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Abstract

In this work numerical methods for solving non-linear time dependent partial
differential equations arising in the modeling of cardiac electro-mechanics. The
models of cardiac electro-mechanics will be introduced and discussed. For
the discretization a discontinuous Galerkin method will be applied in space
and time, by decomposing the space-time domain into finite elements. An
error analysis for the discretization of the models of the electric activity of
the human heart will be given and numerical examples confirming the proven
estimates will be shown. Furthermore, a discontinuous Galerkin method for the
passive mechanic behavior of human heart tissue will be given and confirming
convergence studies will be presented. Eventually, both methods will be coupled
and the theses concludes with some numerical examples for coupled problems.

Zusammenfassung

In dieser Arbeit werden numerische Lösungsverfahren für nichtlineare zeit-
abhängige partielle Differentialgleichungen besprochen. Insbesondere liegt der
Fokus auf den Modellen der gekoppelten elektromechanischen Aktivität des
menschlichen Herzens. Für die Diskretisierung solcher Probleme wird ein “dis-
continuous Galerkin”-Verfahren in Raum und Zeit angewendet, indem der
gesamte Raumzeitzylinder in finite Elemente zerlegt wird. Eine numerische
Analysis wiewohl auch Konvergenzstudien für die Diskretisierung der Modelle
der elektrischen Aktivität des menschlichen Herzens werden präsentiert. Weit-
ers wird ein “discontinuous Galerkin”-Verfahren für die passive mechanische
Aktivität des menschlichen Herzens vorgestellt und mit numerischen Beispielen
untermauert. Am Ende der Arbeit werden numerische Beispiele zu gekoppelten
Problemen präsentiert.
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1 Introduction

Motivation

The human heart has played an important role for understanding the body since
antiquity. In the fourth century B. C., the Greek philosopher Aristotle identified
the heart as the most important organ of the body. He characterized it as the
seat of many human abilities, such as intelligence, motion and sensation.

During the last millennium, the pursuit of knowledge of the human heart has
gained more importance, not only by a desire to understand the mechanical
and electrochemical processes, but also by the increasing clinical importance.
According to the World Health Organization (WHO) heart diseases are one of
the top ten causes of death in western society, see [137]. Thus, improving the
understanding of the function of the human heart may lead to new techniques
for the diagnosis and treatment of heart problems.

Over the last decades, the amount of information about the mechanisms of the
human heart has rapidly increased. Now one is in the position to observe cellular
and even sub-cellular processes. Nevertheless there remain several unanswered
questions. For example, it is still not clear what happens in a human heart
during defibrillation.

The most prominent and standard tool in cardiology is the electrocardiogram,
abbreviated ECG. It dates back to Wilhem Einthoven, see [59]. However,
in the ECG one deals with the human heart as a black-box and tries to
reconstruct some dipole distribution. This is known as the inverse problem
of electrocardiography, see [93, 94, 174]. Furthermore, one has no possibility
to study complex arrhythmias in the human heart, by just using an ECG.
Nowadays one tries to model the human heart more detailed with sub-cellular
to macroscopic models as well as their coupled interaction. This reflects and
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1 Introduction

is based upon the increasing physiological knowledge about the human heart.
These days it is known that changes in the macroscopic scale of the heart, for
example high blood pressure, acts down to the sub-cellular and the genetic
level but also vice versa. This is a quite new research field know as epigenetics.
For more information about epigenetics we refer to [132].

The newly developed models give the possibility for in silico simulations and
enable studies of heart diseases without harming a human patient. However,
very few attention has been payed to a strict mathematical formulation and
to a numerical analysis. This marks the starting point of this thesis. Our
considerations will start with the state-of-the-art models describing the electro-
mechanical behavior of human heart tissue. Thus one arrives at time-dependent
essentially non-linear coupled systems of partial differential equations. This
serves us as motivation to consider space-time methods.

Space-Time Methods

A classic way of discretizing time-dependent problems is to discretize first in
space with finite elements and afterwards use suitable time stepping techniques.
Seeing this procedure in a space-time setting one obtains tensor product space-
time elements. A schematic view of such a discretization is depicted in Figure
1.1. Such kind of methods have been widely used, see for example [34, 51, 52,
54, 91, 153, 154, 176, 184].

In this thesis we will use a different approach. Based on ideas developed in [129]
we will use a full space-time discontinuous Galerkin finite element
method, abbreviated DGFEM. Space-time discontinuous Galerkin finite
element methods have already been used, see for example [7, 31, 75, 87, 99,
130, 173, 181]. The origin of discontinuous Galerkin finite element methods can
be traced back to [148].

The idea behind the space-time methods is to think of the time variable t as an
additional spatial coordinate. This allows for rather general almost arbitrary
discretizations of space-time geometries, see Figure 1.2 for a schematic view.
Thus one obtains, for example, a four dimensional object for a time dependent
problem over a three dimensional computational geometry.
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One major advantage of this space-time discretization is the possibility to rather
easily apply adaptive algorithms to resolve physical properties better in space
and time simultaneously. This idea has already been exploited in [2, 16, 53,
117, 149, 164]. Furthermore one can apply ideas from domain decomposition,
resulting in parallel space-time methods. This has been already used in [129,
Chapter 3].

t

x
0

Figure 1.1: A schematic space-time discretization of a one dimensional problem corresponding
to a time-stepping procedure.

Outline

Following on from this introduction, we give a brief overview of the relevant
modeling aspects for human heart tissue. This includes the modeling of cardiac
electric activity, passive mechanical behavior as well as the coupling of these
two aspects. The first model will be governed by the well-known Bidomain
equations, while the second one will be described by Cauchy’s equation of
motion. Worth mentioning in this context is the strong anisotropic nature
of biological materials as well as their nearly incompressibility. One needs to
account for those. Finally we will describe the possibilities of coupling the
electric part of the models with the passive mechanic part.
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Figure 1.2: Schematic view of possible arbitrary space-time discretizations of a one dimen-
sional problem.

In the subsequent Chapter 3 we will recollect the basic mathematical tools
needed to develop a space-time discontinuous Galerkin method. This includes
function spaces, abstract non-conforming stability and error analysis as well as
triangulations.

Continuing, in Chapter 4 we will apply the tools developed so far and derive
a full space-time formulation for the Bidomain equations. Consecutively, we
will give a numerical analysis based on a simpler linear problem. We will show
boundedness and stability of the resulting discretized problems and present
convergence studies. After that we will expand our results to the non-linear
case and present convergence studies, too.

In Chapter 5 we will present a discontinuous Galerkin finite element formu-
lation based on [138]. An overview of existing literature and a summary of
the numerical analysis is given and, furthermore, we will give details on the
implementational aspects of DGFEM for nonlinear elasticity and close this
chapter with some convergence studies.

Eventually, in Chapter 6 we will combine the two earlier developed building
blocks and apply them to a coupled problem of cardiac electro-mechanics. We
will present the discretization with DGFEM as well as some numerical aspects
and close this chapter with numerical experiments.
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We conclude in the last chapter with a short overview and an outlook to
upcoming perspectives and open questions.
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2 Modeling

In this introductory chapter the basic facts about the underlying physiological
and physical problems will be recited. This part is inspired by and excerpted
from [84, 93, 94, 166].

2.1 Physiological Background

The most studied organ in human physiology appears to be the heart, although
its function seems quite simple: it pumps blood through our body by contracting
and expanding about 2.5 billion times during a normal lifetime of a human
being. As a fact, heart failure, either electrical or mechanical, is one of the most
common causes of death in the Western world, see [137].

The human heart is a muscular organ, weighing about 250 to 350 grams with a
size comparable to a fist, which, as denoted above, pumps the blood through
the blood vessels, delivering nutrients and removing waste from each organ, by
repeated, rhythmic contractions. This process, where the oxygen rich blood is
delivered to the organs is called the systemic circulation. Furthermore the
human heart drives de-oxygenated blood through our lungs for re-oxygenation
(the so called pulmonary circulation). Figure 2.1 shows a schematic view of
the heart.

The coordination of the mechanical activity of the human heart is closely related
to the signal transportation in it. In order to develop the models one needs to
understand the basic underlying physiological principles. That is the goal of
this section.
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2 Modeling

Figure 2.1: Schematic view of the human heart [189]

2.1.1 Facts & Figures

The location of the human heart is anterior to the vertebral column, i.e. the
spine, and posterior to the sternum, i.e. the chest. As one can see in Figure
2.1, the human heart consists of four chambers: the right and left atria, which
receive the blood from the body acting as a large-volume low-pressure reservoir,
and the left and right ventricles, which actually do the predominant pumping
of the blood through our body.

The mantle of the human heart consists of three layers. The outermost is
referred to as epicardium, which mainly consists of collagen fibers and serves
as a protective layer. The middle one is called the myocardium, consisting of
muscle cells, called myocytes, which do the actual contraction of the heart,
and innermost the endocardium, like the epicardium consisting of mainly
collagen which serves as an interface between the heart wall and the human
blood. For more details on the physiological background of contractile myocytes
we refer to [94, Chap. 15] or [166, p. 60ff].

The thickness of the epicardium, about 100 µm, and of the endocardium, about
100 µm, is much less than the one of the myocardium. Although it is not uniform
but it is always many magnitudes thicker than the epi and endocardium. Epi-
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2.1 Physiological Background

and endocardium being considered as mere protective respectively interfacing
layers it is justified to restrict one’s attention and model to the myocardium
itself. Following [84] we adopt the assumption, that the myocardium can be
described as a continuum composed of laminar sheets of parallel myocytes
arranged in fibers, see [72] for a discussion. Figure 2.2 shows the basic structure
of the left ventricle. It was extracted from [84]. As one can see the fiber
direction of these muscles rotates, in a mathematical positive sense, throughout
the wall thickness from 50◦ to 70◦ near the epicardium to −50◦ to −70◦ near
the endocardium. The organization of the myocardial layers is characterized
best by a right-handed orthonormal set of basis vectors (f 0, s0,n0), denoted
fiber direction, sheet direction and sheet normal direction respectively.
According to [84] we shall use the local index set {f, s, n} for referring to fiber,
sheet and normal direction. The idea behind this will be explained in Section
2.2.5. Furthermore we will use the pairs fs, fn and sn when referring to the
fiber-sheet, fiber-normal and sheet-normal planes respectively. For a detailed
overview on the structure of the myocardium we refer to [68, 84, 108, 109, 110,
158] as a starting point. The passive mechanical model of the myocardium is
presented in Section 2.3.8.

The mechanical response of the human heart relies on a very complex electro-
chemical signal conduction system which will be discussed in the next section.

2.1.2 Signal Conduction & Overview of the Cardiac Cycle

For a more detailed description about the signal conduction of the human heart
the reader is referred to [114, 166].

Cardiac tissue is called a functional syncytium of myocytes. This means
that cells are separated morphologically but connected through so-called gap
junctions. Gap junctions enable the cells to exchange different ions and
molecules, like e.g. Na+ or adenosine triphosphate (ATP), with each other. See
[102] for more details on the role of ATP. This transfer between cells is one of
the reasons why the heart muscle can contract so fast. For more details on gap
junctions refer to [166].

Myocytes have two very important abilities, namely they are excitable and
contractile. The first means, that they can transport electric potentials and

9



2 Modeling

Figure 2.2: Schematic view of the muscle structure in the human heart [84, p. 3448 Fig. 1.].

(a) shows an schematic view of the left ventricle where a small block of myocardial tissue
has been cut out.

(b) shows the structure of the muscle from the endocardium to the epicardium.
(c) shows five special longitudinal-circumferential layers at varying thickness of the

myocardium, from 10 to 90 per cent of the wall thickness.
(d) shows the make-up of myocytes, with embedded collagen fibers and the local right-

handed orthonormal fiber coordinate system with the fiber axis f0, sheet axis s0 and
sheet-normal axis n0.

(e) shows a cube of layered tissue with local coordinates (X1, X2, X3) which is used to
develop the mechanical models in [84].

10



2.1 Physiological Background

these potentials cause the cells to actually contract. For a detailed physiological
overview the interested reader may refer to [166, p. 60] and also [69, 79, 88] and
for a detailed mathematical modeling overview one should refer to [94, Chap.
15]. The excitability of the myocytes is fundamental for understanding the
functionality of the human heart and will be addressed in Section 2.2.5. However,
to ensure correctness of the complex process of pumping blood through our
body, there is an intense communication and synchronization between the cells,
which is controlled by the signal conduction system of the heart as depicted
in Figure 2.3. The electrical activity of the human heart starts in a bunch

Figure 2.3: Schematic view of the signal conduction system of the human heart [185].

of cells known as the sinoatrial node, short SA node, which is found just
below the superior vena cava of the right atrium. The cells in the SA node
are very special cells, as they work as autonomous oscillators, meaning that
they can alter their electric potential without effects from outside. This change
of electric potential (known as action potential) is then mitigated through

11



2 Modeling

the heart, starting by the atria. The atria and the ventricles are separated by a
wall which consists of non-excitable cells. Thus the action potential cannot pass
directly this barrier. However there exists one pathway through this barrier:
another bunch of specialized cells, known as the atrioventricular node, or
short AV node, located at the bottom of the atria. An important property of
the AV node is, that its conductivity is much smaller than in usual heart cells,
so these action potentials travel quite slow through these cells. This happens
not without ulterior motive. If the signal would pass the AV node as fast as it
travels through other cells, the ventricles would start to contract before the
atria have ejected all of the stored blood into the ventricles. After the signal
has passed the AV node it branches out through a specialized collection of cells
known as the bundle of His, which is composed of Purkinje fibers. This
Purkinje fiber network spreads out in a tree-like way into the left and right
bundle branches all over the inside of the ventricles. The Purkinje fibers are
connected to the ventricular muscle cells through junctions. When an action
potential reaches a muscle cell from a Purkinje fiber it causes it to contract,
and so the whole ventricle starts to contract. The end of the propagation of the
action potential lies in the epicardial surface. After the signal has reached this
point, the whole contraction is reversed and starts again from the SA node.

Summary

This was a very brief, and by no means complete, overview of the cardiac cycle
in a human heart. It should be evident from the above paragraph, that there is a
multitude of features of the myocardium to study. First of all one needs to know
how the electric potentials of cells can be altered and how the “communication”
of cells works, the latter leading to the so-called ionic currents. Bearing in
mind the goal, of describing the myocardium as a whole (provided it can be
modeled as a continuum), it is also of great interest how one can describe the
propagation of action potentials in the whole human heart without focusing on
the cellular structure. This will lead to the well-known Bidomain equations.
Apart from the electric propagation in the human heart one wants to take a
glance at the mechanic contraction of the heart. As said before, the contractile
properties of myocytes are out of the scope of this thesis. We will stick to
a pure formulation of the mechanical models from a continuum mechanical
point of view. However, the mechanical and the electrical activities are not

12



2.2 Cardiac Electric Activity

self-contained. They depend on each other, thus one needs to account for that
too, which will lead to a coupled multi-physics problem.

2.2 Cardiac Electric Activity

The electric activation of the human heart is a very complex procedure and
relies on various different aspects. This chapter is by no means complete and
many of the physiological and physical topics will just be touched on. A very
good and detailed physiological overview of the electric activation in the human
heart is found in [98, 146, 166, 174]. The mathematical modeling in this chapter
is largely taken from [93, 94]. To be able to understand the processes of the
electrical activation one needs to start at the cellular level. Nevertheless, it
occurred many times in history of science that a simple approach used to
describe the electrical activity of the human heart, was very successive. This
was the electrocardiogram dating back to 1877. This shall serve as a motivation
for the time being.

2.2.1 Modeling the Human Heart as a Dipole

This part is derived from [94, Chap. 12]. One of the oldest attempts to model
the myocardial activity dates back to 1877, when the first electrocardiogram was
recorded by Einthoven. For a more detailed view on the historical background
we refer to [19, 59]. It has been known since than that the action potential
— this is the potential difference across the cardiac cell membrane and it is
the actual signal in the human heart which is transported — of the human
heart generates an electrical potential field that could be measured on the
body surface. In a first approach, the human body was modeled as a volume
conductor. This means, when there is a current source somewhere in the body,
currents will spread out throughout the body. With those currents flowing, one
can measure the potential differences between any two points of the body’s
surface, given a voltmeter which is sensitive enough. Potential differences are
observed whenever the current sources are sufficiently strong. There are three
of such occurrences. When the action potential is spreading across the atria,
there is a measurable signal, called the P-wave. When the action potential
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is propagating through the wall of the ventricles, there is the largest of all
deflections, called the QRS-complex. A schematic view of a single ECG
recording is depicted in Figure 2.4.

P

Q

R

S

T
ST

SegmentPR
Segment

PR Interval

QT Interval

QRS
 Complex

Figure 2.4: Schematic view of the sinus rhythm of the heart [190].

2.2.2 Cardiac Cells, Action Potentials and Ionic Currents

The volume conductor model, although very simple, is still the basis for the
electrocardiography in modern medicine. However, to get a more profound
understanding of the electric activation of the human heart, and because of the
evolving knowledge about epigenetics, as mentioned in the introduction, one
needs to take account of some physiological details. First of all one needs to
understand how cardiac cells can transport electric signals.

The Cell Membrane

From an electrical point of view, the most important part of a cell is its
membrane. Therefore details about the structure of a human cell will not
be discussed here. The interested reader may refer to [166]. For our end it

14



2.2 Cardiac Electric Activity

Exterior

Interior

Figure 2.5: Schematic view of the cell membrane [188]. For the thesis, the most important
part of the cell membrane are the channel proteins which have been marked red.

is sufficient to know, that a human cell consists of a cell membrane and the
interior. Both the intracellular and extracellular space consist of, among
many other things, a dilute aqueous solution of dissolved salts, primarily NaCl
and KCl, which dissociate into Na+, K+ and Cl− ions. Outside the cell in the
extracellular space one also finds ions in a different concentration. Thus there
is an electric imbalance and so cells possess an electric potential, whose idle
state is referred to as resting potential. Inside the cell the electrical potential
is denoted by ui outside with ue. The difference is denoted by Vtm := ue − ui
and is called the trans-membrane potential.

The cell membrane acts as a boundary separating the interior of the cell from
its exterior. More important, it is selectively permeable, meaning that it allows
particles, among also ions, to pass into and out the cell. It is composed of a
double layer, or bi-layer, of phospho-lipid — where lipid is specified by a
category of water-insoluble, energy rich macromolecules, like fats, waxes, and
oils — molecules about 7.5nm thick. Figure 2.5 shows a schematic view of a
cell membrane.

We will focus on a specific part of the cell membrane: the channel proteins,
marked red in Figure 2.5. These are protein-lined pores which actual regulate
the passage of ions through the cell membrane, thus maintaining concentration
differences between the interior and the exterior of a cell.

There are two possibilities to transport molecules through the cell membrane.
The first one is the so-called passive transport, by which a passive process
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2 Modeling

which is solely driven by concentration gradients is meant. The second possibility
to transport molecules through the cell membrane is by a so-called active
transport. An active transportation process involves the transportation of ions
against their concentration gradient and thus is an energy consuming action.
The whole maintenance of the concentration differences are set up by the active
mechanisms of the cell. Also much of the metabolism of our body works due to
such transports. In literature it is also quite common to refer to those active
processes as pumps.

The most important of those pumps is the Na+–K+ ATPase, see [166], which
uses the energy stored in ATP molecules to pump Na+ out of the cell and K+

in. There are much more of these pumps, many of them use Calcium Ca2+.
However, neither of these processes will be discussed here in detail as this would
go beyond the scope of this thesis, the interested reader may refer to [166] for
the physiological details and [93, 94] for the modeling details. We will stick
to the fact, that the active transport together with the passive transport are
essential for the health of a cell itself and for the regulation of the concentration
differences.

2.2.3 Electric Circuit Model of the Cell Membrane

Since the cell membrane separates charges, it can be viewed as a capacitor,
see [92] for details. The capacitance of any insulator is defined as the ratio of
the charge across the capacitor to the voltage potential necessary to hold that
charge, and it is denoted by

Cm = Q

V
. (2.1)

From standard electrostatics, e.g. Coulomb’s law, see [92], one can derive
the fact that for two parallel conducting plates separated by an insulator of
thickness d, the capacitance is found to be

Cm = kε0

d
,

where k is the dielectric constant for the insulator and ε0 is the permittivity of
free space. The capacitance of the cell membrane is typically 1.0 µF/cm2. Taking
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2.2 Cardiac Electric Activity

that ε0 = 10−9

36π
F/m one calculates the dielectric constant of the cell membrane

to be about 8.5.

We can think of the cell membrane as an electric circuit, as shown in Figure
2.6. It is assumed that the membrane acts like a capacitor in parallel with a,

Inside, ui

Cm

Cm
d
dtVtm

Iion

Outside, ue

Figure 2.6: A simple circuit model of the cell membrane.

not necessarily ohmic, resistor. One knows that the current is d
dtQ, thus from

(2.1) it follows that the current flowing over the capacitor is given by Cm d
dtVtm,

provided that Cm is constant. Finally using Kirchoff’s law one obtains

Cm
d
dtVtm + Iion = 0.

The function Iion, called the ionic current, describes the current flowing
through the resistor depicted in Figure 2.6. Further, some external current
sources are assumed to be applied either on the inside, which are then called
si, or on the outside of a cell which then are named se. So one obtains the
following two equations:

Cm
d
dtVtm + Iion = se,

Cm
d
dtVtm + Iion = −si.
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2.2.4 Functional Dependence of Iion

As written above the differences in ionic concentrations between the inside and
outside of a cell create a potential difference along the cell membrane. The
trans-membrane potential Vtm in particular drives a current flux between the
interior and the exterior of a cell which was denoted above as ionic current
Iion. The physical details of the ionic currents are not to be discussed here. The
interested reader may refer to [94, Chapt. 2, 3 and 5]. The most important
aspect for modeling is that the ionic current has a functional dependence on
the action potential Vtm, i.e. Iion = Iion(Vtm). The difficulties arise, when one
tries to figure out how this dependence may look like. In [94] one finds two
possibilities how to describe the functional dependence of the ionic current, a
quasi-linear one reading

Iion(Vtm) =
∑
ions

gions(Vtm)(Vtm − Vions),

where ions stands for a list of ions of interest (like Na+, K+ and so on). The
values gions represent not necessarily constant conductivities. For each ion, Vions
denotes the Nernst potential, see [94, Chapt. 3] for details. This model is
quite popular, as one can divide the dependence of the ionic current up to
different ionic currents for each ion and then lump all together to a so-called
leakage current. The second possibility is to use a similar decomposition of
the ionic current into a current for each ion using the Goldman-Hodgkin-Katz
current equation reading

IS = PS
z2F 2

RT
Vtm

ci − ce exp
(
− zFVtm

RT

)
1− exp

(
− zFVtm

RT

) ,

where S stands for the type of ion, z is the valence of the ion S, ci and ce are
the respective concentrations in the intra and extra cellular regions, R is the
universal gas constant, T is the absolute temperature, PS is the permeability of
the cell membrane to the specific ion S and F is Faraday’s constant. In the next
section we will see how we can describe the evolution of the ionic current.
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2.2 Cardiac Electric Activity

2.2.5 Excitability of Myocytes

Section 2.2.4 was devoted onto how the trans-membrane potential Vtm causes
ionic currents Iion to flow through the membrane. Regulation of this membrane
potential by control of the ionic channels is one of the most important cellular
functions. Myocytes, especially, use this membrane potential, as discussed in
Section 2.1 as a signal to control the contraction of the myocardium. Thus, the
contraction is dependent on the generation of electric signals. As aforementioned,
heart cells belong to a class of very special cells: they are excitable. This means,
that if a sufficiently strong current is applied, the membrane potential performs
a pronounced oscillation before eventually returning to the resting potential
value. Figure 2.7 shows a schematic view of an action potential typical for
ventricular heart cells. It should be mentioned at this point that the shape

Figure 2.7: Typical curve of an ventricular cell action potential [116].

of the action potentials differs from cell to cell in the heart. This means, the
models for the SA node will not be adequate for describing the potential of the
AV node and the other cell types in the myocardium respectively.

In Section 2.1 this change of potential was referred to as action potential. The
most obvious advantage of excitability is that an excitable cell either responds
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in full to a stimulus or not at all, and thus a stimulus of sufficient amplitude
may be reliably distinguished from background noise. In this way, noise is
filtered out, and a signal is reliably transmitted.

The studies on the generation and propagation of those signals have been
made for nearly a hundred years. Although the generation and propagation
of signals have been extensively studied by physiologists for at least the past
hundred years, the most important landmark in these studies is the work of
Alan Hodgkin and Andrew Huxley, see [83], who developed the first quantitative
model for the propagation of an electrical signal along a squid giant axon. Their
model was originally used to explain the action potential in the long giant axon
of a squid nerve cell, but the ideas have since been extended and applied to a
wide variety of excitable cells.

In the spirit of Hodgkin and Huxley many models have been developed. All
those models do share a common structure, see [120]. They are called Hodgkin-
Huxley-type models, since they are all based, mathematically, on the original
model from Hodgkin and Huxley [83]. In [120] one finds a very good summary
of the various models for ionic currents. The models are based on viewing the
cell membrane as an electrical circuit and applying Kirchoff’s law to it. This
means that the membrane current model consists of a capacitive current term
and a variety of ionic current terms appropriate for a specific type of cell. The
general form of the spatially-independent model with n ionic currents is

Cm
d
dtVtm = −

n∑
i=1

ḡia
p
i b
q
i (Vtm − Vi) + Iapp(t), (2.2)

d
dtai = a∞i (Vtm)− ai

τai(Vtm) , i = 1, 2, . . . , n, (2.3)

d
dtbi = b∞i (Vtm)− bi

τbi(Vtm) , i = 1, 2, . . . , n, (2.4)

where Cm is the capacitance of the cell membrane, Vtm is the trans-membrane
potential, ḡi is the maximal conductance of the channel for ion i, ai and bi are
the gating variables taking values between 0 and 1, Vi is the Nernst potential
for the ith ion, Iappl is the applied stimulus current. The latter may consist of a
signal coming from an adjacent cell or from an external applied current. Further,
a∞i and b∞i are the steady state values of the gating variables at potential Vtm,
τai and τbi are the relaxation time constants at potential Vtm and finally p, q
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2.2 Cardiac Electric Activity

denote some arbitrary real exponents. Many of the excitability models known
throughout the literature can be written in this form. There is a huge collection
of those models available for simulation through the CellML-project, see
[118]. Taking note, we write the evolution equation for the ionic current Iion
in the following abstract way as a system of nonlinear ordinary differential
equations:

Iion = g(Vtm,v),
d
dtv = −H(Vtm,v), (2.5)

v(t = 0) = v0. (2.6)

With this notation one covers almost any possible shape of the ionic current
appearing in the literature.

2.2.6 Phenomenological Models

The complexity of ionic current models can be a challenge for numerical
simulations and also for mathematical analysis. Therefore many simplified
models have been developed. Although neglecting the physiological details,
these models are capable of approximately reproducing action potentials.

FitzHugh-Nagumo Model

The most simple phenomenological model is the FitzHugh-Nagumo model, see
[66, 123]. The model is governed by the relations

Iion(Vtm, v) := c1Vtm(Vtm − Vth)(1− Vtm) + c2v, (2.7)
H(Vtm, v) := b(dv − Vtm). (2.8)

For this specific model the value of Vtm has been rescaled to the interval [0, 1].
The constants c1, c2, Vth, b, d can be looked up in [157, Figure 1].
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Rogers-McCulloch Model

The second model we want to present is the Rogers-McCulloch model, see [157].
This model is a modification of the original FitzHugh-Nagumo model. In this
case we have

Iion(Vtm, v) := c1Vtm(Vtm − Vth)(1− Vtm) + c2Vtmv, (2.9)
H(Vtm, v) := b(dv − Vtm). (2.10)

For this specific model the value of Vtm has been rescaled to the interval [0, 1].
The constants c1, c2, Vth, b, d can be looked up in [157, Figure 1].

Aliev-Panfilov Model

The third model we want to mention is the Aliev-Panfilov model, see [4]. The
difference to the Rogers-McCulloch model is the nonlinear behavior in the
second equation. The model reads as

Iion(Vtm, v) := c1Vtm(Vtm − Vth)(1− Vtm) + c2Vtmv, (2.11)

H(Vtm, v) :=
(
ε0 + µ1v

µ2 + Vtm

)
(v + kVtm (Vtm − Vth − 1)) . (2.12)

Again, this model works with a rescaled trans-membrane potential Vtm in the
range of [0, 1]. The constants c1, c2, Vth, ε0, µ1, µ2, k can be looked up in [4, Page
294].

