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Abstract

Visualization is important when analyzing multidimensional datasets, since it can help
humans discover and understand complex relationships in data. Whereas analyzing large
individual datasets is both important and difficult, many problems can only be solved
when considering multiple datasets simultaneously. This dissertation introduces novel
visualization techniques that can be employed for both, visualizing individual datasets
and visualizing relationships among multiple datasets alike. The concept is based on
stratifying (dividing) datasets into homogeneous subsets, which can then be visualized
individually. The relationships lost due to the division are re-introduced by drawing visual
links between the subsets. Conceptually it is irrelevant whether the subsets are from one
or from multiple datasets, which makes a seamless integration of multiple, cross-referenced
datasets possible. The subsets can be visualized in multiple forms. Multiform visualization
gives users the freedom to choose the visualization technique most suitable for the data
type, the degree of homogeneity, the level of detail, and the current task – for each of
the subsets individually. The division of datasets also makes focus and context, as well
as drill-down techniques straightforward to realize. A set of interaction techniques enable
seamless transition from a global overview down to details on individual data items.

While the visualization techniques introduced in this thesis are generally applicable,
they are designed to support researchers working in molecular biology. Specifically, we
support collaborators in two different scenarios: in uncovering the genetic causes of steato-
hepatitis, a precursory disease to cirrhosis of the liver, and in analyzing cancer subtypes.
We evaluated our methods with cases studies and report on how investigators reproduced
known findings and discovered new insights with the introduced visualization techniques.

In addition to discussing the analysis of multidimensional datasets, we also describe an
integrative approach to analyze general heterogeneous datasets. We show how modeling
of the analysis setup can be employed to support users. Finally, we introduce cross-
application and context-preserving visual links, which can be used for highlighting in
heterogeneous datasets.

Keywords. Information Visualization; Visual Analytics; Multidimensional Data Analy-
sis; Heterogeneous Data Analysis; Multiform Visualization; Biology Visualization; Molec-
ular Biology Visualization; Visual Links.
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Kurzfassung

Der Einsatz von Visualisierung bei der Analyse hochdimensionaler Daten ist wichtig, um
Menschen beim Erkennen komplexer Zusammenhänge zu unterstützen. Obwohl die Ana-
lyse von einzelnen großen Datensätzen sowohl komplex als auch von großer Bedeutung
ist, können viele Probleme nur unter der gleichzeitigen Berücksichtigung mehrerer Da-
tensätze gelöst werden. In dieser Dissertation werden neuartige Visualisierungstechniken
eingeführt, die sowohl für die Analyse einzelner als auch für die simultane Analyse meh-
rerer Datensätze verwendet werden können. Das Konzept basiert auf einer Stratifizierung
(Teilung) der Datensätze in homogene Teilmengen, die dann individuell dargestellt werden
können. Die Beziehungen, die durch die Teilung verloren gehen, werden durch Visual Links
wieder hergestellt. Da es konzeptionell unerheblich ist, ob einzelne Teilmengen aus dem
selben oder aus verschiedenen Datensätzen stammen, können mehrere Datensätze nahtlos
integriert werden. Die Teilmengen können dabei mit verschiedenen Visualisierungstechni-
ken dargestellt werden. Dies erlaubt Benutzern oder Benutzerinnen, die richtige Visuali-
sierungstechnik für den Datentyp, den Grad der Homogenität, den Detailgrad der Daten
und die aktuellen Aufgabe auszuwählen. Durch die Teilung sind auch Focus and Context
sowie Drill-Down Techniken einfach zu realisieren.

Obwohl die in dieser Arbeit eingeführten Visualisierungstechniken generell anwend-
bar sind, wurden Sie mit dem Ziel, ForscherInnen im Bereich der Molekularen Biologie
bei ihrer Arbeit zu unterstützen, entwickelt. Im Speziellen werden zwei Anwendungsfälle
aufgegriffen: die Untersuchung der genetischen Ursachen von Steatohepatitis, einer Krank-
heit, die häufig Leberzirrhose zur Folge hat, sowie die Analyse von Subtypen von Krebs.
Die eingeführten Visualisierungstechniken wurden anhand von Fallstudien evaluiert. Dabei
konnten die Analysten sowohl bekanntes Wissen reproduzieren als auch neue Einsichten
in die Daten gewinnen.

Zusätzlich zu den Analysemethoden für multidimensionale Datensätze wird auch die
integrative Analyse allgemeiner heterogener Datensätze behandelt. Wir zeigen, wie, basie-
rend auf einem Modell der Daten, Benutzer und Benutzerinnen bei der Analyse unterstützt
werden können. Abschließend werden applikationsübergreifende und kontexterhaltende Vi-
sual Links eingeführt, die für Highlighting in heterogenen Datensätzen verwendet werden
können.
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High-dimensional, tabular data is collected and analyzed in many application domains.
Examples range from businesses, where transactions, customers, products, etc., are stored
in relational databases, to the social sciences, where demographic data is collected, to
scientific domains, such as molecular biology, where states and activities of genes, proteins,
etc., are measured. This prevalence of multidimensional data is owed to two properties.
First, multidimensional data fits naturally to many real world observations or calculations
where data is collected for a set of attributes of a dimension. Examples are a given name,
surname and age of the dimension person; or speed, acceleration and position of a vehicle
at a particular time; as well as the expression of multiple genes of one biological sample.
Second, multidimensional data has many desirable technical properties. It is structured,
and therefore easy to store, manipulate, parse, process and compress. There are many
standardized formats and plenty of tools to manipulate, analyze and plot multidimensional
data. Also, all different scales of data, qualitative as well as quantitative, are suitable to
be stored in tabular form.

Information visualization is the scientific discipline dealing with the visual display
of abstract data. Abstract data in this sense refers to data that is not primarily spatially
referenced, as, for example, medical imaging data is. Information visualization techniques
therefore are typically free to employ spatial encoding, i.e., they can use the position and
size of graphical marks to display the data. The rational of visually displaying information
is that humans can better process, understand, analyze and find relationships in appro-
priately encoded data compared to looking at raw data. Information visualization is a
medium for humans to understand complex data, extract information and ultimately gain

1
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knowledge and make decisions. The field of visual analytics is strongly related to infor-
mation visualization, but takes a more holistic approach. While information visualization
is primarily concerned with visual encoding, visual analytics also considers issues of data
mining, data management, infrastructure, etc. [98, p. 12].

It is very hard for humans to extract information from even moderately sized tables.
To compare two data tables of 100 rows by 100 columns, for example, 20.000 successive
instants of perceptions are necessary. Reading the same information can be instantaneous
when the data is displayed graphically [15, p. 3]. Combined with the aforementioned
prevalence of tabular data, it is not surprising that many visualization techniques for
multidimensional data have been developed. The main challenge when visualizing multi-
dimensional data is scale: visualizing a table of 20 by 20 is straight-forward, but visualizing
a table with hundreds of dimensions and thousands of records is not trivial.

Datasets of this scale, however, are very common in molecular biology. The field of
molecular biology deals with uncovering the function of genes and other genetic or epige-
netic processes. Understanding biomolecular data has a profound impact on mankind’s
knowledge about fundamental questions, such as how cells work, but also has very practical
applications, such as which drug is most suitable for a particular illness.

This thesis deals primarily with the visualization and visual analysis of biomolecular,
multidimensional data. The central paradigm of this thesis is a divide and conquer
approach for multidimensional data. We postulate the following three hypotheses:

I Division Hypothesis – Dividing (stratifying) inhomogeneous, multidimensional
datasets into homogeneous groups allows analytical algorithms to create better re-
sults, thereby making the subgroups more meaningful. This, however, obscures the
relationships among the groups in the dataset. We hypothesize that, given the right
choice of visual encoding, it is possible to re-introduce the connections lost due to the
stratification. The division hypothesis is the subject of Chapter 5.

II Multiform Hypothesis – Given a dataset that is divided into homogeneous groups,
we hypothesize that it is beneficial to be able to let users choose the visual encoding
for each of the groups individually, i.e., represent the data in one of multiple forms.
We argue that choosing different levels of abstraction, different visual encodings and
visualization techniques, as well as different levels of detail, enables analysts to choose
the right level of abstraction and the right visual encoding for the degree of homogene-
ity of a group, for the task of a user, and for the size of the dataset. The multiform
hypothesis is elaborated in Chapter 6.

III Cross-Referenced Data Hypothesis – We postulate that the stratification, con-
nection, and multiform techniques can not only be used to analyze one inhomoge-
neous dataset, but are equally applicable for integrating multiple cross-referenced
datasets. Cross-referenced datasets are multiple heterogeneous datasets that have
certain restrictions on the structure of the data. Most importantly, integrating multi-
ple datasets can be used to judge the validity of stratifications and refine them when
necessary. Also, we argue that it is of value to apply a stratification derived from
one dataset to other datasets. The integration of multiple datasets is the topic of
Chapter 7.
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A secondary topic of this dissertation is the integration of general heterogeneous
datasets, discussed in Chapter 8. We distinguish between structured and unstructured
heterogeneous datasets. For the former we present a model-based approach for orienta-
tion and guidance in heterogeneous data spaces. Unstructured heterogeneous datasets are
not in the scope of this thesis. However, we introduce methods for visual linking, which
can also be used in unstructured heterogeneous data analysis scenarios.

1.1 Structure of this Thesis

In the remainder of this chapter we first discuss the properties of the types of data con-
sidered in this thesis. We give a formal definition of multidimensional data and discuss
homogeneity/inhomogeneity of individual multidimensional datasets, followed by an anal-
ysis and classification of heterogeneous data. We then define terms we use throughout this
thesis, followed an elaboration of the contributions of this work. The chapter is concluded
with a declaration of collaborations and a listing of the publications which this thesis is
based on.

The examples, use cases, and applications in this thesis are mainly from the domain
of molecular biology. To brief the reader, we give an introduction into molecular biology
in Chapter 2. Before going into detail about the techniques employed to satisfy the
hypothesis, we discuss the related work in Chapter 3, followed by an introduction to
Caleydo in Chapter 4. Caleydo is the visualization framework that most of the techniques
presented are part of. Chapters 5-7 form the core of this thesis and discuss the methods
addressing the hypotheses. General heterogeneous data is covered in Chapter 8, before
the thesis is concluded in Chapter 9.

1.2 Data Preliminaries

Before we discuss the analysis and visualization of data, it is necessary to define the form
and the scope of data considered in this thesis. The most basic notion of data is a data
item, which describes an atomic property, such as a single number, a single word or a
single relationship. We define a dataset as a discrete collection of data items, irrespective
of a structure or data type. Typically, but not necessarily, the data items in a dataset
have some common semantics, such as being from the same source, or describing related
observations or measurements. Datasets may be unstructured, containing, for example,
free text, or structured, as, for example, graphs or multidimensional datasets are.

We will begin by discussing multidimensional datasets, which are the most important
type of dataset with respect to this thesis, its stratification into groups, and aspects of
homogeneity. We then discuss heterogeneous data and introduce two classes of hetero-
geneity.

1.2.1 Multidimensional Data and Grouping

Colloquially, multidimensional data can be understood as tabular data, containing columns
(dimensions) and rows (records). Multidimensional datasets typically have an identifier
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(a) (b)

Figure 1.1: Example of a multidimensional dataset with inhomogeneities and of an introduced
grouping. (a) A table with six dimensions and five records. One possible aspect of homogeneity
of dimensions is coded in the hue, a possible homogeneity of the records is encoded using
saturation. (b) A grouping of dimensions and records. Dimensions can be part of more than
one group. For example, d6 is part of both dg1 as well as dg4. Also, dg1 illustrates that the
homogeneity of records is not pre-determined. Here the homogeneity indicated by the hue is
not reflected in the grouping.

(a key) for both, records and dimensions, which provides the semantics of the records and
dimensions. Multidimensional data analysis refers to the study of multiple variables, i.e.,
dimensions or records. These variables can be classified into dependent and independent
variables, where the dependent variable can be described as a function of the independent
variables [13]. Some sources distinguish between the study of multiple independent vari-
ables, which they refer to as multidimensional data analysis, and the study of multiple
dependent variables which they call multi-variate data analysis [13]. However, in visu-
alization this strong mathematical definition is typically relaxed to a broader definition
of multiple variables, regardless of the dependent-independent relationship [206]. We will
adhere to the latter convention.

We formally define a multidimensional dataset as a matrix M = {vij |1 ≤ i ≤
n, 1 ≤ j ≤ m} where the columns D = {d1, ..., dm} are the dimensions and the rows
R = {r1, ..., rn} contain the data records. Each matrix cell vij is a value in row ri of the
dimension dj . This is illustrated in Figure 1.1(a).

As discussed before, stratifying (splitting, grouping) the dataset into homogeneous
groups has many advantages. We define a grouping of dimensions DG = {dg1, ..., dgu|dg ∈
P(D)} (P(D) denotes the powerset of D) where each dimension can be assigned to multiple
groups. Figure 1.1(b) shows an example where d6 is assigned to dg1 and dg4. For each
dgi in G we create a set of record groups RGi = {rg1, ..., rgv} which contains the records
(restricted to the dimensions in dgi), where rj can only be part of one record group. We
denote an individual group defined over both dimensions and records as dgi.rgj .
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Inhomogeneity or homogeneity is a fundamental property of many multidimen-
sional datasets. It can be observed on the set of dimensions, as illustrated using different
hues in Figure 1.1(a), and on the set of records, as shown using different levels of satu-
ration in Figure 1.1(a). We distinguish inhomogeneity from the slightly different notion
of data diversity. The latter defines high diversity as an even distribution of values [141],
which is a property of a rather homogeneous dataset. We use the term inhomogeneity
to refer to differences within a single dataset, whereas we use heterogeneity to refer to
multiple datasets. In principle, three different sources of inhomogeneity within a dataset
can be discriminated:

• semantics – of different meanings: the more unrelated the data is in terms of
meaning, the more inhomogeneous it is,

• characteristics – of different types: the more the data types and value ranges vary,
the more inhomogeneous they are,

• statistics – of different behaviors or distributions: the less evenly the data is dis-
tributed over a value range, the more inhomogeneous it is.

While characteristics and statistics inhomogeneities are inherent in the data,
semantics have to be specified separately. This can be done, for instance, with an
ontology or manually by a user. Also, the different sources of inhomogeneity are not
mutually exclusive. It is common that several sources of inhomogeneity are present
at the same time in a dataset. The relevance of the three levels of inhomogeneity for
dimensions and records is explained in the following.

Inhomogeneous Dimensions: In terms of semantics, inhomogeneities can often be
found among dimensions with no inherent connection on the level of what they are meant
to encode. For example, the columns first name and last name belong together because
they compose the information name and the columns street, city, and zip code form the
information address. However, first name and zip code are semantically unrelated. Such
groupings are not obvious and have to be specified by the user employing common knowl-
edge, or through meta-data.

The dimensions’ characteristics detail a dimension’s type, of which we distinguish
four: bounded numerical, unbounded numerical, exclusive categorical, and in-
clusive categorical. An example of inhomogeneity between different dimensions would
be two bounded numerical types with very different bounds given, e.g., [0 . . . 1] and
[106 . . . 107], which are hard to analyze together, numerically or visually. The same is
the case for dimensions of exclusive categorical data, such as sex, which is an either-or
category, and inclusive categorical data, such as professional memberships in, for example,
IEEE, ACM and Eurographics. Such characteristics can be interactively defined [134] or
given in a standardized format such as qnch∗.

Statistics, in contrast, are derived directly from the data using methods such as
correspondence analysis, which determine related dimensions that are likely to belong

∗http://qnch.org

http://qnch.org
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together because of correlated values.

Inhomogeneous Records: Similar to dimensions, records can be affected by semantic
inhomogeneity, which is given by external knowledge. This occurs frequently for categor-
ical values; e.g., the professions high school teacher and university professor relate more
to one another than to restaurant chef, because both belong to the educational sector.
Again, this knowledge is not present in the data itself and has to be provided by the user
or through an ontology.

Inhomogeneities stemming from a record’s characteristics, can be, for example, miss-
ing or undefined values. Undefined values are, for example, those that are outside of a
dimension bound given by meta-data. Observation of these inhomogeneities is important;
these records need to be set aside because they cannot be analyzed together with the
regular records. Their communication is nevertheless important for the analysis [37].

Inhomogeneities uncovered via statistical methods such as clustering occur when the
data records are distributed unevenly and thus form clusters at certain points or intervals
of the overall value range. Data records that have been assigned to the same cluster are
thus more alike and form a more homogeneous group of data with respect to the similarity
measure used for clustering.

1.2.2 Heterogeneous Datasets

The analysis of data from multiple, heterogeneous sources has been recognized as a major
challenge of visual analytics (e.g., in the European research agenda for visual analytics by
Keim et al. [98, p. 19], or its American counterpart by Thomas and Cook [183, p. 100]).
Up to this point, we have mainly discussed multidimensional data in a single dataset.
Nevertheless, many methods discussed in this thesis are equally applicable to multiple,
heterogeneous datasets. We distinguish between two types of heterogeneous datasets:

General heterogeneous datasets: We consider any set of datasets that can not be
trivially joined into a single, semantically meaningful dataset as heterogeneous datasets.
Two datasets that do not share any common properties, data items or identifiers are gen-
eral heterogeneous dataset. However, to be of value in an integrated analysis, there has
to be some relationship between the datasets. These relationships do not have to adhere
to any convention. Examples for such relationships are a textual dataset, which contains
an identifier from a multidimensional dataset, or a graph, where a node attribute can be
related to a dimension, record, or data item of a multidimensional dataset. Figure 1.2(a)
illustrates these two examples. Other examples are multimedia, imaging, volume or other
spatial data, which may be referenced to an identifier of another datasets. General hetero-
geneous datasets cannot be easily subjected to the divide and conquer approach postulated.
They are, nevertheless, often crucial for an analysis, as they can contain meta-information,
or give a broader context. Consequently it is essential to integrate general heterogeneous
datasets in an advanced analysis scenario. How this can be done is the topic of Chapter 8.

Cross-referenced Datasets: Cross-referenced datasets are a subclass of general hetero-
geneous datasets, with restrictions on the type of the dataset and the relationships between
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(a) (b)

Figure 1.2: Types of heterogeneous datasets. (a) References between two general hetero-
geneous datasets, Text Data and Graph Data, and two multidimensional datasets. Text

Data contains references to one record and one dimension of Tabular Data 2 (b) Rela-
tionships between two cross-referenced datasets. The columns of Tabular Data 1 can
be referenced to the rows of Tabular Data 2. It is not required that every variable in the
datasets match.

.

the datasets. Cross-referenced datasets are restricted to multidimensional datasets that
share a type of identifier, or have types of identifiers that can be mapped to each other.
Shared types of identifier may exist for either dimensions, or records, or both. These shared
keys are common in relational database schemes. An example for a cross-referenced dataset
is a table with test-results for patients and another table with demographic data. When
datasets are cross-referenced, it is possible to retrieve the variables of one entry and then
retrieve additional variables from the cross-referenced dataset. Often such a resolution is
needed to provide context in an analysis. An example is the observation of hormone levels
in a patient, which can only be judged in the context of the patient’s age. Figure 1.2(b)
illustrates a simple case where the dimensions of one dataset corresponds to the records
of another one. As tabular datasets can easily be transposed, such a dimension-record re-
lationship can be changed to a dimension-dimension or record-record relationship. We do
not require referential integrity – there may be no reference for some entries in the other
dataset. This is important, as real-life datasets are often incomplete. Cross-referenced
datasets can be integrated into a single dataset. This, however, has several disadvantages.
It might result in hybrid types of identifiers for either dimensions or records. Also, parts of
the matrix may be empty. We will discuss the implications for analyzing cross-referenced
datasets as part of the considerations for Hypothesis III in Chapter 7.
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1.3 Vocabulary

Based on the previously introduced concepts we define the vocabulary used in the remain-
der of this thesis. We use entry to refer to either dimensions or records, when a concept is
equally applicable to both. We already established a group of dimensions as dimension
group, and a group of records within these dimensions as record group. The visual
representations of a record group are called brick. The visual equivalent of the dimension
group is the column, which is a stacking of bricks. We distinguish those terms because
bricks and columns are a visual entity which can also display other forms of data.

The process of grouping dimension or records can also be thought of as dividing or
splitting the dataset. We do not semantically distinguish between grouping and dividing,
as it is only a matter of perspective. We refer to the division of dimension or records as
stratification (in reference to the term stratified sampling used in statistics) to better
reflect the intention behind the process: to divide the data into homogeneous groups.

1.4 Contributions

For each of the aforementioned hypotheses a visualization technique is proposed. We
demonstrate the validity of the solutions through comprehensive case studies.

To address the division hypothesis, we developed the Matchmaker technique. We
demonstrate how to manually or automatically stratify the dimensions into dimension
groups so that clustering on the records (automatic stratification) can find meaningful
partitionings. The conquer step is realized by stacking bricks of the same dimension
group on top of each other, i.e., the association of dimensions is retained using position.
Matchmaker uses heatmaps to encode data in a brick. The assignment of records to the
bricks, the order of records within bricks and the overall order of bricks are chosen in mean-
ingful ways. The relationship between columns is retained by employing connectedness
between the bricks: we use visual links to connect related entities. Drill-dow techniques
guarantee a seamless transition from a global overview down to individual data items.
The validity of Hypothesis I, and consequently the utility of the Matchmaker technique is
demonstrated in a case study detailing a complex micro-array analysis scenario. A second
use case is presented that shows that the technique can also be used to judge the quality
of clustering algorithms.

Based on the divide and conquer strategy of the Matchmaker technique, we developed
VisBricks to satisfy the multiform hypothesis. VisBricks generalizes the basic ideas of
Matchmaker by introducing different classes of bricks. We demonstrate that different views
are suitable for different types of data and tasks. We also introduce a number of advanced
interaction techniques to accommodate the wider range of possible arrangements compared
to Matchmaker. We take up the microarray analysis scenario used for Matchmaker to
validate the VisBricks approach and the multiform hypothesis.

We further generalize the Matchmaker and VisBricks techniques to integrate multiple,
cross-referenced datasets in the StratomeX technique. As with multiple, cross-referenced
datasets the setup of the visualization becomes challenging by itself, we present a meta-
visualization to aid investigators in this task. We introduce two new types of columns that
can be used to integrate other types of data. We give an extensive example of a compre-
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hensive use case, where we use StratomeX to analyze cancer subtypes. We demonstrate
the utility of StratomeX (and thereby implicitly of Matchmaker and VisBricks) on three
real-life application scenarios, and thereby validate the cross-referenced data hypothesis

Finally, we discuss methods to integrate general heterogeneous data. We present a
model for designing heterogeneous data analysis frameworks as well as a prototype based
on the model. We connect heterogeneous datasets using visual links, either within an
application, but also among multiple independent applications. We report on the results
of user studies that were conducted to validate the visual linking strategies.

1.5 Collaboration Statement

Aside from the supervisors of this thesis, Prof. Dieter Schmalstieg, Dr. Nils Gehlen-
borg, and Prof. Robert Kosara, many colleagues have contributed to the work de-
scribed in this thesis. In this section, the most important collaborators are mentioned,
including a statement of their contributions.

Dr. Marc Streit was the closest collaborator and was involved in all but one publications,
with significant contributions to all of them. He contributed on a conceptual level, to the
implementation and to the write-ups. He has also been a core developer of the Caleydo
Visualization Framework. He is the principle author of the paper on model-driven design
for heterogeneous data analysis [179], from which Chapter 8 draws.

Dr. Hans-Jörg Schulz is co-author of many publications. For this thesis, his contribu-
tions to the multiform visualization [112] (discussed in Chapter 6) are most significant.
Together with Marc Streit, he is one of the main authors of the paper on model-driven
design for heterogeneous data analysis [179], from which Chapter 8 draws.

Christan Partl contributed, as a master student, to the implementation of all core papers
of this thesis [112, 114, 115]. He also contributed as a Caleydo framework developer.

Dr. Manuela Waldner was involved in the publications related to visual linking [174,
197], discussed in Chapter 8, on a conceptual level. She also participated in the imple-
mentation and led the user studies.

Markus Steinberger is the developer of the context-preserving visual links approach
[174] discussed in Chapter 8, and contributed significantly to all parts of this paper.

Prof. Heidrun Schumann supervised the work on model-driven design for heterogeneous
data analysis [179] and on uncertainty visualization in heatmaps [78], which was lead by
Clemens Holzhüter.

Other collaborators include Michael Kalkusch, who started the Caleydo visualization
framework, Werner Puff, who contributed to the Caleydo framework development and
the across-application visual linking [197], Bernhard Schlegel, who, as a master student,
was the principal developer of the hierarchical heatmap and the clustering algorithms,
Thomas Geymayer who, as a master student, was the principal developer of the filter
pipeline [57], and Dr. Ernst Kruijff, who contributed to the user study and the write-up
in the Caleydo overview paper [113].
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The biological background, use cases, data, and feedback were provided and con-
tributed by colleagues from the Institute for Pathology at the Medical University
Graz, most importantly Prof. Kurt Zatloukal, Dr. Karl Kashofer, and Dr. Martin Ass-
laber; the Center for Biomedical Informatics at Harvard Medical School, espe-
cially Prof. Peter J. Park; Ian Watson and Steven Quayle from the Dana-Farber Can-
cer Institute; as well as Aaron McKenna, Andrew Cherniak and Michael Noble from
the Broad Institute of MIT and Harvard; and finally by the Ludwig Boltzmann
Institute for Experimental and Clinical Traumatology, where Prof. Heinz Redl,
Dr. Gudrun Schmidt-Gann, Dr. Katharina Schmid and Monika Schuller collaborated.

1.6 Related Publications

The content of this thesis is based on several publications with many co-authors. This
section briefly describes which part of a publication is reflected in which chapter of the
thesis and discusses the contribution of this thesis’ author.

1.6.1 Primary Publications

The following publications contain the core concepts, ideas, realizations, and case studies
presented in this thesis.

A. Lex, M. Streit, C. Partl, K. Kashofer, and D. Schmalstieg. Comparative analysis of
multidimensional, quantitative data. IEEE Transactions on Visualization and Computer
Graphics (InfoVis ’10), 2010 [114].

This papers describes the Matchmaker technique. It is the primary source of Chapter 5.
Also, parts of the data analysis section in this chapter is based on the material.

A. Lex, H. Schulz, M. Streit, C. Partl, and D. Schmalstieg. VisBricks: Multiform Visual-
ization of Large, Inhomogeneous Data. IEEE Transactions on Visualization and Computer
Graphics (InfoVis ’11), 2011 [112].

This papers describes the VisBricks technique. It is the primary source of Chapter 6.
Also, parts of the data analysis in this chapter is based on the material.

A. Lex, M. Streit, H. Schulz, C. Partl, D. Schmalstieg, P. J. Park, and N. Gehlen-
borg. StratomeX: Visual Analysis of Large-Scale Heterogeneous Genomics Data for Can-
cer Subtype Characterization. Conditionally accepted for: Computer Graphics Forum
(EuroVis ’12), 2012 [115].

This papers describes the StratomeX technique and contains the cancer subtype analysis
use case. It is the primary source of Chapter 7. Also, the biological background in this
section draws from the content of the paper.

A. Lex, P. J. Park, and N. Gehlenborg. Supporting Subtype Characterization through
Integrative Visualization of Cancer Genomics Data Sets. In Proceedings of The Cancer
Genome Atlas’ 1st Annual Scientific Symposium: Enabling Cancer Research Through
TCGA. Washington, D.C., USA, 2011 [111].

This abstract and poster describes an early prototype of the StratomeX technique and
was presented at a biological conference to elicit feedback from the community.
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1.6.2 Secondary Publications

A. Lex, M. Streit, E. Kruijff, and D. Schmalstieg. Caleydo: Design and Evaluation of
a Visual Analysis Framework for Gene Expression Data in its Biological Context. In
Proceeding of the IEEE Symposium on Pacific Visualization (PacificVis ’10), 2010 [113].

This paper describes the hierarchical heatmap and the Bucket technique for view place-
ment in 2.5D space, which are part of Chapter 4. The main idea for the Bucket technique
was developed by Marc Streit, otherwise the first two authors contributed equally. Ernst
Kruijff was responsible for the design of the user study on the bucket visualization tech-
nique.

M. Streit, A. Lex, M. Kalkusch, K. Zatloukal, and D. Schmalstieg. Caleydo: Con- necting
pathways and gene expression. Bioinformatics, 2009 [178].

This abstract describes the Caleydo framework to a bioinformatics community. The con-
tent is a subset of the paper listed above.

M. Streit, H. Schulz, A. Lex, D. Schmalstieg, and H. Schumann. Model-Driven Design
for the Visual Analysis of Heterogeneous Data. IEEE Transactions on Visualization and
Computer Graphics, 2011 [179].

The concept for this paper was primarily developed by Marc Streit and Hans-Jörg Schulz,
with contributions from all other authors. The implementation was done by Marc Streit
and the author. It describes a general model for heterogeneous data and a prototype
implementation for the model, which is part of Chapter 8.

