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Abstract
Wireless sensor networks (WSNs) increasingly penetrate our everyday life and are
already employed in a wide range of application areas, such as habitat monitoring,
precision agriculture, home automation, and logistics. Recently, WSNs are also
increasingly employed in safety-critical applications such as patient and structural
health monitoring. These applications impose strict dependability requirements and
failures can have severe consequences.
Due to an increasing number of real-world applications, the task of implementing

and deploying WSNs is increasingly shifted to end-users. These end users, however,
often do not have extensive expertise in the areas of embedded systems and wireless
communication. To support a further spread of the technology it is important to
empower domain experts to successfully realize WSN systems without the help of
WSN experts. Current programming techniques for WSNs do not cope well with
these challenges. Even today, the majority of WSN programs are still written in
low-level programming languages, such as C, and in a highly node-centric mindset.
Such a programming approach requires an in-depth understanding of the underlying
technology and the employed hardware platform. A number of individual program-
ming abstractions to solve individual programming challenges exist, but these are
not well integrated and are difficult to combine. In addition, to meet strict depend-
ability requirements in hostile environments, communication protocols need to be
carefully tuned to the expected environmental changes. This can be a tedious task
that requires significant expertise and a clear understanding of how the environment
affects the hardware and the communication protocols.
To enable a widespread use of WSNs, one must ensure that the design and deploy-

ment process requires as little technical knowledge as possible and can be automated
as much as possible. We identified and addressed two major challenges that signif-
icantly increase the effort needed to implement a WSN solution and that hinder
application domain experts in successfully deploying a WSN on their own: (1) the
lack of a high-level extensible macro-programming system for WSNs, and (2) the
difficulty of dependably configuring WSN communication protocols. In this thesis
we propose two frameworks that individually help to solve these challenges.
First, we introduce a novel macroprogramming framework that allows the seamless

integration of existing and future programming abstractions. The underlying macro-
programming language is based on Java and explicitly supports object-oriented pro-
gramming. The use of a high-level language that hides many of the low-level issues
of WSN programming greatly reduces the effort required to implement such systems.
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An evaluation based on typical WSN applications demonstrates the feasibility of the
approach and its suitability for resource-constrained devices, such as sensor nodes.
The second contribution is a framework to automate the configuration of WSN

communication protocols based on user requirements and abstract models of the en-
vironment. This framework builds on stochastic optimization techniques to identify
configurations that guarantee a specific performance without requiring significant
knowledge from the user. In an evaluation, we demonstrate that this approach
works well for a realistic case-study and that the performance of the employed tools
is sufficient to be useful within a typical design process.
With this thesis, we are able to show that the burden and especially the required

knowledge to successfully design and deploy a WSN can be significantly reduced.
Support systems such as the ones presented in this thesis will make the technology
more approachable and we believe that this will lead to an increased uptake in
industry. Thereby, WSNs will turn into a useful tool for a large number of application
areas.
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Zusammenfassung
Drahtlose Sensornetze (WSN) spielen zunehmend eine bedeutende Rolle in unse-
rem Alltag und werden für eine Vielzahl unterschiedlicher Anwendungen eingesetzt,
beispielsweise bei der Überwachung von Biotopen, der teilflächenspezifischen Land-
wirtschaft, der Heim-Automatisierung und in der Logistik. Neuerdings werden WSN
auch zunehmend für sicherheitskritische Anwendungen eingesetzt, wie der Überwa-
chung von Patienten oder der strukturellen Integrität von Gebäuden. Diese Anwen-
dungen stellen hohe Anforderungen an die Zuverlässigkeit, da Störungen schwerwie-
gende Folgen haben können.
Auf Grund der zunehmenden Anzahl von Anwendungen werden WSN zuneh-

mend von Nutzern ohne tiefgreifende Kenntnisse im Bereich eingebetteter System
und drahtloser Kommunikation umgesetzt. Um die Verbreitung der Technologie zu
unterstützen, ist es wichtig, dass Anwendungsexperten entsprechende Systeme ohne
die Hilfe von WSN-Experten umsetzten können. Aktuelle Entwicklungsmethoden
für WSN sind hierzu weniger geeignet. Heutzutage wird die Mehrheit von WSN-
Programme in der hardwarenahen Sprache C und auf eine knoten-zentrierte Weise
geschrieben.
Folglich ist ein gutes Verständnis der zugrundeliegenden Hardware und Technolo-

gien nötig. Einige Programmierabstraktionen können bereits zur vereinfachten Lö-
sung individueller Probleme eingesetzt werden, lassen sich jedoch schlecht in einer
einzigen Anwendung kombinieren. Darüber hinaus müssen die verwendeten Kom-
munikationsprotokolle in der Regel auf die Eigenschaften der Einsatzumgebung ab-
gestimmt werden, was eine mühsame Aufgabe darstellt. Diese Aufgabe kann nur mit
einem umfangreichen Wissen bezüglich des Einflusses von Umgebungseigenschaften
und dem Verhalten der Kommunikationsprotokolle bewältigt werden.
Um eine weitreichende Nutzung von WSN zu ermöglichen, muss der Entwick-

lungsprozess vereinfacht und so weit wie möglich automatisiert werden. Wir ha-
ben insbesondere zwei Herausforderungen identifiziert, die den nötigen Aufwand
deutlich erhöhen und die einen erfolgreichen eigenständigen Einsatz durch Anwen-
dungsexperten verhindern: (1) Das Fehlen eines erweiterbaren abstrakten Macro-
Programmiersystems und (2) die Schwierigkeit der zuverlässigen Konfiguration von
WSN-Kommunikationsprotokollen. In dieser Arbeit schlagen wir zwei Frameworks
vor, die zur Lösung der beiden Probleme beitragen können.
Als erstes präsentieren wir ein neues Macro-Programmiersystem, das es erlaubt

bestehende und zukünftige Programmierabstraktionen einzubinden. Die verwendete
Sprache basiert auf Java und unterstützt die objektorientierte Programmierung. Die
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Verwendung einer Hochsprache, die viele der technischen Details versteckt, verrin-
gert die Schwierigkeit der erfolgreichen Umsetzung von WSN-Systemen deutlich. In
der Auswertung demonstrieren wie die Umsetzbarkeit des Ansatzes und seine Eig-
nung für Systeme mit begrenzten Ressourcen anhand typischer WSN-Anwendungen.
Das zweite Framework unterstützt die automatisierte Konfiguration von WSN-

Kommunikationsprotokollen, basierend auf den Anforderungen der Anwender und
abstrakten Umgebungsmodellen. Es nutzt stochastische Optimierungsverfahren um
Konfigurationen zu identifizieren, die eine bestimmte Leistungsfähigkeit garantieren
ohne dass der Nutzer über ein umfangreiches Fachwissen verfügen muss. Wir zeigen,
dass dieser Ansatz in vertretbarer Zeit nützliche Konfigurationen erzeugen kann und
das er sich zur Anwendung in einem typischen Entwicklungsprozess eignet.
Mit dieser Arbeit können wir insgesamt zeigen, dass sich der Aufwand und das

nötige Fachwissen bei der Entwicklung von WSN deutlich reduzieren lassen. Systeme
wie die vorgestellten werden diese Technologien in Zukunft zugänglicher machen und
damit zu einer zunehmenden kommerziellen Anwendung führen. WSN werden sich
so als nützliche Werkzeuge in einer breiten Palette von Anwendungen erweisen.
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1 Introduction
Evolving from early research at the University of California, Berkeley at the begin-
ning of the 21st century, wireless sensor networks (WSNs) have become an important
research area with their own dedicated conferences and journals.
A typical WSN consists of a number of tiny devices equipped with a micro-

controller, a low-power radio, and a number of sensors to perceive their surrounding
environment. These devices form a multi-hop network that enables delivery of sensed
data and cooperation among nodes. Individual nodes are usually battery powered
to enable flexible placement without the need for wired infrastructure. The original
vision of WSNs consisted of randomly dropping large quantities of these tiny and
low-cost embedded devices over a large area in order to enable ad-hoc measure-
ments [Warneke et al., 2001]. However, this vision was beyond the technological
capabilities at the time and typical WSNs tend to still consist of a smaller num-
ber of approximately matchbox-sized devices, often called “motes”. Nevertheless,
their relatively small size enables placement close to the phenomenon of interest,
enabling unprecedented spatial and temporal measurement resolution at rather low
costs. Recently, such WSNs tend to be directly connected to the Internet or even
use Internet technology within the network and form a part of the Internet of things
(IoT). The IoT is often seen as the next major evolution of the Internet. According
to Evans [2011] the number of devices connected to the Internet will reach 50 billion
by 2020 and thus such devices will soon outnumber people as Internet users.
The possible increase in spatial and temporal resolution of remote measurements,

combined with the minimal need of human intervention, led to a great success of
the WSN vision, and paved the way for the adoption in a wide range of applica-
tions, ranging from environmental monitoring and precision agriculture to industrial
automation and personalized health-care [Oppermann, Boano, and Römer, 2013].
Recently, WSNs have also been increasingly employed in safety-critical applications,
such as systems to control traffic [Ganti et al., 2010; San Francisco Municipal Trans-
portation Agency, 2011], to inspect the structural health of buildings [Kim et al.,
2007] and to monitor patients [Boano, Oppermann, and Römer, 2013]. Such appli-
cations impose strict dependability requirements on communication performance, as
failures can have severe consequences.
Due to an increasing number of real-world applications, the task of implementing

and deploying WSNs is increasingly shifted to users without extensive expertise in
the areas of embedded systems and wireless communication. Until today, most WSN
deployments have been performed by experts with a strong scientific background.
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1 Introduction

Their main purpose is the demonstration of new technologies and the exploration of
remaining limitations; providing a working solution for the original challenges of the
application is often only a secondary concern. Consequently, most current deploy-
ments are extensively assisted by WSN researchers and experts. To support a further
spread of the technology it is important to also empower application-domain experts
to successfully realize WSN systems on their own. The unique properties of WSNs
make improving the accessibility of the technology a challenging task. WSNs appli-
cations rely on efficient and reliable wireless communication and data processing –
already a challenge in itself – while only employing cheap and resource-constrained
hardware devices. In addition, these devices usually rely on non-rechargeable energy
sources and consequently one needs to reduce energy consumption as much as possi-
ble to enable a sufficient system lifetime. Adequate solutions to these problems and
successful deployments require significant expertise and experience [Buonadonna et
al., 2005]. Even experts are not always able to successfully develop a WSN appli-
cation without extensive experimentation [Langendoen, Baggio, and Visser, 2006].
While WSNs have received a high level of research attention and interest [Baronti
et al., 2007], their adoption outside of the scientific community is still hindered by
the difficulty of successfully designing a new WSN application.
Existing WSN programming techniques provide little support to the user. Even

today, the majority of WSN programs are still written in low-level programming
languages, such as C, and in a highly node-centric mindset. Communication is ex-
plicitly handled by passing messages between individual nodes. Such a programming
approach requires an in-depth understanding of the underlying technology and the
employed hardware platform. Existing platform-independent WSN operating sys-
tems, such as Contiki [Dunkels, Grönvall, and Voigt, 2004] and TinyOS [Levis et al.,
2005] only provide a shallow abstraction from the peculiarities of the underlying
hardware. A number of more high-level programming abstractions exist that sim-
plify the implementation of communication and hide low-level details [Mottola and
Picco, 2011; Sugihara and Gupta, 2008]. While these abstractions surely help to
overcome individual programming challenges, they are usually not well integrated
and difficult to combine within a single application. In addition, also a number of
more holistic macroprogramming languages exist that include a fixed set of program-
ming abstractions [Madden et al., 2005; Whitehouse, Zhao, and Liu, 2006]. These
programming systems help to raise the abstraction level of WSN programming, but
existing systems are usually monolithic; and newly developed or application-specific
abstractions cannot be added easily. They lack the flexibility required in order to
be adapted to the needs and requirements of a specific application. Well known
examples, such as TinyDB [Madden et al., 2005], are only useful for a particular
class of applications.
In addition, the implementation of the application is not the only challenge. The

underlying system and communication protocols also need to be configured in a
suitable way. Correctly tuning the parameters of the systems and protocols can be
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a tedious task by itself. Even for experts in the field, it is often difficult and labor
intensive to find the right trade off that satisfies multiple requirements for the appli-
cation at hand, for example, achieving both a high level of reliability and low energy
consumption [Barrenetxea et al., 2008; Langendoen, Baggio, and Visser, 2006]. This
challenge is further aggravated by the fact that WSNs are often deployed in hos-
tile environments that significantly affect their performance. For instance, systems
deployed outdoors are affected by temperature fluctuations and changing weather
conditions. To cope with these challenges and to meet strict dependability require-
ments, including in hostile environments, the parameters of the communication pro-
tocols need to be carefully tuned in relation to the expected environmental changes.
This is difficult, however, to attain, as every application has unique properties and
requirements, and there is no one-size-fits-all solution [Römer and Mattern, 2004].
Consequently, current deployments often employ default parameters that lead to
suboptimal and unpredictable performance.

1.1 Problem Statement
As of today, a more widespread deployment of WSN technology is hindered by the
complexity associated to designing and deploying such systems. This complexity
is difficult to overcome by the intended users, who are expected to be application-
domain experts with little knowledge in the areas of wireless communication and
embedded systems. To enable a more widespread use of WSNs, one must ensure that
the design and deployment process requires as little specialized technical knowledge
as possible and can be automated as much as possible.
In this thesis, we demonstrate that the accessibility of WSN technology can be sig-

nificantly increased, without exceeding the capabilities of the underlying hardware.
Within the WSN development process, we identified two major unsolved challenges
that significantly increase the effort needed to implement a WSN solution and that
hinder application domain experts in successfully deploying WSNs on their own.

The lack of a high-level extensible macro-programming system for WSNs.
Despite 15 years of WSN research, in practice the programming of WSNs is still
mostly done on a low level of abstraction and in a node-centric way. Each node is
programmed individually with low-level C code. Communication between nodes is
handled explicitly by the programmer, which requires an understanding of the pe-
culiarities of radio communication and the hardware platform. In addition, building
the network behavior from individual building blocks is tedious and error prone.
To ease the development of WSN applications and to make the technology more

accessible for less-skilled users, we propose the use of a higher-level programming
language that hides technical details. The language should also abstract from the
employed hardware and details of wireless communication. To be useful, such a
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programming framework needs to support a wide range of different applications.
In addition, as a body of more specific programming abstractions already exists,
it should be possible to integrate existing and future programming abstractions.
Consequently, the system needs to extendible. To be appealing for the intended
users, the language should also be familiar to them and easy to use, for example by
employing established concepts and syntactic elements from widely used program-
ming languages. Nevertheless, such a programming framework needs to be designed
in a way that makes it suitable for highly resource-constrained devices, like sensor
nodes. Sensor nodes typically employ 8- or 16-bit microcontrollers and memory
in the range of a few kilobytes. Consequently, the programming framework may
not introduce a significant overhead and should not hamper the implementation of
efficient algorithms.

The difficulty of configuring WSNs. A large number of different WSN appli-
cations already exist [Oppermann, Boano, and Römer, 2013], each with its own
requirements. For example, some applications, like temperature monitoring, require
only minimal bandwidth, others like the tracing of vibrations in structural health
monitoring demand a high bandwidth [Xu et al., 2004]. The diverse set of appli-
cation scenarios necessitates an individual configuration of employed protocols and
components, to be able to successfully meet the specific requirements. In addition,
WSNs tend to be deployed in very diverse environments that significantly affect
the performance and reliability of the network. The configuration of the network
needs to take these properties into account. The heterogeneity in the application
scenarios and environments of WSN deployments effectively renders a one-size-fits-
all solution impossible and it is to be expected that a need for different solutions to
optimally address application-specific problems will also remain in the future. The
use of default values often leads to significantly degraded performance and yields
unpredictable results. Manual configuration typically relies mainly on intuition and
experience. Suitable settings are often determined by trying out different config-
urations in the field – a time consuming task. Even for computer scientists with
WSN experience, it is often difficult to make the right choices; for the intended end
users with less-extensive experience this is close to impossible. This is a particular
problem since a wrong decision taken in the design phase can severely affect the
performance and reliability of the deployed WSN. Current solutions, even though
deployed with the help of experts, are often poorly able or even unable to fulfill the
intended purpose [Langendoen, Baggio, and Visser, 2006].
Therefore, there is a need for a simpler configuration of WSNs that does not over-

whelm the intended users of the technology. The task of configuring the network
should be largely automated. Still, the process needs to ensure that the WSN is
configured such that the specific performance and dependability requirements of an
application can be met. The configuration tool should also provide reliable predic-
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tions about the future performance of the network, to be able to ensure that the
requirements will be met even under adverse environmental conditions. Neverthe-
less, the system needs to take the resource-constrained nature of WSNs into account.
It may not introduce an excessive overhead, especially at run-time.

1.2 Methodology
The work presented in this thesis builds on a systematic literature research survey-
ing applications of WSNs within the last 15 years. The careful analysis of existing
WSN applications enabled us to identify important challenges for the adoption of
WSN technology. In addition, we used this survey to identify typical performance
metrics for WSNs and derive a catalog of application requirements that are mean-
ingful for the average user. Based on this analysis and identified challenges our work
focuses on macroprogramming concepts and automatic configuration for WSNs. Au-
tomatic configuration systems for WSNs particularly have seen comparatively little
research and no established solutions exist. As a consequence our work is largely
exploratory. The conceptual solutions are implemented in prototypical systems to
assess their feasibility. The developed systems are evaluated based on real-world
case studies to ensure their practicability and to identify remaining shortcomings.
Most experiments were conducted in testbed environments to create a controlled
but realistic environment [Boano et al., 2014]. Some experiments also employed the
Cooja simulation environment [Eriksson et al., 2006] to be able to cover a larger
design space.
An important goal of our work is to provide a foundation for future research. The

software systems developed as part of this thesis can be employed as a basis and
framework for further exploration of the design spaces of macroprogramming and
automatic configuration solutions for WSNs. In the remainder of the thesis, we only
explicitly consider WSNs, but most of the developed concepts and frameworks can
be equally applied to the IoT and more generic cyber-physical system (CPS).

1.3 Organization of the Thesis
The remainder of the thesis is structured as follows. In Chapter 2 a bird’s eye view
of the general approach and overarching architecture behind the software systems
developed as part of this work is provided. Chapter 3 reviews existing research and
results in the areas of macroprogramming and automatic configuration. In addition,
this chapter presents a brief overview of the development of WSN technology and
applications. Chapter 4 introduces the macroprogramming framework developed
within this thesis, while Chapter 5 presents our work on automatic configuration
for WSNs. Finally, the thesis is concluded by Chapter 6. Here, we summarize the
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results and contributions of our work and take a look at possible future research.
The scientific publications underlying this thesis are included in Chapter 7. This
chapter also lists all remaining articles, papers, and technical reports published while
working on this dissertation.
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2 Approach and Architecture
In this chapter we give a high-level overview of our approach to make WSN pro-
gramming and configuration more accessible to non-expert users. First, we present
the envisioned development process for such systems. Here, we also highlight the dif-
ferent people and their expected roles within the process. Next, we provide a bird’s
eye view of the overarching system architecture. In this section, we also present
how the individual components are expected to interact to support the previously
introduced design process. Finally, we briefly sketch how the tools can be integrated
in a model-based design process.

2.1 Envisioned Development Process
As of today, WSN systems are typically developed in a largely unstructured process.
The development process does not usually clearly distinguish between implementa-
tion and configuration aspects. In many current projects, especially in a scientific
environment, the users and the developers of the system are actually identical and
consequently the responsibilities for individual tasks are not well defined. Tool sup-
port is limited and for important phases of the design process, such as requirement
specification and configuration, no suitable tools are currently available.
As WSNs are increasingly used for important applications, a more structured

development process is needed. In addition, the development of such systems will
increasingly adopt tools to support all phases. We expect that in the future WSN
system development will follow a process as depicted in Figure 2.1. In the current
process model, we only consider software aspects and assume that the hardware is
already deployed prior to the software deployment. Hardware deployment is already
supported by a number of existing tools [Dyer et al., 2007; Kim and Cobb, 2012;
Ringwald and Römer, 2007; Xiang et al., 2012]. In the following, the process model
will serve as a basis for the description of the developed systems and tools.
At the start of the design process, the future user of the system defines functional

and non-functional requirements for theWSN application under development. Based
on these requirements, a software developer with domain knowledge implements the
functionality of the system. In a next step, implementations of system components
and communication protocols are selected and configured such that they enable the
system to also meet the non-functional requirements of the user. The configured
software system can finally be deployed at the pre-installed WSN. After the deploy-
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Figure 2.1: Wireless sensor network development process. Those steps of the development
process that are covered by the systems and frameworks developed within this
thesis are highlighted with a gray background.

ment, to ensure continued reliable operation, the system needs to be maintained
throughout the entire lifetime of the system.
Three people are primarily involved with the process: the user, a software devel-

oper and a dedicated WSN expert. The ultimate goal of the system is to provide
useful services to the end-user. Only the user is initially aware of the tasks the
system is expected to fulfill and only he or she knows the required performance and
reliability. As we cannot expect a regular user to have any experience with software
development, the actual implementation work will usually be carried out by a hired
software developer. In contrast to the current situation, this developer does not
necessarily need to possess WSN-specific knowledge and skills, as we aim to also
enable less specialized developers to successfully carry out the implementation and
configuration of a WSN application. To enable cost-efficient operation, the con-
tinued maintenance following the deployment of the application should not require
ongoing assistance by experts and basic maintenance tasks should be manageable
by the users themselves. While the development of new applications should ideally
not require expert knowledge, some of the involved tools depend on pre-made com-
ponents. The development of these components still requires significant expertise.
Consequently, we expect these components to be developed by experts that are also
likely to be involved with the development of WSN hardware and operating sys-
tems. A growing repository of ready-made components should increasingly reduce
the need for a direct involvement of these experts in WSN application development.
In the next sections, we will look at the individual steps of the development process
in more detail.
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2.1.1 Requirement Specification
In the first phase of the design process, the requirements of the application are
determined and recorded in a semi-formal specification. To be useful, the WSN
needs to later fulfill the actual needs of the intended end-user and consequently it is
inevitable to involve him or her with the requirement analysis. We need to empower
the user to formulate expectations on non-functional aspects of the system, such
as performance and reliability. In general, we do not expect the end user to be
familiar with the employed technologies. Consequently, the requirements need to be
formulated on an abstract level and in terms that are understandable and relevant
to the intended users.
In Paper B, we developed a requirements catalog that can be employed to support

users with formulating a complete and consistent specification of the non-functional
properties of a WSN. This catalog can also be used to steer the requirement analysis
and ensures that relevant information is available in the proceeding phases. The
requirement catalog contains 29 individual dimensions that can be used to define
different objectives and constraints for the design process. While this catalog also
covers aspects like sensor coverage and security, in the remainder of the thesis we will
focus on dependability properties and, in particular, on the dimensions of lifetime,
packet reception rate, and latency.

2.1.2 Implementation
The second step of the development process is the actual implementation of the ap-
plication based on the previously defined requirements. In contrast to the previous
phase, we expect this step to be executed by a software engineer with some domain
knowledge, but in contrast to the current situation, we do not expect this devel-
oper to possess extensive knowledge of embedded or wireless networked systems.
By reducing the amount of required specialized knowledge, we largely increase the
number of potential developers and increase their chance of successfully implement-
ing an application that meets the user’s expectations. For the implementation, the
programmer can resort to pre-implemented programming abstractions, that solve
typical programming challenges and hide the technological details of the underlying
system.
As the development of these reusable programming abstractions requires exten-

sive knowledge of networked embedded systems, we expect the development of novel
programming abstractions to be conducted by experts. Especially innovative appli-
cations may thus initially still require the involvement of a WSN expert to create
new application-specific abstractions, but over time an increasing number of ready-
made abstractions can be expected to exist. The extensible macro-programming
framework employed within this phase is described in more detail in Chapter 4 and
Paper E.
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2.1.3 Selection of Protocols and Components

After creating the actual application, the underlying system needs to be configured
according to the deployment environment and application requirements. As the first
step, one needs to select suitable components and protocols to provide the required
basic functionality. In many cases, several components are available that provide
similar functionality but differ in their performance and reliability. There is not
usually a single solution that optimally satisfies the needs of all applications and
environments. Consequently, one needs to select components with an optimal trade
off for the given application.
In Chapter 3 we present a number of existing works that tackle the manual or

automatic selection of suitable protocols and components. Like the programming
abstractions, we expect the actual components to be implemented by experts. Com-
mon components are typically distributed by the respective sensor node operating
system (OS) or by the hardware manufacturer.

2.1.4 Configuration

In addition to choosing suitable components, the performance and reliability of a
WSN application is further affected by the configuration of the employed compo-
nents. Typically sensor network protocols and components provide parameters to
fine-tune their operation and to adapt them to the deployment environment and
application requirements. A typical example is the timing parameters in media ac-
cess control (MAC) protocols. As with the selection of protocols, there is usually
not a one-size-fits-all setting that is suitable for all applications and environments.
Optimal performance can usually only be reached if the parameters are carefully
tuned to the given environment. This is typically a tedious and time-consuming
task and requires significant knowledge of WSN technology. Consequently, current
applications often employ default settings or rules of thumb which result in config-
urations that are usually far from optimal [Zimmerling et al., 2012]. To make the
task more approachable for developers without specialized knowledge, it needs to
be automated as much as possible.
As a solution, we propose an optimization-based automatic configuration process

that is based on formal models of the employed protocols and the expected envi-
ronment. As the creation of these models requires extensive knowledge of the inner
workings of the components and the important properties of a typical environment,
we again assume that these models are going to be provided by WSN experts. Ide-
ally, the protocol models are provided by the developers of the respective protocols
themselves. Our approach to automatic configuration is described in more detail in
Chapter 5 and Paper F.

30



2 Approach and Architecture

2.1.5 Software Deployment
The final step of the creation of a new WSN application is the actual deployment
of the new software to the previously installed sensor nodes. While the hardware
installation is also an important aspect with challenges of its own, within this thesis,
we focus on the software side. Several approaches to reduce the effort required
to deploy software to a potentially large number of nodes have previously been
developed within the research community [Hui and Culler, 2004; Levis and Culler,
2004; Marrón et al., 2005; Mottola, Picco, and Amjad Sheikh, 2008; Wang, 2004].
With such systems, the deployment of the software can be handled by the respective
developers. Most systems do not require manual treatment of the individual nodes,
but employ over-the-air programming techniques.

2.1.6 Maintenance
After the initial deployment further maintenance is needed. Sensor nodes may re-
quire regular replacement of batteries and broken parts. In addition, it is necessary
to monitor the environment for changes that might invalidate the assumptions that
were made during the configuration phase. With unexpected changes in the environ-
ment, those assumptions might not hold anymore and consequently the performance
of the system cannot be guaranteed. We expect that, due to automation, mainte-
nance tasks can be largely handled by the actual end users of the system without
involvement of experts. In case of significant environment changes or new applica-
tion requirements, a developer needs to repeat parts of the development process to
update the configuration of the software.

2.2 Architecture
In this section we give an overview of the envisioned system architecture supporting
the previously introduced development process. The system architecture integrates
the individual tools and components developed as part of this thesis. At this point,
we only provide a high-level description of the system and more detail can be found
in the respective papers and chapters.
Figure 2.2 shows a graphical representation of the architecture. The system pri-

marily covers two aspects of the development process, the compilation of a macro-
program describing the functionality of the application into deployable code and the
configuration of underlying system components and communication protocols.

2.2.1 Compilation Tool Chain
The macroprogramming language (MPL) compiler is a central component of the
architecture. It receives a macro-program written in a newly-developed MPL. As
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Figure 2.2: Overview of proposed system architecture. Components developed as part of
this thesis are again highlighted with a gray background.

with other macroprogramming languages, no separate programs for individual nodes
are required, but a single program covers the behavior of the network as a whole.
Our MPL supports the straightforward integration of existing WSN programming
abstractions via a dedicated extension mechanism. This mechanism also supports
the use of existing abstraction-specific domain specific languages (DSLs) to enable
extensive configuration. To provide a familiar programming experience and to be
easy and comfortable to use for the intended users, the language explicitly sup-
ports object-oriented programming and employs syntax and semantics similar to
the prevalent Java language. The use of an object-orientated language also provides
an ideal framework to integrate the previously mentioned programming abstractions.
Annotations allow performance and dependability requirements to be directly em-
bedded within the program code. These requirements are later extracted by the
macro-compiler and passed to the automatic configuration framework. At compila-
tion time, the user program written in MPL is translated by the MPL compiler into
C code targeted at the employed WSN platform, such as Contiki OS or TinyOS.
Unlike most other compilers, the MPL compiler does not directly generate deploy-
able machine code, but instead the generates C code that is passed to the existing
platform-specific tool-chain in order to generate deployable program images. This
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separation of concerns allows a large number of different platforms to be easily sup-
ported and facilitates the integration of legacy code. Finally, the generated program
images can be deployed on the nodes either manually or by employing some remote
programming framework. The latter is not within the scope of this thesis, but a
number of suitable systems exist [Marrón et al., 2005; Mottola, Picco, and Amjad
Sheikh, 2008]. The complete macro-programming framework is described in more
detail in Chapter 4 as well as in Papers C, D and E.

2.2.2 Configuration Framework
The second major component of the architecture is an automatic configuration
framework for WSN components. The configuration tool takes a formal require-
ments specification as input that can be generated by the MPL compiler based on
the performance annotations embedded within the MPL program1. The specification
consists of a number of constraints on the network behavior and a single property
to be either maximized or minimized. To increase the flexibility, the specification
also supports probabilistic constraints that only need to hold at a specific point in
time with a given probability.
Based on this specification and data about the environment, the configuration

tool automatically determines an optimal configuration for the underlying commu-
nication protocols and system components. The tool employs mathematical opti-
mization and formal models to accomplish this task. Three types of such models
have been developed within the RELYonIT project [RELYonIT Consortium, 2015]:
(1) environment models, that characterize the relevant properties of the environ-
ment; (2) platform models, that characterize how hardware components react to the
specific environment factors and how their performance and reliability are affected;
and (3) protocol models, that characterize how protocols cope with the effects cap-
tured by the previous models and with a specific parameter configuration. To be
usable, these generic models need to be instantiated for a specific application. The
environment models in particular require further input data, to represent a specific
instance of the environment. These environmental parameters are collected at the
future deployment site prior to the actual software deployment by model-specific
data collection tools. Instead, for some models widely available data that can be
collected manually, such as general climate data, is sufficient.
The optimization process of the configuration tool currently employs the stochas-

tic optimization strategies simulated annealing and evolution strategies. These opti-
mization strategies are also able to cope with non-convex search spaces and are usu-
ally relatively robust towards noisy data, but in contrast to deterministic strategies,
they do not guarantee that the optimal solution is found. Nevertheless, the optimal

1In the current implementation, the specification is still written by hand and provided as a
separate input.
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solution is usually found with a high probability. In addition, it is typically sufficient
to find a solution that is close enough to the true optimum. The final output of
the configuration tool is a protocol configuration for each employed protocol. These
configurations are later deployed alongside the application and the components can
access their configuration data via a run-time environment described further below.
The entire configuration framework is described in more detail in Chapter 5 and
Paper F.

2.2.3 Run-Time Environment
Features of both previously described components of the architecture depend on the
support of a run-time environment, which is deployed on the sensor nodes alongside
the user application and the operating system. For the application, the run-time
environment serves as an abstraction layer to isolate the generated code from the
underlying WSN operating system. In addition, it provides support functions re-
quired for the implementation of object orientation and other language features,
such as object serialization. In addition, the run-time environment is responsible for
the management of the configuration parameters determined by the configuration
framework. It provides a well-defined interface to enable the individual components
to access their parameters.
While most applications will only employ a single set of requirements, some ap-

plications have a number of diverse modes of operation that get activated based
on system state and environmental conditions. For example, a system to detect
forest fires would be typically optimized for a long system lifetime during normal
operation, but would switch to a low latency mode as soon as a fire is detected.
To support such applications, the run-time environment provides an interface that
enables the application program to select one of several modes, each with its own
set of associated reliability and performance requirements. The components are au-
tomatically notified of resulting changes in their configuration. The functionality
of the run-time environment is presented as part of the respective frameworks in
Chapter 4 and Chapter 5 as well as in Paper E and Paper F.

2.2.4 Integration with Business Process Modeling
Within the makeSense project, we also explored how to provide an even more ab-
stract method of implementing WSN applications by integrating the previously de-
scribed tools into an intuitive model-based design process. In the makeSense ap-
proach the behavior of the WSN is defined as part of an overarching business process
by employing an extended version of business process model and notation (BPMN).
This also enables a seamless integration with other business processes executing on
dedicated business process execution engines.
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BPMN [Object Management Group, 2011] provides a graphical notation for mod-
eling business processes, which may include responsibilities of systems and people.
Modern variants of BPMN also specify a translation of the model to executable
BPMN that can be processed on a generic business process execution engine.
Individual BPMN diagrams consist of a number of standardized elements. Of

primary interest are the different flow elements that are used to define the control
flow of the business process. Activities, depicted in the diagrams as boxes with
rounded corners, represent any kind or work that is executed as part of the process.
Two types of Activities are of particular interest. Tasks represent elemental activities
that are either executed by a person or by a technical system. As such, Tasks are
the primary building blocks of most BPMN diagrams. Several elementary Tasks can
be combined to form a Subprocess, which can then be used in a diagram as a regular
task. Events are used to represent incoming and outgoing triggers and messages,
such as the start of the process or firing of timer events. In the diagram they are
depicted by different types of circles. Of special interest are the Start Event, a simple
circle with a thin border, that represents the entry point for the process and the
End Event, a circle with a double border, that terminates the entire process.
Events and Activities are linked by Sequence Flow Connections that are depicted

as solid arrows in the diagram. These Connections represent the control flow of the
process. Gateways enable the implementation of decision points within the control
flow. In the diagram Gateways are depicted as a diamond shape. Several Gateway
types exist that represent different conditions, such as “and” or an “exclusive or.”
Additional Gateways enable the forking and merging of paths to implement parallel
execution and synchronization. In addition to the primary control flow, it is also
possible to represent data flow within a BPMN diagram in the form of Message
Flow. Message Flow connections employ dashed arrows. It is possible to specify the
content of the transmitted messages by attaching an Artifact to the message flow.
Finally, Pools and Swim Lanes allow activities to be assigned to specific actors.

Pools, depicted as large labeled boxes containing the associated control flows, usually
represent larger entities such as involved companies. Pools can be further divided
into Swim Lanes to represent subordinated entities or different roles. Activities can
be also grouped by Group elements that take the form of named dashed boxes with
rounded corners in the diagram.
Our extended version of BPMN introduces a number of WSN-specific Tasks that

allow the expression of typical WSN operations, such as sensing, actuation, and in-
network data processing. These WSN operations can be used in special WSN Pools
that contain the Activities to be executed within the WSN, while the remainder of
the model is still executed on a conventional business process execution engine.
Figure 2.3 shows an exemplary process modeled in the extended BPMN syntax.

The modeled system is supposed to manage CO2 levels in meeting rooms of a con-
ference center by controlling ventilation. To save energy, the system has access to
CO2 sensors in the rooms and information about future room occupancy (i. e., room
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Figure 2.3: Exemplary model of a HVAC control system for a conference center employing
the extended BPMN [Tranquillini et al., 2012].

booking calendar), which enables on demand ventilation. Rooms are not unneces-
sarily ventilated if CO2 levels are still within an acceptable range or the room will
not be used in the foreseeable future. The process is partially implemented within
the WSN itself and a separate management system. Both sub-processes are realized
as BPMN Pools. The Pool on the bottom, named “Conference Center Building,”
implements the WSN functionality employing the extended syntax, while the Pool
on the top, named “Conference Center IS,” implements the meeting management
employing only standard BPMN elements.
During translation, the WSN-specific Tasks are mapped to the programming ab-

stractions within MPL and functions provided for sensing, actuation, and data ag-
gregation. WSN Tasks could also be assigned to a sub-set of the nodes, for example
to only execute the Task on the nodes within a specific room of a building, but in
the given example, this feature is not used. To enable the user to directly specify
additional performance and reliability requirements, WSN-specific tasks can be sup-
plemented by performance annotations. These annotations may differ for different
states of the system. In the example, the BPMN Group notation of dashed rect-
angles is employed to attach these annotations to sets of tasks. These performance
annotations are later passed to the automatic configuration framework and allow the
generation of system configurations that are guaranteed to meet the expectations of
the application. At run-time, the system can switch between these configurations
and select the one that is appropriate for the current application state.
The required modifications of the system architecture are shown in Figure 2.4.
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Figure 2.4: Extension of the architecture to enable model based design.

