
Michael Knap

Collective Modes and Dynamics in

Strongly Correlated Many-Body Systems:

a Variational Cluster Approach

DOCTORAL THESIS

For obtaining the academic degree of

Doktor der technischen Wissenschaften

Doctoral Program of Technical Sciences
Technical Physics

Graz University of Technology

Supervisor:

Univ.-Prof. Dipl.-Phys. Dr.rer.nat. Wolfgang von der Linden

Institute of Theoretical and Computational Physics

Graz, September 2012





to Sabrina





Abstract

Collective behavior in strongly correlated many particle systems can give rise to a rich
variety of emergent phenomena, which cannot be predicted from the single particle
perspective alone. Understanding their physics is a formidable task. One possible route
to gain insight in these systems is by numerical simulations. In this thesis we focus
on the variational cluster approach, a numerical technique which is capable to treat
symmetry broken states emerging from the collective behavior of many particles.

We study strongly correlated bosonic systems, which can be experimentally realized
by ultracold atoms in optical lattices and by light-matter systems. In these synthetic
many-body systems, quantummechanical interference effects, manifesting for instance
in the quantum phase transition from the localized Mott to the delocalized superfluid
phase, are observable on a macroscopic scale. We calculate momentum distributions
and dynamical spectral functions, which in ultracold atom experiments are accessible
by time-of-flight images and Bragg spectroscopy, respectively. From these quantities
we deduce the boundary of the quantum phase transition. In the normal phase we also
study the excitation characteristics in disordered optical lattices for disorder distribu-
tions which are relevant to ultracold atom experiments. One important technical aspect
is the extension of the variational cluster approach to theU(1) symmetry broken, super-
fluid phase of lattice bosons within the pseudoparticle and the self-energy functional
approach adopting Nambu notation.

Moreover, we introduce a variational cluster approach that allows to compute non-
equilibrium steady state properties of strongly correlated many-body systems. The
method is embedded in the Keldysh Green’s function formalism. We introduce a vari-
ational principle which allows for a suitable self-consistent optimization of the initial
state to the nonequilibrium target state. We apply the presented approach to the non-
linear transport across a strongly correlated quantum wire and calculate the current-
voltage characteristics. We also illustrate how the approach bridges to nonequilibrium
cellular dynamical mean field theory upon coupling two baths with infinitely many
bath degrees of freedom.

Understanding the fundamental properties of strongly correlated many-body sys-
tems if of great importance, as on the one hand strongly correlated materials quite
generally exhibit peculiar electronic and magnetic properties, which renders them in-
teresting for technological applications, and as on the other hand strongly correlated
synthetic many-body systems might pave the way for general purpose quantum infor-
mation processing.
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Kurzfassung

Kollektives Verhalten in stark korrelierten Vielteilchensystemen kann zu Phänomenen
führen, die allein von einer Einteilchenbetrachtung nicht vorhergesagt werden können.
Daher ist es eine Herausforderung ihre Physik zu verstehen. Numerische Simulationen
bieten einen möglichen Zugang, um Einblicke in diese Systeme zu erhalten. Diese Ar-
beit befasst sich mit der variationellen Clustermethode, eine numerische Methode, die
symmetriegebrochene Zustände behandeln kann, welche durch das kollektive Verhal-
ten von vielen Teilchen entstehen.

Wir untersuchen stark korrelierte bosonische Systeme, die experimentell durch ul-
trakalte Atome in optischen Gittern und durch Licht-Materiesysteme realisiert werden
können. In diesen synthetischen Vielteilchensystemen sind quantenmechanische Inter-
ferenzeffekte, die sich beispielsweise in dem Quantenphasenübergang von der loka-
lisierten Mott zur delokalisierten suprafluiden Phase manifestieren, auf makroskopi-
scher Skala beobachtbar. Wir berechnen Impulsverteilungen und dynamische Spektral-
funktionen, die in Experimentenmit ultrakalten Atomen durch Flugzeitaufnahmen be-
ziehungsweise Braggspektroskopie zugänglich sind. Aus diesen Observablen berech-
nen wir die Position des Quantenphasenübergangs. In der lokalisierten Phase unter-
suchen wir auch die Anregungscharakteristik von ungeordneten optischen Gittern für
Unordnungsverteilungen, die für Experimente mit ultrakalten Atomen relevant sind.
Ein wichtiger technischer Aspekt ist die Erweiterung der variationellen Clustermetho-
de auf die U(1) symmetriegebrochene, suprafluide Phase von Gitterbosonen. Dazu ver-
wenden wir den Pseudoteilchen-Zugang und den Selbstenergiefunktional-Zugangmit
Nambu-Notation.

Darüberhinaus führen wir eine variationelle Clustermethode ein, die die Berechnung
von stationären Zuständen von stark korrelierten Vielteilchensystemen imNichtgleich-
gewicht ermöglicht. Die Methode ist im Formalismus der Green’schen Funktionen im
Keldysh Raum eingebettet. Wir führen ein Variationsprinzip ein, das eine geeignete,
selbstkonsistente Optimierung des Anfangszustands auf den Zielzustand im Nicht-
gleichgewicht ermöglicht. Die neue Methode wenden wir auf den nichtlinearen Trans-
port über einen stark korrelierten Quantendraht an und berechnen Strom-Spannungs-
Charakteristiken. Wir illustrieren auch die Zusammenhänge zwischen diesem Zugang
und der zellulären dynamischen Molekularfeldtheorie.

Das Verständnis der fundamentalen Eigenschaften von stark korrelierten Vielteil-
chensystemen ist von großer Wichtigkeit, da einerseits stark korrelierte Materialien im
Allgemeinen besondere elektronische und magnetische Eigenschaften aufweisen, die
sie für technologische Anwendungen interessant machen, und da andererseits stark
korrelierte synthetische Vielteilchensysteme den Weg für universelle Quanteninforma-
tionsverarbeitung ebnen könnten.
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1. Introduction

Collective behavior in many particle systems can give rise to a rich variety of emergent
phenomena, which cannot be predicted from the single particle perspective alone [1].
However, universality put forward by Ginzburg-Landau theory [2] andWilson’s renor-
malization group [3] can help to understand the complex collective behavior of many
particles.

Often the physics of many-body systems can still be understood from the single par-
ticle picture, where however the particle is not the original electron but rather a quasi
particle which is dressed by many-body interactions. In particular this is the case for
weakly interacting particles in higher dimension where Fermi liquid theory [4] is the
universal fixed point of the renormalization group flow. Extremely interesting are cases
where the Fermi liquid approach breaks down, which is the case for strong interactions
and in low dimensions. The break down of the quasi particle picture implies that there
is no direct connection of the elementary particles and the dressed particles. One of
the most prominent examples might be one-dimensional metallic systems, where ex-
citations are collective density oscillations of bosonic nature [5]. For one-dimensional
metallic systems the fixed point of the renormalization group flow is of the universality
class of the Tomonaga-Luttinger model [6, 7].

Quite generally, systemswhere strong correlations play a crucial role exhibit unusual
electronic and magnetic properties, which also render them highly relevant for techno-
logical applications possibly rooted in energy sciences, health sciences, and informa-
tion sciences. Examples for these unusual properties include the metal to insulator
transition (also known as Mott transition) occurring when ambient parameters such as
pressure and doping are changed [8], the colossal magnetoresistance with extraordi-
narily high sensitivity to applied magnetic fields [9], the Kondo effect where a localized
spin is entangled with itinerant fermions in its environment [10, 11], and unconven-
tional superconductivity, where as compared to the electron-ion interaction, which is at
the heart of conventional superconductivity, a different mechanism is responsible for
superconductivity [12]. Unconventional superconductors are characterized by uncon-
ventional electron pairing other than s-wave pairing. In that sense, the first discovered
unconventional “superconductor” is superfluid 3He [13]. The neutral 3He atoms can
be considered as hard core objects which thus suppress s-wave pairing. But there are
also many electronic systems, which exhibit unconventional superconductivity. Prob-
ably, the most prominent among them are the cuprates, where copper-oxide layers are
believed to be responsible for superconductivity [14]. A very intriguing property of the
cuprates is that they exhibit extremely high superconducting transition temperatures,
which are well above liquid nitrogen temperature. There exist also unconventional
organic superconductors [15], heavy fermion systems with strongly enhanced quasi
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1. Introduction

particle mass as compared to the bare electron mass [16], and the recently discovered
iron-based superconductors [17].

Understanding the physics of strongly correlated systems is a formidable task. One
possible route to gain insight into these systems is to describe their main physical prop-
erties by a minimal theoretical model, which contains only a few relevant parameters,
yet considers correlations between the particles. For high temperature superconductors
the paradigm example is the Hubbard model [18], describing the interplay between the
delocalization driven by the kinetic energy and the localization driven by the interac-
tion of electrons in copper oxide planes. The comparison with real materials is often
challenging, as real materials have a complicated band structure, model parameters are
often unknown, and disorder, which is always present in real samples, can dramatically
alter physical properties [19]. Therefore it is of great interest to experimentally realize
strongly correlated many-body systems in a clean and controlled way.

In recent years, the enormous progress in controlling quantum optical and atomic
systems lead to the advent of “synthetic” many-body systems, whose microscopic pa-
rameters are extremely well known and also controllable. While one of the most elabo-
rate synthetic many-body systems consists of ensembles of ultracold atoms [20, 21, 22],
other systems including light-matter systems [23, 24], Josephson junction arrays [25,
26], and optomechanical systems [27] are also actively explored. All these different
realizations of synthetic many-body systems have in common the high controllability
and clean realization, which renders them ideal candidates for quantum simulators of
strongly correlated many-body systems and also poses new challenges for theory since
vastly different energy and time scales are present as compared to condensed mat-
ter systems. Additionally, different experimental probes are available to characterize
many-body states.

Numerical simulations can provide profound theoretical insight into the physics of
strongly correlated many-body systems. In this thesis, we focus on a particular numer-
ical technique—the variational cluster approach (VCA)—which is able to treat symme-
try broken states emerging from the collective behavior of many particles. Originally,
VCA has been introduced for fermionic systems in equilibrium [28]. One principle
goal of this thesis is to extend VCA in the following two directions: First, we consider
bosonic lattice systems and extendVCA to theU(1) symmetry broken superfluid phase.
Second, we introduce an extension of VCA to calculate the nonequilibrium steady state
of strongly correlated many-body systems and explore transport properties including
the current density at finite bias voltage.

Strongly correlated bosonic systems can be realized by syntheticmany-body systems.
In this thesis we focus on ultracold atoms trapped in optical lattices [20, 21, 22] and light
matter systems [23, 24]. Optical lattices are created by counter propagating laser beams
which form a standing wave. Due to the dipolar interactions the ultracold gas of atoms
experiences the periodic potential whose depth can be controlled by the laser light in-
tensity, see Fig. 1.1 (a). Such an experimental realization renders quantum mechanical
interference effects observable on a macroscopic scale. Important as well as fundamen-
tal is the quantum phase transition [29] of strongly correlated lattice bosons from the

2



(a)

(b)

Figure 1.1.: (a) Schematic of a two-dimensional optical lattice created by four counter
propagating laser beams. Bosonic particles (red spheres) feel the lattice
potential due to the dipole force [22]. (b) Experimental observation of
the quantum phase transition from the superfluid phase to the Mott in-
sulating phase from top left to bottom right for increasing optical lattice
depth; adapted by permission from Macmillan Publishers Ltd: NATURE,
M. Greiner et al., Nature (London) 415, 39, Figure 2, copyright 2002.

localized Mott phase to the delocalized superfluid phase [30]. This phase transition
directly manifests in the momentum distribution, shown in Fig. 1.1 (b), which due to
Heisenberg’s uncertainty relation is dual to the picture in real space: In the Mott in-
sulating phase a smeared background is observable whereas in the superfluid phase
the condensate peak and Bragg reflection peaks are observable; figure is taken over
from [21].

In light-matter systems [23, 24], strong interactions can be achieved by optical non-
linearities, which appear due to the dipole coupling of cavity photons to matter in the
form of atoms or atomic-like structures such as single atoms trapped in optical dipole
traps or quantum dots, see Fig. 1.2. Usually, the interaction between photons and atoms
is relatively weak, since the interaction time is small. However, the interaction time can
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1. Introduction

(a)

(b)

Figure 1.2.: (a) Illustration of laser driven and dissipative coupled quantum electro-
dynamics cavities. The yellow shaded region depicts the cavity modes,
whereas the atomic excitations are indicated by two level systems. Red
wavy arrows indicate photon pumping (Γ+) and photon decay (Γ−). (b)
Two experimental realizations of coupled quantum electrodynamics cav-
ities where nonlinearities are realized by atoms trapped in a dipole trap
(left), adapted by permission from Macmillan Publishers Ltd: NATURE, S.
Ritter et al., Nature 484, 195, Figure 1, copyright 2012, and quantum dots
grown in photonic crystal cavities (right), reprinted with permission from
S. M. Thon et al., Appl. Phys. Lett. 99, 161102, Figure 1, copyright 2011,
American Institute of Physics.

be increased by confining the photons in an optical circuit [33] or cavity [34]. Due to
dipolar interactions, composite particles of atomic excitations and photons are formed,
which exhibit mutual repulsive interactions and are termed polaritons. A synthetic
many-body system is then realized, when coupling multiple cavities, which can be
achieved by engineering a finite overlap of the photonic wave functions [32]. A major
advantage of these synthetic realizations of strongly correlated systems is that they are
of mesoscopic scale, which allows for a single-site addressability and thus gives access
to local quantities and spatially extended correlation functions. Importantly, in experi-
ments these systems inherently operate out of equilibrium as they are laser driven and
susceptible to photon loss.

New insight into the fundamental many-body physics can be obtained from a fruitful
interplay between theory and experiments on strongly correlated systems. In ultracold
atom experiments a rich experimental toolbox exists to characterize many-body states:
Time of flight images provide the momentum distribution of trapped atoms [35, 21]
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and in-situ imaging of the atomic cloud gives access to the particle distribution in real
space [36, 37]. Dynamical response functions can be obtained from lattice modula-
tion [38, 39], RF-spectroscopy [40, 41], and Bragg spectroscopy [42, 43, 44]. Also well
established quantum optics experiments of Rabi or Ramsey type can be used to char-
acterize many-body states [45, 46, 47]. Information about correlation functions can also
be obtained from the analysis of shot-to-shot noise [48]. In VCA we have direct access
to the single particle Green’s function, and thus to all single particle quantities. In this
thesis, we calculate momentum distributions measurable with time of flight images
and the dynamical and wave-vector resolved single-particle spectral function accessi-
ble by Bragg spectroscopy. We also map out phase diagrams, which can be derived
from the above discussed quantities. In the study of the nonequilibrium steady state of
a strongly correlated many-body system, we focus on transport properties, such as the
current voltage characteristics, which are the natural observables in experiments with
mesoscopic systems.

This thesis is mainly based on the following publications of the author:

[1] Michael Knap, Enrico Arrigoni, Wolfgang von der Linden, Spectral properties of
strongly correlated bosons in two-dimensional optical lattices. Phys. Rev. B 81,
024301 (2010).
Selected for the Virtual Journal of Quantum Fluids, January 2010, edited by Prof.
Wolfgang Ketterle (MIT), Prof. Markus Greiner (Harvard), and Prof. Peter Zoller
(Innsbruck).

[2] Michael Knap, Enrico Arrigoni, Wolfgang von der Linden, Spectral properties of
coupled cavity arrays in one dimension. Phys. Rev. B 81, 104303 (2010).

[3] Michael Knap, Enrico Arrigoni, Wolfgang von der Linden, Quantum phase tran-
sition and excitations of the Tavis-Cummings lattice model. Phys. Rev. B 82, 045126
(2010).
Selected for the Virtual Journal of Quantum Fluids, August 2010, edited by Prof.
Wolfgang Ketterle (MIT), Prof. Markus Greiner (Harvard), and Prof. Peter Zoller
(Innsbruck).

[4] Michael Knap, Enrico Arrigoni, Wolfgang von der Linden, Excitations in disor-
dered bosonic optical lattices. Phys. Rev. A 82, 053628 (2010).

[5] Michael Knap, Enrico Arrigoni, Wolfgang von der Linden, Variational cluster ap-
proach for strongly-correlated lattice bosons in the superfluid phase. Phys. Rev. B
83, 134507 (2011).

[6] Enrico Arrigoni, Michael Knap, Wolfgang von der Linden, Extended self-energy
functional approach for strongly correlated lattice bosons in the superfluid phase.
Phys. Rev. B 84, 014535 (2011).

[7] Michael Knap, Enrico Arrigoni, Wolfgang von der Linden, Nonequilibrium steady
state for strongly-correlated many-body systems: Variational cluster approach.
Phys. Rev. B 84, 115145 (2011).

5



1. Introduction

A complete list of our publications can be found following the bibliography.
The author of this thesis made substantial contributions to the above stated publica-

tions, consisting of the participation in the development of the original ideas, an exten-
sive literature research, analytical calculations, design, development, implementation,
and test of the numerical approaches, their application to physical problems, evalua-
tion, interpretation and discussions of the results, and writing of the papers. Through-
out this thesis we indicate text which is taken over from the above stated publications
by a specific font also used to format this sentence. In order to provide a coherent pre-
sentation, the methodology and the results of the individual papers are separated. The
connection to the original literature can be drawn from the presentation of the structure
of this thesis in the following paragraphs.

This thesis is organized as follows: In Ch. 2 we present our extensions and develop-
ments of VCA. In particular, in Sec. 2.1 we begin the discussions with a formulation of
VCA applicable to the normal Mott phase of strongly correlated bosons. Here, we start
with a concise introduction to the self-energy functional approach [49, 50], which is the
basis of VCA [28], formulated for the normal phase of lattice bosons, which has been
originally introduced by Koller and Dupuis [51]. For technical details and tricks on the
numerical techniques we refer to the original work [28, 52, 53, 54] and to the master
thesis of the author [55]. Following this short introduction we discuss the accurate cal-
culation of the moments of the spectral function and the extension to disordered lattice
bosons [56]. Next, we formulate VCA within a pseudoparticle approach [57], which is
less rigorous than the self-energy functional approach, yet allows for a very intuitive
understanding of VCA. Using the pseudoparticle approach we extend VCA in Sec. 2.2
to the symmetry broken superfluid phase [57] and put it within a self-energy functional
approach on rigorous grounds [58]. The extension of VCA to the nonequilibrium steady
state of strongly correlated many-body systems [59] is presented in Sec. 2.3.

In Ch. 3 we discuss equilibrium properties of bosonic many-body systems. In Sec. 3.1
we first focus on the normal Mott insulating phase without [54] and with disorder [56]
and subsequently study the superfluid phase [57, 58]. In the following we study in
detail two different light-matter systems: In Sec. 3.2 we explore coupled cavities with
Jaynes-Cummings nonlinearities provided by a single two-level system [60]. In Sec. 3.3
we extend this study to the Tavis-Cummings model containing multiple two level sys-
tems per cavity [61].

Chapter 4 focuses on the nonequilibrium steady state of a strongly correlated quan-
tum wire transversely attached to noninteracting leads [59]. In particular we calculate
transport properties such as the steady state current density for a finite applied bias
voltage.

Finally, we conclude and summarize our findings in Ch. 5 and give an outlook for fur-
ther interesting questions. The appendices are devoted to technical details: In App. A
and App. B we provide details on the pseudoparticle approach and the self-energy
functional approach in the symmetry broken, superfluid phase. AppendixC contributes
details to the nonequilibrium VCA and App. D contains supplementary information on
the treatment of light-matter systems.
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2. Variational cluster approach

Cluster approaches have been proven to be very useful for the numerical investigation of
strongly correlated many-body systems. These approaches consist in embedding finite
size clusters, for which a numerical exact solution is available, within a lattice of infinite
size. The embedding is done by introducing additional fields to the cluster Hamiltonian,
in order to take into account the coupling to the rest of the lattice in some appropriate
dynamical mean-field way. These fields are commonly termed Weiss fields, since they
play an analogous role as in Weiss mean-field theory of ferromagnetism (cf. Ref. [62]).
Different cluster embedding techniques, such as cluster perturbation theory (CPT) [63,
64, 65], variational cluster approach (VCA) [49, 28, 66], cellular dynamical mean field
theory (C-DMFT) [67], and dynamical cluster approximation [68], differ by the nature
of the Weiss fields and of the mean-field treatment which fixes their optimal value.

In this chapter, we provide an introduction to VCA and describe in a coherent way its
extensions and generalizations, which have been developed in the course of this thesis in
our group.

First, we introduce VCA for equilibrium properties of strongly correlated lattice bosons
in the normal phase without symmetry breaking [51, 69, 54]. VCA for equilibrium many-
body systems, can be understood in a general framework called self-energy functional
approach (SFA) [49, 50], in which the grand potential of the physical system of interest
is expressed as the stationary point of a particular functional of the self energy. We
also present an alternative approach to VCA in which single-particle excitations are
expressed in terms of “pseudoparticles,” which are similar to Hubbard operators [70],
and external fields are “added” to the cluster Hamiltonian and “subtracted perturba-
tively” [52]. Additionally, we provide a detailed introduction to the Q-matrix formalism
which facilitates an accurate calculation of observables and present, how the moments
of the spectral function can be evaluated within VCA. Finally, we formulate VCA for
disordered lattice bosons and adopt the Q-matrix formalism accordingly.

The next section deals with the extension of VCA to the U(1) symmetry broken,
superfluid phase [57, 58]. This theoretical framework, is applicable to a large class of
lattice boson systems in the Mott insulating as well as in the superfluid phase. In
particular, besides the widely studied Bose-Hubbard model [30, 20], the method can
straight forwardly be extended to include disordered systems or multiple components,
including fermion-boson mixtures. The extended VCA theory can be applied even to
the U(1) broken, superfluid phase of light-matter systems, where photons are confined
in coupled, nonlinear quantum-electrodynamics cavities [23, 24]. In order to achieve
the extension to the U(1) broken, superfluid phase, it proves convenient to reformulate
VCA in terms of the pseudoparticle approach, whereby single-particle excitations within
a cluster are approximately mapped onto particlelike excitations. We show that this

7



2. Variational cluster approach

approach quite naturally suggests the extension to the superfluid case. In the following
section, we demonstrate that the results obtained from the pseudoparticle formalism in
the superfluid phase can be equivalently obtained within an appropriate extension of
SFA taking into account condensed bosons.

In the last section we present a numerical approach approach that allows to compute
nonequilibrium steady state properties of strongly correlated quantum many-body sys-
tems [59]. This method is embedded in the Keldysh Green’s function formalism and
is based upon the idea of the variational cluster approach as far as the treatment of
strong correlations is concerned. It turns out that the variational aspect is crucial as it
allows for a suitable optimization of a “reference” system to the nonequilibrium target
state. The approach is neither perturbative in the many-body interaction nor in the
field, that drives the system out of equilibrium, and it allows to study strong perturba-
tions and nonlinear responses of systems in which also the correlated region is spatially
extended. We also illustrate how the method bridges to C-DMFT upon coupling two
baths containing and increasing number of uncorrelated sites.

2.1. Correlated lattice bosons in the normal phase

2.1.1. Self-energy functional approach

The SFA is based on the fact that Dyson’s equation for the exact Green’s function is
recovered at the stationary point of the grand potential Ω[Σ] considered as a functional
of the self-energy Σ. Thus Σ corresponds, at the stationary point, to the real physical
self-energy. The self-energy functional Ω[Σ] cannot be evaluated directly as it contains
the Legendre transform F [Σ] of the Luttinger-Ward functional [71, 49]. However, the
functional F [Σ] just depends on the interaction term of the Hamiltonian, and is thus
equivalent for all Hamiltonians which share a common interaction part. Due to this
property F [Σ] can be eliminated from the expression of the self-energy functional Ω[Σ].
For this purpose an exactly solvable, so-called “reference,” system Ĥ ′ is constructed,
which must be defined on the same lattice and must have the same interaction part
as the original system Ĥ. Thus both the self-energy functional of the original system
Ω[Σ] and the one of the reference system Ω′[Σ] contain the same F [Σ], which can be
eliminated by comparison from the expressions of the two self-energy functionals. This
yields for bosonic systems [51]

Ω[Σ] = Ω′[Σ]− Tr ln(−(G′ −10 − Σ))

+ Tr ln(−(G−10 − Σ)) , (2.1)

where quantities with prime correspond to the reference system andG0 is the free Green’s
function. The free Green’s function is defined as G−10 ≡ (ω+µ)1̂− T , where T contains
the hopping matrix and all other one-particle parameters of the Hamiltonian except
for the chemical potential µ, which is already treated separately in the definition. The
symbol Tr denotes a summation over bosonic Matsubara frequencies and a trace over
site indices. The self-energy functional Ω[Σ] given by Eq. (2.1) is exact. In order to
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2.1. Correlated lattice bosons in the normal phase

(a) (b)

Figure 2.1.: (a) The search space for the self-energy Σ is restricted to self-energies Σ(x)
which are accessible via the reference system Ĥ ′. (b) Lattice decomposition
of a square lattice into 2× 2 site clusters.

be able to evaluate the functional, the search space of the self-energy Σ has to be re-
stricted [49], which consists in an approximation. More precisely, the functional Ω[Σ]
is evaluated for the subset of self-energies available to the reference system Ĥ ′, see
Fig. 2.1 (a). Practically, this is achieved by varying the single-particle parameters of the
reference Hamiltonian in order to find the stationary point of the grand potential. Thus
the functional Ω[Σ] becomes a function of the set x of single-particle parameters of Ĥ ′

Ω(x) = Ω′(x)− Tr ln(−(G′ −10 − Σ(x)))

+ Tr ln(−(G−10 − Σ(x)))

= Ω′(x) + Tr ln(−G′(x))− Tr ln(−G(x)) (2.2)

leading to the stationary condition

∂ Ω(x)

∂ x
= 0 . (2.3)

In VCA the reference system is given by the decomposition of the total system into
identical clusters, see Fig. 2.1 (b). We evaluate the single particle Green’s function of each
cluster exactly by means of the band Lanczos method [72, 53]. The Green’s function of
the total system is obtained via the relation

G−1(ω) = G′ −1(ω)− V , (2.4)

which can be deduced from the Dyson equation of the total system G−1 = G−10 − Σ(x)
and the reference system G′ −1 = G′ −10 −Σ(x). The self-energy can be eliminated and it
follows that

G−1 = G′ −1 − (G′ −10 −G−10 ) .

The expression in parenthesis defines the matrix

V ≡ G′ −10 −G−10 = ((ω + µ′)1̂− T ′)− ((ω + µ)1̂− T )
= −(µ− µ′)1̂+ (T − T ′) . (2.5)

9



2. Variational cluster approach

With Eq. (2.4) the grand potential Ω(x) can be rewritten as

Ω(x) = Ω′(x) + Tr ln(1̂− V G′) . (2.6)

The decomposition of the N -site lattice into clusters of L sites can be described by
a superlattice. The original lattice is obtained by attaching a cluster to each site of
the superlattice [73, 55]. A partial Fourier transform from superlattice indices to wave
vectors k̃, which belong to the first Brillouin zone of the superlattice, yields the total
Green’s function

G−1(k̃, ω) = G′ −1(ω)− V (k̃) . (2.7)

Due to the diagonality of G′ in the superlattice indices its partial Fourier transform does
not depend on k̃. The matrices in Eq. (2.7) are now defined in the space of cluster-site
indices and are thus of size L×L. The N wave vectors k from the Brillouin zone of the
total lattice can be expressed as

k = k̃+K , (2.8)

where K belongs to both the reciprocal superlattice and the first Brillouin zone of the
total lattice [73, 55].

2.1.2. Q-matrix formalism for bosonic systems

The frequency integration implicit in the expression for the grand potential, given in
Eq. (2.6), can be carried out analytically, yielding at zero temperature [51, 50, 73]

Ω(x) = Ω′(x) +
∑

λ′
r<0

λ′r −
1

Nc

∑

k̃

∑

λr(k̃)<0

λr(k̃) , (2.9)

where λ′r and λr(k̃) are the poles of the cluster Green’s function and total Green’s
function, respectively. The number of clusters N/L is denoted as Nc. The poles λ′r of
the cluster Green’s function can be readily obtained from the Lanczos method, whereas
the poles of the total Green’s function λr(k̃) can be evaluated with the so-called Q-matrix
formalism, which was originally proposed for fermionic Green’s functions [53, 52]. Here,
we extend this formalism to the generic case, i. e., we include bosonic Green’s functions.
As we will see, this extension is nontrivial, since it involves non-unitary transformations.

For zero temperature, the cluster Green’s function reads [74]

G′ij (ω) = 〈ψ0| ai
1

ω − (Ĥ ′ − ω0)
a†j |ψ0〉

− ǫ 〈ψ0| a†j
1

ω + (Ĥ ′ − ω0)
ai |ψ0〉 , (2.10)

where |ψ0〉 is the ground state of the Np particle system, ω0 is its (grand-canonical)
energy, and ǫ = 1 (ǫ = −1) for bosonic (fermionic) Green’s functions. The first term
on the right-hand side of Eq. (2.10) describes single-particle excitations from the Np

particle ground state and can thus be referred to as particle term, whereas the second

10



2.1. Correlated lattice bosons in the normal phase

part corresponds to single-hole excitations and can be called hole term. Inserting the
identity 1̂ =

∑
γ |γ〉 〈γ| into each part of Eq. (2.10), where |γ〉 are the eigenvectors

of the reference Hamiltonian with corresponding eigenvalues ω′γ , yields the Lehmann
representation of the Green’s function

G′ij (ω) =
∑

α

〈ψ0| ai |α〉 〈α| a†j |ψ0〉
ω − (ω′α − ω0)

− ǫ
∑

β

〈ψ0| a†j |β〉 〈β| ai |ψ0〉
ω +

(
ω′β − ω0

) , (2.11)

which can be cast into the form

G′ij (ω) =
∑

γ

Qiγ
1

ω − λ′γ
SγγQ

†
γj . (2.12)

In Eq. (2.12), we have introduced the following notation:

Q†γj ≡
{
〈γ| a†j |ψ0〉 |γ〉 ∈ HNp+1

〈ψ0| a†j |γ〉 |γ〉 ∈ HNp−1
, (2.13)

λ′γ ≡
{
ω′γ − ω0 |γ〉 ∈ HNp+1

ω0 − ω′γ |γ〉 ∈ HNp−1
(2.14)

and

Sγγ′ ≡
{

δγγ′ |γ〉 ∈ HNp+1

−ǫ δγγ′ |γ〉 ∈ HNp−1
, (2.15)

where HM is the Hilbert space of an M particle system. With

g′γγ′ (ω) ≡ δγγ′

ω − λ′γ
(2.16)

the cluster Green’s function can be written in matrix notation

G′ ≡ Qg′ (ω) S Q† . (2.17)

With the help of this expression the VCA Green’s function Eq. (2.7) can be rewritten as

G = G′
1

1− V G′
= Qg′ S Q†

1

1− V Qg′ S Q†

= Qg′ S Q†
{
1 + V Qg′ S Q† + . . .

}

= Qg′
[
1− S Q† V Qg′

]−1
S Q†

= Q
1

g′ −1 − S Q† V Q
S Q† , (2.18)
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2. Variational cluster approach

where in the third step we expanded the fraction in a Taylor series. The matrix g′ is
diagonal and contains the poles of the cluster Green’s function G′, see Eq. (2.16). It can
be written as g′ −1 = ω − Λ with Λγγ′ = λ′γ δγγ′ . Plugging this into Eq. (2.18) yields

G = Q
1

ω − (Λ + S Q† V Q)
S Q† . (2.19)

We introduce the matrix M ≡ Λ + S Q† V Q. This matrix can be diagonalized as
MX = XD, where D is a diagonal matrix containing the eigenvalues of M and X is
the matrix of the eigenvectors of M . The eigenvalue equation of the matrix M can be
rewritten as M = XDX−1, where X−1 is the inverse of X and not its transpose as M
is a non-symmetric matrix. From that we obtain

(ω −M)−1 = X(ω −D)−1X−1 . (2.20)

Therefore, the poles of the total Green’s function G in Eq. (2.19) are the eigenvalues of
the matrix M . The matrices G and V are defined on the space of cluster-site indices.
Thus G and V are of size L × L and depend on the wave vector k̃, see Eq. (2.7). The
matrix Q is of size L × K, where K is the dimension of the Krylov space generated
in the band Lanczos method. Due to the dependence of V on k̃ the diagonalization of
the matrix M yields K eigenvalues Drr′ = λr(k̃) δrr′ , which are used in Eq. (2.9). The
diagonalization has to be repeated for all wave vectors k̃. With that the grand potential
Ω(x) can be evaluated. The crucial point is that for bosonic Green’s functions, the
entries of the diagonal matrix S can be both 1 as well as −1, see Eq. (2.15). Therefore,
the eigenvalue problem is not symmetric. It can happen that some of the poles of the
total Green function Eq. (2.7) become complex. This is due to the fact that the matrix
M in Eq. (2.20) is not symmetric. For this reason, this anomaly can occur in the bosonic
case only. With complex poles, the bosonic Green function is no longer causal and,
therefore, the variational solution is unphysical and must be discarded. This situation
quite generally signals an instability towards another phase, such as superfluidity, see
Sec. 2.2.

The factorization of the total lattice into clusters breaks the translational symmetry
of the lattice. Hence the total Green’s function would depend on two wave vectors k and
k′, which is certainly not correct for a periodic lattice. This has to be circumvented by a
periodization prescription that provides a total Green’s function G(k, ω) depending only
on one wave vector k. The periodization prescription proposed in Ref. [64] (Green’s-
function periodization) reads as follows:

G(k, ω) =
1

L

∑

αβ

e−ik (rα−rβ)Gαβ(k̃, ω) , (2.21)

where k is a wave vector of the total lattice and rα refers to lattice sites α of the cluster.
The wave vectors k̃ in Eq. (2.21) can be replaced by the total wave vectors k as they
just differ by a reciprocal superlattice wave vector, see Eq. (2.8). With Eqs. (2.19) and
(2.20) the periodized Green’s function can be rewritten in matrix notation

G(k, ω) = v
†
kQX (ω −D)−1X−1 S Q† vk , (2.22)
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2.1. Correlated lattice bosons in the normal phase

where the vector vk and its adjoint v†k contain L plane waves

v
†
k ≡

1√
L

(
e−ik r0 , e−ik r1 , . . . e−ik rL−1

)
.

There exists as well an alternative periodization prescription where the self-energy Σ
is periodized [51]. This self-energy periodization should prevent spurious gaps, which
arise in the spectral function. However, at least for fermion systems, this procedure
yields spurious metallic bands in the Mott phase for arbitrarily large U . Since we do
not observe any spurious gaps in the spectral function of the 2D BH model we use the
periodization on the Green’s function defined in Eq. (2.21).

With the wave-vector resolved Green’s function of the total system G(k, ω) we are
able to calculate the single-particle spectral function

A(k, ω) ≡ − 1

π
ImG(k, ω) , (2.23)

the density of states

N(ω) ≡
∫
A(k, ω) dk =

1

N

∑

k

A(k, ω) (2.24)

and the momentum distribution

n(k) ≡ −
∫ 0

−∞
A(k, ω) dω .

The frequency integration can be evaluated directly by means of the Q-matrix formalism,
which yields a sum of the residues of the Green’s function, see Eq. (2.22), corresponding
to negative poles λr(k) < 0,

n(k) =
∑

λr(k)<0

(v†kQX)r (X
−1 S Q† vk)r . (2.25)

2.1.3. Moments of the spectral function

Here, it is described how the moments of the spectral function can be attained within
the variational cluster approach (VCA) in a very accurate way. A direct summation
over the spectral function weighted with powers of ω is not very accurate since for
the numerical evaluation a small but finite artificial broadening i0+ has to be chosen.
As the poles are Lorentzians, i. e., distributed over a wide energy range, the artificial
broadening will always limit accuracy. However, within the Q-matrix framework we
have direct access to the energies and strength of the poles.

The spectral moment of order n is defined as

Mn(k) =

∫ ∞

−∞
dω ωn A(k, ω) .
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2. Variational cluster approach

With Eq. (2.22), we have

Mn(k) = − 1

π
Im

∫ ∞

−∞
dω ωn v

†
kQg (ω) S Q

†vk

= v
†
k
Q [− 1

π
Im

∫ ∞

−∞
dωωn g (ω)]S Q†vk

=
∑

ijγ

v†k,iQiγ [−
1

π
Im

∫ ∞

−∞
dωωn (ω − λγ + i0+)−1]Sγγ Q

†
γjvj,k

=
∑

ijγ

v†k,iQiγ (λγ)
n Sγγ Q

†
γjvj,k ,

With that we are able to evaluate the moments with extremely high accuracy.

2.1.4. Disordered many-body systems

Disorder is treated by introducing a reference system which shares, in addition to the
interaction part, the disorder distribution with the physical system. The expression for
the averaged grand-potential within VCA then reads [75]:

Ωp = Ω′p +Tr ln[−G−1p ]− Tr ln[−G′−1p ] , (2.26)

where Ω′p and G′p are the exact disorder averaged grand potential and Green’s func-
tion of the reference system, respectively, which can be easily evaluated numerically
with high accuracy. The averaged Green’s function of the physical system reads Gp =(
G′−1p − V

)−1
, where V ≡ G′−10 − G−10 , and G0 and G′0 are the noninteracting Green’s

functions of the pure physical and reference systems, respectively.

In Sec. 2.1.2 it has been discussed for a pure system that it is expedient for the
evaluation of the traces in Eq. (2.26) to use the Q-matrix formalism. Here, we extend
the Q-matrix formalism to the case of disorder. For a specific disorder configuration η
we have

G′η = Qη g
′
η S Q

†
η , (2.27)

where g′η
−1 = ω−Λη and (Λη)rr′ = ληr δrr′ are the poles of the reference Green’s function,

see Sec. 2.1.2 for details. In praxis a specific numberM of disorder configurations η (each
consisting of L disorder realizations ǫi) has to be sampled to compute the average of a
quantity Xη leading to Xp ≡ 〈X〉p ≈ 1/M

∑
αXηα . The averaged Green’s function G′p

thus reads

G′p =
1

M

∑

α

G′ηα =
1

M

∑

α

Qηαg
′
ηα S Q

†
ηα .

To exploit the Q-matrix formalism we write the averaged Green’s function in a form
similar to Eq. (2.27) and define

G′p ≡ Q̃ g̃′ S̃ Q̃† ,
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2.1. Correlated lattice bosons in the normal phase

where Q̃ ≡ (Qη1/
√
M, Qη2/

√
M . . .), S̃ ≡ diag(S, S, . . .) and g̃′ ≡ diag(g′η1 , g

′
η2 , . . .).

With that we can proceed in the same way as for pure systems and write the averaged
Green’s function of the physical system as

Gp = Q̃
1

ω − (Λ̃− S̃ Q̃† V Q̃)
S̃ Q̃† ,

where Λ̃ ≡ diag(Λη1 , Λη2 . . .). By diagonalizing the matrix M ≡ Λ̃ − S̃ Q̃† V Q̃ =
X DX−1 we obtain the poles D of the physical Green’s function and are thus able
to evaluate the grand potential Ωp(x).

