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Abstract

Organic thin-film field-effect transistors (OTFTs) can act as ammonia sensors if, e.g.,

an NH3 sensitive polymer is incorporated as isolating material. It has been experi-

mentally demonstrated that a particular setup containing an Eosin-Y functionalized

ROM-polymer responds to NH3 exposure by 800% increase in current. To elucidate

the underlaying sensing mechanism, the carrier transport is simulated by using a two-

dimensional drift-diffusion model in this thesis. The corresponding system of equations,

containing the Poisson equation, current density equations and the continuity equation,

is solved self-consistently on a two-dimensional non-regular grid. The influence of impor-

tant parameters, i.e., the height of the injection barrier, the mobility, different dielectric

constants, and the substrate potential, is studied. By using a set of parameters jus-

tified by the aforementioned study, the I-V curves of the device without the presence

of ammonia are obtained. Further calculations incorporating potential sensing scenar-

ios demonstrated that the ammonia induced changes in the OTFT operation originate

from a surfacesurface layer of negative charges formed by deprotonated hydroxyl groups

located at the organic semiconductor-isolator interface.
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Simulation von Ammoniak sensitiven

Feldeffekttransistoren mit Hilfe eines

zweidimensionalen Drift-Diffusionsmodells

Zusammenfassung

Ammoniak-sensitive Polymere können als isolierendes Material in organischen Feldef-

fekttransistoren (OFET) verwendet werden, um Sensoren herzustellen. Experimentelle

Resultate zeigten, dass bei gewissen Strukturen (wie zum Beispiel einem dual-gate OFET

mit einem ROM-Polymer mit Eosin-Y Gruppe als Isolator) der Strom in Anwesenheit

von Ammoniak bei einem speziellen Aufbau um mehr als 800 Prozent steigt. Um dieses

Verhalten besser verstehen zu können, wurde der Ladungsträgerstransport mit Hilfe

eines zweidimensionalen Drift-Diffusions-Modells simuliert. Dafür wurde ein gekoppeltes

System bestehend aus Gleichungen der Stromdichten, der Kontinuitäts- und Poissongle-

ichung selbstkonsistent auf einem zweidimensionalen Gitter gelöst. Bevor die Resultate

der Simulation mit den Messergebnissen des Experiments verglichen wurden, wurde der

Einfluss bestimmter Parameter, wie zum Beispiel der Höhe der Injektionsbarriere, der

Mobilität, unterschiedlicher Dielektrizitätskonstanten und des Substratpotentials unter-

sucht. Dann wurde ein bestimmter Satz gerechtfertigter Parameter gewählt, um die

I-V-Kurven ohne Anwesenheit von Ammoniak zu berechnen. Schließlich wird anhand

dieser Parameter gezeigt, dass die durch den Ammoniak induzierten Änderungen der

Charakteristik des OFET von einer Flächenladungsdichte, bestehend aus deprotonierten

Hydroxylgruppen, an der Halbleiter-Isolator Grenzfläche stammen.
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1 Introduction

Inorganic semi-conducting materials have become increasingly important in todays life.

They are used, e.g., in diodes, light emitting devices (LEDs), solar cells and field-effect

transistors. With the appearance of organic semiconductors (OSCs) a new advent for

these devices has begun. Next to the main advantage of smaller production costs, the

different properties of the organic materials lead to new applications, e.g., the creation of

flexible devices instead of the rigid inorganic ones and sensors. A great field of research

deals with gas-sensory devices. In contrast to non-organic ones, these devices can operate

at or near room temperature [1] [2]. There are three main ideas to realize such devices:

First, a variation of the mobility can occur in the OSC due to chemical reactions of the

gas with the OSC [1]. Second, a chemical reaction in a self-assembled monolayer [3] leads

to an increase of the capacitance and, thus, an increase in the current. Third, the gas

can react with the isolating material and change the capacitance and, consequently, the

current. One of those devices, a sensory organic field-effect transistor (OFET), which

has been built by A. Klug and his coworkers [2], is the main subject of this thesis.

This device is highly sensitive to ammonia, due to a layer consisting of a ROM-

polymer with an Eosin-Y-group attached [4]. Although the OSC used (P3HT) reacts

with ammonia upon which its mobility is decreased [5], experimental measurements

showed that the current increases by more than 800% under exposure of ammonia.

Three main scenarios have been put forward to explain this effect:

• Change in the dielectric constant: The dielectric constant of the ROM-polymer

(ROMP) is changed due to the interaction of the Eosin-Y-group with the ammonia.

Experimental measurements of the dielectric constant of this material showed an

increase of εROM−polymer from 6.0 to 6.5 [2]. This gives rise to an increase in the

capacitance and, therefore, to an increase of the current.

• Formation of a constant space charge density in the ROM-polymer: Positively

charged ammonium molecules and negatively charged O−-groups are created due

to the reaction of the ammonia molecules with the polymer. While the positive

10



1 Introduction

ammonium molecules migrate to the negatively charged gate contact, the nega-

tively charged O−-groups are immobile and create a charge density in the polymer.

Like the change in the dielectric constant, this results in a higher capacitance and,

in consequence, in an increase of the current.

• Formation of a surface charge layer at the interface between the isolating material

and the OSC: Rather than remaining fixed, the negative charges travel through the

device and accumulate at the interface to the OSC. The resulting surface charge

density increases the capacitance and, thus, also the current.

As it is very difficult to verify a particular scenario via experimental methods, comple-

mentary simulations are necessary. For this purpose, a two dimensional drift-diffusion

model is developed that is suitable to simulate the complete device.

This thesis is structured as follows: After this introduction, the second chapter gives

a survey on the properties, characteristics, and phenomena observed in OSCs (section

2.1), OFETs (section 2.2), as well as sensors with particular focus on the properties that

form the basis of sensing of this device (section 2.3).

The third chapter deals with the numerical methods used to simulate the device.

There, the continuity and the current density equations are combined with the Poisson

equation, leading to a system of equations that is solved self-consistently on a two-

dimensional non-regular grid.

The first section of chapter 4 is dedicated to the experimental data. Different ex-

perimentally measured characteristics are compared and a tentative explanation of the

observed effects is given. Section 4.2 is divided into two parts: In the first one, parame-

ters studies are made (subsection 4.2.1). This is done in order to understand the influence

of the most important parameters on the transfer characteristics. These parameters are

the dielectric constant of the isolating ROM-polymer, the mobility, the injection barrier

and the substrate potential. In subsection 4.2.2, the three scenarios, each of which could

give rise to an NH3 sensitivity, are tested by choosing a corresponding set of parameters

and model extensions.

In the conclusion section (chapter 5), the results are then summarized and a sensing

mechanism is proposed.
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2 General Aspects

First, a short survey is given about the material properties of organic semiconductors.

These materials are used in many organic devices, e. g. in organic field-effect transistors

(OFET) (2.2). By using certain sensoric materials these OFETs can be built as sensoric

devices, explained shortly in the last section of this chapter.

2.1 Organic semiconductors (OSC)

The basic properties of OSC are well known. They rely on the conjugated π-electron

system, resulting from an sp2 hybridization of carbon compounds [6]. The most simple

example for such a hybridization is that of ethene, as shown in Fig. 2.1.

Figure 2.1: Scheme of σ and π bondings with two carbon atoms in ethene. One of the
s orbitals forms a hybrid orbital sp2 with two p orbitals, while one p orbital
stays unchanged. The sp2 orbitals of the two carbon atoms form a σ bond,
while the two remaining p orbitals form a π bond.

While the σ-type orbitals are localized between the carbon atoms, the delocalized

π-type orbitals have a weak overlap and therefore low binding energies, leading to delo-

calized molecular orbitals. This is exploited in conjugated polymers, where the delocal-

ization of the π bonds leads to intrinsic conductivity. Although not yet fully understood,
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it is clear that the transport mechanism differs in many respects from inorganic materi-

als. While it is possible to describe most inorganic semiconductor as one perfect molecule

with well defined crystal topography, organic materials often occur as disordered solid

containing countless independent molecules with different orientation and connection to

each other. This topography has an important effect on the mobility of the charge car-

riers in OSCs. These mechanisms regarding the mobility of the organic semiconducting

material are addressed in section 2.1.1

Albeit the above mentioned differences, there is nonetheless also a similarity between

these two materials. As in inorganic semiconductors, there is also a kind of band gap

between the highest occupied molecular orbital (called HOMO, similar to the edge of

the valance band in inorganic materials) and the lowest unoccupied molecular orbital

(called LUMO, being more or less the edge of the conduction band). The gap between

these two levels is in the range of some 100 meV [6]. This value is not well defined due

to the nature of the organic semiconductor and its morphology. Due to disorder, the

resulting energy levels of the material form a Gaussian density of states (DOS) (Fig.

2.2).

Figure 2.2: Field dependency of the hopping process in OSC. The density of states (DOS)
can be described by a Gaussian distribution function depending on the energy
(G(E).)

2.1.1 Mobility models

The mobility µ of the charge carriers in an OSC depends on two main processes: the

intrachain and the interchain charge carrier transport. The former one consists of the

transport in a single molecule, where long conjugation lengths lead to a high mobility.

13



2 General Aspects

The later covers the hopping process from one chain of carbon molecules to the other.

The charge carriers must overcome a so called hopping barrier.