The remainder of the architecture remains largely unmodified and is not included
in the diagram. In the extended development process, instead of manually writ-
ing a text-based program, the user employs an extended BPMN editor to create a
business process model (BPM) in the extended BPMN introduced above. During
compilation, this model is first split by the model compiler into an intra-WSN part
that executes within the sensor network and a WSN-aware part that executes on
a standard business process execution engine but which can communicate with the
intra-WSN part via a dedicated interface.
While the WSN-aware part can be passed to a business process engine largely

unmodified, the intra-WSN part is first translated into MPL code by the model-
compiler. The generated MPL program is then further processed by the tool chain
introduced in Section 2.2. In this scenario, MPL serves as an intermediate language
and helps to reduce the semantic gap each individual compiler has to bridge. Per-
formance annotations within the BPM are also translated to respective annotations
within the MPL code and later passed to the automatic configuration framework.
A more thorough description of the extended system is given by Tranquillini et al.

[2012]. The remainder of this thesis only covers the development process based on
textual program input.

37





3 State of the Art
This chapter reviews the body of existing work on programming and configuration
of WSNs. We provide a brief introduction to WSNs including the specific chal-
lenges and solutions. In addition, we briefly survey existing WSN applications and
deployments.

3.1 Wireless Sensor Networks
The origins of WSN research can be traced to the smart dust vision in the late 1990’s
[Warneke et al., 2001]. Smart dust is based on truly tiny devices with an edge length
of only a few millimeters that are equipped with sensors and that can be randomly
spread over a larger area. These devices were envisioned to automatically form
networks and collect data over a large area to monitor, for example, the distribution
of chemicals or to track the movement of people and vehicles. Nevertheless, this
vision was still ahead of its time and early prototypes of smart dust devices could not
reach the reliability necessary for real-world deployments. As of today, WSNs consist
of larger devices based on off-the-shelf components. The matchbox-sized “mote”
was originally conceived as a research vehicle to support the development of novel
communication protocols and paradigms for dense networks of autonomous sensing
devices, but also turned out to be a viable basis for real-world WSN deployments.
Until today, motes still dominate WSN research and applications.

3.1.1 Platforms
Typical WSNs consist of tens to hundreds of networked devices. Different node de-
signs exist, but most modern designs employ a common basic architecture similar
to the one depicted in Figure 3.1. The architecture is organized around a central
microcontroller (MCU), consisting of an 8, 16, or sometimes 32 bit central process-
ing unit (CPU) providing processing capabilities and integrated memory. The latter
usually consists of random access memory (RAM) and persistent program mem-
ory. The input/output (I/O) pins and analog/digital converters of the MCU allow
the attachment of different sensors and actuators. The selection of sensors ranges
from simple temperature probes to more complex chemical sensors [Hayes et al.,
2008] or even video cameras [Bagree et al., 2010]. To enable communication, sen-
sor nodes are equipped with low-power radios, usually operating in the 2.4GHz or
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Figure 3.1: Schematic representation of the hardware architecture of a sensor node.

868/915MHz license-free industrial, scientific and medical (ISM) frequency bands.
The wireless communication capability combined with an autonomous power source,
most often batteries, enables sensor nodes to be deployed independent of any wired
infrastructure. Depending on the application requirements and the employed tech-
nology, nodes should usually operate for months to years without a need for battery
replacement. A typical representative of such sensor nodes is the Telosb [Polastre,
Szewczyk, and Culler, 2005], also known as Tmote Sky. This device was originally
developed at the University of California in Berkeley, CA, USA, but the design was
made freely available and consequently clones are offered by a number of manu-
facturers [Moteiv, 2006]. The device employs a Texas Instruments MSP430 MCU
[Texas Instruments, 2006] and a CC2420 radio chip [Texas Instruments, 2013].
Due to the limited resources of WSN devices, classical OSs are not suitable for

sensor nodes. Even systems targeting embedded devices, like embedded Linux,
require significantly more processing power and memory than available on a typical
sensor node. Instead, WSNs employ dedicated, lightweight OS that only require a
few hundred bytes of memory [Levis et al., 2005]. In addition, these dedicated OSs
also put a focus on energy efficiency to extend the lifetime of the battery-powered
devices. Like many OSs targeted at embedded systems, most WSN OSs are event-
driven. This allows tasks to be serviced in parallel without the need for multiple
stacks, like in multi-threaded systems. The use of an event-driven execution model
also simplifies power management decisions, as the processor can be put into sleep
mode whenever there is no event handler running.
Two WSN OSs can be considered as de-facto standards within the WSN research

community: TinyOS and Contiki. The development of TinyOS [Culler, 2006; Hill et
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al., 2000; Levis et al., 2005] is closely linked to the development of the first hardware
devices for WSNs. A notable feature of TinyOS is the provision of a component
model on top of C. The use of components enables the reuse of commonly needed
functionality and facilitates structuring of larger software projects and also provides
the basis for a comprehensive hardware abstraction layer. The component model
is realized by employing the custom programming language nesC, which forms a
superset of C. TinyOS applications are first translated by a nesC compiler into
plain C code that is further processed by the usual tool chain of the platform.
Currently, Contiki [Dunkels, Grönvall, and Voigt, 2004; Dunkels et al., 2004] is the

main contender of TinyOS. While the core system is also event-driven, Contiki also
provides a thread-like user interface with the help of protothreads. Protothreads are
stack-less, extremely lightweight threads that provide a blocking event handler and
sequential code execution [Dunkels et al., 2006]. They enable a more intuitive pro-
gramming model without introducing the overhead associated with regular threads.
Both systems have been ported to a large number of different WSN hardware plat-
forms.

3.1.2 Media Access Control

Due to the fundamental role of networking for WSNs, network protocols are an
important area of WSN research. MAC and routing protocols have received partic-
ularly significant coverage by the research community. The MAC has to address a
number of particular challenges in a WSN. As in all ad-hoc networks, MAC proto-
cols are faced with a dynamic environment where nodes may be added or disappear
and links between nodes are usually unstable due to interference. In addition, WSN
MAC protocols also need to put special attention to energy efficiency. Typical WSN
devices only possess a limited energy budget and one needs to extend the lifetime
as much as possible. MAC protocols play an important role in the energy efficiency
of WSN. The power consumption of the radio usually dominates the total power
consumption of the node, so that, in order to conserve energy, the radio should be
turned off as long as possible. Controlling the duty-cycle of the radio is an important
additional responsibility of MAC protocols in WSNs.
Especially in the early years, a large number of diverse MAC protocols for WSNs

were developed [Langendoen, 2008; Langendoen and Halkes, 2005]. Two predomi-
nant approaches exist, the use of time division multiple access (TMDA) with mostly
fixed schedules [van Dam and Langendoen, 2003; El-Hoiydi and Decotignie, 2004;
Rajendran, Obraczka, and Garcia-Luna-Aceves, 2003; Raman et al., 2010; Ye, Hei-
demann, and Estrin, 2002] and the use of the carrier sense multiple access (CSMA)
variants low-power listening [Buettner et al., 2006; Dunkels, 2011; El-Hoiydi, 2002;
Moss and Levis, 2008; Polastre, Hill, and Culler, 2004] and receiver-initiated low-
power probing [Dutta et al., 2010]. Recently, multi-channel MAC protocols [Al
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Nahas et al., 2014; Deligiannis et al., 2015; Duquennoy et al., 2015; Tang et al.,
2011] have been receiving increasing interest.
None of the proposed protocols is ideal for all applications scenarios, and the

MAC needs to be selected based on, among others, the expected environment and
traffic volume. The performance of individual protocols also depends on a num-
ber of, often tunable, parameters. To ensure reliable operation according to the
user requirements, these parameters need to be adapted to the properties of the
environment. MAC protocol configuration is consequently a primary target of our
configuration approach.

3.1.3 Routing
Similar to the MAC layer, routing in WSNs also demands specific solutions. While
WSNs share many challenges with other ad-hoc networks, they also face some chal-
lenges of their own. Conventional routing protocols are typically optimized for a
high throughput and low latency. In WSNs these properties are less important as
the transmitted data volume is comparatively low and timeliness is often a secondary
concern. Instead, due to the limited energy budget, WSN routing protocols need to
be optimized for energy-efficient operation. In addition, typical low-power radios of
WSN devices only enable short-range communication that does not cover the typical
deployment area of a WSN. Consequently, WSN routing protocols need to be able
to cope with multi-hop routing within dynamic and complex networks.
A large number of WSN-specific routing protocols exist [Akkaya and Younis,

2005; Pantazis, Nikolidakis, and Vergados, 2013; Reinhardt and Renner, 2015; Win-
ter et al., 2012]. To conserve energy by reducing the amount of transmitted data,
WSN routing is often combined with data aggregation. In this case, instead of just
transmitting the data unmodified, the information from multiple nodes is aggre-
gated whilst being transported through the network in order to remove unneeded
duplicated information [Heinzelman, Chandrakasan, and Balakrishnan, 2002; In-
tanagonwiwat, Govindan, and Estrin, 2000; Landsiedel, Ferrari, and Zimmerling,
2013]. The properties of WSNs also enable the use of unconventional routing strate-
gies based, for example, on flooding [Ferrari et al., 2011; Intanagonwiwat, Govindan,
and Estrin, 2000; Levis et al., 2004; Pazurkiewicz, Gregorczyk, and Iwanicki, 2014]
or geographic routing [Flury and Wattenhofer, 2008; Zhou et al., 2010].
Also, IP-based routing is increasingly adopted within WSN systems, enabling

the vision of the IoT. A number of 6LoWPAN-based [Mulligan, 2007] low-footprint
embedded Internet protocol (IP) stacks [Durvy et al., 2008; Hui and Culler, 2008;
Ko et al., 2011] and IP-based routing protocols [Duquennoy, Landsiedel, and Voigt,
2013; Tsiftes, Eriksson, and Dunkels, 2010; Winter et al., 2012] exist.
Like for lower layer protocols, the careful selection and configuration of routing

layer protocol parameters, such as the number of retransmissions and the duty cycle,
can significantly affect the reliability and performance of a WSN application.

42



3 State of the Art

3.1.4 Applications1

Early prototypes of smart dust devices developed in the late 1990’s were not robust
enough for real deployments and key challenges such as energy storage could never
be overcome. Consequently, no smart dust deployments outside of controlled lab
environments exist. Early mote-based research focused on military applications.
WSNs were primarily seen as a new tool for the reliable detection and tracking of
intruders and enemy forces [Arora et al., 2004; Pister, 2001] at borders or frontiers.
One of the earliest WSN deployments was conducted in March 2001 by researchers
of University of California, Berkeley as part of the 29 Palms project [Pister, 2001].
The network consisted of five sensor nodes that were dropped by an unmanned aerial
vehicle (UAV) to monitor a road for passing vehicles. Such early military scenarios
employed quite complex systems that due to comparatively high data rates already
required some in-network processing of the sensed data. This led to a high number of
unsolved challenges and consequently these early deployments tended to stay small
and to only operate for a few hours.
Almost simultaneously environmental monitoring emerged as a second major ap-

plication area for WSNs. These environmental monitoring applications tended to be
simpler than the contemporaneous military applications, but were usually designed
for an extended lifetime. An early example is the first WSN deployment at Great
Duck Island in the year 2002 [Kumagai, 2004; Mainwaring et al., 2002; Szewczyk
et al., 2004]. This deployment is often seen as the first significant WSN application.
In this application a WSN is employed to monitor nesting burrows of birds and to,
more specifically, monitor temperature and humidity. The network was deployed on
a remote island and the birds should not have been disturbed too often, which led
to robustness and longevity becoming major design goals for the deployment. The
network was able to generate useful data for the biologist involved and provided
higher spatial and temporal resolution than possible with traditional measurement
devices at a lower cost and an increased flexibility. Still, the original lifetime goals
were usually not met and the network required more maintenance than intended.
Over the following years a number of new application areas where explored that in-
troduced new challenges. ZebraNet [Juang et al., 2002; Zhang et al., 2004] was one
of the first mobile deployments. Here, a WSN was used to track the movements of
zebras. The nodes were attached to the animals and formed a sporadically connected
network. Sensed data was transmitted on a opportunistic basis. GlacsWeb [Mar-
tinez, Ong, and Hart, 2004] explored a new challenging environment, by deploying
WSN nodes within a glacier. This environment posed significant challenges to radio
communication and longevity.
Shortly after, the number of applications further increased, a trend also supported

by the commercialization of the first WSN platforms, such as Mica2, Mica2Dot,
1 The entire section is based on a section from a book chapter written by the author [Oppermann,
Boano, and Römer, 2013].
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and their later evolutions MICAz and TelosB, which became the de facto standard
research platforms for WSNs [Polastre, Szewczyk, and Culler, 2005]. At the same
time, the software infrastructure matured and the first dedicated WSN operating
systems [Culler, 2006; Levis et al., 2005] and middleware systems [Madden et al.,
2005] became available. An increasing number of more complex civilian scenarios,
such as structural monitoring [Kim et al., 2007; Whang et al., 2004], cold chain
management [Riem-Vis, 2004], precision agriculture [Burrell, Brooke, and Beckwith,
2004], emergency response [Lorincz et al., 2004], and health-care [Shnayder et al.,
2005; Van Laerhoven et al., 2004], were put to the test. New applications also
include the advent of body sensor networks (BSNs), which employ low-power non-
invasive or invasive wireless biosensors to monitor, for example, the vital signs of
patients [Yang, 2006]. The deployment close to the body introduces new challenges
with radio communication, practicability and acceptance. Wireless sensor and actor
networks (WSANs) further broadens the application space of WSNs [Akyildiz and
Kasimoglu, 2004]. These networks contain not only sensors but also actuators that
enable them to actively modify their environment. The inclusion of actuators led to
a need for in-network processing and control processes, to enable localized control.
Despite a large number of potential applications for such networks, they are still
comparatively rare and only a few deployments exist. This might be partially caused
by the increased complexity of developing such applications with today’s technology.
Increasingly, WSN technology was also combined with related technologies, such as
mobile robots [Batalin, Sukhatme, and Hattig, 2004], radio-frequency identification
(RFID) [Dyo et al., 2009; Dyo et al., 2010], cell phones, or smart cameras [Na,
Kim, and Cha, 2009]. This also lead to the introduction of the IoT vision, in which
devices are directly connected to the Internet and so provide world-wide access to
the sensed data.
Recently, the number of economy-oriented scenarios increased and early real-world

applications began to appear [Bijwaard et al., 2011; Ceriotti et al., 2011]. For exam-
ple, in the SFpark project in San Francisco [San Francisco Municipal Transportation
Agency, 2011] WSN and IoT technology is used to implement demand-responsive
pricing and a live search for empty parking spots with the aim of steering demand
and to reducing congestion in the streets. Nevertheless, such WSN applications
outside the scientific community are still limited and most deployments remain pro-
totypical in character. Commercial applications tend not to exploit the full potential
of scientific innovations. For example, advanced multi-hop routing protocols are still
rarely used in real-world applications.

3.2 Programming Support
WSN systems are complex and difficult to program. Consequently, a need for dedi-
cated programming support has been recognized early within the research commu-
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nity [Römer, 2004]. WSNs are a special case of distributed systems and program-
ming systems for WSNs share a number of challenges and properties with other
distributed systems, such as high performance clusters and multi-core systems, for
which a number of programming solutions have been developed [Diaz, Muñoz-Caro,
and Niño, 2012]. Nevertheless, these solutions usually do not explicitly take energy
consumption and unreliable links into account, which are fundamental aspects for
WSN systems. In addition, many of these solutions are targeted at shared-memory
systems. Consequently, existing solutions typically cannot be directly applied to the
domain of WSN.
Initial work regarding WSN programmability was conducted as part of the WSN

operating system interface, such as in the case of Active Messages [Culler et al.,
2001] as part of nesC [Gay et al., 2003]. More complex systems, developed later,
can be divided into two fundamental categories: macroprogramming systems that
provide a holistic environment for WSN programming and individual programming
abstractions that help to solve specific individual programming challenges.

3.2.1 Macroprogramming Systems
WSN applications were originally written by defining the operation of individual
nodes and manually orchestrating their individual behavior to reach the desired goal
of the system as a whole. The aim of macroprogramming is to leave this mind-set
behind and instead view the network as a single system. With macroprogramming,
the behavior of the entire system is defined by only one central program and the
task of distributing the functionality to individual nodes is left to the compiler
[Kothari et al., 2007]. Most modern WSN programming systems employ some form
of macroprogramming.
As of today, a large number of systems that raise the abstraction level of WSN

programming already exist. Early systems focus on pure sensing applications. For
these systems, a natural abstraction is the representation of the whole system as a
distributed database [Madden et al., 2005; Yao and Gehrke, 2002]. Access is pro-
vided by a query language similar to the structured query language (SQL). While
it is possible to define in-network data aggregation by using special operators, the
database view is not well suited for defining more complex processing or control pro-
cesses as, for example, required by WSANs. More complex queries are possible with
the Semantic Streams framework [Whitehouse, Zhao, and Liu, 2006], which employs
a Prolog-based interference engine to allow users to pose queries over semantic in-
terpretations of sensor data. In the proposed implementation, data processing is
carried out on a more powerful server and not within the network and the execution
of control processes is not addressed.
In contrast, programming systems like Pleiades [Kothari et al., 2007] provide

extensions to nesC or plain C that enable a more network-centered view. Other
systems extend high-level programming languages, such as Python, and provide a
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compiler to generate intermediate or source code suitable for existing WSN tool-
chains [Bocchino, Fedor, and Petracca, 2015; Gummadi, Gnawali, and Govindan,
2005; Tu et al., 2011]. An even higher level of abstraction can be provided by sys-
tems that employ custom languages [Chu et al., 2007; Hossain et al., 2011; Newton,
Morrisett, and Welsh, 2007], but at the cost of requiring the user to learn a new lan-
guage or, in the case of functional or logic based languages, even a new programming
paradigm. Existing programming systems tend to be monolithic and do not provide
a well-defined interface to integrate application-specific abstractions. In this regard,
our MPL extends the state of the art by providing an extensible macroprogramming
framework that supports in-network control logic and is based on Java [Oracle,
2015b], a widespread programming language many programmers are familiar with.
Some other WSN systems also employ Java as a WSN programming language, but
they usually also employ a more resource-demanding Java virtual machine [Aslam
et al., 2010; Brouwers, Corke, and Langendoen, 2008; Lai et al., 2014; Shaylor,
Simon, and Bush, 2003]. For example, the Squawk virtual machine uses 80 kB of
program memory and consequently targets more powerful ARM-based embedded
platforms [Simon et al., 2006]. Our approach differs in that it generates customized
C code, which is in turn compiled into optimized machine code for the intended
target platform, hence, reducing the introduced overhead. Extensibility is also not
specifically considered by any of these virtual machine frameworks and the use of a
virtual machine additionally complicates the integration of existing implementations
of programming abstractions.
While it is also partially Java-based, our macroprogramming language clearly dif-

fers from the standard JavaME framework [Oracle, 2015b]. JavaME is a stripped
down version of Java targeted at devices like mobile phones, personal digital as-
sistants (PDAs), and set-top boxes. The devices posses several orders of magni-
tude more memory and significantly higher processing capabilities. The design of
our macroprogramming framework shares some design decisions with the JavaCard
technology [Oracle, 2015a] that enables Java on smart cards. Smart cards are similar
to sensor nodes in regard to processing and memory capacities, but their usage sce-
narios and modes of communication differ significantly. While sensor nodes actively
participate within the communication with their neighbors, smart cards only reply
to a direct request by special reader devices either via contact pads or a contact-less
interface based on near-field communication. Neither JavaCard nor JavaME pro-
vides any WSN-specific abstractions or extension points to integrate existing WSN
abstractions that significantly increase the utility of our MPL.

3.2.2 Programming Abstractions
While macroprogramming systems provide holistic solutions to WSN programming,
programming abstractions provide solutions to specific programming challenges. As
demonstrated by extensive surveys conducted by Sugihara and Gupta [2008] and by
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Mottola and Picco [2011] a significant number of these programming abstractions
used to solve individual WSN programming challenges already exist.
A typical example of such programming abstractions is Logical Neighbor-

hoods [Mottola and Picco, 2006], a system that allows the definition of groups
of nodes based on their state. Such groups are defined by using a custom declara-
tive language. Once defined, the programmer can interact with the group in a way
that is similar to sending broadcast messages to physical neighbors, but instead of
being sent to the nodes within radio range, messages are forwarded to all nodes
that match a given group definition. Abstract Regions [Welsh and Mainland, 2004]
and Hood [Whitehouse et al., 2004] provide similar abstractions, but are focused
on spatial locality. Hood is even limited to only selecting a subset of the physical
neighbors. Another example is the DICE system [Gună, Mottola, and Picco, 2014]
that allows one to define and monitor network-wide invariants which can be, for
example, deployed in intrusion detection applications. The global invariants are
expressed by predicates over the state of multiple sensor nodes and are constantly
evaluated by a distributed monitoring system. Generic Role Assignment [Frank
and Römer, 2005] provides a generic method to assign roles to specific nodes within
the network based on user-defined rules. The system can be, for example, used to
implement clustering or data aggregation schemes. The Wiselib library [Baumgart-
ner et al., 2010] assembles a wide variety of basic algorithms that are useful in a
large number of typical WSN applications. Finally, more specialized systems exist
that provide highly-specialized abstractions for specific tasks, such as the tracking
of moving objects [Abdelzaher et al., 2004; Luo et al., 2006].
Nevertheless, on their own, such programming abstractions are typically not suffi-

cient to adequately support the design of WSN applications. Each abstraction only
focuses on a single task and more complex applications would require the integra-
tion of multiple programming abstractions. This is complicated by the fact that
interaction between abstractions is typically not considered and consequently, inte-
gration of several abstractions is difficult. To overcome this challenge, we propose
an integrated macroprogramming framework. A fundamental idea of our macropro-
gramming framework is to leverage this pool of existing solutions by providing a
straight-forward path to integrating existing programming abstractions.

3.3 Design and Configuration Support
In contrast to WSN programming, WSN configuration has received comparatively
little attention. Support systems tend to focus on aspects such as deployment sup-
port [Dyer et al., 2007; Ringwald and Römer, 2007], node placement [Kim and Cobb,
2012; Xiang et al., 2012], debugging [Beutel et al., 2009b; Ramanathan et al., 2005;
Sasnauskas et al., 2010; Sommer and Kusy, 2013], or remote programming [Hui
and Culler, 2004; Levis and Culler, 2004; Marrón et al., 2005; Mottola, Picco, and
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Amjad Sheikh, 2008; Wang, 2004]. The focus of this dissertation are systems to
support the user with assembling and configuring a software stack to support the
needs of his or her application. For WSNs this primarily affects the selection and
configuration of protocols on the different layers of the network stack.

3.3.1 Component Selection
The automatic selection of components is, comparatively, infrequently considered
for WSNs. Nevertheless, existing applications demonstrate a continued need for
different protocols with application-dependent properties.
One of the few systems exploring automatic component selection for WSN is the

ConfigKit system developed by Peter, Piotrowski, and Langendörfer [2008] [Lan-
gendoerfer et al., 2007; Peter, 2011]. ConfigKit allows the automatic selection of
suitable software modules for a mission-specific WSN application. Currently, Con-
figKit has a strong focus on security aspects, but also considers some WSN-specific
aspects like network lifetime. The component selection process of ConfigKit is based
on three inputs: a hardware description, a module repository, and an application
description. The hardware description defines the parameters and capabilities of the
hardware platform to be deployed. For example, it defines the processor type, the
operating system, the available memory, available battery life time and a quality
classification of the sensor readings. The module repository is a collection of the
available software modules. Each module consists of the provided interfaces, the
module dependencies, the expected memory footprint, and a security rating. Based
on a dependency graph, the tool determines all possible module combinations that
satisfy the explicit and implicit module dependencies. Out of these configurations,
those that also satisfy the security and energy consumption requirements of the ap-
plication are selected as viable solutions. Currently, this process does not employ
any optimization technique, but employs an exhaustive search. According to the
authors, this approach works well enough in practice, but it might lead to issues if
the number of available software modules is increased [Peter, Piotrowski, and Lan-
gendörfer, 2008]. The existing prototype is focused on security aspects and does not
consider most performance aspects. Nevertheless, the general approach could likely
be extended to also cover performance. In comparison to our own work, the goals
of ConfigKit are largely orthogonal and both works could be combined to cover the
automatic selection and configuration of WSN protocols. In this case, ConfigKit
could be used to select communication protocols and other software modules based
on the user’s requirements and our configuration framework could be employed to
adjust the configuration of the selected modules to the expected environment and
performance requirements.
Component selection was explored in the RELYonIT project [Oppermann et al.,

2015b]. The proposed approach provides a semi-automatic structured process to
select the most suitable protocol for a specific layer based on previously conducted
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experiments. In RELYonIT, this approach was only evaluated for the selection of
WSN routing protocols, but the authors are confident that the approach can, for
example, also be applied to MAC protocol selection. To select a suitable protocol,
the user first identifies parameters for the deployment environment and the appli-
cation. In the examined examples, this includes parameters like temperature, radio
interference, message load, and network density. Second, the user needs to spec-
ify the relative importance of different performance metrics, such as throughput,
transmission reliability, and lifetime. Finally, this information is used to select the
most suitable protocol based on a weighted average method. This selection process
employs a pre-compiled table with protocol evaluations. This table is generated by
systematically evaluating the available protocols under different parameters within
a testbed environment. To restrict the size of the table and the number of experi-
ments to a reasonable number, only sensible and promising parameter combinations
are evaluated. The selection of sensible parameter combinations is based on expert
knowledge and experience. In a number of case studies, this approach enabled the
selection of suitable protocols without requiring any experience on the user side.
Like ConfigKit, this approach is orthogonal to our own work and could be used to
preselect protocols. The selected protocols are further adapted to the properties and
requirements of the application by means of automatic configuration.
Sha et al. [2013] propose a MAC layer framework that switches between differ-

ent MAC protocol implementations at run-time based on quality of service (QoS)
requirements and the current environment. Delaying the protocol selection until
run-time enables more flexibility and enables adaption to unpredicted environmen-
tal conditions. Nevertheless, the dynamic decision prevents performance guarantees
and provisioning for different implementations increases the overhead.
Component or protocol selection for WSNs shares a number of properties with the

more generic approach of software product lines (SPLs) [Clements and Northrop,
2006], where a generic software system is adapted to an application-specific task by
selecting relevant features from a set of predefined options. Even though recently
the automatic selection of components based on user requirements is increasingly
considered [Guo et al., 2011; Harman et al., 2014; Rosenmüller and Siegmund, 2010],
the focus is still on the manual configuration of derived software products. SPLs do
not take the specific properties of WSN and the influence of environmental factors
into account.

3.3.2 Configuration
A strategy to adapt WSN protocols to the requirements of specific applications that
is still widespread is the creation of novel protocols that are exactly tailored to
meet the application-specific requirements [Iyer, Woehrle, and Langendoen, 2011].
While this approach provides the widest level of adaptability, a high level of effort is
required. Due to the complexity of this approach, it is only suited for experts. Less
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experienced developers need to resort to the use of the default protocols offered by
the employed platform, even though these might not deliver an optimal performance
[Beutel et al., 2009a; Langendoen, Baggio, and Visser, 2006]. Parameterization of
existing protocols is often a difficult task that requires an in-depth understanding
of the implementation of the protocol and the effect of environmental influences.
One approach used to make WSN protocol stacks easier to manage is the creation

of overarching modular frameworks [Buonadonna et al., 2005; Klues, Xing, and Lu,
2010; Klues et al., 2007] that can also incorporate some degree of self-management.
While these frameworks already reduce the effort needed, they usually still require
the user to make fundamental configuration decisions that can significantly affect
the performance of the system. In addition, none of these systems takes the impact
of environmental changes into account.
Existing approaches for fully-automated protocol configuration usually utilize

some form of self-adaption. For example, a number of MAC protocols employ
adaptive frequency hopping to counter interference [Tang et al., 2011; Voigt and
Österlind, 2008; Yoon et al., 2010]. Principally, such adaption mechanisms can only
react to changes and therefore only provide a best-effort performance. In addi-
tion, these adaptation mechanisms are typically implicitly integrated into protocols
[Boano et al., 2014; Meier et al., 2010] and may even conflict across protocol layers.
Even though the challenge has been identified early on within the WSN research

community [Bakshi, Ou, and Prasanna, 2002], only a few systems exist that support
users in the complex task of finding optimal configuration parameters for a given
environment prior to the actual deployment. The few existing approaches tend to
rely on simulation [Bakshi, Ou, and Prasanna, 2002; Simon et al., 2003; Strübe et al.,
2014]. With existing simulation environments, this is usually a time-consuming task
as the high-fidelity models require significant processing power and consequently
only allow a limited speed-up for larger networks. The long computation times
significantly limit the number of configurations that can be evaluated and easily lead
to overlooking superior solutions. While our approach shares the same basic strategy,
we can significantly reduce the run-time of the model evaluation by using more
abstract formal models. This allows the evaluation of a larger number of possible
configurations and thus increases the likelihood of finding an optimal configuration.
Only a very small number of works apply formal models and mathematical op-

timization to WSN protocol configuration. Maróti et al. [2003] use an automaton-
based process to synthesize and configure an application-specific middleware. Ko-
gekar et al. [2004] employ constraint-guided software reconfiguration for WSN and
demonstrated the approach using simulation results for a simple one-dimensional
tracking problem. Another example is the pTunes system [Zimmerling, 2015; Zim-
merling et al., 2012]. PTunes employs a formal protocol model and constraint pro-
gramming to find the optimal MAC protocol configuration settings for a specific
network topology and radio environment. PTunes’ goals are very similar to our
approach, but, at least in its current form, pTunes is limited to MAC protocol con-

50



3 State of the Art

figuration, while our approach targets protocols at different levels of the network
stack. More importantly, pTunes does not explicitly model any environmental ef-
fects and only considers internal interference. Instead, pTunes is intended to work
online and constantly reconfigure the network, which allows the configuration to be
constantly adapted to a changing environment, but significantly limits the available
run-time for optimization. Our approach of pre-deployment configuration can use
more sophisticated models that require a higher run-time, but lead to more precise
and dependable results.
Automatic configuration is already frequently used in other domains such as em-

bedded [Jóźwiak, Nedjah, and Figueroa, 2010] and real-time systems [Chatterjee
et al., 2014; Rajkumar et al., 1997], generic networking [Movahedi et al., 2012] and
software engineering [Aleti et al., 2013]. Automatic configuration of protocols is
also seen as an essential service for the management of large IP-based networks and
self-configuration techniques are widely applied [Zhang et al., 2013] and even led to
standardized solutions [Guttman, 2001]. Pre-deployment configuration techniques
are also frequently used to configure networks [Barik and Divakaran, 2013; Shu, Wu,
and Yun, 2013; Sun et al., 2015; Yun et al., 2012]. None of these approaches takes
the specifics of WSN and the influence of environmental factors into account. In the
networking domain, existing solutions tend to rely on self-configuration at run-time
and as a consequence these approaches can only provide a best-effort performance
and cannot give performance guarantees.
Similar techniques are also employed for design space exploration as part of the

development process of embedded systems [Künzli, Thiele, and Zitzler, 2005]. While
employing a similar approach as to the one presented in this thesis, these systems do
not aim at automatically selecting a near-optimal solution. Instead, a number of al-
ternative solutions is presented to the user. In contrast to our approach, this requires
a sufficient knowledge on the part of the developer to make informed decisions.

3.3.3 Component and Protocol Models
Our approach to protocol configuration relies on accurate, but lightweight models
of the environment, the hardware platform, and the employed protocols. A number
of protocol models have been developed in the community, mostly focusing on the
MAC layer. The presented models also cover some aspects of the radio environment.
Polastre, Hill, and Culler [2004] derived an analytical model of node lifetime for the
newly developed B-MAC protocol that enables predictions of the performance. Ye,
Silva, and Heidemann [2006] employ a model of energy consumption to determine
optimal configuration parameters for SCP. Buettner et al. [2006] created a model of
the energy consumption and per-hop latency of the X-MAC protocol. A model of
the same protocol was later refined and significantly extended by Zimmerling et al.
[2012]. The latter model is also suitable for protocol configuration, as demonstrated
by the authors [Zimmerling et al., 2012]. An early approach to capture the energy
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of the entire software stack employs an automation based formalism to model a
TinyOS-based WSN [Coleri, Ergen, and Koo, 2002]. Jung et al. [2007] and Kellner
et al. [2008] also employ abstract models to predict the overall energy consump-
tion and expected lifetime of a WSN. A survey by Schmid and Wattenhofer [2006]
presents a number of additional simple models of different WSN aspects and proto-
col components, which could be employed as parts of more complex protocol models
and hardware platforms.
Within the RELYonIT project, our project partners also developed analytic and

Monte-Carlo-simulation-based models of different protocols that are already specifi-
cally tailored towards use in an optimization process [Brown et al., 2014; King et al.,
2015; Oppermann et al., 2015a; Zúñiga et al., 2014].
Similar performance and QoS models are already successfully employed in a num-

ber of diverse application areas. Different types of performance and QoS models
are, for example, employed to predict and analyze the performance and reliability of
web services and similar software systems [Balsamo et al., 2004; Becker, Koziolek,
and Reussner, 2009; Brunnert et al., 2013].

3.4 Conclusions
Within the last years, WSNs have established themselves as a promising technology
and we have witnessed an increasing number of real-world applications. Many of
the early challenges have seen satisfying solutions. Nevertheless, the large number
of diverse protocols and software systems increase the complexity of WSN design
and development. Due to the wide spectrum of WSN applications, standardization
can only partially remedy this situation. In addition, WSNs are at the intersection
of wireless networking and embedded systems and existing solutions are often not
applicable as they do not take into account the specific properties and their re-
quirements. The difficulty of WSN design has been recognized within the scientific
community and a large number of approaches exist.
Nevertheless, these existing systems are often too specific to gain extensive pop-

ularity and real-world use. The integration of different systems as proposed in this
thesis, has rarely been considered by the community.
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As of today, the implementation of WSN or IoT applications is a difficult task that
requires significant expertize in a number of relevant fields. The low abstraction level
of current programming languages and environments forces the user to concern him-
self with the details of radio communication and the resource-constrained nature of
typical sensor nodes. A number of programming abstractions already exist that aim
to reduce the burden of WSN programming. Currently, most of these abstractions
only target individual aspects and it is usually difficult to combine several of these
abstractions to build a more complex application. A survey by Mottola and Picco
[2011] indicated that most WSN programming abstractions fit into a taxonomy with
a limited number of classes.
The goal is to develop an abstract macroprogramming language that provides

a high-level view of the system and allows existing and novel WSN programming
abstractions to be seamlessly integrated. This task is additionally complicated by
the fact that many of these programming abstractions employ their own domain-
specific configuration languages and the resulting need to provide a mechanism to
integrate existing DSLs within the macroprogramming language. On the other side,
one also needs to keep the resource-constrained nature of WSNs in mind. The
language needs to support the generation of highly efficient code that is suitable for
typical WSN devices.
Our approach consists of an object-oriented language largely inspired by the well-

known Java language [Gosling et al., 2005]. To optimally support the seamless
integration of existing programming abstractions, the language provides an explicit
extension mechanism. Special keywords allow code fragments written in these DSLs
to be directly embedded within the macro-programming language program. The
DSL code is not compiled by the main compiler itself, but the translation of these
fragments is handled by compile-time components of the respective programming
abstractions. To be well suited for low-resource environments, the language imple-
ments, among others, a more flexible memory model than Java and features auto-
matic allocation. The latter reduces the amount of code that needs to be deployed
on individual nodes by removing features unnecessary for a specific node.
In the following, we will first introduce a meta model for WSN programming

abstractions that has been jointly developed within the makeSense project. In Sec-
tion 4.2, we then introduce the features of the novel macroprogramming language
itself and explain individual design decisions. Next, in Section 4.3 we introduce a
compiler framework to realize the conceptualized language and finally conclude the
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Figure 4.1: The makeSense meta model for programming abstractions [Casati et al., 2012].

chapter with an evaluation of the applicability and performance of the language
implementation in Section 4.4.
The entire chapter is based on and employs material from parts of a number of

deliverables and previous publications written by the author of this thesis [Casati et
al., 2012; Daniel et al., 2013; Eriksson et al., 2012a; Eriksson et al., 2012b; Eriksson
et al., 2013; Gaglione et al., 2013; Mottola et al., 2011a; Mottola et al., 2011b;
Mottola et al., 2011c; Oppermann et al., 2014b]. The results presented within this
chapter are also covered by Paper C, Paper D, and Paper E.