2.1.5. Pseudoparticle approach

We reformulate CPT/VCA within the pseudoparticle approach for bosonic systems. In
principle, one may argue that the formulation of CPT/VCA using pseudoparticles is
complicated and in the case of the normal phase (i. e., Mott phase) CPT/VCA can be
obtained from simpler approaches, as, for example, from Dyson’s equation (see, e.g.
Ref. [65]) and the SFA. The reason why we present this alternative formulation here
is that this approach, while not as rigorous as SFA, provides useful hints on how to
deal with more complicated situations, like the superfluid phase discussed in Sec. 2.2.
In addition, it gives insight on other properties. For example, in the case of normal
bosons the pseudoparticle approach is useful in order to understand the occurrence of
noncausality of the Green’s function in cases, where the chosen reference system is not
suitable to describe the phase of the physical system, as we point out below. Thus the
aim of this section is to derive the principal theoretical framework of the pseudoparticle
approach, for the normal phase, reproducing the known result for the grand potential
Ω, which has to be optimized.

The pseudoparticle formalism is in some aspects related to the standard basis matrix
operator method developed by Haley and Erdös in Ref. [76] and to the Hubbard-operator
approach, see for instance Ref. [70]. The idea is to introduce pseudoparticle operators

bµ and b†µ, which connect the ground state |ψ0〉 with single-particle excited states |ψν〉
of a Hamiltonian describing disconnected clusters in the lattice. In the VCA language
the cluster Hamiltonian is termed reference system Ĥ ′. Of course, the bµ and b†µ do not
have the properties of ordinary single-particle creation and annihilation operators. The
crucial point is that by treating them as such, one recovers the very same results as
obtained from CPT and from VCA, as has been shown for fermionic systems in Ref. [52]
(see appendix therein). Here, we prove the same result for the bosonic (normal) case,
which is somewhat more subtle, as it requires a multimode Bogoliubov transformation.
In this picture, excited states |ψµ〉 are treated as pseudoparticle excitations with the
properties

|ψµ〉 = b†µ |ψ0〉 bµ |ψν〉 = δµν |ψ0〉 .

Within the VCA approximation, pseudoparticles are regarded as noninteracting parti-
cles. We stress that, while this may seem a rather crude approximation, it is equivalent
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to CPT and VCA. Furthermore, with appropriate extensions it becomes equivalent to
C-DMFT.

Within this approach the original bosonic operators ai and a†i can be expressed as
linear combinations of the pseudoparticle operators bµ. This makes it possible to write
the coupling of the cluster to the rest of the lattice, which in VCA consists of intercluster
hopping terms, as a quadratic form in the bµ. In combination with the fact that the
cluster Hamiltonian is by construction quadratic in these operators as well, one finally
obtains a Hamiltonian which is completely quadratic in the pseudoparticle operators,
and can, thus, be solved exactly.

The physical system of interacting particles is described by a grand-canonical Hamilto-
nian Ĥ, which is related to the canonical Hamiltonian in the usual way by the additional
single-particle term −µN̂ . The Hamiltonians, which can be treated by the extended VCA
theory, generally have the form Ĥ = Ĥt+ĤU , where Ĥt consists of arbitrary one-particle
terms and ĤU of local two-particle terms. The physical system is defined on a large or
even infinite lattice with periodic boundary conditions. The underlying lattice is now
tiled into Nc clusters each one containing L orbitals (sites). We split the Hamiltonian
into a cluster part Ĥcl, which only describes processes within the various clusters, and
the residual part T̂ , containing the intercluster processes, which consist of single-particle
terms only, so that

Ĥ = Ĥcl + T̂ . (2.28)

CPT amounts to first solving for the Hamiltonian Ĥcl and then carrying out a per-
turbation expansion in the intercluster Hamiltonian T̂ . Of course, within CPT one is
free to add an arbitrary single-particle Hamiltonian −∆̂ to the cluster Hamiltonian Ĥcl

provided it is then subtracted from T̂ so that Ĥ remains unchanged. This defines a new
cluster Hamiltonian Ĥ ′

Ĥ ′ ≡ Ĥcl − ∆̂ . (2.29)

The physical Hamiltonian Ĥ, given in Eq. (2.28), can now be expressed in terms of the
new cluster Hamiltonian

Ĥ = Ĥ ′ + ∆̂ + T̂ ≡ Ĥ ′ + ˆ̄T , (2.30)

leading to a new “perturbation” ˆ̄T ≡ ∆̂ + T̂ . The CPT expansion is now carried out
in this new “perturbation”. While ideal exact results should not depend on ∆̂ (this
occurs, for example, in the noninteracting case), in practice results do depend on ∆̂ due
to the approximate nature of the expansion. The idea is to fix the parameters ∆̂ by an
optimization prescription, which amounts to finding the stationary point of the grand
potential Ω obtained from the perturbative expansion. The optimization prescription
is put on a rigorous framework within the SFA [50]. It is straightforward to show
that this procedure is equivalent to the standard VCA prescription, whereby Ĥ ′ is the
corresponding reference system [77].

In the following, we consider Nc identical disconnected clusters, and denote the sites
(orbitals) within a cluster by i. The position of each cluster on the large, physical
lattice is specified by a lattice vector R. Accordingly, we denote by ai,R the annihilation

operator for a boson on site i of cluster R, and similarly for creation operators a†i,R.
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2.1. Correlated lattice bosons in the normal phase

In order to keep a compact notation we combine the annihilation operators of a given
cluster R into a column vector of operators

aR = (a1,R, a2,R, . . . aL,R)
T ,

and correspondingly, the creation operators are row vectors a
†
R = (aR)

†. Using these
expressions we rewrite the intercluster Hamiltonian as

T̂ =
∑

RR′

a
†
Rt(R−R′)a

R′ , (2.31)

where t(R−R′) is a matrix describing the hopping terms from cluster R′ to cluster R,
with the property t(R−R′) = t(R′−R)†. Here we have assumed translation invariance
by a cluster translation vector. Similarly, we can express ∆̂ in terms of an intracluster
hopping matrix h

∆̂ =
∑

R

a
†
Rh aR ,

such that ˆ̄T , defined in Eq. (2.30), can be written as Eq. (2.31) with the replacement

t(R−R′)→ t̄(R−R′) = t(R−R′) + δR,R′h .

As explained above, the reference system consists of a sum of Hamiltonians acting on
independent clusters R

Ĥ ′ =
∑

R

Ĥ ′(R) .

Again considering translation invariance, all Ĥ ′(R) are identical. Thus it suffices to
determine numerically the ground state |ψ0,R〉, as well as single particle or single-
hole excited states |ψµ,R〉 of a single cluster Hamiltonian Ĥ ′(R), with corresponding
eigenenergies E′0 and E′µ, respectively. The key idea of the approach, to be presented

here, is to introduce pseudoparticle operators b†µ,R and bµ,R ≡ (b†µ,R)
†, which are defined

by their matrix elements
〈ψµ,R| b†ν,R |ψ0,R〉 = δµ,ν . (2.32)

In other words, the pseudoparticle operator b†µ,R applied to the exact many-body ground-
state |ψ0,R〉 of a cluster creates the exact excited many-body state |ψµ,R〉. In this re-
spect, it is of course forbidden to apply a second pseudoparticle creation operator on the
excited state. This leads to the supplementary hard-core constraints b†ν,Rb

†
µ,R |ψ0,R〉 = 0.

To neglect this hard-core constraint and to restrict to single-particle and single-hole ex-
citations within each cluster is the approximation made here. We show below that
this approximation, combined with the variational procedure discussed above, gives the
same results as VCA. In particular, we obtain the same expression for the grand po-
tential Ω, and for the Green’s function. It should be mentioned, however, that within
the pseudoparticle approach there is no known rigorous variational principle for Ω. One
can simply heuristically state that the “best” solution is the one that “minimizes” the
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energy, although, as we know from VCA, the variational solution is not always a mini-
mum. Also for parameters, such as the chemical potential, for which Ω turns out to be
a maximum, one can argue that the stationary condition is a kind of “constraint” fixing
the consistency of thermodynamic quantities [78], and the corresponding parameter is
a kind of “Lagrange multiplier.” Nevertheless, it is not the goal of the present work to
discuss this issue. Here, we want simply use this tool in order to formulate an extension
of the theory to address the bosonic superfluid phase, see Sec. 2.2. The knowledge of
the correction to the order parameter and of the grand-potential Ω can then guide and
facilitate a rigorous extension of SFA to deal with the superfluid phase.

With the help of these operators, it is straightforward to write down a Hamiltonian
which has the same energies and eigenvectors as the reference system, restricted within
the subspace of single-particle and single-hole excitations from the ground state

Ĥ ′ = Nc Ω
′ +
∑

R

∑

ν

∆E′ν b
†
ν,R bν,R, (2.33)

with the (positive) excitation energies ∆E′ν ≡ E′ν − E′0. Since we are interested in zero
temperature T = 0, the grand potential of the reference system is Ω′ ≡ E′0.

To proceed further, we need an expression for ˆ̄T , and, thus, of the original bosonic
operators ai,R, in terms of the pseudoparticle operators. For simplicity, we drop the R

index and concentrate on a given cluster. Within the pseudoparticle approximation the
operators must coincide only within the constrained subspace. We thus approximate
each ai by an operator Ôi (bµ, b

†
µ) which shares the same matrix elements 〈ψ0| · |ψ0〉,

〈ψ0| · |ψν〉, and 〈ψν | · |ψ0〉. We express Ôi by means of the ansatz

Ôi (bµ, b
†
µ) =

np∑

µ=1

Ri,µbµ +

ns∑

µ=np+1

Zi,µb
†
µ + γi 1 , (2.34)

where the first sum contains the np indices associated with the single-particle excitations,
and the second sum contains the nh indices for the single-hole excitations. The total
number of excitations taken into account is ns = np + nh. Here we have exploited
particle-number conservation. Next, we use this expression to evaluate the following
matrix elements

〈ψ0| Ôi (bµ, b
†
µ) |ψ0〉 = γi

!
= 〈ψ0| ai |ψ0〉 (2.35a)

〈ψν | Ôi (bµ, b
†
µ) |ψ0〉 = Zi,ν

!
= 〈ψν | ai |ψ0〉 (2.35b)

〈ψ0| Ôi (bµ, b
†
µ) |ψν〉 = Ri,ν

!
= 〈ψ0| ai |ψν〉 , (2.35c)

where the coefficients γi are zero so far, since the reference system conserves the particle
number. We now introduce the compact notation

B ≡ (b1, . . . , bnp , b
†
np+1 . . . b

†
ns
)T B† = (B)† ,

18



2.1. Correlated lattice bosons in the normal phase

i. e., the first part of the vector acts on particle states, and the second part on hole states.
Notice that in this form B† (B) changes the number of particles by +1 (−1). We also
introduce the Q matrix (which is the same as introduced previously) as

Qi,ν ≡
{
Ri,ν for 1 ≤ ν ≤ np
Zi,ν for np < ν ≤ ns

.

The Q matrix can be used to express the original operators a and a† in terms of B
operators [cf. Eq. (2.34)] in a compact form:

a = QB (2.36a)

a† = B†Q† . (2.36b)

Using the compact vector notation for B and B†, the reference Hamiltonian [Eq. (2.33)]
can be written as

Ĥ ′ = NcΩ
′ +
∑

R

B†RSΛBR −Nc∆E
′
h , (2.37)

where we reintroduced the R dependence. Here we introduced the diagonal matrices

S ≡ diag(1, . . . , 1︸ ︷︷ ︸
1, ... ,np

,−1, . . . ,−1︸ ︷︷ ︸
np+1, ... ,ns

)

and
Λ = S diag(∆E′1, . . . ,∆E

′
np
, ∆E′np+1 . . . ,∆E

′
ns
) .

Notice that S2 = 1, while Λ contains the poles of the Green’s function for the reference
system. The constant

∆E′h ≡
ns∑

µ=np+1

∆E′µ = − tr g(Λ) ,

with the function
g(ǫ) ≡ ǫΘ(−ǫ)

takes into account that some of the boson operators have been rearranged in order to
obtain Eq. (2.37). The physical Hamiltonian introduced in Eq. (2.30) reads

Ĥ = Ĥ ′ +
∑

R,R′

a
†
Rt̄(R−R′)aR′ .

Using Eqs. (2.36) and (2.37) yields a quadratic expression in the B operators:

Ĥ = NcΩ
′ +Nc tr g(Λ) +

∑

R

B†RSΛBR

+
∑

R,R′

B†R Q† t̄(R−R′) Q BR′ .
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2. Variational cluster approach

We can now introduce a Fourier transform in the cluster vectors R

Bq =
1√
Nc

∑

R

eiR·qBR

= (b1,q, . . . , bnp,q, b
†
np+1,−q, . . . , b

†
ns,−q)

T , (2.38)

leading to

Ĥ = NcΩ
′ +Nc tr g(Λ) +

∑

q

Ĥq (2.39)

with

Ĥq ≡ B†qSMqBq . (2.40)

Here, we have introduced the matrix

Mq ≡ Λ + S Q† t̄q Q ,

where

t̄q ≡
∑

R

ei q·R t̄(R)

is the Fourier transform of t̄(R − R′). The non-Hermitian matrix Mq is identically
defined as previously.

Being quadratic in the B operators, Hq can be quite generally put into diagonal form
by a multimode Bogoliubov transformation. To achieve this, we look for “normal-mode”
pseudoparticles described by the vector P with the same structure as B (in the following
considerations we omit the q dependence for simplicity)

P † ≡ (p
s′1
1 , . . . p

s′ns
ns ) P = (P †)† ,

where s′i = ±1 so that p+1
i ≡ p†i is a creation and p−1i ≡ pi is an annihilation operator.

The new P operator shall be connected with B via

B = V P ,

where V is a nonsingular but in general nonunitary matrix. From a physical viewpoint
the nonsingularity of V corresponds to a pseudoparticle conservation, meaning that there
are as many pseudoparticles B as normal-mode pseudoparticles P . The transformation
V must satisfy two conditions. First it must be chosen such that P has appropriate
bosonic commutation relations, i. e.,

[P,P †] = S′ ≡ diag(s′1, . . . , s
′
ns
) .

This gives

S′
!
=[P,P †] = V −1[B,B†](V −1)† = V −1S(V −1)† ,
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2.1. Correlated lattice bosons in the normal phase

which in turn yields

V S′ V † S = I (2.41a)

S′ V † S = V −1 (2.41b)

V † S V = S′ . (2.41c)

The second requirement on V is

V † S M V ≡ E ≡ diag(e1, . . . , ens) , (2.42)

since after the transformation fromB particles to P particles the Hamiltonian in Eq. (2.40)
has to be diagonal. Multiplying Eq. (2.42) from the left by V S′ and using Eq. (2.41a)
yields the eigenvalue equation

MV = V D ,

whereD ≡ diag(d1, . . . , dns) = S′E contains the eigenvalues of the non-Hermitian matrix
M . From Eq. (2.43) below, where we express the Hamiltonian in terms of the normal-
mode pseudoparticles, it can be seen that the diagonal elements ei correspond to the
excitation energies of the physical system. Since the energy of the physical system must
be bounded from below, all ei have to be positive and real, leading to

ei = dis
′
i > 0 ∀i .

It will turn out that this stability condition is the only point, where the variables s′i
of the auxiliary operators p

s′i
i show up. In App. A.1 we show that, if M is completely

diagonalizable with real eigenvalues and linear independent eigenvectors, which is of
course not generally guaranteed for a non-Hermitian matrix M but necessary from the
physical viewpoint, then V can be constructed so that both requirements of Eqs. (2.41)
and (2.42) are fulfilled, and we can proceed with our analysis. If M is not completely
diagonalizable or does not have real eigenvalues, the system is unstable, and it favors a
different phase, which cannot be addressed by the reference system in this form. This
instability toward a different phase, such as superfluidity, has to be cured by extending
the reference system by proper additional variational parameters.

In terms of the P operators we obtain for the Hamiltonian

Ĥq = B†q SMqBq = P †q V
†
q SMq Vq Pq = P †qS

′Dq Pq

=
∑

ν

eν( p
†
ν,q pν,q Θ(S′ν,ν) + pν,q p

†
ν,q Θ(−S′ν,ν))

=
∑

ν

eν p
†
ν,q pν,q +

∑

ν

eνΘ(−S′ν,ν)

=
∑

ν

eν p
†
ν,q pν,q − tr g(Dq) . (2.43)

In the last line we have exploited the fact that in order for the system to be stable, i. e.,
the energy be bounded from below, all eν must be positive.
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2. Variational cluster approach

Inserting this expression in Eq. (2.39) yields the Hamiltonian in terms of diagonal
normal modes. From this result one obtains immediately the grand-canonical ground-
state energy per cluster

Ω = Ω′ + tr g(Λ) − 1

Nc

∑

q

tr g(Dq) .

As discussed, Λ and Dq are diagonal matrices containing the poles of the reference
Green’s function and physical Green’s function, respectively. Therefore, this expression
being equivalent to Eq. (2.9) (see also Refs. [54, 51, 73, 50]) is equivalent to the zero-
temperature VCA grand potential.

By using the expression for the Green’s function of the noninteracting normal modes

≪ pα; p
†
β ≫=

δα,β
ω − eα

,

we readily obtained the Green’s function for the physical system

Gq(ω) ≡≪ aq; a
†
q ≫= Q≪ Bq; B

†
q ≫ Q†

= QVq ≪ Pq; P
†
q ≫ V †qQ

†

= QVq(S
′ω − S′Dq )−1V †qQ

†

= QVq(ω −Dq)
−1S′V †qQ

† .

By simple algebra this expression can be rewritten such that it is independent of the
auxiliary quantities S′ and V and thus equivalent to Eq. (2.19)

Gq(ω) = QVq(ω − V −1q MqVq)
−1V −1q SQ†

= Q(ω −Mq)
−1SQ† , (2.44)

where we have used Eqs. (2.41) and (2.42).
We, therefore, succeeded in proving that, for normal bosons, the pseudoparticle ap-

proach yields the same Green’s function and grand potential as VCA. For fermions, this
was shown in Ref. [52], see appendix therein. This result holds for T = 0, although
extension to T > 0 is straightforward.

2.2. Correlated lattice bosons in the superfluid phase

In this section, we extend VCA to the symmetry broken, superfluid phase of lattice
bosons. To achieve this, we first adopt the pseudoparticle approach to the symmetry
broken phase. While the pseudoparticle formalism is equivalent to VCA in the normal
phase of both bosonic and fermionic systems, it lacks the rigorous theoretical framework
provided by SFA. In particular, there is no genuine variational principle explaining why
one should look for a saddle point in the grand potential. Therefore, we subsequently
put the results obtained within the pseudoparticle approach into a rigorous framework
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2.2. Correlated lattice bosons in the superfluid phase

by developing an extended SFA, which is capable to deal with the bosonic superfluid
phase.

Within our extension of VCA to the superfluid phase we obtain for the grand potential

Ω = Ω′ − 1

2Nc
Tr ln(−G) + 1

2Nc
Tr ln(−G′)− 1

2
trh

+
1

2
〈A†〉G−1(0) 〈A〉 −

1

2
〈A†〉′G′−1(0) 〈A〉

′ . (2.45)

The first three terms on the right hand side are essentially identical to those which are
also present in standard VCA expressions. Particularly, Ω′ is the grand potential (per
cluster) of the reference system, and G′ and G are the connected Green’s functions of
the reference and of the physical system, respectively. However, they are expressed in
the Nambu representation, which explains the additional factor 1/2 and the fourth term
in comparison with previous results [51, 69, 54]. The suffix (0) used in the second line of
Eq. (2.45) means that the corresponding Green’s functions are calculated for q = 0 and
ω = 0, where q is the superlattice vector associated to the cluster tiling, and ω is the
Matsubara frequency. As usual within VCA theory, the two Green’s functions share the
same self-energy. The expectation values 〈A〉′ and 〈A〉 are the corresponding condensate
densities, again in Nambu (vector) notation. The latter are connected by the relation

G−1(0) 〈A〉 = F +G′−1(0) 〈A〉
′ , (2.46)

where the vector F describes the strength of the source-and-drain term which is intro-
duced in the reference system in order to explicitly break U(1) symmetry. The value of
F [see Eq. (2.50)] has to be determined from the variational principle. In addition to the
formula for the grand potential Ω, we evaluate expressions for other quantities, which
are useful for describing the superfluid phase. In particular, we derive expressions for
the normal and anomalous Green’s functions, the particle density, and the condensate
density.

2.2.1. Pseudoparticle approach

When trying to apply VCA to bosonic lattice systems in regions of the phase diagram
outside the Mott phase, one encounters instabilities which manifest in the form of non-
causal Green’s functions, i. e., in spectral functions with negative (positive) spectral
weight for positive (negative) frequencies ω, or in complex poles. Within the pseudopar-
ticle approach these instabilities show up as complex eigenvalues or negative diagonal
elements of the matrix E. This kind of instability is well known in approaches based on
the bosonic Bogoliubov approximation, such as the spin-wave approximation.

Quite generally, such an instability signals the occurrence of a phase transition toward
a new phase. In the case of lattice bosons, this new phase can be the superfluid phase,
which is accompanied by a Bose-Einstein condensation. Bose-Einstein condensation is
described by a finite value of the order parameter 〈aR〉. This suggests to include a
source-and-drain term in the reference system, which breaks the U(1) symmetry of the
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2. Variational cluster approach

reference system, leading to the “perturbation” ˆ̄T [see Eq. (2.30)],

ˆ̄T =
∑

R,R′

a
†
R t̄(R−R′)a

R′ +
∑

R

(a†RfR + f
†
RaR) , (2.47)

where fR ≡ (f1, f2 . . . fL)
T is a vector of size L and is identical for all clusters. The index

R, however, will be kept for notational reasons. In this section, we often adopt symbols
already defined for the normal phase, which have a similar meaning but a sometimes a
slightly different definition.

Due to these terms, the reference system Hamiltonian does not conserve particle num-
ber anymore. Its eigenstates will thus consist of superpositions of states with different
particle numbers. Numerically, a cutoff in the maximum number of boson is necessary
in order to solve the reference system on the cluster level exactly. We again introduce
pseudoparticle operators bR connecting the ground state with excited states. Note that
we cannot distinguish between particle or hole states anymore. The pseudoparticles are
defined by Eq. (2.32) and are connected to the original boson operators aR by means of
Eq. (2.34). Now, all matrix elements in Eq. (2.35) are nonzero in general. Therefore, the
two sums over µ in Eq. (2.34) are extended to µ = 1, . . . , ns, where ns is the number of
excited states considered in each cluster.

For the following considerations it is convenient to express the boson operators within
a Nambu notation. For the particle operators we introduce in real space

AR =

(
aR

a
†T
R

)
,

which after a Fourier transformation in the cluster vectors, see Eq. (2.38), becomes

Aq =

(
aq

a
†T
−q

)
.

For pseudoparticle operators we have in real space

BR ≡ (b1,R, b2,R, . . . , bns,R
, b†1,R, . . . , b

†
ns,R

)T

and in q space

Bq ≡ (b1,q, b2,q, . . . , bns,q, b
†
1,−q, . . . , b

†
ns,−q)

T .

Similarly to Sec. 2.1.5, we have an approximate linear relation between the A operators
and the B operators of the form

AR = QBR + Γ .

After the Fourier transformation in the cluster vectors it reads

Aq = QBq + Γq . (2.48)
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2.2. Correlated lattice bosons in the superfluid phase

Here,

Γq =
√
NcδqΓ ,

with

Γ = (γ1, γ2 . . . γL, γ
∗
1 , γ

∗
2 . . . γ

∗
L )T ,

and the (2L)× (2ns) matrix

Q =

(
R Z
Z∗ R∗

)
.

The constants γi ≡ 〈ψ0| ai |ψ0〉, will be nonzero as the reference system does not conserve
the particle number.

In terms of pseudoparticle operators we can again write the reference Hamiltonian for
a cluster R, similarly to Eq. (2.37) as

Ĥ ′R = Ω′ +
1

2
B†RSΛBR +

1

2
tr g(Λ) . (2.49)

Here, the matrices S and Λ have a slightly different definition

S ≡ diag(1, . . . , 1︸ ︷︷ ︸
1,...,ns

,−1, . . . ,−1︸ ︷︷ ︸
ns+1,...,2ns

) ,

and

Λ = S diag(∆E′1, ∆E
′
2 . . . ∆E

′
ns
, ∆E′1, ∆E

′
2 . . . ∆E

′
ns
) .

To express the “perturbation” ˆ̄T of Eq. (2.47), we need to introduce a similar Nambu
notation for the source-and-drain terms, which, being R independent, become in q space

Fq =
√
NcδqF

F ≡
(

f

f †T

)
. (2.50)

After the Fourier transformation in the cluster vectors, we can rewrite

ˆ̄T = T̂ + ∆̂ =
∑

q

(1
2
A†q T̄qAq −

1

2
tr t̄q

+
1

2

[
F †q Aq +A†q Fq

])
,

where T̄q = diag(t̄q, t̄
T
−q).

Replacing the A operators in terms of the B operators with the help of Eq. (2.48), and

combining Eq. (2.49) with the expression above for ˆ̄T , we finally obtain the complete
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2. Variational cluster approach

Hamiltonian, defined in Eq. (2.30), in terms of pseudoparticles

Ĥ = NcΩ
′ +

Nc

2
tr g(Λ) +

∑

q

{
− 1

2
tr t̄q

+
1

2
Γ†qT̄qΓq +

1

2
B†q

[
SΛ +Q†T̄qQ

]

︸ ︷︷ ︸
SMq

Bq

+
1

2

[
(Γ†qT̄q + F †q)QBq + F †qΓq + h.c.

]}
.

The expression can be further simplified by using the fact that F and Γ are equal in all
clusters, and thus have only q = 0 components. In addition we take advantage of

∑

q

tr t̄q = Nc tr t̄(R−R′ = 0) = Nc trh , (2.51)

since t(R − R′ = 0) = 0 is a pure intercluster term. For notational convenience we
introduce

F̃ † = F † + Γ†T̄0 . (2.52)

This gives

Ĥ = NcΩ
′ +

Nc

2
tr g(Λ)− Nc

2
trh+

Nc

2
Γ†T̄0Γ

+
Nc

2
(F †Γ + h.c.) +

√
Nc

2
(F̃ †QB0 + h.c.)

+
1

2

∑

q

B†qSMqBq . (2.53)

The term linear in B can be eliminated by a shift

B̃q ≡ Bq +Xq ,

where clearly only the q = 0 term of Xq is nonzero. Considering only the q = 0 part of
Eq. (2.53), which we term Y0, and plugging in the shifted operators, we obtain

Y0 ≡
1

2
(B̃0 −X0)

†SM0(B̃0 −X0)

+

√
Nc

2
(F̃ †Q(B̃0 −X0) + h.c.) .

The linear term is eliminated by setting

X0 =
√
NcM

−1
0 S Q†F̃ , (2.54)

yielding for the q = 0 term above

Y0 =
1

2
B̃†0SM0B̃0 +

Nc

2
F̃ †G(0)F̃ ,
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2.2. Correlated lattice bosons in the superfluid phase

where
G(0) ≡ Gq=0(ω = 0) = −Q M−10 SQ† , (2.55)

which is the Green’s function defined in (2.60) but evaluated for q = 0 and ω = 0. In
total we have

Ĥ = Nc C +
∑

q∈BZ/2

B̃†qSMqB̃q (2.56)

with the constant terms

C = Ω′ +
1

2
tr g(Λ) − 1

2
trh+

1

2
(F †Γ + h.c.)

+
1

2
Γ†T̄0Γ +

1

2
F̃ †G(0)F̃ .

In the last term of Eq. (2.56), we restrict the summation over half of the Brillouin zone,
which we denote by q ∈ BZ/2, and thus removed the factor 1/2 in front of the sum. Due
to Nambu representation, two summands with +q and −q are identical and therefore
the restriction to half of the Brillouin zone is convenient. In our convention, the q = 0

term is included in the sum and retains the factor 1/2.

Condensate density

Before turning to the diagonalization of the Hamiltonian in Eq. (2.56), let us evaluate
the condensate density. Since there are no terms linear in B̃, its expectation value 〈B̃〉
vanishes. Therefore, we can immediately calculate the condensate density

〈Aq〉 =
√
Nc δq 〈A〉

= Q 〈Bq〉+ Γq = −QXq + Γq

=
√
Nc δq [Γ +G(0)(F + T̄0Γ)] , (2.57)

where we used Eqs. (2.50), (2.52), (2.54) and (2.55). We now exploit the fact that

Γ = 〈A〉′

is the condensate density in the reference system. From the Dyson equation for the
Green’s function of the physical and the reference system we have

Gq(ω)
−1 = G′(ω)−1 − T̄q .

By multiplying (2.57) with G−1(0) we obtain

G−1(0) 〈A〉 = G′−1(0) 〈A〉
′ − T̄0 〈A〉′ + F + T̄0 〈A〉′

= G′−1
(0)
〈A〉′ + F ,

which corresponds to Eq. (2.46).
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2. Variational cluster approach

Diagonalization of the Hamiltonian

The Hamiltonian of Eq. (2.56) is finally quadratic and its diagonalization proceeds in the
same way as in Sec. 2.1.5. Again we introduce P operators

B̃q = VqPq ,

and find the solution of the non-Hermitian eigenvalue equation

MqVq = VqDq ,

where Vq satisfies the relation
VqS

′V †qS = I .

The diagonal matrix S′, which is in principle q-dependent as well, consists of +1 or −1
terms. It is chosen according to the prescription derived in App. A.1. The stability
condition is again that the pseudoparticle eigenenergies

S′Dq = diag(e1q, . . . , e2nsq)

are all positive. The physical Hamiltonian in terms of P -particles now reads

Ĥ =
∑

q∈BZ/2

P †qS
′DqPq +Nc C

=
∑

q∈BZ/2

∑

ν

eν,qp
†
ν,qpν,q −

∑

q∈BZ/2

g(Dq) +Nc C . (2.58)

From that we readily obtain (see App. A.2) the grand potential per cluster of the physical
system Ω, which is the ground state expectation value 〈Ĥ〉 /Nc

Ω = Ω′ +
1

2
tr g(Λ) − 1

Nc

∑

q∈BZ/2

g(Dq)−
1

2
trh

+
1

2
〈A†〉G−1(0) 〈A〉 −

1

2
〈A†〉′G′−1(0) 〈A〉

′ . (2.59)

By considering the fact that Λ and Dq contain the poles of G′ and G, respectively, we
conclude that, in the T → 0 limit

lim
T→0

[
1

2
Tr ln(−G′)− 1

2
Tr ln(−G)

]

=
Nc

2
tr g(Λ)−

∑

q∈BZ/2

g(Dq) .

Thus, Eq. (2.59) is equivalent to Eq. (2.45) in the introduction in the T = 0 limit. An
extension to T > 0 is straight forward.

The connected Green’s function now contains anomalous contributions, but formally
is obtained as in Eq. (2.44),
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2.2. Correlated lattice bosons in the superfluid phase

Gq(ω) ≡≪ Aq; A
†
q ≫c= Q≪ B̃q; B̃

†
q ≫ Q†

= QVq ≪ Pq; P
†
q ≫ V †qQ

†

= QVq(S
′ω − S′Dq)

−1V †qQ
†

= QVq(ω −Dq)
−1V −1q SQ†

= Q(ω −Mq)
−1SQ† , (2.60)

where we have neglected the shifts Γ and X0 since they only contribute to disconnected
parts. Notice that Eq. (2.60) is a 2L× 2L matrix in Nambu and cluster-site space. The
q vectors above refer to the reduced Brillouin zone originating from the cluster tiling,
therefore G is expressed in a mixed representation. In translation-invariant systems, the
Green’s function is expected to be diagonal in the wave vectors k of the full Brillouin
zone. This symmetry is notoriously broken in cluster methods such as VCA or C-DMFT.
In order to obtain a k-diagonal 2× 2 Nambu Green’s function G(k, ω) we need to apply
a periodization prescription [64]. This gives

G(k, ω) = v
†
k
G

k
(ω)v

k
,

where

v
†
k
≡ 1√

L

(
e−ik r1 . . . e−ik rL 0 . . . 0

0 . . . 0 e−ik r1 . . . e−ik rL

)
, (2.61)

and ri is the position of site i within the cluster.

A nontrivial test for VCA is the noninteracting limit, for which this approximation be-
comes exact. In Appendix A.3 we carry out this check for the noninteracting BH model,
i. e., we set U = 0, and for a reference system consisting of single-site clusters. In this
test case the grand potential Ω of the physical system can be evaluated analytically both
using the VCA prescription as well as directly from the Hamiltonian of noninteracting
lattice bosons.

Particle density and momentum distribution

The total particle density is defined as

n =
1

N

∑

q

∑

i

〈a†i,qai,q〉 ,
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2. Variational cluster approach

where N = Nc L is the total number of lattice sites present in the physical system. The
particle density can be easily expressed in Nambu formalism

n =
1

2N

∑

q

∑

i

(〈a†i,qai,q〉+ 〈ai,−qa
†
i,−q〉)−

1

2

= −1

2
+

1

2N

∑

q

〈A†qAq〉

= −1

2
+

1

2N

∑

q

(〈P †qV †qQ†QVqPq〉+ 〈Aq〉† 〈Aq〉)

= −1

2
+

1

2N

∑

q

tr[Θ(−Dq)V
†
qQ
† QVq ] +

1

2L
〈A†〉 〈A〉 , (2.62)

where the last term describes the contribution from the condensate, which can be de-
duced from Eq. (2.57). The term with the sum over q can be rewritten to obtain the
known form of the particle density [54]

n = −1

2
− 1

2N

∑

q

tr[Θ(−Dq)S
′V †qQ

†QVq ] +
1

2L
〈A†〉 〈A〉

= −1

2
− 1

2N

∑

q

tr[Θ(−Dq)V
−1
q SQ†QVq ] +

1

2L
〈A†〉 〈A〉 .

The momentum distribution n(k) can be extracted by the Fourier transform within
the cluster leading to

n(k) = − 1

2N
+
δk
2L
〈A†〉 〈A〉

+
1

2N
tr[v†kQVkΘ(−Dk)V

†
kQ
†vk] ,

where v
†
k
is given by Eq. (2.61).

2.2.2. Self-energy functional approach

Let us summarize the key idea of SFA due to M. Potthoff [49]. The starting point is an
appropriate functional

Ω̂[Σ, G−10 ,HU ] ≡ F̂ [Σ,HU ] + Ê [Σ, G−10 ] ,

which consists of a functional F̂ of the self-energy, the Legendre transform of the
Luttinger-Ward functional, which is universal in the sense that it depends on the in-
teraction part (HU ) of the Hamiltonian but not on the single particle part. The latter
enters via the free Green’s function G−10 in the second functional, which is explicitly
known

Ê [Σ, G−10 ] ≡ −β tr ln(Σ −G−10 )

The functional Ω̂[Σ, G−10 ,HU ] has three key features, which are crucial for VCA.
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2.2. Correlated lattice bosons in the superfluid phase

a) The non-universal part Ê enters additively in form of a known functional and
the many-body aspects are described by a universal functional independent of the
single particle Hamiltonian, or, equivalently, independent of G−10 .

b) The self-energy of the physical system, characterized byHU and G−10 is a stationary
point of the functional Ω̂ with respect to Σ.

c) The value of Ω̂ at the stationary point is equal to the thermodynamic grand po-
tential.

Our goal is to generalize this approach to the superfluid phase. Besides the self-energy,
which is the interaction correction of the inverse Green’s function, we need the corre-
sponding companion that describes the interaction correction to the order parameter,
which we call D.

Once the appropriate form of D has been determined, we need a functional

Ω̂s[Σ,D, F,G
−1
0 ,HU ] ≡ F̂ [Σ,D,HU ] + Ê [Σ,D,G−10 , F ] ,

in the self-energy Σ and D with the following features.

a) F̂ is again a universal functional, now in Σ and D. The non-universal part Ê is
explicitly known and carries the dependence on G−10 and the symmetry breaking
source-field F .

b) The functional is again stationary at the exact self-energy Σ and the exact D of
the physical system, characterized by HU , G

−1
0 and F .

c) The value of Ω̂s at the stationary point is equal to the thermodynamic grand
potential.

The sought-for functional Ω̂s, to be derived in this section, will turn out to be (see
below for a definition of the quantities)

2βΩ̂s[Σ, D,G
−1
0 , F ] = F̂ [Σ,D] + Ê [Σ, D,G−10 , F ] (2.63)

Ê [Σ, D,G−10 , F ] ≡ βTr ln[(G−10 − Σ) G∞]

+ (D̄ − F̄ )(G−10 − Σ)−1(D − F ) . (2.64)

In the normal phase, it is identical to the functional introduced by M. Potthoff. The
additional factor 2 is due to the Nambu Green’s functions. Moreover, the expression for
the grand potential obtained with the help of a so-called reference system, see Eq. (2.91)
below, is identical to the one obtained within the pseudoparticle approach, see Sec. 2.2.1.

We start out from the partition function Z of a bosonic many-body system, which in
a functional integral representation reads

Z =

∫
DA e−S , (2.65)
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2. Variational cluster approach

where S is the action, which in general can be written as, see App. B.2

S =− 1

2

∫
dτ

∫
dτ ′ Ā(τ ′)G−10 (τ ′, τ)A(τ)

−
∫
dτ
[
F̄ (τ)A(τ) −HU (A(τ))

]
. (2.66)

In view of treating the superfluid phase we have adopted a Nambu notation in which
the bosonic fields are expressed in a vector representation

A(τ) ≡




a1(τ)
...

aN (τ)
ā1(τ)

...
āN (τ)




. (2.67)

The indices 1 through N denote the corresponding single-particle orbitals (for example,
lattice sites) where the boson operators act, and ai(τ) (āi(τ)) are the fields associated
with the annihilation (creation) of a boson in the orbital i. The adjoint field is defined
as

Ā(τ) ≡ (ā1(τ), · · · , āN (τ), a1(τ), · · · , aN (τ)) . (2.68)

It can be expressed in terms of A(τ) with the help of the matrix T , which exchanges the
first N entries of a vector with the last N ones:

Ā(τ) = A(τ)T T . (2.69)

The operator T has the properties T 2 = 1, and T = T T . The action in Eq. (2.66) also
contains the source fields

F̄ ≡
(
f1, · · · fN , f̄1, · · · , f̄N

)
and F = T F̄ T ,

which are zero for the physical system of interest, the boson interaction described by
HU , as well as the 2N ×2N noninteracting Green’s function matrix G0(τ

′, τ). Eq. (2.65)
with Eq. (2.66) defines the corresponding grand potential as a functional of G−10 and F

ˆ̃
Ωs[G

−1
0 , F ] ≡ − 1

β
ln Ẑ , (2.70)

where β is the inverse temperature. Here and in the following, we mark functionals with
a hat “ ˆ ”, and omit their arguments whenever they are obvious. The noninteracting
Green’s function has the matrix structure (see App. B.3)

G−10 (τ ′, τ) = −δ(τ − τ ′)
(
∂τ + t 0

0 −∂τ + t

)
, (2.71)
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2.2. Correlated lattice bosons in the superfluid phase

where t is the single-particle Hamiltonian matrix.

In the following, we carry out a sequence of Legendre transformations starting from
ˆ̃
Ωs, ultimately leading to a universal functional F̂ [Σ,D] of the self-energy Σ and of a
suitable quantity D defined in Eq. (2.82a). The functional F̂ is the generalization of
the self-energy functional [49, 50, 51] to the superfluid phase, where a nonvanishing
expectation value A(τ)≡〈A(τ)〉 of the boson operators A exists. The functional F̂ has
the properties, see Eq. (2.84), that its functional derivatives with respect to Σ and D
yield the disconnected Green’s function, and the expectation value A, respectively. This
procedure is inspired by Ref. [79] and extends that approach to the treatment of the
superfluid phase.