M. Waldner, W. Puff, A. Lex, M. Streit, and D. Schmalstieg. Visual Links across Appli-
cations. In Proceedings of the Conference on Graphics Interface (GI ’10), 2010 [197].

The concept for this paper was developed by all authors. Most of the work and im-
plementation was done by Manuela Waldner and Werner Puff. It describes a general,
application-spanning framework for visual linking, which is described in Chapter 8.

M. Steinberger, M. Waldner, M. Streit, A. Lex, and D. Schmalstieg. Context-Preserving
Visual Links. IEEE Transactions on Visualization and Computer Graphics (InfoVis ’11)
2011 [174].

All authors contributed to the concept for this paper. The technical approach was de-
veloped by Markus Steinberger and Manuela Waldner. The realization was primarily
executed by Markus Steinberger. The paper describes how to route visual links so they
do not disturb a base representation. It also contains a user study on the utility of visual
links. The content is part of Chapter 8.

T. Geymayer, A. Lex, M. Streit, and D. Schmalstieg. Visualizing the Effects of Logically
Combined Filters. In Proceedings of the 15th International Conference on Information
Visualisation (IV’11), 2011 [57].

This paper describes a visualization technique for filters which are used in preprocessing of
datasets, which is described in Chapter 4. The concept was developed by Marc Streit and
the author equally, Thomas Geymayer contributed improvements. The implementation
was done by Thomas Geymayer, with support from Marc Streit and the author.

C. Holzhüter, A. Lex, D. Schmalstieg, H. Schulz, H. Schumann, and M. Streit. Visual-
izing uncertainty in biological expression data. In Proceedings of the SPIE Conference on
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Visualization and Data Analysis (VDA ’12), 2012 [78].
The concept for the paper was developed by all authors, but the work was lead by Clemens
Holzhüter. The implementation was executed by Clemens Holzhüter, Marc Streit and the
author. Content of the paper is discussed in Chapter 4.

M. Waldner, A. Lex, M. Streit, and D. Schmalstieg. Design Considerations for Collabo-
rative Information Workspaces in Multi-Display Environments. Proceedings of the Work-
shop on Collaborative Visualization on Interactive Surfaces (VisWeek ’09), 2009, [196].
This paper describes implications of doing visual analysis in multi-display environments.
The concept was developed by Manuela Waldner and the author, with contributions from
the other authors.
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Molecular Biology is a sub-field of biology dealing with the molecular basis of biolog-
ical processes. The related and intertwined field of genetics studies the hereditary process
in living organisms. It is the hereditary process that distinguishes life from everything else
[2, p. 1]. The hereditary information of all living things is stored in desoxyribonucleic acid
(DNA), which is contained in cells. The two fundamentally different types of organisms are
prokaryotes, simple, mostly single-cellular organisms with no cell nucleus, and eukaryotes
whose cells contain membrane-based structures, most importantly the cell nucleus. The
latter store their DNA in the nucleus where it is packed in pairwise sets of chromosomes.
Prokaryotes are sub-divided into bacteria and archaea, eukaryotes include all species which
are made up of large, complex conglomerates of cells, including humans.

DNA encodes its information by aligning nucleotides that are made up of one of four
bases (adenine, guanine, cytosine, or thymine), and a sugar-phosphate (the link to the
neighboring bases on the same strand). The sequential variation of nucleotides encodes
the hereditary information. Genomics, a sub-field of genetics, is concerned with the
entire sequence of DNA and genetic mapping, often using computational methods. DNA
contains two strands, which are linked by weak hydrogen bonds along complementary
bases (adenine binds to thymine and guanine to cytosine). The strands are twisted into a
double helix form, wrapped around histones, and then tightly packed into chromosomes.
DNA itself only stores information, the gene products that are based on the code stored in
the DNA do the actual work. The most important gene products are proteins. Proteins
cause the chemical reactions that make up most biological process. It is the DNA that
encodes the proteins, but the process of how and how much of a protein is created is
highly complex. The fundamental process of creating functional gene products is called
expression and is illustrated in Figure 2.1(a). DNA is transcribed into ribonucleic acid
(RNA), a single-stranded complementary molecule. Some parts of the RNA are then
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(a) (b)

Figure 2.1: DNA, RNA, proteins and genes (a) Segments of DNA are transcribed into RNA.
RNA is then spliced and translated to proteins [2, Fig 1-4]. (b) The different biomolecular
products and how they interdepend. Three primary transcripts of DNA are produced in this
example. Those transcripts are then spliced alternatively and translation produces five proteins
and one noncoding RNA (ncRNA). These functional products are the basis of the definition
of a gene: the three overlapping regions (in red, containing A, B, C) that produce proteins are
collapsed to make up one gene (shown in yellow) – it follows that a gene can encode multiple
proteins. The separate regions D and E make up one gene each. Also, the ncRNA (X and Y),
based on the alternative primary transcript, is a functional product and is therefore considered
a gene [56].

spliced (i.e., parts of the RNA are cut out), which produces messenger RNA (mRNA)
that carries the coding information for a protein. The mRNA is then used in a complex
translation process to produce proteins.

A region of the DNA that codes for proteins is called a gene. However, as the whole
process is highly complex, a precise definition of a gene is not trivial. The following
definition by Gerstein et al. [56] is now widely accepted: “The gene is a union of genomic
sequences encoding a coherent set of potentially overlapping functional products”. The
implications of this definition are illustrated in Figure 2.1(b) – a single gene can produce
multiple proteins. Also, the DNA sequence that is part of a gene can be a part of other
genes as well. Parts of the DNA that do not produce proteins but other functional products
are also considered to be a gene.

Proteins are polymers consisting of a sequence of amino acids [80, p. 92]. There are 20
different amino acids, each with different chemical properties. The amino acids are joined
and fold to three-dimensional structures. The combination of the amino acids make up
the unique chemical features of each protein [80, p. 94]. The study of the function and
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the structure of proteins on a large scale is called proteomics. Proteins can perform
structural functions, e.g., they can act as a messengers, transporters, or can influence the
regulatory process itself. Most importantly, however, proteins catalyze chemical reactions,
which are the building blocks of the biological processes in cells. Proteins fulfilling the
role of catalysts are called enzymes. The interaction of many enzymes and the involved
chemicals (metabolites) make up a metabolic pathway, which causes diverse processes.
An example is the Glycolysis pathway that provides energy to the cell. The large-scale
study of chemical processes involving metabolites is referred to as metabolomics.

2.1 Gene Expression Regulation

How much of a functional product is produced is described by gene expression. The
levels of gene expression are controlled by various regulatory mechanisms, some of them
epigenetic [58]. Epigenetics describes the modifications of the final outcome of genetic
processes that are not caused by a change in the DNA sequence. It is defined as “the
study of any potentially stable and, ideally, heritable change in gene expression or cellu-
lar phenotype that occurs without changes in Watson-Crick base-pairing of DNA” [58].
Epigenetics is a rather new field and many causes for epigenetic effects are yet unknown.
One of the known epigenetic mechanisms is DNA methylation, which attaches methyl
groups to specific regions of the DNA and thereby suppresses transcription. Another
mechanism is histone modification, which changes the way DNA is packed around hi-
stones. Tightly packed regions are typically less expressed while easily accessible regions
are more expressed.

Another part of the gene regulatory machinery are microRNAs (miRNAs) [21], which
are short RNA molecules (around 22 base-pairs) that, unlike mRNA, are not translated
into proteins (they are noncoding RNA), but regulate the translation of mRNAs into
proteins. They do so by binding to complementary sequences of mRNA and thus repress
the expression or silence genes altogether, but they are also known to increase expression
in some cases. Albeit not yet fully understood, the locus of miRNAs also frequently
coincides with hotspots for chromosomal abnormalities or loci suspected to be involved in
cancer [21]. miRNAs are also suspected to regulate other ncRNAs.

2.2 Genomic Variability

While large parts of the genome are remarkably conserved across individuals, small changes
in the sequence of bases cause the phenotypical variation we observe among individuals.
While such variability is normal and even necessary, other changes, such as copy-number
variations can have a profound negative (or sometimes positive) impact on the phenotype.

The most common form of sequence variation in the genome are single nucleotide
polymorphisms (SNPs) [182]. The term polymorphism is used to denote an allele fre-
quency of more than one percent in a population [45], and thereby distinguishes it from
rarer forms of variations such as gene mutations. SNPs are responsible for many of the
phenotypical variations, which make individuals different from each other. SNPs occur
on average every 1000-2000 basepairs [182]. While SNPs are considered a normal varia-
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tion of the genome, combinations of particular SNP configurations are known to influence
diseases.

Structural variations in contrast, describe variations such as insertions, deletions,
rearrangements, inversions and translocations [208]. There are two types of variations:
those that are dosage-altering, i.e., they have an effect on how much of a functional
product is produced, such as insertions and deletions, and those that are dosage-invariant.
Small-scale insertions and deletions are usually referred to as indels. Indels are common
even in healthy individuals, with about 30.000 in the average genome [208]. However, such
small-scale variations can also have a significant effect on the phenotype, especially when
they are close or on genes. These gene mutations can lead to changes in the structure
or function of the protein, which can have serious effects, for instance, if they affect tumor
suppressor genes [25].

Mutations of a larger scale are copy number variations (CNVs) [45]. CNVs are
genomic mutations that can occur, for instance, when the genomic DNA of a cell is copied
incorrectly during cell division. Whereas gene mutations only affect single or a very small
number of consecutive positions in the genome, these alterations may affect hundreds to
tens of thousands of positions or even whole chromosomes. To be regarded as a CNV, the
affected region has to have at least a length of 1 kilobase [45, 208]. Regions of the genome
may be either amplified, resulting in an increased number of copies of the genes in that
region, or lost, resulting in a decreased number of copies of the genes. Since normal cells
carry only two copies of most genes (one in each of the complementary chromosomes; some
genes in males have only one copy due to the Y-chromosome), they can either lose one
copy – a “heterozygous deletion” – or both copies, resulting in a “homozygous deletion”.
On the other hand, there is no theoretical limit to the number of times a gene can be
amplified. An increased number of copies of a gene, for instance, often leads to increased
gene expression levels and vice versa. Copy number variation, however, is not only a source
of irregularities, but also contributes to normal genetic variation between individuals [45].

2.3 Measuring Biomolecules

DNA microarrays, or DNA chips, are used to measure post-transcriptional products of
DNA, such as mRNA [70]. By measuring the abundance of such mRNA molecules the
activity of a gene – the gene expression level – can be determined. For genome-wide studies
the gene expression level is typically used as an indicator for the amount of protein that
is being produced for the corresponding gene. Another application of DNA microarrays
is to screen for SNPs by applying fragmented DNA which binds to allele-specific probes.
Microarrays can be produced in many different ways, for example, by ink-jet spotting
or using in-situ photolitographic processes [70]. Microarrays are available at different
“bandwidths”, from a full array of up to 106 test sites, down to a selected number of
genes used for diagnostic purposes [70]. The spots for hybridization consist of known
sequences. A sample is applied to the whole chip, and, depending on the abundance of a
specific sequence in the post-transcriptional product, binds with varying intensity to the
complementary spots. Due to previous staining with fluorescent materials the intensity
of the binding can then be read using imaging methods. Microarray data is unitless
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(a) (b)

Figure 2.2: First and second generation sequencing. (a) The process of shotgun Sanger
sequencing. First DNA is fragmented and then cloned. A fluorescently labeled molecule is
attached to one of the four bases. The fluorescent markers can then be read in a linear
sequence. (b) The process of cyclic-array sequencing, the most commonly uses second gen-
eration sequencing method. DNA is again fragmented, but then cloned in-vitro. The crucial
difference to first-generation sequencing is that many fragments are placed in a polony array
simultaneously. During several cycles the position of a base in each fragment is determined
through imaging [165].

and must go through normalization (in reference to other samples) and quality control
processes before it is ready for analysis [55].

DNA sequencing determines the order of the nucleotide bases in a DNA or RNA
molecule. While several historic methods exist, the most important ones are Sanger se-
quencing (first generation) and second generation (or next generation) sequencing tech-
niques. The process of sequencing with both techniques is illustrated in Figure 2.2(a).
Sanger sequencing was used to assemble the first complete human genome in 2001 [83].
Sanger sequencing is more expensive due to the more complex in-vivo cloning and the
serial reading of the sequence. Next generation sequencing significantly reduces the per-
base cost of sequencing, is easier to conduct, and requires less infrastructure. It, however,
produces much shorter sequences and the process results in more errors, which has to
be counteracted using algorithmic methods. In fact the principal challenge of second-
generation sequencing is the data management and analysis [165]. The cost of sequencing
a whole genome has dropped from 100 million dollars in 2001, to ten million dollars in
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2007, to 10.000 dollars in 2011 [203], making sequencing technology available to many
users. Next generation sequencing is suitable to detect and measure many kinds of bi-
ological phenomena, such as all kinds of genomic variablity (including SNPs, mutations
and CNVs), transcriptomic data such as gene expression, microRNA quantification, and
protein interaction, just to name a few [165]. Consequently, sequencing of DNA and RNA
is not only used to determine sequences, but can cover most use cases of microarrays as
well. Figure 2.2(b) illustrates the process of polony sequencing, a prominent representa-
tive of cyclic array sequencing techniques [166]. All major commercial next-generation
sequencing techniques fall into this category. Cyclic array sequencing is based on si-
multaneously decoding a two-dimensional array with millions or even billions of sequencing
features [166]. Features are immobilized (their position is fixed) on a medium. In each of
multiple cycles, a single base position within each feature is determined and recorded using
imaging technology. After the cycles, the sequence can be inferred by analyzing the imag-
ing information obtained during the cycles for each feature. Other sequencing technologies
include sequencing by hybridization, where differential binding to an oligonucleotide
array can be used to analyze the sequence, or microelectrophoresis, which follows the
basic Sanger sequencing strategy, but miniaturizes the components through microfabrica-
tion techniques, to achieve a more parallel process [166].

Other methods of measurements are mass spectrometry, where the weight to electric
charge ratio is used to identify the compounds, or nuclear magnetic resonance which
can give insight into the molecular structure of compounds [55]. Both technologies are
relevant for the field of proteomics and metabolomics.

2.4 Implications

The implications of the increased understanding of the hereditary process, ever since
Gergor Mendel discovered the basic model of inheritance in the 1860s, cannot be overes-
timated. Asides from the fundamental knowledge of the process of life, molecular biology
has applications in the diagnosis, prediction and treatment of diseases. While the causes
of mongenic (Mendelian) diseases are comparatively well-understood and at the same time
rare, virtually all major diseases are multifactorial with a polygene component. Examples
are diabetes, cancer, and coronary heart disease [124]. The latter two make up roughly
50% of all deaths, with cancer taking a share of 23.2% [209] (US figures for 2007). Many
individual genes that play a role in cancer have been identified. The most prominent
example is maybe BRCA1, a gene involved in the repair of breast tissue. If BRCA1 is
mutated the risk of developing breast cancer is significantly increased [128]. Clinically
relevant gene expression patterns can, for example, be found in glioblastoma multiforme,
a brain tumor. Verhaak et al. [192] recognized that glioblastoma subtypes can be charac-
terized by gene expression profiles, and that the subtypes reported responded differently
to treatment options. Molecular biology, however, does not only help classifying diseases,
but leads to drug discovery and to personalized medicine [25]. The necessity of information
technology tools for this kind of research is undisputed [26].

In this thesis we demonstrate the utility of the proposed visualization techniques for two
use cases: a gene expression study on a mouse model to uncover the causes of liver cirrhosis,



2.4. Implications 19

and the aforementioned subtyping of glioblastoma multiform. The two use cases are quite
different. The former is a study of a small scale, with about 50 experiments. It is conducted
using microarray experiments with the goal to find the genetic causes for pathological
changes in the liver which in turn may be linked to cirrhosis. The latter is a study
conducted as part of “The Cancer Genome Atlas”(TCGA)∗ project, a large scale effort
involving more than 150 researchers and more than two dozens of research institutions.
Glioblastoma multiforme is one of 20 tumor types selected for comprehensive study, where
500 tissue samples are collected and a wide array of biomolecular data is recorded using
next generation sequencing for each tumor type. We show that the techniques proposed
are of value for both use cases.

∗http://cancergenome.nih.gov/

http://cancergenome.nih.gov/
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The topics covered in this thesis draw from a number of areas of information visual-
ization. We begin with an analysis of relevant multidimensional visualization techniques,
and continue by covering more specific topics such as divide and conquer visualization
techniques, or visualization in the biological sciences. We give as much detail as necessary
to put the contributions of this thesis in the context of the state of the art, and give hints
to more detailed resources where appropriate.

3.1 Multi-Dimensional Data Visualization

Multidimensional data can be displayed in many forms. There are three approaches to
convey the information and structure of high-dimensional datasets:

1. Tabular display of the data in symbolic form (written numbers or text), using, for
example, spreadsheets.

2. Display of statistical properties (either numerically or graphically).

3. Visual encoding of the data.

While the direct display of data in electronic spreadsheets is the most precise for reading
individual values, it is difficult for humans to read global trends from tables. For decision
making, however, the relationships emerging from the entire dataset are crucial [14, p. 1].
We have previously discussed the inability of humans to efficiently analyze large quantities
of symbolically encoded data. Also, as the available screen space is limited, the number
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Figure 3.1: Anscombe’s quartett [4]. The four different datasets plotted here have many
identical statistical properties, e.g., the mean and variance of both dimensions, the correlation
and the linear regression between the dimension. However, when looking at the plots it is
obvious that the data is in fact quite different.

of symbols that can be displayed at any given time is limited. While this is also true for
the graphical representation of datasets, the scale at which graphical representation fails
is vastly different. It has been shown that more than a million items can be displayed
without using abstraction (e.g., [43, 96]).

One might think that the overall relationships might best be uncovered using statistical
analysis, but as Anscombe’s quartet [4] impressively demonstrates (see Figure 3.1), statis-
tical analysis can be ambiguous. Nevertheless, plots of statistical attributes, for example,
histograms [140], can provide a valuable first glance at the distribution of a dataset. Of
course, statistical or other computational analysis support an analysis. The field of Visual
Analytics takes the approach of tightly integrating visualization and analytics methods in
a continuous interplay [99].

A hybrid form of direct display and graphical representation is the table lens [145],
shown in Figure 3.2(a). It utilizes a lens metaphor [51, 157] as a Focus+Context technique,
distinguishing regions of “focus” - where all information is available using symbolical rep-
resentations, and regions of “context”, where small, abstract representations are used. In
these context regions numerical variables are plotted using bars while categorical variables
are encoded using color and position.

Keim [95] and Oliveira and Levkowitz [44] classify multidimensional visualization tech-
niques into geometric techniques, where the data is projected to two or three-dimensional
Euclidean space, employing the visual variables [15] position, size and orientation; icon-
based techniques, which utilize visual variables such as shape, size, color and hue to
encode data onto an icon; pixel-oriented techniques, where each data value corresponds
to a pixel (or more general, to a mark), the color of which encodes the magnitude of
the value; as well as hierarchical and graph-based techniques. Additionally, hybrid
approaches are also very common. We discuss examples of geometric, pixel-based and
hierarchical techniques, as they are most relevant in the context of this thesis.

3.1.1 Geometric Techniques

Scatterplots are a very simple, yet powerful geometric technique to visualize the re-
lationships between two dimensions. Scatterplots use points (marks) in the Cartesian
coordinate system, which is determined by a function of the value of the attribute (e.g.,
linear mapping, logarithmic mapping, of fish-eye functions). A single scatterplot can show
only two dimensions at once. To accommodate more dimensions, several strategies are
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(a) (b)

Figure 3.2: (a) The table lens [145]. Focus areas are shown in full detail to make the
symbolical representations legible. In context areas space-efficient visual encoding is employed.
(b) A scatterplot matrix showing all combinations of 12 dimensions, including duplicates above
the diagonal.

possible. The most obvious would be to use three-dimensional (3D) space instead of two-
dimensional (2D) space. However, 3D introduces issues of occlusion, but most importantly
3D plots of data do not follow the rule that “the representation of numbers, as physically
measured on the surface of the graphic itself, should be directly proportional to the nu-
merical quantities represented” [186, p. 77]. Ignoring this rule can lead to perceptual
errors. It is common to use icon-based techniques for the marks in scatterplots, assigning,
for example, color or size to encode additional dimensions. Still, as the number of visual
variables is limited and the perceptual effectiveness of combining many visual variables
is doubtful, alternative approaches are required. One example is the Grand Tour [7],
which selects a dense set of “projections” (scatterplots) to present to a user. Another very
common approach is to show all possible combinations of dimensions and arrange them
in matrix-form, yielding a scatterplot matrix [22, 23] as shown in Figure 3.2(b). As, for
many dimensions, individual scatterplots are typically rather small, they are most com-
monly used in a multiple coordinated view [149] fashion. The matrix provides an overview
and a duplicate of one scatterplot is enlarged to provide full interactivity. Sophisticated
methods to navigate, query, and brush scatterplot matrices have been developed (see, for
example, [40, 121, 193]).

A widely used geometric, multidimensional data visualization technique are parallel
coordinate plots (PCP) [81, 82], shown in Figure 3.3(a). Related techniques are the radar
chart (see Figure 3.3(b); also known as star plots) [23] and the TimeWheel [184]. The
principle of those techniques is to use one axis for each dimension and arrange these axes
on a plane – in the case of PCPs the axes are arranged sequentially, parallel to each other;
the axes of radar charts have one shared center point and spread out radially; TimeWheel
arranges the axes in a wheel with one axis in the center. For every record a polyline is
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(a) (b) (c)

Figure 3.3: Axis-based visualization techniques. All plots show properties of cars such as
acceleration (ac), weight (w) and horse-power (hp) [144]. (a) Parallel coordinate plot for
five dimensions. (b) Radar chart for four dimensions. (c) Hybrid of scatterplots and parallel
coordinates plot for eight dimensions. All images taken from [27].

drawn between adjacent axes. The point of intersection of the polyline and the axes is
determined by the magnitude of the record’s value at the associated dimension.

Parallel coordinates have been researched extensively. Methods for clutter reduction
such as sampling [34, 39] or clustering [49] have been developed. Advanced brushing tech-
niques, for example, structure-based [50], composite, smooth, and angular brushing [64]
enhance the interaction with parallel coordinates and its derivates. Studies on usability
and perceptual issues found that parallel coordinates are effective and easily comprehensi-
ble even for novice users [171, 172]. Hybrids between parallel coordinates, scatterplots (see
Figure 3.3(c)) and other visualization techniques such as histograms have been developed
(e.g., [27, 101, 193, 211]).

Approaches to deal with an overwhelming number of dimensions, which is a problem
for scatterplot matrices and to a lesser degree for parallel coordinates, are dimension re-
duction methods such as principal component analysis (PCA) [88]. However, we observed
that users are often not interested in automatic reduction methods. In many cases, the
input data is part of a well designed experiment, where users have a priori knowledge
of the dimensions’ semantics and may already have hypotheses about their relationships.
Nevertheless, recent research has shown promising directions on how to reduce the number
of dimensions, while allowing users to interactively specify which types of features they
are interested in [85].

3.1.2 Pixel-based Techniques

Pixel-oriented techniques, shown in Figure 3.4, divide the screen into a set of windows, each
window corresponding to one dimension. Within these windows, the data values of the
dimension are arranged in equal order as small squares or pixel, with the magnitude of the
value encoded using color [95]. The two main challenges of pixel-oriented techniques are the
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(a) (b)

Figure 3.4: Pixel-based techniques. (a) Four dimensions with rectangular windows and se-
mantic, recursive pixel arrangement. (b) 50 dimensions in circle segment windows and linear
pixel arrangement. Both images taken from [95].

choice of an adequate color map and the choice of a suitable arrangement of the pixels. For
the choice of color, Keim [95] recommends a multiple-hue color map, designed in a way that
brightness increases monotonically. He argues for multi-hue color maps, over just varying
brightness or saturation, because of an increased number of just-noticeable differences.
However, multi-hue color maps bear considerable risk of misinterpreting data [18, 19, 90].
For choosing an arrangement of pixels, Keim argues for user-driven (semantic) recursive
arrangement, as shown in Figure 3.4(a), over mathematically optimal arrangements such
as Peano-Hilbert arrangements. The final challenge is to choose the shape of the windows.
Solutions range from rectangular windows [97], as shown in Figure 3.4(a), to radial layouts,
as shown in Figure 3.4(b), where the windows correspond to circle segments [3].

Heat maps [38], as they are commonly used for gene-expression data analysis, are a
simple form of the above-discussed pixel-based techniques. A typical example is shown in
Figure 3.5. The window for the dimensions is rectangular, the arrangement of pixels is
linear, with a width of only one pixel and n-pixels height (or vice-versa). Heat maps most
commonly employ a diverging red-black-green color map to encode the magnitude of the
values. Recently, more perceptually justified color maps are being employed. This is owed
to the fact that about 5% of the male population has a red-green deficiency (dichromacy)
[53, p. 30] caused by a recessive trait on the X-Chromosome, of which males only have
one. An alternative color-map is the red-white/gray/yellow-blue diverging color map [131].
The justification for employing diverging color maps is found in the properties of the data.
The neutral color encodes “normal” regulation, while the others encode up- respectively
down-regulation. Heat maps are covered in more detail in Section 3.6.
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Figure 3.5: Clustered heatmap with dendrogram showing gene-expression data [38]. Green
shows down-regulated, black neutral, and red up-regulated gene expression.

3.1.3 Hierarchical Techniques

Feiner and Beshers [16, 42] propose a hierarchical approach to visualize multidimensional
datasets by embedding virtual worlds within each other . Another approach is dimension
stacking [110], where dimensions and their associated values are recursively stacked within
each other. These hierarchical techniques are difficult to understand and are only usable
with a limited number of dimensions [44]. Consequently they have not been adopted
widely.

3.1.4 Summary and Context

In this section we discussed the different possibilities to visualize multidimensional data.
As a large part of this thesis deals with multidimensional data, these techniques form the
baseline for our own work. Our divide and conquer approach is a hierarchical technique:
we show the structure of the data on one level and the actual data on a second, more
detailed level. On both levels we draw from visualization techniques discussed here.

3.2 Divide and Conquer in Visualization

Divide and conquer strategies in visualization are employed when breaking down a vi-
sualization problem into sub-problems makes solving the original problem easier, more
efficient or more effective. Inhomogeneous data lends itself well to divide and conquer
approaches, as homogeneous parts of the data can be more easily analyzed, abstracted
and displayed. Divide and conquer strategies have been investigated most frequently for
graph data and its visualization, possibly because of the unfavorable runtime complexities
of analysis and layout algorithms for general graphs. Graph layout algorithms benefit
greatly from a subdivision of the data into smaller, more homogeneous subsets, which can
be efficiently processed individually, and then compiled for an overall result. In addition to
the gain in speed, this strategy can also generate more expressive representations, because
the sub-layouts can be optimized.
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(a) (b)

Figure 3.6: Divide Strategies. (a) An example of an improved graph-clustering based on a
divide and conquer strategy [1]. The graph is split up at the articulation points, (dark grey on
the left), the sub-parts are then clustered separately. (b) A decomposition tree illustrating the
semantic divide process employed in OLAP. The plots show the finances of a University. The
data is split based on two criteria of homogeneity (faculty and cost class) [122].

The following two sections give a short overview of existing approaches for the visu-
alization of inhomogeneous graphs and tabular data by discussing different methods that
are often used to perform the divide and the conquer steps.

3.2.1 Dividing Inhomogeneous Data

For large graphs, the subdivision of inhomogeneous data is performed purely in the data
space, as it has to be performed before the mapping (i.e., creating the layout), which may
be time-consuming. Graph theoretical methods are used to determine more coherent sub-
graphs within the inhomogeneous overall dataset. In most cases, these subdivision meth-
ods are hierarchical clustering algorithms or traversal strategies for identifying connected
components; both are often used together. A possible way to combine these methods is to
first perform a quick traversal to identify (bi-)connected components that are then further
clustered hierarchically in a second step [1]. An illustration of the process is shown in
Figure 3.6(a).

For multidimensional, tabular data, statistical subdivision methods are usually em-
ployed. In case of dividing records, the subdivision is based on the statistics via (hierar-
chical) clustering, or on the semantics, as is often observed for OLAP (online analytical
processing) like partitioning of the data space into different value ranges. Examples for
clustering algorithms are hierarchical algorithms [38], which yield a similarity tree, or
partitional algorithms such as k-means [118] and affinity propagation [46]. OLAP is a
technique for data mining in multidimensional datasets and relational databases primarily
employed in business applications. Basic OLAP techniques include slice and dice, which is
used to reduce the dimensionality by selection or projection, roll-up, which increases the
level of aggregation, and drill-down, which decreases the level or aggregation or increases
detail [24]. The purpose of OLAP is to not just perform equidistant partitioning, e.g.,
a person’s age in sets of 10; instead, it brings in common knowledge and makes more
meaningful partitions, such as being of legal age at 18 or retiring at 65. An example for
an OLAP-based slice and dice operation is shown in Figure 3.6(b).
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The same is true for subdividing dimension, which is also based on statistics through
the aforementioned correspondence analysis or on grouping dimensions according to their
semantics; a user would likely place zip codes and a person’s age in different dimension
groups, even if for some reason the statistics found a correlation between both.