There are many more phenomenological models. The interested reader may look
up [65, 119]. Proceeding, the readers attention is switched to the mathematical
modeling of macroscopic signal propagation in the human heart.

2.2.7 The Bidomain Equations

It would be possible to model the whole human heart on a cellular basis. However,
this would be computational very expensive. Furthermore one would need to
develop a very detailed cell model which would have to be applied to each cell
and then coupled among each other. The latter is for being able to describe the
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propagation of signals through the cells. This coupling is complicated by the fact,
that the signal which is transported is in fact the trans-membrane potential Vtm,
and thus the intra and extra cellular spaces have to be continuously connected
and intertwined, so that one can move continuously between any two points
within one space without traversing through the complementary space.

As aforementioned, it is yet not possible to write and solve equations that
account for the cellular structure and the details of the geometry of the human
heart. In a first step, see Section 2.2.1, it was described that modeling the
human heart in a macroscopic sense as a dipole suffices for some medical
application but is not adequate for a complete description of the electrical
activation of the human heart. A more accurate description will be obtained
by the Bidomain model first introduced by L. Tung, see [178], as well as [82,
114] for details.

For deriving an accurate model for the electric activation of the myocardium
one applies procedures from continuum mechanics, known as homogenization.
With this one can write equations in an averaged, or smoothed, sense which are
adequate for the many computational situations. In continuum mechanics, it is
quite common to study averaged quantities, to avoid modeling the molecular
structure of solids and fluids, see e.g. [70, 90] but also [143] and [94, Chap. 7,12]
for mathematical details and a justification. In the setting of myocardial tissue
one starts from a microscopic description and with a homogenization argument
derives averaged equations. This are known as the Bidomain equations. For
details on the homogenization approach and a precise derivation of the equations
we refer to [38, 128].

The Bidomain equations can be stated in different forms. We will use the
parabolic-elliptic form reading as: Find (Vtm, ue,v) such that

χCm
∂

∂t
Vtm + χIion(Vtm)− div (Mi gradVtm)− div (Mi gradue) = si, (2.13)

− div (Mi gradVtm)− div ((Mi + Me) gradue) = si + se,
(2.14)

∂

∂t
v +H(Vtm,v) = 0 (2.15)
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2 Modeling

in Ω× (0, T ). The boundary conditions are assumed to be of Robin type and
read as

n · (Mi gradVtm + Mi gradue) + αi(Vtm + ue) = gR,i, (2.16)
n · (Me gradue) + αeue = gR,e (2.17)

on ∂Ω× (0, T ). Finally we impose initial conditions on Vtm and v of the form
Vtm(0,x) = V 0

tm(x), (2.18)
v(0,x) = v0(x). (2.19)

The constant χ is the surface-to-volume ratio and results from the homoge-
nization procedure. The constant Cm is the capacitance of the cell membrane.
The values for χ,Cm can be looked up in Table 2.1. Next some basic facts
about the conductivity tensors Mi and Me will be recited.

Conductivity and Fiber Orientation

It is known, that the myocardium is the most important part, when describing
the pumping process of the human heart. For the electrochemical modeling the
Bidomain model (2.13)–(2.17) has been derived. Now one needs to establish
the conductive properties of the myocardium. One important fact is, that the
conduction in the human heart is highly anisotropic, and as said above, the
quantities Mi and Me are tensor-valued functions. This specific anisotropy
comes from the structure of the myocardium as discussed in Section 2.1.1.
There a local coordinate system spanned by f 0, s0 and n0 was introduced. It
is well known that the conductivity along the fiber axis f 0 is much higher than
along s0,n0. This means one may assume the conductivity tensor of the form

M(x) = mff 0(x)⊗ f 0(x) +mss0(x)⊗ s0(x) +mnn0(x)⊗ n0(x).
In real-life applications the distribution of the basis {f 0, s0,n0} is derived with
diffusive tensor imaging, see [97, 145] for details.

For orthonormal f 0, s0,n0 one may interpret mf ,ms,mn as the eigenvalues of
M. Furthermore for orthonormal f 0, s0,n0 one may eliminate one axis and
write

M(x) = mnI + (mf −mn)f 0(x)⊗ f 0(x) + (ms −mn)s0(x)⊗ s0(x)
The values are given in Table 2.1.
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Parameter Value Unit
Cm 1.0000e−2 F/m2

χ 2.0000e+5 1/m

mi
f 3.0000e−1 S/m

mi
s 1.0000e−1 S/m

mi
n 3.1525e−2 S/m

me
f 2.0000e−1 S/m

me
s 1.6500e−1 S/m

me
n 1.3514e−1 S/m

Table 2.1: Values of the parameters for the Bidomain model: the conductivity values, the
value for χ and the value for Cm are taken from [101],[81] and [147].

Summary

In this chapter the basic models for the electric part of the cardiac cycle have
been developed which eventually lead to the Bidomain equations. Furthermore
the conductive properties of the human heart with tensor-valued functions
were described and the ionic currents were taken account of, by modeling them
in the most abstract way. Summarizing the complete electronic model of the
human heart in dimensional form reads to find (Vtm, ue,v) such that:

χCm
∂Vtm

∂t
+ χIion(Vtm,v)− div(Mi gradVtm)− div (Mi gradue) = si, (2.20)

− div(Mi gradVtm)− div((Mi + Me) gradue) = si + se,
(2.21)

∂v

∂t
+H(Vtm,v) = 0 (2.22)

in Ω× (0, T ) and completed by the boundary and initial conditions

(Mi grad(Vtm + ue),n) + αi(Vtm + ue) = gR.i on ∂Ω× (0, T ], (2.23)
(Me gradue,n) + αeue = gR,e on ∂Ω× (0, T ], (2.24)

Vtm(0,x) = V 0
tm in Ω, (2.25)

v(0,x) = v0 in Ω. (2.26)
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Remark 2.1. Usually, one assumes that se = −si so that the right hand side
of equation (2.21) vanishes.

2.3 Passive Mechanical Behavior of Heart Tissue

In this section the models covering the pure mechanical deformation of human
heart tissue will be summarized. In contrast to modeling the electric activation of
the human heart, mechanic models are already established and well understood.
Thus one can describe the passive deformation of the human heart with standard
tools from continuum mechanics. For an introduction to continuum mechanics
we refer to [35, 85, 135, 177] as well as [11, Chapter 3]. For sake of completeness
the most important facts from continuum mechanics will subsequently be
recited.

2.3.1 Bodies and Configurations

Definition 2.2 (Body). A body B is a set whose elements can be put into a
one-to-one correspondence with points of a region Ω in a three-dimensional
Euclidean point space. The elements of B are called particles, or material
points, and Ω is called a configuration of B.

As a body moves the configuration B will change in time.

Definition 2.3. Let t ∈ I ⊂ R+. The family {Ω(t) : t ∈ I} of unique configu-
rations of B at time time t is called the motion of B.

Remark 2.4. It is assumed, that as B moves continuously also Ω(t) evolves
continuously.

Further, it is quite convenient to identify a so-called reference configuration,
Ωr say, which is an arbitrarily chosen fixed configuration. Then any particle
P of B may be labeled by its position vector X ∈ Ωr, relative to a chosen
origin O. It should be noted that the reference configuration need not be a
configuration which is actually occupied by the body B. Let further x be the
position vector of P in the configuration Ω(t) at time t relative to another
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chosen origin o. Again for sake of simplicity one may choose O = o. Similar to
that one says that B occupies the configuration Ω(t) at time t and call Ω(t) the
current configuration. Here we will choose Ωr = Ω(0). Since Ωr and Ω(t) are
configurations of B there exists a bijective mapping χ : Ωr → Ω(t) such that

x = χ(X, t) for all X ∈ Ωr, (2.27)
X = χ−1(x, t) for all x ∈ Ω(t). (2.28)

It can be seen from (2.27), that one can characterize either of the coordinates
with its counterpart. Figure 2.8 shows a schematic summary.

Reference Configuration

Current Configuration

Figure 2.8: Reference configuration Ωr and current configuration Ωt with the position vectors
X and x of a material point P and the motion χ(X, t). The coordinate system
is spanned by an orthonormal basis {ei}3i=1

.
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2.3.2 Material and Spatial Descriptions

In the development of the basic principles of continuum mechanics a body
B is assigned to various physical properties which are represented by scalar,
vector and tensor fields defined on either Ωr or Ω(t). In case of Ωr both the
position vector X and the time t serve as independent variables, the fields are
said to be defined in referential, material or Lagrangian description then.
Alternatively, in the case of Ω(t), x and t serve as independent variables. Here,
one refers to the spatial or Eulerian description. The distinction between
these two descriptions is crucial. To make things more clear: In material
description attention is paid to a particle, and one observes what happens to
the particle as it moves. Spatial description puts attention to a specific point
in space, and one studies what happens at the point as time changes.

For studying solid mechanics one needs to work with derivatives in Eulerian
or Lagrangian configurations and relate them to each other. Henceforth the
Einstein summation convention applies.

Definition 2.5 (Material Gradient, Spatial Gradient). The material gradi-
ent of a sufficiently smooth material field Φ(X, t) is defined by

Grad Φ(X, t) := ∂

∂Xi

Φ(X, t)ei.

The spatial gradient of a sufficiently smooth spatial field φ(x, t) is defined as

gradφ(x, t) := ∂

∂xi
φ(x, t)ei.

In case of a vector-valued function u we define the material or spatial gradient
as

gradu(x, t) := ∇x ⊗ u = ∂

∂xq
u⊗ eq = ∂

∂xq
upep ⊗ eq,

GradU(X, t) := ∇X ⊗U = ∂

∂Xq

U ⊗ eq = ∂

∂Xq

Upep ⊗ eq.
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Definition 2.6 (Material Divergence, Spatial Divergence). The material
divergence of a sufficiently smooth material field Φ(X, t) is defined as

Div Φ(X, t) := ∂

∂Xi

Φi(X, t).

The spatial divergence of a sufficiently smooth spatial field φ(x, t) is defined
as

divφ(x, t) := ∂

∂xi
φi(x, t).

In case of tensor-valued functions a,A we define the spatial and material
divergence as

div a(x, t) := ∂

∂xp
apq(x, t)eq,

Div A(X, t) := ∂

∂Xp

Apq(x, t)eq.

Definition 2.7 (Material Time Derivative of a Material Field). The material
time derivative of a material field Φ(X, t), either scalar or vector-valued, is
defined as

Φ̇(X, t) = ∂

∂t
Φ(X, t) :=

(
∂

∂t
Φ(Y , t)

) ∣∣∣∣∣
Y =X

.

When dealing with multi-physics problems one often needs to switch between
the Eulerian and the Lagrangian description of a function. For example: Let
φ be a scalar spatial field, this means φ = φ(x, t). Since x = χ(X, t) one
may define Φ(X, t) := φ(χ(X, t), t) and thus one can switch between the two
descriptions, provided χ is known. When one wants to calculate the material
time derivative of a spatial field one needs to be cautious. The connection of
the two descriptions is given by

Lemma 2.8. Let φ(x, t) be a given sufficiently smooth function in spatial
coordinates and Φ(X, t) := φ(χ−1(x, t), t). Then it holds:

∂

∂t
Φ(X, t) = d

dtφ(x, t) = ∂

∂t
φ(x, t) + (gradφ(x, t),v(x, t)).
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Proof. The proof follows by taking the total derivative d
dt of the equation

Φ(X, t) = φ(χ−1(x, t), t) = φ(x, t) and apply the chain rule.

Remark 2.9. An analogous result holds for vector-valued functions φ(x, t):

∂

∂t
Φ(X, t) = d

dtφ(x, t) = ∂

∂t
φ(x, t) + grad(φ(x, t))v(x, t).

2.3.3 Deformation Gradient and Displacement

The deformation gradient F is defined as

F(X, t) := Gradx(X, t) = Gradχ(X, t).

This special gradient is a Cartesian tensor of order two and can be expressed
as

F = ∂

∂XA

xbeb ⊗ eA,

or in component form as

FbA = ∂

∂XA

xb

with xb = χb(X, t). Let us also define the Jacobian J as

J(X, t) := det F(X, t).

From a physical point of view it is reasonable to assume that J 6= 0 which is
justified by the following: Consider the equation F∆X = 0 for a small line
element ∆X. Provided ∆X 6= 0 J = 0 would imply that there is at least one
line element whose length is reduced to zero by the deformation, in other words,
annihilated. This is physically unrealistic and so one can exclude this from
one’s consideration. Having that one can ensure that F is nonsingular and so
there exists the inverse F−1 given by

F−1(x, t) = gradX(x, t),
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with the components

(F−1)Ba = ∂XB

∂xa
.

From a numerical point of view it is convenient to introduce the displacement
U(X, t) as

U(X, t) := x(X, t)−X.

This field relates the position X of a particle P in the undeformed configuration
to its position x in the deformed configuration at time t. The displacement U is
a function of the material coordinates X. One can also define the displacement
field in spatial coordinates as

u(x, t) = x−X(x, t).

Here the position x of a particle P at time t is specified by its position X(x, t)
in the reference configuration Ωr plus its displacement u(x, t) from that position.
Due to the correspondence between the reference and current configuration the
two descriptions U and u are related by

u(x, t) : = U (χ−1(x, t), t).

It should be noted that U and u need to have the same values. Further, when
choosing the reference configuration Ωr to coincide with the initial configuration
Ω(0) one sees that the displacement has to vanish in the reference configuration.
This can be expressed as

U(X, t = 0) = u(x, t = 0) = 0.

Having defined the displacement U one immediately sees that

χ(X, t) = x(X, t) = X +U (X, t)

and

F(X, t) = I + GradU(X, t),

where Gradu is the displacement gradient. Similarly one obtains in spatial
coordinates that

gradu(x, t) = I− F−1(x, t).
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Furthermore the left and right Cauchy tensors are introduced as

b := FF>,
C := F>F.

Subsequent, some basic results about the connection between spatial and
material gradients will be established. One can show quite elementarily the
following:

Lemma 2.10. Let φ,u denote sufficiently smooth scalar and vector valued
functions. Then there holds

gradφ = F−>Grad Φ, (2.29)
gradu = Grad(U)F−1. (2.30)

Furthermore one can easily show:

Lemma 2.11. There holds:

Div(JF−>) = 0.

This results imply the following

Corollary 2.12 (Nanson’s Formula). Let N be the almost everywhere defined
normal vector of ∂Ω(0) and n the respective normal vector to ∂Ω(t). Then
there holds:

n = JF−>N .

Finally we want to mention the following lemma.

Lemma 2.13. Let u be a sufficiently smooth vector field. Then there holds:

div(u) = Div(JF−1U), (2.31)
Div(U) = div(J−1F>u). (2.32)
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2.3.4 Governing Equations for Nonlinear Elasticity

The governing equations are consequences of the fundamental physical principles
of mass conservation and the balance of momentum. From these basic principles
one can derive the well know Cauchy’s equation of motion see [135, Chapter
3] for a precise derivation. Briefly, the theorem states the existence and symmetry
of the stress tensor σ and the balance law

ρ(t,x) d2

dt2u(t,x)− divσ(t,x) = ρ(t,x)f(t,x) in Ω(t)× (0, T ),

d
dtρ(t,x) + ρ(t,x) div

(
d
dtu(t,x)

)
= 0 in Ω(t)× (0, T ),

σ(t,x) = (σ(t,x))>,
σ(t,x)n = gN(t,x) on ∂Ω(t)× (0, T ).

Here ρ is the mass density of Ω(t), f are the body forces and gN are the surface
traction forces.

With the introduction of the second Piola-Kirchoff stress tensor

S := JF−1σF−>

one can derive the balance equations of nonlinear elasticity in material coordi-
nates:

ρ0(X) ∂
2

∂t2
U(t,X)−Div(F(t,X)S(t,X)) = ρ0(X)f(t,X) in Ωr × (0, T ),

ρ = ρ0(X)J(t,X),
F(t,X)S(t,X)N = GN(t,X) on ∂Ωr × (0, T ).

The material and spatial formulations are equivalent.
Remark 2.14. One needs to be careful with traction forces in material coordi-
nates. Consider the case of a pure constant pressure load

σn = −pn.

with a constant value p > 0. Then in material coordinates this transforms to

FSN = −pJF−>N .

Thus the boundary condition enters the system in a nonlinear way. See [35,
Section 2.6 and 5.1] as well as [165] for more details.
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The equations given above are not complete. To complete the system one needs
to impose initial conditions of the form

u(0,x) = 0,(
d
dtu(t,x)

)
t=0 = u1(x)

or

U(0,X) = 0,
∂

∂t
U(0,X) = U 1(X).

Remark 2.15. Following [186] one may neglect the terms ρ d2

dt2u and ρ0
∂2

∂t2
U

as well as body forces when modeling biological tissues. Then one obtains the
quasi-stationary balance laws

− divσ(t,x) = 0 in Ω(t)× (0, T ),
d
dtρ(t,x) + ρ(t,x) div

(
d
dtu(t,x)

)
= 0 in Ω(t)× (0, T ),

σ(t,x) = (σ(t,x))>,
σ(t,x)n = gN(t,x) on ∂Ω(t)× (0, T ).

and

−Div(F(t,X)S(t,X)) = 0 in Ωr × (0, T ),
ρ = ρ0(X)J(t,X),

F(t,X)S(t,X)N = GN(t,X) on ∂Ωr × (0, T ).

Furthermore one needs to establish a connection between the tensor σ and the
displacement u and between S and U respectively. This is accomplished with
constitutive equations.

2.3.5 Constitutive Equations

The aim of this part is to link the displacement (or deformation) of a body
to the stress. A general treatment is out of the scope of this thesis so only
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2.3 Passive Mechanical Behavior of Heart Tissue

perfectly hyper-elastic materials will be considered. This excludes plastic
deformations as well as damaging or viscous mechanisms. See [11, 18, 85, 135,
177] for a more comprehensive introduction. For a hyper-elastic material one
has the existence of the Helmholtz free-energy function W = W (F). In
addition, provided the material is perfectly elastic one has the relation

S = F−1∂W

∂F .

This equation links the displacement U to the stress S. Furthermore it is
common to assume a normalization condition, i.e.:

W (I) = 0.

If the normalization conditions are not satisfied one needs to account for
residual stresses, see [3, 40, 76, 136, 156] for more details in the context of
myocardial tissue. Moreover, from physical observations it is convenient to
assert the following conditions:

W (F) ≥ 0, (2.33)
W (F(U)) <∞ provided |U | <∞, (2.34)

lim
|U |→∞

W (F(U)) =∞. (2.35)

If one assumes that the strain energy function should be invariant under
translation and rotation of the body B one obtains that

W (F) = Ψ(C).

Thus one in fact needs to find a constitutive relation that depends only on C.
Together with all the above stated assumptions one can conclude the following
relations

S = 2∂Ψ(C)
∂C ,

σ = 2J−1F∂Ψ(C)
∂C F>.

In the numerical treatment of nonlinear elastic materials one also needs the
elasticity tensor in material coordinates C defined by

C := 2∂S(C)
∂C = 4∂

2Ψ(C)
∂C∂C .
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This is a tensor of order four. One can show, see [85, Chapter 6.6], that this
tensor possess minor and major symmetries, i.e.

Cijkl = Cjikl = Cijlk,

Cijkl = Cklij.

In spatial coordinates the elasticity tensor is defined by

c(a, b, c, d) := J−1FaAFbBFcCFdDCABCD.

The spatial elasticity tensor inherits the properties of C.
Remark 2.16. The elasticity tensor C is convenient from a numerical point
of view. Due to its symmetry properties one can use Voigt’s notation and
write C as a symmetric d(d+1)

2 × d(d+1)
2 matrix for example (d = 3)

CV :=



C1111 C1122 C1133 C1112 C1123 C1113
C2222 C2233 C2212 C2223 C2213

C3333 C3312 C3323 C3313
C1212 C1223 C1213

C2323 C2313
sym. C1313


.

A symmetric second order tensor can also be written in Voigt notation (d = 3)as

SV := (S11, S22, S33, 2S12, 2S23, 2S13)>.

With this convention it holds that

CVSV = (C : S)V.

However the following does not hold(
CVSV

1 ,S
V
2

)
6= S2 : C : S1.

A remedy is to use the Mandel notation. Here one defines

CM :=



C1111 C1122 C1133
√

2C1112
√

2C1123
√

2C1113
C2222 C2233

√
2C2212

√
2C2223

√
2C2213

C3333
√

2C3312
√

2C3323
√

2C3313
2C1212 2C1223 2C1213

2C2323 2C2313
sym. 2C1313


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2.3 Passive Mechanical Behavior of Heart Tissue

and

SM := (S11, S22, S33,
√

2S12,
√

2S23,
√

2S13)>.

In this notation one has (
CMSM

1 ,S
M
2

)
= S2 : C : S1.

For more details on this topic we refer to [80].

2.3.6 Almost Incompressible Materials

Biological materials are treated as slightly incompressible materials. This means
that det(F) ≈ 1, see [183]. To account for this behavior one needs to adapt the
constitutive equations. An approach to handle nearly incompressible materials,
with J = det F close to one, is the decoupling of the deformation into a
volumetric (i.e. volume changing) and an isochoric (i.e. volume preserving)
part, see [67, 85] for more details. This means that one decomposes

F = (J 1
3 I)F

where det F = 1. This is called the Flory split. Thus one also has the splitting

C = (J 2
3 I)C

The Flory split allows to postulate an additive splitting of the strain energy
function

Ψ(C) = U(J) + Ψ(C) (2.36)

where U(J) is a strictly convex function called volumetric response function
and attains its unique minimum for J = 1. The function Ψ(C) is called
isochoric response function. It is required that

U(J) = 0⇔ J = 1,
Ψ(C) = 0⇔ C = I.

for fulfilling the normalization conditions.
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Remark 2.17 (Specific volumetric response functions). The function U(J) can
be interpreted as a penalization for the constraint det F = 1, see [24, Chapter 6].
There exist a variety of possible choices for U(J). We will consider the choice

U(J) := κ

2 (J − 1)2

or

U(J) := κ

2 (ln J)2

with κ ∈ R+.

Example 2.18 (Almost incompressible neo-Hookean material). The simplest
nonlinear model is the so called almost incompressible neo-Hookean ma-
terial model. There one has

Ψ(C) := U(J) + µ

2
(
tr(C)− 3

)
,

where the material parameter µ may be interpreted as the shear modulus. By
definition this value is positive, i.e. µ > 0. For more examples we refer to [11,
Page 33].

Before continuing, the deviatoric operators in material and spatial coordinates
will be introduced.

Definition 2.19 (Deviatoric operators). Let a and A be two tensor-valued
functions in spatial and material coordinates. Then the deviatoric operators
are defined as

dev(a) := a− 1
3tr(a)I,

Dev(A) := A− 1
3 [A : C] C−1.

Further the following result is needed:

Lemma 2.20. There holds:
∂J

∂C = J

2 C−1,

∂J−
2
3

∂C = −1
3J
− 2

3 C−1.
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2.3 Passive Mechanical Behavior of Heart Tissue

Proof. See [85, Page 228].

With the help of these results one can prove that the Flory split (2.36) results
in an additive split of the stress tensor S as well as the elasticity tensor C

S = Svol + Siso,

C = Cvol + Ciso.

see [85, Chapter 6.4] and [11, Page 29 and Page 45]. Here one has

Svol := JpC−1,

Siso := 2J− 2
3 Dev

(
∂Ψ(C)
∂C

)
,

Cvol := J

(
p+ J

d2U(J)
dJ2

)
C−1 ⊗ C−1 − 2JpC−1 � C−1,

Ciso := 2∂Siso

∂C

where the hydrostatic pressure p is defined as

p := dU(J)
dJ .

and the relation “�” is defined for a symmetric tensor A as

(A� A)ijkl := 1
2 (AikAjl + AilAjk)

see [85, Equation (6.164)]. The same procedure can be applied in spatial
coordinates and one obtains

σ = σvol + σiso,

σvol := pI,

σiso := 2J−1dev
(

F∂Ψ(C)
∂C

F>
)
,

cvol :=
(
p+ J

d2U(J)
dJ2

)
I⊗ I− 2pI.
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The decoupling of the stress tensors applied to the quasi-stationary equations of
nonlinear elasticity mentioned in Remark 2.15 leads to nonlinear saddle-point
problems of the form

− div (σiso(u(t,x)) + σvol(p(t,x),u(t,x))) = 0, in Ω(t), (2.37)
dU(J(u(t,x))

dJ − p(t,x) = 0 in Ω(t), (2.38)

and equivalently

−Div (F(U(t,X) (Siso(U(t,X)) + Svol(P (t,X),U(t,X)))) = 0, in Ωr,

(2.39)
dU(J(U(t,X))

dJ − P (t,X) = 0 in Ωr.

(2.40)

The discretization of such a system may still suffer from locking phenomena, see
[24, Chapter 6]. One possible remedy is to interpret (U , J, P ) as independent
variables and modify the system to

−Div (F(U) (Siso(U , J) + Svol(U , P, J))) = 0, in Ωr, (2.41)
dU(D)

dD D=J − P = 0 in Ωr, (2.42)

J − det F(U) = 0 in Ωr. (2.43)

A discretization of such a three-field approach will lead to the mean dilatation
technique, see [24, Chapter 6].

2.3.7 Plain Strain Elasticity

In some cases it is justified to consider two-dimensional problems in elasticity.
With the help of an example the differences to the three dimensional case will
be sketched. For a detailed discussion we refer to [135, Section 5.2.6]. For the
plain strain elastic case one has three important assumptions. The first one is
that the geometry has the shape Ωr = Ω2D

r × [−Z,Z] with Z � diam(Ω2D
r ).

The second assumption is that all exterior forces are orthogonal to the z-axis
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2.3 Passive Mechanical Behavior of Heart Tissue

and depend only on x and y. Finally it is assumed that the displacement has
the form U (X) = (U1(X, Y ), U2(X, Y ), C) with C ∈ R. With this one has that
the deformation gradient is of the form

F =

1 + ∂U1
∂X

∂U1
∂Y

0
∂U2
∂X

1 + ∂U2
∂Y

0
0 0 1

 =
(

F 0
0> 1

)
.

This implies first that det(F) = det(F) and that C = F>F and C−1 = F−1F−>
have the same structure, i.e.

C =
(

C 0
0> 1

)
, C−1 =

(
C−1 0
0> 1

)

Now, consider the free energy function for an almost incompressible neo-Hookean
solid

Ψ(C) = κ

2 (ln J)2 + µ

2
(
tr(C)− 3

)
where J = det F and C = J−

2
3 C. One may calculate the second Piola-Kirchoff

tensor S as S = 2∂Ψ(C)
∂C and obtain

S = κ ln(J)C−1 + µJ−
2
3

(
I− 1

3(tr C)C−1
)
.

Inserting the special form of J = det F , C and C−1 one obtains

S =
(

S 0
0> S33

)

where

S = κ ln(J)C−1 + µJ−
2
3

(
I− 1

3(tr (C) + 1)C−1
)
,

S33 = κ ln(J) + µJ−
2
3

(2
3 −

1
3 tr(C)

)
.

Note that in general S33 6= 0 but S33 = S33(X, Y ). Plugging this into the
equilibrium equations one gets that

−Div(F(U(X, Y ))S(U(X, Y )) = 0

where the divergence is taken only with respect to X and Y .
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2.3.8 Constitutive Equations for Passive Myocardial Tissue

As discussed in Section 2.1.1, myocardial tissue is a strong anisotropic material.
Hence an appropriate constitutive equation needs to account for the specific
anisotropy of the underlying material. There have been several attempts to
model myocardial tissue, we refer to [41, 77, 89, 162, 163, 192] for more details.
We will use a model recently introduced in [55, 56, 84]. This model is based
on an invariant-type formulation. For more details about invariant type strain
energy functions we refer to [85, 135, 170]. The strain energy function is given
by

Ψ(C) = U(J) + a

2b
(
exp

[
b(I1 − d)

]
− 1

)
+ af

2bf

(
exp

[
bf (I4f − 1)2

]
− 1

)
+ as

2bs

(
exp

[
bs(I4s − 1)2

]
− 1

)
+ afs

2bfs

(
exp

[
bfsI

2
8fs

]
− 1

)
.

The invariants are defined by

I1(C) := tr
(
C
)
,

I4f (C) :=
(
Cf 0,f 0

)
, I4s(C) :=

(
Cs0, s0

)
,

I8fs(C) :=
(
Cf 0, s0

)
.