We first determine the conjugate variables to G−10 and to the source fields F . The

functional derivative of
ˆ̃
Ωs with respect to the noninteracting Green’s function yields

(see App. B.1 and App. B.2)

2β
δ
ˆ̃
Ωs

δG−10 ji(τ
′, τ)

= − 2

Ẑ

δ

δG−10 ji(τ
′, τ)

∫
DA×

× exp
{1
2

∫
dτ̃

∫
dτ̃ ′Āl(τ̃)G

−1
0 ll′(τ̃ , τ̃

′)Al′(τ̃
′)

+

∫
dτ̃ [F̄l(τ̃ )Al (τ̃)−HU(ā, a)]

}

= − 1

Ẑ

∫
DAĀj(τ

′)Ai (τ) exp [−S]

≡ Ĝdisc,ij(τ, τ
′) .

Here Ĝdisc,ij(τ, τ
′) is the disconnected interacting time-ordered Green’s function. Along

with the definition of the connected Green’s function Ĝ[G−10 , F ] we obtain

2β
δ
ˆ̃
Ωs[G

−1
0 , F ]

δG−10

= Ĝdisc ≡ Ĝ− Â ˆ̄A . (2.72a)

For the functional derivative with respect to F we obtain similarly

2β
δ
ˆ̃
Ωs[G

−1
0 , F ]

δF̄
= −2Â[G−10 , F ] . (2.72b)

The two functionals Ĝ[G−10 , F ] and Â[G−10 , F ] defined in Eq. (2.72) provide the exact
Green’s function G and order parameter A for a given noninteracting Green’s function
G−10 and source field F of the system. The first step toward the universal functional
consists in a Legendre transformation replacing the variables F with A. To this end, we
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2. Variational cluster approach

invert1 the relation Eq. (2.72) making F a functional F̂ [G−10 ,A] and introduce

Ξ̂[G−10 , A] = 2β
ˆ̃
Ωs + 2 ˆ̄FA , (2.73)

where, as usually in Legendre transformations, the functional dependence on F has been
eliminated in favor of A by using the inverse function. It is straightforward to show that
the corresponding functional derivatives give

δΞ̂

δ2A = ˆ̄F [G−10 , A] ,
δΞ̂

δG−10

= Ĝdisc[G
−1
0 , A] .

Next, we modify the functional in the following way

ˆ̃
Ξ[G−10 , A] = Ξ̂ + ĀG−10 A , (2.74)

such that we obtain the connected Green’s function from the functional derivative with
respect to G−10 . In total we have

δ
ˆ̃
Ξ

δ2A = ˆ̄F [G−10 , A] + ĀG−10 , (2.75)

δ
ˆ̃
Ξ

δG−10

= Ĝdisc+AĀ = Ĝ[G−10 , A] . (2.76)

The second step is a Legendre transformation replacing the variable G−10 with G

Π̂[G, A] = ˆ̃
Ξ− β Tr(GĜ−10 − 1) , (2.77)

where we have expressed Ĝ−10 as a functional of G and A, by inverting Eq. (2.76). We
subtract an “infinite” constant βTr1 in order to keep Π̂[G, A] finite. The functional
derivatives of the new functional are

δΠ̂

δ2A = ˆ̄F + ĀĜ−10 ,
δΠ̂

δG
= −Ĝ−10 .

Now, we modify the functional such that we get the self-energy from the functional
derivative (see App. B.1.3)

ˆ̃
Π[G, A] = Π̂ + β Tr ln (G/G∞) . (2.78)

This gives

δ
ˆ̃
Π

δ2A = ˆ̄F + ĀĜ−10 ,
δ
ˆ̃
Π

δG
= Σ̂ (2.79a)

Σ̂ ≡ G−1 − Ĝ−10 . (2.79b)

1Here, and below we assume that the relations between conjugate variables are invertible, at least
locally, see also App. B.2
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2.2. Correlated lattice bosons in the superfluid phase

Here we have used the Dyson equation as defining equation for the self-energy. Further-
more, we carry out a third Legendre transformation replacing G with Σ in the usual
way. Thus we introduce

P̂ [Σ, A] = ˆ̃
Π + βTrΣ Ĝ (2.80)

with the properties
δP̂

δ2A = ˆ̄F + ĀĜ−10 ,
δP̂

δΣ
= Ĝ .

We modify this functional once more so that its derivative yields a new function D,
which will be the companion of the self-energy in our extended self-energy approach

ˆ̃
P [Σ, A] = P̂ − ĀΣA . (2.81)

The functional derivatives yield

δ
ˆ̃
P

δ2A = ˆ̄F + ĀĜ−10 − ĀΣ = ˆ̄F + ĀĜ−1 ≡ ˆ̄D , (2.82a)

δ
ˆ̃
P

δΣ
= Ĝ−AĀ = Ĝdisc . (2.82b)

Before proceeding, let us discuss the meaning of the functionD introduced in Eq. (2.82a).
When extending SFA to the superfluid phase one is looking for a quantity, which is re-
lated to the condensed order parameter and which plays a similar role as the self-energy,
in that it describes the deviation between the interacting and non-interacting case. Thus,
this quantity should vanish in the noninteracting case (HU = 0). The reason is that SFA
will eventually amount to an approximation for Σ andD, and we require this approxima-
tion to become exact for HU = 0. Finally, D must obviously vanish in the normal phase.
The expression in Eq. (2.82a) has precisely these features, since Ā0 = −F̄G0, which
is straightforwardly determined from the Gaussian integral for HU = 0 in Eq. (2.66).
Interestingly, the pseudoparticle approach, presented in Ref. [57], and which is based
on an intuitive, yet heuristic approximation, provides the same form of D as given in
Eq. (2.82a).

The final Legendre transformation replacing A with D yields the desired functional
of the self-energy and D. It represents the generalization of the self-energy functional
(F [Σ] of Refs. [49] and [51]) to the superfluid phase

F̂ [Σ, D] =
ˆ̃
P − 2D̄Â (2.83)

and has the properties

δF̂
δD̄

= −2Â[Σ,D] ,
δF̂
δΣ

= Ĝdisc[Σ,D] . (2.84)

Similarly to F [Σ] from Refs. [49] and [51], F̂ is (for fixed HU ) a universal functional of
Σ and D only, from which the disconnected Green’s function and the order parameter
are obtained by functional derivative, see Eq. (2.84).
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2. Variational cluster approach

Given Σ and D we can compute by Eq. (2.84) the corresponding values for A and
Gdisc. On the other hand, for a specific physical system, uniquely defined by G−10 , F and
HU , the definitions of the self-energy Σ, Eq. (2.79b), and the modified order parameter
D, Eq. (2.82a), provide another set of equations, which uniquely fix Σ and D via the
equations

Ĝdisc[Σ,D]
!
= (G−10 − Σ)−1+ (2.85a)

(G−10 − Σ)−1(D − F )(D̄ − F̄ )(G−10 − Σ)−1 ,

and

−2Ā[Σ,D]
!
= −2(D̄ − F̄ )(G−10 − Σ)−1 . (2.85b)

As for the (original) self-energy functional approach, we seek now a functional, which
becomes stationary at the exact Σ and D for specific G−10 and F , and which consists of
the universal functional F̂ plus a non-universal explicit functional of the form

2βΩ̂s[Σ,D,G
−1
0 , F,HU ] = F̂ [Σ,D,HU ] + Ê [Σ,D,G−10 , F ] .

In order to yield the correct stationary point, the functional Ê has to fulfill according to
Eq. (2.85) the equations

δÊ
δΣ

=− (G−10 − Σ)−1 (2.86a)

− (G−10 − Σ)−1(D − F )(D̄ − F̄ )(G−10 − Σ)−1 ,

δÊ
δD

= 2(D̄ − F̄ )(G−10 − Σ)−1 . (2.86b)

With these ingredients we can now express the sought-for functional Ω̂s as

2βΩ̂s[Σ, D,G
−1
0 , F ] = F̂ [Σ,D] + β Tr ln[(G−10 − Σ) G∞]

+ (D̄ − F̄ )(G−10 − Σ)−1(D − F ) , (2.87)

which obviously fulfills Eq. (2.86). It remains to show that, whenever evaluated at the
exact Σ and D the functional Ω̂s corresponds, possibly apart from a constant, to the
thermodynamic grand potential Ω̃s of the system. To this end we add up all the terms
used to construct the functional. At the exact values of Σ and D we have

2βΩ̂s

∣∣
exact

= 2βΩ̃s + 2F̄A+ ĀG−10 A− βTr
(
GG−10 − 1)

+βTr ln (G/G∞) + βTrΣG− ĀΣA− 2D̄A
−βTr ln (G/G∞) + ĀG−1A

= 2βΩ̃s − 2 (D̄ − F̄ )︸ ︷︷ ︸
ĀG−1

A+ 2ĀG−1A

= 2βΩ̃s
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2.2. Correlated lattice bosons in the superfluid phase

We can now proceed as in Refs. [49] and [28] and construct a reference system, which
can be solved (almost) exactly. The reference system is described by a Hamiltonian H ′,
which shares the same interaction HU as the physical system, but consists of different
noninteracting Green’s function G′0 and source fields F ′. The point is the following: Due
to the fact that F is a universal functional, it cancels out from the difference between
Ω̂s for the physical and the reference system, with the same values of Σ and D. In
particular, this gives

2βΩ̂s[Σ,D,G
−1
0 , F ]− 2βΩ̂s[Σ,D,G

′−1
0 , F ′]

= βTr ln
(
(G−10 − Σ)G∞

)
− βTr ln

(
(G′−10 − Σ)G∞

)

+ (D̄ − F̄ )(G−10 − Σ)−1(D − F )
− (D̄ − F̄ ′)(G′−10 − Σ)−1(D − F ′) , (2.88)

which allows to evaluate the functional Ω̂s exactly for the physical system as well, how-
ever, in a restricted subspace of Σ and D, representable by the parametric family of
reference systems. By construction, the optimal values for Σ and D for the physical
system are those of the reference system for the set of optimal variational parameters.

The variational procedure then follows and generalizes Ref. [49]: First a class of exactly
solvable reference systems Ĥ ′ with the same interaction as the physical system charac-
terized by a continuum of single-particle parameters t′ and source fields F ′ is identified.
In VCA this class is obtained by dividing the original lattice into disconnected clusters
with varying single-particle energies and hopping strengths. A larger subspace can be
reached by adding bath sites [50]. Then the (connected) Green’s function G′, the order
parameter A′, and the grand potential Ω′s of the reference system is evaluated. With the
help of Dyson’s equation Eq. (2.79b) the self-energy Σ′, and with the help of Eq. (2.82a)
D′ is determined. By varying t′ and F ′ the subspace of self-energies and Ds is spanned,
which is accessible to the reference system and to which these objects for the physical
system are restricted. Within this subspace the functional Ω̂s can be evaluated exactly
for arbitrary G0 and F of the physical system. For the relevant case F = 0 we obtain
from Eq. (2.88)

2βΩs = 2βΩ′s + β Tr ln
(
−(G−10 − Σ′)

)

− βTr ln
(
−(G′−10 − Σ′)

)
+ D̄(G−10 − Σ′)−1D

− Ā′G′−1A , (2.89)

where the term with G∞ cancels out, see App. B.3. Eq. (2.89) is now a function of t′

and F ′. The infinite physical system can break the symmetry spontaneously, while in
the reference systems of disconnected finite clusters, a non-vanishing order parameter
can only be achieved by an additional source field F ′. This explains, why a finite F ′

is required although F = 0 in the physical system. The SFA approximation consists
in finding a stationary point of Ω̂s within this subspace of self-energies and D-s. This
corresponds, quite generally, to finding a stationary point with respect to t′ and F ′ of
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Eq. (2.89), i. e. to the equations

∂Ω

∂t′
= 0

∂Ω

∂F ′
= 0 . (2.90)

Here, we have replaced Ωs with Ω ≡ Ωs − 1
2 tr t which differs just by a t′- and F ′-

independent constant and thus does not change the saddle-point equations. The quantity
Ω is the grand potential obtained from the normal-ordered Hamiltonian (see App. B.3).
We also introduce the grand-potential of the normal-ordered reference system Ω′ ≡
Ω′s− 1

2 tr t
′. This term is also present in the pseudoparticle approach [57], where its origin

is easily seen. Moreover, for τ -independent fields and Hamiltonian, the expectation
values A(τ) are τ -independent as well, and the Green’s functions depend on the time
difference only. In this way, we can rewrite Eq. (2.89) as

Ω = Ω′ − 1

2
tr(t− t′)− 1

2
Tr ln (−G) + 1

2
Tr ln

(
−G′

)

+
1

2
ĀG−1(ωn = 0)A− 1

2
Ā′G′−1(ωn = 0)A′ , (2.91)

where G(ωn) ≡
∫
d τ G(τ, 0)eiτωn is the Green’s function in Matsubara space. The

expression for Ω given in Eq. (2.91) is our main result. As can be seen, this expression is
the same as Eq. (1) in Ref. [57], except for a different normalization factor, which is the
number of clusters Nc. Notice that Nch in the previous section is equal to t− t′ in here.
We thus proved that the result obtained within the pseudoparticle approach in Ref. [57]
can be equivalently obtained within a more rigorous “generalized” self-energy functional
approach. While the pseudoparticle approach is quite intuitive, the present self-energy
approach provides a rigorous variational principle, explaining why the grand-potential
Ω has to be optimized with respect to the cluster parameters t′ and F ′. In addition,
as in SFA for the normal phase, it suggests more general approximations in which bath
sites are used to enlarge the space of possible self-energies [50, 80, 81].

Conclusions: In the present section, we extend the self-energy functional approach to
the U(1) symmetry broken, superfluid phase of correlated lattice bosons. A crucial point
of this extension is the identification of a quantity, termed D, which is the companion of
the self-energy Σ in the superfluid phase. We also identify the appropriate (nonuniversal)
functional Ω̂s which is stationary at the physical values of the self-energy Σ and of D. In
analogy to the self-energy, which is the difference of the interacting and non-interacting
Green’s function, the quantity D is related to the difference of the order parameter of
the interacting and non-interacting systems. Thus, D is zero in the normal phase and
for U = 0. From these relations also follows that both Σ as well as D vanish in the
non-interacting case. Importantly, when the functional Ω̂s is evaluated at the exact
values of Σ and D it corresponds to the grand potential of the physical Hamiltonian.
To evaluate the functional, we proceed as in the original self-energy functional approach
[49], and introduce a reference system, which is a cluster decomposition of the physical
system. Importantly, the reference system shares its two-particle interaction with the
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2.3. Nonequilibrium steady state of correlated many-body systems

physical system, and can be exactly solved by numerical methods. By comparison of the
functionals, the universal part of Ω̂s, denoted as F̂ , can be eliminated, which allows to
evaluate Ω̂s exactly on the subspace of Σ and D, spanned by the possible sets of reference
systems. The results presented are shown to be equivalent to the ones obtained by a more
heuristic method, the pseudoparticle approach introduced in Ref. [57], and thus provide
rigorous variational grounds for that approach. In addition, the extended self-energy
functional approach introduced here allows to envision more general reference systems,
in which bath sites are incorporated to enlarge the space of possible self-energies Σ, and
possibly bridge over to (C)-DMFT [49, 62]. For future research it would be interesting to
verify whether in the limit of an infinite number of bath sites and for a single correlated
site as a reference system, our superfluid SFA becomes equivalent to DMFT for superfluid
bosons [82, 83], as it is the case in the normal phase [49]. For a finite number of bath
sites this is certainly not the case, since the order parameter in the reference system
differs from the physical one.

2.3. Nonequilibrium steady state of correlated many-body

systems

The theoretical understanding of the nonequilibrium behavior of strongly correlated
quantum many-body systems is a long standing challenge, which has become increasingly
relevant with the progress made in the fields of quantum optics and quantum simulation,
semiconductor, and magnetic heterostructures, nanotechnology, or spintronics.

A typical nonequilibrium situation in all these systems is conveniently described the-
oretically by switching on a perturbation at a certain time τ = τ0, for example, a bias
voltage, which is then kept constant after a short switching time. For this problem one
may, on the one hand be interested in transient properties at short times after switching
on the perturbation, for example in ultrafast pump-probe spectroscopy [84, 85]. In this
case, the properties of the system depend on the initial state, as well as on the line shape
of the switch-on pulse. For longer times away from τ0, quite generally one expects the sys-
tem to reach a steady state, whose properties do not depend on details of the initial state.
Nonequilibrium steady states are relevant, for example, in quantum electronic transport
across heterostructures, quantum dots, molecules (see, e. g., Refs. [86, 87, 88, 89, 90, 91])
or in driven-dissipative ultracold atomic systems [92, 93, 94, 95, 96, 97]. Intriguingly,
it was shown in Ref. [98] that nonequilibrium noise, which is present for instance in
Josephson junctions, trapped ultracold polar molecules or trapped ions, to first order
preserves the critical nonequilibrium steady states thus being a marginal perturbation
as opposed to the temperature. Among the methods to treat strongly correlated sys-
tems out of equilibrium, one should mention density-matrix renormalization group and
related matrix-product state methods [99, 100, 101, 102, 103], continuum-time quan-
tum Monte-Carlo [104], different numerical and semi-analytical renormalization-group
approaches [105, 106, 91], equation-of-motion methods [86, 89], dynamical mean-field
theory [107, 108, 109, 110], scattering Bethe Ansatz [111, 112], and the dual-fermion
approach [113]. Recently, Balzer and Potthoff [114] have presented a generalization of
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cluster-perturbation theory (CPT) to the Keldysh contour, which allows for the treat-
ment of time-dependent phenomena. Their results show that CPT describes quite ac-
curately the short and medium-time dynamics of a Hubbard chain. A detailed study of
the short-time dynamics of weakly correlated electrons in quantum transport based on
the time evolution of the nonequilibrium Kadanoff-Baym equations, where correlations
are treated in Hartree-Fock-, second Born-, and GW-approximation has been given in
Ref. [115]. These approximations are restricted to moderate correlations but on the
other hand they allow to study rather complex models and geometries. As far as the
steady-state behavior is concerned, the nonequilibrium (Keldysh) Green’s function ap-
proach has been widely used on an ab-initio or tight-binding level, where correlations are
treated in mean-field approximation. Since the effective particles are non-interacting, the
Meir-Wingreen expression [88] for the current can be applied, which relates the current
to the retarded Green’s functions of the scattering with a self-energy that is renormalized
due to the presence of the leads. Representative applications for nano-structured mate-
rials and molecular devices are given in Refs. [116, 117, 118] and in the review article
Ref. [90].

Here we aim at strongly correlated many-body systems, and we propose a variational
cluster method, that allows to study steady-state properties.

In order to study steady-state nonequilibrium properties of strongly correlated systems
one typically considers a model consisting of two leads with uncorrelated particles, and
a central correlated region. The three regions are initially decoupled. At a certain time
τ0 a coupling V between the three regions is switched on. A natural approach is to
treat V via strong-coupling perturbation theory, which at the lowest order essentially
corresponds to cluster-perturbation theory (CPT). In Ref. [114] it has been shown that
the short time behavior can be well described within CPT. This can be understood from
the observation that switching on the inter-cluster hopping V for a certain time ∆τ
produces a perturbation of order V ∆τ , which is accounted for at first order in CPT.
Therefore, we expect the result to be accurate for small ∆τ . When addressing the
steady state it is, thus, essential to improve the long-time behavior. Here, we suggest
that nonequilibrium CPT can be systematically improved by minimizing some suitable
“difference” between the unperturbed (“reference”) state which enters CPT and the
target steady state.

The strategy presented here to achieve this goal consists in exploiting the fact that
the decomposition of the Hamiltonian into an “unperturbed part” and a “perturbation”
is not unique. Prompted by the variational cluster approach (VCA), one can actually
add “auxiliary” single particle terms to the unperturbed Hamiltonian and subtract them
again within CPT. This freedom can be exploited in order to “optimize” the results of the
perturbative calculation. As discussed in detail in Refs. [66, 57], in equilibrium this is an
alternative way to motivate the introduction of variational parameters in VCA. The idea
discussed here, thus, provides the natural extension of VCA to treat a nonequilibrium
steady state. There remains to define a criterion for the “difference” between initial and
final state. (Cellular) Dynamical Mean-Field Theory [119, 62, 67, 110] (DMFT) pro-
vides a natural solution, requiring the cluster-projected Green’s functions of the initial
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2.3. Nonequilibrium steady state of correlated many-body systems

and final state to coincide. Of course, this self-consistency condition requires an infinite
number of variational parameters, as well as the solution of a (cluster) impurity prob-
lem, which is computationally very expensive and whose accuracy is limited, especially
in real time. In equilibrium, the self-energy functional approach [49, 50] (SFA) provides
one possible generalization of DMFT if one wants to restrict to a finite number of vari-
ational parameters. In this case, the requirement for the “difference” is provided by the
Euler equation. While originally derived from the equilibrium grand potential (see, e. g.,
Ref. [49]) the Euler equation allows for a straight forward extension to nonequilibrium:

δΩ

δt′
= Tr

(
−G′ + (G−10 − Σ)−1

) δΣ(t′)
δt′

,

where we used Ω = F [Σ] + Tr ln[−(G−10 − Σ)−1] and employed the Luttinger-Ward
identity δF [Σ]/δΣ(t′) = −G′.

In this section, we explore an alternative criterion, represented by (2.104), which,
upon including an infinite number of bath sites, becomes equivalent to C-DMFT (see
App. C.1), similarly to SFA [49]. Without bath sites this corresponds to requiring that,
for a given set of variational parameters p, their conjugate operators, i. e., dh/dp, h
being the Hamiltonian, have the same expectation value in the unperturbed and in the
final target state. This criterion is numerically easier to implement than the SFA, since
in this case it is not necessary to search for a saddle point, which is well known to be
numerically expensive [120]. In addition, inclusion of bath sites provides self consistency
conditions for dynamic correlation functions as well.

The freedom discussed above can be additionally exploited by including the hybridiza-
tion between correlated regions and the leads as well as part of the leads themselves into
the unperturbed Hamiltonian which is solved exactly by Lanczos exact diagonalization.
In this way, CPT is then used to treat hopping terms further away from the correlated
region.2 This partly accounts for the influence of the leads onto the self-energy of the
correlated region.

Finally, let us mention that the method is probably most suited to deal with models for
which the correlated region is spatially extended (see Fig. 2.2). In this case, this region
must be partitioned into clusters which can be solved exactly, while the intercluster
terms are included into the perturbative part.

2.3.1. Variational cluster approach for nonequilibrium steady state

The physical model of interest consists of a “left” and “right” noninteracting lead, as
well as a correlated region described by the Hamiltonians h̄l, h̄r, and h̄c, respectively,
see Fig. 2.2. h̄c contains local (Hubbard-type) interactions, as well as arbitrary single-
particle terms. For τ < τ0, the three regions are in equilibrium with three reservoirs at
different chemical potentials, µl, µr, and µc respectively. The correlated region is much

2To avoid confusion, we denote as “correlated region” the “physical” one containing interacting sites,
bounded by the hoppings V . On the other hand, the “central region” is the one containing the
clusters, and is bounded by tbic. (See Fig. 2.2)
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Figure 2.2.: Generic scheme of the model studied here: full (empty) circles indicate
correlated (uncorrelated) lattice sites. Correlated sites define the correlated
region (c), and are characterized by an on-site Hubbard interaction U , an
on-site energy ǫc, and by hopping elements tx and ty in the x and y di-
rection, respectively. The physical leads (l,r), indicated by the two shaded
areas, consist of half-infinite planes described by uncorrelated tight-binding
models with hopping tL, on-site energies ǫl and ǫr, and chemical potentials
µl and µr, respectively. The correlated region is connected to the leads via
hoppings V . The width (number of sites in the x direction) of the corre-
lated region is L̄cx. The height of the whole system in the y direction is
infinite. Here, we study two cases, a strongly correlated chain (L̄cx = 1) and
a strongly correlated two-leg ladder (L̄cx = 2), both perpendicular to the ap-
plied bias. In the variational cluster calculation the central region described
by the unperturbed Hamiltonian h can differ from the physical one. The
latter coincides with the correlated sites (white area in the figure). On the
other hand, the former consists of disconnected clusters aligned along the y
direction, one of them being represented by the dash-dotted rectangle in the
figure. The corresponding equilibrium Green’s function is determined by
Lanczos exact diagonalization. The size of these clusters is Lc = Lcx × Lcy

(4× 2 in the example). The coordinates of the left and right boundary sites
of the central region are indicated by xbl and xbr, respectively. Accordingly,
dashed lines represent hopping processes, which are omitted in the unper-
turbed (reference) Hamiltonian h and are re-included perturbatively within
T̂ . Full lines indicate hopping terms present in h, which are thus treated
exactly (see text).
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2.3. Nonequilibrium steady state of correlated many-body systems

smaller in size than the leads, so that the latter act as relaxation baths. At τ = τ0,
the single particle (i. e., hopping) Hamiltonian terms V̂lc and V̂rc are switched on. These
connect the left and right reservoir, respectively, with the correlated region. The total
time-dependent Hamiltonian is, thus, given by

H(τ) = h̄+ θ(τ − τ0) ˆ̄T , (2.92)

where h̄ = h̄c + h̄l + h̄r, and ˆ̄T = V̂lc + V̂rc. We consider here the fermionic case,
although many concepts can be easily extended to bosons. After a time ∆τ long enough
for relaxation to take place, the system reaches a nonequilibrium steady-state, with a
particle current flowing from left to right for µl > µr and from right to left for µl < µr.

As discussed above, the total τ > τ0 Hamiltonian H ≡ H(τ > τ0) is decomposed into
an unperturbed part h and a perturbation T̂ :

H = h+ T̂ . (2.93)

In the simplest CPT approach for a “small” correlated region one can take h = h̄, and

T̂ = ˆ̄T . However, when the correlated region is extended, as in Fig. 2.2, it has to be fur-
ther decomposed into smaller clusters that can be solved by exact diagonalization. Note,
the uncorrelated leads can be solved exactly without being partitioned into clusters. In
this case, the intercluster hopping is subtracted from h and must be included in T̂ . In
addition, one can include part of the leads into the clusters (dashed lines in Fig. 2.2), so
that V̂lc + V̂rc are incorporated into h, while the leads intercluster hoppings (e.g. tbic in
the figure) are included in T̂ . Finally, in the spirit of VCA, arbitrary intracluster terms
∆h can be added to the unperturbed Hamiltonian and subtracted perturbatively within
T̂ . In other words, calling hcl the Hamiltonian describing the physical cluster partition,
and T̂cl the one describing the intercluster hoppings (dashed lines in Fig. 2.2), we write
h = hcl + ∆h, and T̂ = T̂cl − ∆h so that the total Hamiltonian remains unchanged,
compare with Sec. 2.1.5:

H = hcl + T̂cl = h+ T̂ . (2.94)

The arbitrariness in the choice of ∆h can be exploited to optimize the unperturbed
state. Here, we will adopt a different optimization criterion, see discussion below. Being
a single-particle term, T̂ is described by its hopping matrix T . This matrix has a block
structure according to the three regions discussed above and shall be denoted by Tlc, Trc
and Tcc, respectively.

Nonequilibrium properties, in general, and nonlinear transport in particular can quite
generally be determined in the frame of the Keldysh Green’s function approach [121,
122, 123, 86, 87], see App. C.2. Here, we adopt the notation of Ref. [87], for which the
2× 2 Keldysh Green’s function matrix is expressed as

G(r, r′|τ, τ ′) =
(
GR GK

0 GA

)
, (2.95)

where the retarded (GR), advanced (GA), and Keldysh (GK) Green’s functions depend
in general on two lattice sites (r, r′) and two times (τ, τ ′). However, both for τ < τ0
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2. Variational cluster approach

as well as in steady state, time translation invariance holds, so that Green’s functions
depend only on the time difference τ − τ ′, and we can Fourier transform to frequency
space ω.

We use uppercase letters G to denote Green’s functions of the full Hamiltonian H, and
lowercase g for the ones of the unperturbed Hamiltonian h. The advantage of using the
Keldysh Green’s function matrix representation is that one can express Dyson’s equation
in the same form as in equilibrium [86, 87]. In our case, we can express it in the form

G = g + g (T +∆Σ) G , (2.96)

where g = diag
(
gll, gcc, grr

)
is block diagonal, and the products have to be considered as

matrix multiplications. In the time representation (2.95) they also include convolutions
over internal times. However, since we are considering the steady state, Green’s functions
become diagonal in the frequency representation. In (2.96), ∆Σ = Σ−Σh is the difference
between the (unknown) self-energy Σ of the total Hamiltonian H, including the coupling
to the leads, and the self-energy Σh associated with the unperturbed Hamiltonian h.

The CPT approximation [64] precisely amounts to neglecting ∆Σ. As pointed out in
Ref. [114] this corresponds to neglecting irreducible diagrams containing interactions and
one or more T terms. It should, however, be stressed that the self-energy of the isolated
clusters is exactly included in gcc, which is obtained by Lanczos exact diagonalization.

In this approximation, (2.96) can be used to obtain an equation for the Green’s func-
tion Gcc projected onto the central region, which is still a matrix in the lattice sites of
the central region and in Keldysh space3 (this is a straightforward generalization of, e.g.,
the treatment in Ref. [86]):

Gcc = gcc + gcc
(
Tcc Gcc +

∈{l,r}∑

α

Tcα Gαc

)
(2.97)

and for the lead-central region Green’s functions:

Gαc = gαα Tαc Gcc , with α ∈ {l, r}. (2.98)

It is noteworthy that Eq. (2.98) is exact and not based on the CPT approximation, as
the leads contain non-interacting particles. Insertion of (2.98) into (2.97) yields

Gcc = gcc + gcc
(
Tcc + Σ̃cc

)
Gcc (2.99)

with the lead-induced self-energy renormalization

Σ̃cc =

∈{l,r}∑

α

Tcα gαα Tαc . (2.100)

3Here, we use a notation to express projection of objects such as G, T , etc., which are matrices in
lattice indices and in Keldysh space, onto one of the three regions c, l, or r. More specifically, let m
be such a matrix, then mAB refers to a sub-matrix of m in which the left (right) index is restricted
to region A (B), with A,B = c, l, or r.
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2.3. Nonequilibrium steady state of correlated many-body systems

Here gαα stands for the Green’s function of the isolated lead α. One finally obtains a
Dyson form for the steady state Green’s function of the coupled system at the central
region

G−1cc = g−1cc − Tcc − Σ̃cc . (2.101)

Different from the usual Dyson equation, gcc is the Green’s function for the isolated
clusters, which contains all many-body effects inside the cluster.

For the evaluation of the current from, say, the left lead to the central region one needs
the Glc Green’s function, which is readily obtained by combining (2.98) with (2.101).
This leads to the generalized Kadanoff-Baym equation (see e. g. Refs. [86, 88]), along
with the fact that the central region is finite in x direction and the leads are infinite,
one can rewrite the current into a Büttiker-Landauer type of formula

j =

∫
dε

2π

[
fF (ε− µr)− fF (ε− µl)

]

× Tr
[
GR

cc (ε)Γl(ε) GA
cc (ε)Γr(ε)

]
. (2.102)

where G
R/A
cc is the retarded/advanced part of the Green’s function Gcc, and the trace,

as well as matrix products run over site indices in c, see App. C.3. Γα describes the
inelastic broadening owing to the coupling to lead α, which in CPT is given by

Γα = 2 Im
{
Tcαg

A
ααTαc

}
,

which represents the contribution of lead α to the imaginary part of Σ̃A
cc. Interestingly,

the expression for the current in CPT has the same structure as the Meir-Wingreen
formula [88] for non-interacting particles, which is the basis for nonequilibrium ab-initio-
calculations [117]. Here, however, the Green’s function contains the many-body interac-
tions of the correlated region. An advantage of this expression is that it yields an explicit

connection to the Green function G
R/A
cc of the scattering region and the influence of the

itinerant electrons in the leads. A similar expression can be derived for the one-particle
density matrix between two sites with the same y coordinate, which is required for the
self-consistency condition discussed below.

As it is well known, all retarded and advanced Green’s functions are evaluated without
chemical potentials. The latter enter through the Keldysh Green’s function or rather via
the Fermi functions. While the chemical potential of the central region is wiped out in
the steady state due to its small size in comparison to the size of the leads, the chemical
potentials of the leads explicitly enter the expressions for the current and the density
matrix, see Eq. (2.102). In the case investigated here, the central region is translation
invariant in y direction and is split into identical clusters. In the end, as far as the main
numerical task is concerned, one has to solve many-body problems for clusters of size
L = Lcx×Lcy, invert matrices of the same size, and sum over wave vectors qy belonging
to the Brillouin zone associated with the cluster supercell.
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2. Variational cluster approach

2.3.2. Self-consistency condition

Equation (2.101) is the expression for the Green’s function of the central region within
the CPT approximation. As discussed above, one would like to optimize the initial state
in some appropriate way by suitably adjusting the parameters ∆h of the unperturbed
Hamiltonian h. The inclusion of additional terms ∆h adds flexibility to the self-energy
Σh which is included within this approximation. Obviously, it makes no difference in the
case of non-interacting particles as the self-energy vanishes exactly, independently of ∆h.
This freedom can be exploited in order to improve the approximation systematically. A
similar discussion on this issue has been given in Refs. [66, 57], and is at the basis of the
VCA idea [49].

As discussed above, we need a variational condition associated with a “minimization”
of the difference between unperturbed and perturbed state. In (cellular)-DMFT one
requires the cluster projected Green’s function to be equal to the unperturbed one

gcc = P(Gcc) , (2.103)

where P projects the Green’s function onto the cluster, i. e., it sets all its intercluster
matrix elements to zero. Note that when the central region coincides with the cluster,
PGcc = Gcc. In this case the solution of (2.104) is trivially obtained by taking the leads as
auxiliary baths. Since here we have a finite number of variational parameters p that can
be adjusted, we cannot satisfy (2.103). We, thus, propose a “weaker” condition, namely
that the expectation values of operators coupled to the variational parameters contained
in ∆h (i. e., d∆h/dp) be equal in the unperturbed and in the perturbed state. This
condition corresponds to a generalized Hartree self-consistence. It physically amounts
to require that certain “generalized densities” (more specifically some elements of the
single-particle density matrix) coincide in the unperturbed and in the perturbed system,
so that the effect of the perturbation is minimized. Which terms should coincide is
determined by the choice of the variational parameters. Notice that by using the coupling
to bath sites as variational parameters, one can also require dynamical contributions to
the Green’s function to coincide. More specifically, we impose the condition

∫
dω

2π
tr τ̂1

∂ (g0cc)
−1

∂p
(gcc −Gcc) = 0 , (2.104)

where τ̂1 is the Pauli matrix in Keldysh space, and g0cc is the Green’s function associated
with the noninteracting part of h.

It is interesting to note (see App. C.1) that by including into ∆h a coupling to an
infinite number of bath sites, the present method, with the self-consistence condition
(2.104) whereby p are the bath parameters (hopping and on-site energies), becomes
equivalent to nonequilibrium cluster DMFT. Generalization of the SFA condition to
nonequilibrium should be, in principle, obtained by replacing g0cc with Σh in (2.104).

A second systematic improvement of this nonequilibrium VCA approach consists in
increasing the cluster size Lc. This can be done in two ways: (i) by extending the
boundaries of the central region in y direction and thus treating more correlated sites
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2.3. Nonequilibrium steady state of correlated many-body systems

exactly and (ii) by extending the boundaries in x direction to include an increasing
number of uncorrelated lattice sites, i. e., taking Lcx > L̄cx, cf. Fig. 2.2. This amounts
to taking into account to some degree the V -induced renormalization of the self energy.

The τ̂1 in (2.104) is due to our choice of convention (2.95) for the Keldysh matrix. If
one uses the form containing the time- and anti-time-ordered Green’s functions in the
diagonal, and the greater and lesser in the off-diagonal elements, no τ̂1 is present in the
trace, see App. C.4.

2.3.3. Q-matrix formalism

Here we adopt the Q-matrix formalism to nonequilibrium VCA. We introduce the ef-
fective self energy

Σeff = Tcc + Σ̃cc ,

where Σ̃cc is given by Eq. (2.100). It is convenient to group the central region to envi-
ronment coupling and the cluster Green’s functions as

Tec ≡
(
Tlc
Trc

)
gee ≡

(
gll 0
0 grr

)
.

Using the fact that Tcα = T †αc, with α = {l, r}, yields

Σeff = Tcc + T †ecgeeTec .

The central region Green’s functions in Keldysh space [87] reads

gcc =

(
gR gK

0 gA

)
,

where gR (gA) are the retarded (advanced) Green’s functions and gK = G< + G> =
sign(ω − µ)(gR − gA) is the Keldysh Green’s function. The Q-matrix formalism allows
to write the Lehmann representation of Green’s functions in a compact form

gR = Q̃(ω + i0+ − Λ)−1S̃Q̃† ≡ Q̃g+S̃Q̃†

gA = Q̃(ω − i0+ − Λ)−1S̃Q† ≡ Q̃g−S̃Q̃†

gK = Q̃ sign(ω − µ)[g+ − g−]S̃Q̃† ≡ Q̃aS̃Q̃† .

The matrix S takes into account the commutation relations of the particles and has the
properties S2 = 1 and S−1 = S, see Sec. 2.1. In Keldysh space

Q ≡
(
Q̃ 0

0 Q̃

)
SQ† ≡

(
S̃Q̃† 0

0 S̃Q̃†

)

We use these extendedQmatrices to rewrite the decoupled central region Green’s func-
tion

gcc =

(
Q̃ 0

0 Q̃

)(
g+ a
0 g−

)(
S̃Q̃ 0

0 S̃Q̃

)
≡ QḡccSQ† .
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Using QSQ† = 1 we find

Gcc = gcc + gccΣ
effGcc

= gcc(1− Σeffgcc)
−1

= QḡccSQ
†(1 + ΣeffQḡccSQ

† +ΣeffQḡccSQ
†ΣeffQḡccSQ

† + . . .)

= Qḡcc(1 + SQ†ΣeffQḡcc + SQ†ΣeffQḡccSQ
†ΣeffQḡcc + . . .)SQ†

= Qḡcc(1− SQ†ΣeffQḡcc)
−1SQ†

This formula is convenient for the numerical evaluation, since only matrices of the sys-
tems size have to be inverted. Finally, we have

Gcc = Q(ḡ−1cc − SQ†ΣeffQ)−1SQ† ,

with

g−1cc =

(
(g+)−1 −(g+)−1a(g−)−1

0 (g−)−1

)
.

We recover the well-known equilibrium results when setting the central region to en-
vironment coupling to zero. In contrast to the equilibrium case, the above equation
cannot be solved algebraically, by reducing it to a linear eigenvalue problem. Here, the
equation is nonlinear, as Σeff is a function of the frequency. Nevertheless, the usage of
the Q-matrices is advantageous, since for the reference system the poles Λ and their
weights SQ†Q are decoupled. This representation also demonstrates that the pseu-
doparticle approach is valid for nonequilibrium VCA.

