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Abstract

This thesis is about the theoretical description of strongly correlated fermions out-of-equilibrium
in a condensed matter context. In particular, we explore the impact of electronic correlations
on charge transport in low-dimensional or geometrically con�ned electronic systems. The out-
of-equilibrium aspects of strong electronic correlations are discussed under three major view-
points i) linear-response transport characteristics, ii) transient real-time dynamics and iii) the
steady-state, where each one of these sheds light on a di�erent aspect of recent experimental
developments.
The transport characteristics of e�ectively low-dimensional materials are obtained using the

well established linear-response formalism in a combined ab initio plus correlation methods ap-
proach. We build an e�ective model for the material Li0.9Mo6O17 which exhibits an e�ec-
tively one-dimensional electronic structure. This electronic structure is explained in terms of
maximally-localized orbitals and the dominant processes for charge transport are characterized.
A good agreement of experimentally measured angle resolved photo emission data with calcu-
lated spectral functions in dynamical mean �eld theory as well as the extended variational cluster
approach is attained. The linear-response conductivity is found to be highly anisotropic along
linear chains of molecular-like orbitals and compares well to recent experimental data.
The transient dynamics of quantum impurities is obtained using a matrix product state based

real time evolution in a density matrix renormalization group and time evolving block decimation
framework. This method is especially suited to study the time evolution of one-dimensional
quantum systems, for which it is the highly accurate method of choice. We apply this scheme to
study transport across a quantum dot tunnel coupled to source and drain leads under bias voltage
at zero temperature, where electronic correlations are most pronounced. The transient dynamics
after a quantum quench as well as a quasi-exact time evolution into the steady-state current-
voltage characteristics is studied. The steady-state characteristics will serve as a benchmark
for further investigation of the steady-state using perturbative approaches. We investigate the
physics inside and outside the light cone of causal information spreading following the quench
and characterize the emergent Kondo spin-screening cloud by means of time and space dependent
spin-spin and charge-charge correlation functions. An emergent dynamic scale proportional to
the Kondo temperature is found in these correlations.
The steady-state of nano-devices and molecular junctions is obtained using a combined quan-

tum master equation and nonequilibrium Green's function based many-body quantum cluster
methods approach. A large part of this thesis is devoted to the development and improvement of
numeric nonequilibrium Green's function based quantum many-body cluster methods to study
the steady-state of correlated systems out-of-equilibrium. We focus on the development of i) the
steady-state cluster perturbation theory, ii) its variational improvement, the steady-state varia-
tional cluster approach which includes a self-consistent feedback and iii) a consistent unperturbed
state representation in the master equation based steady-state cluster perturbation theory. Be-
sides these perturbative approaches we also make use of the auxiliary master equation approach
which maps the original system to an exactly solvable auxiliary Lindblad equation. We apply
these approximation schemes to study charge transport in the Kondo regime in single quantum
dots under bias voltage and �nd a remarkable success of the self-consistent feedback implemented
in the steady-state variational cluster approach which allows for an accurate description of the
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steady-state current-voltage characteristics at low to medium bias voltages including the correct
linear-response conductivity. Calculated stability diagrams compare well to experimental data.
The splitting of the Kondo resonance under bias voltage is analyzed in detail and results of
the auxiliary master equation approach are compared to data from the steady-state variational
cluster approach. Following the success of the newly developed methods for a single correlated
orbital, we extend the calculations to multi-orbital molecular junctions. The Aharonov-Bohm
e�ect and the role of electronic correlations on charge transport are studied in a Benzene molec-
ular junction in a magnetic �eld using steady-state cluster perturbation theory, which is able
to describe the system well up to interference mediated current blocking e�ects. Further, we
study such interaction induced, magnetism mediated current blocking e�ects in a quantum dot
diode with polarized leads in master equation based steady-state cluster perturbation theory and
interaction induced, quantum interference mediated current blocking in a ring triple quantum
dot junction. This new approach is capable of reproducing the current blocking as predicted by
the plain quantum master equation solution. In using the master equation based steady-state
cluster perturbation theory we however go beyond the approximate quantum master equation
solutions and are able to include lead induced broadening e�ects. Finally, a combined insight of
quasi-exact real-time evolution, perturbative steady-state calculations and the auxiliary master
equation approach provides evidence for a strong impact of electronic correlations on the charge
transport even at high bias voltages if the electronic density of states of the leads is �nite.
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Kurzfassung

Diese Arbeit behandelt die theoretische Beschreibung von Systemen stark korrelierter Fermionen
auÿerhalb des Gleichgewichts, wie sie im Rahmen von aktuellen Problemstellungen im Bereich der
kondensierten Materie auftreten. Insbesondere behandeln wir die Fragestellung wie elektronische
Korrelationen den Ladungstransport in niedrigdimensionalen oder geometrisch eingeschlossenen
elektronischen Systemen beein�ussen. Dabei werden die besonderen Aspekte starker elektronis-
cher Korrelationen unter drei Hauptgesichtspunkten beleuchtet: i) durch Transporteigenschaften
in der Theorie der linearen Antwort ii) durch Einschaltvorgänge in Echtzeitdynamik und iii)
durch den stationären Zustand.
Die Transporteigenschaften von Materialien mit einer e�ektiv niedrigdimensionalen elektron-

ischen Struktur werden im etablierten Formalismus der Theorie der linearen Antwort basierend
auf der elektronischen Struktur von ab initio plus Korrelationsmethoden berechnet. Insbeson-
dere wird ein e�ektives Modell für das Material Li0.9Mo6O17 hergeleitet, welches eine e�ektiv
eindimensionale elektronische Struktur aufweist. Diese wird im Rahmen von lokalen Orbitalen
charakterisiert und die dominanten Transportprozesse werden identi�ziert. Eine gute Überein-
stimmung ergibt sich zwischen winkelaufgelösten Photoemissionsspektren aus dem Experiment
und den mittels Dynamischer Molekularfeld Theorie und dem erweiterten Variationellen Cluster
Zugang berechneten Spektralfunktionen. Die lineare Leitfähigkeit ist stark anisotrop entlang von
Ketten molekularer Orbitale und passt gut zu den Ergebnissen zahlreicher aktueller Experimente.
Die zeitliche Dynamik von Quanten-Störstellenproblemen wird mittels einer auf Matrixpro-

duktzuständen basierenden Echtzeitentwicklung in einem kombinierten Verfahren, bestehend
aus Dichtematrix Renormierungsgruppe und Time Evolving Block Decimation ermittelt. Diese
Methode eignet sich besonders um die Zeitentwicklung von eindimensionalen Quantensystemen
zu bestimmen. In diesem Kontext kann sie oftmals sogar quasi-exakte Ergebnisse liefern. In
dieser Arbeit wird dieses Verfahren angewendet um den Ladungstransport über einen Quan-
tenpunkt, welcher über Tunnelamplituden an einen Quell- und einen Senk- Kontakt gekop-
pelt ist, am absoluten Temperaturnullpunkt, wo elektronische Korrelationen am stärksten aus-
geprägt sind, zu ermitteln. Hierbei charakterisieren wir sowohl die Einschaltdynamik nach einem
Quanten-Quench als auch die Langzeitentwicklung in einen stationären Zustand. Die dabei
ermittelte, quasi-exakte, Strom-Spannungs-Kennlinie nutzen wir später als Vergleichsbasis um
die Zuverlässigkeit approximativer Verfahren beurteilen zu können. Getrennt, untersuchen wir
die physikalischen Eigenschaften innerhalb, und auÿerhalb des Lichtkegels kausaler Information-
sausbreitung, welcher sich nach dem Quanten-Quench bildet. Insbesondere charakterisieren wir
die sich bildende Kondo-Spin-Abschirmungswolke durch zeit- und ortsabhängige Spin-Spin- und
Ladungs-Ladungs- Korrelationsfunktionen. Hierbei �nden wir eine dynamische Skala in den
Korrelationen welche proportional zur Kondotemperatur ist.
Im gröÿten Bereich dieser Arbeit untersuchen wir den stationären Zustand von Nanostrukturen

und molekularen Bauteilen mittels einem kombinierten Zugang aus einer Quanten-Mastergleichung
und den auf Nichtgleichgewichts-Greensfunktionen basierenden Vielteilchen-Quanten-Clustermethoden.
Dabei liegt ein groÿes Augenmerk auf der Entwicklung und Verbesserung dieser numerischen
Verfahren um zuverlässige Näherungsverfahren für den stationären Zustand korrelierter Schal-
tungen zur Verfügung zu stellen. Insbesondere entwickeln wir i) die Stationäre-Zustands Cluster
Störungsrechnung, ii) deren variationelle Verbesserung, den Stationären-Zustands Variationellen
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Clusterzugang, welcher eine selbstkonsistente Rückkopplung beinhaltet und iii) einen konsis-
tenten ungestörten Zustand für die mastergleichungsbasierte Cluster Störungsrechnung. Neben
diesen störungstheoretischen Verfahren wird auch der Hilfssystem-Mastergleichungszugang be-
nutzt, welcher das ursprüngliche System auf ein exakt lösbares o�enes Quanten-Hilfssystem
abbildet. Mit Hilfe dieser Methoden untersuchen wir den Ladungstransport im Kondoregime
eines Quantenpunktes unter Spannung und �nden einen beachtlichen Erfolg der selbstkonsisten-
ten Rückkopplung im Stationären-Zustands Variationellen Clusterzugang, welche eine genaue
Beschreibung der Strom-Spannungs-Kennlinie bei niedrigen und mittleren Spannungen erlaubt
und auch die lineare Leitfähigkeit genau wiedergeben kann. Die berechneten Stabilitätsdia-
gramme zeigen gute Übereinstimmung mit aktuellen experimentellen Messungen. Die Aufspal-
tung der Gleichgewichts-Kondoresonanz mit der angelegten Spannung wird im Detail diskutiert
und die Ergebnisse des Hilfssystems-Mastergleichungszugang und des Stationären-Zustands Vari-
ationellen Clusterzugang verglichen. Motiviert durch den groÿen Erfolg der entwickelten Meth-
oden bei der Beschreibung eines korrelierten Orbitals, verallgemeinern wir die Rechnungen auf
molekulare Bauteile mit mehreren korrelierten Orbitalen. Wir untersuchen den Ein�uss elek-
tronischer Korrelationen auf den Ladungstransport und den Aharonov-Bohm E�ekt in einem
kontaktierten Benzol Molekül in einem magnetischen Feld. Hierbei liefert bereits die Stationäre-
Zustands Cluster Störungsrechnung gute Ergebnisse, nur kann das Interferenz-induzierte Strom-
Blocking nicht abgebildet werden. Die mastergleichungsbasierte Cluster Störungsrechnung kann
auch diese E�ekte behandeln und wird benutzt um wechselwirkungsinduzierte und durch den
Magnetismus vermittelte Strom-Blocking E�ekte in einer Quantenpunkt-Diode mit polarisierten
Kontakten zu erforschen. Ebenso studieren wir wechselwirkungsinduzierte und durch den Quan-
teninterferenz vermittelte Strom-Blocking E�ekte in einem Ringmolekül mit drei Orbitalen.
Die mastergleichungsbasierte Cluster Störungsrechnung scha�t es hierbei, die reinen Master-
gleichungsergebnisse zu verbessern indem kontaktinduzierte Linienverbreiterungse�ekte besser
beschrieben werden können. Abschlieÿend �nden wir durch kombinierte Ergebnisse aus der Zeit-
entwicklung und den störungstheoretischen Methoden im stationären Zustand, dass elektronische
Korrelationen selbst bei sehr groÿen Spannungen einen starken Ein�uss auf den Ladungstransport
haben können, vorausgesetzt die elektronische Zustandsdichte der Kontakte ist endlich.
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1. Introduction and outline

This thesis is about the physics of strongly correlated electron systems out-of-equilibrium. A
large number of properties of typical condensed matter systems can be described remarkably
well by a non-interacting quasi-particle approach. The main reason being the e�ective screening
of the mutual interaction of their quantum particles which demotes this interaction to a mere
renormalization of the parameters of quasi-particles as described by Landau's Fermi-liquid theory
[7, 8, 9, 10]. Systems are referred to as strongly correlated if the theoretical description of their
physical properties facilitating e�ectively non-interacting theories fails qualitatively. That is the
contribution to the electronic energy arising from Coulomb repulsion between electrons is not
small compared to the kinetic energy or lattice potential. A prime example is the material NiO,
which is predicted to be a metal in conventional solid-state methods like the DFT in the LDA,
but turns out to be a Mott insulator [11] due to its partly localized electrons. Strongly correlated
electron systems can be found all over condensed matter physics [12, 13]. Prominent examples
in the solid state are the cuprate superconductors [14], the Mott physics of transition metal ox-
ides [15, 16], spatially con�ned physics of arti�cial nano-structures [17, 18, 19], hetero-structures
[20, 21, 22], e�ectively low-dimensional bulk materials [23, 24], vacancies [25], ad-atoms at sur-
faces [26], quantum liquids [27], molecular electronics [28, 29] or arti�cially engineered quantum
simulators [30]. Such systems pose an additional challenge to theoretical approaches, however,
they o�er a great range of interesting phenomena which might very well lead to revolutionary
technological applications in the foreseeable future. Most of these applications will see a realiza-
tion in an inherent nonequilibrium environment, such as solar cells [21] or nano-scale electronics
[31, 32]. Recent years have indeed seen fascinating advances in experimental preparation and
measurement techniques to probe correlated systems out-of-equilibrium [28, 33, 34, 35]. Their
theoretical modelling, however, is complicated already in equilibrium [36] and poses a great chal-
lenge out-of-equilibrium [37, 38]. Due to the importance of describing recent experiments and
guiding future research, the development of new theoretical methods, schemes and algorithms
for an accurate description of interacting quantum particles out-of-equilibrium is in order.
In this thesis we report on our recent contributions to the �eld of strongly correlated low-

dimensional electronic systems out-of-equilibrium. Starting from equilibrium simulations we
apply linear-response transport theory to e�ectively low-dimensional materials, study the quasi-
exact numerical time evolution of quantum dots and �nally arrive at the steady-state transport
characteristics of molecular junctions. In employing these three approaches to nonequilibrium
physics we focus on the one hand on the development of new numeric methods and approximation
schemes and on the other hand on basic physical insight using also state-of-the-art many-body
methods. A brief analysis of current experimental e�orts in nonequilibrium correlated physics
will be given in Ch. 2. Subsequently, an overview of theoretical developments and an introduction
to the methods and models developed and used in this work is provided in Ch. 3. A conclusion
is presented in Ch. 4. The main results are available in the form of a collection of papers at the
end of this thesis in Ch. 5. Their content shall be outlined in the following.
In order to enter the realm of nonequilibrium physics we apply linear-response theory [39, 40] to

calculate the dc properties of a highly anisotropic real material. Linear-response theory is based
entirely on the equilibrium ground state properties of the system and its application is limited to
small external �elds. In Sec. 5.1 we discuss the physical properties of the correlated e�ectively
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one-dimensional conductor Li0.9Mo6O17 starting from ab initio band structure calculations [41].
We obtain an e�ective electronic model in terms of Wannier orbitals and analyse its equilibrium
properties, the Fermi surface and DOS. Electron-electron interactions are then considered in
state-of-the-art DMFT [42] and the quantum cluster methods CPT [43, 44] and VCA [45] to
obtain correlated spectral functions. These quantum cluster methods will be generalized to
steady-state nonequilibrium methods in the third part of this thesis. On the methods side we
generalize the eVCA method [46] to ab initio Hamiltonians. Material properties are discussed
on the basis of the electronic structure. In particular we analyse why this material shows such
an extreme degree of anisotropy in its electronic properties. We elaborate on the degree of
correlation and �nd good agreement of our theoretical results with recent ARPES experiments
[47]. The calculated highly anisotropic conductivity qualitatively agrees with recent experimental
observations [48].
In order to probe genuine nonequilibrium phenomena beyond linear-response it is necessary

to prepare a given system in a non-eigenstate and study its real time evolution. If such a
calculation is feasible, in principle all information starting from transient behaviour up to the
steady-state becomes available. In Sec. 5.2 we apply the quasi-exact MPS [49] based DMRG
[50] + TEBD [51] scheme to obtain the time dependent transport characteristics across a single
quantum dot [52] and in Sec. 5.3 the spatio-temporal evolution of the Kondo [53] screening cloud
in the SIAM [54]. The DMRG+TEBD is a well established scheme especially suited for one-
dimensional systems. On the methods oriented side we add to it a data analysis scheme to obtain
steady-state observables from the real time domain and investigate the bene�cial aspects of an
auxiliary damping term in the time evolution. We investigate the physical properties of the prime
model of correlated physics: the SIAM [55]. In equilibrium, accurate methods exist to probe
its thermodynamic properties [56, 57] and even its spectral function [58, 59]. Out-of-equilibrium
many open questions remain of which some are discussed in this thesis. The discussion of the
physics of the SIAM out-of-equilibrium is a major point of this work. In the following chapters a
range of methods will be developed and applied to analyse this model. Here we present accurate
results for the time dependent current. We analyse transient properties and �nally arrive at
a faithful current-voltage characteristics in the steady-state. The e�ects of electron-electron
interactions in di�erent parameter regimes are discussed. We identify parameter regimes where
the method works particularly well and those where the time evolution is limited to shorter times
by considering the entanglement entropy. Considering the time evolution of distance dependent
spin-spin and charge-charge correlation functions we gain insight into the emerging time and
length scales of the Kondo screening cloud and discuss the physics inside and outside of the
light-cone [60] following a quantum quench.
Often experiments probe the steady-state of a system which settles as a consequence of a large

external in�uence like a bias voltage. Most of the time a treatment in a conventional linear-
response way is not appropriate because the external in�uence is not small and excited states
have a signi�cant in�uence on the nonequilibrium behaviour. Following the real time evolution
into the steady-state is often prohibited due to �nite available simulation times of the method
at hand in combination with long time-scales in the physical problem. It is therefore desirable
to directly obtain the steady-state in a nonequilibrium framework. A large part of our work
is focused on the development of numeric approximate steady-state quantum cluster methods
stsCPT, stsVCA and meCPT as generalizations of their equilibrium counterparts CPT and VCA.
These steady-state methods are based on strong-coupling �rst order real space perturbation
theory for which an unperturbed (reference) state is necessary. In the course of this thesis we
explore three reference states. In stsCPT the naive zero temperature ground state of a real
space partition of the system is used. For stsVCA a self-consistent feedback to the steady-state
is created using variational single-particle �elds on these partitions. In meCPT a second order
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QME [61] is facilitated to obtain a mixed reference state for the cluster partitions. In Sec. 5.4
we �nd the steady-state quantum cluster methods and the self-consistent feedback to yield good
results in equilibrium for the case of strongly inhomogeneous systems as needed for transport
problems [62]. To some extent the methods are even capable of capturing the essential features
of the Kondo physics of a single quantum dot like the correct linear-response current, the Friedel
sum rule and the exponential scaling of the Kondo scale with interaction strength. Based on this
work we extended and apply the stsCPT and stsVCA in Sec. 5.5 and Sec. 5.6 to study steady-
state transport across single quantum dots [63, 62]. In this part we develop and benchmark the
self-consistent feedback of the stsVCA method. We �nd that stsVCA shows a rapid convergence
in the control parameter, the size of the interacting part of the system. In the SIAM, we �nd it
to yield superior results to the plain stsCPT in the low bias regime where electronic correlations
are pronounced. Recent experiments obtained stability diagrams [64], which are well described
by the stsVCA method. We analyse the splitting of the Kondo resonance in detail and �nd a
linear splitting with bias voltage in stsVCA, as also predicted by other methods.
Recently experiments on molecular junctions and molecular electronic devices have become

state-of-the-art. The poor agreement of the experimentally obtained transport characteristics and
the theoretical ab initio values from LDA+NEGF calculations is attributed to strong electron-
electron interaction e�ects in the highly con�ned geometries [37, 38]. Thus the development of
methods which are capable of treating the electronic correlations on a more appropriate footing
are in order. In Sec. 5.7 we apply the stsCPT method to predict the transport characteristics
of such a junction consisting of two metallic leads and one Benzene molecule [65]. We extend
the stsCPT to include the e�ects of magnetic �elds. Obtained transmission and circular current-
voltage characteristics as well as the nonequilibrium charge distribution and magnetization show
pronounced e�ects of electron-electron interactions beyond mean �eld. A crucial in�uence on
the quality and convergence of the stsCPT and stsVCA approximations has the reference state
on which the perturbative solution is based. In Sec. 5.8 we develop an advanced reference state
based on the solution of a QME for meCPT [66]. This mixed reference state incorporates infor-
mation about the environment characteristics like temperature or chemical potential. We apply
meCPT to electron-electron interaction based quantum diodes and triple-ring quantum junc-
tions to study interaction induced quantum interference mediated blocking [67]. Within meCPT
not only dynamic single-particle expectation values in the steady-state but also full information
about the distribution of the reference state becomes available. We discuss stability diagrams,
state-occupations, transmission functions and �nally the steady-state blocking mechanism.
In Sec. 5.9, an alternative to the perturbative treatment of the steady-state is provided by the

AMEA approach [68, 69]. Within this Green's function method the nonequilibrium self-energy
is computed from an auxiliary system which is described by a Lindblad master equation. The
parameters of the Lindbladian of the auxiliary system are found by requiring the Keldysh space
hybridization functions to match the ones of the physical problem. The development of the
AMEA is advanced and applied to the SIAM. A rapid convergence of steady-state observables
was found and the splitting of the Kondo resonance under bias voltage was studied in detail. A
promising outlook is the application of the AMEA as a steady-state DMFT solver.
Finally, in Sec. 5.10, using the combined e�orts of DMRG+TEBD, stsCPT, stsVCA, the

AMEA and the BMsme we give insight into the behaviour of electronic correlations at high bias
voltages [70]. It is commonly believed that electronic correlations play an important role at low
bias voltages. On the contrary high bias voltages seem to act e�ectively like a high temperature,
rendering the system e�ectively free [71, 72, 73]. Based on the current-voltage characteristics,
steady-state charge and spin �uctuations, the nonequilibrium spectral function and the nonequi-
librium distribution function we argue that electronic correlations become enhanced at high bias
voltages at the band edge, for �nite lead DOS.
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2. Experimental facts

The history of condensed matter physics has, to a large extent, been devoted to the study of com-
plex phenomena and phases in equilibrium, such as high temperature superconductivity, charge
density waves or magnetism. Nowadays a good understanding of the underlying many-body
problem has been developed based on both experimental insight as well as theoretical considera-
tions. However, still major open questions remain unsolved, such as a complete understanding of
superconductivity. In the past decade the attention has shifted to research in time-dependent and
out-of-equilibrium steady-state phenomena. These do not only provide the basis for tomorrow's
applications which will dominantly operate in a nonequilibrium setup but also add time as an ad-
ditional dimension, to help understand the inner workings of condensed matter systems. Driven
by ultra fast electronics (femtosecond time-scales), cryogenic devices and clean vacuum technol-
ogy it has become possible to generalize successful experimental techniques from equilibrium to
nonequilibrium setups. One of these methods is time dependent ARPES [74] which allows to
study electronic states in a pump-probe like fashion and monitor the excitation and relaxation
of electronic occupations. In the solid-state the dynamics of complex phases like the melting
of a charge density wave [75, 76, 77], the population of surface-states in topological insulators
[78, 79], the dynamics of cooper pairs in cuprate superconductors [80, 81] or electron motion in
low-dimensional materials [82] have been characterized. Strong laser pulses can be used to control
e.g. the superconducting state [83] or the Mott insulating state [84, 85] in pump-probe experi-
ments. In time resolved x-ray di�raction the study of anti-ferromagnetic order and the interplay
of lattice and electron behaviour is studied [86]. These new methods will prove especially handy
to characterize designed multilayer structures with engineered correlations [87] for the application
in microelectronics or solar technology [21]. Even more experimental control and tune-ability
has become available when creating the condensed matter system arti�cially in quantum simu-
lators. Such devices allow to trap quantum particles by optical means and study their mutual
interactions, the impact of the con�nement lattice, as well as the in�uence of external �elds. In
this way one of the most prominent phases of condensed matter physics, the Mott insulating
phase has been realized arti�cially [88, 89]. Out-of-equilibrium, the spreading of correlations
can nowadays be monitored reliably [90]. This work focuses on out-of-equilibrium phenomena of
impurities in metals or on surfaces and e�ectively low-dimensional electronic structure as both
realized in nano-structures and molecular electronics. In the following a brief introduction into
the state-of-the-art �ndings of these research areas is provided.

2.1. Nano-technology

The broad �eld of research of matter at the nano-metre scale is termed nano-technology [91, 92].
Since initial dreams of manipulating objects of atomic or molecular extent at the beginning of
the sixties [93], it has evolved to its active goal of fabricating new materials and devices that have
novel properties and functionality due to their tiny structure. Often nano-systems consist of small
clusters of atoms or macromolecules in solution or adsorbed onto or structured into surfaces or
layered materials. These units constitute e�ectively zero-, one-, two- or three dimensional systems
with unique properties depending on their composition, structure, arrangement, dimensionality
and environment which promote their quantum mechanical features. Nano-technology already
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Figure 2.1.: Single electron transistor. (Left) Schematic setup. (Middle) Quantum dot occu-
pation as function of bias voltage VB and gate voltage VG. (Right) Transmission
current.

found a lot of industrial applications today: The high surface area of nano-structured materials
provides perfect conditions for catalysis or storage functionality. Plastics and lacks are enhanced
by nano-additives. Nano-coatings are well known for their mechanical strength and self-cleaning
features. In our everyday life nano-particles appear in sunscreen, pans or cosmetic products.
The public awareness for nano-technology sky-rocketed in 1985 with the discovery of the C60

buckminsterfullerene [94] and carbon nano-tubes, both a by-product of auto mobile exhaust. In
technological application they however o�er brilliant mechanical and electrical properties and
the possibility of designing low-dimensional thermoelectric materials [95].
In this thesis we study electrical transport properties of nano-structures under voltage bias.

So-called quantum dots are created as con�ned regions in space for example on a surface or
in a hetero-structure where the available electronic states are quantized due to the strong ge-
ometric con�nement [96, 97, 98, 99, 100]. They are often referred to as arti�cial atoms [101]
due to properties similar to their natural pedants. However quantum dots o�er tune ability and
control over their energy structure, which enables device engineering. They can be realized via
local anodic oxidation (LAO) on a GaAs/AlGaAs heterostructure [20] which enables tunable
few electron control [102] or in a graphene nano-structure [103, 104]. Recently complex setups
including superconducting leads and topological materials have been developed. In one of them
the realization of the long elusive Majorana particle has been proposed [105].
Quantum dots contacted to nano-wires o�er control over single electrons as realized e.g. in a

SET. Such a device consists of a geometrically con�ned electronic dot tunnel coupled to a source
and a drain lead as well as a gate electrode which allows to control the dot occupation, see Fig. 2.1.
At low enough temperatures and small tunnel couplings the dot can be tuned into a sequential
tunnelling regime when the time scale for electrons to �reside� on the dot is much larger than
the tunnelling time scale. In this regime the source-drain current shows a stepwise behaviour
which can be attributed to the Coulomb repulsion of the electrons on the dot, the so-called
Coulomb blockade. The simplest model for such a device is a metallic �constant interaction�
spinless fermion quantum dot [106]. The quantum dot is modeled by ĤS = ∑

k
εkf

�

kfk + U(N)

with U(N) = uN2 − VGN where N denotes the number of particles on the dot and the gate is
described by the parameter VG. The dot is tunnel coupled to a metallic source and drain lead
via ĤSES/D = ∑

kk′
t
S/D
kk′ f

�

kck′ +h.c., where f denote the dot degrees of freedom and c the lead degrees

of freedom. Using Fermi's golden rule [107] the transition between an initial state on the dot ∣ia⟩
and a �nal state ∣fb⟩ due to ĤSES/D is given by

Γ
S/D
ba = 2π ∑

iafb

∣⟨fb∣Ĥ
SE
S/D ∣ia⟩∣

2
piaδ (ωfb − ωia) ,
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Figure 2.2.: Higher order processes. Visualization of a higher order process in a quantum dot
tunnel-coupled via ΓL/R to two electronic leads at chemical potentials µL/R. The
on-site energy of the dot is denoted εf and the on-site Coulomb repulsion U . The
initially singly-↑ occupied dot transitions via a virtual empty (doubly occupied) state
to a singly-↓ occupied state.

where pia is the initial state distribution of the isolated dot. Based on these transition rates,
the distribution function Pa can be obtained from a Pauli master equation [61] (see Sec. 3.3.3)
which equates in�ow into state a and out�ow

0 = ∑
b,λ∈{S,D}

(ΓλabPb − ΓλbaPa) .

Assuming thermal initial distributions and a �at lead DOS one �nds, labelling the dot states
by particle number N, Γ

S/D
N+1,N = γS/Df(U(N + 1) − U(N) − µS/D) and Γ

S/D
N−1,N = γS/Df(U(N −

1) − U(N) + µS/D) with f(ω) = ω
eβω−1

, Γ = ∑
λ∈{S,D}

Γλ and γS/D the e�ective coupling to the

source and the drain. The resulting steady-state distribution Pα is provided by the eigenvector
corresponding to eigenvalue zero of

0 = ΓN,N−1PN−1 − (ΓN+1,N + ΓN−1,N)PN + ΓN,N+1PN+1 ,

together with the normalization condition ∑
N
PN = 1. The resulting steady-state occupation and

transmission current are plotted in Fig. 2.1. The occupation increases stepwise with VG in a
quantized fashion. This is because the interaction energy u between the particles on the dot
needs to be overcome before another particle can be added. As a result one �nds diamonds
of constant particle number in the VG − VB plane at which also no current can �ow because
the device is blocked due to Coulomb interaction. Experimentally the stability diagram is well
understood [108] through characterization and transport measurements [20, 109, 110]. In this
work we investigate two devices in the single-electron transistor regime: a single quantum dot
diode and a ring triple-quantum dot transistor, see Sec. 5.8.
Even lower temperatures and stronger coupling promote coherent transport phenomena, like

elastic co-tunnelling arising from the Kondo e�ect [111, 112]. Virtual transitions via energetically
unfavourable states, as shown in Fig. 2.2, can lead to a strongly enhanced electronic transport
if they occur coherently. In the equilibrium spin-Kondo e�ect a virtual spin-�ip transition be-
tween the degenerate spin-↑ and spin-↓ states is the driving feature for non-trivial many-body
phenomena [53]. For a detailed introduction to this topic see the section on the SIAM in Sec. 3.1.
This work explores the steady-state transport of nano-devices in the Kondo regime (see Sec. 5.7,
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Figure 2.3.: Experimental characterization of molecular junctions. (A) A molecule contacted to
two electronic leads under bias voltage. (B) Model of a MCBJ. (C) Model of a
STM.

Sec. 5.7, Sec. 5.5, Sec. 5.6, Sec. 5.10) as well as the time dependent formation of the Kondo e�ect
(see Sec. 5.2, Sec. 5.3).

2.2. Molecular junctions

What has become known as the �eld of molecular electronics [28, 31, 113, 19, 32, 18] is still a
relatively young playground for a joint e�ort of physicists, chemists, material scientists and device
engineers [29, 114]. Already in the 1970ies molecular scale electronic devices were proposed,
notably the molecular current recti�er by Aviram and Ratner [115] or the molecular tunnel
junction by Polymeropoulos and Sagiv [116]. Molecular electronic devices are highly anticipated
miniaturized alternatives to the well established CMOS technology of today's microelectronic
industry. While the latter approaches the limit of the photo-lithographic manufacturing method,
molecular electronic devices o�er the perspective of still higher packing density and therefore
faster processing power and higher memory density [117]. Conventional microelectronics already
is on the verge of leaving the realm of classical transport due to quantum mechanical tunnelling
phenomena in junctions smaller than a few nano-metres although its concept is entirely based
on conventional classical electronics. Engineers are working hard to develop concepts minimizing
these spurious quantum in�uences. In contrast molecular junctions speci�cally avail quantum
e�ects for a more �exible design and more powerful applications. The long term goal of research
in molecular electronics is to integrate millions of molecules into one functional chip. Its short
term goals are to understand the fundamental processes of charge transfer in small devices and
to build functional molecular junctions acting as sensors or switches.
Molecules can either actively serve as tailored conducting elements in a junction or alter the

device properties passively by changing the transport properties of the electrodes. The transport
characteristics of molecular electronic devices directly re�ect the electronic properties of the
junction molecule [118]. As such, on the one hand these devices can be seen as molecular
spectrographs, revealing the quantum states and inner workings of the molecule. On the other
hand, the functional properties of the device are highly �exible and can be tuned directly via
the electronic properties of the molecule either statically by side group design or dynamically
for example using tailored vibrations. In today's research, many promising device layouts are
explored including single molecular junctions, mono layers or thin �lms [119]. In this introduction
we focus on transport through single molecules in two terminal setups, which have been a topic
of active research in this thesis.
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The ultimate limit of miniaturization consists in contacting a single atom or molecule, ideally
hosting some sort of functionality, see Fig. 2.3 (A). As is, such a junction looks innocent and
straight forward as it consists of a left and right lead under bias voltage and a molecule contacted
in-between those two electrodes. However, many challenges have had to be overcome until �nally
the transport characteristics of such a device could be recorded. Organic molecules o�er a
wide range of functionalization possibilities and their manufacturing process is well established.
In order to make such molecules �stick� to the metallic reservoirs commonly contacting thiol
anchor groups are facilitated [120, 121, 122, 123]. Contacting to gold electrodes [121, 124, 29] or
platinum leads [123] has become feasible. To actually catch the molecule in-between the leads has
become possible due to advances in experimental fabrication [34] and device assembly [33, 125]
for example via electro migration [33, 126, 127, 128, 129, 130, 131, 132, 133]. Newly designed,
improved and adopted measurement techniques [134] enabled electrical transport measurements
across molecular junctions [31]. In the following we shortly comment on two of the most common
methods: MCBJ and STM.
In the MCBJ [121, 113] the current-voltage characteristics can be obtained in a statistical way

[124]. The MCBJ usually operates in ultra high vacuum and at cryogenic temperatures. This
technique provides an accurate way to control the spacing between two metallic electrodes on the
picometer level stable on time-scales required for transport experiments [34, 135, 124, 123], see
Fig. 2.3 (B). A piezo is used to bend a �exible rod in a three-point bending mechanism, which in
turn stretches the metal on top of it until it breaks. Often thin gold electrodes are deposited onto
an insulating bu�er like SiO2 which is grown on a �exible base material like a phosphor-bronze
substrate. The gold electrode is pre-structured using electron beam lithography to form a narrow
constriction of about 100nm. When bending the substrate (∆z), a controlled gap (∆x) forms
between the two new electrodes. The molecules are then dissolved in an appropriate solvent and
the thiol end groups of the molecules will become trapped between electrodes in the MCBJ. This
setup allows to measure transport depending on bias voltage as well as to perform stretching
experiments and study the behaviour of transport as a function of electrode separation. The
di�culty in a single measurement often consists in determining which molecule is trapped, how
many of them, in which orientation and in which contacting layout. Therefore a statistical way
of obtaining the transport characteristics has been suggested [124]. The trapping experiment is
repeated over and over and each time the current-voltage curve is recorded. A post processing
step then allows to narrow down the many individual curves onto a few characteristics of one or
two molecules.
The widespread STM [136] has become an established tool in many areas of surface charac-

terization, nano-technology and single-atom manipulation. Due to its �exibility and precision
it has also become one of the most favourite techniques to study transport through individual
molecules [137, 138, 125, 139, 140, 35, 141, 134, 139], see Fig. 2.3 (C). In ultra high vacuum
conditions and at cryogenic temperatures the STM is used to locate pre-deposited molecules on
a surface. The molecule is approached and then gently pulled o� the surface using the STM
tip. In this way the molecule becomes contacted between the two electrodes, the surface and the
STM tip. Like in the MCBJ the electrode separation can be controlled with high accuracy.
Typically the resulting quantum point contacts in the ballistic regime display a quantized

conductance in steps of 2 e
2

h
≈ 13kΩ−1, where e is the electron charge and h is Planck's constant

[142, 143]. This quantized conduction has been experimentally observed by pulling apart two
gold electrodes and assigning the conductance to the observed number of atomic gold chains
linking the electrodes in the �nal position. Already simple junctions like a benzene-1,4-dithiol
molecule connected to two gold electrodes o�er a rich current-voltage characteristics [124]. The
high sensitivity of the transport characteristics on the electronic structure of the device promotes
the theoretical modelling and understanding of the electronic characteristics out-of-equilibrium
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to an important task. A well established formalism to predict these transport characteristics is
provided by the DFT+NEGF scheme [144, 145, 146, 147, 148, 149, 150, 151, 152, 153]. Within
this method the electronic structure of the molecule and the tips of the leads is obtained using
equilibrium ab initio band structure methods in some approximation of the DFT. NEGF trans-
port calculations are then run based on these electronic states. Although this method o�ers the
appealing advantage to obtain the transport behaviour from �rst principles and therefore design
devices directly on the computer, the experimental and theoretical transport characteristics are
in poor agreement [37, 38]. This failure to predict device characteristics has been attributed to
the improper treatment of electronic correlations which can become large in molecular junctions.
Quite generally, molecular junctions are low-dimensional and arranged in a highly con�ned

geometries which both promote electronic correlation e�ects. Therefore the theoretical investi-
gation of transport through molecular junctions is a highly non-trivial challenge which however
promises new and improved device designs from �rst principles. This work contributes to the
study of correlated single molecular two-terminal junctions where the molecule is the active
conductor. In this work we develop NEGF based methods to speci�cally study the impact of
electronic correlations on steady-state transport in molecular junctions and apply an accurate
numeric real-time evolution to study time dependent phenomena. We discuss a single correlated
orbital with two electronic leads as the simplest model of a molecular junction, see Sec. 5.2,
Sec. 5.3, Sec. 5.5, Sec. 5.6 Sec. 5.9 and Sec. 5.10. This simple model junction already features
strong correlation phenomena like the Kondo e�ect [53] at low temperatures and describes the
well known Coulomb blockade at elevated temperatures. We then discuss a single orbital diode
with polarized leads Sec. 5.8 which features NDC. In Ring molecules, in addition to electronic
correlations also quantum interference e�ects in�uence the transport characteristics. These are
explored in a benzene like ring molecule in a magnetic �eld in Sec. 5.7 and a three ring molecule
transistor which features interaction induced quantum interference mediated current blocking,
see Sec. 5.8.
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3. Theoretical approach

Equilibrium statistical physics is characterized by the state of lowest energy and can be described
by a thermodynamic state function like the one for the ideal gas pV = NkBT , relating its
pressure and volume to the particle number and temperature [154]. A nonequilibrium steady-
state is, although time independent, not an equilibrium state and does not respect the �uctuation-
dissipation relations. When and if a system can be described by an equilibrium theory, ultimately,
reduces to the magnitude of involved time-scales, like the relaxation rate and the observation
time scale. In this thesis we consider the nonequilibrium behaviour of interacting many-body
systems. The many-body problem is in general unsolvable exactly, even in classical physics, like
in the study of planetary motion, and in semi-classical physics, like in the study of fusion plasma
dynamics and therefore insightful approximate solutions need to be designed.
The setups discussed in the previous chapter consist of many interacting microscopic particles,

which are described by a quantum theory. Quantum mechanics assigns probabilities to quantum
states which can be realized for microscopic particles [155, 156, 157, 158, 107]. The evolution of
quantum particles follows Schrödinger's equation [159, 160]

ih̵
∂

∂t
∣Ψ(r, t)⟩ = Ĥ∣Ψ(r, t)⟩ ,

where the pure quantum state ∣Ψ⟩ evolves according to the Hamiltonian operator Ĥ and h̵ = h
2π

≈

1.054 ⋅10−34 m2kg
s

is the reduced Planck constant. The stationary state is found by the eigenvalue
equation

E∣Ψ(r)⟩ = Ĥ∣Ψ(r)⟩ .

A condensed matter system typically consists of a large number of electrons and atomic-nuclei.
The general many-body Hamiltonian takes the form [161]

Ĥ =
NI

∑
µ=1

(−
h̵2

2Mµ
∇̂

2
µ) +

1

4πε0

NI

∑
µ<ν

QµQν

∣Rµ −Rν ∣
+
Ne

∑
i=1

(−
h̵2

2me
∇̂

2
i) +

1

4πε0

Ne

∑
i<j

e2

∣ri − rj ∣
+

1

4πε0
∑
iµ

eQµ

∣ri −Rµ∣
,

and consists of a kinetic term for NI nuclei with massMµ and charge Qµ at positions Rµ and Ne
electrons with mass me and charge e at positions ri as well as the Coulomb interaction between
electrons, nuclei and electrons and nuclei. ε0 ≈ 8.854 ⋅ 10−12 F

m
is the vacuum permittivity. An

exact solution of such a large system of coupled di�erential equations is hopelessly out of reach in
the general case. A lot of interesting physical properties depend however only on the electronic
degrees of freedom which can be separated from the nuclear motion because the dynamics of the
nuclei is much slower than the electronic time scale. In the Born-Oppenheimer [162] approxima-
tion one treats the nuclei classically and the dynamics of the electrons is augmented by a static
lattice potential V̂ext(ri)

ĤBO =
Ne

∑
i=1

(−
h̵2

2mi
∇̂

2
i) +

1

4πε0

Ne

∑
i<j

e2

∣ri − rj ∣
+∑

i

V̂ext(ri) . (3.1)
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The still problematic term which renders the equation untractable is the one involving the in-
teraction between two electrons i and j. In the history of theoretical condensed matter physics
mainly two routes have been followed to gain insight into the physics of such an interacting
electronic system.
In the �rst approach one attempts to solve Eq. (3.1) directly using an approximate expression

for the interaction term. The resulting equations are either perturbative or result in an e�ec-
tive single-particle description, as exercised in the most successful working horse of condensed
matter physics: the density functional theory (DFT) [163, 164] in the local density approxima-
tion (LDA) [165]. This theory allows to computationally obtain reliable electronic properties
for most standard materials and systems even in a black box fashion nowadays. However, stan-
dard exchange-correlation functionals like the LDA are not suited to describe strongly correlated
systems.
The second major approach is to construct so-called model Hamiltonians, which describe the

essential and important parts of the physical properties at low energies. The most famous of
these model Hamiltonians is the single-band Hubbard model [166]

ĤHub = −t ∑
⟨ij⟩,σ

(c�iσcjσ + c
�
jσciσ) +U

N

∑
i=1

n̂i↑n̂i↓ ,

which describes the physics of electrons in a single correlated band, as for example formed
by strongly localized d- or f-electrons. It is described in terms of second quantized fermionic
creation/annihilation operators c�iσ/ciσ at site i with spin σ [167, 106]. The particle number
operator is de�ned as n̂iσ = c

�
iσ/ciσ. Particles are allowed to hop from site i to nearest-neighbour

site j with a hopping amplitude t which sets the kinetic energy scale. The long-range Coulomb
interaction is rendered to a caricature interaction which only penalizes electrons residing on the
same orbital with an energy cost U . Models like the Hubbard model signi�cantly reduce the
number of degrees of freedom and the complication of the interaction terms while retaining the
most important physical mechanisms. Unfortunately most of these models are still intractable in
the general case and approximate methods have been and are developed to gain understanding.
The advantage with respect to the full approximate solution is that those approximate methods
are usually much more controlled and interactions can be treated more accurately.
In recent times these two di�erent techniques of investigating condensed matter systems con-

verge again onto common grounds, most prominently in the LDA+DMFT method for strongly
correlated systems. Such approaches start from the full Born-Oppenheimer Hamiltonian in an
e�ective treatment like LDA but treat the strong electron-electron interactions within a model
Hamiltonian formalism like DMFT in a self-consistent framework, harnessing advantages of both
approaches.
This work is mainly concerned with the approximate or quasi-exact solution of model Hamil-

tonians and the development of numerical methods for this purpose. The combined ab initio +
correlation methods approach is followed in the �rst part of this thesis, see Sec. 5.1.

3.1. Model Hamiltonians

The �rst part of this thesis (Sec. 5.1) discusses an extended Hubbard model which is explained
therein. The Hamiltonian for molecular and nano-junctions will be outlined in Sec. 3.3.1 when
it comes in handy in conjunction with outlining steady-state quantum cluster methods. A large
part of this thesis is devoted to the study of the single-impurity Anderson model (SIAM) [55]
which shall be reviewed brie�y at this point since it helps to introduce the notation and provides
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Figure 3.1.: Equilibrium properties of the SIAM. (Left) Thermodynamics of the impurity. (Mid-
dle) Zero temperature spectral function. (Right) Self-energy. All data have been
obtained using the NRG Ljubljana code [2] for U = 20 ∆.

the basis for a lot of e�ects which are also important in the other models. the SIAM consists of
a single correlated fermionic site coupled to an in�nite electronic environment

Ĥ
SIAM

= εf ∑
σ

f �σ fσ +U n̂
f
↑ n̂

f
↓ + ∑

λkσ

ελkσ c
�

λkσ cλkσ +∑
λk

(t′λkσf
�
σcλkσ) + h.c. .

Here fσ/f
�
σ denote fermionic annihilation/creation operators for the impurity orbital with spin

σ ∈ {↑, ↓} respectively. The impurity site is subject to a local Coulomb repulsion U repelling
spin-↑ and spin-↓ type particles where the particle number operator is de�ned in the usual way
as n̂fσ = f

�
σfσ and the impurity on-site potential is εf and takes the value εf = −U2 at particle-hole

symmetry. This correlated impurity is hybridized with an environment of free electrons described
by cλkσ/c

�

λkσ, with dispersion ελkσ where λ denotes a reservoir index. In equilibrium typically one
reservoir e.g. an s-electron conduction band is of interest while for the nonequilibrium description
the impurity is coupled to Nλ = 2 reservoirs to apply a bias voltage or a temperature gradient.
The SIAM has originally been devised to study magnetic impurities in metallic hosts [168]

and explore their anomalous resistance minimum at a �nite, low temperature [169, 170] which
is accompanied by an anomalous magnetic susceptibility and speci�c heat. The cause for this
phenomenon was found in a non-perturbative many-body e�ect which lies at the heart of the
physics of the SIAM, the Kondo e�ect [171, 53], which manifests itself at a low temperature scale
TK , known as the Kondo temperature. In equilibrium, the electronic environment is described
by a Fermi energy εF . Considering the atomic limit (t′λkσ = 0) for the interacting impurity,
it is empty εf > 0 and doubly occupied if εf < −U if the conduction band energy εF behaves
accordingly. The interesting local moment regime occurs for values of εf in-between where the
ground-state is degenerate in spin. This includes the particle-hole symmetric point εf = −U2 on
which we focus the following discussion. These systems however only behave as local moments
at su�ciently high temperatures T ≫ TK . To gain deeper understanding one has to give up the
simple atomic limit which predicts a spurious immediate splitting of the impurity DOS into charge
excitations at ω ± U

2
. On the one hand, a self-consistent static mean �eld treatment of the spin

resolved impurity densities obtains an erroneous phase transition at UC = π∆ (1 + cot (π⟨n
f ⟩

2
)).

This solution predicts a magnetic state which is non-physical for an e�ective zero dimensional
system [55]. On the other hand, a low order perturbative treatment encounters a logarithmic
divergence [53]. This �Kondo problem� could be resolved by Kondo [171] and Anderson [172].
The low energy behaviour of the SIAM can be described in terms of the Kondo Hamiltonian
which is derived via a projection technique onto the singly-occupied subspace in the Schrie�er-
Wol� transformation [173, 174]. In this model the impurity is e�ectively described by a local spin
degree of freedom coupled to the electronic conduction band via an e�ective exchange interaction
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J ˆ⃗Sf ⋅ τ⃗σσ′c
�

kσck′σ′ with J = − 8t′2

U
< 0 driven by virtual spin �ips between the Kramers doublet. For

a ferromagnetic exchange interaction J → +∞ the low energy physics can be described in terms
of elastic potential scattering. In the SIAM, one encounters an anti-ferromagnetic exchange
interaction J < 0 which promotes a ground state which is a bound state of the impurity and
conduction electron spins, the Kondo singlet. The success of the poor man's scaling RG was
to show that even for arbitrary small (positive) U this strong coupling �xed point is reached
in the RG �ow, and the Kondo singlet state is approached. The energy scale below this RG
�ow remains meaningful is one way to de�ne the Kondo temperature TK ∝ e−U . The physics of
the impurity can be very well understood by considering thermodynamic observables which are
available analytically from seminal Bethe Ansatz results [175, 176] and numerically from highly
accurate NRG calculations [58, 59, 177]. As shown in Fig. 3.1 (left), the impurity entropy Simp
signals the contribution of 4 states at high temperatures i.e. empty, double-occupied and spin-
↑/spin-↓ respectively. At lower temperatures, still above TK the 2 energetically favoured singly
occupied states contribute and below the TK only a single state, the singlet, remains. The speci�c
heat Cimp indicates two �transitions�, one where the charge degrees of freedom freeze out at high
temperatures and one where the spin degrees of freedom condense to the singlet state at TK ,
which are visible in the charge-susceptibility χC,imp and spin-susceptibility χS,imp, respectively.
The NRG spectral function of the SIAM is shown in Fig. 3.1 (middle). It is especially accurate
at low energies where the Kondo resonance is found. This peak at ω = 0 signi�es the Kondo state
and is pinned at the chemical potential as expected for a local Fermi liquid and described by the
Friedel sum rule. In addition the spectral function shows to Hubbard bands at energies ω ∝ U
which are caused by charge excitations. The low energy self-energy (Fig. 3.1 (right)) exhibits a
quadratic imaginary and linear real part, typical for Fermi liquids.
As of today, the equilibrium physics of the SIAM has been well characterized owing to an

additional combined insight gained from sophisticated computational approaches like e.g. per-
turbation theory [178, 179, 180, 181], FRG [182, 183, 184], DMRG [185, 186, 187], slave particle
methods [188, 189], methods based on Hubbard's X-operator technique [166, 190] or variational
wave functions [26].
The SIAM has emerged as one of the prime models and important tool of correlated condensed

matter systems [26, 42]. Quantum impurity models describe the adsorption of atoms onto surfaces
[26, 191, 192, 193]. Additionally, they are of theoretical interest as solvable models of quantum
�eld theories [58, 194]. The behaviour of a plethora of magnetic phenomena and the �eld of
heavy fermion physics is described by strongly correlated quantum impurity models [195, 196],
like the periodic Anderson impurity model.
A renewed interest in understanding and calculating dynamic quantities of the SIAM was

created with the advent of DMFT [42, 197, 198, 199, 200, 201]. DMFT provides a �exible
framework to study general fermionic lattice models. The electronic self-energy provided by
DMFT is the one of the auxiliary impurity system which is local and becomes exact for the
Hubbard model in in�nite dimensions [197]. In DMFT, the frequency dependent self-energy of
the impurity model has to be determined, which has led to advanced methods for the calculation
of dynamic quantities like self-consistent QMC [202], Hirsch-Fye QMC [203, 204], projective QMC
[205] or continuous-time QMC [206] which however su�er from analytic continuation ambiguities
[207, 208]. Real axis solvers include ED, which has achieved exact results for truncated baths
[209], NRG [210], IPT [201], NCA [211, 212] or the local moment approach [213, 214]. With the
MPS framework several approaches exist to obtain the dynamic self-energy, correction-vector
DMRG [215, 216], dynamical DMRG [217], an MPS based Lanczos algorithm [218], Chebyshev
expansion [219] or real time evolution using TEBD [220].
Recently the SIAM in a nonequilibrium setup has become of major importance in the un-

derstanding of transport through quantum dots [221, 112, 222], correlated nano-structures and
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molecules [223, 224, 126, 128, 225]. In this context the quantum impurity models have been stud-
ied using semi-classical methods [226] and Green's function techniques [227, 228, 229, 230]. The
SIAM is predicted to stay in the strong coupling regime even under the in�uence of a bias volt-
age [231] which permits a full characterization under special circumstances only [232, 233, 234].
Beyond the linear-response result in the Kondo regime, which is characterized by the con-
ductance quantum, some fundamental aspects of the impurity out-of-equilibrium are known
[235, 236, 237]. Nonequilibrium correlated impurity models still pose an exciting challenge
to theory as of today. A major part of this work is devoted to address this issue. Among
the existing approaches to the SIAM out-of-equilibrium are [52, 69] scattering-state BA [238],
scattering-state NRG (SNRG) [239, 240, 241], non-crossing approximation studies [229, 242],
fourth order Keldysh PT [243], other perturbative methods [244, 245] in combination with the
renormalization group (RG) [246, 247, 248, 249, 250], iterative summation of real-time path
integrals [251], time dependent NRG [252], �ow equation techniques [253, 254], the time de-
pendent DMRG [51, 50, 255, 256, 49, 257], applied to the SIAM [258, 52], the FRG [259, 260],
diagrammatic QMC [261, 262], CT-QMC calculations on an auxiliary system with an imaginary
bias [263, 264, 265, 266, 267], non-equilibrium CPT [62], the non-equilibrium VCA [268, 269],
super-operator techniques [270, 271], dual fermions [272], many-body PT and time-dependent
DFT [273], real-time RG (rtRG) [274], generalized slave-boson methods [275], time dependent
Gutzwiller mean �eld calculations [276] and generalized master equation approaches [277]. Com-
parisons of the results of some of these methods are available in literature [278, 52, 279] and
time-scales have been discussed in [280]. The advent of nonequilibrium DMFT [281, 282, 283]
further stimulated the e�orts on solvers out-of-equilibrium [284].

3.2. From equilibrium to the steady-state

Quantum systems in equilibrium can be very well characterized thanks to methods developed in
the past decade. Statistical mechanics is successful in describing ensemble averaged properties
of thermodynamic systems connected to equilibrium reservoirs. The grand-canonical state ρ̂0 of
a system described by Ĥ0 is given by [285]

ρ̂0 =
e−β(Ĥ0−µN̂)

tr{e−β(Ĥ0−µN̂)}
,

where µ denotes the chemical potential controlling the particle number N̂ and β is the inverse
temperature 1

kBT
. Properties of the system Â are obtained as averages

⟨Â⟩0 = tr{ρ̂0Â} .

In this thesis we will be concerned with the reaction of a system onto an external in�uence
ĤE(t) = f(t)B̂, where B̂ is again some observable of the system. The full system is now described
by its initial state Ĥ0 and the time dependent in�uence ĤE(t), Ĥ = Ĥ0+ĤE(t). The expectation
value of Â changes to ⟨Â(t)⟩ = tr{ρ̂(t)Â}, where the time dependent density matrix can be found
from the von-Neumann equation

ih̵ ˙̂ρ(t) = [Ĥ, ρ̂(t)]− . (3.2)

The most simple way to obtain the reaction of the system onto ĤE(t) is via causal response
functions as obtained in the well known linear-response formalism. Upon transforming to the
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interaction representation with respect to Ĥ0

ρ̂I(t) = e
i
h̵ Ĥ0tρ̂(t)e−

i
h̵ Ĥ0t ,

and expanding Eq. (3.2) into powers of ĤE(t) up to linear order one �nds [285]

ρ̂(t) = ρ̂0 −
i

h̵

t

∫
−∞

dt′e−
i
h̵ Ĥ0t

′

[ĤE(t′), ρ̂0]− e
i
h̵ Ĥ0t

′

.

The response of the system onto ĤE(t) is �nally given by

⟨Â(t)⟩ − ⟨Â⟩0 = −
i

h̵

t

∫
−∞

dt′f(t′)⟨[ÂI(t), ÔI(t
′
)]−⟩0 . (3.3)

Most importantly, within this approximation the action of the external in�uence can be computed
from an expectation value of the unperturbed system at the initial time ⟨⟩0. At the heart of
Eq. (3.3) lies the causal response function GR

ÂÔ
(t, t′) = −iθ(t − t′)⟨[Â(t), Ô(t′)]−⟩0 which we will

discuss in detail in Sec. 3.3.1.
For now we consider transport properties like the resistivity ρ = kBt

e2A0
, the thermopower S =

−kBA1

∣e∣A0
or the thermal conductivity κ = kB (A2 −

A2
1

A0
) which can be expressed in terms of kinetic

coe�cients An [286, 287]. In the �rst part of this thesis we obtained the transport characteristics
of the e�ectively one-dimensional material Li0.9Mo6O17 based on realistic ab initio calculations
including electronic correlations within DMFT and eVCA, see Sec. 5.1. In linear-response, the
transport coe�cients are given by

A
n
νµ = Nspinπh̵

∞

∫
−∞

dω (βω)n × pFD(ω,µ, β)pFD(−ω,−µ,β)Γνµ(ω,ω) , (3.4)

where Nspin = 2 is due to spin degeneracy, the indices ν,µ = {a, b, c} denote the real space coor-
dinate system, and we neglect vertex corrections. The Fermi-Dirac distribution pFD(ω,µ, β) =

1
eβ(ω−µ)+1

restricts the interval of integration to β−1 ∼ kBT around the Fermi energy εF (kB is
Boltzmann's constant, and T and β denote temperature and inverse temperature, resp.). The
transport distribution

Γνµ(ω1, ω2) =
1

V

1

N1.BZ
∑

k∈1.BZ
tr × [vν(k)A(ω1,k)vµ(k)A(ω2,k)] , (3.5)

(V is the unit cell volume) is given in terms of the velocities

vαβν (k) = −
h̵

m
⟨Ψα(k)∣∇ν ∣Ψβ(k)⟩ , (3.6)

and the spectral function

Aαβ(ω,k) = −
1

π
Im(GRαβ(ω,k)) , (3.7)

which both are matrices in orbital indices α,β, which the trace tr runs over.
We use velocities vαβν (k) (Eq. (3.6)) in the Peierls approximation (neglecting the gradient of
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the Wannier orbital itself leading to a diagonal representation)

vαβν (k) =
1

h̵

⎛

⎝
⟨ωα(k)∣

∂Ĥ(k)

∂kν
∣ωβ(k)⟩ − α (rα − rβ) ⟨ωα(k)∣Ĥ(k)∣ωβ(k)⟩

⎞

⎠
≈

1

h̵

∂Eα(k)

∂kν
δαβ (3.8)

where the second term in the �rst expression takes intra-unit cell processes into account [287],
and rα is the position of Wannier orbital α inside the unit cell.

Often the linear-response treatment provides insu�cient information, for example, when the
perturbation is strong or details of the transient behaviour become important. For such systems
a real time evolution becomes of interest. For strongly correlated systems, as discussed in this
thesis, this task becomes highly non-trivial due to the complexity of the problem. When not
resorting to e�ectively free approximations like a time dependent mean �eld theory, very success-
ful approaches for tackling the interacting problem include the time dependent Lanczos method
[288, 289] or Arnoldi time evolution [290]. In addition conventional Runge-Kutta schemes [291]
and Laplace transformation of the di�erential equation and subsequently solving numerically a
sparse system of equations [292, 293] have been applied [290]. In this work we investigate the
time dependence of a quantum impurity (see Sec. 5.2 and Sec. 5.3) using another very successful
method: the time evolving block decimation [51, 49]. This method provides a quasi-exact way to
time evolve the quantum state due to an e�cient state representation in terms of matrix product
states. It is especially well suited for one-dimensional systems. Reaching long times is limited
by the growth of the entanglement in the quantum state which lets the state representation
become more and more ine�cient at constant computation time. We do not attempt to give
a detailed overview of the method here but refer the interested reader to the excellent existing
literature [49]. In this thesis we consider quenches (sudden changes in the Hamiltonian) from an
equilibrium state at time τ = 0: Ĥ0 to a state under voltage bias Ĥ> = Ĥ0 +θ(τ − τ0)Ĥ1 for times
τ > τ0. The equilibrium state of Ĥ0 is obtained using the DMRG [294, 50, 295]. Then the state
is time evolved with Ĥ>. For this purpose the quantum state of a one-dimensional system of L
sites consisting of quantum objects {si} = s1, s2, . . . , sL of local dimension d

∣ψ⟩ = ∑
{si}

c{si}∣ {si}⟩ ,

is expressed in terms of local matrices Ai,si as a matrix product state

∣ψ⟩ = ∑
{si}
∑
{µi}

A1,s1
µ1

A2,s2
µ1µ2

A3,s3
µ2µ3

. . .AL−1,sL−1
µL−2µL−1

AL,sLµL
∣ {si}⟩ .

In TEBD, the time evolution is implemented via a Suzuki-Trotter decomposition [49] on a bi-
partite lattice writing e.g. in second order

e−
i
h̵ Ĥ

>T
= (e−

i
h̵ Ĥo

τ
2 e−

i
h̵ Ĥeτe−

i
h̵ Ĥo

τ
2 +O(τ3

))
Nτ

,

with Nτ time slices of step size T = Nττ . One step of the time evolution proceeds by applying
the evolution alternatingly on the odd/even sub lattice Ĥo/e = ∏

i∈{odd/even}
Ĥ>
ii+1. MPS time

evolution requires the application of local two-site matrix product operators which increases the
size of the A matrices χ → dχ in each step. The beauty in the method lies in its e�cient state
representation which allows to truncate the state based on the least signi�cant entries in the
reduced density matrix. This becomes possible by expressing the MPS in its canonical form
Ai,siµi−1µi = λ

i−1
µi−1

Γi,siµi−1µi where λ
i−1
µi−1

are the weights of the reduced density matrix ρ which can be
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obtained via a Schmidt decomposition of the quantum state into two subsystems between bond
i and i+1: ∣ψ⟩ = ∑

ij
cij ∣i⟩A∣j⟩B = ∑

µ
λµ∣A⟩α∣B⟩α using an SVD [296] cij = UikλkkV

�

kj with ∑
α
λ2
α = 1.

The entanglement entropy S = −trB {ρ̂Aln (ρ̂A)} = ∑
µ
λ2
µln (λ2

µ) takes its maximum value ln (χ)

when all states participate equally. In ground state DMRG for one-dimensional systems one �nds
however that the weights λ2

µ decay rapidly yielding a small entanglement entropy. In this case a
truncation of the state by discarding the smallest weights is e�cient. Indeed one �nds that the
needed dimension of Γ to represent such a state faithfully scales with the surface of the boundary
between subsystems A and B. When the one-dimensional Hamiltonian consists of short range
couplings only, all correlations need to go through one point which leads to χ ∝ ln (Lc) where
Lc is the spatial correlation length. For time dependent systems this criterion does not hold but
is strongly dependent on the system and type of quench. Nevertheless the representation stays
e�cient up to interesting time-scales. Note that all calculations performed in TEBD simulate
a canonical ensemble which can only reach a steady-state locally. For the DMRG and TEBD
simulations we adapt a highly parallelized and well tested code developed at the institute in the
group of Prof. Hans Gerd Evertz [297, 298, 299, 300, 301, 302].
Starting from linear-response we have arrived via the real time evolution at the problem of

addressing the long time limit, the steady-state. The steady-state is especially viable for de-
vice engineering. However it is often inaccessible in real time evolution for numerical reasons,
see Sec. 5.2. Therefore we generalized approximate quantum many-body cluster methods to
nonequilibrium situations which allow to directly access the steady-state properties. The fol-
lowing chapter will provide a detailed overview of the development of the steady-state cluster
perturbation theory and its improvements as applied in Sec. 5.7, Sec. 5.5, Sec. 5.6, Sec. 5.8 and
Sec. 5.10.

3.3. Steady-state quantum cluster methods

In the past decade, quantum cluster methods have seen quite some success in describing the
properties of strongly correlated systems in equilibrium. The central idea of these Green's func-
tion based techniques [303] is to construct an approximate solution of an unsolvable large system
of interest (typically in the thermodynamic limit) based on an extrapolation of the solution of
a small interacting �nite size system which solution is accessible [212]. This �nite size system
can either be used to supply a direct guess for the electronic self-energy Σ(ω) in a perturbative
scheme or serve as an arti�cial reference system constrained by the properties of the physical
system.
The general idea is most easily outlined by considering the well known static mean �eld ap-

proach for an interacting translationally invariant model [304]. Within this e�ective medium ap-

proach, appropriate order parameters are chosen for a single site Ĥ (n̂↑.n̂↓) →
ˆ̃
H(φ↑.n̂↓) and are

determined self-consistently via the expectation values of their corresponding operators φσ = ⟨n̂σ⟩.
Likewise in a cluster mean �eld approach a larger subsystem of size LC is chosen and the order
parameters may acquire a spatial modulation if it lowers the free energy [305] permitting a more
accurate description of the relevant degrees of freedom at long wavelengths.
Another very successful e�ective medium approach is the DMFT [42, 197, 198, 199, 200, 201]

which in contrast to the static mean �eld theory includes information of excited states. In
DMFT the system of interest is mapped onto an e�ective auxiliary impurity system via the non-
interacting Green's function. The approximation consists in replacing the lattice self-energy by
the self-energy of the impurity, which is local and becomes exact in the limit of in�nite dimensions
for the single-band Hubbard model [197]. As in the static mean �eld approach, also the DMFT
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has been generalized to its cluster variants to include short scale variations in the self-energy.
Including such non-local contributions to the self-energy becomes possible in cluster extensions
such as the DCA [306, 307, 308] or the CDMFT [309] or by diagrammatic or RG extensions like
DF [310], DΓA [311], 1PI [312] and DMF2RG [313].
A quantum cluster method which proofs highly accurate for static ground state properties is

the DMET [314, 315] which performs a cluster embedding based on a Schmidt decomposition into
an interacting cluster and an e�ectively noninteracting environment. The DMET shows good
performance with various embedding strategies [316]. The phase diagrams of Hubbard models
[317] can be captured well and it has been extended to obtain spectral functions [318].
In the following we focus on the so far unmentioned perturbative quantum cluster methods

CPT and VCA which are improved and extended to nonequilibrium problems in this thesis.
Consider a lattice of interacting fermions in the translationally invariant Hubbard model in

equilibrium. The atomic limit, or Hubbard-1 approximation [319] is to compute the electronic
self-energy Σ considering just one site. This implies a poor representation of electronic correla-
tions. A straight forward generalization is to compute the self-energy from larger subsystems,
say L = 2, L = 3 or L = 4 sites. Since the complexity for solving these clusters grows exponentially
with their size one can in practice never reach the exact solution at L → ∞. However one can
hope for a systematic improvement and a faithful extrapolation of observables into the thermo-
dynamic limit. A methodical formulation for this process is provided by CPT [43, 44] which is
the lowest order [320] result of a strong coupling expansion of the self-energy [321]. CPT and its
variants are very well outlined in the excellent review articles by D. Sénéchal [322, 323]. Within
CPT the given lattice Hamiltonian Ĥ is dissolved into �nite size clusters in block diagonal form
ĤC by cutting all single-particle bonds connecting them ĤI . The clusters are chosen such that
their interacting single-particle Green's functions g(z) can be obtained exactly. Note that g(z)
is a block diagonal matrix in site i and spin σ space and a function of a complex energy z. The
argument z de�nes the type of Green's function, z = iω+ i0+ (where ω is a real energy) yields the
retarded Green's component, z = iω − i0+ yields the advanced component and z = iω yields the
Matsubara component [324]. The Green's function g(z) is usually computed by applying full di-
agonalization [296, 325] or sparse diagonalization like the Lanczos [326] or band-Lanczos method
[325]. Also a kernel polynomial method [327], QMC [328] and an MPS base Lanczos scheme
[329] were used to reach larger cluster sizes. The single-particle Green's function of the lattice
model G(z) is computed from g(z) by reintroducing the cut single-particle bonds perturbatively
Tij = ⟨i∣ĤI ∣j⟩

G−1
(z) = g−1

(z) − T . (3.9)

A derivation of this central CPT equation is possible within the functional integral formalism
[36] and can be found in [330]. This Dyson like equation implies that for the self-energy of
the lattice system Σ(ω) the self-energy of the clusters is used [331, 329]. CPT becomes exact
in non-interacting systems i.e. when the self-energy vanishes. It trivially also yields the exact
solution in the atomic limit. CPT is systematically improvable by increasing the cluster size.
CPT has initially seen much success in describing the properties of the fermionic Hubbard

model [320, 332, 333]. It has been applied to study the Mott transition in the two dimensional
Hubbard model [334, 335, 336] as well as cuprates [337, 338, 339] and to study superconductivity
[340], stripe phases in doped anti-ferromagnets [341] as well as in gap states in doped Mott
insulators [342]. The dynamics of even lower dimensional structures like ladder systems [343] or
purely one-dimensional Hubbard chains [344] featuring spin-charge separation [345] have been
obtained using CPT. It has been applied to two- [346] and three- band [347, 348] generalizations
of the Hubbard model and to multi-orbital systems [349]. Besides the accurate descriptions of
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fullarenes [350], also the recently emerged iron pnictide superconductors [351] have been subject
to CPT studies. CPT has seen much success in evaluating the dynamics of Hubbard-Holstein
polarons [352, 353, 354, 355, 356]. It has been applied to the SIAM [357, 358] and more recently
to study topologically non-trivial phases in the Kitaev-Hubbard model for quantum Hall states
[359] and topological invariants in interacting quantum spin Hall systems [360]. CPT has been
combined with ab initio calculations to study e�ectively low-dimensional materials [41]. There
exist extensions to the t-J model [361, 341] and to pure spin Hamiltonians [362] as well as an
improvement based on periodized cluster variables [363].

A variational extension of CPT is provided by the VCA [45] which is based on the SFA
[364, 365]. In VCA the self-energy Σ is computed from a reference system which is constructed
based on a CPT cluster tiling with optimized single-particle parameters. VCA is discussed
in the very good review articles [366, 367, 368, 369] on which this short summary is based.
Typically the interacting lattice system Ĥ(x,U) is composed of single-particle ĤI(x) and two or
more particle terms ĤII(U). The VCA reference system (primed quantities) is de�ned on the
same lattice with the same interaction terms as the original Hamiltonian: Ĥ′(x′, U) = Ĥ′

I(x
′) +

ĤII(U) but may di�er in the one-particle terms x. In the SFA a generalized grand potential
functional Ω[G,G0] = Φ[G]−Tr{(G−1

0 −G−1)G}+Tr{ln (−G)} is constructed from the Luttinger-

Ward functional δΦ[G]
δG

= Σ [370]. Systems featuring the same interaction terms have the same
�universal� Luttinger-Ward functional which in general cannot be computed exactly. Within VCA
the Legendre transformed Luttinger-Ward functional F [Σ] = Φ[Σ] − Tr{ΣG} is eliminated by
comparing the generalized grand potential for the original Ω[Σ,G0] = F [Σ] −Tr{ln (−G−1

0 +Σ)}

and the reference system Ω′[Σ,G′
0] = F [Σ] −Tr{ln (−G′−1

0 +Σ)}:

Ω[Σ,G0] = Ω′
[Σ,G′

0] −Tr{ln (−G′
[Σ])} +Tr{ln (−G[Σ])} .

The functional derivative of the self-energy functional Ω[Σ,G0] with respect to Σ yields Dyson's
equation at the stationary point

δΩ[Σ,G0]

δΣ
= −G + (G−1

0 −Σ)
−1 !

= 0 .

The last two equations comprise a set of two equations for the two unknown functions G and
Σ. These equations would yield the exact self-energy given the functional derivative could be
done in the space of all self-energies. In practice the self-energies are parametrised by those
obtainable from the reference system leaving the Luttinger-Ward functional and therefore the
interaction therms invariant. This implies that the functional Ω[Σ,G0] becomes a function of
the single-particle parameters x′ [371]

Ω(x′) = Ω′
(x′) +Tr{ln (−G(x,x′))} −Tr{ln (−G′

(x′))} , (3.10)

where the trace Tr includes a sum over site and spin indices as well as an integral over energy
or sum over Matsubara frequencies. The VCA approximation ultimately means restricting the
space of available self-energies to those generated by the reference system and its single-particle
parametrization. The stationary condition determining the optimal parameters in the restricted
space is given by

∇x′Ω(x′)
!
= 0 .

VCA implements a dynamic variational principle since it involves G(ω) and therefore excited
states. The Green's function G is obtained in the CPT approximation. The CPT perturbation
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T = T ′−1
0 −T −1

0 contains all inter cluster terms and in addition introduced by VCA the di�erence
in variational parameters ∆ ≡ x′ − x, which leaves the original system invariant in the non-
interacting case. If additional bath sites are added to the system in the spirit of VCA, the
method is often referred to as DIA [322]. We note that the DMFT can also be derived within
the SFA.

VCA has seen much success in application to fermionic- [372, 373, 374, 375, 376] and bosonic
-lattice systems [377]. In contrast to CPT, VCA capable of describing symmetry broken phases
like ferromagnetism [378] or the competition between anti-ferromagnetism and superconductivity
[379]. VCA has been extended to the super-�uid phase [380, 381], to extended Hubbard models
[46] as well as to disordered systems [382, 383]. The dynamic properties of the fermionic Hubbard
model have been studied in detail [384, 385] with a focus on nematicity in two dimensions [386],
the Mott transition [374, 387, 388] and superconductivity [389] in cuprates [374]. It has been
extended to the three band Hubbard model [390] and to include Hund's coupling [391]. VCA
was used to treat organic materials [392] and one-dimensional Hubbard chains [393]. VCA
has been applied with great success to the Bose Hubbard model [394, 395, 396], the Falico�-
Kimball model [397], the Periodic Anderson model [398, 399], the Jaynes-Cummings-Lattice
model [400], the Tavis-Cummings lattice model [401] and the SIAM [357]. VCA has proven useful
to obtain the dynamics of the attractive Hubbard model [402] and heavy fermion superconductors
[403]. Recent studies include time reversal symmetry breaking [404], frustrated Hubbard systems
[375, 405] and topological aspects [406] of the Kane-Mele-Hubbard model [407, 408], the Hubbard
model on a triangular- [409, 410], Kagome- [411, 412] and honeycomb-lattice [360] as well as the
Bernevig-Hughes-Zhang model [413]. VCA is capable of describing fermions in optical lattices
[414], solid-light systems [415], Dirac fermions [416], polaritons [417] and the compass model
[418]. Also realistic materials can be modeled within VCA [419, 420, 421] in an LDA+VCA
framework [422, 423, 424, 425, 426, 427, 41]. So far applications to spin systems su�ered from
severe limitations [428, 429] which have been resolved recently by applying the pseudo particle
approach on auxiliary bosons [430, 380, 381].

3.3.1. Steady-state cluster perturbation theory

In the following we are going to present the extension of the CPT and the VCA to nonequilib-
rium situations, in particular to the steady-state [381]. A common framework is provided by
the nonequilibrium self-energy functional theory in [269]. CPT has been generalized to time
dependent problems in [431] and has been applied to spin systems [430]. The steady-state CPT
was used to study charge transport through molecules [432, 433], also as part of this thesis [65].
The stsVCA has been used to study transport through nano-structures in this thesis ([62, 63]
and Sec. 5.10). A generalization to a consistent reference states is provided in Sec. 5.8 as part of
this thesis [66].

At �rst, we will start out by generalizing the CPT to the framework of Keldysh-Schwinger
nonequilibrium Green's functions. Second, we discuss a steady-state self-consistency criterion for
stsVCA. Third, we outline how a consistent reference state can be found using a QME. Finally
we present ideas how the representation of non-interacting reservoirs can be optimized within
the interacting clusters.
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Figure 3.2.: Setup of a correlated nonequilibrium system. (Top) We discuss �nite size fermionic
systems coupled to in�nite electronic environments. (Bottom) For stsCPT, the
system is tiled into exactly solvable clusters. Some possible cluster tilings: (a)
Tiling at the system-environment coupling. (b) Several sites of the environment are
incorporated into the central interacting cluster. (c) For large interacting systems,
in addition the interacting cluster can be split into several parts.
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Lattice partition

Typical nano- and molecular- junctions can be modelled by a small interacting system ĤS tunnel-
coupled via ĤSE to Nλ non-interacting leads of in�nite extent ĤE , see Fig. 3.2 (top)

Ĥ = Ĥ
S
+ Ĥ

E
+ Ĥ

SE . (3.11)

The interacting system Hamiltonian ĤS typically describes the electronic degrees of freedom of
e.g. a molecule, a nano-structure or a correlated layer in terms of the fermionic creation/anni-
hilation operators f �iσ/fiσ on site i with spin σ. The non-interacting environment Hamiltonian
ĤE models free electron reservoirs i.e. electronic leads

Ĥ
E
= ∑
λkσ

ελkσc
�

λkσcλkσ .

Lead λ is described by the dispersion relation ελkσ of the quasi-particles c�λkσ/cλkσ. The system
and environment are coupled by single-particle tunnelling amplitudes t′iλkσ

Ĥ
SE

= ∑
iλkσ

(t′iλkσf
�
iσcλkσ) + h.c. .

For stsCPT one partitions Ĥ, Eq. (3.11), into individually solvable clusters ĤC and single-
particle terms ĤI mediating between them, see Fig. 3.2 (a)

Ĥ(t)
a.
= Ĥ

C
+ θ(t − t0)Ĥ

I . (3.12)

Formally we consider the inter-cluster perturbation ĤI to be switched on at a time t0. The most
natural and simple cluster decomposition would be into a block diagonal cluster Hamiltonian
ĤC consisting of the interacting system ĤS and the non-interacting leads ĤE which leaves the
system-environment coupling ĤSE as inter-cluster perturbation ĤI . In general it is possible and
sometimes necessary or desirable to choose a di�erent cluster tiling. A di�erent tiling becomes
necessary when ĤS is too large and its full solution is prohibited. In this case ĤS has to be
split into several parts by removing single-particle hoppings which then enter ĤI , see Fig. 3.2
(c). As mentioned above, the stsCPT approximation is the lowest order cluster expansion in the
electronic self-energy. Electronic correlations in the cluster can be taken into account to higher
accuracy when some parts of the non-interacting leads are assigned to ĤC (and also the according
ĤSE). The new inter-cluster perturbation ĤI then consists of a set of cut intra-environment
hoppings, see Fig. 3.2 (b).

Nonequilibrium Green's functions

In the following we brie�y review the underlying framework of the stsCPT, the Keldysh-Schwinger
nonequilibrium Green's function formalism. Within this technique relations for steady-state
perturbation theory are retained which are formally equivalent to their well known equilibrium
counterparts. The equilibrium time-ordering becomes replaced by a formal contour integration
which boils down to a 2×2 matrix structure for Green's functions in Keldysh space. The Keldysh-
Schwinger Green's function technique was proposed by Keldysh [434], although earlier related
approaches exist by Schwinger [435] and by Feynman and Vernon [436]. This chapter is based
based on the book by Haug and Jauho [437] and the review article by Rammer and Smith [438].
The presented description is tailored towards fermionic systems. A similar presentation is also
available in the books [439, 440, 441, 442, 443], review articles [444, 445, 446] and lecture notes
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Figure 3.3.: Keldysh contour. (a) Keldysh (interaction) contour K. (B) Keldysh closed path
contour C for the steady-state.

[447, 448, 449, 450].
The dynamics of of the entire system de�ned by Ĥ, Eq. (3.12), is given by the von-Neumann

equation

i ˙̂ρ = [Ĥ, ρ̂]− , (3.13)

where the commutator is de�ned as [Â, B̂]− = ÂB̂−B̂Â. The formal solution of the von-Neumann
equation de�nes the unitary time evolution operator (h̵ ≡ 1)

Û(t, t0) =
ˆ̂
Te

−i
t

∫
t0

dt′Ĥ(t′)
, (3.14)

where the time-ordering operator

ˆ̂
T (Â(t)B̂(t′)) =

⎧⎪⎪
⎨
⎪⎪⎩

Â(t)B̂(t′) if t > t′

B̂(t′)Â(t) if t′ > t

= θ(t − t′) Â(t)B̂(t′) − θ(t′ − t) B̂(t′)Â(t) ,

orders the operators with increasing time from right to left.
We start from a system in thermal equilibrium for times t ≤ t0 de�ned by the disconnected

cluster Hamiltonian Ĥ(t ≤ t0) = Ĥ
C which is described by the density operator

ρ̂C =
e−βĤ

C

tr{e−βĤC}
,

with inverse temperature β = 1
T
(kB ≡ 1). In the following it is assumed that the interacting part

of the Hamiltonian is switched on adiabatically long before all other processes begin. For times
t > t0 we switch on the inter-cluster perturbation in addition Ĥ(t > t0) = Ĥ and seek to evaluate
nonequilibrium observables

⟨Ô(t)⟩ = tr{ρ̂CÔH(t)} , (3.15)

where the Heisenberg time evolution with respect to the full Hamiltonian is given by

ÔH(t) = Û(t0, t)ÔÛ(t, t0) .

We denote operators in the Schrödinger picture without a subscript H. The well-known repre-
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sentation of the expectation value on the Keldysh contour is obtained by rewriting the density
operator at time t0 in terms of time evolution operators, Eq. (3.14)

Û(t0 − iβ, t0) =
ˆ̂
Te

−i
t0−iβ

∫
t0

dt′Ĥ(t′)
= e−βĤ(t0) = e−βĤ

C

= ρ̂C .

Inserting these expressions into Eq. (3.15) one �nds

⟨Ô(t)⟩ =
tr{Û(t0 − iβ, t0)Û(t0, t)ÔÛ(t, t0)}

tr{Û(t0 − iβ, t0)}
=

tr{ ˆ̂
TK (e

−i ∫
K

dt′Ĥ(t′)
Ô)}

tr{Û(t0 − iβ, t0)}
, (3.16)

where we have formally introduced the integral on the Keldysh-contour K which renders the
treatment of nonequilibrium Green's functions structurally equivalent to the equilibrium case.

Instead of the equilibrium time ordering ˆ̂
T , the contour-ordering operator

ˆ̂
TK (Â(t, c)B̂(t′, c′)) =

⎧⎪⎪
⎨
⎪⎪⎩

Â(t, c)B̂(t′, c′) if {t, c} > {t′, c′}

B̂(t′, c′)Â(t, c) if {t′, c′} > {t, c}
,

orders operators according to the path on the Keldysh contour K. As shown in Fig. 3.3 (a) the
contour starts at the upper branch c = + at time t0 to t and runs back on the lower branch c = −
from at time t to t0. The initial correlations are included in the last part which runs parallel to
the imaginary axis from t0 to t0 − iβ.
This last part plays an important role in the description of time dependent transient phenom-

ena. It vanishes if interactions are turned on adiabatically. We are interested in the description
of steady-state transport. The steady-state itself, in general, does not depend on the way how it
is reached. Therefore it seems plausible that the initial correlations have been washed out and
the information has been transported away into the in�nite reservoirs [447]. This furthermore
allows us to extend the initial time to t0 → −∞ which simpli�es further treatment. In this case
the Keldysh contour K simpli�es to the closed Keldysh-contour C, see Fig. 3.3 (b), which runs
at the upper branch c = + from time −∞ to t → +∞ and on the lower branch c = − back to time
time −∞. Steady-state observables then read

⟨Ô⟩sts ∶= ⟨Ô(t→ +∞)⟩ = ⟨Û(−∞,+∞)ÔÛ(+∞,−∞)⟩ = ⟨
ˆ̂
TC (e

−i ∫
C

dt′Ĥ(t′)
Ô)⟩ .

This expression can be generalized to the single-particle Green's function, which is given by

gc1c2(i, t1; j, t2) = −i⟨fi (t1)f
�
j (t2)⟩sts

= −itr{Û(−∞,−; t1, c1)fi (t1, c1)Û(t1, c1; t2, c2)f
�
j (t2, c2)Û(t2, c2;−∞,+)} .

Here i, j denote compound indices for all the fermionic degrees of freedom e.g. site or spin. When
replacing the contour integral by real time integrals (analytic continuation) this Green's function
takes on one of the four possible combinations:
i) The time-ordered (causal) Green's function (c1 = +, c2 = +)

gTij(t1, t2) = −i⟨
ˆ̂
T (fi (t1)f

�
j (t2))⟩ = g

++
(i, t1; j, t2) ,

which is known from equilibrium perturbation theory.
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ii) Fully inverting the �direction� one �nds the anti-time-ordered Green's function (c1 = −, c2 =
−)

gT̄ij(t1, t2) = −i⟨
ˆ̄̂
T (fi (t1)f

�
j (t2))⟩ = g

−−
(i, t1; j, t2) .

iii) The lesser Green's function (c1 = +, c2 = −)

g<ij(t1, t2) = i⟨f
�
j (t2)fi (t1)⟩ = g

+−
(i, t1; j, t2) ,

describes the propagation of a hole in the system.

iv) While the greater Green's function (c1 = −, c2 = +)

g>ij(t1, t2) = −i⟨fi (t1)f
�
j (t2)⟩ = g

−+
(i, t1; j, t2) ,

describes the propagation of a particle.

Out of these four components only three are independent and a convenient rotation is given
in terms of:

i) The retarded Green's function

gRij(t1, t2) = −iθ(t1 − t2)⟨[fi (t1), f
�
j (t2)]+⟩ = θ(t1 − t2) (g

>
ij(t1, t2) − g

<
ij(t1, t2)) , (3.17)

with the anti-commutator [Â.B̂]+ = ÂB̂ + B̂Â and the usual Heaviside function, see App. C.

θ(t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 ∶ t < 0

1 ∶ t ≥ 0
.

Notice that equivalently gR = gT − g< = g> − gT̄ .

ii) The advanced Green's function

gAij(t1, t2) = iθ(t2 − t1)⟨[fi (t1), f
�
j (t2)]+⟩ = θ(t2 − t1) (g

<
ij(t1, t2) − g

>
ij(t1, t2)) .

