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Abstract

For robust detection of objects in images the main challenges are handling various kinds

of variations of the objects’ appearance and dealing with partial occlusions. Implicit

Shape Models (ISMs) and, in particular, Hough Forests provide an efficient way of de-

scribing the visual appearance of objects of specific classes from training images and a

methodology to detect them in new images. The bottom-up nature of this specific part-

based approach makes handling of transformations and occlusions easier than with

holistic object detection approaches that describe the whole image patch that contains

the object in one rigid layout.

This thesis investigates the ISM object detection paradigm, the specifics of Hough

Forests and how to improve particular aspects of the method. The approach is first

contrasted with other object detection paradigms to identify its relation and individual

strengths and weaknesses. In a series of experiments and theoretical considerations the

influence of the most important parameters and their interdependence are evaluated

and discussed. A novel method to calculate the information gain of a test splitting the

data in the nodes of Hough Forests is presented, which improves the quality of the

regression with more efficient trees.

ISMs are very flexible in detecting objects that are formed out of constellations of

sub-parts that have not been observed during training. This flexibility is, however, also

identified as a potential weakness. One of the contributions of this work is to reintroduce

a holistic view on the object into the Hough Forest framework, in order to reduce false

positives from invalid object part configurations.

Additionally, a closer investigation of the voting process of the generalized Hough

transform, used in the inference process at test time, reveals that many of the votes are
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systematically conflicting with each other, which is usually simply ignored by marginal-

izing other them. This leads to additional evidence for objects aside from their true

locations. Thus, the last part of this thesis introduces an algorithm to resolve these con-

flicting votes and thus greatly improves the detection of objects occluding each other or

being occluded by others.

Finally, the benefit of each of the proposed improvements is shown in a series of

experiments on real world data.



Kurzfassung

Die größten Herausforderungen für die robuste Detektion von Objekten in Bildern sind

die Berücksichtigung verschiedenster Variationen des Erscheinungsbildes der Objekte,

sowie die Behandlung von partiellen Verdeckungen der Objekte. Implicit Shape Models

(ISMs) und im speziellen Hough Forests bieten effiziente Methoden zur Beschreibung

der visuellen Erscheinung von Objekten spezifischer Klassen und zum Finden dieser

Objekte in neuen Bildern. Die Art und Weise dieser Methoden, Objekte in Teile zu zerle-

gen und von lokaler Information im Bild auf mögliche Detektionen zu schließen macht

die Behandlung von Transformationen und eventuellen Verdeckungen der Objekte ein-

facher, als dies bei holistischen Methoden der Fall ist, die das ganze Objekt in einem

rigiden Layout beschreiben.

Die vorliegende Arbeit untersucht das ISM Objektdetektions-Paradigma, die Beson-

derheiten von Hough Forests und wie bestimmte Aspekte dieser Methoden verbessert

werden können. Zunächst wird die Herangehensweise anderen aus der Literatur ge-

genübergestellt um Stärken und mögliche Schwächen zu identifizieren. In einer Reihe

von Experimenten und theoretischen Überlegungen werden der Einfluss der wichtigs-

ten Parameter der Methode und ihre Abhängigkeit von einander aufgezeigt, evaluiert

und diskutiert. Im Zuge dessen wird eine neue Methode vorgestellt die Qualität eines

Split-Tests in einem Knoten eines Hough Forests zu optimieren, die zu effizienteren

Entscheidungsbäumen und einer besseren Performance des gesamten Detektors führt.

ISMs sind sehr flexibel und erlauben Objekte zu detektieren die in dieser Form,

in dieser Konstellation von Einzelteilen, nicht in einem der Trainingsbilder abgebildet

waren. Diese Flexibilität kann jedoch auch ein Nachteil sein, wenn zufällige Zusammen-

stellungen von einzelnen Teilen im Hintergrund zu falschen Detektionen führen. Einer
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der Beiträge dieser Arbeit ist demnach, in Hough Forests teils wieder eine holistische

Sichtweise einzuführen um solche Fehldetektionen zu reduzieren.

Zusätzlich zeigt eine genauere Analyse des Prozesses der “generalized Hough trans-

form”, der zur Testzeit zum Finden von Objekten eingesetzt wird, dass viele der von

den Einzelteilen abgegeben “votes” für Objekte einander systematisch ausschließen, was

herkömmlicherweise einfach ignoriert wird, indem trotzdem alle berücksichtigt werden.

Dies führt zu zusätzlichen Hinweisen auch mögliche Objekte, abseits von den wirklich

im Bild befindlichen Objekten. Daher wird im letzten Teil dieser Arbeit ein Algorithmus

vorgestellt, mit dem die Konflikte aufgelöst werden können, was vor allem die Detektion

von teilweise verdeckten und einander verdeckenden Objekten verbessert.

Die Vorteile der vorgeschlagenen Verbesserungen und Methoden werden in einer

Reihe von Experimenten auf “real-world” Daten gezeigt.
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1
Introduction

The goal of computer vision is to make machines understand images. In a world where

much of the information is conveyed visually vision is one of the most essential sensory

modalities, and from an engineering point of view, crucial for building systems that can

interact naturally with humans and solve complex tasks. One of the core tasks in this

endeavour is the detection of objects in images.

Object detection has a wide range of applications. For instance, in robotics, an au-

tonomous system needs to locate objects to solve specific tasks as well as identify its

surroundings. In human-computer interaction, visual input allows the system to locate

human users and understand their actions. In multi-media content management sys-

tems, images can be indexed and retrieved automatically by their content. In general,

identifying and locating objects in images is a key ingredient to a deeper understanding

of the contents of an image.

Class specific Object Detection

For a finer specification, the task of class specific object detection can be distinguished from

image classification and detection of specific objects.

Given an input image, in image classification the task is to tell which kind of object(s)

it displays. In early work, this usually meant that the image only contained one object

which was shown prominently in the image, filling it almost completely, without any

other objects, although, possibly featuring some random background. Thus, the input

was defined to be an image that can unambiguously be given a single object class label.

Today, it is also extended to images containing more than one object and the task is then

to list all labels of objects appearing in the image.

1



2 Chapter 1. Introduction

In object detection, on the other hand, the tasks not only to tell which object is

present, but also to tell where it is, i.e., to localize it. Depending on the application,

input images may contain a variety of objects on arbitrary backgrounds. The output can

usually be either a bounding box rectangle around the correctly identified object(s), or

in more detailed systems, a full, per-pixel segmentation mask covering and outlining

the object. Also, the image might not even contain any objects of interest, in which case

the output should be empty.

In class specific object detection, the task in narrowed down from identifying all ob-

jects in the image to identifying and localizing objects of one particular object class.

This requires a definition of an object class or category. Generally, the object category is

defined by a semantic concept such as “face”, “car” or “person”. The granularity and

scope of the target category is mostly defined by the task for which the object detec-

tions are needed, specifying what is of interest to the system and subsequent modules,

building on top of its output. Thus, target object categories can be defined on a quite

broad level, such as an automatic driver-assistance system in a car, that needs to iden-

tify all “vehicles” in its direct environment. Such broad definitions often include a wide

range of objects that are difficult to describe jointly, because of the large variance of the

appearance. A category like “vehicle” is said to have large intra-class variance. Thus,

in practical system they are often broken down into narrower and more homogeneous

sub-categories (such as “car”, “bus”, “motorcycle”, “bike”, etc. for the broad term “ve-

hicle”) and treated independently, with separate detectors for each sub-category. Since

the viewing angle from which the object is captured is another source of large variations

in appearance, sub-categorization can also address this aspect, such as in “frontal face”

and “profile face”, defining sub-classes of the “face” class.

On the other side of the spectrum, the differentiation is against finding a specific ob-

ject instance, such as the “Where’s Waldo” task in the famous children’s book. This task

also has lots of applications, such as in autonomous robotics where, for instance, a robot

has to identify specific landmarks in order to localize and orient itself in its environment

or operate in a cooperative setting, asked to hand the human co-worker a specific item.

The essential difference is that the target object in question itself remains the same. The

detector still has to be invariant to changes in the appearance of the object, stemming

from different imaging modalities, such as viewing angle, lighting, occlusion and defor-

mation, but not to changes in the texture and general appearance. In contrast, different

objects of a particular class might come in different colors, with different textures, differ-

ent shapes, some may have a particular visually detectable feature, others might not. An
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object class detector, as discussed in this thesis, thus, has to deal with a certain amount

of intra-class variance, causing individual instances to look quite different.

Goals and Motivation

The challenge to be addressed in this thesis is, thus, to robustly detect objects of a partic-

ular class in images under all the modes of variation described above. Additionally, we

are interested in robust detection of objects that are partially occluded by other objects

or overlapping each other.

As described in Chapter 2, a wealth of object detection systems was developed over

the past decades and presented in the literature. They all present different approaches

to handle the multi-modality of the input data that comes with the variations in appear-

ance of a single object or between objects of the same class. Among them, the line of

work following the Implicit Shape Model (ISM) [93] presents a way to robustly model

objects in a bottom-up fashion, starting from local evidence and thus allowing for easier

handling of partial occlusions. Hough Forests [66] are a variant of ISMs that allows for

more efficient recognition of local parts and, thus denser evaluation, resulting in more

robust estimates.

However, while the bottom-up nature of Hough Forests and the capability of the

classifier to handle multi-modal input at the local level implicitly allows for capturing

all different kinds of variations, it makes it harder to enforce consistency of the whole

detection. Also, completely independent treatment of the local parts prohibits to learn

the importance of each part for the overall detection. The first goal of this thesis is, thus,

to introduce modifications to the system such as to arrive at valid constellations and

suppress false detections in background clutter.

Additionally, during the detection process Hough Forests generate information for

each pixel about whether there is an object at this particular location and where the

center of this object is. This information is currently used by summing over all evidence,

ignoring the fact that it might be mutually inconsistent. The second major goal is, thus,

to leverage this information to explicitly reason about with parts of the image belong to

which object instance and detect occlusions.
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Outline

The thesis is structured as follows. Chapter 2 gives an overview over object detection

methods. It identifies key concepts of object detection and compares several systems

from the literature. Aside from giving an overview over the related work, the goal is to

clarify the relation and (dis)similarities of ISMs and Hough Forests to other methods in

the field, in order to identify individual strengths and weaknesses of the approach.

Chapter 3 gives a detailed introduction to the Hough Forest framework, along with

a set of extensions from the literature. Additionally, a novel method to optimize the split

functions in the decision trees of the Hough Forests is presented that better handles the

multi-modality of the regression targets and, thus, generates more efficient trees. When

training Hough Forests one is, thus, confronted with several options to choose from

and parameters to set for the training procedure. Therefore, the end of this chapter is

a thorough evaluation of the impact of choosing specific sub-modules and parameter

settings. Finally, the performance of the best performing setup is compared to the state-

of-the-art on two challenging benchmarks.

The problem of enforcing consistency in the constellations of detected objects is ad-

dressed in Chapter 4. By recording the configuration of local features that were fused

into an object detection, a description of the detection hypothesis is generated that can

be used to discriminate right from wrong constellations. Additionally, by looking at

the whole object instead of only individual local parts, the significance of the estimates

from each local element can be determined. Using this information by weighting their

contribution to the overall detection leads to improved accuracy.

Chapter 5 addresses the problem of finding consistent object detections, especially in

situations where objects are occluded and multiple objects are overlapping each other.

A random field formulation is presented to jointly solve the problems of finding high

scoring detection hypotheses and assigning local features to them. Aside from improv-

ing detection of occluded objects, it presents a principled way to perform non-maxima

suppression for ISM methods.

Finally, Chapter 6 concludes the thesis by discussing the achieved results and possi-

ble future work.



2
Object Detection Paradigms

This chapter discusses related work in object detection. Since it is a very central task

in many computer vision applications, a wealth of methods and systems has been pro-

posed over the last decades.

Object detection systems consist of several components that make up the whole

object detection pipeline, from acquiring input data, preprocessing it, extracting features

to inferring potential object locations, resolving conflicting object detection hypothesis

and delivering the output. Additionally, an object detection framework must provide

tools to prepare and preprocess training data for a specific object class and algorithms to

adjust (learn) the object model’s parameters in order to fit the model to the target class.

Comparing object detection methods to each other is often difficult, because in many

cases all individual components are different from one system to the other, such that the

influence of each individual choice is not easy to evaluate. Thus, this chapter identifies

the core components that every object detection system consists of and the respective

choices that were made for the individual systems, as presented in the literature. Given

the vast amount of literature in this field, the aim here is to give an overview over

the dominating approaches and explain the main concepts of how object categories are

modeled, how parameters for those models are learned and how images are processed

in order detect objects in new input images.

Each of the following sections describes one of the major building blocks or aspects

of an object detection system and gives examples from the literature.

5



6 Chapter 2. Object Detection Paradigms

2.1 Input Representation

Images are presented to the system in form of grey value or color images and/or other

modalities such as depth maps. The values in those raw input pixel maps are often noisy

and change drastically with changing input capturing conditions such as illumination,

resulting in different levels of brightness and contrast, as well as shadows. Thus, in

most object detection systems, the first step is to transform this raw input via low level

operations into a representation that is more robust to varying imaging modalities. For

these initial computational steps the multitude of existing object detection approaches

draws from the huge spectrum of low level image transformations developed for all

kinds of computer vision tasks. The basic steps are defining where in the image infor-

mation should be extracted and encoding it into a representation that allows for robust

and invariant identification. The following Sections discuss the options using examples

from the literature.

2.1.1 Regions

The first choice to make is where to extract information in the image. The simplest

solution is to compute information from and for each single pixel of the input image

and, thus, generate a dense description of the image. For reasons of efficiency, however,

many methods first try to identify regions or locations within the image that may contain

interesting information and exclude the others from further processing.

A generic approach to identify interesting areas in images and differentiate them

from random background, is visual saliency detection (e.g., [25, 80]). The goal is to assign

each pixel in the image a value, specifying how likely it is that the immediate neigh-

borhood contains content relevant to the detection of objects of interest or generally

information revealing the predominant nature and content of the image. From these

saliency maps, covering the whole image, interesting locations or regions can be ex-

tracted by looking at maxima of the likelihood, thresholding it or delineating bounding

box containing mostly salient areas. Aside from judging the performance of systems

building on top of the deduced input regions, salience maps can also be evaluated by

comparing them to recordings of eye tracking equipment, showing which parts of the

image humans put their focus of attention on.

A slightly different approach, that was developed only recently, is to directly and

efficiently judge if a certain region might contain any kind of object, not on the pixel

level, but in form of candidates of region bounding boxes. The computed measure for
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the regions is called the objectness [3, 4, 29, 121]. Similar approaches in this direction in-

clude category-independent region proposals [48], constrained parametric min-cuts [28]

and selective search [151].

However, the predominant approach to reduce the input data and focus on the es-

sential parts of the image are interest point detectors, aiming to identify specific salient or

interesting points in scale space. The main quality measure for an interest point detector

is repeatability, i.e., if the same point on an object or in a scene will be re-detected in a

differently captured image (different lighting, viewing angle, . . . ). In most methods the

detection procedure is based on the statistics of gradient information in a small neigh-

borhood around a point in scale space, facilitating detection of edges or corners in the

image.

One of the first and also widely used interest point detectors is the Harris opera-

tor [68], further developed into the “Good features to track”, by Shi and Tomasi [137].

The main idea is that corners (points with strong gradients in two directions) are easier

to distinguish from their immediate neighborhood and therefore easier to re-identify in

another image than homogeneous regions or edges and ridges, that look the same under

translation along the direction of the edge.

The Harris operator detects points invariant to rotation, but not invariant to scale.

The Laplacian of Gaussian (LoG) blob detector and its faster approximation Differences

of Gaussians (DoG), used as interest point detectors in [99], additionally estimate the

scale of the interest point. The current state-of-the-art in interest point detecting with

a special focus on speed includes FAST [127, 128] and SURF [12]. FAST uses decision

trees comparing the brightness of the center pixel with its surrounding in each node

to quantify the saliency of each location. SURF approximates gradient computation

by Haar-like features, efficiently computed on integral images. Comprehensive and

thorough surveys were presented in [108, 150].

Super pixels [1, 136, 154] aggregate neighboring pixels into small and usually compact

and homogeneous groups (same color, texture, . . . ). The result is a partitioning of the

image into a smaller number of elements, thus reducing combinatorial complexity and

making further analysis easier. Even larger image regions (sometimes also called super

pixels) are provided by unsupervised image segmentation methods, such as [9, 57].

The dual problem of finding contiguous homogeneous image regions is contour de-

tection, where the outlines of the regions are sought (e.g., [9, 98]). From those bound-

aries the regions can be derived. Additionally, boundaries or also just boundary frag-

ments can also serve as basic elements on which to build the detection inference pro-
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cess [14, 47, 61, 62, 63, 87, 101, 114, 122, 125, 138]. The main benefit of using smaller

boundary fragments instead of full regions is robustness to partial occlusions.

While generic unsupervised image segmentation methods do not explicitly address

repeatability of the segmented regions, Maximally Stable Extremal Regions (MSER) [104]

attempt to identify regions that are homogeneously bright or dark with strong contrast

to its surrounding and therefore likely to be re-detectable in other images.

In recent works, however, a general trend towards dense representations is notice-

able (e.g., [13, 17, 39, 44, 90]), especially when detection quality is the primary concern

and traded-off against speed. One reason is that the interest point localization is often

not reliable enough. Additionally, extracting information only from visually salient lo-

cations might not capture all the discriminative information for a given object category.

Also, the question if determining interest points really results in a speedup depends

on how expensive it is to calculate them and which type of computations follow. For

instance, the very fast pedestrian detectors in [44] and [13] calculate dense descriptions,

albeit on quite low resolution versions of the image.

2.1.2 Robust and Invariant Description

Whether the first step of the processing was interest point detection, segmentation or

every pixel in the image is considered, the task now is to describe the local neighborhood

of each given point in scale space in a robust and compact way. Given its description

the system must be able to efficiently and reliably be re-detected the point in another

image of the same object instance or, more general, of another object of the same class.

To effectively reduce some of the noise on the raw input, a first and often important

step in the data preparation of many object detection methods is a slight Gaussian

smoothing of the input, with a small kernel width (e.g., [41, 45, 46]). Another simple

and fast way to extract information more robustly to noise is not to consider individual

single pixels, but to sum values over larger areas, which for reasons of efficiency are

usually rectangles. To reduce the computational effort of calculating a large number

of those sums, as for instance in the computation of Haar-like feature responses (e.g.,

[12, 155, 156]), the first step is to compute an integral image, making the computation of

the sum over the values in a rectangular area an O(1) operation.

In addition to histogram equalization and global or local contrast normalization (e.g.,

[13]), gradient computation is the dominating method to gain insensitivity to varying il-

lumination. The idea to take magnitude and orientation of gradients is mostly motivated

by early work on analysis of the visual cortex of animals in the seminal work of Hubel



2.1. Input Representation 9

and Wiesel [74]. Mostly, raw gradient computation is realized by Sobel filters, or approx-

imated by Haar-like filters (as, e.g., in [12]). Another, biologically inspired variant are

Gabor filter banks (e.g., [109, 134]), effectively computing gradient magnitudes in differ-

ent scales and different orientations. Other features attempting to robustly capture dis-

tributions of local variations of brightness include Local Binary Patterns (LBP) [112, 119]

and the Census Transform [160].

In order to gain robustness against slight translations of the image content, infor-

mation is usually aggregated (or pooled) from groups of neighboring pixels into larger

units. For instance, super-pixels or larger segments can be used as areas over which

descriptions are aggregated. Pooling is also a central part of the computation of the His-

togram of Oriented Gradients (HOG) descriptor [41] and SIFT descriptors [99]. Gradient

magnitudes are first binned into histograms by their orientation, then those per-pixel

histograms are aggregated (summed) over small (e.g., 8× 8) rectangular areas, termed

cells, to achieve invariance to small translations. Additional local contrast normalization

is achieved by normalizing the histograms of each cell by a factor calculated over groups

of neighboring cells, termed blocks.

Additionally, the state-of-the-art in keypoint description includes methods such as

RootSIFT [7], SURF [12], BRIEF [26], BRISK [96], FERN [95] and BinBoost [147], each

with different trade-offs between matching performance, computation speed and de-

scriptor compactness. Additionally, an overview and comparison over combinations of

interest point detectors and descriptors (although not including the more recent ones

above), especially with a focus on object recognition as the target application, was pre-

sented by Zhang et al. [161].

A generic approach to compute dense representations are Integral Channel Features,

presented in [46] and used in [13, 44, 45]. Also Hough Forests [66] use a similar rep-

resentation. A set of different, individually calculated per-pixel representations are as-

sembled into a stack of channels, each the size of the input image. Representations

include channels of different color spaces (Lab, HSV, . . . ), first and second derivatives

in x and y direction, individual bins of histograms (e.g., of oriented gradients in a small

neighborhood). Again, over each channel an integral image can be calculated in order

to facilitate fast computation of sums over rectangular areas. This concept is easy to ex-

tend to more layers, using any kind of low level operation that generates a feature map

containing information that might be relevant for the task. In order to reduce amount of

data the representation can be compressed, for instance by principal component analysis

(PCA) over the feature channels. In [56] the HOG-like feature channels are compressed
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by observing from PCA that the channels resulting from different normalizations of the

histograms are strongly correlated and, making use of this fact, designing an easy to

compute representation with reduced redundancy.

Dispite their differences for all these input processing methods the process is bottom-

up / feed forward, generic, and mostly designed by hand (although in some cases

parametrized by unsupervised learning methods, relying on general statistics of natural

images). The goal and hope is that the representation will be suitable for subsequent

steps to extract the necessary information for recognition and detection in a robust and

easy way. However, the methods described above do not perform a direct optimization

of this first level representation for the targeted task. That is, if you do not consider

the researcher-in-the-loop trying different representations and parametrizations and an-

alyzing the impact on the test results, as an optimization procedure. For instance, which

feature channels in a detector like [45] are really important to increase performance on

a specific task and object category is mainly subject to educated guessing, or trial and

error.