It needs to be mentioned that the terms involving I4f , I4s are only active if
I4f > 1 and I4s > 1. All occurring parameters are assumed to be positive.
We refer to [55, Section 4.2.4] and [11, Section 3.15] for a specific choice of
parameters and the explicit calculation of the stress tensors Siso and Ciso.

2.4 Models for Coupled Electro-Mechanics

In this chapter the presented models for the electrical and mechanical response
of the human heart will be merged. This leads to a coupled multi-physics
problem. There are different approaches to couple the electrical and mechanical
response in the human heart, hence we try to give a summary on the models
known in literature, see [43, 131, 134, 139, 186] and the bibliography found in
these articles for more details.
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2.4.1 Mechano-electric Feedback

We start with coupling the Bidomain equations to the mechanical response. In
literature this is called the mechano-electric feedback (MEF), see [5, 6, 33,
104, 124, 126, 144]. As a matter of fact, one has a moving body in the coupled
setting. Thus one first needs to specify the material and spatial description of
these equations. From a physical point of view one should state the Bidomain
equations in a spatial description. Thus one needs to remodel the equations
with respect to moving domains. This includes the application of Reynold’s
transport theorem see [78, Page 78] and an energy balance equation. For more
details we refer to [5, 151, 152]. The Bidomain equations in spatial coordinates
can be stated as

∂Vtm

∂t
+ div (u̇Vtm) + Iion(Vtm,v)− div(Mi gradVtm)− div(Mi gradue) = si,

− div(Mi gradVtm)− div((Mi + Me) gradue) = 0,
∂v

∂t
+ div (u̇⊗ v) +H(Vtm,v) = 0.

For the subsequent considerations we will restrict ourselves to ionic models
where v = v i.e. only one ionic variable. The mechanical coupling can be
accomplished by two parts. First one may consider the coupling induced by the
change of geometry. The equations of nonlinear elasticity are better suited for a
material description so one transforms the spatial formulation of the Bidomain
equations to material coordinates.

Lemma 2.21. There holds:

∂J

∂t
= J div(u̇).

Proof. See [78, Page 77 (2)].

Lemma 2.22. There holds:

∂Vtm

∂t
+ div (u̇Vtm) = J−1 ∂

∂t
(JVtm).
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Proof. The proof follows by direct calculation and application of Lemma 2.21:

∂

∂t
(J(t,X)Vtm(t,x(t,X))) = ∂J

∂t
Vtm(t,x) + J

[(
∂Vtm

∂x
,
∂x

∂t

)
+ ∂Vtm

∂t

]

= J div(u̇) + J

[(
gradVtm,

∂x

∂t

)
+ ∂Vtm

∂t

]

= J

(
div(u̇Vtm) + ∂Vtm

∂t

)
.

Together with Lemmata 2.13 and 2.10 one obtains the Bidomain equations in
material coordinates as

∂

∂t
(JVtm) + JIion(Vtm, v)

− J Div
(
JF−1MiF−>GradVtm

)
− J Div

(
JF−1MiF−>Gradue

)
= Jsi,

− J Div
(
JF−1MiF−>GradVtm

)
− J Div

(
JF−1Mi+eF−>Gradue

)
= 0

and the equations for the ionic variables in material coordinates

∂

∂t
(Jv) + JH(Vtm,v) = 0.

In literature one usually sees that the term Div
(
JF−1MiF−>GradVtm

)
is

replaced by Div
(
JMiC−1 GradVtm

)
. To justify this one needs to pose an

assumption on the tensors Mi,Me.

Lemma 2.23. Provided Mi is symmetric, Mi(x)n = αn and Mi(X)N = αN
where n and N are the respective normal vectors to ∂Ω(t) and ∂Ωr, there holds:

∫
Ω(t)

div(Mi gradu) dx =
∫

Ωr

Div(JMiC−1 GradU) dx .
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Proof. The proof follows by direct calculation:∫
Ω(t)

div(Mi gradu) dx =
∫

∂Ω(t)

(Mi gradu,n) dsx =
∫

∂Ω(t)

(gradu,Min) dsx

= α
∫

∂Ω(t)

(gradu,n) dsx = α
∫
∂Ωr

(
F−>GradU, JF−>N

)
dsx

= α
∫
∂Ωr

(
JF−1F−>GradU,N

)
dsx

=
∫
∂Ωr

(
JC−1 GradU,MiN

)
dsx

=
∫

Ωr

Div(JMiC−1 GradU) dx

It still remains to represent the tensors Mi,Me in spatial and material coor-
dinates. To the best of the authors knowledge there is no consensus in the
existing literature about the interplay between diffusion and deformation and
it is an actual research topic. See [5, 6, 23, 44, 103, 126, 186] and references
therein for an overview on the ongoing discussion. We will assume that the
orthonormal coordinate system {f 0, s0,n0} is given and fixed in material co-
ordinates. Therefore we may assume that the conductivity tensor in material
coordinates is given as

Mmat
i := mf

i f 0(X)⊗ f 0(X) +ms
is0(X)⊗ s0(X) +mn

i n0(X)⊗ n0(X).

If we take a smooth scalar function of material coordinates Φ we see that

Mmat
i Grad Φ = mf

i (f 0,Grad Φ)f 0 +ms
i (s0,Grad Φ)s0 +mn

i (n0,Grad Φ)n0.

This means we get a transport of mf
i (f 0,Grad Φ) in the direction of f 0 and

respectively for the other vectors. This motivates the definition of the spatial
diffusion tensor as

Mspace
i := mf

i Ff 0 ⊗ Ff 0 +ms
iFs0 ⊗ Fs0 +mn

i Fn0 ⊗ Fn0.
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After applying basic rules for the “⊗”-product we obtain

Mspace
i = FMmat

i F>. (2.44)

The above transformation is referred to as a push-forward operation for
a contravariant second-order tensor. For a more detailed discussion on
co- and contravariant tensors we refer to [85, 115, 135]. For more on the
contravariant nature of a conductivity tensor we refer to [74]. Having fixed the
relation between spatial and material form of the conductivity tensors Mi, Me

as in (2.44) one sees that

J Div
(
JF−1Mspace

i F−>GradVtm
)

= J Div
(
JMmat

i GradVtm
)
.

A different kind of coupling is achieved by modifying the ionic currents and
include deformation dependent variables. In general this means that one gets a
new ionic current

Iion = Iion(Vtm,v) + IMEF(Vtm,w,U).

Here w is a new set of additional ionic variables which are sensitive to defor-
mation. There are several models known in literature, for example [139, 140,
141, 150] and a lot more to be found in the CellML database. To specify the
explicit dependence on U one usually assumes that the ionic current depends
only on the stretch λf := (Cf 0,f 0) in the fiber direction and on the stretch
ratio ∂

∂t
λf . Two examples of models which are dependent on the stretch can be

found in [33] and [95]. The first one is given by

IMEF :=

gs(Vtm − Vs)(λf − 1) if λf > 1,
0 else ,

with defined constants gs, Vs. The second example is given by

IMEF := gs(Vtm − Vs)
1

1 + exp (−δ(λf − 1)) .

It is convenient to summarize such models in the form

IMEF := gs(Vtm − Vs)g(λf ). (2.45)
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2.4.2 Coupling Electrics to Mechanics

After discussing the coupling of the mechanical behavior to the electrical
behavior we are interested in the other direction. In literature, see for example
[6] and references therein, one may distinguish two popular approaches the
active strain, see [5, 33, 124, 125, 175], and the active stress approach, see
[73, 95, 141, 169]. The first approach is based on a splitting of the deformation
gradient F

F = FpassFact

into an purely passive and an active deformation. In this case one obtains
different governing equations and needs to provide a suitable constitutive
relation for the active deformation Fact. For the second approach one fixes the
macroscopic passive constitutive behavior of the elastic material and then add
a suitable active stress term

S = Spass + Sact.

We will focus on the active stress approach since it can be incorporated into
existing solvers for nonlinear elasticity without major recoding. We will use the
active stress model proposed in [6, (4.10)]. There one has

Sact := Ta(Vtm,w)I4f (C)− 1
2 (f 0 ⊗ f 0). (2.46)

Here Ta(Vtm,w) is a function which describes the strength of active tension
generated in the direction of the fibers f 0. It may depend on additional internal
variables w (for example the internal calcium concentration). We will use the
following form taken from [73, Page 329]:

∂

∂t
Ta = ε(Vtm) (ka(Vtm − Vr)− Ta) ,

ε(Vtm) := ε0 + (ε∞ − ε0) exp
(
− exp

(
−ξ

(
Vtm − V

)))
.

The function ε(Vtm) is a smooth approximation of the Heaviside-function used
in [126, Page 511]. It is used to account for the delay of mechanical response to
electric potentials. An example of the function ε(Vtm) is depicted in Figure 2.9.

Remark 2.24. The elasticity tensor Cact can be calculated as

Cact = 2∂Sact

∂C = −Ta(Vtm,w)I4f (C)− 3
2f 0 ⊗ f 0 ⊗ f 0 ⊗ f 0.
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0
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Figure 2.9: An example for the function ε(Vtm). The parameters have been set to ε0 = 0.1,
ε∞ = 1.0, ξ = 70 and V = 0.1.

Summary

Summarizing all the results from before one arrives at the following fully coupled
system of cardiac electro-mechanics written in material coordinates.

Find (Vtm, ue,v, Ta,U) such that

∂

∂t
(JVtm) + JIion − J Div(JMi GradVtm)− J Div(JMi Gradue) = Jsi,

−J Div(JMi GradVtm)− J Div(JMi+e Gradue) = 0,
∂

∂t
(Jv) + JH(Vtm,v) = 0,

∂

∂t
(JTa) + Jε(Vtm) (Ta − ka(Vtm − Vr)) = 0,

−Div(F (Spas + Sact)) = 0
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in Ωr × (0, T ) and the boundary and initial conditions

N · (Mi GradVtm + Mi Gradue) + αi(Vtm + ue) = GR,i,

N · (Me Gradue) + αeue = GR,e,

F(Spas + Sact)N = 0,
Vtm(0,X) = V 0

tm(X),
v(0,X) = v0(X),
Ta(0,X) = T 0

a (X),

on ∂Ωr × (0, T ) and Ωr.

Formulation 2.1: System of coupled cardiac electro-mechanics
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In this chapter the mathematical tools needed for studying space-time methods
will be summarized.

3.1 Anisotropic Sobolev Spaces

In this section function spaces used in the studies of time-dependent partial
differential equations will be introduced. This part is mainly excerpted from [39,
111, 112]. Let Ω ⊂ Rd be bounded with Lipschitz boundary ∂Ω. One assumes
additionally that the domain Ω does not change in time. For a given positive
real number T one defines I := (0, T ), the space-time cylinder Q := Ω× I
and the space-time surface Σ := ∂Ω × I. Further one defines the initial
and end surfaces as Σ0 := Ω× {0}, ΣT := Ω× {T}. With this one has that
∂Q = Σ∪Σ0 ∪ΣT . Subsequently, the most important definitions in the context
of Bochner integrable functions will be recited.

Definition 3.1. Let X be a Banach space. Then a mapping f : I → X is called
strongly measurable iff there is a sequence {fn}n∈N of mappings of the form
fn(t) := ∑K

k=1 1Ak(t)xk with xk ∈ X and Ak ⊆ I Lebesgue-measurable sets such
that

lim
n→∞

‖fn(t)− f(t)‖X = 0 for almost all t ∈ I.

Definition 3.2 (Bochner function spaces). Let X be a Banach space. Let
p ∈ [1,∞]. The following function spaces will be defined:
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1. The space Lp(I;X) consists of all strongly measurable functions f : I → X
such that

‖f‖Lp(I;X) :=
 T∫

0

‖f(t)‖pX dt


1
p

<∞.

2. In the case p = ∞ L∞(I;X) is defined as the space of all strongly
measurable functions f : I → X such that

‖f‖L∞(I;X) := ess sup
t∈I

‖f(t)‖X <∞.

3. The space W k,p(I;X) consists of all strongly measurable functions f : I →
X admitting weak derivatives dkf

dtk up to the order k which are elements
of Lp(I;X).

4. The space C(I;X) consists of all continuous mappings f : I → X with

‖f‖C(I;X) := max
t∈I
‖f(t)‖X <∞.

The next class of spaces is important in the study of linear parabolic partial
differential equations.

Definition 3.3. Let r, s ≥ 0. Following [111] the anisotropic Bochner-
Sobolev spaces are defined as

Hr,s(Rd × R) := L2(R; Hr(Rd)) ∩ Hs(R; L2(Rd)).

Using the Fourier transform

û(τ,x) := 1√
2π

∫
R

e−itτu(t,x) dt

the space Hr,s(Rd × R) is equipped with the norm

‖u‖2
Hr,s(Rd×R) :=

∫
R

(
‖û(τ, ·)‖2

Hr(Rd) + (1 + |τ |2)s‖û(τ, ·)‖2
L2(Rd)

)
dτ.

For r, s < 0 one can define by duality Hr,s(Rd × R) := (H−r,−s(Rd × R))′.
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One also needs to define the space

Hr,s(Q) :=
{
u Q : u ∈ Hr,s(Rd × R)

}
with the norm

‖u‖Hr,s(Q) := inf
w∈Hr,s(Rd×R)

w Q=u

‖w‖Hr,s(Rd×R).

3.2 Tools from Functional Analysis

In this section the main tools needed for studying partial differential equations
in a functional analytical setting will be summarized. For more details on this
topic we refer to [29, 36, 111, 171]. Let X and Y denote two Hilbert spaces.
Many linear partial differential equations can be recast into operator equations
over Hilbert spaces. The prototype for such problems looks like, given f ∈ Y ′
find u ∈ X such that

a(u, v) = 〈f, v〉 for all v ∈ Y. (3.1)

Here a(·, ·) : X × Y → R denotes a bilinear form and 〈·, ·〉 denotes the duality
pairing between Y and its dual space Y ′. The bilinear form a(·, ·) is said to be
bounded if

|a(u, v)| ≤ cA2 ‖u‖X‖v‖Y for all u ∈ X, v ∈ Y.

Upon defining an operator,

A : X → Y ′

by

〈Au, v〉 := a(u, v)

which is possible due to the Fréchet-Riesz representation theorem see [171,
Theorem 3.3], Problem (3.1) is equivalent to the operator equation, find u ∈ X
such that

Au = f in Y ′, (3.2)
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see for example [171, Chapter 3]. Of course one wants to know whether such
problems are (uniquely) solvable. The problems (3.1) or (3.2) are said to be
well-posed if they admit a unique solution u ∈ X or equivalently the operator
A is an isomorphism. The key ingredient for checking well-posedness of an
linear operator equation is the following theorem dating back to [14, 15, 127].

Theorem 3.4 (Aziz-Babuška-Nečas). Let X, Y be Hilbert spaces and let

a(·, ·) : X × Y → R

be a bounded bilinear form and f ∈ Y ′. Then the problem (3.1) is well-posed iff

1. There is a cS > 0 such that

sup
v∈Y
‖v‖Y 6=0

a(u, v)
‖v‖Y

≥ cS‖u‖X for all u ∈ X. (3.3)

2. For each v ∈ Y , ‖v‖Y 6= 0 there exists a u ∈ X such that

a(u, v) 6= 0.

Equivalently, problem (3.2) is well-posed iff

1. There is a cS > 0 such that

‖Au‖Y ′ ≥ cS‖u‖X for all u ∈ X.

2. The adjoint of A, A′ : Y → X ′ is injective.

Moreover there holds the stability result

‖u‖X ≤
1
cS
‖f‖Y ′ .

Proof. See for example [27, Theorem 3.6].

Remark 3.5. Condition (3.3) is called the inf-sup-condition. The name
stems from the following equivalent formulation:

inf
u∈X
‖u‖X 6=0

sup
v∈Y
‖v‖Y 6=0

a(u, v)
‖u‖X‖v‖Y

≥ cS.

For more on the inf-sup-condition see for example [159] and references therein.
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In the case of X = Y being a Hilbert space one can also rely on the well-known
Lemma of Lax-Milgram, see [107].

Theorem 3.6 (Lemma of Lax-Milgram). Let X be a Hilbert space. Let

a(·, ·) : X ×X → R

be a bounded bilinear form and f ∈ X ′. Suppose that a(·, ·) is X-elliptic, i.e.:
there exists a cA1 > 0 such that for all v ∈ X

a(v, v) ≥ cA1 ‖v‖
2
X . (3.4)

Then problem (3.1) is well-posed. Moreover the following stability result holds:

‖u‖X ≤
1
cA1
‖f‖X′ .

Proof. For a proof consider [171, Theorem 3.4].

3.3 Newton’s Method

In many physical problems one has to deal with nonlinear partial differential
equations. This leads to nonlinear operator equations which can be stated very
generally as find u ∈ D ⊂ X such that

F (u) = 0.

Here F : D ⊆ X → Y is a nonlinear operator between Banach spaces X, Y .
To solve such problems one may use the technique of successive linearization.
Given a starting value u0 ∈ D one solves

F ′(uk)δu = −F (uk)

with the Fréchet-Derivative F ′. Then the next iterate is obtained as

uk+1 = uk + δu.

This algorithm is also called Newton’s method. For more details on Newton’s
method in general we refer to [46, 49, 50]. The convergence of Newton’s method
over Banach spaces is governed by the following theorem:
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Theorem 3.7 (Newton-Kantorovich). Let X, Y be Banach spaces and D ⊂ X
open and convex. Let F : D → Y be a continuously Fréchet-differentiable
operator and let u0 ∈ D be such that F ′(u0) is invertible. Provided∥∥∥F ′(u0)−1F (u0)

∥∥∥
X
≤ α,

∥∥∥F ′(u0)(F ′(u)− F ′(v))
∥∥∥ ≤ ω0‖u− v‖X ,

the sequence uk obtained from Newton’s method is well-defined and converges
to u∗ with F (u∗) = 0. The convergence is of second order for h0 := αω0 <

1
2

and the sequence uk stays in the ball B(u0, r0) where r0 := 1
ω0

(1−
√

1− 2h0).

Proof. See [46, Theorem 2.1].

3.4 Nonconforming Approximation Methods

In the previous section it was described how one can deal with operator equations
over Banach spaces. In general it is not possible to solve operator equations over
Banach spaces directly. Hence one relies on approximation methods to solve
such kind of problems. Usually one introduces finite dimensional subspaces
Xh ⊆ X and Yh ⊆ Y and considers the discrete variational problem to find
uh ∈ Xh such that

a(uh, vh) = 〈f, vh〉 (3.5)

for all vh ∈ Yh. If X = Y and Xh = Yh this is called a conforming Galerkin-
Bubnov method otherwise conforming Galerkin-Petrov method. Due
to conformity one also has the Galerkin orthogonality

a(u− uh, vh) = 0

for all vh ∈ Yh. Since one deals with finite-dimensional spaces, any uh ∈ Xh can
be expanded into basis functions φl spanning Xh

uh =
M∑
l=1

ulφl
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3.4 Nonconforming Approximation Methods

where M = |Xh|. Using the linearity of the bilinear form a(·, ·) one obtains

M∑
l=1

ula(φl, ψk) = 〈f, ψk〉

for all k = 1, . . . , N := |Yh|. Upon defining

Ah[k, l] := a(φl, ψk)

one sees, that an equivalent linear system can be obtained reading as

Ahu = f .

with the coefficient vector u = (u1, . . . , uM)> ∈ RM . Conversely, for each
w ∈ RM one can construct a wh ∈ Xh by

wh :=
M∑
l=1

wlφl.

This is called the Galerkin isomorphism. In the case of a Galerkin-Bubnov
method one obtains a square matrix Ah. The unique solvability of the finite
dimensional problem is covered by the following theorem.

Theorem 3.8. Let a(·, ·) : X × Y → R fulfill the assumptions of Theorem 3.4.
Let Xh ⊆ X and Yh ⊆ Y additionally fulfill a discrete inf-sup condition. Then
there exists a unique solution uh ∈ Xh of the finite dimensional problem (3.5)
and there holds the quasi-optimality estimate

‖u− uh‖X ≤
(

1 + cA2
cS

)
inf

wh∈Xh
‖u− wh‖X .

Proof. See [27, Page 120, Satz 3.7], [171, Theorem 8.4] or [7, Theorem 4.1.4].

Sometimes it is more convenient to relax the conformity conditions and consider
Xh * X and Yh * Y . Salient examples are the treatment of convection diffusion
equations with dominant convection, see [37] and the numerical solution of
compressible Navier-Stokes equations, see [20]. The discontinuous Galerkin
method is a typical example of an nonconforming method. For more details on
nonconforming methods in general we refer to [27, Chapter III] or [29, Chapter

57



3 Mathematical Preliminaries

10]. In the following the main tools for proving discrete well-posedness (existence
and uniqueness) as well as abstract error estimates will be summarized, see
[47, Chapter 1.3], [172] and [57, Section 2.3] for more details. The three main
properties are:

1. Discrete (inf-sup-)stability (also called the Ladyzhenskaja-Babuška-
Brezzi-condition short LBB-condition),

2. Consistency,
3. Boundedness.

For sake of brevity we will now specify that f ∈ L2(Q). Let us consider a
finite-dimensional subspace Vh ⊂ L2(Q) but Vh * X. The aim is to investigate
the discrete problem, given f ∈ L2(Q) find uh ∈ Vh s.t.:

ah(uh, vh) = (f, vh)L2(Ω) for all vh ∈ Vh. (3.6)

Here the bilinear form ah : Vh×Vh → R. Since test and trial space are the same
this variational formulation is of Galerkin-Bubnov type. One can rewrite (3.6)
as an operator equation by introducing the linear operator Ah : Vh → Vh

(Ahuh, vh)L2(Ω) := ah(uh, vh)

and the right hand side as the L2(Q)-projection Qh onto Vh. This leads to the
equivalent discrete operator equation, given f ∈ L2(Q) find uh ∈ Vh s.t.:

Ahuh = Qhf in Vh.

Remark 3.9. It is common for discontinuous Galerkin methods in space to
assume f ∈ L2(Ω). Thus one is able to define the right hand side of (3.6) with
the L2(Ω)-scalar product. In the case f ∈ Y ′ but f 6∈ L2(Ω) one may use other
techniques for defining the right hand side, see [47, Remark 4.9].

The next step is to formulate the concept of discrete stability. To this end the
space Vh is equipped with some norm �·�.

Definition 3.10 (Discrete stability). The bilinear form ah : Vh × Vh → R is
called discrete stable on Vh if there is a cS > 0 not depending on Vh such
that

cS�uh� ≤ sup
vh∈Vh
�vh� 6=0

ah(uh, vh)
�vh�

for all uh ∈ Vh. (3.7)
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3.4 Nonconforming Approximation Methods

Remark 3.11. Condition (3.7) is an discrete inf-sup-condition. This can be
seen by rewriting it as

cS ≤ inf
uh∈Vh
�vh� 6=0

sup
vh∈Vh
�vh� 6=0

ah(uh, vh)
�uh��vh�

.

The concept of discrete stability ensures the discrete well-posedness of (3.6):

Lemma 3.12. Let f ∈ L2(Q). Then the discrete variational problem (3.6) is
well-posed iff the bilinear form ah : Vh × Vh → R is discrete stable on Vh.

Proof. See [47, Lemma 1.30].

Remark 3.13. A sufficient condition for discrete stability is discrete ellip-
ticity, i.e.: there exists a cA1 > 0 such that

cA1 �vh�2 ≤ ah(vh, vh) for all vh ∈ Vh. (3.8)

Up to now one has only considered the discrete setting. However, the goal is to
link the continuous problem (3.1) to the discrete problem. In conforming finite
element analysis one has Vh ⊂ X and thus may plug in the exact solution u
into the discrete bilinear form ah(·, ·). However, in the nonconforming setting
this may not be possible in general since ah(·, ·) is only defined on Vh × Vh.
Therefore one assumes that there exists a subspace X∗ ⊂ X such that u ∈ X∗
and such that the bilinear form ah(·, ·) can be extended to X∗ × Vh.

Definition 3.14 (Consistency). Let u ∈ X∗ be the exact solution to problem
(3.1). The bilinear form ah : Vh × Vh → R is called consistent if it can be
extended to X∗ × Vh and

ah(u, vh) = (f, vh)L2(Ω) for all vh ∈ Vh. (3.9)

Remark 3.15. Condition (3.9) is equivalent to the Galerkin-orthogonality:

ah(u− uh, vh) = 0 for all vh ∈ Vh. (3.10)
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The last property needed is boundedness of the bilinear form. To this end one
introduces the space

X∗h := X∗ + Vh.

This is motivated by the fact that the approximation error u−uh is an element
of this space. In general it is not possible to extend the norm �·� used in the
discrete stability to the space X∗h. Therefore one introduces a second norm
�·�∗.

Definition 3.16 (Boundedness). The bilinear form ah : Vh × Vh → R is called
bounded in X∗h × Vh if there exists a constant cB2 > 0 not depending on h
such that

|ah(u, vh)| ≤ cB2 �u�∗�vh�, (3.11)

where �·�∗ is a norm defined on X∗h such that for all u ∈ X∗h there holds
�u� ≤ �u�∗.

With these three properties one is in the position to state an abstract noncon-
forming error estimate [47, Theorem 1.35].

Theorem 3.17 (Abstract error estimate). Let u be the unique exact solution
to (3.1) with f ∈ L2(Ω). Let uh be the unique solution to (3.6). Let X∗ ⊂ X
and assume that u ∈ X∗. Let X∗h := X∗+Vh and assume that the bilinear form
ah(·, ·) : Vh × Vh → R can be extended to X∗h × Vh and enjoys the properties of
discrete stability, consistency and boundedness. Further let there be two norms
�·�, �·�∗ defined on X∗h such that for all v ∈ X∗h there holds �v� ≤ �v�∗.
Then

�u− uh� ≤
(

1 + cB2
cS

)
inf
zh∈Vh

�u− zh�∗.

Proof. Take any zh ∈ Vh. Then thanks to discrete stability we have

cS�uh − zh� ≤ sup
vh∈Vh
�vh� 6=0

ah(uh − zh, vh)
�vh�

.
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Next we observe that

sup
vh∈Vh
�vh� 6=0

ah(uh − zh, vh)
�vh�

= sup
vh∈Vh
�vh� 6=0

ah(uh − u− (zh − u), vh)
�vh�

= sup
vh∈Vh
�vh� 6=0

ah(u− zh, vh)
�vh�

due to consistency. Now we use the boundedness and obtain

sup
vh∈Vh
�vh� 6=0

ah(u− zh, vh)
�vh�

≤ cA2 sup
vh∈Vh
�vh� 6=0

�u− zh�∗�vh�
�vh�

= cA2 �u− zh�∗.

Hence we know that

�uh − zh� ≤ cA2
cS

�u− zh�∗.

Finally we conclude the proof with the help of the triangle inequality

�u− uh� = �u− zh + zh − uh� ≤ �u− zh� + �uh − zh�

≤ �u− zh�∗ + cA2
cS

�u− zh�∗.

3.5 Tools for Discontinuous Galerkin Methods

For defining the discontinuous Galerkin finite element method one needs to
introduce a few basic concepts. This part is mainly taken from [47, Chapter
1] and also [129, Chapter 2]. We start by defining the space-time dimension
dT := d+ 1, where d is the dimension of the space domain Ω. For simplification
it is assumed that the computational domain Q ⊂ RdT is a dT -polytope.

Definition 3.18 (Boundary and Outer Normal). The boundary of Q ⊂ Rd+1

is denoted by ∂Q. The almost everywhere defined outer normal is denoted by
n. Furthermore the normal vector admits the representation n = (nx, nt).
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Definition 3.19 (Simplex). Given dT + 1 vectors x1, . . . ,xdT+1 ∈ RdT such
that

{x2 − x1,x3 − x1, . . . ,xdT+1 − x1}

are linear independent. Then the set

τ := conv {x1, . . . ,xdT+1}

is called a dT -simplex. The vectors x1, . . . ,xdT+1 are called vertices of τ .

Remark 3.20. For more information about triangulations of domains with
dimension dT ≥ 4 we refer to [129, 130]. For non-polygonal domains one needs
to take care of the approximation of the boundary curve ∂Q ⊂ RdT−1, see for
example [29, Chapter 4.7] and [36, Chapter 4.3].

Definition 3.21 (Simplicial Mesh). Let Q ⊂ RdT . Further, let there be given a
set of N ∈ N dT -dimensional non-overlapping simplex elements

T = {τ1, τ2, . . . , τN} , τi ∩ τj = ∅ for all τi, τj ∈ T .

