences containing rigid object mo-

tion. A discussion on practical issues of realistic sequences is introduced by Ozden

et al. [OSG10].

In this chapter we develop an MSaM algorithm extending an existing SaM algo-

∗This chapter builds on a paper that originally appeared in the Proceedings of the ACCV 2010
Workshops, Pt. 1. Holzer P. and Pinz A.: Mobile Surveillance by 3D-Outlier Analysis, ACCV
2010 Workshops, Part 1, 2011, pages 195 - 204.
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rithm that requires point correspondences. We model rigid object foreground motion

by SaM outlier analysis. We show that outliers contain information of potentially

moving foreground objects. The main contribution of this work is given by the rigid

object representation for online tracking in section 3.5.

First, in section 3.1 we specify the required scene settings. Second, in section 3.2,

we explain the design and functionality of the algorithm. The three subsections 3.3-

3.5 explain the information gathering by the used SaM [SSP08], motion-clustering,

and maintenance of the online rigid object representation, the core of the MSaM

algorithm. The purely geometry-based approach is extended by descriptors in sec-

tion 3.6. We highlight some implementation issues in section 3.7. In section 3.8

we present various experiments including a controlled indoor setup, scenes with

moving people, and real-life street scenes observed by a moving car. We also show

an experiment demonstrating the limits of our MSaM. Finally, we conclude with

section 3.10.

3.1 Scene Settings

In order to apply the MSaM algorithm, the scene needs to meet a number of criteria

(fig. 3.3):

1. Foreground motion is allowed, but there is a set P of stable point features

corresponding to the static scene, i.e. P = {xS|static}.

2. There exits exactly one observer in the scene that can view a subset of P . The

observer can be any kind of general camera, e.g. a calibrated stereo-rig.

3. There are n ≥ 0 objects in the scene. if n > 0, any point feature xi 6∈ P

contributes to an object j

xi → Oj,i j = 1 . . . n (3.1)

I.e., we try to classify any point feature xi(scene) viewed by the observer either into

the set of stationary background features P or to an object Oj (eq. 3.2).
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xi =̂

{
P stationary background

Oj,i independently moving foreground
(3.2)

3.2 Algorithm Overview

We use 3D-outlier information, gathered by an SaM algorithm, as initial per-frame

input of our online algorithm. Meanshift-clustering separates the outliers into sets of

moving objects. At each step, the current clustering information has an impact on

future clustering, which prevents point features to change randomly between nearby

objects, i.e. the clustering procedure is a feedback control system.

Figure 3.1: Schematic illustration of our MSaM algorithm.

A stable object centered representation is computed per object, which constitutes

the core of our algorithm. Fig. 3.1 illustrates the general structure of the algorithm.

Based on a stable reference point, the object centered representation allows motion

analysis and enables motion prediction based on position, velocity, and acceleration,

using a 9-state Kalman Filter. For each foreground object, rotation and translation

information is gained over the tracked time. Finally, to solve loop-closing, an update

routine for previously lost and re-appeared point features (e.g. after occlusion or
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self-rotation) is implemented.

Our algorithm consists of three parts: (i) SaM information gathering briefly dis-

cussed in section 3.3, (ii) online clustering of outlier data as introduced in section 3.4,

and (iii) an object-centered representation explained in section 3.5.

3.3 Information gathering by SaM

We start by reconstructing the scene and estimating the observer pose using an

SaM algorithm that requires point correspondences. Typically, SaM reconstructs

the static scene from inliers, i.e. stable and non-moving point features. Any other

point features - outliers - are not processed further. Outliers are any point features

which do not fit into the pattern of inliers. This may include point features generated

by false point correspondences as well as point features located on the independent

moving foreground. Conventional SaM algorithms can reconstruct the static scene

and the observer pose in case of up to 50% outliers. We extend the functionality

of such SaM algorithms by analyzing the outliers as candidates for independent

foreground motion.

Our MSaM algorithm can be used with any SaM algorithm that (i) reliably

reconstructs 3D-inlier and outlier information and (ii) provides 3D-inlier and outlier

information. We build on the continuous tracking SaM algorithm by Schweighofer

et al. [SSP08] as it gives us access to both, 3D-inlier and outlier information.

The used SaM [SSP08] is applicable with a general camera model [GN01]. I.e.,

it is not limited to a specific camera model (e.g. perspective camera), but can

be used for any camera model which satisfies the general camera model. In brief,

the general camera model assumes that light travels along a line into the camera.

Therefore, the sensor position, its intensity, and the direction of the light ray are

used as information, replacing the usage of a pixel, which solely contains the sensor

position and its intensity. The used SaM implements an optimization algorithm,

similar to bundle-adjustment. However, unlike bundle-adjustment, it uses a cost

function based on a general camera model.



3.4. Motion clustering 23

3.4 Motion clustering

We are focusing on groups of consistently moving outliers as they can represent

independently moving foreground objects. Thus, each outlier provides a hypothesis

for independent foreground motion.

We start by building 3D-trajectories for each outlier. Once having

3D-coordinates for a minimum of five frames per outlier, the trajectory is

passed to a clustering table. One column of the clustering table has the form

[Xt, Xt−1, . . . , Xt−4]
T where X is the 3D-coordinate and t is the current frame and

t − 1 is the previous frame. Fig. 3.2 illustrates examples of 3D-outlier trajectories

gathered by SaM in experiment VMG Lab 01 (cf. fig. 3.8). For better legibility only

the x/z-coordinates of the 3D-trajectories are plotted. The prominent trajectories

indicate two moving objects in the scene. In the back, some short trajectories are

shown, which are outliers, too. But these outlier trajectories are rather short and

isolated from each other.

Figure 3.2: x/z-plot of 3D-outlier-trajectories of experiment VMG Lab 01.

Once the clustering table is set up, it is passed to a Meanshift clustering algo-

rithm [FH75, CM02]. To gain hypotheses for moving objects, we cluster the passed

3D-information online by position and by trajectory behavior. We do not use mean-

corrected coordinates, as we want to preserve the trajectories’ positions in the scene.

As a result, most of the short outlier trajectories in the back of fig. 3.2 are discarded.

The longer trajectories are clustered to two separate moving objects.
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3.5 Online Rigid Object Representation

In this section, we introduce a stable, purely geometry-based object representation

that enables us to model the object behavior online, without prior knowledge of the

scene. We obtain the object coordinate system by establishing difference vectors of

available neighboring point features per object. This local object coordinate system

can move independently with respect to the global scene coordinate system that

is attached rigidly to the static background structure. Fig. 3.3 illustrates a global

scene coordinate system Xs attached to the static background structure, two local

coordinate systems Xk and Xj attached to each independently moving cluster of

outliers, and one moving observer.

Figure 3.3: Scene representation: one global scene coordinate system, one local coordi-
nate system per object, and one observer in the scene.

The point features per object are determined by the online clustering-procedure

described in section 3.4. When a cluster contains enough point features, a reference

point is initially computed by the mean values of the global scene coordinates of the

cluster’s point features. The motion, i.e. rotation and translation of the object, is

estimated according to each object’s reference point. Thus, in contrast to point cloud

matching, we link the object’s representation and motion to one single reference

point per object.
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3.5.1 Initialization of the Object Centered Representation

Once t ≥ 3 (at least three non-colinear points are needed for pose estimation when

using stereo or general cameras [Hor87]) point features are available on an object, the

reference point is computed by the mean values of the available point coordinates.

Thus, it coincides with a first rough estimation of the object’s center of gravity. We

define this reference point as the object’s coordinate center and store its position in

scene coordinates. The coordinates of all point features on the object are stored in

object centered coordinates, i.e. the difference vectors ∆di from point feature i to

the reference point.

In case of temporary invisibility of an object, a 9-state Kalman Filter (KF)

provides prediction for the reference point based on its position, velocity, and accel-

eration. However, the KF is not able to provide an estimation for the rotation, only

the translation can be estimated.

3.5.2 Update

Once the initialization process has been successfully finished, the updating procedure

is continuously performed. The update procedure consists of three principal tasks:

• maintaining a common point feature set in two successive frames,

• managing a confidence measure to distinguish between “active” and “inactive”

point features, and

• estimating the self-rotation ∆R between two successive frames.

Using this update procedure, we can compute a stable local object representation

per object. The three tasks of the update procedure are explained in detail below.
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Common Point Feature Set

In every subsequently processed frame, each point feature on an object provides

one hypothesis for the reference point. A hypothesis is a vector retrieved by the dif-

ference between a point feature’s current scene coordinate and the reference point’s

scene coordinate computed in the previous frame. We require a feature set contain-

ing the same point features in two successive frames for pose estimation. Required

point features can disappear over time (e.g. self-occlusion due to object rotation).

If all point features of an object disappear, no point feature provides a hypothe-

sis. Then, we can only estimate the motion of the object by the KF. However,

if a subset of the object disappears temporarily, we still can compute the reference

point. The remaining r ≥ 1 point features provide valid hypotheses for the reference

point. Additionally, at every new frame j, available new point features provide new

hypotheses for the object’s reference point.

Confidence Measure

To provide a stable reference point, we need a confidence measure that can dis-

tinguish between “active” and “inactive” point features. We allow “active” point

features to provide hypotheses for the reference point computation, whereas “inac-

tive” point features must not. For each object, we generate the confidence measure

by computing the median in x, y, and z direction of the reference points derived

by all hypotheses (i.e. median of 3D-coordinates of visible point features on the

object). Then, a certain range around the median values is chosen. In our case,

this is 2 times the standard deviation. All point features within this adjusted range

in all three directions are set “active”. All other point features are set “inactive”

and do not contribute to the reference point computation. If all point features are

“inactive”, i.e. outside the adjusted range, we increase the range stepwise, until

a valid hypothesis emerges. The new reference point is then computed as median

of all “active” hypotheses. Once the new reference point has been computed, the

difference vectors of all point features on the object are updated.
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Estimation of the Self-Rotation ∆R

The self-rotation ∆R between two successive frames has to be estimated for

each object. The difference vectors ∆di created in the initialization process do not

provide information on rotation. To estimate the rotation ∆R between the current

frame j and the previous frame j − 1, we proceed as follows:

1. In frame j−1, the reference has already been established by n ≥ 3 neighboring

point features. Thus, for each point feature i ∈ n, a difference vector ∆di

exists, indicating the position of the point feature w.r.t. the reference point

(see fig. 3.4(a)).

2. In frame j, we know the scene coordinates of the same n point features i1 . . . in

found in frame j − 1. Furthermore, we assume the position of the reference

point unchanged. This assumption is required, as we need to build the dif-

ference vectors for each point feature, which is not possible with an unknown

reference point. In case of an object motion between frames j − 1 and j, the

scene coordinates of the point features will be slightly different (see fig. 3.4(b)).

I.e., the difference vectors of each point feature are different in frame j−1 and

j. We can compute the rotation ∆R from these 3D point correspondences

between frames j − 1 and j according to Horn [Hor87].

3. The rotation with matrix ∆R is applied to all point features’ difference vectors

to obtain the relative position to the reference point in frame j. We update

both “active” and “inactive” point features.

4. Now, each point feature of the object provides a hypothesis for the new position

of the reference point considering the self-rotation. The mean of all hypotheses

per object is used as new reference point.
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Figure 3.4: Estimation of the self-rotation ∆R. The local object coordinate system and
the difference vectors are already established in frame j − 1 (a). In frame j the global
scene coordinates of the point features are different to frame j − 1, the reference point
is assumed unchanged (b). This results in different difference vectors per point feature.
Using the algorithm of Horn [Hor87], the rotation between frames j − 1 and j can be
estimated.

3.6 Geometry and Descriptors

To handle loop-closing, we extend this purely geometry-based algorithm by descrip-

tors that are generated for each point feature on an object. Apparently, one could

apply descriptors also to the stationary background point features. By that, one

would achieve loop-closing for the stationary scene. Within the scope of this work,

we apply the descriptors on foreground motion only (descriptive information of sta-

tionary point features is introduced in chapter 5, but is not used for loop-closing).

Furthermore, we keep track of the visibility of all point features. In case of invisibil-

ity, continuous difference vector update can not be performed. Instead, a position

estimation routine is used.

We use the Scale-Invariant Feature Transform (SIFT) descriptor [Low04, VF08]

which is invariant to rotation and scale. SaM performs continuous tracking, so that

a temporarily lost point feature is not recognized on re-appearance. Providing (i) a

stable reference point, (ii) a reliable object coordinate system, and (iii) descriptive

information by SIFT, re-mapping is possible. Upon re-mapping, descriptor and

difference vector of a point feature are updated, as both are similar, but not equal.

Fig. 3.5 illustrates this process.

First, the object is detected. The SIFT descriptor is computed for all point
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Figure 3.5: Re-detection and re-mapping of a previously lost point feature by SIFT.
When the object is detected, the SIFT descriptor is computed for all point features assigned
to this object (3.5(a)). Different states of point features: estimated (cyan) due to prior
disappearance, actively (red) or inactively (magenta) contributing (3.5(b). The point
feature 236 is no longer visible but is still estimated (3.5(c)). Appearance of a new point
feature 622 on the object (3.5(d) and 3.5(e)). Point feature 622 is similar to the previous
lost point feature 236; point feature 236 is updated to ID 622 and set visible again (3.5(f)).

features assigned to this object (fig. 3.5(a)). During tracking, more point features

appear on the object. Point features can contribute either actively (red), inactively

(magenta), or they are estimated (cyan) due to prior disappearance (fig. 3.5(b)).

In fig. 3.5(c)), point feature 236 is no longer visible, but we can still estimate its

position (cyan). Fig. 3.5(e) illustrates the appearance of a new point feature 622 on

the object. The new point feature is compared with all previously disappeared and

still estimated point features.

The matching is done by VLFeat [VF08], implementing the matching method

introduced by Lowe [Low04]. Additionally, we use a threshold on the 3D distance
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Figure 3.6: Example of re-detection and re-mapping in experiment KIT Seq 04. A previ-
ously lost point feature (yellow circle) is re-detected by descriptor and location comparison.
Descriptor of lost point feature (yellow), descriptor of re-detected point feature (red).

between the two matching point features. We use different thresholds between 0.15

and 3 m. The threshold depends on the scene, i.e. the distance of a point feature

to the observer or the time of estimating a lost point feature. For closer point

features and short term estimation of a lost point feature, a smaller threshold is

sufficient. The longer the estimation of a lost point feature, the more the estimation

will deteriorate from the actual position, i.e. a larger threshold is required.

In our case, point feature 622 is similar to 236. I.e. both have a similar descriptor

and their difference vectors are similar (the 3D distance threshold is 0.15 m). Point

feature 236 is now set visible again. Its ID is updated to 622 and the new descriptor

(red SIFT in fig. 3.5(d)) replaces the old descriptor (cyan SIFT in fig. 3.5(d)).

Now, point feature 622 - former 236 - contributes to the object coordinate system

computation, either actively or inactively.

Fig. 3.6 shows the update of a point feature in experiment KIT Seq 04. A lost

point feature (cyan) is re-mapped to a new feature (red) due to similar locations

and descriptors.
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3.7 Implementation Details

The object centered representation for independently moving objects is implemented

as a tree with depth of 2 (see fig. 3.7). The reference point and its global scene

coordinates are stored as root node. All the point features per object are stored as

children of the reference point. Each child of the root stores its coordinates w.r.t to

the reference point (pos), whether it is visible or not (visible), whether it meets the

rules of the confidence measure (“active” or “inactive”) (active), and its descriptor

information (descriptor). In case of a re-mapping by descriptors, the old IDs as well

as the old coordinates w.r.t. local object coordinate system are stored (past ids

and past pos respectively).

Figure 3.7: Schematic illustration of the object centered representation data structure.

Once the outlier information is clustered into separate clusters, the gained cluster

IDs may not match the IDs in the previous frame. Meanshift clustering does not

provide the same object order each time it is called. Therefore, our algorithm has

to provide a re-order mechanism every time Meanshift clustering has been called.

In our implementation we use two parameters to adjust this re-ordering mechanism,

(i) a certain minimum common point feature subset between two successive frames

and (ii) a threshold indicating after how many frames an object may be invisible.

The former parameter ensures that only objects with a minimum common feature
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set (compared to all previous objects) are mapped to existing object IDs. If this

minimum common feature set is obtained, the new cluster (i.e. object) is mapped

to the previous object with the maximum matching point features set. The latter

parameter is responsible how long we allow a disappeared object to be mapped to

an existing ID. One can think of it as a kind of ID reservation. In our case, the

former parameter is set to 0.3, i.e. at least 30 percent of an object’s point feature

set have to overlap with the point feature set of an object in the previous frame.

The latter parameter is set to 1 frame. Listings 3.1 to 3.3 show the pseudo code for

the re-mapping routine.

1 for id = 1 : length ( o b j e c t s )

2 for pid = 1 : length ( p r e v i o u s o b j e c t s )

3 common subset = ismember ( o b j e c t s ( id ) , p r e v i o u s o b j e c t s ( pid ) ) ;

4 weight = sum( common subset , 1 ) /elemsOn ( o b j e c t s ( id ) ) ;

5 correspondence ( id , pid ) = weight ;

6 end

7 . . .

8 end

Listing 3.1: Finding object correspondences

1 i f sum( correspondence ( o b j e c t s ( id ) , : ) ) > MIN THRESH & notInFrames ( ob j e c t

) < MAX INVISIBLE THRESH

2 [ va l idx ] = max( correspondence ( o b j e c t s ( id ) , : ) ) ;

3 i f ˜ isLocked ( p r e v i o u s o b j e c t s ( idx ) )

4 mapping ( o b j e c t s ( id ) ,2 ) = idx : %map p r e v i o u s o b j e c t wi th id idx

5 %to curren t o b j e c t

6 else

7 mapping ( o b j e c t s ( id ) ,2 ) = −1; %no mapping ass igned , o b j e c t ID

8 end %i s l ocked

9 else

10 mapping ( o b j e c t s ( id ) ,2 ) = −1; %no mapping as s i gend

11 end

Listing 3.2: Object mapping
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First, for a new object in frame j the algorithm determines the common point

feature subsets of the new object with all objects in the previous frame j − 1. We

skip any object which is invisible for more than MAX INVISIBLE THRESH frames.

The amount of common point features is weighted by the amount of point features

of the new object. It is stored in a correspondence matrix (listing 3.1). Next, we

verify whether a new object has at least MIN TRESH common point features with

any of the objects in frame j − 1. The new object is mapped to the object with

which it shares the maximum common point feature set (see listing 3.2). If there is

any new object in frame j, we add it after the matched objects (listing 3.3).