2.1.3 Learning the Encoding

A recent development is to try to learn descriptors in a supervised way from input data,

directly targeted for a specific application. A range of approaches has been proposed

(e.g., [30, 67, 71, 105, 118, 143]) that build on top of hand designed descriptors and then

learn a metric that better captures similarities as defined by the target application. Other

methods, such as [24, 135, 146, 147], try to directly optimize the layout of the descriptor.

Additionally, learning invariant descriptions is one of the main goals of applying (deep)

neural networks to computer vision (e.g., [88, 133, 158]).

Keypoint based methods often use a vector quantization step to break down the com-

plexity of the matching of descriptors. A common approach in this direction is to use

dictionaries of visual words [141]. The codebook entries are defined as the centers of a

k-means clustering of the descriptors extracted from training data. New data is encoded

by finding the closest codebook entry. Usually L2 distance is used, but distance metrics

can also be learned discriminatively and specifically for the task, by metric learning ap-

proaches such as [83], or discriminative embeddings [24, 71]. In [110] a hierarchically

organized codebook was introduced, termed vocabulary tree, for faster matching. Fisher

Vectors [40] store the derivative of the model with respect to the model parameters at

the encoded data. The VLAD descriptor [8, 77] can be considered as a simplification

of the Fisher kernel [117], allowing for very compact and powerful representations for
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image retrieval. The approximation of the derivative of the model, is defined as the

difference vector between the code book entry and the encoded vector.

In a series of object detection approaches a set of linear filters has to be convolved

with the input, increasing run-time linearly with the number of filters. To reduce the

complexity the linear filters can be approximated by finding a common bases for them.

For instance, for the Deformable Part Model [56] this was addressed in [120]. The re-

sponse of each individual filter is approximated by finding a common basis of steerable

filters that well describe the range of filters. Then only this reduced set of basis filters

has to be run on the new input and to receive approximate response coefficients for each

part. A similar approach was taken in Sparselet Models [142], where the learning of the

filter basis is based on sparse coding.

Sparse Coding is also a widely and successfully used technique to learn codebooks

for interest point based models [73, 78, 100, 159]. Recently it was discovered in [32] that

the training of a good sparse basis is less important than the sparse encoding scheme.

2.2 Object Models

Generally, the object model is a description of the object class, its appearance and shape,

in mathematical and/or algorithmic terms. Applying the model to an input gives a

score for the input to contain an object of the target class. Depending on the model this

output score can be a probability, or more generally a scalar, where high values indicate

higher likelihood for an object of the target category. The following sections discuss

aspects and examples of object models.

2.2.1 Holistic vs. Part-Based

A major discriminating feature, by which object detection methods can be categorized,

is whether the object is modeled as a whole or if there exists a notion of parts into which

the object can be subdivided.

2.2.1.1 Rigid / Holistic

Object detection systems with holistic models impose a rigid structure on the object.

Images of instances of the object class are warped into a common coordinate system.

The extent of the object is defined by a (usually rectangular) reference frame (e.g., a

bounding box). Within this reference frame characteristic elements or features of the
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object are expected to be at defined locations. Tests against the values of the input

representation expected at those defined locations make up the object model.

At test time the reference frame is defined over the new image. Depending on the

representation of the input, features are extracted at those defined locations and tested

against those values stored in the model to generate a detection score for the object,

specifying the likelihood of the image to contain an instance of the target class at the

location of the reference frame.

Effectively, in this scheme the input patch, or its representation respectively, is seen

as one feature vector that is classified. The classification score expresses if there is

an instance of the target object class in the image patch. Any kind of classification

procedure from the machine learning literature can be used, as explained in more detail

in Section 2.3.

Pooling One way to overcome the restriction that elements have to be at exact locations

within the reference frame is to aggregate features over larger areas in the image. This is

also referred to as feature pooling. As mentioned in Section 2.1, in some systems, pooling

is already performed in the low level calculation of the feature representation, such as

in the computation of Histograms of Oriented Gradients, where the gradient histogram

are aggregated within predefined cells.

In methods employing techniques such as Spatial Pyramid Matching [90], Pyra-

midal Histogram of Oriented Gradients (PHOG) or Pyramidal Histogram of Words

(PHOW) [17], another pooling step is performed on the object level. In this case, a

pyramid of pooling areas is constructed (again with a rigid layout), starting with the

whole bounding box as one root area and then recursively subdividing it by splitting in

half along x and y until a maximum pyramid level (usually 3 or 4) is reached. The final

representation of the image is then the concatenation of the representations pooled over

each individual area.

2.2.1.2 Part-Based

In contrast to holistic models that look at the whole object at once, part-based models

see the object as a collection of sub-parts. The main idea is that those sub-parts may have

a more uniform appearance and thus be easier to model. Parts are detected individually

and then bound together via a geometrical model. In this way variances and multi-

modality of the appearance of the object, stemming from deformations of the object,

causing the different parts to appear at different locations relative to each other, are
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easier to handle. There are a couple of reasons why the positions of parts relative to

each other might be different from image to image. One reason is a change in the

camera pose and thus viewing angle from which the object was captured. Another

reason might be the flexibility of an object instance itself, such as when the parts of the

object are physically connected by flexible joints. A third reason is intra-class variance,

i.e., different instances of objects of the same class have their parts in different locations,

such as, for instance, differently shaped cars.

Early work in part-based object detection mainly focused on identifying semantically

meaningful parts the object consists of, such as the torso, head, arms, legs of a human

body or the wheels, front, back, lights, doors or windshield of a car. Manually defined

and semantically meaningful models have the clear advantage that the resulting detec-

tion and fit of the model allows for further high level, semantic inference based on the

location and constellation of the parts.

However, apart from being difficult to define and laborious to identify and manu-

ally annotate, those semantically meaningful parts have the disadvantage that detecting

them individually can be more challenging than detecting the whole object or combi-

nations of some of the parts in specific constellations. Depending on the pose, parts

may be occluding each other, or be barely visible due to foreshortening (such as arms

pointing at the camera).

Thus, recently, many methods focus on either purely unsupervised or weakly super-

vised discovery of parts that are not necessarily semantically meaningful, but discrimi-

native and easy to detect in an image. For instance, Deformable Part Models (DPM) [55]

use an iterative process to find a fixed number of parts, by initializing part locations

and sizes evenly distributed over the object, training detectors for each part and then

refining the locations of the sub-parts in each image. The output is an appearance model

for each part and a position of each part in each image.

A different concept of parts, called Poselets [20], was introduced in the context of

person detection, segmentation and pose estimation. A poselet is defined as a specific

local configuration of a set of parts, corresponding to a specific pose of a human body.

Training images are annotated in detail with body joint locations. Candidates for pose-

lets are created by placing reference frames at random locations on the body and finding

clusters of similar joint locations and poses in the neighborhood of the reference center.

For each of these candidate clusters a patch around the local configuration of joints is

cropped from all corresponding person images and used to learn a detector (based on

HOG and SVM). The set of candidates is pruned to a smaller list of poselets that can be
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(a) Bag of Words
(Csurka et al. [39])

(b) Star (Leibe et al. [93,
94], Fergus et al. [60],
Gall et al. [66], Felzen-
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(c) Tree (Felzenszwalb
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et al. [35])

Figure 2.1: Examples of geometric layouts of part-based models from the literature (Fig-
ure adapted from Carneiro and Lowe [27]).

detected reliably with the learned detectors. The main idea is that local subsets of joints

in specific configurations, stemming from a limited range of similar poses are simpler to

detect than individual joints in arbitrary poses. Also, if such local configurations can be

detected, they are strong local pose estimators, that can be fused into a reliable estimate

of the overall pose. Although the manual labeling effort is quite substantial, the process

can be seen to be weakly supervised, since only the, for a human annotator, relatively

easy task of labeling body joints is done manually. The difficult task of identifying dis-

criminative sets of image patches with similar local joint configurations is performed

automatically.

Geometric Layout One important property, by which part-based object models can be

categorized, is the geometric layout of the parts. The model defines which parts are

connected to each other and the type of connection specifies how the parts can move

relative to each other.

Figure 2.1 shows samples of connectivity patterns of geometric layouts from the

object detection literature, ordered by increasing complexity. Bag-of-Words models

(Fig. 2.1 (a)) are a special case (listed here only for completeness), as they impose no
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geometric arrangements of the parts at all. All parts that are found within a bounding

box are assembled into a single description, no matter where they are. For some object

classes this method has proven to be surprisingly effective and is therefor still widely

used in object classification and detection. The simplicity of the model also allows for

very efficient inference algorithms [89].

The simplest connectivity model, enforcing a geometric layout of the parts, is a star

model (Fig. 2.1 (b)). Each part is connected to a central node, while being independent

of the other parts, keeping the complexity low and allowing for fast inference in the

detection processtirolese. Tree models (Fig. 2.1 (c)) define a hierarchy of parts, where

each part has only one parent node and, thus, no connections are allowed between the

different branches. The tree structure still allows for efficient inference in O(N2). Trees

also have the advantage of being a quite natural representation for several somewhat

flexible object classes, such as for instance the human body.

On the other side of the spectrum, in constellation models (Fig. 2.1 (h)), every part is

connected to every other part (fully connected graph). This gives the densest descrip-

tion, allowing for the most detailed interactions. The position of each part depends on

every other part. This means, however, that the complexity of learning and inference is

exponential in the number of parts.

In between the two extremes, several intermediate setups have been presented. In a

k-fan model (Fig. 2.1 (d)), a central group of k fully connected parts is surrounded by parts

that have connections to the central group, but not among each other. Hierarchical models

(Fig. 2.1 (e)) define layers of parts and sub-parts as a directed acyclic graph. In the sparse

flexible model (Fig. 2.1 (e)) the graph is defined in a dynamical way, where each part’s

location depends on that of its k nearest neighbors, allowing for flexible and deformable

objects and a complexity that can be adjusted by setting k. One of the first part based

models was presented by Fischler and Elschlager [65] (Fig. 2.1 (g)). The model termed

pictorial structures connects parts by spring-like connections. Not every part is connected

to all the others, as in the constellation model, however the loops appearing in the graph

create a similarly high complexity. The concept was thus reduced to tree structures for

fast inference in [58].

After defining the connectivity in terms of a graph structure, the connections them-

selves have to be modeled. Usually, parts have an optimal relative configuration dis-

cribed by translation and rotation, or more general an affine transformation. Around

this optimal relative position, deviations are allowed with a certain penalty for unlikely

deformations. Often, connections are modelled each as a single Gaussian distribution,
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effectively defining a zero-configuration or optimal relative positioning, given by the

mean, and a penalty for deformations along orthonormal directions given by the covari-

ance matrix [55]. Usually the variation is simply modeled over translation in x and y

direction, sometimes even with a diagonal covariance matrix, such that inference over

both directions can be decoupled during inference. This representation makes inference

relatively easy. However, by defining it over relative angles and distances also pris-

matic and revolute joints can be modeled [57]. Also mixtures of Gaussians have been

used [66, 93, 94], in combination with efficient mode finding methods for inference.

2.2.1.3 Implicit Shape Models

A special sub-category of part based models are Implicit Shape Models (ISMs) [66, 91,

93, 114]. Contrary to the part-based approaches above, ISMs define the object in a

bottom-up fashion. Models with explicitly defined parts, as discussed above, assume a

relatively small number of parts that may change in appearance and relative position

to each other, but nevertheless appear on every object instance, unless it is occluded

and marked as such. In ISMs the model is again a collection of parts. However, the

main difference is that ISMs consist of a potentially huge collection of parts, of which

only a subset appears on each individual image. The parts are characteristic features

of the target object class extracted from individual training images. While not every

part is found on every image, a valid detection is ideally densely covered with correctly

identified individual parts. Figure 2.2 illustrates the processes of training and testing

with an ISM.

The geometric model underlying an ISM is a star-model. For each characteristic

feature extracted from the training image the relative offset to a common reference frame

of all training images (usually the center of the bounding box) is recorded. For each

part, small deviations from these original positions are tolerated, resulting in a mixture

of Gaussians model for the location of each part.

The parts are treated independently, and there are no interactions between them en-

coded in the geometric model, with every part only connected to the reference center.

However, the dense coverage of the object results in overlaps of the parts, which reintro-

duces interactions. Thus, constellations of parts cannot be completely arbitrary, because

neighboring parts share a large portion of the input image area from which they were

inferred.
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Figure 2.2: Implicit Shape Model workflow. Left: During training patches are extracted
from the training images and stored along with their offset from the object center. Addi-
tionally patches are extracted from negative images. Right: During testing every patch
(like exemplary patch P(y)) extracted from the new input image are matched to similar
patches from the database (usually via some kind of dictionary). The offset vectors of
the similar patches are used to vote for the object center, weighted by the ratio of similar
positive and negative patches.

2.2.2 Components / Aspects

One of the major challenges to meet when designing an object model is the potential

high intra-class variance. One way to deal with it are classifiers that are inherently able

to deal with multi-modal inputs (discussed below, in Section 2.3). Another possibility is

to define the model to be a combination of several sub-models, sometimes called aspects

or components. Essentially, the idea is to partition the data and create a separate model

for each subset. Each of the sub-models can be focused on a range of specific cases and,

thus, does not have to deal with all kinds of variations appearing in the whole dataset.

The training samples assigned to each component can be seen as a sub-class, usually

chosen to be more homogeneous in appearance.

In the Deformable Part Model [55], where the term component was introduced, a

fixed set of components is initialized, each specializing on a group of object instances

with similar aspect ratio. Thus, for instance, there are separate models for side views

and front or back views of cars. During the learning of the full model, the assignment of

individual training samples to a component is updated by alternating training the mod-

els for each component and evaluating the intermediate component models to identify

the one that fits best for each example.

Modeling all samples with a single component would be difficult, because the input

representation (HOG-based) implies a fixed aspect ratio of the bounding box. Resizing
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all training samples to this aspect ratio would result in significant distortion, resizing

while keeping the original aspect ratio would result in highly multi-modal data and

positive bounding boxes capturing a lot of background, for the thinner objects. It would,

thus, also require a classifier that deals better with multi-modal input than the linear

one, which used for efficient inference.

In the Latent Hough Transform [123] the assignment of training samples to compo-

nents is again treated as a latent variable in an optimization procedure. The contribution

of each training sample to the score of a detection is linear and can be computed from

the back-projection [124] of the detection. An Interacting Simulated Annealing (ISA)

procedure is used to update an assignment matrix, defining the mapping of samples to

components. The formulation was also relaxed to soft assignments, where each sample

can be associated with more than one component, which has been shown to increase the

overall detector performance.

Similarly, also the separate models for frontal and profile face detectors shipped

with the OpenCV implementation of the Viola&Jones object detector [155] can be seen

as different components of a joint multi-view face detector model. The concept is taken

to an extreme by the Ensemble of Exemplar SVMs [103], where a separate model is

learned for each individual training sample.

If a detector consists of multiple components, in the end the question is how to fuse

their output. Usually, each component is treated separately and the outputs are fused

by taking the most confident component for each location. Another possibility is to have

another classifier to decide which component should be applied to a specific input, as

proposed, for instance, in [42, 72].

2.3 Learning

The goal of the learning procedure is to create a classifier that, applied to a specific

input representation, produces a score, indicating whether it contains an object of the

target class or not. In case of a holistic model, the input is a single, rigid descriptor

vector and learning the classifier from positive and negative samples (in discriminative

settings) is a standard machine learning task. In case of part-based based models, a

classifier is learned for each part, either separately or in a joint model, where identifying

individual parts and discriminating them against the background can be seen as a multi-

class classification problem. Additionally, also the parameters of the geometric model

need to be estimated from the training data.
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Generally, for learning the parameters of the model from training data, many algo-

rithms are available from the machine learning community. However, the combination

of input representation and model often suggests a certain learning algorithm and thus,

the learning algorithm is tightly integrated into the whole object detection framework.

Classifiers

Classification methods can be subdivided into generative and discriminative approaches.

In generative models, only the distribution of positive data is modeled. A new test sam-

ple is then compared to the model and the classification is based on how similar it is to

the positive training data. In discriminative settings, the distribution of positive data for

one class is contrasted with that of the negative data or of other classes, respectively. The

decision functions are then constructed such as to optimally discriminate between them.

Discriminative modeling allows for identifying relevant (combinations of) features of the

data and usually leads to better results. However, it depends strongly on proper acqui-

sition and selection of the training data, because lack of adequate negative data may

distort the decision boundaries inappropriately (which will also be demonstrated in the

experiments in Section 3.6.1.1).

The simplest classification model is a linear classifier, such as the weight vector dis-

criminatively learned in a Support Vector Machine [129, 152] and extensions such as the

structural SVM [16, 79, 148]. The score is simply the dot product of the classification vec-

tor and the vector formed by the input representation. Such a model is, e.g., used in the

seminal work by Dalal and Triggs [41], proposing HOG as the underlying representa-

tion. These simple models, however, due to their linear nature have problems capturing

multi-model input descriptors. Thus, as mention above in Section 2.2.2, the model has

to be split into components or aspects, in order to deal with intra-class variance of the

appearance of the target objects.

Another possibility are (mixtures of) Gaussian models over the positive training data.

These models store a set of vectors that form a basis of a subspace of the input space,

containing most of the variance appearing across the training data. The input represen-

tation is projected into the space by multiplying it with each of the basis vectors and

the vector of resulting coefficients gives information about how well the new input is

represented in the space of the training samples. Moving from generative to discrimina-

tive classification, these coefficients can be compared with another (set of) Gaussian(s)

defined over the negative training data (background class). These kinds of models have

mainly been used in recognition tasks, such as face recognition (“Eigenfaces” [82, 149]),
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but also for detection, such as in the identification of individual parts in the original

Pictorial Structures framework [65].

In the seminal work of Viola and Jones [155, 156] a cascade of boosted decision trees

are trained using the AdaBoost algorithm. Shallow decision trees are used as weak

learners, evaluating the response of a Haar-like feature in each node and thereby trying

to discriminate positive from negative samples. The output of each tree is a binary

decision. Ensembles of such trees are trained iteratively, one tree after the other. After

adding a tree to the ensemble, the training samples are reweighted by the error of the

current ensemble, such that the next tree focuses on those examples that have not been

classified correctly so far. The output of the ensemble is the sum over the outputs of all

trees, weighted by their individual error rates. In order to speed up the classification

process, trees are grouped into cascade stages. Each stage is trained to achieve a certain

minimal recall and precision. During evaluation, as soon as one cascade stage classifies

the new test sample as negative, the computation can be stopped. Extensions include

soft-cascades [19], where the evaluation can be stopped after each individual tree, and

even faster crosstalk cascades [44], that avoid evaluation of the detector in non-promising

regions of the image at all.

Generally, boosting algorithms with feature selection [145] at their core, are espe-

cially suitable in situations, where the potential input space is huge. This is the case in

the example above, since it operates on the set of all possible Haar-like features that can

be extracted from a given training image patch.

Random Forests have been used in holistic settings [131], as well as for parts in ISM-

like models, such as Hough Forest [66]. The essential advantages of Random Forests

in these setting are the implicit multi-class capabilities, and the ability to deal with

multi-modal inputs. In comparison with the codebooks of visual words learned for the

original ISMs, the tree structure of Hough Forests allows for fast matching and the leaves

to which new inputs are associated are directly optimized for the subsequent regression

problem of the object center.

Convolutional neural networks (e.g., [88]) are a special case, because the input rep-

resentation and encoding, as well as the final classifier are learned jointly.

Geometry

For part-based methods, if not defined by hand, the training procedure also needs to

estimate the parameters of the geometrical model. If the parts are manually defined

and annotated, relative distances between connected parts and variations thereof can be
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recorded from the training data. Depending on the type of connection, the individual

samples are stored or the distribution of relative part locations is approximated with a

model (e.g., as stated above, a single Gaussian).

In the case of ISMs the model captures the relative location of the object center with

respect to each part extracted from the training images. Small deviations from these

original positions of the parts are allowed, resulting in a mixture of Gaussians model for

the location of each part, or the location of the object center as seen from the part, vice

versa. This distribution can simply be stored in form of a list of all relative offsets, as is

the case in Hough Forests, which store all offset vectors of all training patches arriving

at a particular leaf node of each tree. In PRISM [91] the distribution is stored more

compactly as an approximation by a mixture of Gaussians with a reduced number of

components.

In the DPM, in each iteration of the process described above, estimates for the la-

tent locations of the automatically found sub-parts are updated. Given those newly

fixed locations a Gaussian model is learned for the location of each part, relative to its

parent node. Additionally, in the Pictorial Structure framework [58, 162] not only the

connection parameters, but also the tree structure itself is learned from training data.

Relative (in theses cases not latent) part locations are analyzed and a tree is constructed,

using the Chow-Liu algorithm [31], connecting those parts with the most stable relative

position (least variance).

2.4 Inference

At test time an inference process is executed, applying the model to the input image

and returning object detections as the output. How inference is performed obviously

strongly depends on the model. However, there are some processes common to most

methods that are discussed in following.

2.4.1 Sliding Window

With holistic object models, in order to localize an object in a sub-region of an input

image, depicting more than just one central object that fills out the whole image, the

image is processed in a sliding window manner: Rectangular subareas (windows) are

extracted at every potential location and scale by transforming the reference frame to

the current sub-window to test. Then, the resulting crop again contains the entire object

with characteristic features at predefined locations. In this scheme, the detection is
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effectively reduced to a classification problem of the sub-windows. Thus, any image

categorization method, applied on sub-windows, can also be used to localize objects.

2.4.2 Fusing Parts

In part-based methods, individual parts are either extracted from interest points, or

the image is processed in a sliding window manner, as described above. The results in

both cases are sparse or dense maps of candidate locations with scores for the individual

parts. The next step is to fuse the individual part detections into geometrically consistent

object detections, according to the model.

For the Deformable Part Model [55] this process is realized efficiently, building on

the generalized distance transform [54]. The model consists of a detector for a root

part, capturing the whole object roughly, and more detailed sub-parts. Each of the parts

uses HOG as representation and a linear classifier, learned with an SVM, to produce a

matching score. The deformation cost is modeled as a Gaussian with diagonal covari-

ance matrix, and is thus separable in x and y. The main observation is that the optimal

placement of the root node at a specific location depends on its own matching score at

this point and the placement of its child nodes, their matching quality at each location

and the cost of placing the child node at those locations relative to the root. The infer-

ence process starts by computing score maps for each part in a sliding window manner.