Note that equivalently gA = gT − g> = g< − gT̄ .

iii) The Keldysh Green's function

gKij (t1, t2) = −i⟨[fi (t1), f
�
j (t2)]−⟩ = g

<
ij(t1, t2) + g

>
ij(t1, t2) . (3.18)

Notice that gR − gA = g> − g<, gT − gT̄ = gR + gA and gT + gT̄ = g> + g< = gK .

Within this representation the Green's function in the closed Keldysh space is conveniently
de�ned in matrix notation

g̃ij(t1, t2) = (
gRij(t1, t2) gKij (t1, t2)

0 gAij(t1, t2)
) .

Its components obey the symmetries (gR(t1, t2))
�
= gA(t2, t1) and (GK(t1, t2))

�
= −GK(t2, t1).

In the steady-state the system regains its time-translational invariance and therefore the Green's
functions do only depend on the time di�erence τ = t1 − t2. Like in non-relativistic equilibrium
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systems one �nds a more convenient representation in terms of the Fourier transformed

g̃ij(ω) = F[g̃ij(τ)] =

∞

∫
−∞

dτ e+iωτ g̃ij(τ) ,

g̃ij(τ) = F
−1

[g̃ij(ω)] =
1

2π

∞

∫
−∞

dω e−iωτ g̃ij(ω) ,

Green's functions

g̃ij(ω) = (
gRij(ω) gKij (ω)

0 gAij(ω)
) . (3.19)

Single-particle Green's function

Equilibrium CPT is based on a perturbative expansion of the electronic self-energy Σ. This
expansion remains formally equivalent in the steady-state when replacing the equilibrium quan-
tities by their corresponding nonequilibrium counterparts, the 2 × 2 Keldysh space steady-state
Green's function g̃(ω) (Eq. (3.19)) and self-energy Σ̃(ω). The single-particle Green's function
G̃(ω) of the entire nonequilibrium system in the steady-state as described by Ĥ (Eq. (3.11)) is
given by an expression analogously to the equilibrium case (Eq. (3.9))

G̃(ω)−1
= g̃(ω)−1

− T̃ , (3.20)

with the inter-cluster perturbation in Keldysh space TR = TA = T , TK = 0. In our notation
all Green's functions gα(ω) are block diagonal in the individual clusters and for non-interacting
in�nite systems only one entry at the coupling site is needed [329]. Besides the usual retarded
Green's function gR(ω) (Eq. (3.17)) also the Keldysh component gK(ω) (Eq. (3.18)) needs to be

evaluated. The advanced component follows gA(ω) = (gR(ω))
�
. Note that for the equilibrium

starting point of decoupled clusters, their respective Keldysh component is provided by the
�uctuation-dissipation result gK(ω) = (gR(ω) − gA(ω)) (1 − 2pFD(ω,T,µ)), with the Fermi-Dirac
distribution pFD(ω,T,µ) = 1

1+e
(ω−µ)
T

at an initial temperature T and a chemical potential µ [36].

Evaluation of observables

Within stsCPT single-particle observables can be computed from the Keldysh Green's function
GK(ω) (Eq. (3.20)). In the stsCPT approximation the single-particle density matrix

κij =
δij

2
−
i

2

∞

∫
−∞

dω

2π
GKij (ω) , (3.21)

can be expressed in terms of the retarded CPT Green's function

κij =
δij

2
−
i

2

∞

∫
−∞

dω

2π

⎛

⎝
GRin(ω)Pnj(ω) − Pin(ω)(G

R
jn(ω))

∗
+GRin(ω) ([P (ω), T ]−)nm (GRjm(ω))∗

⎞

⎠
,

The last line holds within stsCPT, we use the Einstein summation convention and Pij(ω) =

δij(1 − 2pFD(ω,Ti, µi)).
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Important steady-state observables of transport experiments can be readily read o� from κij .
Introducing the spin label explicitly, the site resolved charge density is provided by the diagonal
elements ⟨ni⟩ = ∑

σ
κiiσ and the magnetization by ⟨mi⟩ =

1
2
(κii↑ − κii↓).

The current ⟨j⟨ij⟩⟩ between nearest-neighbour sites ⟨ij⟩ is related to the imaginary part of κij
and reads in symmetrized Meir-Wingreen form [228]

⟨j⟨ij⟩⟩ =
e

2h̵
(hijκij − hjiκji) ,

where hij is the single-particle Hamiltonian.
Equivalently, the transmission current between two environments λ = 1, 2 can be evaluated in

the Landauer-Büttiker form [437, 17, 432]

⟨j1/2⟩ =
e

h̵

∞

∫
−∞

dω

2π
W (ω)tr{T (ω)} ,

with the transport window

W (ω) = pFD(ω,T1, µ1) − pFD(ω,T2, µ2) ,

and the transmission function

T (ω) = GR(ω)Γ1(ω) (G
R
(ω))

�
Γ2(ω) ,

which is given in terms of GR(ω) = ((gR(ω))−1 − (Σ̃1 + Σ̃2))
−1

where the lead broadening func-
tions of lead λ projected onto the system sites i, j are Σ̃λij = Tiλg

R
λλTλj and Γλ = −2Im (Σ̃λ).

3.3.2. Steady-state variational cluster approach

In the following we present an extension of the plain stsCPT which allows for a better repre-
sentation of the electronic self-energy and therefore higher accuracy. In equilibrium, the VCA
provides a dynamic variational principle to �nd an optimized unperturbed reference state using
CPT. The strategy for the steady-state is formally equivalent to the equilibrium VCA, see the
beginning of Ch. 3.3. One parametrizes the self-energy by a set of single-particle parameters ∆
which span the search-space for the optimal self-energy. The cluster partitioned Hamiltonian Ĥ
(Eq. (3.12)) does not change if we add a single-particle operator ∆̂ to the cluster Hamiltonian
ĤC and subtract them again from the inter-cluster perturbation ĤI

Ĥ
C
(∆) = Ĥ

C
+ ∆̂ ,

Ĥ
I
(∆) = Ĥ

I
− ∆̂ .

In particular

∆̂ = ∑
δ1δ2

∆δ1δ2f
�

δ1
fδ2 , (3.22)

see Fig. 3.4 (top). As in equilibrium VCA, the indices δ ∈ {δ1, . . . , δLC} usually refer to actual
system degrees of freedom. Then ∆δiδj renormalizes the according single-particle parameter of
the system in ĤC . Another possibility is to add LB auxiliary bath sites δ ∈ {δLC+1, . . . , δLC+LB}

described by f �δ /fδ which may acquire a �nite coupling to the system and an on-site energy
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Figure 3.4.: Reference state. (Top) The stsVCA reference state. (Bottom) Contributing many-
body states in stsCPT, stsVCA and meCPT.
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during the stsVCA self-consistency cycle.

Generalizing the expression for the equilibrium generalized grand potential Eq. (3.10) to time
dependent problems, a formally analogous expression is obtained on the Keldysh contour [269].
In the steady-state one obtains

Ω[Σ̃(∆)] = Ω′
+Tr{ln (G̃))} −Tr{ln (g̃)}

= Ω′
(∆) +Tr{ln ((G̃−1

0 − Σ̃(∆))
−1

)} −Tr{ln ((g̃−1
0 − Σ̃(∆))

−1
)} ,

with the VCA variational principle

∂Ω[Σ̃(∆)]

∂Σ̃(∆)

!
= 0 = Tr{

δΣ̃(∆)

δ∆
(G̃ − g̃)} = ∫

dω

2π
t̃r{σ̃x

∂Σ̃(ω,∆)

∂∆
(G̃(ω) − g̃(ω))} , (3.23)

where σ̃x = (
0 1
1 0

) is the �rst Pauli matrix in Keldysh space, see App. B. Noting that Σ̃ is only

di�erent from zero on the sites of the interacting clusters, denoted by c. One obtains for the
trace in Eq. (3.23)

t̃r{(
0 1
1 0

)(
∂
∂∆

ΣR ∂
∂∆

ΣK

0 ∂
∂∆

ΣA
)(

(GR − gR) (GK − gK)

0 (GA − gA)
)}

= tr{(
∂

∂∆
ΣRcc)(GKcc − g

K
cc) + (

∂

∂∆
ΣKcc)(GAcc − g

A
cc)} . (3.24)

Using Dyson's equation [36] in Keldysh space

Σ̃ = G̃−1
0 − G̃−1 ,

and the CPT equation (Eq. (3.20)) for the non-interacting and interacting Green's functions G̃−1
0

and G̃−1

G̃−1
0 = g̃−1

0 − T̃ ,

G̃−1
= g̃−1

− T̃ ,

the stsCPT self-energy takes the form

Σ̃ = g̃−1
0 − g̃−1 .

Its retarded (upper left) and Keldysh (upper right) components can be read o� from the general
structure of an inversion of a matrix γ̃ in Keldysh space

γ̃−1
=
⎛

⎝

(γR)
−1

−(γR)
−1
γK (γA)

−1

0 (γA)
−1

⎞

⎠
.

Using the expression for the trace (Eq. (3.24)) and plugging in the explicit relation for the self-

30



energy, the VCA variational principle (Eq. (3.23)) takes the form

∂Ω[Σ̃(∆)]

∂Σ̃(∆)
= 0 = tr

⎧⎪⎪
⎨
⎪⎪⎩
∫

dω

2π

⎛

⎝

∂

∂∆
((gR0 )

−1
− (gR)

−1
)
cc

(GKcc − g
K
cc)

+ (
∂

∂∆
( − (gR0 )

−1
gK0 (gA0 )

−1
+ (gR)

−1
gK (gA)

−1
))

cc

(GAcc − g
A
cc)

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

,

where (g̃−1)
K

cc
= (−(gR0 )

−1
gK0 (gA0 )

−1
)
cc
= 0 for sites c of the interacting �nite size clusters. So

we are left with

∂Ω[Σ̃(∆)]

∂Σ̃(∆)
= 0 = tr

⎧⎪⎪
⎨
⎪⎪⎩
∫

dω

2π
(
∂ (gR0,cc)

−1

∂∆
−
∂ (gRcc)

−1

∂∆
)(GKcc − g

K
cc)

⎫⎪⎪
⎬
⎪⎪⎭

.

Further considering the expression for ∆̂ (Eq. (3.22)) one �nds ∂
∂∆

(gR0 (∆))−1 = −δiδ1δjδ2 , where
δi are sites out of c at which a variational parameter acts, and �nally obtains

∂Ω[Σ̃(∆)]

∂Σ̃(∆)
= 0 = −tr

⎧⎪⎪
⎨
⎪⎪⎩
∫

dω

2π
(δiδ1δjδ2 +

∂ (gRcc)
−1

∂∆
)(GKcc − g

K
cc)

⎫⎪⎪
⎬
⎪⎪⎭

= −∫
dω

2π
GKδ1δ2(ω) + ∫

dω

2π
gKδ1δ2(ω) − tr

⎧⎪⎪
⎨
⎪⎪⎩
∫

dω

2π

∂ (gRcc)
−1

∂∆
(GKcc − g

K
cc)

⎫⎪⎪
⎬
⎪⎪⎭

= −(
δδ1δ2

2
−
i

2
∫

dω

2π
GKδ1δ2(ω)) + (

δδ1δ2
2

−
i

2
∫

dω

2π
gKδ1δ2(ω))

+
i

2
tr

⎧⎪⎪
⎨
⎪⎪⎩
∫

dω

2π

∂ (gRcc)
−1

∂∆
(GKcc − g

K
cc)

⎫⎪⎪
⎬
⎪⎪⎭

= −κstsδ1δ2 + κ
cluster
δ1δ2 +

i

2
tr

⎧⎪⎪
⎨
⎪⎪⎩
∫

dω

2π

∂ (gRcc)
−1

∂∆
(GKcc − g

K
cc)

⎫⎪⎪
⎬
⎪⎪⎭

where κstsδ1δ2/κ
cluster
δ1δ2

are the elements of the steady-state/reference-state single-particle density
matrix as found from Eq. (3.21). Eq. (3.23) provides a system of equations which roots determine
the optimal stsVCA parameters ∆opt.. The last term is often small. Neglecting it leads to an
intuitive, alternative self-consistency criterion, as suggested in [268], in terms of the single-
particle density matrices of the steady-state and the reference system. The remaining term
can be recast in the form κstsδ1δ2 = κclusterδ1δ2

which determines those variational parameters which
make the reference system as similar as possible to the steady-state in terms of single-particle
expectation values. The alternative self-consistency criterion can be written in compact form
[268]

0
!
= Tr{

∂g̃−1
0 (∆)

∂∆
(G̃ − g̃)} = ∫

dω

2π
t̃r{σ̃x

∂g̃−1
0 (ω,∆)

∂∆
(G̃(ω) − g̃(ω))} , (3.25)

compare to the starting point Eq. (3.23).

For terms in ∆̂ which correspond to system degrees of freedom this procedure requires the
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reference system to behave as similar as possible to the steady-state in terms of the single-particle
expectation value of the variational parameters. Note that when ∆̂ includes the coupling and on-
site energies of an in�nite number of bath sites, the self-consistency Eq. (3.25) becomes equivalent
to nonequilibrium cluster DMFT.

3.3.3. Consistent reference state

In stsCPT g̃(ω) is computed based on an equilibrium reference state obtained for t < t0 i.e.
for ĤS . For the interacting �nite size regions S, one typically chooses a temperature TS = 0
and a chemical potential µS in-between the ones of the non-interacting leads. For this setup
the reference state ∣ψ⟩S is then obtained as the pure zero temperature ground state of ĤS .
This arbitrary choice of the chemical potential µS and temperature TS for �nite size interacting
clusters would not in�uence the �nal solution in an ideal exact treatment. However, since stsCPT
is perturbative in ĤI , the stsCPT solution G̃(ω) will depend on details of the reference state.
As explained above, the stsVCA reference state is improved by variational parameters de-

termined by a dynamic variational principle. The stsVCA reference state, however, again is
an equilibrium state ρ̂S(∆opt.) obtained from ĤS(∆opt.). The chemical potential µS can be
optimized in the stsVCA self-consistency by including it in ∆̂. In principle also an optimiza-
tion of TS would be possible but is numerically too demanding [451, 452, 453]. In this way the
stsVCA reference state ∣ψ⟩C is typically obtained as the pure zero temperature ground state of
ĤS(∆opt.).
In the following we pursue a very simple idea to generalize the unperturbed zero order reference

state to a consistent nonequilibrium state [66]. In equilibrium the grand-canonical reference
state ρ̂Sgc is uniquely determined by the thermodynamic equilibrium situation. This Boltzmann
distribution of the weights in ρ̂Sgc is entirely characterized by a chemical potential µS and a
temperature TS . This distribution is found by the steady-state solution of a QME in the Born-
Markov approximation, when coupling the system to one thermal reservoir. From this viewpoint
a natural extension to the nonequilibrium situation is to make use of this QME as well in order
to obtain a consistent reference state when coupling the system to non thermal reservoirs or
to multiple reservoirs with temperature or voltage di�erences. In the steady-state, the reference
state is then given by the steady-state reduced density operator of the system ρ̂S . In the following
we outline how the correct zeroth order reduced density operator ρ̂S is obtained from a second
order Born-Markov QME.
The real time τ evolution of the many-body density matrix ρ̂ is given by the von-Neumann

equation Eq. (3.13), where Ĥ includes the interacting system, the environment and the coupling
in-between (Eq. (3.11)) [454]. Typically the large size of the Hilbert space of Ĥ prohibits the
formal full solution which for time independent Hamiltonians reads, ρ̂(τ) = e+iĤτ ρ̂(0)e−iĤτ .
Following the standard approach [61, 455, 456], we consider quantum junctions in the weak
coupling limit ∣ĤSE ∣ ≪ {∣ĤE ∣} and consider a cluster decomposition in ∣ĤSE ∣ for simplicity. In
the interaction picture with respect to the coupling ρ̂I(τ) = e+i(Ĥ

S+ĤE)τ ρ̂(0)e−i(Ĥ
S+ĤE)τ the

von-Neumann equation reads ˙̂ρI(τ) = −i [ĤSEI , ρ̂I]−. We are interested in the reduced system
many-body density matrix ρ̂S(τ) = trE {ρ̂} which takes the form

˙̂ρSI (τ) = −itrE {[Ĥ
SE
I (τ), ρ̂(0)]−} −

τ

∫
0

dτ ′trE {[Ĥ
SE
I (τ), [ĤSEI (τ ′), ρ̂I(τ

′
)]−]−} .

To obtain a tractable equation we perform three standard approximations [61]:
i) The Born approximation is a perturbative expansion of the density matrix ρ̂I(τ) = ρ̂SI (τ) ⊗
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¯̂ρEI +O(∣ĤSE ∣)

˙̂ρSI (τ) = −itrE {[Ĥ
SE
I (τ), ρ̂(0)]−} −

τ

∫
0

dτ ′trE {[Ĥ
SE
I (τ), [ĤSEI (τ ′), ρ̂SI (τ

′
) ⊗ ¯̂ρEI ]−]−} +O(∣ĤC ∣3) .

ii) The Markov approximation assumes a memory-less bath, that is the density matrix varies
slower in time than the decay time of the bath correlation functions Cαβ(τ) which decay rapidly,
which allows to replace ρ̂SI (τ

′) with ρ̂SI (τ) and extend the integration limit from τ to +∞.
Furthermore one can show that single-particle expectation values vanish and we can therefore
neglect the �rst term yielding

˙̂ρSI (τ) = −

∞

∫
0

dt′trE {[Ĥ
SE
I (τ), [ĤSEI (τ ′), ρ̂SI (τ) ⊗ ¯̂ρEI ]−]−} ,

which upon transforming back to the Schrödinger picture yields an equation which is is time-local,
preserves trace and hermiticity, and has constant coe�cients.

iii) To obtain an equation of Lindblad form which in addition preserves positivity, we employ
the secular approximation which averages over fast oscillating terms.

Born-Markov-secular master equation

The resulting BMsme for the system density matrix ρS(τ) is valid in the weak coupling limit
and takes a convenient form for hermitian system-bath coupling operators [61, 457], for details
see App. E

Ĥ
SE

= ∑
α

Ŝα ⊗ B̂α with

Ŝα = Ŝ�
α and B̂α = B̂�

α .

The BMsme reads in the energy eigenbasis of the system Hamiltonian ĤS ∣a⟩ = ωa∣a⟩

ρ̇S(τ) = −i [ĤS + ĤLS , ρS(τ)]− + ∑
abcd

Ξab,cd (∣a⟩⟨b∣ρ
S
(τ)∣d⟩⟨c∣ −

1

2
[∣d⟩⟨c∣∣a⟩⟨b∣, ρS(τ)]+) , (3.26)

with

Ξab,cd = ∑
αβ

ξαβ(ωb − ωa)δωb−ωa,ωd−ωc⟨a∣Ŝβ ∣b⟩⟨c∣Ŝα∣d⟩
∗ . (3.27)

The Lamb-shift Hamiltonian is de�ned as

Ĥ
LS

= ∑
ab

Λab∣a⟩⟨b∣ , (3.28)

with

Λab =
1

2i
∑
αβ

∑
c

λαβ(ωb − ωc)δωb,ωa⟨c∣Ŝβ ∣b⟩⟨c∣Ŝα∣a⟩
∗ . (3.29)
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Note that [ĤLS , ĤS]− = 0. The BMsme in this form is valid if

[Ĥ
E , ρ̄E]− = 0 and

Tr (B̂αρ̄E) = 0 .

The constants ξ and λ are given by the full even and odd Fourier transforms

ξαβ(ω) =

∞

∫
−∞

dτ Cαβ(τ)e
+iωτ (3.30)

λαβ(ω) =

∞

∫
−∞

dτ sign(τ)Cαβ(τ)e+iωτ =
i

π

∞

∫
−∞
P dω′

ξαβ(ω
′)

ω − ω′
, (3.31)

of the bath correlation functions

Cαβ(τ) =Tr (e+iĤ
Eτ B̂αe

−iĤEτ B̂β ρ̄
E
) = Tr (B̂α(τ)B̂β ρ̄E) , (3.32)

where the Heisenberg time evolution is

B̂α(τ) = e
+iĤEτ B̂αe

−iĤEτ .

Pauli master equation

We �rst consider the BMsme for non-degenerate system Hamiltonians, where it reduces to
an equation for classical probabilities. For non-degenerate ĤS the eigenvalues ωa are unique.
Then the structure of Eq. (3.29) and Eq. (3.27) allows to replace δωb,ωa → δb,a in Eq. (3.29) and
δωb−ωa,ωd−ωc → δb,d δa,c in Eq. (3.27). Using these relations we �nd for the only non-zero elements

Ξab ∶= Ξab,ab = ∑
αβ

ξαβ(ωb − ωa)⟨a∣Ŝβ ∣b⟩⟨a∣Ŝα∣b⟩
∗ , (3.33)

and

Λa ∶= Λaa =
1

2i
∑
αβ

∑
c

λαβ(ωa − ωc)⟨c∣Ŝβ ∣a⟩⟨c∣Ŝα∣a⟩
∗ . (3.34)

As a result Eq. (3.26) reduces to

ρ̇S(τ) = −i [ĤS + ĤLS , ρS(τ)]− +∑
a,b

Ξab (∣a⟩⟨b∣ρ
S
(τ)∣b⟩⟨a∣ −

1

2
[∣b⟩⟨b∣, ρS(τ)]+) , (3.35)

with

Ĥ
LS

= ∑
a

λa∣a⟩⟨a∣ . (3.36)

Next we derive equations to obtain the many-body density matrix form the BMsme for non-
degenerate systems. One can split the evolution into two independent contributions from the
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two terms in Eq. (3.35) seperately, starting out with the �rst one involving the commutator

ρ̇S1 (τ) = −i [Ĥ
S
+ Ĥ

LS , ρS1 (τ)]−

= −i
⎡
⎢
⎢
⎢
⎣
∑
a

ωa∣a⟩⟨a∣ +∑
b

Λb∣b⟩⟨b∣,∑
xy

ρS1,xy(τ)∣x⟩⟨y∣
⎤
⎥
⎥
⎥
⎦−

= −i ∑
abxy

ρS1,xy(τ)(ωa∣a⟩⟨a∣∣x⟩⟨y∣ +Λb∣b⟩⟨b∣∣x⟩⟨y∣ − ωa∣x⟩⟨y∣∣a⟩⟨a∣ −Λb∣x⟩⟨y∣∣b⟩⟨b∣)

= i∑
xy

ρS1,xy(τ)((ωy − ωx) + (Λy −Λx))∣x⟩⟨y∣ .

In the non-degenerate case it can be shown that the diagonal elements decouple from the o�-
diagonal terms. The diagonal terms read (a = b)

ρ̇S1,aa(τ) = ⟨a∣ρ̇S1 (τ)∣a⟩ = i∑
xy

ρS1,xy(τ)((ωy − ωx) + (Λy −Λx))⟨a∣∣x⟩⟨y∣∣a⟩

= iρS1,aa(τ)((ωa − ωa) + (Λa −Λa))

= 0 .

The o�-diagonal terms read (a ≠ b)

ρ̇S1,ab(τ) = ⟨a∣ρ̇S1 (τ)∣b⟩ = i∑
xy

ρS1,xy(τ)((ωy − ωx) + (Λy −Λx))⟨a∣∣x⟩⟨y∣∣b⟩

= iρS1,ab(τ)((ωb − ωa) + (Λb −Λa)) .

Next we consider the second, non-unitary term in Eq. (3.35)

ρ̇S2 (τ) = ∑
ab

Ξab (∣a⟩⟨b∣ρ
S
2 (τ)∣b⟩⟨a∣ −

1

2
[∣b⟩⟨b∣, ρS2 (τ)]+)

= ∑
ab

Ξab
⎛

⎝
∣a⟩⟨b∣∑

xy

ρS2 (τ)∣x⟩⟨y∣∣b⟩⟨a∣ −
1

2
(∣b⟩⟨b∣∑

xy

ρS1,xy(τ)∣x⟩⟨y∣ +∑
xy

ρS1,xy(τ)∣x⟩⟨y∣∣b⟩⟨b∣)
⎞

⎠

= ∑
abxy

Ξabρ
S
2,xy(τ)

⎛

⎝
∣a⟩⟨b∣∣x⟩⟨y∣∣b⟩⟨a∣ −

1

2
∣b⟩⟨b∣∣x⟩⟨y∣ −

1

2
∣x⟩⟨y∣∣b⟩⟨b∣

⎞

⎠

= ∑
cx

Ξcxρ
S
2,xx(τ)∣c⟩⟨c∣ −

1

2
∑
cxy

(Ξcxρ
S
2,xy(τ) +Ξcyρ

S
2,xy(τ))∣x⟩⟨y∣ .
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The diagonal terms then read (a = b)

ρ̇S2,aa(τ) = ⟨a∣ρ̇S2 (τ)∣a⟩ = ∑
cx

Ξcxρ
S
2,xx(τ)⟨a∣∣c⟩⟨c∣∣a⟩ −

1

2
∑
cxy

(Ξcxρ
S
2,xy(τ) +Ξcyρ

S
2,xy(τ))⟨a∣∣x⟩⟨y∣∣a⟩

= ∑
x

Ξaxρ
S,xx
2 (τ) −

1

2
∑
c

(Ξcaρ
S
1,aa(τ) +Ξcaρ

S
2,aa(τ))

= ∑
c

(Ξacρ
S
2,cc(τ) −Ξcaρ

S
2,aa(τ)) .

The o�-diagonal terms read (a ≠ b)

ρ̇S2,aa(τ) = ⟨a∣ρ̇S2 (τ)∣b⟩ = ∑
cx

Ξcxρ
S
2,xx(τ)⟨a∣∣c⟩⟨c∣∣b⟩ −

1

2
∑
cxy

(Ξcxρ
S
2,xy(τ) +Ξcyρ

S
2,xy(τ))⟨a∣∣x⟩⟨y∣∣b⟩

= ∑
x

Ξaxρ
S
2,xx(τ)δa,b −

1

2
∑
c

(Ξca +Ξcb)ρ
S
2,ab(τ)

= −
1

2
∑
c

(Ξca +Ξcb)ρ
S
2,ab(τ) .

Collecting the individual results of the two terms in Eq. (3.35) we obtain the evolution of the
many-body density matrix in the non-degenerate case. The diagonal elements decouple from the
o�-diagonal evolution. The diagonal components evolve by

ψ̇a(τ) = ρ̇
S
aa(τ) = ρ̇

S
1,aa(τ) + ρ̇

S
2,aa(τ)

= 0 +∑
c

(Ξacρ
S
cc(τ) −Ξcaρ

S
aa(τ))

= ∑
c

(Ξacψc(τ) −Ξcaψa(τ)) ,

where a vector in the reduced space of the diagonals of the reduced many-body density matrix
is denoted ψa = ρSaa. The o�-diagonal components evolve by

ρ̇Sab(τ) = ρ̇
S
1,ab(τ) + ρ̇

S
2,ab(τ)

=
⎛

⎝
i(ωb +Λb − ωa −Λa) −

1

2
∑
c

(Ξca +Ξcb)
⎞

⎠
ρSab(τ) .

The �nal result in the non-degenerate case reads

ψ̇a(τ) = ∑
c

(Ξacψc(τ) −Ξcaψa(τ)) , (3.37a)

ρ̇Sab(τ) =
⎛

⎝
i(ωb +Λb − ωa −Λa) −

1

2
∑
c

(Ξca +Ξcb)
⎞

⎠
ρSab(τ) , (3.37b)

where the �rst line holds for a = b and the second line for a ≠ b, Ξab is de�ned in Eq. (3.33), ωa are
the non-degenerate eigenenergies of the system Hamiltonian and the non-degenerate Lamb-shift
coe�cients Λa are de�ned in Eq. (3.34).
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Reduced system density matrix

Next we derive the governing equations for the evolution of the reduced many-body density
matrix in the general case, i.e. for systems which might be degenerate. Similar to the non-
degenerate case, the evolution can be split into two independent contributions from the two
terms in Eq. (3.26), starting out with the �rst one involving the commutator

ρ̇S1 (τ) = −i [Ĥ
S
+ Ĥ

LS , ρS1 (τ)]−

= −i
⎡
⎢
⎢
⎢
⎣
∑
c

ωc∣c⟩⟨c∣ +∑
ab

Λab∣a⟩⟨b∣,∑
xy

ρS1,xy(τ)∣x⟩⟨y∣
⎤
⎥
⎥
⎥
⎦−

= −i ∑
xyabc

ρS1,xy(τ)(ωc∣c⟩⟨c∣∣x⟩⟨y∣ +Λab∣a⟩⟨b∣∣x⟩⟨y∣ − ωc∣x⟩⟨y∣∣c⟩⟨c∣ −Λab∣x⟩⟨y∣∣a⟩⟨b∣)

= i∑
xyc

ρS1,xy(τ)((ωy − ωx)∣x⟩⟨y∣ +Λyc∣x⟩⟨c∣ −Λcx∣c⟩⟨y∣) .

In the general case the diagonal elements do not decouple from the o�-diagonal terms. The �rst
part of the evolution for the reduced many-body density matrix reads

ρ̇S1,ab(τ) = ⟨a∣ρ̇S1 (τ)∣b⟩ = i∑
xyc

ρS1,xy(τ)((ωy − ωx)⟨a∣∣x⟩⟨y∣∣b⟩ +Λyc⟨a∣∣x⟩⟨c∣∣b⟩ −Λcx⟨a∣∣c⟩⟨y∣∣b⟩)

= i((ωb − ωa)ρ
S
1,ab(τ) +∑

c

(ρS1,ac(τ)Λcb −Λacρ
S
1,cb(τ)))

Next we consider the second, non-unitary term in Eq. (3.26)

ρ̇S2 (τ) = ∑
abcd

Ξab,cd (∣a⟩⟨b∣ρ
S
(τ)∣d⟩⟨c∣ −

1

2
[∣d⟩⟨c∣∣a⟩⟨b∣, ρS(τ)]+)

= ∑
abcdxy

Ξab,cdρ
S
2,xy(τ)

⎛

⎝
∣a⟩⟨b∣∣x⟩⟨y∣∣d⟩⟨c∣ −

1

2
(∣d⟩⟨c∣∣a⟩⟨b∣∣x⟩⟨y∣ + ∣x⟩⟨y∣∣d⟩⟨c∣∣a⟩⟨b∣)

⎞

⎠

= ∑
cdxy

ρS2,xy(τ)
⎛

⎝
Ξcx,dy ∣c⟩⟨d∣ −

1

2
Ξcx,cd∣d⟩⟨y∣ −

1

2
Ξcb,cy ∣x⟩⟨d∣

⎞

⎠
.

The second part of the evolution for the reduced many-body density matrix reads

ρ̇S2,ab(τ) = ⟨a∣ρ̇S2 (τ)∣b⟩ = ∑
cdxy

ρS2,xy(τ)
⎛

⎝
Ξcx,dy⟨a∣∣c⟩⟨d∣∣b⟩ −

1

2
Ξcx,cd⟨a∣∣d⟩⟨y∣∣b⟩ −

1

2
Ξcb,cy⟨a∣∣x⟩⟨d∣∣b⟩

⎞

⎠

= ∑
cd

⎛

⎝
Ξac,bdρ

S
2,cd(τ) −

1

2
Ξcd,caρ

S
2,db(τ) −

1

2
Ξcb,cdρ

S
2,ad(τ)

⎞

⎠
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Collecting the individual results of the two terms in Eq. (3.26) we obtain the �nal result for the
evolution of the reduced many-body density matrix in the general (degenerate) case

ρ̇Sab(τ) = ρ̇
S
1,ab(τ) + ρ̇

S
2,ab(τ)

= i(ωb − ωa)ρ
S
ab(τ) (3.38)

+ i∑
c

(ρS,ac(τ)Λcb −Λacρ
S
cb(τ))

+∑
cd

⎛

⎝
Ξac,bdρ

S
cd(τ) −

1

2
Ξcd,caρ

S
db(τ) −

1

2
Ξcb,cdρ

S
ad(τ)

⎞

⎠
,

where Ξab,cd is de�ned in Eq. (3.27), ωa are the possibly degenerate eigenenergies of the system
Hamiltonian and the general Lamb-shift coe�cients Λab are de�ned in Eq. (3.29).

Bath correlation functions

The coe�cients of the BMsme (Eq. (3.26)) are given in terms of bath correlation functions as
outlined in App. E. In summary we obtain for the time dependent correlation functions Cαβ(τ)

C11(τ) = C22(τ) =
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2ipFD(ωλk, βλ, µλ) sin (ωλkτ) + e

−iωλkτ)

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ

+ 2ipFD(ν, βλ, µλ) sin (ντ)) ,

C12(τ) = −C21(τ) =
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2pFD(ωλk, βλ, µλ) cos (ωλkτ) − e

−iωλkτ)

=
i

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)( − e
−iντ

+ 2pFD(ν, βλ, µλ) cos (ντ)) .

For their respective even Fourier transforms γαβ(ω) we �nd

γ11(ω) = γ22(ω) =
1

2
∑
λ

Γλ(−ω)pFD(−ω,βλ, µλ) + Γλ(ω)p̄FD(ω,βλ, µλ) ,

γ12(ω) = −γ21(ω) =
i

2
∑
λ

Γλ(−ω)pFD(−ω,βλ, µλ) − Γλ(ω)p̄FD(ω,βλ, µλ) .

The odd Fourier transforms σαβ(ω) are given by

σ11(ω) = σ22(ω) =
i

2π
∑
λ

∞

∫
−∞
P dνΓλ(ν)(

pFD(ν, βλ, µλ)

ν + ω
−
p̄FD(ν, βλ, µλ)

ν − ω
) ,

σ12(ω) = −σ21(ω) = −
1

2π
∑
λ

∞

∫
−∞
P dνΓλ(ν)(

pFD(ν, βλ, µλ)

ν + ω
+
p̄FD(ν, βλ, µλ)

ν − ω
) .

Single-particle density matrix

Next we provide expressions for the basic single-particle observables, typically of interest, in
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terms of the reduced many-body density matrix ρS . The single-particle density matrix κ reads

κijσ(τ) = tr(c
�
iσcjσρ

S
(τ)) = ∑

ab

⟨b∣c�iσcjσ ∣a⟩⟨a∣ρ
S
(τ)∣b⟩ = ∑

ab

⟨b∣c�iσcjσ ∣a⟩ρ
S
ab(τ) ,

where a and b denote eigenstates of the system Hamiltonian and i and j are single-particle
quantum numbers like site or orbital, for σ we have in mind spin. From the single-particle
density-matrix we read o� the site occupation ⟨ni⟩(τ) = ∑

σ
κiiσ(τ), the spin resolved occupations

⟨niσ⟩(τ) = κiiσ(τ), and the magnetization ⟨mi⟩(τ) =
1
2
(κiiσ(τ) − κiiσ̄(τ)).

Current to the reservoir

Next we obtain an expression for the current to reservoir λ making use of the operator of total
system charge Q̂ and total system particle number N̂ , where q denotes the charge of one charge
carrier

jλ(τ) =
d

dτ
⟨Q̂(τ)⟩ = q

d

dτ
⟨N̂(τ)⟩ = q

d

dτ
tr (N̂ρS(τ)) = qtr (N̂ ρ̇S(τ))

= qtr (N̂ (ρ̇S(1)(τ) + ρ̇
S
(2)(τ) + ρ̇

S
(3)(τ)))

= jλ,(1)(τ) + jλ,(2)(τ) + jλ,(3)(τ) ,

where we split the calculation into three parts according to the three terms in Eq. (3.26). Note
that in the following we use the expressions Ξab,cd and λab although, only the quantities of bath
λ should be considered, so what we really mean is Ξλab,cd and λ

λ
ab. This index will be re-instated

in the �nal results at the end of this section. We start out by calculating the term involving the
commutator with the system Hamiltonian

jλ,(1)(τ) = qtr
⎛

⎝
∑
f

nf ∣f⟩⟨f ∣ρ̇
S
(1)(τ)

⎞

⎠

= qtr
⎛

⎝
∑
f

nf ∣f⟩⟨f ∣(−i) [Ĥ
S , ρS(τ)]−

⎞

⎠

= q∑
f

nf tr
⎛

⎝
∣f⟩⟨f ∣

⎛

⎝
−i∑

a

ωa∣a⟩⟨a∣∑
xy

ρSxy(τ)∣x⟩⟨y∣ + i∑
xy

ρSxy(τ)∣x⟩⟨y∣∑
a

ωa∣a⟩⟨a∣
⎞

⎠

⎞

⎠

= iq∑
f

nf tr(∑
a

(ωa − ωf)ρ
S
fa(τ)∣f⟩⟨a∣)

= iq∑
f

nf∑
ac

(ωa − ωf)ρ
S
fa(τ)⟨c∣∣f⟩⟨a∣∣c⟩

= iq∑
f

nf (ωf − ωf)ρ
S
ff(τ)

= 0 .
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The second term in Eq. (3.26) involves the commutator with the Lamb-shift Hamiltonian

jλ,(2)(τ) = qtr
⎛

⎝
∑
f

nf ∣f⟩⟨f ∣ρ̇
S
(2)(τ)

⎞

⎠

= qtr
⎛

⎝
∑
f

nf ∣f⟩⟨f ∣(−1) [ĤLS , ρS(τ)]−
⎞

⎠

= q∑
f

nf tr
⎛

⎝
∣f⟩⟨f ∣

⎛

⎝
−i∑

ab

Λab∣a⟩⟨b∣∑
xy

ρSxy(τ)∣x⟩⟨y∣ + i∑
xy

ρSxy(τ)∣x⟩⟨y∣∑
ab

Λab∣a⟩⟨b∣
⎞

⎠

⎞

⎠

= iq∑
f

nf tr(∑
ab

(Λabρ
S
fa(τ) −Λfaρ

S
ab(τ)) ∣f⟩⟨b∣)

= iq∑
f

nf∑
abc

(Λabρ
S
fa(τ) −Λfaρ

S
ab(τ)) ⟨c∣∣f⟩⟨b∣∣c⟩

= iq∑
ab

(nbΛabρ
S
ba(τ) − nbΛbaρ

S
ab(τ))

= iq∑
ab

(naΛbaρ
S
ab(τ) − nbΛbaρ

S
ab(τ))

= iq∑
ab

(na − nb)Λbaρ
S
ab(τ) .

For non-degenerate systems (λab = λaδa,b) this takes on the form

j
λ,(2)
non-deg(τ) = iq∑

ab

(na − nb)Λaδa,bρ
S
ab(τ)

= iq∑
a

(na − na)Λaρ
S
aa(τ)

= 0 .
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At last we treat the third term in Eq. (3.26) which involves the non-unitary part of the evolution

jλ,(3)(τ) = qtr
⎛

⎝
∑
f

nf ∣f⟩⟨f ∣ρ̇
S
(3)(τ)

⎞

⎠

= qtr
⎛

⎝
∑
f

nf ∣f⟩⟨f ∣ ( ∑
abcd

Ξab,cd (∣a⟩⟨b∣ρ
S
(τ)∣d⟩⟨c∣ −

1

2
[∣d⟩⟨c∣∣a⟩⟨b∣, ρS(τ)]+))

⎞

⎠

= q∑
f

nf tr( ∑
abcdxy

Ξab,cdρ
S
xy(τ)(∣f⟩⟨f ∣∣a⟩⟨b∣∣x⟩⟨y∣∣d⟩⟨c∣

−
1

2
∣f⟩⟨f ∣∣d⟩⟨c∣∣a⟩⟨b∣∣x⟩⟨y∣ −

1

2
∣f⟩⟨f ∣∣x⟩⟨y∣∣d⟩⟨c∣∣a⟩⟨b∣))

= q∑
f

nf tr(∑
cxy

Ξfx,cyρ
S
xy(τ)∣f⟩⟨c∣

−
1

2
∑
axy

Ξax,afρ
S
xy ∣f⟩⟨y∣ −

1

2
∑
aby

Ξab,ayρ
S
fy ∣f⟩⟨b∣)

= q∑
f

nf tr( ∑
axy

Ξfx,ayρ
S
xy(τ)∣f⟩⟨a∣

−
1

2
∑
axy

Ξax,afρ
S
xy(τ)∣f⟩⟨y∣ −

1

2
∑
axy

Ξax,ayρ
S
fy(τ)∣f⟩⟨x∣)

= q∑
f

nf(∑
xy

Ξfx,fyρ
S
xy(τ)

−
1

2
∑
xy

Ξyx,yfρ
S
xf(τ) −

1

2
∑
xy

Ξxf,xyρ
S
fy(τ))

= q∑
xyc

(ncΞcx,cyρ
S
xy(τ) −

1

2
ncΞyx,ycρ

S
xc(τ) −

1

2
ncΞxc,xyρ

S
cy(τ))

= q∑
xyc

(ncΞcx,cyρ
S
xy(τ) −

1

2
nyΞcx,cyρ

S
xy(τ) −

1

2
nxΞcx,cyρ

S
xy(τ))

= q∑
xyc

(nc −
1

2
ny −

1

2
nx)Ξcx,cyρ

S
xy(τ)

= q∑
abc

(nc −
1

2
nb −

1

2
na)Ξca,cbρ

S
ab(τ) .

For non-degenerate systems (Ξab,cd = Ξabδa,cδb,d) this takes on the form

j
λ,(3)
non-deg(τ) = q∑

abc

(nc −
1

2
nb −

1

2
na)Ξcaδa,bρ

S
ab(τ)

= q∑
ac

(nc −
1

2
na −

1

2
na)Ξcaρ

S
aa(τ)

= q∑
ab

(na − nb)Ξabρ
S
bb(τ) .

41



Collecting all the results we end up with an expression for the current

jλ(τ) = jλ,(1)(τ) + jλ,(2)(τ) + jλ,(3)(τ)

= 0

+ iq∑
ab

(na − nb)Λλbaρ
S
ab(τ)

+ q∑
abc

(nc −
1

2
nb −

1

2
na)Ξλca,cbρ

S
ab(τ)

= q∑
ab

(i (na − nb)Λλba +∑
c

(nc −
1

2
nb −

1

2
na)Ξλca,cb)ρ

S
ab(τ) .

In the non-degenerate case the expression reduces to

jλnon-deg(τ) = j
λ,(1)
non-deg(τ) + j

λ,(2)
non-deg(τ) + j

λ,(3)
non-deg(τ)

= 0 + 0 + q∑
ab

(na − nb)Ξabρ
S
bb(τ)

= q∑
ab

(na − nb)Ξabψb(τ) .

The �nal results for the current to lead λ in the general (degenerate) and the non-degenerate
case are

jλ(τ) = q∑
ab

(i (na − nb)Λλba +∑
c

(nc −
1

2
nb −

1

2
na)Ξλca,cb)ρ

S
ab(τ) , (3.39)

jλnon-deg(τ) = q∑
ab

(na − nb)Ξλabψb(τ) . (3.40)

Single-particle Green's function

For CPT we need to evaluate the single-particle Green's function based on the reduced density
operator ρ̂S . Starting from a given many-body density matrix ρ̂S for the system, we obtain a
general expression for the equilibrium steady-state single-particle Green's function gRij(ω) =<<

ci ; c
�
j >>ω. g

R
ij(ω) is available from the spectral function Sij(ω) [285], see also Sec. 3.3.1

gRij(ω) =

∞

∫
−∞

dω′
Sij(ω

′)

ω − ω′ + i0+
.

The spectral density Sij(ω), for Fermions is given by

Sij(ω) = ⟨[ci , c
�
j]+⟩ ,

and can be expressed in terms of elementary correlation functions CÂB̂(t, t′) = C(Â(t)B̂(t′)).
Here we use, quite generally, any two Heisenberg operators of the system Â(t) and B̂(t′) instead
of the speci�c choice of annihilation and creation operators. Using eigenstates of the system
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Hamiltonian ĤS : ∣α⟩, ∣β⟩, ∣γ⟩ we �nd

CÂB̂(t, t′) = Tr(ρ̂S(t′)Â(t)B̂(t′))

= ∑
αβγ

⟨α∣ρ̂S(t′)∣β⟩⟨β∣Â(t)∣γ⟩⟨γ∣B̂(t′)∣α⟩

= ∑
αβγ

⟨α∣eiĤSt
′

ρSe−iĤSt
′

∣β⟩⟨β∣eiĤStÂe−iĤSt∣γ⟩⟨γ∣eiĤSt
′

B̂e−iĤSt
′

∣α⟩

= ∑
αβα

ρSαβe
i(ωα−ωβ)t′ei(ωβ−ωγ)tei(ωγ−ωα)t

′

⟨β∣Â∣γ⟩⟨γ∣B̂∣α⟩

= ∑
αβα

ρSαβe
i(ωβ−ωγ)te−i(ωβ−ωγ)t

′

⟨β∣Â∣γ⟩⟨γ∣B̂∣α⟩ .

With τ = t − t′ we �nd

CÂB̂(τ) = ∑
αβα

ρSαβe
i(ωβ−ωγ)τ ⟨β∣Â∣γ⟩⟨γ∣B̂∣α⟩ ,

and its Fourier transform

CÂB̂(ω) =

∞

∫
−∞

dτe+iωτCÂB̂(τ)

= ∑
αβα

ρSαβ⟨β∣Â∣γ⟩⟨γ∣B̂∣α⟩

∞

∫
−∞

dτe+iωτei(ωβ−ωγ)τ

= ∑
αβα

ρSαβ⟨β∣Â∣γ⟩⟨γ∣B̂∣α⟩δ (ω + (ωβ − ωγ)) .

The spectral function is then given by

SÂB̂(ω) = CÂB̂(ω) +CB̂Â(−ω)

= ∑
αβα

ρSαβ⟨β∣Â∣γ⟩⟨γ∣B̂∣α⟩δ (ω + (ωβ − ωγ)) + ∑
αβα

ρSαβ⟨β∣B̂∣γ⟩⟨γ∣Â∣α⟩δ (−ω + (ωβ − ωγ))

= ∑
αβα

ρSαβ(⟨β∣Â∣γ⟩⟨γ∣B̂∣α⟩δ (ω + (ωβ − ωγ)) + ⟨β∣B̂∣γ⟩⟨γ∣Â∣α⟩δ (ω − (ωα − ωγ))) .

The retarded single-particle Green's function takes the explicit form

gRij(σ)(ω) = ∑
abc

ρSabδωa,ωb(
⟨b∣fiσ ∣c⟩⟨c∣f

�
jσ ∣a⟩

ω+ − (ωc − ωb)
+

⟨b∣f �jσ ∣c⟩⟨c∣fiσ ∣a⟩

ω+ − (ωa − ωc)
) ,
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which can be expressed in terms of Q-matrices [458]

Q
>(a)�
cjσ = ⟨c∣f �jσ ∣a⟩ , Q

<(a)�
ciσ = ⟨c∣fiσ ∣a⟩

Q
>(b)
icσ = ⟨b∣fiσ ∣c⟩ , Q

<(b)
jcσ = ⟨b∣f �jσ ∣c⟩

λ>(b)c = (ωc − ωb) , λ<(a)c = (ωa − ωc)

Λ>(ab)
c (z) =

ρSabδωa,ωb

z − λ
>(b)
c

, Λ<(ab)
c (z) =

ρSabδωa,ωb

z − λ
<(a)
c

,

so that

gRij(σ)(ω) = Q
>(b)
icσ Λ>(ab)

c (ω+)Q
>(a)�
cjσ +Q

<(b)
jcσ Λ<(ab)

c (ω+)Q
<(a)�
ciσ , (3.41)

where ω+ = ω+i0+ and Einstein's sum convention applies. The advanced component follows gA =

gR� and the Keldysh component gK is zero for �nite size systems and given by the equilibrium
relation for extensive regions in the reference state gK(ω) = (gR(ω) − gA(ω))(1− 2pFD(ω,T,µ)).
Once the excitations of the reference state ρ̂S are determined one can use g̃(ω) in the usual
stsCPT equation Eq. (3.20) to obtain the full steady-state Green's function G̃(ω).

3.4. Auxiliary master equation approach

Up to now we have discussed stsCPT and its variants which rely on a perturbation theory in
single-particle hoppings. In the stsVCA, in addition a �exible reference state is obtained by
introducing self-consistently determined single-particle terms while in the meCPT the reference
state is found from the solution of a quantum master equation. Common to all these methods
is that the electronic self-energy is determined from a �nite size system. The AMEA [68, 69]
is again based on a self-energy from a �nite size system. However, this system is not obtained
through perturbative decomposition of the original one, but rather from an auxiliary open quan-
tum system. Here we focus on the major aspects of the AMEA following [69] closely. The
concept behind the AMEA is similar to the ED approach to the DMFT impurity problem in
equilibrium [209, 42]. There, the equilibrium electronic reservoir is truncated to a small number
of reservoir orbitals, whose parameters are determined by �tting the Keldysh space hybridization
function ∆̃(ω) of the lattice problem. The self-energy is then determined exactly from this sys-
tem of auxiliary reservoir orbitals plus impurity by Lanczos ED [326]. This approach cannot be
straightforwardly extended to the non-equilibrium steady-state for several reasons: (i) since the
small bath is �nite, its time dependence is (quasi) periodic, i.e. no steady-state is reached, (ii)
there is no Matsubara representation out-of-equilibrium, thus, one is forced to use real energies
but (iii) in this case Im(∆R

aux(ω)) of the small bath consists of δ-peaks and can hardly be �tted
to a smooth ∆R(ω).

In the AMEA these issues are circumvented by coupling the auxiliary reservoir orbitals to
an in�nite Markovian environment [68] in the framework of open quantum systems. These
additional Markovian baths so to say compensate for the missing information in the auxiliary
reservoir orbitals, rendering the auxiliary system thermodynamically large. In turn the auxiliary
system is capable of yielding a true nonequilibrium self-energy in the steady-state. The dynamics
of the auxiliary open system are governed by a Lindblad type quantum master equation which
controls the time dependence of the reduced density operator ρ̂ [454, 456] and can still be solved
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exactly for a small number of auxiliary reservoir orbitals:

˙̂ρ =
ˆ̂
Lρ̂ . (3.42)

The Lindblad super-operator

ˆ̂
L =

ˆ̂
LH +

ˆ̂
LD , (3.43a)

consists of a unitary contribution

ˆ̂
LH ρ̂ = −i[Ĥaux, ρ̂] ,

with the Hamiltonian of the auxiliary system (here for one correlated orbital f)

Ĥaux =
NB

∑
µν=0
∑
σ

Eµνd
�
µσdνσ +Ud

�

f↑df↑d
�

f↓df↓ , (3.43b)

as well as a non-unitary, dissipative term originating from the coupling to the Markovian envi-
ronment

ˆ̂
LDρ̂ ≡ 2

NB

∑
µν=0
∑
σ

⎛

⎝
Γ(+)
νµ (dµσρ̂ d

�
νσ −

1

2
{ρ̂, d�νσdµσ}) + +Γ(−)

νµ (d�νσρ̂ dµσ −
1

2
{ρ̂, dµσd

�
νσ})

⎞

⎠
. (3.43c)

The quadratic form of the dissipator (Eq. (3.43c)) corresponds to a non-interacting Markovian
environment. In the meCPT a BMsme was used to obtain the reference state for CPT (see
Eq. (3.26)) which has the same structure as Eq. (3.43c). In the meCPT however, the coe�cients
of the equation have been obtained from the bath correlation functions, that is, from the physical
system in perturbation theory. In contrast here the coe�cients Γαµν ,Eµν are �t parameters which
map the auxiliary system to the original one. Similar to the equilibrium case, in the AMEA the
mapping is provided by the bath hybridization function in Keldysh space ∆̃(ω). The �t is
obtained by minimizing the cost function

χ(Eµν ,Γ
(κ)
µν ) = ∑

α∈{R,K}

∞

∫
−∞

dωWα
(ω) ∣∆α

(ω) −∆α
aux(ω;Eµν ,Γ

(κ)
µν )∣

n
. (3.44)

with respect to the parameters of the auxiliary system. The advanced component does not
need to be considered as ∆A = ∆R∗. The accuracy of the results will be directly related to
the accuracy of the �t to ∆̃(ω), and this increases rapidly with the number of �t parameters,
which obviously increases with NB as does the computational complexity necessary to exactly
diagonalize the interacting auxiliary system. The �t does not present a major numerical di�culty,
as the determination of the hybridization functions of both the original model, as well as the one
of the auxiliary system ∆̃aux(ω) described by the Lindblad equation (3.43) require the evaluation
of G̃0, i.e. the solution of a non-interacting problem.

Once the auxiliary system is de�ned in terms of Eµν and Γ
(κ)
µν , the corresponding interacting

nonequilibrium problem Eq. (3.43) can be solved by exact diagonalization of the non-hermitian

super-operator ˆ̂
L within the space of many-body density operators. The dimension of this space

is equal to the square of the dimension of the many-body Hilbert space, and thus it grows
exponentially as a function of NB . A discussion of the solution of the non-interacting problem
is available in App. F as well as [68, 69] while the solution of the interacting system is described
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in [69].

3.5. Discussion

We have presented several Green's function based methods for the steady-state. All of them are
based on the exact solution of a �nite size interacting system, as a reference state from which the
single-particle excitations are obtained. While the stsCPT, stsVCA and meCPT are perturbative
in the single-particle hopping terms of the inter-cluster Hamiltonian, the AMEA is based upon
an auxiliary open quantum system which is mapped onto the original one via the Keldysh space
hybridization function. The solution of stsCPT and stsVCA are based on a Hamiltonian system,
while for the meCPT and the AMEA a quantum master equation has to be solved with the
notable di�erence that in meCPT the coe�cients of this master equation are found directly from
the bath correlation functions of the original lattice problem while in the AMEA these are �t
parameters to minimize the "distance" to the lattice hybridization function. The perturbative
approaches become exact for vanishing interaction-strength and in the atomic limit. All these
approaches provide a high degree of �exibility and are able to treat any given fermionic lattice
Hamiltonian of a nano-structure, hetero-structure, molecular junction or multi-layer system also
starting from ab initio calculations. In the AMEA solution an additional anisotropic steady-state
DMFT step may be required and for stsCPT, stsVCA and meCPT a mean �eld extension in the
spirit of eVCA might be required if non-local interactions are treated perturbatively. All these
approaches are systematically improvable by considering larger cluster sizes LC . The numerical
e�ort for stsCPT and stsVCA scales exponentially in the size of the interacting clusters LC while
the meCPT and the AMEA scale exponentially in 2LC because their con�guration space are the
many-body density matrices. On modern computer systems the solution of cluster sizes up to
LC ≈ 16 is feasible (LC ≈ 8 in meCPT and AMEA).
Although the reference state of stsCPT is an ad-hoc equilibrium state at zero temperature

and with some chemical potential in-between the ones of the leads see Fig. 3.4 (bottom), good
qualitative results can be obtained with this method for standard molecular junctions. To treat
broken symmetry states or systems with very strong many-body e�ects like Kondo systems, the
self-consistent feedback implemented in stsVCA has proven vital. Note that also the stsVCA
reference state is an equilibrium system, however with optimized single-particle parameters. The
meCPT solution is based on a nonequilibrium many-body state and should be used if interfer-
ences between the states therein are to be expected, that is for degenerate cluster Hamiltonians.
Another reason to use meCPT is at higher bias voltages where the contribution from additional
transport channels in the reference state might become large. Finally we mention that the repre-
sentation of non-interacting clusters, the in�nite leads is not unique as soon as some lead orbitals
are incorporated in the interacting cluster. Indeed they are invariant under any unitary trans-
formation of the lead degrees of freedom. Because these transformation however alters also the
perturbative matrix elements in the inter-cluster terms, these representations are not equivalent
when applying a perturbative expansion like stsCPT. A scheme to optimize the representation
with respect to the perturbation is outlined in App. G. In the following we discuss a simple toy
model for an actual molecular junction to showcase the steady-state methods.

Toy model of Zn-Porphyrin

Porphyrins are a class of highly conjugated aromatic systems. Elementary synthesis and ex-
perimental characterization is well established. Classical applications include dyes and catalysts
while current research focuses on their application in molecular electronics [459] and solar cells
[460]. We obtain a toy model for a Zn-Porphyrin by �tting the parameters of an extended Hub-
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Figure 3.5.: (Color online) Model of a Zn-Porphyrin (A) Ball and stick representation of the
Zn-Porphyrin. (B) TDDFT excitation spectrum (solid blue) and model �t (dashed
orange). (C) The parameters of the four orbital toy model are described in the text.

bard [166] / Pariser-Parr-Pople [461, 462] model to the UV-vis excitation spectrum of the free
molecule as obtained by TDDFT in Gaussian09 [3] which qualitatively agrees also to experimen-
tal data. Note that the parameters are determined crudely for the free standing molecule and no
e�ects of the leads or respective anchor groups are taken into account in a proper downfolding
to local orbitals [463]. Based on the four fold symmetry of the molecule, L = 4 local orbitals are
chosen, see Fig. 3.5:
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The model features a local potential ε = −0.67 ∣t∣ and local Coulomb repulsion U = 1.48 ∣t∣. The
geometry suggest that the orbitals are connected via single-particle tunnelling terms t = 7.5 eV in
a circular manner N = {(1,2), (2,3), (3,4), (4,1)} and a next-nearest neighbour tunnelling t+ =
−0.83 ∣t∣ crosswise NN = {(1,3), (2,4)}. The magnitude of the according o�-diagonal Coulomb
terms is V = 0.27 ∣t∣, V+ = 0.13 ∣t∣. The molecule is coupled to two �at band electronic reservoirs
with Γ ≈ 0.0067 ∣t∣ and T ≈ 0.013 ∣t∣ in a meta-setup.

Results for the charge current and for the orbital resolved steady-state occupations for VG =

0 are presented in the top panel of Fig. 3.6. The current remains essentially zero until the
bias voltage has penetrated the HOMO-LUMO gap. The dominant excitations in the system
are visible in the UV-VIS spectrum in Fig. 3.5 at ω1 = 2.318 eV and ω2 = 3.286 eV. Due to
the symmetrically applied bias voltage µL = −µR = VB

2
one would expect contributions to the

current at twice the excitation energy, at VB ≈ 0.618 ∣t∣ and at VB ≈ 0.876 ∣t∣. These are indeed
observed in the meCPT and the BMsme current. In addition within BMsme these transitions
become broadened by temperature only, while in meCPT and stsCPT they are broadened by
lead induced e�ects in addition. For low bias voltages e.g. at VB = 0.1 ∣t∣, all orbital occupancies
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are approximately one and the current vanishes. The reference state within stsCPT is the state
of lowest energy in the four particle spin-symmetric sector. Also the meCPT reference state ρ̂S

has only contributions from the four particle sector. The transmission function is depicted in
Fig. 3.6. It is proportional to ∣GR12(ω)∣

2
which shows only one excitation at ω2 = 3.286 eV while the

diagonal components would also feature an excitation at ω1. For medium bias voltages like e.g. at
VB = 0.7 ∣t∣ in stsCPT we �nd a modulation in the orbital occupancies of ⟨n1⟩ = ⟨n3⟩ = 1.39, ⟨n2⟩ =

⟨n4⟩ = 1.00 and a tiny current of j = 0.0019 Γ. In meCPT the modulation is more pronounced:
⟨n1⟩ = ⟨n3⟩ = 1.34, ⟨n2⟩ = ⟨n4⟩ = 0.83 and a larger current is obtained j = 0.0795 Γ due to
the change in reference state ρ̂S which now consists of the following contributions 7% ∶ N = 3,
54% ∶ N = 4, 39% ∶ N = 5. The plain BMSme yields ⟨n1⟩ = ⟨n3⟩ = 1.13, ⟨n2⟩ = ⟨n4⟩ = 1.03 and
j = 0.5521 Γ. In this regime the di�erences between stsCPT and meCPT are most pronounced. In
general the meCPT solution shows more steps in the observables which follow the ones observed
in the BMsme curves due to the better reference state. For large bias voltages e.g. at VB = 1.2 ∣t∣
we obtain in stsCPT ⟨n1⟩ = ⟨n3⟩ = 1.65, ⟨n2⟩ = ⟨n4⟩ = 0.75 and j = 0.2443 Γ. In meCPT the
occupancies are ⟨n1⟩ = ⟨n3⟩ = 1.36, ⟨n2⟩ = ⟨n4⟩ = 0.69 and the current is smaller j = 0.1427 Γ
where the reference state ρ̂S consists of 1% ∶ N = 2, 21% ∶ N = 3, 53% ∶ N = 4, 21% ∶ N = 5,
5% ∶ N = 6. Again the BMSme yields a smaller variation in orbital occupancy ⟨n1⟩ = ⟨n3⟩ = 1.12,
⟨n2⟩ = ⟨n4⟩ = 0.92 and a larger current of j = 0.7626 Γ. We attribute the reduced current in the
meCPT with respect to the BMsme to an increased Coulomb repulsion due to higher orbital
occupancies.
For a gate voltage of VG = 0.8 ∣t∣ an interesting e�ect is observed. The BMsme predicts a

pure two particle state at low bias voltages which crosses over to a pure three particle state at
VB ≈ 0.8 ∣t∣. In both parameter regions the current of course vanishes. However in-between at the
crossover point a current would be allowed in principle which could result in a blocking state in
the N = 3 regime, see [66]. We however �nd that the current vanishes due to matrix-elements.
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Figure 3.6.: (Color online) Steady-state transport through Zn-Porphyrin. (Top) No gate voltage
VG = 0. (Middle) VG = 0.8 ∣t∣. (Bottom) Same as (B), zoom to low bias voltages.
The panel on the left of each row shows the charge current j entering the molecule.
The four middle panels in each row depict the four local charge densities ⟨ni⟩. The
panel on the top right of each row shows the steady-state degeneracy and the one on
the bottom right shows the particle number resolved weight of the BMsme steady-
state density matrix ρ̂S .
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Figure 3.7.: (Color online) Transmission functions at VG = 0. (Left) Transmission function T (ω)
for VB = 0.1 ∣t∣. (Middle) Transmission function T (ω) for VB = 0.7 ∣t∣. (Right)
Transmission function T (ω) for VB = 1.2 ∣t∣.
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4. Conclusions

In this thesis we have discussed e�ectively low-dimensional strongly correlated electron systems
out-of-equilibrium. We have applied linear-response transport theory in combination with dy-
namical mean �eld theory and the extended variational cluster approach, real-time evolution
in a matrix product based framework consisting of the density matrix renormalization group
and subsequent time evolving block decimation as well as nonequilibrium Green's function and
quantum master equation based steady-state calculations.
In Sec. 5.1, we have obtained a model for the electronic structure of the highly anisotropic

e�ectively low-dimensional purple bronze Li0.9Mo6O17 based on ab initio electronic structure cal-
culations. Representation in terms of maximally-localized Wannier orbitals lead to an e�ective
model with two �lled bands and two half-�lled bands. The anisotropic transport coe�cients were
obtained in linear-response theory and the results reproduce trends of recent experiments. We
were able to analyse the dominant processes for charge transport in terms of linear chains of lo-
calized molecular-like orbitals. Including electron-electron interaction in the extended variational
cluster approach and dynamical mean �eld theory we studied the e�ects of electron-electron in-
teractions. The so obtained spectral functions compare well with recent angle-resolved photo
emission experiments.
Linear response theory proved su�cient to obtain qualitatively, the transport characteristics

of e�ectively one-dimensional structures. However, when the external perturbation becomes
larger a more accurate treatment is in order. In Sec. 5.2, we went beyond linear-response and
studied the real-time evolution of quantum impurities connected to one-dimensional leads after
a strong quantum-quench. In particular we studied the single-impurity Anderson model out-of-
equilibrium by means of a matrix product state based real-time evolution. This approach allowed
us to access relevant time-scales to reach the steady-state. We studied and compared three
quenches: quenching the bias voltage, quenching the hybridization to both leads and quenching
the hybridization to one lead only. We could show that quenching the lead-dot tunnellings
is the most suitable one for obtaining steady-state observables. The characteristic period of
oscillations in the transient time evolution of the charge current is already very well described
by renormalization group results for a di�erent and simpler model, the interacting resonant
level model of spinless fermions. We obtained quasi-exact results for the steady-state current-
voltage characteristics for low, medium and high bias voltages. This calculated current-voltage
characteristics agrees very well with established results which are available in the low-bias region
only. On the methods oriented side we found that a large entanglement entropy correlates
positively with a large steady-state current amplitude, rendering the corresponding parameter
regions more challenging to simulate. To reduce the entanglement, we also studied a damped
version of the time evolution and found that high-energy states have very di�erent signi�cance
in the low- and high-bias regimes, respectively.
In Sec. 5.3, we extended our studies of time-dependent impurity problems to resolve space and

time dependent correlation functions. We studied the time-dependent formation of the Kondo
spin screening cloud in the single-impurity Anderson model. Starting from an unentangled state,
we switched on the impurity-reservoir hybridization and followed the subsequent dynamics in
real time. From the spin-spin and charge-charge correlation functions we obtained characteristic
time and length scales. Our results agree with previous calculations at equilibrium and, for
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local observables, out-of-equilibrium. We found that the nonequilibrium correlation functions
converge to the equilibrium results for long times. In the time-dependent data, we identi�ed
a linear spreading of signals travelling at the lattice Fermi velocity, which has been referred to
as a light cone in recent literature. We observed a ferromagnetic response in the wake of the
signal at the light cone. We observe directly from the nonequilibrium time evolution of corre-
lation functions that the structure of the correlation functions inside the light cone emerges on
two time-scales. The qualitative core of the correlation functions develops rapidly, at the lattice
Fermi velocity. This includes the phase and period of oscillations as well as �xed ferromagnetic
and anti-ferromagnetic domains. These correlations then reach their equilibrium values expo-
nentially slowly in time, de�ning a dynamic scale which has the same exponential dependence on
interaction-strength as the Kondo temperature. Outside the light cone, we obtain a power-law
decay of the correlation functions, with essentially interaction-strength- and time-independent
exponents.
Applying the matrix product state based time evolution we could show that reaching even

converged steady-state observables is possible, numerically. However, the data analysis is chal-
lenging and more complex models might feature longer time-scales which prohibit the full evo-
lution. Therefore we developed approximate numerical methods which directly compute the
steady-state. In Sec. 5.4, we conducted an equilibrium cluster perturbation theory study of the
single-impurity Anderson model which served the purpose to gauge the abilities of the method
in equilibrium and generalize it to strongly anisotropic models, to set it up for a future use out-
of-equilibrium. When applying the variational cluster approach we found that the variational
extension is a vital ingredient for a good approximation. The cluster perturbation theory and
variational cluster approach spectra both yield a Kondo resonance in the impurity density of
states with the correct height as predicted by the Friedel sum rule. A close look at the Kondo
resonance shows that the variational cluster approach is able to reproduce the resonance and the
functional behaviour for the Kondo temperature in a remarkable way. The Kondo temperature
is expected to show exponential behaviour in interaction strength in the Kondo regime. The
variational cluster approach yielding an exponential behaviour, however, tends to underestimate
the exponent. This issue was resolved recently by an optimized bath representation for cluster
perturbation theory as presented in App. G. Comparison of dynamic quantities to continuous-
time quantum Monte Carlo solidi�es the origins of this behaviour. For the asymmetric model,
the Friedel sum rule is ful�lled in all parameter regions implying that the Kondo resonance is
pinned at the chemical potential in the Kondo region. In addition, a self-consistent formula-
tion of the variational cluster approach, previously introduced in the context of nonequilibrium
problems, was explored. Results obtained by the self-consistent approach show agreement with
results obtained by the variational cluster approach based on the grand potential for the density
of states of the impurity f-orbital. While there are certainly more accurate methods to deal with
a single-quantum-impurity model, especially at low energies, our work shows that the variational
cluster approach is a �exible and versatile method which provides reasonably accurate results
with modest computational resources. Here, the variational cluster approach self-consistency
condition proves to be crucial.
Based on the success in equilibrium we generalized cluster perturbation theory and the vari-

ational cluster approach to study the steady-state of the single-impurity Anderson model in
Sec. 5.5 and Sec. 5.6. Results for the particle-hole symmetric model, which is dominated by
Kondo correlations, have been compared to time evolving block decimation and quantum Monte
Carlo. At low values of interaction strength they show excellent agreement already for nonequi-
librium cluster perturbation theory. For higher values of interaction strength, the self-consistency
implemented within the nonequilibrium variational cluster approach proves crucial in order to
obtain reasonable results. Both methods coincide with the low bias linear-response data for the
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steady-state current. Both methods furthermore become exact in the non-interacting limit. The
nonequilibrium local density of states of the quantum dot exhibits a linear and interaction depen-
dent splitting of the bias voltage within the nonequilibrium variational cluster approach which is
not visible in the nonequilibrium cluster perturbation theory. At a certain bias voltage we �nd
that this split Kondo resonance merges with the high-energy incoherent part of the spectrum.
When applying a gate voltage and thereby leaving the Kondo regime, calculations become a lot
easier and nonequilibrium cluster perturbation theory and the nonequilibrium variational cluster
approach appear to perform very well, which can be inferred from the convergence of our data.
The highest current amplitude is obtained at the crossover from the Kondo to the empty or
doubly occupied quantum dot. Experimental stability diagrams are reproduced very well within
the variational approach. They show a clear Kondo regime and a Coulomb blockade region. We
may conclude that the nonequilibrium variational cluster approach is a promising method for
the evaluation of steady-state quantities of strongly correlated model systems.
Based on the good performance of the steady-state method for a single orbital, we generalized

the method to study e�ects of electron-electron interactions in a benzene like molecule in Sec. 5.7,
subject to a �nite bias voltage induced by two metallic leads, as a function of an applied magnetic
�eld. We make use of a Hubbard-type-model based description of such a device in the charge
neutral regime. Using steady-state cluster perturbation theory, observables have been computed
for para-, meta-, as well as ortho- setups. Results for the total transmission current and circular
current as well as the steady-state charge distribution and magnetization have been presented.
By studying physically relevant regimes of electron-electron interactions in addition to an ap-
plied magnetic �eld, we describe the e�ects of electron-electron interactions on the steady-state
beyond the mean �eld level. We found that these are to shift voltage thresholds and to decrease
the magnitude of currents. Additionally, interactions lead to deviating currents in the meta and
ortho setup which were comparable in the non-interacting system. The steady-state charge dis-
tribution becomes strongly renormalized by interactions respecting the symmetry of the isolated
molecule. Due to the Zeeman e�ect, we obtain a steady-state magnetization which is highly
sensitive to bias voltage. Our results may help to validate model calculations at �xed interac-
tion parameters and contribute to the understanding of sophisticated ab initio based transport
calculations. Our results indicate that the main e�ect of interactions is to renormalize voltage
thresholds and current magnitudes. We showed that the charge density is sensitive to electron-
electron interactions and becomes strongly renormalized with every additional electronic level
contributing to transport. This fact has to be accounted for in self-consistent approaches.
To resolve current blocking e�ects in Sec. 5.8 we augmented the steady-state cluster pertur-

bation theory with an appropriate, consistent reference state. This reference state is obtained
by the reduced many-body density matrix in the steady-state obtained from a quantum master
equation. The resulting hybrid method inherits bene�cial aspects of steady-state cluster pertur-
bation theory as well as from the quantum master equation We benchmarked the new method on
two experimentally realizable systems: a quantum diode and a triple quantum dot ring, which
both feature negative di�erential conductance and interaction induced current blocking e�ects.
Master equation based cluster perturbation theory is able to improve the bare quantum master
equation results by a correct inclusion of lead induced level-broadening e�ects, and the correct
non-interacting limit. In contrast to previous realizations of the steady-state cluster perturbation
theory, master equation based cluster perturbation theory is able to correctly predict interaction
induced current blocking e�ects. It is well known that the secular approximation is not applicable
to quasi degenerate problems, which is corroborated by our results for the steady-state current.
However, master equation based cluster perturbation theory based on the Born-Markov-secular
master equation density, is able to repair most of the shortcomings of Born-Markov-secular mas-
ter equation. The results are very close to those obtained by master equation based cluster
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perturbation theory based on the density of Born-Markov-secular master equation, where the
quasi-degenerate states are treated consistently. The computational e�ort of master equation
based cluster perturbation theory beyond that of the bare quantum master equation scales with
the number of signi�cant entries in the reference state density matrix but is typically small.
In the presented formulation the new method is �exible and fast and therefore well suited to
study nano-structures, molecular junctions or hetero-structures also starting from an ab initio
calculation.
In conclusion, the steady-state cluster perturbation theory can be used to obtain reasonably

accurate results for the transport through weakly coupled molecular junctions. If electronic
correlations are large, like in Kondo systems, the self-consistent feedback implemented in the
steady-state variational cluster approach proves essential to obtain accurate results. To study
complex transport phenomena like interaction induced blocking, which depend on the interplay
of many-body states in the reference system, the master equation based steady-state cluster
perturbation theory becomes necessary.
As an alternative, an approximation not based on a direct perturbative expansion of the model

but on a mapping to an auxiliary open quantum system is presented in Sec. 5.9. The auxiliary
master equation approach to the single-impurity Anderson model is based on a mapping of the
original Hamiltonian to an auxiliary open quantum system consisting of the interacting impurity
coupled to bath sites as well as to a Markovian environment. The dynamics of the auxiliary
open system is controlled by a Lindblad master equation. Its parameters are determined by
a �t to the impurity-environment hybridization function. This has many similarities to the
procedure used for the exact-diagonalization dynamical mean �eld theory impurity solver, but
has the advantage that one can work directly with real frequencies, which is mandatory for
nonequilibrium systems. We have illustrated how the accuracy of the results can be estimated,
and systematically improved by increasing the number of auxiliary bath sites. A scheme to
introduce linear corrections has been devised. We presented in detail how the nonequilibrium
Green's functions of the correlated open quantum system are obtained by making use of non-
hermitian Lanczos diagonalization in a super-operator space. These techniques make the whole
method fast and e�cient as well as particularly suited as an impurity solver for steady-state
dynamical mean �eld theory. In this work, we have applied the approach to the single-impurity
Anderson model. We have analyzed in detail the systematic improvement of the current-voltage
characteristics as a function of the number of auxiliary bath sites. Already for four auxiliary
bath sites, results show a rather good agreement with quasi-exact data from time-evolving block
decimation in the low- and medium-bias regimes. In the high-bias regime, the current deviates
from the expected result with increasing interaction strength. However, we have shown how to
estimate the reliability of the data from the deviation of the hybridization functions and how
results can be corrected to linear order in this deviation. The impurity spectral function obtained
in our calculation features a linear splitting of the Kondo resonance as a function of bias voltage.
Good agreement with data from scattering-state numerical renormalization group was found.
In Sec. 5.10, we discussed the role of electronic correlations at high bias voltage when the reser-

voir density of states is structured and �nite and the bias voltage approaches the bandwidth.
As an illustration we discuss the particular example of the steady-state of a single quantum dot
connected to two leads of semicircular electronic density of states under bias voltage. We use den-
sity matrix renormalization group, time evolving block decimation, the steady-state variational
cluster approach, the auxiliary master equation approach and a Born-Markov-secular quantum
master equation to evaluate the steady-state double occupancy, charge current, local density of
states and the reduced steady-state many-body density matrix. In general one expects electronic
correlations to impact transport characteristics at bias voltages smaller than the electronic coher-
ence temperature. For large bias voltages it has been shown that in the wide band limit electronic
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correlations are dominated by the perturbing external bias. The system behaves like free and the
e�ect of the high bias voltage is comparable to a high temperature or a high magnetic �eld. We
do not apply the wide band limit but discuss a system which features two electronic leads with a
�nite and structured electronic density of states. We found that the steady-state can be classi�ed
into three regimes in bias voltage, according to the degree of electronic correlation. For low bias
voltages the steady-state feels the remnants of the equilibrium spin Kondo e�ect. It features
enhanced magnetic �uctuations and suppressed charge �uctuations. The charge current in this
regime is enhanced with respect to an equivalent system without electron-electron interactions.
Only states at low energies contribute to transport and their density is high due to electronic cor-
relations. At medium bias voltages many states reside inside the transport window and we �nd
charge and spin �uctuations comparable to those of an equilibrium non-interacting system or for
the high bias steady-state in the wide band limit. The current in this regime is also comparable
to the one of an equivalent non-interacting system. The �nding of this work is that at high bias
voltages, close to the band edge of the leads, the transport is again enhanced with respect to the
non-interacting equivalent. We observe large charge �uctuations and small magnetic �uctuations
in this regime. The small transport window limits the states contributing to transport again to
those at low energies. These are strongly enhanced due to electronic correlations. We propose
that the high bias state features the characteristics of a charge Kondo e�ect.
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5. Findings collected in publications

In this chapter we present the collected results of this thesis. An overview is given in Tab. 5.
Each section of this chapter contains one of the publication listed in Tab. 5 and a preamble. In
the preamble the full copyright and citation is given in addition to detailed author credentials. A
brief paragraph on the achievements in the respective publications and on how it connects with
the rest of this thesis concludes this introduction.

5.1. E�ective model for the electronic properties of

quasi-one-dimensional purple bronze Li0.9Mo6O17 based

on ab initio calculations

5.1.1. Preamble

This part of our work has been published in PHYSICAL REVIEW B 89, 045125 (2014) [41] and is
also available as a preprint on arXiv:1306.1074. Reproduced with permission from PHYSICAL
REVIEW B 89, 045125 (2014), doi:10.1103/PhysRevB.89.045125. Copyright 2014, American
Physical Society.
This part of the thesis serves the purpose to enter the realm of nonequilibrium physics by

using the well developed linear-response theory [39, 40]. Linear-response theory is based entirely
on the equilibrium ground state properties of the system and its application is limited to small
external �elds, see Sec. 3.2. On the one hand we make contact with ab initio band structure
calculations and build an electronic model for the correlated e�ectively one-dimensional conduc-
tor Li0.9Mo6O17, which provides the crossroads between model physics and ab initio theories.
An overview of phenomena in bulk material materials out-of-equilibrium is available in Ch. 2.
Basically all methods presented in the remainder of this thesis in Sec. 5.2, Sec. 5.3, Sec. 5.4,
Sec. 5.5, Sec. 5.6, Sec. 5.7, Sec. 5.8, Sec. 5.9 and Sec. 5.10 are �exible enough to be applied
to real materials if augmented by such a preliminary step. On the other hand we apply equi-
librium DMFT [42] and the quantum cluster methods CPT [43, 44] and VCA [45] to obtain
correlated spectral functions. A nonequilibrium method analogous to DMFT will be presented
in Sec. 5.9 and CPT as well as VCA will be generalized to the steady-state in Sec. 5.4, Sec. 5.5,
Sec. 5.6, Sec. 5.7, Sec. 5.8 and Sec. 5.10. We �nd the transport characteristics of Li0.9Mo6O17 to
be strongly anisotropic. It is an e�ectively one-dimensional conductor as observed in transport
experiments [48]. ARPES experiments [47] are well described by correlated spectral functions
calculated using our model for the electronic structure. By comparing experimentally obtained
Fermi surfaces to our calculations we conclude that this compound constitutes a moderately cor-
related material. A detailed study of correlated transport along these chains would be possible
in the DMRG+TEBD framework, which is applied to the SIAM in this thesis in Sec. 5.2 and
Sec. 5.3. Details of the calculations are available in Ch. A.
This research is authored by Martin Nuss (MN) and co-authored by Markus Aichhorn (MA).

This research was to a large and signi�cant extent conducted by MN under the supervision of MA.
The work was initiated by MN. MA provided guidance throughout the whole working period.
MN and MA conducted literature research and worked on developing a model for the electronic
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Table 5.1.: List of publications sorted by thematic setting.
# setting reference section title
1 linear-

response
PHYSICAL RE-
VIEW B 89, 045125
(2014) [41]

Sec. 5.1 E�ective model for the electronic prop-
erties of quasi-one-dimensional purple
bronze Li0.9Mo6O17 based on ab initio
calculations

2 real time
evolution

PHYSICAL RE-
VIEW B 88, 045132
(2013) [52]

Sec. 5.2 Steady-state and quench-dependent re-
laxation of a quantum dot coupled to
one-dimensional leads

3 real time
evolution

PHYSICAL RE-
VIEW B 91, 085127
(2015) [54]

Sec. 5.3 Nonequilibrium spatiotemporal forma-
tion of the Kondo screening cloud on a
lattice

4 steady-state PHYSICAL RE-
VIEW B 85, 235107
(2012)

Sec. 5.4 Variational cluster approach to the
single-impurity Anderson model

5 steady-state AIP Conf. Proc.
1485, 302 (2012)
[63]

Sec. 5.5 Non-linear transport through a strongly
correlated quantum dot

6 steady-state PHYSICAL RE-
VIEW B 86, 245119
(2012) [62]

Sec. 5.6 Steady-state spectra, current, and sta-
bility diagram of a quantum dot: A
nonequilibrium variational cluster ap-
proach

7 steady-state PHYSICAL RE-
VIEW B 89, 155139
(2014) [65]

Sec. 5.7 E�ects of electronic correlations and
magnetic �eld on a molecular ring out-
of-equilibrium

8 steady-state submitted to
PHYSICAL RE-
VIEW B (2015),
arXiv:1505.01683

Sec. 5.8 Master equation based steady-state
cluster perturbation theory

9 steady-state PHYSICAL RE-
VIEW B 89, 165105
(2014) [69]

Sec. 5.9 Auxiliary master equation approach to
nonequilibrium correlated impurities

10 steady-state unpublished (2015)
[70]

Sec. 5.10 Strong electronic correlations at high
bias voltage and structured electronic
leads
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structure. MA conducted ab initio calculations using Wien2k [4], performed a Wannier down
folding [5] and ran DMFT calculations in TRIQS [1]. MN adapted the eVCA method originally
proposed by MA et al. in [46]. MN wrote computer codes for the CPT and eVCA calculations and
tested and ran those simulations. MN calculated and analyzed the linear-response conductivity.
MN conducted parameter studies and analyzed the results of interacting methods. MN prepared,
collected, interpreted, analyzed and visualized the results and set them in context with recent
literature. MN wrote the �rst version of the manuscript. All authors contributed equally in
analysing the data and revising the manuscript. Enrico Arrigoni, Wolfgang von der Linden and
Christoph Heil provided help and expertise. We discussed our results with Jim W. Allen, Fakher
Assaad, Jerne Mravlje and Piotr Chudzinski.

5.1.2. Manuscript
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Effective model for the electronic properties of quasi-one-dimensional purple bronze
Li0.9Mo6O17 based on ab initio calculations

Martin Nuss* and Markus Aichhorn
Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
(Received 10 June 2013; revised manuscript received 18 December 2013; published 16 January 2014)

We investigate the electronic structure of the strongly anisotropic, quasi-low-dimensional purple bronze
Li0.9Mo6O17. Building on all-electron ab initio band-structure calculations, we obtain an effective model in
terms of four maximally localized Wannier orbitals, which turn out to be far from atomiclike. We find two
half-filled orbitals arranged in chains running along one crystallographic direction and two full orbitals in
perpendicular directions, respectively. The possibility to reduce this model to only two orbitals forming two
chains per unit cell with interchain coupling is discussed. Transport properties of these models show high
anisotropy, reproducing trends of the experimentally determined values for the dc conductivity. We also consider
basic effects of electron-electron interactions using the (extended) variational cluster approach and dynamical
mean field theory. We find good agreement with experimental photoemission data upon adding moderate onsite
interaction of the order of the bandwidth to the ab initio derived tight-binding Hamiltonian. The obtained models
provide a profound basis for further investigations on low-energy Luttinger-liquid properties or to study electronic
correlations within computational many-body theory.

DOI: 10.1103/PhysRevB.89.045125 PACS number(s): 71.10.−w, 71.27.+a, 71.20.−b, 72.15.−v

I. INTRODUCTION

The electronic structure of highly anisotropic materials
shows a plethora of interesting effects. Quantum many-body
dynamics in quasi-low-dimensional systems becomes impor-
tant and dominant in many regions of their rich phase diagram.
This often implies unconventional ground states, such as
non-Fermi-liquid or Luttinger-liquid states. One prominent
example for this class of materials is the lithium molybdenum
purple bronze Li0.9Mo6O17 [1], a molybdenum oxide bronze
with quasi-one-dimensional properties. [2]

Experimental structure analysis using x rays [3] as well as
neutrons [4] determined a monoclinic crystal structure. The
conduction electrons are mostly located on two molybdenum
octahedral sites which are arranged in double zigzag chains
along the b axis. This leads to a very high anisotropy
of the material, which has been studied by several tech-
niques using resistivity measurements [5–10], conductivity
under pressure [11], magnetoresistance [8,12], thermal expan-
sion [13], optical conductivity [14,15], the Nernst effect [16],
thermal conductivity [17], thermopower [18], and muon
spectroscopy [19].

The electronic properties have been addressed using angle-
resolved photoemission spectroscopy (ARPES) [20–28] and
scanning tunneling microscopy (STM) [29,30], which ar-
gued for one-dimensional Luttinger-liquid physics [28,31–36].
Other studies disputed this claim [37]. The evolution and
the current status of work in that direction is summed up
in a recent review article [26]. A temperature-dependent
dimensional crossover [38–40], which induces coherence for
the perpendicular electron motion, has been studied using
neutron diffraction [4].