1 i f length ( o b j e c t s )>length ( p r e v i o u s o b j e c t s )

2 for k=length ( p r e v o b j e c t s ) +1: length ( o b j e c t s )

3 mapping (k , 1 )=k ;

4 mapping (k , 2 ) =−1; % −1 means no mapping

5 end

6 end

Listing 3.3: Mapping of new objects

3.8 Experiments

In this section, we show five selected experiments. The first experiment,

VMG Lab 01, is an indoor setup we recorded to illustrate the basic proceedings

and results. Experiment VMG Person 01 and experiment VMG Person 02

are also sequences recorded at our own but consist of outdoor real-world

data. More precisely, they contain a moving observer and a moving person.

Experiments KIT Seq 01 and KIT Seq 04 are subsequences taken from the

Karlsruhe (KIT) dataset [Gei] and contain street sequences. Detailed information

on the used datasets can be found in chapter 2.

The algorithm has been tested on an Intel Core 2 Quad PC with 2.8 GHz and

1 GB RAM using Matlab 7.6 on a 32 bit version of Ubuntu 9.10. However, Matlab

was run on one core only. Online processing depends on the number of objects

(i.e. clusters) and point features (descriptor generation) in the scene.
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In all experiments we use the MSaM inlier data for estimating the observer pose

as well as the stationary scene structure. We expect our MSaM algorithm to identify

the moving foreground motion by outlier analysis. At least subparts of each moving

object are expected to be detected.

3.8.1 Experiment VMG Lab 01

This experiment uses the dataset VMG Lab 01 (see section 2.3) and consists of 180

frames. It shows static, textured background and two moving objects (a toy cow

and a coffee cup that slide on a table by pulling them on a string) in the foreground.

Fig. 3.8 shows the 3D-output of out algorithm back projected to the left image of the

stereo-rig at frames 61, 109, 122, and 145. The yellow dash lined rectangles represent

the bounding boxes of each cluster. The point features are shown as colored circles;

supporting a hypothesis (red), not supporting a hypothesis (magenta), lost (cyan).

The yellow and green cross illustrate the 2D projection of reference point and KF,

respectively. Fig. 3.8(a) shows the output at frame 61. In frame 109 (fig. 3.8(b)),

the cow is detected the first time. In frame 122 (fig. 3.8(c)), there are not enough

point features on the cow, only a KF estimation is possible. The cow is clustered

correctly again in frame 145 (fig. 3.8(a)).

In this scene, estimation works well in most parts. This is due to the low noise

level in this scene. Fig. 3.9 shows the resulting motion trajectories of the reference

points, in 3D (a) and in a 2D x/z plot (b). The computed reference point of the cup

over all frames is shown in blue, and of the cow in magenta. Yellow points illustrate

the static static structure. The egomotion of the observer is shown as black circles.

The KF prediction and its lag are shown as red trajectory.

3.8.2 Experiment VMG Person 01

This experiment uses the data from the dataset VMG Person 01 (see section 2.4)

and consists of 99 frames and shows static, textured background and the upper

part of a walking person. Fig. 3.10 shows the output of our algorithm at frames

48, 60, 87, and 93. Fig. 3.12 presents a 2D plot of the motion trajectory of the
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Figure 3.8: Experiment VMG Lab 01: 3D-output of the described algorithm back-
projected to the left image captured by the stereo-rig. Bounding boxes of each cluster
(yellow), point features (colored circles), point features which support a hypothesis (red),
point features which do not support a hypothesis (magenta), lost point features (cyan),
2D projection of reference point (yellow), and 2D projection of KF (green). (a) Output of
the described algorithm at frame 61. (b) Output at frame 109. The toy-cow is visible in
both stereo images and is clustered correctly. (c) Output at frame 122. The toy-cow does
not provide enough point correspondences, only a KF estimation is possible (d) Output
at frame 145. The toy-cow is clustered correctly again.

person (blue). False detections are illustrated as magenta and cyan trajectories,

the observer motion is shown as black circles. The motion is relative to the scene

coordinate system initialized at the first frame. The false detections occur as at

least three point features with wrong stereo correspondences are clustered to an

object by the motion clustering procedure (see 3.4). As shown in fig. 3.12, their

trajectories are short. I.e., the false detections disappear rapidly as either the SaM

eliminates wrong stereo correspondences or the motion clustering procedure stops

grouping these point features.
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(a) (b)

Figure 3.9: Experiment VMG Lab 01: Estimated motion trajectories of the reference
points, in in 3D (a) and in a 2D x/z plot (b). Computed reference point of cup over
all frames (blue), cow (magenta), the estimated observer motion (black), and the static
structure (yellow). The KF output smooths the estimation (red). The motion is relative
to the scene coordinate system initialized at the first observer view.

Figure 3.10: Experiment VMG Person 01: 3D-output back-projected to the left image of
the stereo-rig at frames 48 (a), 60 (b), 87 (c), and 93 (d). Bounding boxes of each cluster
(yellow), point features (colored circles), point features which support a hypothesis (red),
point features which do not support a hypothesis (magenta), lost point features (cyan),
2D projection of reference point (yellow), and 2D projection of KF (green).
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Figure 3.11: Experiment VMG Person 02: 3D-output back-projected to the left image
of the stereo-rig at frames 30 (a), 95 (b), 121 (c), and 150 (d). Bounding boxes of each
cluster (yellow), point features (colored circles), point features which support a hypothesis
(red), point features which do not support a hypothesis (magenta), lost point features
(cyan), 2D projection of reference point (yellow), and 2D projection of KF (green).

3.8.3 Experiment VMG Person 02

This experiment uses the dataset VMG Person 02 (see section 2.5) and consists of

161 frames. It shows static, textured background and one moving person. Fig. 3.11

shows the output of our algorithm at frames 30, 95, 121, and 150. Fig. 3.13 presents

the motion trajectories of the reference points. One can see, that outliers are not

equally distributed over a moving object. Rather there exist sub-regions on an ob-

ject, where most of the outliers are concentrated. Most of the outliers are located

on the head of the moving person (see fig. 3.11(a)), later on the folds and label

of the person’s T-shirt (see fig. 3.11(c)). Fig. 3.13 illustrates the x/z-plot of the

3D-trajectory of the person (blue) and observer motion (black). Sometimes, the

algorithm detects the person twice (magenta). This is caused by detecting two sub-

parts on the person. I.e., the motion clustering procedure (see section 3.4) considers

the person as two independently moving objects.
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Figure 3.12: Experi-
ment VMG Person 01: x/z-plot
of the 3D-trajectory of the person
(blue) and observer motion (black),
false detections (cyan and magenta),
and static structure (yellow). The
KF output smooths the estimation
(red).

Figure 3.13: Experi-
ment VMG Person 02: x/z-plot
of the 3D-trajectory of the person
(blue), the observer motion (black),
and the static structure (yellow). The
KF output smooths the estimation
(red).

3.8.4 Experiment KIT Seq 01

This experiment uses the dataset KIT Seq 01 (see section 2.7). It consists of 180

frames. It shows static, textured background, a moving car and one moving person.

Fig. 3.14 shows the output of our algorithm at frames 42 and 114. Fig. 3.15 shows

the x/z-plot of the 3D-motion trajectories of the reference points. The long black

trajectory shows the egomotion of the observer. The moving car is detected inde-

pendently three times and illustrated as cyan, magenta, and small black trajectory.

The moving person is illustrated as blue trajectory. The scale of moving objects

play a major role. The smaller an object appears in the scene, the less outlier

information is available. For a long time, the moving person does not provide outlier

information. This issue is reflected in the Points/Obj. and Detection in % values

of experiment KIT Seq 01 in table 3.1. The minimum of 3 outliers required for the

moving object’s pose computation is hardly achieved, due to the scale issue (person)

and large homogenous regions on the object (car).
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Figure 3.14: Experiment KIT Seq 01: 3D-output back-projected to the left image of the
stereo-rig at frames 42 (a) and 114 (b). Bounding boxes of each cluster (yellow), point
features (colored circles), point features which support a hypothesis (red), point features
which do not support a hypothesis (magenta), lost point features (cyan), 2D projection of
reference point (yellow), and 2D projection of KF (green).

3.8.5 Experiment KIT Seq 04

This experiment uses the dataset KIT Seq 04 (see section 2.10). It consists of 230

frames. This experiment shows the limits of our geometry-based approach. In this

scene, the observer is not moving. There are seven independently moving objects in

the scene, two trams, one biker, and four people. In a set of subsequent frames, two

(and later three) people build a group.

In the detection rate results (see table 3.1), we refer to the group as one object,

as nearly no individual moving person detection is achieved. In this scene, we

consider to have one individual moving person at the beginning which later on

builds a group of up to three people, one biker, and one object refers to the two

trams. Fig. 3.16 shows the output of our algorithm at frames 30, 64, and 117. In

fig. 3.16(a), a single person is identified correctly. In (b) a group of two people

is identified as independently moving foreground object. However, outliers on the
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Figure 3.15: Experiment KIT Seq 01: x/z-plot of the 3D-trajectories of the moving ob-
server (long black trajectory), the car in front (cyan, short black trajectory, magenta), the
person (blue), and the static structure (yellow). The KF output smooths the estimation
(red).

nearby undergrowth on the left hand side also actively contribute to this object,

which results in a false localization of the object. Fig. 3.16(c) illustrates the detection

of the tram. Again, outliers on the undergrowth falsify the location of the object.

The car ahead is detected wrongly as moving object in fig. 3.16(c).

Fig. 3.17 shows the x/z-plot of the 3D-motion trajectories of the reference points.

The position of the observer is at X = [0, 0, 0]T , as the observer is not moving. We

are able to detect one single person (see fig. 3.16(a)), illustrated as blue trajectory.

Additionally, we identify a group of two people as foreground object (see fig. 3.16(b)).

Over time, this group is detected as three different objects, resulting in the magenta,

cyan and red trajectories. As mentioned above, the localization results are poor due

to falsely clustered outliers contributing to the object. Only the distance of the

single person is identified correctly. Something similar happens with the detection

of the trams (see fig. 3.16(c)). Our algorithm detects the trams as one object, even

though they are moving in opposite directions. This can be explained by the motion

blur and the resulting poor texture. All trajectories are illustrated in fig. 3.17.

We want to point out that in experiment KIT Seq 04 the output varies consid-
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Figure 3.16: Experiment KIT Seq 04: 3D-output back-projected to the left image of
the stereo-rig at frames 30 (a) and 64 (b), and 117 (c). Bounding boxes of each cluster
(yellow), point features (colored circles), point features which support a hypothesis (red),
point features which do not support a hypothesis (magenta), lost point features (cyan),
2D projection of reference point (yellow), and 2D projection of KF (green).

erably depending on the selected cluster size. Decreasing the cluster size increases

the detection rate for the trams. Fig. 3.18 illustrates this issue. With a cluster

size of 2.3 m we gain a tram detection rate of 1.4%. With a cluster a size of 1.65

m the detection rate increases to 7.9%. However, this variation in the cluster size

deteriorate the detection results on the single person.

Table 3.1 shows a quantitative evaluation of our algorithm. Besides the number

of frames per experiment, it contains the total number of point features (inliers and

outliers). Furthermore, the number of outliers is listed separately. Valid outliers in-

dicates outliers the algorithm has assigned to a moving object. The row Points/Obj.
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Figure 3.17: Experiment KIT Seq 04: x/z-plot of the 3D-trajectories of the moving ob-
server (clustered black circles at x = [0, 0, 0]T ), the car in front (magenta), the person
(short blue trajectory), the group of people (long blue trajectory), the tram (cyan trajec-
tory), and the static structure (yellow). The KF output smooths the estimation (red).

Figure 3.18: Tram detection vs. no tram detection due to a different cluster size in
experiment KIT Seq 04.



3.8. Experiments 43

lists the average number of point features on the detected object(s). The row Objects

indicates the number of individual moving objects (neglecting the observer). Objects

detected gives the number of objects detected in the scene. Objects detected may be

larger than Objects in case of multiple detections of one object. Each experiment

was run three times, and the average number of points is given. The experiments

were executed multiple times, as the motion clustering procedure (see section 3.4)

is not deterministic due to the used meanshift clustering algorithm. I.e., the point

features clustered to certain objects may vary slightly.

In experiment VMG Lab 01, the first number refers to the cup, the second to the

cow. In experiment VMG Person 01, object 2 refers to the moving person, objects

1 and 3 are false positives. In experiment VMG Person 02 both, object 1 and 2

refer to the person. Object 2 is a second detection at the same time. In exper-

iment KIT Seq 01, objects 1 to 3 refer to the car, objects 4 and 5 to the person.

In experiment KIT Seq 04, object 1 in Objects detected refers to the single walking

person. Object 2 and 3 refer to the group of people walking, which was multiply

detected at some frames. While object 4 is representing a false detection on the car

ahead on the right hand side, object 5 refers to the trams. Finally, the detection

rate for moving objects is shown in percent. Again, in experiment VMG Lab 01, the

first number refers to the cup. The detection rate for experiment VMG Person 01

highlights the detection rate for object 2. The detection rate for the false positives

does not exist. For experiment KIT Seq 01, the detection rate for object 1 refers

to the car and is the total detection rate of objects 1 to 3. The same applies for

object 2, i.e. it is the total detection rate for objects 3 and 4. At this point it

has to be mentioned, that the detection rate does not indicate that the Pascal cri-

terion (50% overlap with the groundtruth, refer to chapter 4) is fulfilled, i.e. only

sub-parts of a moving object may be detected. Focusing on the detection rates for

experiment KIT Seq 04, object 1 of refers to the single person detected. Object 2

gives the detection rate of the group of people detected. The biker was not detected

in a single frame. Object 4 gives the detection rate of the trams.

As mentioned in section 3.4, we are using Meanshift clustering, i.e. further

information processing relies on the output of our clustering routine. Thus, small
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Table 3.1: Quantitative evaluation of the the algorithm.

VMG VMG VMG KIT KIT
Lab 01 Person 01 Person 02 Seq 01 Seq 04

Frames 180 99 161 180 231
Features 820 615 564 4441 1815
Outliers 200 107 128 134 197
Valid Outliers 131 87 108 114 147
Objects 2 1 1 2 7
Obj. detected 2 3 1 5 6
Points/Obj. 12.6/6.2 2.4/6.3/2.9 7.8 4.0/4.3/4.5/ 4.3/5.8/4/

4.4/4.0 6.0/4.3
Detection in % 91.5/54.5 67.0 79.4 41.5/13.1 9.3/95.2/

0.0/1.4

variations may occur in the clustered objects which will be handed over to the

motion estimation. Fig. 3.19 illustrates the motion estimations of the moving person

of experiment VMG Person 02 with a cluster size of 1.20 m (fig. 3.19(a)) and 1.24

m (fig 3.19(b)). The person is tracked continuously. However, in fig. 3.19(b) the

person is detected twice independently, which results in the minor variation of the

motion estimation.

Figure 3.19: Different motion estimation due to variations in the Meanshift clustering
process.

The presented purely geometry-based model is very efficient at approximately 2

and 4 frames/second for 2 and 1 objects, respectively. The extension with descriptive



3.9. Discussion 45

information by the SIFT descriptor [Low04, VF08] does not slow down the execution

time considerably. We achieve good estimation results for both, observer motion and

independent foreground motion. Solely in experiment KIT Seq 04 MSaM results

deteriorate. This is on the one hand caused by the moving people. Sometimes

they behave as independently moving objects, sometimes the behave the same in

groups. Due to their distance, they are pretty small. I.e., MSaM is not able to

always identify them as foreground objects. On the other hand, due to the frame

rate of 10 Hz and the resulting motion blur, the two trams moving in the opposite

direction are identified as one moving foreground object.

In contrast to Ozden et al. [OSG10] who require 1 minute/frame, our approach

is close to real-time (2-4 frames/second). However, their approach provides higher

accuracy in object events like splitting or merging due to the high amount of hy-

potheses they are maintaining for each frame. But we have to point out, that

our object clustering routine is applied on the 3D information, whereas Ozden et

al. [OSG10] use 2D information.

3.9 Discussion

As shown in experiment KIT Seq 01 (see section 3.8.4), sometimes multiple detec-

tions of a single object over time occur. This behavior can be traced back to two

reasons:

1. the threshold indicating after how many frames an object may be invisible (see

section 3.7) is set to one frame. I.e., if the car is not detectable for more than

one frame, the object ID is locked and in case of a re-detection a new object

ID is assigned to the re-detected object.

2. too many point features disappeared from one to the other frame, i.e. the

minimum overlap of common point features is below the threshold specified

(see section 3.7).

In order to prevent multiple detections, one can either decrease the threshold for

the common point feature set or increase the threshold which indicates how long



3.10. Conclusion 46

a disappeared object is re-detectable. For better comparison of the detection and

tracking results, we decided to keep these two parameters constant for all experi-

ments.

3.10 Conclusion

We have presented a purely geometry-based MSaM algorithm which bases on an

SaM framework [SSP08]. The developed algorithm models rigid independent fore-

ground motion by outlier analysis. Hence, SaM algorithms can be extended to MSaM

by providing both, inlier and outlier information. While the inlier information is

used for scene reconstruction and observer pose estimation, the outlier information

is related to independent foreground motion and noise. We pointed out that any

SaM algorithm is suited for MSaM extension, except keyframe-based approaches.

The main contribution of the presented MSaM algorithm is the local object repre-

sentation gained by a feedback control mechanism, involving Meanshift clustering

and rotation estimation. A stable reference point per object and the positions of

point features on the object w.r.t. the reference point provide strong information on

the object pose and its motion behavior. To stabilize the reference point update,

we have introduced a confidence measure. Based on this confidence measure, the

algorithm decides whether a point feature is reliable enough to contribute to the

reference point computation. The selection of the cluster size contributes to the

outliers on the object and thus has influence on the motion estimation. Mainly, the

introduced confidence measure is capable to minimize this influence. Sometimes -

as shown in an experiment - the impact of the cluster size is still large, i.e. the

detection of a moving foreground object depends on the selected Meanshift cluster

size. It is shown by the experiments that - once we gather four or more outliers per

cluster - the algorithm is able to model the detected foreground motion. Our MSaM

algorithm requires more than 50% stable and reliable background information, due

to the underlying SaM algorithm [SSP08]. An approach to minimize this set of

stable point features will be introduced in chapter 6.
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MSaM for Person Tracking∗

In the previous chapter we described a Multibody Structure and Motion (MSaM)

algorithm which is able to detect foreground motion by outlier analysis. We pointed

out the main tasks of MSaM, which are the (i) detection and tracking of moving

objects, (ii) observer pose estimation in a global scene, and (iii) scene reconstruction.