4.1 The makeSense Meta-Abstraction Framework
The macroprogramming language is based on a conceptual framework of WSN ab-
straction jointly developed within the makeSense project [makeSense Consortium,
2014]. A large number of WSN programming abstractions exist [Mottola and Picco,
2011], that provide a higher-level of programming and support WSN programmers
with their task. Most of these abstractions support a single specific aspect of WSN
programming. The framework developed within makeSense provides a means to
categorize programming abstractions based on their intended use. Due to its exten-
sibility, existing and future WSN programming abstractions can be easily integrated
within this framework.
A central concept of the framework is the so called “meta-abstractions.” The

framework organizes programming abstractions primarily based on supported tasks
and exported interfaces. Such groups of similar abstractions can be seen as an
abstraction of abstractions or in different terms as “meta-abstractions.” The differ-
ent types of abstractions in turn form a hierarchy of increasingly specialized meta-
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abstractions. In the following, we describe this hierarchy in more detail. It is also
shown in Figure 4.1.
Starting from the top, abstractions can be first divided into two major groups:

Actions and Modifiers. Actions represent tasks a node or a group of nodes can
execute. This can be a simple task, like reading a sensor on a single node, or more
sophisticated tasks, like collecting an aggregated temperature value from a larger
set of nodes. In contrast, Modifiers do not represent tasks themselves, but allow one
to further specify how a task is executed, for example by selecting the set of nodes
that actually participates in a distributed task or by specifying how the collected
values are aggregated.
Actions can be further subdivided into two major groups, Local and Distributed

Actions. Local Actions execute locally on a single node without employing commu-
nication between nodes. They provide basic functions, such as reading a sensor value
or controlling an actuator. Nevertheless, their use is not limited to the interaction
with sensor and actuators. Local Actions can, for example, also be employed to
implement data storage in flash memory or to provide sophisticated data processing
operations. As such, Local Actions also form the interface to the underlying hard-
ware and operating system. In the context of the macroprogramming language, we
also support user-defined Local Actions in order to enable the creation of scripts to
be executed on a specific node.
While Local Actions are always bound to a single node, Distributed Actions enable

communication and cooperation among nodes. Distributed Actions allow one to
request action from other nodes. In the makeSense framework this is the only means
of communication, as explicit message transfer is intentionally not supported.
Distributed Actions can be further classified based on the supported communi-

cation pattern. Tell Actions implement one-to-many communication and can, for
example, be used to distribute commands to a set of nodes. On each of the receiv-
ing nodes, a specified action is triggered. This may be either a Local Action, e.g.,
steering an actuator, or another Distributed Action. The latter allows the creation
of cascades of Tell Actions. Report Actions implement the inverse case of many-
to-one communication and, for example, allow the collection of data from a set of
nodes. In contrast to Tell Actions, they may only execute Local Actions on the
remote nodes. Finally, Collective Actions provide a flexible interface for more com-
plex communication patterns, usually in the form of peer-to-peer communication.
Such communication patterns are for example used to implement global assertions
[Gună, Mottola, and Picco, 2014] or role assignment [Frank and Römer, 2005].
Modifiers allow one to further customize the exact behavior of Actions. Aspects

such as the specification of affected nodes are separated from the implementation
of the Action and can be replaced with different concepts. This way, Modifiers
provide a separation of concerns and enable increased modularity. Currently, we
distinguish between Target Modifiers and Data Operators. Target Modifiers allow
one to select which nodes are involved in a Distributed Action. This allows the
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selection of a subset of the deployed nodes based on some abstract property, for
example to select all nodes that are within a specific room or all nodes with a
low battery level. Finally, Data Operators are employed to modify data during its
transmission through the network. This can be simple data filtering, but could also
be used to implement different aggregation schemes. The concept is similar to Query
Processing Operators in TinyDB [Madden et al., 2005].
In the MPL implementation, meta-abstractions are used as extension points that

can be instantiated with the implementation of a specific abstraction. Each of
these instances implements a specific protocol or function. For example, the Target
Modifier can be instantiated by Logical Neighborhoods [Mottola and Picco, 2006].
As applications may wish to employ a number of different protocols in parallel, it is
possible to instantiate the same meta-abstraction with different abstractions within
a single program.

4.2 Macroprogramming Language

The MPL provides a high-level approach to WSN programming and allows to inter-
connect the previously introduced abstractions to create more complex applications.
It primarily provides the glue between the constructs presented in Section 4.1, but
also directly enables the user to define algorithms for data processing and similar
tasks. It is our goal to keep this language as simple and familiar to the intended
users as possible. An average developer should be able to build useful WSN appli-
cations with the MPL without an in-depth understanding of WSN technology and
without extensive training. Based on these requirements, we chose the widespread
Java programming language [Gosling et al., 2005] as a model for the MPL. Like
Java, MPL is an imperative, object-oriented language with static typing. Its syntax
and semantics follow the Java model to a large extent.
Nevertheless, MPL deviates from the Java model to better support the specific

features of WSNs and to make the language more suitable for resource-constrained
platforms. A major difference in comparison to common Java implementations is
the fact that MPL does not employ a virtual machine. Instead, the program is
translated into C code, that is in turn translated to machine code for the employed
hardware platform with the existing tool chain. As a consequence, object-oriented
features are implemented in detail differently than they are typically realized in Java.
The mapping of object oriented features is more similar to the approach employed
for the C++ programming language [Stroustrup, 1989]. For example, dynamic
dispatch is realized with the help of virtual method tables instead of relying on the
more flexible but also more memory-demanding hash-table-based approach typically
found in Java implementations. Due to resource constraints, MPL also lacks garbage
collection. Instead, it provides and extends the memory model such that it enables
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the user to largely rely on static allocation of memory. The extended memory model
is described more verbosely in Section 4.2.2.
To better support WSN programming, the language also adds a number of features

to the Java basis. Most notable are features to ease the seamless integration of
existing and newWSN programming abstractions. The language provides predefined
extension points that allow the incorporation of those abstractions that best suit
the task at hand. This mechanism is described in more detail in Section 4.2.1. In
addition, the language provides an extended interface to the underlying hardware,
that enables easy access to sensors and actuators. The following sections introduce
the central concepts and design decisions of MPL.

4.2.1 Embedding of Meta-Abstractions
An integral purpose of MPL is to provide an implementation of the meta-abstraction
framework introduced in Section 4.1. Consequently, the language needs to provide
means to seamlessly integrate programming abstraction within an MPL program.
In MPL, programming abstractions are represented by three components:

1. an MPL class,

2. a run-time component, and

3. optionally, a compiler plug-in.

The MPL class provides an interface to interact with the programming abstractions,
but usually does not itself implement any of the functionality. Instead, the imple-
mentation of its methods is relegated to the run-time component of the abstraction.
This relegation employs a mechanism of MPL that allows methods to be marked
as native and to provide a C implementation of these methods. In contrast to the
MPL program, these run-time components are expected to be written by WSN ex-
perts, that are familiar with writing low-level C code and that can benefit from the
additional flexibility. As a side effect, this approach also eases the reuse of existing
legacy components.
A number of programming abstractions employ their own domain-specific lan-

guages. To enable the reuse of these languages, MPL provides a mechanism to
seamlessly embed domain-specific languages. This mechanism is similar to the ap-
proach used to embed SQL statements in standard programming languages, like
Java. In contrast to prepared statements, embedded code fragments are not rep-
resented by regular strings, but employ the special data type code. The use of a
dedicated data type eases type checking and optimization. Variables of this type
can only be instantiated by a constant expression, consisting of domain-specific lan-
guage statements that is enclosed by the delimiters {: and :}. As the compiler is not
able to correctly interpret the domain-specific language fragments, their handling is
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Listing 4.1: Memory allocation with static and auto [Oppermann et al., 2014b].
Object a = static Object ();

referred to compiler plug-ins provided by the respective programming abstraction.
Also in contrast to prepared statements that are typically interpreted at run-time,
the embedded code is fully translated by the plug-ins at compile time. The gener-
ated code is later deployed along-side the application and the run-time component
of the programming abstraction. A more detailed description of the plug-in interface
and the functionality of the compiler plug-ins will be given in Section 4.3.

4.2.2 Memory Management
Modern programming languages rely often exclusively on dynamic memory allo-
cation. In particular, if this memory model is coupled with automatic garbage
collection, it can help to significantly reduce the burden introduced by memory al-
location and can remove a number of possible pitfalls. On the other side, dynamic
memory allocation introduces a significant overhead and reduces the efficiency of
memory management. This makes the dynamic memory allocation and in particu-
lar garbage collection less suited for small embedded devices with limited memory,
such as sensor nodes.
To make MPL more suitable for such devices, its memory model encourages the

use of statically allocated memory. If absolutely needed, memory can still be dynam-
ically allocated on the heap. In this case, like in the C++ programming language, it
is the responsibility of the programmer to free memory that is not needed any more.
Garbage collection is intentionally not available. Nevertheless, due to additional
modes of memory allocation, dynamic allocation is less frequently needed. Despite
of the different memory model, MPL retains the reference semantics from Java and,
in contrast to C++, objects are only accessed via references. No variables of object
type exist and memory allocation for objects has to be done separately from variable
declarations.
To implement this behavior, the new operator inherited from the Java language

is supplemented by two additional operators for object creation: static and auto.
Both operators are used in a similar manner as the new operator, as can be seen
in Listing 4.1. Objects allocated with the static operator are part of the program
image and are available for the entire execution of the program. These objects live
until the program terminates and the memory cannot be reclaimed. If the same
static operator is executed repeatedly, for example in a loop, then the object
allocated already is reinitialized at each call. The auto operator allows objects to
be allocated on the stack. These objects are destroyed if the current block is left.
The allocated memory is automatically reclaimed in this case. Similar to static,
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Listing 4.2: Use of the auto operator within the initializer of a member variable [Opper-
mann et al., 2014b].

class Rectangle {
Point topLeft = auto Point ();
Point bottomRight = auto Point ();

}

...

Rectangle rec_local = auto Rectangle ();
Rectangle rec_global = static Rectangle ();

repeated calls of the same auto operator reinitialize objects created by previous
iterations. In combination with the member variables of classes, the auto operator
is also used with slightly different semantics. If a member variable is immediately
initialized with an object created by the auto operator, the memory required by
the object is embedded in the representation of the encapsulating object at compile
time. The required memory is thus automatically reclaimed, when the encapsulating
object is destroyed. The example shown in Listing 4.2 demonstrates this use of the
auto operator. In this example two instances of the class Point are allocated with
the auto operator and references of the newly allocated objects are employed to
initialize the member variables topLeft and bottomRight of the class Rectangle.
When the class Rectangle is later instantiated by either using the auto or static
operator as shown in lines 8 and 9, the memory required for the two Point instances
is also automatically allocated.
A major advantage of static memory allocation is its predictable run-time behav-

ior. The exact amount of memory required can be determined at compile-time and
memory allocation cannot lead to run-time errors. Nevertheless, some constructs,
like dynamic container structures cannot be implemented solely with static mem-
ory allocation. To still enable the use of such dynamic data structures, MPL also
provides the new operator known from the Java programming language. Objects
created with the new operator are allocated on the heap. As MPL does not provide
automatic garbage collection, the programmer needs to take care of reclaiming the
memory when it is no longer needed. To enable deletion of objects, MPL provides
the delete operator, that destroys an object previously created with the new opera-
tor and reclaims the memory. As frequent allocation and deallocation of objects may
lead to issues like heap fragmentation, the use of new and delete is only intended
as a last resort and the static allocation methods should be preferred whenever
possible.
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4.2.3 Multithreading
Most WSN programming languages do not explicitly support the parallel execution
of code or employ an event-based programming model. Existing multithreading
concepts in WSN programming languages are often severely limited. For example,
Contiki protothreads [Dunkels et al., 2006] provide a basic multithreading abstrac-
tion, but for instance threaded code cannot be reentrant.
To support an increasing need for parallel execution in WSN code and to provide

an intuitive programming interface, MPL explicitly supports multithreading code.
The support of a full-blown multithreading interface significantly increases the mem-
ory overhead, as each thread requires its own stack. In addition, as the stack size
is not known in advance, one usually needs to over-provision stack memory. To be
able to still limit the memory demand, the maximal number of concurrent threads in
MPL is defined at compile time and an attempt to create more threads beyond this
limit fails by generating an error signal. Coupled with a highly optimized implemen-
tation, this limitation allows the required overhead to be made more predictable and
to enable the use of full multithreading on typical WSN platforms, as demonstrated
in Section 4.4.
The interface to the multithreading function of MPL is closely modeled after

the Java thread interface. The current implementation is based on the Contiki
multithreading library, which provides a platform-independent interface for stack
switching. Implementations of this interface are available for all major hardware
platforms supported by Contiki. The actual thread scheduling is handled by a
custom scheduler implemented on top of this library. This scheduler executes within
a single protothread-based Contiki process and schedules runnable MPL threads in
a round robin fashion. More sophisticated scheduling algorithms than round robin
could be easily integrated, if required by future applications. The approach could
also be ported to other operating systems by employing similar support functions
provided by TinyOS and other WSN operating systems.

4.2.4 Object Serialization
The distributed nature of WSNs, frequently requires the transmission of data be-
tween nodes. In object-oriented languages, the data is usually organized as objects
and consequently some mechanism to transfer objects between nodes is required. In
addition, Distributed Actions allow other Actions to be executed on remote nodes.
Instances of these remotely executed Actions may contain attributes, that need to
be transfered to the remote node before execution. In MPL, both requirements are
supported by the same built-in object serialization mechanism.
The object-serialization facility allows the state of an object to be written to

a standardized flat representation as a byte array. This byte array can later be
used to recreate an exact copy of the serialized object on the same or a different
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Figure 4.2: Overview of the architecture of the macroprogramming language compiler
[Oppermann et al., 2014b].

node. Object serialization in MPL employs a language interface similar to the one
employed by Java. This interface consists primarily of the special marker interface
Serializable to distinguish serializable objects and a build-in class to provide the
actual serialization and derserialization functionality.

4.3 Implementation
The language is implemented by a prototypical compiler that translates an MPL
program into C code for the nodes of a WSN. Figure 4.2 gives a high-level overview
of the architecture with its central components and artifacts. Arrows denote the data
flow between these elements. At the start of the compilation process, the macro-
compiler receives a macroprogram written in MPL as input. The MPL program
is supplemented by an abstract description of the hardware and network proper-
ties in the form of a system capabilities model. The information provided by the
system capability model can be used to aid optimization and the allocation of spe-
cific functions to individual nodes in the network. In addition to these inputs, the
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macro-compiler has access to a repository of components implementing the available
programming abstractions.
The compiler is implemented as a multi-pass compiler and the compilation process

consists of four distinct phases: parsing, type checking, code generation, and code
allocation. All phases access a shared abstract syntax tree (AST) and symbol table.
Information sharing between the individual phases is largely limited to these shared
data structures. Both the scanner and the parser are automatically generated from
an extended Backus-Naur form (EBNF) representation of the language grammar
with the help of the ANTLR parser generator [Parr, 2007; Parr and Fisher, 2011].
The parser builds an initial AST to represent the syntax of the program. The
information in the AST is further complemented by the following compilation phases.
The Type checking phase is split into two passes to support forward declarations for
classes, interfaces and methods. Both passes of the type checker are implemented
employing the visitor pattern [Gamma et al., 1995]. In addition to checking the
consistent use of types, the type checker builds a dependency graph for all classes
and interfaces, which is later used to support the allocation of code and objects
to the different node classes (e.g., “gateway” and “node”). The implementation of
the type checker incorporates ideas from the Espresso compiler [Doerig, 1998], such
as the use of a distance matrix for type conversion. During code generation the
complete macroprogram including all imported classes and interfaces is translated
to C source code. In a second step, the generated code is further compiled into
executable binary code by the existing compiler of the target platform. Currently
this second step is initiated manually, but could be handled by a separate utility
that manages the full compilation process in the future. In a typical application, not
all functionality is actually required on all nodes. For example, if only a subset of
the nodes is connected to an actuator, only the nodes with access to one will execute
the corresponding control code. If the same program image is deployed to all nodes,
this wastes memory by also deploying functionality for which it is known that it will
never be needed. To reduce memory overhead, in the final code allocation pass, the
MPL compiler generates individual code images for a predefined set of node classes.
Each code image only includes the implementation of classes that can be potentially
used on nodes of the corresponding class. In the current implementation, the macro-
compiler only distinguishes between two node classes, a special gateway node and
the remaining sensor nodes. In the future this classification could be extended with
additional predefined and custom node classes.
A central feature of the MPL language is the possibility to extend the language

with WSN-specific programming abstractions. The methods of abstraction classes
are typically not implemented directly with MPL code, but instead refer to an
external implementation provided by the run-time environment. To indicate that
the method is implemented by external C code, it is marked as native within the
class definition. The interface between MPL and native C code is largely similar
to the one employed by the Java native interface (JNI) [Liang, 1999]. It provides a
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mapping between class and method names as well as native and foreign data types.
Programming abstractions that make use of custom DSL code, in addition need to
provide a compiler plug-in. During translation of the MPL program, this plug-in
handles the parsing, type checking, and translation of the abstraction-specific code
fragments. A dedicated plug-in interface allows these plug-ins to interface with the
MPL compiler at compile-time. The plug-ins are only loosely coupled with the MPL
compiler and each plug-in is essentially a small independent compiler with its own
parser and code generator. This approach enables a large degree of freedom in the
design of individual abstraction-specific DSLs.

4.4 Evaluation
To evaluate the feasibility and usefulness of the approach, we compare an MPL-based
implementation of three typical WSN applications with a functionally equivalent
implementation employing hand-written C code targeted at the Contiki operating
system. For each of these applications, the performance of both implementations
is compared in terms of typical software metrics. In the following we first briefly
describe the goals and properties of each application scenario.

4.4.1 Application Scenarios
To evaluate the performance of the MPL-based approach, we selected the following
set of WSN applications with WSN-typical properties.

Blink to Radio

The first scenario consists of a typical example application with one-to-many commu-
nication. A command is send from the gateway node to all nodes within the network.
Upon receiving this command, the receiving nodes toggle their light-emitting diode
(LED). Similar communication patterns are often used to distribute configuration
settings within a network or by WSANs to control actuators.
The MPL implementation of the application uses the Logical Neighborhoods and

Tell programming abstractions to realize the previously described behavior. The
Logical Neighborhoods abstraction [Mottola and Picco, 2006] provides a custom
declarative language to define groups of nodes based on state. Once defined, the
programmer can interact with these groups in a similar way to sending broadcast
messages to physical neighbors, but instead of being sent to the nodes within radio
range, messages are forwarded to all nodes that match a given group definition.
The Contiki-based implementation uses the Trickle protocol from the Rime stack
[Dunkels, Österlind, and He, 2007] to accomplish the same behavior.
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Collect

The second scenario employs many-to-one communication to collect temperature
and light intensity readings from all nodes within the network. The data is trans-
mitted to the gateway node for further processing. Data collection is a typical WSN
task and most WSN or IoT systems employ similar communication patterns.
The MPL implementation of the application uses the logical neighborhoods and

report programming abstractions. Processing of the collected readings is done by an
averaging Data Operator. The Contiki-based implementation employs the collect
protocol from the Rime stack.

HVAC application

The final scenario consists of a more complex application, based on a demonstrator
application used within the makeSense project. The application controls a heating,
ventilating, and air conditioning (HVAC) system to ensure that the CO2 level is
kept within comfortable limits while reducing the amount of ventilation in order to
save energy. As in the actual demonstrator, the nodes are spread over two rooms
and ventilation is controlled individually for each room.
The MPL implementation employs Tell abstractions and Logical Neighborhoods.

Processing and control are not implemented centrally at the gateway, but are of-
floaded to one selected node per room. Currently, leader election is rather simplistic
and one of the available actuator nodes within each room is chosen based on an
attribute set at deployment time. The hand-written Contiki code is again based on
the Rime protocol stack and attempts to closely mimic the behavior of the MPL
application. Data processing is also offloaded to nodes within the network, but in
contrast to the MPL application, the selection of these nodes is fixed as part of the
application program. In this regard, the hand-written application is significantly
less flexible than the MPL variant, as any change of the network organization would
require modifications of the program code.

4.4.2 Performance
For the evaluation, both variants of all three applications were implemented by a
computer science student with little prior knowledge of WSN programming and
compiled for the Tmote Sky with the default Contiki tool chain. The resulting
application programs are executed within a simulated network consisting of five to
six nodes, employing the event-based simulation framework Contiki Cooja [Eriksson
et al., 2006], while the gateway application is executed in a non-simulated personal
computer (PC) environment and communicates with the simulated network via a
serial socket and a simulated interface node. The use of simulation already allows
the elimination of most external influences and thus generates repeatable experi-
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Figure 4.3: User-written source lines of code per application [Oppermann et al., 2014b].

mental conditions. To reduce the remaining effect of randomness in the network
emulation of the simulator and due to the non-simulated execution of the gateway
application, each experiment is repeated ten times. During the experiment, each
application is executed until a scenario-specific termination condition is met. The
same termination condition is used for the MPL-based and the manually imple-
mented application. For each implementation, we investigate the following software
metrics:

Source lines of code The number of lines of code is used as a course-grained
measure of the programming effort. Even though this is a very imprecise
measure, it can still provide some insight into the relative complexity of the
different implementations. For the line count, all source files are considered
that are typically written manually by the application programmer. Comments
and blank lines are excluded, as they do not affect the complexity of the actual
code.

Code size The size of the code image is especially relevant for memory-constrained
devices such as sensor nodes. Sensor nodes such as the Tmote Sky nodes have
a program memory of only 48 kB [Moteiv, 2006], which significantly limits the
maximal size of programs. The code size is measured with the help of the
size program from the GNU Binary Utilities.

Static memory consumption Similar to program memory, the amount of avail-
able RAM is also severely limited. We distinguish between the amount of
statically allocated memory that can be determined prior to execution and
the dynamically allocated memory captured by the next metric. Our measure
of static memory allocation also includes the memory reserved for stack space.
To measure the static memory allocation, we also employ the size program
from the GNU Binary Utilities.

Dynamic memory consumption To estimate the use of additional dynamically
allocated memory, we also determine the maximal encountered heap alloca-
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Figure 4.4: Code size of the compiled gate-
way programs [Oppermann et
al., 2014b].
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Figure 4.5: Code size of the compiled node
programs [Oppermann et al.,
2014b].

tion at run time. Heap allocation is measured by linking the applications to
a modified malloc implementation that tracks heap usage. Effects such as
memory fragmentation are not accounted for and the memory demand might
be slightly higher in reality.

Computational effort To coarsely estimate the effect on performance and en-
ergy consumption, we count the CPU clock cycles spent while running the
program for a predefined time interval. The count of the spent CPU clock cy-
cles is provided by mspsim the cycle-accurate WSN node simulator employed
by Cooja.

Communication overhead Wireless communication typically has the most sig-
nificant impact on the energy consumption of wireless sensor nodes. To esti-
mate the relative overhead in terms of communication, we determine the total
number and size of the messages transmitted within the network while run-
ning the program for a fixed time interval. Both values are derived from radio
message traces automatically recored by the Cooja simulation environment.

In the following we present the results of the conducted experiments in terms of the
above metrics and discuss the implications of these results. For all three application
scenarios the MPL program requires a significantly lower number of lines of code to
implement the same functionality than the hand-written versions as can be seen in
Figure 4.3. This indicates that less effort is required to write a functionally equiv-
alent program with MPL. The interpretation that MPL reduces the programming
effort is further strengthened by the results of a usability study conducted within
the context of the makeSense project [Eriksson et al., 2012b].
Still, these benefits come with a cost. The use of MPL increases the overhead.

As can be seen in Figures 4.4 and 4.5 the text size of the code images is higher for
the MPL-based implementations. On resource-constrained devices, such as wireless
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Figure 4.6: Static memory allocation of
the gateway programs [Opper-
mann et al., 2014b].
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Figure 4.7: Static memory allocation of
the node programs [Opper-
mann et al., 2014b].

sensor nodes, this is a serious drawback. Nevertheless, the memory demand is still
well within typical platform limits. In addition, a significant share of the memory
requirement is caused by the fixed-size run-time environment, so that the increase in
memory demand for larger applications can be assumed to be moderate. The MPL
implementation also provides additional flexibility that is not thoroughly used by
the evaluated applications. A manual implementation of these features would also
increase the code size of the hand-written applications and would additionally in-
crease the programming effort even more. The use of libraries with a larger memory
footprint also leads to a higher memory consumption of the Collect application even
though the size of its program code is actually smaller. This effect is more distinct
for the MPL-based application.
Also the memory consumption at run-time is higher for the MPL code as can be

seen in Figures 4.6 and 4.7. The overhead is particularly significant on the nodes.
On the gateway, which is usually a more powerful machine, the slight relative in-
crease in memory demand is less problematic. The overhead in terms of memory
demand is mainly caused by the data structures required for the support of ob-
ject orientation. We assume that the relative overhead will also decrease for more
complex applications. In addition, the current implementation of object-oriented
features leaves potential for optimization.
Dynamic memory allocation is only used by the MPL code, but the maximal

amount of dynamically allocated memory is comparatively low. As can be seen in
Figure 4.8, none of the applications allocated significantly more than 420 bytes at
a time on any node. Consequently, for the evaluated applications, the overhead is
negligible.
In contrast to memory demand, the computational overhead introduced by the

use of MPL is very low as can be seen in Figure 4.9. Surprisingly, for two of the
scenarios, the MPL program requires even fewer CPU cycles for the same task. This
demonstrates that features like virtual method dispatch do not introduce significant
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Figure 4.8: Maximal dynamic memory al-
location on the nodes [Eriksson
et al., 2013].
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Figure 4.9: Maximal number of spend
CPU cycles on the nodes [Op-
permann et al., 2014b].

overhead and the high-level abstractions help the programmer to implement efficient
algorithms.
Similarly, the number of transmitted radio messages also stays largely the same

as can be seen in Figure 4.10. Still, the average size of the messages increases for
the MPL-based solution as shown in Figure 4.11. The significant overhead is mainly
introduced by the extensive use and naïve implementation of object serialization.
As can also be seen in Figure 4.11, the relative overhead is higher for those applica-
tions that transmit little actual data. For the collect application, which transmits
a significant amount of data, the relative overhead is comparatively low. The cur-
rent implementation of object serialization leaves significant potential for further
optimization. The transmission of pure signaling messages without associated user
data could particularly be improved, as these currently carry a large amount of
dispensable data.
The macroprogramming language versions of the applications indeed require less

effort as was demonstrated by a reduction of source lines of code by 50% and more
in comparison to hand-written C code. This indicates that less effort is required to
write a functionally equivalent program with MPL and the programmer’s burden is
reduced. The interpretation, that MPL reduces the programming effort is further
strengthened by the results of a usability study conducted within the context of the
makeSense project [Eriksson et al., 2012b].
Nevertheless, the reduction in programming effort comes with a significant

cost. The binary code size and memory usage increase significantly for the
macroprogramming-language-based applications. Nevertheless, the absolute num-
bers are still well within the limits of the employed platform and the overhead is
largely due to a higher flexibility and additional features of the framework. Con-
sequently, we expect the effect to be far less significant for larger, more complex
applications.
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Figure 4.10: Total number of transmitted
radio messages [Oppermann
et al., 2014b].
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Figure 4.11: Total size of transmitted ra-
dio messages [Oppermann et
al., 2014b].

In contrast to memory consumption, the execution efficiency measured in em-
ployed CPU cycles and transfered messages, is the same or even slightly superior for
the macroprogramming language applications. This demonstrates that it is indeed
possible to create efficient programs with an abstract high-level language. The ob-
served slight increase in performance is most likely due to the macroprogramming
language solutions benefiting from the expertise of the original developers of the
employed programming abstractions.
In conclusion, these results demonstrate the benefits and the feasibility of the

approach. The observed overhead is still low enough to make the approach suitable
for devices with low resources, such as wireless sensor nodes.
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While a novel macro-programming language with a high level of abstraction already
significantly reduces the complexity of successfully creating a WSN application, this
is not sufficient to enable non-expert users to successfully implement such applica-
tions on their own. To reach a suitable performance and dependability, the WSN
communication stack needs to be carefully tuned to the properties of the application
scenario at hand. An optimal configuration strongly depends on the properties of
the environment and the user’s requirements. To also reduce the effort of configur-
ing a WSN system and to make the technology truly approachable for non-experts,
we propose an automatic configuration framework to supplement the previously
introduced macroprogramming framework.
As the selection of an optimal configuration depends on the user’s requirements,

we also need to provide a way to support the user with concisely formulating his
requirements. To assist this task, we developed a catalog of relevant properties that
are meaningful to the intended users and that are suitable as a basis for an automatic
parameterization approach [Oppermann and Peter, 2010].
The actual configuration framework relies on mathematical optimization to de-

termine a near-optimal protocol configuration for a specific application based on
a user-generated requirement specification and models of the employed protocols,
hardware platform, and environment parameters. The generated protocol configura-
tion is later deployed on the sensor nodes alongside the user’s application code and
the implementation of the employed WSN protocols. A runtime support component
provides a convenient interface for protocols to access their configuration settings
and enables switching between different configurations based on the current state of
the system.
In the following, we first describe the underlying modeling framework developed

within the RELYonIT project. Section 5.2 introduces the optimization strategies
employed by the framework. In Section 5.3 we take a closer look at the underlying
mathematical concepts of the optimization process. Section 5.4 introduces the sys-
tem architecture and highlights important aspects of its software implementation.
Finally, in Section 5.4 we evaluate the applicability and performance of the system.
The entire chapter is based on and employs material from parts of a number of

deliverables and previous publications written by the author of this thesis [Mottola
et al., 2013; Oppermann et al., 2015a; Oppermann et al., 2015b]. The results
presented within this chapter are also covered by Paper B and Paper F.
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5.1 Environment, Platform, and Protocol Models
To enable the automatic selection of protocol configuration parameters, it is neces-
sary to be able to reliably predict the performance to be expected with a defined
parameter set. Previous approaches often relied on simulation. With sophisticated
simulation environments, it is possible to yield a reliable prediction of the expected
behavior with a high fidelity, but the simulation of complex systems tends to require
significant resources and is very time consuming. The extensive run-time required to
obtain reliable results, limits the number of possible configurations that can realis-
tically be evaluated and thus reduces the chances of actually identifying an optimal
solution. To overcome these limitations, we opted to employ more-abstract ana-
lytic models that only capture the most relevant properties. Such models provide
less fidelity, but the use of abstract mathematical models enables the evaluation of
a significantly higher number of possible solutions and combined with established
optimization strategies, enables a reliable identification of optimal configuration set-
tings.
For the configuration framework, we employ a conceptual modeling framework

that has been developed within the RELYonIT project. The framework consists of
three categories of interacting models:

1. Environment models. WSNs are often deployed in challenging environments
and thus the properties of the environment have a profound effect on the
performance of a WSN. Environment models provide a systematic approach
to capture the characteristics of the deployment environment. These models
consist of an abstract representation of those environmental parameters that
directly or indirectly affect the performance of the system. The complexity
of the representation can vary between models. A more complex environment
model could for example capture the exact temporal distribution of tempera-
ture values while a simpler environment model could limit itself to reflecting
expected minimal and maximal temperatures within a specific time interval.
For each specific deployment environment, an individual instance of the rel-
evant environment model needs to be derived. Such an instance captures
concrete values for the key parameters of the model and is such adapted to
a specific location. Depending on the model, these location-specific values
can be either derived from readily available data, such as climate records,
or they are determined by running a data collection application prior to the
actual application deployment. As the required data conversion and data col-
lection applications tend to be model-specific, we assume that they will be
co-developed with the respective models.
In this thesis, we focus primarily on two environment aspects, temperature
and radio interference. Nevertheless, the developed concepts can be easily
extended to other environmental factors.
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2. Platform models. The performance of a WSN is not only affected by the
environment, but the capabilities and properties of the employed hardware
platform also play an important role. In addition, different brands and types
of sensor nodes react differently to the same environmental conditions. Both
aspects are captured by platform models. A platform model would, for ex-
ample, capture the relationship between the on-board temperature of sender
and receiver nodes, and the attenuation of the received signal strength for the
employed hardware platform [Boano et al., 2013].
Within this thesis, we focus on models of the Maxfore MTM-CM5000-MSP
node platform and the CC2420 radio chip.

3. Protocol models. Finally, protocol models allow one to predict the perfor-
mance of a WSN protocol under certain environmental conditions and with
a predefined hardware configuration. Typically, the entire performance of a
protocol cannot be measured by just a single metric. For example, in the case
of a routing protocol one would at least be interested in the performance in
terms of latency, throughput, and energy consumption. Consequently, pro-
tocol models usually provide performance measures in a number of different
metrics. The protocol models rely on the previously introduced models to fac-
tor in the influence of the environment and hardware platform. In addition,
protocol models expose all relevant configuration parameters of the underling
protocol implementation, to enable the evaluation of different configurations.

5.2 Optimization Strategies
The actual configuration process is based on mathematical optimization. The cur-
rent prototype implements the two stochastic optimization strategies: simulated
annealing and evolution strategies.
In contrast to deterministic strategies, stochastic optimization strategies are not

guaranteed to find the optimal solution, but are usually more robust to noisy data
and require less fine tuning for a specific problem instance. Suitable stochastic
strategies still possess a very high probability of convergence and are usually at
least able to find a near-optimal solution within a reasonable time. Due to their
inherent randomness, stochastic strategies are able to escape local optima and to
approach a global optimum even in a non-convex search space.
In earlier versions of the prototype, we also explored the use of different deter-

ministic optimization strategies, but these proved unsuitable for our framework, as
they require a significant amount of fine-tuning for each problem instance. Deter-
ministic strategies have the advantage of repeatably generating the same results if
the input is left unchanged and are guaranteed to reliably find an actual minimum
or maximum, even though not necessarily a global one.
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Algorithm 5.1: Basic algorithm of Simulated Annealing.
c← random_configuration()
e← evaluate(c)
for i← 0 to imax do
t← temperature(i)
c′ ← neighbor(c)
e′ ← evaluate(c′)
if p(e, e′, t) ≥ random(0, 1) then
c← c′

e← e′

end if
end for
return c

In addition to the true optimization strategies, we also implemented an exhaustive
search as an alternative. While, due to its extensive run-time, exhaustive search is
not suitable for the configuration of larger systems, it is still useful for debugging
models and as an evaluation baseline.
In the following, we briefly describe the most important characteristics of the

employed optimization strategies.