In contrast to most inorganic semiconductors, the transport is not phonon-limited,

but rather phonon-assisted. This results in a higher energy of the charge carriers, which

allows an easier penetration of barriers [7]. In addition to the high temperature, depen-

dence the mobility is also electric field-dependend in semiconducting materials as can

be seen in Fig. 2.2 [8] [9]. This is reflected by a lot of different models [10] [11] [12]. In

the following, only the density-dependent model is presented, due to the high concentra-

tion differences observed in OFETs. Miller-Abrahams described the hopping probability

from one chain to another as a process thermally associated by acoustic phonons in a

Gaussian energy landscape [13]. The equation was solved by Pasveer et al. for hopping

of carriers on a cubic lattice [11]. Their final result for a density dependent mobility

µ(p) leads to

µ(p) = µ0 exp

[
1

2
(σ̂2 − σ̂)

(
2p

NV

)δ]
(2.1)

with

δ = 2
ln(σ̂2 − σ̂)− ln(ln 4)

(σ̂2)
(2.2)

Here, µ0 denotes the mobility at zero concentrations of the charge carriers, σ̂ the width

of the Gaussian density of states (DOS) and p the density distribution of the charge

carriers. NV is the effective density of states in the valence band and defined by

NV = 2

[
2

2πm∗
pkBT

~2

] 3
2

(2.3)

with the Boltzmann constant kB, the reduced Planck constant ~ and m∗
p denoting the

effective mass of the charge carrier [14, page 19]. For disordered solids, instead of NV an

effective density of states for organic materials NHOMO must be used here. Although not

clearly defined, this parameter is handled as fit-parameter in simulations for different

materials, e. g. performed by Torricelli at al. for P3HT [15]. Therefore, estimations can

be given.

2.1.2 Potential: the Poisson equation

As mentioned before, the electric field E is of great importance for the charge transport

in OSCs. The field itself is connected with the electrostatic potential ψ in the domain

14



2 General Aspects

Ω ⊂ R3 via

E(r) = −∇ψ(r) r ∈ Ω (2.4)

The Gauß’s law is given by

∇ ·D(r) = ρ(r) r ∈ Ω (2.5)

where ρ is the total charge density and D is the electric displacement field, which depends

on the electric field by

D(r) = ε0εrE(r) r ∈ Ω (2.6)

Inserting (2.4) and (2.6) into (2.5) leads to the Poisson equation

∇ · (ε0εr(r)∇ψ(r)) = −ρ(r) r ∈ Ω (2.7)

with ε0 denoting the absolute permittivity and εr the relative permittivity. It relates the

electrostatic potential ψ with the total charge density ρ, which contains the contribution

from mobile carriers as well as possible fixed charge distributions, be that space- or

surface-charge densities. The Poisson equation can be solved by taking into account

Neumann and/or Dirichlet boundary conditions:

Dirichlet : ψ(r) = g(r) r ∈ ∂Ω (2.8)

Neumann :
∂ψ(r)

∂n
= f(r) r ∈ ∂Ω (2.9)

where f(r) and g(r) are a given scalar functions and n denotes the normal to the given

boundary ∂Ω.

2.1.3 Current density and continuity equations

The two main driving forces behind the motion of charge carriers are the drift and the

diffusion. While the drift is caused by the electric field E, the diffusion is driven by the

gradient of the charge carrier density ∇p for positively and ∇n for negatively charged

15



2 General Aspects

carriers [16]. In the domain Ω ⊂ R3, the two corresponding current densities read:

Jp(r, t) = qp(r, t)µp(r)E(r)− qDp(r, t)∇p(x, y) r ∈ Ω

Jn(r, t) = qn(r, t)µn(r)E(r) + qDn(r)∇n(r, t) r ∈ Ω (2.10)

Here, q is the elementary charge, while µp/n(r) stands for the mobility for positively/negatively

charged carriers. Dp/n(r) denotes the diffusion constant, calculated by the Einstein re-

lation:

Dp(r) =
µp(r)kBT

q
r ∈ Ω (2.11)

Dn(r) =
µn(r)kBT

q
r ∈ Ω (2.12)

where kB is the Boltzmann constant and T the Temperature.

The current-density equations (2.10) are coupled with the continuity equations

1

q
∇ · Jp(r, t) +

∂p(r, t)

∂t
= G(r) r ∈ Ω

−1

q
∇ · Jn(r, t) +

∂n(r, t)

∂t
= G(r) r ∈ Ω (2.13)

with G(r) beeing the generation rate.

These equations can be solved by taking into account Neumann and/or Dirichlet

boundary conditions:

Dirichlet : p(r, t) = g(r) r ∈ ∂Ω (2.14)

Neumann :
∂J(r, t)

∂n
= f(r) r ∈ ∂Ω (2.15)

where f(r) and g(r) are a given scalar functions and n denotes the normal to the given

boundary ∂Ω.
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2.1.4 Injection barriers

The work function qφm of gold is 5.1eV and the electron affinity qχS of P3HT (the OSC

used in the devices examined) is 3.5eV [17]. In thermal equilibrium, the Fermi levels of

two contacted materials must be the same. This is shown in Fig. 2.3. The bending of

Figure 2.3: Metal/semiconductor contact: (A) energy levels before contacting, (B) after
contacting in equilibrium. EF denotes the Fermi level, EG the energy of
the gap, ELUMO the LUMO level and EHOMO the HOMO level of the OSC.
EHOMO,int is the HOMO level of the OSC at the interface to the metal.

the energy levels will be neglected as its width and height are assumed to be very small

compared to the size of the OSC and its energy levels.

As positively charged carriers from the metall enter the OSC, an injection barrier ∆h

can be defined by the difference between the Fermi level (EF ) and the energy of the

HOMO of the OSC at the interface (EHOMO,int) as seen in Fig. 2.3:

∆h = EG − q(φM − χS) (2.16)

With a given effective density of states associated to the HOMO level (NHOMO) the

density of charge carriers at the contact pcontact can be calculated, when assuming a

non-degenerate semiconductor in thermal equilibrium [14, page 157]:

pcontact = NHOMO exp

(
− ∆h

kBT

)
(2.17)

with kB denoting the Boltzmann constant and NHOMO the effective density of states for

organic materials introduced in 2.1.1. Although thermal equilibrium is not fully reached

in an actual device, this model is a good estimation for the simulation, as here the charge
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carrier density depends only on the injection barrier and the density of states and not

on other factors, e. g., time, potential or charge carriers in the device. It can be used to

incorporate Direchtlet conditions (Eq. (2.14)) at the contacts in the simulation.
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2.2 Organic field-effect transistors

There are several advantages for using organic materials compared to inorganic materials

in electronic devises. The main reasons are that organic materials are cheaper than their

inorganic counterparts and that, due to their organic nature, they allow even flexible

devices. Most of the devices are produced by spin-coating, where an excess amount of

a solution containing the OSC is placed on substrate, which is rotated at high speed

in order to spread the fluid by centrifugal force. Other production methods include

painting or printing on the used substrate.

One of the devices where OSCs are used are organic field-effect transistors. Here, the

semi-conducting material is made of an organic substance, whereas the rest of the device

can be organic or inorganic. There are mostly three different designs as shown in Fig.

2.4 although other geometries can be imagined. The most simple one of these devices

is the top-contact-bottom-gate OFET. There, the gate is also the substrate, on top of

which the isolator and the OSC are placed. Drain and source are connected only to

the OSC and are located on top of the device. In a bottom-contact-bottom-gate OFET

the setup is similar, but source and drain are placed on top of the isolator, before the

OSC is applied. So the two electrodes are covered by the OSC. In a top-gate-bottom-

contact OFET source and drain are placed on a certain substrate and covered by the

OSC similar to the bottom-contact-bottom-gate device. The isolator is placed on top of

the OSC and the gate is located on top of the isolator.

Figure 2.4: The three main different buildups for FET. From left to right: Top-contact-
bottom-gate, bottom-contact-bottom-gate and top-gate-bottom-contact

The thickness of the active material is some 10 nm, while that of the dielectric material

is more than 100 nm. Their width is a few millimeters. The length of the channel of

a typical OSC is between 10 µm and 100 µm, while the length of the contacts varies

from a few micrometer to some millimeter. The contacts are mostly made of gold or

silver. Their Fermi levels are close to the HOMO-level of the OSCs. This property and

the unintentional doping of the used OSCs is the reason why this thesis will only refer
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to transistors with positive charge carriers (holes) [18]. Negative charge carriers will be

neglected, although OFETs with negative charge carriers have been realized too.

2.2.1 Working principle, threshold voltage, operation regimes

The gate influences the electric field between source and drain. Normally the voltage

at the gate is set so that additional mobile charge carriers can enter the device through

the source and accumulate at the interface between the OSC and the dielectric material.

This accumulation region is called the channel. For p-type transistors, it is valid that

the lower the gate potential the more positive charge carriers enter and leave the device,

thus creating a higher current. Another effect that increases the current is the hole-

density dependence of the mobility. If there are more charge carriers in the channel, the

mobility rises (Eq. 2.1)) and also the current (Eq. 2.10)).

If the gate voltage is set above a certain value, no additional mobile charge carriers

can enter the device and no channel is formed. The charge density in the bulk is the

same as at the interface. This gate voltage is called the threshold voltage. This is also

the voltage at which the conductance of the interface exceeds that of the bulk, because

above the threshold voltage only the conductance of the bulk determines the current.

When no fixed charges are present in an OFET the threshold voltage is zero [18].