The major benefit is certainly that all available information is in 3D, i.e. we gain

information on depths and object sizes.

In this chapter, we extend this MSaM algorithm to classify the detected fore-

ground motion. We show, that we can do that by connecting state-of-the-art com-

ponents to our MSaM. In particular, we are interested to identify moving people in

our scenes. Having an MSaM system, which allows to identify moving foreground

objects, the idea of object classification comes to mind. However, active tracking of

people as well as other objects is challenging. It requires an object classification rou-

tine attached to the core MSaM tasks. I.e. for person detection, a person detection

algorithm has to be added to MSaM.

∗This chapter builds on a paper that originally appeared in Proceedings of the 6th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
Holzer P., Li C. and Pinz A.: Detecting and Tracking People in Motion - A Hybrid Approach
Combining 3D Reconstruction and 2D Description, March 2011, pages 561-568
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Person detection methods can be classified into probabilistic-based and non-

probabilistic algorithms. Probabilistic-based algorithms segment a person accord-

ing to a previously established model. Yan and Pollefeys [YP08] build a kinematic

chain of an articulated object to segment articulated motion within non-rigid parts.

Song et al. [SFP00] give a method based on learning an approximate probabilistic

model of the joint positions and velocity of different body features. These meth-

ods are effective but more complicated for establishing a model. On the contrary,

non-probabilistic methods are more simple and adaptive to many kinds of objects,

i.e. they are not limited to human models. Among these methods, HOG-based meth-

ods [DTS06, FMR08, LD10] are the current state of art in person detection. Dalal

and Triggs [DT05] use HOG to detect stationary people who are upright and fully or

almost fully visible. By using linear and Gaussian-kernel SVMs as classifiers, they

report an extensive experimental evaluation. HOG shows superior performance in

separating the image patches into human and non-human. It is robust against pose

and appearance variations of the pedestrians. Various modifications [LD10, FMR08]

exist, which improve its performance. Having excellent detection results, HOG

generates false positives on person like structures (e.g. billboards showing people).

Additionally, HOG results are 2D (image plane) only. Based on HOG, Lin and

Davis [LD10] use deformable part models and a latent SVM to improve the perfor-

mance. Felzenszwalb et al. [FMR08] present an idea of matching a hierarchical part

template tree to detect humans and estimate their poses. Dalal et al. [DTS06] also

combined a human shape descriptor with optical flow to detect moving people from

a video. This algorithm runs a detection window across the image at all positions

and scales, which is time consuming. There has been a detailed survey on visual

surveillance [HTWM04] and pedestrian detection [LSG10]. Both mainly consider

static cameras for video recording.

Section 4.1 describes how we detect and track robustly. Section 4.2 shows exper-

imental verification of our system. In section 4.3 the outcome of the experiments is

discussed. Finally, in section 4.4 we conclude.
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4.1 Robust Person Detection and Tracking

In this section, we present our combined detector and tracking method. Our method

uses both, motion information and human shape information, to detect and track

moving people. Figure 4.1 illustrates an overview of our system from a moving

observer. We apply the standard HOG implementation by Dalal and Triggs [DT05].

We provide the whole images as input. So we can get also a false positive rate by the

HOG. For tracking detected people over time, a tracking algorithm is required. As

both - the person and the observer - are moving, tracking is quite difficult due to the

background motion. We use Meanshift tracking [CM02, CRM03], which is a simple

iterative procedure. Its principle bases on a similarity measure. It shifts each data

point to the average of data points in its neighborhood. It is efficient for tracking of

a large variety of objects, either rigid or with articulated motion, and with different

color and/or texture patterns such as human bodies. As a third component, we

combine the MSaM described in chapter 3) with HOG and Meanshift tracking.

Figure 4.1: Graphical overview of our MSaM system for moving person tracking. The
system can be divided into three main parts: video capture, person detection and person
tracking

The system can be divided into three main parts: video capture, person detec-

tion, and person tracking. First, MSaM gives us information on moving objects.

Then, HOG verifies if the moving object is a person. Finally, Meanshift tracking is
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established, to track the moving person. This is a hybrid approach, because Mean-

shift tracking is established by the combination of HOG and MSaM and the output

of these three is compared periodically. In case of divergence, i.e. HOG and/or

MSaM do not match with the Meanshift tracking any longer, re-initialization of the

hybrid tracker is required. Our main contributions are:

• The fast and robust person detector. Multibody moving object detection

provides possible locations of people in 3D. These locations are searched for

human shapes. This increases the speed of person detection. Firstly, it can

reduce the searching time for a person. The human-shape descriptor (i.e. the

HOG) is computed for this subarea only. Secondly, we know the scale because

of MSaM. We can limit the scale-pyramid used in HOG to fewer levels.

• The mutual influence of moving object detection and tracking and person

detection makes tracking more reliable. Many false positives detected by the

HOG can be eliminated. The output of the hybrid tracking is fed back to the

moving object detection (MSaM). There, this information is used to harvest

more point features on the object. By this, we can find point features which

were wrongly identified as background structure or were not clustered to the

object by the motion clustering procedure (see section 3.4). These additional

point features can be used to further improve the estimation of the moving

person’s trajectory.

4.1.1 Moving Person Validation

Moving objects are detected and tracked by MSaM. The output of MSaM is validated

with HOG. Figure 4.2 illustrates a correct HOG detection. From MSaM, we know

the distance from the observer (camera) to the person. Thus, we know which scale

we can apply for the HOG. We cannot guarantee that the output of MSaM covers

a complete person, only subparts may be detected instead. But, we can enlarge the

MSaM regions on the image such that it covers the whole person. The size of the

surrounding region can be chosen depending on the distance of the person to the

observer. This avoids false positive detections by the HOG.
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Figure 4.2: HOG Detection of a moving person

As the MSaM and HOG detection windows can differ in size massively, we cannot

apply the PASCAL criterion here (refer to equation 4.4). We consider the overlap

aval of HOG and MSaM as correct match, if the overlap is larger than 50% of the

smaller area of either HOG or MSaM (eq. 4.1). In most cases, the HOG area is

larger, as MSaM mostly detects subparts of a person only.

aval := max (aMSaM , aHOG) > 0.5 (4.1)

where

aMSaM =
area(BMSaM ∩BHOG)

area(BMSaM)
(4.2)

aHOG =
area(BMSaM ∩BHOG)

area(BHOG)
(4.3)

4.1.2 Supporting Structure by Feedback Control

Once an overlap of HOG and MSaM occurs, Meanshift tracking is initialized. We

take the region within the bounding box of the HOG as input for Meanshift tracking.

For the subsequent frames, we consider tracking successful, if either HOG or MSaM

overlap with the Meanshift tracking for more than 50%. Otherwise, if for a cer-
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tain amount of frames neither HOG nor MSaM match with the Meanshift tracking

window, Meanshift tracking is stopped. In contrast to MSaM, Meanshift tracking

provides 2D information only. By feeding back the Meanshift tracking informa-

tion to MSaM, we are in the position to periodically inspect MSaM and Meanshift

tracking. In case of major differences, person tracking is re-initialized.

This feedback routine has also advantages on the available point features. If

MSaM overlaps with the Meanshift tracker, we can search for supporting structure

in the overlap. We call every found stable point feature a supporting structure, if

it is in the overlap of MSaM and Meanshift tracker and approximately at the same

3D depth as the object’s reference point of the MSaM. With this routine, we gather

more point features on the object, i.e. estimation of the person’s trajectory will

become more precise.

Figure 4.3 illustrates the output of our algorithm. The MSaM detection window

is shown as yellow bounding box, the Meanshift tracking bounding box is shown in

green. The reference point of the object and its Kalman prediction are shown as

yellow and green cross respectively. The different types of MSaM point features on

the object are shown in the colors red, magenta, and cyan. In the overlap of the

MSaM and Meanshift tracking window several supporting structure point features

are found (yellow).

4.2 Experiments

This section presents five selected experiments executed with our hybrid tracking

system. These experiments span a range of challenges. Experiment VMG Lab 01

shows a controlled experiment setup with two moving objects. The result

demonstrates that our hybrid algorithm can suppress false HOG positives.

Experiment VMG Person 01 tracks a person with a rapidly moving observer. Here,

the outcome of hybrid tracking improves the performance over individual HOG

and MSaM. Experiment VMG Person 02 shows a similar scene, but the person is

moving towards the camera, which results in a change of scale. At the end of the

sequence, the person is only partially visible. Again the good performance of the
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Figure 4.3: MSaM detection and Meanshift tracking of a moving person. Lost MSaM
point features (cyan), active MSaM point features (red), inactive MSaM point features
(magenta), supporting structure (yellow), MSaM bounding box (yellow), MSaM reference
point (yellow cross), MSaM Kalman prediction (green cross), and Meanshift tracking
bounding box (green).

hybrid tracking is shown. Experiment VMG Person 03 is a special case; the person

is far away and partly invisible behind a set of bicycles. Here, HOG performs

much better than MSaM. Neglecting the PASCAL criterion for the hybrid tracking

approach, the results are still promising. Experiment KIT Seq 01 shows a moving

person and a moving car. As expected, MSaM tracks the car. Using hybrid

tracking, the car detection is neglected due to the combination of MSaM with

HOG.

When referring to positive detections we consider the PASCAL criterion. This

means, the correct detection requires an overlap ao of the ground truth bounding

box Bgt and predicted bounding box Bp above 50% and (ii) multiple detections of

the same object are considered false detections.

ao :=
area(Bp ∩Bgt)

area(Bp ∪Bgt)
> 0.5 (4.4)

The MSaM detections are not evaluated with the PASCAL criterion. As men-

tioned earlier, most of the detections contain only subparts of an object, depending

on the available outlier point features. We render an MSaM detection correctly,
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when an object fills at least 50% of the the detected region (eq. 4.1).

4.2.1 Experiment VMG Lab 01

In this experiment we use the dataset VMG Lab 01 (see section 2.3). MSaM tracks

the moving objects (cup and cow pulled by a string) very well. HOG has no correct

detections, as no person is moving in the scene. However, HOG detects 105 false

positives in the background. The hybrid approach eliminates the false positives of

the HOG. Table 4.1 shows the results. In line “Avg #M gain”, the average amount

of additional supporting features gathered by hybrid tracking is listed. Fig. 4.4

shows the 3D-output back-projected to the image plan. The MSaM detections of

the moving objects are illustrated as yellow bounding boxes. The yellow bounding

box represents the MSaM tracking result, the blue bounding box is a HOG detection.

Figure 4.4: Experiment VMG Lab 01: 3D-output back-projected to the image-plane.
Bounding box of MSaM tracking (yellow); bounding boxes of HOG detections (blue); no
hybrid tracking, as no moving person in scene.



4.2. Experiments 55

Table 4.1: Experiment VMG Lab 01: Quantitative Results.

HOG MSaM Hybrid
Det. Rate - 91.5%/54.5% -
False Pos. 105 -/- -
No Det. - 8.5%/45.5% -
Avg #M gain - - -

4.2.2 Experiment VMG Person 01

In this experiment we use the dataset VMG Person 01 (see section 2.4). The results

are shown in table 4.2. The HOG detection rate is rather low, as (i) the observer

moves rapidly and (ii) the person is only partly in the scene. MSaM tracking is more

reliable, but is below 70% due to motion blur and the lack of outliers on the person

in the first 30% of the frames. Hybrid tracking seems to be worse than the MSaM

tracking. This is due to the PASCAL criterion. The reqirements on the hybrid

tracking are much higher compared to MSaM. Combining the false positives and

the correct detecions, hybrid tracking would perform the same as MSaM. 14.1% of

no detections are due to the Meanshift’s limits on grayscale images and the too large

HOG window on the initialization (a lot of background). With hybrid tracking, we

get an average of 8.8 points per frame of additional point features. Fig. 4.5 shows the

3D-output back-projected to the image-plane. An overlap of the HOG and MSaM

bounding boxes (fig. 4.5(a)) initializes the hybrid tracking window, illustrated as

red bounding box (fig. 4.5(b)). In figure 4.5(c) HOG does not find a person, but the

hybrid tracker is still tracking. In figure 4.5(d) the hybrid tracker lost the target,

the deactivation is imminent.

Table 4.2: Experiment VMG Person 01: Quantitative Results.

HOG MSaM Hybrid
Det. Rate 17.2% 67.0% 42.4%
No Det. 80.8% 33.0% 14.1%
False Pos. 2 0 21
Avg #M gain - - 8.8
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Figure 4.5: Experiment VMG Person 01: 3D-output back-projected to the image-plane.
3D-output back-projected to the image-plane. Overlap of HOG and MSaM initializes hy-
brid tracking (red) (a); hybrid tracking (red), MSaM tracking (yellow), and HOG detec-
tions (blue) (b); no HOG detection (c); hybrid tracking lost target (orange), deactivation
of hybrid tracking is imminent (d).

4.2.3 Experiment VMG Person 02

In this experiment we use the dataset VMG Person 02 (see section 2.5). Here, the

person walks towards the observer. This results in a scale change of the person. The

results are shown in table 4.3. MSaM tracks the person well. The HOG detection

rate is again rather low. MSaM tracking is more reliable, as it does not refer to

the PASCAL criterion. Hybrid tracking again seems to be worse than the MSaM

tracking as it has higher requirements due to the PASCAL criterion. I.e. neglecting

the PASCAL criterion for hybrid tracking would increase the detection rate. Then,

hybrid tracking would outperform the MSaM approach.

Feeding back the hybrid tracking result to the MSaM, we get an average amount

of 4.6 supporting structure points on the object. The MSaM tracker detects the head
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of the person only. By HOG, we are able to establish the hybrid tracker (fig. 4.6(a).

Figure 4.6(b) illustrates a false positive detection by HOG, a correct MSaM detec-

tion (yellow bounding box), and a false hybrid detections (red) according to the

PASCAL criterion. In figure 4.6(c), only the hybrid tracker works, no MSaM nor

HOG detection. Figure 4.6(d) shows a false positive detection of hybrid tracking

according to the PASCAL criterion and a correct MSaM detection (yellow).

Table 4.3: Experiment VMG Person 02: Quantitative Results.

HOG MSaM Hybrid
Det. Rate 23% 79.4% 40.4%
No Det. 77% 20.6% 14.9%
False Pos. 47 - 71
Avg #M gain - - 4.6

Figure 4.6: Experiment VMG Person 02: 3D-output back-projected to the image-plane.
MSaM (yellow), HOG (blue), and hybrid tracking (red) (a); HOG false positive detection,
correct MSaM detection (yellow), and false hybrid detections (red) according to the PAS-
CAL criterion (b); only hybrid tracking (red) works (c), correct MSaM tracking (yellow)
but false positive detection of hybrid tracking according to the PASCAL criterion (d).
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4.2.4 Experiment VMG Person 03

In this experiment we use the dataset VMG Person 03 (see section 2.6). The results

are shown in table 4.4. The MSaM result is poor. The person is small and uni-

formly colored, i.e. very few outlier point features are found on the object. The

HOG detection rate is very good, even when the person is partly occluded. Hybrid

tracking seems to be worse than the MSaM tracking. Again, neglecting the PAS-

CAL criterion, the result of hybrid tracking is similar to the good performance of the

HOG. But in contrast to the HOG, hybrid tracking deals with 3D information. The

average amount of 1.1 supporting structure points on the object can be explained

be the low hybrid detection rate. First, only the HOG detection works (fig. 4.7(a)).

In figure 4.7(b) HOG (blue) and MSaM (yellow) initialized the hybrid tracker (red).

The person is re-detected by HOG and tracked by MSaM and the hybrid tracker

(fig. 4.7(c)). In figure 4.7(d) no further MSaM tracking is possible. Additionally,

HOG gives us multiple detections (blue) and the hybrid tracker lost the target (red).

Figure 4.7: Experiment VMG Person 03: 3D-output back-projected to the image-plane.
Only HOG detection (blue) (a); HOG (blue), MSaM (yellow), and hybrid detection (red)
(b); HOG (blue), MSaM (yellow), and hybrid tracking (red) works (c), no further MSaM
tracking possible, multiple HOG detections (blue), false hybrid tracking (red) (d).
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Table 4.4: Experiment VMG Person 03: Quantitative Results.

HOG MSaM Hybrid
Det. Rate 78.2% 16.4% 10.9%
False Pos. 30 0 52
No Det. 20% 83.6% x
Avg #M gain - - 1.1

4.2.5 Experiment KIT Seq 01

In this experiment we use the dataset VMG KIT Seq 01 (see section 2.7). The results

are shown in table 4.5. In contrast to the other experiments, the moving person is

not visible throughout the whole scene. Instead it is only visible in 99 of 180 frames.

MSaM not only tracks the moving person, but also the moving car. First, the

person is too small to be detected by MSaM, i.e. very few outlier point features are

found on the object. HOG delivers a positive person match, even the person is very

small. Due to the Pascal criterion, the detection rate of the hybrid tracking seems

to be worse than HOG or MSaM alone. Again, neglecting it, 3D-hybrid tracking

would perform in the range of MSaM and HOG. Compared to experiment 4, the

average amount of the supporting structure points decreased to 0.7, explaining the

low hybrid detection rate. First, MSaM detects the moving car (fig. 4.8(a)). Then,

HOG identifies a person in the scene 4.8. The scale of the person is too small, not

enough outliers can be detected on the person. Once the person is more prominent

in the scene, MSaM and HOG detect the person. Meanshift tracking is initialized

(fig 4.8(c).

Table 4.5: Experiment KIT Seq 01: Quantitative Results.

HOG MSaM Hybrid
Det. Rate 56% 41.5%/13.1% -/9.6%
False Pos. 37 3 11
No Det. 40.5% 58.5%/86.9% -/23.3%
Avg #M gain - - -/0.7
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Figure 4.8: Experiment KIT Seq 01: 3D-output back-projected to the image-plane.

4.3 Discussion

Summing up all experiments, the following observations can be made:

• The MSaM’s detection rate is typically higher than HOG’s or hybrid’s. As we

cannot control, which parts of an object are detected by MSaM (texture), we

cannot use the PASCAL criterion.

• The hybrid tracking provides 3D information. We can speed-up the HOG, as

(i) we know the distance to the person (fewer pyramid levels) and (ii) we get

a rough idea, where to search in an image (region of interest).

• The hybrid tracking provides important feedback for MSaM. We can inves-

tigate inliers in a larger subarea (HOG window / hybrid tracking window).
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Knowing the distance, we find supporting structure for a person, which can

help to improve the estimation of the person’s reference point.