Furthermore, generalizations for instance to mixtures of particle number sectors are
straightforward. For mixtures the cluster Green’s functions are simply superpositions
of individual particle number sectors

g =
∑

m

cmgm ,

where gm is the Keldysh Green’s function for a specific particle number sectorm, com-
pare also with Sec. 2.1.4.
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3. Equilibrium properties of bosonic
many-body systems

3.1. Bose-Hubbard model

Pioneering experiments on ultracold gases of atoms trapped in optical lattices allowed
for a direct observation of quantum many-body phenomena, such as the quantum phase
transition from Mott phase to superfluid phase [20, 21]. Optical lattices are realized
by counterpropagating laser beams, which form a periodic potential [22]. The bosonic
particles located on the optical lattice gain kinetic energy when tunneling through the
potential wells of neighboring sites of the periodic potential and they exhibit a repulsive
interaction when a lattice site is occupied by more than one atom. A condensate of ul-
tracold atoms can be driven from superfluid phase to Mott phase by gradually increasing
the intensity of the laser beams. The potential wells of the optical lattice are shallow for
low laser-beam intensity. Thus the bosonic particles can overcome the barrier easily and
are delocalized on the whole lattice. However, for large intensity of the laser beams the
potential wells are deep and there is little probability for the atoms to tunnel from one
lattice site to another. This physical behavior can be described by the Bose-Hubbard
(BH) model [30] provided the gas of ultracold atoms is cooled such that only the lowest
Bloch band of the periodic potential has to be taken into account [20]. The ground
state of the BH model is superfluid when the local on-site repulsion between the atoms
is small in comparison to the nearest-neighbor hopping strength whereas it is a Mott
state for integer particle density and large on-site repulsion compared to the hopping
strength. Due to these characteristics of the BH model the depth of the potential wells
in optical lattices can be associated directly with the ratio of the on-site repulsion and
the hopping strength. Ultracold atoms confined in optical lattices provide a very clean
experimental realization of a strongly correlated many-body problem and the internal
physical processes are well understood in comparison to conventional condensed-matter
systems. There is large experimental control over the system parameters, such as the
particle number, lattice size, and depth of the potential wells. Furthermore the sites
of the optical lattice can be addressed individually due to the mesoscopic scale of the
lattice [124, 36, 37].

The quantum phase transition from Mott phase to superfluid phase has been first ob-
served experimentally for ultracold rubidium atoms trapped in a three-dimensional op-
tical lattice [21] and subsequently as well in optical lattices of two dimensions [125, 126].
The corresponding theoretical model, the two-dimensional (2D) BH model, has already
been investigated to some detail in literature. The phase diagram, which describes the
quantum phase transition from Mott phase to superfluid phase, has been investigated

49
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thoroughly at the mean-field level (possibly including Gaussian-fluctuation corrections)
[30, 127, 128, 129, 130, 29, 131]. More accurate results for the phase diagram from
quantum Monte Carlo [132] (QMC) simulations, variational approaches [133, 134], and
strong-coupling perturbation theory [135, 136, 137, 138] are also available. The phase
diagram for arbitrary integer fillings has been obtained recently using the so-called dia-
grammatic process chain approach [139, 140]. Spectral functions of the two-dimensional
BH model have been evaluated within a strong-coupling approach [141, 137] and a vari-
ational mean field approach [142].

The (grand-canonical) Hamiltonian of the BH model [30] is given by

Ĥ = −t
∑

〈i, j〉

(
b†i bj +H.c.

)
+
U

2

∑

i

n̂i (n̂i − 1) +
∑

i

(ǫi − µ)n̂i , (3.1)

where the operators b†i (bi ) create (annihilate) bosonic particles at lattice site i. The
parameter t is the nearest-neighbor hopping strength, U is the local on-site repulsion,
ǫi a site-dependent, local potential, and µ is the chemical potential, which controls the
total particle number N̂p =

∑
i n̂i =

∑
i b
†
i bi . The angle brackets in the first part

of the Hamiltonian specify to sum over pairs of nearest neighbors (each pair counted
once). The total particle number 〈N̂p〉 is conserved, since [Ĥ, N̂p] = 0. The particles

of the BH model obey the commutation relation [bi, b
†
j] = δij . The first term of the

Hamiltonian models the hopping of a particle from lattice site j to lattice site i. The
second part describes the local on-site repulsion, which remains zero when a lattice site
is unoccupied or occupied by only one particle. However, it increases proportional to
U for each additionally added particle. In the following calculations and discussions we
use the local interaction U as unit of energy. The third part of the Hamiltonian models
a local potential of strength ǫi − µ.

3.1.1. Normal Mott insulating phase

Here, we evaluate the border of the quantum phase transition from Mott phase to su-
perfluid phase for the first two Mott lobes by means of the variational cluster approach
(VCA) [28], and show that this method provides quite accurately the boundaries of the
Mott phase, as compared with more demanding QMC simulations and perturbative ex-
pansions. In addition, we study in detail the spectral functions of the two-dimensional
BH model in both the first and the second Mott lobe, which require computing the
Green’s function in real frequency domain. We also present the densities of states and
momentum distributions corresponding to the spectral functions.

The BH model exhibits a quantum phase transition from a Mott to a superfluid
phase when the ratio between the hopping strength and the on-site repulsion t/U is
increased or when particles are added to or removed from the system. The Mott phase
is characterized by an integer particle density, a gap in the spectral function and zero
compressibility [30].

The first two Mott lobes of the 2D BH model obtained by means of VCA are shown in
Fig. 3.1. We used the chemical potential x = {µ} as variational parameter, which ensures
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Figure 3.1.: (Color online) Phase boundaries of the Mott phase of the 2D BH model
(Mott lobes). (a) Results of our VCA calculation with various cluster sizes
for the reference system. The geometry of the 8-site cluster is visualized in
the inset. The gray shaded area indicates the results of the process chain
approach [139, 140]. (b) Phase boundaries obtained for the 8 site cluster.
The marks refer to the parameters where we evaluated the spectral functions.

a correct particle density of the total system [51, 78]. In contrast to the one-dimensional
results [51, 143] the Mott lobes of the 2D BH model are round shaped. The gray shaded
area in Fig. 3.1 (a) presents the phase boundaries calculated within the process chain
approach by N. Teichmann et al. in Refs. [139] and [140], which are basically identical
to the QMC results by B. Capogrosso-Sansone et al., see Ref. [132]. The agreement is
quite good for small hopping. However, VCA seems to overestimate the critical value of
the hopping (t/U)c, which determines the tip of the Mott lobe. For the critical hopping
of the first Mott lobe, we obtain approximately (t/U)1c = 0.067 and for the second one
(t/U)2c = 0.038. Latest process chain approach [139, 140], QMC (Ref. [132]) and strong-
coupling perturbation theory [137] results yield (t/U)1c = 0.059 and (t/U)2c = 0.035 for
the critical parameter of the first and second Mott lobe, respectively.

The spectral functions A(k, ω) and the densities of states N(ω) for parameters of
the first Mott lobe are shown in Fig. 3.2. The spectral function is displayed on the
conventional path around the Brillouin zone k = (0, 0) over (π, π) to (π, 0) and back to
(0, 0), and we use an artificial imaginary-frequency broadening η = 0.05. A peculiarity
of bosonic systems is that the hole band of the spectral function has negative spectral
weight whereas the particle band has positive spectral weight. This follows from the
definition of the bosonic Green’s function which has a negative sign in front of the hole
term, see Eq. (2.10). In the figures we always plot the absolute value of the spectral
function. The local density of states is defined as a wave-vector summation of A(k, ω).
Therefore we observe a negative peak in the density of states, which corresponds to the
hole band of the spectral function. For bosonic Green’s functions the density of states is
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Figure 3.2.: Spectral function A(k, ω), left column, and density of states N(ω), right
column, in the first Mott lobe for the parameters (a) t/U = 0.005, µ/U =
0.5, (b) t/U = 0.03, µ/U = 0.4 and (c) t/U = 0.06, µ/U = 0.35. The
captions of the subfigures refer to the marks in Fig. 3.1 (b).
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Figure 3.3.: Spectral function A(k, ω), left column, and density of states N(ω), right
column, in the second Mott lobe for the parameters (a) t/U = 0.01, µ/U =
1.5 and (b) t/U = 0.035, µ/U = 1.4. The captions of the subfigures refer to
the marks in Fig. 3.1 (b).

not a probability distribution, as it contains negative values. Taking the absolute value
would yield an all positive density of states, however, it would not be normed and is thus
no probability distribution either. For small hopping, the gap in the spectral function
is large and the bands are rather flat, i. e., the width of the bands is small, see Fig. 3.2.
The corresponding density of states contains two well-separated peaks. For increasing
hopping, the gap of the spectral function is decreasing and the width of the bands is
increasing. Pursuant to the spectral function, the peaks in the density of states become
broader for increasing hopping. The intensity of the two bands is almost constant for
small hopping independent of the wave vector k, whereas for large hopping a large
intensity can be observed at k = 0.

The boundaries of the Mott lobes correspond to the chemical potential of the state
with one additional particle (hole), which is obtained directly from the single-particle
(single-hole) minimum excitation energy. For this reason, we evaluate the phase diagram
in Fig. 3.1 by taking the minimal gap of the spectral function for each t/U , which always
occurs at k = 0.

The spectral functions and densities of states in the second Mott lobe corresponding
to the marks IV and V in Fig. 3.1 (b) are shown in Fig. 3.3. Qualitatively they are
very similar to the spectral functions and densities of states in the first Mott lobe.
Particularly, the intensity distribution of the bands seem to be strongly related. Yet the
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Figure 3.4.: Momentum distribution n(k) in (a) the first Mott lobe and (b) the second
Mott lobe. The Roman numerals in the legends refer to the parameters
marked in Fig. 3.1 (b).

peaks of the density of states are larger due to the twice as large particle density within
the second Mott lobe and thus the absolute value of the spectral weight in the second
Mott lobe is larger than the one in the first Mott lobe.

The momentum distribution n(k) corresponding to the spectral functions in the first
and second Mott lobe are shown in Fig. 3.4. The particle density in the first Mott lobe is
one and thus n(k) is centered around one in Fig. 3.4 (a). For the second Mott lobe n(k) is
centered around two, see Fig. 3.4 (b). The particle density n(k) is extremely flat for small
hopping whereas it is peaked at k = 0 for large hopping, which is already a precursor
for the Bose-Einstein condensation where all macroscopic number of particles condense
in the k = 0 state. This behavior directly reflects the intensity distribution of the bands
in the spectral function. There is excellent quantitative agreement between our VCA
results for the momentum distribution and results obtained by means of QMC and a
strong-coupling perturbation theory with scaling ansatz [144], see Fig. 3.5. We compare
the momentum distributions for the parameters I (t/U = 0.005) and II (t/U = 0.03), and
observe that the relative deviations between our VCA results and an approach obtained
by combining strong-coupling perturbation theory with a scaling ansatz [144] are almost
zero for small hopping t/U = 0.005 and less than one percent for medium hopping
t/U = 0.03. This latter methods is certainly more accurate than VCA in the evaluation
of the momentum distribution. However, it should be mentioned that the information
about the critical point (critical exponents and critical hopping strength (t/U)c) have to
be inserted “by hand,” in order to optimize the results. This information, in turn, must
be extracted, e. g., from a QMC calculation. On the other hand, our VCA results are
obtained directly without the need to introduce external parameters.
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Conclusions: In this section, we presented and discussed results obtained within the
variational cluster approach for the spectral properties of the two-dimensional Bose-
Hubbard Hamiltonian. This is a minimal model to describe bosonic ultracold atoms
confined in optical lattices [20], and it undergoes a quantum phase transition from a
Mott to a superfluid phase depending on the chemical potential µ, and the ratio be-
tween the hopping strength and the on-site repulsion t/U . In particular, we determined
the first two Mott lobes of the phase diagram and found reasonable agreement with
essentially exact results from QMC simulations and from the process chain approach. In
particular, the variational cluster approach yields very good results for the phase bound-
aries apart from the region close to the lobe tip. Here, strong-coupling expansions and
QMC calculations are, clearly, much more accurate. Yet it should be emphasized that
the computational effort is considerably lower for VCA than for QMC. Furthermore, we
evaluated spectral functions in the first and second Mott lobe. An important aspect of
VCA is that the Green’s function of the system is obtained directly in the real frequency
domain, which allows for a direct calculation of the spectral function. On the other hand,
QMC quite generally provides correlation functions in imaginary time. Imaginary-time
correlation functions have to be analytically continued to real frequencies, which is a very
ill-conditioned problem, as the data contain statistical errors. In QMC this analytical
continuation is best carried out by means of the maximum entropy method. A very ac-
curate dispersion (without spectral weight) has been also obtained by a strong-coupling
expansion [137]. The intensity distribution of the spectral weight is similar for the spec-
tral functions of both Mott lobes, leading to an evenly distributed spectral weight for
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small hopping strengths and to a distribution sharply peaked at k = 0 for large hopping
strengths. The latter indicates a precursor to the Bose-Einstein condensation occurring
above a certain critical hopping. We also evaluated the densities of states and momentum
distributions corresponding to the calculated spectral functions. We compared our VCA
results for the momentum distribution with strong-coupling perturbation-theory results,
where a scaling ansatz has been used, and found excellent quantitative agreement.

3.1.2. Disordered lattice bosons

Interacting many-body systems with disorder are fascinating and challenging from both
the experimental as well as the theoretical point of view. Understanding disordered
bosonic systems has been of great interest ever since the pioneering works on the Bose-
Hubbard (BH) model [30], which describes strongly interacting lattice bosons. Originally,
the disordered BH model has been used to approximately describe various condensed
matter systems, such as superfluid helium absorbed in porous media [145, 146], super-
fluid films on substrates [147], and Josephson junction arrays [148]. However, seminal
experiments on ultracold gases of atoms trapped in optical lattices shed new light on
interacting bosonic many-body systems, as these systems provide a direct experimental
realization of the BH model [20, 22]. Intriguingly, these experiments allow to observe
quantum many-body phenomena, such as the quantum phase transition from a super-
fluid to a Mott state [21]. The condensate of atoms can be driven across this phase
transition by gradually increasing the laser beam intensity, which is directly related to
the depth of the potential wells. There is a large experimental control over the system
parameters such as the particle number or lattice depth, and in addition the parameters
are tunable over a wide range. While optical lattices provide a very clean experimental
realization of strongly correlated lattice bosons, they can be used to study disordered
systems on a very high level of control as well. Disorder can be added to the regular
optical lattice by several techniques, such as by superposing additional optical lattices
with shifted wavelength and beam angles [149, 150, 151, 152, 153, 154], laser speckle
fields [155, 156, 157, 158], or including atoms of a different species acting as impurities
[159].

The disordered BH model has been widely investigated in the literature. Most of the
work has been devoted to study the phase transitions occurring in the disordered BH
model [160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175]. At
zero temperature the ground-state phase diagram depending on the chemical potential,
the tunneling probability of the particles and the disorder strength, consists of three
different phases: the Mott insulating, the superfluid, and the Bose glass phase. The
first two phases are already present in the pure BH model, while the latter is a distinct
feature of the disordered system. The Bose glass phase is characterized by being gapless
and compressible, however, due to disorder the phase coherence does not extend over
the entire system in contrast to the superfluid phase. While the phase diagram of the
disordered BH model has been extensively studied, up to now spectral properties have
not yet been investigated theoretically, even though they are experimentally accessible
by Bragg spectroscopy, which allows to extract the wave vector dependent excitation
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Figure 3.6.: (Color online) The periodic optical lattice potential is locally modified by
disorder. In the illustration the disorder is bounded by ǫ∗ corresponding
to a situation obtained by the superposition of two incommensurate optical
lattices.

energies of the system [42, 43, 44]. For low-energy excitations (typically ω/2π . 10kHz)
the response of the Bragg spectroscopy is ascribed to the structure factor, which corre-
sponds to density fluctuations, whereas, for high excitation energies (ω/2π & 30kHz) the
single-particle spectral function can be extracted [176, 177]. In this case, atoms excited
into high-energy bands are not expected to interact with the lower bands. Therefore, the
measured spectrum describes a convolution (without vertex corrections) of the density
of states of the lower occupied with the upper unoccupied band. From this convolution
the spectral function of the lower strong-correlated bands can be extracted [176].

In this section we study in detail the spectral properties of bosonic atoms in a disor-
dered optical lattice, modeled by the one-dimensional BH model in which, for simplicity,
the harmonic trap potential has been neglected. We focus on the strongly correlated
regime and evaluate spectral properties for the hopping strength to the on-site inter-
action ratio of size t/U = 0.05. This ratio corresponds to an optical lattice depth of
11ER , where ER is the recoil energy [178]. To evaluate this depth we considered laser
beams with wave length λ = 830nm and the scattering length of rubidium as ≈ 5nm.
In particular, we focus on the similarities and differences between the two common ex-
perimental methods used to induce disorder: (i) superposition of two laser fields with
incommensurate wavevectors on the one hand, and (ii) the addition of a laser speckle
field on the other hand.

One sample-configuration of disorder is denoted as η = (ǫ1, ǫ2 . . . ǫN ), where N is the
number of lattice sites. The disorder modifies locally the depth of the optical lattice,
see Fig. 3.6 for illustration. Random disorder is distributed according to a given proba-
bility distribution function (pdf) p(η), which has to satisfy the normalization condition∫
p(η) dη = 1. The average of a quantity Xη with respect to the pdf p(η) is given by

Xp ≡ 〈X〉p =
∫
p(η)Xη dη. We consider ǫi as identically and independently distributed

random variables leading to p(η) =
∏N

i=1 q(ǫi), where q(ǫi) is a pdf describing the disor-
der generated in the experiment. Experimentally, there are two main ways of introducing
disorder, corresponding to two different pdf’s. On the one hand, superposing two in-
commensurate optical lattices yields a shifted β distribution as demonstrated in the next
subsection “Disorder distribution generated by incommensurate optical lattices.” The
distribution is bounded by a maximum disorder strength ǫ∗. This approach is used, for
example, in the setup by Fallani et al. [150], where two laser beams with wave lengths
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Figure 3.7.: Spectral function Ap(k, ω) for disorder generated by superposition of in-
commensurate optical lattices. The parameters are t = 0.05, µ = 0.45, and
(a) ǫ∗ = 0.0, (b) ǫ∗ = 0.1, (c) ǫ∗ = 0.2, and (d) ǫ∗ = 0.3.

λ1 = 830 nm and λ2 = 1076 nm are superposed. Since these two wave lengths are
highly incommensurable the disorder can be regarded as truly random, see Ref. [149].
Alternatively, disorder can be generated by superposing a laser speckle field [179, 180]
to the regular optical lattice. In this case, one obtains an exponential distribution
q(ǫi) = θ(ǫi) exp(−ǫi/ǭ)/ǭ where ǭ specifies the mean disorder strength [179, 180]. In
our calculations the distribution is additionally shifted about its median ǭ ln 2 to avoid
modifications of the chemical potential due to disorder. The exponential distribution
is asymmetric and unbounded and thus, strictly speaking, the Mott phase, which is
controlled by the extrema of the distribution [163, 164, 171, 172] does not occur any-
more. However, the goal of the present paper is to mimic the results of the experimental
measurements, for which the effects of the tail of the distribution are too small to be
observable. Therefore we introduce a cut off for the disorder distribution of 4 ǭ ln 2. In
other words, realizations far off the median are not considered.

We first investigate spectral properties for disorder realizations sampled from the
shifted β distribution, which is realized experimentally by superposing two incommen-
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surate optical lattices.

In particular, spectral functions Ap(k, ω) are evaluated for hopping strength t = 0.05,
chemical potential µ = 0.45 and various strengths of disorder ǫ∗ = {0.0, 0.1, 0.2, 0.3},
see Fig. 3.7. The corresponding densities of states Np(ω) are shown in Fig. 3.8.

For the numerical evaluation by means of VCA we use M = 256 disorder configura-
tions, a reference system of size L = 8, and the VCA parameters x = {µ, t, δ}. The
parameter δ is an additional on-site energy located at the boundaries of the cluster,
whose introduction drastically improves the results, as shown in Ref. [181]. The artifi-
cial broadening parameter is chosen to be 0+ = 0.05 for spectral functions and 0+ = 0.01
for densities of states. As mentioned previously the occupied part of the single-particle
spectral function is experimentally accessible by high-energy Bragg spectroscopy. For
the pure system we obtain the well-known cosinelike shaped bands reminiscent of the
dispersion of free particles on a lattice. For increasing disorder strength ǫ∗ the minimal
gap between the occupied and the unoccupied band shrinks. In addition, the bands
become broader as the poles of the Green’s function for a specific wave vector k are
distributed over a large energy range. This behavior can also be seen in the density of
states. Furthermore, for large disorder the bands seem to split in two sections separated
by a pseudogap around k = π. This is a peculiarity of this disorder configuration which
to some extend resembles a binary distribution. An ordered binary distribution would
double the unit cell thus producing a true gap at k = π.

Experimentally the gap ∆ present in Mott phase can be determined for instance by
lattice modulation [38] or by Bragg spectroscopy [42]. In these experiments the amount
of energy transferred to the system is related to the width of the central peak observed
in time of flight images [38]. The width of the central peak is measured for various
energies leading to the excitation spectrum. Indeed for increasing disorder strength ǫ∗

a broadening of the excitation band has been observed [150] which is qualitatively in
agreement with our results for the spectral function. In addition, it could be shown
experimentally that the weight moves to lower excitation energies for increasing ǫ∗ [150].
However, it is rather difficult to extract the precise value of the gap from the measured
excitation spectra. Strictly speaking, the gap ∆ is defined as the energy difference of the
lowest lying poles in the occupied and unoccupied bands, respectively. Yet, our results
show, that these poles quite generally carry only very little spectral weight. This means
that it is virtually impossible to detect them in the experiment. For this reason, it might
be useful to introduce the notion of a gap ∆mp, that corresponds to the experimental
situation and is determined by the distance between the maxima of the spectral weight
observed in the center of the Brillouin zone. In Fig. 3.9 we compare ∆ [Fig. 3.9 (a)]
with ∆mp [Fig. 3.9 (b)] which is obviously always larger than ∆. For increasing hopping
strength t the gap ∆mp decreases, however, it still remains finite (i. e., ∆mp ≈ 0.2) at
values of t for which the gap ∆ determined from the smallest excitation energies is already
almost zero. Therefore, a peak at finite energy will be observed in the experimental data,
even when the system is already in the Bose-glass phase. Additionally, it is important
to mention that the smallest excitation energy gap ∆ can be predicted analytically for
systems with infinitely many disorder realizations. In this case ∆ is controlled by the
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Figure 3.8.: (Color online) (a) Density of states Np(ω) evaluated for the same parameters
as in Fig. 3.7. (b) Illustration of the two “gaps” ∆ and ∆mp within a blowup
of the the data for disorder strength ǫ∗ = 0.3. According to our definition
(see text), ∆ corresponds to the formal definition of the Mott gap based
on minimal excitation energies, whereas ∆mp corresponds to the minimum
peak distance in the spectral weight, which is the quantity available from
experiments.
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Figure 3.9.: Gap ∆ obtained from (a) the smallest excitation energies and (b) ∆mp ob-
tained from the minimum peak energy difference of the occupied and unoc-
cupied bands.
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maximum disorder strength ǫ∗ only. In particular, the phase boundary is shifted by
±ǫ∗ as there exist always rare regions where the chemical potential is either increased
or decreased by ǫ∗ [163, 164]. Here, however, we take into account a finite number of
LM = 2048 random values for the on-site energies ǫi leading to larger gaps, since it is
very unlikely that all values ǫi of one realization η are close to the extreme cases ±ǫ∗.
This resembles more closely the experimental situation in which only a limited number
of disorder realizations can be detected.

The second kind of disorder we are addressing in this paper follows the shifted ex-
ponential distribution, which is generated by superposing a laser speckle field. Spec-
tral properties of the Bose-Hubbard model for this disorder distribution are shown in
Fig. 3.10. In contrast to the disorder realized by the superposition of two incommensu-
rate optical lattices, the spectral signatures evaluated for the exponential distribution
clearly exhibits an asymmetric shape. This becomes particular visible when comparing
the densities of states for various disorder strengths, see Fig. 3.10 (b). In particular, the
poles are smeared out toward higher excitation energies and thus reflect the tail of the
exponential distribution. No pseudogap behavior around k = π is observed here, due to
the shape of the exponential distribution which is in contrast to the β distribution not
peaked at the edges.

Conclusions: In the present work we investigated for the first time spectral properties of
the disordered Bose-Hubbard model. In view of a realistic description of the experimental
results, we focused on disorder distributions which are relevant for ultracold gases of
atoms in optical lattices. In particular, we studied the differences between disorder
realized by the superposition of incommensurate laser fields with the one obtained by
laser speckle fields. In both cases we evaluated spectral functions and densities of states
and showed that the resulting spectral weight strongly depends on the underlying shape
of the disorder distribution. Furthermore, we determined the gap present in the Mott
phase for disorder generated by incommensurate optical lattices. On the one hand, we
evaluated the gap ∆ from the minimal excitation energies of the system and on the other
hand we determined the gap ∆mp from the minimum peak distance in the spectral weight
located at the center of the Brillouin zone. Whereas ∆ cannot be observed directly in
the experiment since the low-energy excitations carry very little spectral weight, ∆mp is
directly measurable. Furthermore, ∆mp is always larger than ∆ and thus ∆mp remains
finite even at the Mott to Bose-glass transition. In our calculations, we neglected the
harmonic trap potential present in the experiments with ultracold gases of atoms. In
principle, this effect can be included in our formalism, however, with a significantly
major effort which goes beyond the goal of the present work. There are two cases in
which neglecting the trap potential is justified. As in the ordered case, one can expect for
sufficiently small disorder strength the trap potential to lead to multiple ringlike regions
which are alternately Mott gapped and gapless. Quite generally, one should be able to
choose the parameters so that the volume of the gapless regions is much smaller than the
one of the N̂p = N Mott region in which we are interested. In this case, the spectrum
will display a nonvanishing weight within the gap originating from the gapless regions.
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Figure 3.10.: Spectral properties for a disorder distribution generated by laser speckle
fields. The parameters are t = 0.05, and µ = 0.35. Panel (a) shows the
spectral function Ap(k, ω) evaluated for ǭ = 0.15 and panel (b) shows the
densities of states for various disorder strengths ǭ = {0.0, 0.05, 0.1, 0.15}.
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Figure 3.11.: Total lattice potential created by the superposition of the main optical
lattice with depth s1 and the disorder lattice with depth s2.

However, we expect this to be small enough, at least for ω 6= 0, so that the peaks defining
the experimental gap ∆mp remain discernible. Alternatively, spectroscopy experiments
probing the system locally should be able to probe directly the Mott insulating region
with no contributions from the gapless areas.

Disorder distribution generated by incommensurate optical lattices

Here, we show that the potential distribution, which results from the superposition of
two optical lattices, follows a shifted β distribution. In particular, we focus on the
experimental setup of Fallani et al. [150], who used for the main optical lattice a laser
at wavelength λ1 = 830 nm. Disorder is generated by superposing an additional lattice
created from a weak laser beam at λ2 = 1076 nm. The resulting potential is given by

V (x) = s1ER1 sin
2 2πx/λ1 + s2ER2 sin

2 2πx/λ2 ,

where x is the spatial position, s1 and s2 are related to the depth of the potential
generated from the laser beams at λ1 and λ2, respectively. The constants ER1 and ER2

are the corresponding recoil energies. In this Appendix, the lattice depths s1 and s2 will
always be stated in units of their recoil energies. The depth s2 of the disorder-inducing
wave is related to the maximal disorder strength ǫ∗ by ǫ∗ = s2/2. Since the wave lengths
λ1 and λ2 are incommensurable the disorder imitates a true random behavior [149].
Here we reconstruct the histogram of the disorder distribution and find a mathematical
expression, which reproduces the behavior of these physical systems.

In the experiments typical values for the lattice depths are s1 = 16 and s2 = 2, see
Ref. [150]. Figure 3.11 compares the potential V (x) for the previously mentioned values
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Figure 3.12.: Distribution of the on-site energy ǫi observed in the experiment (histogram)
compared with random samples drawn from the shifted β distribution (solid
line).

of s1 = 16 and s2 = 2 with the pure case, where the second laser beam at λ2 is switched
off, i. e., s1 = 16 and s2 = 0. It can be seen that the on-site energy varies for distinct
lattice sites mimicking a random potential. Actually, the parameter s2 just scales the
disorder and thus our considerations are valid for arbitrary disorder strength ǫ∗. To
evaluate a histogram of the energy distribution we subtract the disordered potential at
the lattice sites from the pure potential and shift the difference by its mean ǫ∗. This
yields a distribution which is centered around zero. The shift could have been absorbed
as well in the definition of the chemical potential µ. The histogram for 2 048 lattice
sites is shown in Fig. 3.12. In the center the distribution is rather flat, yet, there are
important features at the boundary. Such a distribution can be well described by a
shifted β distribution.

The β distribution qβ(u|a, b), which is defined on the interval u ∈ [0, 1], is given by

qβ(u|a, b) ≡
1

B(a, b)
ua−1 (1− u)b−1 ,

where

B(a, b) =

∫ 1

0
dp pa−1(1− p)b−1 = Γ(a)Γ(b)

Γ(a+ b)
.

The expectation value of qβ(u|a, b) is

〈u〉 = a

a+ b
(3.2)

and its variance is

var(u) =
〈u〉(1 − 〈u〉)
a+ b+ 1

. (3.3)
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Figure 3.13.: Phase boundary for the first three Mott lobes corresponding to filling n = 1,
2 and 3. The data for the first two Mott lobes have been published in
Ref. [54]. Static quantities are evaluated along the dashed line, i. e., for
t/U = 0.02 and µ/U ranging from 0 to 3, whereas, the dynamic single-
particle spectral function is evaluated at t = 0.07 and µ = 0.4, see mark
x.

To obtain a distribution which is symmetric around zero and bounded by [−1, 1] we
set 〈u〉 = 0.5, shift the whole β distribution by this value and scale it by a factor
of 2. Resolving Eqs. (3.2) and (3.3) under the condition that 〈u〉 = 0.5 leads to a =
b = [var(u)/4 − 1]/2. For var(u) > 1/12 (where 1/12 is the variance of the uniform
distribution), the probability density is shifted toward the boundaries of the distribution.
In particular we set var(u) = 0.12. Finally, we draw 2 048 samples from this specific
shifted β distribution, which we denote as q(ǫi/ǫ

∗). The resulting distribution of the 2 048
samples is indicated by the solid line in Fig. 3.12, which reproduces well the distribution
obtained from the experiment with two incommensurate optical lattices.

3.1.3. Superfluid phase

In this section, we present the first nontrivial application of the VCA theory, extended
to the superfluid phase, to the two-dimensional BH (BH) model and compare the results
with unbiased quantum Monte Carlo (QMC) calculations. We evaluate static quantities,
such as the particle density n and the condensate density nc as well as the dynamic single-
particle spectral function A(k, ω). The phase boundary of the first three Mott lobes as
obtained in VCA is shown in Fig. 3.13. The data for the first two lobes have been
published in Ref. [54]. Static quantities are evaluated for constant hopping strength
t/U = 0.02 and distinct values of the chemical potential µ/U ranging from 0 to 3,
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Figure 3.14.: Total particle density n, condensate density nc, and density of the particles
which are not condensed n − nc evaluated along the dashed line shown in
Fig. 3.13.

scanning through various Mott lobes separated by the superfluid phase; see the dashed
line in Fig. 3.13. The single-particle spectral function is evaluated for the parameter set
marked by x in Fig. 3.13, which is located in the superfluid phase close to the tip of the
first Mott lobe. For the numerical evaluation we used the chemical potential µ′ and the
strength of the source-and-drain coupling term F of the reference system as variational
parameters. If not stated differently, the reference system consists of a cluster of size
L = 2× 2.

The total particle density n evaluated using Eq. (2.62) is shown in Fig. 3.14 along with
the condensate density nc = 〈A†〉 〈A〉 /2L, and the density of the particles which are not
condensed n−nc. From Fig. 3.15 it can be observed that the particle density n evaluated
for reference systems of size L = 1 × 1 and of size L = 2 × 2 are almost identical. The
same holds for the condensate fraction nc/n, which is shown in the inset of Fig. 3.15.
In the same figure, we also compare our results with QMC calculations. The densities
obtained from the two methods show an excellent agreement. The QMC data have been
obtained for a system of size 32×32 and temperature U/T = 128 using the ALPS library
[182] and the ALPS applications [183].

The single-particle spectral function A(k, ω) evaluated for the parameter set, marked
by x in Fig. 3.13, i. e., in the superfluid phase close to the tip of the first Mott lobe, is
depicted in Fig. 3.16. The colored density plot corresponds to VCA results and the dots
with errorbars to latest QMC results of Ref. [184]. The VCA spectral function A(k, ω)
consists of four bands, which is in agreement with results obtained by means of a varia-
tional mean field calculation [142], a strong coupling approach [141], and random phase
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The inset compares VCA and QMC results for the condensate fraction
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Figure 3.16.: Single-particle spectral function A(k, ω) evaluated at t/U = 0.07 and
µ/U = 0.4. The colored density plot corresponds to VCA results and
the dots with errorbars to latest QMC results of Ref. [184].
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Figure 3.17.: Gap of the inner modes present in the single-particle spectral function
measured at k = 0 and evaluated along the dashed line shown in Fig. 3.13
for reference systems of size L = 1× 1 and L = 2× 2, respectively.

approximation (RPA) calculations [185, 131]. The advantage of VCA in comparison to
the above mentioned approaches is that the results can be systematically improved by
increasing the cluster size of the reference system. For each wave vector k the weight
is concentrated in one of the two bands present at positive and negative energy, respec-
tively. We observe that the outer two modes exhibit a wide gap at k = 0, which is
approximately of size U . The inner two, low-energy modes are also gapped at k = 0.
However, the gap is tiny, and away from k = 0 the spectrum quickly develops a linear
behavior, which is in agreement with the expected dispersion of Goldstone modes. The
failure in obtaining a gapless long-wavelength excitation is a common problem of con-
serving approximations, i. e., of approximations for which macroscopic conservation laws
are fulfilled. Similar aspects occur in dynamical mean-field theory calculations of two-
component ultracold atoms as well [186]. In VCA there exists the additional possibility
to systematically improve the obtained results by increasing the cluster size L of the
reference system. Figure 3.17 compares the k = 0 gap of the inner modes for reference
systems of size L = 1 × 1 and L = 2 × 2. The gap is evaluated along the dashed line
shown in Fig. 3.13. The first observation is that the gap present in the condensed phase
is almost an order of magnitude smaller than the gap in the Mott phase. It vanishes at
the Mott-to-superfluid transition and, most importantly, shrinks with increasing cluster
size L. This behavior signals convergence toward the correct result.

In Fig. 3.16 we also compare our VCA results for the single-particle spectral function
to latest QMC results obtained in Ref. [184]. In this figure QMC results are indicated
by dots with errorbars, which quantify the peak position of the spectral weight. Overall,
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we find good agreement in the low-energy spectrum. Only very close to k = 0 the two
results differ slightly and the QMC dispersion possesses the correct gapless behavior.
The QMC spectral function, exhibits only two instead of four bands. This is, however,
not surprising since for the considered parameter set and at a specific wave vector k

the weight of one positive (negative) energy band dominates drastically over the other
one located at positive (negative) energy. Thus the four bands are extremely difficult
to resolve by means of the maximum entropy method, which has been used to infer
the spectra from QMC data; see Ref. [184] for details concerning the QMC results.
This reference also contains a comparison between VCA data and QMC data for the
spectral function evaluated in the Mott phase, where the results obtained from the two
approaches coincide very well for all k values.

We also evaluated the particle density n for the parameter set in the superfluid phase
used in Fig. 3.16 and compared it to the QMC results. VCA yields n = 1.0321 in
excellent agreement with the QMC result nQMC = 1.03068(2) obtained at U/T = 128
for a system of size 32× 32.

In the following we provide some additional remarks on the fact that the single-particle
spectral function, obtained within our approach, is gapped in the long wavelength limit,
i. e., close to k = 0, for modes which ought to be identified with the Goldstone modes.
This issue is a commonly known problem of conserving approximations [187]. One con-
dition for an approximation to be conserving is, for example, to be Φ-derivable and
self-consistent (see Ref. [188, 189, 71, 190, 191] for details). VCA is Φ-derivable but not
self-consistent: The self-energy is the derivative of a functional of the Green’s function,
but the latter is not the Green’s function obtained from Dyson’s equation. Thus VCA
is not completely conserving. However, many conservation laws are fulfilled at the sta-
tionary point of the self-energy functional, depending on which variational parameters
are taken into account (see Ref. [192] for a more detailed discussion).

To obtain a gapless spectrum, a system of condensed bosons has to fulfill an indepen-
dent condition, which is the Hugenholtz-Pines theorem [193, 190, 194]. There are only
very few systematic approximation schemes which satisfy both conditions simultane-
ously. One notable exception occurs for interacting bosons composed of paired fermions.
In this case, a consistent and gapless approximation can be developed provided the the-
ory is expressed in terms of the constituent fermions [195]. In a different work [196] it
was suggested to include an additional Lagrange multiplier in the form of a chemical
potential, in order to explicitly enforce the Hugenholtz-Pines condition. Unfortunately,
the Hugenholtz-Pines theorem is not fulfilled in VCA, and thus the low-energy modes
of the single-particle spectral function are gapped in the long wavelength limit. Yet,
the gap present in the VCA single-particle spectral function is small, and the spectrum
quickly develops a linear behavior reminiscent of the gapless and linear Goldstone modes.
Furthermore, in VCA there exists the possibility to systematically improve the results
by increasing the cluster size of the reference system.

It is also interesting to mention that the related strong coupling approximation RPA,
which yields a gapless spectrum, yet is not conserving [185, 131] can be obtained within
certain limits of the extended VCA formalism. Specifically, the limits to consider are (i)
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Figure 3.18.: Superfluid density ρs (a) evaluated for constant hopping strength t/U =
0.02 as a function of the chemical potential µ/U . VCA results for reference
systems of size L = 1 × 1, L = 2 × 1, and L = 2 × 2 and for essentially
infinitely large physical systems are compared to QMC results for physical
systems of size 32 × 32 and inverse temperature U/T = 128. Comparison
of the superfluid density ρs and condensed density ρc (b) for reference
systems of size L = 1× 1 and essentially infinitely large physical systems,
cf. Ref. [57].

to use clusters of size L = 1×1, (ii) not to use the chemical potential µ as variational pa-
rameter and (iii) to determine the source-and-drain coupling strength F self-consistently

within a mean-field approach, whereby intercluster hopping terms a†i aj are replaced with

their mean-field value 〈a†i 〉 aj + a†i 〈aj〉 in the reference Hamiltonian. This leads to the
selfconsistency condition F = z t 〈A〉 , where 〈A〉 is given by Eq. (2.57) and z is the
coordination number of the lattice. Our formalism provides a natural way to improve
on RPA in a gapless, yet nonconserving, way by simply increasing the cluster size L
and fixing F using the mean-field condition discussed above. However, it has to be
emphasized that VCA yields much better results than RPA, even if RPA is extended
to clusters of size L. Specifically, the particle density, the condensate density and the
location of the phase boundary [54, 181] can be determined much more accurately by
means of VCA only because we allowed for a variation in the chemical potential µ′, i. e.,
allowed for macroscopic conservation laws to be fulfilled.

In the following, we discuss the evaluation of the superfluid density ρs within our
extended SFA/VCA theory and present results for the two-dimensional BH model.