The maps of the sub-parts are processed by a generalized distance transform, using the

deformation cost parameters of each sub-part. This aggregates the cost of placing sub-

parts relative to the root node in a common reference frame. The transformed maps

are summed up and the cost map of the root node is added. From the resulting score

map, maxima can be picked and sub-part placements inferred at no additional cost. The

same procedure is applicable for deeper tree structured models, by beginning at the leaf

nodes and iteratively working up the hierarchy, up to the root node, as shown in [57].

In ISM-like models a voting process is used to infer object detections from local parts.

Local features are extracted from the image (either from interest points or densely). For

each local feature the best matching part stored in the model is identified (a visual

words from the codebook in ISM, leaf nodes of the decision trees in Hough Forests).

Each identified part casts votes according to its recorded spatial distribution model.

The score for an object at a specific position and scale is calculated by the sum of the

votes for this location. In Hough Forests, the summing is executed by accumulating

the votes in a Hough space (Generalized Hough Transform), with one bin allocated

per object detection hypothesis, followed by a Gaussian smoothing to account for small
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translations of each part. In the original ISM, due to the reduction on interest points,

there are fewer votes and thus the modes of the summed posterior distribution are

extracted by a mean-shift procedure. The whole process is explained in more detail in

Section 3.1.4.

2.4.3 Non-Maxima Suppression

A last and important, although sometime overlooked, step in the object detection pro-

cessing pipeline is non-maxima suppression to create the final output in form of object

detections. Sliding window based methods, as well as voting based methods generally

do not directly deliver the final set of distinct detections. Rather, maps with scores

for each object detection hypothesis are generated. Finding detections that the system

can deliver as output then amounts to identifying the most confident hypotheses, while

pruning away the others. A first step is thus to set a threshold on the detection score,

that can be estimated on a validation set.

Usually, due to the desired invariance of the detector to small translations and vari-

ations in scale, around one highly scoring hypothesis there is a range of similar hy-

potheses that score similarly high, not being caused by a real separate object but by

the same, already detected instances. In order to report correct objects only once, those

neighboring hypothesis must be discarded. This is usually referred to as non-maxima

suppression.

Methods range from calculating bounding boxes for each hypothesis and discarding

those with significant overlap to a higher scoring one, to mode seeking with mean-

shift or searching maxima in the Hough space and erasing neighboring evidence, for

voting based methods. More details on non-maxima suppression methods are given in

Section 3.5, and a new variant specialized on the recovery of close-by and overlapping

object instances is presented in Chapter 5.

2.5 ISMs vs. Holistic Models

The top-down, sliding window inference with holistic models and the bottom-up, vote

fusion of ISMs and Hough Forests seem to define very different approaches to object

detection. However, Lehmann et al. [91] point out that for linear additive classifiers they

are analogous. Whether the local point casts a vote for an object center and those votes

are accumulated at specific locations, or a reference frame is set to that location and

local features around it are counted, summing up the score, is merely a different way
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of looking at it. The former represents a feature-centric view, the latter is object-centric.

Thus, the question arises what differentiates the ISM from linear, holistic models. The

answer to this is in the modeling and learning procedure.

The feature centric and voting based view suggested a different kind of modeling of

the object’s shape and appearance. The recording of offsets between feature and object

center, and modeling of the distribution without discretization is quite different from the

schemes used for standard holistic models. The representation of the content of a sliding

window – termed object footprint and chosen in [91] to show the analogy to voting based

methods – is an intermediate representation in the invariant space, coupling feature

and object centric views. It is not a simple feature vector, as in classical linear holistic

models, such as the BOW or HOG, that can be classified by computing the dot product

with a weight vector, learned by an SVM. Instead, it is a continuous 4D function over x

and y, scale and visual word index. Each occurrence of a particular codebook entry is

recorded as a Dirac function at their relative position in the reference frame. The model

W, that is multiplied with this representation to compute the detection score is, thus,

also a continuous 4D function.

Thus, it is true that, by inverting the directions of the offsets (feature → center,

center → feature), one representation can be converted into the other and the models

and the formation of the score are analytically equivalent (see also Equations (4.1)–(4.5)

in Section 4.2.1 for the computation of the score of a Hough Forest in the object centric

view). However, for an object centric approach, this type of model is not very practical.

This is also one of the reasons Lehmann et al. in the end stick to the feature centric view

for inference.

Another difference concerns the learning. In both the original ISM and Hough

Forests, the learning focuses on individual parts. The weights for each voting element

and thus the contribution to the overall score are determined for each visual word on

its own. Thus, the object is not considered as a whole, as in the holistic models, where

weights for all features at all positions in the image and over all training images are

optimized jointly.

On the one hand, this is an advantage, as it enables the detection of objects featuring

combinations of parts that have not been observed in training. For instance, a lower body

from one person can be combined with the upper body of another to fit the combination

in a new image. Similarly, the training data does not need to contain all combinations

of front leg and hind leg configurations of an animal. At the same time this can be a

drawback, since it also allows classifying various illegitimate constellations as positive
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object detections, such as persons with more than two arms in different poses. This

makes the method susceptible to strong responses on arbitrary collections of patches

in the background that look like object parts. One work addressing this problem is

the Latent Hough Transform [123], described in Section 2.2.2. It splits the detector into

components and restricts those voting elements to vote only for a common object that

together form a consistent object.

Another aspect that gets lost when not looking at the whole object, but parts indi-

vidually is the relative importance of each voting element for the overall detection. This

particular issue was approached in the Max-Margin Hough Transform [102].

In Chapter 4 both of those problems will be addressed jointly, by deriving a descrip-

tor of a detection hypothesis that records the contributions of each voting element and

judging the validity of the detection by looking at this overall picture.

2.6 Conclusion

This chapter summarized and discussed the main approaches in object detection. As

individual object detection systems are defined by specific processing pipelines, it is

difficult to compare different approaches. Thus, we first identified the common building

blocks and, then, discussed different options by means of examples from the literature.

From a general point of view, it can observed that pre-processing steps, such as the

computation of a robust input representation, as well as post-processing steps, such as

non-maxima suppression, are usually exchangeable between systems. In contrast, the

object model and the learning framework used to adapt the model’s parameters to a

specific target class are strongly interlinked. The choice of the classifier itself is mainly

governed by the specifics and requirements of the learning task. These include the

dimensionality of the features, the amount of available training data, the distribution of

the data and test time requirements.

The major challenges for object detection systems targeted in this thesis are (a) the

robust handling of all modes of variation of single objects and between objects of a com-

mon class as well as (b) robust handling of occlusions, in particular, separate detection

of mutually overlapping object instances.

One way to handle the variations is an input encoding that is insensitive to insignifi-

cant variations, e.g., stemming from noise or minimal transformations. Larger variations

(e.g., moving parts of flexible objects) need to be addressed explicitly in the object model,

because transforming all possible different appearances of the objects into one invari-



26 Chapter 2. Object Detection Paradigms

ant (or insensitive) representation in the first step usually erases too much information

needed to discriminate the objects from the background. Some of the multi-modality of

the input can be handled in the model. Components (or aspects) are used to effectively

partition the input into more homogeneous subgroups. Spatial transformations of flex-

ible objects can be handled by subdividing the object into parts and connecting them

with a geometrical model. Finally, depending on the choice of the learning procedure,

it can be left to the classifier to deal with all (or the remaining) variations.

Part-based methods explicitly capture the variations caused by deformations of the

object. Additionally, ISMs allow for combining parts from different training samples to

form new configurations and thus define a detector that can implicitly handle highly

multi-modal input data. As discussed in Section 2.5, an analogy can be drawn between

voting based methods and sliding window processing with holistic models. This, how-

ever only works on the level of score formation after the individual scores for local

elements was computed. The type of classifiers learned on the local features for ISMs,

Hough Forests and related methods leads to an object model that is very different from

classical holistic object models. Furthermore, Hough Forests make the matching of lo-

cal features more efficient, thus, allowing for a denser evaluation of the input images.

Additionally, the learning procedure solves the classification and regression task jointly,

thus, arriving at a better optimized “dictionary” of local parts.

The rest of this thesis will, thus, be focused on part-based approaches and ISMs

and Hough Forests in particular. In fact, due to the bottom-up nature of the process

and the rather small used local elements the latter ones are particularly suited for ro-

bust detection and occlusion reasoning. Thus, in the following Hough Forests will be

presented, analyzed, improved and solutions to particular problems with invalid object

configurations and occlusions will be given.
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Algorithmic Framework

In this chapter the basic object detection framework used throughout this thesis is in-

troduced. First, the related work of Hough Forests is presented in detail. Following this

introduction, several extensions and modifications are presented that improve training

and testing and thus the overall performance. This results in a range of different options

for different parts of the algorithm, each coming with a set of hyper-parameters to tune.

The last part of this chapter is, therefore, an extensive evaluation of the influence of the

choices of options, hyper-parameters and interdependences between them.

3.1 An Introduction to Hough Forests

The basic framework for our method is a Hough Forest [66]. Hough Forests are based

on the Implicit Shape Model [93] and thus model an object as a collection of a large

number of local features (image patches and derived descriptions) Pi = {Ii, di, yi}.
Here Ii is the appearance description of the patch (several feature channels calculated

from the raw input pixel patch). The label yi of the patch specifies whether a patch was

extracted from a positive or negative training image. Each of the positive local patches

additionally stores an offset vector di pointing from the location of the patch to the

center of the object.

In the detection phase patches are extracted from the test image and compared to

the patches stored in the database. The ratio of positive and negative samples in the set

of most similar patches gives an estimate of how likely the location in the test images

from where the patch was extracted is located on an object of the target class. Those

patches which were identified as being on the object are then used to get an estimate for

the center of the object. For each of them the offset vectors di of the most similar patches

27
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from the database are taken and weighted votes are cast relative to the location of the

patch. The aggregation of these votes leads to areas of high probability for an object of

the given class and thus object detection hypotheses. Thresholding the probabilities and

suppressing multiple detections of the same object by local non-maxima suppression

gives the final object detections.

Comparing each patch from the test image to every single patch from the database

of training images in order to get the set of similar ones would be inefficient, if not in-

feasible. Therefore, in the ISM the patches of the database are clustered into a codebook.

Test patches only have to be compared to the set of codebook entries (visual words) to

retrieve a set of similar patches. In contrast to this flat, generative codebook, Hough

Forests build on Random Forests as the structure used to identify appropriate similar

patches from the database in a discriminative way. It can be seen as an ensemble of

hierarchical codebook structures, facilitating faster lookup and soft-assignment.

Random forests, introduced by Breiman [23] and inspired by ideas of Ho [69, 70]

and Amit and Geman [5], are ensembles of decision trees F = {Tt}T
t=1, where Tt is a

randomized decision tree, and T is the number of trees in the ensemble. Each tree is

composed of nodes. Each node is either the parent node of exactly two child nodes

or a terminal leaf node. Each non-leaf node has a simple test with a binary decision

output associated to it. The outcome of the test on a data sample defines if it is passed

on to the left or right child node. To classify a sample the process is started at the root

node of each tree. The test associated with the root node is evaluated and depending

on the result the sample is passed to the appropriate child node. This process is iterated

until the sample arrives at a leaf node. A leaf node contains information that was

aggregated over the samples that reached this node during training. For the simplest

case of binary classification, this could be the percentage of samples of each class. The

decision of the overall forest is generated by aggregating the output of all individual

trees. Different methods for the aggregation have been proposed, also depending on the

type of information stored in the leafs. For instance, in classification the output can be

the mean of the probabilities for each class, or individual trees can each make a hard

decision and the class is taken that most trees agree on.

3.1.1 Feature Representation

A central part of each object detection method is the representation of the raw input

image data that is then fed to the algorithm for learning and testing, as discussed in

Section 2.1.
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In the case of Hough Forests, as presented in [66], similar to the ChnFtrs [46], each

patch is represented by a series of channels calculated from the raw RGB input data.

L,a,b-color space channels, first and second derivatives of the L channel in x and y.

Additionally there are HOG-like channels. Here, histograms of oriented gradients are

not computed in a rigid structure of blocks and cells, as in the original HOG [41], but for

each pixel in its local neighborhood. In practice, the gradients in a 5× 5 neighborhood

are binned into a histogram of 9 orientations with linear interpolation. The resulting

16 channels are each processed with a local 5× 5 min- and max-filter, leading to a 32

channel representation in total.

Usually the representation is not calculated per patch but for the whole image, from

which then the patches are extracted. If only very few patches are extracted from an

image (e.g., some random patches from a very large negative image) it is more efficient to

really crop out the patches and free the memory for the rest of the image. If, however, the

patches are sampled densely (such as in the detection phase where a patch is extracted

around each pixel), its more efficient to store the representation for the whole image and

to represent a patch only by its location on the image.

Several other feature channels have been proposed, such as different color spaces,

other kinds of gradient histograms [46, 56] and a range of normalization schemes for

each channel, such as in [13, 46, 56]. However, all results presented in this thesis are

based on the feature channels of the original Hough Forests.

3.1.2 Split Tests

As mentioned above, each inner (non-leaf) node of each tree in the forest performs a

binary test to decide whether to pass the sample on to the left or right child node.

The simplest test is to choose a single feature out of the feature vector and compare

it against a threshold. This is commonly used in standard machine learning tasks. The

advantage is that this kind of test is very generic and makes no assumptions about the

relations between features.

In the case of image patches single feature tests are not very expressive and robust.

For example, they are not invariant to brightness changes. Thus, in the original Hough

Forests pixel-pair tests are used. Each test selects two locations in the patch and com-

pares the difference between the feature values at those locations to a threshold.

A generalization of pixel-pair tests, that inspect two features, are oblique split test [23,

106], which calculate the dot product between the full feature vector and a split test

vector of the same dimensionality, effectively defining arbitrarily oriented splitting hy-
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perplanes in the original feature space. Candidates are usually randomly sampled, or

optimized split directions [106].

Recently, Schulter et al. [132] proposed Ordinal Random Forests. There, the test is

defined by a random set of pixels in the patch. The outcome of the test depends on

which of the pixels has the highest feature value.

Another alternative, that was also recently employed in the context of Hough Forests

are Haar-like features, as used in [115, 116, 156], which calculate the difference of sums

over adjacent rectangular areas. This summing over larger areas makes the feature

response more robust against noise and small translations. The sums can be computed

efficiently using integral images [156]. A generalization of Haar-like features are sums

over (sets of) arbitrary rectangular areas. Such tests have been used in boosted decision

trees for pedestrian detection [44, 45, 46].

In this thesis pixel-pair tests are used throughout all experiments. As a small dif-

ference to the original formulation also tests at the same pixel location but on different

channels are allowed. This especially makes sense for the HOG-like channels, where

differences of strength of edges in different directions can be checked.

3.1.3 Training

The goal of Hough Forest training is to create a classifier that reliably estimates whether

an image patch was extracted from an object of the target category or from the back-

ground. At the same time, for foreground patches also their location on the object

should be estimated (or vice versa, where the center of the object is located relatively

to the patch). Thus, when building a Hough Forest, for each node a split test is sought

that either optimizes the purity of the class distribution (foreground/background) or

the offsets, or a combination of both, in the resulting left and right child nodes. The

training procedure consists of generating for each node a random set of split tests — in

our case, the positions of the two pixels for the pixel-pair test (x,y and channel) and a list

of candidate thresholds applied on the result of computing the difference. The resulting

subsets for the child nodes are then evaluated with the selected optimization criterion

and the test is chosen that gives the best information gain. This procedure is recursively

applied to each resulting new child node until a stopping criterion is met.

In the original Hough Forests, for each node one of the criteria is randomly chosen,

whereas in [113] the two criteria are combined. Either way, due to the optimization

of both criteria, the leaf nodes store relevant statistics for both, classification into fore-

ground and background and regression of the object’s center.



3.1. An Introduction to Hough Forests 31

Accuracy of the classification

To optimize the accuracy of the classification, the information gain

∆H = H(Pn)−
|Pl |
|Pn|

H(Pl)−
|Pr|
|Pn|

H(Pr) (3.1)

is used to find the most promising split for the local set of patches Pn of the current

node n. Pl and Pr denote the sets of patches which will be sent to the left and the right

child node by the currently evaluated split test, respectively (i.e., Pn = Pl ∪ Pr). H(·)
denotes the entropy of a set −∑K

k=1 pk · log(pk), where pk is the probability of the current

node to belong to class k, estimated from the ratio of positive and negative samples. The

first term in (3.1) H(Pn) measures the entropy in the parent node. Since the set of patches

in the parent node is fixed, this entropy is constant during the optimization procedure

testing different split tests that only results in different partitions of the samples into Pl

and Pr. It can thus be dropped in the optimization.

Accuracy of the regression

To optimize the offset impurity and thus improve the performance of the regression,

only the positive local patches are considered and splits are searched that minimize the

variance of the offset vectors in the child nodes:

min
∑

di∈Pl

||di − d̄l ||2 +
∑

di∈Pr

||di − d̄r||2 , (3.2)

where || · || is the Euclidean norm and d̄l and d̄r are the means of all offset vectors di

falling into the left and right child nodes

d̄l =
1
|Pl |

∑
di∈Pl

di , d̄r =
1
|Pr|

∑
di∈Pr

di . (3.3)

This node split evaluation criterion will further on be denoted as reduction-in-variance.

Another, more general and information theoretic measure to asses the improvement

in quality of the regression, which was also used in some recent publications (e.g., [34,

38, 111]), is the differential entropy [36] of a set S:

H(S) = − 1
|S|
∑
x∈S

∫
y

p(y|x) log p(y|x)dy . (3.4)
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For the task at hand, the conditional probability p(y|x) is modeled as a multivariate

Gaussian N (µ(S), C(S)) where µ(S) is the mean over the outputs for the data in the

node and C(S) is its covariance matrix. With this definition (3.4) can be calculated as

H(S) =
d
2
(1− log(2π)) +

1
2

log(|C(S)|) , (3.5)

where d is the dimensionality of the output (i.e., 2 for our purposes). The first part is

constant and the optimization only depends on the determinant of the covariance matrix

of S. Defining the quality of the regression as the entropy of an associated distribution

provides a more general, information theoretic formulation. It can be integrated into

the same formula as for the classification (i.e., plugging (3.5) into (3.1)), thus, defining a

common framework for classification and regression. Putting all together gives the total

formula for the information gain of a split for the regression task as:

∆H = −d
2
(1− log(2π)) + log(|C(Pn)|)−

−
∑
i∈l,r

|Pi|
|Pn|

(
d
2
(1− log(2π)) + log(|C(Pi)|)

)
. (3.6)

Skipping the constant parts during optimization leads to

∆H ∝ −|Pl | log(|C(Pl)|)− |Pr| log(|C(Pr)|) . (3.7)

This criterion will be denoted as Gauss entropy. The main difference between reduction-

in-variance and Gauss entropy in the context of regressing a 2D offset vector is that in

the former the variance is estimated over the 1D distances to the mean, thus, defining

an isotropic Gaussian over the 2D vectors. In contrast, in Gauss entropy the multivariate

Gaussian is defined by a full covariance matrix estimated from the data in each child

node. This enables the optimization procedure to find splits that do not necessarily

reduce the overall variance of the distances but nevertheless reduce spread along one

direction. The effects of choosing one or the other, as well as a new variant to measure

the quality of the offset vector regression are demonstrated in experiments in Section 3.3.

Complexity and implementation details

The calculation of (3.2) for the reduction-in-variance, or (3.7) in the case of the differential

entropy criterion has to be done for each split test in order to determine the one with

the best information gain or lowest variance. Let s be the number of split tests to be
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evaluated, t the number of thresholds to be tested on each individual split test and b the

number samples in the current node. A straight forward implementation first evaluates

each split test on the data (O(s n)). Then it applies each threshold (O(s t n)), thereby

determining the subsets of the data for left and right child node. Finally, it evaluates

(3.2) or (3.7) for each subset, which are linear in the number of samples in the subsets

(O(n) for each subset). Thus the overall complexity is O(s t n).

The evaluation of each test on each sample has to be performed in any case. How-

ever, with a few observations an algorithm can achieve a runtime of O(s (n log n+ t)). If

this results in a speedup depends on whether t > n
n−1 log n. Even for a quite low value

of t = 10 this is true also for large databases in the large majority of nodes deeper down

the tree. In practice, in the experiments a significant speedup could be observed.

First, by sorting the results of the split tests (in O(n log n)) the left and right subsets

for all thresholds can be determined in one pass over the samples. Second, all values

needed to compute the information gain or the variance can be calculated incrementally,

allowing for online computation within the single pass over the samples.

At the beginning all samples are in the right subset, the left one is empty. In order

of increasing split test response value, samples are one by one moved from the right

set to the left set. For each sample the information gain or offset vector variance is

updated incrementally, as described below. The split test response value is compared

with the current threshold. When arriving at a sample with a response value above

the threshold, the subsets for the threshold and all derived information are ready to be

stored or compared to the ones of the currently best split test, and we can proceed to

the next threshold.

In the following, only the calculation for the left subset will be described, the com-

putations for the right subset are equivalent (or inverse). The left side of (3.2) has the

form

σl =
n∑

i=1

||di − d̄l
n||

2
, d̄l

n =
1
n

n∑
i=1

di , (3.8)

where n is the number of samples in the left set. This can also be written as

σl
n =

n∑
i=1

d′idi − 2d̄l
n
′
di + d̄l

n
′
d̄l

n =
n∑

i=1

d′idi︸ ︷︷ ︸
s2

n

−2d̄l
n
′ n∑

i=1

di︸ ︷︷ ︸
sn

+
n∑

i=1

d̄l
n
′
d̄l

n︸ ︷︷ ︸
nd̄l

n
′
d̄l

n

. (3.9)
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Along with σl
n the current values s2

n and sn are stored. When sample dn+1 is moved from

the right to the left subset the mean vector is calculated incrementally as

d̄l
n+1 =

n d̄l
n + dn+1

n + 1
. (3.10)

Similarly, the other terms in (3.9) can be calculated incrementally as

s2
n+1 = s2

n + d′n+1dn+1 , (3.11)

sn+1 = sn + dn+1 . (3.12)

Thus, σl
n+1 can be calculated from s2

n, sn, d̄l
n and dn+1 in O(1).

