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Kurzfassung

Das Ziel dieser Arbeit ist die Anwendung branchenüblicher CFD-Methoden gemeinsam mit ei-
ner neuartigen Methode genannt Smoothed Particle Hydrodynamics (SPH) auf hydraulischen
Pumpen. In Hinsicht auf die Verringerung der numerischen Fehler mittels einer netzfreien
Methode soll im Zuge dieser Arbeit die Anwendbarkeit der SPH Methode an einer Pumpe
untersucht werden. Man erwartet sich von dieser Methode die Möglichkeit, die Fehler mini-
mieren zu können, welche auf die Interaktion zwischen stehenden und rotierenden Netzen
zurückzuführen sind. Dazu wurden im Laufe dieser Arbeit mehrere Tools an den jeweiligen
Standorten der R&D Abteilungen bei ANDRITZ entwickelt, um diese Methode erstmals
an einer Pumpe anzuwenden. Der Prototyp dieser Pumpe wurde vor dieser Arbeit bereits
erfolgreich entwickelt und am ASTRÖ Prüfstand in Graz vermessen. Diese Pumpe erreichte
einen sehr hohen Wirkungsgrad, jedoch wies die Pumpenkennlinie eine Hysterese auf. Dieses
Phänomen wird in der Forschung ambitioniert verfolgt, da die Strömungseffekte, welche im
Bereich der Teillast entstehen, problematische Auswirkungen auf den Betrieb haben können.
Dieser Effekt ist bislang durch numerische Methoden nur schwer zu erfassen.

Diese Arbeit soll den Anwendungsbereich für die verwendeten numerischen Methoden in
der Pumpenentwicklung erweitern und wurde in zwei Phasen unterteilt. Die erste Phase
umfasste die Erstellung eines Benchmark mittels der Software ANSYS CFX. Dazu wurde
das Netz des zuvor erfolgreich abgeschlossenen Projekts von der R&D Abteilung in Graz zur
Verfügung gestellt und mit einer quasi-stationären ’Frozen Rotor’-, sowie einer transienten
Rechnung evaluiert. Des weiteren beinhaltet die Evaluierung die numerischen Ergebnisse der
in der Abteilung ASTRÖ verwendeten sogenannten ’Eulerkette’, welche ebenfalls auf der
Finite-Volumen-Methode (FVM) basiert. Ziel sollte sein, in Zukunft einen direkten Vergleich
zwischen Finite-Volumen-Methoden und SPH zu ermöglichen. Die zweite Phase wurde am
ANDRITZ HYDRO Standort Vevey durchgeführt und sollte die erstmalige Anwendung der
SPH Methode an einer Pumpe umfassen. Da sich diese Methode im Entwicklungsstadium
befindet, war meine Aufgabe zunächst die Erstellung und Aufbereitung zwei-dimensionaler
Testfälle, welche von der SPHERIC Community verfolgt werden. Hierfür wurden zahlreiche
Simulationen parallel zu den sich im Gange befindenden Entwicklungen an diesem Code
ausgeführt.

Aufgrund der Fülle an Daten und der sich im Evaluierungsstadium befindenden Ergebnisse
wurde in dieser Arbeit hauptsächlich über die Berechnung der oben erwähnten Pumpe
berichtet. Hierzu ist es gelungen Berechnungen durchzuführen, welche in Zukunft einen
direkten Vergleich ein-und-derselben Geometrie mittels verschiedener numerischer Methoden
erlaubt. Es wurde jedoch deutlich, dass die SPH Methode noch einige Entwicklungsschritte
benötigt in Hinsicht auf die Stabilität, weshalb bislang noch keine Evaluierung der Pumpe
durchgeführt wurde.



Abstract

The aim of this work is the application of industry-standard CFD methods together with a
new type of method called Smoothed Particle Hydrodynamics (SPH) on hydraulic pumps. In
the course of this work the feasibility study should be performed regarding the use of the SPH
method on a pump, with the goal of reducing the numerical error by a mesh-less method.
It is expected from this method, that the errors can be minimized coming along with the
simulation due to the avoidance of the interaction between static and rotating systems. For
this reason several tools were developed at the respective locations of the R&D departments
of ANDRITZ in order to apply this method for the first time on a pump. The prototype of
this pump was developed and measured successfully prior to this work on the test bench of
Andritz in Graz. The pump reached a very high efficiency, however, the characteristic curve
showed a hysteresis. This phenomenon is pursued in an ambitious manner in research, as the
flow effects which arise in part-load may have an impact on the operation, which is difficult
to reproduce with numerical methods.

This work aims to extend the field of applied numerical methods in pump development and was
therefore divided into two phases. The first phase involved the establishment of a benchmark
using the software ANSYS CFX. For this purpose the mesh from a previously successfully
completed project was provided by the R&D department in Graz and in consequence evaluated
with a quasi-steady ’Frozen-Rotor’ as well as a transient calculation. The evaluation also
comprises the numerical results of the so-called ’Eulerkette’, applied at the ASTRÖ department,
which is based on the finite volume method. The goal should be a direct comparison between
SPH and finite volume methods in the future. The second phase was conducted at the
ANDRITZ HYDRO site in Vevey and should include the first use of the SPH method on a
pump geometry. As this method is still under development, it was my objective to establish
and prepare two-dimensional test cases, based on publications of the SPHERIC Community.
For this purpose several simulations were performed parallel to the developments on this
code, which have already been in progress.

Due to the great amount of data and results which are still under evaluation, this thesis
is restricted to the main topic, namely the calculation of the above mentioned pump. It
was achieved to obtain calculations and will allow in future a direct comparison of different
numerical methods. However, it was clearly shown that the SPH method still requires further
development with regard to stability so that no evaluation of the pump has been performed
to this stage.
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Introduction

The following work, conducted for the ANDRITZ Group, involves a comparison between
commonly used finite volume methods and an in-house code developed by the R&D department
at ANDRITZ HYDRO Vevey (Switzerland) and the Ecole Centrale de Lyon (LMFA) applied
on a centrifugal pump. The first method deals with a mesh-based approach, while the latter
code involves a mesh-free description, allowing to discretize the domain in accordance with
the desired fluid particle size.

For this purpose, this work was carried out at the ANDRITZ sites of Graz and Vevey
(Switzerland). The SPH code has been developed over the past few years to a successful tool
for the development and optimization of Pelton turbines. It was found, that the mesh-free
method was very advantageous for the simulation of free surface flows, since no additional
mesh generation and updating is required. The code ASPHODEL developed in Vevey, has the
advantage that the description of the movement in space couples both the Lagrange and Euler
formulation, leading to the Arbitrary Lagrangian Eulerian method. From this method it is
expected, that the numerical errors can be minimized, due to the evidence of the interaction
between static and rotating systems. Commercial simulation methods have reached a level in
recent years, at which the application on turbomachines gained a high practical value. Here
several models with different geometries are validated within a short time, and ultimately
allow the reduction to a few models. This implies, however, that so far the necessary quality
and reliability regarding a pump design using numerical methods has not been reached, so
that laboratory and test rig measurements are still required. An increase in accuracy of the
numerical reproducibility could reduce the costs of expensive laboratory tests.

Thesis Outline

Chapter 1 gives a thorough introduction on the scope of this work and enables a brief
explanation concerning the challenges of pump design. Trigger for the consideration of a
mesh-free method were complications which had arisen during a previous pump project. A
specific type of instability was found in the vicinity of the best efficiency point, causing a
trough within the characteristic curve. Different mechanisms are held responsible for this
instability, which depends on three-dimensional and non-uniform flow effects. Various losses
can be distinguished within a centrifugal pump, where the focus in this section is laid on the
hydraulic losses.

The fundamentals of numerical analysis of fluid mechanic problems are described in chapter 2,
where the theoretical background of the involved methods as well as different numerical errors
will be discussed.
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The following chapters 3 to 6 will focus on the investigated numerical methods in this work;
namely ANSYS CFX, followed by the so-called ’Eulerkette’ used at the R&D department
in Graz (ASTRÖ), and finally completed by the Smoothed Particle Hydrodynamic method.
The latter represents the main reason for the origin of this work, which deals with a novel
mesh-free method developed at the R&D department at ANDRITZ HYDRO Vevey. The
fundamentals of the standard SPH description are given, from which the Arbitrary Lagrange
Euler description has been implemented into a code named ASPHODEL by J.C. Marongiu
and J.Leduc.

Chapter 7 focusses on the analysis of the performed simulations in ANSYS CFX 5.0, which
were carried out during the first phase of this work. Additionally, the results of the ASTRÖ
in-house code were included in the evaluation. This analysis should serve as reference data
for future comparison with the results from the ASPHODEL calculations. The validation of
the numerical results is performed with experimental data from the ASTRÖ test rig, which
were conducted prior to this thesis.

Finally, this thesis is summarized in the conclusion together with suggestions for future
developments and applications of the SPH-ALE method.



1. Centrifugal pumps

This chapter gives an introduction on the application and challenges of centrifugal pumps.
Different loss mechanisms will be explained based on their origin in order to draw correlations
with mechanisms causing flow instabilities. This section is based on the insights from [6] and
[1].

1.1. Pump types

Centrifugal pumps are turbo machines used to convert mechanical energy into hydraulic
energy, by raising a liquid flow to a specific pressure level. The working principle relates to
the transfer of angular momentum of the impeller to the flow through the pump based on
hydrodynamic processes. Therefore the flow enters the impeller axially and leaves radially on
a considerably larger radius, which is representative for radial pumps. Centrifugal pumps
are highly important for various technical processes in industry and domestic applications.
Industry uses these machines for the transport of fluids, for power generation in pump turbines
and chemical processes. A general design of a centrifugal pump is represented in Figure 1.1.
The flow is guided from the draft tube to the impeller, where the energy is transferred from
the driven shaft to the fluid, where it is accelerated in circumferential direction. The fluid is
led from the impeller into the volute, where the flow is decelerated in the diffuser in order to
convert the kinetic energy into a maximum static pressure. An impeller consists of the hub,
the shroud and the blades equally arranged around the circumference.

Figure 1.1.: Single-stage volute pump with bearing frame, Sulzer Pumpen AG [6].

A pump is characterized by the flow rate Qopt, the head Hopt and the rotor speed n. The
flow rate is generally defined as the useful volume flow through the discharge nozzle. The

3



1.2. Pump design 4

head H can also be represented as the specific work Y.

The specific work Y is the total useful energy transmitted by the impeller to the liquid per unit
of mass. For incompressible flow Y results from ∆ptot/ρ. Substituting the momentum equation
for the flow through the impeller, one also obtains the transmitted specific work (Equ.(1.1)).
The total pressure consists of the static pressure p, the pressure ρ · g · z corresponding to the
geodetic head and the dynamic pressure 1

2ρc
2.

Y =
p2,tot − p1,tot

ρ
= g ·H = u2c2u − u1c1u (1.1)

The total dynamic head measured between suction (s) and discharge (d) nozzles results from
the difference between the total pressures expressed as heads H = Hd −Hs. By means of the
Bernoulli equation we obtain the energy head:

H =
pd − ps
ρg

+ zd − zs +
c2
d − c2

s

2g (1.2)

In order to ensure the specified flow rate through a given plant, the pump needs to deliver
a certain head of the plant HA. Applying Bernoulli’s equation on the system considering
the head losses Hv (suction and discharge), we obtain the curve for the energy head of the
plant:

HA =
pa − pe
ρg

+ za − ze +
c2
a − c2

e

2g +Hv,d +Hv,s (1.3)

In steady operation the energy head of the pump equals the required head of the plant, hence
H = HA.

1.2. Pump design

Figure 1.2.: Illustration of the investigated nq = 70
pump.

The investigated pump type in this work
refers to a single stage pump with a vo-
lute (or spiral) casing. This design is
common in many industrial applications.
Gülich states that radial pumps of this
type are typically designed for specific
speeds in the range of nq = 7 to 100.
The pump is designed in vertical ar-
rangement, as shown in Figure 1.2, with
the corresponding draft tube at inlet and
the spiral casing at outlet. The induced
flow at the inlet of the pump is directed
through the DT, and subsequently en-
ters the impeller in axial direction. In this, the supplied mechanical energy from a motor is
converted into kinetic energy by accelerating the fluid, and into potential energy by increasing
the fluid pressure. The prototype was designed for a flow rate Q of 0, 4

[
m3

s

]
and a head H of

28 [m] at a rotational speed of 1350 [rpm].
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1.3. Loss mechanisms

The main objective of the hydraulic design of a centrifugal pump is to convert a maximum of
the provided power P into useful hydraulic power Ph or, in other words, to determine the
lowest possible effort for the given conditions. Losses can be distinguished according to the
IEC 60193 standard. The sum of all losses within a pump dissipates into heat. The operating
point representing the maximum efficiency of the pump is denoted as the best efficiency point
(BEP). The losses can generally be distinguished into

– volumetric,
– disk friction,
– hydraulic and fluid recirculation,
– and mechanical losses.

According to [6], the calculation of all types of losses is subject to uncertainties of approximately
20 to 30%. These losses are very precisely described in the indicated literature. In the following,
this comprehensive topic of loss factors is summarized, while focussing on the mechanisms and
effects of hydraulic losses. The reason for this measure is related to the performed numerical
simulations, as will be described in the following.

The overall efficiency η of a centrifugal pump can be described as

η =
TR︷ ︸︸ ︷

ηh︸︷︷︸
CFD

·ηv · ηdf ·ηm (1.4)

where ηh stands for the hydraulic efficiency, ηv the volumetric efficiency, ηdf representing the
disk friction efficiency and ηm the mechanical efficiency. In this the overall efficiency applies to
the pump commissioned by the customer. The design with the respective pump characteristic
is converted to a scale model, which is applied for further evaluation on the test rig (TR). The
measurements conducted by the R&D department allow the determination of hydraulic and
volumetric losses together with disk friction losses. The application of numerical methods for
this work has been confined on the evaluation of the hydraulic losses. Therefore, the losses
due to impeller side-wall gaps and annular seals as well as disk friction losses are neglected.
This causes that the calculated efficiency by means of numerical methods should be higher
than the overall efficiency. In the course of this work it will be shown, that this conclusion is
not always confirmed by numerical methods.

1.3.1. Volumetric losses

Volumetric losses are generated within the pump, so that they belong to the internal losses.
These losses are caused by all leakages between rotating and stationary components. They
can be classified into losses due to:

1. leakage flow Qsp through the annular seal at the impeller inlet
2. leakage flow QE through the device for axial thrust balancing
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3. additional fluid Qh may be branched off for auxiliary purposes as hydrostatic bearings,
sealing or cooling.

1.3.2. Disk friction losses

This type of loss is generated due to the rotation of the impeller, causing a liquid film between
the runner and the rear and front shrouds. The disk rotates in the fluid and causes shear
stresses τ on the surface.

Disk friction losses and volumetric losses have not been considered in the numerical evaluation
of the pump in this work, so that they are not described in further detail.

1.3.3. Hydraulic losses

Hydraulic losses include all component losses located between the suction and the discharge
nozzle generated through friction and vortex dissipation. They include losses in the inlet
casing, the impellers, volutes and the outlet casing and reduce the useful head according
to H = ηh ×Hth. Converting kinetic energy into static pressure in a volute involves great
losses, which may be called mixing losses. Mixing losses are due to the non-uniform velocity
distributions in real flows and to further distortion through deceleration of the flow. Non-
uniform flow generates losses by turbulent dissipation through exchange of momentum between
the streamlines. Flow separation and secondary flows increase these effect. Flow separation
and recirculation results in high losses since the kinetic energy within the wake tends to
zero while the main flow contains high kinetic energy. These types of losses develop in
flows through curved channels, impellers, diffusers and collectors of turbo machines and
will be analysed in section 7.2. These losses cannot be predicted theoretically due to their
three dimensional flow patterns, so that empirical loss coefficients are used for preliminary
calculations. Numerical methods have been continuously developed towards the predictability
of such complex flows by means of turbulence models and slowly approach a stage of practical
applicability in industry.

The non-uniform flows have a profound impact on the pump’s hydraulic efficiency and are
generated by various mechanisms, i.e. the transmitted work by the blades. The non-uniformity
of the flow is supposed to increase with the blade loading, hence with increasing pressure
coefficient or decreasing blade length. Local zones with decelerated flow or even separation on
the blade occur at the leading edge. These separations imply zones of stalled fluid with local
recirculation, which can be observed in part load at the impeller inlet. Thereby, the stalled
fluid partly blocks the available cross section of the flow and high losses are generated through
the exchange of momentum between the jet-like through flow and the stalled zones. Curved
flow path, as found in radial impellers, contribute also to a non-uniform flow in the curvature
of the meridional section and of the blades. Secondary flows are generated by fictitious forces
due to Coriolis forces, centrifugal forces and the streamline curvature, as stated in section
1.3.4.
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Further, leakages through the seal at the impeller inlet contribute to the non-uniform flow
near the front shroud in terms of velocity distribution, local pre-swirl and incidence angles. It
is difficult to assess the phenomena within a pump by applying simplified models. Therefore,
the hydraulic efficiency is mostly determined from the power balance of a measured pump.
For this reason, the actual efficiency of a pump is only known once it is built. The calculated
efficiency from the power balance does not allow any statements on the contribution of
individual pump components and their losses. Estimations on phenomena within the pump
with empirical approaches, such as the three dimensional velocity distribution in the respective
components, are only meaningful near the best efficiency point.[6] As will be shown further in
this work, the test rig measurements, provided by the R&D department in Graz, were taken
as reference for further comparisons with the numerical results.

1.3.4. Partload phenomena

The following section leads to a brief excursus into the analysis of the partload performance
of a pump and the identification of the different physical characteristics.

The best efficiency point of well-designed pumps can achieve hydraulic efficiencies up to 95%,
while no significant flow separations are identified at this operating point. On the other hand,
if we imagine a rotating impeller operating against a closed wall both at inlet and outlet, full
recirculation is enforced as shown in Figure 1.3.

Figure 1.3.: Flow observations (nq = 22) within an impeller channel using a stroboscope; left:
closed valve, right: ’attached’ flow near best efficiency point.[7]

q∗ represents the volume flow through the impeller reffered to the BEP. The flow pattern near
BEP follows a streamline similar to the curvature of the blades, whereas zones with separations
and recirculation are identified at lower flow rates until q∗. From this, the conclusion can be
made that different physical mechanisms of energy transfer from the impeller to the fluid
occur between attached flows and fully separated flows.
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The flow within an impeller follows curved paths in the absolute frame, which is possible due
to a pressure gradient acting towards the momentary center of the streamline curvature. This
pressure gradient is responsible for the centripetal force, and subsequently increases the static
pressure in the impeller although the flow is accelerated within the absolute reference frame.
The pressure field develops according to the maintenance of equilibrium with the body forces.
These body forces are generated from the perspective of a rotating system through centrifugal
acceleration due to rotation, the Coriolis acceleration and the centrifugal acceleration due
to the streamline curvature. The equilibrium of the forces in steady flow condition can be
written as

1
ρ

∂p

∂n
= 2ω × w︸ ︷︷ ︸

Coriolis
acceleration

+ rω2 ∂r

∂n︸ ︷︷ ︸
centrifugal
acceleration

−
w2

R︸︷︷︸
curvature
acceleration

(1.5)

being R the momentary radius of the streamline, w the relative velocity, n the normal on the
streamline curvature and ω the angular velocity.[6] Equ.(1.5) neglects shear stresses due to
wall friction and exchange of momentum between streamlines.

The non-uniform velocity distribution in an impeller is due to flow turning in the meridional
section, flow deflection by the blades and boundary layers. To keep the equilibrium of forces
at any point, the streamline of a fluid element is adapted and flows develop perpendicular to
the main flow. These compensatory perpendicular flows generate secondary flows, which have
extensive influence on the performance, hence the losses, and the stability of the characteristic
curve of the pump. Following effects define the flow distribution in an impeller:
– Forces acting on the blade as the integral of the pressure distribution over the blade
– Centrifugal forces
– Coriolis forces
– Velocity distribution at inlet of the impeller
– Boundary layers
– seal leakages
– Interactions between impeller and stator during recirculation
Gülich states that shape and stability of the Q-H-curve is hardly affected by the rotor speed,
as emerged from various studies in the range of practical interest. This finding allows the
conclusion, that the global behavior at partload is barely sensitive to the Reynolds number
or to boundary layer effects, even though these are supposed to be responsible for the first
local separation. Therefore, non-viscous 3D-Euler calculations are found to reproduce quite
well fully developed recirculation, but not the beginning of recirculation.

a) Impeller rotation effects

A fluid element on a curved path is exposed to the component of centrifugal acceleration bz1
in direction of w and bz2 perpendicular to w, the acceleration due to the curvature of the
streamline bz3 and the Coriolis acceleration bc, both normal to w. Figure 1.4 illustrates the
forces acting on a fluid element in a radial impeller with back swept blades. The Coriolis
force acts in the opposite direction of bz2 and bz3. These accelerations perpendicular to the
flow direction, are primarily responsible for the velocity distribution in impeller channels. It
is assumed that the ratio bz2+bz3

bc
, defined as the Rossby number, determines the deflection
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of the fluid element whether towards the suction or pressure side of the blade. A Rossby
number of close to 1 implies, that no significant flow deflection from the streamline curvature
would be expected, whereas a value below 1 would result in a higher influence of the Coriolis
force and a flow deflection towards the pressure surface of the blade. Conversely, a Rossby
number above 1 implies a deflection of the fluid towards the suction surface of the blade. The
influence of the Coriolis force disappears in the boundary layers, since the relative velocity w
close to the wall tends to zero and thus Ro tends to infinity. It should be noted that secondary
flows also occur in reality at Ro = 1, due to the non-uniform flow distribution attributed
to the meridional curvature, boundary layers and body forces. An analysis in [6] of a large
number of measured velocity profiles at the outlet of radial impellers with back-swept blades
did not yield any general tendencies for the prediction of the flow.

Figure 1.4.: Accelerations acting on a fluid element in a radial impeller.[6]

b) Blade force effects

The flow distribution at the impeller outlet results from a complex equilibrium of the
acting forces. Consequently the mean flow angle and slip factor are influenced by different
mechanisms:
– velocity differences between pressure and suction surfaces (Fig. 1.4)
– the Coriolis acceleration acts in opposite direction of the rotation and causes a secondary

flow. It reduces the flow angle β due to fluid transport towards the pressure surface.
– the difference in static pressure between pressure and suction side immediately downstream

the trailing edge disappears, since pressure differences in the free flow are only maintained
through different streamline curvatures. Therefore, the velocity distribution already adapts
in the triangular section downstream of the throat at a2 of the impeller outlet, in order to
satisfy this outflow condition. Figure 1.5 indicates that the flow is guided more effectively
(section k) within the impeller channel and deviates less from the blade angles in comparison
to the outlet section s.
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Figure 1.5.: Slip phenomenon in an impeller channel. a Flow between the blades; b Secondary
flow [6]

Energy is transferred to the fluid when a lower pressure prevails, thus when higher relative
velocities occur on the suction side, than on the pressure side. The theoretical blade work
is obtained from the integral of the pressure distribution on the surface. It is important to
consider that the effects of the blade forces and the Coriolis force are opposed to each other.
While the maximum relative velocity due to the flow around the blade tends to the suction
side (Fig.1.5 section k), the Coriolis force would rather shift the maximum velocity to the
pressure surface.[6]

c) Meridional curvature effects

The investigated centrifugal impeller deflects the flow by 90% from the axial entry to the
radial outlet. Considering a flow through a simple bend, the highest velocity at the inlet is
measured at the inner streamline due to the conservation of angular momentum according to
c× r = const.

The pressure in a curved bend decreases from the outside to the inside in direction of the
center of the curvature. The forces acting on a fluid element on a curved streamline can be
illustrated as follows.

The absolute velocity cn(s, t) normal to the streamline is a function of time and space.
Therefore, we can write for the change in velocity:

dcn =
∂cn

∂t
dt+

∂cn

∂s
ds =⇒

dcn
dt =

∂cn

∂t
+
∂cn

∂s

ds
dt (1.6)

Substituting ds
dt = c and ∂cn

∂s = c
r the acceleration normal to the streamline becomes:

dcn
dt =

∂cn

∂t
+
c2

r
(1.7)

The equilibrium of the forces perpendicular to the streamline yields:

∂cn

∂t
+
c2

r
+ g

∂z

∂n
+

1
ρ

∂p

∂n
= 0 (1.8)
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Figure 1.6.: Forces acting on a fluid element [6]

Neglecting gravity and substituting dn = −dr we obtain the pressure gradient perpendicular
to the flow direction for steady flow according to

∂p

∂n
= ρ

c2

r
(1.9)

This pressure gradient generates a centripetal force which enables the flow in a bend to follow
a curved path in the first place, keeping the centrifugal force at equilibrium.

Considering a rotating channel, secondary flows build up due to centrifugal forces and
boundary layers when the fluid progresses through the channel. The centrifugal forces shift
the maximum of the velocity distribution near the outlet of the channel towards the outer
wall. These mechanisms are applied in Figure 1.7 to the meridional flow of a radial impeller.

Figure 1.7.: Meridional section of an
impeller.[6]

Figure 1.8.: Meridional curvature of the in-
vestigated pump, nq = 70
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According to Equ.(1.10), the pressure difference between hub and shroud can be calculated
using

∆p = ρc2 B

Rm
(1.10)

where Rm is the radius of curvature of the center streamline and B the local distance between
hub and shroud. This gradient is created through the centrifugal acceleration bz2 = c2

m
Rm

by the curvature and contributes together with a component of the Coriolis acceleration
bc = 2w × ω to deflect the flow towards the hub. These accelerations are opposed by the
centrifugal component bz1 = u2

R caused by the rotation of the impeller.