5.2.1 Simulated Annealing
Simulated annealing is a probabilistic meta-heuristic originally developed by [Kirk-
patrick, Gelatt Jr., and Vecchi, 1983]. For a large number of problems it is more
efficient than exhaustive search, but as a stochastic strategy, cannot guarantee that
a true optimum is found. An advantage over deterministic strategies is the ability
of simulated annealing to escape local optima and to find a global optimum also in
non-convex search spaces.
The idea of the simulated annealing strategy is taken from metallurgy, where slow

cooling of metals is employed to improve the crystalline structure of the material.
The strategy emulates the reduction of energy in the material during the cooling
process. At the initial high temperatures, the material structure can still change
significantly. At later stages, when the material gets colder, only increasingly small
changes are possible and the state of the material converges to a final configuration.
To emulate this behavior, simulated annealing employs a basic algorithm similar

to the one shown as pseudo code in Algorithm 5.1. The algorithm starts with a
randomly initialized configuration and determines the initial energy e for this con-
figuration by applying the problem-specific evaluate function. The energy represents
a problem-dependent cost metric, while lower energy levels denote superior configu-
rations. After the initialization, the following steps are repeated until a predefined
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number of iterations imax is reached. In each iteration, the current temperature is
adjusted according to the temperature schedule implemented by the temperature
function. The exact schedule is typically adapted to the problem at hand, but it
needs to ensure that the temperature is monotonically decreasing. After adjusting
the temperature, a new configuration c′ is generated by a problem-specific neighbor
function. This functions randomly selects a configuration that is close to the current
configuration and has values that deviate only slightly. The new configuration is
evaluated employing the evaluate function and the resulting energy measure e′ is
compared with the energy e of the current configuration. Based on the comparison,
a probabilistic decision is made, if to keep the old configuration or to continue with
the new one. This decision is based on the function p for which we assume the
following definition [Kirkpatrick, Gelatt Jr., and Vecchi, 1983]:

p(e, e′, t) 7→
1 e′ < e

exp(−(e′ − e)/t) otherwise .
(5.1)

If the new configuration has superior properties and consequently a lower energy, it
is selected and the process continues with this configuration. Nevertheless, inferior
configurations still have a slight chance of being chosen, which enables the algorithm
to escape local optima. The likelihood of selecting an inferior solution for continu-
ation decreases with temperature. Consequently, the algorithm behaves similar to
a random walk at very high temperatures, while at lower temperatures its behavior
is more similar to a steepest descent and the process quickly converges towards an
optimal solution. After employing the maximal number of iterations, the algorithm
returns the current configuration as final solution.
A common optimization of the algorithm is to not just store the current config-

uration, but also to save the best configuration seen so far. In the end, the best
configuration seen is reported instead of the final configuration. This way, superior
configurations are never lost and the likelihood of finding an optimal solution is
increased.

5.2.2 Evolution Strategies
Like simulated annealing, evolution strategies [Rechenberg, 1973] are a probabilistic
meta-heuristic. As evolution strategies also belong to the probabilistic class, they are
also only able to find an optimal solution with a high probability. A major difference
in comparison to simulated annealing is the use of a population instead of just a
single configuration, which allows the algorithm to explore multiple areas of the
search space in parallel. Consequently, a lower number of iteration is needed to find
a good solution, but each individual iteration is computationally more demanding.
The use of a population also makes the extension to multi-objective optimization
comparatively straightforward. Another particular advantage of evolution strategies
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is its low number of tunable parameters. Instead, evolutionary strategies rely on self-
optimization, by adapting important parameters as part of the optimization process.
This allows the strategy to automatically adjust itself to different problem classes.
The advantages of evolution strategies are partially offset by the significantly higher
complexity that increases the implementation effort and the risk of errors.
The concept of evolution strategies is inspired by evolutionary process in nature.

In comparison to other evolution-inspired strategies, such as genetic algorithms,
evolution strategies employ a higher-level of abstraction and, for example, do not
explicitly model genes.
A large number of variants of the basic algorithm exists, but they all follow a

similar pattern. The process starts with a randomly generated population. Within
each iteration, first, a predefined number of new configurations is created, each based
on a cross-over of two configurations of the previous generation. Next, a mutation
operator is applied to the newly created configurations. A typical implementation
of the mutation operator modifies each of the individual values of the configuration
by a normally-distributed random value. The parameters of this distribution are
stored alongside the configuration values and are also adapted by the algorithm,
which enables the algorithm to self-adapt to the problem at hand. Finally, a fixed-
size sub-set of the configurations is semi-randomly selected to form the population
of the next iteration. This selection is biased by the relative quality of the available
solutions. Superior configurations are more likely to be selected, but still inferior
solutions can be selected with a low probability. The occasional selection of inferior
solutions enables the algorithm to escape local optima. The process is repeated
until a predefined number of iterations has been executed or the quality of the best
solution reaches a predefined threshold.
For our implementation we employed an optimized and extended variant of the

basic strategy developed by Reehuis and Bäck [Reehuis and Bäck, 2010]. This
variant supports configurations consisting of integer, floating point, nominal, and
Boolean values.

5.3 Mathematical Model
The configuration framework employs mathematical optimization to generate an
optimal parameter configuration for one or more WSN protocols based on a user-
defined dependability specification.
The goal and constraints of a requirement specification define a typical constrained

optimization problem. The formulation of this problem is based on a number of
metrics mi(c) that allow the evaluation of the quality of a specific configuration
c by assessing the performance of the configuration in regard to a specific aspect.
Upon evaluation of a configuration, the employed protocol model provides a single
score value for each supported metric. To incorporate relevant properties of the
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deployment environment and the employed hardware platform, the protocol model
can in turn resort to environmental and platform models. We currently only support
the single objective case where only a single metric is optimized, while the user may
specify an arbitrary number of additional constraints. A possible extension to multi-
objective problems has not been studied within the scope of this thesis. To increase
the flexibility, we support probabilistic constraints that only need to hold with a
given probability. For example, a user could specify that the packet reception rate
should stay above 0.8 with a probability of 0.9 and above 0.5 with a probability of
1. Probabilistic constraints grant the users additional flexibility in defining their
constraints, which is especially important for wireless systems, where a continuous
fulfillment of strict constraints can rarely be guaranteed with absolute certainty. The
optimization problem defined by a requirement specification document essentially
matches the following form:

Minimize m0(c)
Subject to m1(c) ≤ t1with probability p1

m2(c) ≤ t2with probability p2 .
(5.2)

The goal of the exemplary specification from Equation 5.2 is to find a protocol
configuration c that optimizes a single metric m0. In addition, this specification
defines two constraints that need to be fulfilled by ensuring that m1(c) and m2(c)
are below the respective thresholds t1 and t2 with a probability of at least p1 or p2.
Note that m0, m1, and m2 may all refer to the same metric.
In the remainder of the section, to simplify the presentation and without loss of

generality, we assume that the metrics (m0, m1, m2) and the thresholds (t1, t2) are
normalized to the [0, 1] range and that smaller values denote superior properties. In
addition, only minimization and less-or-equal constraints are considered, as other
goals and constraints can be easily converted into this form.
The employed optimization strategies do not readily support an optimization

problem of the previously introduced form. To be usable as input for these opti-
mization strategies, it needs to be transformed into a more suitable representation.
Specifically, we need to overcome two challenges.
First, most optimization techniques do not directly support constraints but work

only with a single optimization function. To be usable for these techniques, the
constraints need to be integrated with the objective function. To accomplish this,
we employ an approach similar to penalty functions often used in stochastic opti-
mization [Smith and Coit, 1997]. This approach ensures that invalid configurations
are unlikely to be selected as a final solution, but still allows the optimization al-
gorithm to traverse infeasible regions of the search space and explore potentially
superior regions. In the unconstrained case, the cost f(c) of a specific configuration
c is determined exclusively by the goal function m0(c). To integrate constraints, a
measure of violation is computed for each constraint and is added to the total cost
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of the current configuration. To ensure that invalid solutions are unlikely to be se-
lected, while still allowing the optimization algorithm to traverse infeasible regions,
the influence of the constraint violation is given slightly more weight than the cost
of the goal. If we assume a weight of k, the total cost for a given configuration c
and r constraints can now be calculated as given by

f(c) =
fgoal(c) + k

∑r
j=1 fcons,i(c)

1 + kr
. (5.3)

The goal’s cost depends only on the value determined by the respective metric, so
the function can be defined according to

fgoal(c) = m0(c) . (5.4)

The calculation of the degree of violation for each constraint is calculated according
to the function

fcons,i(c) = max{(ti −mi(c)) , 0} . (5.5)

To allow the use of probabilistic constraints, we also need to convert these into
a form usable with established optimization techniques. In contrast to regular con-
straints, the newly introduced probabilistic constraints only need to be fulfilled with
the specified probability. To support this feature, we exploit the fact that most
environment parameters exhibit some kind of periodic behavior. This enables us to
sample the environment at different points in time and identify time frames with
distinct environment conditions. Each time frame leads to a distinct environmental
model instance. If we assume that communication events are more or less evenly
distributed over time, we can associate a probability qj with each interval based on
its relative length. This probability indicates how likely it is that a specific commu-
nication event falls within a specific interval and is such affected by the properties
of this interval. Instead of using only a single function mi(c) per metric, we now
employ a set of functions mi,j(c). Each of these function corresponds to one of the
n intervals and outputs a score value based on the environmental conditions within
this interval. Consequently, each of these functions uses a different instance of the
environmental model that represents the distinct interval. For the support of prob-
abilistic constraints, we need to adapt the definition of the functions fgoal(c) and
fcons,i(c) in Equation 5.3.

To take the use of multiple cost functions for each metric into account, the cost of
the goal fgoal(c) is redefined as the average of the cost for each individual interval,
which leads to

fgoal(c) =
n∑

j=1
qjm0,j(c) . (5.6)

The updated calculation of the cost of the individual constraints takes the interval’s
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Figure 5.1: Architecture of the parameterization framework [Oppermann et al., 2015a].

probabilities into account by employing the definition of

fcons,i(c) = max


pi −
n∑

j=1
τ(mi,j(c), ti, qj)

 , 0
 , (5.7)

where function τ(v, t, q) implements a filter to only consider constraints that are
violated under the current environmental conditions by using the definition

τ(v, t, q) =
q, v > t

0, otherwise .
(5.8)

The resulting transformed definition of f(c) can finally be used as the goal function
of an unconstrained optimization problem that is readily supported by the employed
optimization strategies.

5.4 Implementation
To evaluate the approach, we implemented it within a prototypical system. The
framework consists of three major components: (1) the actual configuration tool,
(2) a number of protocol model implementations, and (3) a run-time environment.
As can be seen in Figure 5.1, the framework is organized around the central con-
figuration tool, which implements the automatic parameter selection process. This
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Listing 5.2: Exemplary XML-encoded requirement specification.
<?xml version ="1.0" encoding ="UTF -8"?>
<dependabilityReq xmlns:xsi ="http: // www.w3.org /2001/ XMLSchema - instance "

xsi:noNamespaceSchemaLocation =" schema .xsd">
<name >Sample Requirement TempMAC </name >
<protocol_class >tempmac </ protocol_class >
<objective >CCA </ objective >
<criteria >MAX </ criteria >
<constraints >

<constraint >
<metric >PRR </ metric >
<threshold >0.85 </ threshold >
<probability >1.0 </ probability >

</ constraint >
<constraint >

<metric >PRR </ metric >
<threshold >0.95 </ threshold >
<probability >0.9 </ probability >

</ constraint >
</ constraints >

</ dependabilityReq >

tool selects a suitable parameter set to ensure the dependable performance of WSN
protocols.
The tool receives a specification of the dependability requirements encoded in ex-

tensible markup language (XML) as shown in Listing 5.2 as input. The specification
consists of a single optimization goal (e.g., minimization of energy expenditure), and
optionally an arbitrary number of constraints. It essentially defines an optimization
problem such as introduced in Section 5.3. While most applications will only employ
a single set of requirements, some applications have a number of diverse modes of
operation that are activated based on system state and environmental conditions.
These operation modes often have very different requirements in terms of network
performance and reliability. For example, a system to detect forest fires would be
typically optimized for a long system lifetime during normal operation. As soon as
a forest fire is detected, lifetime is not a primary concern anymore, but instead the
system should operate in a mode that ensures a very fast dissemination of detailed
data about the current state of the fire. To also adequately handle such applica-
tions with several modes of operation, each with its own set of requirements, the
configuration tool can be fed with multiple independent requirement specifications.
Each of these specifications is assigned to one of the possible application states. At
run-time, the application can switch between these modes and select different sets of
active requirements to adapt to the current situation. If multiple requirement spec-
ifications are given, each one is handled separately during the optimization process
and an individual configuration is generated for each one.
Based on these inputs the static configuration tool employs the mathematical

optimization techniques introduced in Section 5.2 to determine a near-optimal con-
figuration for the employed protocols. The configuration tool is implemented as a
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standalone Python [van Rossum and de Boer, 1991] application.
To predict the behavior of protocols with a specific configuration and in a specific

environment, the configuration tool relies on protocol models introduced in Sec-
tion 5.1 that evaluate the protocol performance. These models are highly protocol
dependent and we expect that the model implementations will typically be provided
by the respective protocol developers. To enable the use of externally defined and de-
veloped model implementations, the configuration tool provides a plug-in interface.
The plug-in interface makes it comparatively easy to add new models for different
protocols. Model implementations are expected to also employ the Python pro-
gramming language, but interfacing to implementations in different programming
languages is possible via Python language bindings.
The run-time environment provides the protocol implementations access to the

generated configuration file at execution time. As of today, most implementations
either employ hard-coded values that are set at compile time or employ their own
configuration mechanism. Instead, our automatic configuration framework relies on
a centralized configuration. Configuration parameters for all deployed protocol im-
plementations are stored at a single location and access to the settings is provided
by the dedicated run-time environment. The run-time environment is platform de-
pendent and needs to be reimplemented for different WSN operating systems. The
current prototype contains a run-time environment suitable for Contiki. The actual
configuration settings are stored within a C module that is compiled separately and
linked with the run-time environment and the actual application code. The module
contains a hierarchic representation of the configuration as nested C structures. The
use of a compiled configuration largely simplifies access by the run-time environment
and leads to a very low memory overhead. The use of a centralized configuration also
simplifies the implementation of different performance states. For applications that
support multiple modes of operation, the run-time environment manages a separate
configuration for each mode. Based on the current application state the applica-
tion can select the most suitable one. To enable the transition between different
performance states, the run-time environment provides a dedicated interface. After
a performance state transition, all affected protocol implementations are automati-
cally triggered to update their operation based on the new configuration settings.

5.5 Evaluation

To evaluate the feasibility of the approach, the framework is employed to determine
an optimal configuration for an exemplary façade monitoring application based on
a previously recorded temperature profile of a real deployment. To further evaluate
the performance of the framework, different possible configurations are evaluated
on a WSN testbed emulating the temperature profile of the real environment and
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compared with the actual performance of the configuration proposed by the config-
uration framework.
In the following, we first describe the application scenario and the employed pro-

tocol model. Subsequently, we introduce the setup for the two experiments and
discuss their results.

5.5.1 Application Scenario
The evaluation of the automatic configuration framework employs a façade moni-
toring application as a case study. A more detailed description of the case study can
be found in Paper F. The application was originally developed within the context of
the RELYonIT project [RELYonIT Consortium, 2015] and deployed on the façade
of one building of DEMOPARK, an experimentation façility for building isolation
operated by ACCIONA in the vicinity of Madrid, Spain. Its buildings are used
by ACCIONA to study the efficiency of different building isolation methods and
materials. These studies require precise and reliable temperature measurements at
different locations on the building façade. To enable a meaningful analysis of the
measurements, only a very low loss of data packets can be tolerated, since gaps in
the transmitted data might lead to false conclusions. Achieving reliable data trans-
mission is further complicated by the environment at the deployment site. By being
deployed on the outside of a building façade, the nodes are exposed to different
climate effects, such as temperature changes and sun radiation. This leads to signif-
icant temperature variations within the node’s enclosures over the course of a day.
These temperature differences significantly affect the operation of the employed ra-
dio chips, which in turn affects the effectiveness of clear channel assessment (CCA)
typically used by MAC layer protocols. This can compromise the ability of nodes to
avoid packet collisions or prevent successful wake-up from low power modes [Boano,
Römer, and Tsiftes, 2014]. In the Madrid deployment, ContikiMAC [Dunkels, 2011]
is used as MAC protocol. ContikiMAC is a low-power MAC protocol that employs
CSMA-based duty cycling with a power efficient wake-up mechanism to reduce the
power consumption by keeping the transmitter off as much as possible. To detect
ongoing transmissions and as a part of the duty cycling mechanism, ContikiMAC
uses CCA with a fixed threshold. The CCA threshold is usually left at the default
setting of the hardware platform and hence does not take temperature changes into
account which may lead to a significantly degraded performance [Boano, Römer, and
Tsiftes, 2014]. An inaccurate selection of the CCA threshold can, at high temper-
atures, prevent receiving nodes from correctly detecting transmissions and wake-up
from low-power mode, which in turn leads to broken links and a reduced reliability
of the network. A too low threshold setting may lead to energy wastage due to an
increased number of false wake-ups caused by radio noise.
To enable the use of the automatic configuration framework to determine a more

suitable threshold, a protocol model of ContikiMAC was developed within RELY-
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onIT [Oppermann et al., 2015a]. This model captures how the performance of the
MAC protocol, measured in terms of packet reception ratio (PRR), is affected by
a change in environmental temperature. The protocol model in turn relies on two
additional models: a platform model characterizing the signal strength attenuation
of the radio and an environmental model characterizing the expected variations of
on-board temperature during operation.
The environmental model is comparatively simple and just captures the maximum

temperature. To enable the use of probabilistic constraints, the day is divided
into six intervals of equal length and an individual model instance is created for
each interval. For the experiments, the six models were instantiated by collecting
temperature traces over a time frame of several days in October 2014.
The platform model reflects the characteristics of the Maxfor MTM-CM5000-

MSP sensor nodes employed in the deployment. More specifically, it captures the
properties of the TI CC2420 radio these nodes are equipped with. The model is based
on earlier work by Boano et al. [2013] that characterizes the effect of temperature on
the efficiency of the radio. The model defines three constants α, β, and γ that denote
the respective effect on transmission power, received power, and the noise floor in
dB/K based on the temperature difference compared to a fixed reference temperature
[Boano et al., 2013]. These parameters need to be instantiated individually for each
sensor node type. In this case study, we employed empirically determined settings
for these parameters.
Combined, the three models allow the predict of the expected PRR in a specific

climate and with a given setting of the CCA threshold ζ. For a more thorough
description of the model developed by Boano and Zúñiga the reader is also referred
to Paper F.
The probability of successful transmission of packets over a single link in the

network can be estimated by analyzing the effective signal strength at the receiver.
In the ContikiMAC protocol, nodes periodically wake up from low-power mode and
check if the channel is busy by comparing the signal strength to the CCA threshold.
If a possible transmission is detected, the node stays awake to receive the message.
Otherwise, the node returns to low-power mode until the next wake-up interval.
Transmissions are detected by comparing the current signal strength sr with a fixed
threshold ζ. If sr ≥ ζ, a possible transmission is detected else if sr < ζ it is assumed
that no transmission is ongoing. The same mechanism is also used at the sender
side to prevent interfering with ongoing transmissions. If a transmission is already
in progress, the sender delays its own transmission until the channel is free.
The PRR is affected by the sensitivity threshold of the radio. If the perceived

signal strength of the receiver is below this threshold, the message cannot be cor-
rectly decoded and the packet is lost. Actually, one can distinguish three regions, a
connected region, where signal strength is above the threshold s0.99 and nearly all
packets are received; a disconnected region, where the signal strength below s0.01 and
almost no packets are received; and finally a transitional region, where the reception
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probability follows a sigmoid curve defined by

p = (1− f(Pr − Pr))b (5.9)

with Pr being the received signal strength in dBm, Pn the sensitivity threshold of
the radio in dBm, and b the number of bits in the packet.
Temperature changes influence the effective perceived signal strength at the re-

ceiver. If the temperature at the receiver Tr or the temperature at the sender Ts
rises, the signal strength is attenuated. According to the model the change of the
signal strength can be characterized by

s
′

r = (sr − α∆Tt − β∆Tr) . (5.10)

Also, similar the bounds between the different regions are shifted according to

s′0.99 = s0.99 −∆Trγ (5.11)

and
s′0.01 = s0.01 −∆Ttγ . (5.12)

This allows one to estimate the expected worst-case package reception rate PRR′
for a given link in the network and a known temperature range by

PRR′ =


1, if max{ζ, s′0.99} < s′r
p, if s′0.01 ≤ ζ < s′r ≤ s′0.99
0, otherwise .

(5.13)

The ContikiMAC model has been realized as a configuration framework plug-in
implementing the interface defined by the framework. The implementation exposes
one configuration parameter, ζ, and provides a number of metrics that can be used
to define goals or constraints. The primary metric provided by the protocol model is
the expected worst-case PRR of a link averaged over all links in the network. Envi-
ronmental and platform models are currently integrated within the implementation
of the protocol model and have not been realized as separate modules.

5.5.2 Applicability

In this section, we demonstrate the applicability and usefulness of the automatic
configuration framework, by employing it to generate an optimized configuration
for the aforementioned case-study. This evaluation consists of two parts. In the first
part we use the framework to configure only a single link between two nodes which
eases the analysis and presentation of the results. In a second step, we demonstrate
that the same principles can be also successfully transfered to an entire network.
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Figure 5.2: Impact of CCA threshold on PRR for a single link [Oppermann et al., 2015a].
Background colors indicate different time intervals. The 85% PRR constraint
of the employed requirement specification is represented by a dashed line. The
bottom plot shows the temperature profiles of the sender and receiver node.

The evaluation employs TempLab [Boano et al., 2014], a temperature-controlled
testbed, to emulate the environment of a real-world outdoor façade within a con-
trolled laboratory environment. The emulation of temperature effects is based on
traces previously recorded at DEMOPARK. Consequently, the sensor nodes in the
testbed experience the same on-board temperature profile as in the real-world sce-
nario. To enable a large number of experiments within reasonable time, the ex-
periments are run with a time-lapse factor of 12. Hence, a trace recorded over the
course of one day is replayed within only two hours. As the temperature changes
are still comparatively slow, the time-lapse is unlikely to affect the results of the
experiments.

The parameters of the platform model are configured based on the results of earlier
experiments by Boano et al. [2013], which leads to settings of α = β = 0.078dB/K,
and γ = 0.037dB/K. The width of the transitional region τ = 5dB and the packet
size b = 35 bytes are fixed for all conducted experiments. Not to neglect the support
of disparate time intervals, the day was uniformly divided into six intervals of four
hours in length. All experiments were conducted with the optimization process
employing the simulated annealing strategy.
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Figure 5.3: Impact of CCA threshold on PRR on a network of nodes [Oppermann et al.,
2015a]. Background colors indicate different time intervals. The 85% and 95%
PRR constraints of the employed requirement specification are represented by
dashed lines. The bottom plot shows the different temperature profiles of the
nodes in the network.

Single Link. The first set of experiments only considers the simpler case of con-
figuring only a single link. The goal in this scenario is to ensure dependable com-
munication despite the predicted environmental influences. More precisely, the goal
is to find the maximal possible CCA threshold while still ensuring that a PRR of
at least 0.85 is maintained at all times. Based on temperature traces recored at
the DEMOPARK deployment, the configuration framework determines an optimal
CCA threshold of −83 dBm for the specified requirements.
To verify the correctness of the result, we run a simple application that repeatedly

sends a packet via the link within the TempLab testbed using a number of differ-
ent CCA threshold settings. Figure 5.2 shows that with the suggested threshold of
−83dBm, the PRR actually stays above 0.85 for the whole duration of the experi-
ment. For any higher CCA thresholds the PRR requirement is violated in at least
one of the intervals. For example, for a CCA threshold of −82dBm, the PRR drops
to just 0.75 at time 5:10. For higher CCA thresholds the effect is even more severe
with PRR values of less than 0.25 during intervals with high temperature. As a site
note, at −77dBm, the default value of the CC2420 radio [Texas Instruments, 2013],
the link is almost disconnected throughout the entire experiment, only reaching a
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maximal PRR of slightly more than 0.25.
In a second experiment, to explore the effect of probabilistic constraints, we em-

ploy the same PRR constraint of 0.85 but only require it to be met with a probability
of 0.6. For this scenario, the framework determines an optimal CCA threshold of
−81dBm. As is visible in Fig. 5.2, with a threshold of −81dBm the PRR actually
stays above 0.85 in at least four out of the six intervals per day, which fulfills our
requirement of sustaining a PRR of at least 0.85 in at least 60 % of the cases. We
can also see that a CCA threshold of −80dBm would violate the constraint by addi-
tionally dropping below 0.85 in the first interval. Hence, the suggested threshold of
−81dBm can actually be assumed to be the most energy conserving configuration
that is able to meet the specified constraint. If the application can tolerate periods
with low packet reception, the use of a lower CCA threshold allows energy conser-
vation in comparison to the settings required for the stricter reliability constraints
as a lower CCA threshold reduces the number of false wake-ups due to radio noise.

Network. To facilitate analysis and presentation, the previous experiments only
considered a single link. In realistic scenarios, the framework will typically be used
to configure protocols based on the behavior of an entire network. Typically, it
is not feasible to configure different links individually. Consequently, we will now
evaluate the framework in a more realistic scenario that replicates the topology of
the deployment that was used to monitor the façade of a DEMOPARK building.
The network consists of seven sensor nodes that are connected to a single gateway
node in a star topology. During the experiment, all nodes are exposed to individual
temperature profiles recorded on different locations on the building façade. The
network is configured based on a requirement specification that leads to the following
abstract representation as an optimization problem:

Maximize CCA([ζ])
Subject to PRR([ζ]) ≥ 0.85 with probability 1.00

PRR([ζ]) ≥ 0.95 with probability 0.9 .
(5.14)

For this scenario, the framework suggests an optimal CCA threshold of −83dBm.
As in the single link scenarios, we compare this suggestion with other possible CCA
threshold settings. Based on the results reported in Figure 5.3, it can be seen that for
the suggested CCA threshold, the average PRR permanently stays above 0.85, even
if the nodes are exposed to heat. For a CCA threshold of −80dBm or higher, this
constraint is clearly violated, as the PRR drops below 0.85 within several intervals.
While the first constraint is already met with a threshold of −82dBm, the PRR
drops below 0.95 for at least three out of the 18 intervals, which indicates that
the second constraint cannot be met by this configuration. The suggested CCA
threshold of −83dBm actually provides the best performance for the given scenario.
These results demonstrate that our framework is actually capable of generating
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Figure 5.4: Probability of finding the optimal solution within a given time [Oppermann
et al., 2015a].

useful configurations for realistic deployment scenarios and is also able to handle
more complex requirements of typical users.

5.5.3 Performance
To be truly useful, the framework does not only need to reliably generate correct
results, but these results need to be available within a reasonable time. Conse-
quently, we also need to evaluate the basic performance of the system by analyzing
the trade-off between speed and precision. In addition, as the system supports dif-
ferent optimization strategies, we briefly compare the relative performance of the
different optimization algorithms. Both evaluations employ the same model and
similar settings as in the previous section. To establish a ground truth value for the
evaluation of the different optimization strategies, we employ an exhaustive search
to identify the true optimum. With the previously introduced settings, a globally
optimal solution can be found with a CCA threshold of -84 dBm and a cost value
f = 0.14344.
To evaluate the time/quality trade-off, we execute the configuration framework

with both implemented optimization strategies and with different time budgets.
Limiting the time budget is indirectly accomplished by artificially limiting the max-
imal number of iterations the algorithm may spend before the result is collected. To
reduce the effects of uncontrolled random events, each algorithm was executed 100
times for each examined time budget. All experiments were conducted on a Lenovo
ThinkPad T430s notebook equipped with an Intel Core i7-3520M dual core CPU
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Figure 5.5: Time/quality trade-off for different optimization strategies [Oppermann et al.,
2015a].

running at 2.90GHz and 8GB of RAM.
The resulting time/quality trade-off is plotted in Figure 5.4. To better illustrate

the observable trend, the exponential function x 7→ a∗eb∗x + c has been fitted to the
raw data. As it can be easily seen, longer run-times naturally lead to superior results.
While for shorter run-times the true optimum is rarely found, with a run-time of
more than 120 s both algorithms are reliably able to find the optimal solution. With
evolutionary strategies the optimum is typically already identified after a run-time
of only 20 s.
In addition, the non-optimal solutions returned after a shorter run-time, do not

necessarily represent bad solutions in practice. Most returned solutions, even after
a run-time of only 150 seconds, are already close to the true optimum, as can be
observed in Figure 5.5. Their cost value is only slightly above that of the optimal so-
lution. For many applications, such near-optimal solutions are already good enough
and the actual difference in performance is negligible in reality.
The results demonstrate that the performance of the automatic configuration

framework is good enough to be useful within a typical WSN development process.
The reliability of the results is high, despite the use of stochastic optimization strate-
gies and the involved randomness. For the specific scenario, evolutionary strategies
exhibit a slightly better performance, but this observation does not necessarily trans-
fer to other scenarios. Due to a small number of nodes and tunable parameters, an
exhaustive search is still a feasible approach in this scenario, but its performance
degrades quickly if the number of nodes or configuration parameters is increased.
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During the last few years, the use of WSN technology has largely increased. As
pointed out by a systematic survey [Oppermann, Boano, and Römer, 2013], a large
number of applications with diverse properties exists. Newer applications are often
safety-critical and require a high level of performance and dependability. Still, most
applications are developed in a scientific context and with the help of highly-skilled
WSN experts. To enable the success of WSNs in the real world, the use of the
technology needs to be more approachable for domain experts without a strong
background inWSN technology. With this thesis, we propose an integrated approach
to overcome these two challenges and to pave the way for a more widespread adoption
of WSNs.
In the following, we first summarize the contributions of this thesis and secondly

discuss remaining limitations of the proposed solutions. We also take an outlook on
potential future research to overcome these limitations and to increase the applica-
bility of the proposed concepts.

6.1 Scientific Contributions
We set out to reduce the barriers to successful employment of WSNs in real-world
applications. In this regard, we identified two major obstacles that need to be
overcome to enable a more widespread adoption of the technology:

1. the lack of a WSN-specific macroprogramming system that enables the seam-
less integration of existing and future application-specific WSN programming
abstractions, and

2. the difficulty of configuring WSN protocol stacks which often leads to inade-
quate performance and dependability, especially in hostile environments.

To rectify the current situation and enable a more widespread application of WSNs,
we propose an integrated WSN development framework. The contribution of this
framework is twofold. First, we proposed a novel extensible macroprogramming lan-
guage targeted at resource-constrained devices that allows the integration of existing
programming abstractions and that significantly reduces the effort of WSN program-
ming. Second, to also reduce the required expertise and effort in correctly config-
uring the underlying protocol stack, we propose an automatic configuration frame-
work. This framework derives optimal protocol configuration values for a specific
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application that enable a predictable performance and dependability. The applied
optimization process relies on models of the environment, the hardware platform,
and the employed protocols.
The macroprogramming language demonstrates the applicability of employing a

high-level object-oriented macroprogramming approach for the implementation of
WSN applications. The language’s syntax and semantics are partially modeled af-
ter the well-known Java language. An especially noteworthy feature of the language
is its extensibility. The language enables the seamless integration of existing and
future WSN programming abstractions, by employing a meta-abstraction concept
developed within the makeSense project. The language has been implemented by a
prototypical compiler and we assess the feasibility of the approach by evaluating the
performance in a number of typical WSN application scenarios. The evaluation es-
pecially focuses on the use of a WSN control system in an energy-efficient distributed
HVAC system. This use-case scenario introduces a number of additional challenges
by requiring in-network control processes and the close integration with external
management systems. With the implementation and evaluation, we could quantify
the overhead introduced by the proposed approach and could assert its appropri-
ateness for low-power, resources-constrained devices. The evaluation showed that
the overhead is manageable in typical WSN applications. Even the use of Java syn-
tax and semantics and the explicit support for object-oriented programming do not
generate excessive overhead if carefully implemented with the resource-constrained
nature of WSN nodes in mind. In addition, the evaluation revealed the usefulness of
the complete macroprogramming framework and its capability to reduce the required
coding effort. Finally, the successful implementation validates the applicability of
the makeSense meta-abstractions as a conceptual framework for the integration of
programming abstractions. Due to its flexibility, the compilation framework itself
can easily serve as a platform for future research on macroprogramming and code
allocation concepts.
The second pillar of our approach is the concept for an automatic configuration of

WSNs based on predicted environmental conditions and the application’s require-
ments. As part of this thesis this concept has been implemented as a prototypical
configuration framework employing environmental, platform, and protocol models
developed within the RELYonIT project. The resulting framework has been success-
fully evaluated within a building façade monitoring case study. In this case study,
a WSN is used to monitor the heat distribution on a building façade in order to
enable the study of the building’s heat dissipation. The implementation and evalu-
ation of the approach demonstrates the feasibility of automatic model-based WSN
protocol configuration. The automatic system can identify configuration settings
satisfying the user’s performance and dependability requirements even in hostile en-
vironments. Yet, the process requires less WSN-specific expert knowledge and is
significantly less time consuming than manual tuning of protocol parameters. The
configuration process is further assisted by a newly developed requirement catalog
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that supports the requirement analysis and enables less technology-savvy users to
provide suitable input for an automatic parameterization process as proposed above.
Combined, the programming and configuration frameworks significantly re-

duce the effort and required knowledge for successfully designing and deploying a
WSN/IoT application and represent a significant step towards a broader adoption
of the technology in real-world scenarios.

6.2 Remaining Issues and Future Work
Despite the positive results of the evaluation, current limitations open up an avenue
for future work. A major limitation of the current implementation is its lack of
integration. Both frameworks have been implemented as prototypical systems, but
those systems are not yet integrated. Workable concepts for such an integration
have been proposed in Chapter 2, but are not currently realized. In the future, we
intend to implement such an integrated system, in order to truly deliver the vision
of an integrated WSN development framework that enables less technology-savvy
users to successfully deploy WSNs.
Both individual concepts and implementations also have limitations of their own.

While the meta-abstraction framework provides well-defined interfaces for the in-
tegration of programming abstractions within the macroprogramming language, it
does not define any interfaces for the direct interaction between different program-
ming abstractions. For example, currently, no standardized interface exists to enable
a Tell Action to access the properties of an associated Target Modifier. To resolve
this issue, the framework needs to be extended with a more precise definition of
the building blocks of programming abstraction and well-defined interfaces between
these building blocks. The current implementation of code allocation is also limited
in some regards. Currently, it operates entirely at class level, but a more fine-grained
approach that extends the allocation decisions to individual methods and attributes
would provide increased flexibility and more significant savings in terms of mem-
ory. In addition, it would be useful to make the allocation algorithm work with
a larger number of node classes and to explicitly take data-flow of the application
into account. A more sophisticated data-flow analysis would allow the compiler to
improve the allocation of individual program elements to nodes within the network.
Another drawback identified during the evaluation is the lack of an integrated de-
bugging framework. Identifying and analyzing errors in the generated C code proved
difficult and reintroduced the need for an understanding of the underlying systems.
To make the system more useful in practice, we also intend to improve debugging
support. The user experience could be further increased by providing an adapted
editor or an integrated development environment (IDE) for the microprogramming
language. The overall performance of the system can be further improved to make it
even more suitable for resource-constrained devices typically found in WSNs. Mem-
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ory consumption of the generated code, in particular, still leaves significant room for
improvement. It could be, for example, improved by a more sophisticated strategy
for code allocation. Finally, to be truly useful, the number of available program-
ming abstractions also needs to be increased. Currently, only a limited number of
programming abstractions is integrated with the macroprogramming framework.
The configuration framework is currently primarily restricted by its limitation to

single protocol configuration. To be more useful, the framework should support the
configuration of an entire protocol stack. In addition, for many scenarios, alterna-
tive protocols and protocol implementations are available, so that the system would
significantly benefit from enabling the automatic selection of suitable protocols. The
latter goal could be reached by integrating existing approaches for protocol selec-
tion such as ConfigKit [Peter, Piotrowski, and Langendörfer, 2008]. Both extensions
would likely also necessitate a further improvement of the actual optimization pro-
cess, especially if more complex models are to be used. In the future, we hope to
see the implementation of additional protocol models and the use of the framework
in additional case studies. This will allow further assessment of the performance of
the system and to identify means to increase the flexibility of the framework.
Finally, both individual frameworks as well as an integrated system could ben-

efit from further evaluation in a large-scale deployment. The evaluation of the
usability of the programming framework, in particular, could be supplemented by
a comprehensive user study that more precisely quantifies the actual reduction in
development effort. Initial work in this direction has been conducted by one of the
project partners from makeSense, but still awaits publication.
We hope that the developed concepts and software systems can serve as a vi-

able basis for future research and will one day help to enable the implementation
and configuration of typical WSN and IoT applications without requiring extensive
technical expertise in the area.
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7.1 Paper A: Towards an
End-User-Requirement-Driven Design and
Deployment of Wireless Sensor Networks
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7.1.1 Summary
This paper describes a way of making WSN technology more approachable and
increasing its uptake outside of the scientific community.
Wireless sensor networks receive high research attention but despite this large

interest, the adoption of WSNs outside of the scientific community is still very
limited. To allow a widespread use of WSNs, it is necessary to enable technically
less skilled personnel to successfully deploy a WSN to solve their specific problems.
While these end users can be assumed to be experts in their application domain,
like in biology or in geology, they cannot be expected to be especially trained in
computer science. One must ensure that the design and deployment process requires
as little technical knowledge as possible and can be automated as much as possible.
The proposed approach aims to reduce the burden of creating a successful WSN
application and thus make the technology more accessible for non-experts. We
believe that an implementation of this approach will pave the way for this technology
finally being a success “in the field.”