The same holds for the differential entropy (3.7). There, the term that changes when

adding a sample to the left subset is its covariance matrix. It can be calculated as

C(Pl
n) =

n∑
i=1

(
di − d̄l

n

)(
di − d̄l

n

)′
(3.13)

=
n∑

i=1

did′i −
n∑

i=1

did̄l
n
′ −

n∑
i=1

d̄l
nd′i +

n∑
i=1

d̄l
nd̄l

n
′

. (3.14)

Again, all terms can be updated incrementally to compute C(Pl
n+1) in O(1).

On a side note, when all patches in the set are almost (or completely) colinear, the

determinant of the covariance matrix will get to zero. Thus, no matter how the set is

split, the total information gain will always be zero. This is clearly not intended, since

the regression could still be improved along the one direction in which the samples are

still potentially widely distributed. A simple remedy to this is to clip the eigenvalues of

the covariance matrix to a minimum value (which can also be done very efficiently for

small covariance matrices).

Updating the entropy over a histogram, as used in the information gain (3.1), can

also be done incrementally. The entropy of a histogram over samples in set S is defined

as

H(S) = −
K∑

k=1

pk log pk = −
K∑

k=1

hk

n
log

hk

n
= − 1

n

(
K∑

k=1

hk log hk − hk log n

)
= (3.15)

= − 1
n

(
K∑

k=1

hk log hk − log n
K∑

k=1

hk

)
= log n− 1

n

K∑
k=1

hk log hk , (3.16)
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where K is the number of bins in the histogram, hk is the number of samples in bin k

of the histogram and n =
∑K

k=1 hk = |S| is the total number of samples in set S. When

testing a sorted set of thresholds for a split function, the histograms in the left and right

child nodes created by the next threshold are straightforward to update incrementally.

Samples that now fall below the threshold are removed from the according bin of the

right histogram and added to the left one. Thus Equation (3.16) can be updated in-

crementally in O(1) by subtracting the term with the old value of hk from the sum,

updating hk and n and adding the new terms to the sum.

Stopping Criteria

The process of building a tree by splitting intermediate nodes is iterated (either depth

first or breath first) until a stopping criterion is met and a leaf node is created. The

most obvious case is if only a single data sample is left. Another criterion might be a

minimum number of samples, or in the case of weighted samples, a minimum amount

of total weight. This criterion is often applied to reduce the risk of overfitting and thus

reduce the generalization error. This can also be achieved by using more (uncorrelated)

trees in the ensemble which, however, leads to a linear increase in test time.

The decision not to split a node further can also be based on the observation that the

best split does achieve an information gain above a given threshold. Usually, however,

in standard Random Forests, as presented by Breiman, the trees are grown to full depth

and are not pruned, unless the node is already completely pure (only samples of one

class left) and there is no information gain at all. In the case of Hough Forests, an

intermediate node that only contains positive samples can still be split based on the

regression criterion in order to improve the precision of the estimation for the object

center.

Another criterion that is mainly motivated by runtime considerations is a predefined

maximum depth of the trees. This ensures an upper bound on the number of split tests

that have to be performed on every test sample.

3.1.4 Testing

Running a Hough Forest object detector on a test image consists of two phases: A forest

evaluation and voting phase operating on a patch around each pixel of the image and a

subsequent non-maxima suppression phase.
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Forest Evaluation and Voting

During testing, from a test image I , small local patches P(y) with appearance I(y) are

densely extracted at all locations (pixels) y and mapped onto the codebook entries, i.e.,

the leaf nodes, by evaluating the respective split tests of all trees of the forest on I(y).
Each leaf L of tree Tt stores the set of offset vectors DL of all the training patches that

fell into that node. In the following, Dt(y) denotes the set of offset vectors stored in the

leaf node of tree Tt that the test patch P(y) reaches, and Ct(y) is the ratio of positive to

negative training samples that reached this leaf node during training (i.e., the probability

of being foreground for the test patch at y, according to tree Tt).

Following the generalized Hough transformation [10] procedure, each local patch in

the test image casts votes for object centers. This means, for each offset vector d ∈ Dt(y)

a weight w is added to location y + d in the Hough space. The weight w that each vote

casts is defined as the probability of the patch to be foreground Ct(y) distributed over

all offset vectors in the leaf node, i.e., w = Ct(y)
|Dt(y)| . This definition is somewhat adhoc. It

follows the intuition that the contribution of a set of votes in a leaf node to a detection

should be high, only if the foreground probability is high and the voting vectors are

tightly clustered.

All votes from all trees are accumulated in the Hough space. Detecting objects of

different scale is handled by scaling the input image and running the detector trained for

a fixed scale for each input scale independently. The result is then a pyramid of Hough

spaces with accumulated votes. Figure 3.1 shows a visualization of a Hough space

pyramid color coded and superimposed and over the original image, for an image of

the test set of the TUD-pedestrian dataset.

Non-maxima suppression

Local maxima in the Hough space indicate prospective object centers. Due to small

deformations of the object and noise the votes usually do not perfectly agree on one

single location, but are scattered around it. This also means that several local maxima

in a small neighborhood usually stem from the same object. In order to prevent the

system to report several detections for the same object instance, such smaller local max-

ima around a dominating have to be suppressed. If several scales are considered, this

neighborhood also extends to neighboring scales. Several approaches to perform the

non-maxima suppression are described in more detail in Section 3.5 and a novel, more

principled approach is presented in Chapter 5.
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Figure 3.1: Hough space pyramid for a test image of the TUD pedestrian dataset. Trans-
parent to green areas are low values, blue to purple are areas with high scores. Pedestri-
ans of different sizes are detected in different scales. The height of the detector applied
is indicated on the left of each image. The detector is trained to be invariant to small
scale variations, in order to allow for the detecting objects in scales that are in between
two of the discrete scales that are tested. Thus, neighboring scales of the true scale also
show evidence for an object. Local maxima for each person in scale space are indicated
by red arrows.

After the non-maximum suppression, the remaining local maxima indicate true ob-

ject centers. The output of the detector is then a list of bounding boxes centered on

each local maximum; width and height are derived from the respective scale where the

maximum was found. Since, for reasons of computation time the resolution of the scale

space is typically not fine enough to capture all sizes of occurring object instances ex-

actly, it is important to interpolate between scales, in order to get more accurate bound-

ing boxes. The score associated with each detection is the height of the local maximum

in the Hough space. Figure 3.2 shows the bounding boxes of detections derived from

the Hough spaces in Figure 3.1 after non-maxima suppression.
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Figure 3.2: Detection bounding boxes recovered from the Hough space pyramid in Fig-
ure 3.1 after thresholding the detection score and non-maxima suppression. Notice also,
how the non-maxima suppression eliminates the quite strong false evidence on the leg
of the person to the left, visible in the first scale in Figure 3.1.

3.2 Leaf Node Post-Processing

Depending on the size of the training database and the maximal depth of the trees the

leaf nodes might contain a large number of positive samples. All the offset vectors

associated with those samples have to be used in the voting step. This leads to an

increased test time. Thus, it is desirable to summarize the offset vectors and to create

more compact prediction models. A simple possibility, that was also explored in [140],

is to perform a mean shift [33] mode detection step and only keep a fixed number of

dominating modes.

The mean shift mode extraction step reduces the true distribution of offset vectors to

a small set of modes. Since the number of votes aggregated in each mode may vary con-

siderably, it is important to associate a weight with each extracted mode, reflecting the

density of the original distribution at that point. Different schemes have been proposed

to determine this weight. Here, a formulation is explored that estimates a Gaussian over

the set of samples that converged to each mode.
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The weight for a mode is, thus, defined as

wi =
pfg

n
√

2π

n∑
j=1

exp

(
−
∣∣∣∣xj − x

∣∣∣∣
σ2

)
, (3.17)

where pfg is the probability foreground in this leaf node, n is the number of samples

that converged to the mode during the mean-shift procedure, x is the mean over those

samples and σ2 is the variance. Since sample mean and variance are calculated over the

samples Equation (3.17) is in fact proportional to n
σ2 .

Experiments showing the effect of meanshifting on detection time and performance

are presented in Section 3.6.1.7.

3.3 Offset-Vector Histogram Entropy for Regression Nodes

As stated in Section 3.1.3, the training of Hough Forests randomly chooses between opti-

mizing the classification of the patches into foreground and background and optimizing

the uncertainty of the prediction of the object center (regression) when choosing a split

function for an inner node of the decision trees. Recalling Equation (3.2), in the standard

Hough Forest, as presented in [66], the regression evaluation criterion is the variance of

the offset vectors in the current node, i.e., the sum of squared distances from the mean.

This formulation forces the offset vectors that end up in a leaf node to be tightly clus-

tered around a central point. The Gauss entropy criterium still favors unimodal, but in

this case unisotropic distributions of the offset vectors.

However, both approaches do not handle multi-modalities in the distribution of off-

set vectors well, as illustrated in Figure 3.3, for an exemplary set of patches on a car.

The node to split contains patches of the same sub-parts of the car, namely the wheels.

Those patches look exactly the same, except for noise. A test that perfectly splits the set

of patches in the current node into sets that cover the same part of a wheel, e.g., the top

parts and the left parts, does hardly decrease the variance because they are still located

on very different regions of the object (in the front and in the back). Thus, such a split

will not be chosen under the reduction-in-variance criterion. There might be a slight im-

provement in the differential entropy, depending on the alignment of the two sub-clusters,

but a much larger gain can still be achieved by splitting into a set patches on the left

and one on the right.

Additionally, in the first few levels of the tree it is virtually impossible to significantly

divide the set of all patches based on their appearance into compact clusters, unless all
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(a)

1 2 3 4

(b)

(c)

1 2 3 4

1 2 3 4

(d)

1 2 3 4

1 23 4

(e)

Figure 3.3: (a) Sample patches on a training sample for a car detector (taken from the
ETHZ-cars database [92]). An intermediate node of a decision tree might contain similar
looking patches like the ones in (b) and (c). Since the patches in (b) come from sub-parts
of the object that are effectively the same (a wheel), discriminating patch 1 from 3, or
2 from 4 can only be done by overfitting to noise. Also, this kind of discrimination is
not desirable; if the system is looking at a patch like 1 or 3 in a test image, it should
indicate that the center of a car might be to the upper left or the upper right of that
patch, not decide for one direction. However, the difference between patches 1 and 2
is significant, since they can be judged from their appearance to come from slightly
different positions on the object. Being able to tell the difference between 1 and 2 (or 3
and 4, respectively) effectively increases the precision of the voting. Thus, the training
procedure should favor appearance tests that split the set of patches into subsets {1, 3}
and {2, 4}, as shown in (e). However, splitting in to {1, 2} and {3, 4}, as shown in (d),
results in a much bigger gain, if computed with the reduction-in-variance or Gauss entropy
criterion, as indicated by the much smaller red areas, showing the covariance of the
distribution of the patches. Additionally, in (c) the set of patches is spread out quite
considerably. Taking all the offset vectors of this set to vote for the center of the object
does result in a quite accurate estimate in the y direction, but with a very big variance in
x. However, as in (b), it is not meaningful to try to reduce the uncertainty of the voting
in the x direction, since again differences in the appearances are only due to noise and
not discriminative features of the object. Here, the evaluation should favor splits that
separate this set of patches from others from above and below.
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patches on one side of the object look the same and completely different from patches

on the other side.

Thus, the trees cannot start by clustering together different parts of shapes and only

later focus on specifying the exact locations, if they are scattered around multiple lo-

cations in the object. To address these problems we introduce a new evaluation cri-

terion for the regression nodes. We divide the space into a grid of cells, forming a

two-dimensional histogram. Offset vectors are assigned to the four closest bin centers

by linear interpolation. A split dividing the set of patches into two partitions for the left

and right child nodes thus results in two histograms of the respective distributions of

the offset vectors. The quality of the split is then measured by difference of the entropy

of the histogram over all samples in the parent node and the entropy of the histograms

in the left and right child nodes, weighted by the size of the respective set:

∆H = H(Il ∪ Ir)−
|Ir|

|Il |+ |Ir|
H(Il)−

|Ir|
|Il |+ |Ir|

H(Ir) , (3.18)

where the entropy H(I) is defined as

H(I) =
∑
x,y

pI(x, y) log pI(x, y) . (3.19)

Here pI(x, y) is the percentage of samples of set I assigned to the bin at (x, y):

pI(x, y) =
hI(x, y)∑
x,y hI(x, y)

. (3.20)

This new criterion will be denoted as offset vector histogram entropy.

This strategy effectively turns the regression problem into a classification problem

where patches are soft-assigned to the four nearest histogram bins, which can then be

seen as a set of distinctive foreground classes. It is somewhat similar in spirit to [98],

where also the outputs, in this case local edge structures, are clustered into different

classes, which are then used in a standard multi-class learning setup.

Note that the use of a histogram in the evaluation procedure and the discretization

of the target values does not influence the collection of information in the leaf nodes

and the subsequent voting procedure. The offset vectors do not necessarily have to be

quantized into this set of distinctive classes for these subsequent steps. The histogram

is only used for the evaluation of split functions.

Also note that using a histogram is possible in this case, because of the known and
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limited extent and the low dimensionality of the offset vectors. For a task like pose

estimation of a rigid object, where 3 position and 3 rotation parameters have to be

regressed, this would maybe not be practicable.

One parameter to choose is the size of the histogram bins. It mainly depends on

the size of the objects to detect (training scale), and the precision of the voting (i.e., the

width of the Gauss kernel used for smoothing the raw Hough maps). For instance, in

the pedestrian detection experiments, where the object size is roughly 40× 100, the cell

size is set to 8× 8 resulting in a 5× 12 grid of cells. These parameters were not evaluated

extensively, but a set of preliminary experiments showed that it is not very sensitive and

the above settings give good results.

Just as the reduction-in-variance and the Gauss entropy criterion in Section 3.1.3, also

the histograms can be calculated incrementally while sweeping over the thresholds.

First, all samples are in the right histogram. In one pass over the samples all samples

with a response value lower than the current threshold are removed from the right and

inserted into the left histogram. The entropy of the two histograms can also be updated

incrementally, without passing over the whole histogram, just as in Equation (3.16).

Thus, the dimensionality of the histogram does not influence the speed of the calcula-

tion. Again, whether this results in a speedup depends on the relation of number of

thresholds tested vs. the number of samples in the node.

3.4 Dataset Subsampling per Node

The split tests and the criteria to evaluate them have to be evaluated on all samples

that end up in an intermediate node during traing. Especially in the root node, which

contains the whole dataset, and also in the first levels below, this is quite expensive for

large datasets.

An alternative to testing all samples in the node has been presented by Schulter

et al. [130]. Their online formulation of Random Forests builds the trees incrementally,

by feeding the samples as they arrive and splitting nodes as soon as enough data is

available for them. Thus, to evaluate split tests and to create the tree structure, only

a small set of samples is considered per node. Interestingly, simulating this behaviour

in the offline case, by only considering a small, fixed size subset of the data available

for a node, even resulted in increased performance of the final forest in several cases.

The method was also adopted successfully by Cootes et al. [34] in the context of facial

landmark localization.
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Obviously, this method provides a dramatic speedup for the training of the split

tests, especially in the first few levels of the trees. But there is another interesting aspect

to this approach. It can be considered as a variant of bagging, but not per whole tree

but on the node level. The decision of the root node of each tree is based on a very

different subset of the data. This decreases the correlation of the trees, just as intended

in bagging. In contrast to bagging, however, in deeper levels of the trees, the fixed size

subset encompasses more and more of the available samples and thus gradually the

whole dataset is considered. All trees see all the data, but in different sub-partitions

created by the higher levels. This might explain the good performance of this approach.

In the experiments in this work, generally 50 samples per class are used. This means

in every node a subset of 50 positive and 50 negative samples is drawn from the available

samples in the node to evaluate the split test candidates. In case the training set is

unbalanced (e.g., twice as many negative than positive patches) the samples are weighted

to account for this fact. The subsampling per node then takes as many samples from

each class as necessary to reach a minimum total weight, such as to produce a stratified

subsample.

3.5 Non-Maxima Suppression

A crucial element of many object detection systems is how the final output, usually in

form of detection bounding box rectangles, is calculated. The core of most systems, and

also the central part of innovations, is the method that creates and scores individual

detection hypothesis. However, most of the time, these results need some kind of post-

processing to get to the final results. Often the central part of the algorithm delivers

a series of overlapping detections that, in fact, capture the same object instance. These

have to be processed in a final step consisting of some kind of non-maxima suppres-

sion. In the end, in many application scenarios, each object instance should only be

reported once and multiple secondary detections will count as false positives and lower

the overall performance scores.

In many publications, this step is considered to be trivial and either completely left

out in the description or just mentioned in one or two lines. However, as everyone

working in object detection will have experienced, this final post-processing step has a

strong influence on the overall performance of the system.

Additionally, the question of how to produce the final output is also interlinked

with the way the system is evaluated. The most widely used metric comes from the
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evaluation protocol of the Pascal VOC Challenge [49], one of the most common object

detection benchmarks. It considers a detection to be a true positive if the overlap (in-

tersection over union) of the detection rectangle with the ground truth annotation of a

real object instance is higher than 50%. Yet, out of multiple detections of the same object

only the most confident one is considered true positive; the others are counted as false

positives. However, as mentioned above, the required output from an object detection

system depends on the task. For instance, if the task is to detect pedestrians in images

from a camera mounted on a car, such that the car can warn the driver or even brake

automatically, the most important criterion is to not have any false negatives. False pos-

itives in a scene without any person are similarly problematic, because they render the

system useless and can also lead to dangerous situations with a car hitting the brakes

hard for no apparent reason. On the other hand, additional false positives very close to

a true positive can easily be ignored in the evaluation since the car must warn or stop

anyway. Equally, detecting people behind other people might not be relevant for this

task. Failure to detect those additional true positives should thus not be punished in the

evaluation. Thus, in this case, during non-maxima suppression all evidence for persons

further away (higher up vertically) at the same angle (x-direction) bould be excluded

from the search.

For rigid detectors that return a single confidence score for each location in scale

space the usual form non-maxima suppression is based on the bounding boxes of detec-

tion candidates (e.g., [56], [41]). First, all detection candidates are sorted by their score,

not considering those with a score below a minimal threshold. Then, the currently

highest scoring bounding box is chosen and added to the list of detections outputs. All

remaining candidates are checked for the overlap with the selected detection. If the over-

lap is above a threshold these bounding boxes are deleted from the list of candidates.

This procedure is repeated until no candidates are left.

In the implementation of the Viola and Jones detector [155] in the OpenCV li-

brary [22] a slightly different method is used. There the classifier does not deliver a

confidence score but only a binary decision. Detection output rectangles that are classi-

fied as positive but heavily overlap each other are consequently grouped together and a

mean rectangle is calculated as overall output. It is important to notice that at least in

this implementation a big gain in performance can be achieved by only accepting out-

puts that result from a grouping of at least 3 detections. A single location classified as

positive without any neighboring detections will not be considered for the output. This

method builds on the assumption that the detector was trained to be slightly translation
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invariant and thus fire multiple times around a true positive. It effectively eliminates

spurious false positives.

Since Hough Forests [66] make use of the Generalized Hough Transform to gather

the evidence for object instances, it is straightforward to do the non-maxima suppression

in Hough space. After the global maximum is found and the according detection is

reported all evidence for neighboring hypotheses is erased from the Hough space, before

the next maximum is sought.

However, there are still several choices to make. One is the size and form of the

neighborhood to erase. In many applications of the Hough transform usually a small

rectangular area (or hypercube, in the multidimensional case) around the last chosen

maximum is erased, such as to avoid picking an extremely similar hypothesis at the next

step. Another alternative is to adjust the range in order to exactly erase all those hy-

potheses that create detections which should be rejected due to significant overlap with

the central detection. For example, deleting all hypotheses that correspond to detection

rectangles with a overlap of more than 50%, as defined in the PASCAL challenge, would

result in a diamond shaped suppression region in the Hough space (if only one scale

is considered). In the implementation of [66] the authors chose to erase all hypotheses

that have its center within the bounding box of an already selected detection.

Another question is how to deal with multiple scales. Typically each scale is pro-

cessed individually, by resizing the input image and voting into a Hough space of the

same size as the input. The result is a scale space pyramid of Hough spaces. Evidence

for an object will typically also appear in neighboring scales, since the detection proce-

dure has to be robust to slight scale changes, in order to deal with objects that do not

appear in exactly one of the discrete scales that are tested. In keeping with the first

alternative above, one can choose to erase evidence only from the directly neighboring

scales in the pyramid. For that purpose, the center of the detection and the range of the

neighborhood must be adjusted to the corresponding scale.

However, in [66] the implementation is different. One scale is selected as reference

scale, and the Hough spaces of all others are resized to this common resolution. The

resulting structure is a stack of equally sized Hough spaces. This makes the interpola-

tion in scale easier, since hypotheses of different size are at the same x and y coordinate

in each scale. However, the reference frame is chosen as the smallest resolution and the

Hough spaces from higher resolution input scales get down-sampled. Sharp peaks of

correct detections get smoothed out or almost erased by the down-sampling to a much

lower resolution. Thus, this method is only suitable if a very narrow range of scales
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is tested. In a generic setting, where objects can appear in a wide range of scales, the

non-maxima suppression has to be performed, as described above, in the full pyramid

of scales.

Experiments with the two variants described above are presented in Section 3.6.1.9.

More sophisticated methods for resolving evidence for mutually exclusive detection

hypotheses will be presented in Section 5.

3.6 Evaluation

The list of alternatives for several aspects of Hough Forest, given in this chapter, leaves

us with choices to make and parameters to set for the training. Thus, this section

presents a thorough evaluation of a range of different setups.