The divide step is a crucial one, because it pre-determines many of the features a
user will later see in a visualization of its results. A falsely parameterized algorithm
may result in an utterly useless visualization that does a good job at communicating
false results that are not actually representative of the data. Hence, different tools and
frameworks have been devised to support the user during the divide step. For dividing the
dimensions a hierarchical dimension management framework [210] can be used to construct
subspaces, orders and filter dimensions. For the subdivision of the records, one option is
the Hierarchical OLAP visualization [122], which supports the subdivision of the data
space via OLAP and allows the user to interactively steer the subdivision process.

It is important to note that the created subdivisions do not necessarily need to be
disjoint, even though often they are generated without overlaps, which makes the following
conquer step easier.

3.2.2 Conquering Inhomogeneous Data

After the inhomogeneous data has been subdivided, the resulting groups are processed and
visualized individually. Finally, the outcomes for all groups have to be fused together to
form a visualization for the whole dataset again. The result can be a uniform visualization,
in which all individual visualizations are of the same kind, or a multiform visualization,
in which entirely different visualizations are merged together [148]. In the field of graph
visualization, an example of a uniform visualization is the TopoLayout [6], which hierarchi-
cally combines different node-link layouts of subgraphs. For multiform visualizations there
are examples of pairwise combinations of all three major graph representation types, i.e.,
matrix, node-link, and implicit layout: NodeTrix [71], shown in Figure 3.7(a), combines
a matrix with a node-link layout; Elastic Hierarchies [213] combine a node-link with an
implicit layout; and Rufiange et al. [153] combine a matrix with an implicit layout.

To assemble an overview of a subdivided tabular dataset, the individual visualizations
of the subsets need to be patched together. Conceptually, there are two ways of doing that.
The first possibility is a very rigid arrangement of the visualizations in a certain style that
reveals relationships merely by thoughtful positioning of the individual views. Examples
for this approach, however, are scarce. Two notable techniques applying this approach
are portals, as used in the DataSplash system [207], and matrix-arrangements as used in
Multiform Matrices [121]. Portals are locally embedded smaller visualizations in a larger
base visualization. The relationship among different portals is communicated automati-
cally through their position. In Data Splash, for example, the individual visualizations
are put in the context of a map representation. An example is shown in Figure 3.7(b).

Multiform Matrices extend the basic concept of scatterplot matrices and add other
visualizations to the matrix arrangement. In the example in Figure 3.8(a), the redundant
cells of the scatterplot matrix are used to show geo-spatial attributes of the data. The
association of the view to the part of the data it represents is clearly conveyed through
the position in the matrix.
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(a) (b)

Figure 3.7: Conquering strategies: graphs and portals. (a) NodeTrix, a divide and conquer
strategy for graphs employing multi-form encoding [71]. The graph shows co-authorship of
information visualization authors. Semantic grouping (based on research institutes) for highly
connected parts is used. The dense groups are shown with a matrix-based graph layout, which
is well suited for highly connected graphs. Loosely connected components of the graph are
connected using a node-link layout. (b) Data Splash, a visualization using the portal technique.
Portals with visualizations of tabular data are embedded in a map [207].

In theory, both of these techniques have the potential to employ multiform visualiza-
tions; however, the examples always show the same visualization in all added views.

The second possibility is to allow a more flexible arrangement of views and to use other
visual attributes to encode their relationships. Assuming a fixed layout (i.e., the visual
variable position is employed otherwise) synchronous highlighting techniques must
be employed to achieve their association. Cockburn et al. [29] categorize highlighting as a
cue-based focus-and-context technique. Synchronous highlighting is also often referred to
as brushing [123] in multiple coordinated view systems, especially if multiple elements are
simultaneously highlighted. Seo and Shneiderman [159] mention three basic techniques to
encode relationships: color coding, drawing lines and blinking. However, in our opinion
this is not general enough (color coding is but one option for an in-place technique), and
also too specific, as we see no conceptional difference between blinking and other in-place
techniques. We distinguish between three classes of highlighting techniques: those that
employ in-place encoding such as color-highlighting or glyphs (for example, arrows),
those that modulate the surrounding of a highlighted item, for example, blurring ev-
erything else, and those that employ connectedness, meaning that they actually connect
the highlighted items using some geometry.

An example for a divide and conquer visualization technique using the connectedness
approach are Parallel Sets [104], which connect boxes using parallelograms. The size of
the boxes is proportional to the number of elements in the category. Inside the boxes
Parallel Sets can embed histograms, thereby visualizing the distribution of the contained
data, as can be seen in Figure 3.8(b). The focus of Parallel Sets, however, is not the
display of embedded visualizations, but to encode the magnitude of relationships between
different categories. Consequently, although in theory it would be possible to use this
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(a) (b) (c)

Figure 3.8: Conquering strategies: position and connectedness. (a) Multiform matrices – an
example for a technique that uses position to encode relationships between divided parts of
the data (Figure modified from [121]). (b) and (c) both use connectedness to re-introduce
the connections lost in the divide step. (b) Parallel Sets [104] connect histograms with paral-
lelograms to show the relationships of multiple categories. (c) CodeFlows shows the evolution
of source code using pipes. The structure of the code is shown using icicle plots [180].

technique as a multiform visualization with different views being connected, in practice it
has so far only been used in a uniform manner with all views utilizing the same kind of
representation. Parallel Sets are discussed in more detail for its categorical visualization
properties in Section 3.4.

CodeFlow, by Telea and Auber [180], also employs connectedness for multiple-view
association. CodeFlow is a system for comparing different versions of source code on
the code level. While such data can be considered as graph data, it can also be seen as
multidimensional data, where each revision is one dimension. Telea and Auber use icicle
plots placed along vertical axes, where each axis represents the version of the software
system under investigation. They then draw spline tubes between corresponding fragments
in different versions. The tubes can either be shaded, as shown in Figure 3.8(c), or opaque
in the middle and translucent at the borders, to allow a clear separation of the tubes. To
draw the user’s attention to changes, they use color for the bands that changed within the
range of currently inspected versions, while others are rendered gray. Telea and Auber’s
application domain is vastly different from ours: source code evolves gradually and thereby
makes bundling or similar measures obsolete. In addition, Code Flow does not provide
drill-down methods that preserve the context to the whole dataset.

Another example is the, for its devision strategy previously discussed, decomposition
tree [122] shown in Figure 3.6(b).
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3.2.3 Summary and Context

To our knowledge, there is no visualization technique employing in-place techniques or
the modulation of the surrounding to encode relationships between multiple fragments of
datasets, with maybe the exception of window titles in traditional multiple-coordinated
view (MCV) systems. By relaxing the requirement for related work from relating multi-
ple fragments of a dataset to general encoding of relationships we find a whole body of
important literature, which we will cover in the next section.

Our own approach for divide and conquer visualization of tabular data integrates and
advances these ideas. We propose a flexible technique that combines both, thoughtful
arrangement, and linking for multiform visualizations of subsetted inhomogeneous data.

3.3 Expressing Relationships

In the previous section, we elaborated different possibilities to re-introduce connections
lost due to the divide step of our divide and conquer approach. We found that expressing
relationships between the spatially separated entities is an important concept. Express-
ing relationships includes the concept of synchronous highlighting (brushing). We distin-
guished three types of techniques to express relationships: in-place techniques, techniques
that modulate the surrounding and techniques that employ connectedness. As those
techniques are relevant for any kind of multidimensional data analysis, including the divide
and conquer techniques presented in this thesis and the analysis of general heterogeneous
data, we discuss those techniques with a broader scope.

3.3.1 In-Place Techniques

We define in-place relationship expression techniques as techniques that mark relationships
between associated elements either by co-modulating their appearance (e.g., synchronous
coloring, synchronous blinking), or by adding a glyph (e.g., a pointer or label), either in
immediate proximity, or connected to the item.

Color is being almost universally employed for highlighting and brushing. Examples
are shown in Figures 3.3 and 3.9(a). Van Long and Linsen [119] use colored brushing to
show relationships between a cluster tree and the concrete values in a parallel coordinates
browser. Graham and Kennedy [59] show multiple trees and visualize their relationships
by interactive linking and brushing. Most MCV systems, like, for example, Tableau [175],
or VisPlore [142], employ colored brushing to connect views such as parallel coordinates,
histograms, or scatterplots, as can be seen in Figure 3.9(a). Reasons for the widespread
adoption of color are its ease of implementation, its ability to concurrently highlight arbi-
trary numbers, and its preattentive properties [185, 205]. Preattentive entities are recog-
nized immediately, independent of the number of distractors. Non-preattentive attributes
require serial search, i.e., conscious (attentive) comparison of every item. Employing color
for highlighting, however, also has several drawbacks. While color is ideally suited to
encode many items of one class, color is ill suited to encode many classes, i.e., the selec-
tive properties of color are limited. Healy [66] found that more than seven colors lead to
reduced performance in accurately and rapidly detecting the colors. Also, color may be
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(a) (b)

Figure 3.9: In-place brushing techniques: color and saturation. (a) Brushing with color in
a MCV system. The brushed elements are shown in red in both views (Figure modified from
[64]). (b) Brushing with saturation. Brushed items are shown in color, the others unsaturated.
The color encodes the additional dimension temperature (Figure modified from [35]).

already employed to encode other attributes. SimVis [35], for example, uses color to en-
code other parameters, and falls back to (binary) saturation to highlight brushed areas, as
can be seen in Figure 3.9(b). Equally, color can not be used for highlighting in pixel-based
techniques.

Synchronous blinking can also be used as an in-place technique. While it is very pre-
attentive, it is also considered disturbing by many users and can hardly be used for more
than one or two items. Other in-place techniques, such as drawing frames, underlining,
etc., are primarily employed in general software (e.g., for highlighting misspelled words)
and seldom in visualization software. These techniques are typically combined with color.

Drawing glyphs or symbols and labeling can theoretically encode many relationships
simultaneously. However, glyphs and labeling are even less selective than color, meaning
that finding two related items requires serial search when enough distractors are present.

3.3.2 Modulating the Surrounding

Modulation of the surrounding is typically done by decreasing saturation [212], bright-
ness [100, 212], or sharpness [105]. The latter two are shown in Figure 3.10. Zhai et
al. [212] show that darkening and decreasing saturation are highly effective but nega-
tively affect user satisfaction. Hoffmann et al. [72] reproduced the negative user rating
for darkening, and found that darkening was more error-prone than colored highlight-
ing or connectedness. Kosara et al. [106] found that blurring is also highly effective as
a highlighting technique. We can generalize that the modulation of the surrounding is
very effective, but not versatile and not scalable. In fact, it is not possible to express more
than one relationship at once. Also, the implementation is sometimes not straight-forward
(blurring may require shaders, for example). Combined with the low user satisfaction this
may be the reason why these techniques are not widely used for highlighting (synchronous
or individual), even though all these techniques are preattentive. A more promising ap-
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(a) (b)

Figure 3.10: Highlighting by modulating the surrounding: darkening and blur. (a) Everything
but the highlighted button is darkened [212]. (b) Everything but the brushed elements is
blurred [106].

plication scenario for such techniques are maybe minimal, hardly perceivable alterations
of images, to sub-consciously guide user-attention [191].

3.3.3 Connectedness

Connectedness (or uniform connectedness [139]) was shown to be a very strong grouping
principle, even stronger than classic Gestalt principles [201] such as proximity, similarity
(color, shape, size, brightness), or common fate [139, 215], as illustrated in Figure 3.11.
It was also shown that connected elements are perceived preattentively, approximately
at the same speed as proximity, but faster than similarity [62]. Ziemkiewicz and Kosara
distinguish between three forms of connectedness, namely outline, connector and fill [215].

We distinguish between general links, as they are, for example, used in node-link
diagrams (where the links are representation of the edges, which are part of the data
structure), or in parallel coordinates plots (where the links encode the actual information)
and visual links. We define visual links as “continuous shapes such as connection lines,
curves, or surfaces that connect or surround multiple related pieces of information, thereby
augmenting a base representation” [174]. In this context, a base representation is a image
or visualization that is meaningful without the addition of visual links. The notion of base
representation sets visual links apart from the general links, as they are used in node-link
diagrams, where the meaning of the diagram is lost if the links are not present. There
are two types of base representations. The first one is not aware of or does not adapt to
visual links at all, i.e., visual links are superimposed on existing visualizations. The second
type of base representations may leave empty space for the visual links, or may adjust its
content for improved links routing. We present representatives of both classes in this
thesis: the Matchmaker, VisBricks and StratomeX techniques use base representations of
the second type, while the visual linking techniques presented in Chapter 8 are designed
for base representations that do not adapt to the visual links.



34 Chapter 3. Related Work

(a) (b)

Figure 3.11: Classic Gestalt grouping principles compared to connectedness. (a) Gestalt
Grouping principles: (A) ungrouped, (B) proximity, (C) color, (D) size and (E) common
fate. (Figure modified from [139]). (b) Demonstration that uniform connectedness overcomes
classical gestalt grouping principles. Comparisons to (A) no Gestalt grouping, (B) proximity,
(C) size and (D) proximity and size combined [139].

Linking entities, albeit being a strong grouping and highlighting principle, does not
scale well. As the number of links increases, their paths become hard to follow. Bundling
strategies have been developed to group and organize the links and make linking scale
to larger numbers. Bundling strategies either utilize an underlying structure, such as
a hierarchy [75, 77]; use a force-directed layout where links attract each other [76]; or
formulate the problem as an optimization to minimize the required ink [52]. A related
problem, which is more relevant for visual links than general links, is that clutter makes
the underlying base representation hard to read. Of course, the above-mentioned bundling
strategies can improve the situation, but they do not guarantee to minimize the impact
on the base representation.

Semantic Substrates [169] are a technique to handle large graphs by employing a se-
mantic grouping of nodes. Within those groups, the nodes are arranged based on node
attributes, resulting in a view similar to scatter plots. The links within or between plots
can be added by interactively refining queries. One could argue that this is one of the first
works using interactive visual links between disjoint plots. Collins and Carpendale [30]
have generalized the Visual Links concept to connect multiple, arbitrary visualizations.
They arrange visualizations in a restricted 2.5D environment and connect them with links.
An example, where a treemap, a scatterplot, and a map is connected is shown in Fig-
ure 3.12(a). An example for visual links using shapes instead of curves or lines is Bubble
Sets [31], which shows a set relationship (or alternatively a brush) as a hull around a set
of selected features. Figure 3.12(b) shows an example of geographic relationships overlaid
on top of a scatterplot. Examples from the biological domain employing connectedness
are HCE [159], Circos [107], and MizBee [126], which we will elaborate on in Section 3.6
when dealing with visualization for the biological sciences.



3.4. Categorical Data 35

(a) (b)

Figure 3.12: Visual links connecting multiple views. (a) VisLinks generalizes the visual
links concept to different visualizations [30]. (b) Bubble Sets uses surfaces as visual links.
The example shows a scatterplot of fertility rates versus life expectancy for several countries.
Visual links are used to connect countries of the same continent [31].

3.3.4 Summary and Context

Picking up the ideas of general visual links, we will show that visual links are a suitable
method to integrate visualizations of general heterogeneous data, even across multiple
applications. We will discuss several technical refinements such as the thoughtful arrange-
ment of views in 2.5D space, as well as a routing algorithm taking base representations into
account. Additionally, by comparing visual links to traditional highlighting techniques in
a controlled experiment, we will show that visual links are an excellent method to express
relationships between spatially disconnected entities.

3.4 Categorical Data

For some tasks the composition of a stratification and the comparison to other stratifi-
cations is more relevant than the actual data. Since subset membership can be treated
as a categorical variable, visualization methods for comparing categorical data would be
suitable representations for these cases. We also consider categorical data as a possible
source format. Consequently we review literature on the visualization of categorical data.

The literature describes two principle approaches to categorical data visualization:
conversion of the categorical visualization problem to a quantitative problem in data space,
as well as explicit representation of categories in view space. A recent study [86] suggests
that both variants have their place in visual data analysis, as each of them is suited
best for specific visual analysis tasks. Explicit representation was found to work better
for frequency-based tasks, addressing questions such as, “Which category is the most
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common?”, while the conversion method works better for comparison tasks, answering
questions such as, “Which two categories are most similar?” The following will briefly
describe the related work for both approaches.

3.4.1 Conversion into Quantitative Data

The motivation behind converting categories into quantitative data is to make the data
processable by automatic methods, and displayable by visualization, with techniques orig-
inally devised for quantitative data. A simple example for a conversion is a linear mapping
of the categories to an interval in quantitative space. The transformed data can then, for
example, be displayed in a parallel coordinates plot [65]. However, such a trivial mapping
often produces undesired results. For example, when completely unrelated categories are
next to each other in the quantitative space, this can have adverse effects on the display
and on computational methods. It is therefore preferable to use advanced mappings.

Categorical data can be either ordinal or nominal. In the ordinal case, the categories
are inherently ordered, while nominal categories are not. If, for the aforementioned rea-
sons, an order of the categories is desired it can be computed, e.g., by correspondence
analysis [60, 151] or clustering-based approaches [17, 120]. The reasoning behind most
of these approaches follows Friendly’s mantra of Effect Ordering : “Sort the data by the
effects to be observed” [48]. A second step then computes a spacing between the cate-
gories to convey the degree of similarity between the categories. An established method
to achieve this is the Optimal Scaling approach [151], which is able to use the output of a
correspondence analysis for deriving a spacing. An alternative method is proposed by Shen
et al. [164], who map categorical to numerical data via a reference set. After this transfor-
mation, arbitrary techniques for quantitative data can be used, where parallel coordinates
are a common choice. Depending on the type of mapping, some additional measures coun-
teracting effects of showing categorical data in parallel coordinates can be taken. Havre
et al. [65], for example, compare different clusters by introducing intermediate lines where
they spread all polylines evenly, thus reducing the overplotting problem.

3.4.2 Explicit Representation

If categorical data is not transformed to quantitative data, there are two general ways
of visualizing it. Similar to the approaches described for the conquer step of divide and
conquer visualizations, these are to use relative positions or to use an explicit encoding of
relationships.

An example for relative positions are slice and dice subdivisions of the drawing
area, such as the mosaic plots [73], in which the size of the area representing a category
is proportional to the number of data records in the dimension. An example of a simple
mosaic plot is shown in Figure 3.13(a). Mosaic plots encode the relationships of two
dimensions. Each dimension is associated with one axis of a Cartesian coordinate system.
The intersection of two categories in the dimensions are depicted as blocks. The relative
frequencies of the categories of one dimension are encoded by the length of the edge parallel
to the dimension’s axis. Mosaic plots can be easily read and understood. To overcome
the limitation that only two dimensions can be shown at a time, arrangements such as
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(a) (b)

Figure 3.13: Category visualization using relative positions. (a) A simple mosaic plot dis-
playing the admission rates at a university. (b) A mosaic plot matrix showing the relationships
between 4 categorical dimensions for passengers of the Titanic. Both images taken from [47].

the mosaic plot matrix [47] were developed. Mosaic plot matrices place multiple bivariate
mosaic plots in a scatterplot matrix-like arrangement, as shown in Figure 3.13(b). This
shows the relationships of multiple dimensions simultaneously.

However, interactions between more than two dimensions can not be read from such a
plot. Figure 3.13(b), for example, shows a dataset on passengers of the Titanic, with the
dimensions class, age, gender and survival. In this plot it is easy to read that the majority
of the passengers in 1st class survived, while most of the crew perished. Similarly, it is
easy to see that most females survived. The question whether most female crew members
survived cannot be answered.

While mosaic plots are not often used to compare stratifications or clusterings, there is
an example of their use for comparing a clustering of records across different categories [74].
Visualization resembling the row/column structure of Mosaic Plots can also be found in
the biological field, for example, to classify cancer subtypes [192, Fig.3]. Yet, it should
be noted that the figure in this paper is not based on an interactive visualization, but
specifically produced to present the findings.

The second class of categorical representations use explicitly encoded relation-
ships, where ribbon-like links between the dimensions and categories are predominant.
The ribbons typically connect different categories of dimensions, where their width encodes
the frequency of the interaction between the connected categories. An early example is
the CobWeb technique by Upton [189], shown in Figure 3.14(a). The two dimensions to
be compared are arranged on two sides of a circular layout, with each category shown as a
small circle. Ribbons are drawn between the categories of the different dimensions. Upton
also gives examples with multiple dimensions shown at once. However, again, interactions
between more than two dimensions can not be read from CobWeb diagrams, albeit this
would be possible using brushing. Also, CobWeb diagrams, as displayed in Figure 3.14(a),
do not visually encode the magnitude of the different states, but provide only numbers.
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(a) (b) (c)

Figure 3.14: Category visualization using ribbons. (a) The CobWeb technique. The di-
mension’s categories are grouped and placed in a circular layout. Ribbons of different width
connect the categories of the different dimensions [189]. (b) Revised version of Parallel Sets
in standard mode, showing the Titanic dataset [103] (c) Original version of Parallel Sets in
bundled mode. In comparison to (b) the ribbons between the second and the third dimension
are not split based on the categories of the first dimension [104].

Parallel Sets, by Bendix, Kosara, and Hauser [12, 103, 104], draw from a variety of
techniques, such as parallel coordinates, mosaic plots and Sankey diagrams [147], result-
ing in a flexible visualization technique for categorical data. Parallel Sets assign each
dimension to an axis, which are arranged similar to parallel coordinates, as can be seen
in Figure 3.14(b). The categories are plotted as boxes with a height proportional to their
frequency. Categories of neighboring dimensions are connected via parallelograms, the
width of which encode the amount of shared records. Parallel Sets distinguish between
a standard mode, in which the ribbons between two dimensions are always split based
on the categories of the “focus” dimension, and a bundled mode, where the ribbons only
consider the interactions between the two neighboring dimensions and which is shown in
Figure 3.14(c). While the former makes it easier to understand the splitting of connections,
the latter reduces clutter, which is especially an issue when more than three dimensions
are to be considered. Parallel Sets clearly show the relationships between two dimensions,
but can, in contrast to the techniques discussed previously, also show interactions between
multiple dimensions. Taking up the example discussed before (to look for the portion of
female crew members who survived the Titanic disaster) it is obvious that the informa-
tion that most female crew members were saved, is easy to read from Figure 3.14(b). An
similar approach is used in CComViz for the comparison of clustering algorithms [214].

In this thesis, we also consider categories (derived) from multiple, heterogeneous data
sources. However, so far, only few studies have been reported on this topic. One of them
is the D-Dupe software [92], which clusters multiple datasets and then matches up the
results in a visualization to identify duplicates between both datasets.
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3.4.3 Summary and Context

We found that despite many promising general visualization approaches, the state of the
art does not provide a technique for interactive visual subset comparison across dataset
boundaries. Since we intend to combine visualizations of underlying data with the encod-
ing of categories, data space techniques are not suitable for our tasks. We have decided
against employing relative positions, since they do not integrate easily with embedded
visualization due to unfavorable aspect ratios for smaller categories. Hence, we chose a
ribbon-based technique, which scales better in this regard. For our ribbon-based tech-
nique, we prefer the parallel approach, where the ribbons are not split based on a focus
dimension. The reason for this decision is the interactive nature of the proposed visual-
ization techniques, where we expect analysts to frequently change their focus dimension.
Also, we are interested in analyzing more than three dimensions at a time, at which point
the splitting produces too much clutter.

3.5 Heterogeneous Data Visualization

We previously discussed techniques which can be used to visualize heterogeneous data, for
example, the portal approach [207], or the brushing between multiple datasets [35]. In this
section we give a brief overview on the state of the art in heterogeneous data visualization
that goes beyond the aforementioned techniques. For a detailed analysis of the literature
on heterogeneous data analysis refer to the thesis by Streit [176]. Heterogeneous data
analysis is challenging because of two reasons: First, conducting a targeted analysis is
difficult because of the overwhelming options analysts have. And second, the different
datasets require different views and visualization techniques, which need to be integrated
[183, p. 11]. The difficulty of an analysis is caused by the multitude of visualization
techniques and the many datasets. Just assigning which type of view should show which
dataset is by itself already challenging. Configuring visualization techniques and finding
a reasonable sequence to explore the data is even more difficult. Consequently, analysts
will greatly benefit if they are provided with orientation (e.g., with a map of the data) or
even with guidance. Two approaches that provide orientation support are (a) to provide
a history of previous steps, or (b) to provide a map of the data space. The former is
a common approach in general visualization systems. Shrinivasan and van Wijk [170],
for example, keep records of user actions that make it possible to revisit previous states.
Their implementation also supports branches of the analysis path. Heer et al. [68] suggest
a system to a similar end, shown in Figure 3.15(a), but uses thumbnails to record and
revisit the history. Koop et al. [102] suggest a system that goes beyond orientation,
by offering guidance for creating and configuring visualizations. Their approach is an
extension to VisTrails [11], a provenance-based system that records analysis pipelines for
re-use. Maps of the explorable data typically resemble relational database schemes. North
et al. [136] extend this idea to views, as they envision DataFaces, interactive connections
of visualization and data schemes, as future work.

There are several examples for tools supporting the integrated analysis of heterogeneous
data. We distinguish between those that work with cross-referenced datasets, and those
that handle general heterogeneous data. A prominent member of the first class is Snap-
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(a) (b)

Figure 3.15: Heterogeneous data analysis. (a) An extension to Tableau provides a graphical
history [68]. (b) The HIVE system combines heterogeneous data analysis with orientation
support [150].

Together visualization, which integrates multiple visualization applications, which run as
separate processes [137]. The integration is based on a mutually accessible relational
database. An extension of the Snap-Together system allows users to interactively create
both a data model and a set of suitable visualizations [135]. Lieberman et al. [116] present
a system that extends the original network-data only semantic substrates [169] to handle
cross-referenced data. The views in the system are, however, limited to scatterplots,
connected with visual links. Analysis tools for general heterogeneous data sources are
rare. A notable exception is TimeLine [5], which integrates multiple datasets, such as CT
scans and data from relational databases.

3.5.1 Summary and Context

Heterogeneous data analysis is a complex field with many facets but little literature up
to this date. With data being increasingly connected, and problems being of a larger
scope, the topic will gain attention in the near future. Two recent publications from the
biomedical domain [150, 194], published simultaneously with our contributions (detailed
in Chapter 8) show the growing relevance. The work by Rohn et al. [150], shown in
Figure 3.15(b), is not only a truly heterogeneous data analysis framework, but also provides
orientation by means of a map of the data.

None of the systems discussed seamlessly integrates the analysis process with a map
of the data. Neither does any of the systems combine guidance with heterogeneous data
analysis. In Chapter 8 we show how to do both, and demonstrate its utility. Also, while
some systems connect separate applications, none of them are truly independent, as all of
them utilize a shared data storage. We believe that heterogeneous analysis scenarios are
best addressed with specialized tools that are nevertheless tightly integrated. While we
do not provide a solution for this problem, we show some possible directions in Chapter 8.
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3.6 Visualization in Molecular Biology

In this section we present a selection of relevant visualization techniques for applications in
molecular biology. Typically, the techniques are strongly related to general visualization
techniques discussed up to this point. Here we go into detail on several domain-specific
techniques. This section is structured by the type of data the discussed techniques address.
If an application covers multiple data types, it is discussed where it is most relevant in
the context of this thesis.

3.6.1 Expression Profile Data

Expression profile data is typically visualized using clustered heatmaps with dendro-
grams [38, 54, 159] (similarity trees based on the results of a hierarchical clustering al-
gorithm), parallel coordinates [54, 101, 155] (or profile plots as they are referred to in
biology publications) and scatterplots. All these visualization techniques were treated in
Section 3.1. Microarray analysis and visualization platforms are widely available. Promi-
nent examples are the MultiExperiment Viewer in TM4 [156] or Mayday [10, 32, 54].
Mayday is a visualization tool for expression profile data focusing on the integration of
meta-information to annotate expression data, and on the integration of analytic capa-
bilities, for example, by providing interfaces to R [143] and Weka [61]. Mayday uses a
plug-in architecture to make it easily extensible.

The key challenge when using heatmaps is to come up with a useful and biologically
relevant ordering, which is usually based on clustering algorithms. Clustering of genes
ideally creates groups of co-regulated genes, which indicate co-function [38]. It is also
common to cluster samples or experiments, if no other semantic ordering (for example,
ordering in a time-series experiment) is given [200]. Clusters of samples can indicate
clinically relevant shared characteristics, such as tumor subtypes.