The superfluid density is related to the response of the system to a phase-twisting field
[197, 198], leading to twisted boundary conditions (BC) in one spatial direction, which
we choose to be the ex-direction, and periodic BC in the others. The many-body wave
function |Ψ〉 has to obey these BC and thus

T̂ (Nx ex) |Ψ〉 = eiΘ |Ψ〉 ,

where the operator T̂ (r) translates the particles by the vector r, Nx is the lattice ex-
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tension in ex-direction, and Θ is the phase twist applied to to the system. The twisted
BC can be mapped by a unitary transformation onto the lattice Hamiltonian, leading
to complex-valued hopping integrals [199, 200, 201]. The resulting Hamiltonian can be
interpreted as a cylinder rolled up along the x-direction, which is threaded by an effective
magnetic field with total flux Θ. When a particle is translated by Nx in the ex-direction
a phase exp[−iΘ] is picked up [202]. Due to gauge invariance, one is free to choose
where the phase is collected when the particle propagates across the lattice. The usual
choice is that each hopping process in the ex direction, i. e., from site r′ = (rx − 1, ry)
to r = (rx, ry), is multiplied by a phase factor exp[−iA], where the associated vector
potential is

A = Θ/Nx . (3.4)

When choosing the phase in that way, the reference system Ĥ ′ also depends on the
vector potential A and the intra-cluster hopping terms become complex-valued along
the ex-direction. For a Hamiltonian with nearest-neighbor hopping t, the superfluid
density is determined from [202]

ρs =
1

t

1

NxNy

∂2 ΩΘ

∂ A2
, (3.5)

where NxNy is the total number of lattice sites of the physical system, and ΩΘ is the
grand potential of the physical system, subject to a phase twist Θ, as discussed above.
Plugging in the vector potential of Eq. (3.4) yields

ρs =
1

t

Nx

Ny

∂2 ΩΘ

∂Θ2
. (3.6)

In practice, the grand potential ΩΘ is evaluated at the stationary point of Eq. (2.91),
and is determined self-consistently for several values of Θ. From this data the curvature
of ΩΘ with respect to Θ is extracted from a fit. Using the curvature, the superfluid
density is evaluated according to Eq. (3.6). Note that a finite cluster is embedded in an
essentially infinitely large system and thus the limits are taken in the correct order to
obtain the superfluid density [202].

In the following, we apply this procedure to the two-dimensional BH model [30]

Ĥ =
∑

〈i, j〉

tij a
†
i aj +

U

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i ,

where we extended the hopping integrals tij such that tij = −t for hopping processes
along the ey-direction and tij = −t exp[iA (ri − rj)ex] for hopping processes along the
ex-direction. The reference system Ĥ ′ consists of a cluster decomposition of the physical
system Ĥ plus a U(1) symmetry breaking source term

Ĥ ′ =
∑

R

[ ∑

〈α, β〉

t′αβa
†
α,R aβ,R +

U

2

∑

α

n̂α,R (n̂α,R − 1)

− µ′
∑

α

n̂α,R −
∑

α

(a†α,R fα + f∗α aα,R)
]
,
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Figure 3.19.: Superfluid density ρs (a) and superfluid fraction ρs/n (b) ranging deep in
the superfluid phase evaluated for constant chemical potential µ/U = 0.4
as a function of the hopping strength t/U . Results obtained by means of
VCA for reference systems of size L = 1× 1 and essentially infinitely large
physical systems are compared to QMC results for physical systems of size
32× 32 and inverse temperature U/T = 128.
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where the lattice site indices i have been decomposed into an index R, that specifies
the cluster and into an index α, that specifies the lattice sites within a cluster [57, 54].
Analogously to the physical system, the hoping integrals are t′αβ = −t′ and t′αβ =
−t′ exp[iA (rRα − rRβ)ex] for nearest-neighbor hopping processes along the ey- and the
ex-direction, respectively, and zero otherwise. In our calculation, we use the chemical
potential µ′ and the source coupling strength fα of the reference system as variational
parameters in the optimization prescription. Since the reference system is complex
valued, the source coupling strength fα is complex valued too, i. e., fα = |fα| exp[φα].
Thus, in general, 2L variational parameters have to be considered, where L is the number
of cluster sites. However, for different cluster sites α the source coupling strengths fα
are interrelated, as can be seen from mean field arguments, leading effectively to two
variational parameters |f | and φ, which we use—in addition to the chemical potential
µ′—to treat complex valued reference systems.

In Fig. 3.18 we present the superfluid density ρs for different sizes of the reference
system ranging from L = 1 × 1, over L = 2 × 1, to L = 2 × 2 and essentially infinitely
large physical systems. For the largest cluster we restrict the variational search space to
real valued order parameters, i. e., we set φα = 0. Figure 3.18 (a) demonstrates that this
choice leads to comparable results as obtained with the full variational space. Yet, for the
restricted variational space the computational effort as well as the numerical complexity
is reduced, since the reference system remains real valued. Figure 3.18 (a) shows the
superfluid density ρs, as a function of the chemical potential µ/U evaluated for fixed
hopping strength t/U = 0.02. The chemical potential ranges from µ/U = 0 to µ/U = 3.
As the hopping strength is small, three regions with ρs = 0 are present, corresponding
to the Mott insulating phase. In between these regions, we observe a finite superfluid
density ρs indicating the occurrence of the superfluid phase. In addition to the VCA
results, we show QMC results with errorbars (barely visible) for physical systems of size
32 × 32 and inverse temperature U/T = 128. The QMC calculations were performed
with the ALPS library [182] and the ALPS applications [183]. Particularly, we use the
stochastic series expansion representation of the partition function with directed loop
updates [203, 204, 205], where the superfluid density is evaluated via the winding number
[206, 207]. The superfluid density ρs obtained from VCA agrees remarkable well with
the QMC results. Furthermore, VCA results are almost independent of the size L of
the reference system, signaling convergence to the correct results even for L = 1× 1 site
clusters. The superfluid density ρs is compared to the condensate density ρc = 〈ai〉 in
Fig. 3.18 (b), cf. Ref. [57]. It can be observed that the superfluid density is always larger
than the density of the Bose-Einstein condensate. However, the difference between the
two densities is rather small, since a very dilute Bose gas is investigated.

In Fig. 3.19 we evaluate (a) the superfluid density ρs and (b) the superfluid fraction
ρs/n (n is the particle density) for fixed chemical potential µ/U = 0.4 as a function of the
hopping strength t/U . The hopping strength ranges from t/U = 0 to t/U = 1, which is
already very deep in the superfluid phase. For µ/U = 0.4 the phase boundary between
the Mott and the superfluid phase is located at t/U ≈ 0.06. In the superfluid phase
close to the phase boundary the superfluid density rises quickly from zero developing
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Figure 3.20.: Particle density n (left), condensate density ρc (middle), and superfluid
density ρs (right) evaluated around the quantum critical region close to the
tip of the first Mott lobe. Comparison of the data obtained by means of
VCA (for essentially infinitely large physical systems and reference systems
as stated in the legends), QMC (for physical systems of size 32 × 32 and
inverse temperatures U/T = 128), and mean-field. The first row (a.∗)
shows results for fixed chemical potential µ/U = 0.4 as a function of the
hopping strength t/U , whereas the second row (b.∗) shows results for fixed
hopping strength t/U = 0.05 as a function of the chemical potential µ/U .

an almost linear behavior for t/U & 0.2. In the latter parameter regime the superfluid
fraction is larger than 90% signaling that already a very large amount of the lattice
bosons is superfluid. As emphasized in Ref. [208], a relatively sharp crossover from a
strongly-correlated superfluid, characterized by a superfluid fraction which is well below
1, to a weakly-correlated superfluid, where the superfluid fraction is almost 1, can be
observed, see Fig. 3.19 (b). In addition to the VCA results evaluated for reference systems
of size L = 1× 1 and essentially infinitely large physical systems, we show QMC results
for physical systems of size 32 × 32 and inverse temperature U/T = 128, which again
exhibit perfect agreement.

In Fig. 3.20 we focus on the quantum critical region close to the tip of the first Mott
lobe, which is the most challenging one. In particular, we evaluate the particle density n,
the condensate density ρc, and superfluid density ρs. In the first row we show results for
fixed chemical potential µ/U = 0.4 as a function of the hopping strength t/U , whereas
in the second row we keep hopping strength fixed at t/U = 0.05 and vary the chemical
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potential µ/U . We compare VCA results with QMC and mean-field (MF). The most
important observation is that MF is far off QMC and VCA. For µ/U = 0.4 MF predicts
the phase transition to be at a much smaller value of t/U than QMC and VCA. This
leads to significant deviations in both the density and condensate density as compared
to QMC and VCA. For fixed t/U = 0.05 MF does not enter the Mott region and thus
does not predict a plateau in the density. For both investigated situations (fixed µ/U
and fixed t/U) the results obtained by means of VCA and QMC agree quite well. For the
QMC simulations we used lattices of size 32×32 and inverse temperatures of U/T = 128.
The VCA results are obtained at zero temperature for clusters of size 1 × 1 and 2 × 1,
respectively, and essentially infinitely large physical systems. In this challenging regime
small differences between VCA and QMC are observable for the condensate density. For
the reference system sizes considered here, results are almost identical. Larger reference
systems might still reduce the difference between VCA and QMC. However, close to the
phase transition finite size and finite temperature effects might still be important for the
QMC results, and thus a proper finite size scaling of these data might also reduce the
discrepancy between the two approaches. Note that for fixed hopping t/U = 0.05 there
is a very small region at µ/U ≈ 0.85, where it is difficult to numerically determine the
stationary point of the grand potential. Such a region is also present between the first and
the second and between the second and the third Mott lobe in Fig. 3.18. However, there
it is barely visible since the spacing between two consecutive µ datapoints is larger than
this gap. This failure appears to be related to the fact that two solutions adiabatically
connected to two sectors with different particle numbers, i. e. the two neighboring Mott
regions, meet and try to avoid each other. However, we want to emphasize that this
problem affects only a tiny region of the phase diagram. When keeping the chemical
potential fixed at µ/U = 0.4 solutions can be easily found for all values of the hopping
strength.

Finally, we want to emphasize that the VCA results are obtained with very modest
computational effort and that excellent agreement with QMC can be observed, even for
very small reference systems.

Conclusions: As a first nontrivial application of the extended version of the variational
cluster approach we chose the two-dimensional Bose-Hubbard model and evaluated static
quantities such as the total particle density and the condensate density, as well as the
dynamic single-particle spectral function. We compared the single-particle spectral func-
tion with recent Quantum Monte-Carlo results [184] and found good agreement between
the two approaches. It has to be pointed out that our extended variational cluster ap-
proach, while fulfilling many conservation laws, does not fulfill the Hugenholtz-Pines
theorem. From this fact follows that the low-energy excitations of the spectrum have a
small but nonzero gap in the long wavelength limit. This is a common aspect, which is al-
ready present in theories of the dilute Bose gas [187, 209, 210]. However, for wavevectors
away from k = 0 the spectra obtained within this approach quite soon exhibit a correct
linear behavior and agree very well with the Quantum Monte-Carlo results. Moreover,
the gap shrinks with increasing cluster size, corroborating that the variational cluster
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3.2. Jaynes-Cummings lattice model

approach becomes exact in the infinite cluster limit. Due to the fact this approach ful-
fills several conservation laws, the particle density, the condensate density as well as the
phase boundary [54, 181] delimiting the Mott from the superfluid phase can be evaluated
very accurately. We demonstrated, that our variational cluster approach results for the
densities evaluated in both, the Mott and the superfluid phase, match perfectly with
Quantum Monte-Carlo results.

We also presented how the superfluid density can be evaluated by means of this ex-
tended variational cluster approach. To this end we applied a phase twisting field to
the system. We evaluated the superfluid density for the two-dimensional Bose-Hubbard
model and compared the extended variational cluster approach results with unbiased
quantum Monte Carlo results, yielding remarkable agreement. We want to emphasize
that the extended self-energy functional approach is not only applicable to the Bose-
Hubbard model but to a large class of lattice models, which exhibit a condensed phase.
This includes experimentally interesting systems such as disordered bosons, multicom-
ponent systems (Bose-Bose mixtures or Bose-Fermi mixtures) and light matter systems
[23, 24]. Strictly speaking, the method cannot treat long-range interactions, such as
dipolar ones, exactly [211, 212]. However, the long-range part can be incorporated on
a mean-field level [213]. In principle, the present approach can be applied to systems
with broken translational invariance as well, and, for example, can consider the effect of
a confining magnetic trap. However, in this case one has to abandon the Fourier trans-
form in the cluster vectors and work in real space and, thus, deal with larger matrices
and a larger number of variational parameters. A convenient, numerically less expensive
alternative, is to adopt the so-called local density approximation [214].

3.2. Jaynes-Cummings lattice model

The experimental progress in controlling quantum optical and atomic systems, which has
been achieved over the last few years, prompted ideas for new realizations of strongly
correlated many-body systems, such as ultracold gases of atoms trapped in optical lat-
tices [20, 21, 22] or light-matter systems [215, 216, 23]. The latter consist of photons,
which interact with atoms or atomiclike structures. Normally, the interaction between
photons and atoms is very weak, since the interaction time is small. However, a strong
interaction can be achieved when photons are confined within optical cavities. In this
case, the coupling between photons and atoms leads to an effective repulsion between
photons, which means that it costs energy to add additional photons to the cavity. The
arrangement of such cavities on a lattice, see Fig. 3.21, allows the photons to “hop” be-
tween neighboring sites, provided the cavities are coupled. Quantum mechanically the
coupling of adjacent cavities means that their photonic wave functions overlap. Due to
the strong interaction between photons and atoms, and the introduction of a lattice of
coupled cavities, a strongly correlated phase emerges where photons are present. The
light-matter models share some basic properties with the Bose-Hubbard (BH) model
[30], such as the quantum phase transition from a Mott phase, where particles are lo-
calized on the lattice sites, to a superfluid phase, where particles are delocalized on the
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Figure 3.21.: Cavities forming a one-dimensional chain lattice. The blue dots represent
atomic systems, whereas the red wavy arrows indicate photons.

whole lattice [215]. Yet the physics of the light-matter models is far richer because two
distinct particles, namely, photons and atomiclike excitations, are present.

A major advantage of these man-made realizations of strongly correlated many-body
systems is that they can be tailored to correspond to a many-body model, whose param-
eters can be directly controlled in the experiment. Furthermore local quantities, such
as the particle density at a specific lattice site, can be addressed individually due to the
mesoscopic scale of the cavities and both lattice size and geometry can be controlled in
the fabrication process. An experimental realization of these light-matter systems is still
missing but there are several promising approaches, such as photonic crystal cavities
or toroidal and disk-shaped cavities [23]. If light-matter systems can be realized, they
will undoubtedly provide fascinating insight in the physics of strongly correlated many-
body systems. The realizations might be used as quantum simulators for other quantum
mechanical problems or even more intriguing for quantum information processing appli-
cations [217].

Recently, there has been a lot of research activity in the field of light-matter systems.
Most of the work has been devoted to investigate the quantum phase transition from the
Mott to the superfluid phase. Some basic characteristics of the quantum phase transition
have been evaluated from small systems of a few cavities by means of exact diagonaliza-
tion [216, 218, 219, 220, 221]. Results are available at mean-field level [215, 222, 223, 224]
as well or more accurately from analytical strong coupling perturbation theory calcu-
lations [225], and from simulations based on the density matrix renormalization group
(DMRG) [226, 227], the variational cluster approach [69] and Quantum Monte Carlo
[228]. Spectral properties of light-matter systems have been investigated in Refs. [225],
[69], and [229].

Here, we study in detail the spectral properties of a one-dimensional light-matter
system. In particular, we evaluate both photonic as well as atomic-excitation spectral
functions. The investigation of both spectral functions allows us to characterize the
polariton excitations in light-matter models. In addition to the spectral functions, we
present densities of states, momentum distributions and spatial correlation functions.
For completeness we also show the first two lobes delimiting the Mott transition.

3.2.1. Model

From the great variety of possible theoretical descriptions of light-matter systems [215,
216, 23, 226, 230, 231] we concentrate on the simplest one, which consists of an array of
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cavities each of which contains a two-level system [215]. The physics of the i-th cavity
can be described by the Jaynes-Cummings (JC) Hamiltonian [232], which for ~ = 1 is
given by

ĤJC
i = ωc a

†
i ai + ǫ σ+i σ

−
i + g

(
ai σ

+
i + a†i σ

−
i

)
, (3.7)

where ωc is the resonance frequency of the cavity, i. e., the frequency of the confined
photons, ǫ is the energy spacing of the two-level system, and g is the atom-field coupling
constant. The operator a†i creates a photon with frequency ωc, whereas ai annihilates
one. The two-level system can be mathematically described by Pauli spin algebra. Thus,
we identify the ground state of the two-level system with |↓i〉 and the excited state with
|↑i〉. With that the atomic raising operator is defined as σ+i ≡ |↑i〉 〈↓i| and the atomic
lowering operator as σ−i ≡ |↓i〉 〈↑i|, respectively. In order to obtain the JC Hamiltonian
the rotating wave approximation, which is justified for |ωc − ǫ| ≪ ωc, ǫ [233], has been
assumed. The deviation between the resonance frequency and the energy spacing of
the two-level system, ∆ ≡ ωc − ǫ, is termed detuning. For the JC Hamiltonian the
particle number n̂i = a†i ai + σ+i σ

−
i is a conserved quantity, as [ĤJC

i , n̂i] = 0. This is a
consequence of the rotating wave approximation [233].

The full model consists of an array of N cavities, which form a lattice and hence we
refer to this model as the Jaynes-Cummings lattice (JCL) model. Due to the coupling
of the cavities, photons are allowed to hop between neighboring lattice sites. This leads
to the JCL Hamiltonian

ĤJCL = −t
∑

〈i, j〉

a†i aj +
∑

i

ĤJC
i − µ N̂p , (3.8)

where t is the hopping strength and µ the chemical potential, which controls the total
particle number N̂p of the system. The first sum with the angle brackets around the
summation indices is restricted to nearest-neighbor sites. In the case of the JCL model,
the particle number of a specific cavity n̂i is not conserved anymore. However, the total
particle number N̂p =

∑
i n̂i is a conserved quantity. In summary, the JCL Hamiltonian

can be rewritten as

ĤJCL =− t
∑

〈i, j〉

a†i aj −∆
∑

i

σ+i σ
−
i

+ g
∑

i

(ai σ
+
i + a†i σ

−
i )− (µ− ωc) N̂p . (3.9)

From Eq. (3.9) and from the fact that we consider the coupling strength g as unit of
energy, it follows that the physics only depends on three independent parameters, namely
the hopping strength t, the detuning ∆ and the modified chemical potential µ − ωc. In
order to fulfill the condition for the rotating wave approximation the resonance frequency
ωc has to be large in comparison with the detuning ∆, which can be always satisfied
theoretically as solely the difference between the chemical potential and the resonance
frequency appears in the grand-canonical Hamiltonian ĤJCL.
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3.2.2. Peculiarities of the variational cluster approach

The basic concept of VCA for bosonic particles is explained in Sec. 2.1. Here, we report
on the peculiarities in VCA appearing due to the atomic excitations, which are modeled
as two-level systems.

In order to guarantee that a given physical quantity (such as the number of particles)
is thermodynamically consistent, it is necessary that the grand potential Ω is station-
ary with respect to the associated coupling constant (here the chemical potential) [78].
Therefore, varying ωc ensures that the total number of photons is thermodynamically
consistent. On the other hand, it would be advisable for a conserved quantity, i. e., N̂p

to be consistent as well. Otherwise uncommon situations could occur. For example, as
we show below, the total particle density N̂p/N , evaluated as a trace of the Green’s func-
tions is not integer in the Mott phase. This effect becomes stronger close to the tip of
the Mott lobe, see Fig. 3.23 (b). The noninteger particle density, occurring when µ is not
taken as a variational parameter, clearly introduces an uncertainty in the determination
of the phase boundary.

In principle, however, there is a formal difficulty in taking µ as a variational parameter.
The problem is related to the coupling of µ with atomic excitations, which, in contrast
to photons, cannot be seen as noninteracting particles. This is, in general, not allowed
within VCA, whereby the reference system can differ from the physical one by a single-
particle Hamiltonian only. The solution is readily overcome by observing that the two-
level atomic system can be mapped onto a hard-core boson model. In this way, µ couples
to the total number of “atomic” bosons plus photons, i. e., a noninteracting Hamiltonian.
The hard-core constraint simply becomes a local (in principle infinite) interaction, which
is common to the reference and to the physical system.

The mapping of the two-level excitations onto hard-core bosons is mathematically
achieved by the following replacements

σ+i → b†i , σ−i → bi ,

|↓i〉 → |0i〉 and |↑i〉 → |1i〉 .

This is valid provided one excludes states with double occupation of b particles even as
intermediate states. This implies, for example, that for some operator products, such
as bib

†
i 6= σ−i σ

+
i , the mapping is not correct. With this mapping the JCL Hamiltonian

reads

ĤJCL =− t
∑

〈i, j〉

a†i aj −∆
∑

i

b†i bi + g
∑

i

(ai b
†
i + a†i bi)

− (µ− ωc) N̂p + lim
U→∞

U

2

∑

i

b†i bi(b
†
i bi − 1) , (3.10)

where we have formally implemented the hard-core constraint by introducing an infinite
interaction for b particles. In the restricted Hilbert space of zero or one hard-core boson
per lattice site, the matrix elements of the two representations are identical. In principle,
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states with higher occupation number b†i bi > 1 have to be considered in the bosonic
version as well. However, the occupation of such states would cost infinite energy and,
therefore, they do not influence the energies obtained from the Hilbert space sector with
occupation numbers b†i bi ≤ 1. We have checked this aspect numerically for very large

U . It can also be verified easily when the sector of the Hilbert space with b†ibi > 1
is included perturbatively. These considerations can be straightforwardly extended to
light-matter models with more than one atom or atomiclike structure (with two relevant
levels) per cavity. In this case, one introduces a boson species for each atom and the
hard-core constraint is enforced for each boson species.

In our calculation we take both parameters ωc and ǫ of the reference system as vari-
ational parameters (µ is just a linear combination), which ensures thermodynamic con-
sistency for the particle number of both species, and, consequently, of the total particle
number. We show below, that varying both parameters instead of just ωc provides an
improvement in the accuracy of the phase boundaries for a given cluster size, see Tab. 3.1.

In VCA, the reference system is chosen to be a decomposition of the total system into
identical clusters, which means that the total lattice of N sites is divided into clusters
of size L. Mathematically this can be described by introducing a superlattice, such that
the original lattice is recovered when a cluster is attached to each lattice site of the
superlattice. The reference system defined on a cluster is solved by means of the band
Lanczos method [53, 72]. The initial vector of the iterative band Lanczos method for
the single-particle excitation term of the cluster Green’s function contains 2L elements
and is given by

{a†1 |ψ0〉 , a†2 |ψ0〉 . . . a†L |ψ0〉 , σ+1 |ψ0〉 . . . σ+L |ψ0〉} , (3.11)

where |ψ0〉 is the Np particle ground state. For the single-hole excitation term the initial
vector of the band Lanczos method is obtained by replacing the creation operators in
Eq. (3.11) by annihilation operators.

To evaluate the grand potential and the single-particle Green’s function of the original
system we use the bosonic Q-matrix formalism [54]. This formalism yields the Green’s
function G(k̃, ω) in a mixed representation, partly in real space and partly in reciprocal
space, see App. D.1. The matrix G(k̃, ω) is of size 2L × 2L and k̃ belongs to the first
Brillouin zone of the superlattice. Due to the specific order of the creation operators in
the initial vector of the band Lanczos method we are able to extract the Green’s function
for photons Gph(k̃, ω) and the Green’s function for two-level excitations Gex(k̃, ω) from
G(k̃, ω) in the following way

Gph
r,s(k̃, ω) =Gr,s(k̃, ω) and

Gex
r,s(k̃, ω) =Gr+L,s+L(k̃, ω) ,

where r, s ∈ [1 . . . L]. The application of the periodization prescription proposed in
Ref. [64] (Green’s function periodization) yields the fully k dependent Green’s functions
Gph(k, ω) and Gex(k, ω). From that we are able to evaluate the single-particle spectral
function

Ax(k, ω) ≡ − 1

π
ImGx(k, ω) , (3.12)
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the density of states

Nx(ω) ≡
∫
Ax(k, ω) dk =

1

N

∑

k

Ax(k, ω) (3.13)

and the momentum distribution

nx(k) ≡ −
∫ 0

−∞
Ax(k, ω) dω , (3.14)

where x can be either ph for photons or ex for two-level excitations. We use the Q-matrix
formalism to evaluate the momentum distribution, since this approach yields particularly
accurate results [54]. Furthermore we calculate the spatial correlation functions

Cph
ij ≡ 〈a

†
i aj〉 and Cex

ij ≡ 〈σ+i σ−j 〉 , (3.15)

which just depend on the distance between two cavities i and j, i. e., Cx
ij = Cx(|ri− rj|).

Notice that the poles of the hard-core boson Green’s function coincide with the poles of
the two-level excitation Green’s function as the energies of both representations are iden-
tical. However, the hard-core boson Green’s function exhibits additional poles located at
energies of the order U →∞. The additional poles which have finite weight result from
the fact that excitations such as b†i |1i〉 are in principal allowed but cost infinite energy,
whereas the corresponding excitation σ+i |↑i〉 is strictly forbidden. Therefore, the single-

particle correlation functions 〈bk(t) b†k〉 and 〈σ−k (t)σ+k 〉 differ only by contributions from
frequencies of the order U →∞. Yet it should be mentioned that the single-hole correla-
tions function of hard-core bosons is not affected by these considerations as 〈b†k(t) bk〉 is
always equivalent to 〈σ+k (t)σ−k 〉. This also implies that the spectral weight of the poles
with negative energy are identical for both representations and that the particle density
of the two-level system is equal to the particle density of the hard-core bosons. In the
following, we will always speak loosely about two-level excitation Green’s functions but
we have to keep in mind that there are differences in the single-particle spectral weight
of the hard-core boson and two-level excitation Green’s functions at infinite energies.

3.2.3. Polariton properties of the quasiparticles

In the next step, we want to investigate the polaritonic properties of the JCL model,
which arise due to the coupling between the photons and the two-level excitations.

Adding a particle or hole to the many-body ground state may result in quasiparticle or
collective excitations which are built up by the (Np±1)-particle eigenstates of the many-
body system entering the Green’s function. These many-body eigenstates for the infinite
system can be extracted within the VCA framework from the VCA Green’s function. As
shown in App. D.1, they are linear combinations of the particle and hole excitations of
the cluster Green’s function weighted by the eigenvector matrix X, defined in App. D.1.

Our goal is to describe the eigenvectors of the (Np ± 1)-particle Hilbert space, which
form the quasiparticle excitations of the Green’s function by polaritonic quasiparticles
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added to the exact Np particle groundstate |ψ0〉. To this end, we introduce the po-

lariton creation operators p†α,k for particle excitations and h†α,k for hole excitations as
appropriate linear combinations of photons and two-level excitations

p†α,k = βαp (k) a
†
k
+ γαp (k)σ

+
k
, (3.16a)

h†α,k = βαh (k) ak + γαh (k)σ
−
k . (3.16b)

It should be stressed that the hole creation operator is not the adjoint of the parti-
cle creation operator or its annihilation counterpart, which it would be in the case of
noninteracting particles. As we will see, the coefficients or weights of the linear com-
binations βαp/h(k) and γαp/h(k) depend on the wave vector k, the quasiparticle band α,

and additionally on the filling n, which is not explicitly written in Eq. (3.16), since the
filling dependence is not important for the present discussions. The normalized polariton
quasiparticle states are defined by applying the polaritonic operators on the exact Np

particle ground state |ψ0〉 yielding

|ψ̃α
p,k〉 =

p†α,k |ψ0〉√
〈ψ0| pα,k p†α,k |ψ0〉

and (3.17a)

|ψ̃α
h,k〉 =

h†α,k |ψ0〉√
〈ψ0|hα,k h†α,k |ψ0〉

, (3.17b)

respectively. The normalization terms can be rewritten as

〈ψ0| pα,k p†α,k |ψ0〉 = zαp
†(k)Sp(k) z

α
p (k) and (3.18a)

〈ψ0| hα,k h†α,k |ψ0〉 = zαh
†(k)Sh(k) z

α
h(k) . (3.18b)

In Eq. (3.18) the vectors zαp/h(k) are defined as zαp/h(k) ≡ (βαp/h(k), γ
α
p/h(k))

T and

Sp/h(k) are the overlap matrices of single-particle excitations and single-hole excitations,
respectively. The overlap matrix for the hole excitations is given by

Sh(k) =

(
〈a†

k
ak〉 〈a†

k
σ−
k
〉

〈a†k σ−k 〉∗ 〈σ+k σ−k 〉

)

where the static correlation functions are evaluated in the Np particle ground state |ψ0〉.
All quantities entering Sh are correctly evaluated in the hard-core boson model as no
excitations of the “two-level bosons” into the n > 1 sector occur. For the particle case
the situation is different, as we need to evaluate

Sp(k) =

(
〈ak a†k〉 〈σ−k a

†
k
〉∗

〈σ−
k
a†
k
〉 〈σ−

k
σ+
k
〉

)
.

The term 〈σ−k σ+k 〉 of the two-level system cannot be directly evaluated in the hard-
core boson model. Using the commutator property [σ−i , σ

+
j ] = 0 for i 6= j and the local
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anticommutation relation {σ−i , σ+i } = 1, we end up with an expression that only contains
static correlation functions which can be computed correctly within the hard-core boson
model

Sp(k) =

(
〈aka†k〉 〈σ−k a

†
k〉∗

〈σ−
k
a†
k
〉 1 + 〈σ+

k
σ−
k
〉 − 2

N

∑
k〈σ+k σ−k 〉

)
.

In order to derive a formalism to construct the optimal polariton weights, we start out
with the analysis of an exact eigenvector |ψNp+1

ν,k 〉 of the Hamiltonian in the (Np + 1)-
particle sector. For the sake of clarity we will suppress in the following considerations
the index k for all quantities, and the indices α and p for quasiparticle weights and
wave functions. The optimality criterion in this case is clearly the overlap of the exact
eigenvector with the approximate (normalized) vector given in Eqs. (3.17) and (3.18)

|ψ̃ν〉 =
1√

zν† Sp zν

∑

I

zνI d
†
I |ψ0〉 ,

where I denote the components of the two-dimensional vectors, and d1,k ≡ ak and
d2,k ≡ σ−k , see App. D.1. The maximization of | 〈ψN+1

ν |ψ̃ν〉 |2 leads to the generalized
eigenvalue problem

Aν z̃ν = λSp z̃
ν , (3.19)

where the elements of the 2× 2 matrix Aν are

Aν
IJ = 〈ψ0| dI |ψNp+1

ν 〉 〈ψNp+1
ν | d†J |ψ0〉 .

In Eq. (3.19) we replaced zν by z̃ν as the eigenvalues are just determined except for a
constant Z, which will be specified later. As the eigenvalue corresponds to the value
of the overlap squared λ = | 〈ψN+1

ν |ψ̃ν〉 |2, the deviation of the eigenvalue from one
is a measure of the quality of the polariton approximation. It also points out that
the eigenvector corresponding to the largest eigenvalue determines the optimal polariton
coefficients. Interestingly, Aν

IJ is the contribution of the excitation ν to the corresponding
spectral function, i. e., its quasiparticle weight. In general, the quasiparticle peak is a
superposition of several exact many-body eigenstates. Hence, the obvious generalization
of the optimality criterion is to sum over all eigenstates ν, which contribute to the
quasiparticle excitation α. To this end we define an energy window Ωα in which the
quasiparticle peak α is located and we integrate the spectral density in this energy
window resulting in

ÃIJ(k, Ωα) ≡
∑

ν, ων(k)∈Ωα

Aν
IJ .

The polariton coefficients are again obtained by the generalized eigenvalue problem

Ã(k, Ωα) z̃ = λSp z̃ .
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and the eigenvalue is given by

λ =
z̃† Ã(k, Ωα) z̃

z̃† Sp z̃
. (3.20)

The eigenvalues are still restricted to the unit interval [0, 1]. The lower limit is due to
the positivity of Ã and Sp. The upper limit follows from the property that a summation
of the integrated spectral density over all nonoverlapping energy intervals Ωα is given by

particles∑

α

ÃIJ(k,Ωα) = 〈dI,kd†J,k〉 = (Sp)IJ .

Of course, z̃ and, hence, the polariton operators will depend on the wave vector k, the
quasiparticle band index α and the filling n, i. e., the Mott lobe. The discussion so far
was for the particle case only, however, it is straightforward to iterate the procedure for
the hole case.

Eventually, we merely need the integrated spectral densityA(k, Ωα) determined within
the VCA framework, which is given by

ÃIJ(k,Ωα) ≡ −
∑

ν, ων(k)∈Ωα

(Q̃X)I,ν(X
−1SQ̃†)ν,J .

Details are presented in App. D.1 as well as the proof that all contributions of the sum
have the same sign, which is necessary for the optimality criterion to make sense at all.
The optimality criterion as well as the eigenvalue problem only fix the coefficient vector
z up to a normalization factor Z, i. e., z = Z z̃. The latter is determined by the condition
that the total spectral weight should be conserved

Z2 z̃† Ã z̃
!
= tr Ã . (3.21)

As the excitations can now be described by wave vector, band and filling dependent
polaritonic quasiparticles, it remains to evaluate the polariton spectral function Ap(k, ω),
which is due to the invariance of the trace in Eq. (3.21) equal to the sum of the photon
spectral function Aph(k, ω) and the two-level excitation spectral function Aex(k, ω).

3.2.4. Results

In this section, we present the results of our calculations. Specifically, we discuss the
quantum phase transition from Mott phase to superfluid phase occurring in the JCL
model and investigate the impact of the variational parameter space on the accuracy of
the results. Subsequently, we study the spectral properties of both photons as well as
two-level excitations. The first two subsections refer to results obtained for zero detuning
∆ = 0, whereas nonzero detuning is considered in the third subsection. Finally, we
study the polaritonic properties of the JCL model. In particular, we introduce polariton
quasiparticles as wave vector and filling dependent linear combinations of photons and
two-level excitations and analyze the weights of their constituents.
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Figure 3.22.: Phase boundaries of the JCL model in one dimension for zero detuning
∆ = 0. (a) VCA results for the variational parameters x = {ωc, ǫ} and
various cluster sizes of the reference system. The gray shaded area indicates
DMRG data [226]. (b) Phase boundaries obtained for the largest cluster
(L = 8 for the first Mott lobe and L = 6 for the second Mott lobe). The
marks refer to parameters where spectral functions are evaluated.

Quantum phase transition

The JCL model exhibits, comparable to the BH model [30], a quantum phase transition
from a localized Mott phase to a delocalized superfluid phase. For integer particle density
and small hopping strength t, the ground state of the system is a Mott state. The first
two Mott lobes of the one-dimensional (1D) JCL model for zero detuning ∆ = 0 obtained
by means of VCA with the variational parameters x = {ωc, ǫ} are shown in Fig. 3.22.
As discussed in the previous section, including ǫ in the set of variational parameters
is nontrivial and is solely possible since the two-level excitations can be mapped onto
hard-core bosons. The gray shaded area in Fig. 3.22 (a) indicates DMRG results for the
phase boundary obtained by D. Rossini et al. in Ref. [226]. We find excellent agreement
between the phase boundary evaluated by means of VCA with the variational parameter
set x = {ωc, ǫ} and the DMRG results, even at the lobe tip, where quantum fluctuation
effects are most important, and even for moderate cluster sizes L & 4. Figure 3.23 (a)
compares the phase boundaries at the tip of the first Mott lobe for different variational
parameters. The results obtained with x = {ωc, ǫ} are connected by lines, whereas the
open symbols correspond to x = {ωc}. We observe that using both on-site energies
as variational parameters improves the results for the phase boundary and also yields
a better approximation for the slope of the lobe tip. A quantitative measure for the
quality χ of the calculated phase boundary is given by the absolute deviation from the
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Figure 3.23.: Comparison between the results obtained with the variational parameters
x = {ωc, ǫ} and x = {ωc}, respectively, for small clusters of size L = 2 and
L = 4. (a) Phase boundaries at the tip of the first Mott lobe. The gray
shaded area indicates DMRG results [226]. (b) Total particle density n,
which is the sum of the photon density and the two-level excitation density,
across the first Mott lobe.

DMRG data per phase boundary point

χ =
1

Mp

∑

i

∣∣pVi − pDi
∣∣ , (3.22)

where pVi and pDi are corresponding phase boundary points calculated by means of
VCA and DMRG, respectively, and Mp is the number of phase boundary points, which
contribute to the sum. In Tab. 3.1 we compare the quality χ/10−3 of the phase boundary
between the two sets of variational parameters for various cluster sizes. When using
the augmented set of variational parameters x = {ωc, ǫ} in contrast to x = {ωc} we
observe an improvement in the quality of the phase boundary which ranges from 1.3
to 1.7 depending on the cluster size of the reference system. Using both the resonance
frequency ωc of the cavities and the energy spacing ǫ of the two-level system as variational
parameters thus provides a significant improvement with respect to the case of a single
variational parameter [69]. As discussed in Refs. [51] and [78], a correct particle density
in the original system can only be obtained when the corresponding on-site energies
are included in the set of variational parameters, i. e., in the case of the JCL model
x = {ωc, ǫ}. This is demonstrated in Fig. 3.23 (b), where the total particle density n,
which consists of a photon and a two-level excitation contribution, is evaluated along
the first Mott lobe. For x = {ωc} the deviation of the particle density from one is
growing with increasing hopping strength t but shrinking with increasing cluster size L.
However, when ǫ is included as variational parameter the total particle density n is as
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Table 3.1.: Quality χ/10−3 of the phase boundary for x = {ωc} and x = {ωc, ǫ}, respec-
tively. The quality χ is evaluated using Eq. (3.22).

L . . . number of cluster sites
ǫ, ωc . . . variational parameters
IMP . . . improvement in quality when using the variation-

al parameters x = {ωc, ǫ} instead of x = {ωc}
L {ωc} {ωc, ǫ} IMP

2 15.95 11.34 1.41

4 8.20 4.92 1.67

6 5.34 3.16 1.69

8 3.95 3.07 1.29

desired equal to one across the whole first Mott lobe. A deviation of about 0.001 can be
observed for t = 0.2. Yet, the hopping strength t = 0.2 is probably even slightly above
the critical hopping strength t∗, which indicates the tip of the Mott lobe [226].

The phase diagram of the 1D JCL model is in many aspects similar to the phase
diagram of the 1D BH model [51, 143]. Particularly, the Mott lobes are point shaped
and a reentrance behavior can be observed, which means that for certain values of µ
upon increasing t the system leaves the Mott phase and later on enters it again. Yet
a very important difference is that the width of the lobes of the JCL model at zero
hopping is shrinking with increasing particle density. This comes from the fact that the
effective on-site repulsion of the JCL lattice model, which is hidden in the interaction
between photons and two-level excitations, is not constant, as in the Bose-Hubbard
model. The exact location of the phase boundaries at zero hopping is derived as a by-
product in App. D.2, whose major intention is, however, to introduce the notation used
for the dressed states |n, α〉 and for the corresponding energies E|n,α〉, where α ∈ {−, +}
describing the ground state and the excited state in the corresponding constant particle
number sector of the single-cavity Hilbert space.