A central observation throughout all the experiments with several variants of Hough

Forests and its extensions was that the overall performance strongly depends on the

parametrization. The setting of parameters is not very sensitive, in the sense that the

range of acceptable values is mostly not extremely narrow. However, central parameters

and their reasonable value range heavily depend on each other. Switching between

different extensions and options of, e.g., the criteria used to evaluate the quality of a split

test for a node, or the way information in the leaf nodes is post-processed, only makes

sense and improves the final detection results if also other parameters are adjusted

accordingly.

Additionally, in our experiments, the performance of some setups has shown quite

large variance over different runs (although, typically, good parametrizations also lead

to quite stable results). Nevertheless, many published results for systems based on

Random Forests (or Boosting, or any other method that includes some kind of random

process) report only mean performance over a set of runs without stating the range of

typical outcomes (e.g., by reporting the standard deviation), or even just the results of a

single run. Such a limited display of results should raise skepticism.

The interdependence of parameters combined with the effort it takes to thoroughly

evaluate a single fixed setup makes it really hard to jointly optimize over all parameters.

Fortunately, usually there are some restrictions on reasonable parameter ranges. A good

starting point for the optimization are the run-time requirements, raising questions such

as: How many trees and up to which depth can be evaluated during run-time (in terms

of total time per frame and/or energy efficiency)? Is training time an important issue?

Is the runtime- and/or training-platform capable of parallelization? Starting from those
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parameters fixed by requirements, a coordinate ascent approach can be used to optimize

the others. This, however, means that any kind of conclusion about the superiority of

one method over the other can only be valid for the specific setups for which they have

been tested. Any kind of generalization beyond that should at least be taken with a

grain of salt.

In the following, the most important parameters, their influence and their interplay

are presented. Experimental evaluations follow below.

Maximal Tree Depth It is common practice to set a maximal depth a tree can grow

to. Nodes at this maximum level are converted to leaf nodes, although they might

contain many samples with distributions that do not allow for a clear decision for a

class or a value to regress. The main reason to set a maximal depth is to bound test

time, since at each node in a long path down a tree a test has to be performed. If,

on the other hand, the information in the leaf nodes is the whole list of samples,

not summarized in any way, like in the original Hough Forest formulation [66],

and all samples have to be considered at run-time, training deeper trees might

even speed up the evaluation (as shown in the experiments in Section 3.6.1.3),

since less samples end up in each leaf node. Whether limiting the trees in this

way influences the performance depends mainly on how many samples are left in

the nodes at the last level and how meaningful the statistics over those samples

is. This, in turn, depends on the distribution of the data (multi-modality of the

distributions of each class), the size of the database, the type of split functions and

the method to evaluate split functions, influencing how balanced the trees are.

Number of Trees Generally, the more trees are used the better the classifier. Due to the

uncorrelatedness of the trees, the ensemble is not susceptible to overfitting [23].

Thus, in standard machine learning tasks, where the evaluation is done on each

sample, usually the performance rises up to numbers of more than 100 or even 200

trees in the ensemble.

However, in Hough Forests we observe that a large number of trees does not in-

crease the performance significantly. In fact, beyond 10 to 15 trees the performance

is more or less saturated.

In a Hough Forest-like detector the importance of a correct classification for each

tested input patch is not that high. The estimation of the probability for an object

in the Hough space is not only influenced by the averaging over the trees but also

by the high number of patches that are sampled from a test image and contribute
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to a maximum. Additionally, the Gaussian smoothing that provides invariance to

small translations of the individual patches adds to the robustness. This might

be the reason why the performance gets saturated with a much lower number of

trees in the object detection task with Hough Forests than on machine learning

tasks with Random Forests.

As a practical consideration, more trees result in longer training and testing time.

On the other hand they can be trained and evaluated in parallel.

Minimum Number of Samples in Leaf Node One way to reduce overfitting of individ-

ual trees and to gather more reliable statistics in each leaf node is to set a minimal

number of samples in each leaf node. If during the training of the trees the num-

ber of samples in an intermediate node is below this number, or no split can be

found that creates two child nodes that each fulfill the requirement, the splitting

is stopped and the node is converted to a leaf node. If the samples in the training

set are weighted (e.g., to balance the dataset) this criterion can also be expressed

as a minimum total weight of all samples in the node.

However, the importance of this criterion depends on other factors. One of those is

the size of the database used to train each tree, in combination with the maximal

tree depth. For instance, a tree trained with 2 million samples to a depth of 16

(resulting in a maximal number of 216 = 65536 leaf nodes) will never encounter a

node with really few samples, unless, of course, the tree is very unbalanced. This,

in turn, depends strongly on the type and number of split test functions that are

evaluated to find a good split, as well as the metric to evaluate them.

Additionally, as mentioned above, another way to counterbalance inaccurate pre-

dictions resulting from poor statistics in one leaf node is to increase the number of

trees, thereby reducing the importance of the setting of minimum number samples

per node. In fact, in machine learning tasks, where the run-time is not that critical

and large numbers of trees can be used, the trees are often grown to full depth,

without restriction of tree depth and until there is only one sample left [23].

Type of Regression Split Node Tests The choice of a criterion for the evaluation of a

split test to assess the gain in performance of the regression results in quite dif-

ferent partitions of the data in each node and, thus, distribution throughout the

tree. If the trees are grown deep enough, the importance of this criterion is again

reduced, because the clusters will be quite compact with any of the criteria. How-
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ever, as will be shown below, this choice has a quite profound impact on the tree

depth that is required to achieve top performance.

Type of Leaf Node Post Processing The offset vectors in the leaf nodes can be either

stored as plain lists of all samples arriving in the leaf node or post-processed as

described in Section 3.2, by describing the distribution with a parametric model

or clustering with mean-shift or other types methods. The choice which variant to

take mainly depends on the data that typically reaches a leaf node.

If, for instance, the trees are grown to full depth, with only one sample remaining

per leaf node, there is simply no information left to aggregate. Also, the choice of

the type of split node evaluation function influences whether the distributions of

samples in a leaf node tend to be multi-modal or clustered more tightly around a

single mode. Of course, this also depends on the amount and nature of the data.

Database Size Typically, in most machine learning tasks the intuition, as well as the

experience, is “the more, the better”. Generally, this is also true for the task at

hand. However, as mentioned in the discussion above, other factors depend on

the amount of data. Keeping the setup the same and just increasing the number

of training samples, thus, does not necessarily increase the performance.

The evaluations in [140] show drastic improvements for taking large amounts of

training data. In their setting collecting more data (virtually unlimited amounts) is

easy, because it is created artificially by rendering parametrically adjustable mod-

els of human bodies in a huge range of possible poses. In typical learning tasks

the data is given and it is hard to collect more. In the case of object detection with

Hough Forests on the datasets used in this work, the number of training images

is limited. One way to increase the database size are artifical transformations of

the input images, e.g., to account for variations in scale. Furthermore, patches are

sampled from the training images and the amount of patches can be increased

(until all images are densely sampled). However, sampling densely and from im-

ages that are transformations of each other will likely result in redundancy. Thus,

it is expected that the performance is saturated long before all possible patches are

included in the dataset.
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3.6.1 Experiments

This section presents experiments to provide empirical data and substantiate the the-

oretical analysis above. Each subsection is focused on one of the parameters in order

to identify its influence in relation to others. In particular, all setups show variations

of the discussed parameters while keeping all others at a default value. If not stated

otherwise, these are: Database size = 10 patches per image (i.e., 32000 positive samples

for the TUD pedestrian detection setup), twice as many random negative patches, num-

ber of trees = 15, maximum tree depth = 50, histogram entropy as split node evaluation

criterion, minimum number of samples per leaf node = 20, meanshift mode seeking in

leaf nodes is turned off. Non-maxima suppression over multiple scales is performed in

a Hough space cube, as described in Section 3.5. Generally, evaluations in this chapter

judge the resulting detectors based on Precision/Recall Curves (PRCs). These curves are

generated by varying the threshold on the detection score, resulting in a specific number

of objects that can be recalled and an associated ratio of true and false detections in the

reported output. Results of multiple runs of a fixed setup are averaged by combining all

lists of detection outputs sorted by their confidence and generating a joint PRC. When

many such curves have to compared they are summarized by the area under the curve

(AUC). Where suitable, individual PRCs are shown.

3.6.1.1 Training Data

Throughout this thesis a number of databases will be used to demonstrate the effective-

ness of different object detection algorithms and the effects of variations of parameters

and choices of methods. The three main application areas will be car detection, pedes-

trian detection and multiview face detection.

Car Detection The ETHZ-cars [92] dataset contains images capturing cars under 7 dif-

ferent viewpoints. For each viewpoint, 60 images are randomly selected for training and

the remaining images are equally split into validation and test images. The training set

thus consists of 420 positive images, the validation set contains 428 and the test set 429

images. Additionally, also the horizontally flipped version of each image is considered.

Figure 3.4 (a) shows some examples.

Preliminary evaluations where also performed on UIUC cars [2]. However, this can

only serve as a validation set or sanity check, since the benchmark is already completely

saturated by the baselines.
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(a) ETHZ-cars.

(b) TUD Pedestrian, train + masks. (c) TUD Pedestrian, test.

(d) TUD crossing. (e) TUD campus.

(f) AFLW + annotations.

(g) FDDB + annotations.

Figure 3.4: Sample images of the benchmark databases.
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Pedestrian Detection The TUD-pedestrian [6] dataset consists of 400 training images

and 250 test images containing 311 pedestrians in typical street side scenes. Samples are

shown in Figures 3.4 (b)-(e). The test images have a resolution of 720× 576 and feature

mostly only one to three pedestrians on a range of different and sometimes challenging

backgrounds. Targets appear in various scales, mostly relatively small compared to the

image size, but not smaller than a vertical resolution of 70 pixels, with the median and

also mean height around 215 pixels. The related test image sequences TUD-crossing

and TUD-campus consist of 201 and 71 images, respectively. Both also show pedestrians

in side views, however, in contrast to the pedestrian test set, those two sets consist of

frames taken from continuous video sequences, showing pedestrians walking in front

of (more or less) static backgrounds. On TUD-crossing the pedestrians appear in a very

small range of scales, whereas on TUD-campus the variation in scale is much bigger.

TUD-crossing features the most crowded of the three scenes, with many of the persons

walking close-by, in front of one another and thus occluding each other. Thus, the three

test sequences show quite different characteristics and pose very different challenges for

an object detector, as will become evident in the experiments.

The training set comes with accurate segmentation masks for each person. The test

sequences are annotated with bounding boxes. The original annotation of the TUD-

crossing sequence only includes fully visible persons and, thus, ignores many persons

that are partly occluded. This is why Riemenschneider et al. [126] presented a new

annotation with detailed and accurate segmentation masks for every visible person,

from which accurate bounding boxes can be derived for conventional PASCAL-overlap

evaluation.

Another pedestrian detection database that is used is this thesis is the PETS 2009

Benchmark Data [64]. It includes several datasets of which View001 of sequence S1.L1

again features pedestrians mostly in side views, which makes it suitable for evaluation

of methods trained on the TUD pedestrian training set. The sequence shows several

groups of people walking closely and thus heavily occluding each other. In total the

ground truth annotation contains 4348 persons.

Multiview Face Detection The Face Detection Data Set and Benchmark (FDDB) [75] is

currently one of the most extensive benchmark for real-world, multi-view face detection.

It contains annotations for a subset of images of the Faces in the Wild dataset [15]. In

total, there are 5171 faces in 2845 images. The annotation is in form of an elliptical

region capturing the frontal part of the head, defining extent and in-plane rotation. This
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form of annotation is more natural for faces since the front of a human head can be

roughly described as an ellipsoid, that always results in an ellipse when projected into

an image, no matter the pose. In contrast, with classical bounding box annotations it is

tough to define a common annotation scheme that fits frontal, as well as profile views of

faces. The elliptical annotation makes evaluation of detectors that return bounding box

rectangles harder, since no rectangle can perfectly fit to the ellipse. However, the dataset

comes with a set of tools that takes care of the evaluation, given detection outputs in

form of either ellipses of rectangles and thus fixes the evaluation protocol. Examples of

test images with annotation are shown in Figure 3.4 (g).

The AFLW Database [84] is a large scale collection of 25,993 faces in 21,997 images

in real-world situations. It comes with detailed annotation of 21 facial landmarks. From

those landmark positions an ellipse (as defined in FDDB) and bounding box rectangles,

as well as the head pose (roll, pitch, yaw) can be derived, by fitting a generic 3D face

model. In the experiments below it will serve as the training database. Examples of

images with annotations are shown in Figure 3.4 (f).

Data Preparation When preparing a set of images for training a detector several points

have to be considered. Generally, to achieve invariance to scale and in-plane rotation,

the detector can deal with this variations by making the input representation invariant.

However, making the representation invariant results in a loss of discriminative infor-

mation. Thus, usually the detector is trained on a fixed rotation and scale and detection

of rotated and scaled objects is achieved by rotating and scaling the input and applying

the detector. Since the set of tested rotations and scales is discrete, the detector still has

to be invariant to variations within the range of the discretization.

Instead of making the representation invariant, the training algorithm of the detector

can be confronted with examples of all variations that it should be able to handle. In the

experiments with the TUD-pedestrian dataset, for instance, the training set is augmented

with 3 randomly rescaled versions of each image, in the range of [0.9, 1.1]. Additionally,

to make the detector symmetric, usually horizontally flipped versions of the input im-

ages are added to the dataset (notice that in the TUD-pedestrian training set all persons

are facing left). In total, the TUD-pedestrian training set is thus increased from 400 to

3200 images.

In the experiments that use AFLW as training data, where the in-plane rotation of the

faces is known from the approximate pose estimation, all faces can be oriented upright,

again, adding a small amount of jitter in the rotation angle to increase robustness.
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If the detector is trained on a fixed scale, this scale has to be chosen as well. Generally,

the resolution has to be high enough to capture discriminative details. However, with

large resolutions also the dimensionality of the description can get very high dimen-

sional, causing the classifier to overfit on random details and noise. Thus, in many set-

tings very small resolutions have proven to result in the best overall performance. Face

detectors are often trained on patches as small as 36× 36 [85], or even 24× 24 [22]. The

latest state-of-the-art in pedestrian detections uses a resolution of 64× 128 [13, 46, 157].

However, in [13, 46] the representation derived from this resolution is again downsam-

pled by a factor of 4 (i.e., to 16× 32) before training and inference.

In Hough Forests, also the connection between image resolution and patch size must

be considered. The relation should be chosen such that the patches are small enough

for efficient classification, but large enough to capture relevant and discriminative struc-

tures. In pratice, in this thesis, the patch size is always kept at 16× 16. The pedestrian

training images are scaled to a height of 100 pixels. Face images from AFLW are resized

such that the distance between the eyes is 30 pixels, and cropped such that the center

between the eyes is horizontally centered in the training image patch and vertically at

one third from the top. The overall size of the cropped patch is 120× 120.

3.6.1.2 Database Size and Bootstrapping

The first experiment shows the influence of the size of the database used for training.

As mentioned above, although the number of training images is typically given by the

limited size of the collected database, in the Hough Forest setting the size of training

database can be easily varied by setting the number of patches extracted from each

training image.

Figure 3.5 shows the performance of detectors trained on datasets for which 2, 5 or

10 patches were extracted from each positive training image. The solid curves show runs

where for each positive patch first one patch was extract from random positions in the

background and then in a bootstrapping run, again the same amount of hard negative

samples was collected, such that the final ratio of negative to positive samples is 2 : 1.

The final detectors where trained from scratch on this augmented dataset. The dashed

lines show runs where for each positive patch two negatives were randomly extracted

from negative training images right from the start and no bootstrapping was performed.

The plots show that taking more data only slightly increases the overall perfor-

mance. Also, when taking more data, trees have to be trained deeper (additional ex-

periments in Section 3.6.1.3) to differentiate well, especially if the data in the leaf nodes
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Figure 3.5: Influence of the number of patches extracted from the training images of
on the detector’s performance on the three test sets. Taking only 2 patches per image
already shows good performance that can be increased only slightly by cropping out
more patches. Bootstrapping has a big positive influence on TUD-pedestrian. On the
other two sequences, performance is reduced a little, although without bootstrapping
(dotted lines) the variance is slightly higher.
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is post-processed to reduce the number of voting elements (additional experiments in

Section 3.6.1.7). It has to be mentioned that, although taking only 2 patches from an im-

age seems to be very little, the dataset was created by adding 3 randomly scaled versions

of each image, as described above. Thus, in fact 8 patches are taken from each image.

This is still a quite low number, which demonstrates the power of ISMs to synthesize

new detection from a relatively low number of input patches.

Bootstrapping has a huge positive impact on the performance on TUD-pedestrian,

with an increase of over 5% for the smallest dataset and still more than 2% for the best

performing setup. Also in tests on FDDB an improvement of over 10% precision at 200

false positives was observed. However, on TUD-crossing and TUD-campus, where the

backgrounds are not that diverse and relatively easy, bootstrapping even has a slightly

negative impact, clearly showing the diversity of the test sequences.

3.6.1.3 Tree Depth

Figure 3.6 shows the effect of varying the maximal depth of the trees of an object detector

trained on the TUD pedestrian dataset on the three related test sequences. All other

parameters are kept fixed to values that in total generate the best known results. In

this setup, the results consistently improve with increasing tree depth, until around 30.

Beyond that the improvements are not statistically significant.

Since the maximal tree depth directly influences the number of samples and, thus,

the statistics in the leaf nodes, it also has essential influence on the behaviour of many

other parameters. Thus, most of the evaluations below also include variations over this

parameter. Overall, however, a maximal depth of 50 performs best across a wide range

of other parameter settings.

As stated above, most of the evaluations in this chapter judge the resulting detectors

based on the area under the curve (AUC) of its precision-recall curve (PRC). While being

an established, widely adopted and useful measure, it summarizes and thus hides the

actual shape of the PRC. This is necessary for large experiments, since simply show-

ing all PRCs of several runs of several setups would just result in bloated and confusing

charts. However, when going back to the individual PRCs, there is a trend visible, show-

ing that forests with deeper trees, despite of having a bigger AUC score and holding

good precision up to higher levels of recall, tend to produce more high scoring false

positives. This is shown in Figure 3.7, for a standard setup. Figure 3.7 (a) shows mean

PRCs for varying maximal tree depth. The curves for depths 50 and 100 clearly show

spikes right at the beginning in the upper left, caused by high scoring false positives.
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Figure 3.6: Tree Depth. Accuracy (Area Under the Curve) of a pedestrian detector on
the three test sets of the TUD pedestrian database. The x-axis indicates the maximum
depth at which splitting the nodes of the trees is stopped and leaf nodes are created.
Down to a maximum depth of about 30 the accuracy increases significantly, at least for
the pedestrian dataset. On the campus and crossing sequences, the background is static
and much less cluttered. Beyond a maximum depth of 30 the results are saturated and
more or less stable (within the region of confidence of the estimate). Mean and variance
are calculated over 15 runs for each setup.



58 Chapter 3. Algorithmic Framework

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

TUD pedestrian

max depth=15, mean AUC 81.25 (+/- 1.91)
max depth=20, mean AUC 87.25 (+/- 2.34)
max depth=30, mean AUC 89.53 (+/- 1.35)
max depth=50, mean AUC 89.30 (+/- 1.55)
max depth=100, mean AUC 88.12 (+/- 1.47)

(a) ROC curves

(b) (c)

(d) (e)

Figure 3.7: PRC curves of Hough forest detectors trained to different maximal depth
levels. Deep trees result in detectors with high AUC, but tend to produce few very high
scoring false positives. Sample images of such false positives in (b)-(e) show that many
of them are on a pedestrian, but on a slightly too small scale.
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Figures 3.7 (b)-(e) show examples of such false positives, to which the detector assigns a

very high confidence. All of these samples show detections that actually are on a person,

but in a slightly too small scale, such that the PASCAL overlap with the ground truth is

below 50%. The detection in 3.7 (b) is even the strongest of all responses of the respective

detector on the whole database. The reason for this behaviour is not entirely clear. Train-

ing deeper trees results in less votes per leaf node (without leaf node post-processing by

meanshift) and thus sparser votemaps. This, however, does not completely explain this

bias towards smaller scales.

3.6.1.4 Number of Trees

As stated above, in the beginning of Section 3.6, the number of trees in the ensemble re-

quired for a good performance of a Hough Forest is quite low, compared to the number

of trees usually employed in Random Forest classifiers for standard machine learning

tasks. This is demonstrated in Figure 3.8, which reports the performance of a person de-

tector on the three test sequences of the TUD pedestrian, campus and crossing database.

It shows that there is a big improvement from taking only one tree to about 10, but from

there on the performance is more or less saturated. In fact, beyond 9 or 10 trees the

improvement is not statistically significant.

These results are also in accordance with the observations of other researchers.

Fanelli et al. [50, 51] use 15 trees in their experiments on head detection and pose es-

timation, and only 7 trees in [52], working on consumer depth camera data, a setting

that allows for real-time performance of their framework. Shotton et al. [140] only use

3 trees although improvements are visible for up to 6 trees, which is the maximum that

was tested. Again, run-time requirements are the main driving force to take such a low

number of trees and the evaluations show that taking more trees does not increase the

performance enough to justify the higher computational effort.

In all further experiments, as in the original Hough Forests [66], 15 trees are used,

since it gives the best results and evaluation speed is not the main target here.

3.6.1.5 Minimal Number of Samples per Node

Figure 3.9 shows the effect of setting a lower limit on the number of samples in a node.