Heat maps are very popular in biomolecular visualization, with about 4000 publications
to date containing heatmaps [200], and the original paper by Eisen et al. [38] being the
third-most cited paper of the Proceedings of the National Academy of Sciences [204].

The Hierarchical Cluster Explorer (HCE) by Seo and Shneiderman [159] is a tool for
interactively exploring hierarchically clustered heatmaps. Core features of HCE are a
dynamic approach for partitioning the data into clusters by adjusting the “cut” of the
dendrogram and a focus+context approach based on multiple views for heatmaps. An
overview, containing all records, is supplemented by a detail view in a separate window,
which only shows a selected sub-set. An enhancement for HCE introduces algorithmic
ranking of projections [161], the result of which is displayed in a matrix. Based on this
ranking, users can then explore the most likely relevant projections using statistical views
such as scatterplots or histograms. HCE also supports comparing the effects of two dif-
ferent clustering algorithms on the same dataset. It renders two heatmaps on top of each
other and draws straight lines between the related items. While Seo and Shneiderman
state that this basic implementation was already very helpful for their users, they also
notice that simply crisscrossing lines can cause confusion for the users. Furthermore, they
only show this feature for very small datasets (less than 50 records and 6 dimensions).

The typical analysis of gene expression is conducted with samples where no spatial
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Figure 3.16: MulteeSum, a tool for visualizing spatially referenced gene expression data. The
view on the left is a projected map of an embryo. The circles show the positions of cells where
expression data is available, and their color encodes the magnitude of a summary expression
score. The Curvemap view uses filled line-plots to show expression values for selected cells
[127].

information is recorded. An alternative approach is used when the spatial location is
relevant, for example, in the early stages of the development of an embryo, when the
future function of cells is determined. Two notable tools in this context are PointCloudX-
plore [154, 155, 199] and MulteeSum [125]. The latter is shown in Figure 3.16. The scale
and type of data differs from typical expression profiles in that the number of genes is sig-
nificantly smaller, but measurements are taken for thousands of spatially registered cells
and several time points. Both tools provide a map of the embryo with color coded points
symbolizing the cells. PointCloudXplore and MulteeSum differ in the tasks they address.
PointColudXplore uses parallel coordinates in 2D and 3D versions to show the expression
data. MulteeSum contains the Curvemap view, which shows a matrix of small line-plots,
where one axis of the matrix contains the genes, the other the selected cells. The line-
plot encodes the expression level over time. Meyer et al. [127] originally developed the
Curvemap view for Pathline, a tool for comparing gene regulation among species, which
we will discuss in the context of pathway visualization.

For a comprehensive overview of expression profile analysis tools as well as of pathway
visualization (covered in the next section) see the survey by Gehlenborg et al. [55].

3.6.2 Pathways and Protein Interaction Networks

Graphs are a common data form in biology. Examples are genealogies and phylogenetic
trees. In molecular biology, two types of graphs are especially important: protein-protein
interaction networks and pathways. Both have also been the subject of substantial visu-
alization research.
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(a) (b)

Figure 3.17: Mapping experimental data onto pathways. (a) Cerebral, a Cytoscape plugin,
shows small multiples for experimental conditions, with data for one selected condition shown
in the large graph view. The magnitude of the experimental values is color-coded onto the
nodes. A parallel coordinates view for the experimental values complements the pathway
views [9]. (b) Linearization of a pathway, where experimental values are encoded using circles
and bars. This makes it possible to employ position, the most powerful visual variable, to
encode the magnitude of the values [127].

Protein-protein interaction networks essentially capture the chemical interactions
and bindings of proteins. The binding typically is part of their biological function. The
possibilities of interactions are huge. In yeast, which is considered a simple organism,
more than 20.000 interactions are estimated among the 5000 gene products [55]. Protein
interaction networks are stored in graphs. When studying protein interaction, automated
layouting of the network is often employed, due to the overwhelming size of the networks.
Cytoscape [162] is one of the most frequently used tools to visualize this kind of data.
Cytoscape owes its popularity largely to its plug-in mechanism, which makes it easy to
extend. Many Cytoscape plug-ins exists for diverse visualization and analytical tasks.
Some of them, like Cerebral by Barsky et al. [9], shown in Figure 3.17(a) are also interesting
from a visualization perspective. Barsky et al. discuss a graph layout algorithm which takes
biological properties into account.

In the context of this thesis, however, the way Cerebrals handles the overlay of multiple
gene expression experiments on the nodes is most interesting. It does so by utilizing small
multiples of one larger version of the graph, where the nodes color-code the magnitude of
the expression. Cerebral also provides a parallel coordinates view to explore the expression
data.
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Pathways are biochemical processes which carry out a specific function in a cell
(see Chapter 2 for details). Pathways typically are hand-curated and stored in publicly
available databases. Prominent examples are KEGG [91] and BioCarta∗. The focus
of analyzing pathways is different from protein interaction networks: Instead of exploring
protein-interactions per se, users of curated pathways are typically interested in functional
implications of a particular gene, in, for example, an experimental condition. It is there-
fore not surprising that plenty of methods, asides from the aforementioned small-multiple
approach, have been developed to do this. An alternatives to the small multiple approach
is mapping multiple experiments onto the node. Possible on-node encodings are multi-
ple, color-coded glyphs [117, 130], animation of the color code [93], bar charts [89, 202],
sometimes with error bars, or line plots [79]. Meyer et al. [127] take a completely dif-
ferent approach: they linearize the pathway layout and plot aggregate expression values
using lines and points, as shown in Figure 3.17(b). This lays a stronger emphasis on the
comparison of the numerical values, while abstracting the information of the network.

3.6.3 Genomes and Sequence Data

Genome visualization is not covered in this thesis. Some techniques used for genome visu-
alization are nevertheless relevant for visualizing relationships in the context of our divide
and conquer approach. Especially tools for comparative genomics data are of interest, as
they typically use visual links to encode relationships. Two layouts are prevalent: linear
layouts, for example, used in the Ensembl synthenyview [28], where the datasets to be
compared are aligned side by side, and circular layouts, where segments of circles contain
the different datasets. Meyer et al.’s Mizbee [126] and Krzywinski et al.’s Circos [107] are
examples of the latter group, which are also interesting for their advanced visual encoding.
They both use bundled curves respectively ribbons to show relationships and differences
among genomes. Mizbee uses two circles of chromosomes, one for the genome of each
species to be compared. The selected chromosome of the outer circle is copied to the inner
ring, and curves are drawn between the location of conserved regions in this one chromo-
some and all other chromosomes in the target species. Consequently, only relationships of
one source chromosome to the target’s chromosomes are shown at a time. Additionally,
an enlarged rectangular detail of the source chromosome and a detailed view comparing
the source and a target chromosome is provided. Circos [107] can place several datasets
in concentric rings and show position changes with curves connecting the rings. However,
this method does not scale to many changes in position, which is why, alternatively, chro-
mosomes from different samples can be arranged on a single circle. Circos is however a
tool that produces only static plots. These and other approaches to genome visualization
were summarized in a recent review article [133].

In contrast to MizBee, we intend to compare multiple datasets or dimension groups
at a time. Also, Mizbee uses spatially separated detail views, where we think a tight
integration with the overview is crucial to make the relationship between overview and
detail more obvious. Using a multi-circular layout, as it is possible in Circos, for analyzing
multiple datasets or dimension groups would result in heavy over-plotting.

∗http://www.biocarta.com/

http://www.biocarta.com/
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3.6.4 Summary and Context

Visualization plays a key role in molecular biology research, as the vast amount of tech-
niques and publications clearly show. Many techniques developed for these tasks can also
be applied to other fields. An example is the HCE, which has also been used to analyze
demographic data [160]. Other tools have a very specific focus, but solve an important do-
main problem well (e.g., Pathline [127] or PointCloudXplore [155]). With the techniques
described in this thesis, we aim to do both. The central concept and the fundamental
techniques are of general value and are not limited to a particular use case. Some other
contributions, such as the integration of pathways, are only relevant for the specific domain
they are made for.
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In this chapter we describe Caleydo, a visualization framework for molecular biology
developed at the Graz University of Technology. Caleydo has been developed since 2006,
with the first public release of the Software in 2009. Caleydo is intended to address two
needs: to give biologists a tool that they can actually use for an analysis, but also to be
a platform for research and teaching in visualization.

All the visualization techniques presented in this thesis are either part of or employ
Caleydo. In this context, we first discuss several basic visualization techniques provided
by Caleydo. We continue with a discussion of Caleydo’s data filtering capabilities in
Section 4.2. The chapter is concluded with a brief discussion of several software design
decisions relevant to the divide and conquer visualization approach and the handling of
heterogeneous data.

4.1 Fundamental Visualization Techniques

In this chapter we discuss several visualization techniques Caleydo provides that are not
part of the divide and conquer concept. In many cases, however, these are the building
blocks for the techniques realizing the concept.

Caleydo provides three classes of visualization techniques for multidimensional data:

1. Those that encode the data directly.

2. Those that show a similarity of entries according to a hierarchy determined by a
clustering algorithm.

3. Those that show abstract statistical properties of a dataset.

Representatives of the first class are implementations of parallel coordinates, shown
in Figure 4.1(a), a scatterplot matrix, shown in Figure 4.1(b), and a heatmap. Both,

47



48 Chapter 4. Framework

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Various visualization techniques of Caleydo. (a) A parallel coordinates view. (b)
A scatterplot matrix implementation. (c) The Jukebox for visualizing pathway interdependen-
cies [177]. (d) The Bucket view for visualizing pathway and gene expression interdependencies.
(e) A sunburst and (f) a treemap view for visualizing similarity relationships in hierarchically
clustered data.
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Figure 4.2: Hierarchical heatmap. A three level focus and context approach shows an overview
heatmap at the left, an intermediate level of detail in the center, and a detailed heatmap at
the right. The data shown in the detailed heatmaps is determined by the position of the sliding
window. Dendrograms show the similarity relationships between entries.

parallel coordinates and scatterplot matrix provide fairly standard features and are there-
fore not discussed in detail here. The heatmap, however, has several improvements over
traditional heatmaps worth mentioning. The hierarchical cluster explorer by Seo and
Shneiderman [159] provides an overview heatmap, including a dendrogram, to show simi-
larities between the entries, and a detailed heatmap which shows a selected sub-set of the
overview. However, the relationships between the overview and the detailed heat map are
not explicit, and transitions between different focus subsets are abrupt. To address this,
we developed the hierarchical heatmap, shown in Figure 4.2. The hierarchical heatmap
employs a direct visualization of the relationship between overview and detail, as well
as smooth transitions between focus levels, which are known to aid user orientation [69].
Our approach is conceptually similar to the source code visualization developed by Ball
and Eick [8]. Up to three heatmaps show different levels of detail for a multidimensional
dataset. The leftmost shows the whole datasets, where global trends are recognizable. Of
course, the quality of the overview depends on the quality of the clustering of the heatmap,
as only clustered heatmaps can convey large-scale trends. A sliding focus window con-
nects the leftmost to the second heatmap, which shows about 100-200 entries. Here, local
trends are recognizable, but the size of individual entries is still too small to see details
and print labels. Therefore, the second heatmap is connected with a third, again using a
sliding focus window. In the third heatmap individual details, including labels, are clearly
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Figure 4.3: Concept for encoding uncertainty in the hierarchical heatmap. Visual uncertainty
(due to overplotting) is shown as magenta bars on the far left. Data uncertainty is shown as
orange bars next to the heatmaps. For selected records in the detailed heatmap, the different
sources of uncertainty are shown individually. The uncertainty of a particular cell is encoded
using transparency.

visible. If the scale of the data makes a three-level approach unnecessary, only two, or
only a single heatmap is shown.

We also developed an extension of the heatmap to encode uncertainty in the data.
The approach is illustrated in Figure 4.3. We distinguish two types of uncertainty: visual
uncertainty, which is introduced during the rendering process of the visualization pipeline,
and data uncertainty. Visual uncertainty deals with issues of over-plotting. We quantify
how much information is lost due to the inability to map every data entry to at least
one pixel and plot this as bars (magenta in Figure 4.3) next to the heatmaps. Data
uncertainty can have multiple sources. We again use bars to plot an aggregate of multiple
uncertainties. In the detailed heatmap, we plot the different types of row-wise uncertainty
embedded in an overall bar and use transparency to encode the uncertainty of individual
cells. For details regarding this technique we refer to the original paper [78].

Besides traditional multiple-coordinated view (MCV) setups Caleydo also provides
the Jukebox [177] and the Bucket techniques [113], shown in Figures 4.1(c) and (d). Both
techniques place views in a 2.5D scene, i.e., a 3D setup with restrictions on where elements
(views) can be placed. While the Jukebox is limited to pathway data, the Bucket can be
used with arbitrary visualization techniques. In the Bucket, a focus view is placed at the
bottom of an open cube (hence “Bucket”). The walls contain contextual views, which
take up only little screen-space due to the three-dimensional distortion. Both techniques
connect related entities in the different views with visual links. The Bucket can be flattened
so that details of the focus view can be explored.

The hierarchical heatmap in Figure 4.2 is combined with a member of the second class
of visualizations – those that show similarity relationships – a dendrogram, for
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both records and dimensions. The dendrogram has several functions: aside from encoding
the similarity relationships between entries, the edges’ colors also encode the average values
of the associated entries. Additionally, the dendrogram is used to interactively determine
the grouping of the entries with the cut-slider. Once a cut is made, the grouping is shown
using green, shaded bars next to the heatmaps. To save space, the dendrograms can be
collapsed to show only the tree above the cut. Caleydo also provides a sunburst [173] and a
treemap [87] implementation, shown in Figures 4.1(e) and (f), to visualize the hierarchical
relationships between the entries.

A histogram is the most prominent representative of the third class – visualization
techniques that show statistical properties. The histograms in Caleydo serve two
purposes: to show the distribution, and to work as the color legend for the heatmaps. The
histograms can also be used to change or adjust the color mapping of a dataset. Other
statistical views are, for example, aggregate heatmaps that show mean values and the
standard deviation of the aggregate. Those views are, however, not used as stand-alone
windows and are therefore introduced later.

4.2 Data Preprocessing, Filtering

In this section, we will briefly explain how Caleydo handles the first two processes of the
visualization pipeline [36]: data analysis and filtering. The first process, data analysis,
means data preprocessing – a term we prefer, as, in the wake of the field of visual analytics,
analysis is thought of as a repeated process in the data exploration. Preprocessing tasks
include smoothing, correcting errors or handling of missing values [36]. Caleydo does not
include features for preprocessing, but assumes that the data is ready to be analyzed. The
rationale for this is that, especially in molecular biology, the preprocessing is in most cases
done by the software used for reading the data, or by established R-scripts [143]. While
Caleydo does not handle missing or invalid values in the data on a preprocessing level, it
reserves special mappings in all visualization techniques and handles it in all algorithms.

The second step of the visualization pipeline, filtering, is an essential process, since
it enables users to remove the unimportant, or the out-of-focus data. Filtering is also an
important part of Shneiderman’s information seeking mantra - “overview first, zoom and
filter, then details on demand” [168]. Caleydo provides various ways to filter data, which
can be classified into algorithmic filters and visual filters. The former class includes filters
based on significance (e.g., using t-tests) or fold changes, the latter is based on brushing
techniques such as 1D-selections or angular brushes in parallel coordinates.

In most cases, filtering is employed sequentially, which corresponds to a logical AND
combination of filters. However, other combinations such as OR and XOR are important
as well. Logic combinations of similar operations have been published mainly for brushing,
which is closely related to filtering. An early case study of a system that uses logically
combined brushes is the XmdvTool by Martin and Ward [123]. An important use case
for OR combination from the field of molecular biology is to filter expression data, which
increases or decreases less than two-fold among experiments, effectively removing all data
that remains largely unchanged over experiments.

Most visualization frameworks support filtering, some also track the process and make
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Figure 4.4: Visual representation of three AND-combined filters. Each parallelogram corre-
sponds to a filter. The height of the left base of a parallelogram encodes the amount of data
before, while its counterpart on the right shows the amount of data after the filter operation.
As the output of one filter is the input of the next, a sequential arrangement suggests itself.

it easily reversible, but none visualize the effect of the filters on the data. This is surprising,
since many visualization techniques do not convey the amount of data they show faithfully.
If sampling is used, for example, it can be hard to grasp the amount of data shown or to
detect the effect of a filter operation.

Filtering is also important as some algorithms or visualization techniques have pre-
conditions as to the amount of data they can handle. Advanced clustering algorithms, for
example, have considerable computational requirements. If online clustering, i.e., cluster-
ing that can be run in a time-frame where it is reasonable to expect a user to wait, is
desired, the data size may not exceed certain thresholds.

Founded on those observations and arguments, we elicited a list of requirements for
visually representing filters. A filter visualization technique should be able to (a) show
compositions of multiple filters and to (b) show the consequences, the effects of each filter
and of filter compositions. We also elicited further, minor requirements, which are omitted
here for brevity but can be found in the original paper [57].

To address these requirements, we have introduce the filter pipeline. The visualization
technique for sequences of filters (AND-combined) is shown in Figure 4.4. Inspired by
Minard’s work, the famous Carte Figurative des pertes successives en hommes de l’armée
française dans la campagne de Russie 1812-1813 [186], which shows the continuous decline
in Napoleon’s army during his Russian campaign, we chose to represent a sequence of filters
as a sequence of trapezoids, where the length of the left base represents the amount of data
before the filter operation, and the length of the right base represents the amount of data
left after the filter operation. As in a sequence of filters, the output of one is the input of
the next filter, a sequential arrangement is appropriate. The filters have labels showing
the amount of data before and after the filter operation, as well as a label describing the
filter.

For OR combinations of filters, we developed the technique shown in Figure 4.5(a).
Smaller trapezoids, A and B in Figure 4.5(a), are inscribed into one larger trapezoid.
The small trapezoids represent the individual filters, the large, enclosing one encodes the
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(a) (b)

Figure 4.5: OR-Combined filter representation. The individual filters are nested inside an
overall filter which represents the combined effect of all filters. The nested filters connect to a
bar on the right where set-intersections of all filters show how much which filter contributes to
the overall effect. The example in (a) shows two filters, A and B, which have three intersections
on the right. (b) A more complex example with four nested filters.

overall effect. To show that each of the sub-filters operates on the input of the overall
filter, they are connected to the left base of the overall filter by transparent ribbons. How
much a filter contributes to the overall effect is encoded by a bar attached to the right
base of the overall filter, to which the nested filters connect. The bar represents all set
intersections of the filters as segments. In Figure 4.5(a), the segments are labeled A&!B
for elements that only Filter A removes, A&B for elements both filters would remove, and
B&!A for those that only B removes. As the number of intersections grows exponentially
with the number of filters, and also the space for nested filters is limited, this method
does not scale arbitrarily. We believe, however, that in typical use cases the number of
OR-combined filters is limited. Figure 4.5(b) shows a case with four simultaneous OR
combinations, which is still very usable.

The filter pipeline has several additional features, especially concerning the interaction
with multiple filters. Examples are methods to change the order, create OR-Combinations
with drag-and-drop, hide, and modify filters. For a detailed description, we again refer
to the original publication [57]. We discuss an extension of the filter-pipeline considering
non-binary brushes in a recent paper [78]. The basic idea is to filter based on uncertainty
of the data, i.e., to remove highly uncertain parts. Instead of setting a binary threshold,
we use an interval of “certain” data extended by a range of data that cannot be considered
certain, but may still be valuable. These two levels of certainty are represented separately
and only data not fulfilling the “very uncertain” criterion is removed.
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4.3 Implementation and Software Design

Caleydo is written in Java and uses the Eclipse Rich Client Platform (RCP)∗ for graphical
user interface (GUI) components. The software is based on plug-ins, where views and other
other components are realized independent of the core. This makes the aforementioned
dual use-case possible: some plug-ins are considered stable enough for public release, some
are research prototypes, while others are student projects. The visualization techniques use
OpenGL†, accessed through the wrapper Library Java OpenGL (JOGL)‡, for rendering.
Caleydo includes features that are typically part of multiple coordinated view (MCV)
systems, such as linked brushing, filtering, etc.

What distinguishes Caleydo from other MCV systems is its ability to flexibly partition
and reconfigure multidimensional datasets, and its power to combine individual views
inside a single OpenGL window, both of which are essential properties to achieve the goals
outlined in the hypotheses. How this is realized is described in the next section. Following
the details on the data structure, we describe how Caleydo resolves mappings among
multiple datasets and how layouts for complex views are handled. While many other
software design choices of Caleydo would be worth discussing, these explained here are
the most fundamental for the presented divide and conquer, multiform, and heterogeneous
data analysis approaches.

4.3.1 Data Structure

Figure 4.6 shows the relationships between all classes mentioned in this section in a class
diagram. Caleydo loads a single dataset from a comma-separated or tab-delimited file.
Parameters, such as how many lines to skip, or which delimiter to use, can either be set
in a GUI or supplied in the extensible markup language (XML). The data is loaded into
memory and stored as primitive arrays of varying data types in the Table, where one
column in the dataset corresponds to one array. This corresponds to the Data Column
design pattern [67]. Using primitive arrays has the advantage of a small memory footprint,
but changing the order of elements, filtering, etc., is tedious and slow. To overcome this and
to be able to have multiple simultaneous filters and orders we introduce VirtualArrays.
VirtualArrays hold lists of indices to the primitive arrays in the Table. In other words,
a VirtualArray contains “access rules” for the data. By simultaneously creating multiple
VirtualArray instances, multiple orderings or subsets can be realized. The VirtualArray
is an advanced data structure based on a list and backed by a hash-map to allow both,
store a sequence, and enable constant-time index-of operations. The back-end hash-map
is created lazily so that computational overhead is minimal. VirtualArrays work equally
on dimensions and records. It should be noted that the Table abstracts the concept of
rows and columns, meaning that a column and a row in a file can each be exposed as both,
a dimension and a record by the Table.

Other properties of both, dimensions and records, can be introduced by dividing
or clustering. These processes create groups of entries that belong together, which is

∗http://www.eclipse.org/rcp/
†http://www.opengl.org/
‡http://jogamp.org/jogl

http://www.eclipse.org/rcp/
http://www.opengl.org/
http://jogamp.org/jogl
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Figure 4.6: Simplified class diagram of the Caleydo data structure. Raw data is stored
in Table, access rules (with respect to the order of elements, groupings, similarities) are
held in Perspective. Perspectives are defined for either records or dimensions of a
dataset. Only a combination defines a subset of the data. Such a combination is held by
the TablePerspective class.

captured in the GroupList data structure (see Figure 4.6). It is the combination of
VirtualArrays, which can be used to create subsets of datasets, and GroupLists, which
partition VirtualArrays into groups, that we use to realize the divide step in our divide
and conquer approach.

The ClusterTree is a concept related to the GroupLists: it records the similarity rela-
tionships of the entries as determined by a hierarchical clustering algorithm. GroupLists
can be thought of as a cut trough the ClusterTree. Together with the FilterManager,
which holds a history of changes to the VirtualArray, all those data structures are brought
together in the Perspective. Combined they make up a “perspective”, a point of view,
on either the dimensions or the records of the data.

Figure 4.6 shows that Perspective is a super-class of RecordPerspective and
DimensionPerspective. This is a measure to ensure type-safety and is in reality realized
for all classes related to either dimensions or records (including the aforementioned
VirtualArray, GroupList, etc.), but is omitted from Figure 4.6 for the sake of
simplicity. All the back-end data structures use generics to avoid code-redundancy while
all developers of plug-ins are only exposed to the concrete type-safe data types. Caleydo
allows users to create perspectives either automatically, manually, or by importing them.

As one perspective encodes information about either dimensions or records, it requires
a combination of one RecordPerspective and one DimensionPerspective to describe an
actual subset of the data. This combination is realized in the TablePerspective, which
holds a reference to both, and to the underlying Table. The TablePerspective can also
be used to calculate statistics on the subsets, such as distributions, mean values, etc. To
do this the TablePerspective uses the TablePerspectiveStatistics class.

Views in Caleydo access the data trough an instance of TablePerspective which holds
references to the data, the access rules and the meta-information in one place.
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Figure 4.7: Simplified class diagram of the recursive layout management data structure in
Caleydo. AGLView is the base class of all stand-alone views in Caleydo. It can, however,
also be recursively nested, so that one view can contain other views. A LayoutManager

simplifies structured layouts by providing Rows and Columns where ElementLayouts can be
nested. An ElementLayout can have an ARenderer, which is a base class for rendering
OpenGL objects. While an ARenderer is the lightweight counterpart to the AGLView, it can
also render AGLViews.

4.3.2 ID Mapping

Molecular biology uses multiple competing annotations for genes and related gene prod-
ucts. Those relationships, as is evident by the definition of a gene in Chapter 2, are not
trivial. Missing mappings and multi-mappings in all directions are possible. For the map-
ping of biomolecular entities, Caleydo relies on information extracted from the DAVID
Bioinformatics Database [167]. As, however, real-time querying of the online resources for
the desired amount of data is not realistic, Caleydo provides an advanced mapping data
structure, which can capture all possible relationships. We integrate the information from
DAVID with the identifiers (IDs) from the experimental data provided by a user. The ID
mapping data structure is used not only for biomolecular data, but for all kinds of data.
This ID mapping allows us to bridge between many heterogeneous datasets. Caleydo pro-
vides tools to dynamically convert data structures of one ID type to all other registered ID
types, so that cross-dataset filtering or brushing is possible. This makes it possible to, for
example, run a clustering on one dataset and apply the resulting grouping and ordering
to a cross-referenced dataset.

4.3.3 Layout

We have discussed how the divide step is realized on a data structure level, and how
relationships among multiple datasets can be resolved in Caleydo. This section discusses
the basis for the visual conquer step.

Caleydo employs recursive nesting to achieve a close integration of multiple views. A
GUI-window contains one top-level AGLView. The AGLView can render content and/or
other, nested AGLViews, as indicated by the self-aggregation in Figure 4.7. AGLView is
a heavy-weight base-class for views in Caleydo containing components for tasks such as
event handling, picking, and data management. While AGLViews can be nested they are
also used as stand-alone views in a traditional MCV system.
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To simplify the layout-process for complex views or for combinations of views, Caleydo
provides a LayoutManager, which holds nested ElementLayouts. As shown in Figure 4.7,
two classes, Row and Column, are derived from ElementLayout and provide row-, respec-
tively column-wise stacking of ElementLayouts. By assigning an absolute, relative or
dynamic width and height for individual ElementLayouts, and by using the nesting in
rows and columns, complex layouts can be realized. An ElementLayout may have an
associated ARenderer which can draw OpenGL objects. ARenderers are the light-weight
counterparts to AGLViews. Even so, they depend on a managing AGLView and cannot be
rendered as stand-alone views. ViewRenderer, a sub-class of ARenderer, can be supplied
with an AGLView, which makes it possible to include complex views as part of the layout.
ARenderers typically render within the bounds of its parent ElementLayout, ensuring no
overlap. However, it is legal for ARenderers to draw beyond their bounds, which makes
features such as pop-up overlays easy to implement.

In complex scenarios, hybrid approaches of nested layouts and manually-positioned
elements are common. As ElementLayouts are aware of their position relative to the
top-level AGLView, they can be easily connected and integrated with other elements, such
as visual links. While a LayoutManager significantly simplifies structured layouts, it is,
however, not suitable to be used for highly flexible layouts such as node-link diagrams or
3D-layouts.
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While a lot of research has been conducted on multidimensional data analysis, most ap-
proaches either visualize a dataset as a whole, or algorithmically extract the most relevant
aspects using, for example, dimensionality reduction. In many cases, however, multi-
dimensional datasets have an additional property that could be utilized to improve the
analysis: Meta-data, either explicitly encoded, or just informally known to the user, makes
it possible to stratify data into smaller batches, analyze and process it separately and then
compare the batches with each other. When discussing analysis methods with our collab-
orators, we discovered that most of their data has such inherent groupings. For example,
they want to compare time-series from different genotypes of a species, or from patients
suffering from diverse forms of cancer. The meta-data defines semantically homogeneous
groups and consequently makes the whole dataset inhomogeneous with respect to its se-
mantics. This observation is reflected in Hypothesis I, which states “dividing (strat-
ifying) inhomogeneous, multi-dimensional datasets into homogeneous groups
allows analytical algorithms to create better results, thereby making the sub-
groups more meaningful.” Hypothesis I also describes the challenge arising when
dividing a dataset: the relationships among divided subsets of data are lost.

In this chapter, we describe the Matchmaker technique, which re-introduces the rela-
tionships lost by employing visual links. Figure 5.1 shows the detail mode of Matchmaker
for two semantically stratified dimension groups. Overview columns with heatmaps are
shown on the far left and right. Between them, several bricks show focus replicates of se-
lected record groups. Relationships between the two columns are encoded by visual links
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Figure 5.1: The Caleydo Matchmaker detail mode. Matchmaker allows users to stratify
multidimensional datasets into homogeneous groups, cluster them separately and analyze the
relationships between the resulting clusters.

connecting the bricks. In the remainder of this chapter we will explain the rationale for
the design, introduce the visualization technique, and demonstrate Matchmaker’s utility
by describing two use-cases.