Considering additional effects of blade forces and e.g. backflow from the spiral casing at
partload, the flow becomes fully 3-dimensional and unpredictable because of alternating
predominant effects at different times. This implies that the maximum velocity distribution
can be found either near the shroud, when centrifugal forces predominate in those parts of the
blade channels, where the flow has an axial component, or near the hub, when the influence
of the meridional curvature is determining the flow.

A centrifugal pump with a specific speed nq between 50 to 100 is found to be particularly
difficult to assess regarding the flow since the blade trailing edges are severe near the zone
where the curvatures of the meridional section (Fig.1.8 illustrates the curvature of the
investigated pump). This shows, that even though significant developments in numerical
calculations and measurement methods have been carried out, still the velocity distribution
of a given pump can neither be predicted nor readily explained, unless a distinct mechanism
is found to be predominant.

1.3.5. Recirculation in an impeller

At partload, recirculation develops at the impeller inlet, due to backflow of the fluid on the
outer streamline from the impeller into the draft tube. In particular, excessive curvatures
in the meridional section of the shroud can lead to flow separations. The flow re-enters the
impeller closer to the hub and contains a circumferential velocity evoked through energy
transfer by the rotating blades. The recirculation arises near the blade edges and generates
a circular flow between the impeller channels and the pressure and/or suction side. The
recirculated flow can have an impact on the liquid in the draft tube as far as L/D > 10 by
inducing a pre-swirl to the flow by exchange of momentum. To prevent the recirculating
flow of affecting and distorting the measurements, structures have to be considered in order
to reduce the deviation from the actual suction pressure. Some recirculation patterns are
schematically shown in Fig.1.9. [6]

It is found that two pre-requisites must be fulfilled for triggering recirculation at the impeller
inlet, where only one of these is not sufficient, namely:

1. local flow separation
2. high pressure gradients must develop normal to the direction of the main flow
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Figure 1.9.: Observed recirculation flow patterns.[6]

Local flow separations depend on boundary layer effects and on the equilibrium of forces,
determined by several geometrical parameters and the flow rate. The pressure gradient normal
to the direction of the main flow, is also determined by different parameters, such as the
ratio of the inner and outer diameters d1a/d1i at the blade leading edge, the curvature of the
shroud in the meridional section, the number of blades, the velocity distribution upstream of
the impeller etc. Therefore, the pressure gradient results from higher centrifugal forces at the
outer streamline and is directed from the hub to the shroud.

Figure 1.9 shows another zone of recirculating flow in an impeller, namely between the
impeller outlet and the volute casing. This is caused by the different mechanisms (section
1.3.4) which have major influence on the velocity distribution, and thus cause a strongly
non-uniform distribution of c2m and c2u along the circumference.

It should be noted that general methods for the quantitative evaluation of centrifugal pumps
in terms of intensity and onset of recirculation have not been found to date.

Recirculation effects on the theoretical head

Based on the example of partload, it is intended in the following to explain why the theoretical
head (Equ.(1.11)) of the pump increases with decreasing flow rate. The recirculation at
the inlet of the impeller reduces the inlet cross section of the "normal" flow (Fig.1.9), since
it blocks the outer region of the impeller inlet, by means of diverting the flow to the hub.
This causes a displacement of the effective streamline, which enter the blading on a smaller
radius than without recirculation. The effect of recirculation can be explained by using the
one-dimensional theory according to the velocity triangles of an impeller at inlet and outlet:

Hth =
u2

2 − u2
1

2g +
w2

1 − w2
2

2g +
c2

2 − c2
1

2g (1.11)

The first term on the right hand side of the equation corresponds to the head component
generated by centrifugal forces which depend only on the ratio between the inlet and outlet
diameter, thus the circumferential velocity. Due to the reduction of the effective flow inlet
area, the velocity u1 is reduced and increases the centrifugal head component in Equation
(1.11). The middle term complies with the head component caused by the deceleration
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of the relative velocity in the impeller due to the cross sectional enlargement. The latter
term corresponds to the component generated through acceleration of the absolute flow and
subsequent conversion in the collector into static pressure through deceleration.

1.3.6. Recirculation in a spiral casing

The volute casing of the examined pump contains two functions: firstly, an efficient conver-
sion of the kinetic energy into pressure in the stator, and collecting the fluid around the
circumference of the pump. Near the best efficiency point, a fluid element downstream of the
impeller outlet moves according to the conservation of angular momentum c2u × r2 = const,
thus the circumferential velocity drops with growing radius. On the other hand, the static
pressure increases from the inside to the outside.

The volute cross sections do not correspond to the impeller outlet velocities in partload and
overload operation. Beyond the BEP, radial thrust induces forces on the shaft and on the
foundation of the pump which are generated by physical mechanisms. The direction of the
flow at the impeller outlet compared to the cutwater camber angle, plays a major role on
the recovering efficiency of the casing. The flow angle near the BEP corresponds well to
the cutwater camber angle, thus the flow deceleration largely follows the conservation of
angular momentum and a nearly uniform pressure distribution can be expected - provided a
correct volute design - except for local perturbations around the cutwater. The spiral casing
area at partload is too large on the entire circumference of the pump, which decelerates the
absolute velocity c2 according to the local flow rate and area. The approaching fluid causes a
local depression in the static pressure and results in a zone with increased turbulence. The
static pressure rises in the spiral casing from a minimum downstream of the cutwater to
a maximum which is reached near the outlet area. Conversely, at flow rates above BEP
the volute section is too small, which causes an acceleration of the flow and a decrease of
the static pressure downstream of the impeller. The approach flow angle is too large and
generates a flow separation in the discharge nozzle.

Considering the absolute frame, the flow follows a curved path and the local pressure
distribution varies along the circumference in order to balance the centrifugal forces induced
by the curvature of the flow path (Equ.(1.10)). Therefore, the flow around the impeller
blades depends on the actual circumferential position of the blades. The blade forces vary,
thus a different lift changes over the circumference and the resultant force yields the radial
thrust created by the impeller. This implies that the impeller channels have different flow
characteristics at each circumferential position.

The pressure distribution at the BEP varies little over the impeller circumference and yields
only a small resultant radial force, whereas the non-uniform flow at partload implies strong
variations of the static pressure, generally acting in the direction of the cutwater. Conversely,
the resultant force due to the non-uniform flow at overload is found to typically act towards the
opposite side of the cutwater, with decreasing static pressure in circumferential direction from
a maximum at the cutwater. The radial thrust at BEP can be traced back to asymmetries
induced by the flow around the cutwater, geometrical tolerances and friction losses; all of
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which are not uniform over the circumference. These effects influence the pressure build-up
in the volute depending on the circumferential position.[6]

1.3.7. Q-H-curve instability

A stable operation of a pump requires a head capacity curve that has only a single intersection
with the head capacity curve of the hydraulic system in order to define a unique stable
operating point. Flow separations in the flow channel of a pump can lead to instability of
the characteristic curve. The Q-H-curve is obtained from the theoretical blade work and the
losses in various parts of a pump, also depending on the operating point.

The investigated pump in this work shows a specific type of instability due to a trough of
the characteristic curve, which is known in the literature as the saddle type or "Type S"
instability. This instability was found to occur at Qopt = 60 to 90%. This phenomenon is
in agreement with observations conducted in [6] and [22]. In this, simplified models were
developed which attempt to describe the flow processes causing instabilities of this pattern.

A saddle is noticeable through a decrease in head when the flow is reduced and indicates that
the flow patterns in the impeller and/or diffuser have changed. The velocity distribution
within the impeller should develop continuously from the uniform profile at the best efficiency
point to the asymmetrical distribution with fully developed recirculation. Sudden changes
of the flow pattern should neither occur at the inlet nor at the outlet. In order to avoid
instabilities, separation and recirculation zones should remain at the same location at all OP
and increase continuously with partload. A sudden change of the flow pattern upon a minor
decrease in flow causes a reduction of the head. The obtained results of the FV calculations
at partload are shown in Figure 1.10, which indicate the recirculation zones at the impeller
outlet. A closer analysis of the transient results revealed a local movement of the recirculation
zone between the front and the rear shroud. Similar observations are documented in [22],
where this shift in flow separation is accompanied by some hysteresis. During this shift, a
flow range is passed where the recirculation almost disappears, causing the effective cross
section to increase, and leading to a reduction of the head. Assuming recirculation having a
"self-healing" effect by reducing the flow channel so that the remaining channel cross section
operates quasi normally, one-sided or asymmetric velocity distributions at the impeller outlet
are found to be better than symmetrical distributions. An explanation for that could be the
generation of two weak symmetrical recirculation zones in comparison to a one-sided velocity
distribution generating a more intensive recirculation. Gülich notes that a Type-S instability
is expected if the recirculation, which immediately follows the separation in the impeller, is
not sufficiently intense.

A hysteresis within the Q-H-curve is caused by the fact that the change of the flow pattern
occurs at different values of Q depending on whether the flow rate is reduced or increased.
These switching flow patterns can be caused by a delay of separation or a sudden change of
the impeller outlet recirculation between the rear and the front shroud. In contrast to the
"normal" flow separation which starts as a tiny separation zone and grows continuously, the
delayed separation is triggered late, where stalled fluid suddenly covers a large zone. In pump
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Figure 1.10.: Flow separation zones at impeller outlet (total pressure) - transient results.

application it is crucially important that the minimum head rise produced in the unstable
region of the characteristic is above the head rise demanded by the hydraulic system.

The impeller channels of the investigated pump with nq = 70 are relatively short compared to
their width, leading to an onset of separation and recirculation near Qopt. Therefore, the flow
is found to be in a kind of quasi-stable equilibrium, where the impeller flow and Q-H-curve
can react with great sensitivity to changes in the volume flow. The annular seal flow injection
also affects the boundary layer on the outer streamline. Systematic investigations of these
phenomena are highly elaborate. To determine the real partload head, it is vital to capture
the interaction between the impeller and the diffuser correctly.

1.3.8. Mechanical losses

Mechanical losses Pm are caused by bearings, which determine the shaft in radial and axial
directions as well as shaft seals. These losses belong to the external losses since no heat
is established into the flow. Therefore, these losses mainly depend on the selection of the
bearings according to the field of application of the pump.



2. Some Aspects of Numerical Simulation

The following section will give an introduction into the numerical simulation as well as into
the theoretical background of the investigated methods, and is based on LIU and LIU[13],
FERZIGER and PERIĆ [4] and SANZ [23].

2.1. Numerical simulation

Computational Fluid Dynamics deals with the numerical solution of the governing equations
of fluid dynamics in engineering and science. Due to the increase of the computational
performance achieved in the last decades it has become an indispensable method for solving
complex flow phenomena. Thereby, a physical problem is transformed into a discrete form
of the mathematical description and is solved on one or several computers, which reveal
phenomena virtually.

An advantage of this discipline is the ability of giving the analysts an alternative tool for
scientific investigations, that allows to reduce expensive experiments in laboratories, which can
be considered as time consuming and sometimes even dangerous. An approximate numerical
solution of a flow phenomena is described by the governing equations (integral or differential
equations), which have to be transformed to a system of algebraic equations and solved on
computers. These approximations are a set of algebraic equations (or ODEs with respect to
time only), which allow obtaining numerical values for the field functions (such as density,
pressure, velocity, etc.) at discrete points in space and/or time.[13] The informations obtained
allow an insightful disclosure of the investigated field, which often cannot be measured or
where experimental investigation simply turns out to be too costly.

A typical numerical simulation of a CFD problem involves the following factor:
1. governing equations,
2. proper boundary conditions and/or initial conditions,
3. domain discretization technique,
4. numerical discretization technique,
5. numerical technique to solve the resultant algebraic equations or ordinary differential

equations (ODE)

17
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2.1.1. General numerical simulation procedure

The mathematical models are generally formulated in the form of governing equations with
appropriate boundary and/or initial conditions, in order to determine the field variables
in space and time. The governing equations can be a set of ordinary differential equations
(ODE), partial differential equations (PDE) or integrative equations.

The investigated domain is sub-divided into discrete volumes in order to solve the governing
equations. The computational frame for the numerical approximation that is to be solved is
discretized by a finite number of volumes which represent the continuum problem.

This frame traditionally consists of a mesh, including grid nodes to evaluate the field variables.
Another, more recent developed method is the mesh-free particle description, which employs
a finite number of discrete particles to represent the state of a system and to record the
movement of the system. The level of discretization for both, mesh-based and mesh-free,
methods is closely related to the accuracy of the numerical approximation.

When domain and numerical discretization are applied, a set of algebraic or ordinary dif-
ferential equations can be obtained out of physical equations, which can be solved by using
existing numerical solvers. These methods require a translation of the domain decomposition
and numerical algorithms into a computer code, where accuracy and efficiency represent
two important parameters. Further considerations might be robustness or consistency of
the code, a clear structure, application and modification, etc. To verify the code concerning
its applicability on practical problems, it should be done by using experimental data or
results from other established methods. These verifications, conducted by MARONGIU
and LEDUC, have been elaborated for various practical applications on ASPHODEL (see
introduction), as the impingement of a jet on a plate [14] and surface tension models [11].
Since the aim of this work is to apply the SPH-ALE method on pump geometry, the primary
focus was the preparation of the code regarding the boundary conditions. This work was
performed in collaboration with Dipl. Ing. Magdalena NEUHAUSER, who is writing her
PHD thesis on the numerical simulation of transient flows in hydraulic machines by a coupled
SPH - finite volume method. 1 I assisted in the preparation and execution of simulations,
which enabled me to create and simulate a pump geometry in ASPHODEL. Therefore the
aforementioned preliminary simulations were qualitatively compared with existing test cases
investigated within the SPHERIC 2 community. They included numerous simulations on
simple 2D geometries as cylinders, squares and NACA airfoils. Due to the scope of this study
to compare different numerical methods on a centrifugal pump, these two-dimensional test
cases were not included in this report.

From the conservation laws we can establish the governing equations for different fluid
mechanic problems, where the system field variables such as mass, momentum and energy
have to be conserved during the evolution of the flow through the system. The governing
equations are a set of mathematical equations which contain the fundamental physical
principles of the fluid problem. The behavior of the fluid system is determined by the three

1. PHD thesis by Magdalena NEUHAUSER: "Simulation Numérique des Ecoulements Transitoires dans les
Machines Hydrauliques par une méthode couplée SPH et Volumes Finis."

2. SPH European Research Interest Community



2.2. Frame of reference 19

fundamental principles of conservation together with the conditions at the initial stage and
additional information about the nature of the fluid.

2.2. Frame of reference

A velocity field is represented by a regular array of velocity vectors, within which there is
a material fluid volume and a control volume. The material volume (Lagrangian frame) is
made up of specific fluid elements that are carried along with the flow. The control volume
(Eulerian frame) is fixed in space, and the sides are imaginary and invisible as far as the flow
is concerned (Fig. 2.1). The fluid material inside a control volume is continually changing,
assuming that there is a fluid flow. The essence of a Lagrangian representation is that we
observe and seek to describe the position, pressure, and other properties of material volumes;
the essence of an Eulerian representation is that we observe and seek to describe the fluid
properties inside control volumes. The continuum model assumes that either a material
volume or a control volume may be made as small as necessary to resolve the phenomenon of
fluid flow.[19]

Figure 2.1.: Velocity field.[19]

Lagrangian methods are natural for many observational techniques and for the statement of
the fundamental conservation theorems. On the other hand, almost all of the theory in fluid
mechanics has been developed in the Eulerian system.

We consider initially two different representations of the velocity vector.

2.2.1. The Euler and Lagrange description

The local coordinates in a fixed Cartesian System are given with x = (x1, . . . , xd) and the
time t. We consider the velocity vector v = (v1, ..., vd). If v is a function, which assigns a
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velocity v to a particle with position x and time t, we speak of Euler coordinates. Based on
the SPH notation, variables written in bold represent vectors.

v = v (x, t) (2.1)

This formulation describes the change of a field variable at a fixed point in space. One may
also consider a fixed fluid element, which was located at x0 at the time t = 0. This element
is being tracked, so that at time t it is located in

x = x (t) = Φ (x0, t) (2.2)

For the velocity vector we obtain

v (x, t) = d

dt
Φ (x0, t) = d

dt
x (t) (2.3)

In this context we speak of the Lagrangian coordinates. This description follows the change
of a chosen mass point in time.

2.2.2. Material derivative

For a scalar function f, depending on position and time in Eulerian coordinates, we construct
for a given position x0 in Lagrangian coordinates the corresponding function f̃ [2]. We
obtain

f̃ (t) = f (x(t), t) = f (Φ (x0, t) , t) (2.4)

If we consider the derivative of the function f̃ , we obtain with the chain rule

df̃

dt
=
∂f

∂t
+
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
+
∂f

∂z

∂z

∂t
(2.5)

since x is the particle trajectory and thus ẋ = v, we obtain

Df

Dt
=
∂f

∂t
(x, t) + (v · ∇f) (2.6)

The correlation between Eulerian and Lagrangian coordinates is called the material deriva-
tive.

Df

Dt
. . . variation of the mass point along the particle path = material derivative

∂f

∂t
. . . temporal change of the function f in the coincident point in space

= local derivative
(v · ∇f) . . . variation of f at the mass point due to its motion at the velocity v

= convective derivative
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2.3. Errors in CFD

The following section is dedicated to the definition of errors, occurring in numerical methods.

CFD calculations can lead to considerable differences in the results compared to the actual
flow, which is why it is particularly important to define and isolate the errors. It is necessary
to specify the bandwidth of errors committed with numerical simulation tools. They often
become apparent when comparing the numerical results with experiments and empirical
data. The difficulty of determining the errors is apparent, when one considers that only the
discretization error can be accurately determined with mathematical methods.[8]

2.3.1. Sources of errors

Several terminologies are proposed by a number of associations, which shows the different
perspectives on various applications. In the following, the pertinent definition by the AIAA 1

for numerical simulations is given, which was primarily interested in the accuracy of numerical
solutions in numerous fields, as computational mechanics, structural dynamics, as well as
computational heat transfer.[16]

AIAA directive:

Verification: The process of determining that a model implementation accurately represents
the developer’s conceptual description of the model.

Validation: The process of determining the degree to which a model is an accurate repre-
sentation of the real world from the perspective of the intended use of the model.

A classification of the errors is proposed by Roache [21], who subdivides the errors in modelling,
discretization and iterative errors, where the latter two represent the numerical errors.

- modelling error: The modelling error is the difference between real value φreal and the
exact solution φ(xi, t) obtained from fluid dynamic equations. It comprises all simplifications
and assumptions conducted for the modeling of the problem, as establishing boundary
conditions, material values, time-dependent processes, as well as the choice of the turbulence
model. The categorization and quantification of these sources of errors is difficult, and heavily
relies on experiences in the respective field.

- discretization error: This error arises due to the approximative approach between the
exact solution of the differential equations φ(xi, t) and the solution of the discrete linear
equations φni . Depending on a consistent discretization scheme, this error should tend to zero,
under condition of mesh refinement and smaller time steps.

1. American Institute of Aeronautics and Astronautics
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- iterative error: Iterative errors occur due to the application of iterative methods, which
can not achieve the accuracy of the exact solution. Roache denotes the solution error as the
difference between the exact solution of the discrete linear equations φni and the calculated
result 〈φ〉ni .

The numerical error, hence the sum of discretization and solution errors, arises due to the
specification of convergence criterias, rounding errors, as well as bugs within the code.

2.3.2. Modelling error

The purpose of determining the modelling error is to enable an estimation of the impact of
various errors on the solution of a CFD calculation. The exact numerical reproduction of a
pump geometry is very difficult, and is often limited by the capacity of the available hard- and
software. Therefore, simplifications have to be introduced, e.g. coarse resolution of the blade
leading edges. It occurs that the final geometry of the pump is determined by the numerical
mesh created for the simulation, since mesh generation tools have their peculiarities.

The implementation of the correct boundary conditions for the investigated problem is vital.
It is important that the implementation of physical conditions at entry are set correctly, as
well as a reasonable distance to investigated domain. For the simulations conducted in this
work, the boundary condition at inlet was defined by a velocity deducted from the flow rate,
as well as additional parameters according to the chosen k-ω turbulence model. A constant
static pressure was defined at the outlet of the pump, which represents a further simplification
of the model, since the influence of the pressure line is not considered.[8]

The wall roughness has been neglected in this work, which is also the case in practical
applications these days. This means in terms, that the wall conditions were set on ’smooth
wall’ and ’no slip’ conditions, which implies a relative velocity of the fluid at the boundary of
null.

A negligible error is committed when defining constant properties, as density and dynamic
viscosity, for water. This is a common simplification in the numerical simulation of hydraulic
turbo machinery, since the temperature rise due to friction is relatively low.

Runner - Spiral Casing interface
Interactions between rotating and stationary components as they occur in centrifugal pumps,
in fact do not permit a quasi-steady-state consideration. Still these methods are often used
in practice, since transient calculations are very elaborate and have high demands on the
hardware capacities.

Over time a number of methods have been developed in order combine different mesh
components, which are moved relatively to each other. The simplest method, therefore, is the
simulation of a single impeller channel by imposing periodicity at the circumference. This
method is often used to compare individual geometries with each other, by calculating the
stationary solution of the flow. The equations are solved in the rotating reference system,
where additional fictitious forces are taken into account in the momentum equations. A
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disadvantage of this method is the imposition of a uniform circumferential pressure distribution
at outlet, which does not correspond to the real flow in pumps. Therefore, the application of
constant pressure boundary conditions represents a modelling error that must be considered.

For the numerical analysis of the runner-spiral casing interactions of centrifugal pumps, the
Frozen-Rotor and Sliding Mesh methods are frequently applied. These two methods will be
explained in section 4.6, since they have been compared in this work.

2.3.3. Numerical error

As stated earlier in this section, the numerical error arises from the sum of the discretization
and iteration error. The methodology for the estimation of this error is identical for all
numerical calculations. The minimum error of the solution is verified by setting limits on the
residuals, as well as by verifying the progress over the iteration history. The discretization
error is determined by examining the consistency of the discretization method used. Thereby,
a consistent discretization method provides a continuous decrease of the error with finer mesh
discretization. The mesh used in this work was provided by the R&D department Graz,
which was previously developed with excellent results.

Since this work was confined to the comparison of the methods described earlier in this report,
an evaluation of the numerical error was omitted. Basic information about the applied mesh
is stated in section 4. Even if the discretization error affects the total error in a small extent,
the choice of the turbulence models for the correct wall treatment is of great importance. The
fundamentals of the applied turbulence models used for the FV calculations will be described
in section 3.2.2.



3. Finite Volume Method

This chapter deals with the fundamentals of FV methods. This method considers the flux
balance between adjacent volumes and is therefore conservative. The mathematical description
of fluid flow is a closed system of partial differential equations. Unfortunately this system
is non-linear so that an exact analytical solution is impossible, except in special cases and
is subject to the condition of a number of simplifying assumptions. This is why we try to
approach the solution through numerical simulations. The goal is no longer to obtain an
analytical solution of the flow but to approximate the pressure field, velocity field, temperature
field etc. in a number of points in space and for a specified time, which is called the discrete
solution.

3.1. Governing Equations

The following section deals with the conservation principles which are applied to describe a
flow field as well as an equation to include the viscous dissipation and friction in the near wall
zone. The conservation laws can be derived by considering a quantity of matter or control
mass and its extensive properties, namely, mass, momentum and energy. The fundamental
variables are rather intensive properties, which are independent of the total amount of matter
considered, e.g. density ρ as mass per unit volume or velocity v as momentum per unit mass.
This section is based on the book [4].

If φ represents any conserved intensive property, then the corresponding extensiv property Φ
can be written as:

Φ =
∫

ΩCM

ρφdΩ (3.1)

where ΩCM denotes the volume occupied by the control mass. For the conservation of mass,
φ equals 1, and for the conservation of momentum φ = v. The conservation equation for a
control volume - called the Reynolds’ transport theorem - can therefore be written as:

d

dt

∫
ΩCM

ρφ dΩ = d

dt

∫
ΩCV

ρφ dΩ +
∫

SCV

ρφ(v− v0) · n dS (3.2)

where ΩCV represents the control volume, SCV the surface enclosing the CV, n the unit
vector orthogonal to SCV and directed outwards, v the fluid velocity and v0 is the velocity
of the moving CV surface. This equation is fundamental for this work, as two different
approaches will be employed. The first one is the finite volume method using ANSYS CFX,
which considers a fixed control volume with v0 = 0 and the first derivative of the right hand
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side becomes a local (partial) derivative. In words, this equation states that the rate of
change of the amount of the property φ in the CM, is the rate of change of the property
within the control volume plus the net flux of it through the CV boundary due to the fluid
motion relative to the CV boundary. If the CV moves with the same velocity of the control
mass v0 = v, the boundaries coincide and the convective term will be zero. Equation (3.2)
represents the general form, which assumes that all fluid and flow properties vary in space
and time. In many applications the fluid density can be assumed to be constant, as for flows
of liquids and gases with Mach numbers below 0.3.[4] This equation is fundamental for this
work and will be discussed in section 6 for the applied SPH-ALE method.