Figure 2.5: The two regimes and the threshold voltage shown in plot A in an output
characteristic and in plot B in a transfer characteristic for a p-type OFET

The current at the drain depends on two main parameters: the potentials applied at

the drain contact and the gate contact. The first correlation is illustrated by a so called

output characteristic, the second one by a transfer characteristic. In Fig 2.5 examples

20



2 General Aspects

of such characteristics are shown. As can be seen, these curves can be divided into two

parts: The linear regime and the saturation regime (Fig. 2.5). The linear regime is

defined as the part of the transfer characteristic where the gate voltage VG is between

the drain votlage VD and the threshold voltage Vth. When VG is also below VD then it is

called saturation regime. The current at the drain Id,lin for the linear regime and Id,sat

for the saturation regime can be approximated by [14, pages 303-306]

Id,lin =
W

L
µCi

[
(VG − Vth)VD −

V 2
D

2

]
for VG > VD (2.18)

Id,sat =
W

2
LµCi (VG − Vth)2 for VG < VD (2.19)

Here, W is the width and L the length of the channel, while Ci is the capacitance of the

isolator, and µ denotes the mobility of the charge carriers.

In the linear regime, the current is proportional to the gate voltage (Eq. (2.18)).

In the saturation regime, the current is independent of the drain voltage and depends

quadratically on the gate voltage. These assumptions are correct for OFETs with much

longer channel length than its width and for constant mobilities µ. The first condition is

usually fulfilled in OFETs (vide supra), while the mobility is field-dependent, dependent

on morphology and concentration of charge carriers. Consequently, the mobility is not

uniform in the active region. Although realistic results will deviate from these equations,

they give a good approximation and are frequently used to extract parameters such as

the threshold voltage and mobility.

2.2.2 Dual-gate FET

As shown in next sections, the structure of the device investigated in this thesis is

reminiscent of a dual-gate FET. This is obtained when two FETs are combined in one

device [19]. There are three principle buildups as shown in Fig. 2.6.

In such a device, the electric field and, therefore, the current between source and drain

depends on the voltage applied to both gates. If one of the gates operates at a voltage

above the threshold voltage, the occurring transfer characteristic is similar to that of a

normal OFET with one gate. If both operate below the threshold voltage, the occurring

transfer characteristic is a mix of both of these two transfer characteristics related to

the separated gates [20] . This is due to the fact that each gate creates its own channel.
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Figure 2.6: Three different buildups for dual-gate devices.

Two channels are formed, one at the top of the semi-conducting material and one at the

bottom. The current of both of the channels add to the observed transfer characteristic.
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2.3 Sensory mechanism

Sensors are defined as devices made of materials altering their physical properties after

reacting with another substance. This change results in a signal which can be measured

by an instrument or by an observer.

The sensory material considered in this thesis is a ROM-polymer used as isolator in an

OFET, which reacts with ammonia due to its Eosin-Y group. This reaction is described

in Fig. 2.7. The neutral ammonia molecule reacts with the OH-group of the Eosin-Y to

a freely movable positively charged ammonium molecule and a negatively charged O−

at the polymer. Experimental results showed an significant increase of the current by

more than 800% when exposed to ammonia. Three different scenarios are conceivable

Figure 2.7: Reaction of a ROM-Polymer with a Eosin-Y group and ammonia. The am-
monia reacts with the OH-group of the polymer. Thus an ammonium ion
and a O− at the polymer are created.

to explain the observed effect:

Change in the dielectric constant: The dielectric constant of the ROM-polymer is

changed due to the interaction of the Eosin-Y-group with the ammonia. Measurements

of the dielectric constant of this material showed an increase of εROM−polymer from 6.0

to 6.5 [2]. This results in an increase in the capacitance measurements and, therefore,

it leads to an increase of the current.

Formation of a constant space charge density in the ROM-polymer: While the

ammonium ion migrates to the negatively charged gate electrode of the OFET, and there

supposedly becoming neutral again or dissolving, the O− stays bound to the polymer.
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Thus, a homogeneous negative charge density could be created in the polymer. As in

case of a change in the dielectric constant, this results in a higher capacitance and,

consequently, leads to an increase of the current.

Formation of a surface charge layer at the interface between the isolating material

and the OSC: The negatively charged O−-group attracts the partially positive charged

H-atom of the neighboring OH-group. This H-atom can now move to the O−, forming

a new σ-bond and therefore transferring the negative charge to the other oxygen atom.

The principle is shown in Fig. 2.8 [21]. A polyvinyl alcohol (PVA) layer has to be

Figure 2.8: Principle of the migration of a negative charge through an organic material

located between the ROM-Polymer and the OSC due to production issues. As the name

suggests, the concentration of OH-groups in the PVA is much higher than in the ROM-

polymer. Hence, negative charges produced in the ROM-polymer and located near the

interface to the PVA can easily migrate through it, with a motion pattern shown in Fig.

2.8. There, they accumulate at the boundary to the OSC (Fig. 2.9). In this case the

Figure 2.9: Accumulation of negative charges in the dual-OFET used in this thesis. The
positive ammonium molecule becomes neutral at the gate.

24



2 General Aspects

OSC is P3HT, which is a substance that is highly unlikely to support the transport of

the negative charges. Next to a change in the dielectric constant, this accumulation of

the negative charges at the interface to the OSC is supposed to result in a change of the

current.

In order to analyze these scenarios, a simulation tool must be implemented, that is

capable of dealing with the special geometry of the device and that is also capable of

incorporating these three proposed mechanisms. The results of the simulation are then

compared to the experimental ones in order to identify the origin of the NH3 sensitivity.
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The properties and phenomena discussed in the previous section must now be modeled

in a way, which allows us to simplify the carrier transport in the device. As the device

is assumed to be infinitely extended in z-direction, the physically three-dimensional

problem can be reduced to a two-dimensional one from a mathematical point of view.

Figure 3.1: Cut through an OFET. Reduction from a three dimensional device to two
dimensional model. The orange cut is the discretized area, in which the
carrier transport will be simulated

In order to solve the problem numerically, the (x,y)- cross section area of the transistor

must be discretized by a grid. The resulting grid points are of the form

Pi,j = (xi, yj) (3.1)

with i = 0, 1, . . . , N and j = 0, 1, . . . ,M are defined by

x0 = 0, xi+1 = xi + ∆xi, i = 0, 1, . . . ,M − 1

y0 = 0, yj+1 = yj + ∆yj, j = 0, 1, . . . , N − 1 (3.2)
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3.1 Gauß-Seidel method

Considering a square system of linear equations Ax = b with the matrix A ∈ Cn×n, the

vector of unknowns z ∈ Cn and the inhomogeneity b ∈ Cn:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 , x =


x1

x2

...

xn

 , b =


b1

b2

...

bn

 (3.3)

The matrix A is split in two triangular matrices

A = L + U

with the lower triangular matrix L ∈ Cn×n and the strictly upper traingular matrix

U ∈ Cn×n:

L =


a11 0 · · · 0

a21 a22 · · · 0
...

...
. . .

...

an1 an2 · · · ann

 , U =


0 a12 · · · a1n

0 0 · · · a2n

...
...

. . .
...

0 0 · · · 0

 (3.4)

Now the system can be rewritten by

Lx = b−Ux (3.5)

The Gauß-Seidel method is a iterative method, where the vector x on the left hand

side of the equation is obtained by using its previous value x on the right hand side.

Beginning with the starting value x0 the (k + 1)-th iteration of the equation reads:

x(k+1) = L−1(b−Ux(k)) (3.6)

By taking advantage of the triangular form of L, the elements of x(k+1) can be computed

sequentially using forward substitution:

x
(k+1)
i =

1

aii

(
bi −

∑
j>i

aijx
(k)
j −

∑
j<i

aijx
(k+1)
j

)
, i = 1, 2, . . . , n (3.7)

This procedure is continued until it is regarded to be converged when |x(k+1)
i − xki | < η,

with a predefined limit η.
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3.2 Euler method

The Euler method is a method to discretize time dependent problems,

dy

dt
= f(t, y(t)), y(t0) = y0 (3.8)

by using the first two terms of the Taylor expansion of y, which represent a linear

approximation around the point (t, y(t)):

y(t+ h) = y(t) + hf(t, y(t)) +O(t2) (3.9)

The error of this approximation is of O(t2). Assuming that discrete time steps are used,

beginning with t0 the n-th time step can be estimated by the following equation:

y(tn+1) = yn + hf(tn, yn) (3.10)

The problem with this explicit Euler method is that it is unstable for large time steps.

A different method is the implicit or backward Euler method. Instead of the Taylor

expansion used in Eq. (3.9) the problem is approximated by:

y(t) = y(t− h) + hf(t, y(t)) +O(t2) (3.11)

Thus getting

y(tn+1) = yn + hf(tn+1, yn+1) (3.12)

The implicit version is more difficult to solve, since a system of linear equations needs

to be solved at each time step, but it allows the use of much larger time steps.

3.3 Poisson solver

The first equation to be discretized is the Poisson equation mentioned in section 2.1.2.