7.1.2 Contributions
I am the sole author of this paper. It incorporates some ideas from Oliver Theel, who
was my PhD thesis advisor at that time. The paper was presented by me at the work
in progress session at the 17th EUROMICRO International Conference on Parallel,
Distributed and Network-based Processing (PDP 2009) in Weimar, Germany.
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Towards an End-User-Requirements-Driven Design and Deployment of
Wireless Sensor Networks ∗

Felix J. Oppermann
Department of Computer Science

Carl von Ossietzky University Oldenburg, Germany
felix.oppermann@informatik.uni-oldenburg.de

1. Introduction

A wireless sensor network (WSN) is a network po-
tentially composed of a large number of small and rela-
tively cheap sensor nodes. Each node contains sensors to
gather information about its environment. In addition it is
equipped with a microcontroller that allows preprocessing
of data. These nodes communicate with one another via low
power radio interfaces and form ad-hoc networks to relay
the data. A WSN allows cheap and dependable monitoring
of a large area. Sensor nodes generally have limited power
supplies, so that energy consumption must be reduced to
extend the overall lifetime of the network as much as pos-
sible. The unique properties of WSNs demand for specific
solutions to many problems and often disallow the use of
traditional approaches. Currently a successful deployment
requires expertise and experience [2]. Wireless sensor net-
works receive high research attention but despite this large
interest [1], the adoption of WSNs outside of the scientific
community is still very limited.

To allow a widespread use of WSNs, it is necessary to
enable technically less skilled personnel to successfully de-
ploy a WSN to solve their specific problems. While these
end-users can be assumed to be experts in their application
domain, like in biology or in geology, they cannot be ex-
pected to be especially trained in computer science. One
must ensure that the design and deployment process re-
quires as little technical knowledge as possible and can be
automated as much as possible. We believe that these char-
acteristics will pave the way for this technology finally be-
ing a success “in the field.”

2. Problem Statement

Depending on the intended application, a WSN must ful-
fill very specific requirements, which in turn demand for

∗Supported by the German Research Foundation (DFG), grant
GRK 1076/1 (TrustSoft)

rather diverse solutions to different subproblems like rout-
ing or data dissemination. For example, some applications
like temperature monitoring only require very little band-
width, others like the tracing of vibrations in structural
health monitoring demand for a high bandwidth [8]. The
heterogeneity in the application scenarios and WSN deploy-
ments effectively renders a one-size-fits-all solution impos-
sible. It is expected that a need for different solutions to op-
timally address application-specific problems will remain.
Even for an experienced computer scientist, it is difficult to
make the right choices; for the intended end-user it is al-
most impossible. This is a particular problem since a wrong
decision taken in the design phase can severely affect the
performance and reliability of the WSN. Current solutions,
even though deployed with the help of computer scientists,
are often poorly able or even unable to fulfill the intended
purpose [6].

3. Related Work

There are several approaches that try to attack the prob-
lem of easing the design and deployment of WSNs, but at
a different — and we believe — inappropriate level: Most
of them aim at making the actual programming of a WSN
easier [2, 3, 7].

For example, the Sensor Network Application Construc-
tion Kit (SNACK) [4] developed by Greenstein et. al. au-
tomates the generation of deployable code based on an ab-
stract combination of components. The SNACK framework
is intended to provide a repository of components that pro-
vide solutions for common problems found in WSNs. The
system allows the easy creation of a working application
based on a selection of preprogrammed components. The
selection of the algorithms and parts that best solve the
given problem is still left to the user.

With TASK, Buonadonna et. al. [2] developed a toolkit
to allow users to deploy a WSN for habitat monitoring.
This toolkit supports the user in all design and deployment

©2009 Felix Jonathan Oppermann. Copyright was retained by the authors. All rights reserved.
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phases. To cope with the large diversity in the field, this
framework only considers the specific application class of
habitat monitoring. In addition the framework does only
support TinyDB as middleware, which presents the WSN as
a virtual SQL-database. The TASK framework has a mod-
ular design to allow the exchange of low level components
to better support a specific deployment, but the important
selection of suitable components is left to the user. In most
cases the user is supposed to stick with a predefined selec-
tion that suits most scenarios in the given application area.

4. Our Approach

In order to make the deployment of WSNs easier and
more reliable for unacquainted end-users, a methodology is
required to synthesize a possible structure for an applica-
ble WSN based solely on the requirements and constraints
of the intended task. Such a framework eases the decisions
to be made during the design of a sensor network and al-
lows the less acquainted end-users to successfully deploy
a WSN tailored for solving a specific problem. The aim
is a system that allows the end-user to automatically gen-
erate a design for a WSN based on a limited amount of
functional and non-functional requirements and constraints.
These requirements are given in a language familiar to the
end-users and without a need for deep technical knowledge.
For example, a biologist might require that a WSN gener-
ates a temperature reading every five minutes at measuring
points approximately ten meters apart. In addition to the ba-
sic functional parameter the user has specific expectations
on non-functional requirements of the system, like the in-
tended system lifetime and reliability. To allow the reuse of
already available hardware components, it is important that
the selection procedure can be further constrained. For ex-
ample, the user might want to limit the selection to a given
node hardware he or she already owns. The ultimate goal
is to offer the end-user a tool to automatically generate a
mission specific selection out of the available hardware and
software components at “the push of a button.” The de-
sign can then, for example, be used as the groundwork of
an automatic software generation using SNACK. Both pro-
cesses can be integrated in a broader deployment support
infrastructure. This would allow to support the user during
the whole design and development process. The barriers for
deploying a WSN would be reduced without sacrificing the
necessary flexibility of tailoring the WSN to the specifics of
the intended application.

Several problems must be solved before this vision can
be realized. Until now, no consensus on the architecture
of WSNs has been reached [5]. It is quite unclear how a
WSN system can cleverly be structured. Building a mod-
ular architecture is thus still considered difficult [7]. As
a consequence, a first step must be the identification of

common component classes and their required functional-
ity. Besides, it is necessary to determine what kind of basic
requirements the possible applications of WSNs pose. Until
now these requirements are not well understood [7]. Finally,
to be able to quantify the fulfillment of non-functional as-
pects like system lifetime and quality of service there is a
need for applicable models for energy consumption, avail-
ability and security of WSN algorithms. These models must
be detailed enough to allow a solid comparison of the avail-
able options but must be simple enough to allow effective
algorithm selection.

In a final step the practicability of the approach must
be demonstrated by the application to different well known
scenarios. This allows the comparison between generated
design and existing manually generated solutions.
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7.2.1 Summary
This paper describes a two-step process to infer specific technical constraints and
parameters needed for a reliable mission-specific design of WSNs. As the first step,
we propose a new requirement catalog helping end users to formulate a complete
and consistent specification of WSN mission requirements. As the second step, we
introduce a methodology to deduce fine grained technical specifications from the
general requirements. The proposed automatic graph-based requirement expansion
approach translates the content of the catalog and additional requirements to specific
technical terms, which provide the basis for an application-specific WSN design. A
real-world use case – a new WSN application in the area of critical infrastructure
protection – demonstrates the applicability of the presented approach.

7.2.2 Contributions
I am the main author of this paper and developed most of the ideas described in
Sections I to IV. Section V was primarily written by Steffen Peter, while Section
VI represents joint work. The paper was presented by Stefen Peter at the 6th
International Conference on Mobile Ad-Hoc and Sensor Networks (MSN 2010) in
Hangzhou, China.
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Abstract—This paper describes a two-step process to infer
specific technical constraints and parameters needed for a reli-
able mission-specific design of wireless sensor networks (WSN).
As the first step, we propose a new requirement catalog helping
end-users to formulate a complete and consistent specification
of WSN mission requirements. As the second step, we introduce
a methodology to deduce fine grained technical specifications
from the general requirements. The proposed automatic graph-
based requirement expansion approach translates the content
of the catalog and additional requirements to specific technical
terms, which provide the basis for an application-specific WSN
design. A real-world use case – a new WSN application in the
area of critical infrastructure protection – demonstrates the
applicability of the presented approach.

Keywords-Requirements/Specifications; Design Tools and
Techniques; Sensor Networks;

I. INTRODUCTION

As of today, advantages in microelectronics permit the
equipment of individual sensors with limited computing
capabilities and radio interfaces. It is envisioned to apply
such wireless sensor networks (WSN) in a wide range of
different scenarios, including application areas like habi-
tat and structure monitoring, catastrophe management, and
home automation. The diversity of the application range and
the specific properties of WSNs make their design difficult
and especially challenging for the intended end-users, like
biologists, geologists, and engineers. To allow a widespread
use of WSNs, it is necessary to enable technically less skilled
people to successfully deploy a WSN. While these end-users
can be assumed to be experts in their application domain, for
example in biology or in geology, they cannot be expected to
be especially trained in computer science in general or WSN
technology in particular. One must ensure that the design
process requires as little technical knowledge as possible
and can be automated as far as possible.

Often, a large number of alternative solutions is available
and it is difficult to select a good one. Naturally such
a selection needs a clear definition of what is actually
required. Thus, the definition of requirements is one key

∗ Also affiliated with the University of Lübeck, Germany

issue during the development of WSNs. Only with the
precise information of what should be achieved it is possible
to perform precise and goal oriented engineering. To the best
of our knowledge currently no accepted and reliable way of
formally specifying WSN applications and their parameters
is known. A major problem is the diversity of application
domains. Another problem is that domain experts are usually
not familiar with the terms used in WSN engineering. Thus,
a translation of rather high level, fuzzy, domain-specific
requirements to measurable metrics that can be used within
the WSN development process is required.

This paper proposes a two step approach to infer the
required precise technical parameters from the general end-
user requirements. After the description of the WSN design
flow in Section II, the requirement definition process is
introduced. The first step of the requirement process applies
a novel requirement catalog helping end-users to formulate
complete and consistent specifications of WSN applications.
This requirement catalog is described in Section III. Sec-
tion IV describes the second step, a graph-based requirement
expansion process which outputs a fine granular technical
specification. A real-world use case, a new WSN application
in the area of critical infrastructure protection, demonstrates
the applicability of the proposed approach in Section V.
Finally, the paper is concluded by a summary and brief
outlook in Section VI.

II. DESIGN PROCESS

It is our vision that in the future the design of WSN appli-
cation is not the expensive and extremely time consuming
development task it is today, but a rather straightforward
process. Ultimately, it should even be possible for end-users
to execute this process on their own.

Two distinct approaches have been proposed towards a
simplified design and setup of WSNs. The first approach
is based on a standard middleware that is deployed on all
nodes. It is configured according to the requirements of the
application. TASK [1] is a prominent examples for such
configurable middlewares in sensor networks. The approach
is promising and appears to be feasible for application

©2010 IEEE. Reprinted, with permission, from Felix Jonathan Oppermann, Stefen Peter, “Inferring Technical Constraints of a
Wireless Sensor Network Application from End-User Requirements,” Proceedings of the Sixth International Conference on Mobile
Ad-hoc and Sensor Networks (MSN), December 2010.
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Figure 1. Stages of our envisioned partly automated WSN design process

scenarios that are not too diverse and if sufficient memory
and processing resources are available. The second approach
includes a (semi-)automatic composition process. Examples
are SNACK [2] and ConfigKIT [3]. Based on the application
requirements, exactly the components (i.e., hardware and
software modules) that promise to deliver the required task
optimally are assembled. Hence, it promises to be highly
efficient with regard to memory and computational costs.
A major disadvantage of such a composition process is
its technical complexity: how to find modules that can be
composed and how to predict how such a composition
behaves?

In this paper, we focus on the latter approach, since
we are convinced that coping with stringent memory and
computation constraints – a key benefit of the composition
process – will stay a key factor in WSN engineering. In
particular, we pick up the development process introduced
by ConfigKIT [3]. ConfigKIT allows the automatic selection
of suitable components from a repository based on abstract
requirements. In contrast to the broader scope of the ap-
proach presented in this paper, the focus of ConfigKIT is
primarily on security aspects.

Figure 1 shows the general flow of a composition driven
design process. Based on the requirements defined by the
user, components and software modules are selected that
promise to satisfy the user’s requirements. The selection
and assessment process employs a repository containing
models of components and their properties. Based on the
resulting configuration, the actual source code is generated
and compiled. Finally, the sensor nodes are equipped with
the resulting code images and are deployed at the application
site.

It is apparent that the basic requirements given by the
user define and start the process that finally concludes in
the deployment of the sensor network. They define the
constraints, the environment, the functional and qualitative
properties that have to be met. Thus, they influence each
following step in the development process. The requirement
definition step can only be done in close co-operation with
the future users of the WSN. To allow such a co-operation, it
is necessary to agree on a common language for this phase.
On the one hand, this language needs to be understandable

for the users and on the other hand it needs to allow
a complete specification of all important aspects of the
mission.

From our experience, in most cases such a requirement
definition – even if it is correct, consistent, and complete
– cannot be used directly to start the composition process.
Rather, it is necessary to translate the user requirements into
a technical specification, containing terms such as “topol-
ogy”, “data rate” or “message integrity”. In ConfigKIT, the
responsibility for this translation was mainly shifted to the
user side. It is expected that the user is able to understand
and to define the technical terms. Thus, this tool is clearly
focused on developers and not on less experienced end-
users. In order to support end-users directly, a more general
requirement formulation step has to be added before defining
the actual technical WSN terms. We presume that end-
users are able to formulate abstract application requirements
sufficiently and correctly. However, since we do not assume
they can use technical WSN terms correctly, a deduction step
is required to infer the technical terms from the requirements
given by the user.

This process poses two general questions. First, how
can a user enter the application requirements so that they
are understandable to him and the WSN engineer, and
also usable in a formal framework? And second, how to
deduce the technical terms from the (partially fuzzy) end-
user requirements? To tackle the first question, we propose
a catalog of possible requirements that can structure the
requirement definition process and allows a more formal
specification of the application. In addition, it may help to
ask the right questions when communicating with the future
users. A detailed description of the catalog can be found in
the next section. In a second step, as described in Section IV,
the resulting requirement definition is translated to a more
detailed technical specification.

III. REQUIREMENT CATALOG

In this section we present a catalog of WSN requirement
dimensions that is intended to structure the requirement
analysis for WSNs. Even though different in aim and scope,
this catalog has some similarities with previously proposed
WSN classification schemes. In 2002, Tilak, Abu-Ghazaleh
and Heinzelman [4] defined an early taxonomy for WSNs.
This taxonomy allows a classification of WSNs according
to different communication functions, data delivery models,
and network dynamics. Römer and Mattern [5] define a list
of properties that allow the characterization of WSN appli-
cations. Their design space contains 12 major dimensions,
some of which contain several sub-dimensions. Similar to
the taxonomy defined by Tilak et al., their focus is on
communication and topology aspects. This classification
scheme was later refined by Rocha and Gonçalves [6]. The
result is a simplified classification scheme with only seven
major dimensions. All of these classification schemes have
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in common that they do not only consider requirements
and constraints, but also more technical properties of an
actual deployment, like network size, network topology, and
heterogeneity. These properties are useful for classifying
existing WSN solutions, but are unsuited for structuring the
requirement analysis.

The requirement dimensions of the proposed catalog can
be assigned to five categories. A complete overview is given
in Table I. Each dimension is either specified by possible
instances (italics) or a short definition. In the following
sections, we examine the dimensionsin more detail.

A. Mission

This category groups the functional requirements of the
application, which define the goal of the WSN deployment.
A central factor is the selection of suitable sensors, which
determine what can be detected and monitored by the sensor
network. Furthermore, this already defines several properties
of the WSN. In addition to a selection of sensors we also
specify how often the sensors need to be read. The sampling
interval, combined with the properties of the sensor, defines
how much data is generated over time or, in case of event
detection, how often the node needs to evaluate whether an
event has been detected. The sensory range of typical sensors
usually found in WSNs is often rather restricted. As a conse-
quence, full coverage of a given area requires a large number
of nodes, but many application scenarios require only partial
coverage of the area and thus a lower number of sensor
nodes. If the exact number of measurement points is known
to the user, it is helpful to allow him to directly specify this
number. A sensible interpretation of the data gathered by a
WSN often requires a spatial and temporal correlation of
the individual measurements to generate a coherent picture
of the situation. In particular, some scientific applications,
like the monitoring of earthquake shock waves, can require
very precise information of the time and location at which
an event is detected [7]. The demanded temporal and spatial
accuracy determines the need for time synchronization and
localization and the degree of precision these algorithms
have to provide. The mode of operation defines how the
sensed data is to be retrieved by the user. Scenarios range
from event detection, where the user is only alerted if some
predefined event is detected, to the monitoring of a given
area up to more interactive systems replying to the user’s
queries on demand. The mode of operation implies how
much intelligence is required inside the WSN. The degree
of mobility in the network has a strong influence on routing
and media access. The choice of localization methods is also
influenced by the degree of mobility.

B. Operation Environment and Deployment

Besides functional requirements of the mission, the design
of WSNs is also largely affected by the properties of the
operation environment. The most important environmental

aspects are probably the size and dimensionality of the
deployment space. The size of current WSN deployments
is quite diverse and ranges from few nodes in a single
room to thousands of nodes spread over several square
kilometers. Combined with the desired coverage and the
network dynamics, the size determines the number of nodes
that are needed for the deployment. Often overlooked is
the dimensionality of the deployment space, although it
has a strong impact on routing algorithms and positioning
systems, as many common algorithms only work well in
a two-dimensional network. We consider the space to be
two-dimensional if one or two dimensions dominate in size
and no nodes need to be placed above each other. The
exact environmental conditions also largely influence the
design. As a starting point – analogously to Römer and
Mattern [5] – we only differentiate between outdoor, indoor,
and mixed environments. A fully automated design process,
especially if also considering hardware design, might require
a more detailed distinction. As an exception, we included an
additional more detailed description of the constraints for
radio communication as these have a strong impact on the
design of a WSN. WSNs are usually envisioned to operate
autonomously in remote locations, but in many scenarios,
this assumption does not hold. In case it is known that some
infrastructure is available or the WSN is well accessible, it
makes sense to exploit this. How the WSN is going to be
deployed at the final operation site can also significantly
affect the design of the sensor network. A careful manual
placement of all nodes puts less demand on self-organizing
qualities of the routing method than randomly dropping the
nodes from an unmanned aerial vehicle (UAV). In some
scenarios it is possible or desired to modify the network
during its use and, for example, to add further nodes in
order to replace failed ones or extend the monitored area.

C. Performance and Dependability

To be a useful tool, a WSN needs to live up to per-
formance and dependability expectations. While early envi-
ronmental monitoring applications seldom had challenging
performance requirements, this changed with recent safety
critical applications, like forest fire detection. As sensor
nodes are usually powered by non-replenishable energy
sources and WSNs are intended for extended operation peri-
ods, lifetime is probably the most important non-functional
property of a WSN. There are several definitions of WSN
lifetime. In this context we define lifetime as the amount of
time the network can operate until too many nodes fail and
other requirements are irrevocably violated. Expected life-
time may range from hours to several years. A high lifetime
goal puts strict limitations on other properties of the WSN.
In some scenarios, energy harvesting could significantly
increase lifetime, but in current applications it is rarely used.
In general, it is expected that a WSN is always operational
during its lifetime, even in the presence of failures. For a
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Table I
REQUIREMENT CATALOG

Category Requirement Dimensions Instances / Definitions
Mission sensors list of sensors

sampling interval minimal interval to sample the sensors
coverage points of interest, sparse, dense, redundant
number of measurement points number of required sensors (if known)
accuracy of spatial correlation maximal position error for measurements or events
accuracy of temporal correlation maximal error of measurement/event timestamps
mode of operation event detection, monitoring, tracking, interactive
mobility of sensors static, partly mobile, mobile
mobility of observer static, mobile

Operation Environment
and Deployment

dimensionality two-dimensional, three-dimensional
size maximal dimensions of the deployment space
environment conditions indoors, mixed, outdoors
radio interference level none, low, medium, high
radio regulations country/region of deployment
available infrastructure list of infrastructure systems (e.g., GPS, power grid)
mode of deployment manual, random
time-frame of deployment one-time, continuous
accessibility inaccessible, limited accessibility, accessible

Performance and
Dependability

lifetime minimal time until the WSN permanently fails
availability percentage of lifetime the network is operational
channel dependability percentage of reported events out of all locally detected events
response time maximal time between event detection and report

Security eavesdropping resistance none, low, medium, high
tampering resistance none, low, medium, high
denial of service resistance none, low, medium, high
access control none, monitored, authorized, restricted
stealthiness none, limited

Development Costs monetary costs maximal overall costs
development effort maximal man-hours

number of scenarios, it is possible to trade availability for
higher lifetime or reduced costs. We define availability as the
percentage of the lifetime the network is operational and can
respond to queries. In addition the user’s expectations on the
dependability and response time of the communication need
to be defined. There is usually a conflict between certain
dependability and latency constraints and lifetime goals. A
low latency, for example, reduces lifetime as it prevents long
sleep periods for the nodes.

D. Security

For early WSN applications, security was not a concern.
Typically, WSNs were deployed for habitat monitoring or
similar scientific applications. Data secrecy is usually no
concern in such applications and tampering is unlikely es-
pecially if the WSN is deployed in a remote location. Other
WSN applications pose demanding requirements in terms
of security. For example in medical applications privacy of
the sensed data needs to be protected and obviously military
or security applications demand for reliable operation even
in the presence of attacks. We differentiate four orthogonal
security dimensions. If the data generated by a WSN is
of privacy critical nature, it is necessary to prevent easy
eavesdropping. Eavesdropping can be countered by using
protected communication channels, either by using physi-
cally secured channels or by applying cryptographic means.
If the soundness of the reported data is important and it is

likely that an attacker tries to manipulate the communica-
tion, additional protection is necessary. Tampering can be
countered by employing authentication. Finally, an attacker
could also try to completely interrupt the operation of the
network. For all the above dimensions, the required level of
protection depends on the capabilities of a likely attacker.
We distinguish four security levels by applying an attacker
classification, similar to the classification scheme proposed
by Abraham et al. [8]: no protection, individuals accidentally
detecting and playing around with an unprotected network,
small groups with limited resources and knowledge, and
large organized and experienced groups that carry out planed
attacks. The required level of protection also depends on
what kind of access control is already enforced in the
operation environment. If the nodes are physically well
protected, only attacks on the radio channel are likely.
The classification of access control measures is based on
a similar scheme by Weingart et al. [9]. The last security
dimension describes the stealthiness of the WSN. Especially
in military and security applications, it can be required to
conceal the presence of the network.

E. Development Costs

Besides technical aspects, available funding and devel-
opment capacities can play an important role for design
decisions. Especially for large scale networks, it is important
to limit monetary costs of individual nodes and limited
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Figure 2. Requirement design spaces: Each ellipse represents the space
of requirement types that are understood by corresponding domain experts.
It is the goal to infer requirements understood by WSN engineers (R4 to
R9) from domain-specific requirements (R1 to R3). Key is a requirement
catalog (dark gray area, contains R5, R6) understood by all experts.

development resources might, for example, disallow the
excessive use of custom built components.

IV. REQUIREMENT EXPANSION

It is the goal that the requirement catalog introduced in
the previous section covers the space of possible requirement
combinations as broadly as possible. Nevertheless, the space
will never be complete in a way that it can describe all
possible application requirements. This is mainly caused by
the notion that the catalog space only covers requirements
that are well understood by experts of all domains. Naturally,
there remain requirements that do not fit in such a general
catalog. Additionally, new requirements can occur for new
application areas. In Figure 2 the potential catalog area is
the shaded shared space in the middle, that only overlaps a
fraction of the likely requirements. Each ellipse in Figure 2
represents the space of requirement types that are understood
by corresponding domain experts, for example habitat moni-
toring designers or waterworks operators, on the left and the
domain of WSNs on the right. Overlapping areas represent
shared knowledge space. Basically, there are two means to
cope with the problem of undefined requirements. Either the
catalog is extended by new dimensions, or additional spec-
ifications beside the actual catalog are allowed. Extending
the catalog to less general categories and properties is not
appealing. It would render the catalog cluttered and thus
less usable, and contradict the initial notion that the catalog
is a shared space for all domain experts. Therefore, it is
inevitable that requirements exist outside of this catalog
on both sides. On the one side, the end-user has requests
that are not cataloged and are not initially understood by
WSN engineers. For instance in ZebraNet [10] the nodes
are deployed to zebras. A fact from which a biologist can
easily imply other requirements based on the behavior of
zebras as herd animals, while that knowledge is not common
for computer scientists. On the other side, WSN engineers
eventually need technical definitions that are beyond what
end-users have to know, for example the need for and

parameters of congestion protocols in the transport layer.
Figure 2 illustrates the three different types of possible

deductions:
• inferring requirements into the catalog (R2 → R5),
• inferring requirements from the catalog to core techni-

cal definitions (R6 → R9),
• inferring requirements alongside the catalog (R1 →

R7).
The first type has already been tackled by the catalog
itself, since its task is to raise the questions that support
users entering correct requirements. The latter two inferring
types can be resolved by a forwarding process, we call
“requirement expansion.”

The requirement expansion process works on a flexible
graph structure containing all known requirement types.
Requirement types are types that can (but do not need
to) be set for applications under development. The 29
dimensions in the requirement catalog already define 29
different requirement types. The basic idea of the graph is
that once certain requirement types are defined, it implicitly
also defines other deducible requirement types. For example,
from the fact that zebras are herd animals we can deduce that
many similar nodes are in range, so that the density of the
network is rather high, which can be inferred to multi-hop,
short distance communication requirements.

We apply this forwarding methodology for deducing
requirement types of high abstraction to technical terms,
but also within the technical requirement space. The latter
is motivated by the fact that the same requirement can
be expressed in different ways. For example, the sampling
frequency can be expressed as sampling period. It is our
goal that all possible expressions of a requirement are set,
especially with regard to an automatic composition process.

The underlying graph structure G can be expressed as
directed graph G = (R, T ), while R is the set of require-
ments types, and T are the edges describing the translation
of derivable requirements. Each element Ri out of R is
a tuple Ri = (D,V ), D is the name or description of
the requirement dimension; and V is the description of the
value space. The value space can define a numeric range
or a nominal scale, as needed for most of the requirements
of the catalog. The translation set T is the set of triples
Tj = (Rfrom, Rto, f), which describe the mapping f from
requirement Rfrom to Rto. The mapping function f can be
an arbitrary function. In most cases basic math operations
and conditional expressions are sufficient.

Without changing this general semantics, in practice we
found it valuable to include the translations in the de-
scription of individual requirements Ri. By this, individual
requirements contain information on how they relate to
other requirements. To realize this, we followed an optional
push/pull methodology. Push means that a requirement
translates its properties to neighbored requirements. As an
example, the translation from qualitative requirement metrics
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to absolute values is usually a push from the qualitative prop-
erties. This allows the existence of more than one qualitative
metric in the system to describe the same property. In the
opposite direction, a requirement type can pull parameters of
other requirements to define its own settings. For example,
a data throughput requirement can pull values of packet size
and measurement interval to infer its setting.

Adding the push and pull translation Ri can be refined by
the tuple Ri = (D,V, Tpush, Tpull). The set Tpush is a subset
of T , where Rfrom = Ri. The set Tpull is a subset of T , where
Rto = Ri. This allows to build G solely on the information
stored in the requirements.

Since as a result of this structure translations are part of
the elements, new requirement types can be easily added
without interfering with existing structures. For instance,
if a domain engineer wants to add a requirement without
using the catalog (like R1 in Figure 2 ) , it is sufficient
to describe D and V of the new type, and add push
translations to describe how the new requirement affects
already existing requirement types. In the habitat monitoring
example, R1 could be the species of monitored animals, and
the translations describe how the behavior of the animals
affects network properties. In contrast, novel technical terms
typically apply pull translations. For example a new metric
for expressing energy consumption would describe how
it can be deduced from existing types, that is how it is
connected to the existing knowledge. The modular approach
of describing requirements allows adding requirement types
in a flexible way. It is even possible to bundle requirement
types in packages that can be added to the core database
(catalog and WSN types) based on the application domain
under development.

V. CASE STUDY: WATER PIPE SURVEILLANCE

In the following, we demonstrate the applicability of the
proposed methodology by using it to conduct the require-
ment analysis for a recent WSN application. The scenario
is part of the WSAN4CIP project [11]. The Frankfurter
Wasser- und Abwassergesellschaft mbH (FWA) demonstra-
tor concerns the fail-safe and secure data transmission for
monitoring the operation of water mains at Frankfurt (Oder),
Germany, and thus to protect that type of critical infras-
tructure. It is mandatory that the system can provide a
similar degree of reliability and security as wired monitoring
systems, which are currently used for the task. By reducing
the necessary infrastructure, a WSN should allow to reduce
costs and provide greater flexibility.

The pipeline connects the waterworks, where the drinking
water is collected, and an elevated tank by two parallel
underground water pipes with a total length of 17.5 km. Part
of the infrastructure are five stations along the pipes that
are equipped with flow rate and pressure measuring devices
permitting optimal operating and monitoring of the pipe
system. The gathered data is displayed at the central process

management system for supervisory control. The state of the
system is measured every 30 seconds. The projected WSN
consists of five measurement delivering nodes that are placed
along the pipe at a distance of up to 5 km. The nodes will
be located at the existing monitoring stations that provide
information on water pressure and flow rate as analog data.
Additional nodes are placed between the measuring nodes
to relay the network traffic.

In the manual process, as first step, the WSN engineers,
probably in dialogue with the end-user, has to derive the
technical specifications. If, in contrast, the proposed require-
ment definition catalog is applied, the clearly structured
initial requirements would look similar to Table II. The table
lists the determined requirement values for the FWA demon-
stration scenario. These 29 requirements are the output of
the user definition phase. Following the translation flow as
described in the previous section we could derive many
technical requirements. For example, we directly derive the
properties of the sensors. These derived properties (floating
point values as data format and a measurement time of
less then one second) are new constraints for the further
development process. Thus the sensor types pushed the
new requirements as introduced in the previous section.
The expanded requirement space directly feeds the selection
process as introduced in Section II.

While the catalog and the requirement expansion in this
example could demonstrate the general suitability, also sev-
eral problems were discovered: (1) The translation from the
catalog to the technical terms still needs human interaction.
New translation functions had to be added or refined. We
expect the issue to be resolved with the help of more
experience and data we get from other applications. (2)
Some properties needed additional information beside the
catalog. (3) Push translations can lead to ambiguous defi-
nitions of requirements. The current implementation (“take
what’s defined first”) is not always satisfying. A solution for
the issue is either human interaction or a precedence order.
(4) The number of resulting requirements at the end of the
deduction process becomes extremely large, as all deducible
requirement types are inferred without additional reasoning.

VI. CONCLUSIONS

In this paper, we proposed a novel requirement definition
process for wireless sensor networks to bridge the semantic
gap between application requirements as they can be ex-
pressed by end-users and technical terms and constraints,
as they are needed for the WSN design process. As a
first step, a new requirement catalog assists the requirement
analysis for WSN applications. This catalog is specifically
designed with the end-user in mind. It allows the easy and
complete specification of different WSN missions. Since
a more detailed technical specification is required for the
WSN design, we proposed, as a second step, a require-
ment expansion methodology. The demonstration of the
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Table II
REQUIREMENTS FOR THE FWA DEMONSTRATOR

Category Requirement Dimensions Value
Mission sensors flow rate, pressure

sampling interval 30 s
coverage points of interest
number of measurement points 5
accuracy of spatial correlation n/a (exact positions are known)
accuracy of temporal correlation 60 s
mode of operation monitoring, event detection (optional)
mobility of sensors static
mobility of observer static

Operation Environment
and Deployment

dimensionality two-dimensional
size 17 500 m × 10 m
environment conditions mixed
radio interference level high
radio regulations Germany/Europe
available infrastructure power grid (sensor nodes, only)
mode of deployment manual
time-frame of deployment one-time
accessibility limited accessibility

Performance and
Dependability

lifetime 3 months
availability 98 %
channel dependability 98 %
response time 2 s

Security eavesdropping resistance low
tampering resistance low
denial of service resistance low
access control restricted, none
stealthiness none

Development Costs monetary costs 20 000e
development effort unknown

requirement definition process, employed in the design of
a new WSN application in the area of critical infrastructure
monitoring, showed concepts and benefits of the process, but
also exposed potential room for further improvement.

Thus, in the future we will optimize the given catalog and
extend the set of requirement expansions based on practical
experience and feedback from the community.
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7.3.1 Summary
This paper describes the overarching WSN application development process devel-
oped within the makeSense project. Currently, the adoption of WSNs within indus-
try is hampered by two main factors. First, there is a lack of integration of WSNs
with business process modeling languages and back-ends. Second, programming
WSNs is still challenging as WSN development is typically still based on low-level
C code and a node-centric programming model. We propose a unified programming
framework and a tool chain that generates code ready for deployment on WSN nodes
from an abstract business process specification in BPMN syntax.

7.3.2 Contributions
Besides contributing ideas and solutions to most parts of the paper, I am a co-
author of Section III-C where I provided a description of the core language and the
compilation process.
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Abstract—The industrial adoption of wireless sensor net-
works (WSNs) is hampered by two main factors. First, there is
a lack of integration of WSNs with business process modeling
languages and back-ends. Second, programming WSNs is
still challenging as it is mainly performed at the operating
system level. To this end, we provide makeSense: a unified
programming framework and a compilation chain that, from
high-level business process specifications, generates code ready
for deployment on WSN nodes.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are small, untethered
computing devices equipped with sensors and actuators.
WSNs can be easily deployed and are able to self-organize
to achieve application goals. Research has made significant
progress in solving WSN-specific challenges such as energy-
efficient communication. Industry, however, is reluctant to
adopt WSNs. We believe this is due to two unsolved issues,
integration and unification, schematically shown in Figure 1.

Integration refers to the need for strong cooperation of
business back-ends with WSNs. Current approaches typi-
cally consider the WSN as a stand-alone system. As such,
the integration between the WSN and the back-end infras-
tructure of business processes is left to application develop-
ers. Unfortunately, such an integration requires considerable
effort and significant expertise spanning from traditional
information systems down to low-level system details of
WSN devices. Moreover, these two sets of technologies
satisfy very different goals, making the integration even
harder. This paper presents a holistic approach where ap-
plication developers “think” at the high abstraction level of
business processes, but the constructs they use are effectively
implemented in the challenging reality of WSNs.

Unification refers to the need for a single, comprehensive
programming framework. It is notoriously difficult to realize
WSN applications. They are often developed atop the oper-
ating system, forcing the programmer away from the appli-
cation logic and into low-level details. Many programming
abstractions exist [1], but are hard to use since they typi-
cally focus on one specific problem. To drastically simplify
WSN programming, particularly for business scenarios, we
need a broader approach enabling developers to use several

Business 
Processes

Wireless 
Sensor Networks 

Business back-end 
not integrated with 

WSNs
Unified, 
comprehensive 
programming 
framework still 
missing 

Figure 1. Open problems for using WSNs in business processes.

abstractions at once. In this paper, we present a unified
comprehensive programming framework into which existing
WSN programming abstractions can blend smoothly.