Spectral properties of photons and two-level excitations

The spectral function for photons Aph(k, ω), the spectral function for two-level excita-
tions Aex(k, ω) and the corresponding densities of states Nph(ω) and N ex(ω) evaluated
by means of VCA for parameters belonging to the first Mott lobe are shown in Fig. 3.24.
We use an artificial broadening η = 0.03 and the variational parameter set x = {ωc, ǫ}
for the numerical evaluation of the spectral functions. Both spectral functions Aph(k, ω)
and Aex(k, ω) have the same gap as the photons and the two-level excitations are cou-
pled. The spectral functions of the JCL model generally consist of four bands. This can
best be understood in terms of the analytic solution of the JCL model for zero hopping
strength t = 0. The ground state |ψ0〉 of the JCL model in the Mott phase with particle
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Figure 3.24.: Photon spectral function Aph(k, ω), first row, and density of states Nph(ω),
second row. Two-level excitation spectral function Aex(k, ω), third row,
and density of states N ex(ω), fourth row. The spectral functions are eval-
uated for the parameters (a) t = 0.03, µ − ωc = −0.75, ∆ = 0 and (b)
t = 0.12, µ− ωc = −0.84, ∆ = 0, which belong to the first Mott lobe. The
dashed lines in the spectral functions in (a) correspond to first-order de-
generate perturbation theory results, see App. D.3. The Roman numerals
in the captions of the subfigures refer to the marks in Fig. 3.22 (b).
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density n for zero hopping is given by the tensor product state

|Ψ0〉 =
N⊗

ν=1

|n, −〉ν , (3.23)

where |n, −〉ν is the dressed n particle ground state of lattice site ν. The states with a
single-particle excitation are those, where N − 1 sites remain in the dressed state |n, −〉
and one site is excited to the state |n+ 1, α〉. Similarly, for the single-hole excitation
N − 1 sites remain in the state |n, −〉 and one site is excited to the state |n− 1, α〉. In
both cases, the excited states are N fold degenerate as the particle/hole excitation can
be located on any of the N lattice sites. The degenerate states have thus the structure

|Ψα, l
p 〉 ≡ |n+ 1, α〉l

N⊗

ν=1

ν 6=l

|n, −〉ν and (3.24a)

|Ψα, l
h 〉 ≡ |n− 1, α〉l

N⊗

ν=1

ν 6=l

|n, −〉ν , (3.24b)

respectively. Two of the four bands, we refer to them as lower modes ω−p/h, emerge

from the excitation of site i from the dressed state |n, −〉i to the states |n± 1, −〉i,
which are ground states of the corresponding Hilbert-space sector with constant particle
number. Analogously, we refer to the bands which emerge from the excitation of site
i from |n, −〉i to the excited states in the corresponding particle sector |n± 1, +〉i as
upper modes ω+

p/h. The presence of the upper modes has been first noted by S. Schmidt

et al. in Ref. [225] and has been numerically observed in latest QMC calculations [229]
as well. The two upper modes ω+

p/h indicate a clear deviation from the BH physics, which
emerges due to the composition of two distinct particles. As discussed in the previous
section, the two particle bands ωα

p , α ∈ {−, +}, determine the polariton particle creation

operators p†α,k whereas the two hole bands ωα
h specify the hole creation operators h†α,k.

In the spectral functions of Fig. 3.24, the lower modes ω−p/h correspond to the cosinelike

shaped bands centered around ω − µ = 0. The intensities of the lower modes ω−p/h are

contrary for the photon spectral function Aph(k, ω) and the two-level excitation spectral
function Aex(k, ω). For Aph(k, ω) the particle band ω−p is more intense than the hole

band ω−h whereas the hole band is more intense than the particle band for Aex(k, ω).
For the first Mott lobe the upper hole mode ω+

h does not exist as this would require
to excite a single-site i from the dressed state |1, −〉i to the non-existing state |0, +〉i.
Thus, only the upper particle mode ω+

p can be observed in the spectral functions shown
in Fig. 3.24, which corresponds to the essentially flat band located at ω − µ ≈ 3. In
App. D.3, we evaluate the single-particle and single-hole excitation bands by means of
first-order degenerate perturbation theory, which yields

ωα
p,1 = (ωc − µ) + α q(n+ 1) + q(n)− 2 t̃αp cos k and (3.25a)

ωα
h,1 = (ωc − µ)− α q(n− 1)− q(n) + 2 t̃αh cos k , (3.25b)
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Figure 3.25.: Extract of the lower particle band ω−p of the photon spectral functions

Aph(k, ω) shown in Fig. 3.24, where the parameters (a) t = 0.03, µ− ωc =
−0.75, ∆ = 0 and (b) t = 0.12, µ−ωc = −0.84, and ∆ = 0 have been used.
VCA results (density plot) are compared with bands evaluated by means
of first-order degenerate perturbation theory (dashed lines).

respectively, where t̃αp/h is the renormalized hopping strength. Figure 3.24 (a) shows,
additionally to the spectral functions obtained by means of VCA, the perturbation results
for the bands. For small hopping strength we observe, as expected, good agreement
between the two approaches. From the analytic solution of the bands we are able to
extract their width, which is given by 2 t̃αp/h. The renormalization factor in t̃αp/h essentially

consists of a square of the form (a + b)2, see Eqs. (D.13) and (D.15). Evaluating these
expressions shows that a, b > 0 for the lower modes ω−p/h but a > 0 and b < 0 for the

upper modes ω+
p/h. Therefore, a and b almost cancel each other in the latter case, which

yields a small renormalized hopping strength of the upper modes t̃+p/h in comparison to

the one of the lower modes t̃−p/h and thus, essentially flat upper particle/hole bands ω+
p/h

[225]. Plugging in the value of the modified chemical potential µ − ωc = −0.75, which
has been used to evaluate the spectral function shown in Fig. 3.24 (a), into Eq. (3.25a)
yields ω+

p,1 ≈ 3.16, where we neglected the dependence on the wave vector. This matches
perfectly with the VCA results. In addition to previous work [225, 229] we evaluate the
upper modes not only for photons but also for two level-excitations. Interestingly, the
spectral weight differs significantly for the two types of particles. In particular, the upper
particle mode ω+

p has a very large intensity in the two-level excitation spectral function

Aex(k, ω), but is almost not visible in the photon spectral function Aph(k, ω). For the
spectral function shown in Fig. 3.24 (b) a different chemical potential µ − ωc = −0.84
has been used. Thus, the upper particle mode is shifted slightly upwards in comparison
to Fig. 3.24 (a) and is located at ω+

p,1 ≈ 3.25. Figure 3.25 shows the lower particle band

ω−p of the photon spectral function Aph(k, ω) for the same parameters as in Fig. 3.24. In
this figure we compare the VCA results for different hopping strengths with the results
obtained by means of first-order degenerate perturbation theory. For small hopping
strength, t = 0.03, see Fig. 3.25 (a), the perturbative results agree very well with the
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Figure 3.26.: Comparison between the density of states obtained from the VCA Green’s
function, solid lines, and the density of states obtained from the cluster
Green’s function, dashed lines. (a) density of states of photons Nph(ω)
and (b) density of states of two-level excitations N ex(ω). The parameters
used for these plots are the same as in Fig. 3.24 (b).

VCA results in both the width as well as the shape of the band. However, for large
hopping strength t = 0.12, which is already close to the tip of the Mott lobe, the
lower particle band does not exhibit a simple cosine shape anymore, see Fig. 3.25 (b).
In addition the width of the band is slightly overestimated by first-order degenerate
perturbation theory.

In the spectral functions shown in Fig. 3.24 (b) there is additional spectral weight
located at ω − µ ≈ 2. We can exclude that this additional weight stems from the
periodization prescription used in VCA or from any other VCA internal processes as it
also appears in the cluster Green’s function, which is solved by exact diagonalization.
This can be verified best by comparing the density of states obtained from the VCA
Green’s function with the density of states obtained from the cluster Green’s function,
see Fig. 3.26. Both densities of states, the one obtained from the cluster Green’s
function and the one obtained from the VCA Green’s function, exhibit a peak located
at ω − µ ≈ 2. The additional peak can be revealed in the framework of perturbation
theory. First-order local particle fluctuations in the ground state will have contributions
of the form

|∆ψ(1)〉 = t

∆E
|n+ 1, α〉l ⊗ |n− 1, β〉l′

N⊗

ν=1

ν 6=l,l′

|n, −〉ν ,

where l, l′ correspond to nearest-neighbor sites. Due to the energy denominator ∆E
the predominant terms are those with α = β = −. The correction term |∆ψ(1)〉 is
proportional to the hopping strength t, which explains, why the additional peak is not
present in Fig. 3.24 (a). The particle excitation couples to final states with an additional
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Figure 3.27.: Photon spectral function Aph(k, ω), first row, and density of states Nph(ω),
second row. Two-level excitation spectral function Aex(k, ω), third row,
and density of states N ex(ω), fourth row. The spectral functions are eval-
uated for the parameters (a) t = 0.002, µ − ωc = −0.37, ∆ = 0 and (b)
t = 0.012, µ − ωc = −0.38, and ∆ = 0, which belong to the second Mott
lobe. The Roman numerals in the captions of the subfigures refer to the
marks in Fig. 3.22 (b).
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Figure 3.28.: Momentum distribution (a) in the first Mott lobe and (b) in the second
Mott lobe for the parameters marked with Roman numerals in Fig. 3.22 (b).
Solid lines correspond to the momentum distributions of photons nph(k)
and dashed lines to the momentum distributions of two-level excitations
nex(k).

particle either on site l, l′ or on one of the remaining sites. A detailed analysis shows
that the excitation, responsible for the additional peak at about ω − µ ≈ 2, is

|ψNp+1〉 = |n+ 1, −〉l ⊗ |n, +〉l′
N⊗

ν=1

ν 6=l,l′

|n, −〉ν .

The corresponding excitation energy is given by

ω̃p = E|n+1,−〉 + E|n,+〉 + (N − 2)E|n,−〉 − EN
0

= E|n+1,−〉 + E|n,+〉 − 2E|n,−〉

= ωc − µ− q(n+ 1) + 3q(n) .

For zero detuning and µ− ωc = −0.84 the energy is ω̃p = ω − µ = 2.4.

As discussed before the upper hole mode ω+
h does not exist in the first Mott lobe.

Yet, the mode ω+
h is present in spectral functions of the second Mott lobe, see Fig. 3.27.

According to Eq. (3.25) the upper modes are located at ω+
p,1 ≈ 3.52 and ω+

h,1 ≈ −2.04
for the parameters used in Fig. 3.27 (a). This matches very well the results obtained by
means of VCA. The chemical potential of the spectral function shown in Fig. 3.27 (b)
differs from the one of (a) merely about 0.01. Thus, the bands ω+

p/h are located at rather
the same position in both spectral functions.

The momentum distribution for photons nph(k) and two-level excitations nex(k) in
the first and second Mott lobe are shown in Fig. 3.28. For increasing hopping strength t
the momentum distribution becomes more peaked for both the photons and the two-level
excitations. In the first Mott lobe the momentum distributions nph(k) and nex(k) are
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Figure 3.29.: Correlation function (a) for photons and (b) for two-level excitations in the
first Mott lobe. The Roman numerals in the legend refer to the parameters
marked in Fig. 3.22 (b).

centered around 0.5, which means that the cavities are on average equally occupied by
photons and two-level excitations. In the second Mott lobe nph(k) is centered around
1.5. However, nex(k) is still centered around 0.5, as the maximum local occupation
number of the two-level systems is restricted to one.

In order to display the slowing down of correlations upon approaching the boundary
of the Mott phase, we evaluate the spatial correlation function Cx(|ri − rj |) in the first
Mott lobe (Fig. 3.29). The spatial correlation function can be obtained from the Fourier
transform of the momentum distribution. For small distances |ri − rj | between sites i
and j the correlation function is a superposition of multiple exponential functions with
distinct strengths of decay. For large distances, however, the exponential function with
the smallest decay dominates and thus the correlation function is of the form

Cx(|ri − rj|) ∝ e−α
x |ri−rj | , (3.26)

as expected in the insulating phase. Using VCA we are able to extract the correlation
length ξx = 1/αx, as data are available for large distances between two sites i and j.

From a linear fit for sufficiently large distances we obtain αph
I = αex

I = 1.711 ± 0.001

for the parameters I, see marks in Fig. 3.22 (b), and αph
II = αex

II = 0.317 ± 0.001 for the
parameters II. Therefore, the slope of the correlation function is the same for the two
particle species, which is due to the coupling between the photons and the two-level
excitations. As in the BH model [140] the absolute slope αx of the correlation function
shrinks with increasing hopping strength, which is a precursor of the superfluid phase,
where the correlation between sites persists up to long distances.

Nonzero detuning

The detuning ∆, which is the difference between the resonance frequency ωc of the cav-
ities and the energy spacing ǫ of the two-level systems, is a very important parameter
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Figure 3.30.: Phase boundaries of the 1D JCL model for the detuning (a) ∆ = −1 and
(b) ∆ = 1. The marks refer to the parameters where spectral functions are
evaluated.

of the JCL model. By varying the detuning it is possible to change the width of the
Mott lobes. Phase boundaries obtained by means of VCA with the set of variational
parameters x = {ωc, ǫ} for ∆ = −1 and ∆ = 1 are shown in Fig. 3.30. For the parame-
ters marked with x we evaluate the spectral function of photons Aph(k, ω) and two-level
excitations Aex(k, ω), see Fig. 3.31. An interesting effect can be observed in the spectral
functions Aex(k, ω). Namely, the intensity of the upper band ω+

p depends significantly
on the detuning ∆. For negative detuning ∆ = −1, the upper mode in Aex(k, ω) is very
intense, see Fig. 3.31 (a), whereas it is almost not visible for positive detuning ∆ = 1.
This behavior remains valid when the spectral functions for positive and negative detun-
ing are evaluated for identical hopping strength. The zero-hopping result for the energy
of the upper mode is ω+

p,1 ≈ 3.15 for the spectral function shown in Fig. 3.31 (a) and

ω+
p,1 ≈ 3.82 for the spectral function shown in Fig. 3.31 (b). The momentum distribu-

tions of photons nph(k) and two-level excitations nex(k) for the parameters marked in
Fig. 3.30 are shown in Fig. 3.32. For negative detuning it is energetically more expensive
to excite the two-level system than to add a photon to the cavity. Thus, the momentum
distribution of photons nph(k) dominates over the momentum distribution of two-level
excitations nex(k). For positive detuning the situation is reversed and nex(k) is larger
than nph(k) for all values of the momentum.

Polariton quasiparticles

Up to now we investigated the photon properties and the two-level excitation properties
of the JCL model separately, by extracting the Green’s function of photons Gph(k, ω) =
G

aka
†
k

(ω) and the Green’s function of two-level excitations Gex(k, ω) = Gσ−
k
σ+

k
(ω) from
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Figure 3.31.: Photon spectral function Aph(k, ω), first row, and density of states Nph(ω),
second row. Two-level excitation spectral function Aex(k, ω), third row,
and density of states N ex(ω), fourth row. The spectral functions are eval-
uated for the parameters (a) t = 0.036, µ − ωc = −0.54, ∆ = −1 and (b)
t = 0.2, µ − ωc = −1.2, ∆ = 1. The Roman numerals in the captions of
the subfigures refer to the marks in Fig. 3.30.
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Figure 3.32.: Momentum distribution evaluated for the parameters marked in Fig. 3.30,
where (a) corresponds to the parameters V, i. e., negative detuning ∆ = −1
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the compound Green’s function G(k, ω), which is a 2× 2 matrix of the form

G(k, ω) =

(
G

aka
†
k

(ω) Gakσ
+

k
(ω)

G
σ−
k
a†
k

(ω) Gσ−
k
σ+

k
(ω)

)
. (3.27)

Next we will discuss the polaritonic properties of the JCL model. We start out with
the first Mott lobe for zero detuning and focus again on the parameter set marked as II
in Fig. 3.22, i. e., t = 0.12, µ − ωc = −0.84 and ∆ = 0. The polaritonic spectral func-
tion Ap(k, ω) and the corresponding density of states Np(ω), which is by construction
identical to the total density of states of photons plus two-level excitations, is shown in
Fig. 3.33. For the first Mott lobe the hole case is special since both, σ− |n,−〉 ∝ |0,−〉
and a |n,−〉 ∝ |0,−〉 yield the exact zero-particle state. Consequently, the polariton can
be chosen ad libitum, it will always be exact. Therefore in Fig. 3.34 only the particle
part of the polaritonic weights is depicted. The right panel represents the result for
the lower particle excitation. The polariton has very pronounced photonic character
and the weights of photons and two-level system have opposite sign. Interestingly, the
lower particle excitation can very well be mimicked by a single polariton on top of the
Np-particle ground state, as can be inferred from the fact that λ ≈ 1. Moreover, a slight
k-dependence of the weights is observed. Contrarily in the upper particle band, the
polariton has pronounced two-level-system character, the weights have the same sign,
there is almost no k-dependence, and the polariton description is poor (λ ≈ 0.2).

Now we turn to the second Mott lobe, which allows us to study the hole polariton as
well. The polariton spectral function and the corresponding density of states evaluated
for the parameters IV, i. e., t = 0.012, µ−ωc = −0.38, and ∆ = 0, are shown in Fig. 3.35.
The weights are shown along with the overlap λ in Fig. 3.36. The lower bands ω−p/h are
well described by the quasiparticles as the overlap λ is almost one for both bands. The
upper bands ω+

p/h, however, are not described that well. In particular λ ≈ 0.2 for
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Figure 3.33.: Polariton spectral function (a) and density of states (b) evaluated for the
parameters II corresponding to the first Mott lobe, i. e., t = 0.12, µ−ωc =
−0.84, and ∆ = 0. In (b) the polariton density of states Np(ω) is compared
with the sum of the photon density of states Nph(k, ω) and the two-level
excitation density of states N ex(k, ω), which coincide by definition.
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Figure 3.34.: Photon contribution β and two-level excitation contribution γ to the po-
lariton quasiparticles. (a) shows the results for p†+,k corresponding to the

upper particle band ω+
p and (b) for p†−,k corresponding the lower particle

band ω−p . Additionally to the weights β and γ the overlap λ is shown.

99



3. Equilibrium properties of bosonic many-body systems

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

4

k/π

ω
 −

 µ

−2 0 2 4
−10

−5

0

5

10

ω − µ

N
p (ω

)

 

 

(b)(a)

Figure 3.35.: Polariton spectral function (a) and density of states (b) evaluated for the
parameters IV corresponding to the second Mott lobe, i. e., t = 0.012,
µ− ωc = −0.38, and ∆ = 0.

the upper particle band and λ ≈ 0.85 for the upper hole band. The weights β and γ
are significantly more wave vector dependent, especially for the upper bands ω+

p/h, i. e.,
α = +. Apart from the more pronounced k-dependence, the weights for the particle case
are rather similar to those of the first Mott lobe. However, there are striking differences
in the weights for the particle and hole part within the second Mott lobe. First, the
k dependence is more pronounced. Second, the sign of the relative weights is positive
for both bands α = ±, and finally, the composition of the polariton in the two bands is
reverse. The lower band has predominantly photonic character, while opposite holds for
the upper band.

Eventually, we want to compare the VCA results with those of the single-site prob-
lem, which are derived in App. D.4. In the single-site problem the sign of the relative
polaritonic weights is the same as that observed in the lattice. In the first Mott lobe the
relative weights for the particle case are for the upper band q+ ≡ γ+p,n=1/β

+
p,n=1 =

√
2+1

and for the lower band the reciprocal relation holds q− ≡ β−p,n=1/γ
−
p,n=1 = −q+. There

is agreement in the relative signs and the composition of the polariton between the
single-site limit and the lattice system, but the reciprocal property is strongly violated
in the lattice case. This might be understood as follows. The itinerant particles are the
photons. In order to gain kinetic energy it is convenient for the system to increase the
photonic character in the dispersive lower band, depicted in Fig. 3.35 (a). The upper
band, on the other hand, has little dispersion and behaves more like the single-site limit.

In the second Mott lobe, the relative weights obtained in the single-site limit for
particle excitations are q+ =

√
3+
√
2 and q− = −q+. Like in the lattice case, the weights

of the particle part are comparable in the first and second Mott lobe. Quantitatively,
the relative weight |q±| is roughly 30% larger in the second Mott lobe, which is also
the case in the lattice system. As far as the hole part is concerned, the single-site limit
nicely corroborates all observations of the lattice model.

In the single-site problem, the exact many-body eigenstates |n± 1, α〉 can be generated
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Figure 3.36.: Photon contribution β and two-level excitation contribution γ to the po-
lariton quasiparticles. (a) shows the results for p†+,k corresponding to the

upper particle band ω+
p , (b) for p
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−,k corresponding to the lower hole band ω−h and (d) for h†+,k

corresponding to the upper hole band ω+
h . Additionally to the weights β

and γ the overlap λ is shown.
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exactly by suitable polariton operators acting on the state |n,−〉. This is no longer the
case in the lattice due to local particle number fluctuations induced by particle motion.
Already in the single-site limit, the polariton operators are, however, not universal, they
depend on the filling n and in the lattice case even on the wave vector k. On top of
that, the polariton operator for holes is not the adjoint of the corresponding polariton
creation operator of the particle type, or in other word its annihilation operator.

Conclusions: In this section we presented and discussed the spectral properties of the
Jaynes-Cummings lattice model in one dimension obtained within the variational clus-
ter approach. Using the resonance frequency ωc of the cavities and the energy spacing
ǫ of the two-level systems as variational parameters in the variational cluster approach
procedure provides a significant improvement with respect to the case of a single vari-
ational parameter. On the one hand, varying both ωc as well as ǫ (or, at least µ) is
necessary to achieve a correct particle density in the original system and on the other
hand improved results for the phase boundaries, and thus, for the spectral functions
as well, are obtained due to the augmented set of variational parameters. In order to
apply the variational cluster approach and include ǫ as variational parameter the two-
level systems have been mapped onto hard-core bosons, which yields correct poles of
the Green’s function in the relevant energy range. We evaluated and discussed spec-
tral functions for photons and two-level excitations. The spectral functions generally
consist of four bands, cosinelike shaped lower particle/hole bands, which are centered
around zero energy, and essentially flat upper particle/hole bands. An exception are
the spectral functions in the first Mott lobe, which contain the two lower bands but
from the upper bands only the particle part. Using first-order degenerate perturbation
theory, we evaluated analytical expressions for the bands, which allowed us to explain
why the upper modes are essentially flat whereas the lower modes exhibit a pronounced
cosinelike shape. Additionally, we compared the analytical solution for the bands with
the variational cluster approach results. For small hopping strength t we observe, as
expected, good agreement between the two approaches. However for parameters located
close to the tip of the Mott lobe, first-order degenerate perturbation theory yields results
that differ from the exact ones in both, shape and width of the bands. Furthermore,
we evaluated densities of states, momentum distributions and spatial correlation func-
tions for photons and two-level excitations. We also investigated detuning effects on the
spectral properties and found indications that the intensity of the upper particle band
of the two-level excitation spectral function depends strongly on the detuning. Based on
the information obtained from the photons and two-level excitations we investigated the
polaritonic properties of the Jaynes-Cummings lattice model. Therefore we introduced
wave vector and filling dependent polariton particle creation and hole creation operators,
which are linear combinations of photon and two-level excitation creation operators. We
evaluated spectral functions and densities of states based on the polariton quasiparti-
cles and analyzed the weights of their constituents. We have seen that the polariton
operators are nontrivial combinations of photon and two-level system operators, which
depend on the wave vector, the quasiparticle band, and the filling, or rather the Mott
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3.3. Tavis-Cummings lattice model

lobe. On top of that, the polariton operators of particle and hole type are not adjoint
operators. It is therefore not possible to describe the JCL model by a simple single-band
polariton model.

3.3. Tavis-Cummings lattice model

The push towards the experimental realization of quantum computers lead to incredible
advances in the fields of quantum optics and atomic physics. Unprecedented experi-
mental control in these fields allowed to envision new realizations of strongly correlated
many-body systems, which operate with light [216, 215, 219, 23]. Confined light modes
in coupled cavity arrays are able to tunnel between adjacent sites and thus propagate on
a lattice of cavities. Strong correlations in turn can be observed when a repulsive inter-
action between photons is present.1 This repulsion, which is termed optical nonlinearity,
can be achieved by coupling the light modes to matter in the form of atoms or atomi-
clike structures present within each cavity. The interaction between the light modes and
atomic like structures is achieved by means of dipole coupling. In theory there exist two
major schemes to obtain this interaction. The first is to model the atomiclike structures
by two-level systems, leading to an interaction of the Jaynes-Cummings type [232, 215],
whereas the second approach is based on electromagnetically induced transparency [235]
and uses four-level systems [216]. In both cases optical nonlinearities between photons
arise as the energy for adding two photons to the cavity is larger than twice the energy
needed to add one photon. This behavior leads to intriguing experiments such as the
photon blockade effect [236], where only one elementary excitation is present in the cav-
ity at the same time. The elementary excitations in light matter systems are termed
polaritons. Polaritons are superpositions of both particle species, namely photons as well
as excitations of the atomiclike structures. Following these considerations and arranging
multiple cavities on a lattice leads to a strongly correlated phase in which photons are in-
volved. As a result, light-matter systems exhibit a quantum phase transition from Mott
phase where polaritons are localized in the cavities to superfluid phase where polaritons
are delocalized on the whole lattice [216, 215, 219].

Up to now an experimental realization of light-matter systems is still missing, how-
ever, there are several promising approaches such as quantum dots grown in photonic
crystal cavities, transmission line cavities and toroidal or disk shaped cavities [23]. The
advantage of light-matter systems is that they are of mesoscopic size and thus allow for
a direct addressability of each lattice site and good experimental control on the system
parameters. Exhibiting these valuable properties light-matter systems might be used
as quantum simulators for other strongly correlated many-body systems such as the
Bose-Hubbard model [30], or find their applications in quantum information processing.

Experimentally it might be more feasible to place multiple atomiclike structures within
one cavity. Therefore it is important to study light-matter systems which contain more
than one two-level system per cavity. The theoretical model describing a single cavity

1Alternatively, it has been shown in Ref. [234] that two-particle losses can lead to strongly correlated
phases as well.
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Figure 3.37.: Illustration of the TCL model. Blue bubbles represent two-level systems
and red wavy arrows photons. Photons and two-level system interact via
dipole coupling.

with N two-level systems is termed Tavis-Cummings model [237, 238]. In the case of
N = 1 it reduces to the Jaynes-Cummings model [232]. Light-matter systems with
coupled Jaynes-Cummings cavities have already been investigated to some detail in
Refs. [215, 226, 227, 69, 220, 221, 222, 225, 229, 60] and will thus not be addressed
here anymore. However, systems of coupled-cavity arrays with more than one two-level
system per cavity have been rarely studied in literature. In particular, the quantum phase
transition has been investigated on mean field level by N. Na et al. in Ref. [224], and in
one-dimension with density matrix renormalization group (DMRG) by D. Rossini et al.
in Ref. [226]. In the present paper, we investigate the quantum phase transition and the
elementary excitations—the polaritons—of coupled Tavis-Cummings cavities arranged
on a two-dimensional lattice. In particular, we evaluate the phase boundary delimiting
Mott phase from superfluid phase for different number of two-level systems per cavity.
Furthermore, we study spectral properties of both photons as well as atomic excitations
which in turn allows us to characterize the polaritonic properties of the system. In order
to evaluate the quantum phase transition and the spectral excitations we employ the
variational cluster approach [28].

A single cavity at lattice site i containing N two-level systems is modeled by the
Tavis-Cummings (TC) Hamiltonian [237, 238],

ĤTC
i = ωc a

†
i ai + ǫ (Sz

i +
N

2
) + g (ai S

+
i + a†i S

−
i ) , (3.28)

where ωc is the resonance frequency of the cavity, ǫ is the energy spacing of the two-level
systems, and g is the atom-field coupling constant (see a single cavity in Fig. 3.37 for

illustration). The operators a†i and ai , respectively, create and annihilate photons in
the cavity i. The ensemble of two level systems is described by collective spin operators
Sα
j =

∑N
ν=1 σ

α
ν,j, where α ∈ {z, +, −}, and σ±ν,j = σxν,j ± iσ

y
ν,j are the spin raising and

lowering operators. When starting from the dipole interaction between photons and
two-level systems two additional terms arise in the Hamiltonian, which are proportional
to a†i S

+
i and ai S

−
i . However, for the condition |ωc − ǫ| ≪ ωc, ǫ these terms are fast

oscillating in comparison to ai S
+
i and a†i S

−
i and can thus be neglected, which is known

as rotating wave approximation [233]. The difference between the resonance frequency
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3.3. Tavis-Cummings lattice model

of the cavity ωc and the energy spacing of the two-level system ǫ is termed detuning
∆ = ωc − ǫ. As a consequence of the rotating wave approximation the total number
of excitations n̂i = a†i ai + Sz

i + N/2 is conserved. Additionally, the total spin S2 is a
conserved quantity as well. The ground state of the TC model is always in the sector of
maximum spin S = N/2 [226], which will thus be considered in further calculations.

The full model consists of M coupled cavities, which are arranged on a lattice. There-
fore we refer to this model as Tavis-Cummings lattice (TCL) model. The TCL Hamil-
tonian is given by

ĤTCL = −t
∑

〈i, j〉

a†i aj +
∑

i

ĤTC
i − µ N̂p , (3.29)

where the first term allows photons to tunnel between cavities i and j. The tunneling
strength t is given by the overlap integral of the photonic wave functions, which is
considered to be nonzero only for nearest-neighbor sites i and j. The restriction to
nearest neighbors is denoted by the angle brackets 〈· · · 〉 around the summation indices.
The second term of Eq. (3.29) describes the physics of the individual cavities and the
last term controls the average particle number of the system, where µ is the chemical
potential and N̂p =

∑
i n̂i is the total particle number. Figure 3.37 illustrates the TCL

model. For the TCL model the total particle number N̂p is conserved as well as the total
spin S2 of each cavity. As in the case of the Jaynes-Cummings lattice model [232] the
TCL model can be rewritten as

ĤTCL =− t
∑

〈i, j〉

a†i aj −∆
∑

i

(Sz
i +

N

2
)

+ g
∑

i

(ai S
+
i + a†i S

−
i )− (µ− ωc) N̂p . (3.30)

In the forthcoming discussions and calculations we use the dipole coupling g as unit of
energy. Therefore the physics of the TCL model depends only on three independent
parameters, namely, the hopping strength t, the detuning ∆, and the modified chemical
potential µ− ωc.

3.3.1. Quantum phase transition

The nonlinearities which arise due to the coupling of the photons to the ensemble of
two-level systems lead to a quantum phase transition from Mott phase to superfluid
phase. The elementary excitations in light-matter systems—the polaritons—are linear
combinations of photons and atomic excitations. The Mott phase is characterized by
integer polariton density, zero compressibility, and a gap in the spectral function. In-
triguingly, polaritons in Mott phase are localized in cavities, which in turn means that
the photons are not able to tunnel to adjacent cavities, since too much energy would be
needed for this process. Hence, the Mott phase can be considered as a stable state of
frozen light. In superfluid phase, however, the polaritons are delocalized on the whole
lattice and Bose condense in the state of zero momentum.
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Figure 3.38.: Phase boundary of the two-dimensional TCL model evaluated for zero de-
tuning ∆ = 0, reference systems of size L, and N two-level systems per
cavity, where in (a) N = 2, (b) N = 3, (c) N = 5, and (d) N = 10.

We determine the phase boundary of the two-dimensional TCL model for zero de-
tuning ∆ = 0. The first two Mott lobes with polariton density np = 1 and np = 2,
respectively, are shown in Fig. 3.38 for distinct values of the two-level system number
N = {2, 3, 5, 10}. The boundary of the quantum phase transition is given by the min-
imal amount of energy necessary to add (remove) a particle to (from) the system and
can therefore be evaluated directly from the minimal gap of the single-particle spec-
tral function obtained by means of VCA. The size of the gap does not depend on the
particle species the spectral function is evaluate for, since photons and atomic excita-
tions are coupled by g. As already mentioned before, we use the variational parameters
x = {ωc, ǫ, t}, which allow for thermodynamic consistency in the total polariton num-
ber. In contrast to the results in one dimension [226] the lobes are round shaped and
no reentrance behavior can be observed for increasing hopping strength t. For increas-
ing number of two-level systems N the width of the Mott lobes with different polariton
density np becomes more similar, see Tab. 3.2. The critical hopping strength t∗, which
determines the tip of the Mott lobes, depends on both the filling np and the number of
two-level systems per cavity N . In particular, t∗(N) is shrinking for increasing N for a
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Table 3.2.: Ratio w1/wi of the width of Mott lobe 1 with polariton density np = 1 and
Mott lobe i with polariton density np = i for N two-level systems per cavity.

N w1/w2 w1/w3 w1/w4

2 1.18 2.84 4.83
3 1.05 1.38 2.26
5 1.02 1.09 1.25
10 1.00 1.02 1.04
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Figure 3.39.: Critical hopping strength ratio t∗(N)/t∗(2) for the first Mott lobe in depen-
dence on the dimension D. Results for one dimension are obtained from
Ref. [226].

fixed polariton density np. In Fig. 3.39 we investigate for the first Mott lobe, i. e., for
np = 1, the dimensionality dependence of the ratio t∗(N)/t∗(2), which specifies how fast
the lobes are shrinking with increasing N . To this end, we compare our VCA results for
two dimensions with DMRG results for one dimension obtained by D. Rossini et al. in
Ref. [226]. It can be observed that with increasing N the lobes are shrinking faster in
two dimensions than in one dimension.

The phase boundary at zero hopping can be determined analytically, as the model
decouples intoM single-cavity problems, i. e., intoM TC systems shifted by the chemical
potential −µn̂p. The TC model has been solved exactly for zero detuning [237, 238]
and for nonzero detuning [238, 239]. Since the full analytic solution is involved we
concentrate here in determining the zero hopping phase boundary of the first Mott lobe
for zero detuning, which is relevant for our data. To this end, we diagonalize the TC
model for np = 0, 1, and 2 polaritons which yields

E0 = 0 (3.31a)

E1 = {(ωc − µ)±
√
N} (3.31b)

E2 = {2(ωc − µ)±
√

2(2N − 1), 2(ωc − µ)} . (3.31c)
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The number of eigenstates for the sector of np polaritons is np+1 if np < N and N +1
if np ≥ N [224, 240]. The phase boundary is evaluated by comparing the ground-state
energies of adjacent sectors, which yields µ − ωc = −

√
N for the boundary between

np = 0 and np = 1 and µ − ωc =
√
N −

√
2(2N − 1) for the boundary between np = 1

and np = 2. This is of course in full agreement with our numerical results. In light-
matter systems the optical nonlinearities arise as the energy which is needed to add the
first excitation to the system is smaller than the one to add the second excitation. This
results in a repulsive interaction of size 2

√
N −

√
2(2N − 1), which is approximately

1/2
√
N for large N .

3.3.2. Excitations

In this section we investigate the excitations of the TCL model. In particular, we evaluate
single-particle spectral functions and densities of states of photons and atomic excita-
tions. Furthermore we present the momentum distribution for both particle species.
Based on the spectral information we characterize polaritons, which are the elementary
excitations in light-matter systems.

Spectral properties of photons and atomic excitations

Photon spectral functions Aph(k, ω) evaluated by means of VCA for fixed hopping
strength t = 0.015 and zero detuning ∆ = 0 are shown in Fig. 3.40 for N = {2, 3, 5, 10}
two-level systems located in each cavity. For increasing number of two-level systems
N the Mott lobes shrink and thus the gap in the spectral function is decreasing. The
modified chemical potential µ − ωc is chosen such that the spectral function is evalu-
ated approximately in the middle of the Mott lobe. We used the variational parameters
x = {ωc, ǫ, t}, reference systems of size L = 4×2, and an artificial broadening 0+ = 0.01
for the numerical evaluation.

The number of particle and hole bands, present in the single-particle spectral function
and their approximate energies can be already determined from the single-cavity solution.
For large enough filling (np > N) there are N + 1 eigenstates in the sectors of np ±
1 particles which leads to N + 1 particle and hole bands, respectively. However, we
investigate spectral properties in the first Mott lobe (np = 1) and thus we have to
examine the zero- and two-particle sectors. The zero-particle sector (np = 0) consists
of only one state leading to one hole band ωh and the two-particle sector (np = 2)
consists for all N ≥ 2 of three states, which leads to three particle bands ωi

p, where
i ∈ {1, 2, 3}. We choose the order of the bands such that the excitation energy increases
with increasing index i. For clarity Fig. 3.40 shows only the hole band ωh and the lowest-
lying particle band ω1

p. The approximate location of the particle bands is obtained from
the energy difference of the eigenenergies of the two particle sector and the ground-state
energy of the one-particle sector, see Eq. (3.31), leading to

ω1
p ≈ (ωc − µ)−

√
2(2N − 1) +

√
N

ω2
p ≈ (ωc − µ) +

√
N
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Figure 3.40.: Hole band ωh and the lowest-lying particle band ω1
p of the photon single-

particle spectral function Aph(k, ω) for fixed hopping strength t = 0.015
and zero detuning ∆ = 0. The modified chemical potential and the number
of two-level systems is (a) µ−ωc = −1.25, N = 2, (b) µ−ωc = −1.6, N = 3,
(c) µ− ωc = −2.15, N = 5, and (d) µ− ωc = −3.1, N = 10.
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Figure 3.41.: Density of states of (a) photons Nph(ω) and (b) atomic excitations N ex(ω)
for parameters as in Fig. 3.40. The left column shows contributions from
the bands ωh and ω1

p and the right column from the bands with higher

energy ω2
p and some of the ω3

p.

ω3
p ≈ (ωc − µ) +

√
2(2N − 1) +

√
N .

Analogously, one obtains for the hole band

ωh ≈ (ωc − µ)−
√
N .

The densities of states of both photons Nph(ω) as well as atomic excitations N ex(ω)
are shown in the first and second row, respectively, of Fig. 3.41 for identical parameters as
in the case of the single-particle spectral function. The left column contains the density
of states of a small energy window centered around zero, showing the low-lying excitation
bands ωh and ω1

p. The right column contains data for higher excitation energies. The
bands ω2

p carry significant spectral weight whereas the bands ω3
p are barely visible for

N = 2 (ω3
p ≈ 5.1) and N = 3 (ω3

p ≈ 6.5). For more than three two-level systems per
cavity the excitation energy is already larger than the maximum energy considered in
the plot. The position of the bands matches well with the approximate results obtained
from the single-cavity limit. In the photon density of states Nph(ω), first row, the
spectral weight of the low-lying particle band ω1

p decreases with increasing two-level
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Figure 3.42.: Momentum distribution of (a) photons nph(k) and (b) atomic excitations
nex(k) for parameter as in Fig. 3.40.

system number N , whereas the spectral weight of ω2
p increases. The opposite is true

for the atomic excitation density of states N ex(ω), second row. Interestingly, due to
this behavior photon and atomic excitation densities of states become more similar for
increasing two-level system number N , which is due to the fact that the ensemble of
two-level systems behaves more like free bosons for large N [224, 240].

The momentum distribution of both particle species, which can be evaluated with
high accuracy by means of the Q-matrix formalism [54], is shown in Fig. 3.42. The
momentum distribution of photons (left panel) and the atomic excitations (right panel)
do not exhibit major differences. For increasing number of two-level systems N and
fixed hopping strength t, the tip of the Mott lobe is approached, see Fig. 3.38. From this
in turn it follows that the density in the center of the Brillouin zone is increasing for
increasing N , which is in accordance with our results.