The current state of scientific knowledge considers that the best description of the macroscopic
flow of Newtonian fluids available is formed by the system of the Navier-Stokes equations. The
conservation laws for mass, energy and momentum form the actual basis of fluid dynamics.
These describe the observation that neither mass, momentum or energy can be destroyed
or created in a closed system. The Navier-Stokes problem is a mathematical description of
the motion of viscous, in case of hydrodynamics, incompressible fluids. By applying these
conservation laws to an infinitesimal volume element of a flowing fluid, we obtain partial
differential equations. These equations completely describe the three-dimensional flow field
which, in general, cannot be solved analytically but only numerically.

3.1.1. Conservation of mass

The integral form of the conservation of mass describes the change of mass through a control
volume, by setting φ = 1:

∂

∂t

∫
Ω

ρdΩ +
∫
S

ρv · n dS = 0 (3.3)

This equation states that the temporal change of mass of the control volume added with the
incoming flow and subtracted by the outgoing flow yields null. In this work the flow is assumed
to be incompressible. Applying the Gauss’ divergence theorem to the convection term, the
surface integral can be transformed into a volume integral if the vector field is continuously
differentiable. The conservative form of the continuity equation for incompressible flow can
therefore be written as: ∫

Ω

∇ · v dΩ = 0 (3.4)

Transforming this equation into the Cartesian form in both tensor and expanded notation,
leads to:

∂vi
∂xi

= ∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

= 0 (3.5)

where vi or (vx, vy, vz) are the Cartesian components of the velocity vector v and xi (i=1,2,3)
or (x,y,z) are the Cartesian coordinates.
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3.1.2. Conservation of momentum

According to Newton’s 2nd law of motion, the change of the momentum of a mass over time
is equal to the vectorial sum of all volume and surface forces f acting on the mass. The
conservative variable is the momentum density ρv. These forces are:
– pressure forces p at the boundaries of the control volume
– friction forces due to wall shear stresses τ
– external forces on fixed walls fe
– body forces as gravity, centrifugal and Coriolis forces etc.
Applying the Reynolds’ transport theorem according to Equ.(3.2), while replacing φ by v for
a fixed volume in space, we obtain the momentum conservation equation:

∂

∂t

∫
Ω

ρv dΩ +
∫
S

ρvv · n dS =
∑

f (3.6)

The integral form of the momentum conservation equation becomes:

∂

∂t

∫
Ω

ρv dΩ +
∫
S

ρvv · n dS =
∫
S

T · n dS +
∫
Ω

ρf dΩ (3.7)

where T represents the stress tensor, as the molecular rate of transport of momentum. The
differential coordinate-free form of the momentum conservation equation is obtained again by
applying the Gauss’ divergence theorem to the convective and diffusive terms:

ρ

(
∂v
∂t

+ div(vv)
)

= ∇ ·T + ρfe (3.8)

The left side of the equation describes the time dependent or/and convective effects, while
the right side sums the external forces and the divergence of stress. The investigated fluid is
assumed to be Newtonian, which is the case for water. For Newtonian fluids and incompressible
flow the stress tensor can be written as:

T = 2µD (3.9)

with µ representing the dynamic viscosity and D the strain (or deformation) tensor according
to:

D =
1
2
[
∇v + (∇v)T

]
(3.10)



3.2. Turbulence Modelling 27

3.1.3. Conservation of energy

Under consideration of a hydraulic pump and inviscid flows, the third conservation equation,
the energy equation is neglected. In order to construct an efficient numerical method, it is
necessary to analyze the type of flow that we seek to represent. The Navier-Stokes equations
allow a very rich representation of the phenomena involved, but this richness is reflected
by both, modelling challenges and higher computational costs. First we try to simulate
water flow without major thermal phenomena (heat). The equation of energy conservation
thus shows that only the terms of compressibility and viscous stresses are likely to change
the temperature. Since water is a liquid, it can be regarded as incompressible (or very low
compressible). On the other hand the molecular viscosity of water is very low. The heat
capacity of water compared to air is quite high, it requires a large variation of internal
energy so that the temperature varies significantly. All these arguments consider that the
temperature is constant in the flow. This allows to remove the equation of energy conservation
out of the system of equations, which is being solved.

3.2. Turbulence Modelling

This section is addressed to the theory of the applied turbulence models, which describe
turbulent flows.

As already stated, flows are completely described by the mathematical relationships of the
Navier-Stokes equations. The conservation equations for mass, momentum and energy are
valid for both laminar and turbulent flows. The transition from laminar to turbulent flow
is defined by the Reynolds number Re. This dimensionless number represents the ratio
between inertial and viscous forces, where at high Reynolds numbers, as they appear in
centrifugal pumps, the influence of viscous forces is low. Analytical solutions of the non-linear
Navier-Stokes equations are available only for a few special cases, as in laminar flow layers
and for similarity solutions for turbulent flows, but they are often inapplicable for technically
relevant flows.
For the calculation of these turbulent flows, different approaches can be applied to describe the
stochastic distributions of turbulent flow variables in space and time. Especially in rotating
components, these turbulent flows are associated directly with three-dimensional effects. The
different characteristics of turbulent flows must be considered by the numerical turbulence
models, and must be reproduced in the most accurate manner.

3.2.1. Reynolds Averaged Navier-Stokes equations

The models examined in this work belong to the group of statistical turbulent models - the
so-called RANS models. In statistically steady flow, every variable can be written as the sum
of a time-averaged value φ and a fluctuation about that value φ′.

φ(xi, t) = φ(xi, t) + φ′(xi, t) (3.11)
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Therefore, all of the unsteadiness is averaged out and the unsteadiness is regarded as part
of the turbulence. It is unlikely that any single turbulence model is able to represent all
turbulent flows, which is why they should be regarded as engineering approximations for
specific applications. Applying the Reynolds averaging processes described in [4] on the
incompressible Navier-Stokes equations yields the RANS equations. Some calculation rules
have to be considered as:

φ = 0 φψ′ = φ′ψ = 0 φ′ψ′ 6= 0 φψ = φψ (3.12)

The averaged continuity and momentum equations can be written for incompressible flows
(without body forces) in tensor notation and Cartesian coordinates as:

∂ρvi
∂xi

= 0 (3.13)

∂ρvi
∂t

+ ∂

∂xj

(
ρvivj + ρv′iv

′
j

)
= ∂p

∂xi
+ ∂τ ij
∂xi

(3.14)

where τ ij represent the mean viscous stress tensor components and p the mean static
pressure.

New terms appear as ρv′iv′j which are called Reynolds stresses. Therefore, the conservation
equations are not closed anymore, hence they contain more variables than equations. The
exact derivation of the transport equations of Reynolds stress tensor for incompressible fluids
yields:

∂v′iv
′
j

∂t
+ vk

∂v′iv
′
j

∂xk
=−

ProductionPk︷ ︸︸ ︷(
v′jv
′
k

∂vi
∂xk

+ v′iv
′
k

∂vj
∂xk

)
−2

Dissipation ε︷ ︸︸ ︷
ν
∂v′i
∂xk

∂v′j
∂xk

+

Pressure-strain correlation︷ ︸︸ ︷
p′

ρ

(
∂v′i
∂xj

+
∂v′j
∂xi

)
(3.15)

− ∂

∂xk

[
v′iv
′
jv
′
k − ν

∂v′iv
′
j

∂xk
+ p′

ρ

(
δjkv

′
i + δikv

′
j

)]
︸ ︷︷ ︸

DiffusionD

(3.16)

The transport equations of the Reynolds stress tensor now include triple correlations of the
unknown fluctuations, causing the closure problem to be shifted to a higher level.[23] In order
to close the equations, some approximations are introduced to describe the turbulent stresses
with empirical models. A prevalent turbulence model for technical applications is based on
the Boussinesq approach, which adds a turbulent viscosity µt to the Newtonian viscosity µ,
according to:

− ρv′iv′j = µt

(
∂vi
∂xj

+ ∂vj
∂xi
− 2

3
∂vk
∂xk

δij

)
− 2

3ρkδij (3.17)

where the turbulent kinetic energy is introduced as:

k = 1
2v
′
iv
′
i (3.18)
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3.2.2. Turbulence models

The turbulent viscosity is not a material property, but a variable depending on the current
local state of the flow. By means of a dimensional analysis, it can be shown that µt depends
on a characteristic turbulent velocity vt and a turbulent length scale Lt.

The turbulence models used in this work belong to the group of the two-equation models.
Here, the SST turbulence model by Menter is a combination of two models, namely the k-ε
and the k-ω. These models are well described in their characteristics in [1],[8],[4]. The SST
approach uses the advantage of both models by blending and trying to avoid their respective
disadvantages. For the purposes of this work, the properties of these models are described
briefly.

The k-ε model is found to be the most reliable in modelling the flow far from the solid walls.
It introduces in addition to the turbulent kinetic energy k the rate of viscous eddy dissipation
ε. A major weakness of this model is the low sensitivity at unfavourable pressure gradients.
In case of overproduction of turbulent viscosity, it may come to a delay or entire absence of
boundary layer separations. The k-ω two-equation model of Wilcox solves in addition to the
turbulent kinetic energy equation, the turbulent eddy frequency, or the specific dissipation
rate, ω. The advantage of this model is a relatively simple formulation within the viscous
wall layer by specifying a Dirichlet boundary condition. As a result, this model has proven to
be better in accuracy and robustness for solving boundary layer flow and does not require
artificial damping close to the wall. A major disadvantage of this model lies in the strong
dependence of the turbulent viscosity on the boundary conditions for ω in the free flow.

The blending SST model combines the advantages of each turbulence model, by calculating
the inner part of the boundary layer with the k-ω approach and the outer section as well
as the remainder of the flow with the k-ε model. This hybrid model shows its strength in
flows which are exposed to zones with flow separations. Regarding the ability to predict the
reattachment of detached flows, no significant improvements were identified.[8]

3.2.3. Boundary layer modelling

The boundary layer contains a zone of low velocity and strong shear in its vicinity, due to
the presence of the no-slip condition v = 0. This zone has to be modelled in order to resolve
the effects in the boundary layer with reasonable computational costs. ANSYS CFX uses
a scalable wall function approach to determine the velocity profiles near the wall with a
logarithmic relation with the wall shear stresses. The near wall region can be subdivided
into three layers, starting with the innermost layer, called ’viscous sublayer’. In this layer
the flow is almost laminar-like, and the (molecular) viscosity plays a dominant role. The
outer layer is called the fully-turbulent layer, where turbulence plays a major role. Between
the viscous sublayer and the fully-turbulent layer, an interim region is identified where the
effects of molecular viscosity and turbulence are equally important.[23] The transition zone is
characterized by a logarithmic velocity profile according to:

v+ = 1
κ
ln
(
y+
)

+B (3.19)
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with the dimensionless velocity v+, the Kármán constant κ, y+ the dimensionless distance
from the wall and an empirical constant represented by B. The non-dimensional velocity v+

is obtained by using the following definitions:

v+ = vt
vτ

y+ = ρvτy

µ
(3.20)

where vt denotes the mean velocity tangent to the wall at a distance y, the shear velocity
according to vτ =

√
τw
ρ . Two approaches are applied to model the near-wall region. In

the first approach called the ’wall-function’ approach, the viscosity affected inner region
(viscous sublayer and buffer layer) is not resolved. Instead, semi-empirical formulas called wall
functions are used to bridge the viscosity-affected region between the fully-turbulent region
and the wall. This obviates the need to modify the turbulence models to account for the
presence of the wall. In the second approach, the turbulence models are modified to enable
the viscosity-affected region to be resolved with a mesh all the way to the wall, including the
viscous sublayer. This method is termed ’near-wall modeling’ approach. The wall-function
approach is robust, economical and reasonably robust, but is inadequate in situations where
the low-Reynolds-number effects are pervasive in the flow domain. Such situations require
near-wall models that are valid in the viscosity-affected region and accordingly integrable
all the way to the wall.[23] The applied SST model takes advantage of the fact that the
k-ω model used in the boundary layer leads to a stable numerical solution without arbitrary
damping factors required to apply k-ε models close to the wall. It allows to resolve the
boundary layer consistently using mesh resolutions down to the viscous sublayer.[1]



4. ANSYS CFX

ANSYS CFX is a high-performance fluid dynamics program that has been applied to solve
wide-ranging fluid flow problems. This commercial software based on the finite-volume-method
is used at the R&D department for the numerical evaluation of different pump models.[30]
The following section describes the investigated model in this work and describes also the
specified settings for the numerical simulations. The relative motion between rotating and
static components is modelled with the FR approach and the transient runner motion using
the sliding mesh method. Both methods will be evaluated considering their ability to predict
the flow within a centrifugal pump.

The following table gives information of the mesh, provided by the R&D department. Basically
the model is divided into three components: draft tube, runner and spiral casing.

Nodes Elements Surfaces
DT 673.027 663.552 59.520
RN 1.126.818 1.064.448 156.384
SC 777.999 729.388 96.474
SC_SEP 67.602 65.088 4.768
Global 2.645.446 2.522.476 317.146

Table 1: Mesh information.

Figure 4.1.: Pump model.

4.1. Draft Tube (DT)

The inlet condition was set at the intake of the draft tube with the specified cartesian
velocities. Further, the SST and k-ω turbulence model were selected with the respective
turbulent kinetic energy k and the turbulent eddy frequency ω. The boundary condition
for the solid walls was defined with the ’no slip wall’ type, the wall roughness was set on
’smooth wall’. The fluid adjacent to the wall assumes the velocity to be zero at the wall. This
corresponds to the prototype, where the impeller channels were improved through additional
finishing. In turn, ’free slip wall’ would imply a shear stress of zero at the wall and the
fluid velocity is not retarded by any wall friction effects near the wall. The configuration
was established without buoyancy and with the Shear Stress Transport (SST) turbulence
model. A comparison of the SST model with the k−ω-model from Wilcox was performed, to
show the difference and advantages. The turbulence option for the fluid was set on ’Medium

31
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Intensity and Eddy Viscosity Ratio’, where medium stands for a turbulence intensity of 5%
and viscosity ratio of 10.

The mass and momentum model at the interface between the draft tube and the runner was
set on ’Conservative Interface Flux’. This implies that the quantity in question is flowing
between the investigated boundary and the boundary on the other side of the interface, which
means that the conservative interface flux must be used on the other side of the interface.

4.2. Runner (RN)

The domain motion of the runner was set on rotation with an angular velocity of 141.7
[
rad
s

]
and the ’Alternate Rotation Model’. This is a model for the advection term in the momentum
equation, which modifies the advection term so that it involves the absolute frame velocity
uabs instead of the relative frame velocity u. The main advantage of this model appears
when the absolute frame velocity is constant, but the relative frame velocity has a high
swirl component. In that case, the advection of the relative frame velocity would have a
high component of error, while advecting a constant absolute frame velocity will have less
error.[30]

The type of interface was set for both interfaces, DT/RNLP and RNHP /SC, with ’Conser-
vative Interface Flux’ and the interface type ’Fluid Fluid’. The interface model ’General
Connection’ connects the non-matching grids between DT, RN and SC, which is needed here
due to the stationary frame of reference of the DT and SC on one side and the rotating
frame of reference of the RN on the other side. This allows to select three types of ’Frame
Change/Mixing Model’, namely, Frozen Rotor, Stage and Transient Rotor Stator. The stage
model is the most common used in the R&D department, which is why the other two methods
were chosen in this work for comparison. More to the analysis is described in section 7.

Another detail has to be specified when choosing the General Connection, which is the
pitch change. The mesh connection method was set on GGI, which stands for General Grid
Interface. This method is used for grid connections, where the grid on either side of the
connected surfaces are incompatible. This connection is made in a conservative and implicit
manner, even if the nodes do not match. It handles also the case, where the connected
regions differ in their size, by connecting the mutually overlapping surfaces. According to
the CFX manual, even in the case that the surfaces do not fit perfectly together (e.g. a gap)
conservation is guaranteed and strictly enforced. In this context, it is recommended by the
developers of CFX to use the ’Direct Intersection Control’. It suggests an exact computation
of the area fractions, and is faster and more accurate than the bitmap method. However, it
will be shown in section 7.3.5 that inappropriate values are obtained at these GGI interfaces
of the investigated pump model.[30]
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4.3. Spiral Casing (SC) with outlet (SC_SEP)

The SC geometry was set in stationary domain motion and with a static pressure of 0 [Pa]
at the outlet. The turbulence model was set to the SST model with ’Medium Intensity and
Eddy Viscosity Ratio’. The interface was similarly initialized as the previously described
RN.

4.4. Modelling errors

The modelling errors (see 2.3.2) of this simulation of the pump with a FV method are as
follows:

– no consideration of impeller sidewall gaps
– constant static pressure at the spiral casing outlet
– manufacturing inaccuracies, e.g. narrow curvatures

4.5. Boundary conditions

The initial conditions for the numerical calculation of the pump were provided by DI. Michael
Buchmayr, who has already carried out numerous comparisons with OpenFOAM. The
nomenclature was adopted for the configuration and the results from the ANSYS CFX
calculations were used for further comparison with the results obtained from OF. In addition
to the comparison of the characteristic of the pump, an evaluation of the numerical errors was
carried out. Detailed analysis of the comparison of individual interfaces between rotating and
stationary domains took place. These results are not included here, as they will be published
by the author at a later stage.

For the calculation of the initial conditions u, k, ω, information was required regarding the
dimension of the pump (D1, D2, b2), the inlet cross-section of the draft tube and the rotational
speed of the impeller. Depending on the specified flow rates, multiple operating points were
obtained, providing the initial conditions for preprocessing of the methods used.

4.6. Steady/Transient calculation

In order to simulate the relative motion between the components, as well as their influence on
the flow, it is required to consider the entire centrifugal pump. This becomes more obvious if
one considers our model, where the flow is collected after the impeller in the spiral casing,
which consists of a variable cross-sectional geometry. Generally, there are three types of
GGI frame change connections available in ANSYS CFX-5, namely Stage, Frozen-Rotor and
Transient Rotor-Stator. In the following, the latter two methods are discussed.
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4.6.1. Frozen-Rotor

The FR method makes no geometric simplifications, however, this method makes use of
different reference systems. The rotating and static components are calculated each in a
stationary frame, so that the grid is not rotated. The coupling is realized at each node of
the interface by means of transformation of the velocity vector from the relative system of
the runner to the absolute system of the spiral casing. This leads to the term "frozen" since
the relative position of the individual components during the calculation remains unchanged.
This method does not consider the transient terms of the Navier-Stokes equations. The result
of the flow pattern is somewhat of a snapshot of the flow inside the pump.

The conservation equations stated in section 3.1 in vector form are applicable for any coordinate
system. The simulations performed in this work were carried out under the assumption of an
incompressible fluid without heat exchange, whereby the energy equation is not solved.[8] The
conservation equations are written for the inertial system, and shall hereinafter be converted
into a rotating frame of reference, as it is of great significance for the calculation of flows in
turbomachinery.

The solution of the equations of motion in the rotating frame of reference must take the
rotational acceleration into account, by considering additional terms in the momentum
equation. It can generally be stated that the relative system can be exposed to a translation
with the velocity vt and a rotation with an angular velocity ω. Thus, the absolute velocity
c of the inertial system is composed of the relative speed w and the local vector r in the
relative system. It can be written as:

c = vt + w + ω × r (4.1)

In the case of a rotating impeller, the translation vt is zero. Additional terms appear in
the rotating system in the momentum equation, which act as body forces. These forces are
fictitious forces because they are not due to external forces and act only on the observer in
the relative system. In this case the term 2ρ (ω ×w) denotes the Coriolis force. The Coriolis
force acts in the opposite direction of the rotation in the tangential direction, which deflects
a fluid particle to the blade pressure side. The term ρω × (ω × r) represents the centrifugal
force which acts radially outward. These two fictitious forces are zero, if the relative system
does not rotate (hence ω = 0). The continuity and momentum equations for the rotating
reference frame can be written as:

Dρ

Dt
=
∂ρ

∂t
+∇ · (ρw) = 0 (4.2)

ρ
Dw
Dt

= −∇p+ ρfe − 2ρ (ω ×w)− ρω (ω × r) +∇ · T (4.3)

The frozen rotor method is considered as robust and a good compromise between computational
effort and costs, but the results are often inapplicable for transient flows. A disadvantage
is the influence of the impeller position on the results. Since the impeller rotation is not
subjected to real motion, the position of the rotor blades to the stator has significant influence
on the observed phenomena. The position of the impeller was calculated for a single angular
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position, which was chosen arbitrarily. Gugau notes that the FR method basically allows the
consideration of interactions between static and rotating components, however, according to
his studies, this method leads to better results for radial turbines than for pumps.[8]

4.6.2. Sliding mesh method

The previously mentioned modelling error is almost entirely repealed through the application
of the sliding mesh method. The coupling of the sections in the absolute system takes place
directly via an auxiliary surface. This auxiliary surface is regenerated at each time step and
allows conservative transfer of flows at the interface. The impeller grid is rotated relative to
the stationary components at each time step. The rotation angle results from the selected time
step and the rotational speed of the impeller. Depending on the specified minimum residuals,
a solution is determined for each time step. Merging the individual time step results allows a
time-dependent calculation of the overall solution, and subsequently enables averaging the
integral values (Q,H, . . . ) over a defined number of revolutions. This method allows the
calculation of transient flows in turbo engines and comes closest to real physical phenomena.
A significant disadvantage is the increased demand for computation and evaluation time.[8]
The transient simulations conducted in this work required between 1 and 4 weeks. This
represents a clear disadvantage compared to the quasi-stationary frozen-rotor method, which
claims between 2 and 4 days, and also requires less computational resources to perform the
simulations of 17 operating points, compared to 4 transient OP calculations.

The evaluation of the results is described in chapter 7.

4.7. Frozen-Rotor Settings

The analysis type of the simulation was chosen for the first simulation run with ’Frozen
Rotor’. The first step was the adaptation of the queuing script used at the R&D department
to launch multiple simulations at a time. The values for u, v, w, k, ω have to be defined for
each operating point of the pump, which is to be investigated. In this case a number of 17
operating points was chosen to be evaluated for both turbulence models used.

The flow direction at inlet of the calculated domain, which corresponds to the draft tube
inlet, is set perpendicular to the inlet boundary. The characteristic curve of the pump was
determined between 0.4 ≤ Q/Qopt ≤ 1.33. At the outlet of the pump, a static pressure of
pstat = 0 [Pa] was specified. The turbulent parameters k and ω were obtained according to
equations (4.4) and (4.5)

Turbulent kinetic energy:
The turbulent kinetic energy per unit mass k was calculated for the boundary condition
according to the equation below. This equation represents a rough approximation for the
inlet distribution of k since no other data were available at the beginning.

kDT_LP = 3
2 · (uavg · I)2

[
m2

s2

]
(4.4)
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where I denotes the intensity of the turbulence. The turbulence intensity is defined as the
ratio of the velocity fluctuation u’ and the average velocity of the flow uavg.[27]

Turbulent eddy frequency (dissipation):
The second BC of the turbulence models is for the turbulence frequency ω = k/ε according
to

ωDT_LP =
√
k

C
1/4
µ · l

[Hz] (4.5)

where l represents the turbulence length scale, which is a physical quantity related to the size
of the large eddies that contain energy in the turbulent flows. It is assumed to have a fully
developed flow at the inlet of the draft tube. Therefore, a relationship between l and the
relevant dimension of the duct L can be approximated, according to l = 0, 07 · L. The factor
0,07 is based on the maximum value of the mixing length in fully turbulent pipe flow.[31]

Solver Control settings

The following tables summarize the settings of the conducted simulations. More information
can be found in the appendix. The configuration for the Solver Control in ANSYS CFX was
set:

Advection scheme B High Resolution
Turbulence Numerics B High Resolution
Convergence Control B min. Iterations 5

B max. Iterations 1000
B Fluid Timescale Control Local Timescale Factor = 10

Convergence Criteria B Residual Type Max
B Residual Target 1.E-5
B Conservation Target Value = 0.005

The configuration for the Execution Control was set:

Partitioning Details B MeTIS
Partitioning Weighting B Automatic
MeTIS Type B k-way

These are settings which are preferably used in the R&D department.

To launch the simulations on the cluster for multiple operating points, some specifications
have to be set: the number of the processors used for the simulation, the different boundary
condition parameters for each operating point and other configurations concerning the
scripts.

The results were obtained in form of different output-files, which enabled a more detailed
analysis and are shown in section 7.3.1.2.
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4.8. Transient calculation settings

The same pump model was applied for the transient calculations using the SST turbulence
model, which required adaptations in the starting script. The implementation of the turbulent
kinetic energy k and turbulent eddy frequency ω were enabled, as well as an inlet velocity as
initial condition. This allowed the import of data for different operating points by launching
the initial condition script. Before these simulations were started, some changes had to be
made in the CFX-Pre settings. The analysis type was set to transient mode, and different
simulation parameters were defined, which are based in large extent on experiences of the
developers of the R&D department. The transient calculations were launched by using the
results obtained from the Frozen Rotor run. On the basis of 500 completed iterations, the
transient calculations were launched with the following settings.

Time steps B Adaptive update time = 0.042
Timestep Update Frequency B 1
Time step adaptation B Numeric Coeff. Loops

B Min. Timestep 2.3E-5
B Max. Timestep 2.3E-3
B Target Min. Loops 2
B Target Max. Loops 4
B Timestep decrease factor 0,8
B Timestep increase factor 1,06

Initial Time B Automatic with value 0 [s]

The settings for the mesh are based on the previous Frozen Rotor settings.