II. APPLICATION SCENARIOS

A paradigmatic example of our target scenarios is venti-
lation in buildings. Fans are commonly operated at a fixed
rate, independent of room occupation, resulting in unneces-
sary ventilation of unoccupied rooms and over-ventilation
of sparsely occupied ones, ultimately wasting energy. A
smarter strategy may consider room occupation, resulting
in sustainable building management. Consider an office
environment, in which employees book meeting rooms on
the Web through a back-end process notifying the expected
participants. Room ventilation is minimal when no meeting
is scheduled. Sensors and actuators driven by the business
process increase ventilation before the meeting and until
either human presence is detected or CO2 levels are above
a certain threshold.

Realizing this system requires a tight integration between
the business process and the network of sensors and ac-
tuators dispersed in the environment, as the application
logic needs to extend to the latter. Moreover, implementing
the processing for adaptive ventilation complicates appli-
cation development, as it departs from the traditional data
collection—most common in WSN applications—to encom-
pass possibly distributed control loops. Similar requirements
are shared by numerous application domains such as predic-
tive maintenance aboard cargo vessels.

III. APPROACH

Our design revolves around three fundamental goals:
• makeSense must seamlessly integrate with existing

business process technology, providing an adoption
path that complements, instead of disrupts, existing
methodologies and technologies with WSN ones.

©2010 IEEE. Reprinted, with permission, from Fabio Casati, Florian Daniel, Guenadi Dantchev, Joakim Eriksson, Niclas Finne,
Stamatis Karnouskos, Patricio Moreno Montero, Luca Mottola, Felix Jonathan Oppermann, Gian Pietro Picco, Antonio Quar-
tulli, Kay Römer, Patrik Spiess, Stefano Tranquillini, and Thiemo Voigt, “Towards business processes orchestrating the physical
enterprise with wireless sensor networks”, Proceedings of the 34th International Conference on Software Engineering (ICSE), June
2012.
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Figure 2. Compiling business process models into WSN-executable code.

• makeSense must be modular and extensible. As we
aim for our system to be useful across several real-
world applications, extensibility is key to ensure that
the programming abstractions and their implementation
can be easily adapted to the specificity of the target
domain as well as to unforeseen needs.

• for extensibility not to be detrimental to performance,
makeSense must self-optimize w.r.t. high-level perfor-
mance goals. This is necessary to support long-lasting
business processes subject to the randomness of the real
world and rapidly changing requirements.

A. Architecture Overview

Our architecture is based on the separation of concerns
provided by a distinction in layers of functionality: i) an
application layer concerned with business processes and
their modeling; ii) a macroprogramming layer concerned
with the distributed execution of activities within the WSN;
iii) a run-time layer concerned with the low-level aspects
supporting the above and enabling self-optimization. The
term “macro-programming” [1] refers to approaches that,
unlike node-centric ones, allow specifying the behavior of
multiple WSN nodes at once.

A model-driven approach connects the three layers (Fig-
ure 2). The application model represents a holistic, network-
agnostic view of the entire business process, i.e., including
the WSN and the process back-end. It includes performance
requirements (e.g., a certain level of reliability, or a mini-
mum lifetime). Details are further described in Section III-B.

Two compilation steps link the layers above. The model
compiler takes as input the application model and an ap-
plication capability model. The latter is a coarse-grained
description of the WSN, providing information such as the
type of sensors/actuators available and their operations. The
model compiler translates these descriptions into a program
written in a macro-programming language, described in
Section III-C, serving as an intermediate language closer
to the reality of WSN systems, yet high-level enough to be
potentially used directly by a developer.

The macro compiler takes as input the macro-program
generated by the model compiler and a system capability
model. The latter provides finer-grained information on
the deployment environment (e.g., how many sensors of a
given type are deployed at a location). The macro-compiler
generates executable code that relies only on the basic
functionality provided by the run-time support available on
the target nodes. By leveraging the system capability model,
the macro compiler can generate different code for differ-

ent nodes, based on their application role. The executable
code contains the mechanisms enabling self-optimization,
described in Section III-D.

B. Business Process Modeling

When integrating WSNs with business processes, most
research projects and productive set-ups merely add a service
facade to the WSN and orchestrate its services centrally.
If middleware is deployed, that is done either purely in a
central system [2] or with additional local components close
to the WSN or on its gateway [3]. In makeSense, we use
a more radical approach. As our goal is to decrease the
effort of programming WSN applications, tools for process
modeling are used to create the application top-most level.
A process modeler models hybrid processes, of which one
part is executed conventionally in a central execution engine,
while another part is executed directly by the WSN.

We use and extend the Business Process Modeling Nota-
tion (BPMN). By introducing new attributes, the modeler can
specify a new intra-WSN participant, containing the logic
executed by the WSN. As the latter is resource-constrained,
we allow only a subset of BPMN elements. Furthermore,
we introduced a new WSN activity type. This can be used
only within the intra-WSN participant and is (except for the
message activity) the only allowed activity type there. The
WSN activity is backed by a meta-model, described in the
next section. As WSNs are inherently distributed systems,
we also introduced a Target attribute for lanes and activities
within the intra-WSN participant, that allows specifying
where the respective logic should be executed, based on
labels that are relevant at the modeling layer. Finally, we
added performance annotations, expressing that the WSN
should optimize its operation for a specific goal (e.g., system
lifetime or reliability) within a certain subsets of activities.

To assist the process modeler in creating correct, exe-
cutable models, we use a set of meta-models that describe
the WSN in terms of the logical functionality it provides,
along with the way it is embedded into the physical set-up
(e.g., which sensing or actuation is supported at which logi-
cal location). Instances of these meta-models can be created
either manually or through dynamic service discovery.

At run-time, the BPMN process is executed in a dis-
tributed fashion. For message exchange between the intra-
WSN participant and the other participants, the run-time uses
a lightweight protocol, reducing encoded message size by
using message structure information on both sides. Commu-
nication endpoints caring for serialization and deserialization
of messages and for process instance correlation are gener-
ated automatically as part of the compilation process.

C. The makeSense Macroprogramming Language

Our intent is not to propose another macro-programming
language. Rather, it is to provide a framework where the
abstractions contributing to the language are decoupled,
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Figure 3. A model for the meta-abstractions of the makeSense macro-
programming language.

leverage on existing implementations, and can be changed
or extended easily to suit specific application needs.

This goal influenced the entire language design. To prop-
erly identify the units of functionality, reuse, and extensions
we defined the notion of meta-abstraction, implemented
through different “concrete” abstractions, as described later.
Abstractions provide the key concepts enabling interaction
with the WSN. However, their composition can be achieved
by using common control flow statements, provided by
a core language that serves as the “glue” among macro-
programming abstractions. The core language, in our case
a stripped-down version of Java we tailored for WSNs,
is also the trait d’union between the macroprogramming
abstractions and the BPMN business process model.

Figure 3 shows a UML meta-model for the meta-
abstractions provided by the macroprogramming language.
It focuses on the notion of action, a task executed by one or
more WSN nodes. Actions are separated into local, whose
effect is limited to the node where the action is invoked (e.g.,
acquiring a reading from the on-board temperature sensor),
and distributed, whose effect instead spans multiple nodes.

Distributed actions are further divided into tell, report,
and collective actions. The former two represent the one-to-
many and many-to-one interaction patterns commonly used
in WSNs to enable communication between the node (the
“one”) issuing the action and a set of nodes (the “many”)
where the latter is executed. A tell action enables a node to
request the execution of a set of actions on other nodes, e.g.,
to issue actuation commands or to trigger reconfiguration of
system parameters such as the sampling rate. A report action
enables a node to gather data from other nodes. Event-based
abstractions and periodic, continuous queries both fall in this
category. Data acquisition occurring on each target node is
specified by a local action given as input to the report action.
The output of the local action is returned to the report one.
Collective actions, in contrast to tell and report ones, do
not focus on a special node where the action starts or ends.
They enable a global network behavior and are executed
cooperatively by the entire WSN through many-to-many
communication. An example are distributed assertions [4],
where programmers specify a (global) property monitored
collectively by the WSN nodes.

Distributed actions may optionally have modifiers associ-
ated with them, “customizing” their behavior. We defined
two modifiers, target and data operator. In our scenarios
the nodes possibly differ along several dimensions, both
physical and logical. For example, ventilation in Section II
requires both CO2 and presence sensors. Programmers must
be able to map actions to the set of nodes of interest. A target
identifies a set of nodes satisfying application constraints,
and gives the ability to apply a distributed action to the
nodes in this set. Instead, a report action may have a data
operator, specifying processing performed on the results
after gathering and before they are returned to the caller,
e.g., to filter or aggregate the data.

To create an instance of a meta-abstraction, a class
implementing its interface must be defined in the core
language. As abstraction implementations typically closely
interact with the operating system, methods of abstraction
classes are implemented in C using a native code interface
provided by the core language. Some abstractions require
extensive configuration, for example, a target needs to define
a set of nodes based on their properties [5]. To simplify
such configuration, the core language supports the concept
of embedded languages, code snippets formulated in the
declarative configuration language provided by an abstrac-
tion. These are efficiently compiled by appropriate compiler
plugins, instead of being interpreted at runtime.

D. Run-Time System

Besides providing a foundation for the distributed proto-
cols in support of the macro-programming language, the run-
time system offers self-optimization functionality to adapt
the system behavior to changing requirements based on
developer-provided high-level performance goals. For exam-
ple, in the scenario of Section II, the high data reliability
required to accurately monitor the persons’ presence will
correspond to different protocol settings compared to situa-
tions with no ongoing meetings, when energy preservation
is the major performance concern.

To achieve this functionality, we gather run-time infor-
mation from the WSN (e.g., network topology and protocol
performance) and feed these to a reinforcement learning
algorithm that uses simulations to explores the space of
possible protocol configurations. At the end of each simula-
tion round, the learning process evaluates the performance
obtained with a given protocol setting w.r.t. the applica-
tion’s performance goals. Based on this, we derive self-
optimization policies that specify which protocol parameters
provide better performance as a function of the current
application performance goal. We distribute the policies back
to the deployed network where nodes will apply them upon
recognizing changes in the current performance goal.

This approach sharply differentiates from existing so-
lutions. Rather than requiring detailed modeling of the
individual protocols, we treat the entire application as a
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Figure 4. BPMN diagram for a fragment of the ventilation scenario.

black-box. This may lead to sub-optimal solutions, but also
enjoys greater flexibility as it lets users add programming
abstractions to the framework along with their supporting
protocols and have the latter “implicitly” optimized.

IV. CURRENT STATUS

We implemented the extended BPMN meta model in
Signavio Core Components, an open source, browser-based
BPMN editor. Our prototype implementation is focused
on the model-to-macrocode transformation. Future work
includes extending a BPMN runtime with the lightweight
messaging protocol in JSON. The macro-compiler prototype
is implemented as a multi-pass compiler employing the
ANTLR parser generator and the StringTemplate engine.
Currently, the compiler is primarily optimized for main-
tainability and extensibility. We also implemented concrete
abstractions for report and tell actions, and for the target
modifier. The former is a variation of a standard WSN
data collection protocol, whereas the others rely on Logical
Neighborhoods [5]. The self-optimization functionality is a
separate stand-alone prototype written in Java that we are
currently integrating into the makeSense run-time.

V. CASE STUDY

Figure 4 depicts a fragment of the business process model
for ventilation we briefly outlined in Section II. The whole
process is modeled with two participants, the WSN-aware
participant on top and the intra-WSN participant (modeled
in more detail) that is converted into an application by
generating macrocode. The zoomed part of the process
shows a WSN activity that sets up and executes a periodic
reading of CO2 sensors in a certain room. By graphically
combining abstractions—here a target specifying the room
and a local action to read the sensor are used with a report
action to collect sensor data—along with meta-information
of the current WSN setup, the model becomes rich enough
to be transformed into macrocode.

The corresponding code in Figure 5 describes the instruc-
tions to define a target including all CO2 sensors and to

...
code nhoodTemplateS = {:

neighborhood template CO2Sensors()
f.getFunction() = "sensor" and t.getType() = "co2"

create neighborhood co2Sensors from CO2Sensors () :};
Target co2Sensors = lnew LN(sensorNeighborhoodDef);

Report co2Stream = lnew Stream();
co2stream.setTarget(co2Sensors);
co2Stream.setParameter("period", 5 * 60);
co2Stream.execute();
...

Figure 5. Macro-programming language fragment for Figure 4.
collect periodic data from them using an instance of report
action implemented with Stream. The abstraction-specific
code inside the code variable is the Logical Neighbor-
hood [5] custom language. This is used to create an instance
of target, referring to local actions to retrieve the function
and type of node to possibly include in the target. The target
is given as parameter to a setTarget method invoked on
an instance of report. The remaining method invocations are
used to set parameters for the functioning of the Stream
instance, e.g., its reporting period.

The BPMN model also contains performance annotations.
Based on this and monitoring data, the self-optimization
functionality tunes the protocols’ parameters, e.g., by going
into a very low power mode when no meeting is scheduled
and no presence of people has been detected.

VI. CONCLUSION

We presented early results of the makeSense project,
which tackles the unification of existing WSN programming
abstractions and the integration of WSNs with business
process models and back-ends. These issues are hampering
industrial WSN adoption, thus, we believe that makeSense
will foster adoption of WSNs in industry applications.
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7.4.1 Summary
WSNs have been a promising technology for quite some time, but their success
is largely limited to scientific applications, such as environmental monitoring. To
increase their adoption within industrial applications, it is necessary to integrate
WSNs with business process modeling and existing back-ends. In addition, the
abstraction level of WSN programming needs to be raised significantly. The
makeSense project developed a unifying WSN programming framework that gen-
erates deployment-ready WSN software from high-level BPMN business process
models. This paper describes the complete WSN application design and main-
tenance process developed within the makeSense project including the required
software artifacts and presents its adoption to an exemplary use-case scenario.

7.4.2 Contributions
Besides contributing individual ideas and solutions to most components of the de-
scribed system, I am a co-author of Section 4 and the the sole author of Section 5
of this paper. The paper was presented by Thiemo Voigt, Kay Römer, and Luca
Mottola at the 4th International Workshop on Networks of Cooperating Objects for
Smart Cities, in Philadelphia, PA, USA.
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Abstract Wireless sensor networks (WSNs) have been a promising tech-
nology for quite some time. Their success stories are, however, restricted
to environmental monitoring. In the industrial domain, their adoption
has been hampered by two main factors. First, there is a lack of integra-
tion of WSNs with business process modeling languages and back-ends.
Second, programming WSNs is still challenging as it is mainly performed
at the operating system level. To this end, we provide the makeSense
framework, a unified programming framework and a compilation chain
that, from high-level business process specifications, generates code ready
for deployment on WSN nodes. In this paper, we present the makeSense
framework and the application scenario for our final deployment.

1 Introduction

Wireless sensor networks (WSN) are small, untethered computing devices equipped
with embedded sensors and actuators. WSNs can be deployed much more easily
than traditional wired sensors, and are able to coordinate and self-organize so
that some high-level application goal is achieved. Many of the early sensor net-
work deployments involved only sensors and realized environmental monitoring
applications, that reported aggregated data to a base station [1]. While sensor
networks have been successful in this domain, in other domains their adoption
has been rather limited.
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Figure 1. Open problems for using WSNs in business processes.
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Figure 2. Compiling business process models into WSN-executable code.

As shown in Figure 1, we see two limiting factors that enable widespread
adoption of sensor networks: (i) there is a lack of integration of WSNs with
business process modeling languages and back-ends; (ii) programming WSNs is
still challenging as it is mainly performed at the operating system level since
there is no unifying comprehensive programming framework.

In the makeSense project [2], we tackle these two issues. We tackle the prob-
lem of integration by providing a holistic approach where application developers
“think” at the high abstraction level of business processes, but the constructs
they use are effectively implemented in the challenging reality of WSNs. Con-
cretely, we let the application developers specify the application in a WSN-
specific extension for Business Process Modeling Notation (BPMN). A model
compiler transforms the extended BPMN models into traditional and WSN-
specific code which allows to distribute process execution over both a WSN and
a standard business process engine.

To simplify WSN programming, many programming abstractions have been
developed [3], but they are hard to use since they typically focus on one specific
problem. To drastically simplify WSN programming, particularly for business
scenarios, we provide a broader approach that enables developers to use several
abstractions at once. Towards this end, we present a unified comprehensive pro-
gramming framework into which existing WSN programming abstractions can
blend smoothly. These abstractions are “glued” together using a core language,
a stripped-down version of Java tailored for WSNs. This macro-programming
language is also the target language of the model compiler mentioned above. It
can, however, also be used directly by WSN programmers. A macro compiler
takes the macro-programming code as input and compiles it down to plain Con-
tiki code that can be executed on WSN nodes or on the gateway between the
sensor network and the business process engines.

Effectively, this leads to two compilation steps as shown in Figure 2. The
model compiler takes as input the application model (in extended BPMN) and
an application capability model. The latter is a coarse-grained description of
the WSN, providing information such as the type of sensors/actuators available
and their operations. The macro compiler takes as input the macro-program
generated by the model compiler and a system capability model. The latter
provides finer-grained information on the deployment environment (e.g., how
many sensors of a given type are deployed at a location). The macro-compiler
generates executable code that relies only on the basic functionality provided by
the run-time support available on the target nodes. By leveraging the system
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Figure 3. Deployment scenario for makeSense final deployment. An overview of the
scenario (left part), and the actuator with the flap (right part).

capability model, the macro compiler can generate different code for different
nodes, based on their application role.

As described in Section 6, the executable code runs atop a dedicated run-time
layer, which provides access to low-level functionality such as MAC protocols
and sensor devices. The run-time system also contains mechanisms enabling
self-optimization of the network functionality, also described in Section 6.

The paper proceeds as follows. In the next section, we briefly present our
deployment scenario. In Section 3 we discuss makeSense application modelling.
The subsequent sections present the makeSense macro-programming language
and the macro-compiler. We give an overview on the makeSense run-time system
in Section 6 and the conclude with some final remarks.

2 Deployment

The makeSense project’s deployment is in a student residence in Cadiz, Spain. As
shown in Figure 3 we implement a room ventilation scenario, where the actuator
(right part of the same figure) opens the flap in the student’s bathroom if the
measurement of the CO2 sensor is above a configurable threshold. The external
business process is managed by a room reservation system. We use an open
source reservation system to manage room reservations that interacts with the
sensor network through an occupancy interface. Hence, the sensor network can
save energy by not ventilating rooms when they are vacant.

3 Application Modeling

For the integration of WSNs with business processes, we do not just add a
service facade to the WSN or deploy middleware components on the gateway
as others have done [4]. Instead, we want to enable a process modeler to model
processes that are partially executed directly by the WSN itself and partially
by traditional business process execution engines. Towards this end, we use and

127



7 Publications

extend the Business Process Modeling Notation (BPMN). We introduce new
attributes that allow the modeler to specify a new intra-WSN participant that
contains the logic executed by the WSN. Since the latter is resource-constrained
we allow only a subset of BPMN elements. Moreover, we introduce a specialWSN
activity type to be used within the intra-WSN participant. The WSN activity is
(except for the message activity) the only allowed activity type there.

The WSN activity is backed by a meta-model that we describe in the next
section. As WSNs are inherently distributed systems, we also introduce a Target
attribute for lanes and activities within the intra-WSN participant, that allows
specifying where the respective logic should be executed, based on labels that
are relevant at the modeling layer. Finally, we add performance annotations,
expressing that the WSN should optimize its operation for a specific goal (e.g.,
system lifetime or reliability) within a certain subsets of activities. This is used
for the self-optimization in the run-time system as described in Section 6.

To assist the process modeler in creating correct, executable models, we use
a set of meta-models that describe the WSN in terms of the logical functionality
it provides, along with the way it is embedded into the physical set-up (e.g.,
which sensing or actuation is supported at which logical location). Instances of
these meta-models can be created either manually or through dynamic service
discovery.

At run-time, the BPMN process is executed in a distributed fashion. To ex-
ecute the intra-WSN process in the WSN, it is entirely transformed into macro-
code, compiled into C, and distributed by the run-time as described in the next
sections. For message exchange between the intra-WSN process and the other
process, the run-time uses a lightweight protocol, reducing encoded message size
by using message structure information on both sides. The compilation step au-
tomatically generates process communication endpoints that handle serialization
and deserialization of messages and implement process instance correlation.

4 Macro-programming Language

To bridge the gap between business processes and WSNs we defined a high level
intermediate macro-programming language where the abstractions contributing
to the language are decoupled, leverage on existing implementation, and can be
changed or extended easily to suit specific application needs.

The makeSense macro-programming language is based on a core set of meta-
abstractions which define the fundamental building blocks of the language as
units of functionality, reuse, and extensions. They are implemented through dif-
ferent “concrete” abstractions and provide the key concepts enabling interaction
with the WSN. The language serves as the “glue” among abstractions, whose
composition can be achieved by using common control flow statements. The core
language, in our case a stripped-down version of Java we tailored for WSNs, is
also the trait d’union between the macro-programming abstractions and the
BPMN business process model.
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Figure 4. A model for the meta-abstractions of the makeSense macro-programming
language.

Figure 4 shows a UML meta-model for the meta-abstractions provided by the
macro-programming language. It focuses on the notion of action, a task executed
by one or more WSN nodes. Actions are separated into local, whose effect is
limited to the node where the action is invoked (e.g., acquiring a reading from
the on-board temperature sensor), and distributed, whose effect instead spans
multiple nodes.

Distributed actions may run on several nodes in parallel and are further
divided into tell, report, and collective actions. The former two represent the
one-to-many and many-to-one interaction patterns commonly used in WSNs to
enable communication between the node (the “one”) issuing the action and a
set of nodes (the “many”) where the latter is executed. A tell action enables a
node to request the execution of a set of actions on other nodes, e.g., to issue
actuation commands or to trigger reconfiguration of system parameters such as
the sampling rate. A report action enables a node to gather data from other
nodes. Event-based abstractions and periodic, continuous queries both fall in
this category. Data acquisition occurring on each target node is specified by a
local action given as input to the report action. The output of the local action
is returned to the report one. Collective actions, in contrast to tell and report
ones, do not focus on a special node where the action starts or ends. They
enable a global network behavior and are executed cooperatively by the entire
WSN through many-to-many communication. An example are distributed asser-
tions [5], where programmers specify a (global) property monitored collectively
by the WSN nodes.

The behavior of distributed actions can be customized by a modifier. We
defined two modifiers, target and data operator. In our envisioned scenarios the
nodes possibly differ along several dimensions, both physical and logical. For ex-
ample, the ventilation scenario of our deployment in Section 2 requires both CO2
sensors and flap actuators to be installed in two different rooms. Programmers
must be able to map actions to the set of nodes of interest. A target identifies
a set of nodes satisfying application constraints, and gives the ability to apply
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a distributed action to the nodes in this set. Instead, a report action may have
a data operator, specifying processing performed on the results after gathering
and before they are returned to the caller, e.g., to filter or aggregate the data.

General concepts and operations defined by meta-abstractions are imple-
mented by concrete abstractions, which may then provide different levels of ex-
pressiveness and run-time guarantees. To create an instance of a meta-abstraction,
a class implementing its interface must be defined in the core language. As ab-
straction implementations typically closely interact with the operating system,
methods of abstraction classes are implemented in C using a native code interface
provided by the core language. Some abstractions require extensive configura-
tion, for example, a target needs to define a set of nodes based on their properties
[6]. To simplify such configuration, the core language supports the concept of
embedded languages, code snippets formulated in the declarative configuration
language provided by an abstraction. These are efficiently compiled by appro-
priate compiler plugins, instead of being interpreted at runtime.

The makeSense macro-programming core language provides a framework to
integrate the previously described abstractions. In the makeSense framework it
mainly serves as an intermediate language for the translation of BPMN mod-
els to platform code, but it is also suitable for direct use by programmers. The
core language features a Java-like syntax and full support for object-oriented
programming. In addition, to make the programmer’s task easier, we decided to
provide full multi-threading with a Java-like interface based on the Contiki mt
library [7]. Nevertheless, as we are targeting very resource-constrained micro-
controllers, the language needs to be simpler than standard Java. Consequently,
some language features had to be removed. For example, the makeSense macro-
programming language does not provide garbage collection, but relies on manual
memory management. To reduce the resulting burden on the programmer, the
language also provides specific constructs to allocate automatic or static objects,
for which the memory management is handled by the compiler. In contrast to
Java we do not employ a virtual machine approach, but the program is translated
to target code that can be directly run on the target platform. The resulting code
is predeployed on all nodes, so that it is not necessary to migrate code fragments
at run-time.

Abstractions are represented in the language as ordinary classes with a pre-
defined interface. Some abstractions require extensive configuration, for example
in order to specify the set of nodes that form a target. To facilitate such con-
figurations the macro-programming language features an extension mechanism
that allows to embed abstraction-specific languages in the macro-programming
code. This mechanism relies on specific compiler plug-ins as described in Sec. 5.
Listing 1.1 demonstrates the use of embedded code to specify a logical neighbor-
hood [6] to limit the scope of a stream action to this set of nodes. In lines 1 to 6
the logical neighborhood is defined by an abstraction-specific code fragment and
the definition is assigned to a code-type variable neighborhoodDef. This variable
is used in line 8 to associate the neighborhood definition with a new instance
of the logical neighborhood abstraction. Note the use of the newly introduced
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Listing 1.1. Use of embedded code in the MPL core language
1 code neighborhoodDef = {:
2 neighborhood co2Sensors () {
3 ACM. getFunction () == " sensor "
4 and ACM. getType () == "co2"
5 }
6 :};
7
8 Target co2Sensors = lnew LN( neighborhoodDef );
9

10 Report co2Stream = lnew Stream ();
11
12 co2stream . setTarget ( co2Sensors );
13 co2Stream . setAction ( lnew ReadCO2Level ());
14 co2Stream . setDataOperator ( lnew MedianOperator ());
15 co2Stream . setParameter (" period ", 5 * 60);
16
17 co2Stream . execute ();
18
19 co2Stream . waitResult ();
20
21 Object result = co2Stream . getResult ();

lnew operator to create an automatic object instance for which memory man-
agement is handled by the compiler. In line 12, the neighborhood is assigned as
target scope to a newly created stream action. In the following lines, additional
parameters are set and finally the action is executed in line 17. After execution
of the action, the program needs to wait until a result and can be fetched.

Another significant feature of the makeSense macroprogramming language is
the provision of a generic object serialization interface. This feature is primarily
used by the different abstractions in order to transfer object state between the
involved nodes. The object serialization facility is similar to the one provided
by Java and allows to write the state of an object to a standardized flat rep-
resentation. This representation is, for example, suitable to be send over the
network and can later be used to recreate an exact copy of the serialized object
on the same or a different node. To be applicable for serialization, a class needs
to implement the predefined interface Serializable. The serialization and de-
serialization functionality is automatically generated by the macro-compiler, but
can be customized by overriding specific methods.

5 Macro-compiler

The makeSense macro-compiler is responsible for the translation of the macro-
programming language program to Contiki-based C code. The generated C code
can than be compiled with the existing Contiki tool chain and can be finally
deployed on the nodes.

The basic architecture of the compiler follows the established reference ar-
chitecture. As shown in Fig. 5, the compilation process consists of four major
phases: scanning and parsing, semantic analysis, target code generation, and
code partitioning. To support different platforms, like Contiki and TinyOS, it is
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Figure 5. Architecture of the makeSense macro-compiler

possible to replace the generation back end, but the currently implementation
only supports Contiki. In the non-standard final code partitioning phase, the
compiler determines which translated classes need to be deployed at a specific
node class based on a previously established dependency graph and a data flow
analysis for the program. The goal of this phase is to remove unneeded code
from specific program images. To reduce the size of the deployed program im-
age, the single macro-program specifying the behavior of the whole network is
partitioned into node-specific program parts. Each segment only contains those
classes that are potentially executed on the nodes belonging to the respective
class. For example, it is not necessary to provision program code for actuator
control on pure sensor nodes. In the current implementation, we only differen-
tiate between regular nodes and a dedicated gateway, but this concept can be
easily extended to a larger number of node classes.

To enable the embedded code introduced in Sec. 4 the macro-compiler ex-
hibits a plug-in interface that allows to integrate small sub-compilers for the
abstraction-specific languages. Each of these plug-ins is responsible for parsing,
type checking, and translation of the respective code fragments. As shown in
Fig. 6, the plug-ins are automatically invoked by the main compiler, if it en-
counters an embedded code fragment in the macroprogramming code. A return
channel allows the plug-ins to inform the compiler about references to macro-
programming language constructs encountered in the embedded code fragments.
Like the macro-compiler, the plug-ins are implemented in Java.

6 Run-time System

Figure 7 shows the high-level architecture of the makeSense run-time system. The
business process execution engine connects to the sensor network through a ded-
icated gateway we design. Application performance requirements are specified in
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Figure 6. Typical communication sequence of makeSense macro-compiler plug-in.
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the extended business processes. These are taken as input by a dedicated opti-
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mization engine that generates self-optimization policies that allows the network
to dynamically tune its behavior. The latter task is carried out based on informa-
tion from the system capability model and network state information from the
deployed network. On the sensor nodes we deploy a dedicated configuration and
monitoring subsystem that oversees the application execution inside the sensor
network and executes the adaptation policies depending on the observed state.

While the makeSense gateway is implemented with mainstream technology
as it is intended to run on a standard machine, the key functionality of the
makeSense run-time system lies within the configuration and monitoring subsys-
tem aboard the sensor nodes and in the generation of self-optimization policies.
We describe these mechanisms next.

6.1 Monitoring and Configuration

The key design principle of the configuration and monitoring subsystem is to
separate protocol logic from configuration [8]. This way, parameters in all parts
of the system can be configured through a separate configuration component
based on the settings that the self-optimization policies dictate. This makes it
simple to handle changes in the objectives of the application, e.g., when the
application demands a new objective such as high throughput instead of low
energy consumption. Furthermore, we aim at keeping a layered design to make
it possible to exchange layers, for example, when a new MAC layer should be
used. While researchers have argued that cross-layering is required in wireless
sensor networks to achieve high performance, we showed that we can both rely
on a layered system and achieve high throughput [8].

In designing the configuration and monitoring functionality, we wish to lessen
the burden on developers of configuration policies due to gathering and process-
ing the data input to the self-optimization mechanism. To this end, we opt for
a unified tuple space-like API spanning both read and write operations on the
local blackboard, and distributed operations to share the configuration and mon-
itoring information across 1-hop neighboring devices [9]. We also aim at a design
that has clearer boundaries and hence requires little re-engineering work when
new Contiki releases are available. Therefore, we use wrappers between Contiki
components, e.g., the MAC protocol, and our configuration run-time.

As shown in Figure 8, the configuration and monitoring subsystem includes
a central black-board for storage of configuration parameters, system state, and
statistics. The other modules access the blackboard storage via tuple space-like
APIs [9] that operate on the relevant data. These APIs can both operate on local
data and on the blackboard of the one-hop neighbors. makeSense modules handle
their configuration directly via the blackboard while non-makeSense modules,
such as Contiki components, are wrapped so that relevant configuration and
state can be stored in the blackboard. The monitoring modules are responsible
for acquiring information on performance and resource consumption, storing it
in the blackboard to make it available to upper layers.

The configuration policy and policy engine are responsible for setting the
performance-related parameters. They also provide the interface to the optimizer
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that runs outside the network and is in charge of optimizing the performance, as
described next. The policy engine enforces these policies by setting appropriate
parameters in the blackboard that determine the corresponding modules’ behav-
ior and performance. As any initial configuration is likely to be sub-optimal, the
optimizer will dynamically update the configuration. Dynamic updates might
also be required when the radio environment changes. For example, when it be-
comes more difficult to deliver packets due to interference, the optimizer might
decide to increase the maximum number of retransmissions.

6.2 Self-optimization

In several real-world deployments the application and operating system code are
finely-tuned to achieve a certain performance goal [10]. Most often, this is based
on the developers’ intimate knowledge of the internal sensor networks mecha-
nisms and a deep understanding of the application requirements. The deployed
code is also entirely in the hands of the same developers, who are free to modify
and tune the implementations depending on the performance goals.

In general, the approach above is not possible in makeSense. Two main rea-
sons concur to this: i) the executable code is generated from high-level appli-
cation models, and the mapping from the latter to low-level Contiki C is not
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trivial; and ii) the programming framework is open to external developers, who
may contribute new concrete abstractions along with their supporting run-time.
Furthermore, makeSense allows application developers to specify performance
objectives that can change at the run-time. This is necessary to support long-
lasting business processes subject to real world interactions and rapidly changing
requirements. Therefore, the makeSense run-time must be able to self-optimize
towards the stated performance objectives.

We define self-optimization as the property of a system to automatically
find near-optimal system configurations whenever application objectives, system
parameters, or environmental conditions change. To enable self-optimization,
we gather run-time information from the deployed sensor network, e.g., network
topology and protocol performance, and feed these to a reinforcement learning
algorithm that explores the space of possible configurations using simulations. At
the end of each simulation round, the learning process evaluates the performance
obtained with a given setting w.r.t. the application’s performance goals. Based on
this, we derive self-optimization policies that specify which parameters provide
better performance as a function of the current application and environment
state, including the performance goal. We distribute the policies back to the
deployed network where nodes will apply them whenever needed.

This approach sharply differentiates from existing solutions. Rather than
requiring detailed modeling of the individual protocols, as done for example with
great effort for MAC protocols [11], we treat the entire application as a black-
box. This may lead to sub-optimal solutions, but also enjoys greater flexibility
as it lets users add programming abstractions to the framework along with their
supporting protocols and have the latter “implicitly” optimized.

We describe next the key aspects of the self-optimization functionality

Off-line learning. A typical makeSense application will have several modes of
operation, along with different performance objectives. The same application
can, for example, have energy efficiency as the major objective for most of the
time, but in some emergency situations switch to latency. This means that there
is no static system configuration that is optimal at all times. The configuration
needs to be adapted as soon as the objective changes.

The approach taken for adapting configurations is to have a simulation frame-
work that can simulate the set-up of a specific makeSense application. The sim-
ulation is fed with the applications network topology, the sensor network nodes
firmwares being used, and network state information from the deployed system.
The simulation is then run together with learning mechanisms that tune the con-
figuration while simulating the application scenario. During the simulation, the
learning mechanism will evaluate the performance given the application objec-
tives. We choose to use a reinforcement learning based approach for the learning
mechanism. As shown later, initial results demonstrate that this is a promising
approach.

State monitoring. The nodes need to monitor their internal state to adapt
their configuration. This state is an important part of the input to the configu-
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ration policies and includes, as a function of the needed policy, information such
as density, network congestion, and energy levels. The decision on what is needed
is partly set by what information is relevant to the performance objectives. Mon-
itoring the local state is needed to allow the performance goals to change over
time because the nodes only adapt their configuration based on what they know
in their local state. To change the performance objectives during run-time, the
relevant parameters need to be updated in the nodes local state.

The selection of what should be included in the nodes’ local states is im-
portant. Including too many parameters increases the time required to learn
configuration policies and also increases energy consumption for parameters re-
quiring active monitoring. Including too few parameters, on the other hand,
makes it difficult to find reliable configuration policies because they might not
have enough information.
Learning. In its simplest form, a policy is a mapping between a state and a set
of actions that should be performed when the application is in this state. An
action in this case can be a value to update in the blackboard that triggers a
reconfiguration.

We are using a reinforcement learning based approach for the process of
learning policies. The learning is performed during simulation using a plug-in
for the Cooja simulator. A utility function based on the performance objectives
provides the reinforcement learning with the needed rewards to implement the
learning process. The specific learning mechanism that we use is First Visit
Monte Carlo Policy Iteration [12]. We use the Cooja simulator as it allows to to
accurately emulate sensor nodes such as TMote Sky and Wismote. This makes
it possible to reuse the firmwares that are executed on the real sensor network
in the simulator, making the simulation behavior as realistic as possible.