The form of the equation in (2.7) is used to determine the electrostatic potential in the

case of a position-dependent permittivity:

∇ · (ε0εr(x, y)∇ψ(x, y)) = −ρ(x, y) (x, y) ∈ Ω (3.13)
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In two dimensions, this equation can be written as

∇ · f(x, y) = ∇ · (fx(x, y), fy(x, y)) =
∂fx(x, y)

∂x
+
∂fy(x, y)

∂y
= −ρ(x, y) (3.14)

where fx and fy are the two components of the the vector field defined by

f(x, y) = ε0εr(x, y)∇ψ(x, y) = ε0εr(x, y)

(
∂ψ(x, y)

∂x
,
∂ψ(x, y)

∂y

)
(3.15)

The Taylor expansion of fx(x, y) truncated after the second term at xi +
1
2
∆xi = xi+ 1

2

and xi − 1
2
∆xi−1 = xi− 1

2
reads:

fx(xi+ 1
2
, yj) = fx(xi, yj) +

1

2
∆xi

∂fx(x, y)

∂x
|xi,yj +O(x2) (3.16)

fx(xi− 1
2
, yj) = fx(xi, yj)−

1

2
∆xi−1

∂fx(x, y)

∂x
|xi,yj +O(x2) (3.17)

Neglecting the error of O(x2) and subtracting Eq. (3.17) from Eq. (3.16) yields

fx(xi+ 1
2
, yj)− fx(xi− 1

2
, yj) =

(∆xi + ∆xi−1)

2

∂fx(x, y)

∂x
|xi,yj (3.18)

which results in
fx(xi+ 1

2
, yj)− fx(xi− 1

2
, yj)

1
2
(∆xi + ∆xi−1)

=
∂fx(x, y)

∂x
|xi,yj (3.19)

A similiar procedure for fy(x, y) leads to:

fy(xi, yj+ 1
2
)− fy(xi, yj− 1

2
)

1
2
(∆yj + ∆yj−1)

=
∂fy(x, y)

∂y
|xi,yj (3.20)

Inserting Eq. (3.19) and Eq. (3.20) into Eq. (3.14) results in the finite differences

approximation for the divergence of a vector field f(x, y) with an error of O(x2) +O(y2):

∇ · f(x, y)|xi,yj =
fx(xi+ 1

2
, yj)− fx(xi− 1

2
, yj)

1
2
(∆xi + ∆xi−1)

+
fy(xi, yj+ 1

2
)− fy(xi, yj− 1

2
)

1
2
(∆yj + ∆yj−1)

(3.21)
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Reinserting Eq. (3.15) into Eq. (3.21) yields

∇ · (ε0εr(x, y)∇ψ(x, y))|(xi,yj) = ε0

[
εr(x, y)∂ψ(x,y)

∂x

]
x
i+1

2
,yj
−
[
εr(x, y)∂ψ(x,y)

∂x

]
x
i− 1

2
,yj

1
2
(∆xi + ∆xi−1)

+ ε0

[
εr(x, y)∂ψ(x,y)

∂y

]
xi,yj+1

2

−
[
εr(x, y)∂ψ(x,y)

∂y

]
xi,yj− 1

2

1
2
(∆yj + ∆yj−1)

(3.22)

Using the notation

[f(x, y)g(x, y)]i,j = fi,jgi,j (3.23)

as well as the approximations[
∂ψ(x, y)

∂x

]
x
i− 1

2
,yj

=
ψi,j − ψi−1,j

∆xi−1

[
∂ψ(x, y)

∂x

]
x
i+1

2
,yj

=
ψi+1,j − ψi,j

∆xi

[
∂ψ(x, y)

∂y

]
xi,yj− 1

2

=
ψi,j − ψi,j−1

∆yj−1

[
∂ψ(x, y)

∂y

]
xi,yj+1

2

=
ψi,j+1 − ψi,j

∆yj

leads to

∇ · (ε0εr(x, y)∇ψ(x, y))|(xi,yj) ≈ ε0
εr,i+ 1

2
,j

(
ψi+1,j−ψi,j

∆xi

)
− εr,i− 1

2
,j

(
ψi,j−ψi−1,j

∆xi−1

)
1
2
(∆xi + ∆xi−1)

+ ε0
εr,i,j+ 1

2

(
ψi,j+1−ψi,j

∆yj

)
− εr,i,j− 1

2

(
ψi,j−ψi,j−1

∆yj−1

)
1
2
(∆yj + ∆yj−1)

(3.24)

Here the relative permittivity ε is assumed to be linear between grid points and cal-

culated by

εr,i± 1
2
,j =

εr,i±1,j + εr,i,j
2

εr,i,j± 1
2

=
εr,i,j±1 + εr,i,j

2
(3.25)
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Inserting Eq.(3.24) into Eq. (3.13) results finally in the discretized poisson equation:

−ρ(xi, yi)

ε0
=

εr,i+ 1
2
,j

(
ψi+1,j−ψi,j

∆xi

)
− εr,i− 1

2
,j

(
ψi,j−ψi−1,j

∆xi−1

)
1
2
(∆xi + ∆xi−1)

+
εr,i,j+ 1

2

(
ψi,j+1−ψi,j

∆yj

)
− εr,i,j− 1

2

(
ψi,j−ψi,j−1

∆yj−1

)
1
2
(∆yj + ∆yj−1)

(3.26)

Based on this equation it is possible to express ψi,j by the potentials in the four neigh-

boring grid points:

ψi,j(ψi+1,j, ψi,j+1, ψi−1,j, ψi,j−1) =
1

α
[β + γ(ψi+1,j, ψi,j+1) + δ(ψi−1,j, ψi,j−1)] (3.27)

with

α =
εr,i+ 1

2
,j

∆xi
+
εr,i− 1

2
,j

∆xi−1

+
εr,i,j+ 1

2

∆yj
+
εr,i,j− 1

2

∆yj−1

(3.28)

β =
ρi,j
ε0

(∆xi + ∆xi−1)

2

(∆yj + ∆yj−1)

2
(3.29)

γ =
∆yj + ∆yj−1

2

(
εr,i+1,j

ψi+1,j

∆xi

)
+

∆xi + ∆xi−1

2

(
εr,i,j+1

ψi,j+1

∆yj

)
(3.30)

δ =
∆xi + ∆xi−1

2

(
εr,i,j−1

ψi,j−1

∆yj−1

)
+

∆yj + ∆yj−1

2

(
εr,i−1,j

ψi−1,j

∆xi−1

)
(3.31)

for i = 0, 1, . . . , N and j = 0, 1, . . . ,M .

This system of linear equations must be solved for all Pi,j ∈ Ω. As it can be seen

easily this is impossible, since there are more ψi,j than equations. To solve this problem

boundary conditions must be implemented to reduce the number of unknown potentials.

Then this system of linear equations can be solved iteratively in the domain Ω. For this

purpose, an algorithm is proposed which is similar to the Gauß-Seidel method presented

in section 3.1.

Beginning with the potential ψ0
i,j the (k + 1)-th step can be expressed by

ψk+1
i,j (ψki+1,j, ψ

k
i,j+1, ψ

k+1
i−1,j, ψ

k+1
i,j−1) =

1

α

(
β + γ(ψki+1,j, ψ

k
i,j+1) + δ(ψk+1

i−1,j, ψ
k+1
i,j−1)

)
(3.32)
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with the iteration index k and

α =
εr,i+ 1

2
,j

∆xi
+
εr,i− 1

2
,j

∆xi−1

+
εr,i,j+ 1

2

∆yj
+
εr,i,j− 1

2

∆yj−1

(3.33)

β =
ρi,j
ε0

(∆xi + ∆xi−1)

2

(∆yj + ∆yj−1)

2
(3.34)

γ =
∆yj + ∆yj−1

2

(
εr,i+1,j

ψi+1,j

∆xi

)
+

∆xi + ∆xi−1

2

(
εr,i,j+1

ψi,j+1

∆yj

)
(3.35)

δ =
∆xi + ∆xi−1

2

(
εr,i,j−1

ψi,j−1

∆yj−1

)
+

∆yj + ∆yj−1

2

(
εr,i−1,j

ψi−1,j

∆xi−1

)
(3.36)

The boundary conditions are chosen to satisfy the Neumann and Direchtlet conditions

presented in Eq. (2.9) and Eq. (2.8). Fig. 3.2 shows an overview of the grid for a dual-

gate OFET. For the potential at the boundaries to a metall (blue dots) the Direchtlet

condition is used, while at the boundaries to vacuum (red dots) the potential must satisfy

the Neumann condition (Eq. (2.9)).

Thus, the Direchtlet conditions (Eq. (2.8)) are given by

ψ̄i,0 = VGATE for 0 < i < M

ψ̄i,N = VSUBSTRATE for 0 < i < M

ψ̄i,j = VSOURCE for i ≤ iSOURCE, jOSC < j < jISOLATOR2

ψ̄i,j = VDRAIN for i ≥ iDRAIN , jOSC < j < jISOLATOR2

(3.37)

where VGATE/SUBSTRATE/SOURCE/DRAIN are the fixed potentials at the gate/substrate/

source/drain. The indexes iSOURCE and iDRAIN are the grid points located at the bound-

aries of the source/drain contacts and jOSC and jISOLATOR2 the indexes of the grid points

located in the OSC/isolator next to source and drain.

The Neumann condition Eq. (2.9), in the case of the dual-gate OFET sketched in
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Figure 3.2: Boundary conditions for simulating a dual-gate OFET. The potential at
the red dots needs to satisfy the Neumann condition, at the blue dots the
Direchtlet condition and at the black dots the potential is calculated and
initially chosen arbitrarily.