Apart from intriguing physical effects of effective low
dimensionality, the material shows superconductivity below
1.9 K [2,41–44] and a metal-insulator transition is observed at

*martin.nuss@student.tugraz.at

around 24 K [5,14,41,45]. No evidence for a Peierls instability
has been reported [46], and a possible charge-density wave
(CDW) phase is still under debate [29,47–49]. Recent studies
have argued for a compensated metal [50]. All data are summed
up in a conjectured electronic phase diagram as presented
in [49].

Theoretical ab initio studies of the electronic structure
using a tight-binding method [51] as well as a linearized
muffin-tin orbital (LMTO) [52,53] calculation in the local
density approximation (LDA) have been conducted. These
approaches were successful in providing a broad picture of
the “high-energy” physics of Li0.9Mo6O17, accounting for
the high anisotropy. Although experiments testified a wealth
of remarkable low-energy properties and different quantum
ground states, more detailed theoretical investigations, includ-
ing interactions and low dimensionality, emerged in recent
years only.

Chudzinski et al. [48] investigated the quasi-one-
dimensionality and have been able to extract an effective
low-energy theory within the Tomonaga–Luttinger-liquid
framework. Their approach is based on an atomic orbital
tight-binding model with parameters such that it matches
an LDA LMTO band-structure calculation. Motivated by the
crystal structure of Li0.9Mo6O17, the model was set up with
four molybdenum d orbitals in a zigzag ladder arrangement
including onsite as well as nonlocal electronic interactions.
It was found that within this model, Luttinger-liquid low-
energy parameters can be obtained, which are consistent with
experimental findings.

Another recent work [49] proposes a two-dimensional
model from Slater-Koster [54] atomic orbitals also including
nonlocal electronic interactions. Again, an ansatz with four Mo
orbitals in zigzag ladder arrangement was applied. The authors
argue, based on electron counting, that there are two electrons
to be shared among the four equivalent Mo atoms, leading
to quarter-filled orbitals. The bandwidth obtained with this
ansatz for the two bands crossing the Fermi level is in rough
agreement with density functional theory (DFT) calculations.
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Details of the band structure such as curvatures, however, and
also the bands just below the Fermi level which are of similar
Mo d character, can not be reproduced by this Slater-Koster
model.

The main purpose of this work is to establish an unbi-
ased, general purpose tight-binding model for the electronic
properties of Li0.9Mo6O17 based on ab initio calculations.
Such a model is intended to serve as a basis to study the
role of electronic correlations by adding interactions, be it
in a computational many-body theory or in a one-dimensional
renormalization group (RG) framework. In contrast to previous
work [49], we propose a model based on maximally localized
Wannier orbitals [55,56] instead of linear combination of
atomic orbitals. Four molecularlike orbitals are obtained in a
fully ab initio approach from an all-electron DFT calculation.
Our results unambiguously show that, using a set of four
Wannier orbitals in the unit cell, the model consists of two
half-filled as well as two filled orbitals. As we will show in the
following, the DFT band structure is perfectly reproduced in
this basis set of Wannier functions.

This model describes the momentum-resolved elec-
tronic structure as observed in ARPES [22] experiments
and reproduces highly anisotropic transport characteristics
[5–8,12,14,17]. Furthermore, we discuss an even simpler
two-orbital effective model which can be derived from the
four-orbital model.

In the second part of the paper, we conduct a first (qualita-
tive) study of effects of interactions on the electron dynamics
within this effective Wannier model. Even more so due to
the low dimensionality, the interacting model is in general
difficult to approach. By applying RG as well as density matrix
renormalization group (DMRG) [57] in certain limits (chains,
ladders), their essential physics can be understood [49].
To solve the full low-dimensional interacting Hubbard-type
model, general frameworks as for example (cluster) dynamical
mean field theory [(C)DMFT]-like approaches [58] have been
applied, where the self-energy of the system is restricted to a
finite length scale.

Realistic modeling is a relatively new and rapidly devel-
oping field [60–62]. In this work, we study (simple) electron-
electron interactions in the effective model using complemen-
tary numerical techniques. First, we use cluster perturbation
theory (CPT) [63,64] as well as the (extended) [65,66]
variational cluster approach [67] [(e)VCA] in the spirit of
LDA + VCA [68,69]. The choice of these methods is
motivated by the expected reduced effective dimensionality
of the material which renders the nonlocal character of the
VCA self-energy an interesting perspective. Second, we apply
the well-established LDA + DMFT [70–72] approach, which
neglects nonlocal correlations, but on the other hand performs
superior in describing the quasiparticle features at low energy
as compared to VCA. For all applied methods, we find that
a moderate value of onsite interactions strength is capable of
describing the electron dynamics best and in good agreement
with ARPES experiments. We discuss the influence of a
hybridization mechanism of the two bands right at the Fermi
energy with the two bands slightly below, not accounted for in
previous work.

This paper is organized as follows: In Sec. II, we report
accurate all-electron DFT data from which we obtain a model

in terms of maximally localized Wannier functions. A further
simplified model for Li0.9Mo6O17 with reduced number of
hopping parameters is discussed in Sec. II C. We present
results for the anisotropic conductivity in Sec. III and compare
to transport measurements. The electron dynamics of the
interacting effective model is presented and compared to
ARPES experiments in Sec. IV before concluding in Sec. V.

II. FROM CRYSTAL STRUCTURE TO AN EFFECTIVE
ELECTRONIC MODEL

A. Ab initio electronic structure

We obtain the electronic structure for ideal Li1Mo6O17

from a non-spin-polarized, full-potential linearized augmented
plane wave (FP-LAPW) [73–76] DFT [77,78] calculation
as implemented in the WIEN2K package [79]. The unit-cell
parameters and crystal structure are taken from x-ray data [3]
which have been recently confirmed by neutron diffraction
experiments [4]. The space group is monoclinic (prismatic)
P 21/m with lattice parameters a = 12.762(2) Å, b = 5.523(1)
Å, c = 9.499(1) Å, β = 90.61(1)◦, and Z = 2, leading to a
48-atom unit cell [Li1Mo6O17]2 [80].

All results presented in this work are calculated with
the exchange-correlation potential treated in the LDA [81].
We checked that the generalized-gradient approximation
(GGA-PBE [82]) gives indistinguishable results for the band
structures. Our results are converged in terms of the size
of the FP-LAPW basis set, which is determined by the
RKmax parameter in WIEN2K. By performing calculations for
different RKmax we found that RKmax = 7.0 and 6.0 gave
the same results, with band energies within 10−3 eV, only at
RKmax = 5.0 deviations become visible. Therefore, also due
to the computational complexity of the problem, all results
presented here are obtained with a RKmax = 6.0 basis set.

The obtained electronic structure εKS(k) is visualized along
the standard path of the b-c plane in reciprocal space (Y-G-
X-M) (see also Fig. 2) in Fig. 1 (left). In order to compare to
ARPES experiment, we modeled lithium-vacant Li0.9Mo6O17

by a rigid band shift of 0.03 eV of the LDA bands [52]. We find
a combined bandwidth of the four bands in the vicinity of the
Fermi energy εF of W ≈ 1.82 eV and two Fermi velocities of
vF,1 ≈ 0.99 × 105 m/s and vF,2 ≈ 0.93 × 105 m/s, roughly
one order of magnitude lower than in free-electron metals [83].
The corresponding electronic density of states (DOS) is shown
in Fig. 1 (right). The LDA DOS is obtained by Gaussian
integration (σ ≈ 0.02 eV) using the tetrahedron method on
a grid of 216 k points in the irreducible Brillouin zone (BZ).

By and large, the electronic structure compares well to
previous data reported in early works of Whangbo et al. [51]
from an empirical tight-binding method, and also to more
recent LMTO calculations within the atomic sphere approx-
imation (ASA) from Popovic et al. [52]. But note that in
particular the band crossings/hybridizations on the X-M line
as well as the lowest empty bands at ∼1 eV above εF

are apparently different. Since we checked accurately the
convergence of the all-electron FP-LAPW calculations, the
difference is most likely to come from the approximations
introduced in LMTO-ASA and tight-binding calculations.
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FIG. 1. (Color online) Left: LDA band structure (solid black) in the vicinity of the Fermi energy εF plotted along a two-dimensional path
in the reciprocal b-c plane. The four bands of the full Wannier projected Hamiltonian are shown on top (solid green) next to the data for the
reduced model (dashed-dotted blue line). Right: DOS of the LDA calculation (black), the full Wannier model (solid green line), and the reduced
model (dashed-dotted blue line).

The one dimensionality of the material becomes manifest
in the Fermi surface which is shown in Fig. 2 (left). Arising
from two bands crossing the Fermi energy, it consists of
two sheets warping in the c direction, cutting the b axis and
being roughly constant in the a direction. In experiments [84],
the maximum splitting of the Fermi surface (<10−3 Å−1)
is observed along the PK line. Our LDA calculations yield
the maximum splitting along the very same line (see Fig. 2),
but the magnitude is much larger (≈0.021 Å−1). In previous
LDA calculations [52], an even larger splitting of ≈0.045 Å−1

was found. This discrepancy of the theoretical results with
experiment is likely due to the improper treatment of strong
nonlocal electronic correlations in the LDA.

B. Realistic effective model

To construct an effective model, we have to identify the
origin (orbital character and atom) of those electronic states
which are most important for the physical properties, i.e., those
close to the Fermi energy εF . We plot in the bottom panel of

Fig. 3 the partial DOS for the six inequivalent Mo atoms in
the unit cell. One can nicely see that Mo1 and Mo4 contribute
most to the DOS at εF (for nomenclature see Fig. 2 in Onoda
et al. [3]). In the top panel of Fig. 3, we show the crystal
structure, with emphasis on those Mo1 and Mo4 (including
the equivalent Mo′

1 and Mo′
4) atoms. It is evident that these

atoms form the two adjacent zigzag chains running along the
b axis, giving rise to the two quasi-one-dimensional bands
crossing εF . The atoms Mo2 and Mo5 are sitting next to the
chains, and thus have some smaller contributions. The other
two Mo atoms are far away from the chains, and thus contribute
hardly anything to the weight around εF . This analysis of
the orbital character shows clearly that the bands around εF

originate mainly from only four atoms (Mo1, Mo4 and Mo′
1,

Mo′
4, respectively) in the unit cell.
To construct an effective model, we take the electronic

wave-function data φKS in an energy window of [−0.9,0.7] eV,
that comprises the four relevant bands as shown in Fig. 1.
The lower bound of the energy window for projection is
straightforward to choose because the gap between the four
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FIG. 2. (Color online) Calculated Fermi surface. Left: The ab initio result (image created using XCRYSDEN [59]). Center: In-plane projection
of the result for the four-orbital Wannier model. Right: In-plane projection of the result for the reduced model, where type-A orbitals are strictly
one dimensional and the two Fermi sheets are degenerate.
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1 2 4

FIG. 3. (Color online) Top plot: Crystal structure. In the a and
c directions one unit cell and in the b direction two unit cells are
shown. Big gray balls are Mo1/Mo′

1 and Mo4/Mo′
4 atoms, showing

the zigzag chain structure along b. Small gray: other Mo sites. The
numbers next to the black arrows denote the atom number. Small red
balls are oxygen, and the yellow balls Li atoms. This image has been
created using XCRYSDEN [59]. Bottom plot: Partial DOS of the six
inequivalent Mo atoms in the unit cell. Top row: atoms Mo1 and Mo4,
forming the zigzag chains. Middle row: Mo2 and Mo5. Bottom row:
Mo3 and Mo6.

considered molybdenum d bands and the next lower bands is
larger than 1.5 eV. The upper bound is more involved since
bands with different character penetrate the energy window
from above, and are entangled with the two bands crossing the
Fermi energy. In order to get a good description of the bands,
we had to use the disentanglement procedure of WANNIER90

with a frozen energy window of [−0.9,0.0] eV.
We project these data onto four maximally localized

Wannier orbitals [55] ωα using WANNIER90 [85] and the
WIEN2WANNIER [86] interfaces. As initial seed, we chose one
dxy orbital on each of the Mo1, Mo4, Mo′

1, and Mo′
4 atoms.

Although starting from a seed with atomic orbitals, the
calculated Wannier functions, however, have quite different
character. They can be divided into two kinds. Type A, which
is oriented along chains in the b direction, and type B which is
in some sense orthogonal in real space, mediating between the

b

c
a

Mo

Mo

Mo 2

Mo15

4'

'

FIG. 4. (Color online) Visualization of one type-A Wannier
orbital. Similar as in Fig. 3, two unit cells in the b direction are shown,
the Wannier function is centered in the lower unit cell. The center of
the Wannier function is located in-between atoms Mo1 and Mo′

4.
Arrows mark the atoms with significant contribution to the Wannier
function: in-chain atoms Mo1 and Mo′

4, and adjacent atoms Mo2 and
Mo′

5. Color coding as in the top panel of Fig. 3. For the Wannier
functions, blue and green lobes denote positive and negative phases,
respectively. The image has been created using XCRYSDEN [59].

chains in the b direction. The orbitals contributing to the states
around εF are of type A, and one of these orbitals is shown in
Fig. 4. One can clearly see the dxy orbital character, forming
the zigzag chains, around atoms Mo1 and Mo′

4, where most
of the orbital weight is located. In consistency with the partial
DOS (Fig. 3), some contribution also comes from atoms Mo2

and Mo′
5 since they are adjacent to the chains, as shown in

Fig. 4.
The splitting into two types of orbitals can be understood

from the band structure. Only two bands cross εF , which results
in two equivalent Wannier functions (A). The other two bands,
lying below εF , are spanned by another set of two equivalent
Wannier functions (B), respecting the crystal symmetry.

We would like to emphasize that these orbitals are far from
atomiclike. We estimate their spread from the square root of the
spread functional of WANNIER90, which yields 5.2 Å for orbital
type A, and 4.4 Å for orbital type B. We also want to note that
the Wannier functions are not centered on a Mo site. Instead,
Fig. 4 clearly shows that the centers are located in the middle
of a bond between two Mo sites. For type A, one orbital has its
center between atoms Mo1 and Mo′

4, the other between Mo′
1

and Mo4, respectively. In that sense, these Wannier orbitals
can be regarded as bond-centered molecularlike orbitals.

The origin of the large spread in real space is the very limited
number of bands that are taken into account in the Wannier
construction scheme. Taking all d orbitals of the Mo1, Mo′

1,
Mo4, and Mo′

4 atoms as well as the bridging oxygen p orbitals
into account would of course result in much better localization.
However, the Hamiltonian then describes many bands, and not
only the most important four bands in the vicinity of εF . A
similar effect can be observed for instance in the construction
of the one-band model in cuprate superconductors. Also there,
taking only the dx2−y2 orbital into the construction results in
quite large Wannier orbitals with long tails [87].
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Concerning the electron charge in the Wannier orbitals, we
find that orbitals of type A are half-filled, whereas orbitals
of type B are identified as (almost) filled. For lithium-vacant
purple bronze, we find a total occupation of ≈5.8 electrons in
these four bands since there are two lithium ions in the unit
cell, each contributing ≈0.1 hole doping. In the remainder of
the paper, we will therefore use for all discussions an average
filling of the four bands of 〈n〉 = 1.44 [88].

Specifically, the downfolding procedure yields the matrix
elements of a single-particle Hamiltonian [89]

HWannier,αβ(k) = 〈ωα| ĤWannier(k) |ωβ〉
=

∑
δR

e−ik·δRMRαR′β (1)

in the four-orbital Wannier space α,β = {A,A′,B,B′} where
the sum runs over all lattice translations δR = (R − R′) and
the crystal momentum k is defined in the first BZ [90].

Our model (1) consists of two filled electronic orbitals, type
B, slightly below the Fermi energy εF (M0B0B = M0B′0B′ =
−0.423 eV), as well as two half-filled ones, type A, crossing
the Fermi energy εF (M0A0A = M0A′0A′ = 0.005 eV). The
largest energy scale for the hopping matrix elements is the
nearest-neighbor hopping along the b direction of orbitals of
type A which is tmax ≈ −0.35 eV.

This 4 × 4 noninteracting Wannier Hamiltonian can easily
be diagonalized by numerical means. Its band structure and
DOS are plotted on top of the LDA results in Fig. 1.
The Wannier DOS has been calculated from N1.BZ = 483

k points in the first BZ, using a numerical broadening of
0+ = 0.086 tmax. We obtain very good agreement except for
the upper band edges, where the accuracy is influenced by the
entanglement of the bands in this energy region. We find a
total bandwidth of the four bands in the vicinity of εF of W ≈
1.57 eV and two Fermi velocities of vF,1 ≈ 1.16 × 105 m/s
and vF,2 ≈ 1.06 × 105 m/s. Note that the Fermi velocity is
pointing along the b direction, while the other components
are three orders of magnitude smaller. The Fermi surface
(see Fig. 2, center) is also reproduced very accurately by the
Wannier model.

C. Effective interchain coupling

The Wannier model (1) consists of numerous single-
particle hopping terms between four Wannier orbitals in a
three-dimensional crystal. Many of the terms of the Wannier
model are orders of magnitude smaller than the dominant
hopping process of type-A orbitals along the b direction with
tAA ≈ −0.35 eV. For instance, all intra-unit-cell hybridizations
are negligibly small (of order 10−4 eV). This includes direct
hopping tAA′ between adjacent chains. The reason for this
is that the two orbitals type A and A′ are aligned parallel
to each other in the unit cell, with negligible overlap. The
hybridization perpendicular to the chains, which is responsible
for the dispersion in perpendicular direction, is predominantly
mediated through the type-B orbitals in an (A-B-A) or
(A-B-A′) fashion (see Fig. 5). In this section, we derive a
two-dimensional model in the b-c plane consisting of two
degenerate half-filled chains that comprises the fundamental

FIG. 5. (Color online) Visualization of the full effective Wannier
Hamiltonian (1). A schematic drawing of the most dominant hopping
processes is presented: type-A orbitals (red), type-B orbitals (blue).
Lines denote the dominant hopping paths, and the black square marks
the size of the unit cell.

model. The indirect hopping results only in a small effective
hopping between the chains, which we estimate perturbatively.

The starting point for perturbation theory is a Hamiltonian,
where orbitals of type A and type B are decoupled. For this
purpose we define a complete set of projection operators
projected Hamiltonians Ĥαα = P̂αĤP̂α on the type α = {A,B}
orbitals. In zeroth-order approximation, the hybridization
terms are set to zero, ĤAB = ĤBA = 0. For our Wannier
model, this corresponds to neglecting those matrix elements
which are less than 10% of the largest occurring hopping
energy |tmax| = 0.35 eV and leads to a Hamiltonian

Hreduced =
(

tAA2 cos (kbb) 0

0 εB + tBB2 cos (kbb ± kcc)

)
,

(2)

with tAA = −0.35 eV, tBB = −0.11 eV, and εB = −0.45 eV
accompanied by the rigid band shift of μ = −0.03 eV. One has
to keep in mind that both bands A and B are doubly degenerate.
We will refer to this Hamiltonian as reduced model throughout
this work.

Note that the two type-B orbitals disperse in orthogonal
diagonals. The bands crossing the Fermi energy arise due
to the two degenerate type-A orbitals which now represent
isolated, one-dimensional chains dispersing in the b direction.
Due to the missing hybridization between A and B orbitals,
fine features of the perpendicular (c-direction) dispersion
are not reproduced. Nevertheless, despite its simplicity, the
band structure and density of states (see Fig. 1) are still
described very well. Data in the figure have been obtained
using N1.BZ = 483k points in the first BZ and a numerical
broadening of 0+ = 0.086 tmax for the evaluation of the DOS.
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We find a bandwidth of the two bands in the vicinity of εF of
W ≈ 1.4 eV and a Fermi velocity of vF ≈ 0.93 × 105 m/s.

In order to estimate the effective interchain coupling,
we treat the indirect (A-B-A′) hoppings in second-order
perturbation theory. For that purpose, we project the full
four-orbital Wannier model (1) onto the type-A bands [91]

ˆ̃HAA = ĤAA + ĤAB(ω − ĤBB)−1ĤBA .

Upon approximating ω by the bare eigenenergies of ĤAA,
we arrive at a two-orbital model which reproduces the band
dispersions of the two bands crossing the Fermi energy (not
shown). We note in passing that this two-orbital model can
also be obtained by a Wannier construction where the basis is
restricting to bands of type A alone.

Keeping the number of hopping terms low, we now perform

a fit of ˆ̃HAA(k) with a Hamiltonian that contains perpendicular
hopping in addition to the terms of the A orbitals of the
reduced model [Eq. (2)] respecting the symmetry of the lattice.
In particular, we choose for the perpendicular hopping both
intrachain (A-A) terms as well as interchain (A-A′) terms.
The χ2 fit is done using 202 k points on an equidistant
grid in one fourth of the reciprocal b-c plane (ka ≈ 0)
plus 3 × 32 k points on the standard path Y-G-X-M. The
only relevant perpendicular hopping processes given by this
procedure are nearest-neighbor interchain terms of the order
of tAA′ ≈ −0.005 eV, as well as nearest-neighbor intrachain
terms of the order of tAA ≈ −0.02 eV. The hopping in the b

direction only slightly renormalizes to tAA/A′A′ ≈ −0.37 eV
accompanied by an onsite shift of εA/A′ = −0.01 eV.

Thus, we find an intuitive two-orbital model that consists of
two chains dispersing in the b direction with nearest-neighbor
perpendicular hoppings of type A-A and A′-A′ which are one
order of magnitude smaller than the hopping in the b direction.
The direct effective hopping of type A-A′ between the two
chains within one unit cell is again one order of magnitude
smaller. This small effective coupling explains the robust one
dimensionality of the compound. Our calculated values are in
good agreement with those discussed in [48].

We want to stress here that only in this section fitting of
parameters was performed, in order to estimate the effective
perpendicular hopping using only a few parameters. In all other
parts of this work, only ab initio calculated hopping integrals
are used.

III. ANISOTROPIC CONDUCTIVITY

We augment our discussion of the electronic structure by
computing the linear response transport and comparing it to
experiments. The conductivity tensor of Li0.9Mo6O17 consists
of three independent diagonal σa,σb,σc entries as well as one
nonzero off-diagonal element σbc = σcb (see Appendix A).
Literature provides values for the anisotropic resistivity at
room temperature (300 K) and zero magnetic field using
several experimental techniques. We summarized the reported
data in Table I which all agree on a highly anisotropic
resistivity. The ratio between the diagonal elements of the
resistivity tensor, however, strongly disagrees in-between
the individual measurements. In particular, ρa : ρb differs
by a factor of ≈60 while ρb : ρc differs even by a factor

TABLE I. Collected data for the anisotropic resistivity at T =
300 K and our low-temperature theoretical results for small scattering
γ [eV] ∼ 0.05 eV. Data from Refs. [5,12,14] were obtained via four-
point measurements, Refs. [6,7] report results using the Montgomery
method, Ref. [8] measurements are based on magnetoresistance, and
in Ref. [17] a Hall experiment was carried out. Resistivity values
which were not given in the respective publications are represented
by dashes in the ratio column.

Ref. ρa ρb ρc Ratio
m 
cm m 
cm m 
cm

[5] 2470 9.5 260:1:-
[12] 64.5 16 854 4.5:1:50
[14] 1.7 -:1:-
[6] 110(40) 19(1) 47(5) 6(2):1:2.5(4)
[7] 30 0.4 600 80:1:1600
[8] 0.4 100:1:>100
[17] 100:1:-
Full Wannier model ≈430γ ≈1.8γ ≈600γ 240:1:330
Reduced model ≈2γ -:1:-

of ≈640 from the lowest to the highest anisotropy found
in experiments. These discrepancies are often attributed to
experimental challenges when measuring the resistivity of
strongly anisotropic small samples.

A. Conductivity of the reduced model

The reduced model introduced in Eq. (2) consists of
Nband = 2 degenerate bands (type A) crossing the Fermi en-
ergy dispersing only in the b direction with velocity vAA

b (k) =
− 2tAA

� b sin (kbb) [Eq. (A5)]. In this case of diagonal velocities
and spectral functions, the conductivity (see Appendix A1)
becomes

σbb = 16e2t2
AA

�
b2

ac

∫ ∞

−∞
dω

β

2{1 + cosh [β(ω − μ)]}

×
∫ π

b

0
dkb sin2 (kbb)

(
γ

π

)2

× 1

{[ω − 2tAA cos (kbb)]2 − γ 2}2
,

where we introduced a phenomenological scattering γ ∼
|Im[�(ω = μ)]| in the Lorentzian-shaped spectral function.
In the low-temperature small-scattering limit we find

σbb = 16e2t2
AA

�
b2

ac

∫ ∞

−∞
dω δ(ω − μ)

×
∫ π

b

0
dkb sin2 (kbb)

δ[ω − 2tAA cos (kbb)]

2πγ
,

which evaluates to

σbb = 4e2

hγ

b

ac

√
(2tAA)2 − μ2

μ=0≈ NspinNband
D

RKγ
b
ac

,

with D = 2tAA and RK = h
e2 the von Klitzing constant.

Using this expression we find for the resistivity ρbb = 1
σbb

≈
2γ [eV] m 
cm. Considering a reasonable mean-free path d

of the order of a unit-cell length and using the calculated
Fermi velocity of ≈105 m/s we can estimate a scattering
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of γ [eV] = 0.658
d[Å]

≈ 0.05 eV which implies a resistivity of
ρbb ≈ 0.1 m 
cm.

B. Conductivity anisotropy

The reduced model is limited to transport in the b

direction. To study the high transport anisotropy suggested by
experiments, we calculate the conductivity tensor of the full
four-orbital Wannier model. We evaluate Eq. (A1) numerically
at T = 4.2 K and for small scattering γ (for details see
Appendix A2). For the resistivity we obtain ρa ≈ 430γ [eV]
m 
cm, ρb ≈ 1.8γ [eV] m 
cm, and ρc ≈ 600γ [eV] m 
cm
(ρa : ρb : ρc ∼ 240 : 1 : 330). Note that the b-axis resistivity
in the strictly one-dimensional model (2) is only ≈10%
larger than the resistivity in the four-orbital model, which
means that the reduced model yields already a quite accurate
description of the b-axis transport. The a- and c-axis
resistivities are roughly two orders of magnitude larger
than in the b direction, compatible with experimental data.
Using the same phenomenological scattering γ ≈ 0.05 as
motivated in the previous section, we obtain ρa ≈ 20 m 
cm,
ρb ≈ 0.1 m 
cm, and ρc ≈ 30 m 
cm. The resistivity ratio
of ρa/ρb ∼ 240 does compare best to the experimental value
260 as obtained in [5] (see Table I).

IV. CORRELATED ELECTRONIC STRUCTURE

The obtained Wannier model is close to being half-filled
which indicates that the local part of the Coulomb interactions
is most important. The effects of off-diagonal Coulomb
interactions are small and further discussed in Appendix B. In
the following, we focus on local electron-electron interactions
of density-density type, which are added to the ab initio
tight-binding Wannier model

Ĥ = ĤWannier + Ĥint, (3)

where the single-particle part ĤWannier is defined in Eq. (1) and

Ĥint =
∑

R

∑
α

Uαn̂Rα↑n̂Rα↓, (4)

where n̂Rασ is the particle-number operator for Wannier orbital
α = {A,A′,B,B′} and spin σ = {↑ , ↓} in unit cell R. In order
to treat the different band fillings in the model properly, we
employ a simple double-counting correction [92] in ĤWannier,

M+DC
0α0α = M0α0α − Uα〈n0α〉Wannier, (5)

where the densities 〈n〉Wannier are taken from the noninteracting
Wannier model. Adding interactions we furthermore set the
chemical potential μ such that the average filling of electrons
in the system is at its physical value 〈n〉 ≈ 1.44.

This interacting theory is challenging to solve, even more so
because the expected results hint to low-dimensional physics
which can promote nonlocal self-energy effects. We employ
two complementary techniques to study on a first, more
qualitative level, the effect of interactions. First, we apply the
VCA, which contains nonlocal contributions to the self-energy
�. Second, we augment these results by a DMFT calculation
which neglects contributions of nonlocal self-energy terms,
but is superior in the treatment of the low-energy quasiparticle
resonance.

A. Variational cluster approach

The VCA [67] is a quantum many-body cluster method
which is capable of treating short-range correlations ex-
actly [65,67,93,94]. The given lattice Hamiltonian is parti-
tioned into a cluster and an intercluster Hamiltonian Ĥ =
Ĥcl + Ĥinter, where only single-particle terms are allowed in
the intercluster part (for details, see Appendix B). Clusters
consist of one or more unit cells and are chosen so that
their single-particle Green’s function gσ

ml(z) can be obtained
exactly. We use clusters consisting of two unit cells in the b

direction (LC = 8) to capture at least the most basic nonlocal
self-energy effects on the quasi-one-dimensional chains which
enable signatures of a possible spin-charge separation [66].
In this work, we employ a numerical band Lanczos scheme
and the Q-matrix formalism to obtain gσ

ml(z) [95]. The CPT
approximation to the single-particle Green’s function of the
full system G−1(z) is given within first-order strong coupling
perturbation theory by [63,64]

G−1(z) = g−1(z) − H inter, (6)

where H inter are the matrix elements of the intercluster
Hamiltonian in the basis of cluster orbitals. If the cluster is
larger than the actual unit cell of the crystal, we use a Green’s
function periodization prescription to project on the original
unit cell Gαβ(z) [94].

Within VCA, Eq. (6) is evaluated at the stationary point
of the generalized grand potential 
[�] (for fermions at zero
temperature) which is available from G and g [67]. The grand
potential is parametrized by the VCA variational parameters
� which are fixed by the VCA condition [67]

∇�
(�)
!= 0. (7)

The VCA improves the CPT (� ≡ 0) approximation (which
is to approximate the self-energy �G of the full system by
the self-energy of the cluster �g) by adding flexibility to the
cluster self-energy in terms of variational parameters �. We
consider the onsite energies of the four Wannier orbitals as
independent variational parameters � = {�εA,�εA′ ,�εB ,�εB′ }
(which implicitly includes an overall shift of the chemical
potential of the cluster) and use N1.BZ = 323 k points in the
irreducible BZ for the evaluation of Eq. (7).

Advantages of the VCA are that (i) it is exact in the
noninteracting system, (ii) the approximation is systematically
improvable by enlarging cluster sizes, (iii) or increasing the
number of variational parameters �, and (iv) it is possible to
work directly in the real energy domain as well as in Matsubara
space. VCA on small clusters is inherently biased towards the
insulating state, therefore we expect to overestimate a possible
Mott gap (see Appendix C for a discussion).

B. Dynamical mean field theory

A complementary approach that neglects nonlocal effects
but describes the local dynamical quantum fluctuations bet-
ter is the DMFT [96]. Within this theory, the interacting
lattice problem is mapped on a self-consistent four-orbital
impurity model coupled to an infinite electronic bath. The
DMFT approximation is to assume a momentum-independent
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self-energy of the original model �αβ :

�αβ(iω,k)
!= Sαβ (iω),

where Sαβ is the local self-energy generated by the auxiliary
quantum impurity system.

As impurity solver we use the continuous time quantum
Monte Carlo (CT-QMC) code of the TRIQS [97] toolkit
and its implementation of the hybridization expansion (CT-
HYB) [98,99] algorithm using Legendre polynomials [100].
This sign-problem free method works in Matsubara space and
provides statistically exact and reliable results even at very
low temperatures [101]. We used a low temperature of β =
150 eV−1 and a k mesh of N1.BZ = 800. The imaginary-time
data are continued to the real-frequency axis using a parallel
tempering analytic continuation method [102].

Different to VCA, the DMFT as applied here neglects
nonlocal correlations. On the other hand, it treats the local
dynamical quantum fluctuations accurately.

C. Discussion of the interacting dynamics

For models based on atomic orbitals, constrained LDA
calculations suggest an onsite interaction for the atomic d Mo
orbitals of U ≈ 6.4 eV and a nearest-neighbor interaction of
V ≈ 0.2 eV [52] in Li0.9Mo6O17, while the bulk Mo value
for the onsite interaction is U ≈ 3.8 eV [48]. As we will
discuss in the following, in our model these larger interaction
values U , which have been proposed and used for model
calculations [48,49], do not give results in accordance with
experimental data. Obtaining the interaction parameters in
an ab initio way by, e.g., the constrained random phase
approximation (cRPA) [61,103], would be highly desirable,

but is beyond our present computational capabilities due to the
very large unit cell of the system.

In the following, based on physical arguments, we will
nevertheless argue that a moderate value of U is appropriate
for our model. We use uniform onsite interactions Uα = U

only and estimate the magnitude of the interaction strength to
be of the order of a few tmax. The reduced value, compared
to the atomic one, can be motivated by (i) the large spread
of the orbitals [104] and (ii) the effective screening of other
Mo 4d states near the Fermi level. We want to remind the
reader that we are not dealing with atomic orbitals (where for
molybdenum the interaction U could be of the order of several
electron volts) but with extended, even molecularlike, orbitals
(see Fig. 4).

Let us start the discussion using interaction values of the
order of the bandwidth, i.e., using U = 1 eV. We show results
for the single-particle spectrum and orbitally resolved DOS of
the interacting model in Figs. 6 (left and center) and 7 [105].
We used a Lorentzian broadening of 0+ = 0.05 eV for plotting
the spectral functions, as well as 0+ = 0.025 eV for plotting
the DOS. As discussed in the previous section, the VCA is
biased towards an insulating solution (see also Appendix C),
that is why there is a small gap in the conduction band visible in
the spectral function, which is not seen in the DMFT results.

Comparing the single-particle dynamics to recent experi-
ments (ARPES data from Refs. [21,22]), we find very good
agreement for the bands at the Fermi energy (Fig. 6, right). The
renormalization of the effective mass of the half-filled orbitals,
calculated from the DMFT self-energy, is m ≈ 1.2m0, where
m0 is the LDA band mass.

Regarding the bands crossing the Fermi energy, their slope
improves in VCA/DMFT with respect to the LDA data,

FIG. 6. (Color online) Spectral function and DOS of the interacting model. Top row: VCA data for U = 1 eV using eight-orbital clusters.
Bottom row: DMFT data for U = 1 eV. Left: Spectral function plotted along a two-dimensional path in the reciprocal b-c plane. The
noninteracting dispersion is plotted on top (dashed green line). Center: Orbitally resolved density of states. Right: Zoom to the spectral function
in the respective red rectangle compared to ARPES data from Ref. [22] which are indicated as red circles.
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FIG. 7. Cuts through the spectral function along the b axis. The parameters and labels (I, II) correspond to those in Fig. 6.

and compares well with the measured excitations in ARPES
experiments [22]. Note that the upmost branch provides only a
very weak signal in the ARPES data as compared to the lower
branch. In our DMFT calculation, the electronic correlations
suppress the hybridizations between chains A and A′, making
them equivalent. This leads to only one dispersing feature
crossing the Fermi energy (see Fig. 6, lower right panel).
The red circles at lower binding energy correspond to the
shoulder in the ARPES data, which are very likely due to
nonlocal correlation effects that are completely neglected in the
single-site DMFT approach. A final statement on the impact
of nonlocality of the self-energy and spin-charge separation on
the single-particle excitations requires a detailed investigation
on large systems, which is beyond the scope of this paper.

Increasing the interaction value further, for instance to U =
1.5 eV, does not change results significantly (left aside the
artificial gap in the VCA calculation). Above a certain limit,
however, which is around U = 2.5 eV in our calculations,
a Mott gap opens in the two half-filled bands. An extreme
example is using the atomic value for the interaction U = 6 eV,

which is shown in Fig. 8. The half-filled bands are in the Mott
insulating state, with the spectral weight transferred to roughly
±3 eV. The only spectral weight left close to the Fermi level
originates from the two almost filled orbitals, type B. This is
of course qualitatively different from experimental results.

The values of U given here can only be seen as rough
estimates to the actual value, and are by no means ab initio. The
DMFT overestimates the metallicity of a system, in particular
in low dimensions, while the VCA underestimates it. Hence,
using different techniques which are tailored more towards
low dimensions, the needed value of U to open a Mott gap
might be even smaller. As has been shown by Chudzinski
et al. [48], the system should be metallic, but very close to an
insulating state. Our observations can be used as a guideline
in further studies to determine the value of U . At very large
coupling U = 6 eV, however, the system as modeled here is
strongly localized, and the insulating state there should be
very robust. This is supported by the fact that both methods,
VCA and DMFT, give indistinguishable results in this (almost)
atomic limit. It clearly shows that taking atomic values

FIG. 8. (Color online) Spectral function and DOS of the interacting model for high values of onsite interaction strength as one would
expect for atomiclike molybdenum d orbitals: U = 6 eV. For legends, arrangement of the subplots, and color coding, see Fig. 6. On the far
right we show cuts through the spectral function as in Fig. 7.
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for U is inadequate for the effective model derived in this
work.

Let us shortly comment on the effect of correlations in
the reduced model (Sec. II C). There, the Hamiltonian of
the half-filled and the filled bands decouples exactly, which
means that one is left with a standard one-dimensional
(almost) half-filled Hubbard model with nearest-neighbor
hopping only [106]. As discussed in Secs. II C and III A,
this gives a quite good description of the dispersion in
chain direction including transport properties. Effects beyond
the one-dimensional Hubbard model can be included using
the effective perpendicular hopping terms as estimated in
Sec. II C. In a recent study on dimensional crossover [40],
the critical perpendicular coupling to enter the regime of
one-dimensional physics is tp ≈ 0.18t at interaction strength
U = 3t . Of course, this value depends on model details such
as frustrated hopping and interaction strength. However, since
our estimated value for tp in Li0.9Mo6O17 is significantly
smaller than this boundary, we suggest that this can explain the
robustness of one-dimensional (1D) physics in this compound.
We leave a more detailed study of the dimensional crossover
in Li0.9Mo6O17 for further investigations.

V. CONCLUSIONS

We have devised a model for the electronic structure
of the highly anisotropic low-dimensional purple bronze
Li0.9Mo6O17. Starting from ab initio calculations, applying
density functional theory in the local density approximation,
we constructed a four-orbital model based on molybdenum
d states in terms of maximally localized Wannier functions.
This leads to an effective theory with two filled bands slightly
below and two half-filled bands crossing the Fermi energy.
We obtained an even more elementary effective model with
reduced dimensionality consisting of two orbitals only, tailored
towards studies of interactions at low energies.

We showed that basic electronic properties of our model
are in good agreement with experimental data and ab initio
results. Estimated anisotropic transport coefficients reproduce
experimental trends. The model enables us to study effects of
many-body correlations. In a first approach, we made use of
the (extended) variational cluster approach which takes into
account nonlocal contributions to the self-energy and dynam-
ical mean field theory to study the effects of density-density
type electron-electron interactions. Our results indicate that
moderate onsite interactions (of the order of the bandwidth) are
essential, while nearest-neighbor density-density interactions
play a minor role. The so-obtained single-particle spectra agree
well with recent angle-resolved photoemission experiments.
Our study sets some qualitative limits on the value of the
interaction parameters. In particular, we could show that
the values used for atomiclike molybdenum d orbitals are
completely inappropriate for our Wannier model of lithium
purple bronze.

We would like to point out that our model is very different
from previously proposed descriptions for Li0.9Mo6O17 which
were based on atomic orbitals with a comparatively high
onsite interaction strength of several electron volts. We
suggest that low-energy treatments of this one-dimensional
model should start from two half-filled chains with moderate

onsite interaction rather than quarter-filled ladder models with
high values of onsite interaction strength plus off-diagonal
interactions.

Our model is intended to serve as a starting point for
future studies of the electronic structure and interactions of
Li0.9Mo6O17 be it in a renormalization group Luttinger liquid
or computational many-body sense. On the latter side it would
certainly be interesting to conduct a more thorough inves-
tigation of nonlocal self-energy effects to complement our
(extended) variational cluster approach results. In particular,
the phenomenon of spin-charge separation deserves further
attention. A theoretical understanding of the phase diagram of
the system, i.e., the occurrence of superconducting, insulating,
or charge ordered states as function of pressure and tem-
perature, remains a challenging open question. These studies
could be augmented by an ab initio calculation of interaction
parameters for the Wannier model by appropriate techniques
such as constrained random phase approximation [61,103],
making the approach fully ab initio. At the moment of writing,
this is not feasible due to the computational complexity.
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APPENDIX A: LINEAR RESPONSE TRANSPORT

The structure of the conductivity tensor σαβ of Li0.9Mo6O17

follows from the C2h point symmetry as well as physical
symmetry considerations for the conductivity [107] and can
easily be established by requiring the conductivity tensor
to be (i) symmetric for physical reasons and (ii) invariant
under transformations with the four lattice point symmetry
operations (identity, inversion, mirror symmetry perpendicular
to the a axis and twofold rotation around the a axis)
Sα: σ = SασST

α .

1. Formalism

Following Refs. [108–110], linear response transport coef-
ficients can be expressed in terms of kinetic coefficients

An
νμ = Nspinπ�

∫ ∞

−∞
dω (βω)n

×pFD(ω,μ,β)pFD(−ω, − μ,β)�νμ(ω,ω), (A1)

where Nspin = 2 is due to spin degeneracy, the indices
ν,μ = {a,b,c} denote the real-space coordinate system, and
we neglect vertex corrections. The Fermi-Dirac distribution
pFD(ω,μ,β) = 1

eβ(ω−μ)+1 restricts the interval of integration to
β−1 ∼ kBT around the Fermi energy εF (kB is Boltzmann’s
constant, and T and β denote temperature and inverse
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temperature, respectively). The transport distribution

�νμ(ω1,ω2) = 1

V

1

N1.BZ

∑
k∈1.BZ

Tr

× [vν(k)A(ω1,k)vμ(k)A(ω2,k)] (A2)

(V = abc is the unit-cell volume) is given in terms of the
velocities

vαβ
ν (k) = − �

m
〈�α(k)| ∇ν |�β(k)〉 (A3)

and the spectral function

Aαβ(ω,k) = − 1

π
Im

[
GR

αβ(ω,k)
]

, (A4)

which both are matrices in orbital indices α,β = {A,A′,B,B′},
which the trace Tr runs over.

We use velocities vαβ
ν (k) [Eq. (A3)] in the Peierls approx-

imation (neglecting the gradient of the Wannier orbital itself
leading to a diagonal representation)

vαβ
ν (k) = 1

�

(
〈ωα(k)| ∂Ĥ(k)

∂kν

|ωβ(k)〉

−α(rα − rβ) 〈ωα(k)| Ĥ(k) |ωβ(k)〉
)

≈ 1

�
∂Eα(k)

∂kν

δαβ, (A5)

where the second term in the first expression takes intra-unit-
cell processes into account [109] and rα is the position of
Wannier orbital α inside the unit cell. This term is neglected
in the following because the intra-unit-cell hopping elements
are negligibly small. The conductivity tensor is

σνμ = βe2A0
νμ, (A6)

with e denoting the electron charge.

2. Details on the evaluation of the anisotropic conductivity

In this appendix, we outline the numerical procedure used
for the evaluation of the conductivity tensor (A6). These equa-
tions contain four additional, auxiliary numerical parameters
in which we converge our results: (i) The spectral function
Aαβ(ω,k) [Eq. (A4)] of the Wannier Hamiltonian is available
exactly through the noninteracting retarded single-particle
Green’s function GR

αβ(ω) = 〈ωα(k)| 1
ω+iγ− ˆH(k)

|ωβ(k)〉. The
broadening γ of the spectral function is chosen phenomeno-
logically as described in the main part of the text. For numerical
reasons, γ has to be chosen in accordance with (ii) the number
of k points N1.BZ in the first BZ for the sum in Eq. (A2).
We obtain converged conductivities for N

1/3
1.BZ ∈ [1,67] to

within a relative error of 10−3 using an equidistant grid in
the irreducible BZ. We use γ = {0.1,0.075,0.05,0.025} and
rescale all conductivities with γ . As a function of γ , the
resistivities in the a and b directions are constant at ρa ≈
(1.8 ± 0.05)γ and ρb ≈ (430 ± 10)γ , while the resistivity in
the c direction shows an upward trend. For our values of γ

we find ρc ≈ {190,300,480,650}γ . Since the last data point at
γ = 0.025 is already difficult to converge in N1.BZ, we estimate
ρc ≈ (600 ± 150)γ .

(iii) The velocities vαβ
ν (k) [Eq. (A3)] are obtained by sym-

metric first-order numeric gradient approximations vαβ
ν (k) ≈

δαβ

�
Eα (k+ δ

2 eν )−Eα (k− δ
2 eν )

δ
(eν denotes the unit vector in real-space

dimension ν). The parameter of the finite-difference scheme
for the velocities used is δ = 10−6 after finding only negligible
changes in a range of δ ∈ [10−8,10−3]. (iv) For reasons of
numerical stability, we evaluate Eq. (A6) at a low, but finite
temperature of T = 4.2 K, keeping in mind that v

ij
ν (k) and

A(ω,k) have been evaluated for zero temperature. We find
the results to be independent of this choice in a range of
T ∈ [1,50] K. In this calculation, at fixed γ, the temperature
dependence enters through the Fermi-Dirac distribution only
and a small scattering is taken into account through the
broadening γ in the spectral function. We checked the numeric
procedure on the reduced model where analytic results are
known (see main text).

APPENDIX B: NONLOCAL INTERACTIONS:
EXTENDED VCA

Here, we outline the VCA theory as implemented to obtain
the results of the main text including the extensions needed in
eVCA to treat nonlocal Coulomb interactions [65]. The single-
particle part of the full Hamiltonian is readily decomposed into
a cluster and an intercluster part

Ĥcl
Wannier = MRmRl |ωm〉 〈ωl| ,

Ĥinter
Wannier =

∑
δR

e−ik·δRMRmR′l |ωm〉 〈ωl| ,

where indices m and l run over the LC orbitals in the cluster C
at superlattice [94] position R.

When off-diagonal interaction terms are nonzero, an addi-
tional mean field treatment is needed for those two-particle
terms which extend over the cluster boundary [65]. This leads
to a modified interaction part of the Hamiltonian

Ĥint =
∑

C

(
Ĥcl

int + Ĥcl
mf(ϕ)

)
,

Ĥcl
int =

LC∑
m=1

Um n̂m↑n̂m↓ +
∑

m < l ∈ C
σσ ′

Vml n̂mσ n̂lσ ′ ,

Ĥcl
mf(ϕ) =

∑
ml

Ṽml

(∑
σ

(n̂mσ ϕl + n̂lσ ϕm) − ϕlϕm

)
,

with onsite interaction strength Um, intracluster off-diagonal
interactions Vml , as well as Ṽml = ∑

R V0mRl the interaction
elements in the mean field Hamiltonian. The mean fields ϕ

(taken as spin independent ϕm = ∑
σ 〈n̂mσ 〉 and restricted by

lattice symmetry) need to be determined self-consistently.
This allows us to write the (interacting) cluster Hamiltonian

in the VCA as

Ĥcl(�,ϕ) = Ĥcl
Wannier(�) + Ĥcl

int + Ĥcl
mf(ϕ),

where we introduced the VCA variational parameters
[67,93] �.
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FIG. 9. (Color online) Comparison of VCA cluster sizes for a moderate onsite interaction strength of U = 0.5 eV. Top row: VCA data for
using four-orbital clusters. Bottom row: VCA data for using eight-orbital clusters. For legends, arrangement of the subplots, and color coding,
see Fig. 8.

To study the impact of nonlocal Coulomb interactions, we
extend Eq. (4) by

Ĥint,nl = Ĥint +
∑
R<R′

∑
α < β

σσ ′

VRαR′β n̂Rασ n̂R′βσ ′ ,

which also effects the double-counting terms in Eq. (5)

M
+DC,nl
0α0α = M+DC

0α0α −
∑
Rγ

V0αRγ 〈nRγ 〉Wannier,

where the sum over (R,γ ) runs over all bonds connected to
orbital (0,α). The mean fields ϕ [65] which arise due to off-
diagonal interaction terms are fixed by the eVCA condition on
the generalized grand potential [111]

∇�,ϕ
(�,ϕ)
!= 0.

In order to check the influence of nearest-neighbor density-
density interactions VRαR′β , we did several eVCA calculations
with different values within reasonable limits, i.e., below a
value of ≈U

2 . Our calculations show, however, that these
interactions VRαR′β lead only to minor differences compared
to results without them. We did not find the system to be
susceptible to any charge ordering. For that reason, and
also because the precise value of the parameters VRαR′β

is complicated to estimate, all results presented here are
calculated with onsite interaction Uα = U only [112]. Given
the band-filling factors and the good agreement with ARPES
experiments, we argue that onsite interactions are sufficient
to describe the spectral properties of this system within our
approximation.

APPENDIX C: VCA CLUSTER SIZE EXTRAPOLATION

Here, we discuss the approximation introduced by choosing
eight-orbital clusters for the VCA procedure. Eight-orbital
clusters enable nonlocal self-energy effects along the chain
direction in the most basic fashion. The VCA on small cluster
sizes is inherently biased towards the insulating state [94]. In
Fig. 9, we show the behavior of the results when going from
one-unit-cell clusters LC = 4 to two-unit-cell clusters in the b

direction LC = 8. For the same interaction strength, the LC = 4
calculation clearly shows a pronounced Mott gap in the A-type
orbitals while it is still absent in the LC = 8 calculation. All
other basic features are comparable. For numerical reasons,
we can not go to larger cluster sizes. Nevertheless, we expect
the results of the LC = 8 calculation to be still heavily biased
towards the insulating state. One can regard the critical value
U ≈ 0.7 eV for which the gap opens at LC = 8 as a lower
bound to the true critical interaction.
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[76] E. Sjöstedt, L. Nordström, and D. Singh, Solid State Commun.

114, 15 (2000).
[77] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[78] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[79] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz,

WIEN2K, An Augmented Plane Wave + Local Orbitals Pro-
gram for Calculating Crystal Properties (Karlheinz Schwarz,
Techn. Universität Wien, Austria, Wien, Austria, 2001).

[80] For a simplification of the calculation, in particular the structure
of the k mesh, we approximated β to 90.0◦. We checked that
the band structure is indistinguishable along the high-symmetry
directions.

[81] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[82] J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533

(1996).
[83] N. W. Ashcroft and N. D. Mermin, Solid State Physics

(Saunders College, Philadelphia, 1976).
[84] J. W. Allen (private communication).
[85] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,

and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).
[86] J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K.

Held, Comput. Phys. Commun. 181, 1888 (2010).
[87] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and

O. K. Andersen, Phys. Rev. Lett. 87, 047003 (2001).
[88] All densities are given in terms of orbital densities 〈ni〉 =∑

σ 〈niσ 〉.
[89] Setting the maximum hopping range to fourth-nearest-

neighbor unit cells in b, second-nearest-neighbor in c, and
nearest neighbor in the a direction, we obtained 2160 single-
particle matrix elements MRαR′β . We do not provide a full table
of all matrix elements in this text. They are available upon
request from aichhorn@tugraz.at.

[90] Since we start from a spin-symmetric calculation, HWannier,αβ is
independent of spin σ .

[91] When numerically evaluating ˆ̃HAA(k), we use (ω − ĤBB)−1 ≈
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5.2. Steady-state and quench-dependent relaxation of a

quantum dot coupled to one-dimensional leads

5.2.1. Preamble

This part of our work has been published in PHYSICAL REVIEW B 88, 045132 (2013) [52] and
is also available as a preprint on arXiv:1301.3068. Reproduced with permission from PHYSI-
CAL REVIEW B 88, 045132 (2013), doi:10.1103/PhysRevB.88.045132 under Creative Commons
Attribution 3.0 License.
This part of the thesis represents the �rst of two papers concerned with real time evolution of

strongly correlated systems under applied bias voltages, see Sec. 3.2. Here we study the real time
evolution of the SIAM under bias voltage after a quantum quench using the MPS [49] techniques
DMRG [50] + TEBD [51]. The study of out-of-equilibrium properties of the SIAM is a major
theme throughout this thesis. An introduction to the model is given in Sec. 3.1. The model
describes the physics of correlated solids under many di�erent circumstances which are outlined
in Ch. 2. The SIAM is used as an impurity model in Sec. 5.1, dynamic equilibrium properties
are obtained in Sec. 5.4 and its time dependent spatial correlations are explored in Sec. 5.3. Here
we report data for three quenches, which after strongly quench-dependent transients yield the
same steady-state current. We analyse the parameter dependence of bipartite entanglement and
compare our quasi-exact results for the current to recently developed other numerical schemes.
We will revisit the current-voltage characteristics in later chapters Sec. 5.5 and Sec. 5.6 when
we take a look at the SIAM using the approximate steady-state methods: stsCPT and stsVCA,
which have been developed in this thesis. Improved steady-state spectral functions are available
from the AMEA [68] in Sec. 5.9 and the high bias transport physics will be explored in detail in
Sec. 5.10. In these papers the quasi-exact DMRG+TEBD data will serve as a benchmark. The
stsCPT and stsVCA will yield additional information and grant access to dynamic quantities
like the nonequilibrium spectral function.
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We study the time evolution and steady state of the charge current in a single-impurity Anderson model,
using matrix product states techniques. A nonequilibrium situation is imposed by applying a bias voltage
across one-dimensional tight-binding leads. Focusing on particle-hole symmetry, we extract current-voltage
characteristics from universal low-bias up to high-bias regimes, where band effects start to play a dominant
role. We discuss three quenches, which after strongly quench-dependent transients yield the same steady-state
current. Among these quenches we identify those favorable for extracting steady-state observables. The period of
short-time oscillations is shown to compare well to real-time renormalization group results for a simpler model
of spinless fermions. We find indications that many-body effects play an important role at high-bias voltage and
finite bandwidth of the metallic leads. The growth of entanglement entropy after a certain time scale ∝�−1 is the
major limiting factor for calculating the time evolution. We show that the magnitude of the steady-state current
positively correlates with entanglement entropy. The role of high-energy states for the steady-state current is
explored by considering a damping term in the time evolution.
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I. INTRODUCTION

Over the past decade, experimental control over quantum
systems has increased considerably. Possible realizations reach
from model Hamiltonians1,2 using ultracold atoms in optical
lattices to experimental setups of nanoscopic devices such as
molecular junctions, quantum wires, or quantum dots.3,4 Many
of these systems show remarkable properties, often due to
reduced effective dimensionality and many-body interactions.
A prominent example is the Kondo effect,5 which plays an
essential role in transport across quantum dots. A theoretical
understanding of transport in out-of-equilibrium conditions
is highly interesting for applications in nanoelectronics and
molecular electronics and even in biological systems.

Electron-electron interactions render the theoretical de-
scription of nonequilibrium dynamics one of the most
challenging problems in today’s condensed matter physics.6

However, with the advent of efficient numerical techniques
to simulate one-dimensional (1D) quantum systems,7–12 many
physical problems are well within grasp of theoretical physi-
cists. Even nonequilibrium setups in regimes where the
potential bias is large with respect to the energy scales of
the unperturbed systems are now feasible to study.13–15

In this work, we obtain the steady-state charge current
of a single interacting quantum dot under voltage bias,
modeled by a single-impurity Anderson model (SIAM).16

This model is commonly discussed in the wide-band limit17

approximation, tailored towards a universal, low-bias transport
description. Here, we extend the discussion to the case of a
finite (semicircular) conduction band in the leads, which has
not been explored specifically. A particular realization could
consist of two one-dimensional leads such as nanowires18–21

and a junction between them comprised of a magnetic impurity,

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

i.e., the quantum dot. We use generic one-dimensional tight-
binding leads with finite electronic bandwidth which mimic
the electronic properties of, for example, carbon nanotubes.22

In such a device, the electronic density of states (DOS) of the
leads would have a bandwidth on the order of 15 eV (Refs. 22
and 23) and effects arising from their specific structure are to
be expected when using corresponding bias voltages which are
larger than those typically applied in current experiments with
nanoscopic devices.

The steady state is obtained by combining density ma-
trix renormalization group7,11 (DMRG) and time evolving
block decimation9,11 (TEBD) techniques to perform real-time
evolution of the system after several different quenches.
This technique is known to yield reliable results for a wide
parameter range of one-dimensional models12–14,24–34 and to
agree with analytical data.13

We focus on the particle-hole-symmetric point which shows
the most pronounced many-body effects.35 The bias voltage
for most of our data is much larger than the equilibrium Kondo
temperature (see Sec. V A), so that Kondo correlations should
not influence the steady-state current. We show that the same
steady-state current is reached independent of the type of
quench used and identify quenches which are superior to others
when it comes to extracting steady-state data. We investigate
quench-induced oscillations in the transients and compare to
real-time renormalization group results. We have performed
a careful convergence study in all auxiliary numerical and
system parameters and found the major limitation to be the
truncation of the many-body state space in each iteration. The
method is well suited for reaching relevant time scales to study
the steady-state current. We find that our approach is capable
of yielding unbiased results valid in the thermodynamic limit.
Data presented in this work reproduce analytical results in the
noninteracting system. In the low-bias region, our results for
the current-voltage characteristics agree with previous data
(Heidrich-Meisner et al. 14). We are able to extend earlier
results14,36–41 to a wider parameter regime and discuss the
interplay of finite lead bandwidth and electronic correlations.
We find evidence for pronounced many-body effects at
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high-bias voltages in interplay with finite electronic band-
widths of the leads.42 Finally, we discuss the role of
high-energy states for the steady-state current in low- and
high-bias-voltage regimes.

The text is organized as follows: In Sec. II we introduce
our model and describe in detail the different quenches to
be performed. We present data for the transient response in
Sec. III. Results for the steady-state current are presented in
Sec. IV where we also outline how to extract steady-state
data from time-evolved quantities. We analyze time scales of
individual parameter regimes in Sec. V. The role of high-
energy states in different bias regimes is discussed in Sec. VI.
A detailed convergence analysis is presented in Appendix A.

II. SETUP

In this section, we define our notation for the SIAM which
we use to model a quantum dot. We are interested in electron
transport across the quantum dot after each of the several
quenches to be described in detail in the following. We explain
how we calculate the ground state using DMRG and the real-
time evolution using TEBD.

A. Single-impurity Anderson model

We consider a model for a quantum dot including charge
as well as spin fluctuations described by the SIAM, consisting
of an interacting site connected to a bath of noninteracting
electrons. We choose a setup where the quantum dot is located
in the middle of a one-dimensional chain of tight-binding
electrons. The dynamics is governed by

Ĥ = Ĥdot + Ĥres + Ĥcoup, (1a)

Ĥdot = −U

2

∑
σ

f †
σ fσ + U n̂

f

↑ n̂
f

↓ , (1b)

Ĥres =
∑
α,σ

⎛
⎝εα

∑
i

c
†
iασ ciασ − t

∑
〈i, j〉

c
†
iασ cjασ

⎞
⎠ , (1c)

Ĥcoup = −
∑

α

t ′α
∑

σ

(c†
0ασ fσ + f †

σ c0ασ ) (1d)

(see Fig. 1) where U parametrizes the onsite interaction
strength on the quantum dot, t ′α,α ∈ {L,R} is the coupling
strength between the quantum dot and the left and right leads.

FIG. 1. (Color online) Illustration of the three quenches per-
formed for the SIAM: (i) QT I: quenching of both quantum dot-
reservoir tunnelings t ′

L and t ′
R , (ii) QT II: quenching the bias voltage

VB , and (iii) QT III: quenching the dot-lead tunneling t ′
R to one lead.

Lead α is characterized by intralead hopping t and onsite
potential εα . Particle-hole symmetry is enforced for all chosen
parameters. When needed, the onsite energy of the quantum
dot will be denoted by εf .

We choose t = 1 and symmetric couplings t ′L = t ′R =
0.3162 t [Eq. (1d)] for all simulations, yielding a bandwidth
of D = 4 t of the leads and an equilibrium Anderson width5

of � ≡ π t ′2α ρreservoir(0) = t ′2α
t

≈ 0.1 t . We choose t = 1 and
symmetric couplings t ′L = t ′R = 0.3162 t [Eq. (1d) for all sim-
ulations. This yields a bandwidth of D = 4 t of the leads and
an equilibrium Anderson width5 of � ≡ π t ′2α ρreservoir(μ) =
t ′2α
t

≈ 0.1 t , where the reservoir DOS at the chemical potential
is denoted by ρreservoir(μ). We will display all energies in
units of � (h̄,kB and e = 1). We restrict ourselves to the
zero-temperature case. Real time will be denoted by τ . In
Appendix A we show that within the simulation time τ

accessible, the finiteness of the leads does not affect our results.

B. Quench preparation

We are interested in the steady-state current43 of Eq. (1a)
under a finite-bias voltage VB .44,45 Our strategy to obtain the
steady state is by quenching the Hamiltonian parameters x0 =
{U,t,t ′α,εα} at τ = 0 from some initial to their final values
Ĥ(x0) → Ĥ(x) and evolve an initial state |	0〉 with Ĥ(x).
|	0〉 is chosen to be the ground state of the initial Hamiltonian
Ĥ(x0) in the canonical ensemble at half-filling with total spin
projection Sz = 0.

It has been shown that the steady state is independent of the
quench rate.30,31 We apply all quenches at an instant of time,
i.e., without a ramp. It could, however, be interesting to study
the entanglement growth as a function of the quench ramp.

We consider three different quench types (see Fig. 1) which
will be explained in detail below. Unless stated otherwise,
we choose a system of L = 150 sites with the quantum dot
located at site 75. To drive the system out of equilibrium, a bias
voltage VB is applied by setting the respective onsite energies
of the leads in an antisymmetric fashion to εL = −εR = VB

2 .
For all quenches, the final parameters are x = {U,t = 1, t ′α =
0.3162 t, εL = VB

2 , εR = −VB

2 }, with variable U . The initial
setup is quench-type (QT) dependent (see Fig. 1):

1. QT I: Hybridization quench to both leads t ′
α = 0 → 0.3162 t

For τ < 0 we take x0 = {U,t,t ′α = 0, εα = ±VB/2}, i.e., no
quantum dot-to-leads coupling, but the bias voltage is already
applied. We prepare the ground state of Ĥ(x0) at half-filling in
the left and right leads and a single up electron on the quantum
dot. At τ = 0 the tunneling t ′α is quenched to its finite value.
Note that due to the splitting into three disconnected parts
(t ′α = 0), Sz is not zero on the quantum dot and on the right
lead initially.

2. QT II: Quenching the bias voltage εα = 0 → ±VB/2

At τ < 0, x0 = {U,t,t ′α = 0.3261 t, εα = 0}. The system is
prepared in the ground state |	0〉 at half-filling with overall
Sz = 0 zero. At τ = 0 the bias voltage is quenched to its
desired value. As compared to QT I, this setup has the
advantage that no subsystems with finite values of Sz exist in
the ground state. Furthermore, correlations between the three
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regions are already present in the ground state. Note that the
initial state is much more complicated than for QT I. This type
of quench has also been used by the authors of Ref. 25.

3. QT III: Quenching the hybridization t ′
R = 0 → 0.3162 t

to the right lead

The initial parameters are chosen x0 = {U,t,t ′L =
0.3261 t, t ′R = 0, εα = ±VB/2}, and the system is again
solved for the ground state |	0〉 at half-filling. At τ = 0, we
quench t ′R = 0 → 0.3162 t and evolve |	0〉 with the quenched
Hamiltonian.

C. Methods

To prepare the system in the ground state of the initial
Hamiltonian, we employ the DMRG (Ref. 7) algorithm in
its two- and single-site formulations. Our implementation
exploits conservation of spin projection (Sz) and charge
(N ), which is crucial for obtaining high-precision data. Time
evolution is done using the TEBD (Ref. 9) algorithm, within a
second-order Suzuki-Trotter decomposition of the propagator

e−iĤT = (e−iĤδτ )
T
δτ = (

e
δτ
2 Ĥo eδτĤe e

δτ
2 Ĥo

)Nτ + O(δτ 3),

where Nτ = T
δτ

is the number of time slices, T is the total
simulation time, and δτ the length of a single time step. The
operators Ĥe and Ĥo act on even and odd bonds of the bipartite
lattice, respectively. Unless stated otherwise, we use a TEBD
matrix dimension of χTEBD = 2000 and a Trotter time step
of δτ = 0.05 t−1. For additional details including studies of
convergence in system size L and all auxiliary numerical
parameters, we refer the reader to Appendix A.

The calculations carried out in this work set very high
computational demands (≈one million CPU hours) and were
only possible due to a parallel code46–48 which respects
quantum-number (N , Sz) conservation.

III. TRANSIENT RESPONSE

In this section, we present results for the transient current
response of the three quenches. We discuss individual bias
regimes and identify oscillations in the time evolution of the
current which are reminiscent of results for an interacting
resonant level model of spinless fermions. We show that QT II
leads to much larger initial oscillations than the other two QTs.

A. Low-, medium-, and high-bias regimes

In our simulations, we identify three regimes of bias voltage
VB with qualitatively different behavior. Within each regime,
the general features of the time evolution of the current are only
moderately dependent on interaction strength. For that reason,
we first discuss results for U/� = 12 only (see Fig. 2).

For low-bias voltages [VB/� ∈ (0,18)], a steady-state
current plateau6,49 is reached within τ ≈ �−1. In a region
of medium-bias voltages [VB/� ∈ (18,28)], we observe a
fast increase in current over a time scale of τ ≈ 0.3 �−1

followed by a rather slow decay which, for some model
parameters, is too slow to reach a steady-state plateau within
accessible simulation times (see below). In the high-bias region
[VB/� ∈ (28,40)], the time evolution of the current shows a

sharp peak followed by fast decrease of the current into a
steady-state plateau within τ ≈ �−1.

Our data indicate that within a simulation time of τ =
3 �−1, approximately one particle is transferred from the left
reservoir to the right one. As discussed in detail in Sec. IV, all
three QTs eventually approach the same steady state, although
in quite different manner. QT II, for example, leads to the
largest transient current spike, which is one reason for the
lower accuracy in determining the steady state for this quench.
We also find that quenching the hybridization(s) (QT I or
III) yields much cleaner steady-state plateaux as compared
to quenching the bias voltage (QT II), which leads to more
pronounced oscillations in these plateaux.

B. Characteristic oscillations of the current

The time evolution of the current exhibits oscillations
which are more or less pronounced depending on the type
of quench. These oscillations become more explicit with
increasing interaction strength (not shown). Their period is
of the order of 0.5 �−1 for low-bias voltages and decreases to
about 0.3 �−1 for higher-bias voltages, in a range of interaction
strengths U = [0,20] �. These oscillations compare nicely to
results from real-time renormalization group (rtRG) for the
interacting resonant level model [see Ref. 50, Eq. (107)], which
predicts a sinusoidal behavior [∝ sin ( τ

τC
)] with a period of

τC(U,V ) = 2

VB + U
.

In Fig. 3, we plot τC(U,V ) as a function of interaction strength
and find remarkable agreement with rtRG results at higher-
bias voltages. The period was extracted from the TEBD time
evolution data in three ways: (i) by fitting a sine function,
(ii) by identifying the dominant Fourier amplitudes, and (iii) by
identifying local maxima. These data were combined and their
individual uncertainty taken into account. Error bars in Fig. 3
(not shown) would be sharply growing below VB = 25 �. In
the lower-bias regime, our data are not significant for a reliable
extraction of the period.

IV. STEADY-STATE CURRENT

In this section, we present the current-voltage character-
istics of quantum dot. We outline a scheme to extract the
steady-state current and investigate the dependence on the
type of quench used. The current-voltage characteristics in
the low-bias region is compared to existing data obtained with
other methods. Furthermore, we present a detailed comparison
between an interacting and a noninteracting quantum dot for
finite as well as infinite lead bandwidth.

A. Extracting the steady-state current

We identify the steady-state current as the mean value of
the time-dependent current taken over a suitable time domain
[τS,τE] over which the current shows an almost constant
behavior (apart from small oscillations). τS typically depends
on the model parameters and was chosen by hand, and τE

is taken to be the largest time for which simulations yield
reliable results (see Fig. 2). Beyond τE the current becomes
numerically unreliable, resulting in an artificially decaying
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FIG. 2. (Color online) Time dependence of the current [Eq. (A1)] at U/� = 12 for the three different QTs and for different bias voltages.
The curves are plotted as solid lines up to the last reliable point in the TEBD calculation (see text). Larger times are plotted as dashed-dotted
lines. Solid horizontal lines are fits to extract the steady-state currents. The time domain for these fits starts at τ ≈ �−1 and ends at a point
which is identified as the last reliable data point (symbols, see text). Dashed horizontal lines indicate the uncertainty. The insets in the mid row
show respective zooms onto short-time regions, which are not visible in the main part of the figure.

current (see Appendix A for discussion). We find that in
most of the parameter regions, the transients have decayed
at τS ≈ �−1. On the other hand, the end point of the plateau
strongly depends on the parameter region under consideration.
We define it by two distinct measures. One is the time τ

(1)
E for

which the truncated weight ε [see Eq. (A3)] reaches a threshold
of εc = 3 × 10−6 at any bond (marked by + in Fig. 2). The
second definition (τ (2)

E marked by ◦ in Fig. 2) is given by the
time for which two different definitions of the current, namely
the expectation value of the current operator [Eq. (A1)] and
the time derivative of the particle number [Eq. (A2)], deviate
by more than 7 × 10−4, the latter being more susceptible to
accumulation of errors. Both times are in good agreement with
each other and can be combined into an effective simulation
time τE = min(τ (1)

E ,τ
(2)
E ) + α|τ (1)

E − τ
(2)
E | (marked by triangles

in Fig. 2). We choose a value of α = 0.1. Results do not depend
on this particular choice. It turns out that this procedure is very

robust and does also agree with the point at which the TEBD
current starts to deviate from the exact time evolution in the
noninteracting system (see Appendix A 5).

The steady-state plateaux obtained in this way usually show
oscillations and/or small, parameter- and quench-dependent
drifts. We quantify the quality of convergence within the
plateau region [τS,τE] by the slope of a linear fit to the current.
A large slope indicates that it is not possible to reach the steady
state within the given simulation time τE , i.e., the physical
relaxation time is too long or the reached simulation time
is too short. This is further discussed in Sec. V. For these
parameter values, we can only provide a likely upper bound for
the steady-state current, given by the current at the last reliable
simulation time. This is justified because we find the current
to always decrease as a function of time (apart from small
oscillations). Note that although for some of these parameters
the current in some QTs may appear converged but is still
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FIG. 3. (Color online) Period of the sinusoidal oscillations of the
current in QT II for various values of interaction strength U/� =
0,4,8,12, and 20 (symbols). Solid lines indicate the predicted form
for the interacting resonant level model (Ref. 50).

considered not converged according to our strict criteria. We
consider the current to be converged when the relative slope
is below a threshold of ≈5 × 10−2 �. Each curve in addition
was inspected by hand for convergence. When we consider the
steady-state current converged, we estimate its error as three
times the standard deviation taken over the data points in the
fitting interval [τS,τE] (plotted as dashed lines in Figs. 2 and 4).
This coincides most of the time with the maximal deviation of
the time-dependent current from its mean value.

As an important test, we obtained the current-voltage
characteristics for the noninteracting case and compared it
to analytical results51 (see Fig. 4), finding excellent agreement
(see also Appendix A 5). Another indication for the reliability
of the scheme outlined above is that all three types of quenches
investigated yield the same steady-state current within the
uncertainty. We note that this is not a priori clear since
quench-dependent steady states have been reported in different

FIG. 4. (Color online) Current-voltage characteristics of the
quantum dot. The steady-state currents shown are obtained by a fit of
the expectation value of the current operator within the steady-state
plateau. Regions where only a likely upper bound for the steady-state
current could be obtained are indicated by pedestals (see text).

systems.52 As noted in Appendix A, the position of the plateau
is also stable with respect to variations of technical parameters
of the simulation. The quality of the steady-state plateau,
however, depends strongly on the values of interaction and
bias voltage and may be obscured by initial oscillations or
shortened at the end by the truncated weight breakdown.

The behavior of the spin current strongly depends on the
quench type and it is even identical to zero for QT II. In this
respect, the steady-state charge current does not depend on the
properties of the spin current since all three quenches yield
the same steady state for the charge current. This turns out to
be very advantageous since the time scales in the spin sector
are much larger than in the charge sector.53,54

From our calculations, we find QT I and QT III to yield
more reliable data for the extraction of the steady-state
current than QT II. Reasons for this behavior are (i) the much
more pronounced oscillations in the data of QT II which
enlarge the statistical uncertainty of steady-state values and
(ii) the much higher transient spike in QT II accompanied
by a slightly higher initial entanglement and shorter τE .
Entanglement growth is in general parameter dependent and
converges towards the same value for all quench types.54

In the following, we will present steady-state data extracted
from QT I and QT III.

B. Current-voltage characteristics

The current-voltage characteristics of the quantum dot for
interaction strengths of U/� = 0,4,8,12, and 20 are shown
in Fig. 4. We plot data as obtained from QTs I and III (other
QTs would give the same results but with larger error bars,
as discussed in Sec. IV A). Results for the noninteracting case
agree with analytic results for an infinite system.51 In some
regions, only a likely upper bound for the steady-state current
can be provided. This region does not lie on the extreme end of
the parameter space. It shows nontrivial dependence on U and
VB , which is discussed in detail in Sec. V. The current-voltage
characteristics has an approximately semicircular shape, with
decreasing maximum as a function of interaction strength U .
At small bias VB , the current is linear in VB and agrees with
the linear response result jlin = 2G0VB (see also Fig. 5). At
higher bias, it departs from the linear response result. With
increasing U , this departure occurs already at smaller bias
VB , which can be attributed to an exponential thinning of the
Kondo resonance with increasing U .

In intermediate-bias regions, we observe a flattening in the
current-voltage curve. The maximum steady-state current is
obtained in a bias regime from VB ≈ 15 � to 19 �. Increasing
the interaction from U = 0 to 12 � appears to shift the position
of the maximum to higher-bias voltages. For larger values of
U our data are not significant to conclude on the behavior of
the position of the maximum. We find the maximum current
to decrease quadratically with increasing interaction strength:
jmax

�

 1.675 − 0.003(U

�
)2. Note that these features will likely

depend on the actual reservoir DOS.
The decrease of the steady-state current for high-bias

voltages can be attributed to the diminishing overlap of the
DOS of the two reservoirs.49 Both have a semicircular DOS
with a bandwidth of D = 40 �. In the wide-band limit, the
curves behave similarly inside the low-bias regime but should
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FIG. 5. (Color online) Comparison of the current-voltage characteristics of the SIAM obtained with different methods in the low-bias
regime. Some of the methods use a wide-band limit and others a semicircular reservoir DOS which (for equal �) become comparable in the
low-bias region shown. The methods are (1) diagrammatic QMC for T = 0 in the wide-band limit (dQMC) (Ref. 36), (2) fourth-order Keldysh
perturbation theory for T = 0 in the wide-band limit (PT4) (Ref. 37), (3) time-dependent DMRG for T = 0 using a semicircular DOS (tDMRG)
(Ref. 14), (4) TEBD for T = 0 using a semicircular DOS (TEBD, this work), (5) nonequilibrium fRG for T = 0 using a wide-band limit
(fRG) (Ref. 38), (6) nonequilibrium cluster perturbation theory for T = 0 using a semicircular DOS (nCPT11) (Ref. 39), (7) nonequilibrium
variational cluster approach for T = 0 using a semicircular DOS (nCPT7

T ) (Ref. 39), (8) imaginary-time QMC for T = 0.2 � in the wide-band
limit (cQMC) (Ref. 40), (9) iterative summation of real-time path integrals for T = 0.2 � in the wide-band limit (ISPI) (Ref. 41), and (10) the
linear response result for the Kondo regime jlin = 2G0VB (lin. resp.).

saturate as a function of VB for higher-bias voltages (see
Fig. 6).

We discuss three simple limits. The TEBD results for
the current respect the linear response (jlin) for very low-
bias voltages which gives the conductance quantum G0.
Furthermore, they respect the high-bias voltage band cutoff
where the current has to go to zero (here at VB = 40 �) due
to diminishing overlap of the DOS of the reservoirs. The
third limit is the noninteracting case (nontrivial for the used
numerical method), where we obtain perfect agreement with
analytical results for the thermodynamic limit.

C. Comparison to previous results

In the low-bias region, results from other techniques are
available for the SIAM out of equilibrium. In the following,
we discuss our results for various values of interaction
strength U together with data previously obtained (see
Fig. 5) by diagrammatic quantum Monte Carlo (QMC),36

fourth-order Keldysh perturbation theory,37 time-dependent
DMRG,14 TEBD for temperature T = 0 (this work), nonequi-
librium functional renormalization group (fRG),38 nonequilib-
rium cluster perturbation theory,39 the nonequilibrium varia-
tional cluster approach,39,55 imaginary-time QMC,40 iterative
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FIG. 6. (Color online) Comparison of the current-voltage char-
acteristics of a noninteracting, resonant level device with onsite
potential εf = −U

2 (solid lines) with the TEBD data for the
interacting quantum dot (symbols). Both devices have the same
specifications with only the interaction U missing in the first case.
The comparison is done for four values of interaction strengths resp.
onsite potentials: U

�
= {4,8,12,20} resp.

εf

�
= {−2,−4,−6,−10}

(blue/circles, green/triangles, red/stars, cyan/squares, respectively).
In addition, we show the U = 0 result (black/no symbols). The
dashed-dotted lines indicate data for a noninteracting device in the
wide-band limit.

summation of real-time path integrals,41 and the linear re-
sponse result for the Kondo regime jlin = 2G0VB . All methods
work at or close to zero temperature. Some of the methods use a
wide-band limit and others a semicircular reservoir DOS which
(for equal �) become comparable in the shown low-bias region
(see Fig. 6 for a comparison). The newly obtained TEBD
results agree very well with the unbiased dQMC (Ref. 36)
and quasi-exact tDMRG (Ref. 14) data. An earlier comparison
including more details but fewer techniques is available in
Ref. 56.

D. Comparison to a noninteracting device: Identifying
correlation effects from the steady-state charge current

To gain further understanding of the role of correlations, we
compare the steady-state current of the interacting quantum dot
(U , onsite potential εf = −U/2) to the one of a corresponding
noninteracting (resonant level) device with U = 0 and onsite
potential εf = −U

2 (see Fig. 6). Data for the resonant level
device are obtained analytically.51

From the plots in Fig. 6, one can see clear differences in the
low-bias region between the noninteracting and interacting
device for all interaction strengths, which can be attributed
to the presence of the low-energy Kondo resonance in the
interacting case. For low bias, the Kondo resonance fixes
the linear response current to a U -independent constant and
causes a higher current than for a noninteracting quantum
dot at the same onsite potential. Furthermore, the curvature
of the current-voltage characteristics in the low-bias region
is negative in the interacting case as compared to positive
in the noninteracting system. For larger values of U =

12 � and 20 �, the negative curvature turns into a positive
one in the low-bias region.

For low values of interaction strength (see data for U =
4 �) we observe deviations in both the low- and high-bias
regions. For the latter, this hints at possible many-body effects
which may also be important in the high-bias regime. Data in
the medium-bias region are almost indistinguishable from the
noninteracting case. For high values of interaction strength,
the picture changes and many-body effects are present in the
whole bias regime.

Summing up, we find that effects of interaction are most
pronounced in the low- and also in the high-bias regime, where
a larger current is obtained than in the noninteracting device.
Because of the small remaining overlap of the DOS of the
leads, this larger current may be due to some low-energy
spectral weight in the interacting device, consistent with low-
energy excitations observed in Ref. 39 using a nonequilibrium
variational cluster approach calculation.

V. DISCUSSION OF TIME SCALES

In the following, we argue that Kondo correlations do
not influence the steady-state charge current in the parameter
regime under study (large bias VB compared to Kondo scale).
However, our simulations show that depending on bias voltage
and interaction strength, the steady-state charge current can
not always be reached within the simulation time τE (see
Sec. IV A), due to (i) weak spots of the method (i.e., small
τE) and/or (ii) long physical relaxation times. To obtain insight
into physical mechanisms as well as the parameter dependence
of the performance of TEBD, also relevant for future studies,
it is desirable to disentangle these two effects. We identify
parameter regimes with such long physical time scales to be at
U + VB > D (low charge-current regime), where we find our
method to perform well, as opposed to parameter regimes with
high currents, where only smaller times τE can be reached, as
shown in Appendix B.

A. Finite simulation size/time and Kondo correlations

At the particle-hole-symmetric point of the SIAM, Kondo
correlations are especially pronounced. In equilibrium they in-
troduce a characteristic energy scale, the Kondo temperature5

TK which translates into a length scale of the Kondo singlet
ξK , given by Bethe ansatz57

ξK ∝ vF

kBTK

∝ 2t

√
2

�U
e

π
8�

U . (2)

Due to the exponential dependence on interaction strength,
these spin correlations can not fully develop on a
finite-size system,58,59 already for moderate interaction
strength. For the parameters used in this work, the
equilibrium Kondo correlations have a spatial extent
(screening cloud) of approximately ξK ≈ 50 sites for U =
4 �, ξK ≈ 200 sites for U = 8 �, ξK ≈ 900 sites for U =
12 �, and ξK ≈ 16 000 sites for U = 20 � [see Eq. (2)].
These amount to equilibrium Kondo temperatures of TK ≈
3 × 10−1 �, 9 × 10−2 �, 2 × 10−2 �, and 1 × 10−3 �,
respectively.
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For very small bias voltages VB � TK (and large U ), the
Kondo effect introduces a large time scale. In this work,
however, we focus on parameters for which VB � TK . (An
exception is U = 4 � and VB < 10 �, where the Kondo cloud
does fit into our finite-size system.60) For the parameter regime
under study, recent numeric61 and analytic62–64 studies provide
strong indications for suppression of the equilibrium Kondo
effect.

It is argued in literature that one expects a splitting of the
Kondo resonance, possibly a pinning at the lead potentials65,66

and/or a suppression61 of the Kondo effect similar to the effect
of temperature4,61,63 or magnetic field.67 Renormalization
group studies concluded that bias voltage is a relevant energy
scale in the problem.62–64 Recent results for the electron
dynamics in the steady state indicate a splitting of the Kondo
resonance away from zero with bias voltage which further
supports our observation that the Kondo induced time scale
is not relevant for charge transport at large bias voltages.39

Note that even in the presence of Kondo correlations, charge
relaxation should be orders of magnitudes faster than spin
relaxation.53

From our current simulation we made the observation that
an initial system with Kondo correlations (to be precise, their
finite-size remnants) as in QT II yields the same steady-state
charge current (after a short, and different transient regime)
as an initial system without them as in QT I. This indicates
that in QT II the Kondo correlations are washed away by bias
voltage. We thus conclude that although finite-size systems are
not able to capture the full equilibrium Kondo singlet,58 the
steady-state transport in the charge channel is not noticeably
affected in the parameter regime under investigation.

B. Time scales in the high-bias regime

We find that relaxation times in the model under discussion
are strongly parameter (U , VB) dependent. These relaxation
time scales are estimated by the slope of a linear fit to
the plateau region [τS,τE] (see Sec. IV A). In particular,
we identify three regions [see Fig. 7 (top)]: region I is
characterized by short physical relaxation times and region
II exhibits longer relaxation times. Region II overlaps with the
regime in which TEBD restricts us to small final simulation
times τE (high steady-state current regime, see Appendix B
for discussion). In region II, we did not obtain a converged
steady-state current. In region III, the current is small and the
maximum reachable simulation time (see Appendix B) was
large enough to determine the steady-state current.

We proceed by providing an intuitive single-particle picture
of the transition from region I to II in a Hubbard-I-type
description [Fig. 7 (bottom)]. Then, the leads (assuming
infinite reservoirs) are described by semicircular bands of
bandwidth D, asymmetrically shifted against each other with
increasing bias voltage VB . The quantum dot consists of a
single (noninteracting) level, located at the single-particle
energy −U

2 . We find that the transition occurs when this
single-particle level of the quantum dot leaves the overlap
region of both lead DOS (blue line, Utrans ≈ D − VB). We
conclude that the existence of an appreciable spectral weight
in the overlap region of the lead DOS leads to faster relaxation.

FIG. 7. (Color online) (Top) Parameter regions in the U − VB of
short (I) and long (II) physical relaxation scales as well as a regime
of more complex behavior III. Data from the TEBD calculation are
indicated with black and gray markers. For region II, pedestals are
shown in Fig. 4. (Bottom) Single-particle DOS and single-particle
dot level in a Hubbard-I-type picture at U = 20 �, for (a) VB = 6 �,
(b) VB = 20 �, and (c) VB = 36 �. The electronic DOS of the left
(right) lead is shown in red (blue) and their overlap in brown. The
single-particle level of the quantum dot is indicated at −U

2 in magenta.

VI. ROLE OF HIGH-ENERGY STATES

To study the role of high-energy states during the time
evolution we add a damping term to the propagator

Û(τ ) = e−iĤτ (1−i
), (3)

which gradually reduces the contribution of high-energy states.
In Fig. 8, the effects of damping of high-energy modes on

the current is visualized. We show results for very low-bias
voltage (VB = 2 �) as well as high-bias voltage (VB = 32 �).
The different influence of overdamping (dashed lines) on
low-bias setups in contrast to high-bias setups yields insight
into the role of high-energy states in the two respective cases.
In low-bias settings, strong overdamping (here 
 = 10 �)
leads to lower current while in the high-bias case it leads
to higher current with respect to the true one. This indicates a
qualitatively different role of high-energy states for these two
settings.