To automate the learning process in Cooja, we design and implement a new
extension for the simulator that is able to run multiple simulation rounds of
the same scenario. This extension uses the same simulation configuration files
as Cooja and after the regular simulation it restarts the scenario at fixed time
intervals. Before resetting the scenario the learning process takes place.
Initial results.We run experiments to assess the ability of the self-optimization
framework to dynamically identify policies that improve the resulting system
performance. We consider as example the following performance objective, for-
mulated as a linear combination of desired reliability, goodput, and energy con-
sumption:

utility = received

sent
∗ 25.0 + received ∗ 100.0 − 0.07 ∗ energy (1)

Figure 9 reports a screenshot of the reinforcement learning simulation frame-
work while optimizing for the performance objective above. In the figure, stream
denotes the goodput in received packets per learning period. Throughout differ-
ent simulation runs, the learning algorithms understands that a way to maximize
the value of (1) is to favor packet transmissions (denoted as stream in the fig-
ure) even though they lead to slightly higher energy consumption. This is a
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Figure 9. The utility improves significantly over time (top); the learning algorithm
detects that it is better to send many messages, improving goodput (middle), even if
the energy cost slightly increases (bottom).

direct result of the objective formulation, which poses the largest weight on the
goodput.

7 Conclusions

In this paper, we have presented the makeSense approach for generating sensor
networking code from business process models. Our approach integrates business
processes with sensor networks in a novel way. Through a compilation chain an
application models specified in slightly extended BPMN is transformed to both
code that runs in the sensor network and code that is executed by traditional
business process engines. We have also presented our final application scenario
we are currently deploying in a student residence in Spain.
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The paper was nominated for the best paper award of the SenseApp workshop.

7.5.1 Summary
This paper introduces a novel macroprogramming framework for WSNs. The frame-
work is based on the previously developed conceptual framework that classifies pro-
gramming abstractions into few groups and allows the composition of multiple ab-
stractions into a complete application. Based on this framework we developed an
object-oriented macroprogramming language modeled after the common Java pro-
gramming language. Compared to Java, the language has been modified to allow
efficient execution on resource-constrained microcontrollers and to support the above
conceptual framework. The structure of a compiler that translates this language into
C code is also described.

7.5.2 Contributions
I am the main author of the paper, implemented the described software system and
carried out the described experiments. The meta-abstraction concept was developed
as shared work within discussions among the co-authors. My work also incorporates
feedback and ideas from Kay Römer. I presented the work at the 9th IEEE Interna-
tional Workshop on Practical Issues in Building Sensor Network Applications (IEEE
SenseApp 2014) in conjunction with the 39th IEEE Conference on Local Computer
Networks (LCN 2014) in Edmonton, Canada.
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Abstract—Wireless sensor network (WSN) programming is
still largely performed by experts in a node-centric way using
low-level languages such as C. Although numerous higher-level
abstractions exist, each simplifying a specific aspect of distributed
programming, real applications often require to combine multiple
abstractions into a single program. Using current programming
frameworks, this represents a difficult task. In previous work,
we therefore defined a conceptual framework that facilitates
abstraction composition by defining sound compositional rules
among few fundamental abstraction categories. The framework
is extensible: programmers can add new abstractions within the
boundaries determined by the compositional rules.

In this paper we describe the design of a language—called
MPL—that instantiates this conceptual framework. To support
the extensible nature of the framework, the language is object-
oriented, which allows programmers to add new abstractions
by inheriting from existing classes that implement predefined
interfaces. We modeled the syntax after Java, to make it more
palatable to inexperienced embedded programmers. Compared
to Java, we modified the language to enable efficient execution
on WSN devices. We designed and implemented a compiler
that translates MPL language into executable C code, which
spares the overhead of a virtual machine. By comparing MPL
implementations against functionally-equivalent Contiki/C imple-
mentations of several benchmark applications, we determined
that the performance overhead of MPL is limited, and yet the
programming task is simplified.

Index Terms—Compilers, Java, object-oriented languages,
wireless sensor networks.

I. INTRODUCTION

During the last years, the use of wireless sensor networks
(WSNs) significantly increased [14] while WSNs also started
to make their way into commercial and industrial real-world
applications. Nevertheless, a more widespread WSN adoption
is still hampered by the unavailability of easy-to-use devel-
opment tools. As of today, most WSN applications are still
implemented in low-level C code and their design requires
in-depth knowledge of the specifics of embedded systems
and low-power wireless communication. Consequently, WSN
programming is usually carried out by WSN experts. To

gain more widespread use, WSN development needs to be
more accessible to domain experts and programmers without
a strong WSN background.

This requires a move from the still prevalent node-centric
programming model towards a more holistic view of the net-
work that hides low-level details. To this end, a growing num-
ber of macroprogramming abstractions have been designed
that simplify programming of a specific distributed computing
aspect (such as assigning roles to nodes [7] or defining a
subset of nodes to communicate with [11]) by offering a
domain-specific language. However, integrating multiple of
these abstractions into a single program is still difficult. There
also exist a number of macroprogramming languages that
include a fixed set of abstractions, but new abstractions cannot
be added easily.

In the makeSense [3] project we have therefore analyzed
existing WSN abstractions, classified them based on few fun-
damental dimensions, and developed a conceptual framework
that allows the composition of arbitrary abstractions according
to predefined sound rules. The framework is also extensible
in that abstractions that were not known by the time the
framework was designed can be added later.

In this paper, we describe how this conceptual framework
can be instantiated by means of a concrete language and we
also describe a compiler to translate that language into efficient
executable code. To sustain the extensibility of the conceptual
framework, the language is object oriented and inspired by
Java and thereby easy to use for programmers familiar with
Java or C++. The language differs from Java to support
efficient compilation to resource-constrained WSN devices and
to support the extensibility of the above conceptual framework.
The compiler offers a plug-in interface to support addition
of new abstractions and automatically distributes application
functionality among the gateway and the sensor nodes.

The increased abstraction level and the use of powerful
programming abstractions enables a reduction of user-written
code by more then 50% in comparison to an implementation

©2014 IEEE. Reprinted, with permission, from Felix Jonathan Oppermann, Kay Römer, Luca Mottola, Gian Pietro Picco, and
Andrea Gaglione, “Design and compilation of an object-oriented macroprogramming language for wireless sensor networks”,
Workshop Proceedings of the 39th IEEE Conference on Local Computer Networks (LCN), September 2014.
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in low-level code for a set of typical applications.
The remainder of the paper is organized as follows. Sec-

tion II briefly reviews the current state of the art. Sec-
tion III summarizes the makeSense abstraction framework.
In Section IV we derive a set of requirements for a lan-
guage implementing this framework. Section V introduces
design decisions and implementation details that enable us
to implement a language that is capable of meeting these
requirements. Section VI introduces the architecture of the
underlying compiler framework and provides a closer look
to the plug-in interfaces that enable the required extensibility.
Finally, the performance and overhead of the approach for
a typical set of applications is evaluated and discussed in
comparison with more conservative C-based implementations
in Section VII.

II. RELATED WORK

A multitude of different systems aims to raise the ab-
straction level of WSN programming by providing high-level
macroprogramming frameworks. These systems either repre-
sent the WSN as a distributed database [10], or provide more
sophisticated frameworks on-top of C [9] or with custom high-
level languages [4], [13]. Database-like interfaces are usually
limited to data collection applications, while more complex
frameworks usually require the use of an unfamiliar language.
Systems of both categories are usually monolithic and do
not provide a well-defined interface to integrate application-
specific abstractions. In this regard, MPL extends the state
of the art by providing an extensible macroprogramming
framework that supports in-network control logic and is based
on Java, a widespread programming language.

Nevertheless, our macroprogramming language also differs
from the standard Java ME [15] framework by targeting
even more resource constrained devices. In addition, Java ME
does not provide WSN-specific extension points to integrate
existing concepts that abstract from typical WSN challenges
such as communication and distributed data processing. In
comparison to standard Java, WSN-specific extensions signifi-
cantly increase the utility of our macroprogramming language.
Some low-resource Java virtual machines also exist that are
targeted at low-power embedded and networked systems [1],
[2], [17], but they still require a comparatively significant
amount of resources. For example, the Squawk virtual machine
uses 80 kB of program memory and consequently targets more
powerful ARM-based embedded platforms [18]. Our approach
differs in that it generates customized C code which is in turn
compiled into optimized machine code for the intended target
platform hence reducing the introduced overhead.

III. THE MAKESense FRAMEWORK

This section describes the conceptual WSN abstraction
framework developed in the makeSense project [3]. Pre-
vious research has demonstrated that a large number of
WSN programming abstractions exist that solve common
challenges of WSN programming [12]. WSN programming
abstractions tackle issues such as node addressing, definition
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Action
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Meta-Abstraction

Modifier

Target

Data Operator

<<use>>

<<use>>

<<use>>

<<use>>

1

0..1
Tell Action

Fig. 1. The makeSense meta model for programming abstractions [3].

of communication patterns, and distributed data processing. A
typical example of such programming abstractions is Logical
Neighborhoods [11], a system that allows to define groups of
nodes based on their state and to communicate with them in a
way similar to sending broadcast messages to physical neigh-
bors. Programming abstractions, like Logical Neighborhoods,
already simplified WSN programming, but they were difficult
to combine with other abstractions in a single program.

The makeSense project improved this situation by provid-
ing a unifying framework in which existing and future WSN
programming abstractions can be easily integrated. To allow
such extensibility, the makeSense framework employs the
concept of meta-abstractions. WSN programming abstractions
can be grouped into classes that aim to solve similar issues
and that usually expose very similar interfaces. We call such
a group of similar abstractions a “meta-abstraction”, i.e., an
abstraction of abstractions. Based on this insight, a hierarchy
of typical WSN programming abstractions was developed in
the makeSense project [3]. This hierarchy forms the basis of
the makeSense framework as displayed in Fig. 1.

Two major types of Meta-Abstraction can be distinguished.
Actions represent anything a node or a set of nodes can
execute. This can be simple commands, like reading a sensor
value, or more complex operations such as requesting aggre-
gated values from a group of nodes. Modifiers allow a more
precise specification of the behavior of Actions. For example,
a Modifier could be used to specify which nodes should be
part of the group that provides the aggregated value.

The Action class is further divided into two subclasses
of actions. Local Actions are executed locally on a single
node to implement basic operations, e.g., reading a sensor.
In the makeSense framework, Local Actions also define the
interface to the node hardware. Hardware operations, like
reading sensor values or storing data on flash, are exposed
to the user as Local Actions. In addition to predefined Local
Actions, the user may also define custom Local Actions within
the framework.

Distributed Actions can be used to request some action
from multiple remote nodes. Distributed Actions typically
define some form of communication between the nodes. The
makeSense meta-abstraction hierarchy distinguishes between
three basic communication patterns. The Tell abstraction is
used for one-to-many communication. It allows to execute
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other Actions on a set of remote nodes. Dually, the Report
abstraction is used for many-to-one communication, e.g., to
request sensor values from a set of nodes. On the remote
node, the requested data is extracted by employing a Local
Action that has been associated with the Report. Finally,
Collective Actions provide a default interface for abstractions
that implement peer-to-peer coordination patterns, such as
global assertions [5] or role assignment [7].

Programmers can customize an action’s behavior by using
Modifiers, e.g., to select the set of nodes that participate in
a Report. This separation of concerns enables a more flexible
interaction among abstractions. The makeSense framework
provides two subtypes of modifiers. Target modifiers are
used to implement the aforementioned selection of nodes, to
limit the scope of operation of any Distributed Action. Data
Operators can be used with Report actions to define additional
data processing to be applied to the collected data, such as
aggregation.

The different meta-abstractions define extension points that
can be instantiated by concrete implementations of these
abstraction types. For example, the Target meta-abstraction
could be instantiated by Logical Neighborhoods or another
group-defining programming abstraction. Several instances of
the same abstraction may exist at a time and an application
may employ different abstractions instantiating the same meta-
abstraction concurrently.

IV. LANGUAGE REQUIREMENTS

To implement actual applications, several abstractions need
to be combined and augmented with application-specific func-
tionality. This requires a programming language that allows
to define the interaction between individual programming
abstractions and to implement algorithms for custom data
processing. A number of fundamental requirements for such
a language can be defined:

(I) The language needs to be suitable to reflect the pre-
viously described meta-abstraction hierarchy supporting
also later addition of instances of the abstraction classes.

(II) As some programming abstractions employ sophisti-
cated custom languages for their configuration, the
language requires a convenient mechanism to integrate
such domain-specific languages.

(III) Individual nodes may need to handle several remote
actions at once. Consequently, the language needs to
support concurrent execution of tasks.

(IV) The language needs to be expressive enough to imple-
ment moderately complex algorithms, it needs to sup-
port at least basic mathematical and logical operators,
conditionals, and basic looping constructs.

(V) The programming language should be familiar and easy
to use for a large number of programmers. It should be
especially appealing for typical domain experts.

(VI) Last but not least, the language needs to be adequate
to generate efficient code suitable for considerably
resource-constrained devices, such as wireless sensor
nodes.

V. DETAILED LANGUAGE DESIGN

Based on these requirements and the makeSense frame-
work, we designed MPL, a high-level macroprogramming
language for WSNs. As determined by Requirements IV and
V, a goal for this programming language is to provide an
expressive programming environment that is familiar to a large
set of programmers. This made Java [8] a natural choice as
basis for the design of MPL as it is well-established and
widely used language with appropriate features. Building upon
Java’s object-oriented model also provides a stepping stone
to implement the makeSense meta-abstraction hierarchy in
accordance with Requirement I. Each meta-abstraction maps
to an interface and abstractions can be added by implementing
a meta-abstraction interface. The language is purely object-
oriented with the exception of a limited set of primitive data
types, including integers, chars, and Booleans.

To make the language suitable for resource-constrained
devices as demanded by Requirement VI, some limitations
compared to standard Java were necessary. The most signifi-
cant difference is the absence of a virtual machine. Programs
are instead translated into C code targeted at the Contiki
platform that can be further processed by the established tool
chain to generate deployable binary images.

Support for object-orientation in MPL had to be imple-
mented in C in a standard-compliant way relying on structures
and function pointers. The approach taken is conceptually
similar to the approach taken by C++ [19]. Most notably,
dynamic dispatch is implemented with the help of virtual
method tables instead of relying on the more flexible but also
more memory-demanding hash-table-based approach typically
found in Java implementations.

In the following, we highlight other important design deci-
sions that enabled us to meet the aforementioned requirements
in an efficient manner.

A. Memory Model

Most object-oriented languages primarily employ dynamic
memory allocation for objects and even though it is conve-
nient for the programmer—especially if supported by garbage
collection—it is ill suited for memory-constrained devices and
reduces the efficiency of the program.

Therefore, to meet Requirement VI, MPL encourages the
use of static memory allocation. In contrast to Java, it is
not only possible to allocate new objects on the heap, but
instead the language also provides additional operations to
support different allocation schemes. Like in Java and in
contrast to C++, objects are always accessed via references.
To support alternative allocation strategies, we introduce two
new allocation operators: static and auto, which return a
reference to a static global object or an object allocated on the
stack.

An object created with static is available for the com-
plete run-time of the application. For example, the allocation
of the rectangle rec_global in Listing 1 employs this
feature. Static objects are represented by global variables in
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class Rectangle {
Point topLeft = auto Point();
Point bottomRight = auto Point();

}

...

Rectangle rec_local = auto Rectangle();
Rectangle rec_global = static Rectangle();

Listing 1. Exemplary use of the extended memory model of MPL.

the generated C code. Their memory is statically allocated as
part of the program image.

The operator auto allows to allocate objects on the stack.
These objects are automatically deleted if the current block
enclosed by { and } is left. If the newly allocated object has
only been assigned to variables that are declared in the same
block, then it behaves essentially like an automatic variable of
a primitive type. Automatic objects are represented by local
variables in the generated C code. The compiler also takes care
of inserting appropriate statements in the C code to finalize
objects before they are deleted.

The operator auto can also be used in a second role
within the initializer expression of member variables. If used
in an initializer, auto ties the lifetime of the newly created
object to that of the host object. The class Rectangle in
Listing 1 demonstrates this use of the auto operator. The
memory required for the two Point instances is automatically
allocated if a new instance of the Rectangle class is created.
This type of automatic allocation is implemented by directly
embedding the representation of the dependent object in the C
representation of the host object. Consequently, the required
storage space becomes part of the memory demand of the host.

To provide programmers with additional flexibility and to
allow the creation of dynamic data structures, MPL also
supports dynamic memory allocation and the standard new
operator. Nevertheless, garbage collection is not supported, as
this would add a significant run-time overhead. Dynamically
allocated objects need to be destroyed explicitly by using a
newly introduced delete operator. Dynamic memory alloca-
tion currently relies solely on the malloc implementation of
the underlying target platform without additional optimization.

B. Multithreading

For the intended usage scenarios of MPL it is often nec-
essary to execute several tasks in parallel. To support this
in a user-friendly way, multithreading functionality is needed
for the language as also indicated by Requirement III. The
multithreading capabilities of MPL can be accessed via an
interface that is closely modeled after the Java thread interface.

The current implementation is based on the Contiki multi-
threading library that provides a platform independent inter-
face to switch the current stack. This interface is implemented
for all major hardware platforms supported by Contiki. Based
on this library, we implemented a custom thread scheduler run-
ning as a concurrent Contiki process that schedules runnable
threads in a round robin fashion.

code neighborhoodDef = {:
neighborhood HighTemperature() {
System.getRole() == "sensor"

and System.getType() == "temperature"
5 and System.getTemperature() > x

}
:};

Target highTemperature = auto LN(neighborhoodDef);
10 highTemperature.bindFloat("x", 30.0);

Report temperatureStream = auto Stream();
temperatureStream.setTarget(highTemperature);
temperatureStream.setAction(auto ReadTemperature());

15 temperatureStream.setDataOperator(auto MedianOperator());

temperatureStream.execute();
temperatureStream.waitResult();
Object result = temperatureStream.getResult();

Listing 2. Use of embedded code in MPL.

A major drawback of full-blown multithreading is the com-
paratively high memory overhead as each thread has its own
stack that needs to be constantly kept in memory. To restrict
the memory demand, the maximal number of concurrent
threads is limited. If the maximum is reached, attempts to
create further threads fail and an error is signaled to the
user program. In the extreme case of an application that does
not itself require multithreading, the whole application can
be executed in a single thread. A separate thread running in
parallel to the operating system is still required to support
blocking operations without interfering with the operating
system functions.

C. Embedding of Meta-abstractions

The core goal of the language design was the provision
of an implementation of the makeSense framework. As a
consequence and in line with Requirements I and II, the
language needs to be able to cleanly expose the abstraction-
based extensibility features of the makeSense framework.

To this end, the implementation of a programming abstrac-
tion within the language consists conceptually of three distinct
components: (1) an MPL class, (2) a run-time module, and
(3) (optionally) an MPL compiler plug-in. The MPL class
serves as a means for MPL code to interface with the ab-
straction. Abstraction classes slightly differ from regular MPL
classes in that their methods are typically not implemented by
MPL code. Instead, each abstraction provides an additional
run-time module that implements the required functionality in
low-level C code. This increases efficiency and allows one to
reuse existing implementations. In addition, the implementa-
tion of programming abstractions will typically be conducted
by WSN experts that are already familiar with C programming
on embedded devices. Finally, as indicated by Requirement
II, programming abstractions may employ their own domain-
specific language. To support a domain-specific language,
the abstraction also needs to provide a compiler plug-in to
translate the domain-specific code into code executable on the
target platform. These plug-ins employ a compiler interface
that is described in more detail in Section VI-B.
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To support the use of domain-specific languages in a con-
sistent way, MPL provides a dedicated syntax for embedded
code. The mechanism for embedding code shares some simi-
larities with prepared statements for embedding SQL code in
programming languages. In contrast to prepared statements,
embedded code fragments are not represented by strings, but
by the special data type code to facilitate type checking and
special handling by the compiler. Variables of this type can be
instantiated only by a constant expression, consisting of a code
fragment in an abstraction-specific language that is enclosed
by the delimiters {: and :}. Also, unlike prepared statements,
embedded code is not interpreted at run-time but compiled
by abstraction-specific compiler plug-ins. As the embedded
code is handled by plug-ins, it does not necessarily need to
follow the syntax and semantics of MPL. To enable passing
of values between embedded code and the MPL program,
a binding mechanism is provided. Calls to a bind method
of the affected abstraction allow one to bind variables in the
embedded code to MPL variables.

To illustrate these aspects we employ Logical Neighbor-
hoods [11] and a Stream abstraction as an example. A wrapper
has been implemented in the makeSense project, that inte-
grates an existing implementation of Logical Neighborhoods
in the makeSense framework [3] by instantiating the Target
meta-abstraction. Here, Logical Neighborhoods is used in
combination with the Stream abstraction that implements the
Report meta-abstraction. The Stream abstraction has been
created from scratch within the makeSense project [3].

The Logical Neighborhoods abstraction employs a cus-
tom declarative language to define membership of nodes in
a specific neighborhood, used as domain-specific language
within MPL. This use of the functionality can be seen in
lines 1–7 of Listing 2. In this example, a logical neighbor-
hood highTemperature is defined that contains all nodes
equipped with a temperature sensor and that read a high
temperature value. The threshold value x is left as a parameter
in the embedded code, and is later bound to the actual value
in the main MPL program by means of an appropriate bind
call in line 10.

The definition of the logical neighborhood relies on a set of
node attributes (“role”, “type”, and “temperature”) provided by
the run-time environment. To allow simple access to such node
attributes and operations in embedded code, these are exposed
as static methods of a predefined System class. In this exam-
ple, the System methods getType and getTemperature
are used in the embedded code to determine the value of the
corresponding attributes associated to the target node (i.e.,
the type of attached sensor and the sensor value). In line
9 of the example, a new instance of Logical Neighborhood
is created, which is configured by the embedded code. This
Logical Neighborhood instance is associated to a new Stream
instance in line 11 to define the set of nodes from which the
data should be streamed towards the sink. After also specifying
a Local Action to read a sensor value and a Data Operator
to aggregate the individual readings, the stream is started in
line 17. Finally, the program waits for a result and stores the
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Fig. 2. Overview of the architecture of the MPL compiler. Arrows denote
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returned result in the result variable, as soon as available.

D. Interface to the Underlying Platform

MPL programs typically need to access functions of the
underling hardware and software platforms. In MPL, such
platform functions are also exposed through the previously
introduced abstraction interface.

All communication-related tasks are handled by distributed
actions. Direct access to functions to manually send or receive
individual messages is intentionally not provided by the default
implementation of MPL to shield the programmer from low-
level details of communication. Nevertheless, such facilities
could be provided by dedicated abstractions, if needed.

Node-local functions are exposed as Local Actions. This
typically includes tasks like reading of sensor values and
control of actuators, but the same facility could be also used
to implement local data storage or data processing algorithms.
We expect such platform-related functions to be implemented
by WSN experts using C code with direct access to the
underlying operating system. To support such an approach,
methods in MPL can be declared as native, in which case
the actual implementation of the method is provided by an
external C implementation. Access to MPL language features
is possible via a predefined C interface. Amongst other things,
this interface provides the means to access, manipulate, and
create MPL-defined objects within user-provided C code.

A number of Local Actions for commonly used functions
are predefined by the language. As seen before, a subset
of these functions is also available as static methods of an
automatically generated System class to enable access from
embedded code.

VI. MPL COMPILER

Fig. 2 gives a high-level overview of the MPL compiler
architecture1. Primary input to the MPL compiler is a macro-

1The compiler and supplementary software are available as part
of the makeSense tutorial at http://project-makesense.eu/tutorial/
makeSense-tutorial.zip
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program written in MPL, possibly consisting of several source
files. The macroprogram is supplemented by information about
the system’s capabilities, such as the hardware features and
on-board sensors of deployed nodes. This information is used
by the MPL compiler to aid optimization and the allocation of
functionality to the different nodes. In addition to these inputs,
the MPL compiler has access to a repository of components
implementing the macroprogramming abstractions and run-
time functionality. As output, the MPL compiler generates
platform-specific source code for each node type of the target
WSN, e. g., gateway and regular nodes, which is translated
into a deployable binary image by the regular platform tool-
chain. Our current prototype generates C-code for the Contiki
operating system [6]. It is intended that later versions of the
compiler will be extended with further code generators for
different platforms.

A. Code Generation and Allocation

The compiler is implemented as a multi-pass compiler
in Java. The compilation process consists of four distinct
phases: parsing, type checking, code generation, and code
allocation. All phases access the abstract syntax tree (AST)
of the program and a shared symbol table. The implementa-
tions of parsing and type checking largely follow established
approaches for compiler design. The code generation phase
only differs from typical compilers in that it does not directly
generate machine code. In the final code allocation phase,
the compiler maps the compiled classes and interfaces to the
available node types. A WSN may contain nodes with different
capabilities that serve different purposes in the network. Not
all of these nodes require the full functionality of the MPL
program and part of the program is only ever executed on
the nodes of a specific type. The code allocation phase allows
one to remove unnecessary classes from the final code images
and thus to reduce memory demands. In contrast to possible
local code optimizations by the downstream C compiler, the
allocation algorithm of the MPL compiler can take the entire
control- and data-flow of the complete application, including
remote invocations of abstractions, into account.

The current compiler prototype only distinguishes between a
more powerful gateway node and the regular sensor nodes, but
more complex allocation schemes are conceivable. The alloca-
tion procedure is based on the dependency graph generated by
the type checker. For the gateway, the allocation process starts
at the main method. This method is the central entry point
of the MPL program and is always executed on the gateway
machine. Starting from the main method, all classes used by
this method are recursively collected. Only the compiled code
of these classes is deployed on the gateway. For the nodes,
the process starts at the set of actions that are defined in the
MPL program. The compiler determines for each Action, if it
is used by a Remote Action (e. g., Tell or Report). Only those
Actions can be executed on a remote device and thus on one of
the nodes in the WSN. For each of those Actions, all required
classes are recursively collected. With the current prototype,
this set of classes is deployed on all nodes. In the future, we
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Fig. 3. Interaction of the MPL compiler and the compiler plug-ins. Contin-
uous arrows represent data flow. Dashed arrows represent communication.

will also take the capabilities of the nodes into account and
build independent sets for each node type. In a second step, all
Actions requiring capabilities that are unavailable at a specific
node type are removed from the respective set.

B. Plug-in Interfaces

Some programming abstractions employ embedded code to
enable extensive configuration, as described in Section V-C.
The abstraction-specific code cannot be handled by the MPL
compiler itself, instead these abstractions need to provide
compiler plug-ins to analyze and translate the abstraction-
specific code. The MPL compiler plug-in interface allows
these plug-ins to communicate with the MPL compiler at
compile-time. Each compiler plug-in is essentially an indepen-
dent little compiler with its own parser and code generator.
Due to the fundamentally different nature of the object-
oriented MPL code and the typically declarative embedded
code, plug-ins cannot reuse the parsing and code generation
functionality of the MPL compiler. Fig. 3 gives an overview
of the interaction between the MPL compiler and the compiler
plug-ins. Embedded code fragments are extracted by the MPL
compiler and passed to the compiler plug-in provided by the
abstraction that uses the code fragment. The compiler plug-in
translates the domain-specific code into C code. The resulting
C code is compiled with the native tool-chain and linked
with the compiled binary image of the MPL program. The
generated code can communicate with the abstraction-specific
run-time component.

In some cases, it is necessary that the plug-ins generate
different code for devices with different roles in the network.
For example, the plug-in might differentiate between regular
nodes and the network gateway. The gateway code might, for
example, need to perform additional bookkeeping that is not
required on the regular nodes. To support this, the plug-in may
generate different C files for each of the available node types.
The code is only linked with the correct binary image, in this
case. Like the MPL compiler itself, plug-ins are implemented
in Java.
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VII. EVALUATION

To evaluate the performance of MPL we selected a small
set of WSN applications and implemented each of them
as a macroprogram and as functionally-equivalent Contiki/C
programs. We then compared the performance of both im-
plementations based on a set of typical software performance
metrics for WSNs.

A. Settings and Metrics

We selected the following application scenarios for the
evaluation:

1) Blink to Radio. This application scenario represents one-
to-many communication. Such communication patterns
are often used to distribute commands or configuration
settings to a number of nodes. During run-time, the
gateway process regularly sends a command to all sensor
nodes requesting them to toggle their LED.

2) Collect. This application scenario consists of a simple
data collection application. Data collection is a typical
task for WSNs and as such is an important component
of many real world applications. In the evaluated ap-
plication, temperature and light sensor readings of all
nodes are periodically sent to the gateway. At the gateway,
the readings of all nodes are averaged and the result is
reported to the user as a command line output.

3) HVAC application. The last application, originally devel-
oped in the makeSense project, implements a simple
ventilation control system that regulates ventilation based
on CO2 readings. This scenario represents a simple real-
world WSN application. Our setup consists of sensor
and actuator nodes deployed in two rooms. The control
process for each room is offloaded to one of the nodes
located in the respective room.

All applications were implemented by an average program-
mer without a strong background in WSN programming.
Before implementing the applications, he was provided with
an introductory tutorial for the respective technology. During
the experiments, the MPL and the Contiki/C programs was
executed in identical simulated environments with five to six
nodes and a gateway2. The WSN was simulated in real-time

2Please note, that even though the simulated scenarios employed only a
small number of nodes, this does not invalidate the obtained results. The
values for most of the employed metrics are not affected by the number of
nodes.
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Fig. 5. Maximal number of CPU cycles spent on the nodes.

with Cooja, while the gateway code was executed in parallel in
a 64-Bit Linux environment. The latter communicated with the
simulated network via a serial socket and a simulated interface
node 3. Each application was executed until a scenario-specific
termination condition was met. The same termination condi-
tion was used for the MPL and the Contiki/C implementation.

For each of the programs we investigated the following
metrics:

1) The number of source lines of code is employed as
an approximation of the programming effort for each
application. We are aware that source lines of code are a
very imprecise metric, especially if comparing different
languages. Nevertheless, it can provide an initial idea of
the relative complexities of the evaluated applications if
consistent code formatting is used.

2) Code size is an important metric for WSN applications,
as sensor nodes typically only possess limited program
memory.

3) Memory consumption also needs to be kept low as random
access memory is also a severely limited resource on
sensor nodes. We need to distinguish the space required
by statically allocated objects and the amount of heap
space employed by dynamic memory allocation. Espe-
cially the use of dynamically allocated memory should be
reduced, as dynamic memory allocation requires signifi-
cant over-provisioning of memory resources. We measure
heap allocation by linking the applications to a modified
malloc implementation that tracks heap usage. Effects
like fragmentation are not taken into account.

4) To compare the computational overhead, we count the
CPU clock cycles spent on a typical execution of an
application in a controlled environment.

5) The communication overhead is assessed by recording
the number and size of radio messages sent during
application execution. Ins WSN, energy consumption is
often dominated by wireless communication, so that this
metric also provides some insight on energy consumption.

B. Results

Fig. 4 demonstrates that the plain Contiki/C applications
require the user to write more than twice as much code to ac-

3The node programs were compiled for the Contiki Tmote Sky target with
an MSP-enabled version of the GNU C compiler (version 4.7.0 20120322,
mspgcc patch set 20120911). The gateway code was compiled with the GNU
C compiler (version 4.6.3).
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complish the same task. In addition, further low-level technical
details are exposed in the Contiki/C program. This indicates
that the use of a high-level macroprogramming language like
MPL can reduce the effort needed for the implementation of
typical WSN applications. The programmer needs to write less
code to achieve the same result.

Figs. 6 and 7 present the respective text size of the com-
piled MPL and Contiki/C implementations of the evaluated
applications. It can be seen in Fig. 7 that the program image
of the MPL programs is significantly larger for the evaluated
applications. A cause for the increase in program size is
the run-time environment required for some of the advanced
features of MPL, like the support for multithreading. It should
be noted that the overhead is largely constant (i.e., it does
not grow with program size) and the relative overhead should
be lower for larger, more complex applications. The program
memory demand of the applications is still well within the
limits of typical WSN platforms.

As presented in Figs. 8 and 9, the MPL-based code also
makes use of more statically allocated memory. The overhead
in static memory consumption is mainly caused by the addi-
tional data structures required for object-orientation support in
MPL. As the relative overhead decreases with application size,
we expect the relative overhead in the evaluated scenarios to
represent a worst case scenario. More complex applications
should exhibit a less significant relative overhead. Further
optimization of the object representations can likely also
significantly reduce the static memory demand of MPL-based
programs.

While the Contiki/C-based programs do not make use of
dynamic memory allocation, some features of the MPL pro-
gramming model rely on dynamically allocated memory, e.g.,
to handle concurrent execution of Actions. This introduces
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a slight additional overhead, but the demand of dynamically
allocated memory is comparatively little. None of the appli-
cations allocated more than 420 bytes at a time on any node
in our test scenarios.

The computational overhead introduced by the use of MPL
turns out to be very low in the experimental scenarios, as
shown in Fig. 5. In the collect and the HVAC scenario,
the MPL-based code actually employs less CPU cycles on
the most active node of each network than the respective
Contiki/C-based code. This demonstrates that features like
virtual method dispatch do not introduce a significant overhead
in terms of execution speed and energy consumption in typical
applications.

As expected, the choice of a higher-level language does
not significantly affect the total number of transmitted radio
messages, as shown Fig. 10. Nevertheless, as shown in Fig. 11,
the total amount of transmitted data is significantly higher
for the MPL-based applications. This is mainly caused by
the fact that the MPL code transmits complete objects that
need to be serialized. An implementation providing a similar
level of flexibility and features as the MPL code would be
far more complex and consequently even more difficult to
implement and maintain. At the same time its resource con-
sumption would probably be much closer to the MPL-based
implementation. Consequently, we conclude that the overhead
for supporting a high-level macroprogramming language with
object orientation is still reasonable for resource-constrained
devices, like WSN nodes.

VIII. CONCLUSION

In this paper, we introduce the design and implementation of
a Java-like macroprogramming language for the makeSense
framework. A preliminary evaluation demonstrated that it is
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possible to implement a high-level object-oriented macropro-
gramming language with a reasonable overhead.

Despite the positive results of the evaluation, current limi-
tations open up an avenue for future work. The performance
of the system can be further improved to make it even more
suitable for the resource-constrained devices typically found
in WSNs. Especially, memory consumption of the generated
code still leaves significant room for improvements. Memory
consumption could be, for example, improved by a more
sophisticated strategy for code allocation. In the current im-
plementation, code allocation operates at class level. Instead
it would be possible to extend these decisions to individual
methods and attributes. In addition, it would be useful to make
the allocation algorithm work with a larger number of node
types and to take the actual program behavior into account.
To make the system more useful in practice, we also intend
to improve debugging support. Finally, compatibility and de-
pendencies among abstractions and between abstractions and
the underlying protocols are not satisfactorily handled by the
framework. The selection of suitable abstractions still requires
manual intervention and some degree of expertise. Ideally, this
selection would be largely automatic based on an abstract set
of user-defined requirements. We currently explore possible
solutions in the RELYonIT project [16].
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7.6.1 Summary
In this paper, we propose a novel framework to automate the parametrization of IoT
communication protocols. By automating the challenging task of selecting suitable
parameters for a specific application and environment, it enables the configuration of
WSN or IoT systems without a need for extensive knowledge on the user side. The
framework uses models of the environment as well as of the employed hardware and
protocols to predict the effects of environmental changes on network performance
and to automatically select a configuration that meets user-specified dependability
requirements. We also demonstrate how to use this framework to configure a state-
of-the-art MAC protocol for an IoT application deployed in a challenging outdoor
environment. An evaluation demonstrates the usefulness of the approach and its
performance.

7.6.2 Contributions
I am the main author of the paper, implemented the described software system
and carried out the majority of the described experiments. Sections II and V were
written by Carlo Alberto Boano based on work by him and Marco Antonio Zúñiga.
Carlo Alberto Boano also played a fundamental role in the evaluation of the software
system as described in Section V. I presented the work at the 10th IEEE Interna-
tional Workshop on Practical Issues in Building Sensor Network Applications (IEEE
SenseApp 2015) in conjunction with the 40th IEEE Conference on Local Computer
Networks (LCN 2015) in Clearwater, Florida, USA.
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Abstract—To meet strict dependability requirements in hostile
and highly-varying environments, IoT communication protocols
need to be carefully tuned in relation to the expected environ-
mental changes. However, this is difficult to attain, as every
application has unique properties and requirements. Tuning
communication protocols correctly requires indeed significant
expertise as well as a clear understanding on how hardware and
software components are affected by environmental changes.