Then T is called an simplical mesh of Q iff

Q =
⋃
τ∈T

τ .

Remark 3.22. The index N refers to the number of elements in the triangu-
lation T . This can be made explicit by using the notation TN .

Remark 3.23. We will restrict ourselves to simplical meshes only. Therefore
we will skip the term simplical mesh and use the term mesh henceforth.

Definition 3.24 (Element characteristics). Given a triangulation T of Q.
Then for each τl ∈ T the volume is defined as

∆l :=
∫
τl

dq.

The local mesh-size is defined as hl := ∆
1
dT
l . Moreover the diameter is

defined as

dl := sup
x,y∈τl
|x− y| .
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The radius of the inscribed circle is denoted by rl. The global mesh-size is
defined as

h := max
τl∈T

hl.

Remark 3.25. One may use the notation Th for the triangulation TN with N
elements of Q with global mesh-size h.

A key ingredient to discontinuous Galerkin methods are interior and boundary
facets.
Definition 3.26 (Interior and boundary facets). Let TN be a mesh. A subset
F ⊂ Q is called an interior facet if there are two distinct elements τk, τl ∈ TN
such that

F = ∂τk ∩ ∂τl.

In this case we will use the notation Γkl := F . The subset F ⊂ Q is called an
boundary facet if there is a τl ∈ TN such that

F = ∂τl ∩ ∂Q.

For boundary facets we will use the notation Γl. The set of all interior facets
will be denoted by IN . The set of all boundary facets will be denoted by BN .
Definition 3.27 (Matching mesh). Let TN be a triangulation of Q. Then TN
is called a matching mesh if for any two distinct τk, τl ∈ TN there holds that
the intersection τ l ∩ τ k is always a sub-simplex of dimension {d, d− 1, . . . , 0}.
Remark 3.28. If dT = 3 this means, for example, that the intersection of two
arbitrary simplex elements of a triangulation TN is either a common vertex, a
common edge or a common face of the elements.

For the convergence proofs of discontinuous Galerkin Element Methods one
needs to define families of triangulations, see also [47, Chapter 1] and [30, 58].
Definition 3.29 (Family of triangulations). A family of triangulations is
a collection of triangulations

{TN}N∈N
where N ⊆ N denotes an sequence of natural numbers having ∞ as only
accumulation point. The shorthand notation TN will be used.
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τk τl

Γkl

nk

nl

Figure 3.1: Illustration of an interior facet for dT = 2.

In contrast to standard conforming Galerkin finite element methods hanging
nodes are allowed within the mesh, see Figure 3.1 for an illustration of a typical
interior facet. For applying the standard theory it is not possible to work
with complete arbitrary meshes with arbitrary elements having hanging nodes.
Instead it is necessary, that one can construct sub-meshes of a given mesh
without hanging nodes. This is collected in the following definition, see [47,
Definition 1.36] and also [30, Assumption 1].

Definition 3.30 (Mesh quality). Let TN be a family of triangulations. The
mesh family is said to be a good family if it satisfies the following mesh
quality conditions

(a) Shape regularity There exists a parameter cF > 0 such that for all τl ∈ TN

dl ≤ cF rl.

(b) Contact regularity There exists a constant c1 > 0 such that

c1h
dT−1
l ≤ |e| for all τl ∈ TN , e ∈ IN ∪ BN , s.t. e ⊂ τl.
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(c) Locally quasi-uniform Given any two elements τl, τk ∈ TN there exist a
constant c̃G ≥ 1 independent of h such that

c̃−1
G ≤

hk
hl
≤ c̃G

(d) Sub-mesh condition For each TN ∈ TN there exists a regular, conforming
submesh T̃N having no hanging nodes such that

1. For each τ̃ ∈ T̃N there exists a τ ∈ TN such that τ̃ ⊂ τ .
2. The family induced by T̃N fulfills (a), (b) and (c).
3. There exists a constant c̃ such that, whenever τ̃p ⊂ τl then hp ≤ c̃hl.

Remark 3.31. The concept of matching sub-meshes was introduced in [28]

Remark 3.32. The contact regularity of TN implies the following bound on
the measure of the boundaries of the elements: There exist cR1 , cR2 > 0 such
that

cR1h
dT−1
l ≤ |∂τl| ≤ cR2h

dT−1
l . (3.12)

Given two neighboring elements τk, τl the local quasi-uniformity implies a bound
on the average mesh size hkl := 1

2(hk + hl): There exists a constant cG ≥ 1
independent of the family TN such that

c−1
G ≤

hkl
hl
≤ cG c−1

G ≤
hkl
hk
≤ cG. (3.13)

See [129, Section 2.2] and [47, Section 1.4] for details.

Remark 3.33 (Boundary Discretization). When assuming that Ω has a polyg-
onal boundary one also has that Σ is polygonal. Furthermore a boundary
discretization EM = E0 ∪ ET ∪ ER such that EM = Σ is induced. Each element
ej ∈ EM can then be uniquely associated to a d-dimensional sub-simplex of an
element τl ∈ Th. This means that for each τl ∈ TN with ∂τl ∩Σ 6= ∅ there exists
exactly one ej(l) ∈ EM and vice versa.

For the proofs in the subsequent sections the following technical assumption is
needed, see also [129].
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Assumption 3.34 (Time Alignment). For all TN ∈ TN there holds:

min
Γkl∈IN

{|nk,x| > 0: nk,x is normal vector of Γkl} ≥ cn > 0. (3.14)

Remark 3.35. Condition (3.14) means that the minimum over all angles
enclosed by the interior facets which are neither parallel nor normal to the
time axis are large enough. Provided that the initial triangulation fulfills this
condition and the family of meshes is obtained by successive red refinements
the alignment condition holds also. See Figure 3.2 for an illustration.

x

t

n

nx

n

nx

n

nx

Figure 3.2: Illustration of the alignment condition

For the formulation of a discrete variational formulation the following standard
definitions are used:

Definition 3.36. Let Γkl ∈ IN be an interior facet with outer normal nk =
(nx,k, nt,k)> ∈ RdT for τk and nl = −nk for τl. For a given function φ smooth
enough restricted to either τk or τl one defines :

• The jump across Γkl as

JφKkl := φ τknk + φ τlnl.

• The space jump across Γkl as

JφKx,kl := φ τknx,k + φ τlnx,l.
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• The time jump across Γkl as

JφKt,kl := φ τknt,k + φ τlnt,l.

• The average of φ on Γkl as

〈φ〉kl := 1
2
(
φ τk + φ τl

)
.

• Given ω1, ω2 ∈ [0, 1] with ω1 + ω2 = 1 the weighted average of φ on
Γkl is defined as

〈φ〉ω,kl := ω1φ τk + ω2φ τl .

• The upwind in time direction of φ is defined as

{φ}up
kl :=


φ τk if nk,t > 0
0 if nk,t = 0
φ τl if nk,t < 0

Remark 3.37. With this definition the jump of a scalar-valued function is
independent of the ordering of the finite elements τk, τl. It is a vector-valued
function. Other definitions for these terms are possible see for example [47,
Section 1.2.3]. Given that φ is vector-valued one defines the tensor valued jump
as

JφK
kl

:= φ τk ⊗ nk + φ τl ⊗ nl.

In Section 3.4 it was discussed that the discontinuous Galerkin method is
nonconforming. Next, the spaces that will be used for this method will be
introduced.

Definition 3.38 (Broken Sobolev space). Let TN ∈ TN be an admissible
triangulation of Q. For s ≥ 0 we define the broken Sobolev space Hs(TN) as

Hs(TN) :=
{
v ∈ L2(Q) : v τl ∈ Hs(τl) for all τl ∈ TN

}
.

Remark 3.39. It is easy to show, that provided u ∈ Hr,s(Q) one has that
u ∈ Hmin{r,s}(Q).
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For a given discretization TN ∈ TN one defines the discrete test and trial
spaces

Sph(TN) :=
{
vh ∈ L2(Q) : vh τl ∈ P(τl) for all τl ∈ TN

}
where P(τl) is the space of polynomials with degree less or equal p on τl.

Remark 3.40. In the case of Dirichlet boundary conditions one uses a slightly
different definition

Sph(TN) :=
{
vh ∈ L2(Q) : vh τl ∈ P(τl) for all τl ∈ TN and vh ΣD = 0

}
.

It is possible to use different polynomial degrees on each element τl as well as
different Sobolev spaces on each τl. For more on broken polynomial spaces we
refer to [47, Section 1.2.4 and A.2].

For the broken polynomial spaces the following trace and inverse inequalities
are valid:

Lemma 3.41 (Inverse and trace inequalities). Let TN ∈ TN be a shape and
contact regular mesh sequence. Then, for all vh ∈ Sph(TN) there holds:

‖vh‖L2(Γkl) ≤ cI |Γkl|
1
2 |τl|−

1
2 ‖vh‖L2(τl), (3.15)

‖vh‖H1(Γkl) ≤ cIh
−1
kl ‖vh‖L2(Γkl), (3.16)

‖vh‖H1(τl) ≤ cIh
−1
l ‖vh‖L2(τl). (3.17)

Proof. See [47, Lemma 1.46] for a proof of (3.15). The proof for inequality
(3.16) can be found in [191, Section 4.2.4] and the proof of inequality (3.17)
can be looked up in [47, 171].

Remark 3.42. From estimate (3.15) one obtains also the estimate

‖A∇xvh‖[L2(Γkl)]d ≤ cI |Γkl|
1
2 |τl|−

1
2 ‖A∇xvh‖[L2(τl)]d , (3.18)

for any symmetric positive definite piecewise constant matrix A. This can
be seen by observing that A∇xvh ∈ [Sp−1

h (TN)]d and applying estimate (3.15)

68



3.5 Tools for Discontinuous Galerkin Methods

component-wise. In the case that A is not constant but in [L∞(TN )]d×d one can
prove the following:

‖A∇xvh‖[L2(Γkl)]d ≤ ‖A‖[L∞(TN )]d×d‖∇xvh‖[L2(Γkl)]d

≤ cI‖A‖[L∞(TN )]d×d |Γkl|
1
2 |τl|−

1
2
∥∥∥A−1A∇xvh

∥∥∥
[L2(τl)]d

≤ cI max
x∈Q

∣∣∣∣∣λmax(A(x))
λmin(A(x))

∣∣∣∣∣ |Γkl| 12 |τl|− 1
2 ‖A∇xvh‖[L2(τl)]d .
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4 Space-Time Discontinuous
Galerkin Finite Element Method
for the Bidomain Equations

In this chapter a space-time discontinuous Galerkin finite element method for the
Bidomain equations will be discussed. The first part of this chapter is devoted to
existing results on unique solvability and regularity for the Bidomain equations.
Subsequently, the discretization of the Bidomain equations will be presented.
Proceeding, we will start our numerical considerations with a corresponding
linear problem and then extend the results to the nonlinear case. This chapter
will be closed with some convergence studies.

4.1 Unique Solvability and Regularity Results

In this section existence and uniqueness results for the Bidomain equations will
be summarized which can be found in [25, 26, 38, 105, 182]. It is clear that
the results can not be independent of the chosen ionic model. The Bidomain
equations will be considered in the following form

∂

∂t
Vtm + Iion(Vtm, v)− div(Mi gradVtm)− div(Mi gradue) = si,

− div(Mi gradVtm)− div((Mi + Me) gradue) = 0,
∂

∂t
v +H(Vtm, v) = 0,

(4.1)
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4 Space-Time DGFEM for the Bidomain Equations

in Q := Ω× (0, T ). We will consider only phenomenological ionic models, i.e.
with one additional variable. The following initial and boundary conditions will
be considered

n ·Mi grad (Vtm + ue) + αi (Vtm + ue) = gi,R,

n ·Me gradue + αeue = ge,R,

Vtm(x, 0) = V 0
tm(x),

v(x, 0) = v0(x).

(4.2)

For the case of non-phenomenological ionic models we refer to [182]. One has to
be careful in the use of term “weak solutions” to the Bidomain equations as this
term is ambiguous. In literature, there arise different notions of solutions to the
Bidomain equations, each entitled “weak solution”. For example the definitions
of weak solutions in [25, 26, 105, 106, 182] are different and in general not
equivalent to those found in [8, 9]. For a more general discussion on the various
solution concepts in the context of time dependent partial differential equations
we refer to [7, Chapter 3]. We will try to emphasize this by explicitly adding
the first author to the various weak solution concepts. The most recent result
concerning existence and regularity of solutions to the Bidomain equations
can be found in [105, Theorems 2.5, 2.7, 2.8 and 3.3] and also [106]. The first
concept of weak solutions is the one of Kunisch et al. To this end we fix the
following spaces

X := C(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ∩ Lp(QT ),
Y := L2(0, T ; H2(Ω)),
Z := C(0, T ; L2(Ω)),

where p ≥ 2 when Ω ⊂ R2 and 2 ≤ p ≤ 6 in the case Ω ⊂ R3. This are results
for weak solutions in the sense of Kunisch et al. The formulation is depicted in
Formulation 4.1.
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Find (Vtm, ue, v) ∈ X × Y × Z such that∫
Ω

siφ1 dx =
∫
Ω

∂Vtm

∂t
φ1 dx+

∫
Ω

Iion(Vtm, v)φ1 dx

+
∫
Ω

Mi∇xVtm · ∇xφ dx+
∫
Ω

Mi∇xue · ∇xφ dx

+ αi

∫
ΓR

(Vtm + ue)φ1 dsx

for all φ1 ∈ H1(Ω) and almost all t ∈ (0, T ),∫
Ω

(si + se)φ2 dx =
∫
Ω

Mi∇xVtm∇xφ2 dx+
∫
Ω

Mi+e∇xue∇xφ2 dx

+ αi

∫
ΓR

(Vtm + ue)φ2 dsx +αe
∫

ΓR

ueφ2 dsx

for all φ2 ∈ H1(Ω) and almost all t ∈ (0, T ),

0 =
∫
Ω

∂v

∂t
φ3 dx+

∫
Ω

G(Vtm, v)φ3 dx

for all φ3 ∈ L2(Ω) and almost all t ∈ (0, T ).

Formulation 4.1: Weak formulation of the Bidomain equations as in [105, 106].

For the proof of existence, uniqueness and regularity of solutions to Formulation
4.1 one needs to rely on the following assumptions, cf. [105, Assumptions 2.3]
and [106, Theorem 1.1].

Assumption 4.1 (Basic assumptions on the input data). We assume that

1. The space domain Ω ⊂ Rd is a bounded Lipschitz domain.
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4 Space-Time DGFEM for the Bidomain Equations

2. For the conductivity tensors there holds: Mi, Me ∈ [L∞(Ω)]d×d, Mi,
Me are symmetric and positive definite obeying the following uniform
ellipticity estimates

0 ≤ µ1 |v|2 ≤
(
M{i,e}v,v

)
≤ µ2 |v|2

with µ1, µ2 > 0.
3. The initial values V 0

tm, v
0 belong to L2(Ω).

4. The input data si, se belong to L∞(0, T ; H̃−1(Ω)). The boundary data
gR,i, gR,e belongs to L∞(0, T ;H−1/2(Γ))

Furthermore we recite the growth conditions to be imposed on the nonlinearities,
see also [26, Page 470,471].

Assumption 4.2 (Growth conditions). We assume that

1. The nonlinearity Iion can be written as

Iion(Vtm, v) = f1(Vtm) + f2(Vtm)v,
G(Vtm, v) = g1(Vtm) + g2v

where f1 : R → R, f2 : R → R and g1 : R → R are continuous functions
and g2 ∈ R.

2. There exist non-negative constants {ci}6
i=1 such that for any u ∈ R

|f1(u)| ≤ c1 + c2 |u|p−1 ,

|f2(u)| ≤ c3 + c4 |u|
p/2−1 ,

|g1(u)| ≤ c5 + c6 |u|
p/2 .

3. There exist constants a, λ > 0, b, c ≥ 0 such that for any (u, v) ∈ R2

λuIion(u, v) + vG(u, v) ≥ a |u|p − b(λ |u|2 + |v|2)− c.

Under these assumptions it is possible to show existence and uniqueness (see
[106, Theorem 1.4] to the problem posed in Formulation 4.1. Further the
authors were able to show the additional regularity results (see [106, Proposition
2.5,Proposition 2.6,Proposition 2.7,Proposition 2.8])

74



4.1 Unique Solvability and Regularity Results

• Vtm ∈ L2(0, T ; L6(Ω)) ∩ Lq(0, T ; Lr(Ω)) ∩ L5(QT ) where 1 < q < ∞ and
4 ≤ r < 6,
• ue ∈ L2(0, T ; H2(Ω)),
• v ∈ C1([0, T ],L1(Ω)),
• If 26/9 < r < 3 and v0 ∈ W 1,r/2(Ω) then v ∈ L1(0, T ;W 1,r/2(Ω)) ∩
C(0, T ; L8/3(Ω)).

The second concept of weak solutions we want to mention can be found in
the works [8, 9]. For defining the weak solution concept one introduces the
following spaces

X := L2(0, T ; H1(Ω)) ∩ L4(Q),
X ′ = L2(0, T ; H̃−1(Ω)) + L 4

3 (Q),
Y := L2(0, T ; H1(Ω)),
Z := C(0, T ; L2(Ω)),

W (Q) :=
{
v ∈ X : ∂

∂t
v ∈ X ′

}
,

V (Q) :=
{
v ∈ X : ∂

∂t
v ∈ L∞(Q)

}
.

The weak formulation in the sense of Andreianov et al. is depicted in Formulation
4.2.

Find (Vtm, ue, v) ∈ W (Q)× Y × Z such that∫
Q

siφ1 dq +
∫

Σ0

V 0
tmφ1 dsq = −

∫
Q

Vtm
∂φ1

∂t
dq +

∫
Q

Iion(Vtm, v)φ1 dq

+
∫
Q

Mi∇xVtm · ∇xφ1 dq +
∫
Q

Mi∇xue · ∇xφ1 dq

+ αi

∫
ΣR

(Vtm + ue)φ1 dsq
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4 Space-Time DGFEM for the Bidomain Equations

for all φ1 ∈ V (Q),∫
Q

(si + se)φ2 dq =
∫
Q

Mi∇xVtm∇xφ2 dq +
∫
Q

Mi+e∇xue∇xφ2 dq

+ αi

∫
ΣR

(Vtm + ue)φ2 dsq +αe
∫

ΣR

ueφ2 dsq

for all φ2 ∈ L2(0, T ; H1(Ω)),∫
Σ0

v0φ3 dsq = −
∫
Q

v
∂φ3

∂t
dq +

∫
Q

G(Vtm, v)φ3 dq

for all φ3 ∈ L2(Q).

Formulation 4.2: Weak formulation of the Bidomain equations as in [8, 9].

The existence of a unique weak solution in the sense of Formulation 4.2 is shown
in [9, Section 3]. However higher regularity results for this formulation remain
an open question, see [9, Section 4.2]. For defining the space-time discretization
we will assume that (Vtm, ue, v) ∈ [Hr,s(Q)]3 with min{r, s} > 3

2 .

4.2 Numerical Analysis

In this section we will derive a discrete space-time variational formulation of the
Bidomain equations (4.1)-(4.2). Following ideas from [129] the entire space-time
cylinder Q = Ω× (0, T ) will be used as computational domain. On top of the
growth conditions 4.2 we will additionally pose the following assumptions:

Assumption 4.3 (Additional assumptions on nonlinearities). We will assume
that:

1. There holds

Iion(Vtm, v), G(Vtm, v) ∈ C1(Q)
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4.2 Numerical Analysis

2. Upon defining

A(u,w) :=

 ∂Iion
∂Vtm

(u,w) ∂Iion
∂v

(u,w)
∂G
∂Vtm

(u,w) ∂G
∂v

(u,w)


there holds

λmin(sym(A(uh, wh))) ≥ cnl > 0 for all (uh, vh)> ∈ Sp1
h (TN)× Sp2

h (TN)

3. There holds ‖A(uh, wh))‖F ≤ cnl < ∞ for all (uh, vh)> ∈ Sp1
h (TN) ×

Sp2
h (TN)

4. There holds (cnl)2

4cnl
< 1.

The discrete variational problem reads: Find (V h
tm, u

h
e , v

h) ∈ Sp1
h (TN )×Sp2

h (TN )×
Sp3
h (TN) such that :

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm, φ

h) + aDG
i (uhe , φh) + IDG(V h

tm, v
h;φh) = l1(φh),

aDG
i (V h

tm, ψ
h) + aDG

i+e(uhe , ψh) = l2(ψh),
bDG
T (vh, ζh) +GDG(V h

tm, v
h; ζh) = l3(ζh),

(4.3)
for all (φh, ψh, ζh) ∈ Sp1

h (TN )×Sp2
h (TN )×Sp3

h (TN ). The bilinear form aDG
{i,e}(•, •)

is defined as

aDG
{i,e}(uh, vh) :=

N∑
l=1

∫
τl

M{i,e}∇xuh · ∇xvh dq

−
∑

Γkl∈IN

∫
Γkl

〈
M{i,e}∇xuh

〉
kl,ω
· JvhKkl,xdsq

−
∑

Γkl∈IN

∫
Γkl

JuhKx,kl ·
〈
M{i,e}∇xvh

〉
kl,ω

dsq

+
∑

Γkl∈IN

σγkl

hkl

∫
Γkl

JuhKx,kl · JvhKx,kldsq

+ α{i,e}

∫
ΣR

uhvhdsq.

(4.4)
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4 Space-Time DGFEM for the Bidomain Equations

Bilinear form (4.4) is the symmetric weighted interior penalty discretiza-
tion of an anisotropic Poisson operator see [47, Section 4.5 and Section 4.5.6].
The weights for the averages read:

ω1 := mk

ml +mk

, (4.5)

ω2 := ml

ml +mk

, (4.6)

γkl := 2mkml

mk +ml

, (4.7)

mk :=
(
M{i,e} τknk,x,nk,x

)
, (4.8)

ml :=
(
M{i,e} τlnl,x,nl,x

)
. (4.9)

The bilinear form bDG
T (•, •) is defined as

bDG
T (uh, vh) :=

N∑
l=1
−
∫
τl

uh
∂

∂t
vhdq +

∫
ΣT

uhvhdsq

+
∑

Γkl∈IN

∫
Γkl

{uh}up
kl JvhKt,kldsq.

(4.10)

Bilinear form (4.10) results from an upwind discretization of the time derivative
as used in [129, Section 2.1] and [47, Section 2.3].

Remark 4.4. Using integration by parts one may observe that

bDG
T (uh, vh) =

N∑
l=1

∫
τl

∂

∂t
uhvhdq +

∫
Σ0

uhvhdsq −
∑

Γkl∈IN

∫
Γkl

JuhKt,kl{vh}
down
kl dsq

(4.11)

where the downwind is defined as

{φ}down
kl :=


φ τl if nk,t > 0,
0 if nk,t = 0,
φ τk if nk,t < 0.
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4.2 Numerical Analysis

The nonlinear forms are defined as

IDG(V h
tm, v

h;φh) :=
N∑
l=1

∫
τl

Iion(V h
tm, v

h)φhdq,

GDG(V h
tm, v

h; ζh) :=
N∑
l=1

∫
τl

G(V h
tm, v

h)ζhdq.

Finally the linear forms on the right hand side of (4.3) read as:

l1(φh) :=
∫

Σ0

V 0
tmφ

hdsq +
∫
Q

siφ
hdq,

l2(ψh) :=
∫

ΣR

gRψ
hdsq,

l3(ζh) :=
∫

Σ0

v0ζhdsq.

Henceforth we will assert that p1 = p2 = p3 = p ≥ 1. Starting point for
the numerical analysis shall be the following linear problem: Find (V h

tm, u
h
e ) ∈

Sph(TN)× Sph(TN) such that

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm, φ

h) + aDG
i (uhe , φh) = l1(φh),

aDG
i (V h

tm, ψ
h) + aDG

i+e(uhe , ψh) = l2(ψh),
(4.12)

for all (φh, ψh) ∈ Sph(TN) × Sph(TN). For later use we will also consider the
following form of Problem (4.12)

cDG((V h
tm, u

h
e ), (φh, ψh)) :=

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm + uhe , φ

h + ψh) + aDG
e (uhe , ψh)

= l1(φh) + l2(ψh)
(4.13)

for all (φh, ψh) ∈ Sph(TN)× Sph(TN). For studying the bilinear form bDG
T (·, ·) we

will introduce the following norms for functions u ∈ Hs(TN) with s ≥ 1:

�u�2
time :=

N∑
l=1

hl

∥∥∥∥∥ ∂∂tu
∥∥∥∥∥

2

L2(τl)
+ ‖u‖2

L2(Σ0) + ‖u‖2
L2(ΣT ) +

∑
Γkl∈IN

∥∥∥JuKkl,t∥∥∥2

L2(Γkl)
,

�u�2
time,∗ :=

N∑
l=1

h−1
l ‖u‖

2
L2(τl) + ‖u‖2

L2(ΣT ) +
∑

Γkl∈IN
‖{u}up

kl ‖
2
L2(Γkl).
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4 Space-Time DGFEM for the Bidomain Equations

Having defined these norms one is able to prove the following theorems.
Lemma 4.5. The bilinear form bDG

T (·, ·) is bounded, i.e.:

bDG
T (u, vh) ≤ cB2 �u�time�vh�time,∗

for all u ∈ u ∈ Hs(TN) and vh ∈ Sph(TN).

Proof. See [129, Lemma 2.2.8].
Lemma 4.6. Let uh ∈ Sph(Th). Then there holds

bDG
T (uh, uh) ≥

1
2

‖uh‖2
L2(Σ0) + ‖uh‖2

L2(ΣT ) +
∑

Γkl∈IN

∥∥∥JuhKt,kl∥∥∥2

L2(Γkl)

 .
Proof. See [129, Lemma 2.2.11].
Lemma 4.7. For uh ∈ Sph(TN) let wh be defined as

wh τl := hl
∂

∂t
uh.

Then there exists a constant cb1(δ) independent of uh such that

bDG
T (uh, uh + δwh) ≥ cb1(δ)�uh�2

time. (4.14)

The δ-dependent constant is given by

cb1(δ) = 1
2 min

{
1, δ, 1− 2c2

IcR2δ
}
.

Proof. See [129, Lemma 2.2.14].

Further we need to define the following norms for studying the bilinear forms
aDG
{i,e}(·, ·)

�u�2
space,{i,e} :=

N∑
l=1

∥∥∥∥M 1
2
{i,e}∇xu

∥∥∥∥2

L2(τl)
+

∑
Γkl∈IN

γklσ

hkl

∥∥∥JuKkl,x∥∥∥2

L2(Γkl)

+ α{i,e}

∫
ΣR

|u|2 dsq,

�u�2
space,{i,e},∗ := �u�2

space,{i,e} +
∑

Γkl∈IN
hkl

∥∥∥∥〈M{i,e}∇xu
〉
ω,kl

∥∥∥∥2

L2(Γkl)
.
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Remark 4.8. Since Mi,Me are symmetric positive definite it holds
�u�space,i ≤ χi�u�space,e, (4.15)
�u�space,e ≤ χe�u�space,i, (4.16)

where

χi :=
(

max
{
λmax(Mi)
λmin(Me)

,
αi
αe

}) 1
2

,

χe :=
(

max
{
λmax(Me)
λmin(Mi)

,
αe
αi

}) 1
2

.

Lemma 4.9. Let S ∈ [L∞(Q)]d×d be a symmetric positive definite matrix. For
all u ∈ Sph(TN) there holds:

∑
Γkl∈IN

hkl
∥∥∥〈S∇xu〉ω,kl

∥∥∥2

L2(Γkl)
≤ cK

N∑
l=1

∥∥∥S 1
2∇xu

∥∥∥2

L2(τl)
(4.17)

where cK = cK(λmax(S)
λmin(S) , cI , cG, cR2).

Proof. Since S is symmetric and positive definite there exists a unique decom-
position S = S 1

2 S 1
2 where S 1

2 is again symmetric and positive definite. Recall
the Definitions (4.5) and (4.6) of ω1, ω2. We first observe that due to positive
definiteness

0 ≤ ω1 =

(
S τknk,nk

)
(
S τlnl,nl

)
+
(
S τknk,nk

) ≤
(
S τknk,nk

)
+
(
S τlnl,nl

)
(
S τknk,nk

)
+
(
S τlnl,nl

) = 1.