Solver Control settings

The configuration for the Solver Control of the transient calculations was set:

Advection scheme B High Resolution
Transient scheme B Second Order Backward Euler
Timestep initialization B Automatic
Turbulence Numerics B High Resolution
Convergence Control B min. Iterations 1

B max. Iterations 50
B Fluid Timescale Control Coefficient Loops

Convergence Criteria B Residual Type RMS
B Residual Target 1.E-5
B Conservation Target Value = 0.005



5. Smoothed Particle Hydrodynamics (SPH)
The following chapter deals with the so-called Smoothed Particle Hydrodynamics method.
The SPH method has been developed by Monaghan, Lucy and Gingold in 1977 originally
intended for astrophysical applications, and VILA [28] (1999) extended the method to an
Arbitrary Lagrange Euler formulation. These developments were adopted by J.C. Marongiu
and further developments together with J. Leduc led to a code named ASPHODEL.

The following summarizes the different approaches to this method in this work.

Finite Volume Method
The calculation of the flow balance using the finite volume method is achieved by performing
an integration on the boundary surface of the discretized cell (Fig.5.1). The entering flux into
the volume is identical to that leaving the adjacent volume, so that this method is considered
to be conservative. Thus, the control volume is closed and the area of each surface element is
known (∑Sjnj = 0).

Figure 5.1.: Flow balance integration methods. left: finite volume method, right: smoothed
particle hydrodynamics.[14]

SPH
The calculation of the flow balance is performed in a different way, namely by performing a
volumetric integration over the domain. The kernel function contains a number of calculation
points, referred to as particles. These particles have a spatial distance over which the flow
properties are smoothed by the kernel function. The physical quantity of any particle is
calculated by summing the relevant properties of all particles which lie within the range of
this function. The contribution of each particle is weighted according to their distance from
the particle of interest. Generally one can say that the kernel function is a Gaussian function.
Cubic splines are used in order to obtain a function which is zero for particles with greater
distance. This is a major difference to the mesh based methods.
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5.1. The standard SPH method

The following section describes the standard SPH method and will further lead to the ALE
formalism used for the code ASPHODEL, which has been developed at ANDRITZ HYDRO
Vevey. It will explain the basics of the meshless numerical scheme, which will be adapted
for the numerical simulation of flows. The literature for this section is based on [14],[13] and
[11].

This numerical method is based on the reconstruction of a scalar or vector field from discrete
values within a domain. This method uses a so-called smoothing function in order to
interpolate the field variables of the domain. A ’kernel’ function approximates a field value at
one point by a weighted average of the values in vicinity. The formulation of SPH is divided
into the kernel and the particle approximation, as described in the following.

5.1.1. Kernel approximation

The integration of an arbitrary function and a smoothing kernel function gives the kernel
approximation. The function is then approximated by the total of the values of the nearest
neighbours in order to obtain the particle approximation of the function at a discrete point.

5.1.1.1. Integral representation of f

The concept of an integral representation of a function f(x) used in the SPH method starts
from the following identity. At any point in space Ω and at the border ∂Ω, the value taken
by f can be written as the product of f with the Dirac function δ.

f(x) =
∫
Ω

f(x′) δ(x− x′) dx′ (5.1)

where f is a function of the three-dimensional position vector x, and δ (x− x′) is the Dirac
delta function given by

δ(x− x′) =
{

1 x = x′

0 x 6= x′
(5.2)

Equation (5.1) implies that a function can be represented in an integral form. This integral
representation is exact since the Dirac delta function is used, as long as f(x) is defined and
continuous in Ω.

If the Delta function kernel δ (x− x′) is replaced by a smoothing function W (x− x′, h), the
integral representation of f(x) is given by

〈f(x)〉h =
∫
Ω

f(x′)W (x− x′, h) dx′ ≈ f(x) (5.3)
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where W represents the smoothing kernel function. In the smoothing function, h is the
smoothing length defining the influence area of the smoothing function W. As long as W
is not the Dirac function, the integral representation in Equation (5.3) can only be an
approximation. This formula represents an approximation of Equ.(5.1) in proportion to the
weights of the adjacent points which rapidly decrease with the distance to x. This is typically
achieved by using kernel functions of the Gaussian type. The Gaussian function itself can be
used, but it has the disadvantage of having an infinite support. It thus involves all points in
space in the calculation of Equ.(5.3) even if the weights of the distant points tend to zero.
For this reason, other functions with compact support are used, which are briefly discussed
in section 5.1.3. In the SPH convention, the kernel approximation operator is marked by the
angle bracket 〈〉.

The smoothing function should satisfy a number of conditions. The first one is the normal-
ization condition that states ∫

Ω

W (x− x′, h) dx′ = 1 (5.4)

This condition is termed as the unity condition since the integration of the smoothing function
produces the unity.

The second condition which has to be satisfied is the Delta function property that is observed
when the smoothing length approaches zero.

lim
h→0

W (x− x′, h) = δ(x− x′) (5.5)

The third condition is the compact condition∫
Ω

W (x− x′, h) = 0 when | x− x′ |> κh (5.6)

where κ is a constant related to the smoothing function for a point at x, and defines the
non-zero or effective area of the smoothing function. This effective area is called the support
domain for the smoothing function of point x. Using the compact condition, the integration
of the entire problem domain is localized as an integration over the support domain of the
smoothing function. Therefore, the integration domain Ω is usually the same as the support
domain.

The fourth condition is the symmetric condition, which is generally regarded as satisfied when
using kernel function pairs. ∫

Ω

(x− x′)W (x− x′, h) dx′ = 0 (5.7)

It guarantees the reproducibility of linear functions. Under these conditions, the method of
reconstruction (Equ.5.3) described above is therefore of spatial accuracy of second order. It
is important to understand now that in case the integration domain is truncated, that is to
say, when the reconstruction point x considered is close to the boundary of the calculation,
the conditions (5.4) and (5.7) are no longer satisfied with a symmetric kernel function W,
and this simple method of reconstruction is no longer of the same degree of accuracy.
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Fifth, the kernel function must also be positive throughout the entire support domain and be
monotonically decreasing with distance to the point of interest to realize a local average.

The sixth and last condition a smoothing function should satisfy is, to be a continuous and
differentiable function.

5.1.1.2. Integral representation of the gradient of f

A major advantage of SPH is the possibility to calculate the gradient of a field using discrete
values taken in the field without making assumptions on the spatial distribution of these
points. The approximation of the spatial derivative ∇ · f(x) gives, when substituting f(x)
with ∇ · f(x) from equation (5.3)

〈∇f(x)〉 =
∫
Ω

[
∇ f(x′)

]
W (x− x′, h) dx′ (5.8)

Integration by parts leads to:

〈∇f(x)〉 =
∫
Ω

∇
[
f(x′)W (x− x′, h)

]
dx′ −

∫
Ω

f(x′)∇W (x− x′, h) dx′ (5.9)

where the first integral on the right hand side of equation (5.9) can be converted by using
Green’s theorem, which transforms the integral into a surface integral

〈∇f(x)〉 =
∫
∂Ω

f(x′)W (x− x′, h)n dS −
∫
Ω

f(x′)∇W (x− x′, h) dx′ (5.10)

where n is the unit normal vector to the surface S. Thus, this equation has a surface and a
volumetric contribution. In most practical applications of SPH, it is convenient to use the
kernel function with compact support because of its efficiency. We consider now a kernel
function W with compact support. The parameter h is introduced as a measure of this
support of the function W at x, which we denote by D(x). Since the smoothing function W
is defined to have compact support the surface integral becomes zero when the integrated
domain is located within the problem domain. If the integrated domain is not fully contained
in the calculated domain, the smoothing function W is truncated by the boundary and the
surface integral is no longer zero (Fig.5.2). We obtain

〈∇f(x)〉 =
∫

∂D(x)

f(x′)W (x− x′, h)n dS −
∫

D(x)

f(x′)∇W (x− x′, h) dx′ (5.11)

where ∂D(x) is the intersection of the integrated domain D with the boundary ∂Ω.

In the case of a point being sufficiently far from a boundary, using a compact support makes
it possible to have no surface influence. On the other hand, if we impose a field boundary
condition of zero, such as imposing a pressure p = 0 for free surface, the contribution of
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Figure 5.2.: Domain truncation caused by the boundary of the investigated domain.[14]

the surface integral vanishes also for the calculated points close to such a boundary of the
problem domain. That is why the standard SPH formalism is reduced to

〈∇f(x)〉 = −
∫

D(x)

f(x′)∇W (x− x′, h) dx′ (5.12)

and using the symmetry of the kernel function leads to

〈∇f(x)〉 =
∫

D(x)

f(x′)∇W (x′ − x, h) dx′ (5.13)

5.1.2. Particle approximation

Another key operation in the SPH methods is the particle approximation, where the entire
system is represented by a finite number of particles, where each one carries mass and occupies
space.

The continuous integral representations of the kernel approximations (Equ.(5.3)) can be
converted to discretized forms of summation over all the particles in the support domain
(Fig.5.3). The infinitesimal volume dx′ in the integration at the location of particle j is
replaced by the finite volume of the particle ∆Vj that is related to the mass of the particles
mj by

mj = ∆Vj · ρj (5.14)

where ρj is the density of particle j (=1, 2, . . . , N) in which N is the number of particles
within the support domain of particle j.

In practice, this method means integrating the product f ·W by a method of rectangles
or Riemann sum. We obtain for a point x distant from the boundary ∂Ω the particle
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Figure 5.3.: 2D representation of the support domain and the considered adjacent particles.[14]

approximation:

〈f(x)〉 =
∫
D

f(x′)W (x− x′, h) dx′

≈
N∑
j=1

f(xj)W (x− xj , h)∆Vj

≈
N∑
j=1

f(xj)W (x− xj , h) 1
ρj

(ρj∆Vj) (5.15)

≈
N∑
j=1

f(xj)W (x− xj , h) ωj

where N is the number of particles within D and ωj is the mathematical weight associated
to each point. ωj has the meaning of a volume in 3D, which is calculated with ω =
(area of base) · height. Height is the height of a layer of particles, which is usually equal to
the targeted discretization size. Further, the particle approximation for a function at particle
i can be written as

〈f(xi)〉 =
N∑
j=1

f(xj)Wij ωj (5.16)

where

Wij = W (xi − xj , h) (5.17)

Equation (5.16) states that the value of the function at particle i is approximated using the
average of those values of the function at all the particles in the support domain of particle i
weighted by the smoothing function.
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For the spatial derivative of the function, we obtain

〈∇f(x)〉 =
N∑
j=1

f(xj)∇W (x− xj , h)ωj (5.18)

where the gradient ∇W in equation (5.18) is taken with respect to the particle j. The particle
approximation for a function at particle i can finally be written as

〈f(xi)〉 =
N∑
j=1

f(xj)Wij ωj (5.19a)

〈∇f(xi)〉 =
N∑
j=1

f(xj)∇iWij ωj (5.19b)

Wij = W (xi − xj , h) = W (| xi − xj |, h) (5.19c)

∇iWij = xi − xj
rij

∂Wij

∂rij
= xij
rij

∂Wij

∂rij
(5.19d)

where rij is the distance between particle i and j.
Substitution of the function f(x) with the density function ρ in equation (5.19a), the SPH
approximation for the density is obtained as

ρi =
N∑
j=1

mjWij (5.20)

This equation is often referred to as summation density approach. It should be noted that
Wij has a unit of the inverse of the volume. The equation above states that the density of a
particle is a weighted average of those of all the particles in its support domain.

The SPH method is essentially a mathematical tool able to handle discrete data on a set
of points of disordered discretization. This makes it very flexible to use and enables it to
manage a large deformation of the mesh. By that, it appears appropriate for the construction
of a Lagrangian numerical method.
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5.1.3. Smoothing kernel function

The smoothing kernel function can be considered as equivalent to discretization schemes in
mesh dependent techniques such as finite difference, for example. Properties as accuracy,
stability and the simulation costs of an SPH simulation heavily depend on the smoothing
kernel chosen and its associated smoothing length.[24]

It can be represented in a general form as

W (rij , h) =
1
hd
f

(rij
h

)
(5.21)

where h denotes the smoothing or support length, which represents the spatial resolution
of SPH. rij is the magnitude of the distance between particle i and j and d the dimension
of the problem. One can find a wide variety of different kernel functions which satisfy the
conditions listed in 5.1.1.1.

5.1.4. Convergence criterion

The SPH method involves two spatial discretization parameters. As all numerical methods,
it uses a discretization of the computational space characterized by a certain length scale
∆x, which is an average distance between particles. But the SPH method also involves a
second parameter - the size of the field interpolation - which is proportional to the smoothing
length h. The latter parameter controls the average number of neighbouring points used in
the interpolation scheme. Like any numerical method, the SPH method is called consistent if
the discrete solution obtained after resolution of discrete equations describing the flow tends
to the exact solution when the sample size ∆x tends to zero. At the same time the Equ.(5.2)
approaches the exact solution if the kernel function is a proper approximation of the Dirac
function as h tends to zero. The last criterion implies an infinite number of particles to obtain
the exact solution.

The convergence of the SPH method is ensured if the following three relations are simultane-
ously satisfied: 

∆x −→ 0
h −→ 0
h

∆x −→∞
(5.22)

For reasons of application and computational costs, it is evident that the ratios for h
∆x must

be finite. For the simulations run in ASPHODEL an aspect ratio of 1.2 was chosen.
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5.2. Solving the Euler Equations with the Standard SPH Method

The mathematical tools presented can be used to numerically solve the system of equations
(5.25). If we assume to have a set of calculation points xi achieving a satisfactory discretization
of the investigated fluid, each point has its own velocity v, density ρ and pressure p. Further,
each point is assigned an elementary volume ω - also called weight. The standard numerical
SPH method involves the calculation of the spatial terms to transform the partial differential
equations (PDE) into ordinary differential equations (ODE) and a time integration of the
obtained ODE.

5.2.1. Euler Equations

For this application, the governing equations are composed of the conservation of mass and
momentum, while neglecting the conservation of energy.

If we neglect the viscous terms in the Navier-Stokes equations, thus we obtain the system of
Euler equations for a isothermal flow. This system can be written in non-conservative form
as:

∂ρ

∂t
+ [v · ∇]ρ = −ρ∇ · v (5.23)

∂v
∂t

+ [v · ∇]v = −
1
ρ
∇p+ fe (5.24)

These equations are written for a fixed reference and therefore represent an Eulerian description
of the flow. In the context of a Lagrangian description, which will be used in the following,
the reference is related to the flow and the system is rewritten:

Dρ

Dt
= −ρ∇ · v

Dv
Dt

= −
1
ρ
∇p+ fe

(5.25)

where D
Dt is the total derivative with respect to time also known as the Lagrangian derivative.

This system of equations will be the basis for the construction of the SPH numerical method
which was initially conducted for the simulation of free surface flows.

There are several approaches to the formulation of the conservation equations for the SPH
method. The formulation used in ASPHODEL was developed by VILA [28] and COLAGROSSI
[3]. The reason why the developers of this code chose this formulation is the suitability for
multiphase flows showed by OGER [17], which was thoroughly investigated in ASPHODEL
by LEDUC [11].



5.2. Solving the Euler Equations with the Standard SPH Method 47

The obtained system of discrete equations is:
Dρi

Dt
= ρi

∑
j∈Di

mj

ρj
(vi − vj)∇Wij

Dv
Dt

= − ∑
j∈Di

mj

(
pi + pj

ρiρj

)
∇Wij + fe

(5.26)

To close the system of equations there is a need for a correlation in order to calculate the
pressure pi. The Tait equation (Equ.(5.27)) is typically used in SPH to simulate the behaviour
of water. This equation of state implies that the pressure pi is a function of the density ρi.

pi = ρ0c
2
0

γ

[(
ρ

ρ0

)γ
− 1

]
(5.27)

The variables with the index 0 represent the state of reference, with ρ0 and p0 as the reference
density and pressure for water. The parameter γ represents the adiabatic exponent, which is
defined for liquid water with the value 7. In the case of a hydraulic pump we consider the
fluid as incompressible, but the calculation of the pressure using the Tait equation implies a
compressibility of the fluid, which is directly related to the reference speed of sound. Despite
that fact, this law is able to describe incompressible fluids in an accurate manner as long as
we consider the actual speed of sound of the investigated fluid, which is defined for water
with 1484 m/s. This value is directly associated with an increase of the simulation costs
since the time integration uses a time step, which is limited by the reference speed of sound
c0. This makes it necessary to verify the necessity of the physical speed of sound for our
application. Marongiu states, that considering hydraulic flows with Mach numbers below 0.1
in the entire system, leads to a variation of the density lower than 1%. The reference speed of
sound is therefore chosen with 10 times the maximum speed of the flow. This simplification
is acceptable for the development of the code, while it must be noted that the simulation
costs will significantly increase for the application on an actual pump design.[12],[14]



6. Calculations with the SPH code
ASPHODEL

This section focusses on the methodology and formalism applied in ASPHODEL, which is
based on the thesis of the initial developer J.C. MARONGIU, who accurately described the
applied formalisms of the SPH-ALE developments.

The hybrid ALE formalism has been originally developed by Jean-Paul VILA in the 90s
([20],[28],[29]) and is based on conservative formulation of the conservation laws, referring to a
moving control volume with velocity v0. The velocity of the considered control volume can be
chosen arbitrarily. In the case of defining the velocity v0 = 0 leads to the Eulerian description,
whereas setting the velocity equal to the flow speed, i.e. v0 = v, results in the Lagrangian
description. This allows the treatment of boundary conditions with already proven methods
developed for Eulerian descriptions.

The standard SPH method is built on a non-conservative form of the Euler equations written
in a Lagrangian frame, from which MARONGIU, LEBOEUF and PARKINSON initially
developed ASPHODEL. This code is based on the previous work from VILA, an Arbitrary
Lagrange Euler (ALE) description together with a weak form of the Euler equations. This
leads to a hybrid method directly linked to the finite volums methods [15]. The developers
chose this formulation originally for the application on Pelton turbines. The characteristic
of this method was the ability to treat solid walls in order to provide a mathematically
and physically more rigorous model, whereas being suitable for the treatment of complex
geometries of Pelton turbines applied at ANDRITZ HYDRO Vevey.

The equations of motion are written in conservative form by conducting a flow balance on the
periphery of the control volume and are expressed in a reference frame related to a mobile
control volume. This leads to the following flow balance

d

dt

∣∣∣∣
v0

∫
Ω

Φ dΩ +
∫
S

Φ(v− v0) · n dS =
∫
S

QS · n dS +
∫
Ω

QV dΩ (6.1)

where Φ is the vector containing the conservative variables, v0 the velocity of the control
volume in motion, S denotes the boundary of the control volume Ω, n the unit normal vector
perpendicular to the surface and QS and QV represent the surface and volume source terms,
respectively. d

dt

∣∣∣
v0

denotes the derivative along the trajectory followed by the control volume.
When transforming the surface terms into volume integrals by means of the Gauss’ theorem
and assuming that the source term is reduced to the surface pressure, we obtain a conservative
form of the system of conservation laws that can be put in the form:

Lv0(Φ) + div(FE(Φ)− v0 Φ) = QV (6.2)
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where Lv0(Φ) is the transport operator associated to the field of transport v0, and FE denotes
the vector of flux associated to the Euler equations (Equ.(6.4)). In three dimensions these
flows are given by:

v =

 u
v
w

 , Φ =


ρ
ρu
ρv
ρw

 (6.3)

F
(1)
E (Φ) =


ρu

p+ ρu2

ρuv
ρuw

 , F
(2)
E (Φ) =


ρv
ρuv

p+ ρv2

ρvw

 , F
(3)
E (Φ) =


ρw
ρuw
ρvw

p+ ρw2

 (6.4)

With this formulation it is possible to describe the flow regardless of the perspective of the
coordinate system, where v0Φ describes the movement of the control volume. This implicates
the possibility to define v0 = v, where the flux terms disappear and we obtain the Lagrangian
description, or v0 = 0 leading to the Eulerian description.

MARONGIU found that the calculation of the interaction between the particles, regarding the
discrete equations of motion formulated by VILA (see Equ.(5.26)), involve only the gradient
of the kernel function, hence ∇W . The calculation of the gradient of a function previously
stated in Equ.(5.11) is hence,

〈∇f(x)〉 =
∫
∂Ω

f(x′)W (x− x′, h)n dS −
∫
Ω

f(x′)∇W (x− x′, h) dx′ (6.5)

If the particles close to the border are considered, it can be noticed that the field of interpolation
intersects with the boundary ∂Ω, thus the kernel function W is not null at ∂Ω. The surface
integral is only zero when regarding special cases where the boundary conditions are actually
zero, which typically occurs in the case of a free surface flow.

In the case of a non-adherent solid wall, neither pressure nor velocity are initially set to zero,
which is why this term can not be neglected, as done in the Standard SPH formalism. The
omission of this term is the reason for the non-consistency of the numerical scheme, so that
there are attempts to treat the solid walls by means of virtual particles.

The approach adopted by MARONGIU calculates the surface integral directly. The approxi-
mation of the gradient of the function f was modified to

〈∇f〉i =
∑
j∈Di

fj∇Wij ωj +
∑
j∈∂Di

fjWijSjnj withWij = W (xi − xj , h) (6.6)

and Sj defines the area of the surface element associated to the discretization point j on the
solid wall. MARONGIU states that "with this new approximation it is now possible to keep
the same precision at the boundary, as in the core of the computational domain, since the
same quadrature formula is used." 1

1. translation from MARONGIU: "Cette nouvelle approximation permet de restaurer la consistance du
schéma numérique et présente à priori la même precision au bord qu’au coeur du domaine de calcul puisque la
même formule de quadrature est utilisée."
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As mentioned this part of the theory refers to the thesis of the developer [14], which applied the
ALE formalism developed by VILA [ref] for complex geometries. This has been successfully
applied for the simulation of Pelton buckets and further developments at ANDRITZ HYDRO
Vevey concerning the parallelization of the code now enable now the simulation of entire
turbines in a remarkable time.

A main difficulty of the SPH method, which still requires development and innovation, is the
adequate modelling of boundary conditions due to the truncation of the field of interpolation.
This leads to significant errors in the evaluation of the field and its gradients in areas near
the boundaries. In order to solve this problem, different methods have been developed, as
the application of a virtual extension of the computational domain beyond the adjacent
walls. This allows to find a suitable number of neighbouring particles in the interpolation
scheme and restore the consistency of the numerical scheme. However, these methods are not
satisfactory for the application on complex geometries.

Further analysis of applications on violent phenomena such as the impact of a water jet
on a wall were conducted, which comprise the risk of an inadequate representation of the
flow interaction with the solid wall. The correct representation of the flow interaction with
solid walls has been extensively investigated. Further developments are being carried out at
this stage by Magdalena NEUHAUSER at ANDRITZ HYDRO Vevey with the objective to
combine SPH with the Finite Volume Method. This is possible due to the ability of the ALE
formulation to change between a Lagrangian and Eulerian description, where the conservation
laws are written in an arbitrarily moving frame of reference.

The discrete equations describing this ALE method are finally given by [15],[28]:

d

dt
(xi) = v0 (xi, t)

d

dt
(ωi) = ωi

∑
j∈Di

ωj (v0 (xj)− v0 (xi))∇Wij

d

dt
(ωiρi) + ωi

∑
j∈Di

ωj2ρE,ij (vE,ij − v0 (xij , t)) · ∇Wij = 0

d

dt
(ωiρivi) + ωi

∑
j∈Di

ωj2 [ρE,ijvE,ij ⊗ (vE,ij − v0 (xij , t)) + pE,ij ]∇Wij = ωiρig

(6.7)

Providing a velocity for the calculated points different from the flow speed allows to treat
a delayed speed throughout the convective flow. The mathematical description of the ALE
method is generally conservative, so that the mass and momentum remain constant within
the flow. However, if the velocity of the moving calculation points was considered to be in
a pure Lagrangian description, thus v0 = v , the convective flows are no longer zero. This
implicates an exchange of matter, where mi = ωiρi is no longer constant in time, unlike in
the classical SPH method.

The developers of this method seek for an approach with the widely used Finite Volume
Method. The ALE method allows to employ techniques developed for mesh-based Eulerian
methods, which have been successfully elaborated in the last decades on complex flow
conditions.
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6.1. Generated 2D geometries for test cases

As already mentioned, the first task was the further development of the code by imposing
inlet and outlet boundary conditions. This took place in cooperation with the developers of
this code in the R&D department Vevey. So far this code was exclusively applied for free
surface flows, as found in Pelton turbines. The implementation of boundary conditions is
currently in the process of development. Many proposals circulate in the SPH community,
however, no method has so far come forward as the most suitable one. These studies are in
progress at present and will be able to deliver in the near future a more detailed analysis
of these development steps. In the course of this work, we finally came to a stage where
the specification of boundary conditions was possible, but this requires much more detailed
evaluation to confirm the applicability. The last weeks of my stay in Vevey were dedicated to
the integration of the three-dimensional pump geometry. In the following these processes are
documented.

6.1.1. Cylinder and square geometry

First simulations were conducted on geometries created in C++ containing a cylinder or a
square (Fig.6.1). The geometry consists of particles arranged at the circumference of the
cylinder, with a specific particle diameter. A prerequisite for the correct application of this
method is, that the distance between the center-points of the solid particles has to be smaller
than the fluid particle size. Further, each solid particle is assigned by a unit normal vector.
Together this represents the surface of the geometry.