Polaritons

Here, we investigate properties of polaritons, the elementary excitations of the TCL
model, which are linear combinations of photons and atomic excitations. Our goal
is to describe these excitations by polaritonic quasiparticles added to the Np-particle

ground state |ψ0〉. Hence, we introduce the polariton creation operators p†α,k for particle

excitations and h†α,k for hole excitations as suitable linear combinations of photons and
hard-core bosons,

p†α,k = βαp (k) a
†
k + γαp (k) b

†
k , (3.32a)

h†α,k = βαh (k) ak + γαh (k) bk . (3.32b)

The weights βαp (k) and γαp (k) of the polariton creation operators depend on the wave
vector k, the quasiparticle band index α, and the filling np. The dependence on the
latter is not explicitly included in the notation as we solely focus on the first Mott lobe
with particle density np = 1. It is important to notice that the hole creation operator
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3. Equilibrium properties of bosonic many-body systems

is neither the adjoint of the particle creation operator nor its annihilation counterpart.
The normalized polariton quasiparticle states are generated by applying the polariton
particle and hole creation operators on the Np-particle ground state,

|ψ̃α
p,k〉 =

p†α,k |ψ0〉√
〈ψ0| pα,k p†α,k |ψ0〉

, (3.33a)

|ψ̃α
h,k〉 =

h†α,k |ψ0〉√
〈ψ0| hα,k h†α,k |ψ0〉

. (3.33b)

The weights β and γ of the linear combination are determined by maximizing the overlap
between the exact eigenvectors |ψNp±1

α,k 〉 of the TCL model in the (Np±1)-particle sector.
This yields a generalized eigenvalue problem which is used to determine the weights
β and γ, see Ref. [60] for a detailed derivation and discussion. The eigenvalue λ of
the generalized eigenvalue problem specifies the quality of the quasiparticle description.
More specifically, λ is bound by the interval [0, 1], where λ = 1 corresponds to a perfect
description by polariton quasiparticles, i. e., to maximal overlap between the true (Np±
1)-particle states and the polariton states |ψ̃α

p/h,k〉, whereas small values of λ indicate a
modest quasiparticle description. The generalized eigenvalue problem fixes the weights β
and γ only upon a constant, which is determined by the condition that the total spectral
weight consisting of the spectral weight of photons and atomic excitations is conserved.

For the hole band ωh the weights β and γ can be chosen freely, as both ak and bk
applied on the ground state with particle density np = 1 are proportional to the same
state. Thus we investigate only the weights β and γ for the particle bands ω1

p, ω
2
p, and ω

3
p,

which are shown in Fig. 3.43 from top to bottom for N = {2, 3, 5, 10} two-level systems
per cavity. The photon weight β corresponds to the solid line and the atomic-excitation
weight to the dashed line. For the band with lowest excitation energy ω1

p the weights
β and γ are of opposite sign, whereas the sign is equal for the bands ω2

p and ω3
p. The

bands ω1
p and ω2

p are very well described by the polariton picture as λ ≈ 1. Yet, the band
with highest energy ω3

p is very poorly represented by the polariton creation operators
as λ ≈ 0.01. For increasing number of two-level systems N per cavity the weights of
the two constituents become similar. This might indicate, as in the case of the spectral
weight, that the atomic excitations behave for large N like bosonic particles. In the case
of a single two-level system per cavity N = 1, i. e., the Jaynes-Cummings lattice model,
the asymmetry in the coefficients is much more pronounced than it is here [54].

Conclusions: We presented and discussed the quantum phase transition and the ex-
citations of the Tavis-Cummings lattice model in two dimensions obtained within the
variational cluster approach. The Tavis-Cummings lattice model describes light-matter
systems which contain multiple two-level structures in each cavity. Due to this fact
the Tavis-Cummings lattice model might be easier to realize in the experiment than
its counterpart, the Jaynes-Cummings lattice model, which contains exactly one two-
level systems per cavity. As a goal for future research, a detailed study of cavities with
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Figure 3.43.: Photon weights β (solid lines) and atomic excitation weights γ (dashed

lines) of the polaritonic quasiparticle creation operators p†α,k for the bands

(a) ω1
p, (b) ω

2
p, (c) ω

3
p, and N = {2, 3, 5, 10} two-level systems per cavity.
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3. Equilibrium properties of bosonic many-body systems

a random number of two-level systems might provide further interesting insight into
light-matter systems.

In this paper, we determined the quantum phase transition delimiting Mott phase, in
which polaritons are localized in each cavity, from superfluid phase, in which polaritons
are delocalized on the whole lattice. We studied the dependence of this phase boundary
for various two-level system numbers per cavity. For increasing number of two-level sys-
tems the Mott lobes become narrower, however, the width of the Mott lobes for distinct
filling becomes more equal. We also compared the dependence of the critical hopping
strength, which determines the tip of the Mott lobe, on the dimension of the coupled cav-
ity system. Additionally to the phase boundary, we investigated spectral functions and
corresponding densities of states. The variational cluster approach allows us to extract
spectral properties for both photons as well as atomic excitations, provided the latter are
mapped onto hard-core bosons. By investigating the zero-hopping limit, which corre-
sponds to investigating a single cavity, we determine the number of bands in the spectral
function and their approximate location. For the first Mott lobe there exist three particle
bands and one hole band. The particle band and the hole band with smallest energy are
reminiscent of the excitations in the Bose-Hubbard model. Particularly, they are also
cosine shaped and the density distribution of the weight is similar [137, 141, 142, 54, 184].
The additional two particle bands lie at considerably higher energies. The band with
second highest excitation energy carries significant spectral weight whereas the one with
highest energy is barely visible in the spectra. Interestingly, for increasing two-level
system number the weight of the photon spectra becomes more and more similar to the
weight of the atomic excitation spectra. We investigated the momentum distribution
as well, which is rather similar for photons and atomic excitations. Yet, for increasing
two-level system number and constant hopping strength, a larger density can be ob-
served in the center of the Brillouin zone, which arises due to the fact that the Mott
lobe is shrinking with increasing number of two-level systems. Therefore, for identical
hopping strength the boundary to superfluid phase is approaching, which is responsible
for the increasing density in the center of the Brillouin zone. Finally, we studied the
properties of polaritons, the elementary excitations in light-matter systems. Since we
evaluated spectral properties of both particle species, we were able to introduce polari-
ton quasiparticle and quasihole creation operators as linear combinations of photons and
atomic excitations. The polariton creation operators depend on the wave vector, band
index and filling. We investigated the photon and atomic excitation weights of the linear
combination and analyzed their dependence on the number of two-level systems located
in each cavity.
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4. Nonequilibrium steady state

4.1. Model

In this section, we present an application of the nonequilibrium VCA method described
in Sec. 2.3. Specifically, we study nonlinear transport properties across an extended
correlated region (denoted as c in Fig. 2.2), which we take to be a Hubbard chain (L̄cx =
1) or a Hubbard ladder (L̄cx = 2) with nearest-neighbor hoppings tx and ty, on-site
interaction U , on-site energy ǫc, and chemical potential µc

h̄c =
∑

〈i,j〉, σ

tijc
†
iσcjσ + U

∑

i

n̂i↑n̂i↓ + (ǫc − µc)
∑

i,σ

n̂iσ ,

in usual notation, and where tij = tx (tij = ty) for i and j being nearest neighbors
in x direction (y direction). The leads (shaded regions in Fig. 2.2) are described by
two-dimensional semi-infinite tight-binding models with nearest-neighbor hopping tL,
on-site energies ǫl and ǫr, and chemical potentials µl and µr for the left and right lead,
respectively. We apply a bias voltage Vb to the leads by setting µr = ǫr = Vb/2 and
restrict to the particle-hole symmetric case where ǫc = −U/2, µc = 0, ǫr = −ǫl, and
µl = −µr. For simplicity, we neglect the long-range part of the Coulomb interaction.
Under some conditions, this can be absorbed within the single-particle parameters of
the Hamiltonian, in a mean-field sense [86].

As discussed above, the unperturbed Hamiltonian h does not necessarily coincide with
the physical partition into leads and correlated region. h is obtained by tiling the total
system into small clusters as illustrated in Fig. 2.2, as well as by adding an intracluster
variational term ∆h.

In the present work ∆h describes a correction ∆tx to the intra-ladder hopping. Fur-
ther options could include, for instance, a site-dependent change in the on-site energy
∆ǫc(x). Particle-hole symmetry can be preserved by constraining this change to be an-
tisymmetric: ∆ǫc(x) = −∆ǫc(−x). In this paper, whose goal is to carry out a first test
of the method, we restrict, for simplicity, to a single variational parameter. The choice
of ∆tx as a variational parameter is motivated by the fact that this term is important
for the current flowing in x direction. According to the prescription discussed above,
we require the expectation value of the one-particle density matrix for nearest-neighbor
indices in x direction to be the same for the unperturbed h and for the full H, i.e.
evaluated with gcc and with Gcc.

One comment about the chemical potential. In principle, when including some of
the sites of the leads in h, i. e., when Lcx > L̄cx, then these additional sites have a
chemical potential µc which differs from the one they would have if Lcx = L̄cx (i. e., µl
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or µr). However, the chemical potential, of these sites does not affect the steady state,
as their volume-to-surface ratio is finite. Of course, their on-site energies (ǫr and ǫl) are
important.

Due to translation invariance by a cluster length Lcy in the y direction, it is con-
venient, as in usual VCA, to carry out a Fourier transformation in y direction, with
associated momenta qy. The Green’s functions gcc and Gcc, as well as T become now
functions of two momenta qy +Qy and qy +Q′y, where Qy and Q′y are reciprocal super-
lattice vectors of which there are only Lcy inequivalent ones. In order to evaluate the
nonequilibrium steady state, one only needs the equilibrium Green’s function g(xbα|qy|z)
of the isolated leads at the contact edge to the central region, with x coordinate equal
to xbα (α ∈ {l, r}), and Fourier transformed in the y directions, where qy is the corre-
sponding momentum and z the complex frequency. For a semiinfinite nearest-neighbor
tight-binding plane with hopping tL, and on-site energy ǫα, this can be expressed as

g(xbα|qy|z) = gc,loc(z − 2tL cos qy − ǫα) , (4.1)

where gc,loc(z) is the local Green’s function of a tight binding chain with open boundary
conditions and with zero on-site energy. The latter can be determined analytically along
the lines discussed in Ref. [241].

The model studied here, is motivated by the interest in transport across semiconductor
heterostructures (see, e.g. [242, 243, 244, 245]). However, it is well known that in this
case charging effects are important, also near the boundaries between the leads and the
central region. Here, scattering effects produce charge density waves, which, when taking
into account the long-range part of the Coulomb interaction, even in mean-field, produce
a modification of the single-particle potential. In order to treat realistic structures, these
effects should be included at the Hartree-Fock level at least. All these generalizations
can be straightforwardly treated with the presented variational cluster method, however,
in this work we focus on a first proof of concept study and application containing the
essential ingredients for the investigation of the nonequilibrium steady state of strongly
correlated many-body systems.

4.2. Results

We have evaluated the steady-state current density jx of the models discussed in Sec. 4.1
as a function of the bias Vb ≡ ǫr − ǫl between the leads at zero temperature. Simultane-
ously the chemical potential is adjusted to the on-site energy µα = ǫα, which corresponds
to a rigid shift of the density of states in both leads in opposite directions.

In Fig. 4.1 we display results for the two-leg ladder (L̄cx = 2), for different values of
the interaction strength U = {0, 2, 4, 6} and lead-to-system hopping V = {1.0, 0.75,
0.5, 0.25, 0.1}. We use ~ = 1 and tL = 1 which sets the unity of energy. Moreover,
we take the lattice constant a = 1. The hopping is uniform in the whole system,
meaning that tx, ty in the correlated region and tL of the leads are equal. The on-site
energy of the correlated region is ǫc = −U/2 corresponding to half-filling, whereas the
on-site energy of the left (right) lead is equal to its chemical potential µl (µr). The
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Figure 4.1.: Steady-state current density jx versus bias voltage Vb for a correlated two-
leg ladder (L̄cx = 2). First row shows jx normalized by V 2 as function of
Vb evaluated for different values of V and of the interaction (a) U = 2.0,
(b) U = 4.0, and (c) U = 6.0. Second row shows the U dependence of
the current for different values of the hopping V = Vlc = Vrc from the
leads to the correlated region (d) V = 1.0, (e) V = 0.5, and (f) V = 0.1.
Solid (dashed) lines represent results for the current between the left lead
and the central region (between two in x direction adjacent sites inside the
central region), i. e., evaluated with GK

lc (GK
cc), see text for details. Results

are obtained by using a reference Hamiltonian h consisting of disconnected
clusters of size Lc = Lcx × Lcy = 2× 6.
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Figure 4.2.: Steady-state current density jx as in Fig. 4.1 but for the correlated chain
(L̄cx = 1). The current density is evaluated for different values of the lead
to correlated region hopping (a) V = 1.0, (b) V = 0.5, and (c) V = 0.1, and
of the interaction U , see legend. Results are obtained for reference clusters
of size Lc = Lcx × Lcy = 3× 4.

unperturbed Hamiltonian h describes the central region decomposed into clusters of size
Lc = 2 × 6. The corresponding Green’s function gcc is determined exactly by Lanczos
diagonalization. All results are determined self-consistently using ∆tx as variational
parameter, see Sec. 4.1.

Using the Meir-Wingreen expression, Eq. (2.102), the general trend of the results for
the steady-state current jx can be discussed conveniently. At zero temperature there are
only contributions to the current for min(µl, µr) < ω < max(µl, µr) due to the difference
of the Fermi distribution functions. In particular this leads as expected to zero current
for zero bias voltage Vb. With increasing bias voltage Vb the modulus of jx initially
increases. For large values of Vb it decreases again, as the overlap of the local density
of states of the two leads enters the expression, which is zero if Vb is greater than the
band width of the leads. Hence the local density of states of the leads along with the
Fermi function act as a filter that averages the electronic excitations of the central region
within a certain energy window.

In the system we are studying, the leads are modeled by semi-infinite tight binding
planes. Alternatively, instead of using (4.1) one could simply put a model Green’s
function “by hand,” as for example one which describes a Lorentzian shaped density of
states. Such an unbound density of states generally leads to a finite value of the current
for arbitrary bias.

The leads have a further effect on the result as they provide an inelastic broadening
of the energy spectrum of the central region entering Σeff, see Eq. (2.101), which smears
out details of the excitation spectrum. As far as the lead-correlated region coupling V is
concerned, there are two competing effects: on the one hand, the current increases with
increasing V due to the stronger coupling between the correlated region and the leads.
On the other hand, details of the electronic excitations are smeared out with increasing
V leading to a reduced resolution. Therefore, in order to detect the effects of strong
correlations, particularly the gap, a small value for V is required.

118



4.2. Results

−6 −4 −2 0 2 4 6
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

V
b

j x

 

 

L
c
=2x1

L
c
=2x2

L
c
=2x4

L
c
=2x6

−6 −4 −2 0 2 4 6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

V
b

j x

 

 

L
c
=2x1

L
c
=2x2

L
c
=2x4

L
c
=2x6

−6 −4 −2 0 2 4 6
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

V
b

j x

 

 

L
c
=2x1

L
c
=2x2

L
c
=2x4

L
c
=2x6

−6 −4 −2 0 2 4 6
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

V
b

j x

 

 

L
c
=2x1

L
c
=2x2

L
c
=2x4

L
c
=2x6

(a) U=2.0, /w SC

(c) U=2.0 /wo SC

(b) U=4.0, /w SC

(d) U=4.0 /wo SC

Figure 4.3.: Convergence of the steady-state current density jx with reference cluster
size Lc = Lcx × Lcy for the correlated two-leg ladder with V = 0.5. Results
in (a), (b) are obtained by a variational adjustment of the intra-cluster
hopping tx as discussed in the text, while those of (c), (d) are obtained
without modification of tx. The values for the Hubbard interaction are
U = 2 in [(a), (c)] and U = 4 in [(b), (d)].
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The details of the V dependence of jx for small V can be deduced from (2.102).
Here, the expression for the current has a prefactor proportional to V 4 (at least in the
Lcx = L̄cx case), due to the two Γ terms. On the other hand, for a gapless system, there
is a V 2 term in the denominator of |GR

cc|2. For a gapped system, this is cut off by the
energy gap Eg, so that in this case jx ∼ V 4/E2

g , while jx ∼ V 2 for a gapless spectrum.
These aspects are clearly observable in Fig. 4.1 (a)–(c), which shows the scaled current
density jx/V

2 for fixed interaction strength U but varying V . The envelope has a rotated
S-like structure due to the combined effects of the lead density of states and of the Fermi
functions.

Next we will analyze a bit more in detail the effects of the Hubbard interaction.
Increasing the interaction strength U in the correlated region leads to a suppression of
the current and the opening of a gap, which is best observed in (f). For U = 4 the
maximum of the current density is roughly reduced by a factor of two as compared to
the noninteracting case, whereas for U = 6 the current is almost one order of magnitude
smaller as compared to the noninteracting system, see Fig. 4.1 (d)–(f).

Finally, we want to address the the difference between the solid lines and dashed lines in
the the panels (d)–(f) of Fig. 4.1, which represent the current density evaluated on a bond
connecting the leads to the central region, or on a bond within the two-leg ladder. Due
to the stationary condition, the two results should coincide. However, our calculations
shows a slight discrepancy between them, which is due to the fact that the method is
not completely conserving and, thus, the continuity equation is not completely fulfilled.
However, from our results we see that the deviation from the continuity equation is quite
small. We expect this discrepancy to be reduced upon improving the optimization with
the introduction of additional variational parameters.

In Fig. 4.2 we show the steady-state current density jx across the correlated chain
(L̄cx = 1) as a function of the bias voltage. The parameters are the same as in the
case of the two-leg ladder, however, the central region is decomposed into clusters of
size Lc = 3 × 4, where also sites of the leads are taken into account to improve the
results. The half-filled Hubbard chain is gapped as well. As for the two-leg ladder, the
gap behavior can be better seen in the current-voltage characteristics for smaller values
of V , in our case for V = 0.1. In contrast, for strong coupling V = 1.0, (a), no gap
behavior can be seen in the current due to the strong hybridization with the leads.

For strong values of the coupling V between leads and correlated region (V = 1.0), (a),
the current is significant for all values of the interaction U . However, with decreasing
V , (b)–(c), the current is strongly suppressed for large interaction U . Importantly, for
the correlated chain the continuity equation is always strictly fulfilled. In other words,
there is no difference between jx evaluated on a intercluster bond between the leads and
the cluster, or on an intracluster bond. This is due to the absence of vertex corrections
at the uncorrelated sites.

Next, we study the convergence of our results with the size of the cluster, as well as the
effect of the self-consistency condition for the two-leg ladder and V = 0.5. Results are
depicted in Fig. 4.3 for two different values of the Hubbard interaction, namely U = 2
[(a), (c)] and U = 4 [(b), (d)]. We do not plot results of the convergence analysis for
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U = 6, since for this large U the current is already rather small, as can be seen in
Fig. 4.1 (d)–(f). Results in (a) and (b), first row, are obtained by adjusting ∆tx self-
consistently, as described in Sec. 4.1, whereas (c) and (d), second row, shows results
without self-consistency, i. e., with ∆tx = 0. Results show that the self-consistency
procedure improves the results, as the convergence for jx is faster with increasing cluster
size as compared to the case without self-consistency. Generally, we observe pronounced
finite size effects for very small clusters up to 2×4, and convergence seems to be reached
for the 2× 6 cluster.

We now repeat the same analysis for the correlated chain. The corresponding current
densities for the parameters U = 2 and V = 0.5 are shown in Fig. 4.4 for different
cluster sizes. Results shown in (a) are with self-consistency procedure (2.104), whereas
the results shown in (b) are without. In the present case, where we consider transport
across a strongly correlated chain, convergence is achieved very quickly with increasing
cluster size. Therefore, there is no sensible difference between results obtained with or
without self-consistency, apart for the pathological case Lc = 3× 1 (see below).

Results obtained for the two-leg ladder and for the chain show that cluster geometries
with Lcy = 1 provide results far from convergence, even with self-consistency. For the
chain this is probably due to the degeneracy of the cluster ground state. For the ladder,
it seems that using as starting point the 2 × 1 dimer exaggerates the gap. But besides
these data obtained from admittedly very small clusters, results converge quickly as a
function of cluster sizes, especially when the hopping in x direction is used as a variational
parameter.

Conclusions: In this paper we have presented a novel approach to treat strongly cor-
related systems in the nonequilibrium steady state. The idea is based on the variational
cluster approach extended to the Keldysh formalism. For the present approach the ex-
pression for the current resembles the corresponding Meir-Wingreen formulas. As in the
original Meir-Wingreen approach, which is also the basis for nonequilibrium density-
functional based calculations, we directly address the steady state behavior of a device
coupled to infinite leads. The latter is necessary for the system to reach a well-defined
steady state.

The present nonequilibrium extension is in a similar spirit to the equilibrium self-
energy functional approach, in which one “adds” single-particle terms to the cluster
Hamiltonian which is then solved exactly, and “subtract” them perturbatively [66, 57].
The values of the parameters are determined by an appropriate requirement which in
the end amounts to optimizing the unperturbed state with respect to the perturbed one.

There is a certain freedom in choosing the most appropriate self-consistency criterion.
Here we have required the operators associated with the variational parameters to have
the same expectation values in the unperturbed and in perturbed state. Certainly, an
interesting alternative would be to generalize the variational criterion provided by the
self-energy functional approach [49] to the nonequilibrium case. This will be obtained
by a suitable generalization of the Euler equation (Eq. (7) of Ref. [49]) to the Keldysh
contour, i. e., by replacing g0cc with the self-energy Σh in (2.104) Work along these lines
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Figure 4.4.: Convergence of the steady-state current density jx with reference cluster
size Lc = Lcx × Lcy for the correlated chain. Results in (a) fulfill the self-
consistency condition (2.104), whereas results in (b) do not. The parameters
are U = 2 and V = 0.5.
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4.2. Results

is in progress.
The advantage of the present variational condition (2.104) is that it is computationally

less demanding, as one just needs to evaluate cluster single-particle Green’s functions.
Which one of the two conditions gives more accurate results cannot be stated a priori
and should be explicitly checked.

In any case, both methods, the self-energy functional approach and the present one,
become equivalent to (cellular) dynamical mean-field theory in the case in which an
infinite number of variational parameters is suitably taken (see Appendix C.1).

In general, we expect results to improve when more variational parameters are taken
into account. In particular, when evaluating the current across the central region, it
would be useful if a current was already flowing in the cluster. This can be achieved
by adding a complex variational hopping between the end points of the cluster, and of
course remove it perturbatively. The corresponding variational condition would contain
the interesting requirement that the current flow in this modified cluster be the same as
in steady state.

The model studied here, is motivated by the interest in transport across semiconductor
heterostructures (see, e.g. [242, 243, 244, 245]). However, it is well known that in this
case charging effects are important, also near the boundaries between the leads and
the correlated region. Here, scattering effects produce charge density waves, which,
when taking into account the long-range part of the Coulomb interaction, even in mean-
field, produce a modification of the single-particle potential. In order to treat realistic
structures, these effects should be included at the Hartree-Fock level at least. All these
generalizations can be straightforwardly treated with the presented variational cluster
method, however, in this work we focus on a first proof of concept study and application
containing the essential ingredients for the investigation of the nonequilibrium steady
state of strongly correlated many-body systems.
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5. Conclusions and Outlook

In this thesis, we explored the collective behavior of many particle systems, and with
that the accompanied emergent ordering phenomena and broken symmetries. Strong
correlations, resulting from the subtle interplay between the kinetic energy of the par-
ticles and their mutual interaction have substantial influence on the observed physics.
The contributions of this thesis can be divided into two main points: The first deals
with the collective behavior in bosonic many-body systems and the second with the
emergent nonequilibrium steady state of strongly correlated many-body systems.

In recent years the advent of synthetic many-body systems allowed for an extremely
accurate and versatile exploration of many-body effects. Among these synthetic sys-
tems are systems of ultracold atoms [20, 21, 22], which are handled as promising quan-
tum simulators. Ultracold atom experiments with bosonic constituents are well de-
scribed by the Bose-Hubbard model. Here, we explored the equilibrium properties of
the Bose-Hubbard model in the normal Mott insulating phase and the symmetry bro-
ken superfluid phase using the variational cluster approach. Particularly, we calculated
dynamical and wavevector dependent single-particle spectral functions, momentum
distributions, and mapped out the phase boundaries of the quantum phase transition.
In cold atom experiments the momentum distribution is directly accessible in time of
flight experiments and dynamical spectral properties using Bragg spectroscopy. In the
normal phasewe also study the effect of disorder on these quantities, where we focused
on disorder distributions which are relevant for cold atom experiments like exponen-
tial laser speckle disorder and disorder distributions associated to incommensurable
optical lattices.

We studied synthetic light matter systems [23, 24], where nonlinearities result from
the strong coupling of light to some form of matter. One possible realization where
strong interactions can be achieved are lattice extensions of cavity and circuit quantum
electrodynamics setups. Specifically, we focused on two light-matter systems differ-
ing in their experimental realization. The first consists of coupled cavities with matter
modeled by a single two level system. We study spectral properties and map out the
properties of the polaritons, which are superpositions of photons and excitations. We
determine the nature of these quasiparticles by extracting the relative contributions of
photons and excitations. The second model allows for an arbitrary number of two-
level systems per cavity, which could be relevant for experiments, where this quantity
might not be well controlled. We explore the quantum phase transition, calculate spec-
tral properties and momentum distributions, and determine the nature of the polariton
quasiparticles as a function of the number of two-level systems.

We evaluate the equilibrium properties of these many-body systems by means of
the variational cluster approach [28], which has been first applied to bosonic systems

125



5. Conclusions and Outlook

by Koller and Dupuis [51]. In our formulation of the variational cluster approach we
employ theQ-matrix formalism for bosonic systems, which allows for an extremely ac-
curate calculation of the momentum distribution and the spectral moments. We also
reformulate the variational cluster approach within this Q-matrix formalism for disor-
dered many-body systems. We then extended the variational cluster approach to the
symmetry broken superfluid phase of lattice bosons within a pseudoparticle approach
and a self-energy functional approach. The pseudoparticle approach, while not as rig-
orous as the self-energy functional approach, allows for a straight forward extension
to the superfluid phase, which in particular amounts to finding the correct expression
for the grand potential Ω in the presence of a condensate. To this end, we adopted the
Nambu notation. The evaluation of the functional form of the grand potential within
the self-energy functional approach puts the pseudoparticle approach results on rigor-
ous grounds and provides additional insight into the functional dependence and struc-
ture.

Additionally to equilibrium properties of bosonic systems, we also develop a varia-
tional cluster approach that allows to compute nonequilibrium steady state properties
of strongly correlated many-body systems. The method is embedded in the Keldysh
Green’s function formalism. We introduce a variational principle which allows for a
suitable optimization of the reference state to the nonequilibrium target state. The ap-
proach is perturbative in the coupling between the clusters yet is neither perturbative
in the many-body interaction nor in the field that drives the system out of equilibrium.
As a crucial point the approach allows to study strong perturbations and nonlinear re-
sponses of systems in which the correlated region is spatially extended. We apply the
presented approach to the nonlinear transport across a strongly correlated quantum
wire described by the fermionic Hubbard model, where we observe dielectric break-
down for a strong bias voltage and weak hybridization with the leads. We also illus-
trate how the method bridges to cellular dynamical mean field theory upon coupling
two baths containing an increasing number of uncorrelated bath degrees of freedom.

There are many possible directions for future research. Concerning equilibrium prop-
erties of bosonic systems an extension of the disorder calculations to the superfluid
phase should give important additional insight into the phase transitions from Mott to
Bose glass and from Bose glass to the superfluid phase [30]. Also an extension to finite
temperatures might prove interesting not only conceptually but also from the physical
point of view. Currently, extremely relevant are also mixtures of two particle species,
which could either be Bose-Bose [246, 247], Bose-Fermi [248, 249, 250, 251, 252, 253,
254, 255], or Fermi-Fermi [256, 257, 258, 259, 260, 261] mixtures. The interplay between
the various possible interactions gives rise to particularly rich physics. An extension
of the study of light-matter systems to the superfluid phase of polaritons and their
quasiparticle properties as well as the susceptibility to disorder are other interesting di-
rections. Finally, also in the context of recent cold atom experiments [262, 263] it would
be interesting to study the effect of strong magnetic fields giving rise to the Hofstadter
problem [264]. Concerning the calculation of the nonequilibrium steady state a whole
new direction opens with countless interesting questions including the study of the re-
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sponse of a superconducting layer to applied bias voltage [265] and the characteristics
of a quantum dot subject to an applied bias voltage [266]. All these diverse fields and
many more constitute possible exciting future research directions.
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A. Pseudoparticle approach

A.1. Procedure to construct V and S ′

Here, we outline how the two conditions on V given in Eqs. (2.41) and (2.42) can be
achieved and how S′ can be constructed. We start out from the eigenvalue equation for
the non-Hermitian matrix M

MV = V D .

As already argued in Sec. 2.1.5, from the physical viewpoint we can only proceed if
the eigenvector-matrix V is nonsingular and if all eigenvalues are real, as the system
would otherwise be unstable. Hence we can express the Hermitian diagonal matrix of
eigenvalues as

D = V −1MV .

The first condition of Eq. (2.41) requires that the Hermitian matrix

X ≡ V †SV

be diagonal with diagonal elements Xii = ±1. Multiplying the two Hermitian matrices
and exploiting the Hermiticity of SM results in

XD = V †SMV = (XD)† = DX ; ⇒ [X,D] = 0 .

Commuting Hermitian matrices have a common set of orthonormal eigenvectors. The
matrix D is already diagonal. Hence for indices belonging to nondegenerate eigenvalues,
X is also diagonal. Within the set of indices belonging to a degenerate eigenvalue, the
corresponding Hermitian submatrix of X can be diagonalized by a unitary transforma-
tion U . In the following we term the diagonalized matrix as X ′. The diagonalization

also results in a new matrix V = V U of eigenvectors. We still have V
−1
MV = D, but

now

V
†
SV = X ′ = diag(x′1, . . . , x

′
L) (A.1)

V
†
SMV ≡ E′ = X ′D = diag(x′1d1, . . . , x

′
ns
dns) .

For the condition Eq. (2.41) we still need to ensure that x′α = ±1. Provided no x′α van-
ishes, which we will show below, this can easily be achieved by a suitable normalization
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A. Pseudoparticle approach

of the column vector of V → Ṽ = V Z, with Z being a diagonal matrix, defined as
Zαα ≡ 1/

√
|x′α|. We eventually have

Ṽ −1MṼ = D = diag(d1, . . . , dL)

Ṽ †SṼ = Z†X ′Z = S′ = diag(s′1, . . . , s
′
L)

Ṽ †SMṼ ≡ E = diag(e1, . . . , ens) .

We are merely left with the proof that

x′α = v̄α†Sv̄α 6= 0 , (A.2)

where v̄α stands for the αth column of V . To this end we assume ad absurdum that
v̄α†Sv̄α = 0. In this case, v̄α would belong to the (ns− 1)-dimensional space Sα orthog-
onal to the vector Sv̄α. According to Eq. (A.1) the vectors v̄1, . . . v̄α−1, v̄α+1, . . . v̄ns

also belong to Sα and they are linear independent. Thus they span Sα. Due to the
fact that all vectors v̄1, . . . v̄ns are linear independent, v̄α cannot belong to Sα, which
proves Eq. (A.2).

A.2. Grand potential

In this appendix we derive Eq. (2.59). Starting out from Eq. (2.58) we get

Ω = C − 1

Nc

∑

q∈BZ/2

g(Dq)

= Ω′ +
1

2
tr g(Λ)− 1

Nc

∑

q∈BZ/2

g(Dq) +
1

2
(F †Γ + h.c.)

− 1

2
trh+

1

2
Γ†T̄0Γ +

1

2
F̃ †G(0)F̃ . (A.3)

We now evaluate the quantity

W ≡ 〈A†〉G−1(0) 〈A〉 − 〈A
†〉′G′−1(0) 〈A〉

′

= Γ†G−1(0)Γ + Γ†F̃ + F̃ †Γ+

F̃ †G(0)F̃ − Γ†(G−1(0) + T̄0)Γ

= (Γ†(F + T̄0Γ) + h.c.) + F̃ †G(0)F̃ − Γ†T̄0Γ

= (Γ†F + h.c.) + Γ†T̄0Γ + F̃ †G(0)F̃ .

Comparison with (A.3) gives

Ω = Ω′ +
1

2
tr g(Λ)− 1

Nc

∑

q∈BZ/2

g(Dq) +
1

2
W − 1

2
trh ,

which is the expression for the grand potential stated in Eq. (2.59).
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A.3. Zero-interaction limit

A.3. Zero-interaction limit

The zero-interaction limit turns out to be a nontrivial check for VCA. For U = 0, the
BH model can be solved analytically as it reduces to

Ĥ = −t
∑

〈i, j〉

a†i aj − µ
∑

i

n̂i .

The chemical potential µ has to be smaller than −2t in order to prevent infinitely many
particles in the ground state. Taking this into account, the grand potential at zero
temperature is Ω = 0. In the zero-interaction limit VCA/CPT yields exact results.
Thus the pseudoparticle formalism can be checked by applying this limit. For reference
systems Ĥ ′ which consist of a single site the calculations can be done analytically. Under
these considerations the Hamiltonian Ĥ ′ reads

Ĥ ′ = −µ′ a† a − (a† f + f∗ a) .

It can be solved by introducing shifted operators ã ≡ a + x and by “completing the
square”

Ĥ ′ = −µ′ a† a− (a† f + f∗ a)

!
= α ã† ã + c = α(a† + x∗)(a+ x) + c

= αa† a+ α(a†x+ x∗a) + α |x|2 + c .

Comparison reveals

α = −µ′

x = −f/α = f/µ′

c = −α |x|2 = |f |2/µ′ .

The Hamiltonian Ĥ ′, rewritten by means of the shifted operators, is given by

Ĥ ′ = −µ′ ã† ã+ |f |2/µ′ .

As discussed before we choose µ′ < 0. The eigenenergies obtained form the Schrödinger
equation are

Ĥ ′ |ν̃〉 = (−µ′ ν̃ + |f |2/µ′) |ν̃〉 = E′ν |ν̃〉 .
For negative chemical potential µ′ the ground state is |ψ0〉 = |0̃〉 and its energy E′0 =
|f |2/µ′. The eigenstates of Ĥ ′ are number states, therefore the shifted creation and
annihilation operators act on them in the usual way

ã |ν̃〉 =
√
ν̃ |ν̃ − 1〉

ã† |ν̃〉 =
√
ν̃ + 1 |ν̃ + 1〉 .
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A. Pseudoparticle approach

To evaluate the Q matrices we apply the original operators a on the eigenstates of Ĥ ′

a |ν̃〉 = (ã− f/µ′) |ν̃〉 =
√
ν̃ |ν̃ − 1〉 − f/µ′ |ν̃〉 .

With that we obtain

〈0̃| a |ν̃〉 = 1

〈ν̃| a |0̃〉 = 0

〈0̃| a |0̃〉 = −f/µ′ .

Writing down the expressions in matrix form yields

Q =

(
1 0
0 1

)
= 1 Γ = −1/µ′

(
f
f∗

)
S =

(
1 0
0 −1

)

Λ = S

(
E′1 − E′0 0

0 E′1 − E′0

)
=

(
−µ′ 0
0 µ′

)
.

Using the expressions above and the relation A = QB+Γ we obtain for the pseudoparticle
operators

B = Q−1(A− Γ) = Ã .

Next, we evaluate the grand potential from Eq. (A.3), where we obtain

Ω = Ω′ +
1

2
tr g(Λ)

︸ ︷︷ ︸
A

− 1

Nc

∑

q∈BZ/2

g(Dq)

︸ ︷︷ ︸
B

+
1

2
(F †Γ + h.c.)
︸ ︷︷ ︸

C

− 1

2
trh

︸ ︷︷ ︸
D

+
1

2
Γ†T̄0Γ
︸ ︷︷ ︸

E

− 1

2
F̃ †Q M−10 SQ†F̃
︸ ︷︷ ︸

F

by employing Eq. (2.55). We calculate parts A–F of Ω separately

A: Ω′ +
1

2
tr g(Λ) = |f |2/µ′ + µ′/2

B:
1

Nc

∑

q∈BZ/2

g(Dq) = µ/2

C:
1

2
(F †Γ + h.c.) = −2 |f |2/µ′

D:
1

2
trh = (µ′ − µ)/2

E:
1

2
Γ†T̄0Γ = |f |2(µ′ − µ− 2t)/µ′

2

F:
1

2
F̃ †QM−10 SQ†F̃ = −|f |2 (µ+ 2t)/µ′2 .
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A.3. Zero-interaction limit

In order to evaluate part B we need the matrix Mq, which is given by

Mq = Λ+ SQ† T̄qQ =

(
−µ− 2 t cos q 0

0 µ+ 2 t cosq

)
,

where we used that

T̄q =

(
t̄q 0
0 t̄T−q

)

and t̄q = t̄T−q = µ′ − µ − 2t cosq. Since Mq is already diagonal we can readily evaluate
part B as sum over the negative eigenvalues, which is µ+2 t cosq, since µ < −2t. When
summing over half of the q values the second term of the eigenvalue containing cosq is
zero. For the calculation of part F we need the inverse of M0, which is simply

M−10 =

(
− 1

µ+2t 0

0 1
µ+2t

)
,

and F̃ , which reads

F̃ = F + T̄0 Γ = (µ + 2t)/µ′
(

f
f∗

)
.

Collecting all terms yields the grand potential Ω = 0, which is identical to the result
obtained from the direct calculation.
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B. Notation and conventions for the
extended self-energy functional
approach

B.1. Matrix notation

B.1.1. General

In order to simplify our notation we omit time arguments, whenever this does not cause
ambiguities. Therefore, two-point functions such as Green’s functions, self-energies, etc.
are interpreted as matrices in Nambu, orbital, and τ space. One-point objects such
as A (Ā) are interpreted as column (row) vectors in the same space. Matrix-matrix
and vector-matrix products are understood throughout, whereby internal τ variables
are considered to be integrated over. In addition, the transposing operator “T ” also
acts on time variables. Traces Tr contain an integral over τ and a trace tr over orbital
indices, i. e., TrM ≡ β−1 tr

∫ β
0 dτM(τ, τ + 0+), where the 0+ leads to the well known

convergence factor eiωn0+ in Matsubara space.

(Functional) derivatives with respect to matrices are defined “transposed”:

(
δX̂

δM

)

ij

(τ, τ ′) ≡ δX̂

δMji(τ ′, τ)
.

Finally, there are two types of products between row (in the form v̄) and column (u)
vectors, depending on the order: On the one hand the product v̄u produces a scalar (all
indices are summed/integrated over). On the other hand, inverting the order, as in uv̄
gives a matrix, as indices are “external” and, thus, not summed over.

B.1.2. Trace in τ and in Matsubara space

In τ space we have

TrM = β−1tr

∫ β

0
dτ M(τ, τ + 0+) .

The transformation of M(τ, τ ′) to Matsubara space is defined as

M(τ, τ ′) ≡ β−1
∑

n,n′

M(ωn, ω
′
n)e
−iωnτ+iω′

nτ
′

.
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B. Notation and conventions for the extended self-energy functional approach

The inverse transformation reads

M(ωn, ω
′
n) = β−1

∫
dτdτ ′M(τ, τ ′)eiωnτ−iω′

nτ
′

.

Combining the equations above, the trace becomes

TrM = tr

∫ β

0
dτβ−2

∑

n,n′

M(ωn, ω
′
n)e
−i(ωn−ω′

n)τ+iω′
n0

+

= β−1
∑

n

trM(ωn, ωn)e
iωn0+ .

B.1.3. Logarithm

There are some subtle points concerning logarithms of two-point functions. Although
these issues are immaterial for the final result, we prefer to specify them in detail.

The logarithm of G considered as a matrix in the continuum variable τ is defined
up to an infinite constant which depends on the the discretization step δ (see below).
In addition, the trace of the logarithm carried out in Matsubara space diverges as well
(despite the convergence factor eiωn0+). The usual result presented in the literature (see,
for instance Ref. [71]) implicitly assumes that an infinite constant has been subtracted.
In order to avoid these undetermined infinite terms, we subtract them explicitly at the
outset with the help of the “infinite energy” Green’s function

G∞(τ, τ ′) = β−1
∑

n

G∞(ωn)e
−iωn(τ−τ ′)

G∞(ωn) = 1 1

iωn − E
,

where it is understood that the E → +∞ limit is taken at the end of the calculation.
This choice guarantees, for example, that Tr lnG/G∞, where G is the Green’s function
in normal (i.e. not Nambu) notation, vanishes in the limit µ → −∞, where µ is the
chemical potential.