The same holds for ω2. Next by using the definition of the weighted average we
obtain∑

Γkl∈IN
hkl
∥∥∥〈S∇xuh〉ω,kl

∥∥∥2

L2(Γkl)
=
∑

Γkl∈IN
hkl
∥∥∥ω1S τk∇xuh τk + ω2S τl∇xuh τl

∥∥∥2

L2(Γkl)

≤
∑

Γkl∈IN
hkl2 max{ω1, ω2}︸ ︷︷ ︸

≤1

(∥∥∥S τk∇xuh τk

∥∥∥2

L2(Γkl)
+
∥∥∥S τl∇xuh τl

∥∥∥2

L2(Γkl)

)

≤ 2
∑

Γkl∈IN
hkl


∥∥∥S τk∇xuh τk

∥∥∥2

L2(Γkl)︸ ︷︷ ︸
=:(a)

+
∥∥∥S τl∇xuh τl

∥∥∥2

L2(Γkl)︸ ︷︷ ︸
=:(b)

 =: 2(I)
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Now we apply inequality (3.18) to (a) and (b). Thus

(I) ≤
∑

Γkl∈IN
hklc

2
I |Γkl|

(
|τk|−1

∥∥∥S τk∇xu τk

∥∥∥2

L2(τk)
+ |τl|−1

∥∥∥S τl∇xu τl

∥∥∥2

L2(τl)

)
︸ ︷︷ ︸

=:(II)

.

Rewriting the above sum leads to

(II) = c2
I

N∑
l=1

∑
Γkl∈IN
Γkl⊂∂τl

hkl |Γkl| |τl|−1
∥∥∥S τl∇xu τl

∥∥∥2

L2(τl)

= c2
I

N∑
l=1
|τl|−1

∥∥∥S τl∇xu τl

∥∥∥2

L2(τl)

∑
Γkl∈IN
Γkl⊂∂τl

hkl |Γkl| .

Using Assumption (3.13) we end up with

c2
I

N∑
l=1
|τl|−1

∥∥∥S τl∇xu τl

∥∥∥2

L2(τl)

∑
Γkl∈IN
Γkl⊂∂τl

hkl |Γkl|

≤ c2
I

N∑
l=1
|τl|−1

∥∥∥S τl∇xu τl

∥∥∥2

L2(τl)
cGhl

∑
Γkl∈IN
Γkl⊂∂τl

|Γkl|

≤ c2
IcG

N∑
l=1

hlλmax(S τl)
1
2 |τl|−1

∥∥∥S 1
2 τl∇xu τl

∥∥∥2

L2(τl)
|∂τl| =: (III)

With Assumption (3.12) we can conclude that |τl|−1 |∂τl|hl ≤ cR2 . Thus we
conclude

(III) ≤ c2
IcGcR2 max

x∈Ω
(λmax(S))

N∑
l=1

∥∥∥S 1
2 τl∇xu τl

∥∥∥2

L2(τl)

= cK
N∑
l=1

∥∥∥S 1
2 τl∇xu τl

∥∥∥2

L2(τl)

Remark 4.10. With the results of Lemma 4.9 we may also estimate

�u�space,i,∗ ≤ (1 + cK(Mi))
1
2�u�space,i, (4.18)

�u�space,e,∗ ≤ (1 + cK(Me))
1
2�u�space,e (4.19)
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Remark 4.11. From the results one sees, that the constants derived in the
proofs depend on the quotient λmax(M{i,e})/λmin(M{i,e}). Hence, in the case of strongly
anisotropic behavior, the constants will deteriorate. A remedy to this, is to use
techniques for anisotropic finite elements, see [10].

Now we are able to prove a boundedness result for the symmetric weighted
interior penalty bilinear form. The techniques for proving such estimates are
similar to those given in [129] and also [47].

Lemma 4.12. Let TN ∈ TN with TN being an admissible good family of
triangulations of Q. For u ∈ Hs(TN) with s > 3

2 and vh ∈ Sph(TN) there holds:

aDG
{i,e}(u, vh) ≤ c

{i,e}
2 �u�space,{i,e},∗�vh�space,{i,e}

with h-independent constant c{i,e}2 depending on λmax(M{i,e})/λmin(M{i,e}), cn.

Proof. It suffices to prove the assertion for one bilinear form. For given u ∈
Hs(TN) with s > 3

2 and vh ∈ Sph(TN) we can apply the Cauchy-Schwarz
inequality and obtain

aDG
i (u, vh) ≤

N∑
l=1

∥∥∥∥M 1
2
i ∇xu

∥∥∥∥
L2(τl)

∥∥∥∥M 1
2
i ∇xvh

∥∥∥∥
L2(τl)

+
∑

Γkl∈IN

∥∥∥〈Mi∇xu〉ω,kl
∥∥∥

L2(Γkl)

∥∥∥JvhKx,kl∥∥∥L2(Γkl)

+
∑

Γkl∈IN

∥∥∥JuKx,kl∥∥∥L2(Γkl)

∥∥∥〈Mi∇xvh〉ω,kl
∥∥∥

L2(Γkl)

+
∑

Γkl∈IN

σγkl

hkl

∥∥∥JuKx,kl∥∥∥L2(Γkl)

∥∥∥JvhKx,kl∥∥∥L2(Γkl)

+ αi‖u‖L2(ΣR)‖vh‖L2(ΣR).

We split the three summands over Γkl ∈ IN into a part where |nx,k| 6= 0 and a
part where |nx,k| = 0. The part with |nx,k| = 0 vanishes due to the definition
of the space jump J·Kx,kl. This means that interior facets with |nk,x| = 0 do not
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4 Space-Time DGFEM for the Bidomain Equations

contribute to the boundedness estimate. Next we use Hölder’s inequality for
sums and obtain

aDG
i (u, vh) ≤

[
N∑
l=1

∥∥∥∥M 1
2
i ∇xu

∥∥∥∥2

L2(τl)

] 1
2
[
N∑
l=1

∥∥∥∥M 1
2
i ∇xvh

∥∥∥∥2

L2(τl)

] 1
2

+
 ∑

Γkl∈IN

hkl
σγkl

∥∥∥〈Mi∇xu〉ω,kl
∥∥∥2

L2(Γkl)

 1
2
 ∑

Γkl∈IN

γklσ

hkl

∥∥∥JvhKx,kl∥∥∥2

L2(Γkl)

 1
2

+
 ∑

Γkl∈IN

γklσ

hkl

∥∥∥JuKx,kl∥∥∥2

L2(Γkl)

 1
2
 ∑

Γkl∈IN

hkl
σγkl

∥∥∥〈Mi∇xvh〉ω,kl
∥∥∥2

L2(Γkl)

 1
2

+
 ∑

Γkl∈IN

σγkl

hkl

∥∥∥JuKx,kl∥∥∥2

L2(Γkl)

 1
2
 ∑

Γkl∈IN

σγkl

hkl

∥∥∥JvhKx,kl∥∥∥2

L2(Γkl)

 1
2

+ αi‖u‖L2(ΣR)‖vh‖L2(ΣR).

Looking at this we see that we need to bound γkl from above and below. Recall
the definition of γkl (4.7). It holds

γkl = 2

(
Mi τknx,k,nx,k

)(
Mi τlnx,l,nx,l

)
(
Mi τlnx,l,nx,l

)
+
(
Mi τlnx,k,nx,k

)
≤ 2 max

x∈Ω
(λmax(Mi)‖Mi‖2

2) |nx,k|2

≤ 2 max
x∈Ω

(λmax(Mi)‖Mi‖2
2) =: c1

γ.

(4.20)

For the lower part we obtain

γkl = 2

(
Mi τknx,k,nx,k

)(
Mi τlnx,l,nx,l

)
(
Mi τlnx,l,nx,l

)
+
(
Mi τlnx,k,nx,k

)
≥ 2 min

x∈Ω
(λmin(Mi)‖Mi‖−2

2 ) |nx,k|2

≥ 2c2
n min
x∈Ω

(λmin(Mi)‖Mi‖−2
2 ) =: c2

nc
2
γ.

(4.21)

Using these estimates and Lemma 4.9 we can conclude the boundedness with
the constant

c2
i := 2 max{1 + σ−

1
2 c

1
2
Kc
−1
n (c2

γ)−
1
2 , σ−

1
2 c−1
n (c2

γ)−
1
2}.
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Lemma 4.13. Let TN ∈ TN with TN being an admissible good family of
triangulations of Q. Further let σ > cK

c2
nc

2
γ

. Then the bilinear forms aDG
{i,e}(·, ·) can

be bounded from below

aDG
{i,e}(uh, uh) ≥ �uh�2

space,{i,e} for all uh ∈ Sph(TN).

Proof. Let uh ∈ Sph(TN) be given. Again it suffices to prove the result only for
one bilinear form. By the definition of the bilinear form aDG

i (·, ·) we have

aDG
i (uh, uh) =

N∑
l=1

∥∥∥∥M 1
2
i ∇x

∥∥∥∥2

L2(τl)
− 2

∑
Γkl∈IN

∫
Γkl

〈Mi∇xuh〉ω,klJuhKx,kldsq

+
∑

Γkl∈IN

σγkl

hkl

∥∥∥JuhKx,kl∥∥∥2

L2(Γkl)
.

We again observe that we can restrict ourselves to those interior facets where
|nx,k| > 0. Next, we apply the Cauchy-Schwarz inequality followed by Hölder
inequality and obtain

≥ �uh�2
space,i − 2

∑
Γkl∈IN

∥∥∥〈Mi∇xuh〉ω,kl
∥∥∥

L2(Γkl)

∥∥∥JuhKx,kl∥∥∥L2(Γkl)

≥ �uh�2
space,i

− 2
 ∑

Γkl∈IN

hkl
σγkl

∥∥∥〈Mi∇xuh〉ω,kl
∥∥∥2

L2(Γkl)

 1
2
 ∑

Γkl∈IN

σγkl

hkl

∥∥∥JuhKx,kl∥∥∥2

L2(Γkl)

 1
2

.

Now we apply Lemma 4.9 together with the estimate (4.21). Hence

≥ �uh�2
space,i

− 2c
1
2
Kσ
− 1

2 c−1
n c−1

γ

[
N∑
l=1

∥∥∥∥M 1
2
i ∇x

∥∥∥∥2

L2(τl)

] 1
2
 ∑

Γkl∈IN

σγkl

hkl

∥∥∥JuhKx,kl∥∥∥2

L2(Γkl)

 1
2

≥ �uh�2
space,i − c

1
2
Kσ
− 1

2 c−1
n c−1

γ

[
N∑
l=1

∥∥∥∥M 1
2
i ∇x

∥∥∥∥2

L2(τl)

]

− c
1
2
Kσ
− 1

2 c−1
n c−1

γ

 ∑
Γkl∈IN

σγkl

hkl

∥∥∥JuhKx,kl∥∥∥2

L2(Γkl)

 .
With σ > cK

c2
nc

2
γ

we can conclude the assertion.
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Lemma 4.14. Let TN ∈ TN with TN being an admissible good family of
triangulations of Q. For uh ∈ Sph(TN) define the function wh ∈ Sph(TN) as

wh τl := hl
∂

∂t
uh.

Then there holds

�wh�space,e ≤ ce�uh�space,e.

Proof. The main ideas for proving such an estimate were developed in [129,
Lemma 2.2.19]. Exploiting the definition of the norm �·�space,i we see

�wh�2
space,e =

N∑
l=1

∥∥∥∥M 1
2
e∇xwh

∥∥∥∥2

L2(τl)
+
∑

Γkl∈IN

γklσ

hkl

∥∥∥JwhKkl,x∥∥∥2

L2(Γkl)
+ αe‖wh‖2

L2(ΣR)

= (I) + (II) + (III)

We will consider the terms (I), (II) and (III) separately. Beginning with (I) we
see that

(I) ≤
N∑
l=1

h2
l

∥∥∥∥∥M 1
2
e∇x

(
∂

∂t
uh

)∥∥∥∥∥
2

L2(τl)
≤

N∑
l=1

h2
l λmax(Me τl)

∥∥∥∥∥∇x
(
∂

∂t
uh

)∥∥∥∥∥
2

L2(τl)

=
N∑
l=1

h2
l λmax(Me τl)

∥∥∥∥∥ ∂∂t∇xuh
∥∥∥∥∥

2

L2(τl)
.

Next, we use inverse inequality (3.17) and conclude
N∑
l=1

h2
l λmax(Me τl)

∥∥∥∥∥ ∂∂t∇xuh
∥∥∥∥∥

2

L2(τl)
≤ c2

I

N∑
l=1

h2
l λmax(Me τl)h−2

l ‖∇xuh‖
2
L2(τl)

= c2
I

N∑
l=1

λmax(Me τl)
∥∥∥∥M− 1

2
e M

1
2
e∇xuh

∥∥∥∥2

L2(τl)
.

This can be estimated further as

≤ c2
I

N∑
l=1

λmax(Me τl)
λmin(Me τl)

∥∥∥∥M 1
2
e∇xuh

∥∥∥∥2

L2(τl)

≤ c2
I‖Me‖[L∞(Q)]d×d︸ ︷︷ ︸

=:cIe

N∑
l=1

∥∥∥∥M 1
2
e∇xuh

∥∥∥∥2

L2(τl)
.
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Secondly we will estimate (III). This term can be rewritten as

(III) =
∑
τl

∂τl∩ΣR 6=∅

∫
∂τl∩ΣR

|wh|2 dsq.

Since we assumed that Q has a polygonal boundary we know that ∂τl ∩ ΣR =
ej(l) ∈ ER. Therefore we can rewrite the sum as

∑
τl

∂τl∩ΣR 6=∅

∫
∂τl∩ΣR

|wh|2 dsq =
∑
ej∈ER

h2
l(j)

∫
ej

∣∣∣∣∣ ∂∂tuh τl(j)

∣∣∣∣∣
2

dsq.

Next we use an inverse inequality of the form

|uh|1,ej ≤ c̃I |ej|−
1
d ‖uh‖L2(ej)

see [171, Lemma 10.7]. Due to shape regularity we know that there exists a
constant cSR such that

hl(j) |ej|−
1
d ≤ cSR.

Therefore we obtain

∑
τl

∂τl∩ΣR 6=∅

∫
∂τl∩ΣR

|wh|2 dsq ≤
∑
ej∈ER

c̃2
Ih

2
l(j) |ej|

− 2
d

∥∥∥∥∥ ∂∂tuh τl(j)

∥∥∥∥∥
2

L2(ej)

≤ c2
SRc̃

2
I

∑
ej∈ER

∥∥∥uh τl(j)

∥∥∥2

L2(ej)

= c2
SRc̃

2
I‖uh‖

2
L2(ΣR).

It remains to estimate (II). We observe that

JwhKx,kl = wh τknx,k + wh τlnx,l =
(
hk
∂

∂t
uh τk − hl

∂

∂t
uh τl

)
nx,k

= ∂

∂t

(
hkuh τk − hluh τl

)
nx,k

= hkl
∂

∂t
(uh τk − uh τl)nx,k + 1

2(hk − hl)
∂

∂t
(uh τk − uh τl)nx,k.
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Thus we obtain by setting zh := uh τk − uh τl∥∥∥JwhKkl,x∥∥∥L2(Γkl)
=
∥∥∥∥∥hkl ∂∂tzhnx,k + 1

2(hk − hl)
∂

∂t
zhnx,k

∥∥∥∥∥
L2(Γkl)

≤ hkl

∥∥∥∥∥ ∂∂tzhnx,k
∥∥∥∥∥

L2(Γkl)
+ 1

2 |hk − hl|
∥∥∥∥∥ ∂∂tzhnx,k

∥∥∥∥∥
L2(Γkl)

≤ 2hkl
∥∥∥∥∥ ∂∂tzhnx,k

∥∥∥∥∥
L2(Γkl)

.

We will distinguish three cases. First if |nx,k| = 1 (thus nk,t = 0) we obtain
with inverse inequality (3.17)
∥∥∥JwhKkl,x∥∥∥L2(Γkl)

≤ 2hkl |nx,k|
∥∥∥∥∥ ∂∂tzh

∥∥∥∥∥
L2(Γkl)
≤ 2cI‖zh‖L2(Γkl) = 2cI

∥∥∥JuhKkl,x∥∥∥L2(Γkl)
.

Second if |nx,k| = 0 we trivially conclude that

0 =
∥∥∥JwhKkl,x∥∥∥L2(Γkl)

= 2cI
∥∥∥JuhKkl,x∥∥∥L2(Γkl)

.

The third case is the most challenging. For 0 < |nx,k| < 1 we will decompose
the derivative ∂

∂t
zhnx,k into a tangential part and a part containing only spatial

derivatives. For a given normal vector nk = (nx,k, nt,k)> we define tangential
vectors ti ∈ RdT i = 1, . . . , d as

ti[s] :=


nxi,k if s = dT

−nt,k if s = i

0 else
.

Since 0 < |nx,k| < 1 we know that nk,t 6= 0 and thus we can define the
normalized tangential vectors

t̃i := 1√
n2
xi,k

+ n2
t,k

ti.

Now we can write the i-th tangential derivative of zh as

(∇zh, ti) = −nt,k
∂

∂xi
zh + nxi,k

∂

∂t
zh
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and thus

nxi,k
∂

∂t
zh = (∇zh, ti) + nt,k

∂

∂xi
zh for all i = 1, . . . , d.

With this relation we obtain

∥∥∥JwhKkl,x∥∥∥2

L2(Γkl)
≤ 4h2

kl

∥∥∥∥∥ ∂∂tzhnk,x
∥∥∥∥∥

2

L2(Γkl)
= h

2
kl

d∑
i=1

∥∥∥∥∥nxi,k ∂∂tzh
∥∥∥∥∥

2

L2(Γkl)

= 4h2
kl

d∑
i=1

∥∥∥∥∥(∇zh, ti) + nt,k
∂

∂xi
zh

∥∥∥∥∥
2

L2(Γkl)

≤ 8h2
kl

d∑
i=1

‖(∇zh, ti)‖
2
L2(Γkl)︸ ︷︷ ︸

=:(a)

+
∥∥∥∥∥nt,k ∂

∂xi
zh

∥∥∥∥∥
2

L2(Γkl)︸ ︷︷ ︸
=:(b)

 .

For part (a) we get with the normalized tangential vectors t̃i and the inverse
inequality (3.17)

(a) ≤ c2
Ih
−2
kl (n2

k,xi
+ n2

k,t)‖zh‖
2
L2(Γkl)

= c2
Ih
−2
kl

n2
k,xi

+ n2
k,t

|nk,x|2
∥∥∥JuhKk,x∥∥∥2

L2(Γkl)
.

Hence by summing up we obtain for the first part

8h2
kl

d∑
i=1
‖(∇zh, ti)‖2

L2(Γkl) ≤ 8c2
I

d∑
i=1

n2
k,xi

+ n2
k,t

|nk,x|2
∥∥∥JuhKk,x∥∥∥2

L2(Γkl)

≤ 8c2
I

(
1 + d

c2
n

)∥∥∥JuhKk,x∥∥∥2

L2(Γkl)

with the constant cn from Assumption (3.14). We proceed by estimating (b).
We observe that

d∑
i=1

∥∥∥∥∥nt,k ∂

∂xi
zh

∥∥∥∥∥
2

L2(Γkl)
≤ ‖∇xzh‖2

L2(Γkl) ≤ λmin(Me)−1
∥∥∥∥M 1

2
e∇xzh

∥∥∥∥2

L2(Γkl)
.
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Hence collecting what has been proven so far we get for (II)

∑
Γkl∈IN

γklσ

hkl

∥∥∥JwhKkl,x∥∥∥2

L2(Γkl)
≤ 8c2

I

(
1 + d

c2
n

) ∑
Γkl∈IN

σγkl

hkl

∥∥∥JuhKkl,x∥∥∥2

L2(Γkl)

+ 8σλmin(Me)−1∑
Γkl∈IN

hkl

∥∥∥∥M 1
2
e∇xzh

∥∥∥∥2

L2(Γkl)
.

We still need to estimate

∑
Γkl∈IN

hkl

∥∥∥∥M 1
2
e∇xzh

∥∥∥∥2

L2(Γkl)

≤ 2
∑

Γkl∈IN
hkl

(∥∥∥∥M 1
2
e∇xuh τk

∥∥∥∥2

L2(Γkl)
+
∥∥∥∥M 1

2
e∇xuh τl

∥∥∥∥2

L2(Γkl)

)
.

With the same arguments as in the proof of Lemma 4.9 we obtain

∑
Γkl∈IN

hkl

∥∥∥∥M 1
2
e∇xzh

∥∥∥∥2

L2(Γkl)
≤ cK

N∑
i=1

∥∥∥∥M 1
2
e∇xuh

∥∥∥∥2

L2(τl)
.

Therefore we conclude

�wh�2
space,i ≤ 8

(
cIe + cKσλmin(Me)−1

) N∑
i=1

∥∥∥∥M 1
2
e∇xuh

∥∥∥∥2

L2(τl)

+ 8c2
I

(
1 + d

c2
n

) ∑
Γkl∈IN

γklσ

hkl

∥∥∥JuhKkl,x∥∥∥2

L2(Γkl)

+ c̃2
Ic

2
SRαe‖uh‖

2
L2(ΣR)

≤ ce�uh�2
space,i

with ce := 8 max{cIe + cKσλmin(Me)−1, c2
I(1 + d

c2
n

), 1
8 c̃

2
Ic

2
SRαe}.

Before stating the stability result we define the following compound norms:��(uh, vh)
��2

DG := �uh�2
time + �uh�2

space,i + �uh�2
space,e,��(uh, vh)

��2
DG,∗ := �uh�2

time,∗ + �uh�2
space,i,∗ + �uh�2

space,e,∗.
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Theorem 4.15. There holds:∣∣∣cDG((u, v), (φh, ψh))
∣∣∣ ≤ cC1

��(u, v)
��

DG,∗
��(φh, ψh)

��
DG.

Proof. Using the boundedness of the individual components of the bilinear
form cDG((·, ·), (·, ·)) we have∣∣∣cDG((u, v), (φh, ψh))

∣∣∣ ≤ cB2 �u�time,∗
��φh��time

+ ci2�u+ v�space,i,∗
��φh + ψh

��
space,i

+ ce2�v�space,e,∗
��ψh��space,e.

Next using triangle inequality we get

≤ cB2 �u�time,∗
��φh��time

+ ci2
(
�u�space,i,∗ + �v�space,i,∗

) (��φh��space,i +
��ψh��space,i

)
+ ce2�v�space,e,∗

��ψh��space,e.

Now using the relations (4.15)-(4.19) we conclude the result with

cB2 := max
{
cB2 , c

i
2(1 + cK(Mi))

1
2χi, c

e
2

}
.

Eventually, we can prove a stability estimate similar to the one in [129].

Theorem 4.16. Let (uh, vh) ∈ Sph(TN )× Sph(TN ). Then there exists a constant
cCS > 0 independent of TN such that

sup
(φh,ψh)∈Sp

h
(TN )×Sp

h
(TN )

(φh,ψh)6=0

cDG((uh, vh), (φh, ψh))��(φh, ψh)
��

DG
≥ cCS

��(uh, vh)
��

DG

for all (uh, vh) ∈ Sph(TN)× Sph(TN).

Proof. The proof is based on a special choice for (φh, ψh) namely

φh := uh + δwh,

ψh := vh − δwh
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for δ > 0 to be defined later. Inserting this special test functions into the
bilinear form cDG((·, ·), (·, ·)) we obtain

bDG
T (uh, uh + δwh) + aDG

i (uh + vh, uh + vh) + aDG
e (vh, vh − δwh).

Next, we use Lemma 4.7 together with Lemma 4.13 and obtain

≥ cB1 (δ)�uh�2
time + ci1�uh + vh�2

i,space + ce1�vh�e,space − δaDG
e (vh, wh).

Proceeding with Lemma 4.12 we get

≥ cB1 (δ)�uh�2
time + ci1�uh + vh�2

i,space

+ ce1�vh�2
e,space − δce2�vh�e,space,∗�wh�e,space.

This can be further estimated by

≥ cB1 (δ)�uh�2
time + min{ci1, ce1}

(
�uh + vh�2

i,space + �vh�2
e,space

)
− δce2�vh�e,space,∗�wh�e,space.

Now we use Young’s inequality together with the relations (4.15), (4.16) and
(4.18) to arrive at the estimate

≥ cB1 (δ)�uh�2
time + min{ci1, ce1}

(
χ−1
e �uh + vh�2

e,space + �vh�2
e,space

)
− δce2(1 + cK) 1

2

2 �vh�2
e,space −

δce2
2 �wh�2

e,space.

Further estimates lead to

≥ cB1 (δ)�uh�2
time + min{ci1, ce1, χ−1

e }
(
�uh + vh�2

e,space + �vh�2
e,space

)
− δce2(1 + cK) 1

2

2 �vh�2
e,space −

δce2
2 �wh�2

e,space.

Now we use Lemma 4.14 together with the fact that ‖u+ v‖2 + ‖v‖2 ≥ 1
4‖u‖

2 +
1
4‖v‖

2 and obtain

≥ cB1 (δ)�uh�2
time + 1

4 min{ci1, ce1, χ−1
e }

(
�uh�2

e,space + �vh�2
e,space

)
− δce2(1 + cK) 1

2

2 �vh�2
e,space −

δce2ce
2 �uh�2

e,space.
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4.2 Numerical Analysis

This together with (4.15) finally leads to the estimate

≥ cB1 (δ)�uh�2
time +

(
χ−1
i

4 min{ci1, ce1, χ−1
e } −

δχicec
e
2

2

)
︸ ︷︷ ︸

=:c2(δ)

�uh�2
space,i

+
1

4 min{ci1, ce1, χ−1
e } −

δce2(1 + cK) 1
2

2


︸ ︷︷ ︸

=:c3(δ)

�vh�2
space,e.

Now we look at each of the constants. To get cB1 (δ) > 0 we need to choose

δ ≤ 1
1 + 2c2

IcR2

=: δ∗1 > 0.

For having c2(δ) > 0 we need to choose

δ ≤ min{ci1, ce1, χ−1
e }

2χ2
i cec

e
2

=: δ∗2 > 0

Finally for getting c3(δ) > 0 we need to choose

δ ≤ min{ci1, ce1, χ−1
e }

2(1 + cK) 1
2 ce2

=: δ∗3 > 0.

Thus we choose δ∗ := min{δ∗1, δ∗2, δ∗3} and obtain

≥ min{cB1 (δ∗), c2(δ∗), c3(δ∗)}
(
�uh�2

time + �uh�2
space,i + �vh�2

space,e

)
,

= min{cB1 (δ∗), c2(δ∗), c3(δ∗)}
��(uh, vh)

��2
DG.

With this we conclude the stability estimate with the stability constant

cCS := min{cB1 (δ∗), c2(δ∗), c3(δ∗)}√
max{1 + δ∗cBI , 1 + δ∗(ci + χice), 1}

> 0.

With the stability and boundedness estimate we can prove an error estimate in
the energy norm. The proof can be done analogously to the proof [129, Theorem
2.2.21] by replacing the isotropic estimates with the revised estimates for the
anisotropic diffusion behavior.
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4 Space-Time DGFEM for the Bidomain Equations

Theorem 4.17. Let TN ∈ TN be a good family of triangulations of Q. Let
the exact solution (Vtm, ue) ∈ Hs1,r1(Q)×Hs2,r2(Q) for some s1, s2, r1, r2 with
min{s1, r1} > 3

2 and, min{s2, r2} > 3
2 . For σ > 4cK let (uh, vh) ∈ Sph(Th) ×

Sph(Th) be the solutions to the discrete linear variational problem (4.12). Then
there holds:��(Vtm, ue)− (uh, vh)

��
DG ≤ inf

(zh,qh)∈[Sp
h

(Th)]2

[��(Vtm, ue)− (zh, qh)
��

DG

+c
B
2
cCS

��(Vtm, ue)− (zh, qh)
��

DG,∗

]

For proving bounds on the error estimate appearing in Theorem 4.17 one can
apply the same techniques as in See the proofs of [129, Lemmata 2.2.22, 2.2.23,
2.2.24, 2.2.26 and Theorem 2.2.27]. By introducing local L2-projections and
again replace the isotropic estimates with the revised anisotropic ones one can
prove the following:

Theorem 4.18. Let TN ∈ TN be a good family of triangulations of Q. Let the
exact solution to the linear problem (4.12) (Vtm, ue) ∈ Hs1,r1(Q) × Hs2,r2(Q)
with min{s1, r1} > 2 and, min{s2, r2} > 2 . Assume σ ≥ 4cK . For the solution
to the discrete linear problem (uh, vh) ∈ [Sph(Th)]2 for an Th ∈ TH there holds

��(Vtm, ue)− (uh, vh)
��

DG ≤ c(Mi,Me)
[
N∑
l=1

h
2 min{s,p+1}−2
l |(Vtm, ue)|2[Hs(Q)]2

] 1
2

.