In chapter 3 it was explained, that MSaM can be used to detect and track

rigid foreground motion. In this chapter however, MSaM detects and tracks moving

people which can be modeled as articulated objects. I.e. MSaM identifies articulated

foreground motion. This is possible, as the body of a person behaves similar to a

rigid object, whereas arms or legs are connected in an articulated manner. Thus,

most MSaM detections occur on the body and the head of a person.

4.4 Conclusion

We presented a moving person detection and tracking system. As tracking by a

moving observer is a difficult task, we combined 3D algorithms with 2D descriptors

and tracking algorithms. The system allows a moving observer and moving objects.

As we use MSaM, we get 3D information on the scene, observer motion, and object

motion.

By combining different components, we gain a mutual benefit. By combining

the HOG with the MSaM tracker, we get 3D information of the person motion and

eliminate false positive HOG detections. By feeding back the Meanshift tracking,

we can harvest additional features on the object for improved MSaM performance.

Our system deals with 3D and 2D information. As we know the 3D depth and the

position on the image-plane, we can speed up HOG (fewer pyramid levels, image

subarea validation).

Extensions to other categories are possible. The system is not limited to a human

shape descriptor. Introducing different descriptors, the system can track different

(or even multiple) categories.



5
Spatial Temporal Connectivity

SLAM or SaM algorithms are able to reconstruct the scene and estimate the pose of

a moving observer only if the observer navigates within in a static scenery. Having

a scenario with a moving observer and/or moving foreground objects (as introduced

in chapter 3), the results of SLAM and SaM deteriorate. This is due to the lack

of stable, stationary background points which are essential to estimate the pose

and reconstruct the scene. The introduced MSaM algorithm (see chapters 3 and 4)

identifies moving objects or regions which are part of moving objects due to outlier

analysis. In the previous chapter we have shown how we can identify the full object

by combing an additional 2D detector and tracker to the MSaM system. All - SLAM,

SaM, and MSaM - require at least 50% inliers and use the whole inlier information

for scene reconstruction and pose estimation. In this chapter, we analyze the inliers

to determine several subsets and evaluate their properties as good features to track.

Shi and Tomasi [ST94] state that by analyzing the appearance change over time of

point features, one is able to identify good features to track. Such subsets then can

be used to estimate the observer’s pose without deteriorating results. Thus, subsets

provide two major advantages: (i) false inliers (e.g. parts of a moving object have

62
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not been identified) may be neglected with high probability and (ii) the amount of

point features for pose estimation can be reduced.

We start by harvesting point features over time and connect them accordingly

to point feature trajectories. We apply a spatial-temporal appearance descriptor to

each point feature trajectory, which allows us to describe the appearance change of

a point feature over time. We then evaluate this descriptor by histogram statistics

evaluation methods and compare the resulting inlier subsets.

First, in section 5.1 we describe how we gather point features (or more gener-

ally: region of interests). Section 5.2 explains how a point feature is re-identified in

subsequent frames and linked to a time-trajectory. Next, in section 5.3 we explain

the Space-Time Appearance (STA) descriptor introduced by Brkic et al. [BPSK11].

The STA descriptor is used for appearance change information retrieval. Section 5.4

explains, how we evaluate the properties of the STA descriptor. Section 5.5 de-

scribes important extensions which are required to apply the STA descriptors to

the generated point feature trajectories. Subsequently, section 5.6 contains experi-

ments, where we select and compare good features to track derived by the evaluation

methods described in section 5.4. In section 5.7, the outcome of the experiments

is discussed. Finally, section 5.8 concludes with the properties of our method for

harvesting good features to track by analyzing appearance change information of

point features.

5.1 Feature Generation

In order to generate a spatial-temporal description of point features, we have to

locate and track point features over time. We use three different methods for feature

point detection: (i) the Harris corner detector [HS88], (ii) the Scale-Invariant Feature

Tracker (SIFT) [Low99, Low04], and (iii) the Speeded Up Robust Features (SURF)

detector [BETG08]. A comprehensive performance evaluation of local descriptors

including SIFT and Harris points was done by Mikolajczyk and Schmid [MS05].
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Harris Corner Detector

The Harris corner detector was introduced by Harris and Stephens [HS88] in

1988. It bases on an auto-correlation matrix which represents the structure of the

local neighborhood of a certain position in the image. Depending on the eigenvalues

of the auto-correlation matrix it is possible to differ between a uniform region (no

significant eigenvalue), a contour (one significant eigenvalue), and an interest point

(two significant eigenvalues). The benefit of the Harris corner detector is, that

it is not necessary to compute the eigenvalues. Instead, for each pixel, one can

compute the measure of the corner response. Let λ1, λ2 be the eigenvalues of the

auto-correlation matrix M . Then, the measure of corner response is computed by

R(x, y) = det(M )− k(trace(M ))2 (5.1)

where

det(M) = λ1 ∗ λ2
trace(M) = λ1 + λ2

k = empirical constant (0.04 ≥ k ≥ 0.06)

(5.2)

Followed by a non-maximal suppression process, a large R indicates a corner,

whereas a negative R with a large magnitude indicates an edge. A small |R| indicates

a homogeneous region.

As the name implies, the Harris Corner detector does not provide any information

but the position of an interest point.

Scale-Invariant Feature Transform (SIFT)

The Scale-Invariant Feature Tracker (SIFT) descriptor was first introduced by

Lowe et al. [Low04]. Beside describing an interest point, the original paper suggests

the detection of interest points by cascade filtering to minimize the costs for feature

extraction. Using Lowe’s SIFT, the main procedures are

1. Difference of Gaussian (DoG) for potential interest point detection of all scales
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2. interest point localization, i.e. identifying location and scale of each interest

point

3. identification of the interest point orientation(s)

4. descriptor generation by local image gradients at the selected scale around the

interest point

The main benefits of SIFT are the scale and orientation-invariance (retrieved by

steps 2 and 3). SIFT is also tolerant against local shape distortion and illumination

changes (due to step 4).

Speeded Up Robust Features (SURF)

Speeded Up Robust Features (SURF) is a scale and rotation-invariant interest

point detector and descriptor. SURF was presented in 2006 by Bay et al. [BTG06,

BETG08]. Compared to SIFT, which relies on gradient information, SURF uses

first-order Haar wavelet responses in both x and y direction. To reduce the compu-

tational costs, integral images are generated.

The value of an integral image I∑(x) at position x = (x, y)T is represented by the

sum of all pixels within a rectangular region R starting with the upper left corner at

the image origin RUL = (0, 0)T and the lower right corner at the position x = (x, y)T

(see eq. 5.3).

I∑(x) =

i≤x∑
i=0

j≤y∑
j=0

I(i, j) (5.3)

SURF uses filters which increase in size, while the image remains at the original

size. This differs from SIFT, where sub-sampled images are subtracted to retrieve

the Difference of Gaussian (DoG). For interest point localization, SURF uses the

Hessian matrix, i.e. it uses a second-order derivative filter. Additionally a 3D non-

maximum suppression is applied on the local neighborhood and the neighboring

scales.
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5.2 Trajectory Generation

In order to analyze the appearance change of point features over time, we have

to connect the independently detected point features at each frame ti. For that

purpose, in frame ti we let one of the feature detectors introduced in section 5.1

detect the features in our image. We then apply the Kanade-Lucas-Tomasi feature

tracker (KLT) [LK81, TK91, ST94, Bou00] to compute the estimated position in

frame ti+1. Then, in frame ti+1 again we use our feature detector. Once we got

the set of features in frame ti+1, we compare this set with the estimated position of

the KLT tracker. If this position matches, we connect this feature from frame ti to

frame ti+1, i.e. we created a trajectory of length 2. Figure 5.1 illustrates a set of

point feature trajectories in a region of interest at a certain time step ti.

Figure 5.1: Visualization of collected trajectories (blue lines) in a region of interest (blue
box)

5.3 The Space Time Appearance Descriptor

The Space-Time Appearance (STA) descriptor collects appearance information over

time. It was first introduced by Brkic et al. [BPSK11]. They propose two variants,

the STA1 and the STA2 descriptor.

The STA1 descriptor divides the patch pj(ti) into a grid of m×n cells. For each
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grid cell, a histogram is calculated, which reflects the distribution of the image mea-

surement for each frame ti and over time. Each histogram consist of k bins, i.e. the

spectrum of measured values is divided into k intervals. The individual histograms

of each frame ti are accumulated over time regarding a weighting function.

The STA2 descriptor relies on the STA1 descriptor. For each of the k bins of

each of the individual (not yet accumulated) m × n histograms per frame ti, the

STA2 descriptor generates a histogram with l bins. As with STA1, this information

is accumulated over time, i.e the STA2 descriptor models the distribution of each

bin of the STA1 descriptor.

The following subsections explain the STA1 and STA2 descriptors with regard

to our implementation.

5.3.1 STA1

The STA1 descriptor divides the input patch pj(ti) into an m × n grid. For each

grid cell, a one dimensional histogram with k bins is generated. The input data is

is some image measurement at time ti, where t are the individual time steps on the

point feature trajectory. Over time ti, the m×n histograms of the STA1 descriptor

are accumulated according to a weighting function. We use the weighting function

histti =
1

ti
((ti−1)− ε) ∗ histti−1

+ (1 + ε) ∗ histti)) (5.4)

where

ε = wSTA1 ∗ (ti−1). (5.5)

Setting wSTA1 to zero generates equally distributed histograms, a weight 0 <

wSTA1 ≤ 1 gives more impact on the recent STA1 histograms over time.

Figure 5.2 illustrates an image patch together with its STA1 histograms

at a certain time step ti. The STA1 grid contains 2×2 cells with 4 bins per histogram.
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Figure 5.2: Two examples for a 2×2 STA1 descriptor of a SIFT interest point. wSTA1 =
0, trajectory length: 28 frames

5.3.2 STA2

The STA2 descriptor relies on the STA1 descriptor (see chapter 5.3.1). It indepen-

dently analyzes all k bins of the m×n histograms of the individual STA1 descriptor,

i.e. it does not use the accumulated STA1 information. This results in k ×m × n
histograms. The STA2 descriptor models each STA1 bin’s distribution on a STA2

histogram with l bins. The number l of bins of a STA2 histogram is user-defined

and can be an arbitrary value greater than zero. Any modification in the STA1

descriptor settings (e.g. number of cells, etc) has an impact on the STA2 descriptor.

Over time, the STA2 descriptor is accumulated with equal weighting for each time

step ti.

Fig. 5.3 illustrates a sample SIFT point feature patch with its STA1 and STA2

descriptors. The STA2 descriptor analyzes each bin of each STA1 descriptor his-

tograms. Same colors in the STA1 and STA2 descriptor histograms indicate their

affiliation. E.g. for each bin in the yellow STA1 cell histogram, an individual STA2

histogram is generated, containing the bin’s distribution over time.

5.4 STA Properties Evaluation

Once we create the STA descriptors for the patches p(ti), there are two ways of

analyzing the data: (i) analyzing the accumulated descriptor at the last time step tn

of the trajectory, or (ii) analyzing the the accumulated descriptor of a patch pj(ti)

online at each time step ti. For the latter, we require a certain minimum trajectory
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Figure 5.3: STA1 descriptor (top) and the according STA2 descriptor (bottom) of a
SIFT interest point patch at the same time step as in fig. 5.2.

length before we can reliably analyze the accumulated descriptor. In our case, we

require at least a minimum trajectory length n of 5 and 10 frames respectively,

depending on the experiments. Any of the proposed evaluation tools is also applied

on the STA1 and STA2 descriptor.

We analyze the STA data with three different histogram statistics evaluation

methods, (i) the minimum entropy, (ii) the minimum variance, and (iii) the Lya-

punov exponent. All evaluation methods are described in detail below. Each his-

togram of the STA1 and STA2 descriptor is inspected by the evaluation tools. As

the STA2 descriptor of a point feature has k×m×n histograms (a histogram for each

bin k of m× n histograms in the STA1 descriptor), this results in k×m× n values

for each evaluation method. Evaluating the STA1 descriptor leads to m× n values.

To achieve one representative value at the time step ti per evaluation method, our

implementation allows to select the minimum, the maximum, or the mean value of

all histograms of a point feature STA descriptor at the time step ti. In our exper-

iments, for each evaluation method we uniformly compute the mean value over all

STA histograms per frame ti and let this mean value be the representative value for

the appearance change of a point feature at the time step ti.
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5.4.1 Minimum Entropy

The origin of entropy leads back in 1948 to a paper by Shannon [Sha48]. In in-

formation theory, Shannon’s entropy H is used to measure the average information

content. It provides information on the average number of bits per symbol required

for encoding. The entropy H is defined as

H(p1, . . . , pn) = −
n∑
i

pi log2 pi. (5.6)

where pi = P (X = i) is the probability the word i appears.

Applying the Minimum Entropy to STA Data

At each timestep ti we apply the entropy computation to each grid cell of the

STA1 descriptor. Thus, in case of an m × n grid per point feature, the descriptor

consists of m× n histograms and we get m× n entropies per timestep ti and point

feature pj(ti). The entropy representing the whole STA1 descriptor at a timestep ti

is gained by averaging the m × n entropies. For the STA2 descriptor, we proceed

identically. However, k ×m× n grid cells have to be processed.

As both descriptors STA1 and STA2 are accumulated over time (see section 5.3,

eq. 5.4), the impact of an appearance change of a point feature patch pj(ti) is higher

for a lower i (i.e. the point feature trajectory is shorter). I.e. when evaluating

the appearance change online, any change contributes more when the trajectory is

still short and contributes less when the trajectory grows. E.g. in case of equal

weighting, at ti, i = 2 the appearance information represents 50% of the information

available, at ti, i = 100 the information of the current frame represents a hundreth

of the total available information. A constant appearance change variance σ2 = 0 is

a special case and has equal impact over time.

An STA’s entropy value of 0 indicates, that no appearance change occurred over

the last frames. The larger the entropy value, the more the appearance of the point

feature changed over time. As we want to gather stable reliable point features for

the pose estimation, point features with low entropies are favored. I.e., we search

for n point features with the STAs providing the n lowest averaged entropies.
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5.4.2 Minimum Variance

The variance is a frequently used tool in statistics and describes the expectation of

spreading of a set of numbers. In other words, it measures the squared deviation of

a random variable of its expected value. For discrete data series xi with i = 1 . . . n,

the variance σ2 can be computed by

σ2 =
1

n

n∑
i=1

(xi − x̄)2 (5.7)

where x̄ represents the arithmetic mean of the data series xi.

Applying the Variance to STA Data

At each timestep ti we apply the variance computation to each grid cell of the

STA1 descriptor. Thus, in case of an m × n grid per point feature, the descriptor

consists of m× n histograms and we get m× n variances per timestep ti and point

feature pj(ti). The variance representing the whole STA1 descriptor at a timestep

ti is gained by averaging the m× n variances. For the STA2 descriptor, we proceed

identically. However, k ×m× n grid cells have to be processed.

An STA’s variance value of 0 indicates, that no appearance change occurred

over the last frames. The larger the variance, the more the appearance of the point

feature deviates over time. In order to get stable and reliable point features for the

pose estimation, point features with low variances are favored. I.e., we search for n

point features with the STAs providing the n lowest averaged variances.

5.4.3 Lyapunov Exponent

The Lyapunov exponent [Lor63, ABK91, Sch88] describes the behavior of infinites-

imally close trajectories. Originally it is explained as the average rate of divergence

or convergence of two neighboring trajectories in the phase space. More generally,

the Lyapunov exponent is a quantitative measure of the sensitive dependence on the

initial conditions. Figure 5.4 illustrates the idea of the Lyapunov exponent.
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Figure 5.4: Basic idea of the Lyapunov exponent.

At t = 0 we have two points, x0 and x0 + ε0, separated by the distance

d(x0, x0 + ε0) = ε0. (5.8)

Assuming one dimension only, at t = 1 we gain xn = f(xt−1), i.e. t1 = f(x0).

With this mapping we are able to compute x1 and x1 + ε1, illustrated as blue dots

in fig. 5.4. The distance between these two points is

d(x1, x1 + ε1) = d(f(x0), f(x0 + ε0)) = ε1. (5.9)

The Lyapunov exponent is defined by exponential growth, so we can rewrite

eq. 5.9 as

d(x1, x1 + ε1) = d(f(x0), f(x0 + ε0)) = eλtd(x0, x0 + ε0). (5.10)

We can rewrite the equation as

|f ′(x0)| =
d(f(x0), f(x0 + ε0))

d(x0, x0 + ε0)
= eλt. (5.11)

For more than one iteration, we can rewrite eq. 5.11 as

|f ′(xi)| =
d(f(xi), f(xi + εi))

d(xi, xi + εi)
. (5.12)
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Then, the Lyapunov exponent λ is specified as

λ = lim
t→∞

1

t

t∑
i=1

ln |f ′(xi)|. (5.13)

The Relationship of Lyapunov and Entropy

Regarding Schuster [Sch88], we can use the Lyapunov exponent to measure the

average loss of information. Imagine the range [0, 1] divided into n equal intervals.

Assume, a point x0 can occur in each interval with equal probability 1/n. By observ-

ing the point x0 distributed by equal probability, we gain the average information

content

I0 = −
n∑
i=1

1

n
log2

1

n
= log2 n (5.14)

One can obviously see that eq. 5.14 is equal to eq. 5.6, which describes the

entropy H. Decreasing n will reduce the information content I0 and it will become

zero for n = 1.

Let us introduce a linear map f(x), which maps any point xi linearly to f(xi).

For a linear map f(x) = k ∗x+d, the first derivation f ′(xi) is k for all xi. Then it is

shown by [Sch88] that the linear mapping function f(x) scales each interval by the

factor |k|. This change of the interval’s size leads to a loss ∆I of the information

content after the mapping (see eq. 5.15). The n intervals and their mapping by f(x)

to n
k

intervals is illustrated in fig. 5.5.

∆I = −
n
k∑
i=1

k

n
log2

k

n
+

n∑
i=1

1

n
log2

1

n
= − log2 a = − log2 |k| (5.15)

Generalizing eq. 5.15, i.e. allowing partly-linear mapping functions f(x) (i.e. the

function is linear within the interval) and observing many iterations, the mean loss

of the information content can be expressed as
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Figure 5.5: Change of interval size by a linear map (adapted from [Sch88]).

∆I = − lim
t→∞

t−1∑
i=0

log2|f ′(xi)| (5.16)

which is equal to eq. 5.13, the Lyapunov exponent.