Generally, it improves the performance of the otherwise best performing setups with

histogram entropy as node split test evaluation criterion. On the TUD pedestrian and TUD

crossing datasets this improvement is also statistically significant. On TUD campus, the



60 Chapter 3. Algorithmic Framework

1 3 5 7 9 11 13 15

0.4

0.6

0.8

number of trees

A
U

C
m

ea
n

an
d

st
d

10 15 20 30 50 100

1
3
5
7
9

11
13
15

maximal tree depth

nu
m

be
r

of
tr

ee
s

(a) TUD campus

1 3 5 7 9 11 13 15

0.2

0.4

0.6

0.8

number of trees

A
U

C
m

ea
n

an
d

st
d

10 15 20 30 50 100

1
3
5
7
9

11
13
15

maximal tree depth

nu
m

be
r

of
tr

ee
s

(b) TUD crossing

1 3 5 7 9 11 13 15

0.2

0.4

0.6

0.8

1

number of trees

A
U

C
m

ea
n

an
d

st
d

10 15 20 30 50 100

1
3
5
7
9

11
13
15

maximal tree depth

nu
m

be
r

of
tr

ee
s

(c) TUD pedestrian

d = 10 d = 15 d = 20 d = 30 d = 50 d = 100

Figure 3.8: Number of trees: Left: AUC depending on the number and the maximal
depth of the trees. Right: Statistical significance of the results. Each column represents
the same maximal depth for different numbers of trees. The brightness indicates the con-
fidence. On blue colored fields the performance of this setup is statistically significant
(P < 5%) worse than the best setup. Generally, the performance constantly improves
with the number of trees (no overfitting). However, above 9 trees (13 for campus) the
improvement is not statistically significant anymore. This trend is independent of the
maximal tree depth and is consistent over the three test datasets.
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Figure 3.9: Setting a minimal number of samples per node generally improves the
accuracy of the overall detector. The improvement is significant on the TUD pedestrian
and crossing datasets with histogram entropy as split test evaluation criterion, even for
the best performing setting with a maximal tree depth of 50 (P = 2.65%). On the TUD
campus dataset, however, curiously the performance gets slightly reduced.
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performance is slightly reduced, however the drop is not statistically significant and

might be an artifact of other elements of the detection pipeline on this dataset.

3.6.1.6 Regression Node Evaluation Criteria

The following experiments show the effect of the choice of one of the split test evaluation

criteria used to improve the quality of the regression in each node. Figure 3.10 shows

mean and standard deviation over 15 runs of the AUC of detectors trained with the

standard setup. The three curves show the behavior of the three different variants over

different levels of maximal tree depths. As a first result, the reduction-in-variance criterion

always performs worse than the other two. The Gauss entropy criterion reaches the

performance of the histogram entropy, but only for deeper trees. The histogram entropy

obviously manages to find better splits earlier on, in higher levels of the trees.

Besides evaluating the performance on a test set, another useful tool to analyze

the trees is to look at the distribution of samples over leaf nodes in the various depth

levels. This information is visualized in Figure 3.11. With the histogram entropy criterion

much more nodes reach a stopping criterion in higher levels of the tree. In fact, with

the standard setup (database of 32k positive and 64k negative patches and a minimal

number of 20 samples in a node to continue splitting), the trees never grow deeper than

to level 39, whereas with the other two criteria, at a maximal tree depth of 50 there are

still a few nodes that contain over 200 samples. The amount of such nodes and their

size can be seen in Figure 3.12, showing a histogram of the mean number of nodes in

the trees at a given depth and containing a certain number of samples. For instance,

the entry marked with a star in the right plot of Figure 3.12 (a) denotes that there are

on average 15.12 nodes in the final tree level that contain between 21 and 47 samples.

Besides delivering worse estimates, these large leaf nodes also increase the runtime of

the voting process, if the information in the leaf nodes is not post-processed, as shown

in Section 3.6.1.7.

3.6.1.7 Mean Shift Post-Processing of Leaf Nodes

The effect of performing meanshift over the samples in each leaf of the trees and only

keeping up to 3 modes of the resulting clusters is demonstrated in Figure 3.13. It shows

that a quite significant speedup can be achieved for small trees with nodes containing

many offset vectors that need to be considered during voting, yet accompanied by a

drop in performance. However, for trees with a maximal depth of 20 to 30, which show
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Figure 3.10: Comparison of split test evaluation criteria. Reduction-in-variance always
performs worse than the other two. Forests trained with the Gauss entropy criterion
reach the performance of those trained with histogram entropy, but need deeper trees to
get to this level.
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Figure 3.11: Leaf node count of forests trained with different split test evaluation criteria.
With the histogram entropy criterion many more leaf nodes can be created higher up
in the tree. None of the leafs extends beyond a depth of 39, while with reduction-in-
variance trees are still not finished at the maximal depth of 50.
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Figure 3.12: Leaf node count of forests trained with different split test evaluation criteria.
The z-value of each entry in the mesh represents the mean number of leaf nodes at the
corresponding depth in the trees and the corresponding number of samples in the node.
For instance, the position marked with a little star in the right plot of (a) indicates
that there are on average 15.12 nodes at the final depth of 50 that contain between 31
and 47 samples. The columns show distributions of negative (left) and positive (right)
samples. Main observation: With the histogram entropy criterion the splits are much more
balanced, such that leaf nodes are created much earlier. Actually, no branch extends
above level 39. For further details, see the text in Section 3.6.1.6.
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the best overall performance, the gain in test time performance becomes quite small,

while the performance is basically unchanged.

These findings are different from those in [139, 140], where meanshift in the leaf

nodes always improves the results over taking all offset vectors in the node. This might

be due to the chosen split test evaluation criterion, which assumes a unimodal distri-

bution and, in contrast to the original formulation in Hough Forests, ignores samples

far from the mean, treating them as outliers. Those outliers are then removed by the

meanshift clustering.

The results above, in contrast to the related work, were created with the novel his-

togram entropy criterion, which has a big influence on the distribution of positive sam-

ples in the leaf nodes. This observation motivates to also compare the behaviour of

the meanshifting on trees that were created using the reduction-in-variance or the Gauss

entropy criterion. Evaluations for these criteria are shown in Figures 3.14 and 3.15.

Generally, the trends are the same with reduction-in-variance. However, shallow trees

without meanshifting get even slower by a factor of more than 10. With meanshifting a

lot more performance is lost up to a maximum tree depth of 50, compared to the trees

trained with the histogram entropy criterion, for which a depth of 20 is sufficient to reach

the maximal performance. This indicates that the reduction-in-variance does not manage

to split up the positive samples early and creates huge positive leaf nodes if stopped in

shallow depths. Additionally, the distributions of samples in those large leaf nodes seem

not to be suitable for meanshifting, most probably because of the unimodality assump-

tion, without outlier handling, in the split criterion. With Gauss entropy the increase in

runtime for shallow trees is by a factor of 5 to 7. Thus, its better than reduction-in-variance

in finding good splits early, but still a lot worse than histogram entropy. However, with

increasing depth, for both criteria the speedup for non-meanshifted trees is consider-

able. At a depth of 30 not-meanshifted forests already reach the speed of those with

meanshifting and the performance is still considerably better.

To conclude, in the setup presented here, with mean shifting post-processing there

is little to gain in detection time and much to lose in precision. Training deeper trees

and keeping all offset vectors is generally the better option. The increase in evaluation

time caused by deeper trees is insignificant compared to voting with all offset vectors

in a large leaf node stopped at a low tree depth. Mean shifting the offset vectors in

those large leaf nodes generally leads to a quite significant drop in performance. Trees

trained with histogram entropy suffer the least in this setting. For the best performing

configurations, however, mean shifting in general does not have a large influence.
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Figure 3.13: Effect of meanshifting the offset vectors in the leaf nodes on the detector
performance for forests trained with the histogram entropy criterion (see Sec. 3.3). Left
column: Area Under the Curve (AUC) depending on the maximal depth of the trees.
Right column: AUC vs. detection runtime per image, with different maximal tree depths
indicated by the color of the markers. When using the meanshifting, performance is
traded off vs. detection accuracy. See text in Section 3.6.1.7 for more details.
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Figure 3.14: Effect of meanshifting the offset vectors in the leaf nodes on the detector
performance, depending on the maximal depth of the trees. In contrast to Figure 3.13
the forests were trained with the reduction-in-variance split node evaluation criterion. The
trends are the same as in Figure 3.13. For more details, see the text (Sec. 3.6.1.7).
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Figure 3.15: Effect of meanshifting the offset vectors in the leaf nodes on the detector
performance. In contrast to Figure 3.13 the forests were trained with the Gauss entropy
split node evaluation criterion. Here, shallow trees without meanshifting get much
slower (by a factor of 5 to 7), because the Gauss entropy criterion does not manage to
split up the samples early and, thus, creates huge positive leaf nodes. With increasing
depth the speedup is considerable. At a depth of 30 not-meanshifted forests already
reach the speed of those with meanshifting, at a much higher level of performance.
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3.6.1.8 Evaluation Grid

Another way to speed up the detection, which has not been mentioned so far, is to

evaluate the forest on a coarser grid, instead of every patch, densely sampled from the

image. Figure 3.16 shows the results for different evaluation grids ranging from dense

to a stride of 12 in horizontal as well as vertical direction.

The performance continuously goes down the coarser the grid gets. However, up

to a grid size of 4 × 4 the drop is quite moderate (about 1% of mean AUC) and not

statistically significant. Thus, if runtime is crucial trading-off 1% performance against a

speedup of 16 might be a good deal.

The performance drop is a little more pronounced than reported in related work

of [42] and [34], where practically no loss is observed for a grid of 4 × 4, probably

because there the evaluation is over a longer pipeline with more post-processing, such

that the precision of the voting itself is not that important. Also, the task is a little

different, because no foreground/background estimation is performed, but only the

regression of landmark locations in a relatively small neighborhood of the real location.

However, other factors may influence the performance of different grid sizes, such as

the resolution at which objects are detected, the size of the patches or the smoothing

and filtering applied to the input image.

3.6.1.9 Non-Maxima Suppression

Section 3.5 discusses two different versions of non-maxima suppression in the Hough

spaces. It was argued that performing the non-maxima suppression in a stack of Hough

spaces resized to a common reference scale, instead of a pyramid of scales, is only

viable for a small range of scales. Obviously, this raises the question, why the method

of fusing Hough spaces into a common reference resolution was chosen in [66]. Thus, in

the following experiment the effect of choosing on of the two aforementioned methods

is demonstrated.

Figure 3.17 shows results for the TUD sequences. On TUD-pedestrian the NMS in

the Hough space cube, as proposed in [66], outperforms the NMS in the Hough space

pyramid. The main reason for this result is that there is a lot of noisy background in

the images. On high resolution scales the fine structures and details result in quite

some noise in the Hough space, leading to many false positives. Downsampling to a

common, low resolution reference scale simply smooths this evidence out. Additionally,

being conservative about what to suppress around a maximum is not a good choice on
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Figure 3.16: Performance of different evaluation grid sizes. The forest is evaluated
only on every x-th pixel. Thus, the speedup of the evaluation and voting phase is x2.
The performance drops continuously. However, up to a grid of 4× 4 the loss is quite
moderate (approx. 1%).
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Figure 3.17: Comparison of simple Non-Maxima Supression variants. Hough spaces for
different scales are either resized to a common reference scale (Cube NMS) or processed
as a pyramid of scales (Pyramid NMS). On the TUD pedestrian sequence, the former
works better. For further details see the text.
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this database, because none of the depicted pedestrians appear close together. Thus, it

is always safe to erase a little more of the neighborhood, which also helps to remove

spurious false positives. On the other two sequences the background is much cleaner

and the pedestrians appear very close to each other, even overlapping each other heavily.

Thus, the non-maxima suppression in the full Hough space pyramid increases the recall

by erasing smaller portions without increasing the false positive rate.

To conclude, the approach to resample the Hough spaces of each individual scale to

a common reference resolution can in some cases produce considerably better results.

However, this depends on the specifics of the test data. Generally, the more generic

method of dealing with the full scale space pyramid of Hough spaces performs better

and is more flexible in the number of scales that need to be tested for each individual

image.

One parameter that turns out to be quite essential is the width of the Gaussian kernel

used to filter the raw Hough maps, introducing the tolerance to slight translations and

scale changes of the local patches. Figure 3.18 shows an evaluation of this parameter

for the three TUD test sequences and both NMS variants. Interestingly the performance

varies on the different test sequences and is also different for the two methods. For

Cube NMS the resizing to a common reference frame effectively constitutes a second

smoothing process. Thus, the width of the kernel for the final smoothing can be smaller

(σ = 2 delivers the best result). For the NMS in the full pyramid the smoothing must

be stronger. Additionally, the smoothing of the resized Hough spaces in the Cube NMS

actually results in a different smoothing of the different scales. Higher resolution scales

virtually get smoothed with a larger kernel. This, again – although not theoretically

underpinned – leads to better results. Also notice, the smoothing was only performed

in x and y of the Hough maps, not in scale. The training data was already sampled

from slightly different scales. Thus, the evidence already gets spread over several scales

during the testing and smoothing in scale does not improve the performance.

3.6.1.10 Comparison to the State-of-the-Art

To conclude this experimental section, the best setup determined in the evaluations

above is compared to the state-of-the-art on the tasks of pedestrian detection on TUD-

pedestrian and face detection on FDDB. Results on ETHZ-cars are presented in Section 4.3.

Figure 3.19 shows results on pedestrian detection on the three test sets of the TUD-

pedestrian dataset. Hough Forests trained as proposed in this chapter are compared to
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Figure 3.18: Variations of the Gaussian smoothing of the raw Hough maps. Left column:
non maxima suppression in a stack/cube of Hough spaces. Right column: NMS in the
pyramid of Hough spaces. The stacking of the Hough spaces into a common reference,
already performs some smoothing. Thus the subsequent smoothing can have a smaller
radius.
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Figure 3.19: Detection performance on the TUD test sets. Hough Forests are compared
to the publicly available implementations of Aggreated Channel Features (ACF) [43]
and the Deformable Part Model (DPM) [56]. Light thin lines are individual runs, thicker
solid lines are mean curves. The Hough Forests are trained as presented in this thesis,
with histogram entropy and the best determined parameter settings. The plot shows, that
the Hough Forests are competitive with the state-of-the-art on this dataset.
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Figure 3.20: Detection performance on FDDB. Compared methods are HOG+SVM [85],
Jain and Learned-Miller [76], Kalal et al. [81], Li et al. [97], Mikolajczyk et al. [107],
Subburaman and Marcel [144], Viola and Jones [156], Zhu and Ramanan [162]. The
Hough Forests are trained as presented in this thesis, with histogram entropy and the
best determined parameter settings and match the state-of-the-art.

Aggregate Channel Features (ACF) [43]1 and the Deformable Part Model [56]2. For both

methods the current publicly available code was used and trained on the same data as

the Hough Forests. The evaluation shows that Hough Forests are competitive with the

two state-of-the-art methods on these test sets. For the ACF, which is considerably worse

on TUD pedestrian and TUD crossing, it has to be mentioned that the parametrizations

are taken from the example shipped with the code for pedestrian detection on the Inria

dataset. It is completely tuned towards speed and thus training and testing are really

fast (training in about 3 minutes, testing with 4fps for 720 × 567 images on a single

core). Different parametrizations, thus, might make it slower but achieve better detection

performance. The Deformable Part Model achieves good recall on this dataset, however,

at the cost of accuracy.

The running example in all experiments above was pedestrian detection, as most

related approaches were demonstrated for this task. Hough Forests, however, are by

no means tuned to this task. To show the generality of the method and also of the

determined parameter setup Figure 3.20 shows results for face detection. Hough Forests

trained on mostly frontal views (±35◦) achieve a performance that is comparable to the

1http://vision.ucsd.edu/~pdollar/toolbox/doc/
2http://www.cs.berkeley.edu/~rbg/latent/

http://vision.ucsd.edu/~pdollar/toolbox/doc/
http://www.cs.berkeley.edu/~rbg/latent/
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state-of-the-art. It comes close to the work of Li et al. [97], even slightly outperforming

it for low values of tolerated false positives. Although being a generic object detection

approach, it even gets close to the performance of the work of Zhu and Ramanan [162],

which explicitly targets multi-view face detection, with hand designed models and quite

a large set of components for individual views from frontal to profile.

3.6.2 Conclusion

This section presented an extensive evaluation of different setups of Hough Forests

on benchmark data. The influence of parameters and choices of different variants of

the algorithm were discussed and shown in experiments. To conclude, the following

summarizes the most important findings.

• In the tested scenarios 10 to 15 trees are enough to achieve good performance.

• Setting a minimal number of samples per leaf node generally results in slightly

more robust results.

• Setting the maximal depth of the trees too low severely degrades the performance.

However, the optimal tree depth depends of several factors such as the size of the

database and the split node evaluation criteria, influencing how balanced the trees

are. If no validation set is available, also looking at the distribution of samples

over nodes can give a good indication for a good tree depth.

• The results of aggregating the information in the leaf nodes by extracting only

modes of the distribution by meanshift were not convincing in the tested settings.

The slight speedup during voting does not justify the drop in performance and

almost vanishes for the best performing setups with deeper trees. It probably

would be worth revisiting the concept if really huge databases are used for which

training deep enough trees is not an option. Another possible direction for future

investigations also are other ways to assign a weight to the extracted modes.

• Using histogram entropy as the regression node evaluation criterion generally deliv-

ers the best results over all tested setups. When trees are trained deep enough and

the number of samples per leaf node gets low, the assumption that the distribution

of the offset vectors is unimodal holds. Thus, the influence of the evaluation cri-

terion is reduced. However, reduction-in-variance still performs slightly worse than

the two other criteria. Additionally, with histogram entropy shallower trees, which

are faster to evaluate, are sufficient to reach top performance.





4
Discriminative Hough Forests

The learning procedure of Implicit Shape Models considers each of the many sub-parts

extracted from the target objects separately, as discussed in Section 2.5. Occurrences of

parts of every type on the training images (visual codebook entries in ISM, leaf nodes

of decision trees in Hough Forests) are recorded and models of their spatial distribution

with respect to the object center are calculated. Additionally, the probability for each el-

ement to stem from the object as opposed to somewhere in the background is estimated.

During testing, each patch from the input image is matched to the codebook. The infor-

mation stored there is used to cast votes for potential object center, again independently

from all other patches. This completely independent treatment of individual parts leads

to a very flexible model, allowing detection of new objects in configurations that have

not been seen in the training data. However, on the other hand, not looking at the whole

picture and analyzing which parts appear jointly in a valid object configuration essen-

tially leads to two problems: (a) The flexibility to combine arbitrary local features from

all training images to new object configurations might (and does) also result in invalid

constellations producing highly confident detections in random noisy backgrounds, and

(b) it ignores the relative importance of individual voting element contributions.

To address these problems, in this chapter, we investigate the additive fusion of ev-

idence in the generalized Hough voting process and the constellation of local object

parts that jointly vote for an object. We formulate the contribution of each individual

voting element to the score of an object hypothesis as a new descriptor for the hypothe-

sis. These descriptors can be used in a discriminative classification framework in order

to distinguish correct from wrong constellations. Several kernels are evaluated for the

classification. Additionally, a linear classification model allows for using the discrimina-

tive weights learned during training directly in the voting process. This approach brings

79
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back the holistic view on the whole object, without completely sacrificing the robustness

to occlusions, gained from the local, bottom-up method. The experimental evaluations

demonstrate significantly improved results for both approaches.

4.1 Related Work

In [101] a formulation of ISM was presented, with a generative codebook of features

extracted on image contours. A max-margin formulation was introduced to learn dis-

criminative weights for each voting element. For the calculation of the activation of

each codebook entry the spatial configuration was considered. However, weights were

learned only per codebook entry, disregarding the relative position on the object. Addi-

tionally, the weights were constrained to be positive.

The Principled Implicit Shape model (PRISM) [91] introduces a weighting scheme

for individual words. It was argued that the weighting could be defined by an arbitrary

function, which would thus also allow for discriminative training. However, the specific

model employed for the voting then defines the weights by a Gaussian mixtures model,

which again only casts positive votes. The flexibility in choosing a weighting function

is only exploited by globally scaling each mixture model, such that the maximum vote

over the space is set to the probability of the corresponding visual word to belong to the

foreground.

Furthermore, Hough Forests do not only assign a test patch to different generative

codebook entries, but, as we will explain in more detail in Section 4.2.1, estimate a

similarity to each individual training patch. In contrast to the two methods mentioned

above, we explicitly make use of this fact by calculating a feature vector expressing the

contribution of each single training sample to a detection and thus giving the classifier

more fine grained control.

In [124] the activation of individual voting vectors by a detection hypothesis was

determined. A Support Intersection Kernel was introduced to compare such descriptors.

As will been shown in Section 4.2.2, this definition is suitable for finding the most similar

training example, but not to discriminate between correct and false detections.

4.2 Method

To facilitate understanding of the following derivations, only the essential parts of the

notation used to describe Hough Forests, presented in Section 3.1, is repeated here.
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Hough Forests model an object as a collection of a large number of local features

(image patches) Pi = {Ii, di, yi}. Ii is the appearance description of the patch. The

label of the patch, given by yi, specifies whether a patch was extracted from a posi-

tive or negative training image. Each of the positive local patches additionally stores

an offset vector di pointing to the center of the object. Over this collection of input

training patches Hough Forests build an ensemble of hierarchical codebook structures

F = {Tt}T
t=1, where Tt is a randomized decision tree [23], and T is the number of trees.

The training of Hough Forests proceeds as described in Section 3.1.3.

During testing, for each test image I , small local patches P(y) with appearance I(y)
are densely extracted at all locations y and mapped onto the codebook entries, i.e., the

leaf nodes. Each leaf L of tree Tt stores the set of offset vectors DL of all the training

patches that were routed to that node. In the following, Dt(y) denotes the set of offset

vectors stored in the leaf node of tree Tt that the test patch P(y) reaches, and Ct(y)

is the ratio of positive to negative training samples that reached this leaf node during

training (i.e., the probability foreground for the test patch at y, according to tree Tt).

Following the generalized Hough transformation procedure, each local patch in the test

image casts votes for an object center. These votes are accumulated in the Hough space

and local maxima indicate prospective object centers.