This result can be made plausible by a simple argument. In
the case of small-bias voltage (VB � t), the dominant energies
should be the kinetic ones and neglecting high-energy states
amounts to eliminating those with highest kinetic energy. Such
states contribute much to the current and neglecting them leads
to a lower total current. On the other hand, for very high-bias
voltage (VB � t), potential energy is expected to dominate.
High-energy states are then those with a lot of particles in the
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FIG. 8. (Color online) Effects of damping 
 of high-energy
modes on the time evolution of the current (U = 0,χTEBD = 500,
QT I). Data shown are obtained for very low-bias voltage (VB = 2 �,
group of gray curves in lower part of figure) and high-bias voltage
(VB = 32 �, group of orange curves in upper part of figure). For
each bias voltage, we compare data obtained by a standard (
 = 0)
time evolution (full lines), data using an (empirically) optimally
damped time evolution (
 = �, dashed-dotted lines) as well as for
an overdamped evolution (
 = 10 �, dashed lines).

high-bias reservoir. Eliminating them reduces the available
state space for hopping of particles back to the side of high
potential. Therefore, the current is increased due to less back
flow. From a technical point of view, such an approach may
reduce entanglement growth (the limiting quantity in real-time
evolution using matrix product states), thus reducing the
required matrix dimensions of the MPS. Using such an ansatz,
however, suffers from two drawbacks. (i) On the one hand, we
have just seen that high-energy states can be important for the
steady-state current and, on the other hand, estimating a priori
a suitable magnitude of the damping 
 is not straightforward
since it should in principle be dynamically adjusted during
the time evolution taking into account energies and truncated
weight. Due to these reasons, we refrain from using such an
approach in general. However, we show in Fig. 8 that by
choosing a phenomenologically good value for the damping
(
 = �), one can indeed somewhat prolong the stable time
evolution.

VII. CONCLUSIONS

We studied the single-impurity Anderson model out of
equilibrium beyond the linear response regime by means of
density matrix renormalization group. Real-time evolution was
performed making use of the time-evolving block decimation
algorithm which allows us to access relevant time scales to
reach the steady state. Within this framework, we investigated
three different quenches: (i) quenching the hybridization
with already applied bias voltage, (ii) quenching the bias
voltage, and (iii) quenching the hybridization at one side
only.

Calculated current-voltage characteristics agree very well
with established results which are available in the low-bias

region. We find that the period of characteristic oscillations in
the time evolution of the charge current is already very well
described by renormalization group results for a different
model, the interacting resonant level model of spinless
fermions. After an initial transient regime, where on the
order of one particle is transferred through the quantum dot,
the steady-state current agrees among the three quenches
investigated. For the identification of steady-state plateaux in
time-dependent quantities, the type of quench is however very
important. We show that quenching the lead-dot tunnelings
is the most suitable one, contrary to expectations whereas
quenching the bias voltage results in large initial oscillations
of the current. We furthermore show that limitations of
the method such as its inherent finite size do not pose a
problem for simulations of the setup discussed here within
accessible times. Our findings indicate that the steady-state
charge current is not influenced by finite-size effects, hinting
that incompletely developed Kondo correlations in the spin
channel do not influence charge transport noticeably. We
find that a large entanglement entropy correlates positively
with a large steady-state current amplitude. By studying a
damped time evolution, we find that high-energy states have
very different significance in the low- and high-bias regimes,
respectively.

Aside from reproducing the universal low-bias physics, we
open up new perspectives for devices in which a large-bias
voltage is combined with a finite electronic DOS of the leads,
such as nanotubes. For such devices, we predict that effects of
electron-electron interactions are important even at high-bias
voltages.

Interesting extensions within the presented approach may
be the application of a gate voltage to study stability diagrams,
evaluation of spin correlations which could hint on Kondo
correlations, to study effects of asymmetric couplings, the
interplay of bias and magnetic fields as well as to investigate
correlated leads.34 On the technical side, it would be interesting
to evaluate whether more gently ramped quenches over a
finite-time interval further decrease oscillations or even en-
tanglement and further improve the extraction of steady-state
data.
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APPENDIX A: METHOD SETUP, CONVERGENCE
ANALYSIS, AND PRELIMINARY CONSIDERATIONS

Here, we present some preliminary considerations concern-
ing the convergence and quality of our data. Uncertainties
arise from the approximations made within the method and
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from numerical precision. In addition, our setup contains leads
of finite size, with two effects in principle. First, this finite
size affects the ground state at time zero. We will show in
the following that the effect on the current is negligible; it
converges already at much smaller lead size than used here.

Second, the finiteness of the reservoirs means that no energy
or particle dissipation occurs and eventually the system will
show oscillatory behavior. We note in passing that during our
simulation time only approximately one particle traverses the
quantum dot. The earliest time at which the current can be
affected by the finite system size arises from a perturbation
which propagates after the quench to the end of a lead and
back to the quantum dot. The velocity of this signal is limited
by the Lieb-Robinson bound,68 up to exponentially suppressed
parts, and in our case is v ≈ 2t , which can also be clearly seen
in the time evolution of local charge expectation values.54 The
perturbation will hit the left and right ends of the chain and
return back to the quantum dot after a time of about τ ≈
2(L/2)/(2t) = L/(2t), i.e., τ/�−1 ≈ L�/(2t) ≈ 7.5 for L =
150. This is far beyond the times τE (see Sec. IV A) up to which
we calculate the steady-state current, which is therefore not
affected. This conclusion is confirmed by the convergence of
the current with respect to system size L, discussed below. The
measured current may, however, be affected by other possible
errors within our approach: (i) the procedure to measure it,
(ii) the Trotter error, and (iii) the limited matrix dimension
χTEBD (i.e., truncated weight).

In the following, we will show that the major uncertainty
arises from the limited matrix dimension χTEBD, while other
sources are negligible. The definition of the time intervals
from which the steady-state current is evaluated (Sec. IV A) is
also relevant. A similar conclusion has been drawn before in
the framework of adaptive tDMRG (Ref. 25) and for different
systems in the framework of TEBD.49

1. Obtaining the current

Within the TEBD time evolution, the steady-state current
may be obtained via the expectation value of the current
operator at each time step24,69

ĵij (τ ) = i tij
∑

σ

(a†
iσ ajσ − aiσ a

†
jσ ),

where i and j denote adjacent sites and aiσ and a
†
iσ are

annihilation and creation operators for fermions onsite i with
spin σ which depend at time τ and tij is taken to be real. To
obtain the current through the quantum dot, a symmetrized
version of the inflow and outflow is used:

ĵ (τ ) = ĵLf + ĵf R

2

= i π t ′
∑

σ

((
f †

σ cL
endσ − c

L†
endσ fσ

)− (
f †

σ cR
0σ − c

R†
0σ fσ

))
,

(A1)

where cL
endσ , c

†L
endσ denote operators on the last site of the left

reservoir (number 74 in Fig. 1) and cR
0σ , c

R†
0σ denote operators

on the first site of the right reservoir (number 76 in Fig. 1).
Another way of computing the current is by calculating the

time derivative of the total particle number to the left of the

site under consideration:

jii+1(τ ) = d

dτ

〈
i∑

m=1

∑
σ

n̂mσ (τ )

〉
.

Again, a symmetric combination of the dot’s ingoing and
outgoing current yields the current under consideration

j (τ ) = 1

2

(
d

dτ

〈∑
m∈L

∑
σ

n̂mσ (τ )

〉

+ d

dτ

〈 ∑
m∈L∪f

∑
σ

n̂mσ (τ )

〉)
. (A2)

The current through the dot may be evaluated at each TEBD
time step using Eq. (A1) or by computing a finite-difference
approximation to the differential Eq. (A2) every two successive
time steps.

Aside from the expected additional source of error by
evaluating the time derivative numerically, this method is
expected to perform less well due to the influence of all sites in
the system on the result for the current, the occupation number
of each site having its own limited accuracy. A comparison
of the current evaluated by means of Eqs. (A1) and (A2)
for various values of interaction strength U and applied bias
voltage VB as well as all QTs (I, II, III) shows good agreement
in the beginning of the time evolution [see Fig. 9 (left)]. Due to
an accumulation of errors in the particle-number expectation
values of the individual sites, the results start to deviate at some
time τ

(2)
E . We do not use results beyond τ

(2)
E (see the discussion

in Sec. IV A). Numerical values of all steady-state currents
will be obtained using the current operator [Eq. (A1)] which
yields a much more stable estimator.

2. Finite-size effects: L

In this section, we discuss the dependence of the results
for the current on the length of the system L.49,70 We
quench both dot-lead tunnelings (i.e., QT I). The qualitative
behavior for the other QTs (II and III) is virtually identical.
Results for the steady-state current for system sizes of L =
20,40,60,80,100,120, and 150 sites are shown in Fig. 9 (right)
in the noninteracting case. We find that the final results for
the steady-state current agree with the analytically available
results for an infinite system in all cases within the numerical
error. This ensures a reliable determination of steady-state
properties even on finite-size systems. As mentioned before,
the system size limits the maximum simulation time due to
signals back-propagating from the borders. In the main part
of this work, all calculations are performed for a system
size of L = 150 to provide a nice long plateau (maximum
simulation time) in the steady-state current. It has been noted
in Ref. 71 that in the particle-hole-symmetric half-filled model,
the steady-state current is independent of system size. A
detailed discussion of finite size and time scales in a model of
spinless fermions can be found in Ref. 70.

For completeness, we note that it is possible to extend
the available simulation time, when it is limited by the
hard boundary conditions of the leads, by applying modified
boundary conditions.34,69,72,73 Exponentially decreasing the
matrix elements of the Hamiltonian towards the end of the
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FIG. 9. (Color online) Convergence of the current with respect to several auxiliary numerical parameters. Left: Solid lines denote results
obtained evaluating the expectation value of the current operator (A1), while dashed lines indicate data obtained by evaluating the time
derivative of the expectation value of the particle number (A2) (U = 12 �, L = 150, χTEBD = 2000, QT I). Center: Matrix sizes χTEBD =
250 (dotted line),500 (dashed-dotted line),2000 (dashed line), and 4000 (solid line) are presented (U = 20 �, L = 150, QT I). Right: We show
system sizes L = 20,40,60,80,100,120, and 150 (dotted, dashed-dotted, dashed, dashed-dashed-dotted-dotted, long-dashed-short-dashed,
dashed-gap-dashed, and solid lines) at U = 0, L = 150, χTEBD = 2000 for QT I. The constant solid lines indicate the exact steady-state
currents of the respective thermodynamic system.

reservoirs ultimately corresponds to a Wilson chain with
logarithmic discretization.73 In this work, we do not apply any
modified boundary conditions because our simulation time is
not limited by the size of the chains but the TEBD matrix
dimension χTEBD.

3. Trotter error: δτ

The Trotter error grows only linearly with simulation
time,25,74 and can be controlled by choosing sufficiently small
δτ . Therefore, usually the contribution to the total error arising
due to the Trotter approximation is negligible with respect to
other approximations. We investigated the influence of the
Trotter decomposition on the current. Results for δτ/t−1 =
{0.01,0.05,0.1} were found to agree to within 5 × 10−5. We
do not plot the results because they all lie on top of each other.
A good value for the time step was found to be δτ/t−1 = 0.05
which was used in the main section of the paper.

4. MPS matrix dimension: χ

The quality of the TEBD results is predominantly deter-
mined by the maximum matrix size χTEBD used. A bigger
χTEBD leads to fewer discarded states (i.e., less truncated
weight of the reduced density matrices) during the truncation
and therefore to a systematically better approximation.12 The
truncated weight is defined by74

ε = 1 −
χ∑

γ=1

λ2
γ , (A3)

where λ2
γ denote the eigenvalues of the reduced density

matrices. This quantity is zero if no truncation is done. The
computational cost of the TEBD algorithm scales essentially
like74

cost ∝ L(d χTEBD)3,

where L is the length of the chain and d = 4 the size of the
local fermionic Hilbert space. Therefore, it is essential to keep
χTEBD as low as possible. During the simulations we noticed

that at a certain time (long before signals propagating back
from the ends of the chain would reach the quantum dot), the
truncated weight starts to grow quickly and the results become
unstable,75 causing a decaying current. The effects of enlarging
χTEBD are shown in Fig. 9 (center). As the data indicate,
the effect of increasing χTEBD is to make larger simulation
times accessible, before the simulation breaks down due to
accumulation of truncated weight. Remarkably, no spurious
quasi-steady state is entered when χTEBD is relatively small.
The overall shape of the current appears to be unaffected
by enlarging χTEBD, making reliable predictions for χTEBD =
2000 possible. We checked our results in all parameter regions
for convergence. In the main part of the paper, we always used
χTEBD = 2000 as a good compromise between run time and
accuracy.

5. Comparison to analytical results

In the noninteracting setup U = 0, we compare TEBD data
to results from an exact time evolution (see Fig. 10). The exact
time evolution was obtained for the same system parameters
by time evolving the single-particle density matrix. We find
that the TEBD time evolution is reliable up to a system-
parameter-dependent time. This time (triangles) again is in
accordance with the criterion for the maximum reachable
simulation time as defined in Sec. IV A and has a nontrivial
dependence on bias voltage and interaction strength.

The noninteracting system is nontrivial for the TEBD
method. Our data for the entanglement entropy and the
truncated weight at low-, medium-, as well as high-bias
voltages for increasing interaction strength54 indicate that
indeed the U = 0 case does not exhibit a particular low
entanglement or truncated weight in comparison with higher
interaction strength. Since we reproduce the exact analytic
steady-state current in the noninteracting case, we conclude
that the agreement with exact results is not a peculiarity of the
noninteracting system and our way of data extraction can be
applied to finite values of U .
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FIG. 10. (Color online) Exact results for the noninteracting
system. Comparison of the TEBD current (dashed lines) to an exact
time evolution (solid black lines) for U = 0 �, L = 150,χTEBD =
2000, QT I. We show results for VB = 4 � (cyan), VB = 28 �

(magenta), and VB = 36 � (green). The respective maximum reliable
simulation times (see Sec. IV A for definition) are indicated as
triangles.

6. Setup

Based on the above considerations, all data in the main
part of the paper were obtained for the following parameters:
(i) The ground state was obtained by DMRG using a matrix size
χDMRG = 400 and undergoing 10 sweeps of two-site DMRG
before switching to 40 runs for single-site DMRG. (ii) The
model consists of L = 150 sites. Upon performing one of the
three above-described quenches (I, II, or III), we used bias volt-
ages in a range of VB/� = (0,42). We always started from an
overall half-filled system in the canonical ensemble with total
Sz = 0 and alternating up and down spins are chosen from left
to right. (iii) The time evolution was performed using a TEBD
matrix size of χTEBD = 2000, a trotter step of δτ/�−1 =
0.005 and evolving for 1000 time steps which yielded a
final simulation time of T/�−1 = 5. Requiring a maximum
truncated weight of εc = 10−15, we dynamically adjusted

FIG. 11. (Color online) Maximum simulation time reachable (QT
I, χTEBD = 2000) due to accumulation of entanglement entropy (left)
and steady-state current (right). The left plot shows the time until
a truncated weight of εc = 5 × 10−5 is reached at any bond of the
chain for the first time. The right figure corresponds to the data in
Fig. 4. Note the inverted color scale in the left image; dark regions
correspond to low values of the maximum time reachable.

the size of the TEBD matrices with a maximum matrix size of
χTEBD. We measured observables at each time step.

APPENDIX B: CORRELATION OF ENTROPY
AND STEADY-STATE CURRENT

The major limiting factor for time evolution using TEBD
is the increase of bipartite entanglement11

Si = −tr[ρ̂L ln (ρ̂L)] = −tr[ρ̂R ln (ρ̂R)],

where ρ̂L/R denotes the reduced density matrix to the left
(L) and to the right (R) of a bipartition at bond i. Using a
maximum matrix dimension χTEBD, we stop the simulation (for
Fig. 11) whenever the truncated weight at any bond exceeds a
threshold value of εc = 5 × 10−5, which defines our maximum
simulation time τ

(1)
E (see Sec. IV A). In Fig. 11, we plot τ

(1)
E as

a function of U and VB (left) and compare it to the magnitude
of the steady-state current for the same parameters (right).

From our data we conclude that reachable simulation times
due to accumulation of entanglement (and thus truncated
weight) are nonmonotonic in U and VB but can be charac-
terized roughly by the magnitude of current in the system. We
find this behavior to be generic to all investigated QTs.
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5.3. Nonequilibrium spatiotemporal formation of the Kondo

screening cloud on a lattice
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correlated physics, its nonequilibrium physics is not fully understood as of today, see Sec. 3.1.
Physical developments are discussed in Ch. 2. Especially the spatio-temporal correlations are
of importance for nonequilibrium methods. Time evolution methods like the one presented in
Sec. 5.2 need to pass the correlation time to reach the steady-state. In the real space cluster
methods CPT and VCA and their nonequilibrium representatives, spatial correlations have to
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We study the nonequilibrium formation of a spin screening cloud that accompanies the quenching of a
local magnetic moment immersed in a Fermi sea at zero temperature. Based on high-precision density matrix
renormalization-group results for the interacting single-impurity Anderson model, we discuss the real-time
evolution after a quantum quench in the impurity-reservoir hybridization using time-evolving block decimation.
We report emergent length and time scales in the spatiotemporal structure of nonlocal correlation functions in
the spin and the charge density channel. At equilibrium, our data for the correlation functions and the extracted
length scales show good agreement with existing results, as do local time-dependent observables at the impurity.
In the time-dependent data, we identify a major signal which defines a “light cone” moving at the Fermi velocity
and a ferromagnetic component in its wake. Inside the light cone we find that the structure of the nonequilibrium
correlation functions emerges on two time scales. Initially, the qualitative structure of the correlation functions
develops rapidly at the lattice Fermi velocity. Subsequently the spin correlations converge to the equilibrium
results on a much larger time scale. This process sets a dynamic energy scale, which we identify to be proportional
to the Kondo temperature. Outside the light cone we observe two different power-law decays of the correlation
functions in space, with time- and interaction-strength-independent exponents.

DOI: 10.1103/PhysRevB.91.085127 PACS number(s): 72.10.Fk, 72.15.Qm, 71.27.+a, 73.21.La

I. INTRODUCTION

Quantum impurities are among the most fundamental
paradigms of strongly correlated quantum systems. Equilib-
rium properties of such systems have been subject to intense
investigation and are nowadays well understood. A famous
example is the Kondo effect, where a local spin- 1

2 degree of
freedom interacts with the spins of a sea of free electrons [1].
The ground state of this system is a delocalized spin singlet,
formed by the local moment and the spin of the free electrons,
also called a screening cloud. The present work investigates
how such a screening cloud develops over time when a local
moment comes into contact with a free electron reservoir.

Quantum impurity systems, quite generally, feature an
emergent screening length scale at low temperatures which
provides the basis for their complex physics. In the 1950s,
magnetic impurities have already been identified as the cause
for a large resistivity anomaly at low temperatures when
immersed in metallic hosts in dilute quantities [2,3]. It was
found theoretically that the impurity’s local magnetic moment
becomes quenched below a certain temperature, known as the
Kondo temperature [1,4], TK , to form a local Fermi liquid
[5]. Increased spin-flip scattering between pairs of degenerate
spin- 1

2 states then leads to an increase in resistivity below TK .
Meanwhile, the Kondo effect has been observed also

in nanoscopic devices like quantum dots [6–12], carbon
nanotubes [13], and molecular junctions [14]. Here, the
narrow, zero-energy resonance in the local density of states
of the impurity, the Kondo-Abrikosov-Suhl resonance, leads

*martin.nuss@tugraz.at
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to a well-defined unitary conductance in linear response.
The Kondo effect has also proven essential to understanding
tunneling into single magnetic atoms [15], adsorption of
molecules onto surfaces [16], or defects in materials such as
graphene [17]. On the theoretical side the Kondo effect lies at
the heart of our current understanding of correlated materials,
notably within the very successful dynamical mean-field
theory [18–20].

Insight into the details of the screening cloud is important
not only for the understanding of the physics of a single
impurity but also for the understanding of the interplay of many
magnetic impurities. Many impurities result in competing
effects among conduction electrons and local moments, which
form the basis for spin exhaustion scenarios [21,22] as well
as for the Doniach phase diagram [23,24], which describes
the relationship between Kondo [1] and RKKY interaction
[25–27].

Experimental characterization of the structure of the singlet
ground state, which is a bound state of the impurity spin and
the reservoir electron “screening cloud,” has proven difficult
so far. Several proposals exist for how to measure the spatial
extent of the spin screening cloud or its antiferromagnetic
correlation with the impurity spin [28,29]. In principle, the
real-space structure could be probed by performing nuclear
magnetic resonance/Knight shift [30–32] measurements on
bulk metals hosting dilute magnetic impurities, but the
approach remains challenging [28]. Indirect observation by
measurement of the Kondo resonance, for example, by photo
emission, also remains elusive due to the too narrow resonance
at the Fermi energy [33]. Other proposals suggest the use of
scanning tunneling microscopy [34] and scanning tunneling
spectroscopy to analyze adatoms or surface defects with Kondo
behavior [35,36]. In the realm of nanodevices, proposals
include experiments based on persistent currents [37] or in
confined geometries [38,39]. Some progress has been made
recently using single magnetic atoms [15], quantum corrals
[40], or impurities beneath surfaces [35].
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On the theoretical side, however, the structure of the screen-
ing cloud has been characterized, at least in the equilibrium
spin-spin correlation function [41] and the charge density-
density correlation function [42,43]. Theoretical results
[44–47] in equilibrium include studies employing quantum
Monte Carlo (QMC), [48] numerical renormalization group
(NRG) [49–51], and density matrix renormalization group
(DMRG) [52], as well as, in the noninteracting system, also
exact diagonalization [53].

The fascinating question of how the spatial structure of
the Kondo screening cloud develops in the first place, i.e.,
whether and how it is approached in a nonequilibrium time
evolution starting from an initial state without Kondo physics,
has recently come under investigation [55–57]. The present
work extends previous equilibrium DMRG calculations [52]
by investigating the dynamic nonequilibrium formation of
Kondo correlations. We study the physical behavior of the
single-impurity Anderson model (SIAM) [58] based on results
obtained with the DMRG [59–61] and the time-evolving block
decimation (TEBD) [62] for matrix product states [63]. The
system is sketched in Fig. 1. At time τ = 0 [54] we start
from an unentangled state of a singly occupied impurity and
a half-filled Fermi sea (FS) of conduction electrons, |�〉 =
|↑〉impurity ⊗ |FS〉reservoir. Then, after connecting the impurity to
the reservoir, we follow the evolution of correlation functions
over time as the system equilibrates and the “impurity spin
gets transported to infinity.” In this way, we obtain information
about the spatiotemporal structure of the screening cloud.

Recently, studies of the time-dependent behavior of length
scales in strongly correlated impurity systems were performed
for the Toulouse point of the anisotropic Kondo model, where
it maps onto a noninteracting system [55,56], and for the
symmetric Kondo model [57]. In both these systems a “light
cone”–like propagation of excitations with the Fermi velocity
was observed and the regions inside as well as outside the
light cone were investigated. Both studies identified a common
low-energy scale: the inverse Kondo temperature as a time
scale, which was seen in a spin correlation function outside
the light cone at the Toulouse point [55,56]. For the symmetric
Kondo model such a time scale was observed in an equilibrium
linear response calculation to a magnetic perturbation [57]. We
extend these studies to the SIAM, which shares a common low-
energy behavior with the symmetric Kondo model. Whereas

FIG. 1. (Color online) The model consists of a fermionic im-
purity with local Coulomb repulsion U , which is coupled to a
one-dimensional half-filled tight-binding chain in a particle-hole
symmetric fashion. At time τ = 0 [54] we switch on the tunneling t ′

and study the evolution of the spin and charge correlation functions,
S(r,τ ) and C(r,τ ).

FIG. 2. (Color online) Schematic summary of results of this
paper. The time evolution of the spin correlation function S(r,τ )
exhibits three characteristic regions in space and time. These are
divided by (i) a major signal following the quench, which propagates
at the lattice Fermi velocity vF and defines a light cone (dashed
line), and (ii) the spread of the Kondo spin screening cloud. Region
1 (green) lies inside the light cone and inside the Kondo screening
cloud. Here Kondo correlations develop on two characteristic time
scales. The main structure of the Kondo singlet correlations is formed
rapidly, at vF . Then these correlations approach their equilibrium
values exponentially slowly in time for τ → ∞, with an exponent
αS

o/e that is proportional to the Kondo temperature TK . Region 2 (red)
lies inside the light cone but outside the Kondo screening cloud. Here
the spin correlations decay as a power law in space [53]. In region
3 (blue), which lies outside the light cone and outside the Kondo
screening cloud, the correlation function at odd/even distances decays

as a power law ∝ r
−γ

S/C
o/e in space with exponents that are independent

of time and interaction strength.

in the Kondo model, only spin interactions survive and charge
fluctuations are treated on an effective level [64], we take them
into account explicitly. To our knowledge, our study is the first
one analyzing the nonequilibrium properties of the screening
length in the interacting SIAM.

Our results are summarized in Fig. 2, which also serves
as a guiding map for this work. We identify a major signal
following the quench, which propagates with the lattice Fermi
velocity vF and defines a light cone for the propagation of
information [55–57,65–69]. Inside the light cone the time-
evolved correlation functions converge to their equilibrium
counterparts which exhibit the Kondo length scale. We find
that Kondo correlations develop on two characteristic time
scales. The main structure of the Kondo singlet is formed
rapidly at vF . These correlations approach their equilibrium
values exponentially in time, defining a dynamic energy scale
αS

o/e, which is proportional to the Kondo temperature TK .
Outside the light cone, we find that correlation functions at

odd/even distances decay as a power law ∝ r−γ
S/C

o/e in space,
with exponents which are independent of time and interaction
strength.
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The structure of this paper is as follows: We summarize the
specific model used in Sec. II. We define the Kondo singlet
in Sec. III, present our numerical approach in Sec. IV, and
provide an overview of the equilibrium situation in Sec. V. We
start our presentation of nonequilibrium phenomena in Sec. VI,
where we discuss the evolution of local observables. The main
findings of this work are available in Sec. VII. There we discuss
the nonequilibrium formation of the Kondo screening cloud in
Sec. VII A. The situation outside the light cone is presented
in Sec. VII B. The quality of our numerical data is assessed in
Appendix A.

II. MODEL

We study a lattice realization of the SIAM [58],

ĤSIAM = Ĥimp + Ĥtunn + Ĥres, (1)

which consists of a single fermionic spin- 1
2 impurity coupled

via a standard hopping term to a reservoir of noninteracting
tight-binding fermions (see Fig. 1). In particular, we consider
a particle-hole symmetric impurity with on-site interaction U :

Ĥimp = −U

2

∑
σ

f †
σ fσ + U n̂f ↑ n̂f ↓. (2)

The electronic annihilation (creation) operators fσ (f †
σ ) obey

the usual anticommutation relations with spin σ = {↑,↓}, and
n̂f σ = f †

σ fσ is the particle number operator [70]. The impurity
is coupled via a tunneling term,

Ĥtunn = −t ′
∑

σ

(c†
1σ fσ + f †

σ c1σ ),

to a one-dimensional tight-binding chain,

Ĥres = −t
∑

σ

L−2∑
i=1

(c†
iσ ci+1σ + c

†
i+1σ ciσ ),

such that the overall system, including the impurity, is of
length L. We always take the reservoir FS Ĥres half-filled. For
large L, the reservoir mimics a semi-infinite one-dimensional
tight-binding reservoir [71] with a semicircular density of
states at the first site and bandwidth D = 4 t [72]. Studies
of finite-size effects are available in Refs. [33,37,45], and
[73–76]. The hopping parameter of the reservoir t is taken to be
unity, and its coupling to the impurity t ′ = 0.3162t combine to
an equilibrium Anderson width [1] of � ≡ π t ′2 ρreservoir(0) =
t ′2
t

≈ 0.1 t , where ρreservoir(ω) denotes the density of states of
the reservoir.

At equilibrium, many characteristics of the SIAM are
known, although it poses a difficult interacting problem.
Seminal results for the ground-state and thermodynamic
properties of the SIAM at equilibrium are available from
perturbation theory [77–80], renormalization group [81–84],
and the Bethe ansatz (BA) [85–87]. The Hirsch-Fye QMC
[48,88] and the continuous-time QMC [89] accurately describe
the imaginary time dynamics. Further, some physical results
can be inferred from the Kondo Hamiltonian, which is related
to the SIAM by the Schrieffer-Wolff transformation, to obtain
its low-energy realization, in which charge fluctuations are
integrated out [64,81].

III. THE KONDO SINGLET

at equilibrium, the SIAM features a characteristic length
scale which, for finite interaction strength, is the Kondo length
scale and is expected to correspond to the size of the singlet
screening cloud. This length scale is defined as ξK ≡ vF

TK

[28,41,49,90–92]; i.e., it is proportional to the Fermi velocity
vF ≈ 2t and the inverse Kondo temperature 1

TK
[1,86,87]. TK

can be extracted from many observables; most intuitive is
the definition as the temperature at which the local moment
becomes quenched, i.e., when the impurity entropy goes from
ln(2), indicating the local moment regime, to ln(1), indicating
the singlet state [93]. A scale proportional to TK is also
available from the zero-temperature self-energy [94] or from
the width of the Kondo resonance in the spectral function
[95]. An analytic expression for TK , as obtained from the
spin susceptibility, is available for the SIAM at particle-hole
symmetry in the wide band limit with a linear dispersion [96]
by the BA [85–87]: T BA

K = √
�Ue− π

16�
U . The Kondo singlet,

therefore, is exponentially large in the interaction strength U :

ξBA
K ≈ 2t√

�U
e

π
16�

U . (3)

For typical Kondo materials, like dilute magnetic impurities in
free electron metals [97], one finds vF ≈ 106 m/s and TK ≈
1 K valid, for example, in gold with dilute iron impurities [98].
Thus, the screening length becomes macroscopic, ξK ≈ 1 μm
[49].

Here, we extract the screening length scale ξK directly from
correlation functions, and not via the Kondo temperature. The
spin correlation function is defined as

S(r,τ ) = 〈Ŝ0 · Ŝr〉(τ ), (4)

where Ŝr = (Ŝx
r ,Ŝ

y
r ,Ŝz

r ) [99] and r denotes the distance from
the impurity in units of the lattice spacing (see Fig. 1). Due
to the oscillations of S, it is convenient to distinguish between
the spin correlation function for odd [So(r,τ )] and that for even
[Se(r,τ )] distances.

Length scales can be extracted from the crossover in the
functional dependence of So(r,τ ) or via determining zeros or
minima in Se(r,τ ) [49,50,53]. Its charge analog is defined as
[100]

C(r,τ ) =
∑
σσ ′

〈n̂0σ n̂rσ ′ 〉(τ ). (5)

Correlation functions without a time argument, S(r) and C(r),
refer to the ground state of the equilibrium system, Eq. (1), i.e.,
an impurity coupled to the free electron reservoir. Steady-state
correlation functions are indicated with τ → ∞. Later we
show that in this limit the time-dependent correlation functions
converge to the equilibrium correlations, S(r,τ → ∞) = S(r),
as expected from the fact that the quench is intensive. An
intuitive measure which quantifies how much of the singlet
correlations is contained inside a distance r is the integrated
spin correlation function,

�(r,τ ) =
r∑

r ′=0

S(r ′,τ ). (6)
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FIG. 3. (Color online) Equilibrium correlation functions. The equilibrium correlation functions for spin, S(r) [left; Eq. (4)], and charge,
C(r) [right; Eq. (5)], are shown for short distances from the impurity r . The correlation functions at even [odd] distances, Se(r) [So(r)], are
indicated explicitly in the left panel. The key is valid for both panels: data for the noninteracting system [(brown) crosses] are compared to
data for interaction strengths of U = 3 � [(blue) circles] and U = 6 � [(red) triangles]. The alternating behavior, present for all data sets, is
indicated by the dotted line in the U = 0 data.

As discussed below and in Refs. [48] and [52], the screening
length ξk can be extracted from �(r,τ ) by defining it as the
length scale at which a certain fraction f (here we use f =
95%) of the correlation lies inside a given distance; i.e.,

�(ξk,τ ) = (1 − f )�(0,τ ). (7)

IV. METHOD

Here we outline how the correlation functions, Eq. (4) and
Eq. (5), are evaluated. We start with a short discussion of the
noninteracting system in equilibrium. In this case we find

SU=0(r) = 〈m̂0〉〈m̂r〉 + 1

4

∑
σ

〈c†
0σ crσ 〉(3δ0r − 〈c†

rσ c0σ 〉

− 2〈c†
rσ̄

c0σ̄
〉) (8)

= 3
2 〈c†

0cr〉(δ0r − 〈c†
r c0〉), (9)

where 〈m̂r〉 = 1
2 〈n̂r↑ − n̂r↓〉, and the last result holds for the

unpolarized case. Here, c
†
r/cr denote operators for any one of

the spin directions σ = {↑ , ↓}. The opposite spin direction is
denoted σ̄ = −σ . For U = 0 at equilibrium [48]

CU=0(r) = SU=0(r) +
∑

σ

〈n̂rσ 〉. (10)

In the particle-hole symmetric and non-spin-polarized case the
asymptotic limits can be analytically evaluated, using results
of Ghosh et al. in Ref. [53], to be

|SU=0(r)|= 3

π2

�

vF

{(
r �

vF

)−2
for r �

vF
→ ∞,[

γ+ln
(
r �

vF

)]2
for r �

vF
→ 0+ (11)

for odd r , with γ ≈ 0.577 216 the Euler-Mascheroni constant.
The correlation function becomes 0 for even distances r . The
behavior of the spin correlation function exhibits a crossover

at distance ξU=0 ≈ vF

�
, which defines a length scale in the

noninteracting system.
We obtain both S(r,τ ) and C(r,τ ) for zero temperature

from computer simulations using matrix product state [63]
techniques. First, to study ground-state correlations, we em-
ploy the DMRG [59–61] on a system of length L, which is
typically � 500 sites. Second, to study the dynamic formation
of the Kondo singlet, we start from a decoupled system in the
state |�〉 = |↑〉impurity ⊗ |FS〉reservoir, with a non-spin-polarized
half-filled FS, at time τ = 0, and then switch on the tunneling
term t ′ = 0.3162t for times τ > 0. The evolution in real time
is obtained from TEBD [62].

Matrix-product-state-based time evolution has proven to
be a highly accurate method to evaluate the properties of
one-dimensional strongly interacting quantum systems out of
equilibrium [102–114]. The combination DMRG and TEBD
is quasiexact as long as the quantum entanglement stays
tractable. It has been shown that the main limitation arises
due to the growth of entanglement after the quench [103,115],
which ultimately restricts the available simulation time. Fur-
thermore, since we are interested in the physics resulting from
an infinite bath, the maximum available simulation time is
restricted by reflections at the lattice boundary and therefore by
the finite spatial extent of the system. We have been able to reli-
ably evolve the system long enough to reach a local steady state
for all presented data sets. We have checked the convergence of
our correlation functions carefully by (i) making comparisons
to exact data in the U = 0 system, (ii) systematically studying
the dependence on the TEBD matrix dimension χ for finite U ,
and (iii) carefully analyzing the entanglement entropy. These
analyses as well as details of the numerical approach and
parameters are provided in Appendix A.

V. EQUILIBRIUM

We start our discussion by presenting the equilibrium spin
[S(r)] and charge [C(r)] correlation functions. S(r) was first
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studied by Iishi [41], and C(r) by Grüner et al. [42,43],
who determined the basic spatial dependence and properties.
Seminal QMC data [48] have been extended with the use of
the NRG [49,50] and recently also the DMRG [52]. Here
we summarize the most important findings, relevant for the
subsequent discussion, and we provide details specific to the
finite-size model and numerical method used. In particular,
we identify a length scale in the equilibrium spin correlation
function and show later that our nonequilibrium correlation
functions converge to the equilibrium correlation function for
long times τ .

As shown in Fig. 3, both S(r) and C(r) exhibit an oscillating
behavior, ∝ sin (kF r). Since the system is half-filled, the Fermi
wave vector is kF = π

2 and the oscillation period is r = 2
sites. We first discuss the spin correlations for U = 0 using
Eq. (9). In this case we find SU=0(0) = 3

2 〈n̂0↑〉(1 − 〈n̂0↑〉) = 3
8 .

Furthermore, SU=0(r) vanishes for even distances r , which
follows from general properties of tight-binding fermions
[116]. The odd-r correlations So(r) are negative and therefore
antiferromagnetic with respect to the impurity. For U > 0,
So(r) stays negative and increases in magnitude [117]. At the
same time, the spin correlation function for even distances
Se(r) gradually develops ferromagnetic correlations at short
distances, while it is antiferromagnetic at longer distances. On
the one hand, it is the antiferromagnetic component which
reflects the screening cloud and signals the formation of the
singlet ground state. On the other hand, the ferromagnetic
component can be attributed to Coulomb repulsion of opposite
spins [48]. Neither the period nor the phase of the oscillations
is changed by the presence of interactions [48].

The charge correlation for U = 0 is linked to the spin
correlation via Eq. (10). There is oscillatory behavior between
even and odd sites. For even sites the correlation function is
unity, while for odd sites it increases monotonically towards
unity. For finite interaction strengths we observe a suppression
of these Friedel-like oscillations [118] with increasing U

[119]. At even distances the charge correlations show behavior
similar to that of the odd channel, however, of a smaller
magnitude. The suppression due to the interaction can be traced
back to the change in the impurity spectral weight, which
develops a narrow Kondo resonance with a width proportional
to TK at the Fermi energy [42,43].

While at U = 0 the characteristic length scale is ξU=0 ∝ vF

�
,

for finite U , long-range correlations develop, which change the
behavior at a distance ξK ∝ vF

TK
. This crossover, characterizing

the size of the Kondo spin compensation cloud, is visible
in the spin correlation function S(r). Figure 4 (top) shows
that the antiferromagnetic spin compensation is visible in the
spin correlation function at odd distances, So(r). So(r) changes
from a logarithmic dependence at small r �

vF
to a power-law

behavior at large r �
vF

[see Eq. (11)] [53,120]. We note that
this is different from the Kondo model, where the behavior is
S(r) ∝ r−d for r < ξK to S(r) ∝ r−(d+1) for r > ξK , with d

being the dimensionality of the conduction electron reservoir
[49,50].

The crossover is difficult to extract directly from numerical
data for So(r) since very large system sizes and small � are
required to reach the low-r �

vF
limit. We nevertheless found

two ways to obtain an estimate for the crossover scale. First,
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FIG. 4. (Color online) Extraction of the equilibrium screening
length ξK . Results are shown for U = 1� (brown line) U = 3�

(blue line), and U = 6� (red line). Top: Spin correlation function for
odd distances, So(r) (solid line), which displays a crossover between
two behaviours at small and large r . This is particularly obvious
in the U = 0 results, shown in the inset. There, SU=0(r) displays
the asymptotic behavior given in Eq. (11). The large-r behavior
is shown by the dashed black line. Our interacting matrix product
state calculations are determined for � = 0.1, which corresponds
to the thickest (green) line in this plot for U = 0. Middle: Integrated
correlation function �(r) of Eq. (6). Dashed vertical lines indicate the
distances ξ�

K inside which 95% of the singlet cloud is contained, which
we use to estimate the screening length. Bottom: Spin correlation
function for even distances, Se(r). The position ξ e

K of the minima
(circles and dashed vertical lines) is used as the alternative definition
for ξK . Inset: These ξ e

K [(green) squares] and ξ�
K [(orange) triangles].

As reference data we show the BA result and data obtained from an
NRG calculation [101]; see text.
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a screening length scale can be extracted from the integrated
correlation function �(r) [see Fig. 4 (middle)]. Similarly to
Refs. [48] and [52], here we denote ξ�

K the distance at which
95% of the singlet correlations are covered, i.e., by Eq. (7).
Second, we extract a length scale ξ e

K from the spin correlation
function at even distances Se(r), which, for finite U , contains
both a ferromagnetic component at short distances and the
decaying antiferromagnetic one at large distances. As shown in
Fig. 4 (bottom) the function Se(r) displays a 0 and a minimum
and is fit well by a Morse potential [121]. We take the position
of the minimum as a measure for the crossover scale ξ e

K . The
numerical results obtained with these two crossover scales
agree very well and they also agree qualitatively with that
obtained by locating the crossover length between r−1.4 and
r−(1+1.4) behavior in the So(r) data, which can be estimated
from Fig. 4 (top).

In the inset in Fig. 4 (bottom) we show that our two
estimates, ξ�

K and ξ e
K , agree well with established results

for the equilibrium screening length. An analytical result,
ξBA
K [Eq. (3)], for the screening length is available via its

relation to the Kondo temperature, which can be obtained
from the BA in the wide-band limit by calculating the static
spin susceptibility, Eq. (3). A second benchmark is provided
by accurate numerical data from the NRG [101,122], where
T

NRG,S
K is defined as the temperature at which the impurity

entropy reaches S = ln(2)
2 [123]. However, while the large-U

behavior is universal for all these definitions, the small-U
expression, as well as the overall coefficient, depends on
the specific observable from which it is extracted (spin
susceptibility, entropy, etc.). Our data, ξ�

K and ξ e
K , agree well

with the NRG result, ξ
NRG,S
K ; they are all compatible with a

simple exponential growth in U ,

ξK ∝ e
π

16�
U . (12)

For U > 2 � this agrees with the BA prediction, Eq. (3), which
features an additional factor of

√
�U . We note that for U �

2 � no well-defined local moment has formed [52]; i.e., U

is too small for the system to develop a pronounced local
moment regime in between the low- and the high-temperature
limit. Our data also compare very well with those presented
in an extensive study of length scales in the SIAM on a finite
lattice in equilibrium in Ref. [52].

These results indicate that the method presented here
is reliable in producing unbiased correlation functions in
equilibrium which exhibit the characteristic features of a
Kondo screening cloud. The cloud is well contained within
the numerically tractable lattice size L � 500 for U � 6� (see
Appendix A). Therefore, we focus our calculations on U � 6�

when discussing the time-dependent correlation functions.

VI. TIME EVOLUTION OF LOCAL OBSERVABLES

Before beginning the discussion of the temporal evolution
of spatial correlations we present the time evolution of the local
observables with a focus on the impurity site. At time τ = 0
we start with a spin-↑ particle at the impurity and a non-
spin-polarized half-filled FS: |�〉 = |↑〉impurity ⊗ |FS〉reservoir.
For the connected equilibrium system in the thermodynamic
limit we expect a uniform and non-spin-polarized density

that is 〈n0↑〉(τ → ∞) = 0.5, 〈n0↓〉(∞) = 0.5, 〈n0〉(∞) = 1,
and 〈Sz

0〉(∞) = 0. The impurity double occupation in a
noninteracting system or in the high-temperature limit is
〈n0↑n0↓〉U=0(∞) = 0.25 [124]. For finite interaction strength
the evolution is nontrivial.

Figure 5(a) shows the expectation values of the spin-z
projection 〈Sz

r 〉(τ ) = 1
2 (〈nr↑〉(τ ) − 〈nr↓〉(τ )). Due to particle-

hole symmetry, the total charge density 〈nr〉(τ ) is unity.
Indeed we find that, following the hybridization quench,

the excess spin-↑ on the impurity is transported away. This
happens essentially at the Fermi velocity vF ≈ 2t , as shown
by the major signal in Fig. 5(a).

The resulting missing spin-↑ density is exactly compen-
sated by the spin-↓ density due to particle-hole symmetry.
This compensation takes place simultaneously and completely
symmetrically in both spin channels as is evident from the
spin-↑ and spin-↓ currents shown in the inset in Fig. 5(a). The
time integral over the spin current reveals that half a particle
is transferred in or out of the impurity in a time of the order of
≈3�−1 for U = 3�.

Figure 5(b) shows the local evolution of expectation
values as a function of the time and interaction strength. All
expectation values converge to their respective, exactly known,
equilibrium values as noted above. The time-evolved double
occupancy also converges to the equilibrium results obtained
by DMRG. This indicates that our time evolution is accurate
and unbiased, at least for large times. For more convergence
checks and uncertainty estimates we refer the interested reader
to Appendix A.

At a certain distance r from the impurity, a resulting
signal arrives at τ ≈ r

vF
. This signal is oscillating and strongly

damped in time [see Fig. 5(b)]. With increasing interaction
strength U , the initial spike becomes dampened in amplitude,
but the oscillating tail gains weight. The signal at r = 40 in the
double occupancy has the same structure on a scale of 10−3

around its equilibrium value.
In the following we consider the temporal decay of the

spin-z density at the impurity in detail. Previous studies using
the time-dependent NRG for the SIAM [125] and analytical
calculations at the Toulouse point of the anisotropic Kondo
model [126] found that the initial dynamics of 〈Sz

o〉(τ ) is
governed by a fast time scale, ∝ 1

�
, while the eventual

relaxation exhibits a long time scale, ∝ 1
TK

, governed by
Kondo physics. These results were confirmed by bold-line
QMC simulations [127] on the SIAM, which showed these
two time scales collapsing into one for an applied bias voltage.

From our data we find that, as expected, the spin-z density
at U = 0 decays in a single-exponential manner,

〈Sz,U=0(r = 0,τ )〉 = (0.561 ± 0.001)e−2(1.060±0.002)τ�

+ (0.0001 ± 0.0001);

hence it features the fast hopping time scale TU=0 ∝ 1
�

. For
finite U , a double-exponential decay develops:

〈Sz(r = 0,τ )〉 = c1e
−G1τ� + c2e

−G2τ�. (13)

In Figs. 5(c) and 5(d) we show the results of this data analysis
with respect to the interaction strength U in the available range
of U ∈ [1,6]. We identify one fast, exponential decay, G2 ≈
2(1.4 ± 0.2), yielding a U -independent time scale Tfast ∝ 1

�
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FIG. 5. (Color online) Time evolution of local expectation values. (a) Evolution of the spin-z density 〈Sz
r (τ )〉 as a function of the distance

r and time τ . We plot data for U = 3� and the color axes are cut off below the maximum for better visibility of fine structures. The vertical
black line indicates a cut at distance r = 40. Inset: Time-dependent spin current [115] 〈jσ (τ )〉 = i π t ′〈f †

σ c1σ − c
†
1σ fσ 〉 at the bond next to the

impurity, j↑(τ ) (red line) and j↓(τ ) (blue line), and the total current j (τ ) (cyan line). (b) Local spin-z density at the impurity site r = 0 and at
r = 40 as a function of time. Note that the r = 40 data are shifted such that the light cone coincides with the origin. From the local double
occupancy at the impurity site r = 0 we subtracted the equilibrium values D0(U ) = {0.25,0.1745,0.1153} for U = {0,3,6}� as obtained by
DMRG. All data are plotted for three interaction strengths, U = {0,3,6}�, from lighter to darker color, as indicated by the black arrow. (c) Fit
coefficients c1/2 of the double-exponential fit of the decay of 〈Sz(r,τ )〉 to its equilibrium value as a function of U [cf. Eq. (13)]. The magenta
line indicates a linear fit to the coefficient of the slow component c1. (d) Decay rates G1/2 of the double-exponential fit of the decay of Sz

to its equilibrium value as a function of U . The magenta line indicates an exponential fit to the decay rate of the slow component G1. The
single-exponential behavior at U = 0 � is indicated in green.

similar to TU=0. The corresponding coefficient c2 decreases in
magnitude with increasing U . In contrast, the more interesting
slow exponential decay G1 has a coefficient c1 which becomes
more and more prominent with increasing U . In particular, the
coefficient c1 exhibits a linear behavior in U :

c1(U ) = (0.014 ± 0.01)
U

�
+ (0.185 ± 0.004).

The slow decay rate G1 is exponentially small in U :

G1(U ) = (1.4 ± 0.1)e−2(0.19±0.02) U
� + (0.05 ± 0.04).

This implies that the Kondo physics manifests itself in the
local dynamic observable 〈Sz

0〉(τ ) in the form of a slow
time constant, Tslow ∝ e2(0.19±0.02) U

� , which shows the same
U behavior as the Kondo temperature [cf. Eq. (12)].

The double occupancy 〈n0↑n0↓〉(τ ) converges to its equi-
librium value with the same dominant slow decay (within
numerical uncertainty) as observed in the spin-z density for
finite U . At U = 0 the fast decay rate is twice the rate observed
in the spin-z density at U = 0.

Performing the same analysis for distances r away from the
impurity that considers 〈Sz

r 〉(τ ), we again observe the same
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FIG. 6. (Color online) Overall profile of the space-time evolution of the spin correlation function S(r,τ ), Eq. (4). (a) S(r,τ ) as a function of
distance r for four times: from bottom to top, τ = 0.5�−1, τ = 3�−1, τ = 5.5�−1, and τ = 9�−1. The ferromagnetic contribution is shown
as (red) circles, while antiferromagnetic components are represented by (blue) triangles. Dashed horizontal black lines indicate the zeros. Far
behind the signal wake the antiferromagnetic component coincides with So(r,τ ) and the ferromagnetic component with Se(r,τ ). The signal
front (light cone), traveling at speed vF ≈ 2t , is indicated as the dashed vertical black line. In all panels the signal at very small distances,
which is of order unity, has been cut off for better visibility. (b) Three-dimensional visualization of S(r,τ ). The color bar in (b) is also valid for
(c) and (d). (c) Spin correlation function at odd distances: |So(r,τ )| (top view). (d) Spin correlation function at even distances: |Se(r,τ )| (top
view). (c, d) Horizontal black lines indicate times at which data are presented in (a). The light cone defined by vF is represented by the thick
dashed black line. All data shown are for U = 3�.

decay as at the impurity site within the fit uncertainty [see
Fig. 5(b)]. This supports the quasiparticle picture introduced
in Ref. [56], which translates the physics at the impurity via
emission of spin-dependent quasiparticles to a given distance r .

VII. TIME EVOLUTION OF THE SCREENING CLOUD

A very interesting question is how the spatial structure of
the Kondo screening cloud develops, i.e., whether and how
it is approached in a nonequilibrium time evolution starting
from an initial state without Kondo physics. The question was
recently first studied in pioneering work on the case of an
exactly solvable model, namely, the anisotropic Kondo model
at the Toulouse point [55,56,128]. A complementary numeric

study using the time-dependent NRG [57] was performed
shortly afterward on the isotropic Kondo model, extending
and confirming the analytical results from the Toulouse limit.

Let us now investigate the formation of spatial correlations
S(r,τ ) [Eq. (4)] and C(r,τ ) [Eq. (5)] after switching on the
tunneling between the Anderson impurity and the reservoir
electrons. We first focus on the major characteristics of S(r,τ ),
displayed in Fig. 6. At time τ = 0 the initial configuration
is a product state |�(τ = 0)〉 = |↑〉impurity ⊗ |FS〉reservoir. Us-
ing Eq. (8), we find at the impurity SU=0(r = 0,τ = 0) =
3
4 〈n̂0〉 − 3

2 〈n̂0↑〉〈n̂0↓〉 = 0.75, where n̂0 = ∑
σ n̂0σ since we

have 〈n̂0↑〉 = 1 and 〈n̂0↓〉 = 0.
After the quench in the hybridization t ′, we observe a strong

signal in S(r,τ ), traveling at the Fermi velocity vF ≈ 2t , which
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FIG. 7. (Color online) Detail of the time-evolved correlation functions. S(r,τ ) (bottom) and [C(r,τ )] (top) for τ = 2�−1 (left column) and
τ = 4�−1 (right column). The signal front, traveling at speed vF ≈ 2t , is indicated as the dashed vertical black line. Results are shown for
different values of U as indicated in the key, which is valid for all panels. The alternating behavior is indicated by the dotted line in the U = 0
data.

defines a light cone. It has been attributed to the propagation
of quasiparticles in Ref. [56]. The propagating signal front
divides the space time into two regions: (i) a region at large
times and small distances, where the correlation function
is directly affected by the impurity and Kondo correlations
develop; and (ii) a region at small times and large distances,
where small structures from the quench are observed. In
Sec. VII A and Sec. VII B we discuss the detailed behavior of
the correlation functions within these two regions. The signal
front itself carries a large chaotic disturbance in its wake and
a small monotonic perturbation ahead of it.

As discussed below in detail, the time-evolved data S(r,τ )
converge to the equilibrium correlation functions S(r) within
the light cone. Already a look at the almost-vertical structures
in Figs. 6(c) and 6(d) for times τ � 8�−1 and a comparison
of the line plots for τ = 6.5�−1 and τ = 9�−1 for small
distances r hint at the convergence to a local steady state
within the light cone.

Figure 6(d) reveals that, as expected from the equilibrium
state, a ferromagnetic correlation develops for even distances
r in Se(r,τ ) within the light cone for finite U , while
outside the light cone this correlation function is always

antiferromagnetic. As shown in Figs. 6(a) and 6(c), the wake
behind the light cone carries a ferromagnetic signal also at odd
distances r that is in the otherwise antiferromagnetic So(r,τ )
for all U . We interpret this signal as remnant information
of the spin which occupied the impurity at τ = 0 before
the quench. Following the signal wake, all characteristic
features of the equilibrium correlation function S(r) develop
quickly on a qualitative level. Far behind the signal wake the
antiferromagnetic component coincides with So(r,τ ), and the
ferromagnetic component with Se(r,τ ).

A closer look, as provided in Fig. 7, reveals that the
nonequilibrium correlation functions gradually develop the
characteristic features of the equilibrium correlation functions
S(r) and C(r) for r < vF τ . As a precursor of the equilibrium
structure, the spin correlation function S(r,τ ) develops the
oscillatory behavior of its equilibrium counterpart inside the
light cone. That is, it oscillates from an antiferromagnetic
correlation at odd distances r to a ferromagnetic correlation at
even r for finite U or to 0 at U = 0. This structure of the phase
and period of these oscillations in space is fixed over time
inside the light cone. However, the light cone induces a phase
shift of π in the nodal structure of the correlation function. We
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attribute this phase shift to the initial state of the FS. It takes
place across the broad signal behind the light cone visible at
around r ≈ 30 in Fig. 7. As a function of U the same behavior
is present inside the light cone as in equilibrium, apart from the
chaotic disturbance at the light cone. The qualitative functional
form of the correlation functions develops quickly in the
wake of the light cone. However, its amplitude overshoots the
expected equilibrium value slightly and then gradually decays
to it at a much slower time scale (see discussion in Sec. VII A).

The charge correlation function C(r,τ ) gradually develops
reduced Friedel-like oscillations with increasing U , as ob-
served at equilibrium. We find C(r,τ ) < 1 except at distances
r < 3 and in the vicinity of the signal front.

In the following we investigate in detail the interplay of
characteristic time and length scales and their dependence on
the interaction strength.

A. Inside the light cone

Next we discuss the spin correlation function S(r,τ ) inside
the light cone. Figure 8 shows the convergence of So(r,τ ) and
Se(r,τ ) to their equilibrium So(r) and Se(r) values for large
times in detail. For large times the odd component is antifer-
romagnetic, while the even component exhibits a sign change
from ferromagnetic at small distances to antiferromagnetic at
large distances (blue curves) as discussed in the equilibrium
results. The vanishing ferromagnetic component represents a
related measure for the extent of a screening cloud [48].

In the following we identify a time scale at which large
correlations with the impurity develop inside the light cone,
i.e., for distances r � vF τ (see Fig. 2). In Fig. 9 (left) we show
the difference between the time-dependent spin correlation
function and the equilibrium result: �So/e(r,τ ) = |So/e(r,τ ) −
So/e(r)|. This quantity exhibits contributions from the traveling
signal, which show up in the form of large spikes at times

τ ≈ r
vF

. We first focus on the convergence in time at fixed
distances r . For times beyond the signal wake τ ∝ r

vF
, the

qualitative structure of correlations has established itself; i.e.,
Kondo correlations have reached the given distance r . We
find that soon after the signal wake S(r,τ ) converges to the
equilibrium result exponentially in time,

�So/e(r,τ ) ∝ e−τ�·�S
o/e(r,U )

[see Fig. 9(a), inset]. Note that this implies that the curves move
“as a whole.” We determine �S

o/e by a single-exponential fit in
time of �So/e(r,τ ), successively for distances r ∈ [40,120].
We observe that �S

o/e(r,U ) is only weakly dependent on r ,
with odd distances r being especially stable [see Fig. 9(b)],
while �S

e has larger uncertainties and some drift at large
r . The uncertainty increases slightly with distance r , which
is also due to the smaller available fit intervals in τ . A
two-exponential decay as in Sec. VI, featuring also a fast
time scale ∝ 1

�
and independent of U , might be present in

the data but cannot be identified due to the presence of the
signal at the light cone, which overshadows this fast decay.
In general, the fit quality improves with increasing U . Details
on the data analysis and uncertainty estimates are provided in
Appendix B.

In order to condense this information we consider a mean
value,

�S
o/e(U ) := 1

Nr

120∑
r=40(41)

�S
o/e(r,U ),

with Nr the number of distances in the respective odd or even
interval [see Fig. 9(b)].

Our first main result is that �S
o/e(U ) shows exponential

behavior in U , like the Kondo scale, Eq. (12):

�S
o/e(U ) ∝ e−αS

o/e
U
� . (14)
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FIG. 9. (Color online) Identification of a dynamic time scale in the exponential convergence to equilibrium inside the light cone.
(a) Deviation of the time-dependent spin correlation function from the equilibrium spin correlation function at even (solid lines) and odd (dashed
lines) distances �Se/o(r,τ ) as a function of time τ for three distances: r = 20/19 (blue lines), r = 70/69 (green lines), and r = 120/119 (orange
lines). For better visibility we show −�So(r,τ ). The signal changes behavior at the light cone at τ ≈ r

vF
which is visible as a large hump. The

region inside the light cone is to the right of this hump. The semilogarithmic zoom to this region in the inset shows exponential convergence. To
separate the curves of the even and the odd components in the inset, data for odd distances are multiplied by a factor of 100. Data shown are for
U = 3�. (b) Extracted decay rates �S

e/o(r,U ) as a function of distance r for three values of interaction strength: U = {2,4,6}�. (c, d) Spatially
averaged exponential decays at odd (c) and even (d) distances �S

o/e(U ) as a function of the interaction strength U (circles). The dynamic scale
αS

o = 0.28 ± 0.03 and αS
e = 0.29 ± 0.04, Eq. (14) (solid black line), is extracted via a single-exponential fit of the respective data where only

data points for U � 1� are considered (blue circles) and data for U < 1� are excluded (orange circles). For details of the fits see Appendix B.

Figures 9(c) and 9(d) show the fit in U to Eq. (14) where
we find αS

o = (0.28 ± 0.03) and αS
e = (0.29 ± 0.04), which is

similar to the BA result in the wide-band limit for the Kondo
temperature, T BA

K ∝ e−αBA
U
� , αBA = 0.196 [compare Eq. (3)].

The deviation of the effective exponent αS
o/e from αBA may

be due to the fact that it is particularly difficult to reach the
common asymptotic limit in space and in time for large U . Note
that 〈S(0,τ )〉〈S(r,τ )〉 � S(r,τ ), thus the connected correlation
function displays essentially the same behavior as S(r,τ ).

We conclude that the formation of Kondo correlations
inside the light cone is a process which involves two major time
scales. The first time scale is fast and determined by the lattice
Fermi velocity vF , which defines the light cone and develops

qualitatively correct correlations in S(r,τ ) and C(r,τ ). The
second time scale is slow and depends exponentially on U . This
process sets in after the qualitatively correct correlations have
built up with vF and renormalizes the correlation functions,
which then converge at an exponential rate, Eq. (14), αS

o/e ∝
TK , to the equilibrium result.

The SIAM is related to its low-energy realization, the
antiferromagnetic, symmetric Kondo model via the Schrieffer
Wolf transformation [64], which effectively integrates out
charge fluctuations. The two models share common features
in their low-energy behavior, most prominently the Kondo
scale TK . Note, however, that the correlation functions of the
two models have very different spatial structures in general.
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It is therefore interesting to compare our results to recently
obtained ones for the Kondo model. In Ref. [57] Lechtenberg
et al. studied a coupling quench in the symmetric Kondo
model using the time-dependent NRG as well as second-order
perturbation theory. Similarly to our results for the SIAM, they
found that in the Kondo model spin correlations develop rather
rapidly, on the scale of the Fermi velocity. In the linear response
to a magnetic field, at equilibrium they observed another,
slower time scale similar to 1

TK
. Our results unambiguously

and quantitatively identify this common slower scale 1
TK

beyond linear response, directly from the nonequilibrium time
evolution of correlation functions.

Charge correlations in equilibrium do not exhibit Kondo
physics. We observe that the charge-time-dependent corre-
lation functions C(r,τ ) do exhibit qualitatively the same
convergence to equilibrium as the spin correlations S(r,τ ),
that is, with a time constant exponentially large in U (not
shown). The same analysis as for the spin using Eq. (14) yields
respective coefficients for the charge correlation function
αC

o/e ≈ (0.3 ± 0.1). That is, the exponent is the same as for the
spin, albeit with a larger uncertainty. We attribute this to the
resolution of the spin in the correlators present in C(r,τ ). Note
that this is true neither for the local density, which does not
show such a scale, nor for the mean-field result, Cmf(r,τ ) ∝ 1.

B. Outside the light cone

For distances r > vF τ , i.e., outside the light cone (see
Fig. 2), we find decaying correlation functions S(r,τ ) and
C(r,τ ) as a function of r (see Fig. 10). As before, both spin and
charge correlation functions show alternating behavior from
site to site. The overall magnitude of both correlation functions
decreases over time and the charge correlation function is of
a smaller magnitude than the spin correlation function for all
except very early times. To identify the correlations generated
by the quench, we subtract the initial correlation S(r,τ = 0)
and C(r,τ = 0) from the time-dependent data.

The second main result of this work is that correlations
outside the light cone are power law suppressed,

|S(r,τ ) − S(r,0)| ∝ r−γ S
o/e , |C(r,τ ) − C(r,0)| ∝ r−γ C

e , (15)

with slightly time-dependent exponents γ S
o/e and γ C

e . Due to
the finite size of the system, we only have a limited set of
data available to extract the asymptotic decay outside the
light cone. We start the extraction of power-law exponents
at distances rs = vF τ + 35 to avoid spurious contributions
from the light cone and end it at re = L − 70 to avoid a
bias originating from the boundary at L = 450. From the
separate fits for odd/even distances we obtain γ S

o ≈ 1.9 ± 0.3
and γ S

e ≈ 4.8 ± 0.9. The charge correlation function exhibits
a power-law decay γ C

e ≈ 1.7 ± 0.3 for the odd component,
while the even component’s behavior cannot be identified
within our numerical accuracy due to the small magnitude
of the correlations. The fit has been performed in the same
fashion as presented in Appendix B but here we estimate the
uncertainty in the γ ’s from the fluctuations of the respective γ

upon changing the start (rs) and end point (re) of the fit. Within
this uncertainty, the values are independent of U and τ .

Considering the fact that extracting exponents from nu-
merical data is challenging, our results agree quite well with
two recent studies of similar models exhibiting comparable
low-energy physics. First, in Ref. [56] Medvedyeva et al.
obtained time-dependent correlation functions at the Toulouse
point of the anisotropic Kondo model with a linear dispersion.
In an analytic calculation in several limits, neglecting Friedel
oscillations, they showed that outside the light cone the
commutator spin-z correlation function 〈[Ŝz

0Ŝ
z
r (τ )]−〉, which

is related to the linear response to a perturbation, vanishes.
For the anticommutator, which is proportional to our S(r,τ )
[see Eq. (4)], however, they obtained a power-law decay r−2

at zero temperature (see Eq. 27 in their work). They found
the initial entanglement in the reservoir FS to be responsible
for the power-law decay of the anticommutator correlation
function.
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Moreover, second-order perturbation theory results [57]
suggest that initial correlations of the FS transfer to the time-
dependent correlations outside the light cone. Here again a r−2

power-law decay outside the light cone was obtained, this time
for the isotropic Kondo model with antiferromagnetic coupling
J . Our study of the symmetric SIAM finds an r−2 decay for
So(r,τ ) outside the light cone, which we attribute to the same
structures of the electronic reservoir in the three studies. We
are not aware of any previous reports of even-distance decay
exponents γ S

e ∝ r−5.

VIII. CONCLUSIONS

We studied the time-dependent formation of the spin
screening cloud in the SIAM. Starting from an unentangled
state we switched on the impurity-reservoir hybridization and
followed the subsequent dynamics in real time. We used
the DMRG to obtain ground states and TEBD to obtain
spin and charge correlation functions. From these correlation
functions we obtained characteristic time and length scales.
Our results agree with previous calculations at equilibrium
and, for local observables, out of equilibrium. We found
that the nonequilibrium correlation functions converge to the
equilibrium results for long times.

In the time-dependent data, we identified a linear spreading
of signals traveling at the lattice Fermi velocity, which has
been referred to as a light cone in recent literature on the
buildup of a screening cloud at the Toulouse point of the
anisotropic Kondo model [55,56]. We observed a ferromag-
netic response in the wake of the signal at the light cone. While
Refs. [55] and [56] identified the Kondo temperature as an
inverse time scale in the anisotropic Kondo model outside the
light cone, for the symmetric Kondo model it was observed
as a time scale in an equilibrium linear response calculation
to a magnetic perturbation following an initial fast decay [57].
We observe directly from the nonequilibrium time evolution
of correlation functions that, in the SIAM too, the structure of
the correlation functions inside the light cone emerges on two
time scales. The qualitative core of the correlation functions
develops rapidly, at the lattice Fermi velocity. This includes the
phase and period of oscillations as well as fixed ferromagnetic
and antiferromagnetic domains. These correlations then reach
their equilibrium values exponentially slowly in time, defining
a dynamic rate which has the same exponential U dependence
as the Kondo temperature.

Outside the light cone, we find a power-law decay of the

correlation functions ∝ r−γ
S/C

o/e , with essentially interaction-
strength- and time-independent exponents, Eq. (15). In ad-
dition to the r−2 decay also observed in the Kondo model
[55–57], we find a decay ∝ r−5.

Our results could be experimentally verified in one-
dimensional optical lattices featuring two fermionic species.
By monitoring the evolution of the spin correlations in time,
our findings provide the basis for extracting information about
the dynamic scale and, therefore, indirectly about the Kondo
screening cloud dynamics as well as the system parameters.

Possible future extensions to this work include the study of
the inverse process. Starting from a coupled impurity-reservoir
system and investigating the Kondo destruction after switching
the hybridization to 0 would allow study of the time-reversed

situation. It would also be very interesting to study the effects
of a bias voltage on the Kondo screening process using a two-
terminal setup as in Ref. [115]. Further interesting extensions
involve the study of conduction bands with singularities or
testing of implications of the nonequilibrium fluctuation-
dissipation theorem. Also, calculations away from particle-
hole symmetry or with applied magnetic fields are feasible.
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APPENDIX A: NUMERICAL DETAILS

In this Appendix we specify details about our numerical
analysis carried out via the DMRG [59,60] and TEBD, [62] and
we present the DMRG and TEBD parameters used. In addition,
we discuss finite-size effects and the convergence as a function
of auxiliary parameters specific to the numerical method
applied, as well as the stability of the real-time evolution. Our
numerical implementation of the DMRG and TEBD is flexible,
is parallelized, and exploits two Abelian symmetries: particle
number N̂ and spin projection Ŝz. To find ground states we
use the two-site DMRG algorithm with successive single-site
DMRG steps. The time evolution is based on a second-order
Suzuki-Trotter decomposition of the propagator [61,63].

After extensive studies of the dependence of our results on
auxiliary system parameters we found converged results for a
Trotter time step of δτ = 0.05t−1. We used DMRG and TEBD
matrix dimensions of χ = 2000 states and always started the
DMRG optimization from a half-filled system in the canonical
ensemble where alternating up and down spins are chosen as
the seed. A detailed discussion is available in Ref. [115] in the
context of previous work.

Figure 11 shows the equilibrium DMRG calculation of the
correlation functions. The influence of the finiteness of the
lattice is twofold:

(i) The equilibrium spin correlation function S(r) displays
an even-odd effect as a function of the total system size L:
While for even L, So(r) converges from above to its L → ∞
value, for odd L it converges from below. Se(r) converges
in the opposite way. For odd L an extra spin-↑ gives a
spurious total magnetization. For the equilibrium simulations,
in the main part of the paper, we have chosen L = 450, since
it supports a half-filled and non-spin-polarized system. The
spin correlation function at r � 150 is converged, as can
be seen in Fig. 11 by comparing the L = 450 and L = 300
results. Larger distances are influenced by L because S(r) is
a nonlocal quantity. Nevertheless, even for larger distances,
no qualitative differences are observed between the L = 450
and the L = 300 data. When performing the time evolution
we use Lequilibrium + 1 lattice sites, including the impurity, so
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that the reservoir is nonmagnetized and half-filled. With this
choice the correlation functions of the equilibrium and the
nonequilibrium simulations become comparable.

(ii) The size of the Kondo screening cloud becomes
exponentially large in U . It is therefore important to identify
the characteristics of finite-size effects with increasing U .
In Fig. 11 (right) we plot data with increasing U for fixed
L and study the behavior of So(r). From U = 0 to U =
6� the correlation function follows a monotonic trend and
qualitatively the same behavior. However, the curves for U =
10� and U = 20� are qualitatively different. This indicates
that these values of U are too large for the given L, as expected
from the size of ξBA

K , which becomes of the order of L ≈ 200
sites here [see Eq. (3)]. In the present work we therefore restrict
ourselves to values of U � 6�.

Next we show that our time evolution yields a controlled ac-
curacy using a DMRG/TEBD matrix dimension of χ = 2000.

The bipartite entanglement ω(i,τ ) = −tr[ρ̂L/R(τ )ln(ρ̂L/R(τ ))]
[63] provides an estimate of the time when TEBD becomes
unreliable for a fixed χ . This is signaled by a sharp increase
in ω. Here ρ̂L/R denotes the reduced density matrix to the
left (L) or to the right (R) of a lattice bipartition at bond i.
Figure 12 (left) shows the entanglement increase, which turns
out to mostly affect the region next to the impurity and the
major propagating signal at r = vF τ . In our simulations we
find that χ = 2000 is sufficient to account for the additionally
generated entanglement, which is not much larger than in
the equilibrium case. In addition, we investigate the direct
influence of increasing χ on the interacting spin correlation
function Sχ (r,τ ) by comparing results using χ = 2000 with
results obtained at a smaller χ . Figure 12 (middle) shows the
modulus of the deviation |S2000(r,τ ) − Sχ (r,τ )|. We calculate
this deviation at each point in space r and time τ and for
U = {0,1,2,3,4,5,6}�. The deviation fluctuates over space
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FIG. 12. (Color online) Quality of the DMRG and TEBD data. Left: Bond- and time-resolved entanglement entropy ω(i,τ ). We subtracted
the ω(i,τ = 0) data to highlight changes caused by the time evolution. Inset: Cuts through the ω(i,τ ) raw data at constant times. The black
line is the result of a corresponding equilibrium simulation. The area hidden by the inset is homogeneously dark blue, which corresponds to
ω(i,τ ) − ω(i,τ = 0) ≡ 0. Data shown is for U = 3�. Middle: Convergence of the interacting spin correlation function with increasing TEBD
matrix dimension χ . Modulus of the residuals |S2000(r,τ ) − Sχ (r,τ )|, benchmarking the quality of the time evolution with increasing TEBD
matrix dimension χ . We show results comparing χ = 2000 with χ = 500 (blue lines) and χ = 2000 with χ = 1000 (orange lines). We show
the residuals averaged over distance and interaction strength as a function of time τ . Inset: Spatially resolved residuals plotted at time τ = 2�−1

and for U = 3�. Right: Comparison of the noninteracting spin correlation function as obtained by TEBD, S(r,τ ), and the noninteracting spin
correlation as obtained exactly, Sexact(r,τ ). Spatially averaged absolute distance. Inset: Spatial resolution for two times, τ = {2,6}�−1. Note
that each blue (orange) line belongs to one data set only, which is alternating.
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with systematic signatures at the light cone and beyond it,
while the interior of the light cone looks chaotic. The results
are almost independent of U . We find that the space r and
interaction U averaged deviation grows over time and becomes
of the order of O(5 × 10−4) for χ = 500 and O(1 × 10−4) for
χ = 1000 within the reachable simulation time. Furthermore,
for U = 0 we compare the correlation functions obtained via
TEBD with the numerically exact ones [Eq. (8)] in Fig. 12
(right). As one can see, the maximum deviation occurs at the
boundary far from the impurity, with a maximum error of
≈1 × 10−5.

We conclude that for simulations of nonlocal correlation
functions within the DMRG and TEBD in the SIAM the major
limiting factor is the computation time T ∝ L(χ )3. This is due
to the large matrix dimensions χ needed to achieve accurate
results and is, furthermore, complicated by the fact that the
SIAM exhibits exponentially long correlation lengths, which
require large lattice sizes L. The accuracy can be controlled by
benchmarking against exactly known U = 0 data and, for finite
U , by increasing the TEBD matrix dimension χ . Furthermore,
all the scales extracted in the text, αS

o/e and γC/So/e are retrieved
from two subtracted correlation functions, in which we expect
errors to further compensate.

APPENDIX B: EXTRACTION OF THE
DYNAMIC ENERGY SCALE

In the following we provide details of the data analysis of
the dynamic scale αo/e as discussed in Sec. VII A, which is
valid for both even and odd distances. First, we obtain the time
dependence of the spin correlation function by performing

a nonlinear fit in time τ to the spin correlation function for
fixed distances r and given interaction U : �S(τ |r,U ) (see
Sec. VII A), using f (φ = (c1,�(r,U )),τ ) = c1e

−�(r,U )τ with
two fit parameters φ. The data are single exponential plus
oscillations and exhibit an eventual systematic bias close to
the lattice border and due to the signal front at the light cone.
For each r we manually choose intervals [τs(r,U ),τe(r,U )]
for the fit in time in order to minimize these influences.
Typically we choose fit intervals which start rs ≈ 10 sites
behind the light cone and extend up to re ≈ 250 for large
U . For small U the data become noise before this re is reached
and we adjust the end points accordingly. We estimate the
fit uncertainty ��(r,U ) by �φi ≈ √

Cii , where C = (J†J)η2

is the estimated covariance, J = ∂f (φ,τi )
∂αj

is the fit Jacobian,

and η2 = rT r
Nτ (r,U )−p

is the mean square error defined by the
residuals ri = �S(τi |r,U ) − f (φ,τi) on Nτ (r,U ) data points
in time �S(τi |r,U ). These estimates are consistent with those
obtained from fluctuations upon changing τs(r,U ) and τe(r,U ).
Second, we condense the r dependence by averaging �(r,U )
over distances r . We make use of a Bayesian approach with
Gaussian error statistics. We obtain the weighted mean value
�(U ) = 1

P

∑
r

1
�̃�(r,U )2 �(ri,U ) with P = ∑

r
1

�̃�(r,U )2 and a

weighted error estimate ��(U ) = 1√
P

, where the weights are
obtained from ��(r,U ). Third, we obtain the U dependence
of the exponent considering data for �(U ) for N (U ) = 6
data points at U = {1,2,3,4,5,6}�. The data �(U ) can be
fitted very well by a single exponential in U : �(U ) = c2e

−αU .
The same scheme as in the first step is used to estimate the
uncertainty ��. We assume correlated data, i.e., η2 = rT r

Ñeff
,

with Ñeff ≈ N(U )−p

2Ncorr
≈ 6−2

2×6 , which enlarges the uncertainty by

a factor of
√

3 compared to the naive value.
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5.4. Variational cluster approach to the single-impurity

Anderson model

5.4.1. Preamble

This part of our work has been published in PHYSICAL REVIEW B 85, 235107 (2012) [357] and
is also available as a preprint on arXiv:1110.4533. Reproduced with permission from PHYSICAL
REVIEW B 85, 235107 (2012), doi:10.1103/PhysRevB.85.235107. Copyright 2012, the American
Physical Society.
This paper is the �rst step to a series of publications on steady-state quantum cluster methods,

see Sec. 5.5, Sec. 5.6, Sec. 5.7, Sec. 5.8 and Sec. 5.10. Before studying the steady-state generaliza-
tions of CPT and VCA, this work serves as a benchmark in equilibrium. The basic developments
of these quantum cluster methods are outlined in Sec. 3.3.1 and Sec. 3.3.2. Although the SIAM
is the simplest model of a molecular or nano-scopic junction, obtaining faithful results turns out
to be far from trivial and highly accurate methods are necessary as also discussed in Sec. 3.1 and
the time evolution sections Sec. 5.2 and Sec. 5.3. Physical applications are discussed in Ch. 2. In
particular these physical aspects are vital to understand correlation phenomena as discussed in
Sec. 5.1 and Sec. 5.9. In this work we discuss results obtained by an alternative, self-consistent
formulation of VCA as required in the nonequilibrium setting for stsVCA and compare results to
the conventional VCA based on the stationary points of the grand potential. We furthermore ex-
plore the capabilities of these methods to treat strongly inhomogeneous systems as needed for the
description across nano-scopic devices or molecular junctions. By benchmarking CPT and VCA
data versus established ED, NRG, DMRG and CT-QMC results, we were able to show that CPT
and VCA are capable of yielding reasonably accurate results in equilibrium. These results are for
the spectral function, the Friedel sum rule, the static spin susceptibility, the Kondo temperature,
the grand potential and the self-energy. This data provides the basis for the development of the
stsCPT and the stsVCA. The contents of this publication are advancements of work that has
been done in MN's preceding diploma thesis [329]. In this publication we found that stsVCA
yields the correct scaling of the Kondo temperature, that is exponential in interaction-strength,
however with an underestimated exponent. Later during the writing of this thesis we found
an optimization scheme for non-interacting baths which yields even the correct exponent, see
App. G.
This study is authored by Martin Nuss (MN) and co-authored by MN's supervisor Enrico

Arrigoni (EA), Markus Aichhorn (MA) and MN's supervisor Wolfgang von der Linden (WL).
This research was to a large and signi�cant extent conducted by MN under the supervision of WL
and EA. The work was initiated by EA and WL who provided guidance and expertise throughout
the whole working period. The self-consistent VCA was proposed by EA and WL, developed by
MN, EA and WL and implemented on the computer infrastructure by MN. MN also adapted
the CPT method to the SIAM and wrote the according computer code. The idea to apply
the method to study a single quantum dot was proposed by WL and EA while MN conducted
literature research on this topic. WL, EA and MN independently worked out the expressions for
the grand potential for reference systems of in�nite size. MN tested the computer code, conducted
the numerical calculations and studied various implementations of variational parameters. MN
prepared, collected, interpreted, analyzed and visualized the results and set them in context with
recent literature. MN wrote the �rst version of the manuscript. MA provided expertise, guidance
and data for the CT-QMC calculations as well as the TRIQS computer code [1]. WL conducted
the analytical expansion of the self-energy for high Matsubara frequencies. MN introduced the
calculations with a symmetry breaking �eld. MN wrote the �rst version of the manuscript. All
authors participated equally in discussing the results and revising the text of the manuscript.
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We study the single-impurity Anderson model by means of cluster perturbation theory and the variational
cluster approach (VCA). An expression for the VCA grand potential for a system in a noninteracting bath
is presented. Results for the single-particle dynamics in different parameter regimes are shown to be in good
agreement with established renormalization group results. We aim at a broad and comprehensive overview of the
capabilities and shortcomings of the methods. We address the question as to what extent the elusive low-energy
properties of the model are reproducible within the framework of VCA. These are furthermore benchmarked
against continuous-time quantum Monte Carlo calculations. We also discuss results obtained by an alternative,
i.e., self-consistent formulation of VCA, which was introduced recently in the context of nonequilibrium systems.
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I. INTRODUCTION

In recent years, both the applications for strongly correlated
quantum impurity models and the number of successful
approaches to harvest their physical results have grown
enormously. Those models were introduced to describe the
effects of magnetic transition-metal impurities immersed
in metallic hosts.1,2 Originally, they were derived to cap-
ture remarkable physical properties such as the resistance
minimum3,4 at a specific temperature scale TK (Ref. 5) or
the anomalous magnetic susceptibility and specific heat of
such materials. Today, a whole realm of applications for
quantum impurity models has opened. They describe the
physics of quantum dots and wires6–8 as well as molecular
electronics.9 Applications range from nanoelectronics all the
way to quantum information processing.10 Their properties
are essential for today’s technological applications in single-
electron transistors11 exhibiting the Coulomb blockade effect12

or in devices dominated by Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction.13–15 The behavior of various magnetic
phenomena and the fascinating branch of heavy-fermion
physics is described by strongly correlated quantum impurity
models.16,17 Recent studies have shown that the remarkable
material graphene exhibits Kondo physics,18 which may
be investigated theoretically by virtue of quantum impurity
models. These models have further been applied to understand
the adsorption of atoms onto surfaces.19–21 In addition, they
are of theoretical importance as solvable models of quantum
field theories.22,23 A renewed interest in understanding and
calculating dynamic quantities of these models was created
with the advent of dynamical mean-field theory (DMFT).24–26

In the foundations of this theory, quantum impurity models
have to be solved as an auxiliary problem.

A wide range of methods and approximations have been
suggested for the solution of quantum impurity models.
They, however, prove to be a very delicate subject because
standard perturbative approaches diverge.5 Prominent meth-
ods to gain physical conclusions include a self-consistent
perturbative expansion27 and Bethe ansatz techniques28 for
one-dimensional problems. The low-energy physics is very
well described by numerical renormalization group29 (NRG)
and in some limits also by functional renormalization
group30,31 (FRG) and density matrix renormalization

group32–34 (DMRG). There is a range of slave-particle
methods35,36 available as well as methods based on Hubbard’s
X-operator technique37,38 and calculations using variational
wave functions.21 Valuable physical insight has been gained
by using equation-of-motion techniques applying different
approximation schemes.39 For moderate system sizes, the
Hirsch-Fye quantum Monte Carlo41 (QMC) algorithm has
proven to achieve good results. In the past years, different
approaches to continuous-time QMC (Ref. 40) have been
applied very successfully to solve quantum impurity models
especially in application with DMFT. In this context, exact
diagonalization (ED) methods have been explored to solve
small systems.42

As of today, some limits of quantum impurity models are
understood with great precision, but there appear several gaps
to be bridged. The low-energy properties of these models
are reproduced very well by renormalization-group-based
approaches (i.e., NRG). These approaches in general have
trouble to capture the high-energy parts of the spectrum.
The same may be said about QMC methods, which if
applicable yield dynamic quantities in imaginary time. The
analytic continuation to the real energy axis is ill conditioned.
Spectra obtained by, for example, the maximum-entropy
method43,44 have a large uncertainty for higher energies. Exact
diagonalization methods, in principle, grant access to low- as
well as high-energy parts of the spectrum at the same time. Due
to the prohibitively large Hilbert space, however, only small
systems (about 10 to 20 sites) may be treated with this method,
the low-energy behavior of which is expected to deviate from
the one of the infinite lattice significantly. Nevertheless, the
advantage consists in the fact that the spectral properties may
be determined directly on the real energy axis. Aside from the
issue of the low-energy scale, also the flexibility to adapt to
various impurity configurations and geometries is limited in
many methods. NRG has been successfully applied only to the
one and two impurity cases so far. QMC approaches may suffer
from the sign problem for more complex multiband models.40

The region of large interaction strength is naturally difficult to
treat in standard perturbative/diagrammatic approaches (i.e.,
diagrammatic perturbation theory or FRG).

In this work, we test cluster perturbation theory45,46

(CPT) and the variational cluster approach47–49 (VCA) on the
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single-impurity Anderson model.1 The great flexibility and
versatility of CPT/VCA allows for obtaining approximate
single-particle dynamic quantities and static expectation val-
ues in all parameter regions of any lattice impurity model with
local interactions. However, these many-body cluster methods
can not be expected to describe the low-energy excitations as
accurately as specifically tailored methods do. It is, however,
interesting to see whether the correct low-energy behavior may
be reproduced at least to some extent. CPT as well as VCA
bare several advantages:50 (i) They yield spectra directly on
the real axis and (ii) also the high-energy incoherent part of
the dynamics becomes available. (iii) They are applicable in
all parameter regions and also at high interaction strengths.
(iv) They have the advantage of comparatively low com-
putational cost for a required resolution. Our main goal in
studying the well-understood single impurity is to benchmark
CPT/VCA for future application to the not-so-well-understood
case of multiband impurity models in various spatial geome-
tries. This paper also sets the foundations for a future extension
to nonequilibrium problems.

The text is organized as follows. The single-impurity
Anderson model is introduced in Sec. II. A short review
on CPT and VCA in this context is given in Sec. III. A
self-consistent formulation of VCA previously introduced
in the context of nonequilibrium problems51 is presented
in Sec. III 1. Some remarks about the choice of variational
parameters are provided in Sec. III 2. In Sec. IV, we discuss
the grand potential � for infinite fermionic systems in relation
with the VCA. Results for the single-particle dynamics of the
SIAM are provided in Sec. V. In this section, also the quality of
the low-energy Kondo physics is compared to benchmarking
results from NRG, DMRG, CT-QMC, Hartree-Fock, and
Bethe ansatz calculations. Finally, we summarize and conclude
our findings in Sec. VI.