Fig. 3.2, reads [
∂ψ(x, y)

∂x

]
x=0

= 0 (3.38)[
∂ψ(x, y)

∂x

]
x=xM

= 0 (3.39)

Using the finite difference approximation this results in[
ψ2,j − ψ0,j

(∆x0 + ∆x1)

]
= 0 for j = 1, . . . , jOSC , jISOLATOR2, . . . , N − 1

[
ψM,j − ψM−2,j

(∆xM−1 + ∆xM−2)

]
= 0 for j = 1, . . . , jOSC , jISOLATOR2, . . . , N − 1

(3.40)
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with the indexes jOSC and jISOLATOR2 of the grid points located at the interface of the

OSC/isolator to source and drain. As this equation must be maintained while doing the

iteration, the relation between ψ2,j/ψM,j and ψ0,j/ψM−2,j is fulfilled by setting at each

iteration step

ψk+1
0,j = ψk2,j for j = 1, . . . , jOSC , jISOLATOR2, . . . , N − 1

ψkM,j = ψk+1
M−2,j for j = 1, . . . , jOSC , jISOLATOR2, . . . , N − 1

(3.41)

with the iteration index k.

Figure 3.3: Beginning of the iterative calculation of the potential. Red dots indicate
Neumann conditions, blue dots Direchtlet conditions. Violet x mark the
grid points where the potential is calculated while the violet dot indicates a
potential that has been calculated. In (A) the potential in the grid point P1,1

only depends on the potential given in P1,0,P1,2 and P2,1, because ψ0,1 = ψ2,1.
In (B) the potential in the next grid point P2,1 is calculated with the use of
P1,1

As can be seen in Fig. 3.3 the iteration is started at P1,1 and therefore the first

potential calculated is ψ1
1,1(ψ0

2,1, ψ
0
1,2, ψ

1
0,1, ψ

1
1,0). Using Eq. (3.32), Eq. (3.37) and Eq.

(3.41) yields

ψ1
1,1(ψ0

2,1, ψ
0
1,2, ψ

0
2,1, VGATE) (3.42)

with ψ0
1,2 and ψ0

2,1 beeing arbitrarily chosen initial values and the constant VGATE corre-

sponding to the gate voltage applied. Now ψ1
1,1 is used to calculate the potential ψ1

2,1 at

the next grid point:

ψ1
2,1(ψ0

3,1, ψ
0
2,2, ψ

1
1,1, VGATE) (3.43)
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The solution is regarded convergent when the maximum error from one iteration step

to the next is less then a predefined value ηP :

∆k
max = |ψk+1

i,j − ψki,j|max < ηP (3.44)

3.4 Discretization of the current density and the

continuity equation - the Scharfetter-Gummel

algorithm

The current density equation (2.10) mentioned in section 2.1.3 can directly be inserted

in the continuity equation (Eq. (2.13)). The resulting system of equations can be

discretized by a simple finite differences method, but this apporach is not recommended

as it is very unstable. Therefore, a different approach has to be taken, as suggested by

Scharfetter and Gummel [16].

Here, the current density equations are interpreted as a differential equations for

p(x, y) and n(x, y), respectively, while assuming a constant current density Jp/n between

two grid points. For one dimension this equation reads for the hole transport

Jp,x = qp(x)µpEx −Dpq
∂p(x)

∂x
= const, ∀x ∈ [xi, xi+1] (3.45)

The homogenous part is given by

0 = qp(x)µpEx −Dpq
∂p(x)

∂x
, ∀x ∈ [xi, xi+1] (3.46)

By using

a = qµpEx, b = −qDp, (3.47)

this equation can be written as

0 = ap(x) + b
∂p(x)

∂x
, ∀x ∈ [xi, xi+1] (3.48)

Solved by an exponential ansatz p = Ceλx this equation reads:

a exp(λx) + λb exp(λx) = 0, ∀x ∈ [xi, xi+1] (3.49)
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which leads to

phom(x) = C exp
(
−a
b
x
)
, ∀x ∈ [xi, xi+1] (3.50)

Having found the homogeneous solution, the general solution can be obtained with the

ansatz

p(x) = phom(x) + k, ∀x ∈ [xi, xi+1] (3.51)

Inserting Eq. (3.51) into Eq. (3.45) leads to

a(phom(x) + k) + b
∂phom(x)

∂x
= Jp,x, ∀x ∈ [xi, xi+1] (3.52)

and by using Eq. (3.50)

ak = Jp,x → k =
Jp,x
a

(3.53)

we obtaine:

p(x) = C exp
(
−a
b
x
)

+
Jp,x
a
, ∀x ∈ [xi, xi+1] (3.54)

Reinserting Eq. (3.47) into Eq. (3.54) yields

p(x) = C exp

(
µpEx
Dp

x

)
+

Jp,x
qµpEx

, ∀x ∈ [xi, xi+1] (3.55)

Although Eq. (3.45) is a differential equation of first order, two boundary conditions are

assumed, p(xi) = p1 and p(xi + ∆x)=p2, which results in:

p1 = C exp
(
−a
b
xi

)
+
Jp,x
a

(3.56)

p2 =

(
p1 −

Jp,x
a

)
exp

(
−a
b

∆x
)

+
Jp,x
a

(3.57)

This can be done because the current density Jp,x is considered as an independent vari-

able and an expression for Jp,x can be found:

Jp,x = a
p2 − p1 exp

(
−a
b
∆x
)

1− exp
(
−a
b
∆x
) (3.58)

This expression can be rewritten in the form

Jp,x =
b

∆x

[
p2

∆xa
b

1− exp
(
−a
b
∆x
) − p1

−∆xa
b

1− exp
(
+a
b
∆x
)] (3.59)
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Inserting the Bernoulli function, defined by

B(x) =
−x

1− exp(x)
(3.60)

leads to

Jp,x =
b

∆x

[
p2B

(
−a
b

∆x
)
− p1B

(
+
a

b
∆x
)]

(3.61)

Using the Einstein relation (Eq. (2.12) and taking the mean value of the diffusion

constant between the neighboring grid points Dp,i+ 1
2
, reinserting Eq. (3.47), replacing

p1 and p2 by pi,j and pi+1,j, Jp,x by Jp,x,i+ 1
2
,j and ∆x by ∆xi leads to

Jp,x,i+ 1
2
,j = −

qDp,i+ 1
2
,j

∆xi

[
pi+1,jB(

qEx
kBT

∆xi)− pi,jB(− qEx
kBT

∆xi)

]
(3.62)

with

Dp,i+ 1
2
,j =

Dp,i+1,j +Dp,i,j

2
(3.63)

Using Ex = −ψi+1,j−ψi,j

∆xi
, we obtain

Jp,x,i+ 1
2
,j = −

qDp,i+ 1
2
,j

∆xi

[
pi+1,jB

(
−q(ψi+1,j − ψi,j)

kBT

)
− pi,jB

(
+
q(ψi+1,j − ψi,j)

kBT

)]
(3.64)

The same procedure can be performed in y-direction and for negative charge carriers.

The discretized drift-diffusion current for negative and positive charge carriers in x (index
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i) and y (index j) direction at time t are then given by

J t
p,x,i+ 1

2
,j

= −
qDp,i+ 1

2
,j

∆xi

[
pti+1,jB(−

q(ψti+1,j − ψti,j)
kBT

)− pti,jB(
q(ψti+1,j − ψti,j)

kBT
)

]

J t
p,y,i,j+ 1

2
= −

qDp,i,j+ 1
2

∆yj

[
pti,j+1B(−

q(ψti,j+1 − ψti,j)
kBT

)− pti,jB(
q(ψti,j+1 − ψti,j)

kBT
)

]

J t
n,x,i+ 1

2
,j

=
qDn,i+ 1

2
,j

∆xi

[
nti+1,jB(

q(ψti+1,j − ψti,j)
kBT

)− nti,jB(−
q(ψti+1,j − ψti,j)

kBT
)

]

J t
n,y,i,j+ 1

2
=

qDn,i,j+ 1
2

∆yj

[
nti,j+1B(

q(ψti,j+1 − ψti,j)
kBT

)− nti,jB(−
q(ψti,j+1 − ψti,j)

kBT
)

]

(3.65)

The continuity equation Eq (2.13) for the hole current density Jp is given by

1

q
∇Jp +

∂p

∂t
= G (3.66)

By using the finite differences method for the approximation of the divergence of a vector

field (Eq. 3.21) and the implicit Euler backward method for the time dependency (Eq

(3.12)) we obtain

1

q

J t+∆t
p,x,i+ 1

2
,j
− J t+∆t

p,x,i− 1
2
,j

1
2
(∆xi + ∆xi−1)

+
1

q

J t+∆t
p,y,i,j+ 1

2

− J t+∆t
p,y,i,j− 1

2

1
2
(∆yj + ∆yj−1)

+
pt+∆t
i,j − pti,j

∆t
= Gt+∆t

i,j (3.67)

As mentioned in section 3.2 the great advantage of using an implicit method is the

stability and the possibility of performing larger time steps and, therefore, a faster

convergence to the steady state.
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Combining Eq. (3.65) and Eq. (3.67) leads to

1
1
2
q(∆xi + ∆xi−1)

×

{
− q

Dp,i+ 1
2
,j

∆xi

[
pt+∆t
i+1,jB(−

q(ψt+∆t
i+1,j − ψt+∆t

i,j )

kBT
)− pt+∆t

i,j B(
q(ψt+∆t

i+1,j − ψt+∆t
i,j )

kBT
)

]

+ q
Dp,i− 1

2
,j

∆xi−1

[
pt+∆t
i,j B(−

q(ψt+∆t
i,j − ψt+∆t

i−1,j)

kBT
)− pt+∆t

i−1,jB(
q(ψt+∆t

i,j − ψt+∆t
i−1,j)

kBT
)