Figure 6.1.: Geometry created in C++ including normals

6.1.2. Subdivision in moving and static domain in ALE mode

This section describes the creation of two-dimensional geometries in order to attempt to
simulate a rotor-stator-interaction with SPH. The calculation domain was modified, in order
to separate the moving from the static calculation points. Since the focus is more on the
development and evolution of the code, a simple square geometry is used at the beginning in
order assess the feasibility of the intended test-case. A schematic sketch is shown in Figure
6.2. The code was changed in a manner, which allows to specify an arbitrary particle velocity
in z-direction, which does not depend on the flow speed and also may be non-zero. Further,
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an acceleration phase according to Equ.(6.8) was included to stabilize the initial phase of the
simulation, by means of avoiding an abrupt movement of the particles.

Figure 6.2.: Subdivided domain for Eulerian calculations.

vz =
vz,end

2 ·
[
1 + sin

((
t
t1
− 1

2

)
· π
)]

t ≤ t1
vz = vz,end t > t1

(6.8)

with:
vz . . . current speed
vz,end . . . maximum speed
t . . . physical time
t1 . . . acceleration time

6.1.3. NACA Airfoil

For further evaluation of the code, it was decided to generate a geometry based on the NACA
airfoils developed by EASTMAN et.al. [1933]. A cambered geometry was created by adapting
a script written by J.C. Marongiu on C++ for a symmetric 4-digit profile. In the following,
the equations and parameters for the geometry are briefly described.

Symmetric Airfoil

yt = t

0.2 · c ·
[
0.2969

√
x

c
− 0.1260 ·

(
x

c

)
− 0.3516 ·

(
x

c

)2
+ 0.2843 ·

(
x

c

)3
− 0.1015 ·

(
x

c

)4
]

(6.9)

with:
c . . . chord length
x . . . position along the chord from 0 to c
yt . . . half thickness at a given value of x
t . . . maximum thickness as a fraction of the chord
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Figure 6.3.: symmetric NACA geometry generated in C++.

Cambered Airfoil
For the generation of a cambered foil equation (Equ.6.9) is extended by the following equation
to create the camber.

0 ≤ x ≤ p · c yc = m · x
p2 ·

(
2p− x

c

)
(6.10)

p · c ≤ x ≤ c yc = m · c− x
(1− p)2 ·

(
1 + x

c
− 2p

)
with:
yc . . . mean camber line at a given value of x
m . . . maximum camber
p . . . location of the maximum camber

Thus, the coordinates arise from:

upper camber xU = x− yt · sinφ ; yU = yc + yt · cosφ

lower camber xL = x+ yt · sinφ ; yL = yc − yt · cosφ (6.11)

with φ = arctan

(dyc
dx

)

Figure 6.4.: Cambered NACA geometry generated in C++.
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6.2. Boundary condition developments

This section summarizes the performed developments on ASPHODEL which were carried
out on different geometries during a three-month internship at ANDRITZ HYDRO Vevey.
The results are the basis for comparisons with existing experimental data and the previously
mentioned finite volume calculations, in order to present the applicability of this code. In
the beginning, investigations on 2D geometries as cylindrical and square shapes were carried
out, which subsequently led to more complex geometries as airfoils and three-dimensional
geometries. It should be noted that my task was the preparation and analysis of the numerical
simulations run on ASPHODEL, while Magdalena NEUHAUSER and J.C. MARONGIU
conducted the modifications in the code. The results of 2D simulations are not shown in this
work, because more detailed examinations are required and the main focus of this report was
laid on the applicability for a centrifugal pump.

During the development process, two different fluid motion types were conducted - the
Lagrangian and Eulerian description for the simulations - which at the same time demonstrate
the flexibility of ASPHODEL. The first type used was the Lagrangian description, where
the velocity of the particles is set equal to the fluid velocity, which enables tracking of each
particle throughout the domain.

dxi
dt

= vi (6.12)

The motion type has been changed in the course of the work to Eulerian due to reasons,
which will be explained in section 6.2.2. Therefore, the calculation points in the discretized
domain are spatially fixed with a velocity of null.

dxi
dt

= 0 (6.13)

The first step was the adaptation of ASPHODEL for internal flows, enabling inlet and outlet
conditions at the boundaries. Since the parallel mode of the code was initially developed for
3D simulations, the 2D calculations had to be executed on one core, either on the local host or
on the cluster. Thereby, converged solutions were generated after an average computational
time of 10 to 30 hours. The simulations were partly run simultaneously.

Even though adaptations of the method had to be carried out continuously, some basic
settings for the execution of the software are stated. These settings have no claim for general
applicability of the conducted simulations, but can be seen as a reference.

ASPHODEL INI-File Settings

The following description shows the structure of an initial file, which in addition to the
mentioned parameters requires information about the output configuration as well as the
fluid and solid geometries.

Flu id parameters
gamma = 7
r e f e r e n c e dens i ty = 1000 .
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r e f e r e n c e speed o f sound = 10x f l u i d v e l o c i t y

Case parameters
g rav i ty
CFL

Numerical parameters
l ength r a t i o = 1 .2 . . . parameter f o r the ke rne l

f unc t i on
r0 = 0.002 . . . p a r t i c l e rad iu s
time i n t e g r a t i o n scheme = RK3

The parameter γ represents the heat capacity ratio of water; the reference density and speed
of sound are used in the Tait equation (Equ.(6.15)). Since the code is determined by the
Euler equations, the fluid viscosity is not considered.

6.2.1. Lagrangian motion description

The first simulations were conducted with a cylinder geometry, while setting the motion type
on Lagrangian mode. In the following, some observations and findings from the results will
be commented, in order to describe the complexity of the evaluation, since experiences are
very limited in this field.

It is obvious that some influential parameters can be determined, as the fluid particle size,
which is a measure for the discretization of the investigated domain, as well as the Courant-
Friedrichs-Levy condition, which is a stability limit for solving partial differential equations
numerically.

CFL = v4t
4x

(6.14)

A CFL-number of 0.5 resulted in an acceptable ratio between stability and simulation costs.
Further, the MUSCL scheme was chosen which is known to provide accurate results in
solutions also affected by shocks and discontinuities as well as the Riemann Solver.

MUSCL is a method used to avoid spurious oscillations and obtains a high-order accuracy
by data reconstruction. This acronym stands for Monotone Upstream-centred Scheme for
Conservation Laws by Van Leer (1979) and is used for the generation of second-order upwind
schemes through variable extrapolation.[25]

The fluid particle size is a parameter which has been varied several times. As stated earlier
in this section it should be noted, that the fluid particle size should not be smaller than the
solid particle size, because of the inevitable penetration of the fluid particles due to spatial
gaps. Nonetheless, dimensioning the wall particles too small leads to non-physical outcomes
in areas, where solid particles are not influenced by any fluid in the domain. Results showed
at an early stage that some modifications were necessary to obtain exploitable results, since
one of the main issues in Lagrangian mode is the correct reproduction of the flow around
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a bluff body (Fig.6.5). An increase of the reference speed of sound showed no significant
improvements, but an increase in computational costs. The code includes up to this point a
numerical viscosity in the momentum equation to stabilize the scheme, but no viscous terms.

Figure 6.5.: Pressure distribution in Lagrangian mode.

a) Inlet boundary condition

A first step was, to eliminate the inlet particles. The second step was to replace the
MUSCL scheme by constant reconstruction throughout a specified length at inlet. Constant
reconstruction was conducted in order to improve the boundary conditions, which were
affected by reflected waves at inlet. Constant reconstruction has the characteristic of being
very diffusive, therefore, it was only applied at the inlet to reduce these reflected waves at the
boundaries. This change was only of limited benefit since the reproduction of the pressure
field was not satisfactory, due to the damping effects along the fluid domain, e.g. suppressing
flow effects as Kármán vortex shedding.

b) Background pressure

A background pressure was introduced with the attempt to improve the numerical stability
and to decrease the pressure waves generated at the boundaries of the domain. For this, the
Tait equation has been assigned with a constant pressure, and numerous simulations were
carried out to verify the impact.

p = ρ0c
2
0

γ

[(
ρ

ρ0

)γ
− 1

]
+ pref (6.15)

Expectations of high improvements concerning the pressure waves were limited, but this
attempt was used as start-up for further modifications, since the implementation was straight-
forward. The results showed an increase in the stability of the simulation.

c) Inlet and outlet condition based on fictive forces

As a further step, it was decided to introduce a fictive force at the outlet of the considered
domain, in order to overcome the pressure inconsistencies at low Mach numbers. Therefore a
buffer was implemented, in which the pressure and the buffer size can be set to a defined
value. This leads to a deceleration of the particles entering the buffer and in consequence,
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the area behind the bluff body is subsequently filled up with fluid particles until p[i] ≥ pref is
reached. A force is introduced both at inlet and outlet, to improve the boundary conditions
of the fluid domain. The force at the inlet is based on the velocity (Equ.(6.16)), and the force
at outlet on the pressure (see Equ.(6.17)). These forces are added to the momentum equation
if the particle is located either in the inlet buffer zone or in the outlet buffer zone (Fig.6.6).

Figure 6.6.: In- and outlet buffer zone.

Buffer zone at inlet
The inlet force was based on the fluid velocity:

finlet = (vi − vref )2

2 · g ninlet (6.16)

ρi . . . fluid density
vref . . . reference velocity
ninlet . . . unit normal of inlet boundary

Buffer zone at outlet
The outlet force was based on the pressure:

foutlet =

 0 if pi ≥ pref
pi − pref
ρi g

noutlet if pi < pref
(6.17)

pref . . . reference pressure
noutlet . . . unit normal of outlet boundary

These modifications led to the intended filling of the domain, but led to inconsistencies in
handling the particles. For example, a reflection was generated by the outlet condition, which
generated a vortex in the opposite direction of the flow (Fig.6.7). The particles exit the
domain at the outlet, as well as through the solid walls, starting when the domain is entirely
filled with particles.

Several simulations were conducted to verify the influence of the force at the outlet boundary.
These modifications filled the domain as intended with particles, but led to violent fluctuations
at the outlet and inappropriate calculations of variables. Further investigations concerning
the discretization (fluid particle -) size are still being conducted.
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Figure 6.7.: Execution in Lagrangian mode.

6.2.2. Eulerian motion description

For reasons of inappropriate reproduction of the flow in Lagrangian mode, due to boundary
reflections and penetrating fluid particles through wall boundaries, it was decided to shift to
the Eulerian mode, by setting the velocity of the calculation points to zero.

Therefore the creation of the geometry had to be modified, in order to generate the fluid
domain, which yielded a solid and fluid VTK-FILE. In case of curved geometries and fluid
particles based on a Cartesian pattern, unequal distances occur between the solid and the
nearest fluid particles. In order to reduce the discretization error around the solid, an
algorithm proposed by Bouscasse et. al. [Particle initialization through a novel packing
algorithm, 6th SPHERIC workshop, 2011] was applied by J.C. Marongiu as an extended
package of the code (Fig.6.8). This algorithm is based on the use of Van der Waals like forces
to place particles throughout the fluid domain. These developments for 2D applications are
equally applicable for 3D geometries without modifications.

Figure 6.8.: Fluid domain correction using the Bouscasse algorithm. left: without Bouscasse
algorithm, right: using Bouscasse

During the course of this procedure, some simulations were conducted simultaneously on
straightforward geometries, such as squares and rectangles in order to move forward with the
development of the boundary conditions.

Further modifications were applied on the Riemann Solver and on non-reflecting conditions
at inlet. A tangential velocity component was implemented into the 1D Riemann Solver, to
reduce the flux error at the outlet. Additionally to the non-reflecting conditions proposed
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by Ghidaglia and Pascal [2004], and the adaptations on ASPHODEL by Marongiu and
Neuhauser, a fluid particle correction was conducted.

Until this correction the gradient of the kernel function was symmetric, hence

∇Wij = −∇Wji (6.18)

Due to the correction developed by Magdalena NEUHAUSER the symmetry condition could
not be fulfilled any longer (Equ.6.19). This correction is based on the sum of the weights and
the kernel function, hence ωj∇Wij which enforces Equ.(??) to be null.

∇Wij 6= −∇Wji (6.19)

These developments and their influences are part of the thesis of the developer, which is why
the background and the formulation of these findings are not stated. It should be briefly
mentioned that the modifications led to improvements in the simulation of the flow conditions.
Similarly to the cylinder simulations, calculations on a square geometry were conducted. At
the beginning the calculations were performed in Lagrangian form, which finally led to the
Euler description. Figure 6.9 shows the difficulties that are encountered, caused by reflective
boundary conditions in Lagrangian mode. In order to reduce the error due to reflections at
the boundaries, symmetry conditions were set in vertical direction.

96.000 timesteps

Figure 6.9.: Pressure distribution in Lagrangian mode.

As stated before, it was decided to switch to Eulerian mode. It was evident that a simple
square geometry would be convenient for this type of simulation, since the required solid and
fluid geometry was straightforward. Figure 6.10 shows the generated domain including the
square geometry (left) and the solid particles with their respective normals (right). For the
representation of the square walls in the flow it was decided to create horizontal normals at
the square corners.
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Figure 6.10.: left: fluid and solid domain; right: square geometry including normals

a) NACA airfoil interaction

For the simulations of the NACA geometries with Eulerian description we re-applied the
Bouscasse algorithm (see 6.2.2) on the fluid domain to reduce the discretization error around
the geometry.

Figure 6.11 shows the subdivision of the investigated domain for the Eulerian simulation.
The two exterior areas of the domain are kept static (without calculation point movement),
whereas the area in between is exposed to a motion in vertical direction, which allows to
verify the possibility of subdividing the domain in zones of different speeds.

Figure 6.11.: Investigated domain with two NACA airfoils.

Figure 6.12.: Fluid domain around airfoil after application of algorithm of Bouscasse.

The procedure for the NACA airfoils was conducted in a similar manner as for the previously
discussed geometries. These simulations were occasionally conducted simultaneously, in order
to examine the effects of different modifications.

To prevent surge and interference in the fluid domain an acceleration phase for the moving
geometry was implemented (see 6.1.2). From here on some simulations were launched with
different velocities up to vz = 0.5[m/s] (V16), which enabled identification of interactions
between the leading edge and the inlet boundary.
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To investigate the influence of the discretization of the fluid domain, four simulations were
conducted with a particle diameter dp of 0.002, 0.001, 0.0005 and 0.00025 [m]. The analysis
of the boundaries did not show significant improvements, but due to the execution of the 2D
simulations on one node we can determine that a decrease of the particle size by half, results
in an increase of the computational cost by a factor of 4.5 to 6. Further, it was noticed that
the wake depends strongly on the size of the particles.

Another comparison was made by varying the pressure pinf imposed on the fluid particles. V14
(V. . . version) was carried out with a pressure pinf = 0 and V21 with pinf = 100 to examine
the influence on the flow.Detailed analysis is being carried out at this stage, nonetheless,
pressure fluctuations at the boundary conditions are still observed.

Next, simulations with multiple profiles were performed (V27), to observe the interactions
between moving and static airfoils and the stability of the solver. The geometry with
symmetric profiles was launched with an incidence angle of null for the moving profiles.

vz -1.0 [m/s]
p∞ 0 [Pa]
vjet 5 [m/s]
acc. time 5 [s]

The results showed a good convergence behaviour of the code, where the simulation of a quasi
rotor/stator interaction turned out to be stable after the acceleration phase. The findings
from these tests should enable us on a later phase to run a pump simulation in a more stable
manner, since a smoother flow formation can be expected because of the acceleration of the
rotation of the impeller (ω = 0 to max

[
rad
s

]
).

Figure 6.13.: Motion of 4 airfoils (V27); T=6.25[s].

It should be noted here, that these tests carried out in 2D were aimed as an approach
for a simulation of the pump geometry. The focus was based on the verification of the
performed work of the code, such as boundary conditions and fluid domain generation. The
tests themselves are not really suitable for inviscid flow studies, but served to gather more
experience with the code and showed the range of stability.
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b) Verification of the boundary conditions (BC)

Boundary conditions are still one of the main issues that the SPH method is facing and where
research is in progress. Initial boundary conditions were at the beginning of this work only
under restrictive terms possible to impose at the boundaries. In case of Pelton turbines the
only claim for the flow condition at inlet was the specification of a jet velocity. This could
not be adopted for the application on a pump simulation, which represents a closed system.
Therefore, some modifications were conducted by Magdalena NEUHAUSER, who has the
task among others in her PhD thesis, to develop a method for the specification of adequate
boundary conditions on the investigated system.

In order to verify the previously stated modifications in the code, an analysis of different
boundary conditions at inlet and outlet of the symmetric airfoil test case (Fig.6.14) was
performed. Furthermore, different verifications on the influence of the distance between
the investigated geometry and the outlet boundary were conducted. This analysis had the
objective to assess the influence of the boundary conditions on the flow.

Figure 6.14 shows the results obtained for a symmetric NACA 0020 airfoil (angle of attack =
0°), where different boundary conditions were imposed at the inlet and outlet, respectively.
The test case was run with an array of 450×50 particles and the previously mentioned
modifications. The uppermost result (V46) was conducted with the same inlet and outlet

Figure 6.14.: Imposing different boundary conditions at inlet and outlet. left: velocity field;
right: pressure field; from top to bottom: V46, V53, V54.

boundary condition on the flow. Therefore, a velocity of 0.1
[
m
s

]
is defined at both ends of

the domain and a pressure of zero at outlet.

The boundary conditions of interest for numerical simulation are represented by the latter
two results (V53 and V54). One can observe in V53, that the imposed pressure at inlet of
the investigated domain influences the entire domain until the outlet, which in turn is not
exposed to back pressure (for test purposes). Nevertheless, one can detect an influence at
the outlet, which reveals the difficulties of correct implementation of boundary conditions.
Further, imposing pressure at inlet causes an increase in velocity within the domain, until
deceleration in the immediate vicinity of the outlet. Conversely, imposing outlet pressure
results in deceleration of the velocity field, while causing an increase in pressure in the
opposite direction of flow. This in turn corresponds to the anticipated effect of this pre-set.
The quantitative evaluation of the boundary condition developments still requires further
research, which is presently being conducted at the R&D department in Vevey.
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6.3. Further test cases

In order to allow comparisons between ASPHODEL and other numerical codes, further test
cases were created. In the following, they are briefly described and will allow the developers
to validate the results.

6.3.1. Comparison with ISPH and a Finite Element Method

Investigations concerning a comparison between a SPH method and a finite element method
were conducted by SHADLOO et al. in paper [24]. That work presents a numerical solution
with ISPH for flow over a square and NACA airfoil. ASPHODEL uses a weakly compressible
SPH formulation to solve the balance of the momentum equation, whereas the investigated
ISPH method in that paper computes the pressure by means of solving a pressure Poisson
equation. An advantage of the ISPH approach is the elimination of the speed of sound
parameter in the time-step condition, which is necessary to determine the pressure term in
the momentum equation by means of an artificial equation of state. Larger time-steps can
be used in that approach, but under the restriction of higher computational costs due to
solving the pressure Poisson equation at each time-step. The algorithm stability is satisfied
by the CFL condition, which is defined by SHADLOO et al. with CFL = 0.125. A first order
time-step scheme was used for time marching of the ISPH approach, which is an explicit time
integration scheme. In that work the authors also describe a new type of solid boundary
treatment called Multiple Boundary Tangents (MBT) and applied these recent developments
on square and airfoil simulations in laminar flow.

That work illustrated that the method is able to capture complex physics of bluff-body flows
as flow separation, wake formation at the trailing edge and vortex shedding. The results were
validated with a finite element method, which showed good agreements.

As in our case of an initial particle domain, the writers pursued the same approach by
removing the fluid particles within the solid body of the geometry. Nonetheless it should be
noted, that these comparisons were performed in Lagrangian coordinate description, while
ASPHODEL was tested in Eulerian mode, hence static calculation points throughout the
domain.

Square
Although the examined code does not comprise physical friction - thus, viscous terms -
the same initial conditions as those of that paper were taken. It is noted here that the
SPH method is - according to the developers - commonly implemented with an artificial
viscosity proposed by Monaghan. This is a major uncertainty in this code, which has not
been elaborated in detail for ASPHODEL. The obtained results were intended as an initial
assessment, and require much more intensive investigation. The flow was simulated for a
range of Reynold numbers (100,200 and 300) according to the ISPH calculations, which are
defined by the characteristic length lc, density ρ, bulk flow velocity vb and dynamic viscosity
µ.

Re =
ρ · lc · vb

µ
(6.20)
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This characteristic length is set equal to the edge length of the square obstacle and the
chord length of the airfoil geometry, respectively. The simulation parameters were set by the
authors with a fluid density ρ = 1000[ kg

m3 ] and a dynamic viscosity µ = 1[ kgms ]. The mass of
each particle was set constant with a smoothing length for all particles equal to 1.6 times the
initial spacing. The results were validated by the authors with results from a FEM based
solver of a Comsol multiphysics software tool. The results were compared in terms of velocity
contours and the pressure envelope for the airfoil.

Based on the test case with Re = 100, the inlet flow velocity v was calculated according to
the initial values chosen in [24]:

Reynolds-Number: values from paper
ρ = 1000

[
kg
m2

]
. . . fluid density

Re = 100 . . . Reynolds number
lc = 0.7[m] . . . side length of the obstacle
µ = 1

[
kg
ms

]
. . . from paper

v = Re · µ
ρ · lc

= 100 · 1
1000 · 0.7 = 0.1429[m/s] (6.21)

Figure 6.15 shows the comparison of the results obtained with ASPHODEL and ISPH,
concerning the velocity contours for two different Reynolds numbers, namely Re = 100 and
200 for ISPH. The comparison of the results show a similar flow characteristic for both
methods.

Figure 6.15.: Comparison of the obtained velocity contours with ASPHODEL (left) and ISPH
(right) for Reynolds number in ISPH of 100 (top figures) and 200 (bottom
figures) at T=100[s].[24]
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One can observe in Fig.6.16 at a Reynold number of 300 the formation of vortex shedding at
the rear section of the square obstacle. Shadloo et al. investigated this case and obtained
satisfactory results, which were in good agreement regarding the magnitude of velocities as
well as the position and the number of the vortices with the FEM results. Nevertheless, the
authors noticed a slight discrepancy between both methods in terms of the separation point
of the vortices from the rear edge of the bluff body.

Figure 6.16.: Comparison of the obtained vortex shedding contours with ASPHODEL (left)
and ISPH (right) for the case of vortex moving down (top figures) and up
(bottom figures) for the Reynolds number of 300 in ISPH.[24]

Cambered NACA airfoil
A four-digit NACA 5515 airfoil series was defined, which denotes a maximum camber of 5%
located 50% (chord length) from the leading edge with a maximum thickness of 15% of the
chord (see 6.1.3).

The comparison of the flow was conducted on one hand for an angle of attack of 15° at a
Reynolds number of 420 to reproduce a uniform flow around the airfoil, and on the other
with an angle of attack of 10° and a Reynolds number of 1600. This leads to an initial flow
velocity v of 0.21

[
m
s

]
and 0.8

[
m
s

]
, where the characteristic length was set equal to the chord

length. At this stage, these results are not comparable with the reference due to insufficient
domain resolution.

Nonetheless, SHADLOO et al. note that there is a slight discrepancy in pressure for the
upper side in the vicinity of the leading edge and the stagnation point, when comparing with
the FEM results. This might be attributed to the dynamic nature of the used Lagrangian
description in SPH, since the fluid particles are in continuous motion. A refinement of the
discretization of the domain might lead to an improved reproduction of the features being
studied, with the drawback of higher computational costs.
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6.3.2. Moving square test case in Lagrangian mode

This test case was proposed by the scientific interest group SPHERIC to compare results
from different SPH codes developed within the community. Several simulations were run,
based on the SPHERIC test case Test6 1 and the thesis of CHERFILS [p. 129-156]. The case
investigates the flow generated by moving a square within a Newtonian and incompressible
viscous liquid in the absence of gravity. The computational domain is limited by a rectangular
box (Fig. 6.17). The square initially static, undergoes a strong acceleration and reaches a
stationary speed vx until the end of the simulation.

Figure 6.17.: SPHERIC Test Case 6: motion of a square (from left to right) in Lagrangian
description.

6.3.3. Conclusions from these developments

All these comparisons provided a qualitative validation of the code, which affirmed the
applicability of the code for complex geometries. Furthermore, these simulations should
provide more insight into the influence of the artificial viscosity terms, which has not yet
been thoroughly investigated. Further investigations are in progress. For our purposes at this
stage, the validation of the results was kept rather short, due to the fact that the actual task
was the application of a centrifugal pump on ASPHODEL.

1. A. COLAGROSSI; Test6 , http://wiki.manchester.ac.uk/spheric/index.php/Test6, access 15.09.2011
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6.4. Pump simulation with ASPHODEL

The following section describes the procedure for the preparation and creation of the pump
geometry, as well as the associated initial fluid geometry. This process can be similarly
applied to any geometry in any dimension. In our case, the generated geometry is used for
the Eulerian description. However, it should be noted that this approach is also applicable
for simulations in Lagrangian formulation, since the duration for the evolution of the flow
throughout the pump can be significantly reduced by using an initial fluid domain. In order
to make a direct comparison between the FV methods with the SPH method, the provided
mesh geometry for this work was converted into a particle-based geometry. Here it shall be
noted that this process is not suitable for future practical application in ASPHODEL. It
should be avoided to generate the pump geometry based on a mesh.

6.4.1. Geometry generation procedure

This procedure was developed in the
course of this work and requires further
more detailed investigations. One goal
might be to enhance the geometry con-
verter with the generation of the fluid do-
main, so that the adaptation and optimiza-
tion of the geometry could be considerably
simplified. The figure on the right shows
the sequence of the pump geometry gen-
eration for the execution in ASPHODEL.
The different process steps are explained
below.