Summing up, the entropy Ht represents the average information content at time

t, while the Lyapunov exponent λt reflects the average change of the information

content at time t.

Applying the Lyapunov exponent to STA Data

As with the entropy and the variance, we apply the Lyapunov exponent to the

STA descriptors. However, a certain kind of input data has to be provided for the

Lyapunov exponent. As the Lyapunov exponent describes the average change of

the information content provided, we choose the entropy as input data. I.e., the

Lyapunov exponent describes the average change of the entropy over time.

As we want one value for one STA descriptor of a point feature per time step ti,

we choose the entropy as described above as input data for the Lyapunov exponent.

Over time we compute the Lyapunov exponent for each STA descriptor. As the

Lyapunov exponent relies on a deviation, at least two frames are required for its
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computation.

Similar to the entropy and variance, any STA descriptor with a Lyapunov ex-

ponent of zero indicates no appearance change occurred between ti−1 and ti. In

contrast to the entropy and variance, the Lyapunov exponent is able to distinguish

between convergence and divergence. Negative values indicate convergence, i.e. the

appearance change converges towards zero. Positive values indicates divergence, i.e.

the appearance change from ti−1 to ti is more severe than from ti−2 to ti−1. As we

work with accumulated information in both cases, STA1 and STA2, the Lyapunov

exponent does not only compare the information at time step ti with ti−1 but the

current information with whole accumulated information available at the previous

time step.

As with the entropy and the variance, we gather a subset of n point features,

which provides stable point features. We prefer point features with a Lyapunov

exponent of zero, as this means the point feature has a constant appearance. How-

ever, in case the size n of the required point feature subset is higher than the

available point features with a Lyapunov exponent of zero, we search in the range

−∞ < r ≤ 0, where r starts at 0. This means, our first choice is a Lyapunov expo-

nent of zero. However, if not enough point features fulfill this requirement we prefer

slight convergence over divergence.

Once the Lyapunov exponents for all STA descriptors are computed at a certain

time step ti, we choose the n best point features. For the Lyapunov exponent this

means,

5.5 Implementation Details

We developed a C++ application in combination with OpenCV 2.2. The program

accepts two types of input: either interest points or bounding boxes (e.g. labeled

groundtruth objects). In both cases a certain region of interest (ROI) is selected

which represents the input to the STA descriptor. The application implements both

descriptors, STA1 and STA2, which are applicable in real-time. The grid size, the

number of bins, the weighting term wSTA1, and grid overlapping can be defined by
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the user. The kind of image value used for the STA descriptor is also user-defined.

Currently the application supports (i) grayscale, (ii) hue, (iii) saturation, and (iv)

gradients as image values.

5.5.1 Trajectory Generation

The C++ application allows us to detect and track point features online over time by

different detectors (Harris [HS88], SURF [BETG08], SIFT [Low99, Low04]) and gen-

erate the STA information. We implemented the optical flow by using the OpenCV

method calcOpticalFlowPyrLK() [Bou00], which implements a pyramidal implemen-

tation of the Lucas Kanade Feature Tracker.

Beside the generation of point feature trajectories, the application can also han-

dle any rectangular regions as input (e.g. ground truth annotated objects). In this

case, the rectangular region is treated like a point feature patch. We only require an

unique ID per region of interest. The application is able to generate trajectories of

the rectangular regions offline. However, the bounding box information cannot be

collected by detectors, i.e. they have to be manually generated or an existing labeled

dataset can be used. In case of rectangular regions of interest, the STA descriptor

then can be applied to the whole rectangular region.

5.5.2 Patch Adaption for STA descriptor

Once the trajectories are generated, at each time step ti the dimension of the ROI

(i.e. either the surrounding patch of an interest point or the groundtruth annotated

object patches) has to be verified. This means, that we have to guarantee, that the

grid specified by the STA1 fits into the patch. For that reason, if the STA1 grid

does not perfectly fit into the region of interest, we resample the patch. However,

to resample as little as possible we determine whether to shrink or grow the patch

size. We calculate the resampled patch size by

sizeresampled

size−modsize

size−modsize + gridSTA1

... if modsize <
gridSTA1

2

... if modsize >= gridSTA1

2

(5.17)
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where

modsize =

[
width (mod gridxSTA1

)

height (mod gridySTA1
)

]
(5.18)

and

gridSTA1 =

[
gridxSTA1

gridySTA1

]
(5.19)

contains the number of pixels of a grid cell in x and y direction. Once the

resampled patch size is computed, the image patch is resized by bilinear interpolation

using OpenCV’s resize() method.

5.6 Experiments

In this experiment section, we analyze the appearance change information of point

features by various evaluation methods. We want to exploit the similarities and

dissimilarities of appearance change information calculated by entropy, variance,

and the Lyapunov exponent.

By having the appearance change information gathered by the STA descriptor,

we compute several subsets out of all point features:

• minimum entropy subset (EL)

• minimum variance subset (VL)

• Lyapunov exponent subset (L)

In addition to these three subsets, we also compute the

• maximum entropy subset (EH), and the

• maximum variance subset (VH).

The subsets contain n point features with the highest entropy and variance values

respectively and are used to compare the results with the minimum subsets. A

maximum Lyapunov exponent subset was computed too, but it hardly provided
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common point features over two successive frames. I.e. most point features in this

subset had very a short trajectory, as new appearing point features were favored by

the maximum Lyapunov exponent. Thus, this subset is not comparable to the other

five subsets listed above.

We run the subset generation multiple times, i.e. for each type of subset we

generate different subset sizes. Particularly, for an experiment we generate subset

sizes of 15, 20, 25, 50, 75, and 100 point features per frame. Depending on the scene

(i.e. the amount of point features available in a frame), we generate only certain

subset sizes. I.e., it makes no sense to find 50 point features with the lowest entropy

if only 75 point features are available in a frame (this would lead to an intersection

of 50% of lowest and highest entropies).

Next, we want to compare the generated subsets among each other. Thus, we

generate the following intersections:

• intersection of the minimum entropy subset with the Lyapunov exponent sub-

set (EL/L)

• intersection of the minimum entropy subset with the minimum variance subset

(EL/VL)

• intersection of the Lyapunov exponent subset with the minimum variance sub-

set (L/VL)

• intersection of the minimum entropy subset with the minimum variance subset

and the Lyapunov exponent subset (EL/VL/L)

• intersection of the maximum entropy subset with the Lyapunov exponent sub-

set (EH/L)

• intersection of the maximum entropy subset with the maximum variance subset

(EH/VH)

• intersection of the Lyapunov exponent subset with the maximum variance

subset (L/VH)
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• intersection of the maximum entropy subset with the the maximum variance

subset and the Lyapunov exponent subset(EH/VH/L)

In the next subsections, three experiments are introduced. Each experiment con-

tains a sequence with a moving observer. Throughout the sequence, we gain point

features by two different salient point detectors, the Harris corner detector and

the SIFT detector/descriptor. We generate point feature trajectories by connecting

point features over time as described in section 5.2 and analyze the point feature ap-

pearance change by the STA descriptors. As we analyze the appearance change, we

require a minimum trajectory length providing us appearance change information.

For each experiment sequence we run the tests with a minimum trajectory length of

5 and 10 frames. We apply the histogram statistics evaluation methods described

above (entropy, variance, Lyapunov exponent) on the STA descriptors to gain dif-

ferent subsets. Finally, a table shows the intersection sets evolved from intersecting

the subsets.

As we provide just a single Lyapunov exponent subset (see subsection 5.4.3,

preferring a stable behavior and favoring slight convergence), we expect a higher

intersection rate of Lyapunov with the minimum subsets than with the maximum

subsets. The input for the Lyapunov exponent subset is the entropy (i.e. it models

the change of entropy). In case of the STA2 descriptor, which describes the average

appearance change information, we expect that the minimum entropy subset has

a large intersection with the Lyapunov exponent subset. As the minimum entropy

implies little information loss, the corresponding variance is also small. As the

Lyapunov exponent reflects the average information change, we expect the subset

gathered by the Lyapunov exponent to be different from the entropy and variance

subset in case of the STA1 descriptor. However, in case of the STA2 descriptor,

which describes the average appearance change of point features, we are expecting

a large intersection with the minimum entropy subset.
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5.6.1 Experiment KIT Seq 01

This experiment uses the dataset KIT Seq 01 (see section 2.7). As we require monoc-

ular data in this experiment section, we use the data from the left camera only. We

run this experiment with two different minimum trajectory lengths, 5 frames and

10 frames.

Table 5.1 contains the general run information of this experiment. Run 1 required

a minimum trajectory length of 5 frames, run 2 had a minimum trajectory length

of 10 frames.

Table 5.1: General information of experiment KIT Seq 01. Min T Len: the minimum
trajectory length required; Detector Type: either Harris corner detector or the SIFT
detector/descriptor; Min # T: minimum amount of trajectories in a frame; Max # T:
maximum amount of trajectories in a frame; Mean # T: average amount of trajectories
throughout the scene.

Min T Len Detector Type Min # T Max # T Mean # T

Run 1 5
Harris 93 448 296.70
SIFT 97 485 340.02

Run 2 10
Harris 44 334 187.11
SIFT 52 349 224.86

Run 1

In this run, only point feature trajectories with a minimum length of 5 are used.

Table 5.2 and 5.3 show the intersection of the subsets in percent for different sized

subsets retrieved from the STA1 descriptor. The tables 5.4 and 5.5 represent the

counterpart for the STA2 descriptor. In table 5.2 the point features were detected

by the Harris corner detector, in table 5.3 with SIFT. The first column indicates the

subset size per frame, columns two to five contain several intersection information

for the minimum entropy subset, the minimum variance subset, and the Lyapunov

exponent subset. Columns six to nine contain the intersection information for the

maximum entropy subset, the maximum variance subset, and the Lyapunov expo-

nent subset.
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Table 5.2: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: Harris corner, minimum trajectory length:
5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 5.86 0.77 6.13 0.15 6.17 0.00 5.79 0.00
20 8.45 1.41 8.05 0.26 8.16 0.00 8.02 0.00
25 10.67 1.40 10.97 0.25 10.64 0.00 9.98 0.00

Table 5.3: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: SIFT, minimum trajectory length: 5

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 4.44 0.23 5.25 0.00 5.13 0.00 4.10 0.00
20 5.83 0.75 7.59 0.06 7.39 0.00 5.98 0.00
25 7.79 0.90 9.22 0.09 9.40 0.00 7.70 0.00

Table 5.4: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: Harris corner, minimum trajectory length:
5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 44.02 69.12 38.35 36.40 2.99 18.24 3.52 0.69
20 41.78 69.54 35.55 33.16 4.77 23.53 5.83 1.32
25 41.89 69.45 34.64 32.23 6.00 27.26 7.36 2.28

Table 5.5: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: SIFT, minimum trajectory length: 5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 72.41 83.56 67.55 66.78 0.92 17.47 1.19 0.08
20 66.93 80.09 62.18 61.15 2.41 24.14 2.41 0.37
25 63.49 76.02 58.80 56.94 3.54 28.53 3.59 0.85
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Run 2

Opposed to run 1, this run uses point feature trajectories with a minimum length

of 10 only. The table 5.6 to 5.9 show the intersection of the subsets in percent for

different sized subsets retrieved from the STA1 descriptor. The results in tables 5.6

and 5.7 are generated with STA1 subsets, the results in tables 5.8 and 5.9 with

STA2 subsets.

Table 5.6: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: Harris corner, minimum trajectory length:
10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 12.31 0.75 12.23 0.12 12.11 0.00 11.40 0.00
20 15.98 0.71 16.39 0.09 16.18 0.03 15.06 0.03

Table 5.7: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: SIFT, minimum trajectory length: 10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 9.23 0.51 9.70 0.00 9.70 0.00 8.84 0.00
20 11.54 0.41 13.11 0.00 13.67 0.00 11.75 0.00

Table 5.8: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: Harris corner, minimum trajectory length:
10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 31.87 52.70 24.77 20.16 8.21 20.71 10.14 2.37
20 34.11 55.80 27.37 21.57 11.72 27.43 13.58 4.44

Table 5.9: Experiment KIT Seq 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: SIFT, minimum trajectory length: 10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 47.38 59.84 42.05 38.03 6.00 19.25 5.56 1.07
20 45.09 59.56 39.79 34.32 9.23 27.10 8.17 2.66
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Discussion

With a minimum point feature trajectory amount of 93 for the Harris corner

detector and 97 for the SIFT (see table 5.1), in run 1 we were able to create subsets

of a maximum of 25 point features per frame only. As we fetch the point features

with the lowest and highest values according to an evaluation scheme (e.g. entropy),

at least double of the point features required for a subset have to be available per

frame. Obviously, run 2 provides less point feature trajectories than run 1 due to the

longer minimum trajectory length requirement. Thus, in run 2 it was not possible

to build subsets with more than 20 point features per subset. Otherwise, the lowest

subset would overlap with the highest subset. Per frame, SIFT provides both a

higher minimum trajectory amount and a higher maximum trajectory amount.

One observation which can clearly be made is, that the STA1 Lyapunov ex-

ponent intersection set with the STA1 maximum entropy subset (EH/L) is about

the same size as with the STA1 minimum entropy subset (EL/L) (see tables 5.2,

5.3, and 5.6). The intersection set of the STA1 maximum entropy subset with

the STA1 maximum variance subset (EH/VH) is always zero. Therefore, also the

intersection of the maximum entropy subsets with the maximum variance subset

and the Lyapunov exponent subset (EH/VH/L) is always zero, too. Additionally,

the intersection of the STA2 minimum subsets with the Lyapunov exponent subset

(EL/L,EL/VL, L/VL, EL/VL/L) seem to be constant independent of the subset size

(see tables 5.4, 5.5, 5.8, and 5.9). However, the overlap is higher in case of SIFT. Ad-

ditionally, these STA2 intersections of the minimum subsets are significantly higher

than the STA2 intersections with the maximum subsets.

5.6.2 Experiment VMG Bike 01

This experiment uses the dataset VMG Bike 01, described in section 2.1. Again,

the experiment consists of two runs, one with a minimum point feature trajectory

length of 5 and one with a length of 10. Table 5.10 contains the general experiment

information for both runs.
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Table 5.10: General information of experiment VMG Bike 01. Min T Len: the minimum
trajectory length required; Detector Type: either Harris corner detector or the SIFT
detector/descriptor; Min # T: minimum amount of trajectories in a frame; Max # T:
maximum amount of trajectories in a frame; Mean # T: average amount of trajectories
throughout the scene.

Min T Len Detector Type Min # T Max # T Mean # T

Run 1 5
Harris 148 222 179.79
SIFT 236 333 283.41

Run 2 10
Harris 75 119 94.23
SIFT 130 187 164.34

Run 1

In this run, all point features are used with a point feature trajectory length of at

least 5 frames. Tables 5.11 to 5.14 show the intersections in percent of the subsets.

Table 5.11: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: Harris corner, minimum trajectory length:
5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 9.81 0.48 9.14 0.19 9.24 0.00 8.00 0.00
20 12.21 0.50 11.93 0.29 12.00 0.00 11.43 0.00
25 14.80 0.40 14.86 0.29 15.03 0.00 13.66 0.00

Table 5.12: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: SIFT, minimum trajectory length: 5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 4.57 0.00 6.10 0.00 6.10 0.00 4.57 0.00
20 6.43 0.93 8.00 0.07 8.50 0.00 6.43 0.00
25 8.40 1.03 9.60 0.06 9.66 0.00 8.23 0.00
50 17.83 2.11 18.77 0.49 18.94 0.00 17.60 0.00
75 26.38 2.11 28.86 0.69 28.78 0.00 25.50 0.00
100 34.37 3.40 37.49 1.37 36.91 0.04 34.06 0.01
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Table 5.13: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: Harris corner, minimum trajectory length:
5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 40.57 69.90 35.62 33.14 3.52 21.62 5.71 0.86
20 40.07 71.00 32.93 30.50 5.43 26.57 7.71 1.36
25 40.51 69.43 32.06 29.37 6.23 30.57 9.66 1.49

Table 5.14: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: SIFT, minimum trajectory length: 5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 83.05 93.14 82.48 81.81 0.00 26.95 0.10 0.00
20 79.07 81.57 76.14 74.71 0.07 32.36 0.14 0.00
25 76.17 71.03 69.54 66.80 0.63 36.34 0.40 0.11
50 65.77 78.14 56.00 54.49 3.20 54.57 4.46 1.69
75 63.18 77.83 52.99 50.21 7.56 66.06 11.77 5.35
100 62.56 79.56 54.50 50.44 15.50 74.41 21.80 12.29

Run 2

Opposed to the first run, only point features with a minimum trajectory length

of 10 frames are used. Tables 5.15 to 5.18 show the intersection results.

Table 5.15: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: Harris corner, minimum trajectory length:
10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 17.95 0.10 16.62 0.10 17.23 0.00 17.64 0.00
20 23.54 0.62 20.54 0.15 21.54 0.00 21.31 0.00
25 28.12 1.91 26.95 0.62 28.37 0.00 25.85 0.00

Discussion

Again, the STA1 maximum entropy subset hardly ever intersects with the STA1

maximum variance subset subset (EH/VH) (see tables 5.11, 5.12, 5.15, and 5.16).
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Table 5.16: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: SIFT, minimum trajectory length: 10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 7.28 1.03 10.67 0.00 10.97 0.00 7.18 0.00
20 9.54 1.00 13.08 0.00 13.54 0.00 9.69 0.00
25 13.72 0.86 16.00 0.06 16.55 0.00 12.98 0.00
50 29.20 1.26 32.31 0.31 31.85 0.00 28.43 0.00

Table 5.17: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: Harris corner, minimum trajectory length:
10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 37.74 61.13 28.51 23.59 8.21 28.92 11.28 1.85
20 41.23 58.85 31.77 24.69 11.85 35.62 15.92 4.31
25 44.12 58.52 35.88 27.08 16.12 42.77 20.12 6.46

Table 5.18: Experiment VMG Bike 01: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: SIFT, minimum trajectory length: 10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 68.51 66.87 59.79 55.59 1.33 32.21 1.03 0.31
20 65.00 73.15 53.69 52.00 2.00 36.77 1.77 0.46
25 62.28 71.02 52.31 49.60 2.95 42.15 2.83 0.86
50 60.15 71.88 50.89 44.92 11.17 63.38 15.82 7.11

This leads to an intersection of 0% of the maximum entropy subsets with the max-

imum variance subset and the Lyapunov exponent subset (EH/VH/L). Also the

intersection of the STA2 minimum subsets and the STA2 Lyapunov exponent subset

(EL/L,EL/VL, L/VL, EL/VL/L) seem to be constant independent from the subset

size (see tables 5.4, 5.5, 5.8, and 5.9). Again these intersections are significantly

higher than the STA2 maximum subset intersections.
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5.6.3 Experiment VMG Bike 02

This experiment uses the dataset VMG Bike 02 (see section 2.2). Table 5.19 contains

the general experiment information for both runs.