5.1 Motivation and Rationale

In biomolecular data analysis, clustering is used to group multidimensional,
high-throughput data into meaningful subsets. For a biologist, the goal of using
clustering is to assign a clear biological meaning to clusters. However, clustering,
especially of many inhomogeneous dimensions, can conceal important relationships.
Figure 5.2(a) illustrates one such case. The two records in the parallel coordinates plot
will likely not end up in the same cluster if no grouping is introduced and all dimensions
are clustered at the same time. In many cases this is desirable. However, if we know that
the first three dimensions are from experimental conditions different from the last two,
we can introduce a semantic grouping. This is illustrated in the lower branch of Figure
5.2(a). By clustering these dimension groups separately, the clustering algorithm is likely
to assign the two records of the first group to one cluster, but those of the second group
are likely to end up in different clusters. Of course, this example is a simplification. The
real benefit of such a divide and conquer strategy is obvious when three or more groups
of dimensions are created. An example for a complex case is shown in Figure 5.2(b). A
typical goal of a biologist would be to find all records that increase over time in one
group, and then explore how these behave in the others. This is not possible when all
groups are clustered at the same time. If the groups were clustered separately, she could
instead compare the source group to all others individually.



5.1. Motivation and Rationale 61

(a) (b)

Figure 5.2: Two situations where stratifications can be beneficial. (a) An example for records
that are assigned to different clusters depending on whether the dimensions are clustered after
they were divided or not. The original parallel coordinates plot shows two records in five
dimensions. The top branch of the figure uses no division step; the records end up in separate
clusters, as indicated by the different colors. The bottom branch groups the first three and the
last two dimensions and clusters them separately. The records for the first group end up in the
same cluster, while the records for the second end up in different clusters. The information,
which segments of the polylines belong together, is lost. (b) Scrambled, inhomogeneous cluster
of eighteen dimensions and six semantic subgroups that were not stratified. No clear biological
function can be assigned.

A related problem is the need to compare the results of clustering algorithms. Differ-
ent algorithms, parameters and similarity measures can have a profound impact on the
result. Quality metrics for clustering algorithms are hard to find. Usually, the quality is
assessed manually through interpretation by the user. An exception to this are silhouette
plots [152], which visualize how well objects fit to the cluster they are assigned to. Sil-
houette plots are based on calculating a measure of how well an element fits to its cluster
compared to the next-best candidate cluster. While silhouette plots can help judge the
quality of individual clustering results, a method that clearly visualizes the differences be-
tween multiple algorithms and parameterizations could support the process of judging the
quality of a clustering result significantly. A visualization of cluster stability among several
algorithms was developed by Sharko et al. [163]. They use a cluster stability matrix, which
shows the number of times two genes appear in the same cluster when running different
algorithms. To visualize the stability of a cell in the matrix they use color-coding. Sharko
et al. employ an indirect approach of calculating and visualizing a metric. We believe that
a direct approach of showing relationships of clustering results is preferable. As previously
mentioned, Seo and Shneiderman’s Hierarchical Cluster Explorer (HCE) [159] contains a
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Figure 5.3: Interface for manual, hierarchical grouping. The hierarchy and order is shown in
a nested tree representation. Groups from arbitrary depths in the hierarchy can be defined as
columns in Matchmaker.

direct visualization of cluster relationships using visual links. However, their method is
demonstrated only with a very limited number of entries (less than 50).

To address these challenges, we propose Matchmaker. Matchmaker realizes a com-
prehensive focus plus context strategy employing details-on-demand and drill-down capa-
bilities for comparing multiple, separately clustered groups of dimensions. To optimize
the visual quality of the connections between the groups we introduce an order-preserving
curve bundling strategy, which minimizes crossings between clusters.

5.2 Dividing the Data

We treated the formal aspects of dividing multi-dimensional datasets in Section 1.2, where
Figure 1.1 also illustrates the process. To briefly reiterate, we stratify a dataset into di-
mension groups DG = {dg1, ..., dgu|dg ∈ P(D)}, and divide the resulting dimension groups
individually into record groups RGi = {rg1, ..., rgv}. We call the visual representation of
a dimension group a column, and the visual representation of a record group a brick. In
this chapter, we discuss how this division step can be achieved in Caleydo.

Caleydo provides three ways to stratify entries (records or dimensions): manual, auto-
matic, or imported. For the manual approach, which is only feasible for a limited number
of entries, we provide a designated interface to facilitate the grouping, which is shown in
Figure 5.3. It supports hierarchical stratification into groups on different levels of a tree.
The tree is visualized using an implicit tree layout. New levels or branches can be created,
duplicated, removed, and resorted interactively. Every level of the tree can be used as
a group in Matchmaker. Manual stratification is typically used for dimensions, since the
magnitude of dimensions is usually smaller than those of records.

The automatic stratification capabilities of Caleydo are based on clustering algo-
rithms. The Caleydo framework provides partitional (e.g., k-means and affinity prop-
agation [46]) and hierarchical clustering algorithms (e.g., Eisen et al.’s tree clustering
algorithm [38]) as well as interfaces to Weka [61] and R [143] to utilize external cluster
implementations. As hierarchical clustering algorithms typically only provide similarity
relationships among entries instead of designated clusters, the clusters have to be speci-
fied through interaction. This can, for reasonably-sized cases, be achieved by using the
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Figure 5.4: Dendrogram used for the dynamic adjustment of the hierarchy cut-off determining
the granularity of the stratification. Changes in the cut-off level are immediately reflected in
both the overview and the detail heatmaps.

aforementioned interface for manual stratification – the clustering algorithm provides the
tree, which otherwise has to be created manually. For larger numbers of entries, a cut-off
along a dendrogram can be used to determine the actual clusters. Caleydo uses a default
value for the cut-off, which can be modified by dragging a slider to the desired level in a
dendrogram in the Matchmaker detail view, as shown in Figure 5.4, or in the hierarchical
heatmap as discussed in Chapter 4. Automatic stratification can be employed equally for
dimensions and records.

Importing stratifications is relevant to integrate manually curated classifications of
datasets, or stratifications created with external tools, such as bioinformatics pipelines.
Caleydo uses tab-delimited or comma-separated files, where one column contains iden-
tifiers recognized by Caleydo’s ID management, and the other column contains group-
assignments.

5.3 The Matchmaker Visualization Technique

The visual conquer step in Matchmaker uses relative positions to show that bricks belong to
the same dimension group (i.e., they are stacked on top of each other in a column); between
the columns visual links are employed. Since clustering algorithms or other stratification
approaches typically do not provide an order within a cluster, nor an ordering of clusters,
the ordering of bricks (the visual equivalent of record groups), and the ordering of the
records within the bricks can be chosen freely. We sort both bricks and records within the
bricks according to their mean value and thereby introduce meaning to the position of the
records. This allows us to use position to encode information, which is important, since it
is the most powerful visual variable available [15]. Having introduced a specific ordering,
we can use a parallel coordinates metaphor [81] to make the relationships among columns
evident. We arrange the columns side by side, where each column corresponds to an axis
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in a parallel coordinates plot. However, instead of using simple lines as axes, we show
stacks of bricks containing heatmaps. Analogous to parallel coordinates, we connect the
related records in the columns with visual links. This allows us to encode

• the magnitude and patterns of the values by using the heatmaps’ color coding,

• the average magnitude of a record group relative to other record groups in the same
dimension group via position,

• the average magnitude of a record relative to others in the same record group,

• the relationships among records and record groups across dimension groups using
visual links.

As we aim to visualize amounts of data on a scale where a single pixel has to represent
more than one value, we face the problem of level of detail (LOD) culling. Fortunately,
the clustering automatically aggregates data, so that even if LOD culling occurs, the
global trends are still visible. However, our requirements make it necessary to be able to
explore the magnitude and the relationships of individual entries. Consequently, following
Shneiderman’s mantra – “overview first, zoom and filter, then details on demand” [168] –
Matchmaker provides an overview, the ability to zoom into arbitrary parts while preserving
the context, and interactive, embedded detail views for individual clusters. The detail
mode is depicted in Figure 5.1. In both, overview and detail mode, relationships are
shown using curves or ribbons. A naive approach for connecting records, however, results
in visual clutter, rendering the visualization unusable. Therefore, we developed an edge
bundling strategy suitable for our requirements.

5.3.1 Edge Bundling

The most primitive way to show the distribution of records among the dimension groups is
to draw straight lines to connect the records, as illustrated in Figure 5.5(a). As discussed
earlier, this method does not scale well. Even in small datasets, it is hard to identify
trends. Figure 5.6(a) shows the connections between two heatmaps with about 400 records.
While at the top the records remain mostly within the same record group, everywhere else
crossings between record groups can be observed. It is very hard to see which bricks have
stronger, and which have weaker relationships.

One could argue that straight lines work reasonably well in parallel coordinates plots,
especially when some clutter reduction methods, such as using transparency, are employed.
However, similar to when parallel coordinates are used to display categorical data, the
nature of the combination of heat maps in bricks and the parallel coordinates coordinates-
like arrangement of columns force an even distribution of axes-polyline intersections. This
is not desirable, as it makes “visual clustering” due to coinciding position on an axis
impossible.

One possibility to reduce the clutter in the plot would be to sort the records within
clusters, since, as stated before, the order within a particular cluster has no a priori
meaning. Sorting the data records in the clusters by taking their position in the compared
dimension group into account can reduce the number of crossings significantly. However,
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(a) (b)

Figure 5.5: Illustration of visual linking between columns with and without bundling. (a) The
naive approach using direct connections. (b) Our bundling strategy, where we introduce sup-
port points (green) through which the visual links are routed. Support points are sorted based
on the destination record group of their associated record. Common destinations of support
points are indicated by the enclosing gray boxes. This bundling technique minimizes crossings
between the support points of the two columns at the cost of crossings between the support
points and their associated records.

since we want to use position to encode the mean magnitude of records, and want to see
the relationships among more than two groups simultaneously, this is not an option.

As a consequence, using methods that rely on sorting for crossing reduction, as for
example Holten’s method for hierarchical edge bundling [77] does, is not possible, even
when a hierarchy behind the data is available (e.g., when a hierarchical clustering algorithm
was used to produce the clusters). We therefore introduce a bundling strategy that:

• makes use of the grouping of records,

• makes use of the knowledge about the destination position of a record, and

• minimizes crossings of bundles among bricks.

The proposed bundling strategy is illustrated in Figure 5.5(b). For every record in
every record group we introduce a support point, shown in green in Figure 5.5(b). Records
within a record group can be connected to any of the support points associated with the
record group, but never to a support point from another record group. The support
points are ordered, so that the topmost support point of the source dimension group (left)
is associated with the topmost record group in the target dimension group (right), for
which the source record group in the source dimension group has a record. The common
target record groups of support points are indicated by the surrounding gray boxes in
Figure 5.5(b). In the example in Figure 5.5(b), the topmost source record group (dg1.rg1)
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shares two records with the topmost destination record group (dg2.rg1). Consequently the
two topmost support points of these record groups are connected. The connections from
the record group to its support points are chosen so that the crossing between them is
minimal. Then the next free support point is considered. If there is another equivalence
among the record groups, the target record group’s next point will be used. An example is
the connection of r4 in dg1.rg1 to its equivalent in dg2.rg1 in Figure 5.5(b). Otherwise, the
next record group of the target dimension group is searched for equivalences. If there is
one, the points are associated (as for example the connection of r3 in dg1.rg1 to dg2.rg2).
This process is repeated until all support points are connected.

As a result, all records from a source record group that connect to the same target
record group are assigned to support points that are adjacent in both the source and
the target cluster. Therefore, all connections between two record groups are parallel,
minimizing the crossings between support points. This technique enables a user to easily
identify trends as well as outliers. The main trends produce wide bands, while outliers
produce thinner bands. A similar relative magnitude results in bands of small angles, while
strong changes in average magnitude between dimension groups result in steep angles. So
when, for example, significant changes between two conditions are of interest, then record
groups connected by wide bands at steep angles are the feature to look for.

The bundling strategy introduces crossings between the clusters and their support
points, making the precise association between records of two groups difficult in overviews
of large datasets. However, this can be alleviate by either using interactive brushing, or
by using the drill-down techniques provided.

Examples of different connection strategies are shown in Figure 5.6. Figure 5.6(a) uses
straight lines and no bundling, while Figure 5.6(b) shows the result of the bundling strat-
egy. The bundling makes the differences between the dimension groups easily recognizable.
The exact nature of changes of the clusters is obvious in the bundled case.

We know from the Gestalt laws that continuous shapes are perceptually easier to follow
compared to discontinuous shapes [201]. Consequently, a further visual improvement can
be achieved by replacing the discrete lines with spline curves, as shown in 5.6(c). While
this visual representation is already very clear, due to the many parallel curves it can
be computationally expensive when used with large datasets and sometimes suffers from
Moiré patterns. To address these issues, an abstraction of the individual connection lines
by using ribbons is an option. The ribbons are shown in Figure 5.6(d). Matchmaker
supports both, using individual curves as well as ribbons, and leaves it up to the user to
choose. Ribbons have three advantages over individual curves: there are no Moiré patterns,
they further reduce visual clutter and they improve rendering performance. This comes
at the cost of hiding the associations of individual elements. To amend this, we employ a
details-on-demand strategy: as soon as a user hovers the mouse pointer over a ribbon the
contained curves are rendered.

5.3.2 Overview Mode

The overview mode shows the relationships between all chosen dimension groups simulta-
neously, so that the overall trends in the dataset become visible. Much like regular parallel
coordinates implementations, the Matchmaker overview allows to rearrange columns to be
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(a) (b)

(c) (d)

Figure 5.6: The relationships of two columns shown with different visual linking approaches.
The straight line rendering in (a), where records are directly connected, produces a cluttered
image, even for this relatively small dataset of about 400 records. In (b), we use straight lines,
but apply the bundling strategy with added control points on a per-cluster basis (see Figure
5.5), resulting in a much clearer representation with identifiable cluster relations. In (c) the
lines are replaced by spline curves for a more continuous picture making them easier to follow.
The curves are abstracted to ribbons in (d).

able to compare arbitrary sets of columns, and supports interactive brushing to be able
to follow a selection across multiple columns.

Figure 5.7 shows the overview using ribbons as visual links. One record group (or-
ange) and two records (blue) are brushed. For the brushed records, curves are rendered
on top of the ribbons. In the overview mode, the spacing between the support points of a
brick is reduced, which results in bundled, narrower ribbons and leaves more whitespace.
Experience has shown, that the increased whitespace makes it easier to distinguish adja-
cent ribbons. Matchmaker provides two brushing modes: either using highlight-on-hover,
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Figure 5.7: Matchmaker’s overview displaying 39 different dimensions (78 in total) showing
patient and cell line gene-expression data with 400 statistically filtered and clustered genes each.
The dimensions are stratified into semantic groups, each group corresponds to a disease. Cirr,
for example, stands for Cirrhosis. The left heatmap is the root group containing all experiments
clustered together. Ribbons connect the columns showing the relationships of the bricks. While
the genes in the Cirr group are stratified similarly to Root, many differences are evident between
HCC B and H3B. The orange brush highlights all genes selected in the second cluster of the
Root group, showing how it spreads over the columns.

volatile brushing or persistent brushing on click. There are three possible scopes of a
brush: individual elements, ribbons that connect exactly two bricks, or whole bricks. The
brushing is reflected in all of Caleydo’s views.

The interaction with the columns is facilitated through a bar at the bottom. The
bar always reflects the order of groups, while the blue slider indicates which groups are
visible. Interactive rearranging is achieved by dragging the columns’ label in the bar to the
desired position. Individual re-clustering of a dimension group, for example with different
parameters, removing, or duplicating a column, can be trigged using a context menu on
the column’s bar entry.

In some cases, only a subset of the columns are of interest. Dragging the slider in the
bar at the bottom of the overview to include only the desired columns hides the other
columns, but their label remains visible in the bar. The bar always indicates which other
groups are available, even when they are not visible.

While the overview is able to convey the main trends in the data, for a deeper under-
standing of the dataset, a drill-down to the level of individual records is necessary. To
make this possible, Matchmaker uses a detail mode, which is activated when only two
columns are visible.
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(a) (b)

Figure 5.8: Different states of the detail mode. (a) The detail view displaying three selected
bricks in detail heatmaps and one selected record. Orthogonal stretching is used to be able
to show the selected record’s label, as can be seen at (1) and (2). Hiding of records in target
groups can be observed at (3). Out of the larger bricks to its right, only one element is shown.
The other elements are hidden because they do not occur in one of the selected bricks. (b) The
detail view showing the same data with orthogonal stretching applied for the selected bricks
at (4) and (5). They have more than twice the height compared to their counterparts at (1)
and (2) in (a).

5.3.3 Detail Mode

The transition from overview to detail mode is seamless: it can be achieved by either
setting the slider in the bar at the bottom to include only two columns, or, for rapid
transitions, by using a mouse-wheel action while the mouse cursor rests between two
columns. The latter triggers an animated transition removing all other columns, thus
making the rapid changes of the layout transparent to the user.

In the detail mode, several GUI elements are added: a shaded bar, located at the outer
sides of the heatmaps, allows users to pick individual bricks for detailed inspection. Bars
of selected bricks are golden, while others are green. Furthermore, we provide a slider next
to the cluster bar, which makes it easier to select multiple adjacent bricks simultaneously.
Finally, buttons at the top corners allow the user to slide-in dendrograms, as shown in
Figure 5.4, which can be used to refine the granularity of the stratification.

Most importantly, selecting a brick from the columns in detail mode triggers the cre-
ation of a focus replicate for the selected (source) bricks and of all target bricks. Target
bricks are those bricks in the target column that share at least one record with the selected
source brick. Multiple selected bricks are possible. Figures 5.1 and 5.8 show examples with
several focus replicates.

Figure 5.8(a) shows a default spacing, where every heatmap has a height proportional
to the number of elements it contains. When a record is selected, the heatmaps in the
bricks use orthogonal stretching [157] to show the selected record and those in its vicinity
in detail, including labels. This enlargement of focus regions is somewhat similar to the
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Figure 5.9: The detail mode showing elements that are hidden by default. At (6), the
otherwise hidden elements are shown on user request.

orthogonal stretching for areas of interest in TreeJuxtaposer [132]. The stretching of
records can be observed at (1) and (2) in Figure 5.8(a). Optionally, orthogonal stretching
can also be employed for whole focus bricks, enabling a more detailed analysis. An example
is shown at (4) and (5) in Figure 5.8(b). When comparing these bricks to their equivalents
at (1) and (2) in Figure 5.8(b), it is evident that they are much larger and many more
records have labels, as more space is available.

While the replicate of the source brick contains all records, the target bricks’ replicates
show only the data they share with the source brick; the other records are hidden. Hidden
records are indicated by the label in the gray tool-bar below the focus bricks, which is
shown when a record is selected or the mouse is hovering over the heatmap. Hiding non-
referenced records allows us to show the relevant, referenced records at maximum size.
An example where many records are hidden can be seen at (3) in Figure 5.8(a). Here, the
target focus brick contains an outlier: only a single record is shown, all other records of the
record group are hidden. In some cases, hiding records might not be desirable, therefore
hiding can be turned off. An example is shown at (6) in Figure 5.9. The previously hidden
records at the bottom of the large heatmap on the right are not connected to records on
the left, as there are no corresponding records visible. Showing or hiding can be triggered
by clicking the button in the tool bar.

While individual records are rescaled to fit within the current size of the heatmaps,
we chose to define a minimum size for a detail heatmap. This ensures that all heatmaps
in the detail view are usable and not reduced to only a couple of pixels. If the number of
heatmaps is too large to be shown simultaneously, some heatmaps at the bottom will be
culled, since they are out of the view frustum. They can be brought back into focus by
reducing the number of selected heatmaps.

5.4 Scalability and Implementation

The proposed methods and the underlying implementation perform well for datasets with
up to 100 dimensions and up to 2000 data records on standard hardware (e.g., an Intel
Core Duo CPU with an NVIDIA GTX 8800 GPU and a 22 inch screen with a resolution
of 1680x1050). By default, the Matchmaker view can present up to 10 groups of which
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6 can be rendered simultaneously. This was found to be a good compromise between
the desire to show more data and the desire to avoid visual clutter. To accommodate
unconventional displays, this can be changed in the settings. How many data records
Matchmaker can handle largely depends on the number of clusters and the similarity of the
groups. Given the described hardware configuration, experiments showed that for about 10
clusters, the technique can handle up to 3000 data records with acceptable visual clutter.
However, a larger number of clusters or very different datasets result in a growing number
of crossings. Our order-preserving bundling technique produces a readable overview for
up to 20 clusters for datasets with less than 2000 records. By using the detail mode for
the cluster inspection, the user can analyze many more clusters.

The images in this chapter show a published gene expression dataset [94], except for
Figures 5.4, 5.10 and 5.11, which visualize the dataset discussed in Section 5.5. The
dataset contains gene expression experiments from patients with different types of cancer
and related diseases. The type of disease was used to semantically group the experiments
for the comparisons. The color coding for all heatmaps is on a logarithmic scale. While
the figures in this chapter show the red-black-green color map prevalent for heatmap
visualizations, we also provide perceptually grounded alternatives suitable for users with
dichromacy. All other colors for both, the visualization technique as well as the figures,
are taken from ColorBrewer [20].

5.5 Case Studies

In the following, we present two case studies of analysis conducted using the Matchmaker
technique. The first describes a real-world analysis of a biologist, while the second shows
how Matchmaker can be used to assess the behavior and suitability of different clustering
algorithms.

5.5.1 Analysis of Gene Expression Data in Steatohepatitis

Our collaborators from the Medical University of Graz study why patients differ in their
susceptibility to develop steatohepatitis, which is characterized by inflammation and fatti-
ness of the liver. Steatohepatitis is a precursory disease to cirrhosis. These differences are
observed even when exposed to the same amount of steatohepatitis-inducing conditions
like alcohol abuse, diabetes or obesity. The reason for this difference in susceptibility to
steatohepatitis inducing agents has to be genetic, and the purpose of our partner’s exper-
iments are to define genetic regions or modifier genes, which are differentially expressed
in these two groups and are responsible for the different reaction to the same causative
agent [108].

They use a mouse model of steatohepatitis induction, where animals develop steato-
hepatitis features, like ballooning of hepatocytes (break-down of the cell’s skeleton) and
Mallory-Denk-Body formation (aggregates of misfolded proteins), after being fed with
rodent chow supplemented with DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) for 8
weeks [63]. Our collaborators identified two mouse strains (genotypes), A/J (AJ) and
C57Bl6/J (C57), which show distinct phenotypes upon DDC feeding. By histological
analysis of liver tissue, it is possible to determine that AJ mice develop steatohepatitic
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Figure 5.10: Screenshot of the Caleydo Matchmaker in overview mode taken during an
analysis session by a biologist. We see four columns (1-4). The first two and the last, C57
and AJ, are homogeneous with respect to semantics, as the samples they group belong to the
same genotype. Each column consists of 9 experiments: reference, 7 days of intoxication and
8 weeks of intoxication from left to right, with 3 replicates per category. The third column,
showing a combination of C57 and AJ, contains all experiments from the first two groups.
The fourth group (4) is a copy of the first to enable better comparisons between C57 and the
combined column. The combined column contains inhomogeneous clusters (5). Clustering the
homogeneous columns yields more consistent results, allowing a biologist to assign meaning to
a cluster. The biologist brushed the bottom brick in AJ (6), identifying that the genes in this
cluster are split into two clusters in C57, one being similarly regulated over time to AJ (7),
the other (8) containing genes not-deregulated (equally regulated) in C57, while up-regulated
(going up over time) in AJ (6). Since this difference may be important, he chose to explore
this cluster in detail.

features, whereas C57 mice do not. To determine which genes are differentially deregulated
in the two mouse strains, they performed an experiment where three groups of animals
in each strain were fed with DDC for 8 weeks, 7 days or not at all (reference). Gene
expression data was obtained from the liver tissue of these animals using whole-genome
microarrays with 33,000 probes by Applied Biosystems Inc∗. The analysis involves finding
genes deregulated (i.e., those changing expression over time) due to DDC feeding in AJ
animals, the responder strain, but not deregulated in the C57 animals, and vice versa.
This analysis is difficult to perform with traditional tools, which do not treat the groups

∗http://www.appliedbiosystems.com/

http://www.appliedbiosystems.com/
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Figure 5.11: Screenshot of the detail mode during the analysis. We see the deregulated
cluster in AJ on the right, and the not-deregulated cluster for C57 containing the same genes
on the left. By exploring the genes and using Caleydo’s built-in features to find contextual
information on genes, he was able to hypothesize that these genes are involved in apoptosis
and thus alter the phenotype of the liver tissue by removal of cells damaged by oxidative stress.

individually.

Using the Caleydo framework and the Matchmaker visualization technique, they were
able to perform cluster analyses on the DDC feeding experiment in each mouse strain
separately. Figures 5.10 and 5.11 show two screenshots taken during an analysis session
by a biologist. Figure 5.10 shows the regulation over time for the different mouse strains
in the columns, with reference (no intoxication), 7 days and 8 weeks, with 3 experiment
replicates each from left to right. At (1) on the left is the C57 strain, next to it the AJ
strain (2), then a group where both are combined (3) and a duplicate of the C57 strain
(4). In the overview, we see that the bottom two clusters of the combined column are
very inhomogeneous (5). When following the highlights, it becomes obvious that when the
clustering is done on a single strain, the genes present in the highlighted cluster in AJ are
being split up into two clusters in C57 at (7) and (8) in Figure 5.10. One of those clusters
in C57 contains genes not-deregulated (equal over time) in C57 (8). The expert noted
that these genes might be important in the different reaction of C57 to DDC intoxication.
He then continued to analyze this cluster in more detail, as shown in Figure 5.11. While
browsing the list of genes in this cluster, he found several genes involved in the regulation
of apoptosis (programmed cell death), which might cause cellular turnover in the liver and
alter the phenotype by removing cells damaged by oxidative stress. The removal of these
damaged cells, which are prone to ballooning and have Mallory-Denk bodies by apoptosis,
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could be a reason why these features of steatohepatitis are absent in C57.

The expert stated that for him the key advantage of clustering distinct groups (AJ
and C57) separately is that he can quickly assign a biological meaning to a cluster (for
example “up-regulated in AJ”). Matchmaker then enabled him to follow these genes in
the other strain and see how they behave there. This is more difficult when the groups are
clustered together, as the clustering algorithm tries to find a best match over both groups
and thus makes the clusters inhomogeneous.

5.5.2 Comparison of Clustering Algorithms

Usually, data analysis tools provide a wide range of clustering possibilities to the user.
There are several types of clustering algorithms, for example, partitional versus hierarchi-
cal, divisive versus agglomerative, unsupervised versus supervised; and other influential

Figure 5.12: A comparison of three clustering algorithms run with 1800 records: (1) hier-
archical clustering, (2) k-means and (3) affinity propagation. The yellow and orange brushes
show that the k-means algorithm assigns obviously different records to one cluster, while the
other two algorithms work as desired.
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factors such as the choice of a distance measure or parameters. However, users are often
not aware of the consequences of these factors, and cannot anticipate the results. Due to
the flexible arrangement of dimension groups in Matchmaker, the user can load the same
data (sub)sets multiple times, showing each as a column. The dimension groups can be
clustered separately with either the same algorithm and varying parameters, or completely
different algorithms. Matchmaker thereby enables a user to understand the impact of the
cluster algorithms and its parameters applied to a concrete dataset. Consequently, the user
can decide which clustering algorithm fits the data best. Figure 5.12 shows the clustering
algorithm comparison scenario using gene expression data. Experiments, i.e., dimensions,
of two cell lines are grouped together and clustered multiple times using different algo-
rithms: hierarchical clustering on the left, k-means clustering in the middle and affinity
propagation on the right. All algorithms are parameterized, so that they produce a sim-
ilar number of clusters. The same distance measure – the Euclidean distance – was used
in all cases. The brushed bricks in Figure 5.12 clearly show that the k-means algorithm
assigned differently expressed genes to the same cluster, while affinity propagation and
the hierarchical clustering algorithm created separate, homogeneous clusters. Also, at the
bottom of the columns, k-means splits the group of genes, which both, the tree clustering
algorithm, and affinity propagation assigned to one cluster, into three separate clusters,
with no clear evidence of difference between the records. This leads to the conclusion that
the k-means algorithm is not a good choice for this data, while the two other algorithms
achieve comprehensible – but still different – results.

5.5.3 Discussion

When observing our users during the case studies, we noticed that the process of data
preparation (choosing and generating groups, running clustering algorithms on the groups)
needs to be improved. While this was not the focus of our research, it is crucial for an
adoption by end-users that this process is made intuitive.