II. SINGLE-IMPURITY ANDERSON MODEL

We consider the single-impurity Anderson model1 (SIAM)
in real space, in one dimension:

ĤSIAM = Ĥconduction + Ĥimpurity + Ĥhybridization. (1)

A tight-binding band of noninteracting s electrons with
nearest-neighbor 〈i, j 〉 hopping is described by

ĤNs

conduction = εs

Ns∑
i=1

∑
σ

c
†
iσ ciσ − t

∑
〈i, j〉 σ

c
†
iσ cjσ , (2)

where εs is the onsite energy of the particles, t is the
overlap integral between nearest-neighbor orbitals, and i, j ∈
{1, . . . ,Ns} where Ns is eventually taken to be infinity. The
operators c

†
iσ and ciσ , respectively, create and annihilate

electrons in orbital i with spin σ . The impurity Hamiltonian
consists of a single f orbital with local Coulomb repulsion U :

Ĥimpurity = εf

∑
σ

f †
σ fσ + U n̂

f

↑ n̂
f

↓ , (3)

with f †
σ creating an electron with spin σ and onsite energy εf

located at the impurity. The particle number operator is defined
as n̂

f
σ = f †

σ fσ . Finally, the coupling between a noninteracting

FIG. 1. (Color online) Illustration of the single-impurity An-
derson model. The model consists of a semi-infinite chain of
noninteracting s orbitals with nearest-neighbor hopping t and onsite
energy εs . The impurity f orbital is subjected to a local onsite energy
εf and local Coulomb interaction U and is hybridized with one of
the s orbitals (here, the one at the beginning of the chain) via a
hybridization matrix element V . This maps the impurity f orbital
onto site 0 and the impurity s orbital onto site 1 in this geometry,
and the rest of the conduction-band s-electron orbitals are mapped
onto sites 2 to ∞. The semi-infinite noninteracting chain is truncated
at some site L. This decomposes the model into two clusters: an
interacting cluster of variable size including the interacting impurity
f orbital and a semi-infinite chain of noninteracting s orbitals. In
CPT/VCA, these decomposed systems are coupled via a hopping
element t .

s orbital and the impurity f orbital is given by

Ĥhybridization = −V
∑

σ

c
†
1σ fσ + f †

σ c1σ , (4)

where V is the hybridization matrix element between the s and
the f orbitals of the impurity atom (see Fig. 1 for illustration).

We have set the chemical potential μ to the center (εs) of the
conduction-electron density of states and choose μ = εs = 0.
The resonance width � is defined as

� ≡ π V 2 ρs(0) = V 2

t
. (5)

For the model defined in Eq. (2), the local density of states
of the conduction electrons ρs(0) is given by ρs(0) = 1

π t
.

In the forthcoming discussion, we refer to the particle-hole
symmetric case when we furthermore set εf = −U

2 . All
calculations are performed with t = 1 and V = 0.3162, which
yields � = 0.1. All reported results, except for the CT-QMC
data in Sec. V F, are for zero temperature.

III. CLUSTER PERTURBATION THEORY/VARIATIONAL
CLUSTER APPROACH

A handle on dynamic single-particle correlations and
expectation values is given by the single-particle Green’s
function Gσσ ′

ij (ω), which we calculate within cluster pertur-
bation theory45,46 as well as the variational cluster approach.47

CPT and VCA have been previously applied inter alia to the
fermionic Hubbard model and VCA also with great success
to bosonic systems52–54 with broken-symmetry phases. The
groundwork of VCA lies within cluster perturbation theory,
which is a cluster extension of strong-coupling perturbation
theory, valid to first order in the intercluster hopping. The
main result of CPT is that the Green’s function of the physical
system G (which we call full Green’s function throughout this
text) may be obtained by a Dyson-type equation in matrix form

G−1 = g−1 − T. (6)
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Here, g denotes the Green’s function of a cluster which
comes about by tiling the lattice of the physical system into
smaller, numerically exactly solvable patches. This tiling is
done by removing the hoppings between sites connecting such
clusters. Therefore, the matrix T = g−1

0 − G−1
0 contains all

single-particle terms connecting clusters (i.e., the intercluster
hopping which will be referred to as Tinter below). The
subscript zero denotes the noninteracting Green’s function.
To apply this approach to the SIAM, we start by splitting the
physical model under consideration [Eq. (1)] into appropriate
pieces. Here, we consider a cluster decomposition consisting
of two parts. One part, consisting of a cluster of size L, which
contains the interacting impurity f orbital

Ĥinteracting = ĤL−1
conduction + Ĥimpurity + Ĥhybridization, (7)

and a second, infinitely large part, the environment, which
contains the rest of the conduction band

Ĥenvironment = Ĥ∞
conduction. (8)

The original Hamiltonian Eq. (1), defined on the semi-infinite
lattice, may now be rewritten as

ĤSIAM = Ĥinteracting + Ĥenvironment + Tinter. (9)

Here, Tinter is the part of T describing the hopping from the
interacting cluster to environment “cluster,” which is the only
term not included in the two clusters. For the SIAM, the two
bare Green’s functions ginteracting and genv {which correspond
to Ĥinteracting [Eq. (7)] and Ĥenvironment [Eq. (8)]} needed for
Eq. (6) may be evaluated separately. This is a bit different
from the usual application of CPT to translationally invariant
systems which normally leads to a single cluster having
discrete spectra, embedded in a superlattice. Therefore, the
application of CPT to this problem does obviously not suffer
from issues arising due to periodization prescriptions for the
Green’s function or self-energy.50 We are dealing with two
fundamentally different clusters, where one has a discrete [in-
teracting cluster, Eq. (7)] and the other a continuous spectrum
[environment, Eq. (8)]. Due to the continuous spectrum of
the environment, a numerically favorable representation of the
Green’s function of the physical system G in terms of the
Lehmann representation (see, for example, Ref. 55) is not
possible. For evaluating quantities from the Green’s function
G, one therefore has to use a direct numerical integration,
which works best on the Matsubara axis.

The cluster Green’s function ginteracting is determined by
exact diagonalization of Eq. (7). We apply the Lanczos
algorithm56 to find the ground state and a band Lanczos method
to obtain the Green’s function. The band Lanczos method is
initialized with a set of all annihilation and creation operators
under consideration applied to the ground state. Thereby, we
obtain the so-called Q matrices,57 which are used to calculate

the Green’s function

gσσ ′
interacting,ij (ω) =

∑
α

(∑
γ

Qσ
iγ

1

ω − λγ

Q
σ ′†
jγ

)
α

,

Q
σ†
iγ =

{
1√
d
〈γ |ĉσ†

i |�0〉 particle part,
1√
d
〈�0|ĉσ†

i |γ 〉 hole part,

λγ =
{
ωγ − ω0 particle part,

ω0 − ωγ hole part.

Essentially, this is the Lehmann representation for zero-
temperature Green’s functions. The sum over α denotes a sum
over a possibly d-fold degenerate set of ground states. The
sum over γ is over a set of orthonormal basis states having
one particle more than the ground state (particle part) and one
particle less than the ground state (hole part).

The Green’s function of the environment genv is given
analytically by the Green’s function of a semi-infinite tight-
binding chain58

genv,i,j (ω) = υ0,i−j (ω) − υ0,i+j (ω),

υi,j (ω) = −i sign[Im(ω)]√
4|t |2 − (ω − εs)2

(
−ω − εs

2|t |
(10)

+ i sign[Im(ω)]

√
1 −

(
ω − εs

2|t |
)2)|i−j |

,

where υi,j is the retarded/advanced Green’s function of the
infinite tight-binding chain if the infinitesimal imaginary part
(0+) of ω is positive/negative.

VCA, the variational extension of CPT, is based on the
self-energy functional approach (SFA).48,49 In the SFA, one
considers the Legendre-transformed Luttinger-Ward59 func-
tional F [�], which is a universal functional of the self-energy,
i.e., it does not depend on G0. F generates the Green’s function,
i.e.,

β
δF [�]

δ�
= −G[�], (11)

where β denotes the inverse temperature. Introducing the
(nonuniversal) self-energy functional

�[�,G0] = F [�] − Tr ln
[( − G−1

0 + �
)
G∞

]
(12)

(see Ref. 53 for a definition of G∞), one recovers Dyson’s
equation at its stationary point:

β
δ�[�,G0]

δ�
= −G[�] + (

G−1
0 − �

)−1 != 0. (13)

Equation (13) is an equation for the physical self-energy �

given the Luttinger-Ward functional F [�] and the free Green’s
function G0. The trace Tr is short for Tr ≡ 1

β

∑
ωn

tr, the sum
is over fermionic Matsubara frequencies, and the small form
trace tr denotes a sum over lattice sites and spin. The idea is
that, due to its universality, F [�] (and thus �[�,G0]) can be
evaluated exactly by exploiting a different system (so-called
“reference system”) which differs from the physical system by
single-particle terms only. This reference system Ĥ′ is simpler,
and thus exactly solvable. It is defined on a cluster tiling of
the original lattice and has the same interaction as the original
system Ĥ. The VCA reference system is chosen to be a cluster
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decomposition of the original lattice, as the one introduced for
CPT above. Comparing Eq. (12) for the full and the reference
systems yields

�[�,G0] = �′[�,g0] + Tr ln
[−(

g−1
0 − �

)]
− Tr ln

[−(
G−1

0 − �
)]

, (14)

where lowercase g denotes Green’s functions of the reference
system. Thus, the SFA/VCA approximation consists in solving
Eq. (13) in a restricted range of self-energies �, i.e., those
produced by the reference system. In this way, the space of
allowed � is spanned by the set of single-particle parameters
of the reference system x′. This means that the functional
�[�,G0] [Eq. (14)] becomes a function of those parameters:

�(x′) = �′(x′) + Tr ln[−G(x′)] − Tr ln[−g(x′)]. (15)

The stationarity condition determining the physical parameters
(13) is then given by

∇x′�(x′) != 0. (16)

The Green’s function of the physical system is obtained by
the CPT relation (6). The matrix T = g−1

0 − G−1
0 [Eq. (6)]

in VCA contains all single-particle terms not included in
the reference system (i.e., Tinter) as well as, in addition, the
deviation introduced by VCA, �x ≡ x′ − x of the single-
particle parameters of the reference system x′ with respect
to those of the original system x. In the following, we fully
adopt the zero-temperature formalism, in which according
expressions for the grand potential and related quantities may
be readily evaluated.

1. Alternative: Self-consistent VCA

In Ref. 51, we explored an alternative version of VCA
whereby the variational parameters x′ were determined by a
suitable self-consistent criterion, instead of looking for the
stationary point of the grand potential � [Eq. (16)]. This
alternative approach was introduced to treat systems out of
equilibrium, although it can equally be adopted in equilibrium.
The advantage of this approach is that the solution of a
self-consistent equation is numerically easier than the search
for a saddle point. The idea of this self-consistent approach
is to use a reference system which resembles the full system
best.

The strategy is to find those values x′ for the set of param-
eters of the reference system which let the expectation values
of their corresponding single-particle operators 〈Ô〉cluster,x′

coincide with those of the full system 〈Ô〉CPT,x,x′ . Here, the
angle brackets denote expectation values in the cluster and the
full system coupled by CPT or VCA, respectively. Consider
the onsite energies ε′

f and ε′
s as variational parameters. We will

look for those cluster parameters ε′
f and ε′

s , which fulfill the
relations 〈

n̂f
σ

〉
cluster,ε′

f ,ε′
s

!= 〈
n̂f

σ

〉
CPT,εf ,εs ,ε

′
f ,ε′

s

,

(17)
L−1∑

i

〈
n̂i

σ

〉
cluster,ε′

f ,ε′
s

!=
L−1∑

i

〈
n̂i

σ

〉
CPT,εf ,εs ,ε

′
f ,ε′

s

.

The sum is over all noninteracting sites included in the cluster.
This amounts to solving a system of nonlinear equations in

each step of the self-consistency cycle. In general, it is possible
to vary each single-particle parameter individually. For reasons
of keeping the numerics tractable, we use one ε′

s only, which we
take to be the same for each orbital in the chain. Extension to
a larger number of ε′

s is straightforward. To fix this parameter,
we require the average particle density on the noninteracting
sites to fulfill the condition (17). This corresponds to the
condition presented in Ref. 51 [see Eq. (13) therein]. In some
situations (see the following), we will alternatively consider
the hybridization matrix element V ′ and the intracluster
hopping t ′ as variational parameters, and proceed in an
analogous way. Specifically, the particle number expectation
values in Eq. (17) are replaced by hopping expectation values.
Again, for t ′ we use a single variational parameter for hopping
between all uncorrelated sites and fix it by requiring the mean
value of hopping in the cluster and the full system to coincide.
A discussion of this self-consistency condition in connection
with (cluster) DMFT is given in Ref. 51. We use an improved
multidimensional Newton-Raphson algorithm to find the roots
of the system (17). In some parameter regions, no solution is
found.

A comparison between results obtained via the usual SFA,
i.e., as stationary points of the grand potential �, which we
will now refer to as VCA�, to those obtained by the above-
mentioned self-consistent condition (VCASC ) will be given in
the results section (Sec. V).

2. Choice of variational parameters

In VCA, one can, in principle, optimize all possible single-
particle parameters which are present in the original model,
as well as additional ones. By adding bath sites not present
in the original model, one includes dynamical contributions
to the cluster Green’s function.48 The numerical difficulty
increases with the number of variational parameters. For
the VCASC case, a multidimensional root-finding algorithm
has to be adopted. For the VCA� case, a saddle point in
many dimensions has to be located. Since the allowed set
of variational parameters limits the search space for the
self-energies, one will find a solution in this restricted space
only. It is therefore desirable to vary as many single-particle
quantities as possible. A balance has to be found between a
large space of available self-energies and numerically feasible
multidimensional algorithms. Many works have addressed the
question of which parameters are the most important to vary
and how the choice of variational parameters will influence
or limit the results.50 As discussed in Refs. 60 and 61, it
is important to include an overall chemical potential as a
variational parameter in order to preserve thermodynamic
consistency. As a compromise, we will take two variational
parameters x = {εf ,εs}, which cover the overall chemical
potential. Note that this amounts to shifting an overall onsite
energy in the whole cluster plus an extra independent shift
at the correlated site. For the variation of onsite energies, we
observe the grand potential � to be maximal at the stationary
point, which is in agreement with results for other models.
Further parameters in the SIAM are the hopping t and the
hybridization V . As discussed, for example, in Ref. 62, the
variation of hopping parameters is not straightforward. For
the VCA� approach, we observe a maximum of � at �V =
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−V in the center of two symmetric stationary points. The
two symmetrically lying minima are equivalent due to the
fact that the self-energy is an even power of V . As one
tunes the parameters away from particle-hole symmetry, this
stationary point is lost in the crossover region from the Kondo
plateau to a doubly or unoccupied impurity (see Sec. V C). In
this parameter region, the hopping t and hybridization V are
probably not appropriate to be used as variational parameters
within VCA�.

In the following, we always choose the set x = {V } or
x = {V,t} for calculations at particle-hole symmetry, which
also includes {εf ,εs}, since the variation of onsite energies
will always yield zero deviations from the physical parameters
and thus reproduce the CPT result here. For all other parameter
regions, it is sufficient to consider x = {εf ,εs} as variational
parameters.

IV. GRAND POTENTIAL FOR REFERENCE SYSTEMS
OF INFINITE SIZE

The reference system consists of two parts: a finite
interacting system and a noninteracting system of infinite size,
the environment. �′(x′) is given by the sum of the grand
potentials of the interacting cluster (�′

interacting) and of the

environment (�′
env) {which correspond to Ĥinteracting [Eq. (7)]

and Ĥenvironment [Eq. (8)]}. Here, we outline how to determine
the grand potential for such kinds of reference systems. For
the Green’s function G within the CPT/VCA approximation,
the Dyson equation is given in Eq. (6). The Green’s function
and T have the block structure

G =
(

Gcc Gce

Gec Gee

)
, T =

(
Tcc Tce

Tec 0

)
.

Up to this point, all matrices involving environment indices
have infinite size. As far as the Green’s function itself is
concerned, this is no problem as we are primarily interested in
Gcc for which the Dyson equation reduces to

Gcc = gcc + gccTccGcc + gccTceGec,

Gec = geeTecGcc,

and therefore

Gcc = gcc + gcc�̃ccGcc, �̃cc := Tcc + TcegeeTec.

A bit more tedious is the elimination of the explicit dependence
on the environment part of G, as far as the grand potential,
Eq. (15), is concerned. We start out from a form of the grand
potential functional given by Sénéchal:50

�� := � − �′ = −Tr ln(1 − Tg). (18)

In Appendix A, it is shown that �� can be expressed solely
in terms of cluster quantities

�� = −Tr ln(1cc − �̃ccgcc). (19)

Along the lines outlined in Ref. 50, the resulting integral can
be regularized and expressed as

� − �′
env = �′

interacting + tr(T) − 1

π

∑
σ

∫ ∞

0
dω

× ln
∣∣det

(
1cc − �̃σ

cc(iω)gσ
cc(iω)

)∣∣. (20)

The quantities �′ are the grand potentials of the uncoupled
reference system. The constant infinite contribution �′

env is
absorbed into the definition of �. It plays no further role as it
does not depend on the variational parameters. This integral
may be evaluated as suggested in Ref. 50 by integrating from
0 to �1, from �1 to �2, and from �2 to ∞. �1 and �2

represent two characteristic scales in the problem (for example,
the smallest/largest eigenvalue of the Hamiltonian matrix).
For the last part of the integral, a substitution ω̃ = 1

ω
is per-

formed. We use an adaptive Gauss Legendre integrator for the
evaluation.

V. RESULTS

We have evaluated several benchmarking dynamic quanti-
ties of the SIAM. In the following, results for the impurity
density of states will be presented and compared to ED,
NRG, and DMRG data. We will elaborate on the strengths
and weaknesses of the methods as well as the comparison
of CPT to VCA. Furthermore, we will discuss the relation
between VCASC, where the variational parameters are deter-
mined self-consistently via Eq. (17) and VCA�, where the
variational parameters are defined at the stationary point of
the grand potential. We will show that the Kondo resonance
is reproduced within the framework of CPT/VCA and that
the variational results fulfill certain analytic relations such as
the Friedel sum rule [Eq. (23)]. The method will be shown
to provide reasonably accurate results in a wide range of
parameter regimes of the model. Low-energy properties related
to the Kondo temperature TK will be discussed in context
with renormalization group results. The imaginary frequency
Green’s function and self-energy will be compared to CT-QMC
results.

A. Even-odd effect: Choice of the impurity position

CPT/VCA rely on the Green’s function of an interacting
cluster of size L which is obtained by exact diagonalization.
Due to this fact, it is unavoidable that some effects of the
finite-size cluster influence the solution of the full system
(except in the case of vanishing interaction strength, i.e.,
U = 0.) Therefore, suitable clusters have to be chosen on a
basis of physical results. Some aspects of this are discussed
by Balzer et al.60 in the context of DMFT and VCA and
by Hand et al.63 in the context of DMRG. In this work,
we consider interacting clusters of even size only. For these
systems, the ground state does in general not suffer from spin
degeneracy. Furthermore, the spatial position of the impurity
is important. This can be inferred from the bath’s density
of states, which vanishes for ω = 0 at every second site. It
may also be seen in the structure of the ground state, for
which the size of the degenerate sectors alternates with the
geometrical size of the cluster. Throughout this work, we
position the impurity f orbital at the beginning of the infinite
chain, although essentially the same results are achieved by
attaching it to an s orbital at site two, four, etc., inside the
chain.
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B. Spectral properties

The single-particle spectral function Aσ
ii is obtained from

the retarded Green’s function Gσ,ret
ii (see, e.g., Ref. 64):

Aσ
ii(ω) = − 1

π
Im

[
Gσ,ret

ii (ω)
]
. (21)

The diagonal element at the impurity f orbital Aσ
ff (ω)

describes the impurity density of states ρσ
f (ω). A physical

property of the SIAM, which poses a challenge to numerical
methods, is the Kondo-Abrikosov-Suhl resonance often re-
ferred to as the Kondo peak.4 It arises in the parameter regime
where the magnetic moment of the impurity is screened by the
conduction electrons to form a singlet state.65 The particle-hole
symmetric model lies in the center of this Kondo region.
This quasiparticle excitation is, for example, not captured in
mean-field approaches. With increasing interaction strength
U , the numerical solution becomes increasingly challenging.

In this section, we elaborate on the results for the density
of states in the particle-hole symmetric case. A comparison
of the local single-particle spectral function at the impurity
f orbital as obtained by exact diagonalization and VCA� is
shown in Fig. 2. The ED result is for a 10-site system with
open boundary conditions. The VCA� result is for an infinite
reference system, where the interacting part of the reference
system was taken to be of size L = 10. An ED treatment of a
finite-size SIAM can not reproduce the low-energy resonance
at zero energy in the single-particle spectral function (see also
Appendix B). It consists, in the particle-hole symmetric case,
for an even number of sites (and open boundary conditions),
of symmetrically lying excitations which shift closer to zero
for increasing system size and represent a large energy scale.
For an odd number of sites, a pole in the local single-particle
Green’s function of the impurity f orbtial will be present at
ω = 0. CPT as well as VCA are able to reproduce finite spectral
weight at ω = 0 (even for 0+ → 0) since these methods are

FIG. 2. (Color online) Comparison of the local single-particle
spectral function at the impurity f orbital at particle-hole symmetry
as obtained by exact diagonalization (ED) of a 10-site chain (black
line) and VCA� (cyan line). VCA� was used with two variational
parameters: the hopping t and the hybridization V considering a
length of the interacting part of the reference system of L = 10. All
data shown are for an interaction strength of U/� = 12. All results
have been obtained for a large numerical broadening 0+ = 0.05. The
inset shows a zoom to the low-energy region.

formulated for an infinite system. The finite-size structure in
the high-energy incoherent part of the spectrum, owing from
the excitations of the interacting part of the reference system,
is strongly reduced in VCA�.

Results for the single-particle spectral function (21) of
the impurity f orbital are shown in Fig. 3 for four different
interaction strengths U/� = 4, 8, 12, and 20. As a reference,
the spectra obtained with NRG and DMRG from Peters34 are
plotted. Renormalization group approaches such as NRG are
especially suited to reproduce the low-energy quasiparticle
excitations of this model and therefore serve as a reference
for our data. The spectra of Peters were obtained for a flat
conduction electron density of states, which was mapped by
linear discretization in energy space onto the corresponding
orbitals of a semi-infinite chain. Our model is based on a
semicircular density of states of the conduction electrons. The
low-energy part of the spectra is comparable because we have
chosen the only relevant parameter for the low-energy part of
the spectrum: � accordingly. This parameter fully determines
the influence of the conduction electrons on the impurity f

orbital for low energies and therefore the low-energy part
of the spectrum. The high-energy part of the spectrum may
deviate slightly and is not directly comparable, but yields a
crude reference. In addition, we have chosen here a very large
numerical broadening of 0+ = 0.05 for reasons of comparison
only. This value was used in the DMRG calculations and is
needed there to obtain spectra using the correction vector
method. This influences the width and the height of the
Kondo resonance, located at ω = 0. The CPT spectral weight
at ω = 0 appears too broad in the plot in comparison with
the NRG result. This is only partly due to a large numerical
broadening. Due to the nature of the CPT method, we can not
expect it to reproduce the low-energy spectrum as well as RG
calculations do. The height of the Kondo resonance appears
too small in this figure because of the large 0+. It converges
with 0+ → 10−6 to the result predicted by scattering theory
(see Fig. 5 and Sec. V C). The high-energy incoherent parts of
the spectrum located at ω ≈ −εf and ω ≈ −εf + U develop
more and more with increasing length of the interacting part
of the reference system L. A comparison of the center of
gravity of the high-energy incoherent part of the spectrum
of the L = 14 site CPT result and the 50-site DMRG result
is in reasonable agreement. There are spurious structures
in the spectral density, originating from the cluster Green’s
function of the finite system, preventing continuous spectra to
form. We would like to note that the accurate determination
of the Green’s function of the reference system is of prime
importance. An inaccuracy in pole positions or pole weights
for very small but nonvanishing weights will yield spurious
artifacts in the spectra in the vicinity of ω = 0.

To improve on the result of CPT, we considered the hopping
matrix element t and the hybridization matrix element V as
variational parameters. The parameters used for the evaluation
of the reference system were determined with two different
methods. VCA� results are depicted in the plot for a length
of the interacting cluster of L = 10. As shown in the figure,
this method strongly reduces the finite-size peaks in the high-
energy incoherent part of the spectrum. The width of that part
of the spectrum is reproduced correctly for high values of U

where the full width at half maximum (FWHM) within VCA
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FIG. 3. (Color online) Single-particle spectral function at the impurity f orbital at particle-hole symmetry for different interaction strengths
U . The interaction strengths shown are U/� = 4 in the upper left figure (a), U/� = 8 in the upper right figure (b), U/� = 12 in the lower
right figure (c), and U/� = 20 in the lower right figure (d). Each plot shows the results obtained by CPT for a length of the interacting part of
the reference system of L = 14 (dashed red line), VCA� with two variational parameters: the hopping t and the hybridization V , which are
determined by the stationary point of the grand potential � at a length of the interacting part of the reference system of L = 10 (blue line),
VCASC with the same variational parameters determined self-consistently at a length of the interacting part of the reference system of L = 10
(cyan line). All results have been obtained for a large numerical broadening 0+ = 0.05. As a reference, the NRG and DMRG results of Peters
(Ref. 34) are plotted in yellow and dashed-dotted dark brown lines, respectively.

is given by ≈ 1.9�. This comes very close to the expected 2�

(Refs. 21 and 66) of the high-energy atomic excitations. VCA
improves the spectral properties of the Kondo resonance with
respect to CPT, bringing it closer to the 50-site DMRG result.
The data obtained using the self-consistent VCA approach
VCASC agree very well with the result based on VCA� on
the position of the spectral features. The respective weight,
however, disagrees for low values of interaction strength U ,
which is due to the different values predicted for the variational
parameters by the two procedures. One should note that the
two broad Lorentzian high-energy peaks (in VCA� as well as
VCASC ) consist of many excitations which will be revealed
upon repeating this calculation with smaller 0+.

A spatially resolved image of the spectral function, calcu-
lated with CPT, for the parameter set used in Fig. 3(c) is shown
in Fig. 4. The qualitative picture would be the same in VCA;
merely, the structures are slightly shifted. This view reveals
how the perturbation, introduced by the impurity, is fading
away slowly in an alternating fashion. At every second site

away from the impurity, a dip at ω = 0 is present, which is
usually referred to as Fano dip.

A more detailed look on the spectral region of the Kondo
resonance is provided in Fig. 5. The CPT/VCA� data are
compared to NRG and FRG data as well as results obtained
from a restricted Hartree-Fock calculation from Karrasch
et al.31 The CPT/VCA results are plotted for lengths of the
interacting part of the reference system L = 2, 4, 6, 8,and 10
for two different sets of parameters. The results for higher L

are always located towards the center of the figure. The results
corresponding to the resonance at ω = 0 were obtained for
the particle-hole symmetric model. For this set of parameters,
we used the hybridization V as a variational parameter. The
second peak shown centered around ω/� ≈ 0.8 corresponds
to a parameter set right at the border of the Kondo region. The
variational parameters used away from particle-hole symmetry
are x = {εf ,εs}. One can see that the CPT result is not
converged for the L = 10 site interacting clusters yet. In
contrast, the VCA� result seems to converge much faster.

235107-7



NUSS, ARRIGONI, AICHHORN, AND VON DER LINDEN PHYSICAL REVIEW B 85, 235107 (2012)

FIG. 4. (Color online) The local density of states [Eq. (21)] is
shown resolved in real space. The spectrum was obtained using CPT
on a L = 14 site interacting cluster. The impurity parameters were
U/� = 12, εf /� = −6, and the numerical broadening was set to
0+ = 0.05. The spectrum shown in Fig. 3(c) corresponds to the data
shown for the impurity f orbital located at site 0 in the plot. The
density plot is shown with a logarithmically scaled coloring from
blue indicating zero to red indicating high values.

Although in the plot it looks like the VCA result does not
improve much upon a restricted Hartree-Fock calculation, we
will show in the following that CPT/VCA yields results in all
parameter regimes of the SIAM which can not be reproduced
within a mean-field treatment.

The variational parameters obtained for the two sets of
parameters shown in Fig. 5 are presented in Fig. 6. In addition
to the VCA� parameters, which were used for the results
above, the variational parameters obtained in VCASC are also
depicted. We plotted the difference of the parameter of the
reference system x′ to the physical parameter x: �x. All
deviations �x appear to converge to zero with increasing
length L of the interacting part of the reference system. Notice
that the self-consistent approach always leads to a �x of
greater magnitude with respect to VCA�. Remarkably, the
spectra obtained by VCA� and VCASC for the parameter
set x = {εf ,εs} are in very good agreement even though the
variational parameters are rather different. The most striking
difference is that the self-consistent approach yields a negative
�εf , while the �-based VCA yields a positive �εf . This
is, however, compensated by the different �εs . Using the
hybridization V as a variational parameter, the �V obtained
by VCA� and VCASC agree rather well. Remarkably, the
resulting density of states is very different, which shows that
the calculation is extremely sensitive to this parameter.

The low computational effort of CPT/VCA proves ad-
vantageous for calculating spectra. The VCA procedure (for
a 12-site interacting cluster) usually converges in minutes
to hours on a standard workstation PC, while more de-
manding numerical methods often need days to a week to
converge. Furthermore, the spectra are exactly determined
from the Lehmann representation, and no ill-posed analytical
continuation is required in comparison to methods working
in imaginary time or imaginary frequency space. To our
knowledge, the most accurate spectra available for this model
so far are published in Ref. 67.

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

3

3.5

ω /Δ

ρ f

 

 

NRG
FRG
RHF
CPT
VCA

Ω

3.06

3.08

3.1

3.12

3.14

3.16

3.18

−0.2 0 0.2 0.4 0.6 0.8 1

FIG. 5. (Color online) Magnification of the Kondo resonance
in the density of states of the impurity f orbital. Shown are
calculations for two different sets of parameters. The resonance at
ω = 0 corresponds to the particle-hole symmetric model: U/� = 20,
εf /� = −10, while the resonance away from zero corresponds to a
set of parameters right at the edge of the Kondo region: U/� = 20,
εf /� = 0. For comparison, we show NRG (yellow line) and FRG
(dark brown line) data as well as results obtained from a restricted
Hartree-Fock calculation (blue line) from Karrasch et al. (Ref. 31).
(The NRG results are partially hidden by the FRG results.) The
CPT result (cyan line) is shown for lengths of the interacting
part of the reference system L = 2, 4, 6, 8, and 10. Results for
higher L are always located towards the center of the plot. In the
particle-hole symmetric case, VCA� (magenta line) was performed
with variational parameters x = {V } for L = 2, 4, 6, 8,and 10. Away
from particle-hole symmetry, VCA� was performed with variational
parameters x = {εf ,εs} for the same lengths of the interacting part of
the reference system L. For the CPT/VCA calculations, a numerical
broadening of 0+ = 10−6 was used. The inset shows a zoom to the
top region of the peaks.

Overall, one may conclude that CPT, VCA�, and VCASC

reproduce a Kondo resonance, which fulfills the Friedel sum
rule [Eq. (23)] for 0+ → 10−6. The VCA results improve
drastically upon the CPT data, which may be seen in a
much faster convergence in L and a suppression of finite-size
effects, especially in the high-energy part of the spectrum,
which in addition has the expected width within VCA. VCA�

and VCASC agree rather well on the position of the spectral
features. However, they assign very different spectral weight
to them at low values of interaction strength U .

C. Impurity density of states and occupation

The occupation of the impurity f orbital is given at T = 0
by 〈

nf
σ

〉 = 1

2
+ 1

π

∫ ∞

0
dω Re

[
Gσ

ff (iω)
]
. (22)

This integral may be evaluated from the imaginary frequency
Green’s function, which in turn is directly accessible within
CPT/VCA.

To see whether CPT/VCA are good approximations in all
parameter regions of the SIAM, we vary the onsite energy
of the impurity εf at fixed interaction strength U . The local
impurity density of states at the chemical potential (ω = μ =
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FIG. 6. (Color online) Evolution of the variational parameters for
the data shown in Fig. 5. Shown is the difference of the parameters
of the reference system x′ to the physical parameter x: �x = x′ −
x. Parameters obtained by VCA� (crosses) are compared to those
obtained by VCASC (circles). The variational parameters �εf (dark
brown line) and �εs (yellow line) correspond to the calculation away
from particle-hole symmetry in Fig. 5, while the parameter �V (olive
line) corresponds to the calculation at particle-hole symmetry. Lines
are only guides to the eye.

0) and the impurity occupation number are plotted for various
lengths of the interacting part of the reference system L =
2, 4, 6,and 8 for the same model parameters. The VCA� result
is shown in Fig. 7, a VCASC calculation in Fig. 8, and the CPT
data in Fig. 9.

We start out by discussing the VCA� result (Fig. 7). The
variational parameters x used within VCA� are the onsite
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FIG. 7. (Color online) Density of states of the impurity f orbital
(solid lines) obtained via VCA� at ω = 0 and average occupation of
the impurity (dashed lines) for different lengths of the interacting
part of the reference system L = 2, 4, 6,and 8 (blue, green, red,
and cyan lines) as a function of the impurity onsite energy εf . The
Coulomb interaction U is kept constant at U/� = 20. The numerical
broadening used is 0+ = 10−6. The set of single-particle parameters
considered for variation within VCA� is x = {εf ,εs}. Note that here
the point εf = −U

2 corresponds to the particle-hole symmetric case.
The Friedel sum rule [Eq. (23)] was applied to the L = 8 result (dotted
violet line). It is fulfilled to a very good approximation in the Kondo
region and far outside of it. Small deviations from the Friedel sum
rule arise at the crossover region to an empty or doubly occupied
impurity. The inset shows a zoom to the Kondo plateau.
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FIG. 8. (Color online) Density of states of the impurity f orbital
(solid lines) obtained via VCASC at ω = 0 and average occupation of
the impurity (dashed lines) for different lengths of the interacting
part of the reference system L = 2, 4, 6,and 8 (blue, green, red,
and cyan lines) as a function of the impurity onsite energy εf . The
Coulomb interaction U is kept constant at U/� = 20. The numerical
broadening used is 0+ = 10−6. The set of single-particle parameters
considered for variation within VCASC is x = {εf }. Note that here the
point εf = −U

2 corresponds to the particle-hole symmetric case. The
Friedel sum rule [Eq. (23)] was applied to the L = 8 result (dotted
violet line). It is fulfilled in a region of nf � 0.4 and nf � 1.6.

energy of the impurity εf and the onsite energies of the
uncorrelated cluster sites εs . The density of states ρf (0)
display a pronounced plateau which is related to the existence
of a quasiparticle peak (Kondo resonance) pinned at the
chemical potential. The parameter regions leading to an empty
(−εf < 0) or to a doubly occupied (−εf > U ) impurity do not
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FIG. 9. (Color online) Density of states of the impurity f orbital
(solid lines) obtained via CPT at ω = 0 and average occupation of
the impurity (dashed lines) for different lengths of the interacting
part of the reference system L = 2, 4, 6, and 8 (blue, green, red,
and cyan lines) as a function of the impurity onsite energy εf . The
Coulomb interaction U is kept constant at U/� = 20. The numerical
broadening used is 0+ = 10−6. Note that here the point εf = −U

2
corresponds to the particle-hole symmetric case. The Friedel sum
rule [Eq. (23)] was applied to the L = 8 result (dotted violet line).
It is drastically violated. However, the results are far from converged
for the small lengths of the interacting part of the reference system
considered here.
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show a pinning of the Kondo resonance at the Fermi energy,
as expected. In the half-filled region which lies in-between,
virtual spin fluctuations lead to a pronounced quasiparticle
peak at the chemical potential. We observe that the result
converges with increasing length of the interacting part of
the reference system L to the physically expected result. Due
to the variational parameters considered, the deviations of the
results as a function of L are rather small as compared to CPT,
where the results change significantly with increasing size of
the reference system (see Fig. 9). We expect CPT calculations
in the empty or doubly occupied regions to converge rather fast
(within a few sites), while calculations in the Kondo regime,
and particularly in the crossover region, may fully converge
only at very large (i.e., exponentially) sizes of the reference
system.63 This is inferred from the spin-spin correlation
function in the cluster which is observed to decay sufficiently
fast outside the Kondo plateau (i.e., it is effectively zero at the
boundary of the cluster) but shows long-range correlations
inside the plateau. The VCASC results are obtained with
one variational parameter x = {εf }. The reason for not using
x = {εf ,εs} again is that the result is almost the same as that
obtained with VCA� (see Fig. 7). However, in some (small)
parameter regions, the numerical evaluation becomes difficult.
The VCASC data shown in Fig. 8 show a clear improvement as
compared to CPT but does not reach the quality of the VCA�

result in terms of convergence in system size.
The Friedel sum rule5,68,69 (FSR) provides an exact relation

between the extra states induced below the Fermi energy by
a scattering center and the scattering phase shift. It also holds
true for interacting systems. This gives a relation between the
f -orbital occupation 〈nf 〉, and the density of states at the
Fermi energy:

ρf (0) = 1

π�
sin2

(
π〈nf 〉

2

)
. (23)

In our case, the mean occupation in the Kondo regime is
〈nf 〉 ≈ 1. Since both the occupancy of the f orbital and the
magnitude of the local density of states at the Fermi energy
can be evaluated independently, we can check the validity
of the Friedel sum rule in our approximation. Results are
shown in Fig. 7 applied to the L = 8 site VCA� data. The
VCA� results fulfill the Friedel sum rule almost in the whole
Kondo region. At the crossover to an empty or doubly occupied
impurity, the Friedel sum rule is not fulfilled exactly any more
but approximated very well. Further outside, the agreement is
again excellent. The variational parameters of VCA are crucial
to fulfill the Friedel sum rule as can be seen from a CPT
calculation (Fig. 9), which violates it in all parameter regions.
It appears that VCA� with variational parameters x = {εf ,εs}
naturally drives the system to fulfill this condition. The VCASC

result (Fig. 8) violates the sum rule too. This is not a feature
of VCASC in general, but has to do rather with the choice of
variational parameters, which was just x = {εf } in this case.
The VCASC result for two variational parameters x = {εf ,εs}
looks qualitatively like the respective VCA� result.

Scanning the interaction strength U at fixed impurity onsite
energy εf confirms the presence of the Kondo behavior. Shown
in Fig. 10 are results obtained with VCA� using the same
variational parameters x = {εf ,εs} as above. In the weakly
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FIG. 10. (Color online) Density of states of the impurity f orbital
at ω = 0 for different lengths of the interacting part of the reference
system L = 2, 4, 6, and 8 (dark brown, cyan, olive, and magenta
lines) as a function of the interaction strength U . The impurity onsite
energy εf is kept constant at εf /� = −10. The numerical broadening
is chosen to be 0+ = 10−6. The set of single-particle parameters
considered for variation within VCA� is x = {εf ,εs}. The inset shows
the CPT results.

correlated part (U/� � 5), the density of states at the chemical
potential is low. The intermediate region (5 � U/� � 15)
signals the crossover to the Kondo regime. For larger U ,
the Kondo regime is reached with an impurity occupation of
〈nf 〉 ≈ 1, which may be inferred from the Friedel sum rule. In
the inset of the figure, the CPT results for the same lengths of
the interacting part of the reference system L are shown. The
CPT results are by far not converged for the interacting cluster
sizes considered here. This emphasizes the importance of the
variational parameters.

Our results in Figs. 7 and 10 agree very well with those of
calculations based on X-operator technique exercised by Lobo
et al.38 In their work, a strong-coupling perturbation theory is
applied starting from the Anderson molecule as a basis and
using the Friedel sum rule as a condition to fix the position of
an infinitely narrow conduction band.

Analytic considerations (see Appendix B) allow insight into
the behavior of the Friedel sum rule in ED, CPT, and VCA.
There, it is shown that ED always has to violate the Friedel sum
rule, while CPT always fulfills it in the particle-hole symmetric
case. This comes about in the first place because the height
of the Kondo resonance at ω = 0 does not depend on the
self-energy. A pinning of the Kondo resonance, however, can
only be achieved via the improved self-energy contributions
obtained within VCA.

The results of this section clearly show that VCA is able
to capture the basic physics of the SIAM in every parameter
region. The improvement obtained by going over from CPT to
VCA is crucial to fulfill exact analytic relations. Moreover,
we have shown that CPT/VCA is clearly superior to ED
calculations. VCA is, even at small L, capable of fulfilling the
FSR also away from particle-hole symmetry due to a pinning
of the Kondo resonance at the Fermi energy. This pinning can
be attributed to the better approximation of the self-energy of
VCA with respect to CPT.
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FIG. 11. (Color online) In this plot, a “phase diagram” of the
SIAM is shown. The quantity on the z axis is the density of states in
the impurity ρf at ω = 0 (i.e., the height of the Kondo resonance). The
results are obtained with VCA� for a set of variational parameters x =
{εf ,εs}, L = 6, and 0+ = 10−6. The black line indicates the different
regions obtained from an atomic-limit calculation. In the right cone,
local moments are to be expected. While in the upper region, the
impurity is expected to be empty and in the lower half to be doubly
occupied. The blue curve shows the onset of a spurious magnetic state
as obtained by a mean-field treatment (see text).

D. Crossover diagram

To delve into the CPT/VCA results for the whole parameter
range of the SIAM, a “phase diagram” is presented in this
section. This should be understood to be a mere scan of the
parameters U and εf because the model does not undergo
a phase transition. The density of states of the impurity
at the chemical potential ρf (0) is shown in Fig. 11 in a
density plot. This figure essentially shows the height of
the Kondo resonance as a function of interaction strength
and onsite energy of the impurity. The different regimes
of the SIAM, as obtained by an atomic-limit calculation,
are indicated as black lines. These lines divide the physics
into regions where the impurity is doubly, singly, or not
occupied. In the singly occupied region (U

2 > |εf + U
2 |), local

moments and their screening are expected to appear. This
region, which bestrides the cone enclosed by black lines, is
the region where Kondo physics may take place within this
approximation. The parameter regions where the impurity is
empty or doubly occupied lie above and below this cone.
More sophisticated methods will lead to a smearing out of
the border of these regions and introduce a crossover area
with competing effects. A boundary expected between a
single resonance and a spurious local moment behavior where
the single resonance is split into two for spin up and spin
down, respectively, is obtained by mean-field theory.65 In
the mean-field approach, the density-density interaction of
the impurity Hamiltonian is replaced by a spin-dependent
density exposed to the mean contribution of the other spins’
density. The mean-field boundary is then obtained by replacing
the mean-field parameters 〈nf

↑〉 and 〈nf

↓〉 by the particle
number n and magnetization m. Setting the magnetization
to m = 0+ in the self-consistent equations yields the implicit
result Uc = π�[1 + cot(π 〈nf 〉

2 )2] and εf,c = �{cot(π 〈nf 〉
2 ) +
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FIG. 12. (Color online) Average particle density in the impurity
〈nf 〉 as a function of U and εf for the same parameters as in Fig. 11.

π
2 (1 − 〈nf 〉) [1 + cot(π 〈nf 〉

2 )2]}. The plot shows that the
Kondo plateau is reproduced very well by VCA�. The results
appear almost converged for lengths L ≈ 6 of the interacting
part of the reference system. Increasing L yields better results
in the crossover region. Results obtained by means of CPT do
not reproduce the Kondo plateau very well for small L.

The average impurity occupation for the same parameter
region is shown in Fig. 12. The result obtained with VCA�

clearly shows the Kondo plateau where the impurity is singly
occupied. The parameter regions of a doubly occupied or
empty impurity lead to a density of states in the impurity
which is zero at the chemical potential (compare to Fig. 11).

The results of this section have been obtained using VCA�

with variational parameters x = {εf ,εs}. It should be noted that
using only x = {εf } already yields good results. As mentioned
in Sec. V C, CPT needs very large values L to yield the same
quality of the results as VCA does with much smaller values
of L.

E. Low-energy properties, Kondo temperature

In this section, we examine the low-energy properties of the
symmetric SIAM. In the strong-coupling limit, a single scale,
the Kondo temperature TK , governs the low-energy physics.5

The Kondo temperature TK is known from Bethe ansatz results
for the particle-hole symmetric SIAM (Refs. 70 and 71)

TK =
√

�U

2
e−γ π

8�
U , γ = 1. (24)

This scale, which is inversely proportional to the spin-flip rate
of the impurity, divides the physics of the SIAM into two
regions: a local moment behavior of the impurity, where the
spin is free, and a low-temperature region where the local spin
and the conduction electrons become entangled and form a
singlet state.72

Quantities which depend inversely on TK are the effective
mass m∗ and the static spin susceptibility χm. The Kondo
temperature may furthermore be extracted from the width or
weight of the Kondo resonance in the local density of states of
the impurity f orbital. We investigate and compare the results
for the scale TK obtained from the direct determination of
TK (from the FWHM and the spectral weight of the Kondo
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resonance) and the inverse quantities m∗ and χm. We find
that the results of all four measurements turn out to yield the
correct qualitative behavior in VCA� . However, in a region
where the dependence of TK is exponentially dependent on
the interaction strength U , the exponential prefactor is not
predicted correctly. Therefore, we introduce a scaling factor
γ [Eq. (24)], which turns out to be the same for all four ways
of determining TK . In particular, this factor is independent
of the set of model parameters used. The scaling factor
may be calculated semianalytically for a reference system
consisting of a two-site interacting cluster and the semi-
infinite environment within VCA� and VCASC (x = {V }). The
calculation for VCA� leads to an integral expression for the
stationary point of the grand potential � with respect to �V

from which the optimal �V can be obtained numerically (see
Appendix C). The Kondo scale may be determined from the
so-obtained values of V ′(U ) = �V (U ) + V by

TK (U ) ∝
(

V ′(U )

U

)2

. (25)

This leads to a perfect exponential behavior as defined in
Eq. (24) with

γ = 0.6511.

The issue of obtaining an exponential scale but not the correct
exponent for the functional dependence on U is common
to various approximate methods [for example, variational
wave functions where the issue was cured by introducing
an extended ansatz by Schönhammer,73 saddle-point ap-
proximations of a functional integral approach,74 or FRG
(Ref. 75)]. A faint analogy may be drawn here to Gutzwiller
approximation, where an exponential energy scale in U arises
by a renormalized hybridization parameter V ,76 which is also
the case for VCA�.

The self-consistent calculation for VCASC also leads to
an integral expression for the determination of �V . This
expression is obtained by requiring the expectation values of
the hopping from the impurity f orbital to the neighboring
site in the reference system to be the same as the expectation
value in the physical system. This procedure does not yield
an exponential scale in U . The optimal cluster parameter V ′
shows spurious behavior as a function of U . We conclude
that VCASC with x = {V } can not reproduce the low-energy
properties of the SIAM even qualitatively, while VCA� yields
the correct behavior apart from an exponential factor.

1. Effective mass–quasiparticle renormalization

The effective mass m∗ is defined as the quasiparticle
renormalization31

m∗(U )

m∗(0)
= 1 − d

[
Im�σ

ff (iω,U )
]

d ω

∣∣∣∣
ω=0+

= d
[
ImGσ

ff (iω,U )
]

d ω

∣∣∣∣
ω=0+

×
(

d
[
ImGσ

ff (iω,0)
]

d ω

∣∣∣∣
ω=0+

)−1

, (26)
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FIG. 13. (Color online) Effective mass m∗ of the Kondo reso-
nance [Eq. (26)] as a function of interaction strength U . We plot CPT
results for lengths of the interacting part of the reference system
L = 2, 4, 6, 8, and 10 (magenta), the L → ∞ extrapolated CPT
result (olive line), as well as VCA� results (blue line). The data
points for the CPT resulting in the low-U region are not shown
to avoid messing up the plot. The variational parameter used for
the VCA� result was x = {V }. The VCA� data were obtained for
L = 6. For CPT as well as VCA�, we used a numerical broadening
of 0+ = 10−6. For comparison, the results obtained by NRG (yellow
line) and FRG (dark brown line) are shown (Ref. 31).

where we introduced the dependence on the interaction
strength U explicitly. In the Kondo regime, this quantity
becomes inversely proportional to the Kondo temperature.

We want to answer the question as to whether the
Kondo scale is approximately captured by CPT/VCA or not.
Therefore, we compare the functional form and the exponent
obtained from the effective mass and the analytic result for TK

[Eq. (24)]. The result for the effective mass obtained within
VCA� is shown in Fig. 13. The variational parameter used was
x = {V }. The functional form is reproduced well by VCA�

(i.e., it starts out quadratically and goes over to an exponential
behavior in the Kondo region). However, the exponent ( π

8�
)

is not reproduced correctly. VCA� yields a lower exponent of
≈ (γ π

8�
). The factor γ is defined in Appendix C, determined

from a semianalytical calculation of TK within VCA� . This
additional factor is the same for all initial parameters (within
the Kondo regime), it is particularly independent of �. If
plotted over a scaled U axis U ′ = 1

γ
U , the VCA� result would

lie on top of the NRG data. However, using larger sizes of the
interacting part of the reference system does not lead to much
better results regarding γ . It is to be expected that a significant
improvement can only be obtained using exponentially large
L. The CPT result shows a very different convergence behavior
in L, which is rather slow.

An attempt was made to extrapolate the CPT data to L →
∞ by a simple 1

L
scaling. It is interesting to observe that this

extrapolated curve coincides nicely with the VCA result (L =
6) in the low-U region. However, we expect this extrapolation
based on small L to be insufficient to capture the exponential
scaling of the data in L. Note that since in CPT the self-energy
is taken from the cluster, the CPT results for the effective mass
coincide with ED results for systems of size L.
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FIG. 14. (Color online) VCA� results for the spectral weight
(blue) and full width at half maximum (olive) of the Kondo resonance
as a function of interaction strength U . The variational parameter used
was x = {V }. A length of the interacting part of the reference system
of L = 6 sites and a numerical broadening of 0+ = 10−6 were used
for this calculation. Data points marked with a circle were used for
the fit of the exponential function in the Kondo region. The black
line shows the Kondo temperature TK as obtained by Bethe ansatz
calculations [Eq. (24)].

2. Kondo spectral weight and half width

Since the height of the Kondo resonance is fixed by the
Friedel sum rule (23), the width and the weight (area) of the
peak are proportional to the Kondo temperature TK . Obtaining
the spectral weight or FWHM of the Kondo resonance from
the spectrum introduces a large uncertainty. Nevertheless, we
made an attempt to get an idea of the behavior of TK . We
fixed the spectral weight by the first minimum to the left and
to the right of the central peak (see also Ref. 63). In general,
the effective mass and static spin susceptibility will yield more
reliable results, but it is instructive to compare these four ways
of determining TK .

Shown in Fig. 14 is the evolution of the spectral weight and
the FWHM of the Kondo resonance with increasing interaction
strength U . The data were acquired using VCA� with a
variational parameter x = {V } for the particle-hole symmetric
SIAM. Within the uncertainty, the same exponential behavior
for the Kondo temperature TK is obtained as by calculating the
effective mass in VCA�.

3. Static spin susceptibility

The static spin susceptibility χm is given by the linear
response to an applied magnetic field B in the z direction:

χm(U ) = −d(〈nf

↑〉 − 〈nf

↓〉)
d B

∣∣∣∣
B=0

. (27)

In the Kondo regime, this quantity too becomes inversely
proportional to the Kondo temperature. For the calculations in
this section, we introduce an additional spin-dependent term
in the impurity Hamiltonian [Eq. (3)]

Ĥmagnetic =
∑

σ

σ
B

2
f †

σ fσ . (28)
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FIG. 15. (Color online) The static spin susceptibility χm

[Eq. (27)] is shown as a function of interaction strength U . The
variational parameter used was x = {V }. The data were obtained for
L = 6 sites and 0+ = 10−6. For comparison, the results obtained by
NRG (blue line) and FRG (green line) are shown (Ref. 31).

The static spin susceptibility χm as obtained with VCA� is
shown in Fig. 15. The variational parameter used was x = {V }.
As a reference, the results of NRG and FRG (Ref. 31) are
shown. The behavior of the VCA result is good for small
interaction strength U . The VCA result shown for L = 6
appears already converged while the CPT result would require
much larger systems.

We would like to highlight that VCA� reproduces an energy
scale TK . Results from direct calculation of TK , calculation of
the effective mass m∗, and the static spin susceptibility χm

yield the correct functional form, but not the right exponent.

F. Benchmarking CPT/VCA against continuous-time
quantum Monte Carlo

In this section, we compare CPT/VCA results to QMC data.
We obtained the Monte Carlo results using the continuous-time
quantum Monte Carlo (CT-QMC) code of the TRIQS (Ref. 77)
toolkit and its implementation of the hybridization expansion
(CT-HYB) (Ref. 78) algorithm using Legendre polynomials.79

This method enables access to very low temperatures and is
especially suited to obtain low-energy properties.40 The CT-
QMC data provide statistically exact and reliable results to test
our data.

All CT-QMC calculations were done for a single-impurity
orbital at U = 0.8 and εf = −0.4. We used a semicircular
hybridization function with half bandwidth D = 2 and V =
0.3162. This setup corresponds to the same model under
investigation here. The value for the interaction strength
U = 0.8 was chosen because of the relatively low expected
Kondo temperature of βK = T −1

K ≈ 100. For all calculations,
1.2 × 109 MC updates where conducted, with a sweep size of
100 updates, plus a 10% thermalization period.

To ensure that the Kondo resonance is correctly reproduced
by CT-QMC, we evaluated the Matsubara Green’s function
for various values of inverse temperature β. The height of the
Kondo resonance is given by the Friedel sum rule [Eq. (23)]
to be Im[Gff (iωn = 0)] = −10 for the parameters used here
(� = 0.1). To obtain Im[Gff (iωn = 0)], we extrapolate twice,
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FIG. 16. (Color online) CT-QMC result for the imaginary part
of the impurity Green’s function extrapolated to iωn = 0. An
extrapolation to zero temperature is attempted, which yields a good
agreement with the result predicted by the Friedel sum rule (green
circle) within the uncertainty (red triangle). The inset shows the
imaginary part of the impurity Green’s function for various β (see
legend) and the extrapolated points at iωn = 0.

first in iωn → 0 for each β, then we use these results and
extrapolate to T → 0. The extrapolation to iωn → 0 is done
linearly using the first two Matsubara frequencies. The imagi-
nary part of Gff (iωn) and the extrapolated value to iωn → 0
are shown in the inset of Fig. 16 for β ∈ [10,1200]. Those
extrapolated values are plotted as a function of temperature
(Fig. 16). These data points are then extrapolated to T → 0
using a fit by a rational model function. The result clearly
shows the onset of the Kondo resonance when the temperature
is lowered below the Kondo temperature TK . The extrapolation
to T = 0 shows very good agreement {Im[Gff (iωn = 0)] ≈
−10.1} with the result expected from the Friedel sum rule
within the uncertainty. It is important to note that the CT-QMC
results converge very nicely in β. Although for higher β, lower
Matsubara frequencies become available, the overall shape of
the Green’s function does not change significantly.

Therefore, we may compare the T = 0 CPT/VCA results
for the Green’s function and self-energy to the CT-QMC data.
The Matsubara Green’s functions of the impurity f orbital
Gff (iωn) obtained by CT-QMC (β = 400), CPT, and VCA are
shown in Fig. 17. We use β = 400 as a compromise between
low temperatures and still reliable CT-QMC results (within
manageable computation time). The β = 400 result was
obtained using 65 Legendre coefficients. A detailed analysis
has shown that this number is sufficient to get high-frequency
moments of the self-energy � accurately. The VCA� results
were obtained with one variational parameter x = {V } for U =
0.8, � = 0.1, and 0+ = 10−6 in the particle-hole symmetric
case. For the CPT calculation, we used the same parameters.
For both methods, we considered lengths of the interacting
part of the reference system of L = 2, 4, 6, 8,and 10. The
VCA result lies near the CT-QMC data but underestimates
the slope of the curve at low iωn. The VCA result provides a
huge improvement upon CPT for the lengths of the interacting
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FIG. 17. (Color online) Comparison of the Matsubara impu-

rity Green’s function Gff (iωn) obtained by CT-QMC (β = 400),
CPT, and VCA�. The CPT/VCA results were obtained for L =
2, 4, 6, 8,and 10. The real part shown in the lower part of the figure
is zero. The Friedel sum rule prediction of Im[Gff (iωn = 0)] = −10
is fulfilled by all methods. The legend of this figure serves as well as
legend for Figs. 18 and 19. That is why the last entry {large iωn exp.
[see Eq. (29)]} is displayed in the legend but is missing in the graph
of this figure.

part of the reference system shown here. The real part of
Gff (iωn) is exactly zero within CPT/VCA, as it is supposed
to be. Note that the value of Gff (iωn = 0) which is fixed
by the Friedel sum rule is exactly reproduced within CPT
and VCA for the particle-hole symmetric case. The same is
shown for the self-energy of the impurity f orbital �ff (iωn)
in Fig. 19. From the imaginary part of �ff (iωn), one can infer
the convergence of the CPT/VCA result with larger length of

0 5 10 15

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

ω
n

Im
(Σ

ff(iω
n))

 *
 ω

n

FIG. 18. (Color online) Comparison of the self-energy of the
impurity �ff (iωn) times energy ωn obtained by CT-QMC (β =
400), CPT, and VCA�. The CPT/VCA results were obtained for
L = 2, 4, 6, 8,and 10. CPT as well as VCA� become exact for
high Matsubara frequencies. An expansion of �(iωn) for large iωn

[Eq. (29)] is additionally shown [straight line at −( U

2 )2]. The legend
for this figure is the same as for Fig. 17 and is displayed there.
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the interacting part of the reference system L. The real part
of the self-energy {Re[�ff (iωn)] = μ = −ef = U

2 = 0.4} is
again exactly reproduced within CPT/VCA.

In the following, we discuss the self-energy �(iωn) for
the two interesting cases of very-low and very-high Matsubara
frequency. We start out by conducting an expansion of the self-
energy �(z) for high Matsubara frequencies (z = iωn → ∞),
which shall be outlined here briefly. The self-energy matrix is
defined by

�(z) = G−1
0 − G−1 = z − T − G−1.

Here, T is the one-particle part of the Hamiltonian. In the
particle-hole symmetric case considered here, it contains all
the hoppings as well as the onsite energy of the impurity
εf = −U

2 . We conduct a series expansion in powers of z−1

of �(z). Apart from the real constant Tii , all z-dependent
terms of �ii(z) are antisymmetric in z. Therefore, even powers
in z±2l , l > 0 vanish. Expanding the Green’s function G(z)
yields, for the self-energy �(z),

�(z) = −T − z

∞∑
m=1

(−1)m Xm,

X =
∞∑

n=1

z−n Cn,

(Cn)ij = 〈�0| ai(�Ĥ)na†
j |�0〉

+ (−1)n〈�0| a†
j (�Ĥ)nai |�0〉 ,

where �Ĥ = Ĥ − ω0 and ω0 is the ground-state energy of Ĥ.
Collecting powers of z yields a cumulantlike expansion for the
self-energy �(z):

�(z) =
∞∑

n=1

z−n �n, where

�0 = −T + C1 and �1 = C2 − C2
1 .

Here, we consider the zeroth and first order in z−1 only and
obtain, for �(iωn),

�ff (iωn) = U

2
− i

ω

(
U

2

)2

+ O
(

1

iωn

)3

, (29)

where the self-energy at the impurity f orbital �ff is the
only nonvanishing matrix element of �ij . This result is
plotted as a reference in Fig. 19. Due to the nature of the
CPT/VCA approximation, these methods always yield the
exact self-energy for high Matsubara frequency as shown in
Fig. 18.

The low-energy properties examined in the previous section
depend basically on the slope of the Matsubara Green’s
function at (iωn) = 0+. The results shown in Figs. 17 and
19 show that this slope is underestimated by CPT/VCA in
comparison to CT-QMC, at least at the small lengths of the
interacting part of the reference system available.

The above results suggest a possible application of VCA as
an impurity solver for zero-temperature DMFT. The results
would not suffer from a bath truncation error as in exact
diagonalization-based DMFT. A big advantage would be the
low demand on computational power of VCA as well as
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FIG. 19. (Color online) Comparison of the imaginary part of
the self-energy of the impurity Im[�ff (iωn)] obtained by CT-QMC
(β = 400), CPT, and VCA�. The CPT/VCA results were obtained
for L = 2, 4, 6, 8,and 10. An expansion of �(iωn) for large iωn

[Eq. (29)] is shown in addition (magenta line which diverges at
zero). CPT/VCA always reproduces the exact self-energy for high
Matsubara frequencies. The legend for this figure is the same as for
Fig. 17 and is displayed there.

the approximate reproduction of the main features of the
local density of states (i.e., Kondo resonance and high-energy
incoherent part of the spectrum).

G. Introducing a symmetry-breaking field

We explore the possibility to improve the VCA results
achieved by varying the internal single-particle parameters
of the model by introducing a symmetry-breaking “spin-flip
field” at the impurity f orbital. The term added to the impurity
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FIG. 20. (Color online) Grand potential � − �′
0,env [Eq. (20)] as

a function of the interaction strength U/� (see legend). The data
were obtained by studying a L = 4 site interacting cluster coupled to
a semi-infinite lead. The numerical broadening used was 0+ = 10−6.
The crosses indicate the respective minimum of the grand potential.
There exists a critical Uc/� ≈ 4.3 above which a finite B ′

x is preferred
by the system.
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FIG. 21. (Color online) The splitting of the Kondo resonance
caused by an applied magnetic field in the x direction is shown
for different values of the auxiliary field B ′

x . The plots were obtained
using VCA (i.e., the physical field Bx is always zero). Instead of taking
the parameter B ′

x at the stationary point of the grand potential (this
value would be B ′

x/� ≈ 1.9 for the parameters used), we explicitly
plug in a fixed value for B ′

x . The length of the interacting part of the
reference system used was L = 6 for the model parameters U/� =
12. The numerical broadening used was 0+ = 10−6.

Hamiltonian (3),

Ĥflip = Bx (f †
↑ f↓ + f

†
↓ f↑ ), (30)

explicitly breaks the conservation of spin in the cluster
solution. We are interested in the model with a physical
parameter Bx = 0 so this variable may only attain a finite
value as a variational parameter B ′

x in the reference system. We
investigate the particle-hole symmetric model at V = 0.3162
and t = 1. Our findings indicate that any finite value of B ′

x

splits the Kondo resonance and has thus to be discarded on
physical grounds for the system under investigation.

While this prevents the application of this field to improve
the VCA results, it gives very nice insight in the physics
of the SIAM as described by CPT/VCA. We find that a
critical interaction strength Uc depending on the length of the
interacting part of the reference system exists, which separates
solutions which would prefer a finite B ′

x from those which
would prefer B ′

x = 0. The critical interaction strength for
L = 4 is given by Uc/� ≈ 4.3. The grand potential � − �′

0,env
is plotted for various interaction strengths U in Fig. 20. For
an analogous calculation for L = 6 site interacting clusters,
a value of Uc/� ≈ 4.1 is achieved. The mean-field result
would yield a critical interaction strength Uc/� = π for the
parameters used here. We interpret this value as a signature of
the onset of local moment behavior. The values for Uc are of
course not to be taken literally, they depend very much on the
finite size of the cluster under investigation.

The splitting of the Kondo resonance caused by a nonzero
variational field B ′

x is shown in Fig. 21. The value of U/� = 12
used for this calculation lies in the region above Uc where the
system prefers a nonzero field B ′

x .

VI. CONCLUSIONS

In this work, we have applied the variational cluster
approach (VCA) to the single-impurity Anderson model. We
devised a cluster tiling applicable to this nontranslationally
invariant model, which leads to a cluster with a discrete
spectrum and an environment having a continuous spectrum.
We have derived an expression for the change of the grand
potential originating from the coupling of the impurity to the
semi-infinite bath.

We have compared results for the single-particle dynamics
to data obtained by exact diagonalization and cluster pertur-
bation theory (CPT). We found that the variational extension
made by the VCA is vital for a good reproduction of the
expected behavior of the SIAM. The CPT/VCA spectra both
yield a Kondo resonance in the impurity density of states with
the correct height as predicted by the Friedel sum rule. A
close look at the Kondo resonance shows that the VCA is
able to reproduce the resonance and the functional behavior
for the Kondo temperature in a remarkable way. The Kondo
temperature is expected to show exponential behavior in
interaction strength in the Kondo regime. VCA yielding an
exponential behavior, however, tends to underestimate the ex-
ponent. Comparison of dynamic quantities to continuous-time
quantum Monte Carlo solidifies the origins of this behavior.
The high-energy incoherent part of the spectrum shows strong
finite-size effects within CPT which are partly removed by
virtue of the VCA. VCA furthermore reproduces the expected
position and width of the high-energy part of the spectrum.
For the asymmetric model, the Friedel sum rule is fulfilled
in all parameter regions implying that the Kondo resonance
is pinned at the chemical potential in the Kondo region. In
addition, a self-consistent formulation of the VCA, previously
introduced in the context of nonequilibrium problems,51 was
explored. Results obtained by the self-consistent approach
show agreement with results obtained by VCA based on the
grand potential for the density of states of the impurity f

orbital. Thereby the positions of the spectral features agree
very well with the traditional VCA result, while the spectral
weight distribution may deviate especially for small values
of interaction strength. Comparison to results obtained from
Bethe ansatz, renormalization group approaches, and data
obtained from X-Operator based calculations show reasonable
agreement for all quantities investigated.

In conclusion, while there are certainly more accurate
methods to deal with a single-quantum-impurity model,23

especially at low energies, our work shows that VCA is
a flexible and versatile method which provides reasonably
accurate results with modest computational resources. Here,
the VCA self-consistency condition proves to be crucial.
This allows us to obtain the same accuracy that CPT would
provide with a much larger, inaccessible, interacting cluster
size. One of the advantages is the flexibility of the method,
i.e., it is straightforward to extend it to many impurities,
nonequilibrium problems,51 etc. In the spirit of NRG,29 one
could improve on the present results by carrying out an
appropriate unitary transformation on the bath such that
the bath hoppings decay with increasing distance from the
impurity. In this work, we do not include such an improvement
and choose a constant hopping sequence [Eq. (2)] since our
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goal is to benchmark VCA/CPT only. Nevertheless, a hybrid
approach combining NRG and VCA would be an interesting
extension of this work.
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APPENDIX A: GRAND POTENTIAL

Here, we outline the proof of Eq. (19). We start out from
Eq. (18), i.e.,

�� = −Tr ln(1 − Tg).

Taylor expansion yields

�� =
∞∑

n=1

1

n
{Tr [(Tg)n]cc + Tr [(Tg)n]ee}. (A1)

Due to Tee = 0, each term gee in the first trace occurs only in
the form

g̃cc := TcegeeTec.

The expressions in the second part of Eq. (A1) can be modified
by a cyclic permutation of the factors in the argument of the
trace

Tr (Tecgcc . . . Tcegee) = Tr (gcc . . . TcegeeTec),

in which gee again only occurs in the dressed form g̃cc. If we
replace all occurrences of TcegeeTec by g̃cc, then there are no
matrices Tce and Tec, respectively, left. Hence, we can as well
introduce in Eq. (18) the following replacements:

gee → g̃cc, Tce → 1cc, Tec → 1cc, 1 → 1cc,

as it leads in the series expansion to the same expressions. The
argument in Eq. (18) then assumes the form

1 − Tg = 1 −
(

Tcc 1cc

1cc 0cc

)(
gcc 0cc

0cc g̃cc

)
=

(
b −g̃cc

−gcc 1

)
,

with the abbreviation b := 1 − Tccgcc. Prompted by the Schur
complement, the matrix can be factorized into upper and lower
triangular block matrices(

b −g̃cc

−gcc 1

)
=

(
b 0

−gcc 1 − gccb
−1g̃cc

)(
1 −b−1g̃cc

0 1

)
,

such that the determinant is easily computed since the
determinant of the second matrix is 1 and the determinant
of the first matrix is simply the product of the determinants of

the diagonal blocks, resulting in

det

(
b −g̃cc

−gcc 1

)
= det(b) det

(
1 − b−1g̃ccgcc

)
= det(b − g̃ccgcc)

= det(1 − (Tcc + TcegeeTec)gcc).

The final result for Eq. (18) reads as

�� = −Tr ln(1cc − �̃ccgcc).

APPENDIX B: BEHAVIOR OF THE FRIEDEL SUM RULE
WITHIN ED, CPT, AND VCA

It is possible to gain a somewhat deeper understanding of
the behavior of the FSR within ED/CPT/VCA by considering
the local Green’s function at the impurity f orbital

Gff (z) = [z − εf − �(z) − �(z)]−1, (B1)

where �(z) is the contribution due to the single-particle
terms of the hybridization and �(z) the self-energy due to
the local interaction (for details, see Appendix C). In the
following, we consider the particle-hole symmetric case. We
are interested in the behavior of the retarded Green’s function
Gret

ff (ω) = Gff (ω + i0+) at the Fermi energy (ω = 0), which
we investigate by taking the limit on the Matsubara axis
Gret

ff (0) = limν→0+ Gff (iν). We expand the self-energy �(iν)
up to linear order in ν and rewrite the expression using the
definition of the effective quasiparticle mass m∗ [see Eq. (26)]
as

�(iν) ≈ −εf + iIm[�(0)] + iν
∂Im[�(iν)]

∂(iν)

∣∣∣∣
0+

+ iO[(iν)2]

≈ −εf + iν(1 − m∗).

Inserting into Eq. (B1), we obtain

Gret
ff (0) = lim

ν→0+
Gff (iν)

= lim
ν→0+

(i{m∗ν − Im[�(iν)]} − Re[�(iν)])−1. (B2)

We will now investigate two separate, general cases of an
ED and a CPT/VCA treatment of the Green’s function. From
Eq. (B2), it is easy to see that the remnant m∗ of the
impurity self-energy and therefore the self-energy itself does
not contribute to the Friedel sum rule. In outlining how to
notice this, we simultaneously show that a discrete spectrum
of the conduction band (as obtained for example in ED) will
not fulfill the Friedel sum rule. Consider an arbitrary discrete
spectrum of the conduction electrons with hybridization

�(iν) = V 2
∑

μ

αμ

iν − ωμ

,

with excitation energies ωμ. Splitting into real and imaginary
parts and inserting into Eq. (B2) gives

Im
[
Gret

ff (0)
]

= lim
ν→0+

−(m∗ + V 2A(ν))ν
(m∗2 + 2m∗V 2A(ν) + V 4A(ν)2)ν2 + V 4B(ν)2

,

A(ν) =
∑

μ

αμ

1

ω2
μ + ν2

, B(ν) =
∑

μ

αμ

ωμ

ω2
μ + ν2

.
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Upon neglecting the weak dependence of A(ν) and B(ν) on ν,
one obtains, in this case, in the limit ν → 0: Im[Gret

ff (0)] → 0
if all ωμ �= 0 or Im[Gret

ff (0)] → −∞ if any ωμ = 0. We would
like to further illustrate this for the specific model considered
in this work (i.e., an impurity coupled to a semi-infinite chain
with open boundary conditions)

H = −V (c†
f c0 + c

†
0cf ) − t

L−1∑
i=0

(c†
i ci+1 + c

†
i+1ci ),

where we suppressed spin indices. We obtain by using the
equation of motion for the local impurity f -orbital Green’s
function

ω Gff (ω) = ω 〈〈cf ; c†
f 〉〉

= 〈[cf ,c
†
f ]+〉 − 〈〈[cf ,H]−; c†

f 〉〉
for an even number of sites (including the impurity)

Im[�even(iν)] = −V 2

ν
RL(ν,t),

and for an odd number of sites

Im[�odd(iν)] = −V 2ν RL(ν,t),

where RL(ν,t) is a rational function which is well behaved
upon taking the limit ν → 0+ [i.e., it approaches a constant
limν→0+ RL(ν,t) = fL(t)] and the real part is always zero.
Upon inserting into Eq. (B2), one can easily verify that for
an even number of sites, this yields zero spectral weight at
the Fermi energy, while for an odd number of sites it yields
−∞ (i.e., there is a pole exactly at ω = 0). Therefore, the ED
results alternate with even/odd system size between ρeven

f (0) =
0 and ρodd

f (0) = ∞. This result shows that the FSR is always
violated in ED because a finite value of the impurity density
of states at the Fermi energy may only be obtained using an
artificial numerical broadening. It furthermore shows that all
terms involving m∗ go to zero and can not contribute to the
sum rule.

Now we turn to the case of CPT/VCA, where the conduction
electron hybridization takes the form [see Eq. (10)]

�(iν) = i
V 2

2t2
(ν −

√
4t2 + ν2)

for the model considered in Eq. (1) (i.e., a semicircular density
of states of the conduction electrons). The CPT/VCA Green’s
function of the physical system is then given upon insertion of
this � into Eq. (B2):

Im
[
Gret

ff (0)
] = lim

ν→0+

−1(
m∗ − V 2

2t2

)
ν + V 2

2t2

√
4t2 + ν2

,

which yields upon expansion of the square root up to linear
order in ν

Im
[
Gret

ff (0)
] = lim

ν→0+

−1(
m∗ − V 2

2t2 + 1
4t

)
ν + V 2

t

,

and when the limit ν → 0 is taken

Im
[
Gret

ff (0)
] = − t

V 2
= − 1

�
,

which is exactly the value predicted by the FSR [Eq. (23)]:

Im
[
Gret

ff (0)
] = −π

1

π�
sin

(
π

2

)2

= − 1

�
.

This result is independent of the size of the reference system.
Away from particle-hole symmetry (occupation of the f orbital
not one), the calculation becomes more tedious. The numerical
VCA calculations, however, show that a pinning of the Kondo
resonance at the Fermi energy is obtained in contrast to CPT
at small L.

APPENDIX C: SEMIANALYTICAL EXPRESSIONS FOR
VCA OF THE TWO-SITE PROBLEM

To gain a better understanding of the behavior of the
low-energy properties of the SIAM, we solve a small system
semianalytically. We obtain the scaling of the Kondo temper-
ature TK with interaction strength U within VCA� as well as
VCASC. A reference system consisting of a two-site cluster
and an infinite environment is used.

The Kondo scale will be determined from the effective mass
[Eq. (26)] using the self-energy of a two-site cluster [Eq. (C3)],
which leads to

m∗(U ) = 1 + 1

36

(
U

V ′

)2

. (C1)

The Kondo scale TK is inversely proportional to m∗(U )
[Eq. (25)]. Therefore, within this approximation, the behavior
of the optimal cluster parameter V ′ governs the low-energy
physics.

To determine the optimal hopping V ′, the Green’s function
of the reference system g is calculated as

g−1(z) =
⎛
⎝ z − �′(z) V ′ 0

V ′ z 0
0 0 G′−1

ee (z)

⎞
⎠.

The CPT/VCA Green’s function G,

G−1(z) =
⎛
⎝ z − �′(z) V 0

V z t

0 t G′−1
ee (z)

⎞
⎠,

is obtained by Eq. (6) using

T =
⎛
⎝ 0 �V 0

�V 0 −t

0 −t 0

⎞
⎠.

Here, G11 = Gff [Eq. (C2)] corresponds to the impurity f

orbital, G22 = Gss the second site in the interacting part of the
reference system, and G33 = Gee [Eq. (10)] the semi-infinite
environment. The cluster parameter V ′ is given by the physical
parameter V plus the variation �V . Note that in here we
work with the reduced expressions for � and G justified in
Appendix A. Schönhammer and Brenig calculated the Green’s
function of the correlated orbital for this model perturbatively
and showed that their expression becomes exact in the limit of
vanishing bandwidth.21 This is exactly the case considered
here, where the impurity f orbital is coupled to a single
noninteracting site providing a bath with vanishing bandwidth.
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FIG. 22. (Color online) Left: Optimal parameter V ′ of the reference system as obtained by the semianalytical equations for VCA� [Eq. (C4)]
and VCASC [Eq. (C5)]. As a reference, the L = 2 data of our numerical simulation are shown too. Right: The effective mass [Eq. (C1)] obtained
by the optimized parameter V ′ of the reference system (see left figure). Additionally shown are the Bethe ansatz (Ref. 5) [Eq. (24)] and NRG
(Ref. 31) result as a reference.

They obtained

gff (z) = 1

z − �′(z) − �′(z)
, (C2)

where the hybridization �′(z) in our case is given by

�′(z) = V ′2

z
,

and the self-energy �′(z) is given by

�′(z) =
U 2

4

z − 9�′(z)
. (C3)

From this, all elements of the cluster Green’s function may be
obtained by the equation-of-motion technique.

To be able to calculate the grand potential �, the ground-
state energy of the interacting part of the reference system
ω′

0 needs to be obtained (which can be done, for example, by
diagonalization of the Hamiltonian matrix or by an integral
over the Green’s function):

ω′
0 = − 1

4 (U +
√

U 2 + 64V ′2).

Using the expression for the CPT/VCA Green’s function g and
the ground-state energy and taking the derivative of the grand
potential (20) with respect to �V , one is able to obtain an
integral expression, which allows us to determine V ′ within
VCA�:

d �(�V )

d (�V )
= ∇�V ω′

0(�V ) − 1

π

∫ ∞

0
dω

× Re{tr [[1 − T(�V )g(iω,�V )]−1

× ([∇�V T(�V )g(iω,�V )]

+ [T(�V )∇�V g(iω,�V )])]} != 0. (C4)

The resulting V ′(U ) is shown in Fig. 22 (left) and is used
to calculate the effective mass [Eq. (C1)] shown right in the
figure. The effective mass shows exponential behavior, but the
exponent does not match the Bethe ansatz result as discussed
in Sec. V E.

Next, we attempt to obtain the VCASC solution for the
two-site problem. The only variational parameter is V and
therefore we determine the expectation value of

∑
σ 〈f †

σ c1σ 〉
self-consistently. Here, 1 denotes the impurity’s s orbital. Since
we are considering a spin-symmetric model, we sum over both
spin directions and denote this expectation value as 〈f †c〉 in
the following. The hopping expectation value is given by

〈f †c〉 = − 2

π

∫ ∞

0
dω Gf c(iω).

Evaluation of this expectation value in the cluster yields

〈f †c〉cluster

= − 2

π

∫ ∞

0
dω

× 4(�V + V )[9(�V + V )2 + w2]

36(�V + V )4 + [U 2 + 40(�V + V )2]w2 + 4w4
.

Evaluation of this expectation value in the total system gives

〈f †c〉CPT = − 2

π

∫ ∞

0
dω

× 8V

8V 2 + w[U 2+36(�V +V )2+4w2](w+√
4t2+w2)

9(�V +V )2+w2

.

Upon requiring the two expectation values to coincide

〈f †c〉cluster
!= 〈f †c〉CPT, (C5)

the optimal value of �V is obtained numerically. The resulting
V ′(U ) is plotted in Fig. 22 (left) and is used to calculate
the effective mass [Eq. (C1)] shown right in the figure.
The effective mass does not show exponential behavior in
VCASC.
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46D. Sénéchal, D. Perez, and M. Pioro-Ladriére, Phys. Rev. Lett. 84,
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5.5. Non-linear transport through a strongly correlated

quantum dot

5.5.1. Preamble

This part of our work has been published in AIP Conf. Proc. 1485, 302 (2012) [63]. Reproduced
with permission from AIP Conf. Proc. 1485, 302 (2012), doi: 10.1063/1.4755830. Copyright
2012, AIP Publishing LLC.
This is the �rst of two papers in which we develop and apply the steady-state quantum cluster

methods stsCPT and stsVCA to a single quantum dot under bias voltage, see also the paper in
Sec. 5.5. The basic physical e�ects in such a device are collected in Sec. 3.1 and applications in
Ch. 2. The principles of the stsCPT and stsVCA are outlined in Sec. 3.3.1 and Sec. 3.3.2. We
discussed the time evolution of this model in Sec. 5.2 and Sec. 5.3. We �nd the variational feed-
back introduced in the stsVCA reference state, Sec. 5.4 to be crucial for an accurate description
of nonequilibrium correlation phenomena. In particular the stsCPT and the stsVCA are found
to yield the correct linear-response current and stsVCA is found to exhibit a linear splitting of
the Kondo resonance with bias voltage, see Sec. 5.6 for details. This work provides the basis for
the application of stsCPT and stsVCA to more complicated, multi-orbital models in Sec. 5.7,
Sec. 5.8. Further aspects of the SIAM are explored in Sec. 5.1, Sec. 5.9 and Sec. 5.10. The
contents of this publication are advancements of preliminary data reported in MN's preceding
diploma thesis [329].
This paper is authored by Martin Nuss (MN) and co-authored by MN's supervisors Enrico

Arrigoni (EA) and Wolfgang von der Linden (WL). This research was to a large and signi�cant
extent conducted by MN under the supervision of WL and EA. The work was initiated by EA
and WL. The stsVCA was proposed by EA and WL and developed by MN, EA and WL. The
idea to apply the method to study a single quantum dot was proposed by WL and EA. MN
wrote the stsCPT and stsVCA computer codes, tested them, conducted the calculations and
studied various implementations of variational parameters. MN prepared, collected, interpreted,
analyzed and visualized the results and set them in context with recent literature. MN wrote
the �rst version of the manuscript. All authors participated equally in discussing the results and
revising the text of the manuscript. EA and WL provided guidance throughout the work. We
discussed our results with Michael Knap.
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Non-linear transport through a strongly
correlated quantum dot

Martin Nuss, Enrico Arrigoni and Wolfgang von der Linden

Institute of Theoretical and Computational Physics, TU Graz, 8010 Graz, Austria

Abstract. We study non-equilibrium properties of a strongly correlated quantum dot system, repre-
sented by the single impurity Andersonmodel, by means of the recently introduced non-equilibrium
variational cluster approach [1]. We focus on the steady-state current density and non-equilibrium
density of states in a parameter region of high interaction strength in the particle-hole symmet-
ric case, which lies in the center of the Kondo regime. The bias dependent current density shows
a gradually developing two peak structure with increasing interaction strength. It agrees with the
linear response result in the low bias region and vanishes as expected at high bias due to a van-
ishing band overlap. The non-equilibrium density of states exhibits a linear splitting of the Kondo
resonance with applied bias voltage. We compare results obtained via non-equilibrium variational
cluster approach with non-equilibrium cluster perturbation theory.
Keywords: non-equilibrium theory, strongly-correlated systems, many-body cluster methods
PACS: 73.63.Kv, 73.23.-b, 72.10.Fk, 71.15.-m

INTRODUCTION

Experiments with nano-scale electronics [2] brought tremendous new insights into the
physics of non-equilibrium phenomena in a fundamental quantum mechanical context.
Understanding these phenomena on a theoretical level represents a challenge until today
and valuable, new insights are still to be expected. Building upon general results [3, 4],
qualitative descriptions of strongly interacting non-equilibrium systems are notoriously
difficult to obtain because it is expected, that such systems remain in the strong coupling
regime also at high bias voltages [5]. The combination of true many-body problems and
a non-equilibrium situation usually refrains from a standard perturbative treatment in
many interesting parameter regions. In addition, the need for energy relaxation and/or
particle dissipation mechanisms sets a difficult environment for many theoretical ap-
proaches. In recent years promising concepts have been developed including the scat-
tering Bethe Ansatz [6] or the effective equilibrium formulation in terms of scattering
operators [7]. Due to the complexity of the problem, numerical calculations are appeal-
ing. Various established many-body methods have been extended to the non-equilibrium
case over the past decade. Among them one can quote the non-equilibrium functional
renormalization group [8, 9], quantum Monte Carlo [10], dual-fermion approaches [11]
and many more. Using time dependent density matrix renormalization group it is possi-
ble to gain insight into quasi-stationary state behavior [12].
In this work, the non-equilibrium variational cluster approach is used to evaluate dy-
namic non-equilibrium quantities in the steady-state.

Lectures on the Physics of Strongly Correlated Systems XVI
AIP Conf. Proc. 1485, 302-306 (2012); doi: 10.1063/1.4755830
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MODEL AND METHOD

We consider a model for a single quantum dot represented by the one dimensional single
impurity Anderson model (SIAM) [13] in real space

Ĥ = ∑
α=L/R

∑
σ

(
εα

∞

∑
i=0
cα†
iσ c

α
iσ − t ∑

〈i, j〉
cα†
iσ c

α
jσ

)

+ ε f ∑
σ
f †σ fσ +U n̂ f↑ n̂

f
↓ −V ∑

α=L/R
∑
σ

(
cα†
0σ fσ + f †σ c

α
0σ

)
. (1)

Non-interacting left and right (L/R) leads are represented by tight binding bands with a
nearest-neighbor hopping t. The lead on-site energies are denoted by εL/R. The operators
cα†
iσ and c

α
iσ , respectively, create and annihilate electrons in lead α on site i with spin σ .

The dot Hamiltonian consists of a single orbital with local Coulomb repulsion U . The
operator f †σ creates an electron with spin σ and on-site (gate-) energy ε f located at the
dot. Finally the symmetric tunneling between the non-interacting leads and the dot is
given by V . In this work we adopt units in which h̄,e, as well as the inter-lead hopping t
are equal to 1. The lead-dot tunneling is fixed toV = 0.3162 which leads to an Anderson
width of Δ≡ πV 2ρlead(0) = V 2

t = 0.1. In the following, we investigate the particle-hole
symmetric model (ε f =−U2 ) in the zero temperature case.
Non-equilibrium variational cluster approach (nVCA) was recently introduced in [1].