4.2.1 Activation Vector

Considering only one input location y and one decision tree Tt the score of an object

hypothesis at location x is defined as (compare Equation (6) in [66])

S(x|y; Tt) =

 1
|Dt(y)|

∑
d∈Dt(y)

1
2πσ2 exp

(
−||(y− x)− d||2

2σ2

) · Ct(y) . (4.1)

By setting

wt(y) =
1

2πσ2
Ct(y)
|Dt(y)|

, (4.2)

this can be simplified to

S(x|y; Tt) = wt(y)
∑

d∈Dt(y)

exp

(
−||(y− x)− d||2

2σ2

)
. (4.3)
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To further simplify the notation later on, instead of summing over all offset vectors

in the set stored with one leaf node, we can just sum over all training patches and check

if the according offset vector is contained in that set:

S(x|y; Tt) = wt(y)
N∑

i=1

[di ∈ Dt(y)] exp

(
−||(y− x)− di||2

2σ2

)
, (4.4)

where [·] is the Iverson bracket (i.e., the expression is 1 if vector di is in the set of vectors

Dt(y) and 0 otherwise).

Integrating the information of all decision trees {Tt}T
t=1 and of all patch locations y

in the test image gives the total score for an object hypothesis at location x:

S(x) =
∑

y

1
T

T∑
t=1

S(x|y; Tt) . (4.5)

By combining Equations (4.4) and (4.5) and rearranging the sums, the contribution

of a single offset vector di of patch Pi to this total score can be determined as

ai(x) =
1
T

∑
y

T∑
t=1

[di ∈ Dt(y)]wt(y) exp

(
−||(y− x)− di||2

2σ2

)
. (4.6)

We will refer to ai(x) as activation of the offset vector di for the hypothesis x. The

total activation vector recording the activations of all offset vectors for hypothesis x is

then given by A(x) = [a1(x), . . . , aN(x)]T. We additionally introduce the short notations

Aj = A(xj) and aj,i = ai(xj).

Thus, the score S(x) of a hypothesis x can be expressed in terms of the activations of

individual training patch offset vectors:

S(x) =
N∑

i=1

ai(x) . (4.7)

This formulation, in which each of the offset vectors from training is treated individ-

ually, also allows for a different interpretation of Hough Forests in the context of ISMs.

As stated above, in an ISM local features of the test image are mapped to codebook

entries; each of them either to only one codebook entry or via a weighting to a sparse

set of entries (soft assignment, e.g., [101]). Along with each codebook entry (generative

prototype) information of all associated training samples is summarized and then used
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Figure 4.1: Formation of an activation vector. (1) Patches are cropped from the training
images. (2) A Hough Forest is trained. Each patch from the training set ends up in one
leaf node of each tree. (3) Each patch of the input image is passed down all trees. All
training patches stored with that leaf node are used to cast votes for the object centers
weighted by the probability of being foreground. (4) The total amount of weight one
voting element (offset vector) contributes to a detection hypothesis (the total activation)
can be calculated by summing over all input patches and trees in the forest, according
to Equation (4.8). (5) Stacking the activations of all elements gives the activation vector
for hypothesis x. This vector can be seen as a descriptor of the detection hypothesis and
be used in further analysis.

for the voting. In a Hough Forest, a test patch is assigned a codebook entry (leaf node)

by each tree. This way the RF can be seen as uniform soft assignment to a fixed num-

ber of entries from individual sub-codebooks (one per tree). However, the leaf nodes

of all trees are just different partitions of the same set of all training patches. Thus, by

counting in how many of the trees the test patch ends up in the same leaf node as a

training patch, the Random Forest gives an estimate of the similarity to each individual

training patch, not only to the collection of training patches forming a codebook entry.

This is explicitly encoded by the activation of one offset vector by one test input patch

at y relative to the object hypothesis x:

ai(x, y) =
1
T

T∑
t=1

[di ∈ Dt(y)]wt(y) exp

(
−||(y− x)− di||2

2σ2

)
. (4.8)

The whole process of the formation of an activation vector is illustrated in Figure 4.1.
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Figure 4.2: Matching the activations (middle) of a low scoring false positive detection
(left) using the support intersection kernel [124]. Since the small area captured by the
back-projection is a perfect match, the distance to the training sample on the right is
smaller than many distances between true positive detections and their respective closest
training sample.

4.2.2 Classifying Valid Object Constellations

The activation vector can be seen as a descriptor of an object hypothesis. We can collect

descriptors of positive and negative examples in order to train classifiers to discriminate

between correct and incorrect detections.

In [124] a support intersection kernel was introduced. It induces a distance measure by

which the closest training sample for a given detection can be identified. This informa-

tion can, for instance, be used to transfer metadata such as the object’s pose from the

annotated training sample to the detection. However, this measure is not suitable to dis-

criminate between correct and incorrect constellations, since it is specifically designed to

also match detections with only a few active voting elements in order to handle strong

occlusions. Thus, also for low scoring false positive detections often perfect matches are

found, as illustrated in Figure 4.2.

We therefore propose to use a histogram intersection kernel. Given two activations

A1 and A2, it is defined as

K(A1, A2) =

∑
i min{a1,i, a2,i}

max {∑i a1,i,
∑

i a2,i}
. (4.9)

In the literature (e.g., [153]) intersection kernels are often defined without the nor-

malizing sum in the denominator of Equation (4.9). Thus, either the range of the values

in the histogram vectors has to be limited intrinsically to reasonable values, or the in-

dividual histograms have to be normalized (usually L1 normalization). Otherwise no

meaningful results can be obtained.
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In the case at hand, normalizing each activation vector individually is avoided. In

fact, normalization would increase the noise in low scoring detection hypotheses, with

very low activations of only a few offset vectors, and thus lead to similar problems as

with the support intersection kernel. On the other hand, without any normalization no

activation vector would ever be considered to be similar to a low scoring true positive

example. Normalization with the sum over the larger of the two activation vectors

returns similarity values in the well defined range of [0, 1], a similarity value of close

to 1 also for similar low scoring true positives, and low similarity for activations of the

same distribution but very different magnitude.

In the experiments training of Support Vector Machines on histogram intersection

kernels as well as linear SVMs to discriminate between valid and invalid object constel-

lations is explored. We collect a set {(Aj, lj)}M
j=1 of activation vectors Aj = A(xj) from

locations xj in the set of training images and assign them a label lj = 1 if there is an

object in the ground truth at xj and lj = −1 for locations xj in the background or on

negative training images. The output of the classifier learned on this training set then

defines the new score of the detection hypothesis.

4.2.3 Using Discriminative Weights in the Voting Process

In the last sections we have shown how to form activation vectors and learn classifiers in

order to improve the total score of a hypothesis. To get the activation vector A(x) for one

object hypothesis location x we need to sum over all patch locations y. Repeating this

for each location x in the input image would be very inefficient. Therefore, the Hough

Forests algorithm, as presented in [66], calculates the score for all hypotheses jointly in

one run over all input patches. Each patch is passed down the trees and for each offset

vector in the resulting leaf nodes its weight is added to exactly the relative hypothesis it

points to (i.e., y− d). The full Hough map is calculated by filtering the result once with

a Gaussian.

Since each offset vector contributes individually to the total score, instead of calcu-

lating an unweighted sum discriminative weights can be introduced:

Ŝ(x) =
N∑

i=1

wiai(x) = wTA(x) . (4.10)

Learning these weights from training data in a max-margin setup in order to opti-

mize the final detection scores leads exactly to the linear SVM formulation as proposed



86 Chapter 4. Discriminative Hough Forests

in Section 4.2.2. However, as confirmed by experiments, to obtain good classification

performance, we cannot train directly on Aj, but need to normalize each dimension of

the data to zero mean and unit variance. Thus, the weight vector resulting from the

SVM training (which is denoted as w̃) cannot directly be used in Equation (4.10) but

leads to a score defined as

SSVM(x) =
N∑

i=1

w̃i
ai(x)−mi

si
, (4.11)

where mi and si are the mean and standard deviation of the activation of each vector over

the training data. In order to use the discriminative weights learned in the last section

directly in the voting process, such that the Hough map reflects the final score, we need

to associate a weight with each individual offset vector di. Looking at Equation (4.11)

we see that

SSVM(x) =
N∑

i=1

w̃i
ai(x)−mi

si
=

N∑
i=1

w̃i

si
ai(x)−

N∑
i=1

w̃i

si
mi . (4.12)

The last term is a constant offset that can be added after the voting. Thus, we can set

wi =
w̃i
si

to receive the discriminative weights as defined in Equation (4.10). Using the

definition of ai(x) from Equation (4.6) and rearranging the terms, we see that

Ŝ(x) =
N∑

i=1

wiai(x) =
∑

y

T∑
t=1

∑
di∈Dt(y)

wiwt(y) exp

(
−||(y− x)− di||2

2σ2

)
. (4.13)

Thus, the final score map can be obtained during the voting process by adding a weight

of wiwt(y) to the hypothesis at x = y− di for each activation of di by a patch at y and

Gaussian filtering of the result.

4.3 Experiments

The performance of the proposed method is demonstrated on two different object de-

tection data sets, namely TUD-pedestrian [6] and ETHZ-cars [92], introduced in Sec-

tion 3.6.1.1. Both contain quite challenging images, where objects are captured under

different poses and lighting conditions and also show some occlusions. The goal of the

experiments is to show the relative improvement of the approach compared to the stan-

dard Hough Forest [66] without the proposed discriminative weighting of the voting

vectors.
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Training

In all experiments the basis is an implementation of Hough Forests as presented in

Chapter 3, using the same patch representation, split tests and parametrization as in the

original Hough Forest [66]: 15 trees, with a maximal depth of 15, reduction-in-variance

offset vector regression criterion, minimal number of samples per node = 20, splitting is

stopped if nodes are purely negative, whereas nodes that only contain positive patches

are split on the offset vector regression criterion until the maximal depth, or the minimal

number of samples per node is reached.

In order to collect activation vectors of positive and negative examples, standard

Hough Forest with uniform weights are evaluated on the training images. The evalu-

ation of the resulting detection hypotheses gives the label of the activation vector. For

the evaluation of the performance of the Hough Forest we use the PASCAL overlap

criterion (see Section 3.6.1.9) with a threshold of 0.5. For the labeling of the activation

vectors however, not the most confident detection with acceptable overlap is considered

as positive, but the one with biggest overlap, since that is the one that should get the

maximum confidence in the end.

As in [66] and described in Section 3.5, for handling of different scales, the feature

extraction and voting is run on a series of scaled versions of the input and the resulting

Hough maps are stacked into one 3D Hough space on which local maxima detection and

non-maxima suppression is performed. Due to the interpolation, the resulting detection

might lie between two of the tested scales. Thus, to collect the activation vectors the

input image is resized to the respective scale and the voting procedure is repeated, now

only recording activations for the target location.

As with all max-margin classification systems, proper bootstrapping is crucial to

obtain good test performance. Thus, several rounds of bootstrapping are run on a

validation set during learning of the SVMs. Additionally, a preliminary version of the

discriminative weights are used in a second run of the voting process, after which again

activation vectors are collected and several more rounds of bootstrapping are performed.

Bounding Box Estimation from Back-projection

The standard Hough Forest [66] delivers an estimate for the position and scale of objects

in a test image. The aspect ratio of the reported detections is the mean aspect ratio of

the bounding boxes from the training. If the aspect ratio varies heavily (such as for

front-/back- vs. side-views of cars) this parameter has to be estimated as well. The
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Figure 4.3: Precision/Recall curves for TUD pedestrians and ETHZ cars dataset. The
curves represent the performance of standard Hough Forests [66] (hough), linear SVM on
the activation vector (actv lin svm), histogram intersection kernel SVM on the activation
vector (actv histint svm), and Hough voting with learned discriminative weights (discr
weights hough).

activation vectors that are being collected already deliver the information from which a

better estimate of the bounding box can be derived. Similarly to [124], the bounding box

of the detection is estimated by determining where votes for the object came from (in

[124] this is called the back-projection). To increase the robustness to noisy votes from the

background, only pixels that contribute more than a minimum of 5% of the total score

to the detection are considered to be inside the object. The reported bounding box then

tightly captures everything above this threshold.

Results

Figure 4.3 shows the resulting Precision/Recall curves for all methods for the task of

pedestrian detection and car detection on the TUD-pedestrian and ETHZ-cars datasets.

All three proposed methods show significant improvements over the baseline. The post-

processing of detections with a histogram intersection kernel SVM on the activation

vector achieves an Area Under the Curve (AUC) of 91.5% on TUD-pedestrian and 97.4%

on ETHZ-cars, compared to 87.4% and 93.1% for the baseline. The linear classifier per-

forms on par with the histogram intersection kernel on TUD-pedestrian (91.4%) and only

slightly worse on ETHZ-cars (97.0%).

The Hough voting with discriminative weights also shows clear improvements over

the baseline (90.9% and 98.6%). On the ETHZ-cars it even outperforms the two post-

processing variants. The difference in the performance on the two datasets relative to
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Figure 4.4: Hough maps for example test images (left) from the TUD pedestrian dataset,
with discriminative weights (middle) and standard uniform weights (right). Note how
in the case of discriminative voting correct detection peaks are clearly pronounced while
background noise is significantly reduced.

the other methods may be attributed to the more complex background on the TUD-

pedestrian dataset. This could probably still be improved by further rounds of bootstrap-

ping. Notice, that the post-processing methods work on the output of the non-maxima

suppression after standard Hough voting and thus, can only increase the precision but

not the recall.

Figure 4.4 additionally visualizes some examples of Hough maps obtained from

voting with the learned discriminative weights and compares them to the results of the

baseline.
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4.4 Conclusion

In this chapter it was shown how to determine how much each voting element in a

Hough Forest contributes to a detection. This information is collected in an activation

vector of the detection. It can be seen as a description of the detection hypothesis. It

was shown how to collect sets of activation vectors and train classifiers to discrimi-

nate between correct and incorrect hypotheses, based on this descriptor. Additionally,

the weights for each voting element, learned for a linear classification model, can be

incorporated directly into the generalized Hough voting process. Thus, improved de-

tection hypotheses can be calculated at the same expense as in the standard Hough

Forest framework, without the need to extract and re-score activation vectors. The ex-

periments on two different object classes, namely pedestrians and cars, show significant

improvements over the baseline. Visual inspection of the voting maps created with

discriminatively learned voting weights shows much cleaner backgrounds and clearly

sharpened and pronounced peaks for correct object locations. This is also reflected in

the detection scores.



5
Implicit Shape Model Random Field

The goal of this chapter is to provide a framework for object detection that explicitly ad-

dresses the detection of overlapping objects. Implicit Shape Models (ISMs) and Hough

Forests particularly lend themselves for detailed reasoning about occlusions, because

the image is processed in a bottom-up manner and evidence for objects is gathered on a

per pixel level. Analyzing the inference process of ISMs, the central observation is that

every local element that looks like a part of an object can vote for multiple hypotheses

of where the center of the corresponding object could be. However, in a specific image

each local feature can only be part of one particular object and, thus, only the votes

agreeing on this one true can be correct. Thus, this chapter presents a novel method to

perform inference on ISMs that specifically aims at resolving those inconsistencies and,

thus, arrives at better detection results. For this purpose, a probabilistic approach in a

general random field setting is developed, which effectively detects object instances and

additionally identifies all local patches contributing to the different instances. A sparse

graph structure and a semantic label space are defined, specifically tuned to the task of

localizing objects. The design of the graph structure then allows for defining a novel

inference process that efficiently returns a good local minimum of the associated energy

minimization problem. A key benefit of the method is that it removes the need to set

a fixed range for local neighborhood suppression, as necessary for instance in related

non-maxima suppression approaches. The inference process implicitly is capable to sep-

arate even strongly overlapping object instances. Experimental evaluation compares the

method to state-of-the-art in this field on challenging sequences showing competitive

and improved results.

91



92 Chapter 5. Implicit Shape Model Random Field

(a) Training images (b) Test image

Figure 5.1: Problem Statement: During training patches are extracted from the positive
images. For each one, additionally, its relative offset to the center of the object is stored.
From those patches a codebook of visual features is created by grouping similar look-
ing ones, coming from similar places on the object. At run-time patches are densely
extracted from the test image and compared to the codebook entries. The yellow patch
matches a visual word that contains both of the red patches from the left. Thus, both
offset vectors are used to vote for potential object centers. However, only one of the votes
can be correct, since the central pixel of the yellow patch can only lie on one object. The
other vote is wrong and creates additional noise in the Hough space.

5.1 A Random Field for Object Detection

As starting point, we assume that we are given a codebook consisting of several visual

words, and that we can assign local features of a test image (e.g., a dense set of patches)

to the individual visual words. This functionality is provided by a Hough Forest, trained

as described in Chapter 3, although the method developed in this chapter is not limited

to this approach, but applicable to any kind of ISM. Additionally, each visual word

stores a set of training samples (patches) that were assigned to it. These patches carry

a label indicating if they appeared somewhere in the background (negative training

set) or somewhere on a positive training sample. Those from positive training samples

additionally store a relative offset vector to the corresponding object centroid. Given

this information, the ISM is able to provide pixel-wise probabilities p(y|xi) for having

a part of an object of category y at location i and a list of relative offset vectors to the

object centroid.

The overall goal of the method is to fuse the provided information of the ISM in a

probabilistically meaningful way, which jointly decides where in a test image instances

of the learned category are depicted and which local features are part of the individual

detections. The method is based on a random field formulation.

The core idea of the method presented in this chapter is to take the probabilistic for-

mulation of [11], and reformulate it to better fit the special case of object detection with
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Figure 5.2: Constructing a random field for object detection: The graph consists of a
set of nodes positioned at patches extracted at each pixel in the image (the patch plane)
and a coarser grid of nodes defining possible locations of detection centroids (detection
plane). Each patch node is connected to the detection nodes it could be part of, where
offset vectors stored in the implicit shape model define the connections’ likelihood. The
novel inference process jointly solves the problems of detecting all objects and uniquely
assigning contributing patch nodes to them.

Implicit Shape Models. One of the key insights of [11] was the following: An element

in the ISM can vote for multiple objects at different positions in the image, because it

was seen in training images on different locations relative to the object centroid. In one

particular input image, however, each of the pixels is only part of exactly one object.

This situation is illustrated in Figure 5.1. Thus, when solving the detection task we ul-

timately have to decide for each patch to which detection it belongs (or implicitly do

so).

This chapter introduces an algorithm to efficiently solve this problem. Section 5.1.1

introduces the underlying graph structure. An important part is the novel definition of

a semantic label space tuned to the specific task of localizing objects based on an ISM,

which is described in Section 5.1.2. Finally, in Section 5.1.3, the random field energy

minimization problem is defined and solved in Section 5.2.

5.1.1 Two-layer Graph Structure

Contrary to the generic formulation in [11], we make use of the fact that in an ISM an

element cannot vote for every detection hypothesis, but only for those that are reachable

with an offset vector. The offset vectors define a fixed set of detection nodes a patch can

interact with, relative to its position.

We thus define a two-layer graph structure, as illustrated in Figure 5.2. The Graph

G = (V , E) is defined by a set of nodes V and edges E connecting the nodes. The

set of nodes V consists of patch nodes P at an image layer and detection nodes D at
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a detection layer (i.e., V = P ∪ D). The patch nodes P = {p0, . . . , pwh} form a grid

spanning the whole input image, with one node per extracted local feature for the ISM.

In our case, this is the dense grid of pixels of the input image; w, h are width and height

of the image. The set of detection nodes D = {d0, . . . , duv} defines a coarser grid of size

u× v, where each dj specifies the center of a potential object detection.

Each patch node pi is connected by an edge epi ,dj ∈ E to every node dj that defines

a detection that pi could potentially be part of. This means, if the pixel coordinates of

patch pi, which we will denote as c(pi), lie within a hypothetical detection bounding

box centered at c(dj), then there is an edge epi ,dj connecting them. This is illustrated in

Figure 5.2 for one exemplary patch node.

Note that there are no connections between detection nodes in this graph. Such

relations could additionally, explicitly implement local neighborhood suppression, but

experiments showed that this is not required in this framework. Since patch nodes are

not allowed to contribute to more than one detection in the inference process, stronger

detections pull away evidence from nearby detections automatically. Thus, the method

does not require to fix a range for local neighborhood suppression as necessary in non-

maxima suppression methods, but is implicitly capable to separate even strongly over-

lapping object instances.

Using the graph G, the random field is defined, by associating a random variable

with each node (which will also be denote as pi and dj for simpler notation). Each

random variable can be assigned one of the labels of the label set L = {lbg, lfg, l0, . . . , ln}.
The label currently assigned to node v will be denoted as lv and the set of assignments

to all patch and detection nodes as lp and ld, respectively.

5.1.2 Defining the Label Set

The semantics of assigning one of the labels to a node, which is the essential character-

istic of the formulation presented here, is defined in the following way. Assigning the

background label lbg to a detection node (i.e., dj = lbg) means that there is no detection

at this position. Likewise, a configuration having dj = lfg specifies that there is an object

centered at c(dj). For a patch node pi = lbg signifies that at the center of the patch

c(pi) there is no object, but background. This does not imply that none of the detection

nodes connected to pi can be set to lfg, since the bounding box of a detection might well

contain some background pixels.

The crucial point of our framework is the meaning of the labels l0, . . . , ln. Assigning

one of these labels to a patch node indicates that this patch is part of a detection centered
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Figure 5.3: A patch pi centered at pixel c(pi) is connected to all detections it could
potentially be part of. The relative position on the grid defines the semantics of the
labels for this patch. For example, assigning label l2 to the patch would mean that it is
part of (votes for) a detection centered at the detection node (white) at position (1,-2)
relative to its closest detection node (dark blue).

on a specific detection node, specified as follows. As shown in Figure 5.3, the detection

node with the closest pixel coordinates to the patch (printed in dark blue) defines the

origin of a coordinate system of relative offsets in the detection grid. From the training

data, the maximal range of the offset vectors, stored with the codebook entries, can be

determined. This range defines a fixed rectangular area of detection nodes that a patch

could potentially vote for with its offset vectors. Within this area we reserve a separate

label for each detection node. Assigning this label to the patch means that it is part of

the corresponding detection. For an example, see Figure 5.3. Note that the set of labels

is the same for all patch nodes. However, the semantic meaning of label assignments

is spatially varying, since the label implicitly defines an assignment to different object

hypotheses depending on the location of the patch. For notational convenience, we

will denote the label that specifies that the patch at pi is part of the object centered on

detection node dj as l̂i,j.