For the Matchmaker interface itself, feedback on ease of use was positive throughout.
Nevertheless, we noticed significant differences of how easily users understand the benefits
of the methods for the two use cases. When comparing clustering algorithms, the meaning
of the groups and their relationships are immediately obvious – one group corresponds to
one clustering algorithm and all groups show the same data. However, for biomolecular
analysis, where meaningful sub-spaces of the data need to be created in order to benefit
from the Matchmaker technique, a more thorough introduction was necessary. We believe
that this is due to the unconventional arrangement of the heatmaps. However, after our
collaborators were instructed that clusters are now largely homogeneous, allowing them to
easily identify how clusters change between groups, they greatly appreciated the benefits
for their applications.

5.6 Conclusion and Future Work

In this chapter, we have presented Matchmaker, a visualization technique addressing the
division hypothesis (Hypothesis I). We have shown how the data can be stratified into
homogeneous groups on the one hand, and how the lost relationships can be re-introduced
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on the other hand. The separation of dimensions into homogeneous subgroups makes a
meaningful automatic partitioning more likely and avoids obscure, scrambled clusters. The
explicit representation of the relationships among records and record groups of different
dimension groups by using visual links demonstrates that the breakup due to the stratifi-
cation can be remedied without loss of information or clarity. Consequently, Matchmaker
allows users to find patterns in the data, which otherwise would be obscured. We have
also shown that Matchmaker can be used to compare the effects of different clustering
algorithms.

We have validated our claims through two case studies. The first shows that Match-
maker is a valuable tool for biomolecular data analysis. The overview allows users to easily
identify possibly interesting patterns, which can be explored in detail using the drill-down
techniques presented. The case study on cluster algorithm comparison demonstrates how
the technique can be used to evaluate the quality and properties of clustering algorithms,
their parameters or both. We believe that this can be very helpful in choosing the right
clustering algorithm for a wide audience.

We therefore can conclude that Hypothesis I, the division hypothesis, is fully supported.
Since the original publication [114] of the ideas discussed in this chapter, a number of
related techniques have been published. An example are two articles by Turkay et al. [187,
188], who build on our ideas for cluster comparison and extend them to consider cluster
quality and structural changes of temporal clusters. Another example is a paper by Dinkla
et al. [33], which uses a similar approach to cluster comparison, but extends it by including
hierarchies. A recent example of a hybrid continuous/categorical data analysis scenario
using a related visual metaphor is presented by Misue et al. [129]. These examples show
that the Matchmaker technique was well-received in the visualization community.

Matchmaker is limited to show heatmaps inside the bricks. While this is reasonable for
many use cases, a more general approach, enabling users to choose a visual representation,
can have several benefits. We will discuss those extensions in the next chapter.
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In the previous chapter we addressed Hypothesis I by showing that stratifying a dataset
into homogeneous groups is beneficial for an analysis, since the resulting subsets can be
more easily interpreted. We also demonstrated that the loss of relationships, caused by
the division of the data, can be remedied by employing visual links, so that the resulting
visualization makes it easier to find patterns.

In this chapter we discuss how the Matchmaker concept can be extended: instead of
showing only heatmaps at a predefined scale, we introduce multiform [148] bricks. Mul-
tiform representations can show the same dataset in one of multiple forms, employing
different visualization techniques, levels of detail, or levels of abstraction. We will show
that the ability to use multiple, alternative visualizations for the data subsets is an addi-
tional argument for employing divide and conquer visualization strategies. This allows the
visualization techniques to be tailored to the degree of homogeneity of a subset, the task
of a user, and to the size of a dataset, thereby addressing Hypothesis II, the multiform
hypothesis.

We introduce the VisBricks visualization technique that aims to provide such mul-
tiform representations in a highly configurable framework that is able to incorporate any
existing visualization technique as a building block. Together with a rich set of interac-
tions and visual cues that help to merge, split, rearrange, and reconfigure the bricks, this
flexible new representation supports many exploration and comparison tasks that other-
wise would be difficult to accomplish. A visual impression of an implementation of the
VisBricks approach is given in Figure 6.1. We take up the column-wise arrangement of
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Figure 6.1: The VisBricks multiform visualization technique. Four dimension groups with
different numbers of record groups each. The gray arch connects the overview bricks of the
dimension groups. The record groups themselves are shown in stacked bricks above and below
the arch depending on whether their average values are higher or lower than the overall average
of the dimension group. Colored ribbons indicate how data items are distributed across record
groups of multiple columns.

Matchmaker, but instead of heatmaps we provide several alternative visualization tech-
niques, ranging from very abstract but space-efficient views to full-featured visualization
techniques such as parallel coordinates. The arrangement of both, columns and bricks, as
well as the sizes of the bricks can be adapted to the user’s needs. We introduce several
new classes of bricks, among them header bricks, which represent the data of a whole
column. Header bricks are placed inside an arch, the bricks representing the record groups
are placed above or below the header bricks, depending on a sorting strategy. We take
up the molecular biology use case discussed in Chapter 5 and show how VisBricks can
improve the analysis process. The results are promising and also indicate directions for
future research.

6.1 The VisBricks Approach

For large datasets, it has proven efficient to follow Keim’s Visual Analytics mantra:
“Analyse First, Show the Important, Zoom, Filter and Analyse Further, Details on De-
mand” [99]. VisBricks embraces this paradigm and strives to support it on all levels by
providing meaningful preprocessing and overviews to show the important features
even for inhomogeneous data; a rich set of interactions to enable zooming, filtering and
further analysis; and drill down methods to explore even large datasets down to the
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details of the individual record. The core paradigm of VisBricks is to apply multiform
visualization to stratified datasets: the homogeneous subsets can thereby be efficiently ab-
stracted. VisBricks fully support the inhomogeneity of the data and the diversity of tasks
at each level of the mantra through their multiform approach. Using multiform bricks
permits users to tailor the visual representation of each subset of the data according to its
characteristics, the task that is to be performed, and the level of detail required.

In this section we explain the conceptual foundations of the VisBricks technique, be-
ginning with the overview, continuing with interaction aspects that enable zooming and
filtering, and finally providing details about how the data is presented on a fundamental
level.

6.1.1 Preprocessing and Overview

Abstraction is a key technique that enables an overview with limited visual or computa-
tional resources. There are several ways to achieve abstraction. Oliveira and Levkowitz [44]
list dimension reduction, sub-setting (e.g., random sampling [34]), aggregation [41], and
segmentation (e.g., cluster analysis [38]). While the former two provide abstraction by
themselves, the latter only enables more meaningful sampling or aggregation.

An inherent property of homogeneous data is its suitability for abstraction. With
homogeneous data, it is easy to choose a visual encoding that represents the data well.
Inhomogeneous data, however, does not lend itself to reasonable abstractions. It is difficult
or even impossible to find representative encodings for a very inhomogeneous dataset.
Consider the following example: for a perfectly homogeneous multidimensional dataset,
where every data item has the value 1, a single bar with height 1 is a suitable abstraction.
A dataset of the same size but with very inhomogeneous values can not be abstracted as
efficiently: if one would use a single bar all the diversity in the dataset would be lost.

VisBricks use the same basic process as Matchmaker. Bricks represent homogeneous
subsets of the data, generated by vertical and horizontal stratification, that are aligned
vertically and horizontally in dedicated drawing areas. The bricks are placed in the context
of the whole dataset by using position and visual links.

We distinguish between two types of bricks: bricks representing and abstracting a
whole dimension group, which we call header bricks, and bricks reflecting the subdivision
of records within the dimension group, which are called cluster bricks, as the subdivision
is often achieved using automatic clustering algorithms. The most important property of
a brick is that it can encode its data in any number of ways and that it lets the user choose
the technique while providing sensible defaults.

Populating the Arch with Bricks Header bricks are dynamically added to the arch
in VisBricks. Figure 6.2(a) shows an illustration in which several dimension groups were
created and can now be found in the arch. The dimension groups placed in the arch
correspond to the example given in Figure 1.1 in Chapter 1. The arch has three regions:
the center, where dimension groups that are currently in the focus of the investigation are
placed, and two legs, one on each side, where dimension groups are moved when they are
not in focus.
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(a) (b)

Figure 6.2: Basic VisBricks concept. (a) The arch containing the header bricks. The layout
is separated into a focus region, including the horizontal portion of the arch and the space
above and below it, and the context regions in the legs of the arch. Dimension groups in the
columns are intended to be homogeneous with respect to a user-defined homogeneity measure,
i.e., homogeneous with respect to their semantics, characteristics, or statistics. (b) Cluster
bricks were added above and below the arch for the dimension groups.

The dimension groups can then be further stratified into record groups, adding cluster
bricks, as illustrated in Figure 6.2(b). Notice that this step is optional, as some dimension
groups may not require further subdivision or may not be suitable for it. For other dimen-
sion groups, however, only this additional division makes it possible to create meaningful
abstractions for the major trends in the dataset. As can be seen in Figure 6.2(b), cluster
bricks are shown above or below their respective header bricks, but only for dimension
groups in the focus region.

The achievable homogeneity of the cluster bricks depends on many factors. First,
a sensible trade-off has to be found between the number of clusters and their degree of
homogeneity. While our VisBricks implementation takes several measures to avoid clipping
data, the number of clusters and therefore the number of cluster bricks has the greatest
impact on the VisBricks’ scalability. Second, the achievable degree of homogeneity for
a given number of clusters depends on many factors, such as the choice of clustering
algorithm, its parametrization, and the suitability of the dataset. After this division is
accomplished, we are able to choose suitable visualizations for each brick to encode and
abstract the now homogeneous subset of data.

Encoding Relationships between Cluster Bricks When exploring tabular data in a
spreadsheet, sorting is a common strategy to find related records. Generally speaking, all
visualization techniques that use rows or columns to identify records can make use of sort-
ing. Techniques that encode relationships in a record differently, e.g., parallel coordinates,
cannot employ sorting for that purpose.

When sorting by a single row in tabular arrangements, the other values in a record are
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re-positioned accordingly. Sorting of multiple rows at the same time, however, breaks the
ties between the values in the records. Sorting by more than one dimension simultaneously
is equally desirable but much harder to achieve, as meaningful comparisons between tuples
of values are more difficult to obtain. Consequently, few techniques are able to achieve such
sorting. One notable exception is the table-based visualization for bipartite graphs [158],
in which the disjoint sets of the graph are visualized in tables and sorting can be performed
for each of the sets independently and also simultaneously. Because of the nature of the
underlying data (a bipartite graph), no special care has to be taken to keep the association
between the records intact.

The Matchmaker technique employs sorting based on averages of clusters. VisBricks
adopts this general idea and enhances it by additionally encoding the relationship of every
brick to the average of the whole dimension group. The vertical position of a cluster brick
is determined by two factors: the ranking according to the sorting strategy used and the
relative value compared with the average of the whole dimension group. Because of the
placement relative to the whole dimension group’s average, the header brick and the arch
divide the cluster bricks into those above the average and those below it. Thus, it is clear
how each cluster brick compares to the other cluster bricks within a dimension group, as
well as to the overall average.

Sorting strategies for numerical data would, for example, place the cluster brick with
the highest average at the top and the brick with the lowest average at the bottom, whereas
categorical data could be sorted by frequency. If no meaningful sorting strategy can be
defined for a certain type of data, the bricks could be sorted to minimize crossings and
distributed evenly above and below the header brick.

By partitioning and sorting the data records separately in the different dimension
groups, the association between individual values of a record across dimension groups is
no longer obvious, as the strict horizontal and vertical alignment of the data matrix has
been broken up. Hence, the following conquer steps re-introduces this essential information
in the overall layout of the bricks by encoding the relationships through visual links.

Encoding Relationships between Dimension Groups To provide a meaningful
overview, the relationships between the dimension groups must be made explicit, thus
realizing the conquer step. We achieve this by using both traditional, color-based linking
and brushing as well as interactive visual links.

VisBricks employs ribbons for conveying which portion of the data contained in each
brick is shared among bricks in neighboring dimension groups. When the bricks are
brushed, the ribbons are not only shown for the relationships to the neighboring dimension
groups, but also split into multiple threads connecting all related bricks in all dimension
groups (see Figure 6.3(a)). In contrast to Matchmaker, VisBricks does not connect in-
dividual records, but shows proportional relations among the bricks. This is due to the
abstract nature of some visualization techniques that can be employed in bricks, where
records are not necessarily associated with a position along the height of the brick and
therefore cannot be connected. The width of the ribbons encodes the magnitude of the
relationship. This strategy is similar to the one used in Parallel Sets [104]. In contrast to
Parallel Sets, the ribbons are not color-coded by default because the number of clusters
can easily exceed the number of distinguishable colors, which has been shown to be fairly
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(a) Selection propagation (b) Interactive trends filter

Figure 6.3: Ribbons connect bricks between adjacent dimension groups, thus indicating how
many elements are shared among them. In (a) brick A2 is selected. The selection is propagated
to all connected bricks. (b) The result of an interactive filter that focuses on outliers. The
wider the connection band is, the lighter it is drawn.

limited [66]. Also, color might already encode other attributes within the brick’s visual-
izations and is also employed for brushing the ribbons. Thus, VisBricks initially shows all
ribbons in semi-transparent gray. It is possible to brush whole bricks, or only the ribbon
connecting two bricks, thereby focusing on the subset of data shared by the two bricks
connected. The brushing is propagated to all bricks where the elements are highlighted
accordingly. In addition, the corresponding portion of the ribbons is colored, as can be
seen in Figure 6.3(a). The brushing of bricks or ribbons can also be reflected in the views
contained in the bricks. VisBricks support multiple simultaneous brushes, assigning a
different color to each brush. In cases with many clusters, it is sensible to show ribbons
only for brushed bricks, therefore not-brushed ribbons can be turned off.

Whereas wide ribbons show major trends among the dimension groups, thin ribbons
indicate outliers. Initially, the showing of both outliers and major trends is a good option
to convey an overview. However, in many tasks either only outliers or only major trends
are relevant. We therefore propose a technique that allows users to interactively specify
whether they are currently interested in the main trends, outliers, or anything in between.
Because “outlier” or “main trend” are no absolute concepts, we chose to decrease the
opacity for bands further from the current focus. Figure 6.3(b) shows an example in
which the focus lies on outliers.

6.1.2 Zoom, Filter and Analyze Further

The provision of overviews is essential in making it possible to understand a dataset.
However, to extract knowledge, it is necessary to drill down, either via interactive zooming
and filtering or via a re-parameterization of the analysis, e.g., by refining the clusters.
While the latter is not a matter of the visualization itself, the interactive zooming and
filtering are performed directly on the visualization and should thus be supported by it.
VisBricks provides five interaction patterns for manipulating the bricks and their layout.
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(a) Original state (b) Changed order (c) Changed distance

(d) Changed position (e) Changed brick size (f) Focus duplicates

Figure 6.4: Interaction patterns in VisBricks. (a) shows the original state, whereas (b)-(f)
show the consequences of the five different interaction patterns.

1. Changing the order of columns
Coherent with Matchmaker, columns can be moved in and out of the focus region;
the latter provides more space for those in focus. Additionally, the horizontal or-
der can be modified, allowing a more detailed side-by-side comparison of different
columns. When dimension groups are brought into focus manually, others can be
forced out of focus and into the context region if more space is required than avail-
able. Figure 6.4(b) illustrates an example in which the order of columns in the focus
region was changed and one dimension group was moved to the right leg.

2. Changing the distance between columns
It can be desirable to change the spacing between columns. Increased space will be
useful if the relationships between two neighboring columns are under investigation.
In this case, the increased space reduces the clutter produced by the ribbons. A
reduction of space is typically achieved automatically when the space is increased
elsewhere. In Figure 6.4(c), the orange column was moved to the left, which pushed
the green dimension group out of focus into the leg.

3. Changing the vertical position of columns
By changing the vertical position of the columns, cluster bricks, which are close to or
even beyond the border of the screen, can be moved into the center, and comparisons
between two bricks of neighboring columns are facilitated. As shown in Figure 6.4(d),
the arch is bent, if necessary, to guarantee that it always encloses the header brick.
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4. Changing the size of a brick
Each brick can be resized so that the contained visualization is alloted more space,
as shown in Figure 6.4(e). When the space for a brick is increased, other bricks are
moved upwards or downwards, and other columns are moved to the side. Again,
dimension groups are moved to the legs, if necessary.

5. Creating a focus duplicate of a brick
When a full-sized visualization is more suitable for a given task, VisBricks provide
the means to allow a brick to temporarily claim additional space for an enlarged
focus mode. However, this focus mode is not simply an enlarged version of a brick,
which would be achievable using only the resize functionality. Instead, the focus
mode provides means (a) to compare single bricks in detail to another column, (b)
to compare this brick in detail to a brick of another columns, and (c) to prevent the
other bricks of the same columns from being clipped. In contrast to Matchmaker,
the focus mode is chosen for a single brick of interest, which is then duplicated and
placed next to its dimension group. By choosing the side of the columns on which
the brick is to appear, the target of the comparison is implied. When the detail
brick is visible, its connections to the neighboring columns appear. A user can now
analyze the relationships and choose a brick from the compared columns for detailed
analysis. Figure 6.4(f) illustrates the state in which a second brick is enlarged. For
some visualization techniques, the available horizontal space may not be sufficient.
In such cases, the legs of the brick are moved out of the view, to increase the space
for the focus bricks. Having only two focus bricks instead of multiple focus bricks
as in Matchmaker, guarantees that the focus bricks are enlarged sufficiently to allow
interaction with arbitrary visualization techniques.

Considering these interaction techniques it becomes apparent that a drill-down from
the overview, which only shows the important data in abstracted views, to detailed views of
individual homogeneous subsets is fully supported by VisBricks. Additional considerations
regarding the detailed visual analysis of individual data properties are discussed in the
following section.

6.1.3 Exploring Details

The detailed analysis in VisBricks is based on the multiform property of the bricks. Al-
though we previously mentioned that multiple visualization techniques can be used within
a brick, up to this point we have mainly treated bricks as a medium to present abstractions.
However, bricks are more powerful.

The defining property of bricks is their ability to display the information grouped within
them using diverse visualization techniques. We have distinguished between header bricks,
which summarize the entire data in a dimension group, and cluster bricks, which show
data that is homogeneous in terms of statistics. Both require very different visualizations,
as the header bricks give an overview of the grouped dimensions, whereas the cluster bricks
show the records grouped inside them. In general, it is not immediately obvious which
visualization is sensible for which brick. The suitability of a technique depends on two
criteria:
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1. Data characteristics criterion: Is a technique suitable to visualize the data for
the given data characteristics?

2. Scalability criterion: Is a technique suitable to visualize the given amount of data
in the allocated space?

Data Characteristics Criterion For bricks that are homogeneous with respect to their
data characteristics (see Section 1.2 for the definition of data characteristics), it is easy to
assign suitable visualizations. The availability of a concrete visualization technique as a
representation choice for such a brick requires only the knowledge that the technique can
visualize data of the desired characteristics. An example is a parallel coordinates view,
which is suitable for bounded numerical, unbounded numerical, and, to some extent,
exclusive categorical but not for inclusive categorical.

However, when dimension groups are not homogeneous with respect to their charac-
teristics, but only with respect to their semantics, it is not as simple to assign suitable
visualizations. In this case, we seek out the “least common representation” that is suf-
ficiently generic to be able to show all of the data types within such a mixed dimension
group. To achieve this, we order the data types according to their strictness for the data
characteristics. For the four data types, we consider bound numerical to be the strictest
characteristic, followed by unbound numerical, exclusive categorical, and, finally, inclusive
categorical as the most relaxed type. This ordering is based on the observation that data
belonging to a stricter class can often also be visualized with a technique suitable for a
more relaxed data type. What distinguishes visualization techniques for stricter classes
from those for more relaxed classes are the assumptions about certain properties of the
data that do not hold for more relaxed types. An example is a technique for bounded nu-
merical values that assigns each record a hue of 1 for the upper bound and 0 for the lower
bound. If this technique is used with a hybrid dimension group, in which one dimension
contains unbound values, their color coding will become meaningless.

Visualization techniques for more relaxed data types have to allow their records to
take on a wider variety of states, making the individual record more expressive, but also
harder to abstract. This does not mean that a technique for a more relaxed characteristic
is not suitable for a stricter characteristic; rather, it means that such a judgment cannot
be derived automatically.

Note that it is not reasonable to employ a technique that is suitable for more relaxed
characteristics to all stricter ones. Usually, more relaxed techniques are not able to fulfill
the scalability criterion as well as stricter techniques do.

Scalability Criterion VisBricks heavily relies on the abstraction technique of segmen-
tation into homogeneous groups at the top level, and in fact we employ a multi-level
approach: bricks are required to provide at least one abstraction method for every data
characteristic. Hence, each visualization technique can make use of the provided abstrac-
tion methods as needed. Dix and Ellis note that multi-level abstraction solutions are
common; for example, a sampled dataset can be used as the input for aggregation tech-
niques [34].
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(a) (b) (c)

(d)

Figure 6.5: Classes of bricks used in VisBricks. (a) Regular header brick, summarizing a
dimension group. (b) Compact header brick, used in the arch legs. (c) Regular cluster brick,
showing one homogeneous cluster. (d) Compact cluster brick, used for overviews. The bricks
in (a) and (b), respectively in (c) and (d) show the same data.

We distinguish between four classes of bricks, where each has different requirements
considering the scalability criterion:

1. Regular header bricks
Header bricks represent all records in a dimension group. As the number of records
can be large, techniques that rely on the scaling of width or height with the number
of records are not suitable for header bricks. Consequently, aggregation methods,
such as histograms, or methods using sub-setting and natural aggregation, such as
parallel coordinates, are suitable. In contrast, methods that require additional space
for every record, e.g., clustered heatmaps [38, 204] or tables, are not suitable. A
Regular header brick is shown in Figure 6.5(a).

2. Compact header bricks
When a dimension group is moved to the legs of the arch, its cluster bricks are
hidden, and the header brick is reduced to a static size, optionally showing a high-
level aggregation of the data. Figure 6.5(b) shows an example for numerical data,
in which the whole dimension group is aggregated into one single line of a heatmap.
Although this abstraction is very crude, it may show a major trend in the data.

3. Regular cluster bricks
Regular cluster bricks have the most freedom of all bricks. They may use any visu-
alization technique suitable for the data, including those that require the scaling of
width and height with the number of records. For example, Figure 6.5(c) shows a
cluster brick containing a parallel coordinates view. Basically any imaginable visual-
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ization technique that is able to provide an overview of a number of multidimensional
records can be used inside a regular cluster brick.

4. Compact cluster bricks
For each data characteristic, VisBricks requires one technique that represents a clus-
ter at minimal height. This technique is used by default when otherwise the bricks
would not fit in the view. Although this technique cannot completely avoid clipping,
it significantly increases scalability. The actual height is not specified, because, for
example, efficient visual abstractions of bricks that are inhomogeneous with respect
to their characteristics are much more difficult to achieve than those for numerical
data. Compact cluster bricks have a reduced set of user interface elements, which
help to keep the size minimal. Figure 6.5(d) shows an example for numerical data,
in which a heatmap line, similar to the abstraction used in the compact header
brick, shows an aggregation of the cluster. Under the assumption that the records
in the brick are in fact homogeneous, this abstraction is a valid representation for
the cluster.

In addition to these four fundamental modes, views are also notified of the actual size of
a brick. This makes it possible to prevent users from switching to visualization techniques
that require more space than the brick currently has available. Also, the level of detail of
visualizations can be adapted. The parallel coordinates, for example, add captions when
a certain size threshold is surpassed and user interface elements when the view is enlarged
further. This is especially relevant for focus duplicates of bricks.

With these scalable bricks at hand, users can interact with the data, drill down into
record groups, explore the details of relationships between record groups and dimension
groups, and even see the actual values of every single record in the data. In Section 6.4,
we will present the results achievable with a prototype implementation. However, first we
will discuss some design choices and scalability issues.

6.2 Design Choices

In addition to the main paradigms discussed up to this point, there are some additional
considerations to improve the usability of bricks.

One piece of information that is lost when abstracting homogeneous groups of dimen-
sions and records is the scale of the group. A homogeneous brick containing only a few
elements is, for example, assigned the same space as another brick containing half the
dataset. It is therefore necessary to encode the relative size of the groups in terms of the
number of dimensions for the dimension group and the number of records for the cluster
bricks. To encode the number of dimensions we use a row of squares with one square for
each dimension; the squares will be filled if this dimension is part of the dimension group,
as shown in Figures 6.5(a) and (b). We encode the number of records in the cluster bricks
with a bar, as shown in Figures 6.5(c) and (d).

Also, the bricks need to contain user interface elements to, for example, display the
name of a dimension group or allow switching between visualization techniques. Many
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approaches are conceivable. For our prototype, we chose a mixture between static and
pop-up buttons, which can be seen in Figure 6.5.

6.3 Scalability

VisBricks scales to a large number of records and dimensions. The primary limiting factor
for the number of records is the computational limitation of the clustering algorithms.
A secondary limitation is the available resolution: On a screen with 1680 × 1050 pixels,
VisBricks can handle up to 30 clusters in one dimension group, thereby surpassing the
Matchmaker technique. The cluttering of connections associated with a high number of
clusters among many dimension groups can be improved by rendering ribbons only when
brushed, or by using the trend filter. VisBricks can accommodate about ten to fifteen
dimension groups, up to eight of which may be in the focus region.

6.4 Case Study

We evaluate VisBricks with data from the same analysis scenario as described in Chapter 5.
Our partners from the Medical University of Graz want to find the genetic factors involved
in steatohepatitis. To be able to monitor the expression of genes, they developed a mouse
model, where genotypes of mice respond differently to intoxication with DDC. The use case
discussed in Chapter 5 included the two major mouse strains, The AJ and C57, of which
AJ develops a phenotype with steatohepatitic features while C57 does not. However,
our partners also record measurements from PWD, another non-responder strain, and
mice genotypes where one chromosome of the C57 genotype was substituted with the
homologous chromosome from AJ, resulting in consomic mice. This can help to isolate the
chromosomes which have an effect on the phenotype. In total, they record gene expression
data for 7 different genotypes of mice, with data being collected without intoxication
(reference), after seven days, and after eight weeks, with three biological replicates for

AJ C57 PWD C03 C06 C18 C14

Responder Strain Y N N ? ? ? ?
Consomic Mouse N N N Y Y Y Y

Collected Data
Reference Y Y Y Y Y Y Y
7-Day Y Y N N N N N
8-Week Y Y Y Y Y Y Y

Table 6.1: Experimental setup of the steatohepatitis mouse model. For each of the mouse
strains in the columns, our partners collected data without intoxication (reference) and after
eight weeks of intoxication. 7-day intoxication data was only collected for the most important
genotypes. Typically, each condition was conducted with three biological replicated each, with
the exception of the consomic mice, where only two replicates were used.
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Figure 6.6: The VisBricks overview containing seven columns stratified by mouse genotypes.
Two of the columns are clustered, and their cluster bricks are shown. Subtle differences in the
histograms in the dimension bricks are evident. The PWD genotype is placed in the right arch
leg to make space for the other columns.

each condition. See Table 6.1 for details on the experimental setup. But not only the
scope of the data presented here goes well beyond the previous use case: the VisBricks
approach supports the full range of visual analysis, from a comprehensive overview of the
topology of the entire dataset that integrates diverse computational and visual options,
seamlessly down to the individual data record.

Following the visual analytics mantra, the computational analysis constitutes the first
step. In this dataset, there are multiple levels of semantic inhomogeneities, i.e., mea-
surements taken at the different points in time or from the different genotypes of mice.
Sensible groupings of the data depend on the research question. Thus, if changes over
time comprise the main focus, grouping based on similar points in time would be the best
choice. However, because the differences in genotype are central to the research question,
grouping based on genotypes makes most sense. To remove noisy and uncertain data the
analyst filters the data using statistical methods and also removes values that are constant
within a threshold across all conditions. The filtered dataset shown in Figures 6.6-6.9 has
37 dimensions, each containing the measurements of 1 sample, grouped by the 7 different
genotypes, with 766 expression values per dimension.

The analyst is interested in differences between the AJ genotype and the consomic
genotypes (C03, C06, C18, C14, in summary referred to as C*), as well as the non-
responder strains (C57 and PWD). An example of a relevant observation is a gene that
remains at the same regulatory level in the AJ mice but is upregulated as time progresses
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Figure 6.7: The seven mouse genotypes where all dimension groups are clustered and two
cluster bricks are brushed. Notice the connection from the top-left brick, showing the parallel
coordinates brushed in orange, to the lower brick in the center, where the parallel coordinates
are brushed in blue. The brick in the center column contains outliers of the orange brick, which
indicates genes of interest. While the existence of the outliers are easy to see because of the
ribbons, the actual values of the outliers can be observed due to the colored brushing.

in the C* mice. Such a gene might be involved in preventing steatohepatitis in the non-
responder mice.