This method provides an approximation for the non-equilibrium single-particle Green’s
function in the usual Keldysh representation G̃ containing retarded (GR), advanced (GA),
and Keldysh (GK) Green’s functions, which in this case are matrices in site/spin space.
Similarly to equilibrium VCA [14] one first computes the Green’s function G̃

′
(z) of

a numerically exactly solvable reference system Ĥ ′ with single-particle parameters
x′ to be later determined self-consistently (see [1] eq. (13) therein). In our case, the
reference system consists in three disconnected regions: a central region of total length
L containing the dot and, possibly, a certain number of lead sites, and the two remaining
parts of the two semi-infinite leads.
The approximation to the Green’s function of the entire system is then given by the

CPT [15] expression

G̃
−1

(z) = G̃
′−1

(z)−T,

where T is a matrix which describes the single-particle “difference” Hamiltonian Ĥ −
Ĥ ′. This consists of single-particle terms connecting the three regions, as well as
corrections of the possibly varied single-particle parameters Δx = x′ − x. For Δx = 0
we recover plain non-equilibrium cluster perturbation theory (nCPT) [16].
In the present non-equilibrium variational cluster approach we will present results ob-

tained by using a single variational parameter Δt = t ′ − t which is taken to be the same
for all the hoppings t including the tunneling V . The self-consistency condition then
amounts in requiring that the sum of all expectation values of the hoppings and the lead-
dot tunneling in the reference system coincides with the respective expectation value of
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FIGURE 1. Non-equilibrium steady-state current density as a function of bias voltage. Results are
obtained for L= 3,7 and 11, respectively. For each L, the nCPT result is compared with the corresponding
nVCA data. The plots from left to right show data for increasing interaction strengths UΔ = 4,12 and 20.
These results are for a singly-occupied dot: ε f =−U2 in the center of the Kondo region. For comparison,
the corresponding linear-response results are also shown.

the entire system described by Ĥ . In this way, the self-energy of the reference system
produces a self-consistent feedback of the non-equilibrium situation and the reference
system is made as similar as possible to the entire one. The choice of this particular varia-
tional parameter is motivated by results obtained for simulations in equilibrium [17], see
also [1]. The central region, consisting of the dot plus an equal amount of orbitals from
the left and right lead, is solved exactly and its Green’s function computed by means
of the Band Lanczos method. In the spirit of CPT we expect to improve our results by
enlarging the central interacting region, i. e. increasing L. The Green’s functions of the
remaining parts of the left and right leads are readily evaluated analytically. The VCA
approximation, thus, consists of replacing the self-energy of the exact system with the
self-energy Σ′ of the reference system.
In the following, we consider reference systems with L = 3,7 and 11-sites, which

correspond to symmetric central regions. A bias voltage Vbias is applied in a symmetric
manner by setting the on-site energies as well as the chemical potentials of the left and
right leads to εL = μL =−εR =−μR = Vbias

2 .
The current density is obtained via the Keldysh part of the Green’s function

jσi j =
ti j
2 ∑

σ

∫ +∞

−∞

dω
2π

ℜe
(
GKσ
i j (w)−GKσ

ji (w)
)
, (2)

where i and j are nearest-neighbor sites. The non-equilibrium (local) density of states
(nLDOS) of the dot is given by the retarded part of its local Green’s function: ρσ

f (ω) =

− 1π ℑm
(
GRσ
f f (ω)

)
.

RESULTS FOR THE STEADY-STATE

The current density eq. (2) (for both spin channels) is examined here for different
values of interaction strength U

Δ = 4,12 and 20. The current density was measured
between the left lead and the first site of the central region and it was checked that
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FIGURE 2. Non-equilibrium local density of states in the dot as a function of applied bias voltage.
Results were obtained for a interaction strength of UΔ = 20 within nCPT (left) and within nVCA (right)
and L= 7. The spectral function sum rule

∫ ∞
−∞ dω ρσ

f (ω) = 1 is fulfilled for each applied bias voltage.

the continuity equation is fulfilled. nCPT/nVCA results for the current density are
compared for different sizes of the central region of the reference system (see fig. 1). All
results become exact in the linear response limit for small bias voltages: jlow = e2

π h̄Vbias.
The current density in the linear response regime is furthermore independent of the
interaction strength U in the Kondo regime. This is due to the fact that nVCA fulfills
the Friedel sum rule in equilibrium [17]. The trivial limit of high bias voltages where
the lead-bands stop overlapping (here at Vbias/Δ = 40) is reproduced exactly as well,
yielding jhigh = 0. In those cases, where the current density goes to zero before reaching
this bias voltage, the vanishing of the current density is due to correlation effects in
the dot. It is interesting to observe, that nVCA always departs sooner from the linear
response behavior than nCPT with increasing interaction strength U . This is to be
expected due to an exponential thinning of the Kondo resonance with increasingU [18].
For smaller interaction strengths (see for exampleU/Δ = 4), the nCPT/nVCA results for
different cluster sizes almost coincide. For large interaction strength (see for example
U/Δ = 20) they depart from each other, respecting the low/high bias voltage limits. The
maximum current density decreases monotonically with interaction strength U . The
most interesting region lies at intermediate to high bias voltages for large interaction
strength U . A pronounced two-peak structure seems to evolve for the nVCA L > 3
results with increasing interaction strength U which may be explained considering
the nLDOS. The nLDOS in the dot is shown in fig. 2 for a large interaction strength
of U/Δ = 20 and L = 7 (corresponding to the steady-state current in fig. 1 (right)).
It is plotted in a density plot as a function of energy ω (horizontal) and applied bias
voltage (vertical). A splitting of the Kondo resonance, which resides at the Fermi energy
(εF = 0) for zero bias, is observed in both nCPT (left) and nVCA (right). A linear
splitting and slight broadening of the Kondo resonance with increasing bias voltage is
observed in nVCA. By inspecting the nLDOS, we find that the position ωK of the split
Kondo resonance depends on the interaction strength U : ωK = ±U4tVbias for Vbias < 2t
and ωK = ±U2 for Vbias > 2t. This expected linear form of the splitting is not present
within nCPT. For high voltages these split peaks merge with the Hubbard bands and
saturate. In this region a new excitation at low energy forms for sizes of the central
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part of the reference systems L > 3. This additional peak in the nLDOS has a dominant
contribution of the total weight and is responsible for the two-peak structure in the
steady-state current density (see fig. 1). Because this effect is present for L > 3 we
conclude that it is not due to a finite size effect but the current density may exhibit a
non-monotonic multi-peak behavior as a function of bias voltage in a quantum dot.

CONCLUSIONS

We have calculated the steady-state current density and non-equilibrium density of states
for a single quantum dot coupled to leads, modeled by the single impurity Anderson
model, by means of the nVCA. The method is, in principle, applicable at arbitrary inter-
action strengths and bias voltages. We observe a non-monotonic, two peak, behavior of
the steady-state current density for high values of interaction strength. A linear splitting
of the equilibrium Kondo resonance with increasing bias voltage is predicted within the
nVCA. The nCPT/nVCA result may be systematically improved by considering larger
sizes of the interacting part of the reference system and/or more variational parameters
in the case of nVCA. nVCA is comparatively fast and easily extendable to multi-orbital
dots in any geometry or dimension. It is capable of producing results for large interac-
tion strengths and high bias voltages. The self-consistent feedback included in nVCA is
responsible for the superiority with respect to nCPT and proves to be a crucial ingredient.
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5.6. Steady-state spectra, current, and stability diagram of

a quantum dot: A nonequilibrium variational cluster

approach

5.6.1. Preamble

This part of our work has been published in PHYSICAL REVIEW B 86, 245119 (2012) [62] and
is also available as a preprint on arXiv:1207.5641. Reproduced with permission from PHYSI-
CAL REVIEW B 85, 235107 (2012), doi:10.1103/PhysRevB.85.235107 under Creative Commons
Attribution 3.0 License.
The purpose of this study is to thoroughly analyse the performance of stsVCA for the SIAM,

see Sec. 3.1. The equilibrium properties of the SIAM are analyzed in Sec. 5.4 and a �rst look at
the steady-state characteristics is provided in Sec. 5.5. Applications of the model are discussed
in Ch. 2. The stsVCA is outlined in Sec. 3.3.1 and Sec. 3.3.2. In a detailed benchmark versus a
quasi-exact real time evolution DMRG+TEBD, see also Sec. 5.2, we �nd stsVCA to yield accurate
results for the steady-state current for low to intermediate bias voltages. We discuss in detail the
self-consistent feedback mechanism of stsVCA. Numerically obtained stability diagrams compare
very well to experimental data [64]. The linear splitting of the Kondo resonance is analyzed
in detail. This work provides the basis for the application of stsCPT and stsVCA to more
complicated, multi-orbital models in Sec. 5.7, Sec. 5.8. The physics of the SIAM is discussed
further in Sec. 5.1, Sec. 5.3, Sec. 5.9 and Sec. 5.10.
This work is authored by Martin Nuss (MN) and co-authored by Christoph Heil (CH), Martin

Ganahl (MG), Michael Knap (MK), Hans Gerd Evertz (HE) as well as by MN's supervisors Enrico
Arrigoni (EA) and Wolfgang von der Linden (WL). This research was to a large and signi�cant
extent conducted by MN under the supervision of WL and EA. The work was initiated by EA
and WL. The stsVCA was proposed by EA and WL, developed by EA, WL, MK and MN and
implemented by MN. The idea to apply the method to study a single quantum dot was proposed
by WL and EA. MN wrote the CPT and VCA computer codes, tested the methods, conducted
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Steady-state spectra, current, and stability diagram of a quantum dot:
A nonequilibrium variational cluster approach
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We calculate steady-state properties of a strongly correlated quantum dot under voltage bias by means of
nonequilibrium cluster perturbation theory and the nonequilibrium variational cluster approach, respectively.
Results for the steady-state current are benchmarked against data from accurate matrix product state based
time evolution. We show that for low to medium interaction strength, nonequilibrium cluster perturbation theory
already yields good results, while for higher interaction strength the self-consistent feedback of the nonequilibrium
variational cluster approach significantly enhances the accuracy. We report the current-voltage characteristics
for different interaction strengths. Furthermore we investigate the nonequilibrium local density of states of the
quantum dot and illustrate that within the variational approach a linear splitting and broadening of the Kondo
resonance is predicted which depends on interaction strength. Calculations with applied gate voltage, away from
particle-hole symmetry, reveal that the maximum current is reached at the crossover from the Kondo regime to the
doubly occupied or empty quantum dot. Obtained stability diagrams compare very well to recent experimental
data [A. V. Kretinin et al., Phys. Rev. B 84, 245316 (2011)].
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I. INTRODUCTION

The understanding of nonequilibrium phenomena in
strongly correlated many-body systems may reveal previously
unknown fundamental aspects of physics as well as prove
crucial for the development of technical applications in the
fields of nano or molecular electronics. Currently, combined
insight of experiments on nanodevices1–3 and results from
artificial quantum simulators (see, e.g., Refs. 4–8) are capable
of providing coherent insight into the nonequilibrium behavior
of the quantum world. These experiments provide both a
challenge for theoretical concepts as well as an accurate check
for theoretical results. Both nanodevices and condensed matter
simulators are often described remarkably well by interacting
model Hamiltonians which are in general not exactly solvable.

Here we focus on a model of a single quantum dot,
the single-impurity Anderson model (SIAM).9 This model,
incorporating spin and charge fluctuations as well as Kondo
correlations, has been studied as an idealized realization of an
interacting system by a wide array of techniques in equilibrium
[for an overview see, e.g., Hewson (Ref. 10)]. The model we
use here is applicable to generic single quantum dot systems
including effects of a finite lead bandwidth.

However, the evaluation of dynamic quantities of strongly
correlated quantum many-body systems out of equilibrium
poses a notoriously difficult problem. A particular challenge
for the SIAM is that it is expected to remain in a strong-
coupling regime, even under the influence of a bias voltage.11

Additional challenges are posed by the need for particle
and/or energy dissipation mechanisms. Techniques which
allow the calculation of physical quantities beyond the linear

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

response regime are quite restrictive up to now and no full
understanding of the nonequilibrium dynamics or the steady
state under bias are available for the SIAM, apart from some
special cases.13–15 Nevertheless, controlled results have been
obtained with the analytical Bethe ansatz for some physical
quantities in the interacting resonant level model16 and for the
SIAM.17 Perturbative calculations18,19 as well as noncrossing
approximation studies20,21 extend early fundamental work
on the nonequilibrium problem22–25 and the impurity out
of equilibrium.26–28 Depending on the setup of parameters
and model details, insight may be gained by semiclassical
methods29 or master equation approaches.30 Recently, more-
over, several techniques, which have proven very successful in
the equilibrium theory, have been extended to the nonequilib-
rium case. Among them are many-body cluster methods,31,32

renormalization group (RG) approaches,33–39 flow equation
methods,40,41 real-time path-integral calculations,42 out-of-
equilibrium noncrossing approximation (NCA),94 generalized
slave-boson methods,12,96 diagrammatic quantum Monte Carlo
(QMC),43–45 or QMC methods based on a complex chemical
potential.46–49 The Gutzwiller approximation has been gen-
eralized to the time-dependent case50 and so has numerical
renormalization group (NRG)51–54 where however some issues
with the use of Wilson chains in nonequilibrium systems have
been pointed out by Rosch.55 Dual-fermion approaches56 have
been proposed as well as superoperator techniques.57,58 Some
recent work attempts to compare several of these theories59–61

and shed light on the critical issue of time scales involved.62

Finally, some results for the SIAM are available63 from
numerically exact time evolution by a combination of density
matrix renormalization group (DMRG)64 and successive time
evolution via time-dependent DMRG (tDMRG).63,65–67 They
are currently limited to small bias voltages and moderate
interaction strengths.

In the present paper we explore the capabilities of nonequi-
librium cluster perturbation theory (nCPT)31 and benchmark
the nonequilibrium variational cluster approach (nVCA)32

245119-11098-0121/2012/86(24)/245119(12) Published by the American Physical Society
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on the SIAM. We obtain the full current-voltage character-
istics which we compare to results from a very accurate
time evolution by means of time evolving block decimation
(TEBD)68 and QMC.43 We also comment on the comparison
to other results obtained by tDMRG,69 perturbation theory,18

and FRG.34 Because of good agreement with these data, we
then proceed to evaluate the single-particle spectrum of the
quantum dot in the steady state. Since this is a dynamic
quantity, it is even harder to obtain for most numerical
methods. We find a linear splitting of the Kondo resonance85,86

which depends on the interaction strength. Detailed results for
the particle-hole symmetric model where Kondo correlations
dominate are presented and supplemented by data in the
whole parameter space including an applied gate voltage. We
highlight the crucial edge which nVCA gains over nCPT via
its self-consistent feedback.

Both many-body cluster techniques, nCPT and nVCA,
are based on the well-established equilibrium counterparts
cluster perturbation theory (CPT)70,71 and the variational
cluster approach (VCA).72,73 They make use of the nonequilib-
rium Keldysh-Schwinger Green’s function technique.74–76 The
present paper extends and benchmarks the ideas for adapting
VCA to nonequilibrium situations introduced in Ref. 32. We
attempt to give a comprehensive overview of the current
capabilities and shortcomings of nCPT and nVCA for the
application to steady-state problems of strongly correlated
systems. The SIAM provides an excellent probing ground
for our purposes as a model where the effects of correlations
are crucial. It is however still relatively simple which permits
systematic study and some results are available which allow for
comparison. Reasonable results for the SIAM in equilibrium
have been obtained previously by CPT as well as VCA.77

Both cluster methods are approximate but they yield fairly
reliable results and are therefore interesting due to their great
flexibility and versatility. They are computationally not very
demanding and allow in principle treating a wide range of
fermionic/bosonic lattice Hamiltonians out of equilibrium.
Possible extensions include electronic multiband or multior-
bital systems in one, two, or three dimensions also including
phonons.

This paper is organized as follows: In Sec. II we sketch the
SIAM and describe the setup used. We proceed by outlining
nCPT (Sec. III A) and nVCA (Sec. III B). In Sec. IV A, a
comparison of steady-state currents as obtained by nCPT,
nVCA, DMRG, and successive TEBD78 and QMC43 is
presented. The nonequilibrium local density of states (nLDOS)
is examined in Sec. IV B. Finally effects of an applied gate
voltage on the steady-state current are studied in Sec. IV C.

II. MODEL OF A SINGLE QUANTUM DOT

We model the setup, consisting of a single correlated
quantum dot in between two metallic leads, by a single-
site Hubbard model embedded in a one-dimensional infinite
tight-binding chain. The Hamiltonian of this single-impurity
Anderson model (SIAM)9 reads (see Fig. 1)

Ĥ = Ĥdot + Ĥlead + Ĥcoup, (1a)

Ĥdot = εf

∑
σ

f †
σ fσ + U n̂

f

↑ n̂
f

↓ , (1b)

FIG. 1. (Color online) Illustration of the SIAM as prepared for
use within nCPT and nVCA. An interacting quantum dot (QD) is
located in the middle of two noninteracting electronic leads. In order
to employ the cluster approaches, the system is divided into three
pieces, a left part, a right part, and a central region of length L, which
includes the quantum dot as well as parts of left and right leads.

Ĥlead =
∑
α,σ

⎛⎝εα

∞∑
i=0

c
†
iασ ciασ − t

∑
〈i, j〉

c
†
iασ cjασ

⎞⎠ , (1c)

Ĥcoup = −t ′
∑
α,σ

(c†
0ασ fσ + f †

σ c0ασ ). (1d)

The electronic annihilation (creation) operators ciασ ,fσ

(c†
iασ ,f †

σ ) obey the usual anticommutation relations with spin
σ = {↑ , ↓} and annihilate (create) electrons in the left or
right lead α = {L,R} or the quantum dot, respectively. The
particle number operator of the quantum dot is defined by
n̂

f
σ = f †

σ fσ . U represents the on-site Hubbard repulsion. The
single-particle energy of the quantum dot εf = −U

2 + VG is
composed of a gate voltage VG and a shift by −U

2 [Eq. (1b)],
such that the particle-hole symmetric point is reached when
the gate voltage vanishes and the bias is applied in an
antisymmetric fashion as described below. Noninteracting
left and right leads are described by tight-binding chains
with a nearest-neighbor hopping t [Eq. (1c)]. The lead on-
site energies are denoted by εL/R . A bias voltage VB may
be applied to the system in an antisymmetric fashion by
setting εL = μL = −εR = −μR = VB

2 , where μL/R denote the
chemical potentials of the decoupled leads (t ′ = 0). Finally,
the symmetric tunneling between the noninteracting leads and
the quantum dot is denoted by t ′ [Eq. (1d)]. In this work we
adopt units in which h̄,e, as well as the interlead hopping t

are equal to 1. The lead-dot tunneling is fixed to t ′ = 0.3162
throughout this paper, which implies an Anderson width
of � ≡ π t ′2 ρlead(0) = t ′2

t
≈ 0.1. This choice of parameters

furthermore implies an effective lead bandwidth of D = 40�.
For higher bias voltages we therefore include additional effects
due to finite bandwidth and band shape as compared to the
often used wide-band limit. The prefactor for the current is
then given by j0 = 2|e|t

h̄
. In the following, we always consider

the zero-temperature case.

III. METHODS

All information needed to evaluate expectation values in
the steady state of an interacting fermionic lattice Hamiltonian
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is contained in a single object, the single-particle Green’s
function in Keldysh space G̃ [Eq. (A1)] (for details see
Appendix A). Evaluating this object is in general impossible
to do exactly but a handle on G̃ is given by nCPT and nVCA.
These approximations are to be discussed in the following.

A. Nonequilibrium cluster perturbation theory

The idea of nCPT is to split an (infinitely) large system Ĥ for
times τ < τ0 into a set of small decoupled clusters (described
by the Hamiltonian ĥ), for which the single-particle Green’s
functions can be determined exactly, by numerical means

Ĥ = ĥ + θ (τ − τ0) T̂.

At time τ0 the coupling of the individual subsystems T̂ =
Ĥ − ĥ is switched on and the solution for the single-particle
Green’s function of the total system can be obtained by the
CPT equation70 in Keldysh-, site- and spin-space

G̃
−1 = g̃−1 − T̂ ⊗ 1̃1, (2)

where G̃/̃g denote the single-particle Green’s function in
Keldysh space of the total system/split systems. The unit
matrix in Keldysh space is denoted by 1̃1. Equation (2) is a
strong-coupling perturbation theory result and holds up to first
order in the intercluster hopping T̂, as far as the self-energy
is concerned. As a consequence, the self-energy 
Ĥ of the
total system is approximated by the self-energy of the initial
system 
ĥ. This implies that nCPT/nVCA become exact in the
noninteracting limit, since in this case, the self-energy of the
total system agrees with that of the initial system, which are
both zero. The results of nCPT and nVCA converge towards
the exact results with increasing cluster size.

In the present paper we illustrate this approach for the SIAM
out of equilibrium. We start out by splitting the infinite chain
[Eq. (1a)] into three parts: (i) an interacting central region of
length L consisting of the interacting site (the quantum dot)
as well as an equal amount of sites of the left and the right
leads, (ii) a semi-infinite, noninteracting left region consisting
of the remaining part of the left lead, and (iii) a semi-infinite,
noninteracting right region consisting of the remaining part
of the right lead (see Fig. 1). To proceed, the single-particle
Green’s functions in Keldysh space have to be determined
exactly for those three systems. Results for the left and right
part are available analytically by the retarded Green’s function
of a semi-infinite tight-binding chain82

gL/R

i,j (ω) = υ
L/R

0,i−j (ω) − υ
L/R

0,i+j (ω), (3)

υ
L/R

i,j (ω) = −ı√
4|t |2 − (ω − εL/R)2

[
−ω − εL/R

2|t |

+ ı

√
1 −

(
ω − εL/R

2|t |
)2]|i−j |

, (4)

where υi,j is the retarded Green’s function of the infinite
tight-binding chain. The single-particle Green’s function of the
central interacting region can be determined in the Q-matrix
formalism by the Band-Lanczos algorithm (see Refs. 77 and
83). The advanced component can always be obtained by the
relation GA = (GR)†. Before coupling the three subsystems
at time τ = τ0, each of them is in equilibrium at different

chemical potentials μL/R/C . Therefore we may evaluate the
corresponding Keldysh components by the relation84

GK (ω,μ) = [GR(ω) − GA(ω)][1 − 2 pFD(ω,μ)], (5)

where pFD denotes the Fermi-Dirac distribution function
at inverse temperature β: pFD = 1/(1 + eβ(ω−μ)). In the
zero-temperature limit, [1 − 2 pFD(ω,μ)] may be reexpressed
as sign(ω − μ). This is the only expression in which the chem-
ical potential μ enters. It is crucial that this relation does not
hold in a nonequilibrium situation any longer. The Hermitian
part of GK (ω,μ) is zero in equilibrium. The imaginary part
consists of contributions due to delta peaks for finite-size
systems like the central regions. The operator T̂ just contains
the two hopping terms from the left to the central and from the
central to the right region. At time τ0, the hopping processes
between these three regions are switched on and the steady-
state single-particle Green’s function G̃ is determined using
nCPT, Eq. (2). As in the equilibrium case, the CPT results can
be improved by the variational cluster approach, in which the
single-particle part of the initial system is suitably modified.
In the following a variational extension (nVCA) of the scheme
described above will be presented following Ref. 32.

B. Nonequilibrium variational cluster approach

The idea of enlarging the size of the central region in
nCPT is to find a better approximation for the starting point
of perturbation theory. As pointed out before, in CPT the
self-energy of the total system is approximated by that of
the decoupled system. By increasing the size of the central
region, the self-energy of the decoupled system converges
gradually towards that of the total system. In nVCA an even
more suitable initial system is chosen. This can be achieved
by making use of the fact that the decomposition of Ĥ into
clusters ĥ and intercluster parts T̂ is not unique. We are free
to add single-particle operators �̂(x), which depend linearly
on parameters x, to the initial Hamiltonian ĥ, provided we
subtract them again from T̂:

Ĥ = [ĥ + �̂(x)] + θ (τ − τ0) [T̂ − �̂(x)].

Here,

�̂(x) =
∑

l

xl �̂l ,

where �̂l is quadratic in the fermion operators. This
parametrized single-particle field introduces additional free-
dom in the starting guess for perturbation theory and can be
used for a self-consistent feedback on the clusters. The system
described by [ĥ + �̂(x)], usually referred to as reference
system in the context of VCA, has the same structure as in
equilibrium VCA. The condition to fix the single-particle
parameters x, however, is different in nVCA and VCA.
Equilibrium VCA is based on the self-energy functional
approach (SFA)87,88 and provides a variational principle for
the generalized grand potential functional, which is not well
defined in the context of nonequilibrium systems any longer.
An alternative criterion for fixing the variational parameters
x was introduced in Ref. 32 and compared to the traditional
VCA criterion in Ref. 77. It is based on the idea of starting
from a system which is as similar as possible to the total,
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original system in terms of physically observable quantities.
We demand the expectation values of the operators �̂l to
coincide in the initial (reference) system and the steady state
of the total system; i.e.,

〈�̂l〉g
!= 〈 �̂l〉G.

For example, adding variational freedom in the on-site
energy of the quantum dot, corresponding to � = xεf

n̂
f
σ ,

yields the self-consistency condition: 〈n̂f
σ 〉g

!= 〈n̂f
σ 〉G. From

a more conceptual point of view, it is interesting that these
self-consistency conditions follow from the condition32∫ ∞

−∞

dω

2π
tr

{
τ̃1

∂ (̃g0)−1

∂x′ (̃g − G̃)

}
= 0, (6)

which is closely related to the stationarity condition of the
generalized grand potential functional � in the equilibrium
approach.89 Here τ̃1 = ( 0 11

11 0 ) is a Pauli matrix in Keldysh
space and the subscript zero denotes noninteracting Green’s
functions. From the numerical point of view, one has to find the
roots of an n-dimensional set of nonlinear equations (where n
is the number of variational parameters x).

Like in first-order Dirac perturbation theory, the influence of
the perturbation increases with time [perturbations introduced
due to the coupling with hopping elements t at τ0 are
proportional to t(τ − τ0) since we are considering first-order
perturbation theory] and one might argue that nCPT is bound
to fail in the long-time, steady-state limit, even for small
couplings between the clusters.31 This argument cannot be
true in general, as nCPT yields exact results in the case
of noninteracting particles, although the initial decoupled
systems are far from the steady-state behavior.

The initial system in nCPT is independent of the nonequi-
librium situation and this shortcoming is improved to some
extent within nVCA, where the information about the applied
bias voltage is self-consistently fed back to the initial reference
system. As we will see in this paper, there are circumstances
under which nCPT already yields reasonable results. In gen-
eral, however, we observe that nVCA represents a significant
improvement over nCPT. This implies, on the one hand, that
under steady-state conditions, the self-energy in the central
cluster is significantly modified when going from nCPT to
nVCA. On the other hand, it indicates that the steady-state
situation can be mimicked in an equilibrium system by the
auxiliary one-particle terms, determined self-consistently. A
point for improvement of this approach is to modify the
self-energy so that it is a genuine nonequilibrium one. Details
on the nVCA procedure and the particular choice of variational
parameters are provided in Appendix B.

IV. RESULTS

In the following we compare nCPT and nVCA data for
the steady-state current with TEBD68 and QMC43 results
in the particle-hole symmetric model. We elaborate on the
nonequilibrium density of states and finally discuss results for
the steady-state current away from particle-hole symmetry by
applying a gate voltage. Earlier preliminary results obtained
for the SIAM out of equilibrium by nCPT and nVCA are
available in Refs. 92 and 93.

A. Steady-state current

Here we investigate the steady-state current-voltage char-
acteristics of the particle-hole symmetric SIAM. In this
parameter region, Kondo correlations are especially important.
All nCPT and nVCA results are for an infinite system using
a self-energy based on an L � 11 site interacting reference
system. Although the length of Kondo correlations scales
exponentially in interaction strength, it has been shown in
Ref. 77 that the VCA approximation, similarly to other approx-
imate methods such as FRG or Gutzwiller wave functions, is
capable of retaining qualitatively most features of the ongoing
Kondo physics, although, possibly, with renormalized scales.
The steady-state current can be evaluated on any link either
within the central region or between the central and the
neighboring regions, since we find that the continuity equation
is fulfilled within at least 10−6 relative to the steady-state
current amplitude. We note again that in the noninteracting
case nCPT as well as nVCA become exact so we do not show
these data explicitly.

Results obtained by Eq. (A2) for the nCPT case are shown
in the left column of Fig. 2 for various values of the interaction
strength U . The linear response result jlin = 2 G0VB , where
G0 is the conductance quantum, is fulfilled within nCPT
(and nVCA) in the very low bias region. This is because
these methods fulfill the Friedel sum rule in equilibrium.77

Actually, nCPT tends to stay in the linear response regime
longer than nVCA and therefore overestimates the current
for low (but not very low) bias voltages. We model the
leads by one-dimensional tight-binding chains, yielding a
semicircular density of states [Eq. (4)] of bandwidth D = 40�.
This implies a vanishing current in the high bias limit at
VB = 40�, due to nonoverlapping lead density of states. This
limit again is trivially fulfilled within nCPT and nVCA. Note
that in a wide-band limit the current curves would approach
a constant roughly at their respective maxima in the data
shown.

For comparison, numerically exact results68 as obtained by
a real-time evolution with TEBD are also indicated in Fig. 2.
Note that the TEBD data are obtained from the steady-state
plateau in the time dependence of the current. At small and
medium bias, the current converges well and the TEBD results
provide an accurate benchmark. At higher bias, convergence
is low, but the TEBD data still provide a reasonably reliable
upper bound for the steady-state current.

In the intermediate bias region it is interesting to investigate
the behavior of nCPT with increasing size of the central region
L. As can be seen from the plots, for any interaction strength
increasing L yields monotonically improving results. While
for low interaction strength U = 4� the nCPT results almost
coincide with the TEBD data, greater deviations arise at higher
interaction strengths. For very large interaction strength (see
for example U = 20�), the lengths of the central region L

considered here are not sufficient. At high bias voltage some
spurious finite-size effects of the reference system are visible
in the form of peaks in the steady-state current.

Next we would like to discuss the performance of nVCA.
An illustration is shown in the middle column of Fig. 2. Here
we compare nCPT and nVCAT for L = 3,7, and 11 again for
increasing interaction strengths U/� = 4,8,12, and 20. We
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FIG. 2. (Color online) Steady-state current-voltage characteristics in the particle-hole symmetric case (VG = 0). Results are shown for
small to large interaction strength: U = 4� (top row), U = 8� (second row), U = 12� (third row), and U = 20� (bottom row). The first
column contains the full current-voltage characteristics as obtained with nCPT for L = 3,7, and 11. As benchmarks, accurate TEBD results
(Ref. 68) and the linear response result jlin = 2 G0VB are depicted as well. In some bias regions, only an upper bound can be obtained by
TEBD. This upper limit is depicted as a magenta bar. In the second column a close-up of the low bias region is presented. Here we compare
nCPT (L = 3,7, and 11), nVCAT (L = 3,7, and 11) with TEBD data as well as QMC results (Ref. 43). Note that the QMC data have been
obtained in a wide-band limit. The third column contains results obtained for L = 7 for various sets of nVCA variational parameters: nCPT,
nVCAT , nVCAt ′ , nVCAt,t ′ , nVCAtb . Legends are displayed once in the top row for the respective column.
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FIG. 3. (Color online) Nonequilibrium local density of states of the quantum dot ρf as a function of energy ω and bias voltage VB in the
particle-hole symmetric case (VG = 0). Region A represents the experimentally most interesting region where no effects of the lead bands come
into play and one observes a splitting of the equilibrium Kondo resonance. Region B is dominated by high-energy incoherent excitations which
are expected to form continuous Hubbard bands in the thermodynamic limit. In region C, the lead density of states becomes relevant, causing
a new low-energy resonance for L � 7. Data are depicted for U = 12� and an artificial numerical broadening of 0+ = 0.05. nCPT results
are shown in the first row for system sizes of L = 3 (left), L = 7 (middle), and L = 11 (right). The second row displays the corresponding
nVCAT data. For reasons of visualization the color scale is cut off at ρmax = 2. Note that a horizontal line through the center of each plot at
V = 0 corresponds to the equilibrium density of states. The spectral function sum rule Eq. (A3) is fulfilled for each applied bias voltage. The
L = 11 results are noisy as fewer data points have been obtained.

show a zoom to the low bias region where benchmarking
data from other techniques such as TEBD data,68 tDMRG,69

FRG,34 and QMC data obtained by Werner et al.43 in the wide-
band limit are available. One aspect to note immediately is that
nVCA, like TEBD, departs sooner than nCPT from the linear
response data, which is due to the better reproduction of the
Kondo resonance within nVCA. The thinning of this narrow
resonance at zero bias with increasing interaction strength is
responsible for the departure from the linear response result.57

Since the Kondo resonance is better accounted for in nVCA,
the curves leave the linear response data sooner than the
respective nCPT results. The TEBD data68 and QMC data
obtained by Werner et al.43 in the wide-band limit are also
plotted and serve as a benchmark up to VB ≈ 5� before
effects of a different lead density of states become important.
Curves obtained by tDMRG69/FRG34 are not shown but lie
basically on top of the TEBD/QMC data. Early data from
perturbation theory18 are known to have some additional
spurious bumps in the low bias region. The improvement
due to the variational feedback in nVCA becomes clear by
comparing to the nCPT results for the same L, especially at
higher interaction strengths.

The right column of Fig. 2 shows a comparison of the per-
formance of different variational parameters considered within
nVCA for L = 7. For small interaction strength all nVCA
parameter sets work equally well. With increasing interaction

strength, however, the different variational parameters predict
a different behavior of the steady-state current. It should be
noted here that some parameters like the ones used in nVCAtb

cause almost no deviation from the nCPT result while others
improve it appreciably, such as nVCAT . It predicts a two-peak
structure in the high bias voltage regime, which however is
not observed directly in the TEBD benchmark data. No final
conclusion can be drawn about the behavior of the current in
this bias regime because TEBD can only predict upper bounds
for the steady-state current there. The position of the dip in the
steady-state current is at VB = U for all interaction strengths.
We note that this is where the bare level position of the quantum
dot εf = −U

2 is about to stop overlapping with one of the
lead density of states (while still overlapping with the other).
The calculation for two independent variational parameters
(nVCAt,t ′ ) yields results similar to those for nVCAT in the
lower bias region but goes to zero quickly for high bias voltages
and does not show a dip.

On the whole, one may say that the self-consistent feedback
implemented within nVCA provides a significant improve-
ment over the nCPT results. This has been already observed
in Ref. 77. However, there this result was deduced from
the convergence of results with increasing cluster size and
not with a benchmark comparison with alternative numerical
methods. For low interaction strengths U � 4�, bare nCPT
already performs very well (independent of L) while for
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larger interaction strengths the variational improvement of
nVCA becomes important. Motivated by the success of nVCA
for the steady-state current, we proceed by evaluating the
nonequilibrium local density of states of the quantum dot.

B. Nonequilibrium local density of states

The nLDOS in the quantum dot ρf (ω) as obtained by
nCPT and nVCAT is depicted in Fig. 3 for three sizes of
the central part of the reference system: L = 3,7, and 11 and
a large interaction strength of U/� = 12 [corresponding to
the steady-state current in Fig. 2 (third row)]. We plot the
nLDOS in a density plot as a function of energy ω (horizontal)
and applied bias voltage (vertical). The equilibrium result,
consisting of a thin Kondo resonance at the Fermi energy (εF =
0 here) and two broad incoherent peaks located at ≈ ±U

2 with a
width of ≈ 2�, can be inferred from a horizontal cut at VB = 0.
For finite bias voltage, a splitting of the Kondo resonance
is observed in both nCPT (top row) and nVCAT (bottom
row). It is well known that the noncrossing approximation
(NCA) predicts a splitting of the Kondo resonance into two
under voltage bias and that within second-order perturbation
theory the resonance is not split but suppressed only.18 A linear
splitting and slight broadening of the Kondo resonance with
increasing bias voltage is proposed, e.g., in Ref. 94. Intuitively
it is expected that the split Kondo resonances pin at the
chemical potentials of the leads. Several other methods yield
a splitting with different features: real-time diagrammatic95

and scaling methods97 as well as the equation-of-motion
technique.20,21,98–101 Within fourth-order perturbation theory
the Kondo resonance splits into two, which are located near
the chemical potentials of the two leads.18 In experiments
on nanodevices a linear splitting of the Kondo resonance has
been observed.85,86 Such a linear splitting is also predicted
by nVCA (see Fig. 4), while nCPT yields a splitting which
shows a roughly quadratic dependence on VB . In addition
within nVCA one observes an interaction-dependent splitting
(see Fig. 5). In contrast to the prediction of Ref. 94 we do not
however observe a simple pinning of the Kondo resonance at
the chemical potentials of the leads. Our results indicate that
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FIG. 4. (Color online) Nonequilibrium local density of states of
the interacting quantum dot. Data are shown for U = 12� and an
artificial numerical broadening of 0+ = 0.05. Results are obtained by
nVCAT with L = 3.
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FIG. 5. (Color online) Interaction-dependent splitting of the
Kondo resonance at ωK under bias. Data shown are for different inter-
action strengths U = 4,8,12, and 20� (solid lines). The resonance
merges with the incoherent high-energy spectrum (Hubbard bands),
located at ωH ≈ ±U

2 (dotted lines) at a certain bias voltage Vm ≈
15,17,21, and 28 respectively. These values have been obtained by
the linear fits (indicated as dashed lines). If the Kondo resonance
would pin at the chemical potential of the leads ωK , the linear behavior
indicated as μL/R (dash-dotted line) would follow.

the position ωK of the split Kondo resonance depends on the
interaction strength U : ωK = ± U

2Vm
VB for VB � Vm and ωK =

±U
2 for VB � Vm (see Fig. 5). Here Vm is the voltage where

the Kondo resonance merges with the high-energy part of the
spectrum located at ωH ≈ ±U

2 : Vm = 15,17,21, and 28 � for
U = 4,8,12, and 20 �. The U -dependent values of Vm have
been determined from the respective linear fit to the data.

For high voltages, these split peaks merge with the Hubbard
bands and saturate, which has also been observed in fourth-
order perturbation theory calculations.18 In this bias region
a new low-energy excitation is observed for L > 3 within
nVCAT . This additional peak in the nLDOS has a dominant
contribution to the total weight and is responsible for the two-
peak structure observed in the nVCAT steady-state current
(see Fig. 2).

C. Finite gate voltage: Steady-state current
and stability diagram

It is interesting to investigate the steady-state current away
from the particle-hole symmetric point and the region where
Kondo correlations are present. In this section the current
through the quantum dot under bias is analyzed as a function
of an applied gate voltage VG and applied bias voltage VB at
fixed interaction strength U . Results are presented for L = 3.
In this case no two-peak structure has been found in the
nVCAT current in Fig. 2, which is corroborated by Fig. 3
(bottom left). The dependence of the current on the gate and
bias voltage as obtained by nCPT and nVCAT is depicted
in Fig. 6 for interaction strengths U/� = 4 and U/� = 20.
First we discuss the so-called stability diagram (differential
conductance as a function of bias and gate voltage) which is
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FIG. 6. (Color online) Stability diagram and steady-state current as a function of bias voltage VB and gate voltage VG. In the first column,
the steady-state current is shown as a function of bias voltage for various gate voltages. The second column contains a density plot of the
steady-state current in the full VB/VG parameter space. In the third column a similar density plot is shown for the differential conductance
G = dI

dVB
(stability diagram). The four rows depict results obtained by nCPT for U = 4�, nVCAT for U = 4�, nCPT for U = 20�, and

nVCAT for U = 20�. The squares in the two stability diagrams bottom right mark the experimentally most interesting region. In the nVCAT

result, the Kondo region (vertical line in the center) is reproduced extremely well, as are the Coulomb blockade regions (∝ VB ) above and
below. For comparison to recent experimental data see Ref. 2 (Fig. 5 therein). Effects at higher bias voltage arise from the finite bandwidth
used here and are typically not seen in experiment.

shown in the third column of Fig. 6. The dashed squares mark
the region which is typically accessed experimentally. In the
nVCAT result, the Kondo region (vertical line in the center)
is reproduced extremely well, as are the Coulomb blockade
regions (∝ VB) above and below. Our data compare very well

to recent experimental data of Ref. 2 (Fig. 5 therein). Effects at
higher bias voltage arise from the finite bandwidth used here
and are typically not seen in experiment.

The steady-state current as a function of bias and gate
voltage is shown in the first and second column of Fig. 6.
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FIG. 7. (Color online) Dependence of the steady-state current
on gate voltage VG. The largest steady-state current is obtained in
a parameter regime which crosses from the Kondo plateau to the
doubly occupied or empty quantum dot. Data as obtained by nVCAT

(L = 3) are presented for an interaction strength of U/� = 12.

It is interesting to observe that the largest current is obtained
exactly at the crossover points from the Kondo to the empty
or doubly occupied quantum dot (these regions are marked by
black-dashed lines in middle and right panel of Fig. 6). This
aspect can be seen more clearly in Fig. 7, where the current is
plotted as a function of gate voltage. For U = 4� there is not
much difference between the nCPT and nVCA results as can
be inferred from Fig. 6. For U = 20�, however, we see that
the feedback mechanism in VCA has a significant impact and
leads to smoother j -VB curves due to suppression of finite-size
effects originating from the reference system. The sharp jumps
at the crossover point in Fig. 7 originate from abrupt changes
of the particle number in the ground state of the central cluster
L = 3. We expect that this step smoothens with increasing L.

Concerning the reliability of the methods used, our data
suggest that outside the parameter region where Kondo corre-
lations dominate the single occupied quantum dot (in between
the horizontal dashed black lines in Fig. 6) nCPT and nVCA
perform almost equally well. Results are significantly easier
to obtain outside the Kondo plateau (which was mentioned
before, e.g., in Ref. 77 within exact diagonalization/CPT/VCA
or in Ref. 63 within DMRG). Thereby the convergence within
system size is greatly enhanced with respect to the Kondo
region and very accurate results may be obtained already
with small systems. Therefore, we may argue that for the
steady-state of the SIAM, nCPT and nVCA perform quite
well outside the Kondo region for any interaction strength as
well as in the Kondo region for small interaction strengths. On
the other hand, in the Kondo region nVCA outperforms nCPT
for higher interaction strengths.

V. CONCLUSIONS

We have presented results for the steady state of the single-
impurity Anderson model. We have applied nonequilibrium
cluster perturbation theory and its variational extension, the

nonequilibrium variational cluster approach, to this model for
a single quantum dot under bias. Both methods make use of
the Keldysh Green’s function formalism and are capable of
working in the thermodynamic limit which is necessary to
account for particle and energy dissipation mechanisms.

Results for the particle-hole symmetric model, which is
dominated by Kondo correlations, have been compared to time
evolving block decimation and quantum Monte Carlo. At low
values of interaction strength they show excellent agreement
already for nonequilibrium cluster perturbation theory. For
higher values of interaction strength, the self-consistency
implemented within the nonequilibrium variational cluster
approach proves crucial in order to obtain reasonable results.
Both methods coincide with the low bias linear response data
for the steady-state current. Both methods furthermore become
exact in the noninteracting limit.

The nonequilibrium local density of states of the quantum
dot exhibits a linear and interaction dependent splitting of
the bias voltage within the nonequilibrium variational cluster
approach which is not visible in the nonequilibrium cluster
perturbation theory. At a certain (interaction dependent) bias
voltage we find that this split Kondo resonance merges with
the high-energy incoherent part of the spectrum.

When applying a gate voltage and thereby leaving the
Kondo regime, calculations become a lot easier and nonequi-
librium cluster perturbation theory and the nonequilibrium
variational cluster approach appear to perform very well,
which can be inferred from the convergence of our data.
The highest current amplitude is obtained at the crossover
from the Kondo to the empty or doubly occupied quantum
dot. Experimental stability diagrams are reproduced very well
within the variational approach. They show a clear Kondo
regime and a Coulomb blockade region.

We may conclude that the nonequilibrium variational
cluster approach is a promising method for the evaluation of
steady-state quantities of strongly correlated model systems.
Dynamic quantities become available in the whole complex
plane and, in principle, any fermionic or bosonic lattice model
may be treated including multiband or multiorbital systems. It
is both fast and versatile and in principle all parameter regimes
of the model are accessible. Subjects for further investigation
are the self-consistency criterion, which is not unique, as well
as the use of different variational parameters and an optimized
out-of-equilibrium variational principle.
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APPENDIX A: GREEN’S FUNCTIONS, NOTATION,
AND OBSERVABLES

Upon introducing the basic notation we follow standard
literature (see, e.g., Ref. 79). The nonequilibrium single-
particle properties are provided by the single-particle Green’s
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function in the 2 × 2 Keldysh space (denoted by tildes)

G̃ =
(

GR GK

0 GA

)
, (A1)

where GR/A/K are again matrices in site/spin space and
functions of two time coordinates.79 R denotes the retarded,
A the advanced, and K the Keldysh component of the single-
particle Green’s function which for (nonrelativistic) fermions
read

GR
ij (τ1 − τ2) = ıθ (τ1 − τ2)〈[ci (τ1),c†

j (τ2)]〉,
GA

ij (τ1 − τ2) = −ıθ (τ2 − τ1)〈[ci (τ1),c†
j (τ2)]〉,

GK
ij (τ1 − τ2) = −ı〈c†

i (τ1)cj (τ2) + ci (τ1)c†
j (τ2)〉,

where i,j denote site as well as spin, τ1,τ2 real time, and
[Â,B̂] = ÂB̂ − B̂Â the standard commutator. Note that in
the following we consider the spin symmetric model [see
Eq. (1a)] and therefore suppress spin indices. In the formulas
for the current we therefore include an additional factor of two.
The handy matrix relations GA(τ1 − τ2) = (GR)†(τ2 − τ1) and
GK (τ1 − τ2) = −(GK )†(τ2 − τ1) follow from the definitions.

Our goal is to investigate the steady state in which the
system becomes time-translationally invariant. Therefore we
may Fourier-transform to the energy domain and evaluate
single-particle steady-state expectation values

〈c†
i cj 〉 = δij

2
+ 1

2

∫ ∞

−∞

dω

2π
�m GK

ij (ω).

The steady-state current through site m can be evaluated80,81

by the time derivative of the total particle number to the left of
this site

j = 〈 ˙̂NM (t)〉, N̂M =
m−1∑

i=−∞
n̂i .

This expression for the current may be rewritten in terms of
the Keldysh component of the single-particle Green’s function

ji i+1 = ti i+1

∫ ∞

−∞

dω

2π

e

(
GK

i i+1(ω) − GK
i+1 i(ω)

)
, (A2)

where ti i+1 is assumed to be real. The nonequilibrium density
of states at site i is given by

ρi(ω) = − 1

π
�m GR

ii(ω),

which has to fulfill the spectral sum rule

1
!=

∫ ∞

−∞
ρi(ω) ∀i. (A3)

APPENDIX B: DETAILS ON THE nVCA PROCEDURE

In this paper we compare nCPT with nVCA for different
auxiliary one-particle terms �̂(x). In agreement with our
previous experience, that the variational hopping parameters

are crucial for the physics in the Kondo regime,77 we observe
that it suffices to consider only hopping processes inside the
central region of the reference system. The most general form
of the auxiliary one-particle term considered in this work reads

�̂(xt ,xt ′ ,xtb ) = xt ′
∑
α,σ

(c†
0ασ fσ + H.c.)

+ xt

∑
α,σ

�−1∑
i=1

(c†
iασ ci−1ασ + H.c.)

+ xtb

∑
α,σ

(c†
�ασ c�−1ασ + H.c.),

where � ≡ (L − 3)/2. It contains three different hopping
processes. The first term describes the hopping processes
to and out of the quantum dot. The second term contains
nearest-neighbor hopping processes between the lead sites of
the central region except the border one. The last hopping
process involves the nearest-neighbor sites at the boundary of
the central region. In the sequel, we consider the following
cases: (nVCAT ) with xt ′ = xt = xtb , (nVCAt,t ′ ) with xtb = 0,
(nVCAt ′) with xt = xtb = 0, and (nVCAtb ) with xt = xt ′ = 0.

A bias voltage VB is applied in an antisymmetric manner by
setting the on-site energies as well as the chemical potentials
of the left and right leads to εL = μL = −εR = −μR = VB

2 .
Note that the sites of the leads which are incorporated in the
central region of the reference system are also subjected to
these on-site energies. All calculations are done for sizes of the
central region of L = 3,7, and 11 sites, which corresponds to
symmetric central regions. We note that L = 5,9 suffer from a
finite-size gap which closes with increasing L. This gap arises
due to an even amount of sites to the left as well as to the
right of the quantum dot. We do not consider even L since
this would correspond to an unequal amount of sites of the
left and right lead in the central region. Thereby, the geometric
symmetry of the problem would be spoiled and the application
of a bias voltage which respects particle-hole symmetry would
not be possible.

In order to reduce finite-size effects of the calculated
quantities and to make an extrapolation to infinite central
cluster sizes easier we scrutinized the idea of averaging over
boundary conditions as outlined in Ref. 90 or Ref. 91. In
CPT/VCA one has the freedom to add single-particle terms to
ĥ and subtract them again in T̂. Therefore we may add hopping
terms which connect the first and last site of the central cluster
and which have an arbitrary phase. The spectral function of
the impurity site for a central region with complex periodic
boundary conditions is in general no longer particle-hole
symmetric, which makes it necessary to average G̃φ(ω) over
φ to retain the symmetry.

The result, however, was disappointing as the expected
faster convergence towards the thermodynamic limit has not
been confirmed. In this work we do not consider the long-range
part of the Coulomb interaction which leads to additional
charging effects in real devices.
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5.7. E�ects of electronic correlations and magnetic �eld on

a molecular ring out-of-equilibrium

5.7.1. Preamble

This part of our work has been published in PHYSICAL REVIEW B 89, 155139 (2014) [65] and
is also available as a preprint on arXiv:1307.7530. Reproduced with permission from PHYSI-
CAL REVIEW B 89, 155139 (2014), doi:10.1103/PhysRevB.89.155139 under Creative Commons
Attribution 3.0 License.
With this paper we turn our attention to steady-state transport across molecular junctions as

introduced in Sec. 2.2. Recent developments in this �eld are discussed in Sec. 2.1 and Sec. 2.2.
Molecular junctions may exhibit pronounced correlations e�ects due to con�ned geometries and
appropriate methods are needed for the accurate description of electronic transport. The stsCPT
as introduced in Sec. 3.3.1, was shown to yield good results for the SIAM in Sec. 5.4, Sec. 5.5,
Sec. 5.6 and Sec. 5.10 and is here generalized to multi orbital interacting systems. In this work
we adapt the stsCPT to study transport across molecular ring junctions in magnetic �elds. We
obtain the current-voltage characteristics and the interaction renormalized charge distribution
and magnetization in the steady-state. We �nd that stsCPT is superior to QME approaches
because it accurately takes into account lead induced broadening e�ects. However interaction
induced blocking e�ects cannot be captured which led us to the development of a new reference
state in meCPT, see Sec. 5.8.
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the stsCPT to study transport across a molecular ring junction under magnetic �elds. WL
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and WL developed the stsCPT scheme for magnetic �elds. MN developed the computer code,
tested it and did parameter studies. MN ran the computer simulations. MN prepared, collected,
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Martin Nuss,* Wolfgang von der Linden, and Enrico Arrigoni
Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria

(Received 31 July 2013; revised manuscript received 18 March 2014; published 29 April 2014)

We study the effects of electron-electron interactions on the steady-state characteristics of a hexagonal
molecular ring in a magnetic field as a model for a benzene molecular junction. The system is driven out
of equilibrium by applying a bias voltage across two metallic leads. We employ a model Hamiltonian approach
to evaluate the effects of on-site as well as nearest-neighbor density-density–type interactions in a physically
relevant parameter regime. Results for the steady-state current, charge density, and magnetization in three
different junction setups (para, meta, and ortho) are presented. Our findings indicate that interactions beyond the
mean-field level renormalize voltage thresholds as well as current plateaus. Electron-electron interactions lead
to substantial charge redistribution as compared to the mean-field results. We identify a strong response of the
circular current on the electronic structure of the metallic leads. Our results are obtained by steady-state cluster
perturbation theory, a systematically improvable approximation to study interacting molecular junctions out of
equilibrium, even in magnetic fields. Within this framework, general expressions for the current, charge density,
and magnetization in the steady state are derived. The method is flexible and fast and can straightforwardly be
applied to effective models as obtained from ab initio calculations.

DOI: 10.1103/PhysRevB.89.155139 PACS number(s): 71.27.+a, 71.15.−m, 73.63.Kv

I. INTRODUCTION

Miniaturization as a performance-enhancing concept in
microelectronics may be advanced by the introduction of
nanoscale molecular devices in what is today known as the
concept of molecular electronics [1]. Recent years fostered
fascinating advances in experimental control of fabrication [2],
assembling [3], as well as contacting [4,5] on a molecular
level. These achievements in combination with ever-improving
measurement techniques [6] lead to a plethora of important
insights into the basic mechanisms of electrical transport
across molecular junctions [7]. Understanding these transport
characteristics is a major focus of today’s experimental as
well as theoretical ventures and establishes the very basis for
possible future device engineering.

A relevant and still relatively simple molecular junction
is comprised of a ring-shaped molecule in between two
metallic leads. For the particular molecule we have in mind
the aromatic complex benzene (C6H6). Such setups have been
realized using the mechanically controllable break junction
technique (MCBJ) [5] and are stable on time scales required
for transport experiments. Measurement of the transport
characteristics has been achieved for benzene bound by thiol
anchor groups to gold electrodes [8–10], as well as for
benzene directly connected to platinum leads [11]. These
experiments typically grant access to the current-voltage
characteristics, conductance, higher derivatives of the current,
or shot noise, albeit often in a statistical way [9]. It is
likely that molecular ring junctions will find technological
applications in the foreseeable future in the form of single-
electron transistors [12,13], in quantum interference (QI) based
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electronics [14], or as data storage devices [15]. Naturally
such junctions are dominated by quantum mechanical effects
in an out-of-equilibrium context, which promotes predicting
the outcome of experiments to a highly nontrivial theoretical
task.

For benzene-based molecular junctions, general under-
standing of the noninteracting device is available in litera-
ture [16,17]. Electronic transport in π -conjugated systems
is special due to QI effects [18,19]. Magnetic fields add to
the rich Aharonov-Bohm physics [20,21] of quantum ring
structures by inducing, for example, persistent currents [22].
Electronic correlations are important [23] due to the confined
geometry and have been recently studied in equilibrium and
linear response using the Hirsch-Fye quantum monte carlo
(QMC) method [24], as well as dynamical mean-field theory
(DMFT) [24,25]. While the basic features of QI effects can be
understood from noninteracting calculations, the interplay of
QI and electronic correlations can become nontrivial [26–30].
The remarkable property of negative differential conductance
has been reported and explained in devices considering
electron-electron interactions [27,31] using generalized master
equation approaches. In addition, Green’s function techniques
have been applied within various approximations, especially
within a combination with ab initio techniques [32]. In gated
devices even nonperturbative many-body features like the
Kondo effect [33] have been reported [3,4,30,34,35].

Investigating transport characteristics for molecular junc-
tions out of equilibrium [5,36] is a very active field in
modern theoretical physics. Although much progress has been
made lately [37–40], reproducing experiments [10,41] in a
qualitative and quantitative way remains an elusive goal. In
going beyond semiclassical treatment [42] and combining
nonequilibrium Green’s function (NEGF) methods [43] with
density functional theory (DFT) [44,45], much effort is
devoted to the study of molecular junctions in a combined
DFT+NEGF scheme [46–56]. Such ab initio approaches
can be considered today’s gold standard for weakly corre-
lated molecular junction calculations. However, they tend
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to overestimate currents in comparison to highly accurate
data [57] of experiments, especially in interesting cases of
low device-lead coupling [58]. This overestimation can often
be attributed to too simplistic treatment of electron-electron
interactions [59,60]. In the worst case, when many-body
interaction effects beyond mean field become important, these
methods might even predict nonphysical results such as low
conductivity when the device would really show transparent
conduction due to many-body effects [61].

Therefore it is desirable to extend these techniques with
methods to tackle the effects of strong correlations in an
out-of-equilibrium context [57,62–67]. Many-body effects
of electron-electron interaction can be studied by making
use of simplified model Hamiltonians. By using a model-
based approach, however, results may strongly depend on
the model parameters, which are usually notoriously diffi-
cult to estimate. For benzene, physically relevant interac-
tion parameters have been obtained in literature by fitting
experimental spectra [68,69] which provide the basis for
many theoretical works [26,27]. Such parametrizations are
typically not unique, since considering different interaction
matrix elements may yield again a good agreement with a
specific set of experimental data but might promote very
different physical mechanisms. Another approach, yielding
model parameters, is to determine them in an ab initio
way from first-principles calculations [70,71]. Again, these
parameters are subject to changes due to screening effects,
when the molecular device is finally coupled to leads or
embedded in an environment [72,73].

In this work we study the many-body effects of electron-
electron interaction beyond mean field in the steady state (sts)
of a ring-shaped molecular junction under voltage bias in a
magnetic field. A simple Pariser-Parr-Pople model [74,75]
description for the atomic carbon pz orbitals is employed
for a charge-neutral device coupled to two metallic leads.
We address the question of how electron-electron interac-
tions influence device properties in a magnetic field and
identify their fingerprints. We do so by assessing naturally
important quantities for molecular junctions, which are sts
observables under applied bias voltage. We focus on studying
the dependence of the sts currents, sts charge density, as
well as sts magnetization on electron-electron interactions
and a magnetic field, as well as their dependence on device-
lead coupling. The purpose of this work is to concentrate
on the qualitative effects of electronic correlations, rather
than seeking quantitative agreement with experiments. A
detailed, quantitative comparison to experiments would of
course require the inclusion of additional electronic bands,
mechanical vibrations, as well as charging and temperature
effects. On the other hand, correlation effects would be very
difficult to treat at a comparable level of accuracy in such a
rich model. In this work we focus on the interaction effect on
the most simple model for a benzene junction to identify basic
mechanisms. However, the presented approach can easily be
generalized to include anchor groups or specific lead geometry.

To solve the interacting system out of equilibrium, we use
cluster perturbation theory [76–78], which amounts to treating
the intercluster hopping within first-order strong coupling
perturbation theory. This approach is, in principle, refinable
by considering larger cluster sizes. Here, we target directly

the sts, which is formulated in the framework of sts cluster
perturbation theory (stsCPT). We work out general expressions
for the sts density matrix and all bond currents in presence of
a magnetic field in terms of stsCPT single-particle Green’s
functions. This framework provides a flexible, versatile,
and easy to use method for evaluating sts observables for
interacting molecular junctions out of equilibrium in magnetic
fields. It can easily be generalized to other junctions and can
straightforwardly be combined with ab initio calculations.

Our results indicate that while properties of the electronic
structure of the bare device, including symmetry consid-
erations and degeneracies, have a dominant influence [27]
on the sts behavior, electron-electron interactions effectively
renormalize conduction characteristics like threshold voltages
and plateau currents in magnetic fields. We find that the
sts charge density becomes strongly renormalized beyond
mean field and identify signals in the sts magnetization.
This paves the way for an even more sound and trustworthy
interpretation of results from sophisticated ab initio-based
methods, as well as model-based calculations at fixed model
parameters. Furthermore, we reexamine effects introduced by
magnetic fields in context with electron-electron interactions,
lead-induced broadening, as well as lead electronic structure.

This paper is organized as follows. We present the theoret-
ical model in Sec. II and introduce the formalism for our
calculations in Sec. III. We outline how to systematically
improve results obtained with the presented method and
compare obtained data with existing calculations in Sec. III D.
Results for the sts currents, sts charge density, and sts
magnetization are provided in Sec. IV.

II. MODEL

We consider the effect of electron-electron interactions on
the electric transport through a benzenelike aromatic molecular
ring. A simple starting point is provided by a tight-binding
approach for the molecule coupled to the left and right metallic
leads [see Fig. 1 (top)]:

Ĥ = Ĥring + ĤL
lead + ĤR

lead + Ĥring-leads . (1)

The benzene ring is modelled by considering one atomic
pz orbital φiσ per carbon atom, yielding a six-atomic-orbital
Pariser-Parr-Pople [74,75] [(extended) Hubbard [79]] Hamil-
tonian,

Ĥring =
∑

σ

[ (
εd + σ

B

2
− U

2
− 2W

) 6∑
i=1

n̂iσ

+ td

6∑
i

(
ei�(B)d

†
iσ di+1σ + e−i�(B)d

†
i+1σ diσ

)]

+U

6∑
i=1

n̂i↑n̂i↓ + W
∑
σσ ′

∑
〈ij〉

n̂iσ n̂jσ ′ , (2)

where i,j ∈ [1,6] enumerates the six ring orbitals in a
clockwise fashion. The six nearest-neighbor bonds are denoted
〈ij 〉. Elementary fermionic operators diσ /d

†
iσ annihilate/create

an electron on the ring orbital φiσ with spin σ = {↑,↓}, and
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FIG. 1. (Color online) (Top) Illustration of the device setup: A
planar molecular ring is connected to two metallic reservoirs. The
setup is placed in a perpendicular magnetic field B. A bias voltage
VB is applied between the left and right lead. (Bottom) Bare single-
particle energy levels of the noninteracting, disconnected molecule.
Bias voltages required for the specific levels to contribute to transport
are indicated on the right. The HOMO as well as the LUMO are
doubly degenerate (d = 2) for B = 0.

the particle number operator is defined in the usual way as
n̂iσ = d

†
iσ diσ .

The on-site energy of the ring orbitals is comprised of
the bare on-site energy εd = −1.5 eV [80] (with respect to
the leads), a Zeeman term σ B

2 , and a correction canceling the
mean-field contribution of the on-site interaction U and the
nearest-neighbor density-density interaction W : −U

2 − 2W .
Literature [68,69] provides an optimal parametrization for
Eq. (2) when not connected to leads. Fitting to excitation
spectra [81], the authors of Ref. [68] find that benzene is
best described by a nearest-neighbor overlap integral of td ≈
−2.5 eV and an on-site interaction of U ≈ 10 eV [82]. Such
a model is frequently used in literature [26,27], along with
approaches where the interaction parameters are determined in
an ab initio way from first-principles calculations [70,71]. We
expect the values of U and W to be substantially reduced when
the molecule is connected to the leads due to screening from
the band electrons [72,73]. Therefore we set in the following
td = −2.5 eV and discuss values of U � 9 eV as well as
W � 3 eV.

We consider the effects of a magnetic field B which is
applied perpendicular to the plane spanned by the molecular
ring. This is described by a Peierls phase [83] �(B) as well as
by a Zeeman term.

For simplicity, we model the right (α = R) and left (α = L)
leads by semi-infinite tight-binding chains,

Ĥα
lead =

∑
σ

[(
εα ± VB

2

) ∞∑
i=1

n̂iασ + tα
∑
〈ij〉

c
†
iασ cjασ

]
, (3)

where the fermionic operators in the lead orbitals ciασ /c
†
iασ are

defined in a standard way. The resulting semicircular electronic
density of states (DOS) is centered around the leads’ on-site
energy εα , which is fixed to zero for zero bias. Application
of a bias voltage VB is done by shifting the lead’s chemical
potential (strictly speaking, at infinity) and on-site energies
to εα = μα = ∓VB

2 , so that the leads are kept half-filled.
We use a large lead nearest-neighbor hopping tα = −6.0 eV
(independent of α), which implies a quite large bandwidth
D = 24 eV, so that most of our results are comparable to the
wide-band limit [80,84]. We will also discuss and compare to
differently shaped lead DOS when effects on the sts properties
are to be expected.

The coupling between the ring and the leads is described
by a single-particle hopping t ′ to the left and right lead. The
leads are connected to the molecule in the so-called para(1,4),
meta(1,5), or ortho(1,6) configuration. Here the two numbers
in the braces label the ring position at which the (left, right)
lead is attached, denoted (1, x ∈ {4,5,6}) in the following:

Ĥring-leads =
∑

σ

[
t ′
(
d

†
1σ c1Lσ + c

†
1Lσ d1σ

)
+ t ′

(
d†

xσ c1Rσ + c
†
1Rσ dxσ

)]
. (4)

This molecular-lead setup provides a good description of,
e.g., two widely used experimental techniques: scanning
tunneling microscopy (STM) [6] or MCBJ [8]. Then the STM
tip/substrate material or break junction material enters in Ĥlead

through the DOS, while Ĥring-leads describes the tunneling
from the molecule into the experimental device. In most of
the present work, we focus on a typically small value for
the molecule-lead coupling of t ′ = −0.05 eV [16], which
enhances both the effects of electronic correlations and of
the magnetic field. This leads to a level broadening of the
order of � ∝ πt ′2DOSleads(ω = 0) ≈ t ′2

|t | ≈ 10−4 eV. To study
the effects of this lead-induced broadening, we also present
results for larger t ′.

For the sake of simplicity we neglect the effects of
mechanical vibrations. The coupling of the electronic degrees
of freedom to vibrations can lead to a renormalization of
conductance thresholds as well as current plateaus as discussed
in Ref. [85] and will be addressed in more detail in future
work [86]. Furthermore, we do not discuss charging effects
due to the connection of the leads.

III. METHOD

We aim at calculating sts properties of an interacting
molecular device. Here we focus on the current between each
bond as well as the charge distribution and magnetization.
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We consider two currents of special interest: (i) the total
transmission current jt and (ii) the circular current jc. In the
presence of a bias-induced transmission current, the two ring
directions carry different currents. This leads, in principle, to
an ambiguity in the definitions of the circular current. However,
as discussed by Rai et al. [80], the most natural expression
is the one which is directly related to the current-induced
magnetic flux through the ring. According to Biot-Savart’s
formula [87], this is given by the average current obtained
by weighting the current flowing through each segment by its
length. In our case, in which there are two contacts dividing
two ring segments i = 1,2 of lengths Li (in units of the lattice
constant), in which currents j̄i flow (say, clockwise), we have

jc = (j̄1L1 + j̄2L2)

6
. (5)

In this work, we consider couplings to the leads in para: L1 =
3,L2 = 3, meta: L1 = 4,L2 = 2, and ortho: L1 = 5,L2 = 1
configuration [see Fig. 1 (top)].

The total transmission current is given by

jt = j̄2 − j̄1 ,

which equals the inflow as well as the outflow at the bonds
connecting the leads to the ring by virtue of the continuity
equation.

The sts charge distribution 〈n〉 and magnetization 〈m〉 can
be obtained from the sts single-particle density matrix Dσ

ij ,
which also encodes all information about the sts current.

A. Nonequilibrium Green’s functions

One way of obtaining the sts density matrix is by making
use of nonequilibrium Green’s functions in the Keldysh-
Schwinger [88–90] formalism,

G̃ =
(

GR GK

0 GA

)
,

where GR/A/K are matrices in orbital/spin space and functions
of two time coordinates τ [91]. R denotes the retarded, A the
advanced, and K the Keldysh component of the single-particle
Green’s function in Keldysh space G̃. Since we focus on
the sts, time translation invariance applies and we can express
the Green’s functions in frequency space ω.

The sts density matrix Dσ
ij is obtained from the sts Green’s

function G̃(ω) in matrix notation:

Dσ
ij = δij

2
− i

2

∫ ∞

−∞

dω

2π
GKσ

ij (ω) . (6)

The sts current through orbital i in the presence of a magnetic
field B can be obtained by the time derivative of the total parti-
cle number of orbitals on either side of i [92]. In terms of equal
time [93] correlation functions, one can express the current by
Keldysh Green’s functions GK = G< + G> in a symmetrized
way jσ

i,i+1 = e
2� (ti,i+1σ GKσ

i,i+1(τ,τ ) − ti+1,iσ GKσ
i+1,i(τ,τ )).

Generalizing the notation to arbitrary indices and keeping in
mind that a definition of current only makes sense for nearest-
neighbor orbitals, an expression in terms of the sts density

matrix D becomes available:

jσ
ij = e

2�

(
hσ

ij

∫ ∞

−∞

dω

2π
GKσ

ij (ω) − hσ
ji

∫ ∞

−∞

dω

2π
GKσ

ji (ω)

)
= ie

�
(
hσ

ijD
σ
ij − hσ

jiD
σ
ji

)
,

where hσ
ij denotes the single-particle part of Ĥ [Eq. (1)] in the

orbital/spin basis. The expression is purely real because D and
h are Hermitian.

Since we are concerned with electron-electron interactions,
evaluating the needed Green’s functions G̃ is not possible in
general.

B. Steady-state cluster perturbation theory

We employ stsCPT [76,94,95] as outlined in Refs. [77]
and [78] to construct an approximate solution for G̃(ω) in
the sts.

Within this approach, the thermodynamically large system
Eq. (1) is split into individually, exactly solvable parts at time
τ→ − ∞. The single-particle Green’s function g̃(ω) for each
of these parts (clusters) is obtained by analytic or numeric
means. The coupling between these parts is switched on at
a later time τ0 using the intercluster (perturbation) matrix T ,
which holds the couplings between the disconnected parts. The
sts Green’s function of the full system in the stsCPT [94,95]
approximation is given by

G̃(ω)−1 = g̃(ω)−1 − 1̃1 ⊗ T , (7)

where 1̃1 is the identity in Keldysh space. We use lower
case g for the single-particle Green’s function of the initially
decoupled equilibrium system, while upper case G denote
the sts Green’s functions of the fully coupled system. The
stsCPT approximation made here is to replace the self-energy
�G of the full system by the self-energy �g of the cluster.
This amounts to a first-order strong coupling perturbation
theory in intercluster terms T . The appealing aspect of this
approximation is that it becomes exact in each one of three
different limits: (i) for T = 0, (ii) for U = 0, or, in principle,
(iii) for an infinite cluster.

In our case, the system at τ→ − ∞ thus consists of
the molecular ring Ĥring [Eq. (2)], disconnected from the
two leads Ĥα

lead [Eq. (3)], i.e., t ′ = 0. One can compute the
retarded single-particle Green’s function gR of the interacting
ring by a standard Lanczos approach, [96,97] and that of
the noninteracting leads analytically [98,99]. The advanced
component is available by the identity gA = (gR)†. The
Keldysh component gK of the initial systems, which are
separately in equilibrium, can by obtained by the relation [100]

gK (ω) = [gR(ω) − gA(ω)][1 − 2pFD(ω,μ,β)] , (8)

where pFD(ω,μ,β) = 1
eβ(ω−μ)+1 is the Fermi-Dirac distribution

function, β denotes the inverse temperature, and μ the
chemical potential.

The state of the molecular device at τ→ − ∞ is half-filled
and unpolarized for all parameters under discussion in this
work. While, in principle, the sts results should not depend on
the initial state of the finite-size central part, the approximate
nature of the calculation leads to some dependencies on the
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initial temperature and chemical potential of the central region
in the presence of interactions. In general, we take the zero
temperature ground state as a starting (τ→ − ∞) point, which
leads to very good results in most cases. There are some
exceptions, in particular when degenerate states are involved.
Therefore blocking effects as discussed in [26,27] cannot be
observed within our approach. However, these are expected
to occur for B = 0 up to very small fields only [27], since B

breaks the degeneracy responsible for these effects.
It is sufficient to calculate two 6 × 6 matrix Green’s

functions for the central molecule (six orbitals times spin)
and four scalar Green’s functions representing the contacting
orbital of the two leads (times spin). Making use of Eq. (7),
these three initial systems are perturbatively connected by the
coupling Hamiltonian [Eq. (4)] in the single-particle basis to
obtain the sts single-particle Green’s function in Keldysh space
G̃(ω).

C. Evaluation of steady-state observables

Using the G̃(ω) obtained via stsCPT, we rewrite the ex-
pression for the sts density matrix Eq. (6) in the corresponding
language,

Dσ
ij = i

2

∫ ∞

−∞

dω

2π

[
GRσ

in (ω)P σ
nj (ω) − P σ

in(ω)GRσ∗
jn (ω)

]
+ i

2

∫ ∞

−∞

dω

2π

[
GRσ

in (ω)([P σ (ω),T σ ]−)nmGRσ∗
jm (ω)

]
,

(9)

where [A,B]− denotes the standard commutator, and Ein-
stein’s summation convention is implicit. The occupation
matrix P σ (ω) corresponds to the second part of Eq. (8)
and is diagonal: P σ

ij (ω) = 2δijpFD(ω,μi,βi), where μi , βi

are the chemical potential and inverse temperature of site
i at τ→ − ∞. This expression is used to evaluate all sts
observables as defined in Sec. III A.

The integrals in Eq. (9) are nonzero only between μmin

and μmax, which is due to the P dependence and renders
the numerical evaluation of Eq. (9) much more favorable
than directly evaluating Eq. (6). For a numerical evaluation, a
high-precision adaptive integration scheme is necessary [101],
especially when it comes to resolving small differences in bond
currents as induced by magnetic fields [see Eq. (5)].

D. Quality of the stsCPT approximation and systematic
improvements

In the following we assess the quality of the stsCPT approx-
imation and discuss systematic improvements for the treatment
of correlations. Upon testing we found these improvements to
be unimportant for this particular setup. They can, however,
be be of considerable importance in systems exhibiting a more
complicated quantum mechanical ground state [78].

As discussed above, one can, in principle, systematically
improve results by enlarging the central region to include
a certain number of orbitals of the leads in addition to the
molecular ring. This means that at τ→ − ∞ the system is
disconnected at some bond t of the lead’s chain. This sets much
higher computational demands because the Hilbert space of the

interacting part of the system grows exponentially in system
size. In order to assess the accuracy of our results, we have
investigated the convergence by adding one to three sites of
each lead to the molecule and found negligible deviations in the
sts results. This also allows us to conclude that data presented
in this work are accurate and no serious error is being made
due to the above-mentioned approximations. Other expansions
in the framework of Keldysh perturbation theory are discussed
in Ref. [28] in this context.

Another way of improving the approximation for the
self-energy is to include a self-consistent feedback within the
nonequilibrium variational cluster approach [77,78]. We find
this to be a major improvement for “gapless”systems. In this
work we consider a system which has a large highest-occupied
to lowest-unoccupied molecular orbital gap (HOMO-LUMO,
respectively), and we found the improvements introduced
by the self-consistency to be less important. Therefore, in
this work we are restricted to the nonvariational stsCPT.
Moreover, we limit ourselves to zero temperatures, although
finite temperatures are easily accessed.

IV. RESULTS AND DISCUSSION

We present results for the sts properties of para-, meta-, and
ortho-connected benzene. We start by discussing lead-induced
broadening effects on the interacting ring within stsCPT for
a broad range of molecule lead coupling strengths. Then
we focus on the interesting case of small molecular lead
coupling, where the effects of a magnetic field B and electron-
electron interactions become important. The current-voltage
characteristics of the total transmission current jt and the
circular current jc are presented, including a discussion of
effects induced by the shape of the leads’ DOS. We identify
the behavior of threshold voltages VT and maximum reachable
currents. A detailed view on the highly interesting bias region
of high variation in the current (around VT ) will be provided,
identifying the effects of electron-electron interactions on the
current signal shapes. Finally, we examine the sts particle
density 〈n〉 and magnetization 〈m〉 in the device.

We note that the presented method becomes exact in the
noninteracting limit (U,W ) → 0 and therefore has to agree
with results for the noninteracting device presented by Rai
et al. [16,17], obtained by calculations based on the Landauer
formula [102] (not shown). We go beyond their detailed
description in terms of transmission coefficients and QI effects
by discussing effects of electron-electron interaction and by
adding a Zeeman term to the discussion of the magnetic field.
As discussed above, our approach may become unreliable
in the presence of degeneracies in transport states, which
occur in this model for B = 0 (see Sec. III B). Therefore we
do not observe the current blocking state which has been
reported [26,27] in asymmetrically connected junctions at
finite bias voltage for U > 0 and B = 0.

A. Lead-induced broadening

Lead-induced broadening is obviously important for not-
too-small values of the molecule-lead coupling t ′, as we
show in Fig. 2 (top). On the other hand, there are important
broadening effects even for small t ′, such as the ledge in the
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FIG. 2. (Color online) (Top row) In the left panel, the total transmission current jt for molecule-lead couplings of t ′ = −0.05 eV (blue),
t ′ = −0.6 eV (green), t ′ = −0.9 eV (black), and t ′ = −1.2 eV (magenta) is shown for para-connected benzene. In the right panel the circular
current jc is shown for the same parameters. In each panel we visualize results for the noninteracting device and for an on-site interaction
strength of U = 9 eV. (Bottom row) The total transmission current jt for molecule-lead couplings of t ′ = −0.05 eV (blue), t ′ = −0.2 eV
(red), and t ′ = −0.8 eV (green) is shown for para-(left), meta-(center), and ortho-(right) connected benzene in the vicinity of the first threshold
voltage. Data shown are for an on-site interaction strength of U = 9 eV in the zero-field setup. The zoom in the central figure shows the ledge
for t ′ = 0.05 eV in detail. Note that the vertical axis of the transmission current data is scaled by a factor of 1

|t ′ |2 .

transmission current visible in Fig. 2 (bottom) for the meta
and ortho setup, which is absent in the para case [103]. It is
clear that an accurate treatment of broadening effects is highly
desirable, even more so when electron-electron interactions
come into play. We find that the total transmission current
scales with |t ′|2, while the circular current does not show a
clear scaling as a function of t ′.

A technique commonly employed in the field of molecular
electronics is based on generalized master equations [26,27].
Lead-induced broadening is in general difficult to take into
account accurately within such methods. stsCPT is able to
capture broadening effects even in the interacting molecule,
thus rendering stsCPT an interesting, complementary approach
to the generalized master equation technique.

Note that we did not discuss the effects of a magnetic
field here since they are fully washed away by the large t ′
(for reasonable fields on the order of a few Tesla). Effects
of electronic correlations become increasingly important for
smaller t ′. For these two reasons, in the rest of this work
we focus on t ′ = −0.05 eV because we aim at studying the
interplay of a correlated device in a magnetic field.

B. Field-dependent current-voltage characteristics

To ease navigation in the rest of the text, we provide a
bird’s eye view on the current-voltage characteristics in a large
voltage regime VB = [0,9] V in Fig. 3. Here, effects of the
finite bandwidth on the transmission current are still small.
Since the magnetic field induces a very small energy scale in
comparison with the on-site, hopping, and interaction energies
in the Hamiltonian [Eq. (1)], we will be zooming into regions
VB = ±0.001 V around selected voltage points. We note that
the absolute position on the bias axis strongly depends on the
bare molecule-lead potential difference (εd = −1.5 eV) which
governs the first threshold voltage.

We start out by comparing the total transmission current jt

and the circular current jc of para-, meta-, and ortho-connected
benzene for the noninteracting case, as well as for U = 9 eV,
with and without magnetic field B. jt shows multiple threshold
voltages VT in a plateaulike structure for all three device
setups. At exactly these thresholds, a signal spike in jc is
observed. Those signals in jc are of considerable magnitude,
which are tens of microamperes, as compared to jt , which
is on the order of tens of nanoamperes, the latter being
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FIG. 3. (Color online) Current-voltage characteristics of para-(top), meta-(center), and ortho-(bottom) connected benzene. We plot the total
transmission current jt/nA in the left and the ring current jc/μA in the right column. For every device setup, data for the noninteracting case
(blue) is shown in comparison to results for an on-site interaction strength of U = 9 eV. We compare data for the zero-field case (solid lines)
to curves obtained for a magnetic field of B = 2 T (dash-dotted lines).

mainly determined by the molecule-lead coupling t ′. Such
thresholds in jt and large signals in jc seem to be a generic
feature of molecular ring devices [104–106] and can be
associated with nearly degenerate pairs of states with opposite
angular momentum whose contribution to the net current is
rendered small by destructive interference [80]. We discuss the
interaction dependence of the threshold voltages VT in detail
in Sec. IV D. Here we note that one effect of electron-electron
interaction is to shift the conduction thresholds VT (see A in
Fig. 3). Notice that this is a pure correlation effect, since the
mean-field contribution has already been subtracted.

The magnitude of the plateaus in jt is fixed by the amount
of current which can be carried by the molecular level starting
to participate in transport at the corresponding VT . Due to
symmetry, jt in the para device is quite a bit higher than
in the corresponding meta or ortho devices, the latter two
being comparable. In particular, we find that the plateau
current magnitudes are the same in the noninteracting meta
and ortho devices but not when interactions are present (see
also Sec. IV E). The transmission current of the para setup
is independent of the magnetic field, while in the meta and
ortho device, jt grows until it seems to saturate, at least for
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the magnetic field magnitudes discussed in this work (see
Sec. IV E). Increasing on-site interaction U or density-density
nearest-neighbor interaction W (not shown) always decreases
the total transmission current (see B in Fig. 3, discussion in
Sec. IV E).

The spikes in jc at VT (which are split by the Zeeman field,
see Sec. IV F) are of considerable magnitude, which is tens of
microamperes. Similarly to jt , increasing on-site interaction
U or nearest-neighbor density-density interaction W reduces
the magnitude of these signals. In the para device the ring
currents exactly cancel for B = 0 T due to device symmetry,
while in the other two setups circular currents are also present
in the field-free system. Upon increasing the magnitude of the
magnetic field, all currents show saturation (see Sec. IV E).
Note that for half-filled systems in the large U limit [107] the
current is unaffected by magnetic flux because electron motion
becomes severely hindered [22].

We find that effects of electron-electron interactions (shift-
ing of conduction thresholds and decreasing plateau currents
in jt and signal currents in jc) are smooth and do not depend
on the specific type of interaction (on-site or nearest-neighbor
density-density).

C. Effects originating from the electronic structure of the leads

Instead of the often imposed wide-band DOS of the leads,
we use a semicircular lead DOS with a large bandwidth
(t = −6 eV). As expected, our setup mimics a wide-band
limit regarding jt for low bias voltages where only a small
bending down of the current can be observed due to the
negative curvature at ω = 0 eV of the leads’ DOS [see Fig. 3
(left)].

However, it turns out that jc is highly sensitive to even
slight variations in the leads’ DOS. Let us first discuss the
behavior of jc in detail. In the para setup, the magnetic field
induces peaks in jc at VT , while in between it falls back to
plateaus in the nanoampere range. In the meta and ortho setup,
also at zero field, a finite ring current exists which can be
amplified or suppressed by the magnetic flux, depending on its

direction according to Lenz’s law [87]. These two setups show
a behavior of jc which is different from the para case. Without
magnetic field, jc shows plateaus (∝ V 2

B ) in the microampere
range between the peaks. When a magnetic field is imposed,
the two conducting states of the molecule at k = ± 2π

3 and
energy ω ≈ 1 eV split up [see Fig. 1 (bottom)]. In our setup
jc shows a linear growth between the signals starting at the
first threshold voltage. This large effect can be traced back
to different occupation of the k = ± 2π

3 states. Calculations
for a constant lead DOS do not show this linear increase in
circular current. Instead, constant plateaus (and therefore a
moderate imbalance in the population of the k = ± 2π

3 states)
are obtained. These plateaus have a magnitude which jc

acquires for the semicircular DOS right after VT . The crucial
parameter here is the curvature of the lead DOS, which in
the end amplifies the population imbalance and renders it
bias dependent. For a semicircular DOS, the coupling of the
two levels at ω ≈ 1 eV to the high-bias and low-bias lead
is of different magnitude (effectively � becomes different
for the two leads), and this difference grows linearly with
increasing bias voltage. To our knowledge, this effect has not
been discussed before and is probably difficult to observe
experimentally, especially since it strongly depends on the
features of the DOS of the leads. Moreover, electron-electron
interaction does not play a role here. However, if a suitable
system can be constructed, bias voltage could be used to
linearly tune the circular current over a significant current
magnitude.

D. Current signal position

The transmission current-voltage characteristics consist
of plateaus with steep jumps between them [see Fig. 4
(left)]. These signal positions at threshold voltages VT are
independent of the setup used (para, meta, or ortho connection)
and furthermore, are independent of the magnetic field B [108].
We plot data for meta-connected benzene for B = 1 T as
a representative in Fig. 4 (left). The width of the current

FIG. 4. (Color online) (Left) Total transmission current jt as a function of bias voltage VB for various interaction strengths U . We illustrate
data for meta-connected benzene and a magnetic field of B = 1 T. (Right) Threshold voltage VT at which the signal in the circular current jc

and inflection point in the transmission current jt occurs in regions I, II, and III (symbols).
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signals is ≈ 10−3 eV (see Sec. IV F) due to the small lead-ring
coupling t ′.

For the noninteracting disconnected ring without mag-
netic field [Eq. (2)], the single-particle energy lev-
els are located at εk = εd + 2td cos (k) = {−6.5, − 4,

− 4,1,1,3.5} eV for k = 2πn
6 and n ∈ [−2,3], which leads to

a ground-state energy in the nonpolarized half-filled case of
ω0 = −29 eV, with dynamics governed by a HOMO-LUMO
gap [109] of � = 5 eV [see Fig. 1 (bottom)]. Based on
this energetic structure, one expects signals in the current
at bias voltages of VB ≈ (2 × electronic level position),
i.e., at ≈ 2,7,8, and 13 V. This is confirmed by our data
(see Fig. 3).