The Fourier transform defined in App. B.1.2 allows to define the logarithm of G in τ
space, apart from an infinite multiplicative constant, which originates from the fact that
the Fourier transformation is not and cannot be normalized in the continuum limit. In
particular,

[ln(−G)](τ, τ ′) = β−1
∑

n,n′

[ln(−G)](ωn, ω
′
n)e
−iωnτ+iω′

nτ
′

= β−1
∑

n

ln [−G(ωn)] e
−iωn(τ−τ ′) .
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B.2. Symmetry of Green’s functions and other two-point functions

B.2. Symmetry of Green’s functions and other two-point
functions

The action in Eq. (2.66) is invariant under the transformation G0 → (T GT
0 T ), where

the transposing operator “T ” also acts on time variables and T is defined in Eq. (2.69).
This is due to the fact that

Ā(τ ′)G−10 (τ ′, τ)A(τ) = A(τ ′)TT G−10 (τ ′, τ)T Ā(τ)T = Ā(τ)(T G−10 (τ ′, τ)TT )A(τ ′) .

Therefore, we choose G0 to obey the symmetry

G0 = (T GT
0 T ) . (B.1)

The same symmetry is obeyed by other two-point functions, such as the interacting
Green’s function G, the self-energy Σ, and their inverse.

In principle, this redundancy renders relations such as Eq. (2.76) non invertible. In
order to avoid this, we adopt the convention that functional inversions are carried out
within the subspace of two-point functions obeying the relation Eq. (B.1). In addition,
we adopt the following convention for functional derivatives of an arbitrary functional Ξ̂
with respect to a two-point function X:

δΞ̂

δX
→ 1

2

(
δΞ̂

δX
+

δΞ̂

δT XTT

)
.

B.3. Continuum limit of the functional integral

In principle, the expression Eq. (2.71) should be understood such that adjoint fields ā
are evaluated at a later imaginary time τ+δ, whereby δ is the width of the discretization
mesh of the interval (0, β). The continuum limit δ → 0 should be taken after having
carried out the functional integration, see, e.g. Ref. [267]. Taking this limit at the outset
amounts to neglecting the so-called “contribution from infinity”. [268, 269] This can be
achieved by effectively replacing the normal-ordered Hamiltonian with a “symmetrically
ordered” one, which is suitably symmetrized among possible permutation of creation
and annihilation operators. [270] In particular, for the noninteracting part, this amounts
to replacing the operator expression a†a by 1

2(a
†a + aa†) = a†a + 1

2 . Therefore, we

should keep in mind that the grand-potential Ω̃s corresponds to such a symmetrized
Hamiltonian.
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C. Nonequilibrium Variational Cluster
Approach

C.1. Connection to (cellular) Dynamical Mean-Field Theory

Here, we show that the self-consistent condition (2.104) provides a bridge to (cellular)
DMFT, when an increasing number of noninteracting bath sites with appropriate pa-
rameters and occupations is included in the cluster Hamiltonian. Notice that these are
“auxiliary” baths and are not related to the leads. Concretely, this is achieved by in-
troducing into the variational Hamiltonian ∆h a coupling of the central region with a
set of uncorrelated bath sites with appropriate energies, hybridizations v±n , and occupa-
tions (see below). The hybridizations v±n and the energies are therefore “included” in h,
but “subtracted perturbatively,” from the target Hamiltonian H. Their parameters are
determined variationally via (2.104).

Now, since g0cc is cluster-local, a solution to (2.104) is obviously given by (2.103).
However, this solution can generally not be obtained with a finite number of parameters.
As in usual equilibrium (cellular) DMFT [62] (2.103) can thus be solved via an iterative
procedure defined by

g−10cc,new = (P(Gcc))
−1 +Σh

Σh = g−10cc,old − g−1cc . (C.1)

It is, thus, sufficient to show that an arbitrary g0cc,new can be obtained by coupling the
cluster to a noninteracting bath with suitably chosen bath parameters. For the retarded
and advanced Green’s functions, the procedure is the same as in equilibrium. The
Keldysh part is slightly more complicated. In order to show that an arbitrary g0cc,new
can be realized, one introduces the hybridization function

∆(ω) =

(
∆R(ω) ∆K(ω)

0 ∆A(ω)

)
, (C.2)

where the ∆R, ∆A, and ∆K are matrices in the cluster sites. Similarly to equilibrium
DMFT g0cc,new is expressed as

g−10cc,new = g−10cc,0 −∆(ω) . (C.3)

Here, g−10cc,0 is the “bare” noninteracting cluster Green’s function, i. e., the one with
neither baths nor variational parameters.
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An arbitrary (steady-state) ∆(ω) can be produced by coupling the central region to an
appropriate bath in the following way. The retarded (and advanced) part are obtained
as in equilibrium DMFT [62] by coupling to a bath with spectral function Abath(ω) given
by

Abath(ω) = −
1

π
Im∆R(ω) , (C.4)

(Re∆R is fixed by Kramers-Kronig relations). For cellular DMFT, all spectral functions
here ∆, A, · · · are matrices in cluster sites. Therefore, Im is understood as the antiher-
mitian part, Re as the hermitian part of such matrices. The v±n are column vectors in
cluster sites On the other hand, the Keldysh part is generated by splitting the bath de-
fined by (C.4) into two baths, a full (µ =∞) and an empty (µ = −∞) one, respectively.
Their spectral functions are denoted by A+

bath(ω) and A
−
bath(ω), respectively, and should

obviously fulfill the condition

Abath(ω) = A+
bath +A−bath . (C.5)

Since the Fermi functions of the two baths are 1 and 0, respectively, the Keldysh part
∆K(ω) is given by (∆K is anti-hermitian)

∆K(ω) = −2iπ Bbath(ω) ≡ −2iπ
(
A−bath(ω)−A+

bath(ω)
)
. (C.6)

This fixes the two spectral functions to be

A∓bath(ω) =
Abath(ω)±Bbath(ω)

2
. (C.7)

As usual, the two baths spectral functions Abath,±(ω) are realized by coupling the central
region with a set of noninteracting sites with energies ǫ±n and hybridizations v±n , fixed
by

A±bath(ω) =
∑

n

v±n v
±†
n δ(ω − ǫ±n ) . (C.8)

C.2. The Keldysh formalism

In this section, we review the Keldysh Green’s function formalism, which is the basis
of the nonequilibrium VCA. To this end, we follow Ref. [87], but provide much more
technical details.

The physical system is represented by a time independent Hamiltonian

Ĥ = Ĥ0 + V̂ ,

where Ĥ0 describes the free particles and V̂ their mutual interactions. Initially, the
physical system is in thermal equilibrium, where it is represented by the density matrix

ρ̂ =
e−βĤ

tr e−βĤ
.

140



C.2. The Keldysh formalism

The total nonequilibrium Hamiltonian is given by

Ĥ = Ĥ + Ĥ ′(t) ,

where Ĥ ′(t) is switched on at a certain time t0, i. e., Ĥ
′(t) = 0 for t < t0. The goal is to

calculate expectation values of an operator Ô:

〈ÔH(t)〉 = tr[ρ(H)OH(t)] .

Here we adopt the notation that the operator Ô is transformed into the “interaction
picture” with respect to the Hamiltonian indicated in the subscript. In particular, we
are interested in correlation functions of the form

G = 〈TAH(t)BH(t′)〉 .

An extension to a larger number of operators is straight forward.
Let us first assume that the initial state is a pure state |φ0〉, then

G = 〈∞|TS(∞, t0)AH(t)BH(t′)|φ0〉 ,

where we introduced the S-operator S(∞, t0) = exp[−i
∫∞
t0
dt′′H ′H(t′′)] and |∞〉 is the

state in which the system evolves after an infinite propagation time. More precisely,
it is not necessary to propagate to t = ∞, rather t = max(t, t′) is sufficient. Since we
want to evaluate expectation values as in equilibrium of the form 〈φ0| · · · |φ0〉we insert
judiciously an S-operator

G = 〈φ0|S(t0,∞)TS(∞, t0)AH(t)BH(t′)|φ0〉 .

In order to adopt the time order convention from equilibrium, one introduces a time
contour c, which starts and ends at t0, see Fig.C.1 (a). To lighten notation, we introduce
a collective index containing time and position on the contour

τ = (t ca) ,

where ca = c→ (ca = c←) corresponds to the upper (lower) contour. With that we can
also introduce the contour time ordering operator

Tc(A(τ), B(τ ′)) =

{
A(τ)B(τ ′) for τ >c τ

′

−ǫB(τ ′)A(τ) for τ <c τ
′

where τ >c τ
′ means that τ appears after τ ′ when following the contour c and ǫ = 1

(ǫ = −1) for fermion (boson) operators. Using this definition we write

G = 〈φ0|Tc S(t0c←,∞)S(∞, t0c→)AH(tc→)BH(t′c→)|φ0〉
= 〈φ0|Tc S(t0c←, t0c→)AH(tc→)BH(t′c→)|φ0〉 .
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Im t

Re t

Re t

Re t

(a)

(b)

(c)

Figure C.1.: (a) Closed path contour, (b) interaction contour, and (c) Keldysh contour,
see [87].

Generally, the fields AH and BH do not have to be restricted to the upper contour c→,
and thus in general

G = 〈φ0|Tc S
cAH(τ)BH(τ ′)|φ0〉 ,

where Sc = S(t0c←, t0c→). Generalizing this expression to a thermal initial state we
have

G =
〈Tc S

cAH(τ)BH(τ ′)〉H
〈Tc Sc〉H

=
tr[e−βH Tc S

cAH(τ)BH(τ ′)]

tr[e−βH Tc Sc]
.

In order to take advantage ofWick’s theorem andwith that of the whole Feynman di-
agram apparatus, we have to transform into the interaction picture with respect to the
free Hamiltonian Ĥ0. Analogously, to the equilibrium case, we assume that the interac-
tion V̂ is switched on adiabatically. Formally, one can go through the steps presented
above. Using the identity

e−βH = e−βH0 T e
−i

∫ t0
t0−iβ

dt′VH0
(t′)
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one finds

G =
〈Tc S

cβScAH0
(τ)BH0

(τ ′)〉0
〈Tc S

cβScAH0
(τ)BH0

(τ ′)〉0

=
tr[e−βH0 Tc S

cβScAH0
(τ)BH0

(τ ′)]

tr[e−βH0 Tc ScβSc]
,

where

Sc = e
−i

∫
c
dt′′H′

H0
(t′′)

Scβ = e
−i

∫
cβ

dt′′VH0
(t′′)

and the contour cβ shown in Fig.C.1 (b) also contains the imaginary Matsubara branch
m going from t0 − iβ to t0. Sending t→ −∞ and neglecting the Matsubara branch cor-
responds to neglecting initial correlations. Extending the contour also to t →∞ yields
the Keldysh contour, see Fig. C.1 (c), which is used in nonequilibrium VCA, where we
are mainly interested in evaluating single-particle Green’s functions G(r, r′|τ, τ ′) with
A(τ) = a(r, τ) and B(τ ′) = ā(r′, τ ′), which are the fields corresponding to single-

particle annihilation and creation operators âr and â†r′ , respectively. The fields a(r, τ)
and ā(r′, τ ′) can be associated with the contour c→ and c←. Therefore, it is convenient
to represent the contour ordered Green’s function by 2× 2 Keldysh matrices, i. e.,

G(r, r′|τ, τ ′)→ Ĝ(r, r′|t, t′) =
(
G11 G12

G21 G22

)

with

G11(t, t
′) = 〈T a(r, t)ā(r′, t′)〉

G12(t, t
′) = 〈ā(r′, t′)a(r, t)〉

G21(t, t
′) = 〈a(r, t)ā(r′, t′)〉

G22(t, t
′) = 〈T̃a(r, t)ā(r′, t′)〉 (C.9)

where T̃ is the anti-time-ordering operator. In VCA the Green’s functions dressed inter-
cluster scattering T , have to be evaluated, which amounts to calculating Feynman dia-
grams as indicated in Fig.C.2, where the integration over internal times are evaluated
over the Keldysh contour cK . Here, we derive the representation of a single potential
scatterer T in Keldysh space. To this end, we explicitly recast the time integration of
the first order contribution in matrix form (neglecting for simplicity the trivial spatial
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= + T

= +

T

T

T

+

+

...

Figure C.2.: Diagrammatic expansion of the renormalization of the Green’s function
due to a potential scatterer T , green bubble. The single horizontal line
represents the bare Green’s function and the double horizontal line the
dressed Green’s function.

dependence)

G(1) =

∫

cK

dt′′G(τ, τ ′′)T (τ ′′)G(τ ′′, τ ′)

=

∫ ∞

−∞
dt′′G(tc, t′′c→)T (t′′c→)G(t′′c→, t

′c′)

+

∫ −∞

∞
dt′′G(tc, t′′c←)T (t′′c←)G(t′′c←, t

′c′)

=

∫ ∞

−∞
dt′′G(tc, t′′c→)T (t′′c→)G(t′′c→, t

′c′)

−
∫ ∞

−∞
dt′′G(tc, t′′c←)T (t′′c←)G(t′′c←, t

′c′) . (C.10)

In matrix form this relation is given by

Ĝ(1) = ĜT̂ Ĝ , (C.11)

where we introduced

T̂ =

(
T 0
0 −T

)
.

This can be checked by explicitly calculating the product

Ĝ(1) =

(
G11TG11 −G12TG21 G11TG12 −G12TG22

G21TG11 −G22TG21 G21TG12 −G22TG22

)
,

and comparing it to Eq. (C.10).
Only three of the four Green’s functions G11, G12, G21, and G22 defined in Eq. (C.9),

are linear independent. Therefore it is convenient to rotate them, such that they are
represented by an upper triangular matrix. This can be achieved by the transformation

G(r, r′|t, t′) = Lτ̂3ĜL
† , (C.12)
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where L = (τ̂0 − iτ̂2) and τ̂i are the Pauli matrices. Explicitly, one finds

G(r, r′|t, t′) =
(
GR GK

0 GA

)
,

with the retarded GR, advanced GA, and Keldysh GK = G11 + G22 Green’s functions,
see also Eq. (2.95). Having rotated the Green’s functions, the potential scatterer T̂ has to
be evaluated in the rotated Keldysh space. Using the transformation Eq. (C.12), L†L =
τ̂0, and τ̂

2
3 = τ̂0, we rewrite Eq. (C.11)

Ĝ(1) = ĜT̂ Ĝ

Lτ̂3Ĝ
(1)L† = Lτ̂3Ĝ L†L T̂ τ̂3τ̂3 ĜL

†

Lτ̂3Ĝ
(1)L† = Lτ̂3ĜL

† LT̂ τ̂3L
† Lτ̂3ĜL

†

G(1) = GT̄G ,

where

T̄ ≡ LT̂ τ̂3L† =
(
T 0
0 T

)

is simply a matrix proportional to the identity.

C.3. Evaluation of observables

Here, we give a brief sketch how observables can be evaluated from the equal time
Keldysh Green’s function. As an example, we consider the current operator, which is
defined as

ĵ = iV (c†xcy − c†ycx) .

Its expectation value is obtained from the Keldysh Green’s function

iGK
xy(t = 0) = 〈c†xcy〉+ η〈cyc†x〉 = 2〈c†xcy〉+ ηδxy

〈c†xcy〉 =
i

2
GK

xy(t = 0)− η1
2
δxy

〈c†ycx〉 = 〈c†xcy〉∗

〈ĵ〉 = −V
2
[GK

xy(t = 0)−GK
xy(t = 0)∗]

= −V ReGK
xy(t = 0)

Similarly, the particle density can be evaluated from

n(x) = 〈c†xcx〉 =
i

2
GK

xx(t = 0)− η1
2
.
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In the steady-state, the t = 0 Keldysh Green’s function is obtained from the frequency
integration

GK
xy(t = 0) =

∫
dωGK

xy(ω) .

C.4. Self-consistency condition

Here, we first indicate that the Pauli matrix τ̂1 appears quite naturally in the self-
consistency condition, Eq. (2.104), from the Keldysh notation and then show that the
self-consistency condition is a measure for the difference between cluster and lattice
expectation values.

C.4.1. Appearance of the Pauli matrix τ̂1

Starting with time- and anti-time-ordered Green’s functions, the trace in τ = (t, c) space
is positive for both c =→ and c =←, see App. C.2. Thus in the self-consistency condi-
tion, Eq. (2.104), integrals of the form

∫
dτdτ ′ sign τ sign τ ′ (G̃αβ(τ, τ

′)− g̃αβ(τ, τ ′))︸ ︷︷ ︸
∆̃(τ,τ ′)

(C.13)

appear, where α, β are cluster-orbital indices. G̃αβ and g̃αβ are matrices in the not yet
rotated Keldysh space

∆̃ =

(
Gc − gc G> − g>
G< − g< Gc − gc

)
.

The integral (C.13) can be cast into the form
∫
dtdt′τ̂3τ̂3∆̃(t, t′) .

In the convention used in the main text ∆̃(t, t′) is rotated such that it is of upper trian-
gular form

∆ = Lτ̂3∆̃L
† ,

with

∆ =

(
GR − gR GK − gK

0 GA − gA
)
, (C.14)

see App. C.2 for details on the rotation L. Employing this relation and writing the
integral as a trace gives

Tr τ̂3τ̂3∆̃(t, t′) = Tr τ̂3τ̂3∆̃(t, t′)L†L = Tr Lτ̂3︸︷︷︸
τ̂1L

τ̂3∆̃(t, t′)L† = Tr τ̂1 Lτ̂3∆̃(t, t′)L†︸ ︷︷ ︸
∆

= Tr τ̂1∆ ,

which indicates that the form of the self-consistency equation (2.104) quite naturally
results from Keldysh representation.
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C.4.2. Self-consistent calculation of cluster and lattice expectation values

Using Eq. (C.14), we rewrite Eq. (2.104) as

∫
dω

2π
Tr τ̂1∆

∂ (g0cc)
−1

∂p
= 0 .

An explicit evaluation of the trace over the Keldysh indices gives

∫
dω

2π
Tr
(
gKcc −GK

cc

) ∂
(
gA0cc

)−1

∂p
= 0 .

Here we show that the interpretation of this equation is that p is a set of variational
parameters, whose conjugate operators ∂h0/∂p are determined self-consistently. The
advanced Green’s function of the noninteracting central region is

(gA0,ij)
−1 = (ω + i0+)δij − h0ij ,

where h0ij are the single particle terms, which contain both physical parameters and
variational parameters. Thus the partial derivative

∂ (gA0,ij)
−1

∂ pαβ
= −δαiδβj

selects certain contributions from
(
gKcc −GK

cc

)
labeled by αβ. From the definition of the

Keldysh Green’s function

iGK
αβ = iG<

αβ + iG>
αβ = 〈cα(t)c†β(0)〉+ η〈c†β(0)cα(t)〉 ,

we obtain the relation between steady-state expectation values of one-particle correla-
tion functions and the equal time Keldysh Green’s functions, which for the physical
system is given by

iGK
αβ = 2η〈c†βcα〉VCA + δαβ

and for the reference system by

igKαβ = 2η〈c†βcα〉Cl + δαβ .

Thus, the self-consistency condition Eq. (2.104) can be interpreted as a measure for the
difference between certain cluster and lattice (VCA) expectation values of the conjugate
operators slected by the variational parameters p.
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D.1. Properties of the VCA Green’s function

Here, we will derive some properties of the VCA Green’s function for polaritons. To
begin with, we define new operators d†

J,r,k̃
with d†

1,r,k̃
≡ a†

r,k̃
and d†

2,r,k̃
≡ σ+

r,k̃
, where

r stands for the site number within the clusters and k̃ is the wave vector of the first
Brillouin zone of the superlattice. The VCA Green’s function will still be diagonal in
the latter index due to the periodicity of the clusters. The spectral representation of the
cluster Green’s function

G′IJ(k̃, ω) ≡≪ dI,r,k̃; d
†

J,s,k̃
≫ω

can be written in the compact form using the so-called Q-matrices [53, 54]

G′ = QD′ωS Q
† .

Here, Q is a M × K matrix, where M is twice the number of cluster sites (the factor
2 stems from the two species of operators) and K = Kp + Kh, where Kp and Kh is
the dimension of the Hilbert space for Np + 1 and Np − 1 particles, respectively. The
Q-matrix is defined as follows

QI,r;ν =

{
〈ψ0| dI,r,k |ψNp+1

ν 〉 for ν ≤ Kp

〈ψ0| d†I,r,k |ψ
Np−1
ν−Kp

〉 for ν > Kp
.

The diagonal matrix D′ω = diag(ω − ω′ν)
−1 contains the individual poles ω′ν of the

cluster and S = diag(sν) is a diagonal sign matrix with sν = +1 for particle excitations
(ω′ν > 0) and sν = −1 for hole excitations (ω′ν < 0). The VCA Green’s function in
Q-matrix representation for bosons [54] reads

G(k̃, ω) = QX DωX
−1 S Q† , (D.1)

where Dω = diag(ω − ων)
−1 is the diagonal matrix of the individual poles at the VCA

energies. These energies and the corresponding eigenvector matrix X are determined
via the generalized eigenvalue problem

(diag(sν ω
′
ν) +Q† V Q)︸ ︷︷ ︸
≡M

X = S X∆ ,

where V = H0 − H ′0 is the difference of the matrices of the single-particle part of the
Hamiltonian for the original and the reference system (i. e., the cluster).
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A general feature of such eigenvalue equations for Hermitian matrices M is that both
X†M X and X† S X ≡ diag(κ−1ν ) are diagonalized, but X is not unitary. We can exploit
this fact as follows

G(k̃, ω) = QX Dω X
−1 S (X−1)†︸ ︷︷ ︸
≡Dκ

X†Q† .

The matrix Dκ = (X† S X)−1 is diagonal as we just discussed and can be combined with
Dω resulting in

G(k̃, ω) = QX D̃ω (QX)†

(D̃ω)νν′ = δν,ν′
κν

ω − ων
.

Moreover, the pole strengths κν are real since

κ−1ν = (X† S X)νν

=
∑

µ

sµ |Xνµ|2 .

When the VCA parameters are determined consistently, the stability of the Np-particle
system requires that the sign of κν coincides with the sign of the excitation energies ων ,
like in the exact spectral representation.

So far the Green’s function still depends on the intra cluster indices r, s. The purely
k-dependent Green’s function is commonly obtained by Green’s function-periodization
[64, 73]. Invoking the periodization prescription yields the Green’s function matrix
merely in the indices I, J for the two particle species

G(k, ω) = Q̃X D̃ωX
† Q̃† (D.2)

with Q̃I,ν =
1

N

∑

r

e−ikxrQI,r; ν , (D.3)

see also Eq. (3.27). Eq. (D.2) corresponds to the spectral representation of the exact
Green’s function and it allows to extract the VCA approximation of the many-body
eigenstates of the infinite system, which are obviously a linear combination of the cluster
eigenstates for both, particle and hole excitations.

As described in the text we need the integrated spectral density, i. e.,

AIJ(k, Ωα) =

∫

Ωα

(− 1

π
Im GIJ(k, ω + iη)) dω

=
∑

ν, ων(k)∈Ωα

(Q̃X)I,ν κν (Q̃X)J,ν .

We readily recognize, that the integrated spectral density is either positive or negative
definite, depending on whether the quasiparticle under consideration is of particle or
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hole type. Equivalently, in the original representation

AIJ(k, Ωα) =
∑

ν, ων(k)∈Ωα

(Q̃X)I,ν(X
−1S Q̃†)ν,J .

For the polariton discussion it is convenient to suppress the minus sign arising in the
hole case and we define the strictly positive integrated spectral densities as

ÃIJ(k, Ωα) ≡ |AIJ(k, Ωα)| . (D.4)

D.2. Solution of the single-site problem

For zero-hopping strength t = 0 the JCL model can be solved exactly, as it reduces to
a single-site problem, i. e., to the JC model. Including the chemical potential yields the
single-site Hamiltonian

ĤJCL
S = ĤJC − µ (a† a+ σ+σ−) , (D.5)

where we dropped the site index i. It can be evaluated with respect to the bare states
|np, s〉, where np is the number of photons and s ∈ {↓, ↑}. Next, we sketch the most
important steps for solving the single-site JCL model. A detailed discussion can be
found for example in Refs. [233] or [271]. As the JC Hamiltonian conserves the particle
number the Hamiltonian ĤJCL

S is block diagonal. Each block corresponds to a certain
particle number n and thus we use the bare states |n− 1, ↑〉 and |n, ↓〉 to evaluate the
block, which yields

Bn =

(
(n− 1)ωc + ǫ− µn √

n√
n nωc − µn

)
, (D.6)

when using the coupling g as unit of energy. The eigenvalues of the block Bn are

E|n,α〉 = nωc −
∆

2
+ α q(n)− µn , (D.7)

where α ∈ {−, +} and q(n) =
√

(∆/2)2 + n. For a certain particle number n the energy
E|n,−〉 is always smaller than E|n,+〉 and thus E|n,−〉 is the ground state energy of the
sector with n particles, i. e., of the block Bn. The eigenvectors |n, α〉 of the matrix Bn

are termed dressed states and are given by

|n, α〉 = unα |n− 1, ↑〉+ vnα |n, ↓〉 , (D.8)

where n > 0, (un+, vn+) ≡ (sin θ(n), cos θ(n)) and (un−, vn−) ≡ (cos θ(n), − sin θ(n))
with the following relations

sin θ(n) =
√

(q(n)−∆/2)/2q(n)
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and

cos θ(n) =
√

(q(n) + ∆/2)/2q(n) .

An exception is the bare state |0, ↓〉, which forms a 1×1 block of zero particles and has the
eigenvalue E|0, ↓〉 = 0, independently of the detuning ∆. According to the notation used
in Eq. (D.8), we denote this state as |0, −〉. In order to obtain the phase boundary for
zero hopping between two adjacent Mott lobes, the energies E|n,−〉 and E|n+1,−〉 have to
be set equal. The energies of the states |m, −〉 are used, as the phase diagram is evaluated
for the ground state. The comparison of the energies yields (µ − ωc) = q(n)− q(n + 1)
for the location of the phase boundary at zero hopping.

D.3. First-order degenerate perturbation theory

In this appendix we evaluate the results of first-order degenerate perturbation theory
for the single-particle and single-hole excitation bands of the JCL model. To apply first-
order degenerate perturbation theory the matrix elements of the perturbation Ĥ1 =∑

ij tij a
†
i aj, where tij is the hopping matrix, have to be evaluated with respect to the

degenerate states |Ψα, l
p 〉 and |Ψα, l

h 〉, see Eq. (3.24). As the hopping term Ĥ1 does not
change the total particle number and does not effect the excitation α, the following two
matrices have to be evaluated; one for single-particle excitations

(Mα
p )ll′ ≡ 〈Ψα, l

p |Ĥ1|Ψα, l′
p 〉 (D.9)

and one for single-hole excitations

(Mα
h )ll′ ≡ 〈Ψα, l

h |Ĥ1|Ψα, l′

h 〉 . (D.10)

Plugging Eq. (3.24a) in Eq. (D.9) yields

(Mα
p )ll′ =

N⊗

ν=1

ν 6=l

〈n, −|ν 〈n+ 1, α|l
∑

i, j

tij a
†
i aj

|n+ 1, α〉l′
N⊗

ν′=1

ν 6=l′

|n, −〉ν′ . (D.11)

Due to the orthogonality of the eigenvectors of sectors with different particle number,
the conditions i = l and j = l′ hold, which reduce the matrix elements to

(Mα
p )ll′ = tll′ 〈n, −|l′ 〈n+ 1, α|l a

†
l al′ |n+ 1, α〉l′ |n, −〉l

= tll′ | 〈n + 1, α| a† |n, −〉 |2 . (D.12)

In the second step, we dropped the site index as the expectation value does not depend
on the specific lattice site. The corrected matrix elements are thus the old ones with
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renormalized hopping strength

−t̃αp ≡ −t| 〈n+ 1, α| a† |n, −〉 |2

= −t|
√
nun+1α un− +

√
n+ 1 vn+1α vn−|2 . (D.13)

Analogously, one obtains

(Mα
h )ll′ = tl′l| 〈n− 1, α| a |n, −〉 |2 (D.14)

for the matrix elements defined in Eq. (D.10). From that the renormalized hopping
strength for single-hole excitations is evaluated as

−t̃αh = −t|
√
n− 1un−1α un− +

√
n vn−1α vn−|2 . (D.15)

The eigenvalues of the matrices Mα
p/h are the first-order corrections and thus the cor-

rected energies E|n±1, α〉(k) of the one-dimensional JCL model are given by

E|n+1, α〉(k) = E|n+1, α〉 − 2 t̃αp cos k and (D.16a)

E|n−1, α〉(k) = E|n−1, α〉 − 2 t̃αh cos k , (D.16b)

respectively, where k is a wave vector of the first Brillouin zone. Within first-order
degenerate perturbation theory we obtain

ωα
p,1 = E|n+1, α〉(k)− E|n,−〉

= (ωc − µ) + α q(n+ 1) + q(n)− 2 t̃αp cos k (D.17)

for the single-particle excitation band and

ωα
h,1 = E|n,−〉 − E|n−1, α〉(k)

= (ωc − µ)− α q(n− 1)− q(n) + 2 t̃αh cos k . (D.18)

for the singe-hole excitation band.

D.4. Polariton operators in the single-site limit

In this appendix, we want to analyze the polaritonic feature in the single-site limit for
zero detuning.

In the single-site limit it is exactly possible to construct a polariton operator which,
applied to the many-body eigenstate |n,−〉, generates the eigenstates |n± 1, α〉. The
polaritonic weights follow from

(βa† + γσ+) |n,−〉 =

=
β
√
n− γ√
2

|n, ↑〉 − β
√
n+ 1

2
|n+ 1, ↓〉

!
= |n+ 1, α〉

βαp,n
γαp,n

=
1

α
√
n+ 1 +

√
n

(D.19)
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Here, we explicitly include the filling n as index. So the relative weights are (
√
n+ 1 +√

n)−1 for the upper band (α = +) and −(
√
n+ 1 +

√
n) for the lower band (α = −).

This means that in the lower band the weights have opposite sign and the polaritons are
of predominant photonic character, while the opposite applies to the upper band. The
modulus of relative weight is just the inverse, i. e., |β+/γ+| = |γ−/β−|.

Next, we study the hole case for n > 1

(βa+ γσ−) |n,−〉 =

= β

√
n− 1

2
|n− 2, ↑〉+ γ − β√n√

2
|n− 1, ↓〉

!
= |n− 1, α〉

βαh,n
γαh,n

=
1√

n+ α
√
n− 1

, (D.20)

which is positive for both bands α = ±. Again we have the reciprocal property β+/γ+ =
γ−/β− and the lower band has predominantly photonic character, while the opposite is
the case in the upper band.

Now we want to scrutinize the generalized eigenvalue problem of the Green’s function.
The single-site Green’s function reads

GS
IJ (ω) =

∑

α=±

pQI,α
pQ†α,J

ω − ωp,α
−
∑

α=±

hQI,α
hQ†α,J

ω − ωh,α

pQI,α = 〈n + 1, α| d†I |n,−〉
∗

hQI,α = 〈n − 1, α| dI |n,−〉 ,

where we introduced the operators d1 ≡ a and d2 ≡ σ−. For the single-particle term we
obtain

pQ1,α = 〈n+ 1, α| a† |n,−〉∗ = 1

2
(
√
n− α

√
n+ 1)

pQ2,α = 〈n+ 1, α|σ+ |n,−〉∗ = −1

2
.

With the definition xα = ( pQ1,α,
pQ2,α)

T the integrated spectral density for the particle
part can be expressed as

Ãα = xα xα
T .

The overlap matrix Sp ≡ 〈dId†J〉 is readily obtained by the spectral theorem

Sp = x+ x+
T + x− x−

T ,

and the generalized eigenvalue problem for the polariton weights according to Eq. (3.19)
reads

(1− λ)xα xα
T z̃α = λx−α x−α

T z̃α .
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The eigenvalues are zero and one. For the polariton weights we are interested in the
latter. The corresponding eigenvector is simply given by the vector orthogonal to x−α

z̃α =
1

2

(
1√

n+ α
√
n+ 1

)
.

With that one obtains for the ratio of the weights

βαp,n
γαp,n

=
1√

n+ α
√
n+ 1

,

which is in agreement with the exact result in Eq. (D.19).
Now we address the hole case, again for n > 1,

hQ1,α = 〈n− 1, α| a |n,−〉 = 1

2
(
√
n− 1− α

√
n)

hQ2,α = 〈n+ 1, α| σ− |n,−〉 = α
1

2
.

We proceed as in the particle case with the definition of xα
T = ( hQ1,α,

hQ2,α). The
remaining steps are the same as before and we end up with

βαh,n
γαh,n

=
α√

n− 1 + α
√
n
=

1√
n+ α

√
n− 1

,

which is also in agreement with the exact result, see Eq. (D.20). So we see that the deter-
mination of the polaritonic weight via the generalized eigenvalue problem is reasonable.
In the single-site limit, the exact many-body eigenstates |n± 1, α〉 can be generated
correctly by suitable polariton operators acting on the state |n,−〉. The operators are,
however, not universal, they depend on n and in the lattice case even on k. On top
of that, the polariton creation operator for holes is not the adjoint of the correspond-
ing polariton creation operator of the particle type, or in other words its annihilation
operator.
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[73] Sénéchal, D. An introduction to quantum cluster methods. arXiv:0806.2690
(2008).

[74] Fetter, A. L. & Walecka, J. D. Quantum Theory of Many-Particle Systems
(McGraw-Hill, New York, 1971).

[75] Potthoff, M. & Balzer, M. Self-energy-functional theory for systems of interacting
electrons with disorder. Phys. Rev. B 75, 125112 (2007).

[76] Haley, S. B. & Erdös, P. Standard-Basis operator method in the Green’s-Function
technique of Many-Body systems with an application to ferromagnetism. Phys.
Rev. B 5, 1106 (1972).

[77] Aichhorn, M. & Arrigoni, E. Weak phase separation and the pseudogap in the
electron-doped cuprates. Europhys. Lett. 72, 117–123 (2005).

[78] Aichhorn, M., Arrigoni, E., Potthoff, M. & Hanke, W. Antiferromagnetic to su-
perconducting phase transition in the hole- and electron-doped Hubbard model at
zero temperature. Phys. Rev. B 74, 024508–12 (2006).

[79] Potthoff, M. Non-perturbative construction of the Luttinger-Ward functional.
Condens. Matt. Phys. 9, 557 (2006).

[80] Balzer, M., Hanke, W. & Potthoff, M. Mott transition in one dimension: Bench-
marking dynamical cluster approaches. Phys. Rev. B 77, 045133–18 (2008).

[81] Balzer, M., Hanke, W. & Potthoff, M. Importance of local correlations for the
order parameter of high-Tc superconductors. arXiv:0912.1282 (2009).

[82] Byczuk, K. & Vollhardt, D. Correlated bosons on a lattice: Dynamical mean-field
theory for Bose-Einstein condensed and normal phases. Phys. Rev. B 77, 235106
(2008).

[83] Anders, P., Gull, E., Pollet, L., Troyer, M. & Werner, P. Dynamical mean field
solution of the Bose-Hubbard model. Phys. Rev. Lett. 105, 096402 (2010).

[84] Sokolowski-Tinten, K., Blome, C., Blums, J., Cavalleri, A., Dietrich, C., Tara-
sevitch, A., Uschmann, I., Forster, E., Kammler, M., Horn-von Hoegen, M. &
von der Linde, D. Femtosecond X-ray measurement of coherent lattice vibrations
near the Lindemann stability limit. Nature 422, 287–289 (2003).

164



Bibliography

[85] Goulielmakis, E., Yakovlev, V. S., Cavalieri, A. L., Uiberacker, M., Pervak, V.,
Apolonski, A., Kienberger, R., Kleineberg, U. & Krausz, F. Attosecond control
and measurement: Lightwave electronics. Science 317, 769–775 (2007).

[86] Haug, H. & Jauho, A.-P. Quantum Kinetics in Transport and Optics of Semicon-
ductors (Springer, Heidelberg, 1998).

[87] Rammer, J. & Smith, H. Quantum field-theoretical methods in transport theory
of metals. Rev. Mod. Phys. 58, 323 (1986).

[88] Meir, Y. & Wingreen, N. S. Landauer formula for the current through an inter-
acting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992).

[89] Meir, Y., Wingreen, N. S. & Lee, P. A. Low-temperature transport through a
quantum dot: The Anderson model out of equilibrium. Phys. Rev. Lett. 70, 2601–
2604 (1993).

[90] Ryndyk, D. A., Gutierrez, R., Song, B. & Cuniberti, G. Green function techniques
in the treatment of quantum transport at the molecular scale. In Castleman, A. W.,
Toennies, J. P., Yamanouchi, K., Zinth, W., Burghardt, I., May, V., Micha, D. A. &
Bittner, E. R. (eds.) Energy Transfer Dynamics in Biomaterial Systems, vol. 93 of
Springer Series in Chemical Physics, 213–335 (Springer Berlin Heidelberg, 2009).

[91] Schoeller, H. A perturbative nonequilibrium renormalization group method for
dissipative quantum mechanics. Eur. Phys. J. Special Topics 168, 179–266 (2009).

[92] Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H. P. & Zoller, P. Quantum
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[132] Capogrosso-Sansone, B., Söyler, Ş. G., Prokof’ev, N. & Svistunov, B. Monte Carlo
study of the two-dimensional Bose-Hubbard model. Phys. Rev. A 77, 015602–4
(2008).

[133] Rokhsar, D. S. & Kotliar, B. G. Gutzwiller projection for bosons. Phys. Rev. B
44, 10328–10332 (1991).

[134] Capello, M., Becca, F., Fabrizio, M. & Sorella, S. Mott transition in bosonic
systems: Insights from the variational approach. Phys. Rev. B 77, 144517 (2008).

[135] Freericks, J. K. & Monien, H. Phase diagram of the Bose-Hubbard model. Euro-
phys. Lett. 26, 545–550 (1994).

[136] Freericks, J. K. & Monien, H. Strong-coupling expansions for the pure and disor-
dered Bose-Hubbard model. Phys. Rev. B 53, 2691 (1996).

[137] Elstner, N. & Monien, H. Dynamics and thermodynamics of the Bose-Hubbard
model. Phys. Rev. B 59, 12184 (1999).

[138] Buonsante, P. & Vezzani, A. Cell strong-coupling perturbative approach to the
phase diagram of ultracold bosons in optical superlattices. Phys. Rev. A 72, 013614
(2005).

[139] Teichmann, N., Hinrichs, D., Holthaus, M. & Eckardt, A. Bose-Hubbard phase
diagram with arbitrary integer filling. Phys. Rev. B 79, 100503–4 (2009).

[140] Teichmann, N., Hinrichs, D., Holthaus, M. & Eckardt, A. Process-chain approach
to the Bose-Hubbard model: Ground-state properties and phase diagram. Phys.
Rev. B 79, 224515–14 (2009).

168



Bibliography

[141] Sengupta, K. & Dupuis, N. Mott-insulator-to-superfluid transition in the Bose-
Hubbard model: A strong-coupling approach. Phys. Rev. A 71, 033629 (2005).
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Pötz, W. Electronic correlations in short period (CrAs)n/(GaAs)n ferromagnetic
heterostructures. Phys. Rev. B 83, 035307 (2011).

[246] Bloch, I., Greiner, M., Mandel, O., Hänsch, T. W. & Esslinger, T. Sympathetic
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