Figure 6.6 shows the layout of the header bricks, one for each of the seven genotypes,
as an overview of the dataset. Two dimension groups have already been clustered, and
their corresponding cluster bricks are shown. The histograms in the header bricks show
the summarized distribution of the values in the dimension groups, from low expression
(at the left in green) to over-expression at the right in red. Subtle differences between the
dimension groups are noticeable.

The analyst then proceeds by clustering the remaining dimension groups to uncover
their statistical inhomogeneities. As the dimensions within the columns are sorted by time
(early experiments are on the left, whereas the final measurements are on the right), there
is a strong tendency of increased expression from left to right in the appearing cluster
bricks in all columns.

The clustering groups together those genes with similar expression patterns. Such
groups are often also functionally similar [38], making the clusters semantically meaningful.
Looking for differences between a gene’s expression in the AJ and the C* mice, the analyst
is searching for two clusters that share elements (i.e., they are connected with a ribbon)
but also show a different behavior for the genotypes. As the mice are treated exactly the
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Figure 6.8: The bricks identified to have an interesting relationship are enlarged as part of
a drill-down operation. The contextual information is reduced - some columns are put in the
arch legs and only ribbons for selected bricks are shown.

same, such a difference is likely to stem from the difference in genotype and might thus
be linked to the causes of steatohepatitis.

The analyst begins a more detailed analysis by filtering. He moves some columns to the
arch legs to take a close look at the differences of the columns of interest. To see some of
the more interesting bricks in detail, the analyst switches them to the parallel coordinates
view. Other, less interesting cluster bricks, in which values remain nearly constant over
time, are switched to the compact mode. The many broad ribbons between closely related
cluster bricks show that much of the data is largely consistent across the dimension groups,
indicating that those genes behave similarly in the different genotypes. However, there
are connections between rather distant cluster bricks, hinting at possible outliers. Using
interactive, colored brushing, the analyst explores the relationships of selected cluster
bricks in more detail. The brushing highlights the ribbons and the actual data in the
parallel coordinates. When brushing the cluster brick that shows the parallel coordinates
in the second column (orange brushing in Figure 6.7), the analyst notices one brick in
the neighboring column that is far away and very dissimilar. However, it still shares a
few records with the brushed brick. The analyst switches the brick’s aggregative view
containing the outliers to a parallel coordinates view, where the outliers are immediately
obvious. To explore the outliers in more detail, the analyst increases the size of the bricks
and chooses to show only ribbons for outliers of brushed bricks, as can be seen in Figure
6.8. The shared records seem interesting and deserve closer investigation. Therefore the
analyst creates a focus duplicate, as shown in Figure 6.9, where the genes are explored in
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Figure 6.9: The bricks of interest with focus duplicates, enabling detailed analysis.

detail using two parallel coordinates views. The genes found may indeed play a role in
steatohepatitis. The analyst continues the investigation by reviewing the literature on the
found genes in online databases.

6.4.1 Discussion

The feedback from our partners was very positive; they were able to conduct an analysis
only after a brief training period, in which the novel spatial arrangement and the meaning
of the ribbons were explained. Our partners appreciated the interactivity of the system
and its ability to focus on several different parts of the data at the same time. They noted
that this was very hard to achieve in their previous workflow using earlier versions of
Caleydo, other state-of-the-art microarray analysis tools, or statically generated R-plots.
An interesting suggestion made was to integrate other, non-tabular data sources, such as
pathways, into VisBricks as well.

6.5 Conclusion

We have shown that the VisBricks concept can handle large and inhomogeneous data
spaces by employing it in a real-life, complex analysis scenario. The main advantage of
VisBricks compared to traditional approaches is its ability to handle all types of inho-
mogeneities within data, both in the dimensions and in the records. This is achieved by
treating each homogeneous sub-part of the data with the best available computational and
visual tools. By using abstractions in the bricks, VisBricks is very scalable in terms of
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the magnitude of records and dimensions. At the same time, the division into bricks and
the rich set of interaction patterns allow users to employ multi-level approaches, where
each brick contains an abstraction suitable to show the data at the desired level of detail.
Consequently, Hypothesis II, the multiform hypothesis, if fully supported.

The VisBricks concept is sufficiently powerful to describe previous visualization ap-
proaches in terms of bricks, groups, and the relationships among them. One example for
categorical data is Parallel Sets [104]. Each brick can represent a category, and Paral-
lel Sets’ “composed dimensions” can be interpreted as dimension groups. Parallel Sets
optionally show histograms inside the categories, which is also possible in bricks. As Vis-
Bricks is a generalization of Matchmaker, the functionality of Matchmaker is covered in
VisBricks.

At the very core of the VisBricks strategy are two concepts: to show relationships
of two disjoint units of data and the establishment of multiform visualization for
those parts. These concepts are in no way limited to individual datasets; they may also
be applied to multiple, cross-referenced datasets. How this can be realized is the topic of
the next chapter.
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Up to this point, we have discussed strategies to visualize the relationships of multiple
homogeneous subsets of single datasets. In this chapter, we extend the approaches intro-
duced in the previous two chapters to accommodate multiple, cross-referenced datasets.
We defined cross-referenced datasets as “datasets that share a type of identifier, or have
types of identifiers that can be mapped to each other”. A typical example for cross
referenced datasets are those stored in relational databases, where a key defines the cross-
references between the tables. Cross-referenced datasets are also very common in biology,
where a common identifier, for example a gene name or a patient ID, encode structured
relationships. Cross referenced datasets were discussed in detail in Section 1.2. While
conceptually, each cross-referenced dataset can be considered as a dimension group and
could consequently be shown in VisBricks, several issues are more likely to arise when
working with multiple datasets:

1. Dependent datasets – Creating record-stratifications using clustering algorithms is
desirable for most datasets. However, for some datasets it might be more interesting
to explore how its data behaves based on the stratification of another dataset. A
classical example is meta-data: What does the meta-data stored in a dataset reveal
for the stratified groups of a primary dataset?

2. Unequal scale – It is possible, that the datasets are of different scale, or that only
subsets of two datasets are cross-referenced.

95
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3. Analysis setup complexity – When working with multiple views, many datasets
and multiple, alternative stratifications of each of these datasets, the selection of
which dataset to show in which view with which stratification is a challenging task
by itself.

4. ID mapping – Identifiers of cross-referenced datasets may need to be converted so
that relationships can be resolved.

5. Column-row relationships – Cross-referenced datasets may be linked across
columns or rows in the source files. As only relationships between either dimensions
or rows can be analyzed, a transpositon may be necessary.

With the exception of the last two, all of these issues could also be relevant when only
a single datasets is used. They are, however, likely to occur more often in multi-dataset
scenarios. While the last two points are a purely technical challenge, the solutions of which
were discussed in Chapter 4, the other issues need to be addressed by the visualization
technique. To do so, we propose two techniques. The first is StratomeX, an evolution of
VisBricks, that is targeted at visualizing the relationships of cross-referenced, stratified,
multidimensional datasets. StratomeX introduces dependent columns to deal with depen-
dent datasets, provides columns targeted at the analysis of individual categories and can
handle datasets of unequal scale. To deal with the challenge of the complexity of setting
up an analysis (choosing datasets, choosing stratifications of the datasets, and assigning
them to views) that arises when working with large numbers of datasets, we propose the
Data-View Integrator. The Data-View Integrator is a meta visualization that shows re-
lationships between datasets and allows investigators to interactively assign stratifications
and datasets to views.

While the visualization techniques presented in this chapter are valid for any kind of
cross-referenced numerical or categorical datasets, StratomeX was developed for a specific,
but highly relevant challenge: the classification of cancer subtypes in large-scale, hetero-
geneous genomics data. We present a task analysis elicited in semi-structured interviews
with investigators, and show how StratomeX can be used to address these tasks.

Our approach is validated in case studies with investigators, who are domain experts.
We report on our findings from one of these case studies, in which data from The Cancer
Genome Atlas (TCGA)∗ for glioblastoma multiforme (GBM) [181] was used to characterize
subtypes. Investigators were able to quickly reproduce known results from the literature,
and to gain further insights into the data.

We begin by introducing the application scenario and discussing the involved tasks.
We then give details on the visualization techniques, before describing the evaluation of
our approach in the section on the case studies.

7.1 Application: Cancer Subtype Analysis

The discovery, refinement and characterization of cancer subtypes is the basis for targeted
treatment and has implications for patient outcomes and patient well-being. Lately, much

∗http://cancergenome.nih.gov

http://cancergenome.nih.gov
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of the research on cancer subtypes is being performed with data from large-scale projects
such as TCGA, which are generating comprehensive genomic and clinical datasets for
thousands of patients. Recent studies [138, 192] have shown that an integrated analysis
of different molecular data types generated by the TCGA project can indeed be used to
discover subtypes and suggest molecular alterations relevant for therapeutic approaches.

Interactive visualization tools are crucial to fully exploit the potential of these large and
heterogeneous datasets for subtype characterization. Such tools can greatly increase the
efficiency of investigators, who currently are relying mainly on ad-hoc scripts and static
plots. StratomeX is intended to become the tool of choice for investigators facing the
challenges of working with large-scale genomic datasets for subtype classification. Before
going into detail on the tasks investigators have to conduct during an analysis, we give a
brief background on cancer and why the classification of subtypes is important.

7.1.1 Background on Cancer and Cancer Subtype Analysis

Cancer is a family of complex diseases that are caused by the accumulation of molec-
ular alterations. These alterations are either genomic and affect the DNA sequence or
epigenomic and affect other inheritable characteristics, such as methylation patterns of
the DNA. Molecular alterations can lead to abnormal cell growth that results in tumor
formation, invasion of nearby tissue, and often in growth of metastases in distant parts of
the body.

Traditionally, cancers have been classified and named after the tissue or cell type
where they originate, such as “breast ductal carcinoma” or “lung squamous cell carci-
noma”. However, cancers that originate from the same tissue or cell type are often not
homogeneous with respect to their histology or the underlying genomic and epigenomic
alterations, which gives rise to the notion of cancer subtypes. Cancer subtypes are
highly relevant for patient treatment and prognosis, since the efficacy of cancer drugs
can vary greatly among cancer subtypes, and patients with different subtypes often have
very different survival chances. In recent years, the identification and characterization of
subtypes has increasingly focused on genome-wide molecular data, which is now becoming
available also for large numbers of patients through the efforts of consortia such as TCGA.

Our collaborators from the Broad Institute of MIT and Harvard are analyzing data
from TCGA, which is a large-scale study designed to identify and catalog the molecular
changes that are recurrent in large cohorts of cancer patients and therefore implied to
drive tumor formation. TCGA aims to collect samples from at least 500 patients for
each of over 20 different cancer types for a total of more than 10,000 patients. Several
dozens of clinical parameters are collected for each patient, and all samples are subjected
to extensive molecular profiling. The data generated for each sample includes genome-
wide gene mutation status, copy number alterations, mRNA gene expression levels, DNA
methylation levels, and microRNA expression levels (refer to Chapter 2 for a discussion
of these data types).

TCGA data generation centers are using either microarray or next-generation sequenc-
ing technologies to generate aforementioned data types. The consortium maintains Fire-
hose†, a data analysis pipeline that is used to automatically preprocess the data and to

†http://gdac.broadinstitute.org
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run a range of bioinformatics analyses. The analyses are jointly performed for all samples
from patients with a particular cancer type and include various clustering algorithms for
mRNA, microRNA, and methylation data, as well as identification of mutated genes and
copy number changes.

Investigators who are working on cancer subtype identification and characterization
use three types of results from the analysis pipeline:

1. Quantitative data matrices, such as gene expression matrices with measurements for
all genes in all patient samples.

2. Clusterings on these matrices that stratify patients into mutually exclusive subsets.

3. Categorical data matrices for structural variation data. Examples are the copy
number status containing the ordinal categories homozygously and heterozygously
deleted, normal, lowly and highly amplified. Another example is mutation status
data with the nominal categories mutated and not mutated. These datasets are
collected for each gene in each patient. Entries for individual genes in these matrices
can be used to stratify the patients.

In addition to the output from the data analysis pipeline, investigators include quantitative
clinical parameters, such as time until a patient’s death, in their analyses. They may
also include patient stratifications in their analyses that were computed outside the main
data analysis pipeline. Furthermore, pathways are used to investigate the role gene
products play in molecular interactions.

By comparing different stratifications, it is not only possible to pinpoint the most
sensible subset across different datasets as a “candidate subtype”, but also to investigate
the functional effects of these possible subtypes within pathway visualizations, as well as
their effect on clinical parameters such as survival times.

7.1.2 Tasks

To understand the requirements of our collaborators for subtype analysis, we conducted a
series of semi-structured interviews and evaluated recent publications that report findings
of subtype analyses on TCGA data, for example [192] and [138], to complement the
requirements elicited from the interviews.

Our working definition of a (candidate) subtype is a subset of patients obtained from
one or more stratifications and we use the terms subset and subtype interchangeably.
Technically the subsets or subtypes correspond to record groups.

The exploratory analysis can be roughly divided into two phases. In Phase 1, the
investigators try to find stratifications of patients that are derived from multiple data
types, for example an mRNA gene expression clustering that correlates with the mutation
status of a particular gene. In Phase 2, they evaluate these subsets with respect to their
functional and clinical implications. Tasks from Phase 1 and Phase 2 are addressed in an
iterative fashion. More specifically, in Phase 1, investigators need to:

• Select combinations of stratifications and datasets from different data types for vi-
sualization.
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• Evaluate how well two or more stratifications support each other.

• View and explore mRNA and microRNA expression or DNA methylation stratifica-
tions. If different patient subsets exhibit distinct patterns, this will be an indicator
that there might be supporting evidence that these stratifications are indeed candi-
date subtypes.

• Refine stratifications by combining information from two data types, for instance by
splitting a gene expression cluster based on the mutation status of a gene.

In Phase 2, investigators focus on the following tasks:

• Review the effect of a stratification on clinical outcomes, such as patient survival or
tumor recurrence. If there are notable differences among subtypes, there might be
clinical relevance.

• Determine whether the subtypes have a functional impact by viewing stratified
molecular profiling data in the context of biological pathways. As an example,
investigators are interested in pathways that are generally activated but deactivated
in some subtypes.

In addition, investigators will also perform quality control tasks, for example, by com-
paring different clusterings (same algorithm but different parameters; different algorithms)
for a particular data type to evaluate how stable the clusters are.

7.2 The Data-View Integrator

Dealing with many different datasets, each with several stratifications that can be displayed
in several views is challenging and should consequently be supported by a visualization
tool. To this end we propose the Data-View Integrator, a meta visualization that
serves two purposes. First, it orients the user by providing an overview of the datasets
and the relationships among them. Second, it allows the user to dynamically configure
combinations of stratifications and assign them to the views in which they can be analyzed.

Showing relationships between cross-referenced datasets is a quite common approach,
especially in the context of databases, where database schemes are widely used. Inte-
grating the viewing modalities in such a diagram is, in contrast, not widely supported,
but not unheard of. North et al. envision DataFaces, interactive connections of visual-
ization and data schemas, as future work [136]. This approach was recently realized in
Stack’n’flip [179], which is also described in Chapter 8, as well as in HIVE [150]. We take
up this idea and extend it to accommodate multiple stratifications.

By default, the Data-View Integrator shows a representation of the data model as a
graph, where nodes correspond to individual datasets and edges represent shared identifiers
among the datasets. In the subtype characterization application scenario, a unique patient
ID serves as the primary key for referencing patients across all datasets. In addition,
datasets such as mRNA and methylation data both contain patient IDs as rows and
genes as columns and are therefore linked twice in the model. The nodes representing
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(a) (b)

Figure 7.1: The two modes of the dataset nodes in the Data-View Integrator. (a) In the
detail mode, the patient stratifications and gene clusterings are displayed as a matrix of possible
combinations. By selecting one of the gray matrix cells, the user can interactively create a
combination (cyan). (b) A view node connected to two dataset nodes which are in compact
mode, listing only the existing combinations.

the datasets can be visualized in two modes. The compact overview mode shows only a
caption for the dataset. The detail mode, shown in Figure 7.1(a), also shows the associated
stratifications. In this example, multiple clustering results are loaded for both patient
samples and genes, in addition to an external patient stratification labeled “ground truth”.

As stratifications themselves are one-dimensional, views can only show combinations
of record- and patient stratifications. Possible combinations are shown in a matrix layout
when a node is in detail mode. By selecting a matrix cell, the user can indicate that
she is interested in this combination, which is then highlighted and shown in a separate
matrix column. The separate column results in an unambiguous horizontal position of a
combination, which can be used to connect the combination.

In addition to datasets, views are represented in the graph. The user can directly assign
which stratification combination she wants to explore in a view by using drag-and-drop.
While some views can only show data from one dataset at a time and can consequently
only be associated with a single combination, more sophisticated views, which support
an integrated analysis across multiple datasets, can be assigned to multiple stratification
combinations. Figure 7.1(b) shows a simple example where the dataset node is in compact
mode, showing only selected combinations. Figure 7.2 shows a more complex scenario with
multiple datasets and stratifications, as well as with multiple views, as they would be used
for cancer subtype analysis.

The Data-View Integrator has two modes for the graph layout: it either utilizes the
bipartite property of the graph and places the dataset nodes at the bottom and the view
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Figure 7.2: The Data-View Integrator showing the relationships between datasets as well as
their association to views. Data sets and stratifications are shown at the bottom with the views
placed above. Relationships between a selected dataset and all others are shown. Note that
some views can show only one stratification, while others, like StratomeX, can show multiple.

nodes at the top, or alternatively arranges the nodes in a force-directed layout. While the
bipartite variant is beneficial for data-view combinations, exploring dataset relationships
is better supported by the force-directed layout.

7.3 StratomeX – A Subtype Visualization Technique

StratomeX is an evolution of VisBricks so it employs its visual encoding strategies. As
shown in Figure 7.3, stratifications of datasets are arranged as columns side-by-side. The
columns are split up into disjoint record groups representing either candidate subtypes,
clusters, or categories – depending on the data type and stratification loaded. The mul-
tiform property of bricks means that the data can be encoded using various visualization
techniques such as heatmaps, parallel coordinates plots, or histograms, which can be
switched on demand. When using heatmaps, the height of a brick encodes the number of
patients it contains, while other bricks are of static height. Ribbons connect the bricks of
neighboring columns, encoding how many patients they share. This is illustrated in Figure
7.3. It should be noted that for this application scenario, the patients are the records (i.e.,
the patients are vertically grouped) and the genes, metylations, etc. are the dimensions.
This is in contrast to all cases and figures up to this point in this thesis, where genes were
used as records and the dimensions corresponded to samples, experiments or patients.

As different datasets can contain disjoint sets of patients, the height of the bricks
cannot be used to compare absolute values, even when visualization techniques that have
a height proportional to the amount of data they encode are used. We have chosen
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Figure 7.3: Schematic comparison of five columns. The first three columns show stratifi-
cations of tabular, numerical datasets, where the second and third show the same dataset
only with different stratifications. The fourth, orange column represents a categorization. The
rightmost column illustrates the concept of dependent subsets, where the groups are based
on the stratification of another column. The ribbons between the subsets indicate how many
patients are shared between them. For instance, all patients of brick BI1 are contained in brick
BII1. BII1, however, also contains patients from the second brick in the first column.

relative heights, since investigators are primarily interested in the relative relationships;
additionally, relative heights optimally utilize the available space. This will be valid if the
dataset constitutes a representative subset of the population. As long as two neighboring
columns contain the same patients, the outer edges of the ribbons connecting them will be
parallel. For disjoint sets of patients, however, the height at the beginning of a ribbon may
not be the same as at its end, as shown between the first and second column in Figure 7.3.
In this example, Data Type B contains more patients than Data Type A, leaving parts of
the sides of the bricks unconnected.

7.3.1 Column Classes

One aspect that distinguishes StratomeX from VisBricks is that it can deal with multiple
heterogeneous datasets. While VisBricks does not distinguish between types of columns,
we introduce two new classes of columns for StratomeX, which are needed for multi-dataset
analysis in general and for the cancer subtype analysis tasks in particular.

Table columns – The most fundamental class of columns, the only one available in
VisBricks, uses the stratifications to create record groups of multidimensional datasets.
For the subtype identification task, the heatmap representation is best suited and therefore
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Figure 7.4: StratomeX configured as illustrated in Figure 7.3. The heatmaps in the bricks
allow the investigator to judge the homogeneity of the subset, the header bricks at the top show
the name of the column and an overview of the data of the dimension group. In the fourth
column we see a stratification based on the categories for copy number variation of EGFR.
The rightmost column shows Kaplan-Meier plots for “days to death” as dependent bricks for
the copy number-based stratification. Note that patients with amplifications of EGFR have
far worse outcomes compared to patients with no copy-number alterations.

chosen as the default. The stratification into subsets is in most cases not fixed, often
alternative stratifications exist. This can make manual refinement of the stratifications
necessary. The plausibility of a particular stratification is judged by investigators using
the embedded visualizations and the relationships to other stratifications in StratomeX.
Figure 7.3 shows a stratification for one dataset in the first column, and two stratifications
for another dataset in the second and third column.

Categorical columns – Categorical columns represent an unambiguous stratification of
patients based on a single attribute. An example for a single attribute as a category
is the mutation status of one particular gene of interest, which can be mutated or not
mutated. Categorical columns contain no visualization of the underlying data other than
a color assigned to every category, but have permanently visible labels showing the name
of the category. If, in contrast, multiple categories should be shown in one brick, table
columns will be required instead. Using only categorical columns and categorical data in
StratomeX would result in a visualization technique similar to Parallel Sets [104].

Dependent columns – In many cases it is of great interest to explore the effect of a
stratification of one dataset on another one. StratomeX allows the user to do this by
introducing dependent columns. The dependent columns use the same stratification as
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their source column, but show the data of the dependent dataset. As a consequence, the
ribbons connecting the source column always connect exactly two bricks. An example for a
dependent column is shown on the far right in Figure 7.3. Dependent columns are crucial
for two tasks in this application context: to explore survival plots, and to investigate
pathways. By using multiple Kaplan-Meier curves [146] next to candidate subtypes of
mRNA expression, investigators can explore whether the stratification derived from, for
instance, clustering of gene expression data, has effects on the clinical status of patients.
The small multiples of the Kaplan-Meier curves could, for example, show that the disease-
free survival in one subtype is significantly lower than that of another. Figure 7.4 (a) shows
a case where patients with a normal copy number status of EGFR have a better chance
of living longer than those where EGFR is amplified. Dependent pathway columns can be
used to judge whether there might be different behavior between subtypes in the biological
processes that the pathways represent. By placing multiple small thumbnails of pathways,
one for each subset, next to an mRNA expression dataset, and overlaying the average
expression of the group onto the gene nodes of the pathways, investigators can easily
compare the effects of the subtype on the pathway. To visually amplify and make them
stand out even in the thumbnail-sized small multiples, we enlarge the expression overlays.
An example of pathway small multiples is shown on the right of Figure 7.8. Pathways
themselves are graphs, so they do not fall into the cross-referenced data category, but
rather into the general heterogeneous category. In this context, however, pathways are
considered a special layout for the mapped gene-expression data, which is of the cross-
referenced type. They therefore integrate nicely into StratomeX.

7.3.2 Visual Encoding Details

Beyond the high-level visual encoding strategy described above, StratomeX contains a
series of important additional encodings that support the analysis tasks. Similar to Vis-
Bricks, StratomeX is designed to follow the visual information seeking mantra – “overview
first, zoom and filter, then details on demand” [168]. In the following we discuss the fea-
tures added to enable multi-dataset analysis.

Overview – To facilitate the association between the columns in StratomeX and the
dataset nodes in the Data-View Integrator, we use a combination of color coding and
labels. The columns have a halo in a color that corresponds to the color of the dataset
node in the Data-View Integrator. Every column has a header brick labeled with the name
also used in the Data-View Integrator, as shown at (b) in Figure 7.4. The header brick
shows a small summary view representing the whole dataset. The type of view shown
depends on the dataset and user preference. For tabular and categorical data the header
brick shows a histogram of the dataset by default. Pathway columns show the pathway
with the average expression encoding of the whole dataset overlaid. Clinical survival data
uses a summary Kaplan-Meier plot that overlays the survival curves of each subtype.

Zoom and Filter, Interaction – As subtypes are rarely based on only one factor (and
therefore one data type), it is crucial to be able to refine candidate subtypes by split-
ting and merging bricks. StratomeX supports interactive splitting of bricks based on the
ribbons connecting them to other columns, which is illustrated in Figure 7.5, as well as
merging of multiple bricks of the same column. The user can add labels for candidate



7.4. Scalability 105

(a) (b)

Figure 7.5: Split operation based on the ribbons between three bricks. (a) The split operation
is triggered using the context menu of a ribbon connecting two bricks. (b) After the split
operation the chosen brick was split into two bricks: The first contains all records the two
bricks that were connected by the chosen ribbon share, while the second contains all others.

subtypes, which are then shown at the top of the subtype brick. Notice that, in contrast
to VisBricks, the GUI elements of a brick are not considered part of the relative height of
a brick. Only the portion, where the actual view is shown is also connected with ribbons.
This makes it possible to handle bricks with very few or no records. StratomeX initially
uses a sorting strategy based on average values, but allows users to arbitrarily arrange
bricks within the columns, which can be used to minimize crossings of the ribbons.

Details on Demand – While the process of characterizing subtypes is mainly conducted
by investigating global trends in the overview, it is often also necessary to explore some
part of the data in detail. If, for example, the small multiples of the pathways show
differences in the mapping of the genes between the subsets, a detail-on-demand strategy
will be necessary to identify the genes. StratomeX facilitates this by enabling investigators
to create focus-duplicates of arbitrary bricks, as illustrated in Figure 7.8.

7.4 Scalability

As StratomeX is an evolution of VisBricks, the scalability discussed for VisBricks in Sec-
tion 6.3 is largely applicable. However, in contrast to VisBricks, StratomeX uses more
space-efficient bricks, hiding menus when they are not required. Also, the performance of
views has been improved: The embedded views will switch automatically from texture-
based, static views to fully interactive visualizations, if enough space is available. For
the case studies described below, seven datasets were loaded. With the exception of the
pathways, each contained between 300 and 550 samples, with 1500 genes each for the ex-
pression datasets, and between 5000 and 6000 each for copy-number and mutation status
data. This makes up a total of roughly six million data points. In an analysis scenario
with five to seven columns, roughly one million data points are rendered simultaneously,
making it a very effective visualization tool for the visual analysis of large-scale data.
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7.5 Case Studies

To evaluate our approach, we asked our collaborators from the Broad Institute of MIT and
Harvard to use StratomeX to explore data from one of the TCGA cancer types that they
are currently analyzing. We prepared datasets for Glioblastoma Multiforme (GBM) and
Breast Invasive Carcinoma (BRCA) based on the output of Firehose, the TCGA analysis
pipeline and added additional, “external” stratifications provided by our collaborators.
Here we only report case studies from the GBM dataset, as none of the findings for
the BRCA dataset have been published by the TCGA consortium so far. The following
observations and findings were made during the evaluation sessions with our collaborators.

Figure 7.6: Clustering comparisons. Columns 1, 2, and 4 show clusterings from the analysis
pipeline with three, four, and five clusters respectively. Column 3 shows a stratification of the
patients based on subtypes identified by Verhaak et al. (from top: mesenchymal, proneural,
neural, classical). The clustering result of the first column was reported to be the best result
by the analysis pipeline, however, we know from the literature, that there are four subtypes of
glioblastoma, which are shown in column 3. It is also known that the proneural and neural
subtypes are hard to distinguish based on their gene expression pattern, which explains the
observed problems of appropriately separating them in columns 1, 2 and 4.
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7.5.1 Comparing Clusterings

Even though the TCGA analysis pipeline reports a single “best” clustering for each mRNA,
microRNA, and DNA methylation data matrix, clusterings with different numbers of clus-
ters are available as well. Since Verhaak et al. [192] identified four mRNA gene expression
subtypes, but the analysis pipeline reported three clusters as the best result for mRNA
expression data based on one of the implemented clustering algorithms, we were inter-
ested in how the clustering for three, four and five clusters compared to the corresponding
classification by Verhaak et al. When Verhaak et al. performed their analyses, data from
only slightly more than 200 GBM patients was available, but one of our collaborators
had access to a more recent classification that assigned the current population of around
530 GBM patients to the Verhaak et al. subtypes, which we used in this and all other
case studies described here. The stratifications based on the clustering and on Verhaak
et al.’s classification are shown in Figure 7.6. The first observation that we made based
on the salient ribbon patterns was that one of the subsets from the three-cluster solution
was split into two clusters in the four-cluster solution, but that almost all patients from
these two clusters make up a single cluster in the five-cluster solution. This is possibly an
artifact of the clustering algorithm, but our collaborator confirmed that this might also be
biologically meaningful because of a second observation that we made: said two clusters
in the four-cluster solution are a mix of the neural and proneural subtypes identified by
Verhaak et al., whereas the other two clusters almost exactly correspond to the classical
and mesenchymal subtypes. This indicates that the clustering computed by the analysis
pipeline is a reasonable and meaningful solution. Verhaak et al. also reported that the tu-
mors in the neural and proneural subtypes exhibit similar gene expression patterns, which
are not found in the other two subtypes. This is one possible explanation for why neural
and proneural subtypes are harder to separate by clustering than the other types.