]}

+
1

1
2
q(∆yj + ∆yj−1))

×

{
− q

Dp,i,j+ 1
2

∆yj

[
pt+∆t
i,j+1B(−

q(ψt+∆t
i,j+1 − ψt+∆t

i,j )

kBT
)− pt+∆t

i,j B(
q(ψt+∆t

i,j+1 − ψt+∆t
i,j )

kBT
)

]

+ q
Dp,i,j− 1

2

∆yj−1

[
pt+∆t
i,j B(−

q(ψt+∆t
i,j − ψt+∆t

i,j−1)

kBT
)− pt+∆t

i,j−1B(
q(ψt+∆t

i,j − ψt+∆t
i,j−1)

kBT
)

]}

+
pt+∆t
i,j − pti,j

∆t
= Gt+∆t

i,j (3.68)

Expressing pt+∆t
i,j as a function of the hole density at its four neighboring grid points

and pti,j leads to

pt+∆t
i,j (pti,j, p

t+∆t
i,j−1, p

t+∆t
i−1,j, p

t+∆t
i+1,j, p

t+∆t
i,j+1) =

1

α

[
β(pti,j) + γ(pt+∆t

i,j−1, p
t+∆t
i−1,j) + δ(pt+∆t

i+1,j, p
t+∆t
i,j+1)

]
(3.69)
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with

α = Dn,i,j− 1
2
B

(
ψt+∆t
p,i,j−1 − ψt+∆t

p,i,j

VT

)
∆xi−1 + ∆xi

2∆yj−1

+ Dp,i− 1
2
,jB

(
ψt+∆t
p,i−1,j − ψt+∆t

p,i,j

VT

)
∆yj−1 + ∆yj

2∆xi−1

+ Dp,i+ 1
2
,jB

(
ψt+∆t
p,i+1,j − ψt+∆t

p,i,j

VT

)
∆yj−1 + ∆yj

2∆xi−1

+ Dp,i,j+ 1
2
B

(
ψt+∆t
p,i,j+1 − ψt+∆t

p,i,j

VT

)
∆xi−1 + ∆xi

2∆yj−1

+
1

∆t

∆xi−1 + ∆xi
2

∆yj−1 + ∆yj
2

β =

(
Gt+∆t
i,j +

pti,j
∆t

)
∆xi−1 + ∆xi

2

∆yj−1 + ∆yj
2

γ = pt+∆t
i,j−1Dp,i,j− 1

2
B

(
ψt+∆t
p,i,j − ψt+∆t

p,i,j−1

VT

)
∆xi−1 + ∆xi

2∆yj−1

+ pt+∆t
i−1,jDp,i− 1

2
,jB

(
ψt+∆t
p,i,j − ψt+∆t

p,i−1,j

VT

)
∆yj−1 + ∆yj

2∆xi−1

δ = pt+∆t
i+1,jDp,i+ 1

2
,jB

(
ψt+∆t
p,i+1,j − ψt+∆t

p,i,j

VT

)
∆yj−1 + ∆yj

2∆xi−1

+ pt+∆t
i,j+1Dp,i,j+ 1

2
B

(
ψt+∆t
p,i,j+1 − ψt+∆t

p,i,j

VT

)
∆xi−1 + ∆xi

2∆yj−1

(3.70)

For negative charge carriers a similar expression can be found, but as mentioned in

section 2.2 only positive charge transport is assumed and negative charge transport

neglected.

This coupled system of N × M linear equations must now be solved. Similar to

the Gauß-Seidel method (Eq. (3.1)) and the proposed method for solving the Poisson

equation (Eq. (3.32)-Eq. (3.36)) this is done iteratively:

pt+∆t
i,j (pti,j, p

t+∆t
i,j−1, p

t+∆t
i−1,j, p

t+∆t
i+1,j, p

t+∆t
i,j+1)→ pt+∆t,k+1

i,j (pt,ki,j , p
t+∆t,k+1
i,j−1 , pt+∆t,k+1

i−1,j , pt+∆t,k
i+1,j , pt+∆t,k

i,j+1 )

(3.71)

with the iteration index k until a certain exit condition with a predifined limit ηD is
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met:

|pt+∆t,k+1
i,j − pt+∆t,k

i,j | ≤ ηD (3.72)

Because charge carrier transport is only possible in the OSC, this system of equations

just needs to be solved for the area SOSC with

SOSC = {Pi,j|0 < i < M for jISOLATOR1 < j ≤ jOSC ,

iSOURCE < i < iDRAIN for jOSC < j < jISOLATOR2} (3.73)

SOSC and its boundary conditions are shown in Fig. 3.4

Figure 3.4: Boundary conditions for simulating a dual-gate OFET. At the red dots the
Neumann condition is applied while at the blue dots the Direchtlet condition
is used.

The Direchtlet condition is realized by

pt,ki,j = pconstant

for i ≤ iSOURCE, jOSC < j < jISOLATOR2

for i ≥ iDRAIN , jOSC < j < jISOLATOR2

(3.74)

for t ≥ 0 and k ≥ 0, where pconstant is calculated by using Eq. (2.17).
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The Neumann condition is satisfied by

pt,k+1
0,j = pt,k2,j for jISOLATOR1 < j ≤ jOSC

pt,k+1
N,j = pt,k+1

N−2,j for jISOLATOR1 < j ≤ jOSC

pt,k+1
i,jISOLATOR1

= pt,ki,jISOLATOR1+2 for 0 < i < M

pt,k+1
i,jISOLATOR2

= pt,k+1
i,jISOLATOR2−2 for iSOURCE < i < iDRAIN (3.75)

for all t ≥ 0 and k ≥ 0.

The iteration process itself is similar to that of the Poisson equation described by Eq.

(3.42) - Eq. (3.43), but instead of beginning in P1,1 it is now started in P1,jISOLATOR+1

(see also Fig. 3.3).

3.5 The Algorithm of the simulation

The main goal of this thesis is to calculate the current dependent on the applied poten-

tials at source, drain and gate. To achieve this, the Poisson equation and the continuity

equation are solved self-consistently. At a given time t this is done by solving first the

Poisson equation, then calculating the mobility depending on the hole density. The

potential and the hole density are used in the drift diffusion model for solving the con-

tinuity equation. The result are new hole densities, which are used to calculate the new

potential at a time t + ∆t. This is repeated until a steady state is reached. In Fig 3.5

an overview of the used algorithm is presented.

The exit condition for the steady state is given by

δ1 >
Imax − Imin

Imin

δ2 > ∆p∆t,max (3.76)

where δ1 and δ2 are predefined values and ∆p∆t,max the maximum change of the charge

carrier density during one time interval ∆t. Further, Imax/min are the maximum/minimum

of the current in every cross-section in y-direction between source and drain.
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Figure 3.5: Flowchart of the algorithm
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This chapter is divided into two parts: The first section summarizes the experimental

results with particular focus on the change of the current in the presence of ammonia.

The second part is dedicated to the simulation results. Before actually comparing the

results of the simulation with the experimental data, the influence of some important

parameters is studied, i.e. the height of the injection barrier, the mobility, different

dielectric constants, and the influence of the substrate potential. Then, by using a

certain justified set of parameters, the I-V curves of the device without the presence of

ammonia are computed. Based on these parameters three different scenarios are tested:

a change in the dielectric constant, presence of immobile charges, and accumulation of

mobile charges at the PVA-P3HT interface. These scenarios are then compared to the

experimental data.

4.1 Experimental results

The device examined in this thesis is a dual-gate OFET (section 2.2.2) with a ROM-

polymer (section 2.3) as one of the two isolating materials. First built by Andreas Klug

et al. [2], the idea of this OFET was to build a ammonia sensitive device. The complete

design is shown in Fig. 4.1.

To monitor the impact of the NH3, the potential at the source (VS) and the drain

contact (VD) were set to fixed values, while the potential at the gate (VG) was varied.

While VS was set to 0 for all measurements, transfer characteristics were measured for

VD = −25V, VD = −45V and VD = −85V before and after exposition to ammonia.

These are shown in Fig. 4.2 as well as a common diagram of all characteristics (Fig.

4.3) for a better comparison.

As easily can be seen, there is an increase by an order of magnitude in the current due

to the presence of ammonia, e.g, for VG =-85V the current increases by more than 800%.

Also a change in the threshold voltage Vth can be observed. Especially the logarithmic

plot of the characteristics in Fig. 4.3 shows that no threshold voltage can be seen in the
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Figure 4.1: A sketch of the complete design of the device examined.

Figure 4.2: Transfer characteristics (A) with and (B) without the presence of ammonia
at three different drain potentials VD (VD = −25V (cross), −45V (circle),
−85V (star)).

characteristics with the presence of ammonia, while Vth = 0V without the presence of

ammonia.

Plausible explanations of the effect include, but are not limited to, the following three
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Figure 4.3: Comparison of the transfer characteristics with (red) and without (green) the
presence of ammonia at the same three different drain potentials VD = −25V
(cross), −45V (circle), −85V (star) in a (A) linear and (B) logarithmic plot

assumptions:

• Change in the dielectric constant (εr): Measurements of the dielectric constant

without and with the presence of ammonia showed an increase from εr = 6.0 to

εr = 6.5 [2]. A change in the dielectric constant results in an increase of the

capacitance of the the device. This results in a higher current as can be seen from

Eq. (2.18) and Eq. (2.19) and has been exploited in electrolyte-gated OFETs

demonstrated, e.g., by Panzer et al. [22].