Table 5.19: General information of experiment VMG Bike 02. Min T Len: the minimum
trajectory length required; Detector Type: either Harris corner detector or the SIFT
detector/descriptor; Min # T: minimum amount of trajectories in a frame; Max # T:
maximum amount of trajectories in a frame; Mean # T: average amount of trajectories
throughout the scene.

Min T Len Detector Type Min # T Max # T Mean # T

Run 1 5
Harris 67 227 139.41
SIFT 115 258 177.17

Run 2 10
Harris 29 121 78.52
SIFT 45 161 97.94

Run 1

Tables 5.20 to 5.23 show the intersection results for subsets containing point

features with a minimum trajectory length of 5 frames.

Table 5.20: Experiment VMG Bike 02: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: Harris corner, minimum trajectory length:
5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 11.84 3.97 12.00 0.57 11.66 0.00 10.91 0.00
20 15.82 3.72 15.29 0.73 14.71 0.00 14.80 0.00
25 19.41 4.24 19.36 1.06 18.61 0.00 18.68 0.00

Table 5.21: Experiment VMG Bike 02: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: SIFT, minimum trajectory length: 5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 9.48 1.07 9.02 0.16 9.14 0.00 9.16 0.00
20 11.84 1.36 12.55 0.34 12.23 0.00 11.58 0.00
25 14.88 1.62 15.78 0.44 15.51 0.00 14.73 0.00
50 29.30 3.60 30.46 1.23 30.41 0.00 28.54 0.00
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Table 5.22: Experiment VMG Bike 02: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: Harris corner, minimum trajectory length:
5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 51.90 68.19 42.09 40.48 4.92 18.78 6.03 0.79
20 49.54 69.52 39.81 37.60 7.72 26.46 9.40 1.97
25 48.87 71.28 39.50 36.86 9.98 34.35 12.44 3.39

Table 5.23: Experiment VMG Bike 02: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: SIFT, minimum trajectory length: 5.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 81.86 92.43 80.43 80.00 0.36 33.97 0.36 0.11
20 77.50 85.73 74.68 73.76 0.94 39.01 1.22 0.43
25 73.96 80.39 69.03 67.67 2.03 44.04 2.72 1.02
50 64.52 76.88 54.70 52.10 10.81 63.71 15.62 7.53

Run 2

Tables 5.24 to 5.25 show the intersection results for subsets containing point

features with a minimum trajectory length of 10 frames. For this run, we only

provide results for the SIFT. We were not able to evaluate the Harris corner subsets,

as at certain frames less than 30 point features were available. I.e., with a subset

size of 15 point features at minimum an overlap of the lowest and highest subset

would occur.

Table 5.24: Experiment VMG Bike 02: Intersection in % of the subsets retrieved from
the STA1 descriptor. Point feature detector: SIFT, minimum trajectory length: 10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 16.93 0.81 16.86 0.28 16.96 0.00 16.52 0.00
20 22.94 1.07 22.89 0.47 22.23 0.00 22.21 0.00
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Table 5.25: Experiment VMG Bike 02: Intersection in % of the subsets retrieved from
the STA2 descriptor. Point feature detector: SIFT, minimum trajectory length: 10.

EL/L EL/VL L/VL EL/VL/L EH/L EH/VH L/VH EH/VH/L
15 57.42 64.78 47.52 44.31 6.25 41.04 6.32 2.45
20 56.19 66.64 46.49 41.99 9.34 48.17 10.76 4.72

Discussion

The STA1 maximum entropy subset hardly ever intersects with the STA1 maxi-

mum variance subset (EH/VH). Also, there’s no intersection of the STA1 maximum

entropy subsets with the STA1maximum variance subset and the STA1 Lyapunov

exponent subset (EH/VH/L). The STA2 minimum subsets and the STA2 Lyapunov

exponent subset again seem to be constant independent from the subset size.

5.7 Summary

In this chapter we explained how point features are gained from image sequences

and how point feature trajectories are created. Along a point feature trajectory,

the appearance of a point feature may change. We showed, that by using the

STA descriptor it is possible to describe these appearance changes. We introduced

histogram statistics evaluation methods such as entropy and variance to evaluate the

STA descriptors of point features. We explained the origin of the Lyapunov exponent

and how it is related to the entropy. With three different methods (entropy, variance,

and Lyapunov exponent) we analyzed the appearance change information collected

by the STA descriptors and generated several subsets out of the whole point feature

set. We analyzed the behavior of the subsets by looking at their intersection sets.

In the experiments sections 5.6.1-5.6.3, the following observations were made:

• There is no overlap of the STA1 maximum entropy subset and the STA1

maximum variance subset.

• The intersection of the STA1 minimum variance subset with the Lyapunov

entropy subset (L/VL) is similar to the intersection of the STA1 maximum
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entropy with the STA1 maximum variance (EH/VH).

• The intersection set of the STA1 minimum entropy subset with the STA1

minimum variance subset and the STA1 Lyapunov exponent is almost empty.

• The intersection set of the STA1 maximum entropy subset with the STA1

maximum variance subset and the STA1 Lyapunov exponent is almost empty.

• The intersections of the STA2 minimum subsets and the STA2 Lyapunov ex-

ponent subset intersections are constant independent of the subset size.

• The intersections of the STA2 minimum subsets and the STA2 Lyapunov ex-

ponent subset are significantly higher than the intersections with the STA2

maximum subsets.

5.8 Conclusion

Depending on the STA descriptor type - STA1 or STA2 - the intersection sets are

different. The STA2 minimum has an intersection with both the STA2 minimum

variance subset and the Lyapunov exponent subset. In contrast, the STA1 mini-

mum entropy subset has only a small intersection with the Lyapunov exponent, as

the Lyapunov exponent describes the average change of the input data (i.e. en-

tropy), while the entropy describes the average information content. I.e., the STA2

minimum subsets together with the Lyapunov subset contain many common point

features. Using the subsets for the observer pose estimation, we are expecting simi-

lar results for these subsets. In contrast, no assumption can be made for the STA1

minimum subsets and the STA1 Lyapunov exponent subset, as the subsets contain

different point features. For certain, the maximum subsets are a bad choice for gath-

ering stable point features. Any of the maximum subsets contains different point

features.

In the next chapter, we apply the different evaluation methods (entropy, variance,

Lyapunov exponent) on real-world data. With the different subsets gained, we want

to estimate the observer pose and compare it against each other.



6
MSaM plus STA

In chapters 3 and 4 it was shown how inlier and outlier information can be used

to identify moving foreground objects. As mentioned, we cannot guarantee that a

moving object is identified as a whole. Rather, it may happen that only a subpart

of an object is detected. We solved this issue in chapter 4 by combining our MSaM

system with a 2D detector and tracker. The introduced 2D detector is capable of a

specific category of objects, i.e. we deployed an identifier for moving persons. Yet,

our MSaM system works with any other detector too. The basic idea is to identify

the whole object by the additional 2D detector in case that MSaM detects a sub-part

of a moving object only.

Still we need a minimum of stationary background information which is required

for pose estimation. At least 50% of stationary background information is required.

If more than 50% of the available information is located on the dominant foreground

motion, the pose estimation results will deteriorate. We address this problem by

finding a reliable subset of features, which are in the stationary background and

are supposed to have good properties for tracking. In 1994, Shi and Tomasi [ST94]

came up with the question “What are good features to track?”, mentioning the

91
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problem of feature tracking. They state that even if a point feature patch contains

highly textured content, it may not be well suited for tracking. Furthermore, they

address the problem of virtual crossings. E.g., having a transmission line in the

foreground and a flagpole in the back. Although they do not cross in the 3D real

world there will be a crossing in a 2D image. Shi and Thomasi [ST94] explained that

by analyzing the appearance change over time, one is able to distinguish between

real and virtual crossings. For that purpose, they introduced a measure of feature

dissimilarity, which reflects the change of appearance over time. They also stated

that right point features are always those which make a tracker work best.

With the Space-Time Appearance (STA) descriptors by Brkic et al. [BPSK11] we

are able to describe appearance changes over time. With the introduced evaluation

methods on histogram statistics in chapter 5 we are in the position to identify

several subsets out of the available point features. While we showed the similarities

and dissimilarities of the different point feature subsets in the previous chapter, in

this chapter these subsets are used for pose estimation. The results of the different

subsets are compared with the computed observer poses of both, manually generated

reference data solely containing stationary background point features and all point

features identified as inliers by our MSaM system. We retrieve the point feature

appearance change information by the histogram statistics evaluation of the STA

descriptors (see chapter 5). This evaluation involves the minimum entropy, the

Lyapunov exponent, and the minimum variance.

6.1 Experimental Setup

The experiments rely on the datasets used in chapter 3. Basically, MSaM is capa-

ble to distinguish between stationary background information (inliers) and moving

foreground motion (outliers). In case of a subpart detection of a moving object

by our MSaM system, some point features of the moving object might wrongly be

classified as inliers. In order to have a reliable reference data set, wrong inliers are

excluded manually from this set. We harvest appearance change information from

both, all MSaM inliers and the reference data set and evaluate the data by the above
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mentioned methods.

For each of the described data sets, the observer pose is estimated and compared

against the pose estimated using the reference data. Basically, we use two approaches

for pose estimation, a non-robust approach and a robust approach. The non-robust

approach computes the pose by using all the available data per dataset followed

by Bundle Adjustment for optimization. The robust approach additionally uses

RANSAC to apply the best model for pose estimation before the data is passed to

the Bundler.

The execution of each experiment requires the following steps:

(1) generation of the reference data,

(2) robust pose estimation with the reference data,

(3) robust pose estimation with all MSaM inliers,

(4) non-robust pose estimation with the reference data,

(5) non-robust pose estimation with all MSaM inliers for comparison,

(6) subset generation from the reference data by STA evaluation,

(7) subset generation from all MSaM inliers by STA evaluation,

(8) robust pose estimation with the STA subset data,

(9) non-robust pose estimation with the STA subset data.

6.1.1 Generation of the Reference Data

We build on the data retrieved by MSaM introduced in chapter 3. First, any outliers

identified by MSaM are neglected. To assure that no moving foreground object

contributes to the stationary background data (e.g. in case an object is not detected

entirely), any remaining inliers located on a moving foreground object are manually

removed.
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6.1.2 Robust Pose Estimation with the Reference Data

From the manually generated reference data, the observer’s pose is generated ro-

bustly. We start by selecting the best point features regarding to their stereo-

correspondences. For that purpose, a 2D-homography RANSAC robustly fits an

appropriate homography-model and its supporting point features. By that it is en-

sured, that point features with correct stereo-correspondences are selected only. We

use the 2D-homography algorithm RANSAC by Kovesi [Kov]. The point features se-

lected by the 2D-homography RANSAC are passed as input to a 3D-pose RANSAC.

The 3D-pose RANSAC is a modified version of Kovesi’s RANSAC [Kov]. It robustly

fits a pose model per frame, i.e. we gain the relative observer motion per frame.

Furthermore, as a post processing step, the obtained observer poses are optimized

with the robust Bundle Adjustment implementation by Klein et al. [KM07]. The

resulting observer motion is used as reference, i.e. any other experimental results

are compared with this data.

6.1.3 Robust Pose Estimation with all MSaM inliers

We proceed as described in subsection 6.1.2, i.e. we select the 2D point corre-

spondences returned by the 2D-homography RANSAC after robust model fitting,

compute the pose with the point features derived from the 3D-pose RANSAC, and

apply the robust Bundle Adjustment implementation. However, eventually appear-

ing wrong inliers are not removed from the data set as described in 6.1.1, i.e. all

MSaM inliers are used as input. In all the experiments, the outcome is compared

with the reference observer poses, which are derived as described in subsection 6.1.2.

6.1.4 Non-Robust Pose Estimation with the Reference

Data/all MSaM inliers

In contrast to the procedure in subsections 6.1.2 and 6.1.3, the 2D-homography

RANSAC and the 3D-pose RANSAC are skipped in this case. Either the reference

data or all MSaM inliers is used as input. We triangulate all point correspondences
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and compute the pose with all 3D point features appearing in two subsequent frames.

Then, the robust Bundler by Klein et al. [KM07] is applied to achieve the results.

The outcome is compared to the reference observer poses, which are derived as

described in subsection 6.1.2.

6.1.5 Subset Generation from Reference Data

As explained in chapter 5, the appearance change information of point features is

collected over time with the STA descriptors. This data is evaluated by the minimum

entropy, the Lyapunov exponent, and the minimum variance. All three evaluation

methods are applied to both, STA1 and STA2 descriptors. Here, we analyze the

STA descriptors of the reference data generated as described in subsection 6.1.1 and

generate subsets of the best n point features with each STA descriptor evaluation

method. The amount n of taken point features per subset is scene dependent. It

depends on the amount of the available point features which correlate with texture

available in the scene and the image dimensions.

6.1.6 Subset Generation from All MSaM Inliers

We proceed as described in subsection 6.1.5. Different subsets are generated by per-

forming STA histogram statistics evaluation with the minimum entropy, the Lya-

punov exponent, and the minimum variance. However, these subsets are generated

from the entire MSaM inlier data.

6.1.7 Robust Pose Estimation with the STA Subset Data

By generating the subsets, twelve different subsets are gained:

• Minimum entropy subset on STA1 and STA2, applied to the reference data as

well as to all MSaM inliers.

• Lyapunov exponent subset on STA1 and STA2, applied to the reference data

as well as to all MSaM inliers.
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• Minimum variance subset on STA1 and STA2, applied to the reference data

as well as to all MSaM inliers.

For each subset, the observer pose is estimated as described in subsection 6.1.2.

Solely the input data differs, i.e. each subset of point features generated by the STA

evaluation methods is used as input.

6.1.8 Non-Robust Pose Estimation with the STA Subset

Data

The robust pose estimation with each of the twelve subsets is similar to the non-

robust estimation described in subsection 6.1.4. One subset per run is used as input

data. Neither the 2D-homography RANSAC nor the 3D-pose RANSAC is applied.

After all, the robust Bundle Adjustment implementation by Klein et al. [KM07] is

applied to the data.

6.2 Experiments

The experimental setup requires three parameters to set. The first parameter spec-

ifies the maximum distance a point feature is allowed to be distanced from the

observer. For all experiments we set this distance threshold to 100 m. The second

parameter sets the threshold for the homography estimation by RANSAC [Kov].

As the 2D-coordinates are normalized so that their mean distance is
√

2 from the

origin, this threshold is a relative value. We set this parameter to 0.1 for all ex-

periments. The third parameter represents a threshold for the 3D-pose RANSAC.

The used 3D-pose RANSAC is adaptive, i.e. if not enough inliers are found, the

algorithm adaptively increases this threshold. Thus, this threshold represents the

hardest constraint on retrieving a pose model. If not enough point features support

this model (due to the hard constraint) the threshold is increased and the RANSAC

again tries to retrieve an appropriate model. By that it is ensured that the 3D-pose

RANSAC is applicable to different scenes with different reconstruction qualities. For
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all experiments this threshold is set to 25 mm. In general, all three parameters are

set equally for all experiments.

In this section, four selected experiments are shown. The first experiment is an

indoor setup to illustrate the basic proceedings and results. Experiments 2, 3 and

4 cover street sequences with one moving observer and various moving foreground

objects. We use the generated reference data, the MSaM inlier data, and the data

gained by the various STA evaluation methods introduced in chapter 5 to estimate

the observer pose and compare it to reference observer motion computed with the

reference data. We expect the robust pose estimation by STA evaluated data to

provide similar results as the estimated poses derived from the reference data. Fur-

thermore, the non-robust pose estimation by STA data is expected to outperform

the non-robust pose estimation with all MSaM inliers. To validate the observer

poses retrieved by the reference data, the results of experiments 2, 3, and 4 are

compared with the GPS data provided by the Karlsruhe dataset [Gei].

As each of the experiments consists of comprehensive data, only the first experi-

ment contains all figures. For the other experiments, the figures are attached in the

appendix.

6.2.1 Experiment VMG Lab 01

This experiment uses the stereo dataset VMG Lab 01 (see section 2.3). The scene

consists of 180 frames. However, the reconstruction starts at frame 5 due to the

subsets derived by STA evaluation. Point features have to have a certain minimum

trajectory length to provide reliable appearance change information. As mentioned

in subsection 6.1.5, the subsets have a certain size of n which depends on the ex-

periment. For this experiment, each subset has a size n = 50, i.e. in each frame the

50 most relevant point features according to the selected STA histogram statistics

evaluation are chosen. I.e., for the minimum entropy subset, the 50 point features

with the lowest entropy are selected.

Figure 6.1 illustrates the estimated observer motion for the reference data (left)

and for all MSaM inliers (right).
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Figure 6.1: ExperimentVMG Lab 01: Robust pose estimation with the reference data
only (left) and with all MSaM inliers (right). Estimated camera poses (green triangles),
estimated structure (blue circles).

This experiment contains 16 evaluations. First, the observer pose is computed

from the reference data and all MSaM inliers robustly (see fig. 6.1) and non-robustly,

which leads to 4 evaluations. Second, the observer pose is computed with data

gathered by analyzing the reference data with the minimum entropy, the Lyapunov

exponent, and the minimum variance on both, the STA1 and STA2 descriptors of

the point features. This leads to six evaluations. Finally, step 2 is repeated on all

MSaM inliers, again leading to 6 evaluations.

This sequence is a controlled setup from the lab. Thus, the observer does not

move rapidly and only within a couple of centimeters. Furthermore, the observer

moves sidewards most of the time. As MSaM detects most of the outliers in this

scene, we are expecting the robust observer motion estimations from the reference

data and all MSaM inliers to be very similar (see fig. 6.1). Also, all robust pose

estimations from any STA subset should deliver similar results compared to the

reference data. Additionally, we are expecting the non-robust pose estimations of

any subset retrieved from STA evaluation as well as all MSaM inliers to be reliable

yet a little bit more imprecise.

The experimental evaluation is structured as follows: first, a subsection with all
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evaluations on the reference data gives detailed results on the pose estimation of each

STA derived subset computed robustly and non-robustly. In general, for each evalu-

ation the mean distance difference compared to the reference observer pose (derived

by the reference data) as well as the variance of the distance difference are shown.