7.5.2 Combining Gene Mutation Status and Methylation Data

Noushmehr et al. [138] used clustering of DNA methylation profiles to identify three GBM
subtypes, one of which is based on hypermethylation of certain regions of the genome,
implicating that gene expression in those regions is repressed. They also found that
this subtype is associated with mutations of the gene IDH1 and mostly falls within the
proneural subtype. When in one of our evaluation sessions our collaborator was interested
in studying this methylation subtype, he quickly realized that it had not been detected in
the clustering from the analysis pipeline that created three clusters. None of the clusters
was strongly associated with either IDH1 mutations or the proneural subtype. Using the
Data-View Integrator, we easily added the other clusterings to the view. Our collaborator
pointed out that one of the clusters from the clustering with eight clusters had a distinct
methylation pattern and only contained patients with an IDH1 mutation, as is evident
when looking at the mutated category at the bottom right of Figure 7.7. We then used
this cluster to split the methylation stratification with originally two clusters into three
candidate subtypes. We hypothesized that the newly created patient subset contained
many patients with the Noushmehr et al. subtype, both due to its strong association with
the IDH1 mutation and the large overlap with the proneural subtype. Our collaborator
suggested to confirm this using the survival data, as Noushmehr et al. reported better
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Figure 7.7: Subtypes based on methylation data. Column 3 shows a manually refined strati-
fication of methylation data, which was created by splitting off a part of the original clusters
based on the mutation status of IDH1 shown in Column 5. The created brick reveals a char-
acteristic expression pattern overlooked by the algorithm. Only in the eight-cluster case shown
in Column 4 was the clustering algorithm able to detect this pattern, which is surprising, as
the pattern is highly salient when visualized. Column 1 shows mRNA gene expression sub-
types identified by Verhaak et al. From the ribbons it is clear that the subtype based on the
methylation pattern and the IDH1 mutation has a significant overlap with the proneural and
neural subtype. Column 2 shows patient survival outcomes (days to death) and was created
as a dependent column of Column 3. The better survival outcomes reported by Noushmer et
al. are evident in the associated Kaplan-Meier plot. Large parts of the bricks showing mRNA
expression and copy-number data are not connected because no methylation data is available
for about half of the samples.

survival outcomes of patients with this subtype. Indeed, the newly created patient subset
seemed to have better survival outcomes than patients in the two other subsets, as can
bee seen in the Kaplan-Meier plot in the second brick from the bottom in the second
column in Figure 7.7. This example emphasizes the importance of interactive refinements
of stratifications that is supported by StratomeX.



7.5. Case Studies 109

7.5.3 Evaluating the Functional Impact of Subtypes

In one of our evaluation sessions we looked into the effect of the Verhaak et al. gene ex-
pression subtypes on molecular processes that are known to play a role in gliomas, which
is the family of brain cancers that GBM is part of. We opened the “glioma” pathway
from KEGG (Kyoto Encyclopedia of Genes and Genomes) [91] as a dependent column
to see whether there are any differences in the expression levels of these pathways when
stratified according to the subtypes. The small multiples very clearly showed that the
glioma pathway indeed has different activation patterns across the four subtypes, as can
be seen at the locations indicated by the arrows in Figure 7.8. In particular, we noted that
there was a striking difference between the proneural and the classical subtype in the left
part of the pathway. With the help of a focus duplicate of the pathway, we were able to

Figure 7.8: Subtypes in the context of pathways. Column 1 shows mRNA gene expression
subtypes identified by Verhaak et al. (from top: neural, mesenchymal, proneural, classical).
The dependent Column 2 shows small multiples of the Glioma pathway from KEGG overlaid
with the average gene expression levels for each subtype. The detail view in the center shows
the same pathway enlarged with the gene expression levels for the classical subtype. The
arrows indicate a part of the pathway where we observed notable differences in gene expression
levels between the subtypes. Note that not all genes in the pathway have been mapped since
the gene expression data matrix only contains a subset of the most variable 1500 genes in the
dataset.
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Figure 7.9: Copy-number status of the genes identified to be involved in the Glioma pathway.
The copy number status of PDGFA (first column), EGFR (second column) and PDGFRA (fifth
column), their locations within the small multiples, and their relationships to the proneural and
the classical subtypes. The proneural subtype is brushed in brown, the classical in magenta.
A strong correlation of the proneural subtype to copy-number amplifications of PDGFRA is
evident, even though the majority of samples have no altered copy-number status of PDGFRA
at all. The increased expression of PDGFRA is clearly visible in the second pathway from
the bottom. The strong relationship between high-level amplifications in EGFR and low level
amplifications in PDGFA to the classical subtype can be observed when looking at the magenta
brush. Both, PDGFA and EGFR have increased expression levels in the pathway at the bottom,
where the expression of the classical subtype is mapped.

identify the genes that are showing the most notable differences between the classical and
proneural subtypes in the glioma pathway: EGFR and PDGFA are upregulated whereas
PDGFRA is downregulated in classical GBM, and vice versa in the proneural subtype.
This observation is probably due to a finding that Verhaak et al. reported, namely that in-
creased EGFR copy numbers are a hallmark of the classical subtype, whereas copy number
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amplifications of PDGFRA are a characteristic of the proneural subtype. These increased
in copy numbers are likely responsible for the increased gene expression levels that we
observed here. The relationships of PDGFA, EGFR, PDGFRA and the classical and
proneural subtypes are shown in Figure 7.9. The classical subtype is brushed in magenta,
while the proneural subtype is brushed in brown. We can see that high-level amplifica-
tions of PDGFRA on the far right are clearly correlated with the proneural subtype, as
the widest ribbon connects it with the pathway showing the proneural expression levels.
In contrast, the classical subtype is strongly associated with high-level amplifications of
EGFR and low-level amplifications of PDGFA, where the proneural type is involved to a
much lesser extend.

7.5.4 Discussion

In general, our collaborators noted that the brick and ribbon metaphor to visualize patient
subsets and their relationships across different stratifications feels natural and intuitive.
They also told us that the combination of small multiples with details on demand is
very useful, in particular for the pathway maps. A very positive outcome of the evaluation
sessions with our collaborators was that in all cases they asked us to load further data that
they wanted to explore with StratomeX. They also made suggestions on how to improve
the tool by integrating further analyses, for example to compute statistical significance
values for observed differences in patient outcomes.

7.6 Conclusion

In this chapter, we have discussed how the techniques proposed in the previous chapters
can be extended to be able to handle multiple, cross-referenced datasets, resulting in the
StratomeX technique. We have introduced two new classes of columns, the first for cate-
gorical data, the second to visualize data based on stratifications of other columns. The
latter allows us to observe the effects of a stratification derived from one dataset or di-
mension group on meta data. We also described the Data-View Integrator, a visualization
technique that makes it possible to conveniently configure which datasets in which config-
uration should be shown in which view. We thereby address the complexity of setting up
visualization scenarios when working with many datasets, configurations (stratifications)
and views.

StratomeX and the Data-View Integrator were designed in close collaboration with
domain experts and tailored to the task of cancer subtype analysis, which is evident due
to the availability of domain specific views, such as pathways and Kaplan-Meier plots.
Nevertheless, the underlying concepts are of general validity for the visualization of re-
lationships of cross-referenced datasets. The extensive case studies validate not only the
utility of StratomeX, but also, as StratomeX builds on Matchmaker and VisBricks tech-
nology, of the techniques introduced in the previous chapters. We can therefore conclude
that StratomeX is a tool suitable for the analysis of cross-referenced datasets and that
Hypothesis III is fully supported.
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Visualizing general heterogeneous data is a challenging, but potentially highly reward-
ing undertaking [98, p. 19], [183, p. 100]. From a visualization research perspective, the
conceptual and technical hurdles to provide seamless data visualization across the bound-
aries of individual datasets are not yet overcome, although they have been discussed for
over a decade [190]. We distinguish between two classes of heterogeneous datasets:

1. Structured heterogeneous data – Structured heterogeneous data is systemat-
ically collected and based on an established data model. Examples are multiple
datasets collected and referenced to patients in a medical scenario, such as mag-
netic resonance imaging data, blood panels, x-ray imaging, etc.; or datasets that
are collected in astronomy or physics observations and experiments. What these
datasets have in common is that they are recorded or collected with intent, and
their relationships to one another is well-defined.

2. Unstructured heterogeneous data – Unstructured data is data collected from
a variety of sources, where the relationships among datasets, the relevance and the
validity of the data are unknown. Typical examples are intelligence analysis scenar-
ios, where vast quantities of documents, videos, images, etc., from multiple sources
are available and need to be analyzed.

Cross-referenced data, which was the topic of the previous chapter, is a form of struc-
tured heterogeneous data with an underlying data model. The data model is explicitly
visualized using the Data-View Integrator, discussed in Section 7.2. While structured het-
erogeneous data that goes beyond cross-referenced data is not at the core of this thesis,
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it is a closely related domain. We describe a model-based approach for analyzing general
heterogeneous data sources in the next section. The focus of the model-based approach is
to provide a framework for orientation and guidance in a structured, heterogeneous data
landscape.

To make sense of unstructured heterogeneous data, data mining and knowledge extrac-
tion methods are a necessary precondition for visual analysis. As the focus of this thesis is
structured data, we do not discuss unstructured heterogeneous data analysis methods per
se. However, we describe visual linking to show relationships among multiple datasets,
which do not require a data model and are therefore equally applicable to unstructured
heterogeneous data. Visual linking can be used in homogeneous, single-dataset, single-
view scenarios as well as in multiple-application, multiple-datasets applications. Still, its
benefits are most striking in the latter two cases. In Section 8.2, we describe an approach
for visual linking across applications, and a method that optimizes the routing of visual
links.

The author of this thesis contributed to all the research presented in this chapter. The
main contributions were made by the first authors of the respective papers.

8.1 A Model-Based Approach to Visualizing Structured
Heterogeneous Data

Creating data models for multiple datasets is a common method, as already discussed in
Chapter 7. Most modeling approaches are limited to relationships among datasets. We
believe that modeling dataset relationships is necessary, but not sufficient, and introduce
a hierarchical, three-level modeling approach.

The first level, the setup model, contains the datasets, operators, visual-, and ana-
lytical interfaces available in an analysis scenario. Operators describe generic operations
that can be executed using either visualization and interaction, or analytical processes.
An example for an operator is “create grouping” which could be done either manually in
a visualization interface, or automatically, using, for example, a clustering algorithm. The
setup model not only lists these parts, but defines relationships between them, containing
the information which datasets have a relationship, which analytical or visual interface
can be used to analyze a dataset, and which analytical or visual interface can be used to
execute an operation.

Based on the setup model, it is possible to provide orientation to users. Orientation
is important in complex scenarios, since the possible transitions between datasets and the
choice which interface to use for a task is not obvious. This level of support is comparable
to navigating with a paper-based map, where information on what is where is provided,
but no instructions on what to do next are available.

The setup model can be extended by domain-specific information, yielding a domain
model. The domain model enriches the setup model by adding tasks from a domain,
assigning these tasks to datasets and assigning operators to the tasks. On top of the
domain model, the analysis session model, describing a concrete workflow composed
of the available tasks with a specific analysis goal, can be added. Based on the full three-
stage model, guidance can be realized, meaning that users can be lead through an analysis
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Figure 8.1: Guided analysis in Stack’n’flip. The upper part shows visualization of datasets,
where the current focus dataset is at the center, while previous visualizations and candidates for
next visualizations are stacked at the sides. The most important contribution of Stack’n’flip
is the graph at the bottom. The graph shows the dependencies between the datasets, the
associations to the currently open views, the available interfaces, and the recommended paths.

process automatically.

While orientation can be provided in virtually any analysis scenario, model-based
guidance is useful for repetitive tasks, as a workflow for the analysis has to be defined,
which is impossible for an open, exploratory analysis. Guidance has its place in scenarios
such as diagnostics, where a standardized procedure ensures the quality of the process. Of
course, using algorithmic methods to create a model for suggestions is also conceivable,
which would allow to employ guidance in exploratory analysis scenarios.

We realized the model in Stack’n’flip, a prototype for an application in a clinical sce-
nario. Stack’n’flip integrates patient meta-data, histological tissue slices, gene-expression
data, data from online databases, and pathways. Figure 8.1 shows Stack’n’flip during an
analysis. The screen is divided into two parts: the upper parts shows visualizations of
the data, while the lower part shows a graph containing dataset dependencies, dataset-
interface assignments and recommended paths. The two parts are connected by visual
links, associating the views directly to the datasets. In the bottom right corner, we see
the recommended next step highlighted in red. Notice that recommended paths do not
need to be followed. A user can decide to branch off into another path, revisit previous
steps, and then follow the recommended path at a later time. For details on the modeling
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and on Stack’n’flip refer to the original paper [179], or to the thesis by Marc Streit [176].

While Stack’n’flip demonstrates how guidance can be realized based on an authored
model, widespread adoption of similar implementations is unlikely, due to the infeasibility
of integrating all possible analysis tools for a heterogeneous analysis scenario into a single
tool. We believe that the integration of multiple tools in a heterogeneous analysis scenario
is more likely to succeed. While a deep integration of arbitrary tools is yet unsolved, we
propose a first step towards it in the following section.

8.2 Visual Linking for Heterogeneous Data

When analyzing multiple related, but heterogeneous datasets, it is likely that multiple
software tools are involved. As discussed previously, it is not feasible to integrate all
possible visualization and analysis tools into a single framework. Nevertheless, integration
of these tools is desirable. Examples for important features that should be supported
across applications are filtering, i.e., elements removed in one application should also be
removed in another, synchronized scrolling, data loading, i.e., it should be possible to
load a dataset in one application of a data item selected in another, or across-application
highlighting, so that relationships of the datasets are explicit.

While all these features and many others are important, we chose to focus on across-
application highlighting, since it is a core topic of visualization, while the others are mainly
human-computer interaction and software engineering tasks.

Our approach to across-application highlighting is to employ visual links. We defined
visual links as “continuous shapes such as connection lines, curves, or surfaces that connect
or surround multiple related pieces of information, thereby augmenting a base representa-
tion”. In Chapter 3 we have distinguished two classes of base representations: those that
are aware of the visual links and adapt to them, and those that do not. The Matchmaker,
VisBricks and StratomeX techniques belong to the first class. The techniques presented
in the remainder of this chapter are intended for base representation of the second class,
which do not adapt to visual links. We will first discuss how visual links can be employed
across applications, followed by a discussion of possibilities to improve the visual quality
of visual links.

8.2.1 Visual Links Across Applications

Very few visualization tools are able to integrate multiple, simultaneously running appli-
cations. Those that do, typically share a common database, through which the commu-
nication is handled. A prominent example for such a tool is Snap-Together visualization
[137]. However, using a shared database requires a shared data model and consequently is
not applicable for unstructured heterogeneous data. While a shared data model enables a
level of integration not achievable with unstructured data, we will demonstrate that it is
not necessary for across-application highlighting. Also, while using color for highlighting
is predominant in the related work, it is often not the method of choice, as discussed
in Chapter 3. Especially in multiple heterogeneous applications, where different color
schemes may already be employed, or where the color coding cannot be changed easily,
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Figure 8.2: Visual links connecting highlighted elements in four independent applications.
The links are bundled on a per-window basis, so that edges between views are minimized. Off-
screen visualizations (the arrows at the top and bottom of the left windows) indicate hidden
matches. This example shows gene expression data in a heatmap, a parallel coordinates view
and two browser views containing information on the highlighted genes.

color coding is not the right choice for highlighting. We therefore propose to employ visual
linking as an across-application highlighting solution.

Our approach is based on a lightweight background application collecting and dis-
tributing selections, a rendering application, which is responsible for drawing the visual
links, and interfaces to the integrated applications. Figure 8.2 shows the results: Visual
links are rendered on top of four independent applications. The right two windows contain
instances of Caleydo, showing separate visualizations for gene expression data, the left two
windows show web browsers containing information on the selected entries. To reduce vi-
sual clutter, visual links are bundled on a per-window basis. The technique also provides
off-screen visualization: Small triangles at the windows’ edges hint at information hidden
from the current view, as can be seen at the top and bottom edges of the two browser
windows in Figure 8.2.

Technically, there are three levels of integration for applications providing and receiving
selections for visual links. Applications can provide direct support by implementing an
interface, can be extended using plugins, which is the preferred way to integrate common
applications such as browsers or office suites, or, for web-based content, can be based
on mashups, thereby combining web-applications with the visual links interface. We are
currently working on a completely non-invasive alternative using text recognition, which
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will be able to integrate arbitrary applications.
We evaluated the approach in an informal user study, where users where asked to

conduct an information analysis task with data spread across multiple windows. User
feedback on the visual links themselves was positive throughout. The method of triggering
the visual links and interaction with the employed views were occasionally criticized. For
details on the technique and the study refer to the original paper [197] or to the thesis of
Manuela Waldner [195]. Waldner et al. have since demonstrated that visual links can also
be used in multi-display scenarios for co-located, collaborative visual analytics [198].

While visual links across applications are a very salient highlighting technique, they
nevertheless occlude information, especially when many items are connected. How this
can be remedied is the topic of the next section.

8.2.2 Context-Preserving Visual Links

As visual links are rendered on top of a base representation, occlusion of the information in
the base representation is unavoidable. In this section, we discuss how this occlusion can
be minimized so that as much of the important parts of a base representation as possible
remain visible. To this end we formulate optimization criteria for visual links:

1. Visual links should have a minimal length.

2. The amount of information occluded by visual links should be minimal.

Figure 8.3: Context-preserving visual links. Based on a salience measure, shown in the small
black-and-white inset, and other penalties we compute link paths that occlude minimal amounts
of salient information, while taking the other optimization criteria into account. This example
shows five of Caleydo’s visualization techniques, where highlighted elements are connected with
context-preserving visual links. Notice how the links choose routes along the view boundaries.
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3. Visual links should be easy to distinguish from the base representation, they should
stand out.

4. Links in close proximity should be bundled to decrease the overall link length.

Our approach is based on a penalty map, where four factors are considered. The
first is an importance map, where salient regions of the base representation are given
a high penalty. We calculate the saliency of a scene using a model of saliency-based
visual attention [84]. A sample result of the saliency calculation for the scene depicted
in Figure 8.3 is shown in the small inset in the same figure. An additional penalty is
assigned to regions where the color in the base representation is similar to the chosen link
color, to regions where highlights are present and to other visual links in case of multiple
simultaneous sets of visual links. The routing is defined as an optimization problem, in
which the link length is weighted against the accumulated penalties. For details on the
process and on the optimization as well as on the necessary discretization refer to the
original paper [174]. Figure 8.3 shows the results of the technique applied to a complex
visual analysis scenario in Caleydo. It is clearly visible that the links avoid salient regions,
for example, by routing around the dense regions in the scatterplots at the top right.
When a segment bundles many branches, it is shown thicker. Halos help to distinguish
the links from the base representation.

8.2.3 Study on Effectiveness of Visual Links

In addition to the informal study on the utility of interactive visual links across appli-
cations, we conducted a formal, quantitative user-study to evaluate the effectiveness of
visual links compared to traditional, color-based highlighting. The study included three
conditions: color-based highlighting, traditional (straight and bundled) visual links,
as well as context-preserving visual links. Examples of each condition are shown in
the top row of Figure 8.4. The study was conducted as a within-subjects experiments
with 18 participants and 16 repetitions for each condition. The task in each condition was
to count the number of highlights in a scene, which varied from five to twelve. We used
the same set of base representations for all conditions, but varied the highlighted regions
to avoid learning effects. Subjects were timed and accuracy of the results was recorded.
Additionally, an SMI∗ RED 200 stationary eye-tracker was used to record the participants’
gaze path. After each condition, participants were asked to answer a set of questions to
record subjective assessment. We postulated the following hypothesis:

1. Visual links lead to a better performance than conventional highlights.

2. Context-preserving visual links do not have a negative impact on performance.

3. Context-preserving visual links have a positive impact on user satisfaction.

We found a significant main effect for the performance, where post-hoc comparisons
revealed that completion time was significantly higher with highlighting (thighlights =

∗http://www.smivision.com/

http://www.smivision.com/
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(a) (b) (c)

Figure 8.4: Conditions and eye tracking results of the visual links user study. The top row
shows the three different conditions of the study: (a) color-based highlighting, (b) traditional
visual links, and (c) context-preserving visual links. The lower row shows the gaze plots for
the respective images. While the gazes for the highlighting method are spread over the whole
image, those for the linking techniques are much more focused.

4897ms) compared to either linking technique (tlinks = 4176ms, tcontext−preserving =
4024ms). Subjective speed and subjective correctness were rated significantly higher for
both linking techniques. Actual correctness of the results was high in all conditions. Par-
ticipants rated context-preserving visual links to be more visually pleasing than the other
two techniques, also the usefulness of both liking techniques was rated higher (both differ-
ences being statistically significant). Consequently, we can conclude that Hypothesis 1 and
2 were fully supported, and Hypothesis 3 was partially supported. The latter hypothesis
– context-preserving links have a positive impact on user satisfaction – was supported by
the significant effects for attractiveness, but not for the overall preference, or subjective
mental demand.

The lower row in Figure 8.4 shows a gaze-plot of eye tracking data for the three
conditions. We observe that gaze-paths were more focused in the scenarios employing
visual links, while the first plot, for the traditional highlighting, shows a more distributed
pattern. We speculate that this is due to a “serial search” approach for the traditional
highlights, while visual links make users follow the links with their gaze. For a thorough
discussion of the study, including additional results, the employed statistical methodology
as well as measures for significances and effect sizes refer to the original paper [174].
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8.3 Conclusion

In this chapter, we have discussed two classes of multiple heterogeneous datasets: Struc-
tured, heterogeneous datasets, where a data-model for dataset dependencies is available,
or unstructured datasets, where no prior knowledge on the relationships of the datasets
exists. For the former class, modeling of the data, the views, the analytic interfaces and
the tasks can be used in a visual analysis system supporting orientation, or even guidance.
Visual linking can be used in both the structured and the unstructured case to show re-
lationships among datasets, applications, and views. Finally, we have shown how visual
links can be routed to occlude a minimal amount of information and demonstrated the
utility of visual links.

Even with the methods proposed, heterogeneous data analysis is still challenging. The
ideas presented here are but first steps of a long path ahead. We believe that convenient
analysis of heterogeneous data will not only be achieved by creating new visual encodings.
Instead, it might have to be approached from an engineering angle: the tools for individual
datasets are here, and they are ready to use, but there is no communication, no connection
among them. Visualization research will play its part, for example by providing the
glue between those applications through meta-visualization, but software compatibility,
connectivity and standards are needed for a successful integrative heterogeneous data
analysis.





Chapter 9

Conclusion and Outlook

Visualization of multidimensional data may well be one of the most researched sub-domains
of Information Visualization. However, with the widespread adoption of biomolecular data
analysis, new challenges of significant practical relevance have arisen: making sense of the
vast amounts of data generated can have a profound impact on mankind’s understanding
of biomolecular processes, often with direct implications for treatment and prognosis of
patients. Also, we observe an adoption of biomolecular methods in clinical scenarios.
While in the past, due to the high cost of data generation, biomolecular analysis was
restricted to research, it is now being used in clinical settings for diagnostic purposes.
Furthermore, due to next-generation sequencing, it is now possible to capture data from
a wide variety of biomolecular processes and of biomolecular properties. While ten years
ago, gene expression data was the only widely available multidimensional data source in
molecular biology, it is now complemented with miRNA expression, DNA methylation as
well as data on structural variation, such as SNPs, small-scale mutations, and copy number
variations, to name just a few. While this makes it possible to analyze relationships and
interdependencies and uncover the causes for many biological phenomena, it also poses
challenges for the analysis. Hence, analysis tools have to keep up with the following
important developments:

1. Analysis tools need to become more user-friendly. Traditional approaches, for ex-
ample using R-scripts to analyze and plot the data, are not likely to be adopted
in clinical settings. They are also a considerable hurdle in the analysis by domain
experts without profound knowledge in bioinformatics methods.

2. Visual analysis methods need to scale to vast amounts of data.

3. A wide array of datasets need to be integrated for a comprehensive analysis.

In this thesis, all these points were explored: We proposed interactive visual analysis
methods, combined with analytical algorithms to make analysis of complex interdepen-
dencies possible, without the help of scripting. We demonstrated how the separation into
homogeneous sub-groups can improve scalability in terms of the amount of conditions that
can be reasonably analyzed concurrently. We also explained how limited screen-space can
be optimally used by employing the divide and conquer approach in combination with the
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multiform technique, allowing us to show abstractions for out-of-focus or very homoge-
neous regions of datasets. At the same time, we demonstrated how interaction combined
with the multiform approach can provide advanced focus and context, as well as drill-down
techniques. Finally, we established how a variety of multidimensional, cross-referenced
datasets can be integrated in a comprehensive analysis scenario.

The main contribution of this thesis is a new visual analysis technique for individual
multidimensional and multiple cross-referenced datasets following the paradigm:

Stratify the dataset(s) into homogeneous subsets, show each subset using the
best visualization technique available, and visualize the relationships among
them.

In line with this main contribution, we discussed a broad variety of considerations,
including how to best encode the relationships between these subsets, how to interact
with the subsets, how to choose which datasets or subset to show, just to name the most
important.

As the discussed techniques cannot be meaningfully evaluated in laboratory settings us-
ing random participants and easily measurable tasks, we chose to evaluate our approaches
using case studies. Case studies are an established evaluation methodology and suitable
“to assess a visualization tool’s ability to support visual analysis and reasoning about
data”[109]. We conducted our case studies with various experts from different institu-
tions, all of them full-time researchers in molecular biology. Some of them were involved
in the user-centered design process, while others were not familiar with the software. The
results of the case studies affirm our claim that the proposed methods have a clear benefit
in these application scenarios.

We also elaborated on how heterogeneous data can be visualized in an integrative sce-
nario. We distinguished two cases: structured heterogeneous data, where the relationships
of the datasets are known beforehand, and unstructured heterogeneous data with no de-
fined relationships. We discussed how, for the former case, modeling of data, views, and
analysis interfaces can be used to provide orientation and guidance for the user. While
the latter case is not in the scope of this thesis, we nevertheless discussed visual linking
as a method usable for general heterogeneous data analysis scenarios, irrespective of their
structure. Context-preserving visual links were introduced as a method that can link
related items with minimal impact on the legibility of the base representation. We for-
mally evaluated visual links and found them to improve performance in detecting multiple
highlights and to be aesthetically pleasing.

9.1 Outlook

In the future, a number of technical improvements for Caleydo are desirable. Examples
are a fusion of the features of the hierarchical heat map and the VisBricks technology or
out-of-core strategies, to be able to handle datasets of a size beyond what can be loaded
into memory.

Conceptually, it would be worth researching, whether and how the restrictions on
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the alignment of bricks of the same dimension group, which are currently always stacked
on top of each other, can be relieved. If this were possible, it would allow to better
analyze relationships across multiple dimension groups. The challenge here is the loss of
relationships between dimensions. While in theory it would be possible to use visual links,
for example in the form of Bubble Sets [31], to encode a brick’s membership of a dimension
group, it remains to be seen whether this is acceptable for users.

VisBricks and StratomeX currently leave it up to the user to decide, which visualization
technique is most suitable for a given brick. Experiments with automatic adaption of
views, for example by switching them to compact cluster bricks when not enough space is
available, received mixed feedback from users. Nevertheless, we believe that an automatic,
task-based adaption of the visualization technique and the level of detail of a brick can
improve scalability and increase insight.

A challenge for future research is to increase the number of bricks that can conveniently
be displayed in a column. While due to the abstraction capabilities of the multiform
technique, a very large number of records can be summarized, the number of bricks is
limited. One of the reasons for this is the that the number of ribbons is a quadratic
function of the number of bricks, assuming that most bricks are connected. This causes
many crossings and clutter. We discussed that only showing selected ribbons is a remedy
– at the cost of a worse overview. Another strategy would be to algorithmically minimize
the crossings between the bricks. Asides from the clutter caused by many ribbons, the
space available for individual bricks is reduced when many bricks are to be shown. This
can make culling of some bricks necessary. A possible approach to overcome this would be
to introduce a hierarchy of bricks, meaning that on an overview level many bricks could
be abstracted into a single brick. Only when drilling down are the other bricks shown.

A tighter integration of statistical analysis, for example to quantify the relationships
of two bricks, is desirable. The rationale for this is that while the visualization can help to
discover a trend in the data, statistics are nevertheless needed to be able to confirm and
report a discovery. Integrating statistical analysis to quantify observed effects reduces the
required effort on the user’s side and will likely also increase the trust in the visualization
system.
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