Hexagonal Mesh

Solid geometry generation

Fluid geometry generation

Reduction of the
discretization error

Merge fluid geometry

geom2vtk converter

mesher

Bouscasse algorithm

merge VTK files

Figure 6.18.: Geometry generation procedure
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6.4.2. Solid geometry generation

To generate the pump geometry for SPH from a finite-volume geometry, a converter was
developed by Dr. Paul Pieringer for the R&D department. This converter transforms the
hexagonal structure of the mesh geometry in a geometry, which is described by surface
elements or ’two-dimensional particles’, and their corresponding wall normal. Each mesh
element is divided into particles, of which a maximum size is specified in advance. This
maximum size is of great importance, since the maximum distance between wall particles must
not exceed the defined fluid particle size, because otherwise particles would penetrate the
examined area. This would cause an error in continuity and, ultimately, lead to instabilities.
Furthermore, an additional criterion is defined, which is the maximum allowed angle of the
mesh. By this means, a higher resolution of areas with strong mesh distortion is possible.
This criterion has particular impact in areas of the rotor and stator blade edges. Thus the user
needs an already existing solid mesh for the generation of the geometry and the specification
of a maximum particle size at the wall. Based on these conditions, each mesh component is
divided into particles, where particles which are in non-compliance with the requirements, are
gradually subdivided, until the criterions are met. The execution of this converter requires a
few seconds, and in the course of this work has proven itself in the application on different
particle sizes of the pump geometry, as robust and reliable. Figure 6.19 shows the generated
pump geometry for the application in SPH.

Figure 6.19.: Pump geometry in ASPHODEL.

6.4.3. Fluid geometry generation

The idea of a tool for generating the fluid geometry was developed in the course of this
work in Vevey, when the decision was made to perform the simulations using the Eulerian
description. As a result, an initial fluid domain had to be created. Therefore, a tool was
used, which takes the particles and their respective normals into account. The fluid domain
is consequently composed of particles generated in a Cartesian coordinate system, which
encloses the entire pump. Under consideration of the direction of the wall normals, the
externally situated particles are removed. During this process, the blade walls were found to
be problematic, since not all particles in these regions were properly removed (<20 particles).
A brief analysis pointed out that the accuracy of the data of the coordinates and normals
of the solid geometry should be increased, as well as that an improved verification loop of
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the wall normal criteria should be implemented. It was found that regions with normals
perpendicularly situated to each other could lead to inappropriate results (see Fig.6.20).

Figure 6.20.: Redundant particles after fluid domain generation and correction of position.

6.4.4. Reduction of the discretization error

After the fluid domain had been created, the previously described Bouscasse algorithm was
used to decrease the discretization error of the generated fluid particles in the Cartesian
scheme by repositioning them equally in the investigated domain (see Fig.6.21). During this

Figure 6.21.: Removing the redundant particles within the impeller blades and reallocation
of the fluid particles.

process, this algorithm was modified for pump applications, where the re-positioning of the
fluid particles at the interface between the rotating and stationary parts was allowed only
in certain coordinate directions. This condition has been applied, for example, on the last
particle layer (static) of draft tube and the first particle layer (rotating) in the runner (see
Fig.6.22). This condition was also applied at the inlet and outlet boundary of the pump, in
order to obtain a consistent layer.

A particle geometry was created between the runner outlet and the spiral casing inlet, which
corresponds to a conical wall. In order to obtain a clear separation of the rotating particles
in the runner and the static particles in the spiral casing, walls were created with normals



6.4. Pump simulation with ASPHODEL 70

Figure 6.22.: Transition areas.

pointing in the respective domains (see Fig.6.23). By applying the Bouscasse algorithm, the
particles were repositioned uniformly.

Figure 6.23.: Walls for the separation of rotating and static domain.

Finally, the generated fluid geometries were merged in a single VTK file. This is due to the
structure of the initialization script, which requires a single fluid domain file for the entire
pump. In order to consider the rotating section of the pump, attention has to be laid on
the sequence in which the fluid geometries are merged. The rotating domain is selected first,
followed by the remaining static geometries. This enabled implementing a condition, where
the amount of fluid particles contained in the runner domain can be specified. Consequently,
this amount of particles is subject to rotation.

Again it should be noted that this geometry creation process is not appropriate for industrial
application, and should therefore only be applied for the purpose of direct validation with
mesh-based methods.



7. Evaluation of the ANSYS CFX and
Eulerkette results

The following chapter is devoted to the evaluation and comparison of the results, which
have been carried out throughout this work. The investigated centrifugal pump with a
specific speed of nq = 70 has been developed prior to this work, during the development of a
commercial project at the R&D department Graz. Detailed measurements at the test rig
provided the basis for comparisons with numerical methods.

The nq70 pump represents a complete pump unit, consisting of draft tube, runner and spiral
casing (see. Fig.4.1). The aim of this development was the optimization of the total efficiency
at optimum point and an improved part- and overload stability, in order to extend the field
of application. The measurements on the test rig showed phenomena as the sudden drop
of the characteristic pump curve (see Fig.7.2) near the optimum. This is consistent with
the state of science, where fundamental research on separation zones and turbulent flows
are being conducted in numerous research institutes. There are still no general formalisms
known to describe these phenomena, which is why development continues to depend heavily
on empirical data and experience. Due to this lack of knowledge, it is of great importance to
minimize the errors connected to numerical methods in order to make these methods into a
reliable tool for commercial developments.

The calculations were carried out with the FV method for different operating points. Since
the code ASPHODEL is implemented with the Euler equations, this work examines more
closely the optimum operating point, which - under restrictions - can be regarded as inviscid
flow.

7.1. Eulerkette code

In evaluating the results, the conclusions of the calculations achieved by means of the so-called
’Eulerkette’ represent the current state of technology of the hydraulic interpretation at the
R&D site in Graz. The advantage of this code, developed by Dr. Arno Gehrer 1, is based on
the efficient and rapid calculation of multiple pump and blade geometries within a very short
time. Due to the preceding development of this project, the calculations and results were
provided by the R&D department. These results were included together with the investigated
methods. In the following, a brief description of the implemented methods can be found.
Further details can be found in the publications of the author of the code [5].

1. Dr. Arno Gehrer developed this code during his employment as research and university assistant at the
Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology.

71
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This code has been developed in order to detect flow phenomena in blade rows of thermal
turbomachines. Therefore, a time-dependent algorithm based on a cell-centred finite volume
concept was created, which allowed to develop and evaluate individual tools, as efficient
numerical algorithms or more advanced turbulence models, due to the modular structure
of the code. For the convective terms (Euler flux balance), several discretization schemes
were applied: a third-order accurate, TVD-Upwind scheme according to Roe (1981) and a
central difference method, coupled with a non-linear artificial dissipation model. Two different
time-stepping methods can be used independently of the user-specified spatial discretization.
The governing equations are discretized in time either by using the Euler implicit method
or alternatively by means of an explicit four stage Runge-Kutta scheme. For stationary
problems, a local time stepping and a geometric multigrid method were included in order to
accelerate convergence. The turbulent stresses are calculated using the Boussinesq approach
(similar to Equ.(3.17)), which relates the turbulent stress tensor to the main strain tensor by
an eddy viscosity.[5]

7.1.1. Euler Equations

This code was originally developed for research purposes, including the Navier-Stokes equations
along with viscous terms. To accelerate the process of hydraulic design for the optimum
point, the code was confined to inviscid and stationary calculations. If we neglect the viscous
terms in the Navier-Stokes equations, these simplifying assumptions allow to describe the
flow in the form of a simple system of equations called the Euler equations. This system can
be written in conservative form and Cartesian coordinates as:

∂U
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

= 0 (7.1)

with the fluxes:

U =


ρ
ρu
ρv
ρw

 , E =


ρu

p+ ρu2

ρuv
ρuw

 , F =


ρv
ρuv

p+ ρv2

ρvw

 , G =


ρw
ρuw
ρvw

p+ ρw2

 (7.2)

where ρ represents the density, p the static pressure and u,v,w the Cartesian components
of the velocity. The system of equations of the Eulerkette as well as of the following SPH
method are established by neglecting the conservation of energy. The solver is a multiblock
solver for incompressible 3D Euler flow. In this code the Euler equations are modified by an
artificial compressibility. Convergence is accelerated by a V-cycle multigrid scheme.[18]

7.1.2. Model domain

For the Eulerkette simulation only the mesh of the impeller was used. This code allows the
rapid generation and identification of a suitable impeller and blade geometry. Within a short
time, numerous variations based on the design parameters can be evaluated and selected.
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Figure 7.1.: Grid points of the Eulerkette calculations

Generally the Euler solver requires approximately one minute on a single CPU for 20,000 to
30,000 cells. This magnitude depends on the individual initial solution, boundary conditions
and the applied CPU.

7.1.3. Boundary conditions

Basically, boundary conditions are imposed by the use of phantom cells. This is done through
extension of the domain mesh by creating virtual cells. The values of the conservative variables
U in the phantom cell are calculated in a way, that the value at the boundary (= mean value
between phantom cell and the first inner cell), satisfies the corresponding condition. The
discretization has to be consistent with the transport of information in a cell. Therefore, the
informations entering the computational domain are replaced by boundary conditions, and
information within the domain are transported outwards through extrapolation. Depending
on the propagation speed it is possible to derive the number of boundary conditions to be
imposed.
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Generally, the following boundary conditions can be stated for three-dimensional subsonic
flows:

Inlet
– 3 boundary conditions

- stagnation pressure
- velocity angle

– extrapolation of density ρ
Outlet
– 1 boundary condition

- static pressure
– extrapolation of density ρ and velocity v
Solid wall, inviscid
– 1 boundary condition (v− vg)n = 0 (vg. . . grid velocity)
– extrapolation of density ρ, pressure p and relative tangential velocity

The results from this code will be compared with the results from ANSYS CFX.

7.2. Post-processing of the CFX results

The operating points were selected together with the R&D department, where additionally to
the BEP, points of interest were selected. The characteristic curve of the pump was calculated
between 0.4 ≤ Q/QN ≤ 1.5. For the the simulations two methods were applied, which have
already been mentioned in chapter 4.6. One is the Frozen Rotor method, using the Shear
Stress Transport and the k-ω turbulence models, and the other is the Sliding Mesh method
for transient calculations, also using the SST model.

The evaluation of the results from the post-out files was performed by using an Excel
calculation sheet, which assembled the results of the simulation and their corresponding time
step outputs.

In the following, a brief description of the calculation procedure is given [10]. The notation
is based on the simulations conducted on the same model with OpenFOAM at the R&D
department in Graz.

specific speed nq
Any pump application is characterized by the flow rate Qopt, the head Hopt and the rotor
speed n. These parameters determine to a large extent which impeller type and pump design
is best suitable. Therefore, the specific speed nq is introduced to describe the geometry of
the impeller. The specific speed is often referred to as

nq = ω ·
30
π
·
√
Q

H
3
4

(7.3)

or ns = 3, 65 · nq (7.4)

The specific speed of the investigated model resulted in nq = 70.



7.2. Post-processing of the CFX results 75

Torque on the rotor
To verify the torque of the rotor, it is determined from the CFX calculations, firstly by
summation of the torques effected on each mesh surface of the rotor,

TRN = TRN_BL + TRN_HUB + TRN_SHR (7.5)

and secondly by means of the angular momentum.

Tr_cu = −mRN_in · (r × cu)
RN_in

+mRN_out · (r × cu)
RN_out

(7.6)

The flow velocity at DT inlet, defining the initial boundary condition, was calculated with:

cm =
mDT _in

ADT _in · ρ
(7.7)

where ρ is specified at 20[°C] with 998
[
kg
m3

]
.

The total pressure is composed of the static and dynamic pressure at inlet and outlet of the
pump, as:

ptotIEC = pstat + ρ ·
c2
m

2 (7.8)

7.2.1. Head

The head was calculated according to the computed total pressure for each component as
well as for the overall pump model:

draft tube HDT =
ptotDT _out − ptot_IECDT _in

ρ · g
(7.9)

runner HRN =
ptotRN_out − ptotRN_in

ρ · g
(7.10)

spiral casing HSPIEC
=
ptot_IECSC_out

− ptotSC_in

ρ · g
(7.11)

At the same time, the results were used to calculate the head inaccuracies at the interfaces:

Hint =
(
| ptotRN_in − ptotDT _out | + | ptotSC_in − ptotRN_out |

) 1
ρ · g

(7.12)

In general the total head results from:

Htot = (ptot_IECoutlet
− ptot_IECinlet

)
1
ρ · g

(7.13)
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The total head is calculated according to the IEC 2 regulations as:

Htot_IEC =(ptot_IECSC_out
− ptotSC_in + ptotRN_out − ptotRN_in

+ ptotDT _out − ptot_IECDT _in
)

1
ρ · g

(7.14)

The purpose of this directive is the consideration of the interface errors of the employed
methods.

The torque of the impeller which has to be transferred to the hydraulic flow is calculated
according to:

HTorque = TRN
ω

ρ · g ·Q
[m] (7.15)

7.2.2. Efficiencies

The total efficiency according to IEC, taking the interface errors into consideration, results
from:

ηtot_IEC =
HRN +HSC_IEC +HDT

HTorque
· 100 [%] (7.16)

The total efficiency without interface correction yields from:

ηtot =
Htot

HT orque

· 100 [%] (7.17)

Flow coefficient ϕ
For geometrically similar impellers, same kinematic conditions exist at a given flow coefficient
regardless of size and speed. The flow coefficient ϕ is obtained according to:

ϕ1 =
cm1

u1
=

Q

D3
RN_out

8 · π · ω
(7.18)

ϕ2 =
cm2

u2
=

Q

D3
RN_in

8 · π · ω
(7.19)

2. IEC . . . International Engineering Consultants
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Pressure coefficient ψ
Since the kinematic ratio cu

u for model and prototype are of the same magnitude, a di-
mensionless pressure coefficient can be introduced independent of size and speed of the
machine.

ψ1 =
Htot_IEC · 2 · g(
DRN_out

2 · ω
)2 (7.20)

ψ2 =
Htot_IEC · 2 · g(
DRN_in

2 · ω
)2 (7.21)

7.2.3. Verification of the interface errors

For the simulation with a grid-based method, different numerical errors arise. These inaccu-
racies can be evaluated for all investigated fluid parameters. Here we confine the evaluation
on three parameters at the interfaces DT/RN and RN/SC (see 7.3.5).

Pressure σptot
= 1−

ptotout

ptotin

(7.22)

Swirl σr_cu
= 1−

(r × cu)out

(r × cu)in

(7.23)

Flow rate σQ = 1−
Qout

Qin

(7.24)

The flow rate error was evaluated for the entire pump as well as for the interfaces. The
overall error between DT inlet and SC outlet led to a total error in the range of 2 · 10−6 for
the frozen rotor and transient calculation. The analysis revealed that the flow rate deviation
between the interfaces is several orders of magnitude higher.

7.3. Pump characteristics

In the following, the results of the conducted calculations will be compared. Additionally, the
provided measurement data and the results from the ’Eulerkette’ calculations were included in
the analysis. First, the Q-H und Q-η characteristics are compared and the prediction quality
will be evaluated. 17 OP were determined for the FR calculations, which are found either in
partload or overload, as well as at the BEP. Due to the significantly increased computational
effort of the transient calculation, the number of OPs was confined to four.

For the analysis, the flow rate Q applied on the abscissa is related to the flow rate of the
BEP. This non-dimensional representation was carried out on the ordinate for H and η.
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All methods have in common, that they can locate and reproduce the BEP in an accurate
manner. However, it should be noted that impeller sidewall gaps as well as mechanical losses
were not taken into account. For this reason, in particular the conformity of the frozen-rotor
results (red and green curves in Fig.7.2 and Fig.7.5) at the BEP are to be scrutinized. The
description of the characteristics is done, starting from the highest flow rate towards decreasing
flow rate concerning all respective methods. The local appearance of the hysteresis shows
good correspondence with theory (see section 1.3.7), since the expected flow rate ranges
between 70 and 90% (according to [6]) and complies with Fig.7.2.

7.3.1. Head capacity curve

The Q-H-curve of the investigated pump is presented below. Here the black solid line
represents the measurements, where in the range of Q/Qopt = 0.7 ÷ 0.9 we can divide the
line into an upper and a lower curve. The upper curve is generated by throttling the flow
into partload. The opposite applies for the lower curve.

Figure 7.2.: Q-H-curve of the pump indicating the BEP.
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7.3.1.1. Eulerkette

The Euler calculation for the BEP is in agreement with the measurements, which indicates the
good applicability of this tool for the design of the impeller. These calculations were executed,
prior to this work, during the period of the development of the pump. It is shown that this
method can reproduce the BEP considering the flow rate very well. The deviation from the
calculated Hopt at the design point is approximately 0.5%. The very fast and automated
evaluation of geometry variations turns this FV method into an important tool with great
advantages for the selection of the design.

7.3.1.2. Frozen Rotor

Several operating points were calculated to obtain a pump characteristic curve. These
operating points were set in partload, overload as well as in the optimum point of the pump.
The BEP was known because of previous calculations at the R&D department on the same
model.

All presented CFX calculations were performed on the internal Linux cluster at the ASTROE
department. The FR calculations were performed on Intel Core i7 CPUs with 3.47 GHz, 6
processors and 16GB RAM. The calculation of the optimum point lasted 2h30min for 500
iterations. The post processing took approximately 4% of the total simulation time, the rest
accounted for the solver. The residual, which represents the termination criterion of the
calculation was specified to 1.0E-5.

Shear Stress Transport turbulence model

Using the SST turbulence model for the calculations with the FR method led to the ob-
servation of interesting similarities between the partload range and the BEP. In overload
slight disadvantages are observed in the head characteristic curve calculated with the SST
model compared to the k-ω model. Beginning with the OP Q/Qopt = 1.33 it is observed
in Fig.7.2, that the SST model predicts the head 4% higher than the measurements. This
difference decreases when reducing the flow rate, and achieves at the BEP a deviation with
the measured value of +0.2%. This seems remarkable, as the mechanical and volumetric
losses are neglected in the numerical calculations. Between the BEP and the area of the
resulting hysteresis, the predicted head is mainly below the measurement, except for the
last OP at Q/Qopt = 0.74. During the test rig measurements it was found by the research
engineers, that the first characteristic drop occurred due to flow separation in the stator vane
at Q/Qopt = 0.86. This was not confirmed by the numerical simulations in this particular
OP. The head diminishes in this area compared to the upper curve, but the significant drop
occurs later in the area of Q/Qopt = 0.8. The severe drop which had been detected on the
test rig between Q/Qopt = 0.72 and 0.79, can be described by detachment of the flow at the
impeller inlet. The obtained numerical results at Q/Qopt = 0.72 show an approximately
correct prediction of the characteristic drop. However, it is noted once again for the hysteresis,
that a more precise analysis of the characteristic is required, which could be reached through
more operating points in this range. It is also visible, that the onset or the location of these
flow instabilities in the area of the hysteresis is not consistent with the measurement.
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By further throttling the flow, the first OP following the hysteresis at Q/Qopt = 0.7 shows
again a good consensus with the head of approx. +0.4%. It is remarkable to observe the SST
curve (green) at continuous reduction of the flow rate in the range of Q/Qopt = 0.6, where a
kink is noted. This area (near Q/Qopt = 0.6) is characterized by separation and recirculation
zones. The pictures in Figure 7.3 indicate at the cutwater, in the transition from the volute
to the pressure tube, that the OPs show an evident recirculation zone at the left and right
from Q/Qopt = 0.59. This could be explained by the theory, that recirculations occur in
partload, which generate a smaller effective cross section than the available geometric cross
section. Analysing this OP the numerical result shows, that the recirculation zone collapsed,
but this cannot be confirmed by observations on the test rig. The dark blue zones indicate
areas of low flow velocity whereas bright regions show areas of higher velocity. Upon further
reduction of the flow rate, the trend of increasing deviation between the numerical results
and the measurement hardly allow conclusions.

left: Q/Qopt = 0.51 Q/Qopt = 0.59 right: Q/Qopt = 0.62

Figure 7.3.: Separation zone at the volute cutwater (velocity contours).

k-ω model

The discussion of the head is limited here to the values between the BEP and overload. Due
to the large deviations of the FR k-ω results compared to the measurements and the SST
model, it is decided to refrain from a detailed description of the hysteresis and partload
area.

Generally it can be stated that the results of the k-ω model in overload altogether lie above
the measurements, but are within the trend of the SST curve and the measured curve. The
deviation at the maximum flow rate (Q/Qopt = 1.33) is +1.5% and increases with decreasing
Q. While approaching the BEP, the Q-H curve moves closer to the characteristic curve of the
pump, and reaches in the BEP a deviation of -0.2%.

7.3.1.3. Transient

The transient calculations were launched by means of the sliding mesh method. Each of these
simulations was run on 5 processors. Generally one can say that for the transient simulations,
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it is of great importance that good initial solution of the operating point exists. This initial
solution was taken from the Frozen Rotor calculations, which already passed 500 iterations.

Sliding Mesh SST

The considerably higher computational costs, which results from such transient calculations,
has forced a restriction of the selected OPs. For this reason it was decided to perform these
calculations at four points, namely the BEP, one OP in partload and overload, respectively
and finally an OP within the hysteresis. In order to investigate the reproducibility of the flow
effects in overload in a more visible manner, it was - subsequently to the FR calculations -
decided to choose an OP further into overload (Q/Qopt = 1.44) for the transient calculation.

The transient results overestimate both the Q-H as well as Q-η (Fig.7.5) characteristic curves
throughout the investigated section. This is not really unexpected, due to neglecting various
losses, such as mechanical and volumetric losses, so that the efficiency should lie therefore
higher than the efficiency of the prototype. However, the efficiency of the pump in case of
overload is so excessively higher, that it could be considered misleading in practice, when
making conclusions referring to these results. The deviation measured for both η and the
head is approx. +6%. With regard to the BEP, this difference decreases for η/ηopt to +1.6%
and for H/Hopt to +1.26%. In the area of the hysteresis there is a deviation of about +5.8%
for the efficiency and +4.2% for the head. Within the hysteresis it seems that, the OP in the
Q-H diagram could be seen as a result from an extension of the upper branch - originating
from the ’stable’ side. Intersecting this extension with the part of the pump curve, which
is caused by flow separation at the impeller inlet, could lead to the conclusion, that the
measured kink in the stay vanes is not captured by the transient calculation. Ultimately, the
deviation at partload (Q/Qopt = 0.64) for η and H is +9.8% and +4.33%, respectively.

Figure 7.4 is in accordance with observations conducted in [6] page 528.

Q < Qopt Qopt Q > Qopt

Figure 7.4.: Separation zones in the spiral casing (velocity contours).

Although the transient calculation considers the rotation of the impeller, the results indicate
that the modelling simplifications have a large impact. Therefore all influencing factors, such
as impeller sidewall gaps and annular seals should be considered for an appropriate evaluation.
Such cases have been investigated in several works [8] and [26].
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Figure 7.5.: Q-η-curve of the pump.

7.3.2. Efficiency curve

Next, the characteristic efficiency curves and the tendencies for the applied methods are
described. Since the Eulerkette calculations were performed without viscous terms, an analysis
of the efficiency is omitted. The numerical error of this method committed on the flow rate is
in the range of 1.1%.

7.3.2.1. Frozen Rotor

SST model

The efficiency curve of the SST calculation shows at Q/Qopt = 1.33 good accordance with
the measurement. Here, the predicted value deviates by -0.4% from the measurement. With
further decrease of the flow rate, the efficiency of the SST model exceeds the measurement
values until reaching the BEP, with an accuracy of -0.3%. As decrease in flow rate continues,
apparent discrepancies regarding the trend of what has already been observed in the Q-H
curve are noted. However, the two OPs at Q/Qopt = 0.81 and 0.85 are singled out, as they
exceed the measurement results only by +0.17% and +0.64%, respectively. For this area,
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it would be interesting to calculate more OPs, in order to better evaluate the effects of the
flow in the pump. Decreasing the flow rate from Q/Qopt = 0.7 shows that the efficiency
curve significantly deviates (between 5 to 6%), but approaches the measurement towards the
minimal partload point.

k-ω model
The efficiency curve of the k-ω model from the BEP to overload is located between 1.5 to 4%
below the measured curve. This could be due to the weakness of this model described earlier
in section 3.2.2, causing this approach to the overproduction of turbulent viscosity and thus
effecting a delay or entire absence of boundary layer separations. In partload this turbulence
model hardly allows conclusions, and is therefore not discussed.

7.3.3. Analysis of different operating points

In the following the transient results are evaluated and compared with the quasi-steady
calculations.

7.3.3.1. BEP

At the BEP there is a good agreement between the results obtained from the FR and the
transient FV methods in the Q-H curve. The integral values were determined over one
revolution, as can be seen in Fig. 7.6. The pressure height of the FR calculation with the SST
turbulent model lies near +0.2% above the measured value and -0.2% for the k-ω model. The
transient result of this particular OP provides a head, which is in the range of 1.2% above the
measured result. This could be expected when exclusively considering the hydraulic flow.

Figure 7.6.: Transient H and η plotted over the revolutions at the BEP.
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The efficiency of the FR calculation with the SST turbulence model is about 0.3% lower than
the measured value; the k-ω model deviates by -1.5%. The transient results in turn deliver
an efficiency of 1.6% above the BEP, in a similar magnitude as the deviation of the head.