While the mean distance shows the average distance to the reference observer pose,

the variance reflects the stability of the observer pose estimation compared to the

reference observer pose. I.e., a large variance implies a very different observer motion

behavior compared to the reference observer pose. Second, a subsection contains

all evaluations on all MSaM inliers. This section again contains all STA derived

subsets. However, they were generated by analyzing the MSaM inliers instead of

the reference data. All the evaluations are again compared with the reference data.

6.2.1.1 Reference Data Evaluation

Table 6.1 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. Table 6.2 contains the mean L2 norm pose

distances in m of the reference data, the minimum entropy subset, the Lyapunov

exponent subset, and the minimum variance subset compared to the reference data.

Each subset provides four measures: each evaluation was applied on STA1 and STA2

and were computed robustly and non-robustly. Table 6.3 shows the variance of the

distances. Again the poses retrieved from the the reference data as well as the three

STA subsets derived by the minimum entropy, the Lyapunov exponent, and the

minimum variance are compared to the reference data. As in table 6.2, the STA

subsets have four evaluations, depending on STA1 or STA2 evaluation as well as on

robust or non-robust computation.

Figure 6.2 illustrates the non-robust pose estimation results of the STA2 mini-

mum entropy subset, the STA2 Lyapunov exponent subset, and the STA2 minimum

variance subset. One can clearly see the relation between variances of distances (see

table 6.3) and the pose estimation results. For small variances, the result deteriorate.

Larger variances of distances indicate that the pose estimation failed.

As the observer poses retrieved by the robust computation with the reference
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data is identical to the reference observer poses computed as described in subsec-

tion 6.1.2, both the mean distance in table 6.2 and the variance in table 6.3 are zero.

This holds for all experiments.

Figures 6.3 to 6.5 illustrate the robustly reconstructed observer pose by the

minimum entropy, the Lyapunov exponent, and the minimum variance. As expected,

all robust pose estimations provide very similar observer pose estimations. Solely

the Lyapunov exponent subset applied to STA1 does not give any result. This is

due to insufficient common point features in two subsequent frames required for pose

estimation. I.e., with this subset it was not possible to estimate the observer pose

over the entire sequence.

Table 6.1: Experiment VMG Lab 01: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 40.49 - 40.46
STA2 39.46 23.46 40.47

Table 6.2: Experiment VMG Lab 01: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation of the reference data and the reference data in
m.

Table 6.3: Experiment VMG Lab 01: Variance of distances between non-
robust/robust STA1 and STA2 evaluation the reference data and the reference data in
m2.
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Figure 6.2: Experiment VMG Lab 01: Non-robust pose estimation results of the
STA2 minimum entropy subset (left), the STA2 Lyapunov exponent subset (center), and
the STA2 minimum variance subset (right). Estimated camera poses (green triangles),
estimated structure (blue circles). The non-robust pose estimation with STA2 Lyapunov
exponent subset and the STA2 minimum variance subset failed.

Figure 6.3: Experiment VMG Lab 01: Robustly estimated pose with the STA1 min-
imum entropy (left) and the STA2 minimum (right) subset generated from the reference
data. Estimated camera poses (green triangles), estimated structure (blue circles).

6.2.1.2 All MSaM Inliers Evaluation

Table 6.4 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. Table 6.5 contains the mean L2 norm pose

distances in m of all MSaM inliers compared to the reference data, the minimum

entropy subset, the Lyapunov exponent subset, and the minimum variance subset.

Again, the subsets provide four measures: each evaluation was applied on STA1 and
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Figure 6.4: Experiment VMG Lab 01: Robustly estimated pose with the STA2 Lya-
punov exponent subset generated from the reference data. Estimated camera poses (green
triangles), estimated structure (blue circles). The evaluation of the STA1 Lyapunov ex-
ponent subset failed.

Figure 6.5: Experiment VMG Lab 01: Robustly estimated pose with the STA1 min-
imum variance (left) and the STA2 minimum variance (right) subset generated from the
reference data. Estimated camera poses (green triangles), estimated structure (blue cir-
cles).

STA2 and were computed robustly and non-robustly. Table 6.6 shows the variance of

the distances. The estimated poses generated with the three STA subsets derived by

all MSaM inliers, the minimum entropy, the Lyapunov exponent, and the minimum

variance are compared to the reference data. As in table 6.5, the STA subsets have

four evaluations, depending on STA1 or STA2 evaluation as well as on robust or

non-robust computation.

In contrast to the reference data evaluation, the robust computation with all
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MSaM inliers is not equal to the reference observer poses (see subsection 6.1.2). I.e.,

the set of all MSaM inliers contains point features which are falsely identified as

inliers. The reference data does not contain these point features.

Table 6.4: Experiment KIT Seq 01: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 31.27 - 26.19
STA2 28.45 16.35 29.45

Table 6.5: Experiment VMG Lab 01: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation of all MSaM inliers and the reference data in
m.

Table 6.6: Experiment VMG Lab 01: Variance of distances between non-
robust/robust STA1 and STA2 evaluation of all MSaM inliers and the reference data
in m2.

Figure 6.6 illustrates the non-robust pose estimation results of the STA2 mini-

mum entropy subset, the STA2 Lyapunov exponent subset, and the STA2 minimum

variance subset. Again, the relation between the variances of distances (see ta-

ble 6.6) and the pose estimation results can be clearly seen. For small variances, the

result deteriorate. Larger variances of distances indicate that the pose estimation

failed.
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Figure 6.6: Experiment VMG Lab 01: Non-robust pose estimation results of the
STA2 minimum entropy subset (left), the STA2 Lyapunov exponent subset (center), and
the STA2 minimum variance subset (right). Estimated camera poses (green triangles),
estimated structure (blue circles). The non-robust pose estimation with minimum variance
subset and the minimum entropy subset fails.

As expected, all robust pose estimations provide very similar observer pose esti-

mations. They are similar to those gained by the reference data. At a first glance,

the mean differences of the non-robust pose estimations (table 6.5) seem to yield

similar results compared to those of the reference data (table 6.2). The minimum en-

tropy subset and the variance subset provide a better pose estimation when applied

on the reference data (table 6.3). In contrast, the STA2 Lyapunov exponent subset

is able to reconstruct the observer pose when applied on all MSaM data, while it

fails in case of the reference data. But one has to take this result with care, as only

an average of 16.35 common point features were available in two subsequent frames

throughout the scene. The STA1 Lyapunov exponent subset failed again, as not

enough common point features were available. This is due to insufficient common

point features in two subsequent frames required for pose estimation. Figures 6.7

to 6.9 illustrate the robustly reconstructed observer pose by the minimum entropy,

the Lyapunov exponent, and the minimum variance.
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Figure 6.7: Experiment VMG Lab 01: Robustly estimated pose with the STA1 min-
imum entropy (left) and the STA2 minimum entropy (right) subset generated from all
MSaM inliers. Estimated camera poses (green triangles), estimated structure (blue cir-
cles).

Figure 6.8: Experiment VMG Lab 01: Robustly estimated pose with the STA2 Lya-
punov exponent subset generated from the reference data. Estimated camera poses (green
triangles), estimated structure (blue circles). The evaluation of the STA1 Lyapunov ex-
ponent subset failed.

6.2.2 Experiment KIT Seq 01

This experiment uses the dataset KIT Seq 01 (see section 2.7). The complete scene

consists of 180 frames. As the subsets are generated by analyzing appearance change

over time, a certain minimum information is required. In our case, we require the

appearance change information of a point feature for at least 5 frames to start to

evaluate, i.e. we start at frame 5. The STA subset size is 100 per frame, i.e. the
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Figure 6.9: Experiment VMG Lab 01: Robustly estimated pose with the STA1 min-
imum variance (left) and the STA2 minimum variance (right) subset generated from all
MSaM inliers. Estimated camera poses (green triangles), estimated structure (blue cir-
cles).

100 best point features according to a specific STA histogram evaluation method

are chosen per frame. E.g. for the minimum entropy, the 100 point features with

the lowest entropy are chosen.

The reference observer motion is solely computed on point features which are

located on the stationary background, i.e. the manually generated reference data.

Figure 6.10 illustrates the estimated observer motion with the reference data (left)

and all MSaM inliers (right). As some of the MSaM inliers are located on moving

objects, the scene reconstruction diverges from the scene reconstructed with the

reference data.

Fortunately, this dataset provides metric GPS data which can be used for com-

parison of the visual odometry data. The GPS coordinate system is a right-hand

coordinate system, our visual odometry coordinate system is a left-hand coordinate

system. Additionally, the cameras are mounted with a pitch of −4.6◦ and the axes

are not aligned properly, i.e. converting the GPS coordinate system to a left-hand

coordinate system and aligning solely the origin of the coordinate systems is in-

sufficient. Rather, the rotation ∆R between the two coordinate systems has to be

computed, including the pitch of −4.6◦ of the cameras. Figure 6.11 shows the X/Y

view (left) and X/Z view (right). The reference observer pose (retrieved from the

reference data) is illustrated in green, the metric GPS information (aligned at the
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Figure 6.10: Experiment KIT Seq 01: Robust estimation of the observer pose with
the reference data (left) and all MSaM inliers (right). Estimated camera poses (green
triangles), estimated structure (blue circles).

Figure 6.11: Experiment KIT Seq 01: GPS reference data (blue), GPS reference data
aligned with visual odometry coordinate system (black), stationary background reference
data (green). X/Y view (left), X/Z view (right).

origin of our visual odometry coordinate system) is shown in blue. The aligned and

rotated GPS information is shown in black.

As stated on the Karlsruhe dataset [Gei] homepage, the GPS data is not always

as precise as it should be. Comparing the pictures of the sequence with the GPS

data, the GPS data should show an observer motion turn of approximately 90◦.

We believe, that around z = 35m the GPS data deteriorate. This assumption is

supported by a saddle point at x = 5m, z = 34m (see fig. 6.11, right, black line).
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Table 6.7 contains the mean distance between the reference observer pose and

the GPS data as well as the variance of the difference between the observer pose

reference data and the GPS data. The low variance value indicates a similar shape

of both GPS and visual odometry.

Table 6.7: Experiment KIT Seq 01: Comparison of GPS coordinates with the refer-
ence data.

Mean L2 norm pose distance in m Variance of distances in m2

3.49 2.07

6.2.2.1 Reference Data Evaluation

Table 6.8 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. The average common point feature set is

similar for the minimum entropy subset and the minimum variance subset. The

Lyapunov exponent subset provides fewer common point features in two successive

frames. I.e., in each frame, the Lyapunov exponent prefers point features with short

trajectories.

Table 6.9 contains the mean L2 norm pose distances in m of the reference data

and the three subsets data compared to the reference data. The non-robust pose

estimation with all point features of the reference data fails (indicated by the high

mean L2 norm value). Obviously, some point features with wrong stereo correspon-

dences falsify the pose estimation process. Table 6.10 shows the variance of the

distances. The variance of distances indicates that any non-robust pose estimation

provides deteriorate results. The STA1 minimum variance subset fails to estimate

the observer pose.

With the reference data, all subsets recover the shape of observer motion. In

terms of mean distance difference, the robust computation with the minimum en-

tropy subset on STA1 and the Lyapunov exponent subset on STA1 performs best.

The variance of the STA1 Lyapunov exponent subset in table 6.10 is larger than the

variance of the STA1 minimum entropy subset. This effect is also visible in the pose
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Table 6.8: Experiment KIT Seq 01: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 49.05 19.25 49.91
STA2 52.66 22.93 49.48

Table 6.9: Experiment KIT Seq 01: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation the stationary background data and the ref-
erence data in m.

Table 6.10: Experiment KIT Seq 01: Variance of distances between non-
robust/robust STA1 and STA2 evaluation the stationary background data and the ref-
erence data in m2.

estimation result (see fig. A.1 and A.1). The lower the variance in table 6.10, the

better the pose estimation. One can also see, that the minimum variance subset of

STA1 performs worse than the minimum variance subset of STA2. This is valid for

both, the mean L2 norm in table 6.9 and the variance in table 6.10.

The non-robust computation of the observer poses with the reference data fails.

Compared to the reference data, the non-robust computation with any subset pro-

vides significantly better results. Still these results are imprecise (high variance, see

table 6.10). For both Lyapunov exponent subsets, but especially for the STA1 Lya-

punov exponent subset, the average common point feature set is very low. One can

observe, that in case of non-robust observer pose estimation the Lyapunov exponent
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subsets yields better results than the minimum entropy subset, which gives the best

results in case of robust observer pose estimation.

In case of robust pose estimation, the minimum entropy subsets outperform the

Lyapunov exponent subsets due to the higher common point feature set within two

subsequent frames. The robust pose estimation with any subset provides a very low

mean difference distance to the reference data. The best results in terms of mean

difference distance and variance of the distance are provided by the STA1 minimum

entropy, the STA1 Lyapunov exponent, and the STA2 minimum variance subset.

Figures A.1 to A.3 illustrate the robustly reconstructed observer pose with the

minimum entropy, the Lyapunov exponent, and the minimum variance.

6.2.2.2 All MSaM Inliers Evaluation

Table 6.11 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. Table 6.12 contains the mean L2 norm

pose distances in m of all MSaM inliers and the three subsets. Table 6.13 shows

the variance of the distances. Figures A.4 to A.6 illustrate the robustly computed

observer pose by the minimum entropy, the Lyapunov exponent, and the minimum

variance.

Table 6.11: Experiment KIT Seq 01: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 45.41 16.98 42.73
STA2 51.87 20.97 48.45

In contrast to experiment VMG Lab 01, which had a controlled setup, this experi-

ment highlights discrepancies between the observer pose estimation on the reference

data and on all MSaM inliers. I.e., the non-robust computation of the observer

motion with subsets of all MSaM inliers fails. Only the STA1 minimum entropy

subset provides a usable observer pose estimation in terms of the observer motion

shape. However, the variance of the distance (see table 6.13) indicates irregularities
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Table 6.12: Experiment KIT Seq 01: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation of all available data and the reference data in
m.

Table 6.13: Experiment KIT Seq 01: Variance of distances between non-
robust/robust STA1 and STA2 evaluation of all available data and the reference data
in m2.

in the motion. Robustly computed, the STA1 minimum entropy subset performs

best again (see fig. A.4, left). It is the only subset, which provides useful data

on the observer’s pose. However, the variance of the STA1 minimum entropy (see

table 6.13) shows some motion irregularities.

Obviously, more outliers than in experiment VMG Lab 01 remained in the set

of MSaM inliers. With the robust observer pose estimation, the subsets allow to

recover a similar observer motion shape. However, the variances of the distances

(see table 6.13) show a major deviation from the reference data.

6.2.3 Experiment KIT Seq 02

This experiment uses the dataset KIT Seq 03 (see section 2.8). The sequence consists

of 85 frames. As in experiment KIT Seq 01, a certain minimum appearance change

information is required to have reliable information at hand. I.e., while appearance

change information collection starts at frame 1, the STA histogram statistics eval-

uation starts at frame 5. Again, the STA subset size is 100 per frame, i.e. the 100
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best point features according to a specific STA histogram evaluation method are

chosen per frame.

The reference observer motion is again estimated by using point features located

on the stationary background, i.e. the reference data. Figure A.7 illustrates the

estimated observer motion retrieved by the reference data (left) and all MSaM inliers

(right). Figure A.8 shows the X/Y view (top) and X/Z view (bottom) of the visual

odometry observer poses (green) as well as the metric GPS information (blue) and

the aligned and rotated GPS information (black).

In contrast to experiment KIT Seq 02 the GPS data seem to be more accurate in

this sequence. Table 6.14 contains the mean distance between the reference observer

pose and the GPS data as well as the variance of the difference between the observer

pose reference data and the GPS data. The variance value close to zero indicates a

very similar shape of both GPS data and visual odometry.

Table 6.14: Experiment KIT Seq 02: Comparison of GPS coordinates with the sta-
tionary background reference data.

Mean L2 norm pose distance in m Variance of distances in m2

0.18 0.01

6.2.3.1 Reference Data Evaluation

Table 6.15 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. Table 6.16 contains the mean L2 norm pose

distances in m, table 6.17 shows the variance of the distances. While the non-robust

pose estimation with all point features of the reference data fails, all subsets allow a

reliable non-robust observer pose estimation. With the robust pose estimation, the

observer pose estimation is possible with the reference data and all subsets.

Figures A.9 to A.11 illustrate the robustly computed observer pose by the min-

imum entropy, the Lyapunov exponent, and the minimum variance.
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Table 6.15: Experiment KIT Seq 02: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 74.94 14.72 62.91
STA2 76.00 36.14 70.78

Table 6.16: Experiment KIT Seq 02: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation the stationary background data and the refer-
ence data in m.

Table 6.17: Experiment KIT Seq 02: Variance of distances between non-
robust/robust STA1 and STA2 evaluation the stationary background data and the ref-
erence data in m2.

6.2.3.2 All MSaM Inliers Evaluation

Table 6.18 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. Figures A.12 to A.14 illustrate the robustly

computed observer pose by the minimum entropy, the Lyapunov exponent, and the

minimum variance.

Table 6.19 contains the mean L2 norm pose distances in m, table 6.20 shows the

variance of the distances. The non-robust estimation with the STA2 minimum vari-

ance subset performs best. The non-robust pose estimation with all MSaM inliers

as well as the STA1 minimum entropy subset fails. The non-robust estimation with
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the STA1 Lyapunov exponent subset and the STA1 minimum variance subset dete-

riorates. In case of a robust pose estimation, the STA2 minimum variance subsets

performs best, followed by the STA2 and the STA1 entropy subsets. The robust pose

estimation with the STA1 Lyapunov exponent subset fails. The robust estimation

with the STA2 Lyapunov exponent subset and the STA1 minimum variance subset

deteriorates.

Figures A.12 to A.14 illustrate the robustly computed observer pose by the min-

imum entropy, the Lyapunov exponent, and the minimum variance.

Table 6.18: Experiment KIT Seq 02: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 74.46 12.91 58.59
STA2 75.14 31.24 69.90

Table 6.19: Experiment KIT Seq 02: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation of all available data and the reference data in
m.

Table 6.20: Experiment KIT Seq 02: Variance of distances between non-
robust/robust STA1 and STA2 evaluation of all available data and the reference data
in m2.
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6.2.4 Experiment KIT Seq 03

This experiment uses the dataset KIT Seq 03 (see section 2.9). It consists of 99

frames. As with all experiments in this section, we start the STA histogram statistics

evaluation at frame 5, having reliable appearance change information of at least 5

frames. The STA subset size is 100 per frame, i.e. the 100 best point features

according to a specific STA histogram evaluation method are chosen per frame.