• Immobile charges: As mentioned in section 2.3, the ammonia reacts with the Eosin-

Y groups of the ROM-polymer. This results in a positively charged ammonium

molecule and a negatively charged O−-group. While the ammonium ions migrate

to the gate, where they are supposed to become neutral or dissolve, the negative

charges remain fixed in space and produce a space charge layer. This would also

change the capacitance of the polymer and, thus, the current. Additionally, a

threshold voltage shift can be expected [18].

• Mobile charges: Also mentioned in section 2.3 is the possibility of negative mobile

charges. These accumulate at the PVA-P3HT interface and generate there a sur-

face charge layer. This surface charge layer influences the capacitance, the current,
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and the threshold voltage [18].

As these potential explanations can hardly be discriminated by experimental mea-

surements, they are incorporated in the simulation model described in chapter 3. The

simulation validates one of the scenarios given above if (a) the associated parameters

chosen reproduce the transfer characteristic of the pristine device, (b) the increase in

the current is observed, and (c) the threshold voltage is located beyond the interval

−85V< VG < 15V upon exposure to ammonia.

Beside the three contact potentials VS, VD, and VG, the potential at the substrate

(VSUBS) is an important factor for the characteristics of the device. Albeit its im-

portance, no data regarding this parameter has been experimentally acquired so far.

Therefore, it remains unclear, whether the substrate was set to ground or was left float-

ing; it could have adopted any arbitrary value [2]. This problem is discussed in more

detail in section 4.2.1.
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4.2 Simulation studies

Although the goal of any simulation is to approximate the real circumstances as closely

as possible, the computational effort necessitates further simplification in addition to

the ones mentioned in chapter 3. As seen in Fig. 4.1, the length of the contacts is 20

times larger than the length of the channel. Assuming that the main activity of the

device takes place between source and drain, it is possible to relocate the boundaries

and reduce the length of the contacts to 5µm. This reduction is shown in Fig. 4.4. With

the smaller device, the computational effort is reduced and the algorithm discussed in

chapter 3 is used for simulating the device.

Figure 4.4: Reduction of the length of the device by relocating the boundaries to reduce
computational effort.

In the first part of this section, the influence of the most important transport param-

eters is investigated to gain insight into the dependencies of the transfer characteristic

for this device layout. These parameters are the dielectric constant εr, the mobility µ,

the height of the injection barrier ∆h, and the substrate potential VSUBS.

In the second part, a fixed set of parameters that is justified for the materials used,

is employed to simulate the characteristics of the device without ammonia. Then, the

response to ammonia exposure is simulated by three different setups: First solely by a

change in the dielectric constant, second by a change in the dielectric constant and an
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additional constant charge density in the ROM-polymer, and third by a change in the

dielectric constant and a surface charge layer located at the interface between P3HT and

PVA.

4.2.1 Parameter studies

In this subsection the influence of some of the most important parameters of the device

(see section 4.1) on the transfer characteristic is investigated. To accomplish this a

set of parameter is used, whose values are typical for the considered materials. These

values are given in Tab. 4.1. The potentials at the substrate and the source are set

Table 4.1: Set of parameters used for parameter studies

µ0 0.4× 10−6 m2

V s

εSiOx 4.5

εOSC 3.2

εPV A 8.4

εROM−polymer 6

T 298.15 K

NHOMO 2× 1027 1
m3

∆h 0.1 eV

to VSUBS = VS = 0V , the potential at the drain VD is set to −25V, −45V and −85V,

respectively. The results can be seen in Fig. 4.5. It is clear from the comparison to the

experimental curves that the parameters used overestimate the slope of the I-V curves.

Additionally, the offset between the three simulated curves related to different VD does

not nearly reproduce the experiment as the three simulated characteristics are hardly

different. In a three-dimensional plot of the potential distribution it can be seen, why

the influence of VD is much less pronounced than expected for a prototypical single-gate

OFET. In Fig. 4.6, the initial (C) and the steady state (D) potential distribution of the

device for VG = −85V is shown in comparison to the corresponding quantities (A,B) for
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Figure 4.5: Simulation (black) of the device with VSUBS = 0V at VD = −25V (cross),
VD = −45V (circles) and VD = −85V (stars) compared to the experimental
results (green).

a single-gate device of the same layout apart from replacing the SiOx-Si substrate with

vacuum, i.e., by setting εSiOx = εSUBS = 1.

A closer inspection of the initial potential evolution reveals pronounced differences in

the OSC region (A,C). In the case of the single-gate OFET (A), the potential adopts

the gate value except in the regions covered by the source and drain contacts [18]. In

(C), on the other hand, the potential in the OSC is mainly influenced by the substrate,

rather than by the gate. This is because the distance between OSC and gate is seven

times larger (1400nm) than the distance between OSC and substrate (200nm). Also, in

(C), an electric field can be observed in the OSC in y-direction. The source-drain bias

has a markedly small influence on the potential distribution in the OSC in both devices

(A,C) due to a contact separation of 25µm.

From the comparison of the steady-state potentials (B,D) it becomes evident that

the influence of the source-drain bias on the channel is significantly reduced due to the

presence of a second gate (D). In the single-gate OFET (B), the corresponding electric
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Figure 4.6: Potential distribution for (A) the initial and (B) the steady state of a single-
gate OFET (see text) and (C) the initial and (D) the steady state for the
dual-gate device for VSUBS = 0V , VD = −85V , VG = −85V . Arrow I depicts
the high electric field next to the drain contact, arrow II the region of a low
electric field in most of the channel.

field along the channel increases continuously, while in (D) the electric field in most of
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the channel is more or less constant (see arrow II) due to the substrate located very near

to the channel (200 nm). Solely near the drain electrode (see arrow I) the electric field

increases drastically. Therefore, the offset of the three transfer curves with respect to

VD is much smaller than in a single-gate OFET.

In the following, selected parameters will be varied in order to study their impact

on the shape of the I-V curves and to judge whether a suggested sensing scenario is

reasonable.

Change in the dielectric constant εROM−polymer: As said before in subsection 4.1, the

dielectric constant of the ROM-polymer changes in the presence of ammonia. Measure-

ments showed an increase of 0.5, shifting the εROM−polymer from 6.0 to 6.5 [2]. To study

the influence of this change on the transfer characteristic, a simulation is done by using

the set of parameters presented in Tab. 4.1 with an altered dielectric constant for the

ROM-polymer εROM−polymer = 6.5. For a better comparison the results are plotted in

a common plot with the former results (Fig. 4.7). Although a slight increase of the

Figure 4.7: Simulation of the increase of the dielectric constant εr from 6.0 (black) to
6.5 (blue). This is done for three different drain potentials VD = −25V
(cross), VD = −45V (circles) and VD = −85V (stars) and compared to the
experimental results without the presence of ammonia (green).
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current is observed, the influence of this change is lower than 10%. Additionally, no

change in the threshold voltage is observed. Thus, such a shift in the dielectric constant

cannot solely explain the effects seen in the measurements (see subsection 4.1).

Change in the mobility µ0: One of the most important parameters describing the

charge carrier transport is the mobility. It is discussed in subsection 2.1.1 and incor-

porated in the simulation model by Eq. (2.1). With testing the influence of µ0 on the

transfer characteristic, it can be determined, whether the exposure with NH3 is pro-

foundly altering the carrier mobility. The same set of parameters is used as presented

in Tab. 4.1 with exception of the mobility. In Fig. 4.8 the results of the simulation

with µ0 = 0.4× 10−5m2

V s
(blue) and µ0 = 0.4× 10−6m2

V s
(green) are shown, as well as the

experimental results with and without ammonia.

Figure 4.8: Simulation of the increase of the mobility µ0 from µ0 = 0.4× 10−6m2

V s
(black)

to µ0 = 0.4× 10−5m2

V s
(blue). This is done for three different drain potentials

VD = −25V (cross), VD = −45V (circles) and VD = −85V (stars) and
compared to the experimental results without (green) and with (red) the
presence of ammonia.

By increasing the mobility by a factor 10, the current increases by more than 1000%

at VG = −85V. This is not surprising, as the current density is directly proportional
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to the mobility according to the current density equations (Eq. 2.10) with the Einstein

relation (Eq. 2.12). Additionally, it can be seen that, although the offset between

the three simulated curves increases with higher mobility, it is still smaller than the

experimentally measured ones. Note, however, that the threshold voltage does not

change and remains at Vth = 0V. Thus, a µ enhancement due to NH3 exposure can be

ruled out as primary origin of the current increase.

Change in the injection barrier (∆h): Another important parameter is the height

of the injection barrier, intensively discussed in subsection 2.17. This barrier could be

possibly altered in the course of operation in the presence of ammonia. Again using the

set of parameters introduced at the beginning of this subsection in Tab. 4.1, the injection

barrier is chosen to be ∆h = 0.1eV and ∆h = 1eV. The results of the simulations

is shown in Fig. 4.9, where they are plotted together with the experimental results

without ammonia. Although the injection barrier is increased by a factor 10, the transfer

Figure 4.9: Simulation of the change in the injection barrier ∆h from ∆h = 0.1eV (black)
to ∆h = 1eV (blue). This is done for three different drain potentials VD =
−25V (cross), VD = −45V (circles) and VD = −85V (stars) and compared
to the experimental results without the presence of ammonia (green).
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characteristics hardly change. Modifications of the injection barrier seem to have little

influence in the characteristics, and, thus, cannot be responsible of the sensing effect.