In summary, for the BEP the conclusion can be made, that the FR approach with the SST
turbulence model provides good results on the predictability of the optimal operating point.
The analysis of the transient calculation based on the post processing allows the conclusion,
that - apart from periodic fluctuations - the flow is uniform at the circumference of the
impeller outlet. The maximum of H and η are based on interactions between the impeller
blades and the cutwater. This has been investigated and confirmed by verifying the data of
the transient results.

The total computational time of the calculation shows clearly a disadvantage compared to
the quasi-steady approach. The calculation requires approx. 1 revolution to stabilize the
calculation. During this phase, a number of 50 coefficient loops (set as maximum) was
necessary and required 30min for each timestep. After that phase, a number of 4 coefficient
loops is sufficient to fulfill the residual target, comprising 4min per timestep. The simulation
stabilizes after approx. 400 iterations, adapting the timestep automatically from initially
2° per iteration to finally 0.23°. The total number of iterations for the BEP is 3750, taking
500 iterations of the initial FR calculation into consideration. This yielded a total time of
164[h] for a physical time of 0.136[s] or 3 revolutions. The highest CFL number in the Runner
resulted in 5.625. The simulation was run on 5 CPUs.

CPU requirements of numerical solution

The following table indicates a breakdown of the total calculation time for the BEP on
individual operations:

Subsystem Name Discretization Linear Solution
Wallscale 2.3% 2%
Momentum and Mass 40.0% 9.9%
TurbKE and TurbFreq 11.1% 7.2%

Subsystem summary 53.3% 19.2%
Variable Updates 12.9%
GGI intersection 0.5%
Searches Calculations 0%
File reading 0%
File writing 8.4%
Miscellaneous 5.7%

7.3.3.2. Overload operating point

The operating point in overload was initially calculated for the two FR methods, which
reached relatively good results compared to the measured data. As already mentioned in
section 7.3, in order to investigate flow effects in overload in a more obvious manner, it was
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decided to select an OP further into overload (Q/Qopt = 1.44) to enable better comprehension
for the transient results. Here, the integral values were again evaluated during one revolution
(see Fig. 7.7).

Figure 7.7.: Transient H and η plotted over revolutions at Q/Qopt = 1.44.

Regarding the FR results it can be noted that both models (k-ω, SST) show higher pressure
heads. The k-ω model lies with 1.5% deviation closer to the reference curve than the head
of the SST calculation with 4%. The efficiency of the SST model is close to the measured
point (-0.1%). In contrast, the k-ω model differs greatly from the measurement value and
underestimates the efficiency by 3.5%.

The transient result (yellow) for the operating point in overload exceeds the pressure and
efficiency level of the measurement by 6% and 3.6%, respectively.

In summary one can say that in overload the FR k-ω model reproduced the head level closer
to the measurement, but compared to the SST model in turn greatly differs in efficiency.

7.3.3.3. Operating point within the hysteresis

The hysteresis is still a field in science, which bears many questions regarding its appearance
and consequences, as stated in section 1.3.7. It is important to identify flow effects, where
simple 1D-approaches may not necessarily show satisfactory reproduction. Therefore, research
sets great efforts in the application of numerical methods, which could provide indications
and explanations to the 3-dimensional effects. For this purpose, the results of the operating
point at Q/Qopt = 0.81 are subject to a more detailed analysis of the FV methods. The
integral values were determined here throughout 2 revolutions.
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Figure 7.8.: Transient H and η plotted over the revolutions at Q/Qopt = 0.81.

As described at the beginning of this chapter, flow separation takes place with decreasing
flow rate after the BEP. This starts between the impeller outlet and stator, and is followed
by a flow separation at the impeller inlet. The considered OP within the hysteresis is located
directly between these two observed flow separations, which are detected by a drop in the
Q-H as well as in the Q-η curve.

Although the onset of flow separation in the area of the hysteresis can be identified by the
numerical results of the FR SST calculation, this result can not hide the fact, that the initial
onset of the separation and eventual drop of the Q-H curve, appears dislocated compared to
the measurement results. The head differs by -1.6% for the FR SST model and -2.4% for the
FR calculation with the k-ω turbulence model.

The transient result at this particular OP exceeds the measured head by nearly 5%. Regarding
the Q-H curve, it could be concluded that the chosen OP for the transient result does not
predict the initial flow separation in the stator. However, while observing the Q-η curve,
it is apparent that despite the increased head the efficiency declines compared to the BEP.
Surprisingly, the efficiencies of the FR results show good correlation with the measured results
(SST +0.2% ; k-ω +0.8%).

It can be generally noted, that the FR methods behave similarly, as they both (SST, k − ω)
overestimate the losses in the flow in relation to the Q-H curve (Fig.7.9). Despite the coarse
distribution of the calculated OPs in this area, it could be concluded from the FR SST
calculation, that the initial detachment of the flow in the stator vanes starts at the considered
OP at Q/Qopt = 0.81. Figure 7.10 shows the turbulent kinetic energy pattern of the considered
point in the hysteresis with the adjacent left and right operating point calculated with the
FR SST model. Based on the TKE, a glimpse of the beginning of the detachment is visible
directly at the inlet guide vane. On closer examination, the right OP at Q/Qopt = 0.85
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Figure 7.9.: Detail of the Q-H-curve - separation zone.

reveals, that the TKE is almost uniform at the circumference of the stator vane inlet. In
contrast, at Q/Qopt = 0.81 the TKE increases near the cutwater and affects the impeller
channels, which is even more noticeable in the left OP.

A closer look at the flow conditions at the impeller inlet and outlet can be given by so-called
’turbo lines’. Hereby the swirl is evaluated along the channel inlet and outlet (Fig.7.11). This
analysis gives an indication on the rate and position of r× cu. In Figure 7.12 the distribution
of r × cu between the different OPs can be observed at outlet (green) from hub (0) to shroud
(1). The swirl remains almost unchanged close to the hub (the negative sign originates from
the negative direction of rotation). The opposite can be found at the shroud, where r2 × cu2
decreases with the flow, and thus coincides with the observation of the decreasing pressure
head. The flow angle deviates at the outlet over the blade width only moderately, whereas
the flow angle at the leading edge of the blades deviates on more than 20% alongside the
channel width on the shroud side. This is consistent with the formation of recirculation zones,
which have been elaborated in section 1.3.5.
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left of OP
Q/Qopt = 0.78

OP
Q/Qopt = 0.81

right of OP
Q/Qopt = 0.85

Figure 7.10.: Turbulent kinetic energy within hysteresis (FR SST).

Figure 7.11.: Runner cross-section with turbolines (red).

7.3.3.4. Partload operating point

The next OP is situated in partload at Q/Qopt = 0.67. This OP was chosen because of its
proximity to the hysteresis. However, the flow in this area is stable, with regard to increasing
and decreasing through-flow. It can be observed on the Q-H curve that the FR results coincide
at this operating point. The SST model (green) shows a similar trend compared to the test
rig measurements, whereas the k-ω model (red) reproduces only in this OP a good match
with the measurements. The transient calculation provides an excess of the head of approx.
4%.

The efficiency for that point is exceeded by all methods. The transient result shows a deviation
from the measured value of 8% and the quasi-steady methods show a deviation of 2.4% (k-ω)
and 3.4% (SST).

In this operating point, the recirculation effects and their difficult prediction is apparent.
This highlights the difficulties of three-dimensional effects in impeller channels as well as in
the entire machine. These effects make reliable predictions for practical applications more
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left of OP (Q/Qopt = 0.78) right of OP (Q/Qopt = 0.85)

OP (Q/Qopt = 0.81)

Figure 7.12.: r × cu and flow angles along turbolines for an OP within hysteresis (FR SST).

difficult. The discussion here is confined to the qualitative comparison of the results with the
described effects in section 1.3.3.

The cross-sectional reduction, caused by recirculation zones, can be determined in Fig.7.14.
Herein it is shown - illustrated by the schematic vortex contours - that a recirculation zone
develops at the outer streamline of the impeller inlet. The formation of this zone, and thus
the resulting narrower inlet cross-section affects strongly the flow situation.
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Figure 7.13.: Transient H and η plotted over the revolutions at Q/Qopt = 0.67.

Figure 7.14.: Recirculation at impeller inlet; left: BEP, right: PL.

7.3.4. NPSH curve

If the pressure in a liquid drops below the vapour pressure, a portion of the fluid will evaporate,
called cavitation. Around the blade leading edges areas with high flow velocities cause a local
pressure drop, which may lead to partial evaporation. Extensive cavitation zones can impair
the performance or even interrupt the flow. A relevant parameter for this effect is the net
positive suction head, which is defined as the absolute suction head minus the vapour pressure
pv expressed as head.[6] Based on the NPSH behavior in partload operation, the effect of
recirculation zones can be explained more accurately.

In general, the calculation of cavitation needs high computational costs. Therefore an
estimation of the magnitude of the cavitation has been developed. This evaluation procedure
is called a histogram analysis, which has proven itself as practicable. The NPSH value is
calculated according to Equ.(7.25). The minimal pressure which is resulting on a specified
area (here 1cm2) of the impeller blade surfaces, is determined and is used to evaluate the
NPSHhist value. An algorithm checks each cell for the occurring static pressure. Thus it is
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evident that a hydraulic model - as the one observed with 100,000 elements on the blades -
has a very high amount of data. For this reason this analysis was limited to the quasi-steady
calculations. Fig.7.15 shows a drop of the NPSH value upon onset of flow separation in the
stay vanes (Q/Qopt = 0.81). The observations performed on the test rig are illustrated by the
black curve.

NPSH =
ptot,DT − phist

ρg
(7.25)

Figure 7.15.: NPSH histogram analysis.

The trend of the NPSHhist,1cm2 curve obtained by the Eulerkette shows a notable accordance
with the measurements, however, no data was available in considerable partload. The two
FR results do not match the trend and lie above the measured curve, but allow conclusions
on the flow situation in partload.

7.3.5. Interface errors

According to the equations in section 7.2.3, an examination of the numeric error at the
interfaces of the pump was carried out. This was initiated by the fact, that in the past
inconsistencies in the results at the R&D department appeared. An analysis of the incoming
and outgoing flow rate at the inlet and outlet of the entire pump shows a total deviation of
less than 10−6. This is an indication that the commercial code enforces the conservation of
mass. A closer view on the fluxes at the interfaces shows, that this conservation is not found
in the same accuracy, as the global examination suggests. For the following comparisons
the OpenFOAM (OF) results have remained in the documentation (blue curve). The upper
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graphs in Fig.7.16 show the interface errors encountered between the draft tube and runner,
and the lower graphs indicate the errors at the impeller outlet between the runner and the
spiral casing. The total pressure and swirl conservation of the methodology of OF is better
in comparison to the ANSYS CFX results. Benefits arising from the latter code appear in
the conservation of mass, particularly in the transient calculation.

Figure 7.16.: Interface errors determined according to section 7.2.3.

In agreement with the R&D department in Graz it was decided to maintain the analysis of
the executed calculations on a general comparison regarding each method. Because of the
vast amount of data that have come forth from these calculations, it would be possible to
perform further analysis in the unstable areas, e.g. by means of a FFT analysis. This could
provide further information on the flow properties and more detailed information on the
generation and onset of separation zones, which could cause phenomena as rotating stall.
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7.4. Conclusion of the numerical results

The presented numerical results were acquired during the first part of this work. These results
should serve as reference data for future comparison with the results from the ASPHODEL
calculations.

From the results it can be concluded, that the quasi-stationary method generally has an
advantage compared to the transient calculation. This is largely due to the fact that the
applied model includes numerous model simplifications (neglection of disc friction, volumetric
and mechanical losses). Despite correct reproduction of the rotor-stator-interaction, the
results of the measurements are largely exceeded by the time-dependent method. Nevertheless,
the obtained transient results allow conclusions on the transient flow behaviour within the
pump at different rotor positions. For this purpose an analysis of the individual blade channels
as well as a rotating stall analysis similar to [1] could implicate a clearer insight.

Comparing the two turbulence models applied here with the FR calculation, the SST method
has proven itself as a viable approach. The close agreement of the calculated results with
the characteristic curve at the BEP indicates its usefulness for the practical design of this
prototype. It appeared, however, that these models are still of minor use for operating points
apart from the design point. These OPs, affected by separation and recirculation zones, can
hardly be described. In addition, the non-uniform three-dimensional flow formation within the
pump increases the transient behaviour significantly. The k-ω model provides good results in
the overload region of the Q-H curve, with the disadvantage of overestimation of the losses.

For a more detailed analysis of the numerical results within the hysteresis, a more detailed
investigation of this area should be carried out. This could be reached by more operating
points in this area.

The subsequent investigation of interface errors, which are a result of the mesh-based FV
method, leads to the conclusion, that the interpolation errors between static and rotating
mesh geometries are still a weakness of this method.

The post-processing and the obtained images had to fit at the first attempt, due to the limited
time for the first part of this thesis. The obtained results were sufficient for the scope of
this thesis, to enable a future evaluation of ASPHODEL regarding the BEP. Nonetheless,
based on the experience gained, it would make sense in a future analysis to examine the area
between rotor and stator in a more detailed manner.



Conclusion and future work

The present work is a contribution to the application of numerical methods concerning
centrifugal pumps. In the course of this work, in a cooperation between the ANDRITZ
GROUP sites in Graz and Vevey, the calculation of a centrifugal pump by means of various
software packages available within the company was carried out. They are on one hand, the
finite-volume-based commercial software ANSYS CFX and the in-house Euler code of the
department ASTRÖ. The results of these two methods were assessed and will serve in future
as a benchmark for the further development of a new in-house code developed in Vevey. This
software, called ASPHODEL, is based on the Smoothed Particle Hydrodynamics method.

Using ANSYS CFX, a comparison between the Frozen Rotor and the transient method has
been carried out, to get an overview on the applicability of these approaches by making a
qualitative and quantitative evaluation regarding different turbulence models. It was found in
agreement with the literature, that the SST model is more favourable than the k-ω model. In
particular, the first TM captured the design point of the actual prototype quite well. Due to
the model simplifications, the transient calculation allowed limited conclusions with regard to
the measurement data. Based on the results, information on the flow effects within the pump
could be identified. However, they could not be analyzed in detail for time reasons. It was
necessary to make a comparison with two further simulation codes. These are the Eulerkette,
which approximates well the characteristic curve of the pump near the design point, and the
SPH-ALE method. The latter needed a lot of time and work including the implementation of a
pump geometry originating from a grid-based geometry. The procedure will be used in future
to compare the different numerical methods, and thus contribute to the further development
of the code. The SPH method is under development and requires further research with regard
to the correct implementation of boundary conditions. They are especially challenging in the
Lagrangian formulation and need further quantitative investigations concerning the Eulerian
formulation, which is currently in progress at the site in Vevey.

The further steps in terms of ASPHODEL are the implementation of a finite volume method
within ASPHODEL, in order to take advantage of each method. Therefore a coupling is
envisaged, which should resolve the near wall region with the finite-volume-method, allowing
to apply existing turbulence models. The aim would be to reproduce the flow in the core by
means of the Lagrangian formulation. Here it is essential to overcome obstacles such as the
generation and destruction of particles at the boundaries and the numerical diffusion within
this method. These developments could lead in future to an applicable numerical method
regarding centrifugal pumps.
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Appendix

The appendix includes the solver script for the frozen rotor (p.95-108) and transient settings
(p.109-123) on the example of the BEP. The appendix also contains a hard drive handed
out to the ASTROE department including the results, Excel files, post files, videos and
presentations, which were generated during this work.

95



 This run of the CFX-12.0 Solver started at 21:05:27 on 03 May 2011 
by
 user trainee01 on grzdlx054.graz.andritz.com
 (intel_xeon64.sse2_linux2.5) using the command:
 
  /graz/apps/ansys_inc/v120/CFX/bin/cfx5solve -batch -definition 
My.def -ccl
    solve_AmuZang_newgrid.ccl
 
 Setting up CFX Solver run ...
 

 
+--------------------------------------------------------------------
+
 |                                                                    
|
 |                    CFX Command Language Upgrade                    
|
 |                                                                    
|
 
+--------------------------------------------------------------------
+

 Added /SIMULATION CONTROL/EXECUTION CONTROL/EXECUTABLE 
SELECTION/Double
 Precision = Off.
 

 
+--------------------------------------------------------------------
+
 |                                                                    
|
 |                    CFX Command Language for Run                    
|
 |                                                                    
|
 
+--------------------------------------------------------------------
+

 LIBRARY:
   CEL:
     EXPRESSIONS:
       MPetagesIEC = (abs(massFlow()@RN_HP Side 1)/(997 [kg m^-3])) * 
\
         (massFlowAve(Pressure)@RN_HP Side 1 + (massFlow()@RN_HP Side 
\
         1/area()@RN_HP Side 1)^2/(2*997[kg m^-3]) - \
         massFlowAve(Pressure)@RN_LP Side 2 - (massFlow()@RN_LP Side 
\
         2/area()@RN_LP Side 2)^2/(2*997 [kg m^-3]) ) / ( (torque_z()
@RN_BL + \
         torque_z()@RN_HUB + torque_z()@RN_SHR) * 141.7 [s^-1] )
     END
   END
   MATERIAL: Water
     Material Description = Water (liquid)
     Material Group = Water Data, Constant Property Liquids
     Option = Pure Substance
     Thermodynamic State = Liquid
     PROPERTIES:
       Option = General Material
       EQUATION OF STATE:
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         Density = 997.0 [kg m^-3]
         Molar Mass = 18.02 [kg kmol^-1]
         Option = Value
       END
       SPECIFIC HEAT CAPACITY:
         Option = Value
         Specific Heat Capacity = 4181.7 [J kg^-1 K^-1]
         Specific Heat Type = Constant Pressure
       END
       REFERENCE STATE:
         Option = Specified Point
         Reference Pressure = 1 [atm]
         Reference Specific Enthalpy = 0.0 [J/kg]
         Reference Specific Entropy = 0.0 [J/kg/K]
         Reference Temperature = 25 [C]
       END
       DYNAMIC VISCOSITY:
         Dynamic Viscosity = 8.899E-4 [kg m^-1 s^-1]
         Option = Value
       END
       THERMAL CONDUCTIVITY:
         Option = Value
         Thermal Conductivity = 0.6069 [W m^-1 K^-1]
       END
       ABSORPTION COEFFICIENT:
         Absorption Coefficient = 1.0 [m^-1]
         Option = Value
       END
       SCATTERING COEFFICIENT:
         Option = Value
         Scattering Coefficient = 0.0 [m^-1]
       END
       REFRACTIVE INDEX:
         Option = Value
         Refractive Index = 1.0 [m m^-1]
       END
       THERMAL EXPANSIVITY:
         Option = Value
         Thermal Expansivity = 2.57E-04 [K^-1]
       END
     END
   END
 END
 FLOW: Flow Analysis 1
   SOLUTION UNITS:
     Angle Units = [rad]
     Length Units = [m]
     Mass Units = [kg]
     Solid Angle Units = [sr]
     Temperature Units = [K]
     Time Units = [s]
   END
   ANALYSIS TYPE:
     Option = Steady State
     EXTERNAL SOLVER COUPLING:
       Option = None
     END
   END
   DOMAIN: DT
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Primitive 3D 4,Primitive 3D 5,Primitive 3D 
6,Primitive 3D \
       7,Primitive 3D 8,Primitive 3D 9
     BOUNDARY: DT hub
       Boundary Type = WALL
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       Location = INFLOW_BLOCK2,INFLOW_BLOCK3
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
           WALL VELOCITY:
             Angular Velocity = -141.7 [radian s^-1]
             Option = Rotating Wall
             AXIS DEFINITION:
               Option = Coordinate Axis
               Rotation Axis = Coord 0.3
             END
           END
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: DT_HP
       Boundary Type = INTERFACE
       Location = INFLOW_BLOCK1
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: DT_LP
       Boundary Type = INLET
       Location = OUTFLOW_BLOCK1 2,OUTFLOW_BLOCK2 2,OUTFLOW_BLOCK3 2
       BOUNDARY CONDITIONS:
         FLOW REGIME:
           Option = Subsonic
         END
         MASS AND MOMENTUM:
           Option = Cartesian Velocity Components
           U = -0.9847 [m s^-1]
           V = 0 [m s^-1]
           W = 0 [m s^-1]
         END
         TURBULENCE:
           Omega = 0.044 [s^-1]
           Option = k and Omega
           k = 0.000582 [m^2 s^-2]
         END
       END
     END
     BOUNDARY: DT_WALL
       Boundary Type = WALL
       Location = SHROUD_BLOCK1,SHROUD_BLOCK1 2,SHROUD_BLOCK1 
3,SHROUD_BLOCK1 \
         4,SHROUD_BLOCK1 5,SHROUD_BLOCK1 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
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         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Option = Stationary
       END
       MESH DEFORMATION:
         Option = None
       END
       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Option = Automatic
       INITIAL CONDITIONS:
         Velocity Type = Cylindrical
         CYLINDRICAL VELOCITY COMPONENTS:
           Option = Automatic with Value
           Velocity Axial Component = -3 [m s^-1]
           Velocity Theta Component = 0 [m s^-1]
           Velocity r Component = 1 [m s^-1]
           AXIS DEFINITION:
             Option = Coordinate Axis
             Rotation Axis = Coord 0.3
           END
         END
         STATIC PRESSURE:
           Option = Automatic with Value
           Relative Pressure = -20e4 [Pa]
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
   END
   DOMAIN: RN
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Assembly 10
     BOUNDARY: RN_BL
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       Boundary Type = WALL
       Frame Type = Rotating
       Location = BLADE,BLADE 2,BLADE 3,BLADE 4,BLADE 5,BLADE 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: RN_HP Side 1
       Boundary Type = INTERFACE
       Location = WEST,WEST 2,WEST 3,WEST 4,WEST 5,WEST 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: RN_HUB
       Boundary Type = WALL
       Frame Type = Rotating
       Location = HUB,HUB 2,HUB 3,HUB 4,HUB 5,HUB 6,HUB_EAST,HUB_EAST 
\
         2,HUB_EAST 3,HUB_EAST 4,HUB_EAST 5,HUB_EAST 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: RN_LP Side 2
       Boundary Type = INTERFACE
       Location = EAST,EAST 2,EAST 3,EAST 4,EAST 5,EAST 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: RN_SHR
       Boundary Type = WALL
       Frame Type = Rotating
       Location = SHROUD,SHROUD 2,SHROUD 3,SHROUD 4,SHROUD 5,SHROUD \
         6,SHROUD_EAST,SHROUD_EAST 2,SHROUD_EAST 3,SHROUD_EAST 
4,SHROUD_EAST \
         5,SHROUD_EAST 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
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     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Alternate Rotation Model = On
         Angular Velocity = -141.7 [radian s^-1]
         Option = Rotating
         AXIS DEFINITION:
           Option = Coordinate Axis
           Rotation Axis = Coord 0.3
         END
       END
       MESH DEFORMATION:
         Option = None
       END
       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Frame Type = Rotating
       Option = Automatic
       INITIAL CONDITIONS:
         Velocity Type = Cylindrical
         CYLINDRICAL VELOCITY COMPONENTS:
           Option = Automatic with Value
           Velocity Axial Component = -3 [m s^-1]
           Velocity Theta Component = 0 [m s^-1]
           Velocity r Component = 1 [m s^-1]
         END
         STATIC PRESSURE:
           Option = Automatic with Value
           Relative Pressure = -20e4 [Pa]
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
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   END
   DOMAIN: SC
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Primitive 3D
     BOUNDARY: SC_BL
       Boundary Type = WALL
       Location = Primitive 2D B,Primitive 2D C,Primitive 2D 
D,Primitive 2D \
         E,Primitive 2D F,Primitive 2D G,Primitive 2D H,Primitive 2D 
\
         I,Primitive 2D J,Primitive 2D K,Primitive 2D L,Primitive 2D 
\
         M,Primitive 2D N,Primitive 2D O,Primitive 2D P,Primitive 2D 
Q
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: SC_GGI_DE Side 1
       Boundary Type = INTERFACE
       Location = SC_GGI_DE_A
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_GGI_DE Side 2
       Boundary Type = INTERFACE
       Location = SC_GGI_DE_B
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_GGI_SEP_B
       Boundary Type = INTERFACE
       Location = SC_GGI_SEP_B
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_LP
       Boundary Type = INTERFACE
       Location = SC_LP
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
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         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_WALL
       Boundary Type = WALL
       Location = Primitive 2D
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Option = Stationary
       END
       MESH DEFORMATION:
         Option = None
       END
       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Option = Automatic
       INITIAL CONDITIONS:
         Velocity Type = Cylindrical
         CYLINDRICAL VELOCITY COMPONENTS:
           Option = Automatic with Value
           Velocity Axial Component = 0 [m s^-1]
           Velocity Theta Component = -1 [m s^-1]
           Velocity r Component = 1 [m s^-1]
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           AXIS DEFINITION:
             Option = Coordinate Axis
             Rotation Axis = Coord 0.3
           END
         END
         STATIC PRESSURE:
           Option = Automatic with Value
           Relative Pressure = 0 [Pa]
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
   END
   DOMAIN: SC SEP
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Assembly 9
     BOUNDARY: SC_GGI_SEP_A
       Boundary Type = INTERFACE
       Location = SC_GGI_SEP_A
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_HP
       Boundary Type = OUTLET
       Location = SC_HP
       BOUNDARY CONDITIONS:
         FLOW REGIME:
           Option = Subsonic
         END
         MASS AND MOMENTUM:
           Option = Static Pressure
           Relative Pressure = 0 [Pa]
         END
       END
     END
     BOUNDARY: SC_SEP_WALL
       Boundary Type = WALL
       Location = Primitive 2D A
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Option = Stationary
       END
       MESH DEFORMATION:
         Option = None
       END
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       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Option = Automatic
       INITIAL CONDITIONS:
         Velocity Type = Cartesian
         CARTESIAN VELOCITY COMPONENTS:
           Option = Automatic with Value
           U = 0 [m s^-1]
           V = 1 [m s^-1]
           W = 0 [m s^-1]
         END
         STATIC PRESSURE:
           Option = Automatic
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
   END
   DOMAIN INTERFACE: RN_HP
     Boundary List1 = RN_HP Side 1
     Boundary List2 = SC_LP
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = Frozen Rotor
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = Specified Pitch Angles
         Pitch Angle Side1 = 360 [degree]
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         Pitch Angle Side2 = 360 [degree]
       END
     END
     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   DOMAIN INTERFACE: RN_LP
     Boundary List1 = DT_HP
     Boundary List2 = RN_LP Side 2
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = Frozen Rotor
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = Specified Pitch Angles
         Pitch Angle Side1 = 360 [degree]
         Pitch Angle Side2 = 360 [degree]
       END
     END
     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   DOMAIN INTERFACE: SC_GGI_DE
     Boundary List1 = SC_GGI_DE Side 1
     Boundary List2 = SC_GGI_DE Side 2
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = None
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = None
       END
     END
     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   DOMAIN INTERFACE: SC_GGI_SEP
     Boundary List1 = SC_GGI_SEP_B
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     Boundary List2 = SC_GGI_SEP_A
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = None
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = None
       END
     END
     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   OUTPUT CONTROL:
     MONITOR OBJECTS:
       MONITOR BALANCES:
         Option = Full
       END
       MONITOR FORCES:
         Option = Full
       END
       MONITOR PARTICLES:
         Option = Full
       END
       MONITOR POINT: MPetagesIEC
         Expression Value = (abs(massFlow()@RN_HP Side 1)/(997 [kg 
m^-3])) * \
           ( massFlowAve(Pressure)@RN_HP Side 1 + (massFlow()@RN_HP 
Side \
           1/area()@RN_HP Side 1)^2/(2*997[kg m^-3]) \
           -massFlowAve(Pressure)@RN_LP Side 2 - (massFlow()@RN_LP 
Side \
           2/area()@RN_LP Side 2)^2/(2*997 [kg m^-3]) ) / ( (torque_z
()@RN_BL \
           + torque_z()@RN_HUB + torque_z()@RN_SHR) * 141.7 [s^-1] )
         Option = Expression
       END
       MONITOR RESIDUALS:
         Option = Full
       END
       MONITOR TOTALS:
         Option = Full
       END
     END
     RESULTS:
       File Compression Level = Default
       Option = Standard
     END
   END
   SOLVER CONTROL:
     Turbulence Numerics = High Resolution
     ADVECTION SCHEME:
       Option = High Resolution
     END
     CONVERGENCE CONTROL:

107



       Local Timescale Factor = 5
       Maximum Number of Iterations = 500
       Minimum Number of Iterations = 5
       Timescale Control = Local Timescale Factor
     END
     CONVERGENCE CRITERIA:
       Conservation Target = 0.005
       Residual Target = 0.00001
       Residual Type = MAX
     END
     DYNAMIC MODEL CONTROL:
       Global Dynamic Model Control = On
     END
   END
   EXPERT PARAMETERS:
     force intersection = t
     ggi stage groups max = 500
   END
 END
 COMMAND FILE:
   Version = 12.0.1
   Results Version = 12.0
 END
 SIMULATION CONTROL:
   EXECUTION CONTROL:
     EXECUTABLE SELECTION:
       Double Precision = Off
     END
     INTERPOLATOR STEP CONTROL:
       Runtime Priority = Standard
       EXECUTABLE SELECTION:
         Double Precision = Off
       END
       MEMORY CONTROL:
         Memory Allocation Factor = 1.0
       END
     END
     PARALLEL HOST LIBRARY:
       HOST DEFINITION: grzdlx054.graz.andritz.com
         Host Architecture String = linux-amd64
         Installation Root = /graz/apps/ansys_inc/v%v/CFX
       END
     END
     PARTITIONER STEP CONTROL:
       Multidomain Option = Coupled Partitioning
       Runtime Priority = Standard
       EXECUTABLE SELECTION:
         Use Large Problem Partitioner = Off
       END
       MEMORY CONTROL:
         Memory Allocation Factor = 1.8
       END
       PARTITIONING TYPE:
         MeTiS Type = k-way
         Option = MeTiS
         Partition Size Rule = Automatic
         Partition Weight Factors = 0.083, 0.083, 0.083, 0.083, 
0.083, 0.083, \
           0.083, 0.083, 0.083, 0.083, 0.083, 0.083
       END
     END
     RUN DEFINITION:
       Solver Input File = /local1/1304434741/My.def
       Run Mode = Full
     END
     SOLVER STEP CONTROL:
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       Runtime Priority = Low
       EXECUTABLE SELECTION:
         Double Precision = Off
       END
       MEMORY CONTROL:
         Memory Allocation Factor = 1.8
       END
       PARALLEL ENVIRONMENT:
         Number of Processes = 12
         Parallel Host List = grzdlx054.graz.andritz.com*12
         Start Method = MPICH Local Parallel
       END
     END
   END
 END
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 This run of the CFX-12.0 Solver started at 13:03:13 on 24 May 2011 
by
 user trainee01 on grzdlx064.graz.andritz.com
 (intel_xeon64.sse2_linux2.5) using the command:
 
  /graz/apps/ansys_inc/v120/CFX/bin/cfx5solve -batch -definition 
My.def -ccl
    /graz/pumpe/AmuZang/transient_cfx/macros/solve_AZ_transient.ccl
 
 Setting up CFX Solver run ...
 

 
+--------------------------------------------------------------------
+
 |                                                                    
|
 |                    CFX Command Language for Run                    
|
 |                                                                    
|
 
+--------------------------------------------------------------------
+

 LIBRARY:
   CEL:
     EXPRESSIONS:
       MPetagesIEC = (abs(massFlow()@RN_HP Side 1)/(997 [kg m^-3])) * 
\
         (massFlowAve(Pressure)@RN_HP Side 1 + (massFlow()@RN_HP Side 
\
         1/area()@RN_HP Side 1)^2/(2*997[kg m^-3]) - \
         massFlowAve(Pressure)@RN_LP Side 2 - (massFlow()@RN_LP Side 
\
         2/area()@RN_LP Side 2)^2/(2*997 [kg m^-3]) ) / ( (torque_z()
@RN_BL + \
         torque_z()@RN_HUB + torque_z()@RN_SHR) * 141.7 [s^-1] )
       Hmech = (torque_z()@RN_BL + torque_z()@RN_HUB + torque_z()
@RN_SHR)* \
         141.7 [s^-1]/997 [kg m^-3]/9.81 [m s^-2]/Q DT
       Q DT = massFlow()@DT_LP/997 [kg m^-3]
       p tot IEC DT = massFlowAve(Pressure)@DT_LP + 997 [kg m^-3]* \
         ((massFlow()@DT_LP/997 [kg m^-3]/area()@DT_LP)^2)/2
       p tot IEC SC = massFlowAve(Pressure)@SC_HP + 997 [kg m^-3]* \
         ((massFlow()@SC_HP/997 [kg m^-3]/area()@SC_HP)^2)/2
       dH DT = (massFlowAve(Total Pressure in Stn Frame)@DT_HP - p 
tot IEC \
         DT) /997 [kg m^-3] / 9.81 [m s^-2]
       dH RN = (massFlowAve(Total Pressure in Stn Frame)@RN_HP Side 1 
- \
         massFlowAve(Total Pressure in Stn Frame)@RN_LP Side 2) /997 
[kg \
         m^-3] / 9.81 [m s^-2]
       dH SC = (p tot IEC SC - massFlowAve(Total Pressure in Stn \
         Frame)@SC_LP) /997 [kg m^-3] / 9.81 [m s^-2]
       dH ges IEC = (p tot IEC SC - massFlowAve(Total Pressure in Stn 
\
         Frame)@SC_LP + massFlowAve(Total Pressure in Stn Frame)
@RN_HP Side 1 \
         - massFlowAve(Total Pressure in Stn Frame)@RN_LP Side 2 + \
         massFlowAve(Total Pressure in Stn Frame)@DT_HP - p tot IEC 
DT) /997 \
         [kg m^-3] / 9.81 [m s^-2]
       eta RN = dH RN/Hmech
       eta ges IEC = (dH RN+dH DT+dH SC) /Hmech
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       eta DT = 1+dH DT/Hmech
       eta SC = 1+dH SC/Hmech
     END
   END
   MATERIAL: Water
     Material Description = Water (liquid)
     Material Group = Water Data, Constant Property Liquids
     Option = Pure Substance
     Thermodynamic State = Liquid
     PROPERTIES:
       Option = General Material
       EQUATION OF STATE:
         Density = 997.0 [kg m^-3]
         Molar Mass = 18.02 [kg kmol^-1]
         Option = Value
       END
       SPECIFIC HEAT CAPACITY:
         Option = Value
         Specific Heat Capacity = 4181.7 [J kg^-1 K^-1]
         Specific Heat Type = Constant Pressure
       END
       REFERENCE STATE:
         Option = Specified Point
         Reference Pressure = 1 [atm]
         Reference Specific Enthalpy = 0.0 [J/kg]
         Reference Specific Entropy = 0.0 [J/kg/K]
         Reference Temperature = 25 [C]
       END
       DYNAMIC VISCOSITY:
         Dynamic Viscosity = 8.899E-4 [kg m^-1 s^-1]
         Option = Value
       END
       THERMAL CONDUCTIVITY:
         Option = Value
         Thermal Conductivity = 0.6069 [W m^-1 K^-1]
       END
       ABSORPTION COEFFICIENT:
         Absorption Coefficient = 1.0 [m^-1]
         Option = Value
       END
       SCATTERING COEFFICIENT:
         Option = Value
         Scattering Coefficient = 0.0 [m^-1]
       END
       REFRACTIVE INDEX:
         Option = Value
         Refractive Index = 1.0 [m m^-1]
       END
       THERMAL EXPANSIVITY:
         Option = Value
         Thermal Expansivity = 2.57E-04 [K^-1]
       END
     END
   END
 END
 FLOW: Flow Analysis 1
   SOLUTION UNITS:
     Angle Units = [rad]
     Length Units = [m]
     Mass Units = [kg]
     Solid Angle Units = [sr]
     Temperature Units = [K]
     Time Units = [s]
   END
   ANALYSIS TYPE:
     Option = Transient
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     EXTERNAL SOLVER COUPLING:
       Option = None
     END
     INITIAL TIME:
       Option = Automatic with Value
       Time = 0 [s]
     END
     TIME DURATION:
       Option = Total Time
       Total Time = 0.44341463 [s]
     END
     TIME STEPS:
       First Update Time = 0.042 [s]
       Initial Timestep = 2.46341461e-4 [s]
       Option = Adaptive
       Timestep Update Frequency = 1
       TIMESTEP ADAPTION:
         Maximum Timestep = 2.46341461e-4 [s]
         Minimum Timestep = 0.000023 [s]
         Option = Number of Coefficient Loops
         Target Maximum Coefficient Loops = 4
         Target Minimum Coefficient Loops = 2
         Timestep Decrease Factor = 0.95
         Timestep Increase Factor = 1.06
       END
     END
   END
   DOMAIN: DT
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Primitive 3D 4,Primitive 3D 5,Primitive 3D 
6,Primitive 3D \
       7,Primitive 3D 8,Primitive 3D 9
     BOUNDARY: DT hub
       Boundary Type = WALL
       Location = INFLOW_BLOCK2,INFLOW_BLOCK3
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
           WALL VELOCITY:
             Angular Velocity = -141.7 [radian s^-1]
             Option = Rotating Wall
             AXIS DEFINITION:
               Option = Coordinate Axis
               Rotation Axis = Coord 0.3
             END
           END
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: DT_HP
       Boundary Type = INTERFACE
       Location = INFLOW_BLOCK1
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: DT_LP
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       Boundary Type = INLET
       Location = OUTFLOW_BLOCK1 2,OUTFLOW_BLOCK2 2,OUTFLOW_BLOCK3 2
       BOUNDARY CONDITIONS:
         FLOW REGIME:
           Option = Subsonic
         END
         MASS AND MOMENTUM:
           Option = Cartesian Velocity Components
           U = -0.98467 [m s^-1]
           V = 0 [m s^-1]
           W = 0 [m s^-1]
         END
         TURBULENCE:
           Omega = 0.04404 [s^-1]
           Option = k and Omega
           k = 0.00058176 [m^2 s^-2]
         END
       END
     END
     BOUNDARY: DT_WALL
       Boundary Type = WALL
       Location = SHROUD_BLOCK1,SHROUD_BLOCK1 2,SHROUD_BLOCK1 
3,SHROUD_BLOCK1 \
         4,SHROUD_BLOCK1 5,SHROUD_BLOCK1 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Option = Stationary
       END
       MESH DEFORMATION:
         Option = None
       END
       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:

113



         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Option = Automatic
       INITIAL CONDITIONS:
         Velocity Type = Cylindrical
         CYLINDRICAL VELOCITY COMPONENTS:
           Option = Automatic with Value
           Velocity Axial Component = -3 [m s^-1]
           Velocity Theta Component = 0 [m s^-1]
           Velocity r Component = 1 [m s^-1]
           AXIS DEFINITION:
             Option = Coordinate Axis
             Rotation Axis = Coord 0.3
           END
         END
         STATIC PRESSURE:
           Option = Automatic with Value
           Relative Pressure = -20e4 [Pa]
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
   END
   DOMAIN: RN
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Assembly 10
     BOUNDARY: RN_BL
       Boundary Type = WALL
       Frame Type = Rotating
       Location = BLADE,BLADE 2,BLADE 3,BLADE 4,BLADE 5,BLADE 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: RN_HP Side 1
       Boundary Type = INTERFACE
       Location = WEST,WEST 2,WEST 3,WEST 4,WEST 5,WEST 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: RN_HUB
       Boundary Type = WALL
       Frame Type = Rotating
       Location = HUB,HUB 2,HUB 3,HUB 4,HUB 5,HUB 6,HUB_EAST,HUB_EAST 
\
         2,HUB_EAST 3,HUB_EAST 4,HUB_EAST 5,HUB_EAST 6
       BOUNDARY CONDITIONS:
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         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: RN_LP Side 2
       Boundary Type = INTERFACE
       Location = EAST,EAST 2,EAST 3,EAST 4,EAST 5,EAST 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: RN_SHR
       Boundary Type = WALL
       Frame Type = Rotating
       Location = SHROUD,SHROUD 2,SHROUD 3,SHROUD 4,SHROUD 5,SHROUD \
         6,SHROUD_EAST,SHROUD_EAST 2,SHROUD_EAST 3,SHROUD_EAST 
4,SHROUD_EAST \
         5,SHROUD_EAST 6
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Alternate Rotation Model = On
         Angular Velocity = -141.7 [radian s^-1]
         Option = Rotating
         AXIS DEFINITION:
           Option = Coordinate Axis
           Rotation Axis = Coord 0.3
         END
       END
       MESH DEFORMATION:
         Option = None
       END
       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
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       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Frame Type = Rotating
       Option = Automatic
       INITIAL CONDITIONS:
         Velocity Type = Cylindrical
         CYLINDRICAL VELOCITY COMPONENTS:
           Option = Automatic with Value
           Velocity Axial Component = -3 [m s^-1]
           Velocity Theta Component = 0 [m s^-1]
           Velocity r Component = 1 [m s^-1]
         END
         STATIC PRESSURE:
           Option = Automatic with Value
           Relative Pressure = -20e4 [Pa]
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
   END
   DOMAIN: SC
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Primitive 3D
     BOUNDARY: SC_BL
       Boundary Type = WALL
       Location = Primitive 2D B,Primitive 2D C,Primitive 2D 
D,Primitive 2D \
         E,Primitive 2D F,Primitive 2D G,Primitive 2D H,Primitive 2D 
\
         I,Primitive 2D J,Primitive 2D K,Primitive 2D L,Primitive 2D 
\
         M,Primitive 2D N,Primitive 2D O,Primitive 2D P,Primitive 2D 
Q
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     BOUNDARY: SC_GGI_DE Side 1
       Boundary Type = INTERFACE
       Location = SC_GGI_DE_A
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
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         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_GGI_DE Side 2
       Boundary Type = INTERFACE
       Location = SC_GGI_DE_B
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_GGI_SEP_B
       Boundary Type = INTERFACE
       Location = SC_GGI_SEP_B
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_LP
       Boundary Type = INTERFACE
       Location = SC_LP
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
     BOUNDARY: SC_WALL
       Boundary Type = WALL
       Location = Primitive 2D
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Option = Stationary
       END
       MESH DEFORMATION:
         Option = None
       END
       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
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     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Option = Automatic
       INITIAL CONDITIONS:
         Velocity Type = Cylindrical
         CYLINDRICAL VELOCITY COMPONENTS:
           Option = Automatic with Value
           Velocity Axial Component = 0 [m s^-1]
           Velocity Theta Component = -1 [m s^-1]
           Velocity r Component = 1 [m s^-1]
           AXIS DEFINITION:
             Option = Coordinate Axis
             Rotation Axis = Coord 0.3
           END
         END
         STATIC PRESSURE:
           Option = Automatic with Value
           Relative Pressure = 0 [Pa]
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
   END
   DOMAIN: SC SEP
     Coord Frame = Coord 0
     Domain Type = Fluid
     Location = Assembly 9
     BOUNDARY: SC_GGI_SEP_A
       Boundary Type = INTERFACE
       Location = SC_GGI_SEP_A
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = Conservative Interface Flux
         END
         TURBULENCE:
           Option = Conservative Interface Flux
         END
       END
     END
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     BOUNDARY: SC_HP
       Boundary Type = OUTLET
       Location = SC_HP
       BOUNDARY CONDITIONS:
         FLOW REGIME:
           Option = Subsonic
         END
         MASS AND MOMENTUM:
           Option = Static Pressure
           Relative Pressure = 0 [Pa]
         END
       END
     END
     BOUNDARY: SC_SEP_WALL
       Boundary Type = WALL
       Location = Primitive 2D A
       BOUNDARY CONDITIONS:
         MASS AND MOMENTUM:
           Option = No Slip Wall
         END
         WALL ROUGHNESS:
           Option = Smooth Wall
         END
       END
     END
     DOMAIN MODELS:
       BUOYANCY MODEL:
         Option = Non Buoyant
       END
       DOMAIN MOTION:
         Option = Stationary
       END
       MESH DEFORMATION:
         Option = None
       END
       REFERENCE PRESSURE:
         Reference Pressure = 1 [atm]
       END
     END
     FLUID DEFINITION: Fluid 1
       Material = Water
       Option = Material Library
       MORPHOLOGY:
         Option = Continuous Fluid
       END
     END
     FLUID MODELS:
       COMBUSTION MODEL:
         Option = None
       END
       HEAT TRANSFER MODEL:
         Fluid Temperature = 25 [C]
         Option = Isothermal
       END
       THERMAL RADIATION MODEL:
         Option = None
       END
       TURBULENCE MODEL:
         Option = SST
       END
       TURBULENT WALL FUNCTIONS:
         Option = Automatic
       END
     END
     INITIALISATION:
       Option = Automatic
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       INITIAL CONDITIONS:
         Velocity Type = Cartesian
         CARTESIAN VELOCITY COMPONENTS:
           Option = Automatic with Value
           U = 0 [m s^-1]
           V = 1 [m s^-1]
           W = 0 [m s^-1]
         END
         STATIC PRESSURE:
           Option = Automatic
         END
         TURBULENCE INITIAL CONDITIONS:
           Option = Medium Intensity and Eddy Viscosity Ratio
         END
       END
     END
   END
   DOMAIN INTERFACE: RN_HP
     Boundary List1 = RN_HP Side 1
     Boundary List2 = SC_LP
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = Transient Rotor Stator
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = Specified Pitch Angles
         Pitch Angle Side1 = 360 [degree]
         Pitch Angle Side2 = 360 [degree]
       END
     END
     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   DOMAIN INTERFACE: RN_LP
     Boundary List1 = DT_HP
     Boundary List2 = RN_LP Side 2
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = Transient Rotor Stator
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = Specified Pitch Angles
         Pitch Angle Side1 = 360 [degree]
         Pitch Angle Side2 = 360 [degree]
       END
     END
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     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   DOMAIN INTERFACE: SC_GGI_DE
     Boundary List1 = SC_GGI_DE Side 1
     Boundary List2 = SC_GGI_DE Side 2
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = None
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = None
       END
     END
     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   DOMAIN INTERFACE: SC_GGI_SEP
     Boundary List1 = SC_GGI_SEP_B
     Boundary List2 = SC_GGI_SEP_A
     Interface Type = Fluid Fluid
     INTERFACE MODELS:
       Option = General Connection
       FRAME CHANGE:
         Option = None
       END
       MASS AND MOMENTUM:
         Option = Conservative Interface Flux
         MOMENTUM INTERFACE MODEL:
           Option = None
         END
       END
       PITCH CHANGE:
         Option = None
       END
     END
     MESH CONNECTION:
       Option = GGI
       INTERSECTION CONTROL:
         Option = Direct
       END
     END
   END
   OUTPUT CONTROL:
     MONITOR OBJECTS:
       MONITOR BALANCES:
         Option = Full
       END
       MONITOR FORCES:
         Option = Full
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       END
       MONITOR PARTICLES:
         Option = Full
       END
       MONITOR POINT: Hmech
         Expression Value = Hmech
         Option = Expression
       END
       MONITOR POINT: dH DT
         Expression Value = dH DT
         Option = Expression
       END
       MONITOR POINT: dH RN
         Expression Value = dH RN
         Option = Expression
       END
       MONITOR POINT: dH SC
         Expression Value = dH SC
         Option = Expression
       END
       MONITOR POINT: dH ges IEC
         Expression Value = dH ges IEC
         Option = Expression
       END
       MONITOR POINT: eta DT
         Expression Value = eta RN
         Option = Expression
       END
       MONITOR POINT: eta RN
         Expression Value = eta RN
         Option = Expression
       END
       MONITOR POINT: eta SC
         Expression Value = eta RN
         Option = Expression
       END
       MONITOR POINT: eta ges IEC
         Expression Value = eta ges IEC
         Option = Expression
       END
       MONITOR RESIDUALS:
         Option = Full
       END
       MONITOR TOTALS:
         Option = Full
       END
     END
     RESULTS:
       File Compression Level = Default
       Option = Standard
     END
     TRANSIENT RESULTS: Transient Results 1
       File Compression Level = Default
       Option = Standard
       OUTPUT FREQUENCY:
         Option = Every Timestep
       END
     END
   END
   SOLVER CONTROL:
     Turbulence Numerics = First Order
     ADVECTION SCHEME:
       Option = High Resolution
     END
     CONVERGENCE CONTROL:
       Maximum Number of Coefficient Loops = 50
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       Minimum Number of Coefficient Loops = 1
       Timescale Control = Coefficient Loops
     END
     CONVERGENCE CRITERIA:
       Residual Target = 0.00001
       Residual Type = RMS
     END
     TRANSIENT SCHEME:
       Option = Second Order Backward Euler
       TIMESTEP INITIALISATION:
         Option = Automatic
       END
     END
   END
   EXPERT PARAMETERS:
     force intersection = t
     transient initialisation override = t
   END
 END
 COMMAND FILE:
   Version = 12.0.1
   Results Version = 12.0
 END
 SIMULATION CONTROL:
   EXECUTION CONTROL:
     EXECUTABLE SELECTION:
       Double Precision = No
     END
     INTERPOLATOR STEP CONTROL:
       Runtime Priority = Standard
       EXECUTABLE SELECTION:
         Double Precision = Off
       END
       MEMORY CONTROL:
         Memory Allocation Factor = 1.5
       END
     END
     PARALLEL HOST LIBRARY:
       HOST DEFINITION: grzdlx064.graz.andritz.com
         Host Architecture String = linux-amd64
         Installation Root = /graz/apps/ansys_inc/v%v/CFX
       END
     END
     PARTITIONER STEP CONTROL:
       Multidomain Option = Coupled Partitioning
       Runtime Priority = Standard
       EXECUTABLE SELECTION:
         Use Large Problem Partitioner = Off
       END
       MEMORY CONTROL:
         Memory Allocation Factor = 2.0
       END
       PARTITIONING TYPE:
         MeTiS Type = k-way
         Multipass Partitioning Option = None
         Option = MeTiS
         Partition Size Rule = Automatic
         Partition Weight Factors = 0.200, 0.200, 0.200, 0.200, 0.200
       END
     END
     RUN DEFINITION:
       Solver Input File = /local/cfx_solve_0_98467/My.def
       Run Mode = Full
     END
     SOLVER STEP CONTROL:
       Runtime Priority = Low
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       EXECUTABLE SELECTION:
         Double Precision = Off
       END
       MEMORY CONTROL:
         Memory Allocation Factor = 1.8
       END
       PARALLEL ENVIRONMENT:
         Number of Processes = 5
         Parallel Host List = grzdlx064.graz.andritz.com*5
         Start Method = MPICH Local Parallel
       END
     END
   END
 END
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