The reference observer motion is again estimated by using point features located

on the stationary background, i.e. the manually generated reference data. Fig-

ure A.15 illustrates the estimated observer motion of the reference data (i.e. the

reference observer motion, left) and all MSaM inliers (right).

Figure A.16 shows the X/Y view (top) and X/Z view (bottom) of the visual

odometry observer poses (green) as well as the metric GPS information (blue) and

the aligned and rotated GPS information (black).

As with experiment KIT Seq 02, the GPS data of this sequence seem to be ac-

curate. Table 6.21 contains the mean distance between the reference observer pose

and the GPS data as well as the variance of the difference between the observer

pose reference data and the GPS data. The variance value indicates a difference

between the observer motion shape retrieved from the GPS data and visual odome-

try. Indeed, the GPS data shows a similar shape compared to the visual odometry

observer motion. However, the diverging motion lengths in direction of the z-axis

cause the variance value of 14.65m2 (see table 6.21). Due to the low common point

features within two subsequent frames, in this experiment the reference observer

pose estimation seem to deteriorate through the sequence.

Table 6.21: Experiment KIT Seq 03: Comparison of GPS coordinates with the sta-
tionary background reference data.

Mean L2 norm pose distance in m Variance of distances in m2

4.64 14.65
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6.2.4.1 Reference Data Evaluation

Table 6.22 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. Table 6.23 contains the mean L2 norm

pose distances in m, table 6.24 shows the variance of the distances. Any non-robust

observer pose estimation fails. Additionally, the robust poses estimation deteriorates

for all subsets and the reference data. The best results are achieved with the robust

minimum entropy subsets, but the retrieved observer motion shape diverges from the

reference observer motion. However, all subsets allow a more accurate non-robust

pose estimation than achieved with the whole reference data as input for the non-

robust pose estimation. It seems, that the data collected in the scene is worse than

in experiment 3. Especially the right turn of the moving observer around frame 46

seem to make pose estimation hard due to the fast motion and the low frame rate

(only 10 frames per second).

Figures A.17 to A.19 illustrate the robustly computed observer pose by the min-

imum entropy, the Lyapunov exponent, and the minimum variance.

Table 6.22: Experiment KIT Seq 02: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 42.66 19.85 37.98.59
STA2 44.83 23.34 39.40

Table 6.23: Experiment KIT Seq 03: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation the stationary background data and the refer-
ence data in m.
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Table 6.24: Experiment KIT Seq 03: Variance of distances between non-
robust/robust STA1 and STA2 evaluation the stationary background data and the ref-
erence data in m2.

6.2.4.2 All MSaM Inliers Evaluation

Table 6.25 contains the average common point feature set of the minimum entropy

subset, the Lyapunov exponent subset, and the minimum variance subset in two

subsequent frames for STA1 and STA2. Table 6.26 contains the mean L2 norm

pose distances in m , table 6.27 shows the variance of the distances. All subsets

fail to reconstruct the observer pose estimation. But the non-robust subsets provide

significantly better results than using all MSaM inliers or even the reference data

as input for the non-robust pose estimation. As with the reference data, the STA1

minimum entropy subset performs best and achieves similar results even with all

MSaM inliers as input. Thus, with the STA1 minimum entropy subset one achieves

the most similar motion shape compared to the reference observer pose. However,

one can clearly see, that on two positions, the estimated pose jumps considerably

(see fig. A.20, left).

Figures A.20 to A.22 illustrate the robustly computed observer pose by the min-

imum entropy, the Lyapunov exponent, and the minimum variance.

Table 6.25: Experiment KIT Seq 02: Average common point feature sets of the min-
imum entropy subset, the Lyapunov exponent subset, and the minimum variance subset
in two successive frames for STA1 and STA2.

Entropy Lyapunov Variance
STA1 43.27 18.09 34.67
STA2 42.25 21.96 39.63
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Table 6.26: Experiment KIT Seq 03: Mean L2 norm pose distance between non-
robust/robust STA1 and STA2 evaluation of all available data and the reference data in
m.

Table 6.27: Experiment KIT Seq 03: Variance of distances between non-
robust/robust STA1 and STA2 evaluation of all available data and the reference data
in m2.

6.3 Summary

In this chapter we evaluated the outcome of the observer pose estimation in several

ways. The stationary background data were manually selected out of the MSaM

inlier data and appearance-change-based point feature subsets were generated, ini-

tially introduced in chapter 5. We showed, that taking out subsets of both, the

reference data and all MSaM inlier data (which may contain false inliers), observer

motion estimation is possible in many cases.

Two different estimation procedures were introduced: a robust motion estimation

and a non-robust motion estimation. The robust observer pose estimation uses

RANSAC algorithms for model fitting and global Bundle Adjustment for optimizing

the result in a post-processing step. The non-robust motion estimation, solely uses

Bundle Adjustment. The non-robust observer pose estimation shows, that any point

feature subset generated by appearance change analysis gives a more precise result

than using either the whole reference data or all the MSaM inliers as input. The non-

robust observer pose estimation failed most of of the time with both the reference
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data and all MSaM inliers. For the robust observer pose estimation, our results

showed a wider range of possibilities. For two out of four experiments very similar

results were gained. One experiment gave similar results, however depending on

the subset, the result deteriorate from the reference data. Finally, one experiment

allowed us to robustly estimate the observer poses with the whole reference data,

but failed to give similar results with either one of the subsets or all MSaM inliers.

6.4 Conclusion

Focusing on the subsets, the robust STA1 minimum entropy subset provided the

most reliable data for observer pose estimation. As the Lyapunov exponent uses

the entropy as input, we expected the STA1 Lyapunov exponent subset to achieve

similar results as the STA2 minimum entropy subset. We assumed this, as the

STA2 descriptor describes the distribution of each bin of the STA1 descriptor, i.e.

it models an entropy change over time. The Lyapunov exponent models the change

of information per definition (first order derivative). The data evaluation with the

Lyapunov exponent did not meet our expectations, as the STA1 and STA2 Lyapunov

exponent subsets performed worse than the entropy subsets.

As shown in the experiments, the Lyapunov exponent subset has always fewer

common inter-frame point features than the minimum entropy and minimum vari-

ance subset. I.e., applying the Lyapunov exponent on all point features and re-

trieving the best n point features, the point features may vary significantly in two

successive frames. On the other hand, performing a non-robust pose estimation,

the STA1 Lyapunov exponent provides similar results than the minimum entropy

(except in experiment 6.2.2, all MSaM inliers evaluation).

The bad performance of the robust pose estimation with the Lyapunov exponent

subsets is due to the model selection algorithm (RANSAC) performed by the robust

pose estimation approach. While the non-robust pose estimation approach uses

all point features provided by a subset for pose estimation, the model selection

algorithm selects only those point features, which fit to the selected model. I.e., too

little information is provided for the model generation by the Lyapunov exponent
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subset.

To address the Lyapunov exponent issue, the information gathering of the ap-

pearance change (i.e. the subset generation) has to be modified. Instead of analyzing

the point feature trajectories online, one can use the point features’ whole trajec-

tories for subset generation. I.e., the subset generation can be performed in a post

processing step, having all the appearance change information at hand. By that,

the low common point feature set in two successive frames can be increased for the

Lyapunov exponent subset. Within the scope of this thesis, there have only been

investigations on the online appearance change analysis.

With the proposed online appearance change handling of point features, we can

state:

• The STA minimum entropy subsets perform best for tracking good features to

track.

• The results of the STA2 minimum variance subsets are similar to the STA

minimum entropy subsets.

• The STA1 minimum variance subset is not suited for identifying good features

to track.

• The Lyapunov exponent subsets are inapplicable for pose estimation (due to

the online appearance change handling).

• But: any subset provides significantly better results than using all MSaM

inliers or even the reference data as input for the non-robust pose estimation.



7
Discussion

7.1 Summary

In this thesis we presented a practical MSaM system with various extensions. First

we explained, how to extend a SaM/SLAM to MSaM. We showed, that this extension

can be done by a geometry-based approach. For certain tasks (e.g. re-identifying lost

point features), we introduced a descriptor-based solution. By extending SaM/S-

LAM to MSaM, our system is able to identify independent foreground motion. Sec-

ond, we extended our MSaM to classify the foreground motion. We modularly added

a 2D detector and tracker for persons. Together with a feedback control system, the

2D person detector and tracker module was able to communicate with MSaM. This

extension enriches our MSaM in two ways: (i) certain classes of moving objects

can be identified and classified and (ii) in case of a sub-part detection of a mov-

ing object, the whole object can be identified. Third, we analyzed the stationary

background information. By using a descriptor relying on appearance change in-

formation, we evaluated this information by certain histogram statistics evaluation

methods. We gained various subsets of point features out of the all point features.

121
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We used these subsets for observer pose estimation and compared the outcome to

the reference data, i.e. all point features located on the stationary background. We

found out, that the observer pose estimation works with few stable, stationary point

features too, provided that the visual odometry data does not contain major error

sources (e.g. motion blur, low frame rate). For each implementation or extension

we provided experiments, where we tested the particular development.

7.2 Limitations

The introduced MSaM relies on point features. I.e., if point features cannot be es-

tablished in images due to several reasons (bad lighting conditions, uniformly colored

environment, etc.), the estimation of the observer pose and the scene reconstruction

will fail. A map generation introduced by Klein and Murray [KM08] would lead

to satisfying results in case of a few point features only. However, this approach is

limited to stationary scenes only. We are analyzing the 3D information available

from the scene. For plenty of foreground motion types our approach achieves good

results. We are not explicitly handling actions like merging and splitting of multiple

foreground motion objects. I.e, we are not able to provide a motion model for such

actions. However, identifying the splitting and merging is possible due to the 3D

information, we just cannot predict it. Another point to be discussed here, is not

a limitation of the system itself, but more a limitation of the thesis. Most of the

image sequences processed are stereo. I.e. one gains access to the 3D information

by epipolar geometry. It would be nice to test the system on monocular sequences

too (in fact, some monocular sequences were processed). This does not necessarily

mean to change the deployed MSaM. It would be sufficient to modify or replace the

SaM algorithm on which the MSaM is built. Indeed, the routine for point feature

correspondences between two images has to be rewritten.
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7.3 Impact on the State-of-the-Art

Our MSaM benefits from processing full 3D information. In contrast, Ozden et

al. [OSG10] process 2D information for foreground motion clustering only. They

claim, that 3D information processing for the model hypothesis generation would

not work in real time. In fact, their approach contains a comprehensive foreground

motion model predictor. With that, they are able to predict actions like merging

and splitting. Having full 3D information available, we cannot predict actions, but

are able to handle them.

By identifying independent foreground motion, one could think of replacing

the training phase of a semi-supervised approach by observing and classifying mo-

tion by MSaM. MSaM identifies the independently moving objects. Then, appear-

ance information could be collected and classified automatically, e.g. with random

ferns [OCLF10].

The task of identifying good features to track in my opinion is a very essential and

important one. As Shi and Tomasi [ST94] stated, appearance change information

of point features can provide useful hints for recognizing good features to track.

As shown in this thesis, it is possible to retrieve certain point features due to their

appearance change information and estimate the observer pose with them. However,

one has to keep in mind that the appearance change information is highly related

to the quality of an image sequence (e.g. frame rate, resolution, etc.).



A
Appendix

To provide a clear structure for the reader in chapter 6, figures of coherent data were

moved to the appendix. While the first experiment contains all figures, the remaining

three experiments refer to the respective figures in the appendix. The figures show

the reconstructed scene and the estimated observer motion, either estimated with

all available point features or with certain subsets retrieved from three different

evaluation methods. Other figures compare available GPS information with the

estimated observer motion.
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Figure A.1: Experiment KIT Seq 01 (reference data): Robustly estimated pose
with the STA1 minimum entropy (left) and the STA2 minimum entropy (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). Of all subsets, the estimation with the STA1 minimum entropy
(left) performs best.

Figure A.2: Experiment KIT Seq 01 (reference data): Robustly estimated pose
with the STA1 Lyapunov exponent (left) and the STA2 Lyapunov exponent (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). Only the STA1 minimum variance has worse results than the
STA2 Lyapunov exponent (right).
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Figure A.3: Experiment KIT Seq 01 (reference data): Robustly estimated pose
with the STA1 minimum variance (left) and STA2 minimum variance (right) subset gen-
erated from the reference data. Estimated camera poses (green triangles), estimated struc-
ture (blue circles). Of all subsets, the estimation with the STA1 minimum variance (left)
performs worst. The STA2 minimum variance (right) provides the second best results
after the STA1 minimum entropy.

Figure A.4: Experiment KIT Seq 01 (all MSaM inliers): Robustly estimated pose
with the STA1 minimum entropy (left) and the STA2 minimum entropy (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). Only with the STA1 minimum entropy (left) the pose estimation
provides an acceptable - but still deteriorated - result.
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Figure A.5: Experiment KIT Seq 01 (all MSaM inliers): Robustly estimated pose
with the STA1 Lyapunov exponent (left) and the STA2 Lyapunov exponent (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). With both subsets, the pose estimation fails.

Figure A.6: Experiment KIT Seq 01 (all MSaM inliers): Robustly estimated pose
with the STA1 minimum variance (left) and the STA2 minimum variance (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). With both subsets, the pose estimation fails.
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Figure A.7: Experiment KIT Seq 02: Robust pose estimation with the reference data
only (left) and with all MSaM inliers (right). Estimated camera poses (green triangles),
estimated structure (blue circles).
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Figure A.8: Experiment KIT Seq 02: GPS reference data (blue), GPS reference data
aligned with visual odometry coordinate system (black), stationary background reference
data (green). X/Y view (top), X/Z view (bottom).
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Figure A.9: Experiment KIT Seq 02 (reference data): Robustly estimated pose
with the STA1 minimum entropy (left) and the STA2 minimum entropy (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). The STA2 minimum entropy (right) achieves the best result, fol-
lowed by the STA1 minimum entropy (left), which performs similar to the STA2 Lyapunov
exponent (see fig. A.10 right).

Figure A.10: Experiment KIT Seq 02 (reference data): Robustly estimated pose
with the STA1 Lyapunov exponent (left) and the STA2 Lyapunov exponent (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). The STA1 Lyapunov exponent provides a slightly deteriorated
result, while the STA2 Lyapunov exponent performs similar to the STA1 minimum entropy
(see fig. A.9 left).
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Figure A.11: Experiment KIT Seq 02 (reference data): Robustly estimated pose
with the STA1 minimum variance (left) and the STA2 minimum variance (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). Even if both minimum variance subsets provide useable results,
the results are worse than those of the minimum entropy subsets (see fig. A.9) and the
Lyapunov exponent subsets (see fig. A.10).

Figure A.12: Experiment KIT Seq 02 (all MSaM inliers): Robustly estimated pose
with the STA1 minimum entropy (left) and the STA2 minimum entropy (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). Robust pose estimation with the STA2 minimum entropy (right)
is more accurate as with the STA1 minimum entropy (left), which provides a slightly
deteriorated result. The STA2 minimum variance subset (see fig. A.14 right) provides the
most accurate pose estimation result.
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Figure A.13: Experiment KIT Seq 02 (all MSaM inliers): Robustly estimated pose
with the STA1 Lyapunov exponent (left) and the STA2 Lyapunov exponent (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). Robust pose estimation with the STA1 Lyapunov exponent (left)
fails. The result of the STA2 Lyapunov exponent subset (right) deteriorates slightly.

Figure A.14: Experiment KIT Seq 02 (all MSaM inliers): Robustly estimated pose
with the STA1 minimum variance (left) and the STA2 minimum variance (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). The STA2 minimum variance subset (right) provides the best
result. The STA1 minimum variance subset (left) performs similar to the STA2 Lyapunov
exponent subset (see fig. A.13 right); both results deteriorate slightly.
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Figure A.15: Experiment KIT Seq 03: Robust pose estimation with the reference data
only (left) and with all MSaM inliers (right). Estimated camera poses (green triangles),
estimated structure (blue circles). The pose estimation with all MSaM inliers (right) fails.
The result of the pose estimation with the reference data (left) deteriorates.



134

Figure A.16: Experiment KIT Seq 03: GPS reference data (blue), GPS reference data
aligned with visual odometry coordinate system (black), stationary background reference
data (green). X/Y view (left), X/Z view (right). The result of the pose estimation with
reference data (green) deteriorates; it has a similar shape but a different length on the
z-axis).
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Figure A.17: Experiment KIT Seq 03 (reference data): Robustly estimated pose
with the STA1 minimum entropy (left) and the STA2 minimum entropy (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). The pose estimation fails with both subsets. However, the STA1
minimum entropy subset (left) provides the best result compared to all other subsets. One
can clearly see the two positions, where the estimated pose jumps considerably.

Figure A.18: Experiment KIT Seq 03 (reference data): Robustly estimated pose
with the STA1 Lyapunov exponent (left) and the STA2 Lyapunov exponent (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). The pose estimation fails with both subsets.
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Figure A.19: Experiment KIT Seq 03 (reference data): Robustly estimated pose
with the STA1 minimum variance (left) and the STA2 minimum variance (right) subset
generated from the reference data. Estimated camera poses (green triangles), estimated
structure (blue circles). The pose estimation fails with both subsets.

Figure A.20: Experiment KIT Seq 03 (all MSaM inliers): Robustly estimated pose
with the STA1 minimum entropy (left) and the STA2 minimum entropy (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). The pose estimation with both subsets fail. However, The STA1
minimum entropy subset (left) provides together with the STA2 minimum variance subset
(see fig. A.22 right) similar results than the STA1 minimum entropy subset (see fig. A.17
left) on the reference data.
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Figure A.21: Experiment KIT Seq 03 (all MSaM inliers): Robustly estimated pose
with the STA1 Lyapunov exponent (left) and the STA2 Lyapunov exponent (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). The pose estimation with both subsets fail.

Figure A.22: Experiment KIT Seq 03 (all MSaM inliers): Robustly estimated pose
with the STA1 minimum variance (left) and the STA2 minimum variance (right) subset
generated from all MSaM inliers. Estimated camera poses (green triangles), estimated
structure (blue circles). The pose estimation with both subsets fail. However, The STA2
minimum variance subset (right) provides together with the STA1 minimum entropy subset
(see fig. A.20 left) similar results than the STA1 minimum entropy subset (see fig. A.17
left) on the reference data.
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