If TN is additionally quasi-uniform there holds��(Vtm, ue)− (uh, vh)
��

DG ≤ c̃(Mi,Me)h2 min{s,p+1}−1|(Vtm, ue)|[Hs(Q)]2 .

4.3 Convergence Studies

In this section convergence studies will be presented to support the theoretical
results given in Section 4.2. The approximation of two regular solutions Vtm
and ue in different space dimensions and different polynomial degrees for the
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4.3 Convergence Studies

approximation space will be considered. The setup will be the same for all
simulation studies. As space-time cylinder Q the unit hyper-cube

Q := (0, 1)dT , dT ≥ 3,

will be considered. In all examples given subsequently we will consider solutions
to the problem (4.12).
Example 4.19. As a first example we set dT = 3. The diffusion tensors are
chosen as

Mi :=
( 3

4
3
20

3
20

3
4

)
, Me :=

5
4

1
4

1
4

5
4

 .
On the boundary ΣR := ∂(0, 1)2 × (0, 1) we apply Robin boundary conditions
with αi = 1 and αe = 1. The given data si,se,gi,R, ge,R and V 0

tm are chosen such
that the exact solutions of the linear Bidomain equations are given as

Vtm(x, t) = x(1− x)y(1− y)t(1− t),
ue(x, t) = sin(πx) sin(πy) sin(πt).

For the stabilization parameter we chose σkl = 25. The resulting linear systems
are solved with a preconditioned GMRes method within Neshmet. As pre-
conditioner the black-box algebraic multigrid BoomerAmg provided within
the Hypre package was taken, see [64]. The results for the polynomial degrees
p = 1, 2 are shown in Tables 4.1, 4.2, 4.3 and 4.4.
Example 4.20. In the second example we consider dT = 4. Thus Q is the four
dimensional unit cube. For the discretization of four dimensional objects we
refer to [130]. The diffusion tensors are chosen as

Mi :=


3
4

1
10

1
20

1
10

7
10

1
10

1
20

1
10

3
4

 Me :=


23
12

1
6 −

7
12

1
6

7
6

1
6

− 7
12

1
6

23
12

 .
Again we apply Robin boundary conditions on ΣR := ∂(0, 1)3 × (0, 1) with
αi = 1 and αe = 1. The given data si,se,gi,R, ge,R and V 0

tm are chosen such that
the exact solutions of the linear Bidomain equations are given as

Vtm(x, t) = x(1− x)y(1− y)z(1− z)t(1− t),
ue(x, t) = sin(πx) sin(πy) sin(πz) sin(πt).
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4 Space-Time DGFEM for the Bidomain Equations

level elements dof �z − zh�DG eoc
0 6 48 1.3723e+0 −
1 48 384 1.0833e+0 0.34
2 384 3072 6.6351e−1 0.71
3 3072 24576 3.5900e−1 0.89
4 24576 196608 1.8443e−1 0.96
5 196608 1572864 9.3071e−2 0.99
6 1572864 12582912 4.6690e−2 1.00

Theory: 1.00

Table 4.1: Energy error �z − zh�DG for p = 1. For reasons of brevity we have defined
z = (Vtm, ue) and zh = (V h

tm, u
h
e ).

Error Vtm Error ue
level elements dof error eoc error eoc

0 6 24 9.2459e−2 − 1.3692e+0 −
1 48 192 4.7700e−2 0.95 1.0823e+0 0.34
2 384 1536 2.2604e−2 1.08 6.6313e−1 0.71
3 3072 12288 1.0229e−2 1.14 3.5886e−1 0.89
4 24576 98304 4.7466e−3 1.11 1.8436e−1 0.96
5 196608 786432 2.2789e−3 1.06 9.3043e−2 0.99
6 1572864 6291456 1.1135e−3 1.03 4.6677e−2 1.00

Observed: 1.00 1.00

Table 4.2: Individual error components for p = 1.
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4.3 Convergence Studies

level elements dof �z − zh�DG eoc
0 6 120 8.9235e−1 −
1 48 960 3.9336e−1 1.18
2 384 7680 1.2610e−1 1.64
3 3072 61440 3.4188e−2 1.88
4 24576 491520 8.8077e−3 1.96
5 196608 3932160 2.2279e−3 1.98

Theory: 2.00

Table 4.3: Energy error �z − zh�DG for p = 2. For reasons of brevity we have defined
z = (Vtm, ue) and zh = (V h

tm, u
h
e ).

Error Vtm Error ue
level elements dof error eoc error eoc

0 6 60 2.7700e−2 − 8.9192e−1 −
1 48 480 1.2879e−2 1.10 3.9315e−2 1.18
2 384 3840 3.4286e−3 1.91 1.2605e−1 1.64
3 3072 30720 7.9743e−4 2.10 3.4179e−2 1.88
4 24576 245760 1.8905e−4 2.08 8.8056e−3 1.96
5 196608 1966080 4.5158e−5 2.07 2.2274e−3 1.98

Observed: 2.00 2.00

Table 4.4: Individual error components for p = 2.

97



4 Space-Time DGFEM for the Bidomain Equations

For the stabilization parameter we chose σkl = 25. The results are depicted in
Table 4.5 and 4.6.

level elements dof �z − zh�DG eoc
0 16 240 1.5223e+0 −
1 256 3840 1.3572e+0 0.17
2 4096 61440 9.5583e−1 0.51
3 65536 983040 6.0298e−1 0.66
4 1048576 15728640 3.2097e−1 0.91

Theory: 1.00

Table 4.5: Energy error �z − zh�DG for p = 1. For reasons of brevity we have defined
z = (Vtm, ue) and zh = (V h

tm, u
h
e ).

Error Vtm Error ue
level elements dof error eoc error eoc

0 16 240 1.5211e−1 − 1.5147e+0 −
1 256 3840 1.8473e−1 −0.28 1.3446e+0 0.17
2 4096 61440 1.3742e−1 0.43 9.4590e−1 0.51
3 65536 983040 8.2419e−2 0.74 5.9732e−1 0.66
4 1048576 15728640 4.1799e−2 0.98 3.1839e−1 0.91

Observed: 1.00 1.00

Table 4.6: Individual error components for p = 1.

4.4 Extension to Bidomain Equations

In this section we will consider the nonlinear case. As stated earlier it is assumed
that the exact solution (Vtm, ue, v) ∈ [Hs(Q)]3 with s > 3

2 .

98



4.4 Extension to Bidomain Equations

4.4.1 Numerical Analysis of the Linearized Problem

The linearized problem of (4.3) reads as: Given (uh, ueh, wh) ∈ [Sph(TN)]3 find
(δtm
h , δeh, δ

v
h) ∈ [Sh(TN)]3 such that

cDG((uh, vh); (δtm
h , δeh, δ

v
h), (φh, ψh, ζh)) :=

bDG
T (δtm

h , φh) + bDG
T (δvh, ζh) + ax,i(δtm

h + δeh, φh + ψh) + ax,e(δeh, ψh)
+ cnl((uh, wh); (δtm

h , δvh), (φh, ψh)) = rhs (4.22)

for all (φh, ψh, ζh) ∈ [Sh(TN ]3 where

cnl((uh, wh); (δtm
h , δvh), (φh, ψh)) :=

N∑
l=1

∫
τl

(
A(uh, wh)

(
δtm
h

δvh

)
,

(
φh
ψh

))
dq.

For the numerical analysis we need to define appropriate norms :

��(u, v, w)
��2

DG := �u�2
time + �w�2

time + �u�2
space,i + �v�2

space,e (4.23)
+ ‖u‖2

L2(Q) + ‖w‖2
L2(Q),��(u, v, w)

��2
DG,∗ := �u�2

time,∗ + �w�2
time,∗ + �u�2

space,i;∗ + �v�2
space,e,∗ (4.24)

+ ‖u‖2
L2(Q) + ‖w‖2

L2(Q).

With the norms (4.23), (4.24) we can prove the following

Theorem 4.21 (Boundedness). Given (uh, vh) ∈ [Sph(TN)]2. Under the as-
sumptions 4.1:1, 4.1:2 and 4.3 there holds for all (δtm

h , δ
e
h, δ

v
h) ∈ [Sph(TN)]3 and

(φh, ψh, ζh) ∈ [Sph(TN)]3:

∣∣∣cDG((uh, vh); (δtm
h , δ

e
h, δ

v
h), (φh, ψh, ζh))

∣∣∣
≤ cB,nl2 (uh, vh)

��(δtm
h , δ

e
h, δ

v
h)

��
DG,∗

��(φh, ψh, ζh)
��

DG.
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4 Space-Time DGFEM for the Bidomain Equations

Proof. The proof can be done similarly to Theorem 4.15. The changes appear
in the treatment of the term cnl(·; ·, ·). Examining the definition of cnl(·; ·, ·) we
get ∣∣∣∣∣∣

N∑
l=1

∫
τl

(
A(uh, wh)

(
δtm
h

δvh

)
,

(
φh
ψh

))
dq

∣∣∣∣∣∣
≤

N∑
l=1

∫
τl

‖A(uh, vh)‖
∣∣∣∣∣
(
δtm
h

δvh

)∣∣∣∣∣
∣∣∣∣∣
(
φh
ψh

)∣∣∣∣∣ dq
≤ cnl

∥∥∥(δtm
h , δvh)

∥∥∥
L2(Q)

∥∥∥(φtm
h , ψ

v
h)
∥∥∥

L2(Q)
.

Therefore collecting the constants from the proof of Theorem 4.15 and cnl we
can conclude the result.

Further we can prove the following stability result.

Theorem 4.22 (Stability). Given (uh, vh) ∈ [Sph(TN )]2. Under the assumptions
4.1:1, 4.1:2 and 4.3 there holds: ∃cs > 0 not depending on h such that

cs
��(δtm

h , δ
e
h, δ

v
h)

��
DG ≤ sup

(φh,ψh,ζh)∈[Sp
h

(Th)]3

�(φh,ψh,ζh)�DG 6=0

cDG((uh, vh); (δtm
h , δ

e
h, δ

v
h), (φh, ψh, ζh))��(φh, ψh, ζh)
��

DG

for all (δtm
h , δ

e
h, δ

v
h) ∈ [Sph(TN)]3.

Proof. For ease of notation we will write ah = δtm
h , bh = δeh, ch = δvh, wh :=

hl
∂
∂t
ah and qh := hl

∂
∂t
ch. As in the proof of Theorem 4.16 we will use special

test functions, namely

φh τl := ah τl + ωwh τl ,

ψh τl := bh τl − ωwh τl ,

ζh τl := ch τl + ωqh τl

for a ω > 0 to be defined later. The crux of the proof is the estimation of

bDG
T (ah, ah + ωwh) + bDG

T (ch, ch + ωqh)
+ cnl((uh, vh); (ah, ch), (ah + ωwh, ch + ωqh)).
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4.4 Extension to Bidomain Equations

The first step is to take a look at bDG
T (ah, wh). We follow the lines of the proof

of [129, Lemma 2.2.14]. Using the representation of bDG
T (·, ·) from Remark 4.4

we have

bDG
T (ah, wh) =

N∑
l=1

hl

∫
τl

∣∣∣∣∣ ∂∂tah
∣∣∣∣∣
2

dq +
∫

Σ0

ahwhdsq

−
∑

Γkl∈IN

∫
Γkl

JahKkl,t{wh}
down
kl dsq.

Using the Cauchy-Schwarz-Inequality we get

≥
N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
− ‖ah‖L2(Σ0)‖wh‖L2(Σ0)

−
∑

Γkl∈IN

∥∥∥JahKkl,t∥∥∥L2(Γkl)

∥∥∥{wh}down
kl

∥∥∥
L2(Γkl)

.

This can be estimated as

≥
N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
− ‖ah‖L2(Σ0)‖wh‖L2(Σ0)

−

 ∑
Γkl∈IN

∥∥∥JahKkl,t∥∥∥2

L2(Γkl)

 1
2
 ∑

Γkl∈IN

∥∥∥{wh}down
kl

∥∥∥2

L2(Γkl)

 1
2

.

Next we estimate wh on Σ0. Using the inverse and trace inequalities (3.15)-(3.17)
this can be done as follows:

‖wh‖2
L2(Σ0) =

∑
τl∈Th

∂τl∩Σ0 6=∅

‖wh‖2
L2(∂τl∩Σ0) ≤ c2

I

∑
τl∈Th

∂τl∩Σ0 6=∅

|∂τl| |τl|−1 ‖wh‖2
L2(τl)

≤ c2
I

N∑
l=1
|∂τl| |τl|−1 ‖wh‖2

L2(τl)

Plugging in the definition of wh using shape regularity and |τl| = hd+1
l we get

≤ c2
IcR2

N∑
l=1

h−1
l

∥∥∥∥∥hl ∂∂tah
∥∥∥∥∥

2

L2(τl)
= c2

IcR2

N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
.
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4 Space-Time DGFEM for the Bidomain Equations

Second we will estimate the downwind of wh:

∑
Γkl∈IN

∥∥∥{wh}down
kl

∥∥∥2

L2(Γkl)
≤
∑

Γkl∈IN

(∥∥∥wh τl

∥∥∥2

L2(Γkl)
+
∥∥∥wh τk

∥∥∥2

L2(Γkl)

)
.

The last term can be rewritten as a sum over elements:

∑
Γkl∈IN

(∥∥∥wh τl

∥∥∥2

L2(Γkl)
+
∥∥∥wh τk

∥∥∥2

L2(Γkl)

)
=

N∑
l=1

∑
Γkl∈IN
Γkl⊂∂τl

‖wh‖2
L2(Γkl).

Again using shape regularity and the inverse and trace inequalities (3.15)-(3.17)
we can bound this by

≤ c2
IcR2

∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
.

Combing all those estimates we have shown that

bDG
T (ah, wh) ≥

N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
− ‖ah‖L2(Σ0)

c2
IcR2

N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)

 1
2

−

 ∑
Γkl∈IN

∥∥∥JahKkl,t∥∥∥2

L2(Γkl)

 1
2
c2

IcR2

N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)

 1
2

.

Now we use Young’s inequality twice with ε1, ε2 > 0 and obtain

≥
(

1− c2
IcR2

ε1
2 − c

2
IcR2

ε2
2

) N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
− 1

2ε1
‖ah‖2

L2(Σ0)

− 1
2ε2

∑
Γkl∈IN

∥∥∥JahKkl,t∥∥∥2

L2(Γkl)
.
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The same estimate holds for bDG
T (ch, qh). At this point we will start to estimate

cnl((uh, vh); (ah, ch), (wh, qh)). There holds∣∣∣∣∣∣
N∑
l=1

∫
τl

(
A(uh, wh)

(
ah
ch

)
,

(
wh
qh

))
dq

∣∣∣∣∣∣
≥ −

N∑
l=1

∫
τl

‖A(uh, vh)‖
∣∣∣∣∣
(
ah
ch

)∣∣∣∣∣
∣∣∣∣∣
(
wh
qh

)∣∣∣∣∣ dq
≥ −cnl‖(ah, ch)‖L2(Q)‖(wh, qh)‖L2(Q)

≥ − c
nl

2ε3
‖(ah, ch)‖2

L2(Q) −
ε3c

nl

2 ‖(wh, qh)‖
2
L2(Q)

for a ε3 > 0 to be chosen later. If we now plug in the definitions of wh and qh
and use the fact that h2

l ≤ hl for hl ∈ (0, 1] we get that∣∣∣∣∣∣
N∑
l=1

∫
τl

(
A(uh, wh)

(
ah
ch

)
,

(
hl

∂
∂t
ah

hl
∂
∂t
ch

))
dq

∣∣∣∣∣∣
≥ − c

nl

2ε3
‖(ah, ch)‖2

L2(Q) −
ε3c

nl

2

N∑
l=1

hl

∥∥∥∥∥
(
∂

∂t
ah,

∂

∂t
ch

)∥∥∥∥∥
2

L2(Q)

= − c
nl

2ε3
‖ah‖2

L2(Q) −
cnl

2ε3
‖ch‖2

L2(Q) −
ε3c

nl

2

N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(Q)

− ε3c
nl

2

N∑
l=1

hl

∥∥∥∥∥ ∂∂tch
∥∥∥∥∥

2

L2(Q)
.

Next we look at the same term but with the test functions being chosen as
(ah, ch). Then using Assumptions 4.3 we get∣∣∣∣∣∣

N∑
l=1

∫
τl

(
A(uh, wh)

(
ah
ch

)
,

(
ah
ch

))
dq

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
l=1

∫
τl

(
sym (A(uh, wh))

(
ah
ch

)
,

(
ah
ch

))
dq

∣∣∣∣∣∣
≥ cnl‖(ah, ch)‖2

L2(Q) = cnl‖ah‖2
L2(Q) + cnl‖ch‖2

L2(Q).
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4 Space-Time DGFEM for the Bidomain Equations

Hence we see that∣∣∣∣∣∣
N∑
l=1

∫
τl

(
A(uh, wh)

(
ah
ch

)
,

(
ah + ωhl

∂
∂t
ah

ch + ωhl
∂
∂t
ch

))
dq

∣∣∣∣∣∣
≥
(
cnl −

cnl

2ε3

)
‖ah‖2

L2(Q) +
(
cnl −

cnl

2ε3

)
‖ch‖2

L2(Q)

− ωε3c
nl

2

N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(Q)
− ωε3c

nl

2

N∑
l=1

hl

∥∥∥∥∥ ∂∂tch
∥∥∥∥∥

2

L2(Q)
.

Collecting all estimates we have shown that

bDG
T (ah, ah + ωwh) + bDG

T (ch, ch + ωqh)
+ cnl((uh, vh); (ah, ch), (ah + ωwh, ch + ωqh))

≥ ω
(

1− c2
IcR2

ε1
2 − c

2
IcR2

ε2
2 − c

nl ε3
2

) N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)

+
(1

2 −
ω

2ε1

)
‖ah‖2

L2(Σ0) +
(1

2 −
ω

2ε2

) ∑
Γkl∈IN

∥∥∥JahKkl,t∥∥∥2

L2(Γkl)

+
(
cnl −

cnl

2ε3

)
‖ah‖2

L2(Q) +
(1

2 −
ω

2ε1

)
‖ch‖2

L2(Σ0)

+
(

1− c2
IcR2

ε1
2 − c

2
IcR2

ε2
2 − c

nl ε3
2

) N∑
l=1

hl

∥∥∥∥∥ ∂∂tch
∥∥∥∥∥

2

L2(τl)

+
(1

2 −
ω

2ε2

) ∑
Γkl∈IN

∥∥∥JchKkl,t∥∥∥2

L2(Γkl)
+
(
cnl −

cnl

2ε3

)
‖ch‖2

L2(Q).

It remains to define ε1, ε2, ε3 appropriately. We observe that for a given α ∈ (0, 1)
we can choose

ε1 = ε2 = 1− α
c2
IcR2

.

Thus

1− c2
IcR2

ε1
2 − c

2
IcR2

ε2
2 = α.
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4.4 Extension to Bidomain Equations

Next consider the choice

ε3 = cnl + ε

2cnl

for ε > 0. Then

c2,∗(ε) := cnl −
cnl

2ε3
= cnl

(
1− cnl

cnl + ε

)
> 0.

With this we get the restriction

α− (cnl)2

4cnl
− εcnl

4cnl
> 0.

From this we see that for any ε∗ ∈ (0, 4(1−d)cnl
cnl

), where d := (cnl)2)
4cnl

∈ (0, 1) we
can choose an α∗(ε∗) such that α∗(ε∗) ∈ (0, 1) and

α∗(ε∗)−
(cnl)2

4cnl
− ε∗c

nl

4cnl
≥ c1,∗(ε∗) > 0.

Thus we arrive at the estimate

bDG
T (ah, ah + ωwh) + bDG

T (ch, ch + ωqh)
+ cnl((uh, vh); (ah, ch), (ah + ωwh, ch + ωqh))

≥ ωc1,∗(ε∗)
N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

)
‖ah‖2

L2(Σ0)

+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

) ∑
Γkl∈IN

∥∥∥JahKkl,t∥∥∥2

L2(Γkl)
+ c2,∗(ε∗)‖ah‖2

L2(Q)

+ ωc1,∗(ε∗)
N∑
l=1

hl

∥∥∥∥∥ ∂∂tch
∥∥∥∥∥

2

L2(τl)
+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

)
‖ch‖2

L2(Σ0)

+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

) ∑
Γkl∈IN

∥∥∥JchKkl,t∥∥∥2

L2(Γkl)
+ c2,∗(ε∗)‖ch‖2

L2(Q).

105



4 Space-Time DGFEM for the Bidomain Equations

At this point we can proceed as in the proof of Theorem 4.16. This means that

bDG
T (ah, ah + ωwh) + bDG

T (ch, ch + ωqh) + ax,i(ah + bh, ah + bh)
+ ax,e(bh, bh − ωwh) + cnl((uh, vh); (ah, ch), (ah + ωwh, ch + ωqh))

≥ ωc1,∗(ε∗)
N∑
l=1

hl

∥∥∥∥∥ ∂∂tah
∥∥∥∥∥

2

L2(τl)
+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

)
︸ ︷︷ ︸

=:c1(ω)

‖ah‖2
L2(Σ0)

+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

) ∑
Γkl∈IN

∥∥∥JahKkl,t∥∥∥2

L2(Γkl)
+ c2,∗(ε∗)‖ah‖2

L2(Q)

+ ωc1,∗(ε∗)
N∑
l=1

hl

∥∥∥∥∥ ∂∂tch
∥∥∥∥∥

2

L2(τl)
+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

)
‖ch‖2

L2(Σ0)

+
(

1
2 −

ωc2
IcR2

2(1− α∗(ε∗))

) ∑
Γkl∈IN

∥∥∥JchKkl,t∥∥∥2

L2(Γkl)
+ c2,∗(ε∗)‖ch‖2

L2(Q)

+
(
χ−1
i

4 min{ci1, ce1, χ−1
e } −

ωχicec
e
2

2

)
︸ ︷︷ ︸

=:c2(ω)

�ah�2
space,i

+
1

4 min{ci1, ce1, χ−1
e } −

ωce2(1 + cK) 1
2

2


︸ ︷︷ ︸

=:c3(ω)

�vh�2
space,e.

Now we need to find a suitable ω. For this purpose we will look at the constants
c1(ω), c2(ω), c3(ω). A suitable choice is

0 < ω† < min
{

1− α∗(ε∗)
c2
IcR2

,
min {ci1, ce1, χ−1

e }
2χ2

i ce, c
e
2

,
min {ci1, ce1, χ−1

e }
2(1 + cK) 1

2 ce2

}
.

Hence

bDG
T (ah, ah + ωwh) + bDG

T (ch, ch + ωqh) + ax,i(ah + bh, ah + bh)
+ ax,e(bh, bh − ωwh) + cnl((uh, vh); (ah, ch), (ah + ωwh, ch + ωqh))
≥ c4(ω†)

��(ah, bh, ch)
��2

DG

with

c4(ω†) = min {ω†c1,∗(ε∗), c2,∗(ε∗), c1(ω†), c2(ω†), c3(ω†), } > 0.
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4.5 Convergence Study for a Nonlinear Problem

So we can conclude the proof and have found the stability constant

cS := c4(ω†)√
max {1 + ω†cB1 , 1 + ω†(ci + χice), 1}

.

Remark 4.23. Suppose that Assumption 4.3:(2) does not hold but there holds

λmin(sym(A)) ≥ −κ2 > −∞.

Then the result still holds. To see this one needs to make a change of variables

ũ(x, t) = exp(−(κ2 + 1)t)u(x, t).

Then one has that

∂

∂t
u = exp((κ2 + 1)t) ∂

∂t
ũ+ (κ2 + 1) exp((κ2 + 1)t)ũ.

The additional mass term ensures the stability. The boundedness constant will
be multiplied by a factor of exp((κ2 +1)T ). The boundedness constant influences
the quality of the approximation error. Thus the approximation quality will
deteriorate when κ2 is big.

4.5 Convergence Study for a Nonlinear Problem

In this section a convergence study for a nonlinear problem will be given. The
space-time cylinder will be given again as Q := (0, 1)3. The diffusion tensors
are chosen as

Mi :=
( 3

4
3
20

3
20

3
4

)
, Me :=

5
4

1
4

1
4

5
4

 .
As nonlinear model we choose the FitzHugh-Nagumo model (2.7), which fulfills
the Assumptions 4.3. On the boundary ΣR := ∂(0, 1)2 × (0, 1) we apply Robin
boundary conditions with αi = 1 and αe = 1. The given data si,se,gi,R, ge,R
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4 Space-Time DGFEM for the Bidomain Equations

and V 0
tm are chosen such that the exact solutions of the Bidomain equations

are given as

Vtm(x, t) = x(1− x)y(1− y)t(1− t),
ue(x, t) = sin(πx) sin(πy) sin(πt),
v(x, t) = cos(πx) cos(πy) cos(πt).

For the stabilization parameter we chose σkl = 25. We used the same solvers and
preconditioners as for the convergence studies for the linear problem discussed
in Section 4.3. The results which confirm our theoretical investigations can be
looked up in Table 4.7 and Table 4.8. The convergence order of 1.50 for the
approximation error of v is a well-known result for the approximation of pure
convection problems, see for example [47, Corollary 2.38].

level elements dof �z − zh�DG eoc
0 6 72 1.6486e+0 −
1 48 576 1.1599e+0 0.51
2 384 4608 6.8151e−1 0.77
3 3072 36864 3.6315e−1 0.91
4 24576 294912 1.8540e−1 0.97
5 196608 2359296 9.3307e−2 0.99

Theory: 1.00

Table 4.7: Energy error �z − zh�DG for p = 1. For reasons of brevity we have set z :=
(Vtm, ue, v) and zh := (V h

tm, u
h
e , v

h).

108



4.5 Convergence Study for a Nonlinear Problem

Error Vtm Error ue Error v
level elements dof error eoc error eoc error eoc

0 6 24 9.0116e−2 − 1.3691e+0 − 9.1390e−1 −
1 48 192 4.7239e−2 0.93 1.0823e+0 0.34 4.1441e−1 1.14
2 384 1536 2.2469e−2 1.07 6.6313e−1 0.71 1.5558e−1 1.41
3 3072 12288 1.0199e−2 1.14 3.5886e−1 0.89 5.4727e−2 1.51
4 24576 98304 4.7416e−3 1.10 1.8436e−1 0.96 1.8995e−2 1.53
5 196608 786432 2.2781e−3 1.06 9.3043e−2 0.99 6.6280e−3 1.52

Observed: 1.00 1.00 1.50

Table 4.8: Individual error components for p = 1.
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5 Discontinous Galerkin Finite
Element Method for Nonlinear
Elasticity

In this chapter the results for the numerical treatment of nonlinear elasticity
with the discontinuous Galerkin finite element method will be summarized.
Due to the fact, that a discontinuous Galerkin method was already considered
in the previous chapter the aim is to use such a method for the treatment
of nonlinear elasticity, too. For a more complete treatment of discontinuous
Galerkin methods for nonlinear elasticity we refer to [60, 61, 62, 63, 133, 138].
For general information on the treatment of nonlinear elasticity with the finite
element method we refer to [11, 12, 24]. Finally we refer to [17, 85, 135, 180]
for more general topics in the context of nonlinear elastic behavior.

5.1 Analytic Results

Recall the equilibrium equations of stationary hyper-elasticity in material
coordinates given by

−Div (F(U)S(U )) = 0 in Ωr,

U = GD(X) on ΓD,r, (5.1)
F(U)S(U )N = GN(U) on ΓN,r.

The tensor S is given through the constitutive relation as S = 2∂Ψ(C)
∂C with the

Helmholtz free energy function Ψ(C). In this section known results for this
nonlinear system of partial differential equations will be recited. The weak
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5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

formulation of system (5.1) reads: Find U with U ΓD,r = GD smooth enough
such that ∫

Ωr

F(U)S(U) : GradV dX −
∫

ΓN,r

(GN(U),V ) dsX = 0

for all smooth enough V such that V ΓD,r = 0. This variational formulation is
also known as the principle of virtual work, see [85, Chapter 8.2] and [35,
Chapter 2.6] for more details. At this point no specification of the underlying
function spaces for U ,V has been made. We will comment on this later. It is
well known (see [35, Theorems 4.1-1 and 4.1-2]) that, for hyperelastic materials
and conservative traction and body forces, the solution of the principle of
virtual work is formally equivalent to find infimizers of the functional

I(U) :=
∫

Ωr

W (F(U)) dX −
∫

ΓN,r

(GN ,U) dsX .