In the interacting device one can still interpret our data
in terms of the single-particle excitations of the molecular
system obtained from exact diagonalization of the molecular
Hamiltonian [Eq. (2)]. Comparing the HOMO-LUMO gap
�(U,W ) to the data for the sts current (see Fig. 4), one finds
a linear relation between the gap and the threshold voltage
V I

T = � − 3 eV. Note that the constant depends on the position
of the molecular on-site energy with respect to the leads, but the
effects of interactions in � are universal for weakly coupled
charge-neutral devices. From our data we find a change in
the HOMO-LUMO gap due to interactions beyond mean
field �(U )[eV] = 5[eV] + (0.02 ± 0.01) e(0.43±0.03)U [eV]. The
jump to plateau III exhibits the same dependence on U as
the jump to plateau I but located at a different position:
V III

T = � + 3 eV. Interestingly enough, these two thresholds
are monotonic in interaction strength but the threshold II in
between is not. It shows a strongly nonmonotonic behavior
[see Fig. 4 (right)].

The functional dependence of the thresholds on on-site
U is the same as for nearest-neighbor density-density inter-
actions W (not shown). It is clear that the HOMO-LUMO
gap grows much quicker with increasing W than with
increasing U .

We conclude that the voltage thresholds in the parameter
regime of the device under study, which consists of (i) small

molecule-lead coupling t ′ � td � t and (ii) a charge-neutral
setting, are perturbatively accessible and can even be inferred
to a high degree of accuracy from the single-particle spectrum
of the isolated device. However, our results show that they
can be subjected to nonmonotonic behavior as a function of
interaction strength.

E. Current signal magnitude

We now turn to the analysis of the maximum current jmax
t

in the vicinity (±0.1 V) of the first threshold voltage V I
T .

As noted before, the para setup does not show a mag-
netic field dependence in this channel for fixed interaction
parameters due to device symmetry [thick black line, stars in
Fig. 5 (left)]. In the meta and ortho devices, we find that the
maximum current increases as a function of magnetic field
|B| until saturation for the considered range of magnetic field
strength for all bias voltages [see Fig. 5 (right)].

Note that the eigenstates of the disconnected, noninter-
acting molecule in a magnetic field are εnσ

= εd + σ B
2 +

2td cos [ 2πnσ

L
+ �(B)], with nσ ∈ [−2,3]. The inherent circu-

lar current driven by the magnetic field is given by j inh
c =

− e�2π
me62

∑
nocc,σ

nσ . From this expression it is clear that in
this case the circular current magnitude is bounded from
above because the magnetic field just redistributes occupied
momenta of compact states. This analysis holds for all finite-
size quantum ring devices, but not for the corresponding
one-dimensional field theory [110].

Depending on interaction strength U , we find that the
maximum transmission current is monotonically decreasing
(roughly ∝ const. − U 2) in all device setups [see Fig. 5
(left)]. The same effect is observed for nearest-neighbor
density-density interactions W (not shown). The maximum
transmission currents of the meta and ortho device are identical
in the noninteracting device but start to differ when interactions
are turned on.

FIG. 5. (Color online) Maximal total transmission current jmax
t in the vicinity of the first threshold voltage (I). (Left) As a function of

on-site interaction strength U for the meta (solid, circles) and ortho (dashed, triangles) device. For the para setup (thick black line, stars), it is
independent of B as a function of U . (Right) The same quantity showing saturation as a function of B for various values of on-site interaction
strength U in the meta device.
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F. Current signal

A zoom-in to the signal in the sts currents at the position of
their respective first threshold voltages (I) is provided in Fig. 6.
We compare the currents for the noninteracting system with
those of on-site interaction strength U = 9 eV. We observe
similar signal shapes for all values of interaction strength
(U,W ). These signals are, however, shifted in bias depending
on the electron-electron interaction parameters (U,W ) and
the signal magnitude is decreased. In Fig. 6 we compare the
signals of the noninteracting and interacting setups whereby

the horizontal axis has been shifted in order for the threshold
voltages to coincide.

The total transmission current jt does not depend on the
direction of the magnetic field in the para setup. The magnitude
of the plateaus is, however, increased with increasing |B|
in the meta and ortho setup, while staying on the field-free
value in the para setup. The effects of the Zeeman term
are visible in jt due to a splitting ∝ |B| of the transition to
the next plateau into two subplateaus around the transition
points VT .

FIG. 6. (Color online) Total transmission current signal jt (left column) and ring current signal js (right column) as a function of bias
voltage VB . From top to bottom we compare the current signal in the para-, meta-, and ortho-connected device for the noninteracting case
U = 0 eV (blue) to an on-site interaction strength of U = 9 eV (red). We show data for zero field B = 0 T (solid), a field of B = 2 T (dashed),
as well as B = 15 T(dotted). The signals have been shifted from their respective first threshold voltage (I) on top of each other to VB = 0.
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The circular currents jc in the para setup depends on B in a
symmetric way, i.e., reversing the direction of B reverses just
the sign of jc. The meta and ortho setups show a different
magnitude in the circular current for the same |B| due to
inherent circular currents which are either amplified by the
magnetic field or suppressed, depending on its alignment. The
Zeeman splitting introduces a double-peak structure around
VT which is proportional to the magnetic field magnitude |B|.
This splitting is introduced in a symmetric fashion around VT .
The circular currents jc grow with increasing magnetic field
until a saturation is reached. Besides the decrease in circular
current magnitude, we observe a more pronounced Zeeman
splitting with increasing interaction strength.

We again find a generic dependence on interactions beyond
mean field, i.e., using on-site or nearest-neighbor density-
density interaction, which might even permit extracting in-
teraction parameters for model Hamiltonians by carrying out
transport measurements and fitting the position and height of
sts currents at threshold voltages.

G. Steady-state local charge density

The sts charge density is shown in Fig. 7 for all three
device setups for an interaction strength of U = 9 eV and
a magnetic field of B = 2 T as an example for its generic
behavior. It exhibits features at the same threshold voltages
as the sts current, where it either decreases or increases in a
plateaulike fashion. In the para setup [Fig. 7 (left)] we observe
an increased charge density at the orbitals at which the leads
are connected and a strongly reduced charge density in the
other orbitals of the molecule due to interactions, i.e., for the
noninteracting molecule all densities would start at one. The
sts charge density of the meta and ortho setups [Fig. 7 (right)]
are symmetry related. They show the same sts charge density,

except for the fact that two orbitals exchange their respective
charge density each.

The suppression of occupation is most pronounced in the
orbitals in the “interior” of the molecule, respecting symmetry.
These are orbitals 2,3,5,6 in the para device, orbitals 3,6 in
the meta device, and orbitals 2,5 in the ortho device.

For smaller interaction strength, the overall shape of the
curves does not change. However, we find that in all setups, for
on-site interaction strengths U � 5 eV, all local densities are 1
in the low-bias regime up to the first threshold voltage, �n = 0,
and depend on the interaction strength beyond that point. For
interaction strength U � 6 eV, �n depends on interaction also
in the low-bias region.

We note that for increasing molecule-lead coupling t ′, the
magnitude of the sts local charge density stays the same but
the transitions become washed out (not shown). Furthermore,
with increasing bias voltage as well as in the vicinity of the
threshold voltages, a splitting of the degenerate orbitals occurs.

The main effect of interactions beyond mean field is to
suppress the sts charge density respecting the symmetry of
the isolated molecule. Such substantial charge redistribution
in sts transport due to interactions is an important effect to
be considered when discussing results from self-consistent
DFT+NEGF calculations.

H. Steady-state magnetization

In our calculations a Zeeman term is included. Therefore
the magnetic field induces a sts magnetization in the vicinity of
the threshold voltages VT . We consider just the paramagnetic
(spin) contribution, since it is the dominant term. In Fig. 8,
we show data for all three device setups in the vicinity of the
first voltage threshold (I) for the interacting case. Increasing the
magnetic field turns the resonancelike structure in jc around VT

into a structure which consists of two maxima on the positive

FIG. 7. (Color online) Ss local charge density of the para-connected device (left) as well as the meta-, and ortho-connected devices (right).
We show data for a device with on-site interaction of U = 9 eV in a magnetic field of B = 2 T. The drawings of the device at the top serve as a
legend for the line colors to identify the respective orbitals. �n denotes the shift of the local density away from 〈ni〉 = 1 in the low-bias region.
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〈  
〉

FIG. 8. (Color online) Signals in the sts magnetization of the device due to the Zeeman effect. We compare the effects of magnetic fields
of B = 1 T (blue), B = 2 T (red), and B = 5 T (green) for a device with an on-site interaction of 9 eV.

and one on the negative axis in between. The effect of changing
the direction of the magnetic field while keeping |B| constant
is to mirror the sts magnetization curves around the x axis (not
shown). Without interactions the effect is quite similar and
only of slightly different magnitude.

We find that the sts magnetization is a highly sensitive
quantity as a function of bias voltage (in the submillivolt
regime) in the region around VT where it is possible to alter
the direction as well as the magnitude of the magnetization by
≈ ±10−2/μB .

V. CONCLUSIONS

We study effects of electron-electron interactions in a
benzenelike ring-shaped molecule, subject to a finite bias
voltage induced by two metallic leads, as a function of an
applied magnetic field. We make use of a Hubbard-type-
model–based description of such a device in the charge-
neutral regime. Using steady-state cluster perturbation theory,
observables have been computed for para, meta, as well as
ortho setups.

Results for the total transmission current and circular
current as well as the steady-state charge distribution and
magnetization have been presented. By studying physically
relevant regimes of electron-electron interactions in addition
to an applied magnetic field, we describe the effects of
electron-electron interactions on the steady state beyond the
mean-field level. We found that these are to shift voltage
thresholds and to decrease the magnitude of currents. Ad-
ditionally, interactions lead to deviating currents in the meta
and ortho setup which were comparable in the noninteracting
system. The steady-state charge distribution becomes strongly
renormalized by interactions respecting the symmetry of the
isolated molecule. Due to the Zeeman effect, we obtain a
steady-state magnetization which is highly sensitive to bias
voltage.

Our results may help to validate model calculations at fixed
interaction parameters and contribute to the understanding
of sophisticated ab initio–based transport calculations. They
might even contribute to designing empirical formulas for

junction engineering. Our results indicate that the main effect
of interactions is to renormalize voltage thresholds and current
magnitudes. Care has to be taken in discussing symmetry
relations of meta- and ortho-connected devices. Furthermore,
we showed that the charge density is sensitive to electron-
electron interactions and becomes strongly renormalized with
every additional electronic level contributing to transport. This
fact has to be accounted for in self-consistent approaches. We
find that insights into the relevant interaction parameters, as
well as their magnitude, could be extracted from transport
measurements, provided the on-site potential of the molecule
with respect to the leads is known.

We presented general expressions for steady-state observ-
ables in the language of steady-state cluster perturbation
theory. The presented formalism is flexible and simple to
apply to a broad range of molecular junctions. Its approximate
nature is systematically improvable, and the method does
work in all parameter regimes. The method is especially
interesting in parameter regimes which exhibit extremely high
time scales, rendering approaches based on time evolution not
feasible, and when lead-induced broadening effects become
important, which renders generalized master equation tech-
niques difficult. The presented approach is, however, unable
to capture interaction-mediated interference effects, such
as current blocking in asymmetrically connected junctions,
when degeneracies in transport channels are present. This
can be overcome by a more elaborate construction of the
“starting” (τ→ − ∞) cluster state. Work along these lines is
in progress.
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5.8. Master equation based steady-state cluster

perturbation theory

5.8.1. Preamble

This part of our work is submitted to PHYSICAL REVIEW B (2015) and is available as a
preprint on arXiv:1505.01683 [66].
In this work on steady-state transport across molecular junctions we generalize the stsCPT

method introduced in Sec. 5.4, Sec. 5.5, Sec. 5.6, Sec. 5.7 and Sec. 5.10 to an improved reference
state. The method is outlined in Sec. 3.3.3. The new starting point is a mixed state as obtained
from a QME and already incorporates information about the environment. We apply the meCPT
to molecular junctions in the single-electron transistor regime as discussed in Sec. 2.1 and Sec. 2.2:
An electron-electron interaction based quantum diode and a triple-ring quantum dot junction.
Both devices show NDC and interaction induced quantum blocking. The latter is a feature which
cannot be captured in the plain stsCPT method but has been observed in QME calculations.
This work is authored by Martin Nuss (MN) and co-authored by Gerhard Dorn (GD), Antonius

Dorda (AD) and MN's supervisors Enrico Arrigoni (EA) and Wolfgang von der Linden (WL).
This research was to a large and signi�cant extent conducted by MN under the supervision of WL
and EA. EA suggested the meCPT method. MN, WL and EA developed the method and decided
to apply it to interaction induced current blocking in molecular junctions. MN developed a multi
purpose computer code, tested it and ran parameter studies. GD developed a computer code to
solve the quantum master equation without the secular approximations. WL and EA provided
guidance and expertise. MN ran computer simulations and conducted literature research. MN
prepared, collected, interpreted, analyzed and visualized the results and set them in context with
recent literature. MN wrote the �rst version of the manuscript. GD wrote the section on the
non-secular approximation. AD provided expertise for the QME and revised the manuscript. All
authors contributed in discussing the results and revising the manuscript.
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Master equation based steady-state cluster perturbation theory

Martin Nuss,∗ Gerhard Dorn, Antonius Dorda, Wolfgang von der Linden, and Enrico Arrigoni
Institute of Theoretical and Computational Physics,
Graz University of Technology, 8010 Graz, Austria

(Dated: May 8, 2015)

A simple and efficient approximation scheme to study electronic transport characteristics of
strongly correlated nano devices, molecular junctions or heterostructures out of equilibrium is pro-
vided by steady-state cluster perturbation theory. In this work, we improve the starting point of
this perturbative, nonequilibrium Green’s function based method. Specifically, we employ an im-
proved unperturbed (so-called reference) state ρ̂S, constructed as the steady-state of a quantum
master equation within the Born-Markov approximation. This resulting hybrid method inherits
beneficial aspects of both, the quantum master equation as well as the nonequilibrium Green’s
function technique. We benchmark the new scheme on two experimentally relevant systems in the
single-electron transistor regime: An electron-electron interaction based quantum diode and a triple
quantum dot ring junction, which both feature negative differential conductance. The results of the
new method improve significantly with respect to the plain quantum master equation treatment at
modest additional computational cost.

PACS numbers: 71.15.-m, 71.27+a, 73.63.-b, 73.63.Kv

I. INTRODUCTION

Electronic transport in the realm of molecular scale
junctions and devices has become a subject of intense
study in recent years.1–7 Nowadays the controlled as-
sembly of structures8 via electro migration,9–17 the con-
tacting in mechanical break-junction setups,18–21 elec-
tronic gating17,19,22 and measurement via scanning tun-
nelling microscopy23–26 have become established tools,
ultimately opening routes from elementary understand-
ing to device engineering. Prompted by these formidable
advances in experimental techniques, the characteriza-
tion of transport through e.g. molecules bound by
anchor groups to metal electrodes,21,27,28 heterostruc-
tures29,30 or nano structures on two- dimensional sub-
strates29,31–36 has become feasible. These constitute the
foundation for future applications in electronic devices
based on single electron tunnelling,37 quantum interfer-
ence effects,38–44 spin control45,46 or even quantum many-
body effects9,10,12,47,48 like Kondo49 behaviour.50–54

Typically the electronic transport through such de-
vices is significantly influenced by electronic correlation
effects, which may become large due to the reduced ef-
fective dimensionality and/or confined geometries. This
is reflected, for instance, in major discrepancies between
experimental and theoretical current-voltage characteris-
tics obtained with (uncorrelated) nonequilibrium Green’s
function55–58 calculations based on ab-initio density
functional theory states.1,59–62 The inclusion of many-
body effects in the theoretical description of fermionic
systems out of equilibrium55,63–65 is challenging and an
active area of current research.66–74 Suitable approxima-
tions need to be devised in order to solve a finite strongly
correlated quantum many-body problem out of equilib-
rium coupled to an infinite environment. Typically, the
nonequilibrium setup consists of a correlated central re-
gion (system) attached to two leads (environment).

A well-established method for treating such open quan-
tum systems is by means of quantum master equations
(Qme).75–80 Herein, the environment-degrees of freedom
are integrated out and usually incorporated in a pertur-
bative manner. The Qme approach allows a detailed in-
vestigation of transport phenomena45,46 and recent self-
consistent extensions attempt to cure some of its long-
standing limitations.81

In the framework of nonequilibrium Green’s functions
(NEGF) various schemes exist to approximately calcu-
late the electronic self-energy of the correlated region,
see e.g. Ref. 68,82–87. In cluster approaches, such as
cluster perturbation theory (CPT) and its improvement,
the variational cluster approach (VCA),88 the whole sys-
tem is partitioned into parts which can be treated ex-
actly and determine the self-energy. Originally devised
for strongly correlated systems in equilibrium,89,90 both
approaches have recently been extended to nonequilib-
rium situations in the time dependent case91,92 as well
as in the steady-state.92,93 In previous work we applied
the steady-state CPT (stsCPT) to obtain transport char-
acteristics of heterostructures,93 quantum dots94–96 and
molecular junctions97,98 and obtained good results even
in the challenging Kondo regime.49,94,95

A key issue in the CPT approach is to identify an ap-
propriate many-body state for the disconnected corre-
lated cluster in the central region, as a starting point of
perturbation theory, the so-called reference state. Up to
now, a common choice in stsCPT is to use an equilibrium
state at some temperature TS (often TS = 0) and chemi-
cal potential µS in-between the values of the leads. Such
an ad-hoc choice is clearly unsatisfactory. Furthermore,
it fails to describe certain quantum interference effects
in transport phenomena as for example so-called current
blocking effects.45,46,97

The purpose of the present work is to improve on
stsCPT by constructing a consistent and conceptually
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more appropriate reference state, given by the steady-
state reduced many-body density matrix ρ̂S obtained
from a Qme in the Born-Markov approximation. Within
this quantum master equation based stsCPT (meCPT),
the ambiguity in defining µS and TS for the central re-
gion is resolved. The equilibrium case, in which µS and
TS coincide with those of the environment, is automati-
cally included. In contrast to standard Qme approaches,
lead induced level-broadening effects are accounted for
and the noninteracting limit is reproduced exactly, as in
the original stsCPT. In addition, meCPT is able to cap-
ture the previously mentioned current blocking effects,
as shown below.

Other NEGF/Qme hybrid methods exist in the
literature.67,99,100 For instance, in a recent work101,102

we have proposed a so-called auxiliary master equation
(AME) approach, whereby a Lindblad equation is intro-
duced which models the leads by a small number of bath
sites plus Markovian environments. The AME is suited
to address steady-state properties of single impurity
problems as encountered in the framework of nonequilib-
rium dynamical mean field theory.72,87,101,103–105 In con-
trast, the meCPT presented in this work is more appro-
priate to treat non-local self-energy effects which cannot
be captured by single-site DMFT.

This paper is organized as follows: After defining the
model Hamiltonian in Sec. II, the meCPT is introduced
in detail in Sec. III. We present results obtained with
the improved method for two experimentally realizable
devices: i) In Sec. IVA, an electron-electron interaction
based quantum diode, ii) and in Sec. IVB, a triple quan-
tum dot ring junction which both feature negative differ-
ential conductance (NDC).

For ring systems, extensive Qme results and an ex-
planation of the NDC in terms of quantum interference
mediated blocking are available in Ref. 45,46.

II. MODEL

We consider a model of spin- 1
2 fermions, having in mind

the electronic degrees of freedom of a contacted nano
structure, heterostructure or a molecular junction. The
Hamiltonian consists of three parts:

Ĥ = ĤS + ĤE + ĤSE . (1a)

i) The “system” ĤS represents the interacting central
region i.e. the nano device or molecule consisting of
single-particle as well as interaction many-body terms.
It is described by electronic annihilation/creation opera-

tors fiσ/f †
iσ at site i = [1, . . . , NS ] where NS is typically

small and spin σ = {↑, ↓}.106 We will specify the par-

ticular form of ĤS in the respective results section. ii)

The “environment” Hamiltonian ĤE describes the two

noninteracting electronic leads

ĤE =

2∑

λ=1

∑

kσ

ǫλkσc†
λkσcλkσ , (1b)

where cλkσ/c†
λkσ denote the fermion operators of the in-

finite size lead λ with energies ǫλkσ and electronic den-
sity of states (DOS) ρλσ(ω) = 1

Nλ

∑
k

δ (ω − ǫλkσ) where

Nλ → ∞ are the number of levels in the leads. The
disconnected leads are held at constant temperatures Tλ

and chemical potentials µλ so that the particles obey
the Fermi-Dirac distribution pFD

λ (ω, Tλ, µλ).106,107 iii) Fi-
nally the system and the environment are coupled by the
single-particle hopping

ĤSE =

2∑

λ=1

∑

ikσ

(
t′λikσf †

iσcλkσ

)
+ h.c. . (1c)

III. MASTER EQUATION BASED CLUSTER
PERTURBATION THEORY

Our goal is to obtain the steady-state transport charac-
teristics of the Hamiltonian Ĥ, Eq. (1a) in a nonequilib-
rium situation induced by environment parameters like
a bias voltage VB or temperature gradient ∆T . The
important step consists in evaluating the steady-state

single-particle Green’s function in Keldysh space G̃ in
the well established Keldysh-Schwinger nonequilibrium
Green’s function formalism.108–110 In general Ĥ is both
interacting and of infinite spatial extent. Therefore ex-

plicit evaluation of G̃ is prohibitive in all but the most
simple cases which motivates the introduction of approx-
imate schemes.

One such scheme is CPT,89,90 in which one performs
an expansion in a ’small’ single-particle perturbation,
for example the system-environment coupling ĤSE of
Eq. (1c). The unperturbed Hamiltonian ĤS + ĤE can
be solved exactly. While in the noninteracting case CPT
becomes exact, results obtained in the presence of in-
teraction are approximate and depend on the reference
state for the unperturbed system. A common practice
within stsCPT92,94–98 is to use a pure state given by the
equilibrium ground state |Ψ0〉S of the disconnected in-

teracting system Hamiltonian ĤS . In a nonequilibrium
situation, this is still ambiguous, as it depends on an ar-
bitrary choice of the chemical potential µS and/or tem-
perature TS for the interacting finite system.

The goal of this work is to provide an unambiguous
and conceptually more rigorous criterion for the choice
of the reference state for the interacting central region.
Ideally, the reference state is selected such that it resem-
bles best the situation of the coupled system, i.e. for the
full Hamiltonian, Eq. (1a) in the steady-state. An appro-
priate choice in equilibrium is to use the grand-canonical
density operator106 ρ̂S

gc as reference state. In this case,
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TS and µS are uniquely determined by the equilibrium
situation. Equivalently, ρ̂S

gc is given by the steady-state
solution of a Qme in the Born-Markov approximation
(see Sec. III B), when coupling the system to one thermal
environment. From this viewpoint a natural extension to
the nonequilibrium situation is to make use of a Qme as
well in order to obtain a consistent reference state, given
then by the steady-state reduced density operator of the
system ρ̂S . In this work, a second order Born-Markov
Qme is employed, which yields the correct zeroth order
reduced density operator ρ̂S (adjusted to ĤSE).111,112

Subsequently, ĤSE is included within the CPT approx-
imation,89,90 in order to obtain improved results for the
Green’s function and in turn for the transport observ-
ables.

In summary, the meCPT method consists of the fol-
lowing three main steps, analogous to a standard CPT
treatment:

1. Decompose the whole system into a small inter-
acting central region (system) and noninteracting

leads of infinite size (environment), see ĤS and ĤE

in Eq. (1a).

2. The new step introduced in this work is to solve a
Qme for the system in order to obtain the reduced
density operator ρ̂S , which serves as a reference
state to calculate the cluster (retarded) Green’s
function113

gR
ijσ(τ) = −iθ(τ)tr

{
ρ̂S
[
fiσ(τ), f †

jσ

]
+

}
. (2)

3. Reintroduce the system-environment coupling ĤSE

perturbatively, see Sec. III A and Eq. (4), to deter-
mine the Green’s function of the coupled system.

A. Steady-state cluster perturbation theory

Here we briefly recall the main, well-established CPT
concepts and equations, as this is the starting point for
the formalism presented in this work. For an in depth
discussion of CPT114 and its nonequilibrium extension
we refer the reader to the literature.91,93,95,97

The central element of stsCPT is the steady-state
single-particle Green’s function in Keldysh space115

G̃ =

(
GR GK

0 GA

)
, (3)

where R denotes the retarded, A the advanced, and K the
Keldysh component. In the present formalism, GR/A/K

become matrices in the space of cluster sites and depend
on one energy variable ω since time translational invari-
ance applies in the steady-state.

As explained above, in order to compute G̃(ω) within

stsCPT one partitions Ĥ, Eq. (1a) in real space, into in-
dividually exactly solvable parts, in this case, the system

ĤS and the environment ĤE , which leaves the coupling
Hamiltonian HSE as a perturbation. The single-particle
Green’s function of the disconnected Hamiltonian is de-
noted by g̃(ω), which obviously does not mix the dis-
connected regions. For the noninteracting environment,
the respective block entries of g̃(ω) are available analyti-
cally.94,116 For the interacting part the respective entries
of g̃(ω) are calculated via the Lehmann representation
with respect to the reference state. This can be com-
puted e.g. based on the Band Lanczos method.117–119

The full steady-state Green’s function in the CPT ap-
proximation is found by reintroducing the inter-cluster
coupling perturbatively

G̃(ω)−1 = g̃(ω)−1 − M̃ ; MR = MA = M , MK = 0 ,
(4)

where we denote by the matrix M the single-particle
Wannier representation of ĤSE . CPT is equivalent to

using the self-energy Σ̃ of the disconnected Hamiltonian
as an approximation to the full self-energy. Therefore,
the quality of the approximation can in principle be sys-
tematically improved by adding more and more sites of
the leads to the central cluster. However, in doing so the
complexity for the exact solution of the central cluster
grows exponentially. Independent of the reference state,
this scheme becomes exact in the noninteracting limit.

B. Born-Markov equation for the reference state

In the following we outline how to obtain the refer-
ence state ρ̂S by using a Born-Markov-secular (BMsme),
or more generally a Born-Markov master equation
(BMme).75–80 Although this approach is standard, for
completeness we present here the main aspects and no-
tation. We loosely follow the treatment of Ref. 40,78,79.

The real time τ evolution of the full many-body den-
sity matrix ρ̂ is given by the von-Neumann equation
˙̂ρ = −i

[
Ĥ, ρ̂

]
−

.75 Typically the large size of the Hilbert

space of Ĥ prohibits the full solution in the interact-
ing case. One thus considers the weak coupling limit
|ĤSE | ≪ |ĤE | and performs a perturbation theory in

terms of |ĤSE |.80,120
In the usual way one obtains an equation for the re-

duced many-body density matrix of the system ρ̂S(τ) =
trE {ρ̂} by working in the interaction picture ρ̂I(τ) =

e+i(ĤS+ĤE)τ ρ̂(0)e−i(ĤS+ĤE)τ with respect to the cou-
pling Hamiltonian, Eq. (1c). One then performs three
standard approximations: i) Within the Born approxi-

mation, valid to lowest order in |ĤSE |, the density ma-
trix is factorized ρ̂I(τ) ≈ ρ̂S

I (τ) ⊗ ρ̂E
I . Furthermore, the

environment ρ̂E
I is assumed to be so large that it is not

affected by |ĤSE | and thus independent of time. ii) The
Markov approximation implies a memory-less environ-
ment, that is, the system density matrix varies much
slower in time than the decay time of the environment
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correlation functions Cαβ(τ). Upon transforming back to
the Schrödinger picture this yields the BMme, which is
time-local, preserves trace and hermiticity, and depends
on constant coefficients. iii) To obtain an equation of
Lindblad form which also preserves positivity one typi-
cally employs the secular approximation, which averages
over fast oscillating terms, yielding the BMsme.78,121,122

The system-environment coupling can be quite gener-
ally written in the form ĤSE =

∑
α

Ŝα⊗Êα, with Ŝα = Ŝ†
α

and Êα = Ê†
α. This hermitian form is convenient for fur-

ther treatment.The tensor product form can be achieved
even for fermions by a Jordan-Wigner transformation,79

see App. B. For our coupling Hamiltonian, Eq. (1c) and
particle number conserving systems, the coupling opera-
tors take the form

Ŝ1iσ =
1√
2
(fiσ + f †

iσ), Ê1λiσ =
1√
2
(cλiσ + c†

λiσ) (5)

Ŝ2iσ =
i√
2
(fiσ − f †

iσ), Ê2λiσ =
i√
2
(cλiσ − c†

λiσ) .

In the energy eigenbasis of the system Hamiltonian
ĤS |a〉 = ωa |a〉, the BMme in the Schrödinger repre-
sentation reads113

˙̂ρS(τ) = −i
[
ĤS + ĤLS , ρ̂S(τ)

]
−

+
∑

abcd

Ξab,cd

(
|a〉 〈b| ρ̂S(τ) |d〉 〈c| − 1

2

[
|d〉 〈c| |a〉 〈b| , ρ̂S(τ)

]

+

)
,

(6)

with

Ξab,cd =
∑

αβ

ξαβ(ωba, ωdc) 〈a| Ŝβ |b〉 〈c| Ŝα |d〉∗
, (7)

where ωba = ωb − ωa. The Lamb-shift Hamiltonian ĤLS

and the environment functions ξαβ(ω1, ω2) are defined
in App. A. When employing the secular approximation,
the terms in the BMsme simplify and in Eq. (7) one can
replace ξαβ(ωba, ωdc) → ξαβ(ωb − ωa)δωb−ωa,ωd−ωc . Due
to the secular approximation the BMsme can only lead to
interference between degenerate states. The more general
BMme also couples non-degenerate states at the cost of
loosing the Lindblad structure of the Qme, see Sec. IV B
and Ref. 40.

Single-particle Green’s function

As discussed above, for meCPT, the Green’s function
g̃(ω) of the isolated system is evaluated from the refer-
ence state ρ̂S . The retarded component Eq. (2) takes the
explicit form

gR
ij(σ)(ω) =

∑

abc

ρS
ab× (8)

( 〈b| fiσ |c〉 〈c| f †
jσ |a〉

ω + i0+ − (ωc − ωb)
+

〈b| f †
jσ |c〉 〈c| fiσ |a〉

ω + i0+ − (ωa − ωc)

)
,

where i, j denote indices of system sites. The advanced

component follows from gA =
(
gR
)†

and the Keldysh

component gK of the finite, unperturbed system is not
relevant for the CPT equation, Eq. (4). Once g̃ is ob-
tained, the full Green’s function is again approximately
obtained within CPT by Eq. (4). Notice that for U = 0,

G̃ is independent of the reference state, which is why
stsCPT, stsVCA as well as meCPT coincide (and become
exact) in the noninteracting case.

C. Numerical implementation

From a numerical point of view, the two main steps are
to first obtain the reference state ρ̂S by solving the Qme
and then to evaluate the Green’s functions using Eq. (8)
and Eq. (4). For the solution of the BMme, Eq. (6) one
needs to carry out the following: i) Full diagonalization
of the interacting system Hamiltonian which is done in
LAPACK, making use of the block structure in N̂ and Ŝz.
ii) Evaluation of the coefficients of the BMme in Eq. (6),

which involves coupling matrix elements 〈a| Ŝα |b〉 and
numerical integration of the bath correlations functions,
see App. A, C, for which an adaptive Gauss-Kronrod
scheme is employed. iii) The steady-state ρ̂S is finally ob-
tained from the unique eigenvector with eigenvalue zero
of Eq. (6), which we determine by a sparse Arnoldi diag-

onalization. Again, a block structure is related to N̂ and
Ŝz. The numerical effort for the exact diagonalization
scales with the size of the Hilbert space, and therefore
exponentially with the system size NS . In the second
major step, the Green’s function of the disconnected sys-
tem is calculated by Eq. (8). Finally, the meCPT Green’s

function G̃(ω) is found using Eq. (4). We outline how
to evaluate observables within meCPT and the Qme in
App. D.

IV. RESULTS

In this section we present results obtained from the
meCPT approach. In all calculations, except the ones in
Sec. IVB, the secular approximation is applied for the
reference state ρ̂S . The main improvements of meCPT
with respect to bare BMsme are i) the inclusion of lead in-
duced broadening effects, ii) the correct U = 0 limit and
iii) a correction for effects missed by an improper treat-
ment of quasi degenerate states in the BMsme (see be-
low). In comparison to the previous “standard” stsCPT,
meCPT also captures current blocking effects, which are
discussed in detail in Ref. 39 and Ref. 40 within a Qme
treatment.
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FIG. 1: (Color online) Quantum dot diode: Schematic repre-
sentation, see Sec. IV A. Single quantum dot with Hubbard
interaction U and gate voltage VG (particle-hole symmetric at
VG = 0), coupled via ΓL/R = Γ

2
to a left and right lead. The

right lead is fully polarized, i.e. only spin-↑ DOS is present.
An external bias voltage VB shifts the chemical potentials by
µL/R = ±VB

2
. The leads are in the wide band limit and at

the same temperature T .

A. Quantum dot diode

We first discuss a quite simple model system: a quan-
tum diode based on electron-electron interaction effects.
Fig. 1 depicts this junction consisting of a single interact-
ing orbital described by a Hubbard interaction and an
on-site term to allow for a gate voltage VG:123

ĤS = U

(
n̂f

↑ − 1

2

)(
n̂f

↓ − 1

2

)
+ VG

∑

σ

n̂f
σ ,

where n̂f
σ = f †

σfσ. The environment Eq. (1b), consists
of two spin dependent, conducting leads. We model
both, the left (L) and the right (R) lead by a flat DOS
with local retarded single-particle Green’s function116

gR
L/R(ω) = − 1

2D ln
(

ω+i0+−D
ω+i0++D

)
, with a half-bandwidth D

much larger than all other energy scales in the model,
mimicking a wide band limit. We keep both leads at the
same temperature TL = TR = T and at chemical poten-
tials µL = −µR = VB

2 corresponding to a symmetrically
applied bias voltage VB. The right lead is fully spin po-
larized, i.e. tunnelling of one spin species (↓) into the
right lead is prohibited while both spin species can tun-
nel to the left lead. The system is coupled to the two
leads via a single-particle hopping amplitude t′ in ĤSE ,
Eq. (1c) which results in a lead broadening parameter of

Γ↑
L = Γ↓

L = Γ↑
R = Γ

2 = π|t′|2 1
2D , Eq. (C1), and Γ↓

R ≡ 0.
We use Γ without an argument for Γ(ω = 0) as defined
in Eq. (C1). For meCPT we use HSE , see Eq. (1c), as
perturbation.

Such a system could be realized in: i) A “metal - artifi-
cial atom - half-metallic ferromagnet“124 nano structure
where spin-↑ DOS is present at the Fermi energy while
the respective spin-↓ DOS is zero. ii) A graphene nano
structure31,32 with ferromagnetic cobalt electrodes.33 iii)
A one dimensional optical lattice of ultra cold fermions in

a quantum simulator125 where the hopping of spin-↓ par-
ticles into the right reservoir is suppressed. For all three
systems spin-↓ particles cannot reach the right lead, in
the first two due to a vanishing DOS, in the third one
due to a vanishing tunnelling amplitude.

We consider parameters such that the junction is op-
erated in a single electron transistor (SET) regime,37 i.e.
temperatures above the Kondo temperature.49 In this
regime we expect an interaction induced - magnetization
mediated blocking due to the fact that the system fills
up with spin-↓ particles. On the one hand they cannot
escape, yielding a vanishing spin-↓ current, and on the
other hand they suppress the spin-↑ occupation, at fi-
nite repulsive interaction U , resulting also in a vanishing
spin-↑ current.46

Fig. 2 (A) shows the meCPT stability diagram of the
interacting system in the VB −VG plane. When applying
a particle-hole transformation for all particles, leads and
system, along with t′ → −t′ we easily find the symmetry
properties

j(−VB, −VG) = −j(VB, VG) ,

〈nf
σ〉(−VB , −VG) = 1 − 〈nf

σ〉(VB , VG) .

From the continuity equation it is clear that only spin-↑
steady-state current can flow which limits the maximum
current to Γ

2 . The energies ωN of the isolated quantum
dot can be labelled by the total particle number N and
are for VG = U given by ω0 = 0, ω1 = 1

2 U and ω2 = 2 U .
This gate voltage corresponds to the dashed line, marked
by (X) in Fig. 2 (A). The corresponding energy differ-
ences ∆01 = 0.5 U between the single-occupied and the
empty dot and ∆12 = 1.5 U between double-occupied and
single-occupied dot are associated with a further trans-
port channel opening as soon as the bias VB reaches twice
their values. The meCPT result for the current exhibits
the well known Coulomb diamond37 close to VB = 0 and
VG = 0, where current is hindered because all system
energies are far outside the transport window ±VB

2 , see

Eq. (D2). At VG = 0 a current sets in at VB

2 = ±|U
2 |, i.e.

when transport across the system’s single particle level
becomes allowed. The point, at which the current sets
in, shifts with VG linearly to higher bias voltages. This
transition is broadened ∝ max(Γ = 0.1 U, T = 0.025 U).
However, not only the transport window and possible
excitations in the system energies determine the current-
voltage characteristics. The particular occupation of the
system states may lead to more complicated effects, such
as current blocking.

Our first main result is that in contrast to stsCPT the
blocking is correctly reproduced in meCPT. The current
blocking is visible in Fig. 2 (A) in region (Y), see also the
detailed data in subplot (C1). It is asymmetric in VB

and therefore responsible for the rectifying behaviour for
|VG| > |U

2 |. This feature is easily understood from the
plots of the spin resolved densities in Fig. 2 (C2). In the
region of interest, for positive VB, 〈n↓〉 = 1 which hinders
spin-↑ particles from the left lead to enter the system, due
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FIG. 2: (Color online) Quantum dot diode: (A) Stability diagram, based on the total current j = 〈j↑〉 + 〈j↓〉 as a function of
bias voltage VB and gate voltage VG, obtained within meCPT. Note that 〈j↓〉 ≡ 0. Results are depicted for T = 0.025 U and
Γ = 0.1 U . (Y) marks the current blocking region. The green dashed line (X) at VG = U indicates the parameter regime for the
panels (B) and (C). (B) Diagonal part of the reduced density matrix ρS

aa obtained by BMsme. (C1) Spin-↑ current j↑ within
meCPT compared to BMsme. Solid lines are for the same parameters as line (X) in panel (A). Blue dashed and solid lines for
BMsme are indistinguishable. (C2) Spin resolved densities 〈n↑〉 and 〈n↓〉 for the same parameters as in panel (C1), see solid
lines in the legend.

to the repulsive interaction U and suppresses the current.
For negative VB, the situation is reversed. A direct com-
putation of the current in the framework of BMsme, see
App. D 2, also predicts the blocking, which is however not
the case if we use stsCPT based on the zero temperature
ground state |Ψ0〉S . The blocking is evident in Fig. 2 (B),
where we observe that in the blocking regime, the reduced
density is ρS = |↓〉 〈↓|. Independent of the value of U > 0,
the blocking sets in at the same values of VB in meCPT
and BMsme. Fig. 2 (C1) shows that within BMsme this
regime is entered after a U independent hump in the
current while within meCPT the hump is broader and
weakly U dependent. The current blocking disappears
at a bias voltage VB ∝ U in both methods. Immedi-
ately apparent are the much broader features in meCPT,
which leads to a less pronounced effect in contrast to
the total blocking predicted by BMsme. In BMsme the
broadening parameter Γ enters merely as prefactor of the
current, and broadening is solely induced by the temper-
ature. This temperature induced broadening is correctly
taken into account in both methods. For T > Γ the lat-

ter dominates and the meCPT results are similar to the
plain BMsme solution. A comparison of the three meth-
ods is given in Tab. I. In this simple model the blocking
can be captured even by a straight forward steady-state
mean-field theory in the Keldysh Green’s function with
self-consistently determined spin densities or in stsVCA.
This is not the case for the more elaborate system studied
in the next section.

TABLE I: Comparison of steady-state cluster perturbation
theory (stsCPT), the Born-Markov-secular master equation
(BMsme) and the quantum master equation based stsCPT
(meCPT) with respect to their ability to capture temperature
(T ) or lead (Γ) induced level broadening, current blocking and
whether the noninteracting limit is fulfilled.

method T -broadening Γ-broadening blocking U = 0

stsCPT yes yes no exact

BMsme yes no yes approx.

meCPT yes yes yes exact
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B. Triple quantum dot

In this section we discuss a more elaborate model
system: a triple quantum dot ring junction which fea-
tures negative differential conductance (NDC) based on
electron-electron interaction effects mediated by quan-
tum interference due to degenerate states as outlined in
detail in Ref. 45,46. Fig. 3 (A) depicts the triple quantum
dot ring junction, described by the following Hubbard
Hamiltonian126

ĤS =
3∑

i=1

U
(
n̂f

i↑ − 1

2

)(
n̂f

i↓ − 1

2

)
+ VG

3∑

i=1

∑

σ

n̂f
iσ

+ t
∑

〈ij〉

∑

σ

f †
iσfjσ . (9)

In addition to the model parameters described in
Sec. IVA, a nearest-neighbour 〈ij〉 hopping t is present.
The environment, Eq. (1b) and coupling, Eq. (1c) are now
both symmetric in spin. Moreover, we use µL = −µR =
VB

2 , T = TL = TR and ΓL = ΓR = Γ
2 = π|t′|2 1

2D .
Such a junction can be experimentally realized: i) Via

local anodic oxidation (LAO) on a GaAs/AlGaAs het-
erostructure29 which enables tunable few electron con-
trol.30 ii) In a graphene nano structure.31,32 Experimen-
tally the stability diagram has been explored34 alongside
characterisation and transport measurements.29,35,36 The
negative differential conductance has been observed in a
device aimed as a quantum rectifier.127 Theoretically the
study of the nonequilibrium behaviour of such a device
has become an active field recently.45,46,128–134

We investigate transport properties for values of the
parameters such that the junction is in a single electron
transistor (SET) regime,37 i.e. temperatures above the
Kondo temperature.49 In this regime we expect an inter-
action induced - quantum interference mediated blocking
as discussed in Ref. 45,46. The rotational symmetry en-
sures degenerate eigenstates labelled by a quantum num-
ber of angular momentum. In situations where these de-
generate states participate in the transport they provide
two equivalent pathways through the system and lead to
quantum interference.45 The blocking sets in at a bias
voltage, where the degenerate states start to participate
in the transport. It then becomes possible that a super-
position is selected which forms one state with a node at
the right lead. In the long time limit this state will be
fully occupied while the other one will be empty due to
Coulomb repulsion, for reasons very similar to the ones
discussed in the previous section.39,40

The steady-state charge distribution and current-
voltage characteristics of the interacting triple quantum
dot are presented in Fig. 3 (B, C) in a wide bias voltage
window. The current, depicted in panel (C), in general
increases in a stepwise manner and is fully antisymmet-
ric with respect to the bias voltage direction. A block-
ing effect occurs at VB ≈ 1.5 |t| as can be observed in
the BMsme and meCPT data. The previous version
of stsCPT based on the pure zero temperature ground

state |Ψ0〉S misses this region of NDC. In contrast to
the simpler model presented in the previous section, a
self-consistent mean-field solution does not capture the
blocking effects correctly in this more elaborate system.
The BMsme solution shows many more steps in the cur-
rent than the stsCPT one, which is due to transitions in
the reference state ρ̂S of the central region. The meCPT
results in general follow these finer steps, correcting their
width to incorporate also lead induced broadening effects
in addition to the pure temperature broadening. As can
be seen in panel (B1), meCPT predicts a large charge
increase at the site connected to the high bias lead. Note
that the charge density at site 2, which is connected to
the right lead is simply: 〈n2〉(VB) = 〈n1〉(−VB). The
charge density at site 3 is symmetric with respect to the
bias voltage origin.

Next we study the impact of a gate voltage on the
blocking. Results obtained by meCPT are depicted as
stability diagram in Fig. 4. Upon increasing |VG|, the on-
set of the blocking shifts linearly to higher VB (Y). We
find a Coulomb diamond for 2VG ' VB − |t| (D). Upon
increasing the bias voltage out of the Coulomb diamond,
see e.g. line (X), a current sets in but is promptly hin-
dered by the blocking so that the current diminishes after
a hump of width ∝ max(T, Γ). Interestingly this device
could be operated as a transistor in two fundamentally
different modes. In mode (T1), at a source-drain voltage
of ≈ |t| the current is on for a gate voltage of VG = 0
and off for VG ≈ 0.5 |t| due to the Coulomb blockade. In
mode (T2), at a source-drain voltage of ≈ 1.5 |t| the cur-
rent is off for a gate voltage of VG = 0 due to quantum
interference mediated blocking and on for VG = 0.25 |t|.

Next we discuss the current characteristics in the vicin-
ity of the blocking in more detail, as well as the impact
of the interaction strength U . The first row of Fig. 5
shows the total current through the device for different
values of U . The blocking region shifts to lower bias volt-
ages with increasing U . As discussed earlier, structures
in the BMsme results are only broadened by tempera-
ture effects in the steady-state density (compare e.g. the
width of the structures in the local density in the second
row of Fig. 5), while meCPT additionally takes into ac-
count the finite life time of the quasi particles due to the
coupling to the leads, given by 1/Γ. This can be seen
by solving Eq. (4) for the local Green’s function at de-
vice sites. Especially for higher lead broadening Γ this
gives rise to significant differences in the meCPT results
compared to the BMsme data. From the bottom row
of Fig. 5 we see that, before the blocking regime is en-
tered, the steady-state changes from a pure N = 2 state
to a mixed N = 2 / N = 3 state at the hump in the
current. Obviously, blocking arises because the system
reaches a pure N = 3 state for U = 2 |t| and U = 3 |t|
at VB ≈ 1.4 |t|. For U = |t| the current is only partially
blocked, because the contribution of the N = 2 state is
not fully suppressed. For all U -values, however, we find
NDC. As far as the meCPT current is concerned, the
complete blocking at higher interaction strengths, pre-
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FIG. 3: (Color online) Triple quantum dot (A) Schematic representation, see Sec. IV B. System Hamiltonian as defined in
Eq. (9). Site 1 couples to the left lead and site 2 to the right one, both with ΓL/R = Γ

2
. The leads are held at the same

temperature TL/R = T and the chemical potentials µL/R = ±VB
2

are shifted by the bias voltage. (B) Local charge density 〈ni〉
as a function of bias voltage VB. The results are obtained by meCPT, BMsme and stsCPT, see color code of panel (C). (C)
Total current j =

∑
σ〈jL1σ〉 into the system at site 1 as a function of bias voltage VB . Results, shown in panels (B,C), are for

U = 2 |t|, T ≈ 0.02 |t|, Γ = 0.1 |t| and VG = 0, corresponding to line (X) in Fig. 4.

(Y) (Y)

(X)
(T1)

(T2)

(D)

V
B
/|t|

V
G
/|
t|

FIG. 4: (Color online) Triple quantum dot: stability diagram.
Total current entering the system as a function of bias voltage
VB and gate voltage VG, obtained within meCPT. The block-
ing region is indicated by (Y), the Coulomb diamond by (D).
The two arrows (T1) and (T2) mark two device operation
modes as discussed in the text. All results are for U = 2 |t|,
T = 0.02 |t| and Γ = 0.1 |t|. Dashed line (X) for VG = 0 marks
the parameter region depicted in Fig. 3 (C).

dicted by BMsme, is reduced to a partial blocking due to
the lead induced broadening effects in meCPT. Although
ρS

ab changes significantly twice in the blocking region (for
U = 2 and U = 3), the charge density 〈ni〉 just increases
once from 〈n1〉 ≈ 0.75 to 〈n1〉 ≈ 1.

Details of the steady-state dynamics are provided in
Fig. 6. Before the blocking region is entered (VB = 0.4 |t|)
the system is in a pure state with N = 2, which corre-
sponds to the zero temperature ground state |Ψ0〉S in
the N = 2 sector. Here the transmission function T (ω),
Eq. (D3), of meCPT agrees with the one of stsCPT. A

small current is obtained due to the N = 2 → 3 excita-
tion at ω ≈ 0.55 |t|. Increasing the bias voltage has no in-
fluence on the reference state in stsCPT, which therefore
remains in the N = 2 particle sector. Consequently, the
transmission function in stsCPT does not change. Only
the transport window increases linearly with increasing
VB. For VB = 1.4 |t| it includes the peak at ≈ 0.7|t| and
results in a significant increase in the current obtained
in stsCPT (see stsCPT result in Fig. 3). This is in stark
contrast to the BMsme current, depicted in Fig. 5, which
exhibits perfect blocking for VB = 1.4 |t|. The reason
for the current-blocking is that only two states, both in
the N = 3 sector and doubly degenerate, have significant
weight in ρS

ab. The meCPT solution is based on the mod-
ified density matrix and therefore the current is dimin-
ished, since the next possible excitation is at ω ≈ 0.9 |t|
(N = 2 → 3), which is outside the transport window
W (ω) ≈ (−0.7|t|, 0.7|t|), Eq. (D2). Due to the lead in-
duced broadening of T (ω) and the temperature induced
broadening of the transport window, the current is how-
ever only partially blocked. For VB = 2.4 |t| this excita-
tion falls into the transport window and the current is
no longer blocked. In this case, the state ρS

ab is a mix-
ture of N = 2, 3, 4. The dominant excitation responsible
for this current is again the ground state excitation at
ω ≈ 0.55 |t| from N = 2 → 3. This is why in this regime
the stsCPT current, based on the pure two particle state
is again similar to the meCPT current.

Our results on the Qme level have been checked with
those presented by Begemann et al. in Ref. 39 and Darau
et al. in Ref. 40 for a six orbital ring which shows similar
blocking effects. Different types of blocking effects in
various parameter regimes have been discussed in detail
in a Qme framework also for the three orbital ring by
Donarini et al. in Ref. 45,46.
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FIG. 5: (Color online) Triple quantum dot: Dependence of the current blocking on the interaction strength U . (Top row)
Total current j as a function of bias voltage VB. (Middle row) Charge density 〈n1〉 at site 1. The color code of the top row
is valid. (Bottom row) Summed diagonal elements of the density matrix wN =

∑
a∈N ρS

aa per particle number N . The black
markers in the mid panel (U = 2 |t|) indicate for which VB detailed results are given in Fig. 6. Solid lines in all panels are for
T = 0.02 |t|, Γ = 0.1 |t| and VG = 0. Results for T = 0.1 |t| are depicted in the central panels by dotted lines and those for
Γ = 0.5 |t| in the right panels by dashed lines.
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B
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B
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B

FIG. 6: (Color online) Triple quantum dot: Dynamic transmission function T (ω), Eq. (D3), as obtained by meCPT and stsCPT.
Same parameters as in Fig. 5 (bottom mid) at the three indicated bias voltages: VB = 0.4 |t| (left), VB = 1.4 |t| (middle) and
VB = 2.4 |t| (right). The temperature broadened transport window W (ω), Eq. (D2), is depicted as a dashed black line.

Quasi-degenerate states

Next we study the reliability of the secular approxima-
tion in the case of quasi degeneracy of the isolated en-
ergies of the system and benchmark its applicability to

create a reference state for meCPT. To this end we ap-
ply a second gate voltage that couples only to the third
orbital, see Fig. 3 (left), and leads to an additional term

VG,3 n̂f
3 in the system Hamiltonian. This lifts the degen-

eracy of states present at VG,3 = 0 and therefore requires
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a treatment within the BMme, see Ref. 40.
In the following we discuss the same parameter regime

as above. In Fig. 7 we present results obtained using
meCPT (solid lines) and Qme results (dashed lines) for
the BMsme (A) and for the BMme (B). The meCPT re-
sults of each panel are obtained using the respective Qme.
In the BMsme data a very small |VG,3| has a drastic ef-
fect on the current-voltage characteristics. The block-
ing present at VG,3 = 0 is immediately lifted by very
small |VG,3| and the current jumps to a plateau. For
larger |VG,3| the current stays on this plateau until fur-
ther transport channels open up. This ”jump“ at small
|VG,3| arises due to the improper treatment of quasi de-
generacies in BMsme. MeCPT results based on BMsme
show a smooth change of the current-voltage character-
istics. BMme on the other hand correctly accounts for
the coupling of the quasi-degenerate states and also ex-
hibits a smooth dependence on VG,3. For meCPT based
on BMme we find qualitative similar results to meCPT
based on BMsme, which emphasizes the robustness of
the meCPT results in general. From this it is appar-
ent that meCPT is capable of repairing the decoupling
of quasi-degenerate states in the BMsme to some degree.
However, to study blocking effects at quasi degenerate
points it is of advantage to make use of the BMme in
meCPT.

As discussed below in Sec. IVC, the BMme is not of
Lindblad form and does not necessarily result in a pos-
itive definite reduced many-body density matrix ρS

ab in
general. Using a not proper density matrix in Eq. (8)
may result in non-causal Green’s functions when the
steady-state ρS

ab is obtained from the BMme. This can
be avoided by using a modified reference state ρS

ab →
ρS

abΘ(∆ − |ωa − ωb|), with Θ(x) the Heaviside step func-
tion and ∆ a small quantity, being e.g. ≈ 10−6, in Eq. (8),
which renders the Green’s functions causal. This is some-
what an ad-hoc approximation and should be seen simply
as a way to explore the effects of continuously breaking
degeneracy in the problem.

C. Current conservation

Finally we comment on conservation laws in meCPT.
Within BMsme and BMme the current conservation
(continuity equation) is always maximally violated in a
sense that the current within the system is zero. This
is due to the zeroth order ρ̂S as discussed in App. D 2.
In BMsme the inflow from the left lead into the system
however always equals the outflow from the system to the
right lead. Without the secular approximation the quan-
tum master equation (BMme) is not of Lindblad form
and the final many-body density matrix is not guaran-
teed to be positive definite.121,122 This in turn can lead
to slightly negative currents in regions where they are
required to be positive by the direction of the bias volt-
age78. Furthermore, the inflow can be slightly different
from the outflow.
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/
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V
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(B) Born-Markov

meCPT

Qme

(A) Born-Markov-secular

j 
/
Γ

V
B
/|t|

V
B
/|t|

FIG. 7: (Color online) Triple quantum dot: Effects of lifting
degeneracies in the system energies by a third gate voltage.
Total current j as a function of bias voltage VB , for three
different gate voltages VG,3 applied to site 3. Results based on
the Born-Markov-secular approximation are compared with
those of the Born-Markov approximation. Solid/dashed lines
indicate the meCPT/BM(s)me result. All results are for U =
3 |t|, T = 0.02 |t| and Γ = 0.1 |t|.

In the noninteracting case, meCPT fully repairs the vi-
olation of the continuity equation present in the reference
state. For increasing interaction strength, the violation
of the continuity equation typically grows also in meCPT.
In particular, the overall symmetry of the current stays
intact (in our case, inflow equals outflow), while the cur-
rent on bonds between interacting sites does not exactly
match the current between noninteracting sites. This
typically small violation of the continuity equation can
be attributed to the violation of Ward identities135,136 in
the non-conserving approximation scheme of CPT.137,138

V. SUMMARY AND CONCLUSIONS

We improved steady-state cluster perturbation theory
with an appropriate, consistent reference state. This ref-
erence state is obtained by the reduced many-body den-
sity matrix in the steady-state obtained from a quantum
master equation. The resulting hybrid method inher-
its beneficial aspects of steady-state cluster perturbation
theory as well as from the quantum master equation.
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We benchmarked the new method on two experimen-
tally realizable systems: a quantum diode and a triple
quantum dot ring, which both feature negative differen-
tial conductance and interaction induced current block-
ing effects. meCPT is able to improve the bare quantum
master equation results by a correct inclusion of lead in-
duced level-broadening effects, and the correct noninter-
acting limit. In contrast to previous realizations of the
steady-state cluster perturbation theory, meCPT is able
to correctly predict interaction induced current blocking
effects. It is well known that the secular approximation
(BMsme) is not applicable to quasi degenerate problems,
which is corroborated by our results for the steady-state
current. However, meCPT based on the BMsme density,
is able to repair most of the shortcomings of BMsme. The
results are very close to those obtained by meCPT based
on the density of BMme, where the quasi-degenerate
states are treated consistently.

The computational effort of meCPT beyond that of
the bare quantum master equation scales with the num-
ber of significant entries in the reference state density
matrix but is typically small. In the presented formu-
lation the new method is flexible and fast and therefore
well suited to study nano structures, molecular junctions
or heterostructures also starting from an ab-inito calcu-
lation.139
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Appendix A: Born-Markov and Pauli master
equation

Here we provide the detailed expressions for the co-
efficients in the BMme and BMsme of Eq. (6) and dis-
cuss the equations governing the time evolution into the
steady-state.

The Lamb-shift Hamiltonian is defined as ĤLS =∑
ab

Λab |a〉 〈b|, with

Λab =
1

2i

∑

αβ

∑

c

λαβ(ωbc, ωac) 〈c| Ŝβ |b〉 〈c| Ŝα |a〉∗
.

(A1)

Note that [ĤLS, ĤS ]− = 0. In the secular approxima-
tion (BMsme) one can replace λαβ(ωbc, ωac) → λαβ(ωb −
ωc)δωb,ωa . The expressions for the BMme and BMsme

Eq. (6) are valid if
[
ĤE , ρ̂E

]
−

= 0 and tr
{
Êαρ̂E

}
= 0.

The environment functions ξαβ and λαβ in Eq. (A1) and
Eq. (7) are determined by the time dependent environ-
ment correlation functions

Cαβ(τ) = tr
{
Êα(τ)Êβ ρ̂E

}
, (A2)

where the Heisenberg time evolution in the environment

operators is Êα(τ) = e+iĤEτ Êαe−iĤEτ .
For the BMme, ξαβ and λαβ are given by a sum of

complex Laplace transforms

ξαβ(ω1, ω2) =

∫ ∞

0

dτ Cαβ(τ)e+iω1τ +

∫ 0

−∞
dτ Cαβ(τ)e+iω2τ ,

(A3)

λαβ(ω1, ω2) =

∫ ∞

0

dτ Cαβ(τ)e+iω1τ −
∫ 0

−∞
dτ Cαβ(τ)e+iω2τ ,

(A4)

whereas for the BMsme (ω1 = ω2) the expressions sim-
plify to the full even and odd Fourier transforms78

ξαβ(ω) =

∞∫

−∞

dτ Cαβ(τ)e+iωτ , (A5)

λαβ(ω) =

∞∫

−∞

dτ sign(τ)Cαβ(τ)e+iωτ =
i

π

∞∫

−∞

P dω′ ξαβ(ω′)
ω − ω′ .

(A6)

The coupled equations for the real time evolution of the
components of the reduced system many-body density
matrix ρS

ab = 〈a| ρ̂S |b〉 according to the BMsme read

ρ̇S
ab(τ) = i(ωb − ωa)ρS

ab(τ) (A7)

+ i
∑

c

(
ρS

ac(τ)Λcb − Λacρ
S
cb(τ)

)

+
∑

cd

(
Ξac,bdρ

S
cd(τ) − 1

2
Ξcd,caρ

S
db(τ)

− 1

2
Ξcb,cdρ

S
ad(τ)

)
.

The equations simplify further for system Hamiltoni-
ans ĤS with non-degenerate eigenenergies ωa. Then the
diagonal components φa = ρS

aa decouple from the off-
diagonals and one recovers the Pauli master equation for
classical probabilities

φ̇a(τ) =
∑

c

(
Ξacφc(τ) − Ξcaφa(τ)

)
, (A8)

with simplified coefficients

Ξab := Ξab,ab =
∑

αβ

ξαβ(ωb − ωa) 〈a| Ŝβ |b〉 〈a| Ŝα |b〉∗
.
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In this case the dynamics of the decoupled off-diagonal
terms (a 6= b) is given by

ρ̇S
ab(τ) =

(
i(ωb + Λb − ωa − Λa)

− 1

2

∑

c

(
Ξca + Ξcb

))
ρS

ab(τ) ,

where the simplified Lamb shift terms are

Λa := Λaa =
1

2i

∑

αβ

∑

c

λαβ(ωa − ωc) 〈c| Ŝβ |a〉 〈c| Ŝα |a〉∗ .

Appendix B: Hermitian tensor product form of the
coupling Hamiltonian

For the BMsme (see Sec. III B) it is necessary to bring
the fermionic system-environment coupling Hamiltonian,
Eq. (1c) to a hermitian tensor product form, which re-

quires [Ŝα, Êα]− = 0. For the fermionic operators in

Eq. (1c) we however have [f †
iσ, cλkσ]− = 2f †

iσcλkσ . A so-
lution is provided in Ref. 79 by performing a Jordan-
Wigner transformation140 on the system and environ-
ment operators

fiσ =
∏

σ

(
ξz
1 ⊗ . . . ⊗ ξz

i−1ξ
−
i 11i+1 ⊗ . . . ⊗ 11LS

)
S,σ

⊗
∏

λ

(111 ⊗ . . . ⊗ 11LE)E,λσ ,

cλjσ =
∏

σ

(
ξz
1 ⊗ . . . ⊗ ξz

LS

)
S,σ

⊗
∏

λ

(
ηz
1 ⊗ . . . ⊗ ηz

j−1η
−
j 11j+1 ⊗ . . . ⊗ 11LE

)
E,λσ

,

where ξi and ηj denote local spin- 1
2 degrees of freedom

at the system and environment sites respectively and the
overall ordering of operators is important. LS/LE denote
the size of the system / environment. Reordering Eq. (1c)

we find ĤSE
λ =

∑
ijσ

t′λijσf †
iσcλjσ − t′∗λijσfiσc†

λjσ , where the

minus sign arises due to the fermionic anti-commutator.
Plugging in the Jordan-Wigner transformed operators
leads to

ĤSE
λ =

∑

ijσ

(
t′λijσ

[
ξ+
i ⊗

[−ξz
i+1 ⊗ . . . ⊗ ξz

LS
⊗ ηz

1 ⊗ . . . ⊗ ηz
j−1] ⊗ η−

j

]

σλ

+ t′∗λijσ

[
ξ−
i ⊗ [−ξz

i+1 ⊗ . . . ⊗ ξz
LS

⊗ ηz
1 ⊗ . . . ⊗ ηz

j−1] ⊗ η+
j

]

σλ

)

=
∑

i

(
f̄ †

i ⊗ c̄i + f̄i ⊗ c̄†
i

)
,

where in the last line we have defined new operators

f̄iσ =
[
ξ−
i ⊗ [−ξz

i+1 ⊗ . . . ⊗ ξz
LS

]
]
σ

,

f̄ †
iσ =

[
[−ξz

i+1 ⊗ . . . ⊗ ξz
LS

] ⊗ ξ+
i

]
σ

,

c̄λiσ =
∑

j

t′λijσ

[
[ηz

1 ⊗ . . . ⊗ ηz
j−1] ⊗ η−

j

]
λσ

,

c̄†
λiσ =

∑

j

t′∗λijσ

[
η+

j ⊗ [ηz
1 ⊗ . . . ⊗ ηz

j−1]
]
λσ

.

Note that the phase operator P̂i(jλ)σ =[
−ξz

i+1 ⊗ . . . ⊗ ξz
LS

⊗ [ηz
1 ⊗ . . . ⊗ ηz

j−1]λ
]
σ

=

(−1)
1+

∑
λ′

LS∑
m=i+1

n̂m+N̂jλ′
counts the particles between

system site i and environment site j for spin σ de-
pending on the ordering of the environments λ. It
is straight forward to show that the bar operators
fulfil fermionic anti-commutation rules. Furthermore
[f̄iσ, c̄λiσ]− = 0, which allows us to write the coupling
Hamiltonian in a tensor product form. Note that in
general [f̄iσ, c̄λ′jσ ]− 6= 0 for i 6= j which is however not
relevant for the coupling Hamiltonian where only the
same i couple.

The new operators in hermitian form are given in
Eq. (5) by replacing c → c̄ and f → f̄ . Next we show, by
examining the BMsme, that in most cases the additional
phase operator in c̄ drops out of the calculations and we
are even allowed to use the original f and c operators
instead of the barred ones. The operators c̄ only enter
the equations in the environment correlation functions
Cαβ(τ) as defined in Eq. (A2). Plugging in the barred
operators we obtain for normal systems which preserve
particle number

Cαβ(τ) ∝ tr
{
e+iĤEτf †

λjσe−iĤEτ P̂ 2
i(jλ)σcλjσ ρ̂E

}
,

with P̂ 2
ij = 11, where we required that [ĤE , P̂ij ]− = 0.

The dropping out of the phase operators implies that
for normal systems where the disconnected environments
conserve particle number we can omit the Jordan-Wigner
transformation and do all calculations as is with the orig-
inal environment creation/annihilation operators in her-
mitian form.

Appendix C: Bath correlation functions

In the wide band limit, analytical expressions for the
bath correlation functions are available in Ref. 39. For
arbitrary environment DOS, explicit evaluation of the en-
vironment correlation functions becomes convenient for
hermitian couplings, Eq. (5) as outlined in App. B.78 Es-
sentially the environment functions can all be obtained
via integrals of the environment DOS ρ(ω). Care has to
be taken when going to very low temperatures and solv-
ing the integrals with finite precision arithmetic to avoid
underflow errors.
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The time dependent environment correlation functions
Cαβ(τ), Eq. (A2) become

C11(τ) = C22(τ) =
1

4π

∑

λσ

∞∫

−∞

dν Γλσ(ν)

×
(

e−iντ + 2ipFD(ν, Tλ, µλ) sin (ντ)

)
,

C12(τ) = −C21(τ) =
i

4π

∑

λσ

∞∫

−∞

dν Γλσ(ν)

×
(

− e−iντ + 2pFD(ν, Tλ, µλ) cos (ντ)

)
,

where Cαβ(τ) = C†
βα(−τ) and the coefficient

Γλσ(ν) =2π|t′λσ|2
∑

k

δ(ν − ωλkσ) , (C1)

is proportional to the lead DOS.
For the BMsme, the respective full even Fourier trans-

forms ξαβ(ω), Eq. (A5) we find

ξ11(ω) = ξ22(ω) =

1

2

∑

λσ

Γλσ(−ω)pFD(−ω, βλ, µλ) + Γλσ(ω)pFD(ω, Tλ, µλ) ,

ξ12(ω) = −ξ21(ω) =

i

2

∑

λσ

Γλσ(−ω)pFD(−ω, βλ, µλ) − Γλσ(ω)pFD(ω, Tλ, µλ) ,

where pFD(ω, T, µ) = 1 − pFD(ω, T, µ).
The odd Fourier transforms λαβ(ω), Eq. (A6) are given

by

λ11(ω) = λ22(ω) =

i

2π

∑

λσ

∞∫

−∞

P dνΓλσ(ν)

(
pFD(ν, βλ, µλ)

ν + ω
− pFD(ν, βλ, µλ)

ν − ω

)
,

λ12(ω) = −λ21(ω) =

− 1

2π

∑

λσ

∞∫

−∞

P dνΓλσ(ν)

(
pFD(ν, βλ, µλ)

ν + ω
+

pFD(ν, βλ, µλ)

ν − ω

)
.

Appendix D: Evaluation of steady-state observables

1. Steady-state cluster perturbation theory

Within meCPT single-particle observables are avail-

able by integration of G̃(ω), Eq. (4). Its easy to show

that the single-particle density matrix κijσ =
δij

2 −
i
2

∞∫
−∞

dω
2π GK

ijσ(ω) can be expressed in terms of the re-

tarded CPT Green’s function

κijσ =
δij

2
− i

2

∞∫

−∞

dω

2π

(
GR

inσ(ω)Pnjσ(ω) − Pinσ(ω)(GR
jnσ(ω))∗

+ GR
inσ(ω)

(
[Pσ(ω), Mσ]−

)
nm

(GR
jmσ(ω))∗

)
,

where Mσ is the inter-cluster perturbation defined in
Eq. (4). Here we use the Einstein summation conven-
tion, the last line holds within CPT and Pijσ(ω) =
δij(1 − 2pFD(ω, Ti, µiσ)).

From the real part of the single-particle density-matrix
we read off the site occupation 〈ni〉 =

∑
σ

κiiσ the spin

resolved occupations 〈niσ〉 = κiiσ and the magnetization
〈mi〉 = 1

2 (κii↑ − κii↓).
The current 〈j〈ij〉〉 between nearest-neighbour sites 〈ij〉

is related to the imaginary part of κijσ and reads in sym-
metrized form

〈j〈ij〉〉 =
e

2~
(hijσκijσ − hjiσκjiσ) ,

which is of Meir-Wingreen form82 and hijσ is the single-
particle Hamiltonian.

Equivalently, the transmission current between two en-
vironments λ = 1, 2 can be evaluated in the Landauer-
Büttiker form55,65,98

〈j1/2〉 =
e

~

∞∫

−∞

dω

2π
W (ω)tr {T (ω)} , (D1)

with the transport window

W (ω) = pFD(ω, T1, µ1) − pFD(ω, T2, µ2) , (D2)

and where the transmission function

T (ω) = GR(ω)Γ1(ω)
(
GR(ω)

)†
Γ2(ω) , (D3)

is given in terms of GR(ω) =(
(gR(ω))−1 − (Σ̃1 + Σ̃2)

)−1

with the lead broaden-

ing functions of lead λ projected onto the system sites

i, j is Σ̃λij = MiλgR
λλMλj and Γλ = −2ℑm

(
Σ̃λ

)
,

compare also Eq. (C1).

2. Born-Markov master equation

Within the Qme, basic single-particle observables are
available in terms of the reduced system many-body den-
sity matrix ρ̂S . The single-particle density matrix κ reads

κijσ = tr

(
f †

iσfjσ ρ̂S

)
=
∑

ab

〈b| f †
iσfjσ |a〉 ρS

ab , (D4)
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where a and b denote eigenstates of the system Hamilto-
nian. Note that within the BMme/BMsme κijσ is purely
real and therefore does predict zero current.

However, an expression for the current to reservoir λ
can be found by making use of the operator of total sys-
tem charge Q̂ and total system particle number N̂ , where
q denotes the charge of one carrier

∑

λ

jλ(τ) =
d

dτ
〈Q̂(τ)〉 = q tr

(
N̂ ˙̂ρS(τ)

)
.

Taking ˙̂ρS(τ) from the Qme we obtain

jλ = q
∑

abc

(
nc − 1

2
nb − 1

2
na

)
Ξλ

ca,cb

)
ρS

ab ,

and for non-degenerate systems, in the Pauli limit we find
from the BMsme

jλ
non-deg = q

∑

ab

(na − nb) Ξλ
abφb .
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5.9. Auxiliary master equation approach to nonequilibrium

correlated impurities

5.9.1. Preamble

This part of our work has been published in PHYSICAL REVIEW B 89, 165105 (2014) [69] and
is also available as a preprint on arXiv:1312.4586. Reproduced with permission from PHYSI-
CAL REVIEW B 89, 165105 (2014), doi:10.1103/PhysRevB.89.165105 under Creative Commons
Attribution 3.0 License.
The AMEA has been developed in [68] and is applied to the SIAM under bias voltage in

this work. An introduction to the SIAM is available in Sec. 3.1 and some of its applications are
discussed in Ch. 2. An overview of the AMEA method is provided in Sec. 3.4. So far we discussed
a perturbative treatment of the steady-state in terms of NEGF. In contrast, this steady-state
NEGF approach sets up an auxiliary system described by a Lindblad master equation which is
mapped to the physical system using the hybridization function in Keldysh space. We obtain
results for the current-voltage characteristics and compare them to previous results of Sec. 5.4,
Sec. 5.4, Sec. 5.4, Sec. 5.5, Sec. 5.6, Sec. 5.2, Sec. 5.3 and Sec. 5.10. The splitting of the Kondo
resonance is studied in detail. The method is well suited as a future impurity solver for steady-
state DMFT, see also Sec. 5.1.
This study is authored by Antonius Dorda (AD) and co-authored by Martin Nuss (MN) as well

as by MN's supervisors Wolfgang von der Linden (WL) and Enrico Arrigoni (EA). EA, Michael
Knap and WL introduced the auxiliary master equation approach in [68]. AD, MN, EA and WL
further developed the method. MN and AD worked on the formal part of nonequilibrium Green's
functions in the Lindblad formalism. MN, AD and EA independently worked out expressions and
relations for the non-interacting case. MN studied in detail the non-interacting situation in the
NEGF. AD wrote a computer code to solve interacting systems and implemented the auxiliary
master equation approach. AD analyzed and collected the data. AD, MN and EA wrote the �rst
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We present a numerical method for the study of correlated quantum impurity problems out of equilibrium,
which is particularly suited to address steady-state properties within dynamical mean field theory. The approach,
recently introduced by Arrigoni et al. [Phys. Rev. Lett. 110, 086403 (2013)], is based upon a mapping of the
original impurity problem onto an auxiliary open quantum system, consisting of the interacting impurity coupled
to bath sites as well as to a Markovian environment. The dynamics of the auxiliary system is governed by a
Lindblad master equation whose parameters are used to optimize the mapping. The accuracy of the results can be
readily estimated and systematically improved by increasing the number of auxiliary bath sites, or by introducing
a linear correction. Here, we focus on a detailed discussion of the proposed approach including technical remarks.
To solve for the Green’s functions of the auxiliary impurity problem, a non-Hermitian Lanczos diagonalization
is applied. As a benchmark, results for the steady-state current-voltage characteristics of the single-impurity
Anderson model are presented. Furthermore, the bias dependence of the single-particle spectral function and the
splitting of the Kondo resonance are discussed. In its present form, the method is fast, efficient, and features a
controlled accuracy.

DOI: 10.1103/PhysRevB.89.165105 PACS number(s): 71.15.−m, 71.27.+a, 73.63.Kv, 73.23.−b

I. INTRODUCTION

Correlated systems out of equilibrium have recently at-
tracted increasing interest due to the significant progress
in a number of related experimental fields. Advances in
microscopic control and manipulation of quantum mechanical
many-body systems within quantum optics [1] and ultracold
quantum gases, for example in optical lattices [2–6], have long
reached high accuracy and versatility. Ultrafast laser spec-
troscopy [7,8] offers the possibility to explore and understand
electronic dynamics in unprecedented detail. Experiments
in condensed matter nanotechnology [9], spintronics [10],
molecular junctions [11–16], and quantum wires or quantum
dots [17,18] are able to reveal effects of the interference of
few microscopic quantum states. The nonequilibrium nature
of such experiments does not only offer a new route to
explore fundamental aspects of quantum physics, such as
nonequilibrium quantum phase transitions [19], the interplay
between quantum entanglement, dissipation, and decoherence
[20], or the pathway to thermalization [21,22], but also
suggests the possibility of exciting future applications [11,23].

Addressing the dynamics of correlated quantum systems
poses a major challenge to theoretical endeavors. In this
respect, quantum impurity models help improving our un-
derstanding of fermionic many-body systems. In particular,
the single-impurity Anderson model (SIAM) [24], which was
originally devised to study magnetic impurities in metallic
hosts [25,26], has become an important tool in many areas
of condensed matter physics [27,28]. Most prominently, it
features nonperturbative many-body physics which manifest

*dorda@tugraz.at
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in the Kondo effect [29]. It provides the backbone for all
calculations within dynamical mean field theory (DMFT)
[28,30], a technique which allows us to understand the
properties of a broad range of correlated systems and becomes
exact in the limit of infinite dimensions [31]. The basic
physical properties of the SIAM in equilibrium are quite well
understood [29] thanks to the pioneering work from Kondo
[32], renormalization group [33], as well as perturbation theory
(PT) [34–37] and the mapping to its low-energy realization,
the Kondo model [38].

The SIAM out of equilibrium provides a description for
several physical processes such as, for example, nonlinear
transport through quantum dots [17,39], correlated molecules
[13,14,40–42], or the influence of adsorbed atoms on surfaces
or bulk transport [43]. As in the equilibrium case, the solution
of the SIAM constitutes the bottleneck of nonequilibrium
DMFT [44–51] calculations. Therefore, accurate and efficient
methods to obtain dynamical correlation functions of impurity
models out of equilibrium are required in order to describe
time-resolved experiments on strongly correlated compounds
[7,8] and to understand their steady-state transport character-
istics [23].

However, nonequilibrium correlated impurity models still
pose an exciting challenge to theory. Our work addresses this
issue with special emphasis on the steady state. But, before
introducing this work in Sec. I, we briefly review previous
approaches. In recent times, a number of computational
techniques have been devised to handle the SIAM out of
equilibrium. Among them are scattering-state Bethe ansatz
(BA) [52], scattering-state NRG (SNRG) [53–55], noncrossing
approximation studies [56,57], fourth-order Keldysh PT [58],
other perturbative methods [59,60] in combination with the
renormalization group (RG) [61–65], iterative summation
of real-time path integrals [66], time-dependent NRG [67],
flow equation techniques [68,69], the time-dependent density
matrix RG (DMRG) [70–75] applied to the SIAM [76,77],
nonequilibrium cluster PT (CPT) [78], the nonequilibrium
variational cluster approach (VCA) [79,80], dual fermions
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[81], the functional RG (fRG) [82,83], diagrammatic quantum
Monte Carlo (QMC) [84,85], continuous time QMC (CT-
QMC) calculations on an auxiliary system with an imaginary
bias [86–90], superoperator techniques [91,92], many-body
PT and time-dependent density functional theory [93], gen-
eralized slave-boson methods [94], real-time RG (rtRG) [95],
time-dependent Gutzwiller mean field calculations [96], and
generalized master equation approaches [97]. Comparisons of
the results of some of these methods are available in literature
[77,98,99] and time scales have been discussed in Ref. [100].

Despite this large number of approaches, only a limited
number of them is applicable to nonequilibrium DMFT, and
very few are still accurate for large times in steady state.
Beyond the quadratic action for the Falicof-Kimball model
[46,101,102], iterated PT (IPT) [45], numerical renormal-
ization group (NRG) [48], real-time QMC [48,103], the
noncrossing approximation (NCA) [104,105], and recently
Hamiltonian-based impurity solvers [106] have been applied in
the time-dependent case. Some of the above approaches, such
as QMC [49] and DMRG [73], are very accurate in addressing
the short- and medium-time dynamics, but in some cases the
accuracy decreases at long times and a steady state can not be
reliably identified. Some other methods are perturbative and/or
valid only in certain parameter regions or for restricted models.
RG approaches (e.g., [61]) are certainly more appropriate to
identify the low-energy behavior.

This work

In this paper, we discuss a method, first proposed in
[51], which addresses the correlated impurity problem out of
equilibrium, and is particularly efficient for the steady state.
The accuracy of the results is controlled as it can be directly
estimated by analyzing the bath hybridization function (details
following). Here, we extend, test, and provide details of this
approach and its implementation. The basic idea is to map the
impurity problem onto an auxiliary open system, consisting of
a small number of bath sites coupled to the interacting impurity
and, additionally, to a so-called Markovian environment [107].
The parameters of this auxiliary open quantum system are
obtained by optimization in order to represent the original
impurity problem as accurately as possible. The auxiliary
system dynamics are governed by a Lindblad master equation
which is solved exactly with the non-Hermitian Lanczos
method. The crucial point is that the overall accuracy of the
method is thus solely determined by how well the auxiliary
system reproduces the original one. This can be, in principle,
improved by increasing the number of auxiliary bath sites.

In this study, we provide convincing benchmarks for
the steady-state properties of the SIAM coupled to two
metallic leads under bias voltage. We include a discussion
of convergence as a function of the number of bath sites and
present a scheme to estimate the error and partially correct for
it. In its presented form, the method is fast, efficient, and is
directly applicable to steady-state dynamical mean field theory
[51] for which previously suggested methods are less reliable.
Extending the method to treat time-dependent properties and
multiorbital systems is possible, in principle, however with a
much heavier computational effort.

The paper is organized as follows: In Sec. II A, the SIAM
under bias voltage is introduced. In Sec. II B, we introduce
nonequilibrium Green’s functions and in Secs. II C and II D,
we outline the auxiliary master equation approach where we
also focus on details of our particular implementation. Results
for the steady state, including the equilibrium situation, are
presented in Sec. III. This includes the steady-state current-
voltage characteristics which we compare with exact results
from matrix product state (MPS) time evolution [77] as well
as data for the spectral function under bias which we compare
with nonequilibrium NRG [54]. We conclude and give an
outlook in Sec. IV.

II. AUXILIARY MASTER EQUATION APPROACH

As discussed above, the method is particularly suited to
deal with nonequilibrium steady-state properties caused by
different temperatures and/or chemical potential in the leads
of a correlated quantum impurity system. As such, it can be
readily used as impurity solver for nonequilibrium DMFT
[46,51]. Here, we illustrate its application to the fermionic
SIAM with two leads having different chemical potentials,
and, in principle, different temperatures.

A. Nonequilibrium single-impurity Anderson model

We consider a single Anderson impurity coupled to elec-
tronic leads under bias voltage [see Fig. 1(a)]

Ĥ = Ĥimp + Ĥres + Ĥcoup. (1)

The impurity orbital features charge as well as spin degrees of
freedom and is subject to a local Coulomb repulsion U :

Ĥimp = εf

∑
σ

f †
σ fσ + U n̂

f

↑ n̂
f

↓ .

FIG. 1. (Color online) (a) Sketch of the quantum impurity model
(1) consisting of an impurity with interaction U coupled via
hybridizations t ′

λ to noninteracting leads at chemical potential μλ

and temperature Tλ, λ ∈ {L,R}. (b) Illustration of the auxiliary open
quantum system [Eq. (10a)] with single-particle parameters Eμν and
Lindblad dissipators �κ

μν consisting of the impurity at site f = 0, NB

bath sites (NB = 4 in the plot), as well as a Markovian environment
(shaded areas). When evaluating linear corrections (see Appendix C),
an additional site NB + 1 is used.
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Here, f †
σ /fσ denote fermionic creation/annihilation operators

for the impurity orbital with spin σ ∈ {↑,↓}, respectively. The
particle-number operator is defined in the usual way n̂

f
σ =

f †
σ fσ and the impurity onsite potential is εf = (VG − U

2 ), with
gate voltage VG = 0 at particle-hole symmetry. The impurity
is coupled to two noninteracting electronic leads λ ∈ {L,R}
with dispersion ελk:

Ĥres =
∑
λkσ

(ελ + ελk) c
†
kλσ ckλσ .

The effect of a bias voltage φ is to shift the chemical
potential and the onsite energies of the two leads by ελ = ±φ

2 ,
respectively. For the energies ελk of the leads we will consider
two cases.

(i) Two tight-binding semi-infinite chains with nearest-
neighbor hopping t , corresponding to a semicircular electronic
density of states (DOS): In this case, the boundary retarded
single-particle Green’s function of the two uncoupled leads is
given by [108–110]

gR
λ (ω) = gR

SC,λ(ω) = ω − ελ

2t2
− i

√
4t2 − (ω − ελ)2

2t2
, (2)

with a bandwidth of DSC = 4 t .
(ii) A constant DOS with a bandwidth DWB = π t results

in boundary Green’s functions [109]

gR
λ (ω) = gR

WB,λ(ω) = − 1

DWB

ln

⎛
⎝ω − ελ − DWB

2

ω − ελ + DWB
2

⎞
⎠ . (3)

The choice DWB = π t makes sure that the DOS at ω = 0 of
both lead types coincide. The leads are coupled to the impurity
orbital by

Ĥcoup =
∑
λσ

t ′λ
1√
Nk

∑
k

(c†
kλσ fσ + f †

σ ckλσ ),

where we take the same hybridization t ′λ = −0.3162 t for both
leads, and Nk → ∞ is the number of k points. Expressions
presented below are valid for arbitrary temperatures, although
we will show results for zero temperature only, which is
numerically the most unfavorable case [111]. The setup
chosen here represents by no means a limitation of the
method and extensions to more complicated situations, such
as nonsymmetric couplings, off particle-hole symmetry, etc.,
are straightforward.

B. Steady-state nonequilibrium Green’s functions

We are interested in the steady-state behavior under bias
voltage of the model described by Eq. (1). We assume that such
a steady state exists and is unique [112]. We denote the single-
particle Green’s function of the impurity in the nonequilibrium
Green’s function (Keldysh) formalism by [113–117]

G(ω) =
(

GR(ω) GK (ω)
0 GA(ω)

)
. (4)

Fourier transformation to energy ω is possible since in the
steady state the system becomes time translationally invariant.

In that case, the memory of the initial condition has been fully
washed away, so there is no contribution from the Matsubara
branch [118]. We will use an underline . . . to denote two-point
functions with the Keldysh matrix structure as in Eq. (4).