Influence of the substrate potential: The substrate is made of highly doped silicone

with a specific resistance of 3-5 Ω. Therefore, it is treated in this thesis as a conducting

material. As mentioned in section 4.1 the actual potential at the substrate is not known.

Thus, one needs to anticipate throughout the simulations that its potential could have

adopted an arbitrary value during the measurement. If the substrate has no connection

to another conductive material, its potential can only be influenced by the gate, drain,

and source potentials as well as existing charges. In the examined device, the length of

the channel is relatively small compared to the length of the contacts. Also the distance

between gate and substrate is more than 8 times the distance between source/drain and

substrate (see Fig. 4.1).

Drift-diffusion based simulations performed by M. Gruber and M. Buchner [23] showed

that, with this special geometry used and without the presence of charges, the substrate

potential adopts approximately the mean value of the drain and source potential. Using

the same set of parameters, as defined at the beginning of the section in Tab. 4.1, the

influence of the anticipated VSUBS is investigated by calculating the transfer character-

istics for VSUBS = VS−VD
2

, i.e., VSUBS = −12.5V, −22.5V and −42.5V at VD = −25V,

VD = −45V and VD = −85V. This is compared to the characteristics obtained with

VSUBS = 0V in Fig. 4.10. As can be seen, there is not only a significant change in the

current, but also in the shape of the curves. These changes increase with the absolute

value of VSUBS. Moreover, no threshold voltage can be observed. This is due to a sec-

ond channel, that is formed at the SiOx-OSC interface. To illustrate that, the potential

distribution and the current density distribution are plotted in Fig. 4.11. In the plot of

the potential distribution (Fig. 4.11 (A)) a steep potential drop, i.e., a strong electric

field at the SiOx-P3HT interface (see arrow III) can be observed, even stronger than at

the P3HT-PVA interface. This leads to an accumulation of charge carriers at the SiOx-

P3HT interface (see arrow II) and therefore to the formation of a second channel. This

second channel can nicely be seen in the plot of the current densities (Fig. 4.11 (B)).

Thus, VSUBS can profoundly alter Vth independent from a possible presence of NH3. It

needs to be stressed that the substrate-induced channel can, in principle, totally obscure

a possible NH3-sensitivity of the PVA-P3HT channel (see arrow I).
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Figure 4.10: Impact of the substrate potential VSUBS on the transfer characteristics
(blue) for three different drain potentials: VD = −25V (cross), −45V
(circle) and −85V (star). The corresponding substrate potentials are
VSUBS = VS−VD

2
= −12.5V, −22.5V and −42.5V. For a better comparison

the results for VSUBS = 0V are plotted (black), as well as the experimental
results in exposition to ammonia (red).
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4.2.2 Comparison of simulation and experiment

Having analyzed the influence of the most important parameters on the transfer char-

acteristic, now these parameters are optimized in order to reproduce the experimental

results without ammonia exposure best. This optimal set is then used to verify the three

scenarios that were suggested in section 4.1 to explain the ammonia-sensitivity.

4.2.3 Optimization of parameters for a device without the presence

of ammonia

The first challenge is to find a set of parameters, which approximate the experimental

results best. The main problem, as was established in section 4.2.1, is related to the

offset between the individual curves in the simulation compared to the experiment. The

simulated curves are much closer together; the influence of the substrate potential was

shown to be dominant. Thus, a reasonable spacing could be only generated by assuming

3 different substrate potentials for the three different drain potentials. The parameters

that agree best with the experiment, i.e., within 1% are shown in Tab. 4.2. The resulting

characteristics in comparison to the experimental results are shown in Fig. 4.12.

Figure 4.12: Simulated transfer characteristics with optimized parameters (Tab. 4.2)
compared to the experimental ones without exposure to ammonia (green)
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Table 4.2: Set of parameters used for reproducing the experimental results

µ0 0.4× 10−6 m2

V s

εSiOx 4.5

εOSC 3.2

εPV A 8.4

εROM−polymer 6

T 298.15 K

NHOMO 2× 1027 1
m3

∆h 0.1 eV

VSUBS 3 V for VD = −85V

VSUBS 5 V for VD = −45V

VSUBS 9 V for VD = −25V

4.2.4 Simulation of the device exposed to ammonia

As mentioned in subsection 4.1, there are three different possible scenarios to explain

the effect seen in the experiment. With the optimized set of parameters found in 4.2.3,

these three assumptions are now tested.

Ammonia induced change of the dielectric constant of the ROM-polymer: The

first effect considered is the experimentally established change in the dielectric constant

of the ROM-polymer (εROM−polymer) from 6.0 to 6.5 [2]. The results are shown in Fig.

4.13. As easily can be seen, the effect solely resulting from the change in the dielectric

constant is by far to small to explain the effects seen in the experimental transfer char-

acteristics. However, this change must be taken into account when testing the other two

remaining assumptions.

59



4 Results

Figure 4.13: Simulation of the influence of a changed dielectric constant on a transfer
characteristic in comparison to the experimental results (red).

Ammonia induced space charge layer in the ROM-polymer: The second assump-

tion was a space charge caused by immobile O−-groups in the ROM-polymer. This is

taken into account by a constant negative charge density. Assuming that every polymer

repeating unit contains exactly one OH-group, the given density of the ROM-polymer

yields a maximum space charge density σ1 = 7.52 × 1021 1
m3 [24], which is incorporated

in the model via Eq. (2.7). The characteristics obtained for the consideration of σ,

located in the ROM-polymer-layer, are shown in Fig. 4.14. It can be clearly seen that

the influence of the immobile charge carrier is not sufficient to explain the large differ-

ence between the pristine device and the device exposed to ammonia. Nevertheless, a

small increase in the current occurs. While σ1 might contribute to the experimentally

observed effect, it cannot be responsible for the observed effect.

Ammonia induced surface charge layer at the PVA-P3HT interface: The third

scenario comprised a layer of negatively charged O−-groups at the PVA-P3HT inter-
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Figure 4.14: Simulation of the influence of the maximum of immobile space charges in
the ROM-polymer in comparison to the experimental results (red).

face. Created in the ROM-polymer, the negative charges migrate through the device,

and, eventually, accumulate at the interface to the OSC (see subsection 2.3). This is

incorporated in the simulation by a surface charge layer with a density σ2 at the PVA-

P3HT interface. In contrast to the immobile-ion model mentioned before, the maximum

charges amount to the sum of the OH-groups in the polymer and in the PVA layer.

By assuming a surface charge density of σ2 = 4.5 × 1015 1
m2 , the simulation reproduces

(a) the required increase in current and (b) the absence of a threshold voltage in the

interval −85V < VG < 15V . As shown in Fig. 4.15, the simulated results agree well

with the measured characteristics, within a maximal error of ca. 10%. A slightly dif-

ferent slope for VD = −25V and VD = −85V is observed. This underestimation of the

slope originates from the neglect of charge trapping effects in the model presented in

this thesis.

In conclusion, the effect observed in the experiment can be reproduced qualitatively

and quantitatively by negative mobile charges. Immobile charges and the experimentally
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Figure 4.15: Simulation of the influence of a surface charge density at the P3HT-PVA in-
terface compared to the experimental results in presence of ammonia (red).

observed change in the dielectric constant can additionally contribute to the current

enhancement.
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5 Conclusion

The main task of this thesis was to develop a program capable of simulating the transfer-

characteristics under consideration of the charge transport, potential and charge carrier

density of a sensory dual-gate OFET, built by Andreas Klug et al. [2]. Experiments

showed that this device was highly sensitive to ammonia owning to a ROM-polymer

with an Eosin-Y group used as isolating material. In the presence of ammonia the cur-

rent increased by more than 800%. Additionally no threshold voltage could be observed

anymore. Three different scenarios were proposed to explain this effect: a change in

the dielectric constant of the ROM-polymer, the formation of a constant negative space

charge density in the ROM-polymer due to immobile ions, and the formation of a neg-

atively charged surface charge layer at the PVA-OSC interface. The challenge posed in

this thesis was to cope with the high aspect ratio large extensions of the device itself

and to incorporate a model able to simulate the behavior upon exposure to ammonia.

In order to simulate this device, a two-dimensional drift-diffusion model was used,

resulting in a system of equations (containing the Poisson equation, current density

equations and the continuity equation and a density dependent mobility model), which

was solved self-consistently on a non-regular two-dimensional grid. Therefore, all these

equations had to be transfered in numerical stable expressions and then solved iteratively.

With the help of the model, parameter studies were made to gain insight into the

influence of transport-specific parameters on the transfer characteristics. The considered

parameters are (a) the dielectric constant of the isolating ROM-polymer, (b) the mobility,

(c) the injection barrier between contact and OSC, and (d) the substrate potential.

Based on the insights gained in the parameter study, a certain set of parameters is

chosen in order to reproduce the measured data for the OFET operating without ammo-

nia. Then, by fixing these parameters, the three proposed scenarios were tested. Two of

them, the change in the dielectric constant of the polymer and the presence of a space

charge layer in the polymer, were excluded as dominant causes for the measured effect.

On the other hand, a negatively charged surface charge layer at the PVA-OSC interface,

arising from O−-groups that are formed in a chemical reaction with the ammonia in the
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ROM-polymer and subsequently migrate through the PVA, was able to reproduce the

experimentally observed effect with a maximum error of less than 10%.
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