The infimum is taken over all smooth enough ψ : Ωr → Rd such that ψ ΓD,r =
GD. One of the major problems in studying the existence of infimizers is the
lack of convexity of the energy function W (F). Classical hyperelastic materials
are however polyconvex. This means that

W (F) = W̃ (F, adj(F), det(F))

and W̃ is convex in its arguments. For more details on the various convexity
concepts in nonlinear elasticity we refer to [35, 42]. Concerning the existence
and regularity of infimizers to the functional I(U ) a well known theorem from
J. Ball will be cited:

Theorem 5.1 (J. Ball’s Existence Theorem for pure displacements). Let Ωr be
a bounded domain with Lipschitz boundary and ΓD,r = ∂Ωr. Let further p ≥ 2,
q ≥ p

p−1 and s > 1. Assume that W (F) is polyconvex and fulfills the conditions
(2.33)-(2.35). Let GD ∈ W 1,1− 1

p (∂Ωr). Define the space

X :=
{
V ∈ W 1,p(Ωr) : adj(F(V )) ∈ Lq(Ωr), det(F(V )) ∈ Ls(Ωr)

V ∂Ωr = GD and det(F(V )) > 0 a.e. in Ωr

}
.

112



5.2 Discretization

Assume further that there exists a U 0 ∈ X such that I(U 0) <∞. Then there
exists at least one function U ∈ X such that

I(U) = inf
V ∈X

I(V ).

Proof. See [35, Theorem 7.7-1].

Remark 5.2. A similar theorem holds in the case of mixed boundary conditions
and pure Neumann boundary conditions, see [35, Theorem 7.7-2].

Remark 5.3. The theorem remains true in the case of almost incompressible
materials, however the proofs need to be adapted. See [32] for details.

The equivalence of the minimization problem and the principle of virtual work
for hyperelastic materials together with the Theorem 5.1 justifies the following
weak formulation. Given GD ∈ W 1,1− 1

p (ΓD,r) find U ∈ W 1,p
GD,ΓD,r(Ωr) such

that ∫
Ωr

F(U)S(U) : GradV dX = 0 (5.2)

for all V ∈ W 1,p
0,ΓD,r(Ωr).

Remark 5.4. The above concepts are only valid for hyperelastic materials. In
general it is still an open problem whether the equivalence of the minimization
of the strain energy function and the principle of virtual work holds. See [17]
for more details.

5.2 Discretization

In this section a discontinuous Galerkin discretization for the equations of
stationary nonlinear elasticity with hyperelastic materials will be discussed.
One may roughly distinguish two approaches. The first approach is based on a
discontinuous Galerkin discretization of the energy functional and thus aims
at minimizing a discrete energy functional. This approach is used for example
in [62, 63, 133]. However the convergence of discrete energy minimizers to
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5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

minimizers of the continuous functional is, in general, still an open question,
see [30]. In this thesis a different approach, first introduced in [138], will be
considered. Given the system (5.1) and assume that the Neumann boundary
conditions do not depend on the normal vector N , e.g.: dead loads or traction
forces. One multiplies the first equation with a test function V ∈ [H1

0(TN)]d
and integrates over Ωr. This leads to

N∑
l=1

∫
τl

−(Div(F(U)S(U))),V ) dX =
N∑
l=1

∫
τl

F(U)S(U ) : GradV

−
N∑
l=1

∫
∂τl

(F(U )S(U),V ) dsX .

After rearranging the second sum one obtains
N∑
l=1

∫
τl

−(Div(F(U)S(U))),V ) dX =
N∑
l=1

∫
τl

F(U)S(U) : GradV

−
∑

Γkl∈IN

∫
Γkl

〈F(U)S(U)〉 : JV K
kl

dsX

−
∫

ΓN,r

(GN ,V ) dsX .

This motivates the definition of the following semi-linear form

b(U ,V ) :=
N∑
l=1

∫
τl

F(U)S(U) : GradV −
∑

Γkl∈IN

∫
Γkl

〈F(U )S(U)〉 : JV K dsX

and the linear form

l(V ) :=
∫

ΓN,r

(GN ,V ) dsX

for U ∈ C1(TN) and V ∈ H1
0(TN). For ensuring stability one needs to add a

stabilization bilinear form

s(U ,V ) :=
∑

Γkl∈IN

σkl

hkl

∫
Γkl

JUK
kl

: JV K
kl

dsX .
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5.2 Discretization

The discontinuous Galerkin formulation reads: Find UDG ∈ [Sph(TN)]d with
UDG ΓD,r = GD such that

b(UDG,V h) + s(UDG,V ) = l(V h) (5.3)

for all V h ∈ [Sph(TN)]d such that V h ΓD,r = 0. In the case of a linear problem
this derivation resembles the incomplete interior penalty method see [47,
Section 5.3] and [45]. This is still a nonlinear set of algebraic equations. The
linearization is defined for φ ∈ [C1(TN)]d and U ,V ∈ H1

0(TN):

aDG(φ;U ,V ) := aDG
1 (φ;U ,V ) + aDG

2 (φ;U ,V ) + aDG
3 (φ;U ,V )

where

aDG
1 (φ;U ,V ) :=

∑
l=1

∫
τl

GradUS(φ) : GradV dx

+
∫
τl

sym(F>(φ) GradU) : C(φ) : sym(F>(φ) GradV ) dx


and

aDG
2 (φ;U ,V ) :=

−
∑

Γkl∈IN

∫
Γkl

〈
F(φ)

(
C(φ) : sym(F>(φ) GradU

)〉
: JV K

kl
dsx

−
∑

Γkl∈IN

∫
Γkl

〈GradUS(φ)〉 : JV K
kl

dsx

+
∑

Γkl∈IN

σkl

hkl

∫
Γkl

JUK
kl

: JV K
kl

dsx .

The occurring tensors are evaluated as

F(φ) = I + Gradφ,

S(φ) = 2∂Ψ(C)
∂C C=F>(φ)F(φ),

C(φ) = 4∂
2Ψ(C)
∂C2 C=F>(φ)F(φ).
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5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

For compatibility with the notation in [138] we want to mention that this
formulation is equivalent to

b(U ,V ) :=
N∑
l=1

∫
τl

P(U) : GradV dX −
∑

Γkl∈IN

∫
Γkl

〈P(U)〉 : JV K
kl

dsX

and

aDG
1 (φ;U ,V ) :=

∑
l=1

∫
τl

GradU : A(φ) : GradV dX

as well as

aDG
2 (φ;U ,V ) := −

∑
Γkl∈IN

∫
Γkl

〈A(φ) : GradU〉 : JV K
kl

dsX

+
∑

Γkl∈IN

σkl

hkl

∫
Γkl

JUK
kl

: JV K
kl

dsX .

where the first Piola-Kirchoff stress tensor is defined as

P := FS = ∂W (F)
∂F

and the elasticity tensor A is defined as

A := ∂2W (F)
∂F∂F .

The elasticity tensor A has only major symmetries.

5.3 Numerical Analysis

In this section the main convergence result to be found in [138] will be given.
Throughout this section it is assumed that the problem (5.2) has a solution

U ∈ [W 1,p(Ωr)]d ∩ [Hm+1(Ωr)]d ∩ [H1
ΓD,r,GD(Ωr)]d

with m > d
2 . With this regularity one has that GradU ∈ [L∞(Ωr)]d×d. One

further needs to assume that W (F) ∈ C4(Rd×d; R). Further one assumes that
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5.4 Additional Topics

P and A are locally Lipschitz-continuous. For the error analysis the following
norm will be used:��U��2

1,h :=
N∑
l=1
‖GradU‖2

L2(τl) +
∑

Γkl∈IN

σkl

hkl

∥∥∥JUK
kl

∥∥∥2

L2(Γkl)
.

With the assumptions made above one can show, that the discrete problem has
a unique solution UDG provided σkl is large enough and for a quasi-uniform
triangulation with mesh size h fine enough there holds��U −UDG

��
1,h ≤ chs‖U‖Hs+1(Ωr) (5.4)

for d
2 < s ≤ min{p,m}. We refer to [138, Section 5] for the proofs.

5.4 Additional Topics

In this section some additional technical topics which are of relevance in the
implementation of discontinuous Galerkin methods for nonlinear elasticity will
be discussed.

5.4.1 Treatment of Pressure Boundary Conditions

It was shown, that for a pressure boundary condition of the form
σ(u)n = −pn

in spatial coordinates one obtains a nonlinear boundary condition in material
coordinates

F(U)S(U) = −pJ(U)F−>(U)N .

The linearization corresponding to such a boundary condition can be calculated
as

aDG
3 (φ;U ,V ) := p

 ∫
ΓN,r

J(φ)
(
F−>(φ)(GradU )>F−>(φ)N ,V

)
dsX

−
∫

ΓN,r

J(φ)
(
(F−>(φ) : GradU)F−>N ,V

)
dsX

 .
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5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

There are different approaches how to include pressure boundary conditions,
see for example [24, Section 6.5.2].

5.4.2 Static Condensation for Almost Incompressible
Materials

Recall that for almost incompressible materials one has to solve a block system
of the form

−Div (F(U) (Siso(U , J) + Svol(U , P, J))) = 0, in Ωr, (5.5)
dU(D)

dD D=J − P = 0 in Ωr, (5.6)

J − det F(U) = 0 in Ωr. (5.7)

In the context of almost incompressible linear elasticity one encounters similar
saddle point problems as a remedy to prevent locking effects. See for example
[27, Chapter VI §4]. When using a discontinuous Galerkin finite element method
for discretizing the equations of almost incompressible linear elasticity one
can construct locking-free methods without the need to solve a block system,
see [48, 187] for details. This may serve as a motivation to achieve the same
for almost incompressible nonlinear elasticity. As a motivation consider the
conformal discretized variational formulation of the pure Dirichlet problem.
Find (Uh, Ph, Jh) ∈ Xh × Πh × Σh with Uh ∂Ωr = gD such that

0 =
∫

Ωr

F(Uh)Siso(Uh, Jh) : GradV h dX +

∫
Ωr

F(Uh)Svol(Uh, Ph, Jh) : GradV h dX
,

0 =
∫

Ωr

dU(D)
dD D=JhQh dx−

∫
Ωr

PhQh dX,

0 =
∫

Ωr

JhZh dX −
∫

Ωr

det F(Uh)Zh dX .

In conforming finite element methods one usually uses globally continuous
ansatz spaces for discretizing the variable U . For the variables P, J however,
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one may use globally discontinuous ansatz functions, thus one may interpret
this as a coupling of a continuous Galerkin method coupled with a discontinuous
Galerkin method. In the literature one usually uses piecewise constant functions
for discretizing (P, J). To solve such a nonlinear block system one would apply
for example Newton’s method. The solution of a three by three nonlinear saddle
point problem can be a demanding task. Therefore one uses an additional
approximation and treats the variable Jh explicitly, e.g.∫

Ωr

Jk+1
h Zh dX −

∫
Ωr

det F(U k
h)Zh dX = 0.

Thus, in the case of piecewise constant test and ansatz functions one may
deduce

Jk+1
h τl =

∫
τl

det F(U k
h) dX

|τl|
.

Hence one can also calculate the next iterate P k+1
h as

P k+1
h τl =

(
dU(D)

dD D=Jk+1
h

)
τl .

This procedure is called mean dilatation technique see [86, 122, 167, 168]
and [100] for more details.

5.4.3 Assembling of the Element Matrices

In this section the assembling of the stiffness matrices for the discontinuous
Galerkin method for nonlinear elasticity will be briefly discussed. To this end,
consider the calculation of the local element matrices. For more details on
assembling global matrices in the context of finite element methods in general
we refer to [171, Chapter 11], [47, Appendix A] and [29]. The first element
matrix to be investigated is given by

a1
h(W ;Uh,V h) :=

∫
τl

GradUhS(W ) : GradV h dX . (5.8)
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5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

On the element τl ∈ TN one has a set of scalar basis functions {φj}ndofs−1
j=0 where

ndofs are the degrees of freedom on the element τl. With this one has

Uh τl =
d−1∑
s=0

ndofs−1∑
t=0

U t
sφt(X)es.

This can be rewritten in a more compact form as

Uh τl = ΦU

where

Φ := I⊗ φ,
φ := (φ0, φ1, . . . , φndofs−1),
U := (U0

0 , U
1
0 , . . . , U

ndofs−1
0 , U0

1 , U
1
1 , . . . , U

ndofs−1
1 , . . . , U0

d−1, U
1
d−1, . . . , U

ndofs−1
d−1 ).

Here “⊗” denotes the Kronecker product. One can obtain a similar repre-
sentation for the vectorized gradient vec(GradUh). There holds:

vec(GradUh) τl = ∂ΦU

where

∂Φ := I⊗ ∂φ,

∂φ[i, j] := ∂φj
∂Xi

, i = 0, . . . , d− 1, j = 0, . . . , ndofs.

Remark 5.5. The vectorization of a matrix A ∈ Rn×m, vec(A) ∈ Rnm is
defined as

vec(A) := (A[0, 0], A[0, 1], . . . , A[0,m− 1], A[1, 0], A[1, 1], . . . A[1,m− 1], . . . ,
A[n− 1, 0], A[n− 1, 1], . . . , A[n− 1,m− 1])> .

For two matrices A,B ∈ Rm×n there holds:

(vec(A), vec(B)) = A : B. (5.9)
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The goal is to apply these techniques to derive a representation of the element
matrix corresponding to the bilinear form (5.8). It can be shown that

vec(GradUhS(W )) τl = (I⊗ S(W )∂φ)U .

Therefore using (5.9), the symmetry S> = S and the rule

(A⊗ B)> = A> ⊗ B>,

one deduces that the element matrix Al
1,h ∈ Rdndofs×dndofs can be represented

as

Al
h(W ) =

∫
τl

(I⊗ (∂φ)>S(W )∂φ) dX,

=
∫
τl

(∂Φ)>(I⊗ S(W ))∂Φ dX .

Due to the symmetry of S, the element matrix is also symmetric. In the
engineering community this representation is called a B>DB -integrator. The
second bilinear form to be investigated is given as

a2
h(W ;Uh,V h) :=∫

τl

sym(F>(W ) GradUh) : C(W ) : sym(F>(W ) GradV h) dX . (5.10)

Again one is interested in a representation with the help of a B>DB-integrator.
First take note that with the Mandel notation from Remark 2.16 one has

a2
h(W ;Uh,V h) =∫

τl

(
symM(F>(W ) GradUh),CM(W )symM(F>(W ) GradV h)

)
dX

where symM(F>GradUh) denotes the Mandel notation of sym(F>GradUh).
After some tedious calculations one can show that

symM(F>GradUh) =
(

F>D1Φ
FD2Φ

)
U

121



5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

where

D1Φ =


∂φ0
∂X0

∂φ1
∂X0

· · · ∂φndofs−1
∂X0

0 0
0 ∂φ0

∂X1

∂φ1
∂X1

· · · ∂φndofs−1
∂X1

0
0 0 ∂φ0

∂X2

∂φ1
∂X2

· · · ∂φndofs−1
∂X2


and

D2Φ =
√

2
2


∂φ0
∂X1

∂φ1
∂X1

· · · ∂φndofs−1
∂X1

0 ∂φ0
∂X2

∂φ1
∂X2

· · · ∂φndofs−1
∂X2

∂φ0
∂X0

∂φ1
∂X0

· · · ∂φndofs−1
∂X0

∂φ0
∂X2

∂φ1
∂X2

· · · ∂φndofs−1
∂X2

0
0 ∂φ0

∂X1

∂φ1
∂X1

· · · ∂φndofs−1
∂X1

∂φ0
∂X2

∂φ1
∂X2

· · · ∂φndofs−1
∂X2


in the case of d = 3. Thus again one can write the element matrix Al

2,h ∈
Rdndofs×dndofs as

Al
2,h =

∫
τl

(
(D1Φ)>F(W ) (D2Φ)>F>(W )

)
CM(W )

(
F>(W )D1Φ
F(W )D2Φ

)
dX .

(5.11)

Due to the symmetry properties of the elasticity tensor C one obtains a sym-
metric element matrix.

Remark 5.6. With similar considerations one can derive representations for
the bilinear forms

a3
h(W ;Uh,V h) =

∫
Γkl

〈
F(W )

(
C(W ) : sym(F>(W ) GradU

)〉
: JV Kkl dsX

and

a4
h(W ;Uh,V h) =

∫
Γkl

〈GradUS(W )〉 : JV Kkl dsX .

For the first bilinear form one observes that

a3
h(W ;Uh,V h) = 1

2

∫
Γkl

Ak : CM
τk : Bk,k dsX +

∫
Γkl

Al : CM
τl : Bl,k dsX

−
∫

Γkl

Ak : CM
τk : Bk,l dsX −

∫
Γkl

Al : CM
τl : Bl,l dsX


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where

Ak := symM
(
F>(W ) τk GradUh τk

)
,

Bk,l := symM
(
F>(W ) τk(V h τl ⊗N )

)
.

Using this one can derive a similar representation as for (5.11). However the
resulting element matrices A3

h and A4
h are not symmetric. Thus the resulting

global system matrix Ah will be non symmetric. For a deeper discussion about
the advantages and disadvantages of this non symmetric formulation we refer
to [113].

5.5 Convergence Studies

In this section convergence studies for the discontinuous Galerkin finite element
method for nonlinear elasticity for d = 2, 3 will be presented. The reference
geometry for the convergence study is chosen as Ωr = (0, 1)d. As nonlinear
material models the modified Saint-Venant Kirchoff model, see [85, p. 251],
and the compressible neo-Hookean model are chosen. The corresponding free
energy functions are given as

ΨSV(C) := κ

2 (ln(J))2 + µ

4 tr
(
C2 − 2C + I

)
,

ΨNH(C) := µ

2 (tr(C)− 3− 2 ln(J)) + κ

2 (J − 1)2,

Dirichlet boundary conditions are posed on ∂Ωr. The input data are chosen in
such a way that the exact solution to the equilibrium equations is given as

U 3D
ex (X) := 1

2

 0
0

z2x(1− x)y(1− y)

 ,
U 2D

ex (X) := 1
2

(
0

y2x(1− x)

)
.

We used Newton’s method and take the element-wise L2(Ωr)-projection onto
[Sph(TN)]d of U 2D

ex or U 3D
ex as initial guess. The error is measured in the norm��U��

1,h and in the L2(Ω)-norm.
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5 Discontinous Galerkin Finite Element Method for Nonlinear Elasticity

Results for 2D

Here we present the numerical results for the two dimensional example. We
note that the plane strain approach discussed in Section 2.3.7 has been used.
The numeric examples were performed with the help of Neshmet and the
arising linear systems were solved with Pardiso, see [1, 160, 161].

Modified Saint-Venant Kirchoff Material

Our first example uses the Saint-Venant Kirchoff material. The material pa-
rameters were chosen as µ = 50 and κ = 71.43. The stabilization parameter
σkl was chosen as σkl = 1000p2 where p is the polynomial degree. The results
for p = 1, 2 are depicted in Table 5.1 and 5.2. For the polynomial degree p = 3
the results are depicted in Table 5.3. The sup-optimal convergence order in
the L2(Ω)-norm for odd polynomial degrees is a well-known behavior for non-
symmetric discontinuous Galerkin discretizations of linear partial differential
equations, see [155, Theorem 2.14]. It should be mentioned, that the theory
developed in [138] does not cover the case of polynomials with order less or
equal d

2 . However the results suggest, that the results are still valid for this
case.

p = 1 p = 2
level elements dof

���U 2D
ex −Uh

���
1,h

eoc dof
���U 2D

ex −Uh

���
1,h

eoc
0 8 48 7.0349e−1 − 96 2.7602e−2 −
1 32 192 3.1882e−1 1.14 384 7.4107e−3 1.90
2 128 768 1.6791e−1 0.93 1536 1.9250e−3 1.94
3 512 3072 8.8748e−2 0.92 6144 4.9159e−4 1.97
4 2048 12288 4.5888e−2 0.95 24576 1.2431e−4 1.98
5 8192 49152 2.3360e−2 0.97 98304 3.1261e−5 1.99
6 32768 196608 1.1789e−2 0.99 393216 7.8389e−6 2.00
7 131072 786432 5.9223e−3 1.00 1572864 1.9627e−6 2.00

Observed: 1.00 2.00

Table 5.1: Energy error
���U2D

ex −Uh

���
1,h

for p = 1, 2
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p = 1 p = 2
level elements dof

∥∥∥U 2D
ex −Uh

∥∥∥
L2(Ω)

eoc dof
∥∥∥U 2D

ex −Uh

∥∥∥
L2(Ω)

eoc
0 8 48 9.2693e−3 − 96 1.7082e−3 −
1 32 192 2.5774e−3 1.85 384 2.0733e−4 3.04
2 128 768 6.1948e−4 2.06 1536 2.5019e−5 3.05
3 512 3072 1.4619e−4 2.08 6144 3.0989e−6 3.01
4 2048 12288 3.5113e−5 2.06 24576 3.9818e−7 2.96
5 8192 49152 8.5806e−6 2.03 98304 5.6068e−8 2.83
6 32768 196608 2.1179e−6 2.02 393216 9.6063e−9 2.55
7 131072 786432 5.2506e−7 2.01 1572864 2.0424e−9 2.23

Observed: 2.00 2.00

Table 5.2: L2(Ω)-error
∥∥∥U2D

ex −Uh

∥∥∥
L2(Ω)

for p = 1, 2

p = 3 p = 3
level elements dof

���U 2D
ex −Uh

���
1,h

eoc
∥∥∥U 2D

ex −Uh

∥∥∥
L2(Ω)

eoc
0 8 160 2.5844e−3 − 1.2594e−04 −
1 32 640 3.1438e−4 3.04 7.2017e−06 4.13
2 128 2560 3.8495e−5 3.03 4.2444e−07 4.08
3 512 10240 4.7534e−6 3.02 2.5658e−08 4.05
4 2048 40960 5.9025e−7 3.01 1.5754e−09 4.03
5 8192 163840 7.3527e−8 3.00 9.7558e−11 4.01

Observed: 3.00 4.00

Table 5.3: Errors for p = 3
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Compressible Neo-Hooke Material

In the second example we use the compressible neo-Hooke material. The material
parameters were chosen as µ = 50 and κ = 333.3. The stabilization parameter
σkl was again chosen as σkl = 1000p2 where p is the polynomial degree. The
results for p = 1, 2 are depicted in Table 5.4 and 5.5. For the polynomial degree
p = 3 the results are depicted in Table 5.6.

p = 1 p = 2
level elements dof

���U 2D
ex −Uh

���
1,h

eoc dof
���U 2D

ex −Uh

���
1,h

eoc
0 8 48 8.6254e−1 − 96 6.4544e−2 −
1 32 192 4.1814e−1 1.04 384 2.1383e−2 1.59
2 128 768 2.1725e−1 0.94 1536 6.0322e−3 1.83
3 512 3072 1.1297e−1 0.94 6144 1.5892e−3 1.92
4 2048 12288 5.7916e−2 0.96 24576 4.0686e−4 1.97
5 8192 49152 2.9364e−2 0.98 98304 1.0287e−4 1.98
6 32768 196608 1.4790e−2 0.99 393216 2.5858e−5 1.99

Observed: 1.00 2.00

Table 5.4: Energy error
���U2D

ex −Uh

���
1,h

for p = 1, 2

p = 1 p = 2
level elements dof

∥∥∥U 2D
ex −Uh

∥∥∥
L2(Ω)

eoc dof
∥∥∥U 2D

ex −Uh

∥∥∥
L2(Ω)

eoc
0 8 48 8.8312e−3 − 96 1.6559e−3 −
1 32 192 2.2734e−3 1.96 384 2.0597e−4 3.01
2 128 768 5.3146e−4 2.10 1536 2.8883e−5 2.83
3 512 3072 1.3061e−4 2.02 6144 5.3651e−6 2.43
4 2048 12288 3.3171e−5 1.98 24576 1.2403e−6 2.11
5 8192 49152 8.4487e−6 1.97 98304 3.0806e−7 2.01
6 32768 196608 2.1398e−6 1.98 393216 7.7441e−8 1.99

Observed: 2.00 2.00

Table 5.5: L2(Ω)-error
∥∥∥U2D

ex −Uh

∥∥∥
L2(Ω)

for p = 1, 2

126



5.5 Convergence Studies

p = 3 p = 3
level elements dof

∥∥∥U 2D
ex −Uh

∥∥∥
L2(Ω)

eoc
���U 2D

ex −Uh

���
1,h

eoc
0 8 160 1.2643e−04 − 4.1520e−3 −
1 32 640 7.2299e−06 4.13 5.5930e−4 2.89
2 128 2560 4.2640e−07 4.08 7.2006e−5 2.96
3 512 10240 2.5802e−08 4.05 9.1199e−6 2.98
4 2048 40960 1.5853e−09 4.02 1.1471e−6 2.99
5 8192 163840 9.8215e−11 4.01 1.4382e−7 3.00

Observed: 4.00 3.00

Table 5.6: Errors for p = 3

Results for 3D

In this section we present the convergence results for three-dimensional examples.
The resulting linear system were solved with a ILU(0) precondtioned GMRes
method within Neshmet.

Modified Saint-Venant Kirchoff material

As first example we use again the modified Saint-Venant Kirchoff material. The
material parameters were chosen as µ = 50 and κ = 71.43. The stabilization
parameter σkl was chosen as σkl = 1000p2 where p is the polynomial degree.
The results for p = 1, 2 are depicted in Table 5.7 and 5.8.

Comparing the results for the behavior of the L2(Ωr)-error in Table 5.8 with
the two dimensional case in Table 5.2, we see that in the three dimensional
case we can not observe a clear convergence order of two for p = 2.