In this paper, we propose a novel framework to automate the
parametrization of IoT communication protocols. The framework
uses models of the environment as well as the employed hardware
and protocols to predict the effects of environmental changes on
network performance and to automatically select a configuration
that meets user-specified dependability requirements.

We demonstrate how to use this framework to configure a
state-of-the-art MAC protocol for an IoT application deployed
in a challenging outdoor environment and evaluate its accuracy
in predicting how environmental changes affect network per-
formance. We further evaluate the performance with different
optimization strategies and show that the average run-time
necessary to find a solution is sufficiently low to enable the use
of our system in a typical IoT design process.

Index Terms—Dependability, Environmental Impact, Commu-
nication Protocols, Optimization, Internet of Things, Wireless
Sensor Networks.

I. INTRODUCTION

An increasing number of Internet of Things (IoT) and
wireless sensor network (WSN) systems has been installed in
real-world settings during the last years [1]. These systems are
becoming an integral part of our daily lives, as they are used in
application areas such as civil infrastructure monitoring, home
automation, smart cities, smart grid, and smart healthcare.
Several of these application domains are safety-critical, and
rely on the dependable and predictable operation of sensors
and actuators that are wirelessly networked. For example,
systems employed to monitor patients, to control traffic, and
to inspect the structural health of buildings impose strict
dependability requirements on communication performance, as
their failure can have severe consequences.

Fulfilling these dependability requirements can be very
difficult, as WSN and IoT systems are often deployed in hostile
environments that significantly affect their performance. For
instance, systems deployed outdoors are affected by temper-
ature fluctuations and changing weather conditions [2], [3].
To cope with these challenges and meet strict dependability
requirements also in hostile environments, communication
protocols need to be carefully tuned in relation to the expected

environmental changes [4]. This is, however, difficult to attain,
as every application has unique properties and requirements,
and there is no “one-size-fits-all” solution. Tuning communi-
cation protocols correctly can indeed be a tedious task that
requires significant expertise, as well as a clear understanding
of how the environment affects the hardware in use and the
different communication protocols [5], [6]. Furthermore, even
for experts in the field, it may be difficult to find the right
trade-off that satisfies multiple requirements for the application
at hand (e.g., achieving both a high reliability and a low
energy consumption). Therefore, there is a need for a simpler
configuration of IoT communication protocols that does not
overwhelm the intended users of the technology.

In this paper, we propose a novel framework to support the
deployment of IoT and WSN applications by automating the
configuration of communication protocols such that specific
dependability requirements can be met. The framework uses
models of the environment as well as of the employed IoT
hardware and communication protocols to predict the effect
of environmental changes on network performance. Given a
set of user requirements, these models are used in combination
with mathematical optimization techniques to select a protocol
configuration that provides the required performance.

We demonstrate how our framework can be used to find
a suitable protocol configuration that meets user-defined de-
pendability requirements using a building façade monitoring
application as a case study. We show that our framework can
help to predict and avoid the adverse effects of temperature
variations on communication performance found in this type
of application and evaluate its accuracy and performance.
We further evaluate the performance of different optimization
strategies within the framework and show that the average run-
time necessary to find a solution is sufficiently low to enable
the use of our system in a typical IoT design process.

The contributions of this paper are three-fold:

1) We present the architecture of a new framework automat-
ing the configuration of IoT communication protocols;

2) We demonstrate how to apply this framework to configure
a state-of-the-art MAC protocol for an IoT application
deployed in a challenging outdoor environment;

3) We evaluate the accuracy of the framework in predicting
the behavior of the environment and its effect on network
performance.

©2015 IEEE. Reprinted, with permission, from Felix Jonathan Oppermann, Carlo Alberto Boano, Marco Antonio Zúñiga, and
Kay Römer, “Automatic Protocol Configuration for Dependable Internet of Things Applications”, Workshop Proceedings of the
40th IEEE Conference on Local Computer Networks (LCN), October 2015.
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The remainder of the paper is structured as follows. The
next section introduces an exemplary application that will
serve as running example and as basis for the evaluation of
our system. We illustrate our approach in Sect. III and detail
on the architecture and implementation of our framework in
Sect. IV. Thereafter, in Sect. V, we demonstrate how to use
the framework to find a suitable configuration that meets user-
defined dependability requirements. In Sect. VI we evaluate
the overall performance of the framework. After describing
related work in Sect. VII, we conclude our paper in Sect. VIII.

II. CASE STUDY: RELIABLE MONITORING
OF BUILDING FAÇADES

A large number of IoT and WSN systems are deployed
outdoors and are expected to operate dependably over ex-
tended periods of time, e.g., wildfire detection systems in
forests [7] or wireless networks monitoring structural damage
in civil infrastructures and buildings [8], [9]. Unfortunately,
the performance of wireless systems deployed outdoors is
typically affected by time-varying environmental conditions
such as meteorological changes and variations in humidity [2],
[3], which makes it difficult to satisfy strict dependability
requirements. For example, large temperature variations can
have a severe impact on network performance, as they reduce
the efficiency of radio transceivers [4].

We have experienced these problems in the context of the
RELYonIT project [10], during a pilot deployment of a WSN
on the different façades of a building in Madrid, Spain. The
purpose of our outdoor deployment is to promptly detect
structural damage as well as to measure the energy efficiency
of the construction by analyzing how the employed insulat-
ing materials reduce heat transfer. This type of application
requires a continuous reliable collection of sensor data, such
as temperature, humidity, and vibration. On the one hand,
achieving a high packet delivery rate across the network is
necessary to have a complete picture of the integrity of the
building and to avoid severe issues, such as the detachment
of loose parts from the building façade. On the other hand,
to draw conclusions about the effectiveness of a constructing
material or HVAC system, engineers rely on tiny changes in
the measured variables, and any gap in the collected data may
lead to false conclusions.

The major obstacle towards a reliable data collection is that
nodes deployed on the building façades often experience high
temperature fluctuations, especially if they are placed inside
IR-transparent enclosures exposed to direct sun radiation.
During our pilot deployment we have indeed observed daily
temperature variations as high as 50 ◦C.

These large temperature variations can have a severe impact
on the operation of CSMA protocols, because they can reduce
the effectiveness of clear channel assessment (CCA) methods
and compromise the ability of a node to avoid collisions
and to successfully wake-up from low-power mode [11].
Indeed, at high temperature the efficiency of low-power radio
transceivers may reduce significantly: as a result, the signal
strength between two wireless sensor nodes A and B decreases

when the on-board temperature of one of the two nodes (or
of both nodes) increases [4].

This problem is exacerbated by the fact that most state-
of-the-art CSMA MAC protocols rely on default system set-
tings, e.g., on the default CCA threshold of the employed
radio device, hence neglecting the impact of the specific
environmental properties of the target deployment site. As
we show in Sect. V, protocols should instead be carefully
parametrized in relation to the network configuration and to
the properties of the environment. For example, an inaccurate
selection of the CCA threshold may lead to a situation in
which receiver nodes constantly remain in low-power mode
at high temperatures, causing the disruption of links and a
drastic reduction in network performance that may violate the
dependability requirements of the application [11].

However, configuring protocols correctly is a very complex
task. For example, to select the optimal CCA threshold for a
MAC protocol employed outdoors, engineers need to consider
the expected temperature variations at the deployment site,
their impact on the hardware platform in use and on protocol
operations, as well as the overall implications on a network
level. This is not only time-consuming, but also non-trivial,
given that the parameter value needs to be computed in relation
to the specific application requirements defined by the user and
to the actual placement of nodes.

To correctly predict the effects of environmental changes
on network performance and select an optimal configuration
of the system, it is hence highly desirable to employ a tool that
automates the parametrization of communication protocols so
that user-specified dependability requirements can be met.
We describe next our attempt to build such an automatic
framework by first illustrating the approach we have followed.

III. APPROACH

In order to fine-tune communication protocols such that
user-specified requirements can be met, our framework needs
a set of user requirements and a number of formal models
to make reliable predictions about the system and its sur-
rounding environment. The framework uses then mathematical
optimization techniques to find a (near-)optimal configuration
that meets the desired performance.

We distinguish between three categories of interacting mod-
els: environmental models, platform models, and protocol
models.

1) Environment models. These models capture relevant as-
pects of the environment and provide an abstract repre-
sentation thereof. Individual model instances are created
for each specific environment by setting key parameters.
The latter are determined by running a data collection
application prior to the actual deployment. In our façade
monitoring application example, we need to employ a
model capturing the evolution of temperature in the
target deployment site. Such a model can consist of the
expected minimal and maximal temperatures for specific
time intervals of the day (e.g., dawn, morning, noon,
afternoon, evening, and night). To instantiate the model,
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temperature is monitored over an extended time period
prior to the deployment to compute minimal and maximal
temperatures for each time interval.

2) Platform models. Different brands and types of sensor
nodes react differently to specific environmental condi-
tions. This relationship is captured by platform models.
The latter provide a mapping of environmental parameters
to variables that are relevant for the operation of WSN
software. In our case study, temperature affects the oper-
ation of low-power radio transceivers. Consequently, our
platform model needs to capture the relationship between
the on-board temperature of sender and receiver nodes
and the attenuation of the received signal strength for the
employed hardware platform [4].

3) Protocol models. These models characterize the operation
of a protocol under certain environmental conditions and
with a predefined hardware configuration, and are hence
built upon environmental and platform models. To be
able to assess the effects of performance changes, these
models need to expose all the relevant parameters of the
protocol that may suffer from environmental impact. In
our façade monitoring application case study, we use a
network of nodes running ContikiMAC [12], a CSMA-
based MAC protocol that is vulnerable to the impact of
temperature variations on clear channel assessment. We
therefore need to derive a model for ContikiMAC that
estimates how different CCA settings affect the expected
packet reception rate (PRR) as a function of the expected
temperature variations and hardware platform employed.

These models alone already allow predictions of the per-
formance based on a specific configuration. To automatically
identify a (near-)optimal configuration that meets the user’s
requirements based on these predictions we employ mathe-
matical optimization. Optimization strategies provide a way
to systematically evaluate configurations such that a (near-)
optimal solution can be found in a relatively short time.

The configuration process is steered by user-defined depend-
ability requirements, as an optimal selection of a parameter
strongly depends on the actual application needs. The defini-
tion of application requirements is complicated by the fact that
some applications support different states of operation, often
with significantly different requirements. For example, a sys-
tem to detect wildfires in forests would be typically optimized
for a long system lifetime during normal operation. However,
as soon as a forest fire is detected, lifetime is not a primary
concern anymore, and the primary goal becomes instead the
fast dissemination of the fire-front direction. Consequently, it
is necessary to allow the user to define multiple performance
states and their associated sets of requirements. For each state,
an individual configuration is created, and at run-time the
application can select the configuration that best meets its
current state.

IV. PARAMETER SELECTION FRAMEWORK

We now describe the parameter selection framework imple-
menting the automatic protocol configuration approach intro-
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Config-
uration
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Compile-time
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Fig. 1. Architecture of the parametrization framework.

duced in Sect. III. After giving a coarse-grained description
of the software architecture of the parametrization component,
we then detail on the optimization techniques employed by the
framework and illustrate the actual software implementation.

A. Architecture

A bird’s eye view of the architecture of the parametrization
framework is presented in Fig. 1. The system architecture is or-
ganized around the static configuration component for protocol
parametrization, which coordinates the automatic parameter
selection process. It receives a user-provided specification of
the dependability requirements as input.

The specification consists of a number of constraints on
properties of the network behavior and a single property that
should be either maximized or minimized (e.g., maximization
of network lifetime). To increase the flexibility, our framework
also supports probabilistic constraints that only need to hold
at a specific point in time with a given probability. It is also
possible to define more than one constraint for the same met-
ric, typically with different probabilities. For example, a user
could specify that the packet reception rate should stay above
0.8 with a probability of 0.9 and above 0.5 with a probability
of 1. For applications that support different operation modes,
the requirements for each mode are specified individually and,
for each mode, an individual protocol configuration is derived.

Based on these inputs a near-optimal configuration for the
respective protocol is generated by the static configuration
tool, employing mathematical optimization techniques. If the
requirement specification defines different modes of operation,
the process is executed individually for the requirements of
each mode.

The final output of the parametrization tool is a protocol
configuration for each employed protocol. These configura-
tions are static and do not change at run-time. Nevertheless, it
is possible to switch between configurations associated to the
different performance modes. In the following sections we will
look at individual aspects of the framework in more detail.

B. Underlying Mathematical Model

The static configuration component employs mathematical
optimization to generate an optimal parameter configuration.
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We employ stochastic optimization strategies that are not able
to give absolute guarantees, but are usually more robust to
noisy data and require less fine-tuning for a specific problem
instance. Due to their inherent randomness, stochastic strate-
gies tend indeed to be able to escape local minima and to
approach a global optimum even in a non-convex search space.

Each dependability specification essentially defines a con-
strained optimization problem. The formulation is based on
a number of metrics mi(c) that allow to evaluate a specific
configuration c based on a protocol model. A single protocol
model may support more than one metric, each representing
a specific relevant performance measure of the underlying
protocol implementation. During the evaluation, the protocol
model resorts to a suitable environment and platform model
to incorporate the exact properties of the the environment and
platform at hand. In the current system, we only consider
the single objective case where a single metric is optimized.
In addition to this optimization goal, the user may specify a
number of constraints that further determine the properties of
the desired solution. This results in optimization problems of
the following form1:

Minimize m0(c)
Subject to m1(c) ≤ t1with prob. p1

m2(c) ≤ t2with prob. p2

(1)

The goal is to find a set of protocol configuration parameters
c that optimize a single metric m0. In addition, a variable
number of constraints need to be fulfilled by ensuring that
m1(c) and m2(c) are below the respective thresholds t1 and
t2 with a probability of at least p1 or p2. Note that m0, m1,
and m2 may refer to the same metric.

To be suitable for automatic optimization, this optimization
problem needs to be transformed into a suitable goal function,
as most optimization strategies cannot immediately handle
probabilistic constraints.

First, the constraints are integrated with the optimization
function in an approach resembling penalty functions [13]. In
the unconstrained case, the cost f(c) of a specific configu-
ration c is determined only by the goal function m0(c). To
integrate constraints, a measure of violation is computed for
each constraint and is added to the total cost of the current
configuration. To ensure that invalid solutions are unlikely to
be selected, while still allowing the optimization algorithm
to traverse infeasible regions of the search space in order to
reach more promising regions, the influence of the constraint
violation is given more weight. If we assume a weight of k,
the total cost for a given configuration c and r constraints can
now be calculated as:

f(c) =
fgoal(c) + k

∑r
j=1 fcons,i(c)

1 + kr
(2)

1To simplify the presentation and without loss of generality, we assume that
the metrics (m0, m1, m2) and the thresholds (t1, t2) are normalized to the
[0, 1] range and that smaller values denote superior properties. In addition,
only minimization and less-or-equal constraints are considered, as other goals
and constraints can be easily converted into this form.

where fgoal(c) = m0(c) depends only on the evaluation of the
goal and fcons,i(c) = max{(ti −mi(c)) , 0} is determined by
the degree of violation for the ith constraint.

Second, the non-standard feature of probabilistic constraints
that is not supported by the employed optimization techniques
needs to be handled. To support this, we exploit the fact that
most environmental parameters exhibit a periodic behavior,
e.g., a day and night cycle. This allows us to divide the period
into a number of intervals with individual environmental
properties. If we assume that communication events are evenly
distributed over time, we can associate a probability qj with
each interval based on its relative length. This indicates how
likely it is that a communication event is affected by the
properties of this specific interval. Instead of a single function
mi(c) per metric, we now employ a set of functions mi,j(c),
each corresponding to one of the n intervals. Each of these
functions uses a different instance of the environmental model
that represents the distinct interval. To support probabilistic
constraints, we now need to adapt the definition of the func-
tions fgoal(c) and fcons,i(c) in Eq. 2. The cost of the goal
fgoal(c) is simply defined as the average of the cost for each
individual interval:

fgoal(c) =
n∑

j=1

qjm0,j(c) (3)

The calculation of the cost of the individual constraints now
takes the probabilities in account by employing the definition:

fcons,i(c) = max






pi −

n∑

j=1

τ(mi,j(c), ti, qj)


 , 0



 (4)

where n is the number of intervals and the function

τ(v, t, q) =

{
q, v > t

0, otherwise
(5)

implements the aforementioned check for violation of the con-
straint. The resulting definition of f(c) can now be employed
as goal function of an unconstrained optimization problem that
is well supported by the employed optimization techniques.

C. Implementation

The protocol parametrization tool is implemented as a
standalone Python application. Its primary input is a user-
provided requirement specification employing a custom XML-
based specification language. This file contains an encoded
specification of the user’s requirements and defines an opti-
mization problem as detailed in Sect. IV-B. If the application
supports different states of operation, an independent require-
ments specification document is provided for eachstate.

In addition to the specification, the parametrization com-
ponent has access to a collection of protocol model im-
plementations. Available protocol model implementations are
located via a search path and are automatically loaded by the
framework as needed. To enable dynamic loading and the easy
addition of additional models without the need to modify the
framework itself, protocol models employ a plug-in interface.
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This interface provides methods for initialization and model
evaluation. The latter is used during the optimization process
to evaluate the quality of individual protocol configurations.
In addition, the interface allows to query which metrics
are supported by the model and can be used in a related
requirement specification. Most models only cover a subset
of the available performance and reliability metrics. When
evaluating a configuration, the protocol model implementa-
tions make use of platform and environmental model instances.
For simpler models, their implementation is usually directly
integrated with the implementation of the protocol models.
For more complex platform and environmental models, they
are implemented as separate modules which are accessed via
method calls. Both environmental and platform models depend
on application-specific empirical data that is usually loaded
from a file at initialization. This interface is defined by an
abstract Model class.

The protocol parameterization component can utilize differ-
ent optimization strategies to solve the optimization problem,
allowing the user to choose a strategy that is most appro-
priate for the specification and models at hand. The current
prototype implements two stochastic optimization strategies.
Stochastic optimization strategies cannot guarantee that an
optimal solution is found in each run, but they are usually
more robust to noisy data and require less fine tuning for
a specific problem instance. Suitable stochastic optimization
strategies still possess a high probability of convergence and
are usually able to find a near-optimal solution. Due to their
inherent randomness, stochastic strategies tend to be able to
escape local minima and to approach a global optimum even
in a non-convex search space. The current prototype supports
simulated annealing and evolutions strategies. Both strategies
use custom implementations that support configurations with
integer, floating point, nominal, and Boolean values. The
implementation of evolution strategies builds on ideas from
Reehuis and Bäck [14].

The final output of the configuration tool is a protocol
configuration encoded in a C source file. It contains individual
configuration values for the configurable parameters of the
involved protocols. The C representation is later compiled
and linked with a run-time environment to enable the correct
configuration of the communication protocols during oper-
ation. To give the protocol implementations access to the
derived configuration values, a unified configuration interface
is provided by a run-time environment, which enables them
to receive their configuration parameters at initialization. In
addition, to support different performance states for the ap-
plication, the static optimization tool generates an individual
parameter configuration for each performance state. The run-
time environment provides methods for the user-application
to switch between different performance states and to notify
protocols of a state change.

V. APPLICATION OF THE FRAMEWORK

We now demonstrate the applicability of our framework
in a typical IoT application using the façade monitoring

application introduced in Sect. II as a case study. In this
scenario, nodes deployed on the building façades may expe-
rience high fluctuations of their on-board temperature. As we
have discussed previously, these variations can have a severe
impact on the operation of low-power CSMA MAC protocols
such as ContikiMAC [12] due to the inefficiency of clear
channel assessment at high temperatures. Indeed, the signal
strength between two nodes A and B decreases in a linear
fashion when the on-board temperature of one of the two nodes
(or of both nodes) increases [4]. When low-power CSMA
protocols perform an inexpensive clear channel assessment
(CCA) check to determine if a node should remain awake
to receive a packet or whether it should return to sleep mode,
they essentially compare the current received signal strength
with a CCA threshold ζ. The latter is typically chosen at
compile-time and often set to the default value of the employed
radio device (e.g., -77 dBm for the off-the-shelf CC2420
radio transceiver). When temperature increases, the received
signal strength of a node may decrease to a point in which it
becomes lower than ζ. When this happens, the receiver node
remains constantly in low-power mode, causing disruption of
the link [11]. Still, ζ should not be set to an arbitrarily low
value, as this may lead to an increased number of false wake-
ups due to interference and noise in the surroundings that
would significantly increase the energy expenditure. To avoid
the issues, we need to properly configure ζ such that any
potential increase in the on-board temperature of the deployed
nodes will not lead to a loss of connectivity, i.e., we need to
find a suitable configuration of ζ such that the network can
sustain the desired PRR despite temperature changes while still
minimizing energy expenditure. Towards this goal, we need
to (i) derive the necessary models, (ii) select the application
requirements, and (iii) integrate them into the framework.

A. Deriving the Models

Our framework requires three different types of models:
environmental, platform, and protocol models. The protocol
model will describe how the operations of the employed MAC
protocol, ContikiMAC, are affected by temperature changes.
More specifically the protocol model captures the effect on the
performance of ContikiMAC in terms of PRR. This model will
build upon a platform model characterizing the signal strength
attenuation of the radio transceiver embedded in the employed
sensor nodes, as well as upon an environmental model captur-
ing the possible variations of on-board temperatures in the
specific deployment environment.

a) Environmental model: Our façade monitoring appli-
cation is deployed in the city of Madrid, Spain, and we hence
need to capture how its Mediterranean climate can affect the
on-board temperature of sensor nodes. We devise an environ-
mental model based on the maximum on-board temperatures
recorded on the sensor nodes at specific times of the day. In
particular, we sub-divide each day into six intervals of equal
length, and run a specific data collection application prior
deployment that records the on-board temperature variations
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over several days [10]. The model thus provides the maximal
temperature as a function of the time of the day.

b) Platform model: In our deployment we employ MTM-
CM5000-MSP motes embedding a CC2420 radio transceiver.
In earlier research, we have shown the effects of temperature
on the efficiency of this transceiver, and derived a linear model
characterizing the decrease in signal strength as a function
of temperature [4]. Denoting PL as the path loss between a
transmitter-receiver pair, Pt as the transmission power, Pr =
Pt − PL as the received power, and Pn as the noise floor at
the receiver, this model describes the temperature effect on the
SNR as follows:

SNR = (Pt − α∆Tt)− (PL+ β∆Tr)
−(Pn − γ∆Tr + 10 log10(1 + ∆Tr

Tr
))

= (Pr − α∆Tt − β∆Tr)
−(Pn − γ∆Tr + 10 log10(1 + ∆Tr

Tr
))

(6)

where the constants α, β, and γ with units dB/K denote
respectively the effect on transmitted power, received power,
and on the noise floor. These values are obtained by regression
over data obtained from testbed experiments. The values
Tt and Tr represent the reference temperature in Kelvin of
transmitter and receiver; whereas ∆Tt and ∆Tr capture the
difference of current temperature in Kelvin with respect to Tt

and Tr [4].
c) Protocol model: The reception of a packet in CSMA-

based protocols such as ContikiMAC can be estimated by
analyzing how the signal strength with which the packet is
received relates to the transitional phase of the radio response
and to the selected CCA threshold.

Each node periodically wakes up from low-power mode and
checks for incoming packets by verifying if the received signal
strength sr is above a fixed CCA threshold ζ. The PRR is
hence firstly influenced by the relationship between sr and
ζ: if sr ≥ ζ, the node infers that an ongoing transmission is
present and remains awake to receive the packet; if sr < ζ,
the node believes that there is no ongoing transmission and
returns to sleep mode without receiving the packet.

Furthermore, PRR is also affected by the transitional phase
of the radio response. When the signal strength of the received
packet is too close to the sensitivity threshold of the employed
radio, it becomes unlikely to successfully demodulate the
packet. Early WSN research has shown that the decrease of
PRR in the transitional region follows a sigmoid curve [15],
in which the probability p of receiving a packet is

p = (1− f(Pr − Pn))b (7)

with Pr being the received signal strength in dBm, Pn the
sensitivity threshold of the radio in dBm, and b the number of
bits in the packet.

Denoting s0.99 as the signal strength that leads to a delivery
rate of 0.99, and s0.01 as the corresponding signal strength for
a delivery rate of 0.01, we can define three reception regions,
as shown in Fig. 2 in the black sigmoid curve: a connected
region, where the received signal strength is above s0.99; a
disconnected region, where the signal strength is below s0.01,

[%
]

τ

Fig. 2. The impact of temperature on the operation of a MAC protocol.

and a transitional region of length τ dB, where the delivery
rate drops monotonically between 1 and 0.

Because of the dependency between signal strength and
temperature, according to Eq. 6, a variation in the on-board
temperature at the receiver or at the transmitter will cause the
receiver to measure a signal strength

s
′
r = (sr − α∆Tt − β∆Tr) (8)

i.e., an increase (decrease) in Tt and/or Tr will attenuate
(strengthen) sr into s

′
r. Fig. 2 shows an example in which the

received signal strength sr decreases (i.e., is shifted to the left)
due to an increase of temperature in both transmitter (α∆Tt

component) and receiver (β∆Tr component). To predict if a
change in the on-board temperature at the transmitter and/or
receiver node will affect packet reception, we need to verify
if s

′
r < ζ. If this is the case, no packet will be received, as

the node will return to sleep mode after having assumed no
ongoing transmission.

Similarly, if the on-board temperature of the receiver
changes, also the position of the sigmoid curve may change.
For example, an increase in temperature would lower the
noise floor (see Eq. 6), shifting this curve towards left (red
sigmoid curve). To predict how s0.01 and s0.99 would change
in relation to temperature variation we use Eq. 6 to derive
s′0.99 = s0.99 −∆Trγ and s′0.01 = s0.01 −∆Ttγ.

We can hence estimate the packet delivery rate PRR′ given
a specific ζ value for each link i in the network as:

PRR′ =





1, if max{ζ, s′0.99} < s′r
p, if s′0.01 ≤ ζ < s′r ≤ s′0.99

0, otherwise
(9)

This allows us to estimate the worst case delivery rate given
a specific temperature variation/range.

B. Integration with the Framework

The aforementioned model has been realized as a plug-in
implementing the interface defined by the framework. The

160



7 Publications

 0

 25

 50

 75

 100

00:00 01:00 02:00 03:00 04:00 05:00 06:00

P
R

R
 (

%
)

CCA = -77
CCA = -78

CCA = -79
CCA = -80

CCA = -81
CCA = -82

CCA = -83
CCA = -84

 30

 45

 60

 75

00:00 01:00 02:00 03:00 04:00 05:00 06:00

T
e

m
p

. 
(°

C
)

Time

Transmitter Receiver

Fig. 3. Impact of CCA threshold on PRR for a single link. Background colors
indicate different time intervals.

implementation exposes one configuration parameter, ζ, and
provides a number of metrics that can be used to define goals
or constraints. The primary metric is the expected worst case
PRR of a link averaged over all links in the network.

C. Selecting the Dependability Requirements

As discussed in Sect. II, the target application needs a highly
reliable data collection. Therefore, the MAC layer needs to en-
sure a high PRR even under adverse environmental conditions.
At the same time, it is also important to ensure that the system
will have a long lifetime in order to keep maintenance at a
manageable level. Hence, we need to find a CCA threshold
setting that still ensures that the user requirements are met but
leads to as little energy wastage as possible. Consequently,
the CCA should be maximized while still not violating the
constraints, as lower CCA values lead to a higher number of
false wake-ups.

An industry partner running the deployment specified, that
to enable useful insights about a building’s energy-efficiency,
at least 85% of the collected measurements should be success-
fully delivered to the sink at all times and with a probability
of 0.9 at least 95 % of the packets should arrive at their
destination.

Based on these requirements and the implemented models
it is now possible to determine a protocol configuration that is
able to support the expected performance. These requirements
lead to the following optimization problem:

Maximize CCA([ζ])
Subject to PPR([ζ]) ≥ 0.85 with probability 1.00

PPR([ζ]) ≥ 0.95 with probability 0.9
(10)

VI. EVALUATION

In this section we evaluate the performance of the proposed
framework.

A. Suitability of the Framework

To evaluate the applicability of the framework, we employ
it to generate a suitable configuration for the case-study
introduced in Sect. II. The goal is to find an optimal CCA
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Fig. 4. Impact of CCA threshold on PRR on a network of nodes. The bottom
plot shows the different temperature profiles of the nodes in the network.

threshold value that conserves energy while still fulfilling the
user’s dependability requirements. To ease the analysis and
presentation of the results, we first consider a single link
between two nodes. In a second step, we demonstrate that
the same principle correctly works on a network of nodes.

We use TempLab [16], a temperature-controlled testbed,
to recreate a network scenario similar to the one found on
real-world outdoor façades. In particular, we feed TempLab
with temperature traces previously recorded in Madrid so that
the on-board temperature of the sensor nodes in the testbed
experiences the same profile as in the real-world. In our
experiments we use a time-lapse factor of 12, so that a day
is replayed within 2 hours in our testbed. We further set the
width of the transitional region τ = 5 dB and the packet size
b = 35 bytes. The remaining model parameter were left at
their default values of α = 0.078dB/K, β = 0.078dB/K,
and γ = 0.037dB/K. These values have been empirically
determined by earlier experiments [4].

In the first set of experiments we employ the framework
to configure the CCA threshold to obtain dependable com-
munication on a single link. In particular, we aim to find
a configuration that maximizes the CCA threshold while
maintaining a PRR between the two nodes of 0.85 at all
times. Based on temperature traces from the deployment in
Madrid, the configuration framework determines an optimal
CCA threshold of −83 dBm for this requirement specification.
When trying different possible CCA threshold settings in the
TempLab testbed, as shown in Fig. 3, we can see that with
a threshold of −83 dBm, the PRR actually stays above 0.85
for the whole duration of the experiment, whilst with a higher
CCA threshold this would not be the case.

In a second experiment, we employ the same PRR constraint
of 0.85 but only with a probability of 0.6. For this scenario,
the framework determines an optimal CCA threshold of −81
dBm. As shown in Fig. 3, the use of a threshold of −81 dBm
actually ensures that the PRR stays above 0.85 in four out
of the six intervals per day, which fulfills our requirement of
sustaining a PRR of at least 0.85 in at least 60% of the cases.
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Fig. 5. Time/quality trade off for different optimization strategies.

We can also see that a CCA threshold of −80 dBm would
violate the constraint by also dropping below 0.85 in the first
interval, hence −81 dBm can be actually assumed to be the
most energy conserving configuration that is able to fulfill the
constraint.

We now use our framework to configure a network of
seven sensor nodes connected to a single gateway node in a
star topology. All nodes are exposed to different temperature
profiles following the ones recorded on different building
façades in Madrid. To configure the network, we employ
the user-defined requirements introduced in Sect. V. For this
scenario, the framework suggests the use of a CCA threshold
of −83 dBm. Based on the results reported in Fig. 4, it can
be seen that for the selected CCA threshold, the average PRR
stays above 0.85 at all times. For CCA thresholds above −80
dBm, this constraint is clearly violated. Nevertheless, with a
threshold of −82 dBm or higher, the PRR drops below 0.95
for at least three out of the 18 intervals, which indicates that
the second constraint cannot be met. Consequently, the tool
actually picked the best possible CCA value for the given
scenario. This demonstrates that our tool is capable to generate
useful configurations for realistic deployment scenarios within
the selected application area and is able to handle the more
complex requirements of typical users.

B. Performance

We now evaluate the basic performance of the system and
measure the relative performance of the different optimization
algorithms. Employing the same model and similar settings
as in the previous section, a globally optimal solution can be
found with a CCA threshold of -84 dBm and a cost value
f = 0.14344.

For the evaluation, we execute the parametrization process
with both available optimization strategies. To evaluate differ-
ent time/quality trade-offs, we artificially limit the maximal
number of iterations. To reduce the effect of random events,
each algorithm is executed 100 times for each setting.

Fig. 5 presents the trade-off between the runtime of the op-
timization algorithms and the average quality of the solutions
found. To illustrate the observed trend, an exponential function
(x 7→ a ∗ eb∗x + c) has been fitted to the raw data. It can
be seen that with very short run times, the optimal solution
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Fig. 6. Probability of finding the optimal solution within a given time.

is only found in a limited number of runs and the returned
solutions are often far away from the optimal one. With a
run-time of two minutes or more, both algorithms are very
likely to identify the optimal configuration. Incorrect solutions
tend to be close to the optimal solution, as shown in Fig. 6.
In most applications, finding a good solution that satisfies all
constraints is already sufficient. Due to a rather small number
of nodes and a limited set of configuration options in this
case-study, exhaustive search is also still a feasible option, but
its performance degrades quickly if the number of possible
configurations is increased.

Both optimization algorithms performed well in this sce-
nario and a run-time in the order of minutes coupled with
a high reliability enable an efficient use within a typical
WSN development process. For the given model, evolutionary
strategies exhibit a slightly superior performance, but both
strategies are able to generate suitable configurations within
reasonable time.

C. Extensibility

Even though the presented evaluation is limited to a single
use case and protocol, the framework can be applied in several
other scenarios. As part of the RELYonIT project [10], we
have indeed implemented protocol models for a number of
additional protocols:

1) A model for TempMAC, a temperature-aware extension
of ContikiMAC [11]. This model is essentially an exten-
sion of the one introduced in Sect. V;

2) A model capturing the impact of duty cycle configuration
on the energy expenditure of a MAC protocol. This model
can be used to find the best duty cycle for a specific radio
environment and therefore especially targets indoor de-
ployments where radio interference tends to significantly
affect network operation;

3) A model to aid the configuration of the jamming-based
agreement (JAG) protocol [17]. This model can be used
to determine the jamming period length that yields an
optimal agreement probability in environments prone to
external radio interference;

4) A model to aid the selection of an optimal packet length
to minimize energy consumption and reduce latency.
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Within RELYonIT the framework has also been applied to
determine the configuration of WSN-based smart parking sys-
tems in densely populated urban areas where both temperature
and radio interference influence the network operation.

VII. RELATED WORK

Support systems for WSN configuration are a surprisingly
rarely-considered aspect of deployment support. Few systems
exist that support users with the complex task of finding
optimal configuration parameters for a given environment.

Existing approaches often rely on simulation [18], [19] and
systematically try out different possible configurations in an
emulated environment. With existing simulation environments,
this is usually a time-consuming task as the high-fidelity
models require significant processing power and consequently
only allow limited speed-up for larger networks. The long
computation times significantly limit the number of configu-
rations that can be evaluated and easily lead to sub-optimal
configurations. While our approach shares the same basic
strategy, we can significantly reduce the run-time of the model
evaluation by using more abstract formal models. This allows
to evaluate a larger number of possible configurations and thus
increases the likelihood of finding an optimal configuration.

Only a very small number of works apply formal models
and mathematical optimization to WSN protocol configuration.
A well-known example is the ptunes system developed by
Zimmerling et al. [20]. Ptunes employs a formal protocol
model and constraint programming to find optimal MAC pro-
tocol configurations settings for a specific network topology
and radio environment. Ptunes’ goals are very similar to our
approach, but at least in its current form, ptunes is limited to
MAC protocol configuration, while our approach targets proto-
cols at different levels of the network stack. More importantly,
ptunes does not explicitly model any environmental effects and
only considers internal interference. Instead, ptunes is intended
to work online and constantly reconfigure the network, which
allows to constantly adapt the configuration to a changing
environment, but significantly limits the available run-time for
optimization. Our approach of pre-deployment configuration
can use more sophisticated models that require a higher run-
time, but leads to more precise and dependable results.

Our work builds on simulated annealing and evolution
strategies to implement the actual optimization. While our im-
plementation of simulated annealing follows common design
strategies found in relevant textbooks, our implementation of
evolution strategies employs ideas from Reehuis and Bäck [14]
to support integer and floating point parameters.

VIII. CONCLUSION

In this paper, we introduced a novel framework for the
automatic configuration of IoT communication protocols based
on different models and user requirements. Our experimental
evaluation demonstrates the feasibility of our approach for
an exemplary application and an adequate performance of
the current prototype. In the future we intend to implement
additional protocol models and employ the framework in

additional case studies. This will allow us to further assess the
performance of the system and to identify means to increase
the flexibility of the framework. Ultimately, we intend to
enable the configuration of typical WSN and IoT software-
stacks without requiring extensive expertise in the area.
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