5.1.3 Energy Function

Given an input image I and the graph structure as defined in Section 5.1.1, the probabil-

ity of an assignment of labels to all nodes, i.e., a total configuration of the random field,

can be written as

p(lp, ld|I) =
∏

pi∈P
p(lpi |I)

∏
dj∈D

p(ldj |I)
∏

epi ,dj
∈E

p(lpi , ldj |I) . (5.1)
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Taking the log of Equation (5.1) leads to the formulation of the energy function to be

minimized:

E(lp, ld) =
∑
pi∈P

ψpi(lpi) +
∑
dj∈D

ψdj(ldj) +
∑
epi ,dj

ψi,j(lpi , ldj) , (5.2)

where ψpi(lpi) = − log(p(lpi |I)) is the unary cost of assigning the label lpi to node pi,

ψdj(ldj) is the equivalent for detection node dj and ψi,j(lpi , ldj) is the resulting pairwise

cost. With these definitions, finding the objects in the image amounts to finding the

assignment of labels to all nodes that minimizes Equation (5.2).

5.1.3.1 Definition of Unary Potentials

Starting with the first term in Equation (5.1), p(lpi |I) represents the probability of as-

signing the label lpi to node pi, given the image data. Let xi be the appearance of the

local feature extracted around c(pi). By making the same independence assumption

as in [11], namely that the probability of a label on a patch only depends on its ap-

pearance xi, we can define the posterior probability of the labeling of a patch node by

p(lpi |I) = p(lpi |xi). This probability can be derived from the statistics collected in the

ISM as follows.

In order to get an estimate of how likely a detection at a certain position is, given

one patch, we have to sum up the voting weight cast by offset vectors that point from

the patch to that detection. As in [66], the patches should be allowed to move slightly

around their original offset position, accounting for small deformations of the object.

This is modeled by aggregating the weigths of all voting vectors by a Gaussian centered

at the detection.

This summing up of evidence for an object center around a detection node also has

a different interpretation. In order to achieve tolerance for small shifts of the patch,

we could also resample the training set and insert additional offset vectors pointing to

positions around the original centroid location, giving the same effect as the smoothing

with a Gaussian. Unfortunately, this smoothing or resampling introduces additional

virtual samples that change the ratio of positive to negative samples in the ISM statistics.

Thus, it is not possible to directly take the summed up voting weights at each detection

node as probabilities for the labels. Correcting for this bias would be a tedious task since

the amount of virtually introduced samples depends on the density of the detection grid

and the distribution of offset vectors.

Additionally, the statistics stored with the codebook are not completely reliable, as

for instance an entry with no single negative training patch would indicate zero prob-
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ability for a patch with this appearance to appear somewhere in the background. This

almost certainly does not reflect truth but is an artifact of insufficient training data.

Barinova et al. [11] bypass these problems, by setting the probability for assigning

background to a patch node to a constant chosen on a validation set. We take a different

approach, trying to make more use of the inexact but nonetheless valuable information

stored with the codebook entries. We take the probability of being foreground (pfgpi
)

estimated from the original ratio of training samples stored in the ISM and estimate

p(pi = lbg|xi) by taking it as input to the shifted sigmoidal function:

p(pi = lbg|xi) = 1− pfgmax
1 + exp(−α(pfgpi

− β))
. (5.3)

All parameters of this function can be estimated once on a validation set and are kept

fixed at pfgmax = 0.95, α = 10, β = 0.4. This procedure of limiting the foreground

probability to a maximum value of pfgmax can also be seen as combining the estimated

distribution with a uniform Dirichlet prior. The probabilities for the labels l0, . . . , ln are

then defined by taking the evidence gathered above for each detection node and scaling

it such that the maximum reaches 1− p(pi = lbg|xi).

The second term of Equation (5.1), p(ldj |I), encodes the probability for a label on a

detection node. This can be used to express a prior probability for a detection. However,

in practice by setting p(dj = lbg) = p(dj = lfg) = 0.5 no assumptions are made about

the distribution or frequency of detections. Detection nodes can thus be seen as auxil-

iary variables, collecting the information of its connected patch nodes via the pairwise

relations. All other labels are invalid for detection nodes, so their probability is set to 0.

5.1.3.2 Definition of Pairwise Potentials

The pairwise costs ψi,j(lpi , ldj) reflect the semantics of the labels for the relationship

between patch nodes and detection nodes. Figure 5.4 shows a simple example with one

exemplary patch node connected to three detection nodes. The tables on the left list

the costs for all different kinds of label configurations for one patch and its neighboring

detection nodes. The first row contains the unary cost for assigning each label to the

patch node ψpi(lpi), as defined above. The three separate tables below show the pairwise

costs for combinations of label assignments to the patch and each detection node. Each

has one row for the costs of assigning lbg and lfg to the detection node respectively. The

blue frames mark the column with the costs for assigning label l̂i,j to the patch, which

means that the patch pi is part of the corresponding detection dj.
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0 0 0
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0 00
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0 00
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Figure 5.4: A simple 2D example: each patch node connects to three detection nodes.
The table on the left shows all unary (first row) and binary costs for all possible labeling
combinations for one patch node pi and its associated detection nodes. Example shown
on the right: Let pi = l2 (i.e., patch pi votes for detection d3) and the detection nodes
are set to d1 = lbg, d2 = lbg, d3 = lfg; the total cost of the configuration is ψpi(l2) +
ψi,1(l2, lbg) + ψi,2(l2, lbg) + ψi,3(l2, lfg) = ψpi ,l2 + 0 + 0 + 0.

If detection and patch are both assigned to background, this is a valid combination

and the cost is 0. The same is true if a detection is set to background (dj = lbg) and

the patch is set to anything else but l̂i,j, meaning that it is not part of this detection.

Furthermore, switching the detection on (dj = lfg) and setting the patch to be part of it

()pi = l̂i,j also results in 0 cost. A patch being part of a detection at an inactive detection

node (i.e., pi = l̂i,j ∧ dj = lbg) is an invalid configuration resulting in a cost of ψptBG,

which we can set to ∞ (or in practical implementations to a very high cost). Conversely,

a patch assigned to background pi = lbg, in the range of an active detection dj = lfg,

adds a fixed cost ψbgInDet, derived from the probability that a pixel inside a detection

rectangle might be background, which can be estimated from the training data. This

expresses the fact that objects in the training and test data do not completely fill the

bounding box they are annotated with. This parameter also controls how much of an

object must be visible (not occluded) for a valid detection. Finally, from the point of

view of the detection, there is no difference if the patch is assigned to background or to

any other detection close by, so ψptE = ψbgInDet.

5.2 Inference

Since the pairwise costs, as defined above, fulfill the conditions of regularity [86], we

could, e.g., apply standard graphcut-based inference methods such as alpha expansion

or alpha/beta swap [21] to solve the labeling problem. However, generic solving al-

gorithms fail for the particular graph structure and definition of potentials. The main
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problem is that trying to change a single node, or even all nodes, to exactly one new

label can almost never result in a lower energy.

For example, as can be seen from Figure 5.4, if all nodes are assigned the background

label lbg, switching a patch node to any different label will result in adding the very

high cost ψptBG at one binary relation. Switching a single detection node to lfg will not

change the unary cost for this node but increase the total energy of each pairwise edge

that connects this detection node to any patch node by the cost ψbgInDet. Thus, setting

every node to lbg results in a strong local minimum of the energy and thus, inference

approaches like alpha-expansion that only consider changing nodes to a single, new

label per iteration, immediately fail.

For this reason, we propose an inference approach tuned to the specific graph struc-

ture and label semantics. The core idea is a novel move making strategy, which is

described in detail in Section 5.2.1. The corresponding inference process is outlined in

Section 5.2.2, while Section 5.2.3 discusses the overall characteristics of our inference

approach.

5.2.1 Moves

We propose to use a different kind of move, specialized for the problem setup at hand,

that changes the labels of several nodes simultaneously. The central observation, that

was also already pointed out in [11], is that given a labeling of the detection nodes,

the optimal label for each patch can be determined independently, since the graph is

bipartite. Careful inspection of the setup reveals that the new optimal assignment can

efficiently be computed for each patch node when a single detection node changes its la-

bel in O(1), if the previously optimal assignment and cost is known. Thus, the following

efficient inference algorithm can be designed.

The prerequisite of a starting point with known optimal assignments of the patch

nodes and total costs is easily fulfilled by setting all detection nodes to lbg. The optimal

label for each patch is then also lbg, because any other label would add ψptBG to the total

cost. The total energy of this configuration amounts to the sum of unary costs for lbg of

all detection and patch nodes (all pairwise costs are 0). The sum of costs for each label

at each patch node, that we will need later in the process, is its unary cost plus, for each

label other than lbg, one binary cost of ψptBG.

Then, we consecutively turn on one detection dj after the other, and find the optimal

configuration of patch node labels for the new situation, to discover which one lowers

the total energy most. To compute the total energy of a new configuration we need
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to keep track of the change of energy ∆E for each node that changes its label during

the process, and affected edges. The change in unary cost for the detection node is

−ψdj(lbg) + ψdj(lfg). Since none of the connected patch nodes can have pointed to dj

before (since it was background), all pairwise relations switch from 0 cost to ψbgInDet or

ψptE (which are equal).

Now, we have to check for each patch node pi connected to the currently tested

detection node dj, for the new best label. The optimal label for a patch node depends

on the patch’s unary cost for the label, plus the pairwise to all detection nodes it is

connected to. To find the label with lowest energy in a brute force manner, one would

have to go over all labels and for each of them sum up the binary costs of all the edges

of the patch. Despite the sparse graph structure in which a patch is not connected to all

detection nodes, this would require O(|L|2). But, in fact, for every label the only change

in energy is in the pairwise connection between the patch and the changed detection dj,

so we can update them incrementally. Additionally, not all the labels have to be checked

to find the new best one, since it is known that the label currently assigned to pi was

the best one before the current move. Looking at Figure 5.4 it can be seen that only

switching to l̂i,j can possibly result in a decrease of the energy. So the only possibility

we have to check is, if the total cost of the patch’s old label is now bigger than the cost

for l̂i,j. We keep track of the total change of costs for the better of those two possibilities.

This is an O(1) operation for each patch.

5.2.2 Overall Inference Process

Thus, in total, calculating the change in energy for switching on a single detection hy-

pothesis and finding the optimal configuration of patch labels is a fast operation. There-

fore, we can afford to test every single detection hypothesis and take the best one,

without having to rely on a heuristic to propose potentially good hypotheses. After the

new best detection hypothesis is found, the corresponding detection node dj is switched

to lfg and each patch node, for which this results in a better energy, is set to l̂i,j, to as-

sociate it with the new detection Then the costs for each label are updated. This is only

done once per newly found detection and only for the patches connected to the new

detection. The whole process is repeated until no move lowers the total energy.
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5.2.3 Discussion

Note that the decision of finally taking the most probable detection in each iteration is

greedy. However, the greedy decision is based on the evaluation of every single possible

move that switches on one detection node and finds the new optimal configuration of

all patch nodes. Even after the move is taken, the patch nodes that were switched to the

new detection in this iteration are not fixed to this decision, but can switch to a different

detection found later, if this again decreases the total energy.

Additionally, the order of configurations checked by the algorithm assures fast con-

vergence to a good minimum of the energy by making use of domain knowledge. For

instance, in a generic solver it would be hard to exploit the fact that switching on lots of

detection nodes at once is very unlikely to give a low energy, or encode the knowledge

which set of labels to apply to the corresponding patch nodes.

Furthermore, note that after the first iteration not all possible remaining hypotheses

have to be checked again to find the next best detection. The total benefit (reduction of

cost) for each hypothesis can only become smaller with the new detection from the last

iteration now switched on and adding pairwise costs to every patch node not pointing

towards it. Thus, we do not have to check those hypotheses that already did not have a

negative ∆E in the last run. Since even for a crowded scene the number of objects is way

lower than the number of detection nodes, this again dramatically reduces the search

space.

5.3 Experiments

As stated above, the codebook is created by training a Hough Forest, as presented in

Chapter 3. The smoothing kernel’s sigma is set to σ = 3.0 to allow for small shifts

of the patches with respect to the object center. Derived from this, the resolution of

the detection grid is set to 8× 8. A coarser grid would miss detections, because the

patches can only vote for detection nodes within the range of the Gaussian. A denser

grid would linearly increase computation time with the number of detection nodes. The

only parameter left to set is ψbgInDet. Basically, it defines how much of an object must be

visible in order to create a positive detection. Since we want to detect highly overlapping

instances, we set it quite low, to a value of 0.4. Conversely this implies a high probability

of about e−0.4 ≈ 67% of a patch to be background within a valid detection.

To get multi-scale detection results, each scale is first processed individually. Sub-

sequently, according to our localization principle, we ensure that also over scales each
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patch only votes for a single detection. From the final configurations of the random

fields for each scale, we obtain all detections and the corresponding set of patches as-

signed to them, which defines a pixel-wise voting mask per detection (see Figures 5.6

and 5.7). We collect these masks over all scales and resize them to a reference frame.

Then we sort all detections by their confidences and, starting with the most confident,

accept only detections that do not overlap (considering the voting masks) with those

already taken. Thus, we again ensure that also over scales each patch is only assigned to

a single detection. Thereby, we effectively suppress lower scoring redetections in nearby

scales and obtain a unified solution for multi-scale analysis.

Similar to [66], rectangles of mean aspect ratio (estimated from the training data)

centered at each active detection node are reported. The confidence of each reported

detection is set to the absolute value of the decrease in energy that was recorded during

testing the corresponding detection node.

5.3.1 Datasets

The choice of evaluation datasets is motivated by several factors. First we want to have

a direct comparison to the most closely related approach [11]. The publicly available

implementation comes with its own set of random forests, trained for detection of side

views of pedestrians. Thus, we also focus on this task, although our method is not

specifically tailored towards it and potentially handles arbitrary object categories.

Another aspect is the resolution of the objects in the images. Part-based approaches,

like ISMs, can only capitalize on their strengths if the objects are depicted at a resolution

where the parts are distinguishable. Thus we require the smallest category instances to

have at least about 100 pixels in height.

Since for non overlapping object instances our proposed method reaches the same

decisions as standard NMS (as was tested and assured in evaluations on single scale

datasets like UIUC cars), we are especially interested in testing the capability of our

algorithm to resolve detections of strongly overlapping objects. Thus, we evaluate it

on the TUD crossing and TUD campus sequences, presented in Section 3.6.1.1 and also

used in [11]. Both datasets require the ability to locally decide for each patch to which

detection it belongs in a reasonable manner, in order to identify heavily overlapped

pedestrians. Additionally, we evaluate all approaches on the PETS 2009 dataset, also

featuring close to side views of a large number of pedestrians with heavy overlaps.
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5.3.2 Results

The results are directly compared to the two most related approaches: Hough Forests

using standard non maximum suppression [66] and the probabilistic framework of Bari-

nova et al. [11]. Detections are considered as valid analyzing the standard PASCAL-VOC

overlap criterion, with the threshold set to 50%. For both methods compared, we used

the publicly available source codes and associated configuration files as published by

the respective authors.

Figure 5.5 shows Precision/Recall Curves (PRCs) for all three methods on all three

databases. As can be seen, the method presented here significantly improves over [66]

and also outperforms [11] on all three datasets. At precision levels above 90% the recall

is improved by over 10% and extending way further for lower values of precision. For

PETS and TUD crossing, where very accurate ground-truth annotation is available, the

precision also stays close to 100% for up to 60% recall. The small earlier breakdown on

TUD campus can partly be attributed to incorrectly identified false positives, because

the ground-truth does not include persons of which only a few pixels are visible.

Figures 5.6 and 5.7 additionally visualize detection results. The local patches that

were assigned to each detected instance by the inference process are shown in different

colors. Note, how the assignments of patches to detections provide accurate segmenta-

tions of each individual object instance and even strongly overlapping pedestrians are

correctly separated from each other.

5.4 Conclusion

In this chapter, it was observed that the classical inference approach for ISMs sums over

the evidence coming from local features, ignoring mutually inconsistent votes. To ad-

dress this problem, the dual problem of detecting valid object hypotheses and assigning

local patches to the detections was formulated in a random field, with a significantly

sparser graph structure than in related approaches. Furthermore, the specific graph

structure facilitates the definition a novel, fast inference algorithm to solve the energy

minimization problem defined by the random field formulation. As an additional bene-

fit, the approach does not require to fix a range for local neighborhood suppression as it

is necessary in related methods, but is implicitly capable to separate even strongly over-

lapping object instances. Experiments demonstrated that object hypotheses and their

local support patches can be detected accurately on challenging data sets, achieving

competitive or even improved results in comparison to the state-of-the-art.
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Figure 5.5: Precision/Recall curves on (a) TUD campus, (b) TUD crossing and (c) PETS
2009 S1.L1 sequence for all three methods.
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Figure 5.6: Sample detections on the TUD crossing. For each detection the uniquely
assigned patches are plotted in a different color. Note how closely walking pedestrians,
overlapping each other, are correctly separated.
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Figure 5.7: Sample detections on PETS 2009. For each detection the uniquely assigned
patches are plotted in a different color. Note how each person is accurately segmented
and closely walking pedestrians, overlapping each other, are correctly separated.



6
Conclusion

This thesis addressed detection of objects of specific classes. The main focus was on

robustness to occlusions and the ability to identify object instances that appear very

close to each other, potentially overlapping each other. Additionally, handling of object

classes with high intra-class variance, stemming from variations in pose, the flexibility

of individual objects and differences between object instances, was an essential require-

ment.

In Chapter 2 a general overview over object detection methods was given. Implicit

Shape Models and, in particular, Hough Forests were identified as methods that are

particularly suited for the targeted situations. The overview and discussion additionally

clarifies the relations of this approach to other methods in the field. Essentially, although

the linear formation of the confidence score in the voting process makes it formally

equivalent to holistic models, as discussed in Section 2.5, the extraction of an over-

complete set of parts and implicit definition of the shape gives a different view on the

object detection process and led to different classification and non maxima suppression

schemes.

Chapter 3 introduced the Hough Forest framework as the basis for all extensions

and improvements in the rest of the thesis. As part of it, a novel method to evaluate

split test candidates for the nodes of the decision trees that try to improve the regression

of the object’s center was introduced. The chapter was concluded with an extensive dis-

cussion and evaluation of the parameters of Hough Forests and their interdependence.

Among other insights, it showed the superiority of the new regression node evalua-

tion criterion, leading to improved detection performance with shallower decision trees.

Additionally, concluding experiments showed the performance of the best performing

setup in comparison to other state-of-the-art methods on typical benchmarks.

107
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The remaining two chapters each addressed one particular enhancement, dealing

with a specific aspect of the approach. Chapter 4 introduced discriminative Hough

Forests. The essential observation was that the training and testing procedures of Hough

Forests treats all local parts completely independently. This, on the one hand, creates

a very flexible model, that makes it possible to form constellations of sub-parts from

arbitrary training data. Thus, new object instance can be detected that were not seen

like that in any of the individual training images. On the other hand, this flexibility also

makes it vulnerable to false positives in backgrounds that feature random collections of

elements that look somewhat similar to sub-parts of the object.

With increasing amounts of training data, this flexibility becomes less important and,

thus, can be traded off against more accurate detections by enforcing more consistency

in the constellations of parts. Thus, an approach was formulated to classify detections in

order to reject wrong constellations. The analysis showed that the voting process with

the object model gives a distinctive description of a detection hypothesis that was termed

activation vector, recording the contribution of each voting element to the score of the

detection. By collecting such descriptions from correct and wrong detections classifiers

can be built to re-score detections and decrease the score of false ones. Additionally,

when using a linear classifier, the weights which are learned for each activation vector

entry can be used directly in the voting process. This eliminates the need to first do

normal voting, then explicitly calculate activation vectors and use a classifier only for

post-processing. The improved evidence maps (Hough spaces), thus, not only lead to

better precision but can also lead to better recall.

Finally, in Chapter 5 the problem of non-maxima suppression in case of strongly

overlapping objects was addressed. As a starting point, it was pointed out that the ISM

voting process inherently creates sets of mutually inconsistent votes. Each voting ele-

ment can vote for multiple object centers, but in fact, the central pixel of each of them

can only be part of one specific object in the image. Thus only one the votes agreeing

on the correct object center are valid. The others contribute to clutter in the background

and if enough of them by chance agree on a hypothesis, this creates false positive detec-

tions. Thus a random field formulation and a novel inference algorithm were developed

to resolve these conflicting assignments of image patches to detection hypothesis. It

allows for identifying most likely configurations and, consequently, removing evidence

for conflicting hypotheses, effectively cleaning up the Hough space. The evaluation

showed improved detection performance, especially on images with larger crowds of

pedestrians, overlapping and occluding each other.
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The results also indicate some new directions for future work. As an extension of

the ideas pursued in the discriminative Hough Forests, it would be interesting not only

to optimize the weights but also the location of the votes. This could be achieved by

shifting the votes according to a gradient descent on a loss function. Further, each

voting element could have a full map of voting directions which, however, would make

the problem quite big and slow down the inference. Again, the reduction to a sparse

grid of detection hypotheses, as proposed in Chapter 5, could be used to reduce the

complexity.

Another promising direction could be to fuse the approaches of the last two chapters

and learn discriminative voting weights directly for good inference in the random field.

It would effectively lead to a (quite complex) bi-level optimization problem. The main

benefit would be to get rid of the good, but nevertheless heuristic formulation of the

unary potentials in the random field.

Additionally, the equivalence of the score formation process, pointed out in Sec-

tion 2.5, suggests that the non-maxima suppression method introduced in Chapter 5

would also be applicable in holistically trained object detection models, for which the

descriptor can be subdivided into individually scored local sub-fields, such as the cells

in a HOG descriptor.

To conclude, object detection with ISMs, Hough Forests and related methods and the

contributions presented in this thesis have shown success in a series of applications, but

also room for improvement in comparison to other methods in certain other fields and

some open questions and, thus, still remains an interesting field for further research.
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