Compressible Neo-Hooke material

In the second example we used the compressible neo-Hooke material. For this
example we used a different initial discretization of Ωr. The material parameters
were chosen as µ = 50 and κ = 71.43. The stabilization parameter σkl was
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p = 1 p = 2
level elements dof

���U 3D
ex −Uh

���
1,h

eoc dof
���U 3D

ex −Uh

���
1,h

eoc
0 6 72 5.0490e−1 − 360 1.3927e−1 −
1 48 576 3.2654e−1 0.63 2880 3.6689e−2 1.92
2 384 4608 1.1957e−1 1.45 23040 7.7106e−3 2.25
3 768 36864 4.9867e−2 1.27 184320 1.6456e−3 2.23
4 6144 294912 2.2945e−2 1.11 1474560 3.6784e−4 2.16
5 49152 2359296 1.1077e−2 1.05 11796480 8.5969e−5 2.10

Observed: 1.00 2.00

Table 5.7: Energy error
���U3D

ex −Uh

���
1,h

for p = 1, 2

p = 1 p = 2
level elements dof

∥∥∥U 3D
ex −Uh

∥∥∥
L2(Ωr)

eoc dof
∥∥∥U 3D

ex −Uh

∥∥∥
L2(Ωr)

eoc
0 6 72 4.1493e−3 − 360 8.7706e−4 −
1 48 576 2.2901e−3 0.86 2880 3.0963e−4 1.50
2 384 4608 1.0848e−3 1.08 23040 4.7439e−5 2.71
3 768 36864 3.4612e−4 1.65 184320 6.1847e−6 2.94
4 6144 294912 9.4153e−5 1.88 1474560 7.9445e−7 2.96
5 49152 2359296 2.4040e−5 1.97 11796480 1.1161e−7 2.83

Observed: 2.00 −

Table 5.8: L2(Ωr)-error
∥∥∥U3D

ex −Uh

∥∥∥
L2(Ωr)

for p = 1, 2
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again chosen as σkl = 1000p2 where p is the polynomial degree. The results for
p = 1, 2 are depicted in Table 5.9 and 5.5.

p = 1 p = 2
level elements dof

���U 3D
ex −Uh

���
1,h

eoc dof
���U 3D

ex −Uh

���
1,h

eoc
0 6 72 5.0494e−1 − 180 1.3055e−1 −
1 48 576 3.3506e−1 0.59 1440 4.3122e−2 1.60
2 384 4608 1.3274e−1 1.34 11520 1.0797e−2 2.00
3 768 36864 6.0195e−2 1.14 92160 2.6582e−3 2.02
4 6144 294912 2.9173e−2 1.04 737280 6.6578e−4 2.00
5 49152 2359296 1.4377e−2 1.02 5898240 1.6736e−4 1.99

Observed: 1.00 2.00

Table 5.9: Energy error
���U3D

ex −Uh

���
1,h

for p = 1, 2

p = 1 p = 2
level elements dof

∥∥∥U 3D
ex −Uh

∥∥∥
L2(Ωr)

eoc dof
∥∥∥U 3D

ex −Uh

∥∥∥
L2(Ωr)

eoc
0 6 72 4.1523e−3 − 180 2.7040e−3 −
1 48 576 2.2726e−3 0.87 1440 9.9930e−4 1.44
2 384 4608 1.1157e−3 1.03 11520 1.4182e−4 2.82
3 768 36864 3.7026e−4 1.59 92160 1.6524e−5 3.10
4 6144 294912 1.0290e−4 1.85 737280 1.9582e−6 3.08
5 49152 2359296 2.6502e−5 1.96 5898240 2.7602e−7 2.83

Observed: 2.00 —

Table 5.10: L2(Ωr)-error
∥∥∥U3D

ex −Uh

∥∥∥
L2(Ωr)

for p = 1, 2

Again, by comparison of the two dimensional error behavior in Table 5.5 with
the one in Table 5.10 we see, that a clear convergence order of two can not be
observed.
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6 Coupled Electro-Mechanics

In this chapter the application of the previously developed methods to the
system of coupled electro mechanics will be described. Recall the coupled
system summarized in Formulation 2.1. Find (Vtm, ue,v, Ta,U) such that

∂

∂t
(JVtm) + JIion − J Div(JMi GradVtm)− J Div(JMi Gradue) = Jsi,

−J Div(JMi GradVtm)− J Div(JMi+e Gradue) = 0,
∂

∂t
(Jv) + JH(Vtm,v) = 0,

∂

∂t
(JTa) + Jε(Vtm) (Ta − ka(Vtm − Vr)) = 0,

−Div(F (Spas + Sact)) = 0

in Ωr × (0, T ) and the boundary and initial conditions

N · (Mi GradVtm + Mi Gradue) + αi(Vtm + ue) = GR,i,

N · (Me Gradue) + αeue = GR,e,

F(Spas + Sact)N = 0,
Vtm(0,X) = V 0

tm(X),
v(0,X) = v0(X),
Ta(0,X) = T 0

a (X),

on ∂Ωr × (0, T ) and Ωr × {0}. The following additional simplifications are
made:

• From the almost incompressibility one has that J ≈ 1, hence one may
drop this dependence from the equations.
• It is assumed that ∂

∂t
J ≈ 0. Hence one may neglect also those terms in

the equations.
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Using these assumptions one obtains the simplified, yet still coupled, system
Find (Vtm, ue,v, Ta,U) such that

∂

∂t
Vtm + Iion(Vtm,v,U)−Div(Mi GradVtm)−Div(Mi Gradue) = si, (6.1)

−Div(Mi GradVtm)−Div(Mi+e Gradue) = 0, (6.2)
∂

∂t
v +H(Vtm,v) = 0, (6.3)

∂

∂t
Ta + ε(Vtm) (Ta − ka(Vtm − Vr)) = 0, (6.4)

−Div(F (Spas + Sact)) = 0, (6.5)

in Q := Ωr × (0, T ) with the boundary and initial conditions

N · (Mi GradVtm + Mi Gradue) + αi(Vtm + ue) = GR,i, (6.6)
N · (Me Gradue) + αeue = GR,e, (6.7)

F(Spas + Sact)N = 0, (6.8)
Vtm(0,X) = V 0

tm(X), (6.9)
v(0,X) = v0(X), (6.10)
Ta(0,X) = T 0

a (X). (6.11)

on Σ := ∂Ωr × (0, T ) and Σ0.

Remark 6.1. It is also possible to include Robin type boundary conditions for
the equations of nonlinear elasticity reading as

F(Spas + Sact)N + αU = GR (6.12)

on Σ.

6.1 Space-Time Discretization

We will apply the tools developed in Section 4.2 and Chapter 5. To this end we
will define the following discrete spaces: Fix p ∈ N0

Sph(TN) :=
{
vh ∈ L2(Q) : vh τl ∈ Pp(τl) for all τl ∈ TN

}
,

V p
h (TN) :=

{
vh ∈ [L2(Q)]d : vh τl ∈ [Pp(τl)]d for all τl ∈ TN

}
.
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6.1 Space-Time Discretization

For the equations (6.1)-(6.4) we use the space-time discontinuous Galerkin
discretization derived in Section 4.2. Thus we get the following system

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm, φ

h) + aDG
i (uhe , φh) + I

DG(V h
tm, v

h,Uh;φh) = lDG
1 (φh),

aDG
i (V h

tm, ψ
h) + aDG

i+e(uhe , ψh) = lDG
2 (ψh),

bDG
T (vh, ξh) +HDG(V h

tm, v
h; ξh) = lDG

3 (ξh),
bDG
T (T ha , θh) + TDG(V h

tm, T
h
a ; θh) = lDG

4 (θh),

for all (φh, ψh, ξh, θh) ∈ Sph(TN )×Sph(TN )×Sph(TN )×Sph(TN ). The bilinear form
bDG
T (·, ·) is taken as in (4.10). The bilinear forms aDG

i (·, ·), aDG
i+e(·, ·) are defined

as in (4.4). The nonlinear forms are treated in the most simple way and are
defined as

I
DG(V h

tm, v
h,Uh;φh) :=

N∑
l=1

∫
τl

Iion(V h
tm, v

h)φh dq +
∫
τl

IMEF(V h
tm,U

h)φh dq,

HDG(V h
tm, v

h; ξh) :=
N∑
l=1

∫
τl

H(V h
tm, v

h)ξh dq,

TDG(V h
tm, T

h
a ; θh) :=

N∑
l=1

∫
τl

T (V h
tm, T

h
a )θh dq.

The linear forms on the right hand side are defined as

lDG
1 (φh) :=

∫
Q

siφ
h dq +

∫
Σ0

V 0
tmφ

h dsq +
∫

Σr

GR,iφ
h dsq,

lDG
2 (ψh) :=

∫
Σr

(GR,i +GR,e)ψh dsq,

lDG
3 (ξh) :=

∫
Σ0

v0ξh dsq,

lDG
4 (θh) :=

∫
Σ0

T 0
a θ

h dsq.

For the discretization of the equations of nonlinear elasticity (6.5) we will adapt
the bilinear form from (5.3) to the space-time setting. Thus we arrive at

aDG
elast(T ha ,Uh;V h) = l5(V h).
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6 Coupled Electro-Mechanics

where

aDG
elast(T ha ,Uh;V h) :=

N∑
l=1

∫
τl

F(Uh)
(
Spas(Uh) + Sact(T ha ,Uh)

)
: GradV h dq

−
∑

Γkl∈IN

∫
Γkl

〈
F(Uh)

(
Spas(Uh) + Sact(T ha ,Uh)

)〉
: JV hKX,kl dsq,

+
∑

Γkl∈IN

σelast
kl

hkl

∫
Γkl

JUhKX,kl : JV hKX,kl dsq.

and

lDG
5 (V h) = 0.

Remark 6.2. In the case of Robin type boundary conditions we may add the
term

α
∫

Σr

(
Uh,V h

)
dsq

to the nonlinear form aDG
elast(T ha ,Uh;V h) and∫

Σr

(
GR,V

h
)
dsq

to the right hand side.

Remark 6.3. For almost incompressible materials we will use the mean dilata-
tion technique described in Section (5.4.2). Thus the incompressibility constraint
is eliminated locally on each element.

Collecting the two building blocks together we arrive at the following nonlinear
discretized system: Find (V h

tm, u
h
e , v

h, T ha ,U
h) such that

bDG
T (V h

tm, φ
h) + aDG

i (V h
tm, φ

h) + aDG
i (uhe , φh) + I

DG(V h
tm, v

h,Uh;φh) = lDG
1 (φh),

aDG
i (V h

tm, ψ
h) + aDG

i+e(uhe , ψh) = lDG
2 (ψh),

bDG
T (vh, ξh) +HDG(V h

tm, v
h; ξh) = lDG

3 (ξh),
bDG
T (T ha , θh) + TDG(V h

tm, T
h
a ; θh) = lDG

4 (θh),
aDG

elast(T ha ,Uh;V h) := lDG
5 (V h)
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6.1 Space-Time Discretization

for all (φh, ψh, ξh, θh,V h). As the derived system is nonlinear we will apply
Newton’s method to solve it. To this end we need the linearization around
given solutions (V k,h

tm , uk,he , vk,h, T k,ha ,U k,h). After performing the linearization
and using the Galerkin isomorphism we can write the resulting Jacobian for
Newton’s method in the form

DF :=



Vtm ue v Ta U

F11 F12 F13 0 F15

F21 F22 0 0 0
F31 0 F33 0 0
F41 0 0 F44 0
0 0 0 F54 F55


Above the matrix definition we indicated the variables to which the deriva-
tives correspond. The individual blocks of the Jacobian are described in the
following.

F11 corresponds to

bDG
T (δh, φh) + aDG

i (δh, φh) +
N∑
l=1

∫
τl

∂Iion

∂Vtm
(V k,h

tm , vk,h)δhφh dq

+
N∑
l=1

∫
τl

∂IMEF

∂Vtm
(V k,h

tm ,U k,h)δhφh dq.

F12 corresponds to

aDG
i (δh, φh).

F13 corresponds to
N∑
l=1

∫
τl

∂Iion

∂v
(V k,h

tm , vk,h)δhφh dq

F15 corresponds to
N∑
l=1

∫
τl

∂IMEF

∂λf
(V k,h

tm ,U k,h)(2(f 0 ⊗ f 0) : sym(F(U k,h)>Grad δh)φh dq.
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6 Coupled Electro-Mechanics

F21 corresponds to

aDG
i (δh, ψh),

F22 corresponds to

aDG
i+e(δh, ψh).

F31 corresponds to

N∑
l=1

∫
τl

∂H

∂Vtm
(V h,k

tm , vh,k)δhξh dq

F33 corresponds to

bDG
T (δh, ξh) +

N∑
l=1

∫
τl

∂H

∂v
(V h,k

tm , vh,k)δhξh dq

F41 corresponds to

N∑
l=1

∫
τl

∂T

∂Vtm
(V h,k

tm , T h,ka )δhθh dq

F44 corresponds to

bDG
T (δh, θh) +

N∑
l=1

∫
τl

∂T

∂Ta
(V h,k

tm , T h,ka )δhθh dq

F54 corresponds to

N∑
l=1

∫
τl

δh

(
F(U k,h)∂Sact

∂Ta
(T h,ka ,Uh,k) : GradV h

)
dq

−
∑

Γkl∈IN

∫
Γkl

〈
δh
(

F(U k,h)∂Sact

∂Ta
(T h,ka ,Uh,k)

)〉
:
q
V h

y
X,kl

dsq
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6.1 Space-Time Discretization

F55 corresponds to
aDG

1 (T h,ka ,Uh,k; δh,V h) + aDG
2 (T h,ka ,Uh,k; δh,V h)

where

aDG
1 (T h,ka ,Uh,k; δh,V h) :=∑

l=1

∫
τl

Grad δhSh,k : GradV h dq

+
∫
τl

sym(F>h,k Grad δh) : Ch,k : sym(F>h,k GradV h)dq

with
Fh,k := F(Uh,k),
Sh,k := Spass(Uh,k) + Sact(T h,ka ,Uh,k),
Ch,k := Cpas(Uh,k) + Cact(T h,ka ,Uh,k).

The other bilinear forms are defined as

aDG
2 (φ;U ,V ) :=

−
∑

Γkl∈IN

∫
Γkl

〈
Fh,k

(
Ch,k : sym(F>h,k Grad δh)

)〉
:
q
V h

y
X,kl

dsq

−
∑

Γkl∈IN

∫
Γkl

〈
Grad δhSh,k

〉
:
q
V h

y
X,kl

dsq

+
∑

Γkl∈IN

σelast
kl

hkl

∫
Γkl

JUKX,kl : JV KX,kl dsq .

Remark 6.4. For the special choice of Sact as in (2.46) we can calculate
∂Sact

∂Ta
= I

− 1
2

4f f 0 ⊗ f 0.

For Newton’s method we also need to define the residual

F :=


R1
R2
R3
R4
R5


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6 Coupled Electro-Mechanics

where the vectors R1, . . . ,R5 are induced by the following linear forms:

R1 corresponds to

bDG
T (V h,k

tm , φh) + aDG
i (V h,k

tm , φh) + aDG
i (uh,ke , φh)

+ I
DG(V h,k

tm , vh,k,Uh,k;φh)− lDG
1 (φh).

R2 corresponds to

aDG
i (V h,k

tm , ψh) + aDG
i+e(uh,ke , ψh)− lDG

2 (ψh).

R3 corresponds to

bDG
T (vh,k, ξh) +HDG(V h,k

tm , vh,k; ξh)− lDG
3 (ξh).

R4 corresponds to

bDG
T (T h,ka , θh) + TDG(V h,k

tm , T h,ka ; θh)− lDG
3 (θh).

R5 corresponds to

aDG
elast(T h,ka ,Uh,k;V h)− l5(V h).

Collecting all things we can write Newton’s method in our case as find ∆ such
that

DF(Xk)∆ = −F (Xk),Xk+1 = Xk + ∆.

6.2 Globalized Newton’s Method and
Load-stepping

In the previous section we presented all building blocks for applying Newton’s
method to the system of cardiac electromechanics. However, for the convergence
of Newton’s method one needs to provide a good initial guess X0. In the case
of time dependent nonlinear problems which are discretized with time-stepping
schemes one can always use the solution from the previous time step as initial
guess for Newton’s method. In a full space-time setting one can no longer use
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6.2 Globalized Newton’s Method and Load-stepping

this. Hence one needs to construct a good initial guess with other techniques,
such as globalization techniques. Furthermore, since the linear systems in
such problem are large one may also use inexact Newton methods. For more
on this topic we refer to [46, Chapter 3] and [49, 50]. For solving our nonlinear
systems we will rely on the inexact Newton backtracking method proposed
in [50, Section 6]. The algorithm is depicted in Algorithm 1.

Algorithm 1 Inexact Newton Backtracking Method, [50]
1: Let X0, ηmax ∈ [0, 1), t ∈ (0, 1), 0 < θmin < θmax < 1, ε > 0, nmax > 0 and
kmax > 0 be given

2: for k = 0, . . . , kmax do
3: nbt = 0
4: Choose ηk ∈ [0, ηmax]
5: Find sk such that
6:

∥∥∥DF(Xk)sk + F (Xk)
∥∥∥ ≤ ηk

∥∥∥F (Xk)
∥∥∥

7: while
∥∥∥F (Xk + sk)

∥∥∥ > (1− t(1− ηk))
∥∥∥F (Xk)

∥∥∥ and nbt < nmax do
8: Choose θ ∈ [θmin, θmax]
9: sk = θsk

10: ηk = 1− θ(1− ηk)
11: nbt = nbt + 1
12: end while
13: Xk+1 = Xk + sk
14: if

∥∥∥F (Xk+1)
∥∥∥ < ε

∥∥∥F (X0)
∥∥∥ then

15: break
16: end if
17: end for

For choosing ηk (Line 4 in Algorithm 1) we will use the following criterion
proposed in [49, (2.6)]: Given γ ∈ (0, 1), α ∈ (1, 2] and η0 ∈ (0, 1) we set

ηk := γ


∥∥∥F (Xk)

∥∥∥∥∥∥F (Xk−1)
∥∥∥
α .

Furthermore, as suggested in [49, Section 2.1] we will apply the following
safeguarding rule: If γηαk−1 > 0.1 we set

ηk = min(ηmax,max(ηk, γηαk−1)).
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6 Coupled Electro-Mechanics

It remains to choose θ (Line 8 in Algorithm 1). Here we will follow the suggestion
made in [22, Section 4.2] and also [96, 142]. We define the function

g(t) := 1
2
∥∥∥F (Xk + tsk)

∥∥∥2

Next we define a quadratic interpolant p(t) of g(t) such that

p(0) = g(0) = 1
2
∥∥∥F (Xk)

∥∥∥2
,

p(1) = g(1) = 1
2
∥∥∥F (Xk + sk)

∥∥∥2
,

p′(0) = g′(0) =
(
DF(Xk)sk,F (Xk)

)
.

Having p(t) we choose θ as mint∈[θmin,θmax] p(t). Further, for our numerical
examples we will apply a load-stepping strategy. That means take a sequence
{τk} ∈ (0, 1] converging to one and multiply each nonlinear contribution to our
system by the factor τk.

6.3 Schur Complement

We have seen that in the course of Newton’s method we need to solve the
system

DF(Xk)∆ = −F (Xk)

with the help of an iterative method, like the GMRes. Recalling the block
structure of the Jacobian this means that in each Newton step we need to
solve 

F11 F12 F13 0 F15
F21 F22 0 0 0
F31 0 F33 0 0
F41 0 0 F44 0
0 0 0 F54 F55




δVtm
δue
δv
δTa
δU

 =


R1
R2
R3
R4
R5

 .
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6.4 Numerical Examples

Instead of solving the whole block system we will solve the following Schur
complement system

SC :=
(

SC1 F12
F21 F22

)(
δVtm
δue

)
=
(
R̃1
R2

)

where

SC1 := F11 − F13F−1
33 F31 + F15F−1

55 F54F−1
44 F41,

R̃1 := R1 − F13F−1
33R3 − F15F−1

55R5 + F15F−1
55 F54F−1

44R4.

6.4 Numerical Examples

In this section we will present numeric examples for the coupled problem. In
all the presented examples we used the Aliev-Panfilov model for the ionic
currents, see [4]. The values of c1, c2, c3, ε0, µ1, µ2 can be looked up in Table
6.2.

Iion(Vtm, v) := c2Vtmv − c1Vtm(1− Vtm)(Vtm − c3),

H(Vtm, v) :=
(
ε0 + µ1v

µ2 + Vtm

)
(c1Vtm(1 + b− Vtm)− v)

Further in all numerical examples we use the globalized inexact Newton back-
tracking algorithm combined with twenty load-steps. The parameters can be
looked up in Table 6.1. The resulting linear systems were solved with Neshmet.
The meshes were generated with the help of Gmsh [71].

Example One

In our first example we consider the following space-time domain:

Q := (−2.5, 2.5)2 × (0, 12).
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6 Coupled Electro-Mechanics

Parameter Value
ηmax 0.9
θmin 0.1
θmax 0.5
ε 1e−4

nmax 5
kmax 100

Table 6.1: Values of the parameters for Newton’s method.

Parameter Value
c1 12.000
c2 1.000
c3 0.050
b 0.314
ε0 0.016
µ1 0.476
µ2 0.654

Table 6.2: Values of the parameters for the Aliev Panfilov model.
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6.4 Numerical Examples

For the anisotropic tensors Mi,Me we choose the following values:

f 0 :=
(

3√
10
,

1√
10

)>
,

s0 :=
(
− 1√

10
,

3√
10

)>
,

mf
i := 0.2, ms

i := 0.3,
mf
e := 1.1, ms

e := 1.3.

On ∂(−2.5, 2.5)2 we set Robin boundary conditions for Vtm, ue with αi = αe =
1e−6. For the deformation we use homogeneous Dirichlet boundary conditions
on X = −2.5 and homogeneous Neumann boundary conditions elsewhere. The
initial conditions were set to

V 0
tm(X) := (X − 2.5)(X + 2.5)(Y − 2.5)(Y + 2.5),
v0(X) := 0,
T 0
a (X) := 0.

We needed an average of 14.2 Newton steps per load-step for this example. The
results are depicted in Figures 6.1, 6.2, 6.3, 6.4 and 6.5. We can also calculate
the resulting variables at different times tk by slicing the space-time domain.
The results are depicted in Figures 6.6 and 6.7.

Example Two

In the second example we consider the same geometry, conductivities and
parameters for the nonlinearities. The initial values are set to

V 0
tm(X) := 0,
v0(X) := 0,
T 0
a (X) := 0.

The boundary conditions for Vtm, ue are chosen in the same way as for example
one. For the deformation U we choose again homogeneous Dirichlet data on
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6 Coupled Electro-Mechanics

Figure 6.1: The potential Vtm.

Figure 6.2: The absolute value of the deformation U .
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6.4 Numerical Examples

Figure 6.3: The potential ue.
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6 Coupled Electro-Mechanics

Figure 6.4: The ionic variable v.
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6.4 Numerical Examples

Figure 6.5: The active stress variable Ta.
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t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.6: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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6.4 Numerical Examples

t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.7: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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X = −2.5. However on the boundary X = 2.5 we choose the following Neumann
boundary condition

GN(X, t) :=


(0, 0)> if t 6∈ [2, 4]
1
2(t− 2)(0, 1)> if t ∈ [2, 3)
1
2(4− t)(0, 1)> if t ∈ [3, 4]

We needed an average of 18.1 Newton steps per load-step for this example. The
results are depicted in Figures 6.8, 6.9, 6.10, 6.11 and 6.12. The results for the
time evolution are depicted in Figures 6.13 and 6.14.

Figure 6.8: The potential Vtm.
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Figure 6.9: The absolute value of the deformation U .

Figure 6.10: The potential ue.
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Figure 6.11: The ionic variable v.

Figure 6.12: The active stress variable Ta.
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6.4 Numerical Examples

t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.13: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.14: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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Example Three

In our third example we consider a different spatial geometry. The geometry
Ω is given by the following ellipsoidal annulus: given a1 > a2 and b1 > b2 we
define

Ω :=
{
X ∈ R2 : X

2

a2
1

+ Y 2

b2
1
< 1 and X2

a2
2

+ Y 2

b2
2
> 1

}
,

Γ1 :=
{
X ∈ R2 : X

2

a2
1

+ Y 2

b2
1

= 1
}
,

Γ2 :=
{
X ∈ R2 : X

2

a2
2

+ Y 2

b2
2

= 1
}
,

ΓD,elast :=
{
X ∈ R2 : X

2

a2
1

+ Y 2

b2
1

= 1 and X > 0 and Y < 0
}
,

ΓN,elast := Γ1\ΓD,elast.

An example for Ω is depicted in Figure 6.15. The input parameters as well

Γ1, ΓN,elast

Γ2

ΓD,elast

Figure 6.15: The domain Ω for example three, a1 = 5, b1 = 3, a2 = 3, b2 = 9
5

as the initial data are chosen as in examples one and two. On the boundary
Γ1 and Γ2 we chose Robin type boundary conditions with αi = αe = 1e−6
for Vtm, ue. For the deformation we chose homogeneous Neumann boundary
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6 Coupled Electro-Mechanics

conditions on Γ2 and ΓN,elast. On ΓD,elast we imposed homogeneous Dirichlet
boundary conditions. For this example we needed an average of 16.4 Newton
steps per load step. The results are depicted in Figures 6.16, 6.17, 6.18 and
6.19. The results for the time evolution are depicted in Figures 6.20 and 6.21.

Figure 6.16: The potential Vtm.

Example Four

In this example we consider the same geometry as in example three, as well
as the input parameters. The boundary conditions for Vtm, ue as well as the
initial conditions for Vtm, v, Ta are the same. For the deformation U we chose
homogeneous Robin boundary conditions on Γ1 and Γ2. Furthermore we used
non-constant fields for f 0, s0. For the direction s0 we chose

s0(X) := Gradφ(X)
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Figure 6.17: The absolute value of the deformation U .
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Figure 6.18: The ionic variable v.
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Figure 6.19: The active stress variable Ta.
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t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.20: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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6.4 Numerical Examples

t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.21: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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where φ(X) solves the following partial differential equation

−∆φ = 0 in Ω,
φ = 1 on Γ1,

φ = 0 on Γ2.

The direction f 0 was chosen orthogonal to s0. A schematic view of f 0 is
depicted in Figure 6.22. For this example we used twenty load steps. We needed

Figure 6.22: Schematic view of the direction f0 used in example four.

an average of 19.3 Newton steps per load step. The results are depicted in
Figures 6.23, 6.24, 6.25 and 6.26. The results for the time evolution are depicted
in Figures 6.27 and 6.28.
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Figure 6.23: The potential Vtm.

Figure 6.24: The absolute value of the deformation U .
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6 Coupled Electro-Mechanics

Figure 6.25: The ionic variable v.

Figure 6.26: The active stress variable Ta.
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6.4 Numerical Examples

t = 0.0 t = 0.5 t = 1.0

t = 1.5 t = 2.0 t = 2.5

t = 3.0 t = 3.5 t = 4.0

t = 4.5 t = 5.0 t = 5.5

Figure 6.27: Time evolution of Vtm. The geometry Ω is wrapped by 2U .
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6 Coupled Electro-Mechanics

t = 6.0 t = 6.5 t = 7.0

t = 7.5 t = 8.0 t = 8.5

t = 9.0 t = 9.5 t = 10.0

t = 10.5 t = 11.0 t = 11.5

Figure 6.28: Time evolution of Vtm. The geometry Ω is wrapped by 10U .
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7 Conclusions and Outlook

In this thesis we presented a novel approach to solve the governing equations
of cardiac electro-mechanics. The main difference to other approaches is, that
we considered the whole space-time cylinder Q as computational domain and
we also allowed for rather general discretizations of those domains.

Starting in Chapter 2 we recalled the main modeling aspects for deriving the
governing equations of cardiac electro-mechanics.

In particular, for discretizing the Bidomain equations in Chapter 4 we used a
space-time symmetric weighted interior penalty discontinuous Galerkin finite
element method to account for the anisotropic nature of conductivities in
biological materials. This was combined with an upwind discretization for the
time derivative. Subsequently, we analyzed the corresponding linear problem
and extended the results under some assumptions to the nonlinear case. Finally
we gave some convergence studies which support our theoretical results.

In the Chapter 5 we presented an existing, see [138], discontinuous Galerkin
discretization for the equations of nonlinear quasi-stationary hyper-elasticity.
We recalled the existing results and discussed some aspects worth mentioning
for implementation. We supported the theoretical results developed in [138]
with convergence studies.

Eventually, in Chapter 6 we presented a full space-time discontinuous Galerkin
approach for solving the coupled system of cardiac electro-mechanics. We gave
the discretized system of equations, discussed the use of globalized Newton’s
method and presented four numerical examples.
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7 Conclusions and Outlook

Outlook and Open Problems

With this thesis we have just scratched on the surface of possibilities such
space-time methods may offer. It is clear, that with the use of unstructured
discretizations of space-time domains one has the possibility to apply standard
adaptive mesh refinement techniques to resolve complex phenomena in space
and time simultaneously. For example, the sharp upstroke of the transmembrane
potential Vtm could be resolved much more accurate with such techniques. Still,
the development of reliable and efficient error estimators for the proposed
space-time setting remains an open question. Since in the case of cardiac
electro-mechanics one has to deal with systems of nonlinear time-dependent
equations one may also think about the use of different error estimators for
each variable and also the use of different meshes for each variable of interest.

Furthermore, for being able to handle more realistic problems one needs to
think about unstructured triangulations for arbitrary four dimensional objects.
First steps towards this have been made in [21, 121, 130, 179].

Going hand in hand with this topic one needs to think about a parallelization
of such space-time methods as the degrees of freedom in four dimensional
discretizations grow rather rapid. The use of unstructured grids suggests to
use ideas from domain decomposition methods. First steps towards this have
already been investigated for the Navier-Stokes equations in [129, Chapter
5]. One may also think of hybrid discontinuous Galerkin methods as well as
the use of the Mortar finite element method or the finite element tearing and
interconnecting approach discussed for example in [11, 12, 13].

Nevertheless, the constructions of suitable preconditioners in the fully un-
structured space-time setting remains an open question. For more structured
discretizations a space-time multigrid was developed in [129].

Finally, for being able to solve nonlinear time-dependent problems one needs
to construct good initial guesses for Newton’s method. It would be interesting,
whether it is possible to do so and not being bound to the use of globalization
techniques.

There are also a lot of open questions concerning the existence and regularity
of solutions to the fully coupled system of cardiac electro-mechanics. Especially,
the interplay and influence of the spatial and material formulation of the
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individual governing equations, and here in particular the relation between
the conductivity tensors Mi,Me from the Bidomain equations in material and
spatial description.
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Hochschule ETH Zürich, 2012.
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