The Green’s function of the correlated impurity can be
expressed via Dyson’s equation

G−1(ω) = G−1
0 (ω) − �(ω), (5)

where �(ω) is the impurity self-energy. The noninteracting
impurity Green’s function G0(ω) can be written in the form

G−1
0 (ω) = g−1

0
(ω) − �(ω), (6)

g
0
(ω) being the noninteracting Green’s function of the discon-

nected impurity [108], and

�(ω) =
∑

λ

t ′ 2
λ g

λ
(ω) (7)

is the hybridization function of the leads (a 2 × 2 Keldysh
object, in contrast to the equilibrium case, where it is conve-
nient to work in Matsubara space). We define an equilibrium
Anderson width [29] for each lead �0 ≡ − 1

2 Im[�R(ω =
0)] = t ′2λ

t
≈ 0.1 t . In the following, we will use �0 as a unit

of energy and in addition we choose � = e = 1.
The boundary Green’s functions g

λ
of each disconnected

lead is determined by (a) its retarded component gR
λ [either

Eqs. (2) or (3)], (b) its advanced component gA
λ = gR∗

λ , and
(c) its Keldysh component, which satisfies the fluctuation
dissipation theorem

gK
λ (ω) = 2i [1 − 2pF(ω − μλ)] Im

[
gR

λ (ω)
]

(8)

since the disconnected leads are in equilibrium. Here, pF(ω −
μλ) is the Fermi distribution with chemical potential μλ. For
the noninteracting isolated impurity, one can take (g−1

0 )R =
ω − εf and (g−1

0 )K = 0 since infinitesimals 0+ can be ne-
glected after coupling to the leads (unless there are bound
states). As usual, the presence of the interaction U makes the
solution of the problem impurity plus leads a major challenge
both in equilibrium as well as out of equilibrium, which we
plan to address in this paper.

Similarly to the equilibrium case, the action of the leads
on the impurity is completely determined by the hybridization
function �(ω), independently of how the leads are represented
in detail. In other words, if one constructs a different
configuration of leads (e.g., with more leads with different
temperatures, DOS, etc.), which has the same �(ω), i.e. the
same �R(ω) and �K (ω) as Eq. (7), then the resulting local
properties of the interacting impurity, e.g., the Green’s function
G(ω) are the same. This holds provided the leads contain
noninteracting fermions only.

The approach we suggested in Ref. [51] precisely exploits
this property. The idea is to replace the impurity plus leads
system [Eq. (1)] by an auxiliary one which reproduces �(ω)
as accurately as possible, and at the same time can be
solved exactly by numerical methods, such as Lanczos exact
diagonalization. Details on the construction of the auxiliary
impurity system are given in the following.

The self-energy �aux(ω) of the auxiliary system, obtained
by exact diagonalization, is used in analogy to DMFT [28,119]

165105-3



DORDA, NUSS, VON DER LINDEN, AND ARRIGONI PHYSICAL REVIEW B 89, 165105 (2014)

as an approximation to the physical self-energy of the original
impurity system. Inserting �(ω) ≈ �aux(ω) into Eqs. (5) and
(6), together with the exact hybridization function �(ω) yields
an approximation for the physical Green’s function. From
this, observables such as the current or the spectral function
are then calculated. We emphasize that the accuracy of this
approximation can be controlled by the difference between
the �aux(ω) of the auxiliary system and the physical one �(ω),
and that this can be, in principle, systematically improved, as
discussed below.

C. Auxiliary open quantum system

The idea presented here is strongly related to the exact diag-
onalization (ED) approach for the DMFT impurity problem in
equilibrium [28,119]. Here, the infinite leads are replaced by
a small number of bath sites, whose parameters are optimized
by fitting the hybridization function in Matsubara space. The
reduced system of bath sites plus impurity is then solved by
Lanczos ED [120]. This approach can not be straightforwardly
extended to the nonequilibrium steady-state case for several
reasons: (i) since the small bath is finite, its time dependence is
(quasi)periodic, i.e., no steady state is reached, (ii) there is no
Matsubara representation out of equilibrium [121], thus, one
is forced to use real energies but (iii) in this case Im[�R

aux(ω)]
of the small bath consists of δ peaks and can hardly be fitted
to a smooth �R(ω). The solution we suggested in Ref. [51]
consists in additionally coupling the small bath to a Markovian
environment, which makes it effectively “infinitely large,” and
solves problems (i) and (iii) above. Specifically, we replace
the impurity plus leads model [Eq. (1)] by an auxiliary open
quantum system consisting of the impurity plus a small number
of bath sites, which in turn are coupled to a Markovian
environment.

The dynamics of the system (consisting of bath sites and
impurity), including the effect of the Markovian environment is
expressed in terms of the Lindblad quantum master equation
which controls the time dependence of its reduced density
operator ρ̂ [107,122]:

˙̂ρ = ˆ̂Lρ̂. (9)

The Lindblad superoperator [123]

ˆ̂L = ˆ̂LH + ˆ̂LD (10a)

consists of a unitary contribution

ˆ̂LH ρ̂ = −i[Ĥaux,ρ̂],

as well as a nonunitary, dissipative term originating from the
coupling to the Markovian environment

ˆ̂LDρ̂ ≡ 2
NB∑

μν=0

∑
σ

[
�(1)

νμ

(
dμσ ρ̂ d†

νσ − 1

2
{ρ̂,d†

νσ dμσ }
)

+�(2)
νμ

(
d†

νσ ρ̂ dμσ − 1

2
{ρ̂,dμσ d†

νσ }
)]

, (10b)

where [Â,B̂] and {Â,B̂} denote the commutator and anticom-
mutator, respectively. The unitary time evolution is generated

by the Hamiltonian

Ĥaux =
NB∑

μν=0

∑
σ

Eμνd
†
μσ dνσ + Ud

†
f ↑df ↑d

†
f ↓df ↓, (11)

describing a fermionic “chain” (Eμν is nonzero only for onsite
and nearest-neighbor terms). It is convenient to choose the
interacting impurity at site f = 0 and NB auxiliary bath
sites at μ,ν = 1, . . . ,NB (see Fig. 1(b)). As usual, d†

μσ /dμσ

create/annihilate the corresponding auxiliary particles. The
quadratic form of the dissipator [Eq. (10b)] corresponds to
a noninteracting Markovian environment. The dissipation ma-
trices �(κ)

μν , κ ∈ {1,2}, are Hermitian and positive semidefinite
[122]. The advantage of replacing the impurity problem by
the auxiliary one described by Eqs. (9)–(11), is that for a
small number of bath sites the dynamics of the interacting
auxiliary system can be solved exactly by diagonalization

of the superoperator ˆ̂L in the space of many-body density
operators (see Sec. II D 2).

Intuitively, one can consider the effective system as a
truncation of the original chain described by Eq. (1), whereby
the Markovian environment compensates for the missing
“pieces.” However, this would still be a crude approximation
and, in addition, it would not be clear how to introduce the
chemical potential in the Markovian environment (except for
weak coupling). Our strategy, similarly to the equilibrium
case, consists in simply using the parameters of the auxiliary
system in order to provide an optimal fit to the bath spectral
function �(ω). The parameters for the fit are, in principle,
Eμν and �(κ)

μν . However, one should consider that there is a
certain redundancy. In other words, several combinations of
parameters lead to the same �(ω). For example, it is well
known in equilibrium that in the case of the Eμν one can
restrict to diagonal and nearest-neighbor terms only [124].

The accuracy of the results will be directly related to the
accuracy of the fit to �(ω), and this is expected to increase
rapidly with the number of fit parameters, which obviously
increases with NB . On the other hand, also the computational
complexity necessary to exactly diagonalize the interacting
auxiliary system increases exponentially with NB . The fit does
not present a major numerical difficulty, as the determination of
the hybridization functions of both the original model [Eq. (7)],
as well as the one of the auxiliary system �aux(ω) described
by the Lindblad equation (10) require the evaluation of G0
[cf. (6)], i.e., the solution of a noninteracting problem.

The fit is obtained by minimizing the cost function

χ
(
Eμν,�

(κ)
μν

) =
∑

α∈{R,K}

∫ ∞

−∞
dω Wα(ω)

× ∣∣�α(ω) − �α
aux

(
ω; Eμν,�

(κ)
μν

)∣∣n (12)

with respect to the parameters of the auxiliary system. The
advanced component does not need to be considered as
�A = �R∗. Of course, as in ED-based DMFT, there exists
an ambiguity which is related to the choice of the weight
function Wα(ω), which also sets the integral boundaries. This
uncertainty is clearly reduced upon increasing NB .

Depending on the expected physics, it might be useful to
adopt an energy-dependent weight function. This could be
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used, for example, to describe the physics around the chemical
potentials more accurately.

Once the auxiliary system is defined in terms of
Eμν and �(κ)

μν , the corresponding interacting nonequilibrium
problem (10) can be solved by an exact diagonalization of the

non-Hermitian superoperator ˆ̂L within the space of many-body
density operators. The dimension of this space is equal to the
square of the dimension of the many-body Hilbert space, and
thus it grows exponentially as a function of NB . Therefore,
for NB � 4, a non-Hermitian Lanczos treatment must be
used. The solution of the noninteracting Lindblad problem is
nonstandard (see, e.g., Ref. [125]), and a method particularly
suited for the present approach is discussed in Sec. II D 1.

D. Green’s functions of the auxiliary Lindblad problem

In this section, we present expressions for the Green’s
functions of the auxiliary system. Specifically, we will derive
an analytic expression for the noninteracting Green’s functions
in Sec. II D 1, and illustrate the numerical procedure to
determine the interacting ones in Sec. II D 2. The derivations
make largely use of the formalism of [126] (see also [127]). For
an alternative appealing approach to the noninteracting case,
see also Ref. [125]. All Green’s functions discussed in Sec. II D
are the ones of the auxiliary system, which are different from
the physical ones for NB < ∞.

The dynamics of the auxiliary open quantum system

described by the superoperator ˆ̂L [Eq. (10)] can be recast in an
elegant way as a standard operator problem in an augmented
fermion Fock space with twice as many sites [125–128].
Specifically, one introduces “tilde” operators d̃μ/d̃†

μ together
with the original ones dμ/d†

μ [129]. Introducing the so-called
left vacuum

|I 〉 =
∑

S

(−i)NS |S〉 ⊗ |S̃〉 , (13)

where |S〉 are many-body states of the original Fock space, |S̃〉
the corresponding ones of the tilde space [126], and NS the
number of particles in S. The nonequilibrium density operator
can be written as a state vector in this augmented space

|ρ(t)〉 ≡ ρ̂(t) |I 〉 . (14)

The Lindblad equation is rewritten in a Schrödinger-type
fashion [123,126]

d

dt
|ρ(t)〉 = L̂ |ρ(t)〉 , (15)

where now L̂ is an ordinary operator in the augmented space.
L̂ = L̂0 + L̂I is conveniently represented in terms of the
operators of the augmented space in a vector notation [129]:

d† = (
d

†
0, . . . ,d

†
NB

,d̃0, . . . d̃NB

)
.

Its noninteracting part L0 reads in the augmented space
[123,126] as

iL̂0 =
∑

σ

(d†hd − Tr(E + i�)), (16)

where Tr denotes the matrix trace and the matrix h is given by

h =
(

E + i� 2�(2)

−2�(1) E − i�

)
, (17)

with

� = (�(2) + �(1)), � = (�(2) − �(1)).

Its interacting part has the form [126]

iLI = Ud
†
f ↑df ↑d

†
f ↓df ↓ − Ud̃

†
f ↑d̃f ↑d̃

†
f ↓d̃f ↓.

In this auxiliary open system, dynamic two-time correlation
functions for two operators Â and B̂ of the system can be
expressed as

iGBA(t2,t1) ≡ 〈B̂U (t2)ÂU (t1)〉
= tr U (B̂U (t2)ÂU (t1)ρ̂U ) = tr

(
B̂Ât1,t2−t1

)
, (18)

where ρ̂U is the density operator of the “universe” U composed
of the system and Markovian environment, tr is the trace
over the system degrees of freedom, tr E the one over
the environment, tr U = tr ⊗ tr E the one over the universe,
ÔU (. . .) denotes the unitary time evolution of an operator Ô

according to the Hamiltonian of the universe ĤU . Here [107],

Ât1,t ≡ tr E(e−iĤU t Âρ̂U (t1)e+iĤU t ). (19)

Notice that the time evolution of ρ̂U (t), as well as the one
in Eq. (19), are opposite with respect to the Heisenberg time
evolution of operators. This is the convention for density oper-
ators. For t = t2 − t1 > 0 one can use the quantum regression
theorem [107] which holds under the same assumptions as for
Eq. (9). It states that

d

dt
Ât1,t = ˆ̂LÂt1,t . (20)

In the augmented space, in the same way as for (14) and
(15), one can associate the operator (19) with the state vector
|At1,t 〉 = Ât1,t |I 〉. For this vector, (20) translates into

d

dt

∣∣At1,t

〉 = L̂
∣∣At1,t

〉
. (21)

Considering its initial value (time t = 0)∣∣At1,0
〉 = Â |ρ(t1)〉 ,

the solution of (21) reads as∣∣At1,t

〉 = eL̂t Â |ρ(t1)〉 . (22)

Therefore, we have for the correlation function (18) for
t2 > t1, which we denote as G+

BA(t2,t1):

iG+
BA(t2,t1) = 〈I |B̂eL̂(t2−t1)Â|ρ(t1)〉 = 〈I |B̂(t2 − t1)Â|ρ(t1)〉,

where

B̂(t) := e−L̂t B̂eL̂t (23)

is the non-Hermitian time evolution of the operator B̂, and we
have exploited the relation [126] 〈I | L̂ = 0. For the steady-
state correlation function, which depends on t = t2 − t1, we
have

iG+
BA(t) = 〈I | B̂(t)Â |ρ∞〉 , (24)

165105-5



DORDA, NUSS, VON DER LINDEN, AND ARRIGONI PHYSICAL REVIEW B 89, 165105 (2014)

where ρ̂∞ is the steady-state density operator. Since the
quantum regression theorem only propagates forward in time,
for t < 0 one has to take the complex conjugate of Eq. (18),
which gives for the t < 0 steady-state correlation function
denoted as G−

BA

iG−
BA(t) = −iG+

A†B†(−t)∗ = 〈I | Â†(−t)B̂† |ρ∞〉∗ . (25)

Using (24), the steady-state greater Green’s function for times
t > 0 reads as [130]

G>+
μν (t) ≡ −iθ (t) 〈dμ(t + t1)d†

ν (t1)〉t1→∞

= −iθ (t) 〈I | dμ(t)d†
ν |ρ∞〉 . (26)

We can use (24) also for the lesser Green’s function, however,
for [130] t < 0,

G<+
μν (t) ≡ iθ (−t) 〈d†

ν (t1)dμ(t + t1)〉t1→∞

= iθ (−t) 〈I | d†
ν (−t)dμ |ρ∞〉 .

For the opposite sign of t , we can use (25), so that for both
Green’s functions one has [123,130]

G
>
<−(t) = −G

>
<+(−t)†. (27)

For the Fourier-transformed Green’s function, defined, with
abuse of notation as

G
>
<±(ω) = ∫

dt eiωt G
>
<±(t) , (28)

relation (27) translates into

G
>
<−(ω) = −G

>
<+(ω)†. (29)

We need the retarded and the Keldysh Green’s functions

GR = G>+ − G<− = G>+ + G<+†,

GK = G>+ + G<− + G>− + G<+ = G>+ + G<+ − H.c.,

(30)

whereby both relations hold for the time-dependent as well as
for the Fourier-transformed ones.

1. Noninteracting case

To solve the noninteracting Lindblad problem described by
(16), one first diagonalizes the non-Hermitian matrix [126] h
in Eq. (17):

ε = V −1hV , (31)

where ε is a diagonal matrix of eigenvalues εμ. The noninter-
acting Lindbladian (16) can then be written as

iL̂0 = ξ̄ ε ξ + η

in terms of the normal modes

ξ = V −1d, ξ̄ = d†V , (32)

and a constant η. The normal modes still obey canonical
anticommutation rules

{ξμ,ξ̄ν} = δμν , (33)

but are not mutually Hermitian conjugate.
The steady state |ρ∞〉 obeys the equation

L̂ |ρ∞〉 = 0.

Let us now consider the time evolution (22) of a state initially
consisting of the normal mode operators applied to the steady-
state density matrix

eL̂0t ξμ |ρ∞〉 = eL̂0t ξμe−L̂0t |ρ∞〉 = eiεμt ξμ |ρ∞〉 .

If Im(εμ) < 0, this term diverges exponentially in the long-
time limit, which would be in contradiction to the fact that
|ρ∞〉 is a steady state, unless the state created by ξμ is zero.
Therefore, we must have

ξμ |ρ∞〉 = 0 for Im(εμ) < 0. (34a)

Similarly, we must have

ξ̄μ |ρ∞〉 = 0 for Im(εμ) > 0. (34b)

These equations, thus, define the steady state as a kind of
“Fermi sea.” In addition, by requiring that expectation values
of the form

〈I | ξμ(t)ξ̄ν |ρ〉
do not diverge for large t , we obtain that

〈I | ξμ = 0 for Im(εμ) > 0, (34c)

〈I | ξ̄μ = 0 for Im(εμ) < 0. (34d)

From (34d) it follows that an expectation value of the form
〈I | ξ̄μξν |ρ∞〉 vanishes for the case Im(εμ) < 0. For Im(εμ) >

0 we make use of the anticommutation rules (33) together with
(34b) and the fact that [126] 〈I |ρ∞〉 = tr ρ∞ = 1 and arrive at

〈I | ξ̄μξν |ρ∞〉 = Dμν ,

where the matrix

Dμν = δμν θ [Im(εμ)].

Similarly,

〈I | ξμξ̄ν |ρ∞〉 = D̄μν ≡ δμν − Dμν .

The expression for the steady-state correlation functions of
the eigenmodes ξ of L̂0 can be now evaluated by considering
that, due to the anticommutation rules, the Heisenberg time
evolution (23) gives

ξμ(t) = e−iεμt ξμ, ξ̄μ(t) = eiεμt ξ̄μ.

Thus,

〈I | ξμ(t)ξ̄ν |ρ∞〉 = e−iεμt 〈I | ξμξ̄ν |ρ∞〉 = e−iεμtDμν .

In this way, the greater Green’s function for t > 0 becomes

iG>+
0μν(t) = 〈I | dμ(t)d†

ν |ρ∞〉
=

∑
ς

Vμςe−iες t D̄ςς (V −1)ςν

= (Ve−iεt D̄V −1)μν , (35)

where we have used (32). The Green’s functions are defined
with operators dμ/d†

μ in the original Fock space, so that it is
sufficient to know the first NB + 1 rows (columns) of V (V −1).
For this purpose we introduce

U = T V , U (−1) = V −1T †,
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whereby T is a (NB + 1) × (2NB + 2) matrix, which in block
form reads as T = (11 0). Notice that U−1 �= U (−1). With
this, the Fourier transform (28) of (35) is given by [131]

G>+
0 (ω) =

(
U

D̄
ω − ε

U (−1)

)
, (36)

and G>−
0μν(ω) is obtained with the help of (29). Similarly, the

lesser Green’s function for t < 0

iG<+
0μν(t) = −〈I |d†

νdμ(t) |ρ∞〉
= −

∑
ς

Vμςe−iες tDςς (V −1)ςν

= −(Ue−iεt DU (−1))μν ,

with the Fourier transform

G<+
0 (ω) =

(
U

D
ω − ε

U (−1)

)
, (37)

and G<−
0 (ω) is obtained from (29). Using (30) together with

(36) and (37), we get

GR
0 (ω) = U

D̄
ω − ε

U (−1) +
(

U
D

ω − ε
U (−1)

)†
, (38)

and for the Keldysh Green’s function using also (29)

GK
0 (ω) = U

(
D̄

ω − ε
+ D

ω − ε

)
U (−1) − H.c.

= U
(

1

ω − ε

)
U (−1) − H.c. (39)

In principle, one could just carry out the diagonalization
(31) and then evaluate (38) and (39) numerically, which is
a rather lightweight task. However, it is possible to obtain
a (partially) analytical expression for the Green’s functions.
Indeed, a lengthy but straightforward calculation yields for the
retarded one

GR
0 (ω) = (ω − E + i�)−1 . (40)

Similarly, for the Keldysh component of the inverse Green’s
function, we obtain(

G−1
0

)K ≡ −GR−1
0 GK

0 GA−1
0 = −2i�. (41)

To sum up, (40) and (41) are the main results of this section.
To evaluate �aux(ω), one then uses (6), whereby one should
consider that the matrix G0 in Keldysh space is just the local
one, i.e., in terms of the components local at the impurity GR

0ff

and GK
0ff :

G0 ≡
(

GR
0ff GK

0ff

0 GA
0ff

)
.

In turn, GK
0ff , the ff component of GK

0 , has to be ob-
tained from (41) by the well-known expression [116] GK

0 =
−GR

0 (G−1
0 )K GA

0 .

2. Interacting case

The next step consists in solving the interacting auxiliary
Lindblad problem described by (10a) in order to determine the

Green’s function and the self-energy at the impurity site. This is
done by Lanczos exact diagonalization within the many-body
augmented Fock space.

First, the steady state |ρ∞〉 has to be determined as the right-
sided eigenstate of the Lindblad operator L̂ with eigenvalue
l0 = 0. For convenience, we introduce

L̂ = iL̂, (42)

which is a kind of non-Hermitian Hamiltonian with complex
eigenvalues �. The dimension of the Hilbert space can be
reduced by exploiting symmetries similar to the equilibrium
case. The conservation of the particle number per spin N̂σ is
replaced here by the conservation of N̂σ − ˆ̃Nσ [51]. The steady
state lies in the sector Nσ − Ñσ = 0.

Starting from Eq. (26), the steady-state greater Green’s
function of the impurity reads as in a non-Hermitian Lehmann
representation, for t > 0,

G>+
μν (t) = −i

∑
n

e−i�
(+1)
n t 〈I | dμ

∣∣R(+1)
n

〉 〈
L(+1)

n

∣∣ d†
ν |ρ∞〉 ,

where the identity
∑

n |R(+1)
n 〉 〈L(+1)

n | in the sector Nσ − Ñσ =
+1 has been inserted, in terms of right (|R(+1)

n 〉) and left
(〈L(+1)

n |) eigenstates of L̂ with eigenvalues �(+1)
n , and |I 〉 is

the left vacuum (13). Its Fourier transform reads as

G>
μν(ω) =

∑
n

1

ω − �
(+1)
n

〈I | dμ

∣∣R(+1)
n

〉 〈
L(+1)

n

∣∣ d†
ν |ρ∞〉

−
∑

n

1

ω − �
(+1)∗
n

( 〈I | dν

∣∣R(+1)
n

〉 〈
L(+1)

n

∣∣ d†
μ |ρ∞〉 )∗

.

(43)

The analogous expression for the lesser Green’s function
G<

μν(ω) is obtained by inserting a complete set of eigenstates
in the Nσ − Ñσ = −1 sector and exchanging the elementary
operators accordingly. GK

μν(ω) and GR
μν(ω) are obtained using

Eq. (30) [see also (29)].
For a small number of bath sites NB � 3, the dimension of

the augmented Fock space is still moderate, and eigenvalues
and eigenvectors can be determined by full diagonalization.
For NB � 4, a non-Hermitian Lanczos procedure has to be
carried out. Especially extracting the steady state is not an
easy task since it lies in the center of the spectrum. Details of
our numerical procedure are given in Appendix A.

Once the interacting and noninteracting Green’s functions
of the auxiliary system at the impurity site G(ω) and G0(ω),
respectively, are determined, the corresponding self-energy is
obtained via Dyson’s equation in Keldysh space [Eq. (5)]. The
individual components are explicitly [51]

�R(ω) = 1/GR
0 (ω) − 1/GR(ω),

�K (ω) = −GK
0 (ω)

/∣∣GR
0 (ω)

∣∣2 + GK (ω)/|GR(ω)|2.

As discussed in Sec. II B, this is used in the Dyson equation
(5) for the physical Green’s function.

III. RESULTS

In this section, results for the steady-state properties of
a symmetric, correlated Anderson impurity coupled to two
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FIG. 2. (Color online) Comparison of Im[�α(ω)] from (7) (black) with Im[�α
aux(ω)] at the absolute minimum of the cost function (12) for

auxiliary system sizes NB = 2,4, and 6 bath sites (green, blue, and orange, respectively), and α = R (top) and K (bottom). Results are shown
for tight-binding leads (2) and (8) with t = 10 �0, and three different bias voltages φ ∈ {10,27,28}�0 from left to right.

metallic leads under bias voltage are provided. We assess
the validity of the proposed method by discussing the fit
of the hybridization function and outline how uncertainties
are estimated. Results for the current voltage characteristics
and the nonequilibrium spectral function are presented and
compared with data from time-evolving block decimation
(TEBD) [77] and SNRG [54] calculations, respectively. The
effect of a linear correction of the calculated Green’s functions
is illustrated.

A. Hybridization functions

The optimal representation of the exact bath �(ω) by
the auxiliary one �aux(ω) is obtained by minimizing the
cost function (12). In practice, this is done by employing a
quasi-Newton line search [132,133]. In particular, we chose an
equal weighting of the retarded and the Keldysh component
WR(ω) = WK (ω) = �(ωc − |ω|). After finding our results
to be robust upon different values for the cutoff ωc, as
well as upon using different norms (n = 1,2) in Eq. (12),
we finally choose ωc = 50 �0 and consider imaginary parts
{Im[�α(ω) − �α

aux(ω)]}2 in the cost function only. This is
justified since �K

aux(ω) is purely imaginary and the real part of
�R

aux(ω) is connected to its imaginary part via the Kramers-
Kronig relations [134]. The asymptotic behavior of �R

aux(ω)
is determined by �ff whereas the one of �K

aux(ω) by �ff .
Therefore, the correct asymptotic limit limω→±∞ �aux(ω) =
0 is guaranteed by taking �

(1)
ff = �

(2)
ff = 0, which results

in �
(κ)
μf = �

(κ)
f μ = 0 due to the requirement of semipositive

definiteness of �(κ)
μν . Particle-hole symmetry allows for a

further reduction of the auxiliary system parameters [135].
In this work, we use an even number of auxiliary bath

sites NB = 2,4, and 6 in a linear setup [see Fig. 1(b)] with
an equal number to the left and to the right of the impurity
(only Fig. 6 displays one calculation for an odd number of
bath sites). In Fig. 2, the obtained auxiliary hybridization
functions are compared with the exact ones for various bias

voltages. We find a quick convergence as a function of NB ,
which degrades for large bias voltage φ. The Fermi steps at
the chemical potentials in �K

aux(ω) can not be properly resolved
in the case of NB = 2. Especially in the case of φ = 10 �0 the
auxiliary hybridization functions for NB = 6 as well as for
NB = 4 agree fairly well with the exact one and capture all
essential features, in particular the Fermi steps. The auxiliary
bath develops spurious oscillations in �R

aux(ω) at the energies
of the Fermi levels of the contacts. Here, the discrepancy with
�R(ω) is considerable in magnitude, but extends over small ω

intervals, thus inducing only small errors in the self-energies.
When following the absolute minimum of the cost function

(12) as a function of some external parameter, such as, e.g.,
the bias voltage φ, spurious discontinuities appear due to the
fact that local minima cross each other. This occurs for large
bias voltages and large U , and/or small NB , for which the
approach is more challenging. An example for such a situation
is shown in Fig. 2 for the case NB = 4, when comparing the
hybridization functions just before and after such a crossing,
i.e., for φ = 27 �0 and 28 �0. Even though the changes in the
exact hybridization function are only minor, �aux(ω) displays
a considerable difference. The influence of this spurious effect
on observable quantities is shown in Fig. 3 (right panel, orange
circles) for a different parameter set of NB = 6 at around
φc = 33 �0. The artificial discontinuity in the current is caused
by the shift of spectral weight in �aux(ω).

To deal with these discontinuities, we adopt a scheme
which is suitable for obtaining a continuous dependence of
observables on external parameters and, in addition, allows us
to estimate their uncertainties (see Fig. 3). We first identify a
set of local minima of the cost function (12), obtained by
a series of minimum searches starting with random initial
values. These local minima are then used to calculate an
average and variance of physical quantities, such as the
current. We consider the distribution of local minima with a
Boltzmann weight associated with an artificial “temperature,”
whereby the value of the cost function (12) is the associated

165105-8



AUXILIARY MASTER EQUATION APPROACH TO . . . PHYSICAL REVIEW B 89, 165105 (2014)

FIG. 3. (Color online) Current j vs voltage φ for the model (1) with tight-binding leads and onsite interaction U = 12 �0 (left) and
U = 20 �0 (right). Results for three different auxiliary systems with NB ∈ {2,4,6} are displayed and compared with reference data from TEBD
(magenta dotted and ×) [77]. We plot the averaged mean values connected by lines together with error bars determined according to Sec. III A
and Appendix B. The additional data marks for U = 20 �0 are as follows: The circles for NB = 6 display j (φ) when considering the absolute
minimum in the fit (12). NB = 2,lc and NB = 4,lc present the results of a linear correction of the current values of the absolute minima as
described in Appendix C. The inset displays the difference �j of the calculated currents to the TEBD results.

“energy.” This artificial temperature for the Boltzmann weight
is chosen in such a way that the averaged spectral weight of
the hybridization function as a function of φ is as smooth
as possible. Details are outlined in Appendix B. A possible
pitfall, however, is that physical discontinuities, i.e., real phase
transitions could be overlooked. It is thus compulsory to
additionally investigate the results for the absolute minima
and for different bath setups carefully. This approach has a
certain degree of arbitrariness. However, we point out that it
only affects regions with large error bars in Fig. 3, i.e., large φ

and large U for which also other techniques are less accurate.

B. Current-voltage characteristics

After evaluating the interacting impurity Green’s function
of the physical system according to (5) with the self-energy
evaluated in Sec. II D, we are able to determine the steady-
state current. This is done with the help of the Meir-Wingreen
expression [116,136,137] in its symmetrized form, where we
have already summed over spin

j = i

∫ ∞

−∞

dω

2π
([γL(ω) − γR(ω)]G<(ω)

+ [pF,L(ω)γL(ω) − pF,R(ω)γR(ω)][GR(ω) − GA(ω)]),

(45)

γλ(ω) = −2|t ′λ|2Im[gR
λ (ω)] are the “lead self-energies” and

pF,λ(ω) = pF(ω − μλ) denotes the Fermi distribution of lead
λ with chemical potential μλ.

To quantify the accuracy of the method, we compare the
results for the current-voltage characteristics with quasiexact
reference data from TEBD [77]. We find very good agreement
for interaction strength U < 12 �0. Since in this paper we want
to benchmark the approach in “difficult” parameter regimes,
in the following, we will discuss U � 12�0 only. In Fig. 3 we
display data for U = 12 �0 and 20 �0. The data points and
error bars shown are obtained by using the averaging scheme
as described in Appendix B. For the universal physics at small
and medium bias voltages φ � 20 �0, the current as a function

of the auxiliary system size (NB ∈ {2,4,6}) converges rapidly
to the expected result. The convergence is even monotonic in
a broad region of the parameter space. The zero-bias response
is linear for all NB and approaches the results expected
from the Friedel sum rule [29] j (φ = 0+) = 2 e2

h
φ quickly

for increasing NB . For U = 12 �0 already the NB � 4 results
yield a good reproduction of the current in this bias regime.
For U = 20 �0 and φ � 20 �0, a larger difference between
the NB = 4 and 6 results is observed. Notice that also other
available methods do not yield a satisfactory result in this
parameter regime. In the lead-dependent high-bias regime,
the fit becomes more challenging and large variances appear
in the calculated quantities. This indicates the presence of
many competing local minima with similar values for the
cost function whose value tends to increase with increasing
φ. For φ � 40 �0, the densities of states of the left and the
right contacts do not overlap anymore and the current has
to vanish. This limit can not be exactly reproduced by the
proposed approach due to spurious long-range Lorentzian tails
present in the auxiliary Markovian environment. Nevertheless,
j (φ = 40 �0) approaches zero as one increases the number of
bath sites. This holds true for quantities obtained at the absolute
minimum of the cost function as well as for averaged ones.

To extrapolate our results to larger NB , a scheme for linear
corrections is discussed in Appendix C. Data for NB = 2,lc
and 4,lc, whereby “lc” denotes “linear correction,” is shown
in Fig. 3. For large U = 20 �0 and small- to medium-bias
voltages φ � 20 �0, a solid improvement towards the TEBD
reference values is observed (see inset Fig. 3). Correction
ratios r (see Appendix C) close to one indicate a good
applicability of the linear correction scheme. We find on
average r ≈ 0.75 for φ � 20 �0 (NB = 2,lc and 4,lc). In
the high-bias regime, however, the linear correction can not
be applied with large magnitude and r drops below 0.5
for NB = 2,lc. Nevertheless, the calculation of the effective,
auxiliary hybridization function �aux,r (ω) as described in
Appendix C successfully avoids an “overcorrection” of the
current values and automatically allows one to estimate the
reliability of the results.
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FIG. 4. (Color online) Single-particle spectral function at the impurity evaluated for NB = 6, different bias voltages φ, and U = 12 �0

(left) and U = 20 �0 (right). Data are obtained according to Sec. III A and Appendix B. Other parameters are as in Fig. 3.

Judging from the larger uncertainty from the averaging
procedure and the strong effects of the linear corrections,
we conclude that the high-bias regime is more sensitive to
the details of the fitted, auxiliary hybridization function. The
universal low- and medium-bias regimes are, however, very
well reproduced even with a small number of auxiliary bath
sites.

C. Nonequilibrium spectral function

The bias-dependent single-particle spectral function is
evaluated from the physical steady-state Green’s function of
the impurity A(ω) = − 1

π
Im[GR(ω)]. Results obtained using

NB = 6 for U = 12 �0 and 20 �0 are presented for the whole
bias range of interest in Fig. 4. Data for NB = 4 are similar, but
here the Kondo physics can not be reproduced as accurately as
in the case of NB = 6. Our approach does preserve the local
charge density 〈nf 〉 = ∑

σ
1
2 + 1

2

∫ ∞
−∞

dω
2π

Im[GK (ω)] = 1 and
magnetization 〈mf 〉 = 0 as well as the spectral sum rule [138].

The presented method reproduces qualitatively correctly
also the equilibrium physics at φ = 0 since A(ω) displays
a Kondo resonance at ω = 0 and two Hubbard satellites
at the approximate positions ω ≈ ±U/2. This renders the
application to equilibrium DMFT problems an interesting
perspective. The width and magnitude of the Kondo resonance
are discussed in comparison with (S)NRG data in Sec. III C 1.

Upon increasing the bias voltage, the Kondo resonance
splits up and two excitations are observed at the energies of
the Fermi levels of the leads [78,139,140]. For U = 12 �0,
the splitted resonances merge into the Hubbard bands at
approximately φ ≈ 15 �0 and can not be clearly identified
thereafter. In contrast, in the case of U = 20 �0, the resonances
overlap with the Hubbard satellites and can still be observed
in the spectrum A(ω) at higher voltages. Calculations with
increasing U in the high-bias regime φ ≈ 40 �0 have shown
the consistency of this effect and that a minimum value of
U ≈ 15 �0 is needed in order for the resonances at the Fermi
energies to be perceptible after having crossed the Hubbard
bands.

1. Comparison with scattering states numerical
renormalization group

We compare the computed spectral functions with results
obtained by means of SNRG [53]. For this purpose, we use a
flat DOS [Eq. (3)] for the leads, as in Ref. [53]. Focusing on the
low-bias regime and NB = 6, the obtained spectral functions
are depicted in Fig. 5. Compared with SNRG, our results do
not achieve the same accuracy in the low-energy domain, i.e.,
in the vicinity of ω ≈ 0. However, our data provide a better
resolution at higher energies. When inspecting the Kondo peak
in the equilibrium case φ = 0, our results do not fully fulfill
the Friedel sum rule [29,141,142]. Depending on parameters,
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FIG. 5. (Color online) Single-particle spectral function for a con-
stant DOS of the leads (3), with DWB = 20 �0 and U = 16 �0 and
different bias voltages φ (in units of �0). Results are obtained for
NB = 6 and at the absolute minimum of Eq. (12). For a comparison
with SNRG [53] [Fig. 2(a) therein], note that their � = 2 �0.

the height of the Kondo resonance is underestimated. This is
due to the fact that the imaginary part of the self-energy at
ω = 0 has a small finite value which is due to the Lorentzian
tails of the Markovian environment.

The resolution does not suffice to tell whether a two- or a
three-peak structure is present for very low-bias voltages φ �
2 �0. Nevertheless, one can say that the higher-bias regime
φ > 4 �0 is resolved more accurately and one is able to clearly
distinguish the excitations at the Fermi energies of the contacts
from the Hubbard satellites. The observed linear splitting is
consistent with experiments on nanodevices [139,140]. Within
second-order Keldysh PT [58] and QMC results [143], the
resonance does not split but is suppressed only. In fourth order
and in NCA it splits into two, which are located near the
chemical potentials of the two leads [58]. Other methods yield
a splitting with features slightly different in details: real-time
diagrammatics [144], VCA [78], imaginary potential QMC
[90], or scaling methods [145]. Overall, a good qualitative
agreement with the SNRG results is achieved which underlines
the reliability of the calculated spectral functions.

2. Linear correction of Green’s functions

Here, we consider the effect of a linear correction of the
Green’s functions, as outlined in Appendix C. In the left
panels (right panels) of Fig. 6, we show data for NB = 2
(NB = 4) including linear corrections (r = 1) for a high
interaction strength in the low-bias regime. We benchmark
to data obtained using NB = 6 without corrections.

For NB = 2 without linear corrections, the spectral function
of the auxiliary system does not feature excitations at the Fermi
energies of the contacts (ω = ±2 �0), which are present in
the NB = 6 data. Also, the spectra appear washed out. The
linearly corrected result, however, features not only the two
resonances at the appropriate energies, but also the shoulders
present in the reference data. Again, in the Keldysh Green’s
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FIG. 6. (Color online) Effects of the linear corrections of the
Green’s functions according to Apendix C (solid blue lines). The
dashed lines indicate the uncorrected G(ω) with the same NB , while
solid orange and light blue lines display results for larger NB for
comparison. Results are shown for a constant lead DOS [Eq. (3)]
with DWB = 20 �0, U = 16 �0, and φ = 4 �0.

function a large correction towards the more accurate NB = 6
results is observed. To highlight the fact that the improvement
of the linear correction is not only due to the inclusion of one
additional bath site, also a calculation for an auxiliary system
with NB = 3 is shown. Evidently, the NB = 3 spectral function
exhibits a large weight at low frequencies, but the resolution
is rather low and only a single, smeared out peak at ω = 0 �0

is observed. It clearly does not account for the splitting of the
Kondo resonance.

For NB = 4, a similar enhancement is found. Clearly, the
size of the corrections is much smaller. Especially in the
Keldysh component, the Green’s function for NB = 6 and for
the corrected NB = 4 system nearly coincide. In general, the
difference between the NB = 6 and the NB = 4 calculations
(raw and corrected) is quite small, so that the presented spectral
functions in Fig. 5 for larger values of φ � 12 �0 can be
assumed to be quite accurate.

Overall, the linear correction enables a vast improvement
in the universal low- and medium-bias regimes for all U ,
which becomes especially important for large U . For large-bias
voltages, when lead band effects become prominent, the linear
correction is more challenging (see also Sec. III B).

IV. CONCLUSIONS

We have presented a numerical approach to study correlated
quantum impurity problems out of equilibrium [51]. The
auxiliary master equation approach presented here is based
on a mapping of the original Hamiltonian to an auxiliary
open quantum system consisting of the interacting impurity
coupled to bath sites as well as to a Markovian environment.
The dynamics of the auxiliary open system is controlled by
a Lindblad master equation. Its parameters are determined
by a fit to the impurity-environment hybridization function.
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This has many similarities to the procedure used for the
exact-diagonalization dynamical mean field theory impurity
solver, but has the advantage that one can work directly
with real frequencies, which is mandatory for nonequilibrium
systems.

We have illustrated how the accuracy of the results can
be estimated, and systematically improved by increasing the
number of auxiliary bath sites. A scheme to introduce linear
corrections has been devised. We presented in detail how
the nonequilibrium Green’s functions of the correlated open
quantum system are obtained by making use of non-Hermitian
Lanczos diagonalization in a superoperator space. These
techniques make the whole method fast and efficient as well
as particularly suited as an impurity solver for steady-state
dynamical mean field theory [51].

In this work, we have applied the approach to the single-
impurity Anderson model, which is one of the paradigmatic
quantum impurity models. We have analyzed in detail the
systematic improvement of the current-voltage characteristics
as a function of the number of auxiliary bath sites. Already for
four auxiliary bath sites, results show a rather good agreement
with quasiexact data from time-evolving block decimation [77]
in the low- and medium-bias regimes. In the high-bias regime,
the current deviates from the expected result with increasing
interaction strength. However, we have shown how to estimate
the reliability of the data from the deviation of the hybridization
functions and how results can be corrected to linear order in
this deviation. The impurity spectral function obtained in our
calculation features a linear splitting of the Kondo resonance
as a function of bias voltage. Good agreement with data
from scattering-state numerical renormalization group [53]
was found.

Applications of the presented method to multiorbital
correlated impurities or correlated clusters is in principle
straightforward, although numerically more demanding. Such
systems are themselves of interest as models for transport
through molecular or nanoscopic objects and as solvers
for nonequilibrium cluster dynamical mean field theory.
In this case, a larger number of auxiliary sites might be
necessary to obtain a good representation of the various
hybridization functions. For this situation, one should use
numerically more efficient methods to solve for larger cor-
related open quantum systems, such as matrix product states
and density matrix renormalization group, possibly combined
with stochastic wave-function approaches [146–148], sparse
polynomial space [149,150], or configuration interaction
approaches [151]. A more accurate determination of low
energy, and possibly critical properties, might be achieved by
a combination with renormalization group iteration schemes,
similar to the numerical renormalization group. Work along
these lines is in progress.

Although we have presented results for the steady state,
where the method is most efficient, also extensions to time-
dependent phenomena provide an interesting and feasible
perspective. While other approaches, such as time-dependent
density matrix renormalization group [73] or quantum Monte
Carlo [49] are certainly more accurate at short times, the
present approach could be used to estimate directly slowly
decaying modes by inspecting the behavior of the low-lying
spectrum of the Lindblad operator.
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APPENDIX A: NUMERICAL CALCULATION OF THE
AUXILIARY INTERACTING GREEN’S FUNCTION

In this section, we present details of the numerical eval-
uation of the auxiliary Green’s function, as described in
Sec. II D 2. We focus on large Hilbert spaces for which
a sparse-matrix approach is mandatory. To determine the
steady state, which is the right-sided eigenstate of L̂ with
eigenvalue zero, one can make use of a shift-and-invert Arnoldi
procedure [152–155]. The spectrum of L̂ [Eq. (42)] has the
property that Im(�n) < 0 for all eigenvalues �n (except the
steady state �0 = 0). Therefore, given a small shift s > 0,
the eigenvector of (L̂ − is1̂1)−1 with the largest eigenvalue
is the steady state. Since L̂ is non-Hermitian, the three-term
recurrence of the ordinary Lanczos scheme [120] does not
apply, and one has to resort to an Arnoldi scheme instead.
To construct the corresponding Krylov space, a system of
equations (L̂ − is1̂1) |φ̃n+1〉 = |φn〉 has to be solved in each
step. For the problem at hand, we found that this can be
done most efficiently by combining a stabilized biconjugate
gradient method with an incomplete LU decomposition as
preconditioner [156,157]. Despite using sparse-matrix meth-
ods, the memory requirements of this approach are rather high
compared to the schemes presented below.

A second possible route to determine the steady state |ρ∞〉
is to perform an explicit time evolution. For unitary time
evolutions, a well-established method relies on the Lanczos
scheme to construct an approximate time evolution operator
[158]. Such an approach can be adapted to the nonunitary
case by using a two-sided Lanczos scheme (see below), or
also by employing an Arnoldi procedure [155]. Since L̂ is
non-Hermitian, one can equally well use a simpler backward
or forward Euler scheme [133] to discretize the nonunitary
time evolution operator. These approaches may not yield a
highly accurate time evolution of |ρ(t)〉, but can nevertheless
determine the steady state within a moderate number of steps.
As for the shift-and-invert approach above, to solve the implicit
update of |ρ(tn+1)〉 at time step tn in the case of the backward
Euler, a biconjugate gradient routine has proven to be effective.
For the forward time integration, a Runge-Kutta method
of second order is sufficient, with the great advantage that
only matrix-vector multiplications are needed, which reduces
memory requirements. In practice, for the considered cases
it was found that for not too large systems (NB < 6), the
shift-and-invert Arnoldi procedure is best suited, whereas a
forward time integration is advantageous for the case NB = 6.

Once the steady state is determined, Green’s functions can
be effectively calculated by employing a two-sided Lanczos
scheme [152,159–163]. We therefore express the right- and
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left-sided eigenvectors of L̂ in Eq. (43) in a Krylov space basis

|Rn〉 =
∑

k

Ukn

∣∣φk
R

〉
, 〈Ln| =

∑
k

(U−1)nk

〈
φk

L

∣∣ .

Here, we have omitted the Nσ − Ñσ symmetry sector index
for the sake of clarity. The biorthogonal Lanczos vectors〈

φk
L

∣∣φk′
R

〉 = δkk′

are determined by the three-term recurrence∣∣φn+1
R

〉 = 1

cn+1

(
L̂

∣∣φn
R

〉 − en

∣∣φn
R

〉 − kn

∣∣φn−1
R

〉 )
,

〈
φn+1

L

∣∣ = 1

c∗
n+1

( 〈
φn

L

∣∣ L̂ − en

〈
φn

L

∣∣ − k∗
n

〈
φn−1

L

∣∣ ),

with

en = 〈
φn

L

∣∣ L̂ ∣∣φn
R

〉
,

kn = 〈
φn−1

L

∣∣ L̂ ∣∣φn
R

〉 = (〈
φn

L

∣∣L̂ ∣∣φn−1
R

〉 )∗
,

and a normalization constant cn such that 〈φn
L|φn

R〉 = 1. One
has a certain degree of freedom in the choice of cn and kn

due to the relation k∗
n = cn, which is fulfilled, for example, by

kn = k∗
n = cn.

In the Krylov basis, L̂ takes on a tridiagonal form Tnm =
〈φn

L| L̂ |φm
R 〉 with the matrix elements Tnn = en, Tn−1n = kn,

and Tnn−1 = k∗
n. When n + 1 becomes as large as the degree of

the minimal polynomial of L̂, the eigenvalues and eigenvectors
of T represent those of L̂ [152,160]. If one truncates the
Krylov basis, this statement holds still approximately true,
especially for the largest eigenvalues in magnitude. Analogous
to the Hermitian case [164], an exponential convergence of
the eigenspectrum of T towards the one of L̂ is observed,
which is of particular importance for the calculation of Green’s
functions. A peculiarity of the two-sided Lanczos scheme is
that not every Krylov subspace guarantees that Im(�n) < 0
for all eigenvalues �n of T . In order to obtain the appropriate
pole structure for the estimated Green’s functions, one has to
check Im(�n) < 0 together with convergence criteria. In cases
in which Im(�n) < 0 can not be fulfilled exactly, it has to
be ensured at least that the corresponding weights of these
eigenvalues are negligible.

For the calculation of the Green’s functions needed here it
is convenient to choose appropriate initial vectors, which are
in the case of the greater Green’s function (43)∣∣φ0

R

〉 = 1

c0
(d†

f |ρ∞〉), 〈
φ0

L

∣∣ = 1

c∗
0

(〈I | df ).

When denoting by �n and Uk,n the eigenvalues and right-sided
eigenvectors of T , respectively, Eq. (43) can be cast into the
form

G>(ω) =
∑
n,k,k′

UknU
−1
nk′

ω − �n

〈I | df

∣∣φk
R

〉 〈
φk′

L

∣∣ d†
f |ρ∞〉

−
∑
n,k,k′

(
UknU

−1
nk′

)∗

ω − �∗
n

(〈I |df

∣∣φk
R

〉 〈
φk′

L

∣∣ d†
f |ρ∞〉)∗

= |c0|2
∑

n

U0nU
−1
n0

ω − �n

− |c0|2
∑

n

(
U0nU

−1
n0

)∗

ω − �∗
n

.

APPENDIX B: AVERAGING SCHEME FOR MULTIPLE
LOCAL MINIMA

This section contains details on the approach we used to de-
termine the artificial “temperature” for the Boltzmann weights
as described in Sec. III A. We consider the situation that a
set of local minima for which Eq. (12) becomes stationary
is known. Let us specify by ay(φ) the vector of parameters
{Eμν,�

(κ)
μν }y corresponding to one certain local minimum for a

set of model parameters, labeled by y. In order to quantify the
spectral weight distribution of the corresponding hybridization
function �aux[ω; ay(φ)], we define

mR
2 [ay(φ)] =

∫ ωc

−ωc

Im
{
�R

aux[ω; ay(φ)]
}
ω2dω,

mK
3 [ay(φ)] =

∫ ωc

−ωc

Im
{
�K

aux[ω; ay(φ)]
}
ω3dω,

which are similar to the second and third moments of
�R

aux and �K
aux, respectively. For the Keldysh component,

a definition analogous to the first moment would yield the
desired information as well but the choice above has been
found to be more sensitive to details of �K

aux. The value of the
corresponding cost function χ [ay(φ)] of the yth minimum is
used as an artificial “energy” and enables one to define weights
when making use of Boltzmann’s statistic

Py(φ,β) = 1

Z
e−βχ[ay (φ)],

where we introduced an artificial “temperature” β−1. For each
bias voltage separately, we are then able to calculate averaged
quantities

mR
2 (φ,β) =

∑
y

Py(φ,β)mR
2 [ay(φ)],

as well as mK
3 (φ,β) and χ (φ,β) in an analogous manner.

The quantities mR
2 (φ,β) and mK

3 (φ,β) provide an estimate
of the center of the spectral weight for the averaged set of
hybridization functions for each bias voltage φ.

Our goal is that these quantities vary in a smooth way
when changing the bias voltage. To achieve this, we employ a
minimum curvature scheme [133], meaning that we optimize
the function

vc(β) =
∫ φmax

0

{
wR

∣∣∣∣ ∂2

∂φ2
mR

2 (φ,β)

∣∣∣∣
2

+ wK

∣∣∣∣ ∂2

∂φ2
mK

3 (φ,β)

∣∣∣∣
2

+wχ

∣∣∣∣ ∂2

∂φ2
χ (φ,β)

∣∣∣∣
2 }

dφ,

with respect to β. This determines the optimal artificial
temperature, which ensures that the averaged cost function as
well as the averaged spectral weight are as smooth functions
of φ as possible, given the set of calculated minima {ay(φ)}.
As in many optimization problems, an arbitrariness exists in
the definition of the quantities mR

2 (φ,β) and mK
3 (φ,β), as well

as in choosing the values of the weights wR , wK , and wχ . In
our case, all of the weights were chosen to be equal to one in
units of t .

An improvement of the results, to a certain degree at least,
could be expected when making use of extensions like a
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bias dependent β(φ). This has not been considered in this
work since already a single variable β provided quite smooth
observables. As mentioned in the main text, in any case, it
is obligatory to examine besides the averaged results also the
ones for the absolute minima and/or for different averaging
schemes, in order to avoid that physical discontinuities are
averaged out. We stress that this approach has to be taken with
due care since it is in some aspects arbitrary. However, it is
useful to give an estimate of the error of the calculation, and
can certainly identify regions in parameter space where the
error is negligibly small.

APPENDIX C: LINEAR CORRECTIONS

In this section, we present a scheme to correct physical
quantities up to linear order in the difference [165]

D(ω) = �ex(ω) − �aux(ω)

between the auxiliary and the exact hybridization functions.
Although D(ω) decreases rapidly with increasing number of
auxiliary bath sites NB , the size of the Hilbert space also
increases exponentially with NB . This poses a clear limit to
the maximum value of NB .

The idea is based on the fact that each physical quantity
O[ � ] is a functional of �(ω). Its exact value is, thus,
obtained as O[ �ex]. For a finite NB there will always be
a nonzero value of D(ω) at some energies, so we will always
obtain an approximate value O[ � aux]. A linear correction
can be obtained by evaluating numerically the functional
derivative of O[ � ]. Strictly speaking, considering that only
Im[�R(ω)] and Im[�K (ω)] are independent functions, O is
a functional O[Im(�R),Im(�K )]. Suppose one knows the
functional derivatives

δO[ � ]

δ Im[�α(ω)]
, α ∈ {R,K}

then to linear order in D(ω)

O[ �ex]≈O[ � aux]

+ r
∑

α∈{R,K}

∫
δO[ � ]

δ Im[�α(ω0)]

∣∣∣∣
�=�aux

Im[Dα(ω0)] dω0

+O(D2), (C1)

with r = 1.
We evaluate the functional derivative numerically in the

following way. One first evaluates O[ � aux] at the optimum
�aux(ω). Then, O is evaluated at a “shifted” Im[�α(ω)],
obtained by adding a delta function peaked around a certain
energy ω0:

δω0 (ω) ≡ δ(ω − ω0),

multiplied by a small coefficient ε. The functional derivatives
are then approximated linearly, by making use of the equations

δO[ � ]

δ Im[�R(ω0)]
± 2

δO[ � ]

δ Im[�K (ω0)]

≈ 1

ε

(
O[Im(�R),Im(�K )]

−O[Im(�R) − εδω0 ,Im(�K ) ∓ 2εδω0 ]
)
, (C2)

which become exact in the ε → 0 limit.
A (quasi)delta-peak correction εδω0 to �α(ω) can be

obtained by attaching an additional bath site (NB + 1) with
onsite energy ENB+1,NB+1 = ω0 directly to the impurity site
with a hopping ENB+1,f = √

ε/π . The sum of �
(1)
NB+1,NB+1

and �
(2)
NB+1,NB+1 is proportional to the width of δω0 and, thus,

should be taken as small as possible. In practice, one uses a
discretization of the integration over ω0 in Eq. (C1) and the
width of the delta peaks has to be adjusted accordingly. Setting
one of the components �κ

NB+1,NB+1 to zero yields a peak in the
Keldysh component with a coefficient ±2ε, respectively, as
used in Eq. (C2).

Notice that the functional derivative (C2) amounts to
carrying out two many-body calculations for each point ω0 on
a system with NB + 1 bath sites. However, it is not necessary
to repeat the calculation for each physical quantity of interest.
In the linearly corrected current values presented in Sec. III B,
a ω0 mesh of 200 points was used, whereby this number is
likely to be reduced when optimizing the method.

Strictly speaking, the coefficient r in Eq. (C1) should be 1.
However, for cases in which the linear correction is not small,
this could produce an “overcorrection.” In order to avoid this,
we introduce a smaller ratio r which is determined as follows:
We evaluate the corrected self-energy at each ω via Eq. (C1)
and O = �(ω) with some value of r < 1 and denote it �r (ω).
We do the same for the Green’s function of the auxiliary system
and denote it Gr (ω). Using Eqs. (5) and (6), we now have an
estimate of an effective r-dependent auxiliary hybridization
function of the linearly corrected system via

�aux,r (ω) ≡ g−1
0

(ω) − G−1
r (ω) − �r (ω).

In principle, for r = 1 this gives �ex(ω) up to O(D2). In
practice, for finite D(ω), one can introduce a cost function χ (r)
analogous to Eq. (12) to minimize the difference |�aux,r (ω) −
�ex(ω)| as a function of r . We checked that for the case
in which the linear correction is a good approximation, the
minimum occurs at r = 1. If the minimum of χ (r) is situated
at some value rmin < 1, then one corrects also other physical
quantities according to Eq. (C1) with the same r = rmin.

Alternatively to the correction (C1) discussed above, one
can use the numerical functional derivative evaluated via
Eq. (C2) in order to estimate the sensitivity of the value of
O with respect to variations of Im[�α

aux(ω)] as a function of
ω and α. This is of use, in a second step, to adjust the weight
function Wα(ω) in Eq. (12), so that more sensitive ω regions
acquire a larger weight.
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5.10. Strong electronic correlations at high bias voltage and

structured electronic leads

5.10.1. Preamble

This part of our work is unpublished at the time of writing this thesis [70].
This last part of the thesis concludes the studies on the nonequilibrium behaviour of the SIAM

but its arguments apply to any correlated junction in general independent of the speci�c model.
The SIAM is introduced in Sec. 3.1 and its physical applications are outlined in Ch. 2. Aspects of
its equilibrium behaviour is presented in Sec. 5.1 and Sec. 5.4, nonequilibrium temporal evolution
in Sec. 5.2 and Sec. 5.3 and steady-state properties in Sec. 5.5, Sec. 5.6. In this �nal part we
explore a regime of high bias voltages near the conduction band edge of the leads. Commonly
electronic correlations are believed to be important at low bias voltages while being wiped out by
an e�ect comparable to temperature for high bias voltages. We however �nd strong indications
that electronic correlations may increase at high bias voltage at diminishing band overlap. Our
results are based on data from real time evolution, steady-state cluster methods, the AMEA as
well as QMEs, see Sec. 5.8. An overview of the methods is available in Ch. 3.
This manuscript is authored by Martin Nuss (MN) and co-authored by Antonius Dorda (AD),

Martin Ganahl (MG), Hans Gerd Evertz (HE) and MN's supervisors Enrico Arrigoni (EA) and
Wolfgang von der Linden (WL). The research was initiated by MN. This research was to a
large and signi�cant extent conducted by MN under the supervision of WL and EA. HE, EA
and WL provided guidance and expertise throughout all phases of the work. MN developed,
implemented, tested an ran all simulations in stsCPT, stsVCA, DMRG+TEBD and the QME.
AD conducted the AMEA calculations. MG provided his basis MPS computer code. MG and HE
provided guidance and expertise for the MPS method. MN conducted the testing and parameter
studies. EA initiated the work on the QME and hinted at the charge Kondo physics. MN
conducted an extensive literature research. MN prepared, collected, interpreted, analyzed and
visualized the results and set them in context with recent literature. MN wrote the �rst version
of the manuscript. All authors contributed equally in discussing our results and revising the
manuscript. We discussed our results with Sabine Andergassen.
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We discuss the role of electron-electron correlations at high bias voltages in transport setups which
feature leads with a finite and structured electronic density of states. In nonequilibrium calculations
the wide band limit, that is a featureless lead density of states at all energies is commonly applied.
It is found that at high bias voltages electronic correlations are dominated by the applied bias
voltage. Then the system behaves essentially free, rendering the role of the bias voltage similar to
temperature or a magnetic field in equilibrium. We show, in addition, that at high bias voltage in
the vicinity of the band edge of the reservoirs, electronic correlations become significantly enhanced
again. This behaviour can be attributed to an effective reduction of the nonequilibrium energy scale
by a reduced available state space for transport. Our results are based on a combined approach using
density matrix renormalization group and time evolving block decimation for an accurate real-time
evolution, the steady-state variational cluster approach and the auxiliary master equation approach
for steady-state dynamics and a Born-Markov-secular quantum master equation for steady-state
tomography. We discuss the enhanced correlations in the steady-state double occupancy, the charge
current, the local density of states and the reduced many-body density matrix of a single correlated
orbital connected to two electronic reservoirs under voltage bias. In addition we provide a possible
resolution to an unresolved issue about the steady-state double occupancy of the single impurity
Anderson model, which arose recently in [EPL 102, 37011 (2013)].

PACS numbers: 73.23.-b, 73.63.Kv, 72.10.Fk, 71.27+a

I. INTRODUCTION

Correlated quantum systems out of equilibrium have
become a subject of intense study with promising out-
look during the last decade.1–7 Besides realizations in
nanoscopic devices8–11 and molecular junctions12,13 their
physics can be explored using highly tunable quantum
simulators14–18 and technological applications are to be
expected in the near future. Quite generally these sys-
tems consist of a microscopic subsystem of quantum de-
grees of freedom i.e. a molecule or nano structure which
exhibits a particular kind of many-body interaction and
at least two electronic leads which serve as particle and
temperature reservoirs. The state of the microscopic cen-
tral system can be controlled by environment parameters
like a bias voltage or a temperature gradient which serve
the purpose of imposing a nonequilibrium situation on
the central “device”. The behaviour of such low dimen-
sional, confined quantum systems is often dominated by
many-body interactions rendering their detailed under-
standing in nonequilibrium situations essential for future
device engineering.

The effects of strong electronic correlations in quan-
tum many-body systems out of equilibrium are a priori
expected in a universal low bias regime. That is, as long
as the nonequilibrium energy scale of the bias voltage
VB is small compared to an electronic coherence energy
scale T ∗. As a result, non trivial many-body effects like
the Kondo effect or the phenomenon of negative differen-
tial resistance (NDR) are expected to be pronounced for

VB < T ∗. For larger VB , this environmental ”perturbing”
energy scale acts like a high effective temperature19–21 T
or large magnetic field22 B which suppresses electronic
correlations rendering the system effectively free. Renor-
malization group (RG) methods have shown that the ef-
fects of electronic correlations are indeed diminished at
high bias voltages assuming a featureless wide band limit
for the noninteracting lead electronic density of states
(DOS).19,20,23 That is the DOS of the left and right
lead are constant for all energies, allowing in principle
all states of the system within the transport window to
participate in transport equally.24

Recently, non trivial phenomena like NDR have also
been found at high bias voltages but just as a result of
the reservoir DOS and not in connection with electronic
correlations in the device.25 Consider a device with two
leads (L/R) of equal, finite DOS within a bandwidth of
±D and an anti-symmetrically applied bias voltage VB

2 =
µL = ϵL = −µR = −ϵR, where µ is the chemical potential
and ϵ is the center of the band. Then it is clear that the
current will become zero when the bands of the leads
stop overlapping at VB = 2D. Further assume a lead
DOS ρL/R(ω) which is structured as for example in a
semi-circular fashion, see Fig. 1 (B):

ρL/R(ω) =
2

πD2
ℜe
(√

D2 − (ω − ϵ2L/R)
)

. (1)

Then the current will continuously decrease approaching
the band edge because less electronic states are available
for transport. This is, the NDR occurs when the reservoir



2

DOS is finite and the overlap starts to diminish under an
applied bias voltage.

In general one expects universal physics driven by elec-
tronic correlations at low bias voltages as proposed by RG
and essentially noninteracting physics possibly influenced
by trivial band effects at high bias voltages.

This work reports the theoretical observation that elec-
tronic correlations can in fact even be promoted by high
bias voltages at finite lead bandwidth. We discuss a gen-
eral situation in which a correlated quantum system of
finite size is coupled to two electronic reservoirs of finite
bandwidth under voltage bias. As the simplest possible
realization we present specific results for the particular
example of a single correlated orbital coupled to reser-
voirs with semi-circular electronic density of states to
back our general arguments. We show that electronic cor-
relations are important even at high bias voltages, if the
overlap of the reservoir density of states becomes small.
Our observations make it therefore essential to disentan-
gle the trivial effects of the reservoir DOS from features
arising due to electronic correlations in the device.

II. MODEL AND METHOD

We consider a symmetric single impurity Anderson
model26 (SIAM) of spin- 1

2 fermions. A single electronic
orbital with on-site interaction U is coupled to two nonin-
teracting one dimensional electronic reservoirs, see Fig. 1
(A). The dynamics are governed by

Ĥ = Ĥcorr + Ĥres + Ĥcoup

Ĥcorr = −U

2

∑

σ

f†
σ fσ + U n̂f

↑ n̂
f
↓

Ĥres =
∑

α,σ


±VB

2

∑

i

c†iασ ciασ − t
∑

⟨i, j⟩
c†iασ cjασ




Ĥcoup = −t′
∑

α

∑

σ

(
c†0ασ fσ + f†

σ c0ασ

)
.

The electronic annihilation (creation) operators ciασ, fσ

(c†iασ, f
†
σ) obey the usual anti-commutation relations with

spin σ = {↑, ↓}. The particle number operator n̂ is de-
fined in the usual way. When needed, we will refer to the
on-site energy of the correlated orbital as ϵf . We choose
t = −1 for the semi-infinite one dimensional tight bind-
ing left (α = L) and right (α = R) reservoirs,27 yielding
a semi-circular DOS as defined in Eq. (1). A bias volt-
age VB is applied in an anti-symmetric fashion,28,29 see
Fig. 1 (B). The symmetric coupling strength t′ = 0.3162 t
between the correlated orbital and the two half-filled
reservoir leads to an equilibrium Anderson width30 of

∆ ≡ π t′2 ρreservoir(0) = t′2

t ≈ 0.1 t. We further use
ℏ ≡ kB ≡ 1.

This setup implements three regimes according to bias
voltage, see Fig. 1 (C): I, “low-bias” VB is small with

respect to the electronic energy T ∗ and only states
around energy ω = 0 lie inside the transport window, II,
“medium- bias” VB is larger than T ∗ but well below the
electronic lead bandwidth W = 2D, states at all system
energies lie inside the transport window, III, “high-bias”
VB is in the vicinity of the lead band edge and only states
around energy ω = 0 lie inside the transport window.

In order to evaluate the effects of electron-electron
correlations at finite bias voltage we compute steady-
state observables using three independent numerical ap-
proaches.

A. Static steady-state observables

We evaluate static observables in the steady-state: (i)
the double occupancy which will provide us with in-
formation about the electronic correlations in terms of
charge fluctuations and magnetic fluctuations in the de-
vice and (ii) the charge current which indirectly measures
the electronic states of the device in the transport win-
dow. These are obtained from a quasi exact real time
evolution in a matrix product state (MPS) framework31

which has proven to be the highly accurate method of
choice to evaluate static time dependent observables of
one dimensional interacting quantum systems out of equi-
librium.32–44 In particular we use time evolving block
decimation (TEBD)45 after quenching the system out of
equilibrium from an initial state which is obtained us-
ing density matrix renormalization group (DMRG).46 For
the DMRG, we always start from a half filled system in
the canonical ensemble with total Sz = 0. All results are
consistent among three different quenches: i) quenching
the coupling from zero to t′ to both leads, ii) quench-
ing the bias voltage from zero to VB and iii) quenching
the coupling from zero to t′ at the left lead only. Our
numerical implementation of the TEBD makes use of a
second order Suzuki-Trotter decomposition of the prop-
agator31, Abelian symmetries and a highly parallelized
computer code. The steady-state is extracted by reach-
ing a plateau in the time dependent observables at long
times as outlined in Ref. 47. For steady-state expectation
values we give error bars, which indicate three times the
standard deviation of the fitted constant to the steady-
state plateau in the time dependent observable. Based
on extensive parameter studies for converged results we
use a Trotter time step of δτ = 0.05 t−1 and a system
size of overall L = 150 orbitals. We dynamically ad-
justed the size of the TEBD matrices with a maximum
of χ = 2000. A detailed discussion of the method, the
employed quenches as well as a study of convergence in
all auxiliary method dependent parameters is available
in Ref. 47.
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FIG. 1: (Color online) Model, electronic leads and energy landscape. (A) A single orbital with on-site electron-electron
interaction U is tunnel-coupled via t′ to two noninteracting one-dimensional electronic reservoirs of infinite size and bandwidth
W = 2D held at different chemical potential (and on-site energy) to apply a bias voltage VB . (B) Reservoir DOS and respective
overlap in the high bias regime, VB = 36∆. The green filled region indicates the occupied electron states of the left, high
bias reservoir. The orange region indicates the transport window where in addition empty states are present in the right, low
bias lead. (C) The system features an equilibrium electronic energy scale T ∗ which is perturbed by the applied bias voltage
VB . The available state space for transport CB grows and shrinks linearly with VB . We identify three regimes: I, “low-bias”
with respect to the electronic energy T ∗, II, “medium- bias” above T ∗ and well below the electronic lead bandwidth W , III,
“high-bias” in the vicinity of the lead band edge.

B. Steady-state dynamics

In order to go beyond static quantities and obtain dy-
namic single-particle spectra directly in the steady-state
we use a nonequilibrium Green’s function method: the
steady-state variational cluster approach (stsVCA).48,49

This approximate quantum many-body cluster method
relies on a decomposition of the infinite lattice of system
and leads into exactly solvable parts and their single-

particle connections T̃ . The split parts are solved exactly
for their respective single-particle Green’s functions g̃(ω)
in Keldysh space50 and are then perturbation connected
within the first order strong coupling cluster perturba-

tion theory:51,52 G̃−1(ω) = g̃−1(ω)− T̃ . The steady-state

G̃(ω) is obtained within the approximation that the elec-
tronic self-energy is taken from the disconnected systems:

Σ̃G̃(ω)
!
= Σ̃ widetildeg(ω). The variational aspect intro-

duces self-consistently determined single-particle fields Ô

which are optimized requiring ⟨Ô⟩initial
!
= ⟨Ô⟩steady-state

and yield a reference state for the perturbative proce-
dure which already incorporates information about the
steady-state. In the setup under discussion we split the
infinite chain into three parts, a left semi-infinite lead,
a right semi-infinite lead and a central region which ex-
tends over the correlated orbital as well as three orbitals
of the left and of the right lead. The left and right parts
are noninteracting and their single-particle Green’s func-
tions are readily available, while the one of the interacting
central part is obtained numerically exactly by a band-
Lanczos method.53 We used one variational parameter
which is the nearest-neighbour hopping in the central re-
gion.54 Details of the method are available in Ref. ? .

To back our perturbative stsVCA results, we ap-
ply in addition the auxiliary master equation approach
(AMEA)55 to obtain steady-state spectra. Like stsVCA,
AMEA is an approximate method in which the self-
energy is based on a finite-size system. However, in the

AMEA this auxiliary system is an open quantum system
which is not obtained perturbatively but via a mapping
which minimizes the “distance” to the Keldysh-space hy-
bridization function. In a previous study, the AMEA has
already proven to yield accurate results for the SIAM
under voltage bias56. Similar to stsVCA, one has in the
AMEA a controlled parameter, namely the size of the
finite system specified by the number of bath sites NB .
Upon increasing NB , the error in the hybridization func-
tion can be reduced with a rate up to exponential. Two
important aspects are on the one hand, that too small
system sizes result in overbroadend spectral data whereas
with increasing NB the resolution is refined and on the
other hand, that one has the freedom to focus on certain
energy scales in the minimization procedure. The latter
is made use of here, in order to resolve especially the re-
gion around ω = 0 properly and to treat the other details
in the hybridization function not as accurately. To ob-
tain the many-body solution of the auxiliary system, we
do not employ an exact diagonalization as in Ref. 56, but
use a solution strategy based on MPS.57 This renders it
possible to consider larger system sizes up to NB ≈ 15.

C. Full steady-state tomography

Finally, to gain insight in the participating states
in steady-state transport, we treat the system within
a Born-Markov-secular quantum master equation.58–63

Within this perturbative framework we obtain the
steady-state many-body reduced density matrix ρ̂S of a
system consisting of the impurity and one site of the left
and the right lead each by tracing out the other bath de-
grees of freedom. This approach yields a quantum mas-
ter equation of Lindblad form and is accurate to second
order in the bath hopping t. Details of our particular
implementation are available in Ref. 64.
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III. RESULTS

We discuss the electronic correlations in the steady-
state using numeric data for charge fluctuations, the
charge current, the local density of states of the corre-
lated orbital as well as the reduced many-body density
matrix. These lead us to the conclusion that electron-
electron interactions play an important role not only at
low bias voltages but also at high bias voltages when the
reservoir DOS is finite.

During our discussion of charge fluctuations we will
take a brief detour and comment on an unresolved is-
sues when calculating the steady-state double occupancy
of the correlated orbital. Three sophisticated methods
were recently shown to yield inconsistent results for this
quantity.65 Our quasi-exact data represents a fourth in-
dependent calculation which particularly supports one of
the previously used methods.

A. Charge fluctuations

Electronic correlations can be deduced from the
steady-state double occupancy of the correlated orbital

D = ⟨nf↑nf↓⟩ . (2)

The symmetry of our setup requires impurity single-
particle expectations values of ⟨nfσ⟩ = 0.5 which implies
⟨nf ⟩ = ⟨nf↑ + nf↓⟩ = 1 and ⟨mf ⟩ = 1

2 ⟨nf↑ − nf↓⟩ = 0,
alongside two half-filled, non-magnetic, conducting reser-

voirs, which leads to D = 1
2

(
⟨n2

f ⟩ − ⟨nf ⟩2
)
. Therefore,

here D is a measure of the charge fluctuations on the
correlated orbital. In the “free” system, for U = 0,
the respective uncorrelated value is D0 = ⟨nf↑nf↓⟩ =
⟨nf↑⟩⟨nf↓⟩ = 0.25 which is also found in the high tem-
perature limit.65

Results for the steady-state double occupancy
⟨nf↑nf↓⟩ as obtained by DMRG + TEBD are shown in
Fig. 2. In the following our intentions are two fold: At
first we set our data in context with recent literature
results obtained in the wide band limit. Secondly we dis-
cuss the apparent effects of electronic correlations at high
bias voltages.

Results for D, in the wide band limit at low temper-
atures have recently been published in Ref. 65. Their
data were obtained using three state of the art out of
equilibrium many-body methods: scattering-states nu-
merical renormalization group (SNRG), the Matsubara-
voltage quantum Monte-Carlo approach (MV-QMC) and
real-time quantum Monte Carlo (RT-QMC). Conflicting
results were found in the low to intermediate bias regime
amongst these methods. Our data is obtained for zero
temperature and a semi-circular DOS. A comparison to
the results of Ref. 65 is however valid in the low bias
regime for VB < 10∆ where the lead DOS effects are
negligible, compare figure 3 of Ref. 65 with our Fig. 2
(right). We find that our quasi exact DMRG + TEBD

data compare best to the RT-QMC results, hinting at
a large uncertainty in the double analytic continuation
needed in the MV-QMC method and steady-state relax-
ation issues in the SNRG.66

The same study concludes that the double occupancy
approaches the noninteracting limit D0 at high bias volt-
ages, independent of interaction strength. This is ex-
pected if bias voltage roughly acts like an effective tem-
perature as is the case in the wide band limit. Our data,
for a semi-circular reservoir DOS, clearly indicate that at
finite lead bandwidth the charge fluctuation do not ap-
proach this limit at high bias voltages, see Fig. 2 (left).
The corresponding bias voltage in our calculation is the
one at maximal lead band overlap at VB = 20∆.67 Here
we observe the predicted “free” value of D0 at least for
not too large U

W . We find that the charge fluctuations
D(VB) are roughly antisymmetric with respect to this
point: The charge fluctuations D(VB) are suppressed
/ enhanced with respect to D0 in the low bias / the
high bias regime due to electronic correlations. With
increasing interaction strength U this suppression /en-
hancement approaches its theoretical minimum D → 0
for VB → 0 and its maximum D → 1

2 for VB → W . We
conclude that the charge fluctuations in the medium-bias
regime II are essentially the one of the noninteracting sys-
tem in equilibrium, while in the low-bias regime I they
are suppressed and in the high-bias regime III they are
enhanced with respect to D0. Therefore we argue that
reservoir DOS effects in interplay with local Coulomb re-
pulsion can induce non trivial correlation effects at high
bias voltages.

In the following we will discuss how these correla-
tion effects influence the current voltage characteristics,
a quantity which is typically measured in experiments on
nanoscopic or molecular devices.

B. Charge current

Fig. 3 shows the steady-state charge current j as eval-
uated from the long time plateau values of the current
operator

ĵ = i π t′
∑

ασ

(
f†

σ c0ασ − c†0ασ fσ

)
,

obtained by DMRG + TEBD. A detailed discussion of
the current-voltage characteristics for this specific lead
setup is available in Ref. 47 and Ref. 49.

To evaluate the effects of electron-electron interactions,
we set the data of the interacting system (symbols) in
context with data obtained for a resonant level model
(RLM) (solid lines). The RLM constitutes the very same
system but is missing the on-site interaction U and there-
fore electronic correlations. The level position of the res-
onant level model is set in accordance to the bare on-
site energy of the interacting system ϵf = −U

2 . Based
on this comparison of the current-voltage characteristics,
the current can be classified into the very same three bias



5

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

V
B
/∆

<
n
f↑
n
f↓
>

0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

V
B
/∆

<
n
f↑
n
f↓
>

U=0∆

U=4∆

U=8∆

U=12∆

U=20∆

FIG. 2: (Color online) Steady state double occupancy of the correlated orbital D = ⟨nf↑nf↓⟩ as a function of bias voltage VB .
We plot ⟨nf↑nf↓⟩ for on-site interaction strengths U = {4, 8, 12, 20} ∆ as obtained by DMRG + TEBD. The right panel shows
a zoom to the low bias regime indicated in red in the left part of the figure. Dashed lines are guides to the eye.

voltage regions I- III as the charge fluctuations discussed
above.

In regime I, at low bias voltages the current of the
interacting system j is always higher than the one of
the noninteracting RLM j0. This is related to the rem-
nants of the equilibrium spin Kondo effect which mani-
fest in an enhanced charge transmission set by the uni-
versal linear response conductance quantum G0 fixed by
the equilibrium Friedel sum rule. Kondo correlations be-
come more pronounced for increasing U .30 In the non-
interacting system transport takes place across the sin-
gle particle level at ϵf broadened by the hybridization
with the leads. Therefore also the difference j − j0 be-
comes more prominent with increasing U . In contrast the
regime II of medium bias voltages is hardly influenced
by the electron-electron interaction at low to intermedi-
ate interaction strength, see data for U = 4 ∆. Here the
bias voltage VB is much higher than the electronic energy
scale of the system T ∗ and many-body effects are negligi-
ble, rendering the effects of bias voltage similar to a high
temperature. In regime III, at high bias voltages, when
the reservoir DOS starts to diminish we observe again
an increased current for the interacting system even at
low interaction strength. Similar to the low bias regime
the current j is always increased in comparison to the
noninteracting results j0.

Since for high bias voltages the available transport win-
dow is quite small, an increase of current can be under-
stood in terms of re-gained low energy spectral weight in
the correlated orbital due to many-body correlations.

C. Charge spectrum

We refer to the dynamic single-particle spectral func-
tion of the correlated orbital as the local DOS (LDOS)

LDOS(ω) = − 1

π
ℑm

(
GR

ff (ω)
)

,

where GR
ff (ω) is the retarded single-particle electron

propagator in the stsVCA approximation. Results for the
steady-state LDOS as obtained using stsVCA are shown
in Fig. 4.

We find a linear splitting of the Kondo resonance with
increasing bias voltage which persists until the resonance
hits the high energy incoherent excitations (Hubbard
bands). This behaviour is discussed in detail in Ref. 49.
Here we focus on the high bias regime where apparently a
new low energy excitation is formed carrying the majority
of the spectral weight. This feature can be attributed to
the self-consistent variational renormalization of the hop-
ping in stsVCA and is not present without variational pa-
rameters.54 The stsVCA is an approximate method and
details of the result may depend on the size of the cen-
tral part of the reference system as well as on the choice
of variational parameters. We however found the gen-
uine features to be robust when a renormalized hopping
is considered.

The stsVCA certainly overestimates the effect of the
excitation at high bias voltages due to its self-consistent
character. We however find the same excitations, albeit
with lower magnitude, in the AMEA. The results are
depicted in Fig. 5 for different number of bath sites. We
find qualitative robust results which indicate an increased
spectral weight around ω = 0 and a smeared out peak.
For comparison the U = 0 result is depicted as well, for
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FIG. 3: (Color online) Exact steady-state charge current of a noninteracting, resonant level device with on-site potential
ϵf = −U

2
(solid lines) and DMRG+TEBD data for the corresponding interacting system (symbols). The parameters of these

two setups are identical apart form the on-site interaction strength U missing in the noninteracting, resonant level model. We
show five values of interaction strengths resp. on-site potentials: U

∆
= {0, 4, 8, 12, 20} resp.

ϵf

∆
= {0, −2, −4, −6, −10}. The

left/right panels show zooms to the low/high bias regime as indicated in the central part of the figure. Note the different scale
on the y-axis.

the same shifted on-site energy. On has to note that al-
ready in this case a peak around ω = 0 is perceptible,
which is a result of the stronger hybridization of the re-
gion where the two leads overlap, see also Fig. 1. When
comparing the interacting case to the U = 0 result, we see
that a large amount of spectral weight is shifted towards
zero and that the peak height at ω = 0 becomes more
prominent. As a consequence, the current increases, see
below and compare also Fig. 3.

We attribute the increased current observed in the pre-
vious section to this newly formed low energy excitation.
The current is essentially given by an integral over the
transport window which convolutes the DOS of the leads
with the central device.68,69 The transmission current be-
tween the two leads can be evaluated in the Landauer-
Büttiker form70–72

⟨j⟩ =
e

ℏ

∞∫

−∞

dω

2π

(
pFD(ω, µL) − pFD(ω, µR)

)
Tr {T (ω)} ,

where the transmission function T (ω) =

GR(ω)ΓL(ω)
(
GR(ω)

)†
ΓR(ω) is given in terms of

GR(ω) =
(
(gR(ω))−1 − (Σ̃L + Σ̃R)

)−1

with the lead

broadening functions of lead α projected onto the device

is Σ̃α = t′gR
ααt

′ and Γα = −2ℑm
(
Σ̃α

)
. Correlation

effects at the device are incorporated in GR(ω) which
enters T (ω) locally in energy. In the high bias regime
the transport window which limits the current integral
through the lead Fermi functions pFD(ω, µ) shrinks
linearly with VB to zero as VB → W , see Fig. 1 (C).
Therefore only low energy excitations of the system may
contribute to the current. In an uncorrelated device
with level position ϵf = −U

2 only broadening assisted
spectral weight contributes to transport at high bias

FIG. 4: (Color online) Steady state spectral function (LDOS)
of the correlated orbital. We show data for an interaction
strength of U = 12∆ as obtained by stsVCA on a seven
site central reference system using one variational parameter
which is the hopping in the central region.

voltage since no states of the central region lie directly
within this transport energy window. In the interacting
system the newly formed low energy excitations increase
the transmission as a result of electronic correlations.

IV. DISCUSSION

Next we discuss the nature of the steady-state at high
bias voltages and propose a mechanism for the enhanced
electronic correlations.

In our system magnetic fluctuations are directly linked
to the charge fluctuations discussed above and can be
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FIG. 5: (Color online) Steady state spectral function (LDOS)
of the correlated orbital. The interaction strength is U = 20 ∆
and VB = 36∆. Solid lines represent data obtained with
AMEA for different number of bath sites NB and the dash-
dotted line represents the U = 0 result with shifted on-site
energy −10∆.73

TABLE I: Summary of electronic correlations according to
bias voltage.
VB . . . bias voltage: I, “low-bias” with respect to the elec-
tronic coherence energy scale T ∗, II, “medium-bias” above T ∗

and well below the electronic lead bandwidth W , III, “high-
bias” in the vicinity of the lead band edge;
correlation . . . type of observed electronic correlation;
D . . . charge fluctuations, Eq. (2);
M . . . magnetic fluctuations, Eq. (3).

VB correlation D 2M
I low “spin” 0 . . . 1

4
1
2

. . . 1
4

II medium “free” 1
4

1
4

III high “charge” 1
4

. . . 1
2

1
4

. . . 0

characterized by

M =
1

4
⟨(nf↑ − nf↓)

2⟩ =
1

4
(1 − 2D) (3)

In the free equilibrium system D = 1
4 we have 2M = 1

4 ,
see also Tab. I. As discussed above the free description
applies also to the regime II of medium bias voltage in
in the steady-state of our setup. In the correlated equi-
librium spin Kondo state D decreases from D = 0.25
at U = 0 to D → 0 for U → ∞. This implies that
magnetic fluctuations grow from 2M = 1

4 at U = 0 to

2M → 1
2 for U → ∞ signifying the highly fluctuating

spin state. These properties are known in equilibrium30

and our simulations show that they apply also to the low
bias regime I, see Fig. 2. At high bias voltages in regime
III, close to VB → W we observe a situation vice versa
as at low bias voltages. The charge fluctuations increase
to D → 1

2 while the magnetic fluctuations decrease to
M rightarrow0. This implies that at high bias voltage

bias voltage V
B
/D

0 0.2 0.4 0.6 0.8 1

ρ
|0

>
<

0
|

+
ρ

|D
>

<
D

|

0
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0.6

0.8

1
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U=8 ∆
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U=20 ∆

increasing U

diagonal density matrix weight

increasing U

FIG. 6: (Color online) Diagonal weight of the steady-state
many-body density matrix ρ̂. We plot the summed weight
of the density matrix diagonals where the impurity is either
double occupied or empty: ρ|0⟩⟨0| + ρ|D⟩⟨D| as obtained via
a quantum master equation in the Born-Markov-secular ap-
proximation at β = 50.

the system is neither returning to its low bias spin Kondo
correlations nor does it stay in the medium bias free state
but approaches a new correlated state which at least in
terms of spin and charge fluctuations is the “inverse” of
the spin Kondo effect.

One candidate high-bias pure state compatible
with the above correlations would be |Ψ>⟩ ∼∑(

γ↑↓ |↑↓⟩f − γ0 |0⟩f

)
⊗ |L⟩ ⊗ |R⟩. Its single-particle

expectation values are ⟨nfσ⟩ = |c↑↓|2, ⟨nf ⟩ = 2|c↑↓|2 and
⟨mf ⟩ = 0, as required by symmetry. Note that this im-
plies |γ↑↓|2 = |γ0|2 = 0.5. The charge fluctuations are
given by D = |γ↑↓|2 = 0.5 and the magnetic fluctuations
are M = 0, which are the values we are looking for. It
is furthermore plausible, that such a state is responsible
for transport in the high bias regime because the nar-
rowing transport window contracts around ω = 0. The
atomic impurity states at this energy are |0⟩f and |↑↓⟩f ,
while the singly occupied states are far outside the trans-
port window at ϵf ≈ −U

2 . Within a BMSme treatment,
see Fig. 6 we indeed find that at high bias voltages the
populations of these two device states increase with in-
creasing correlation U . At low bias voltages on the con-
trary their weight decreases which signifies the growth
in weight of the singly-occupied states necessary for the
equilibrium spin Kondo effect. Note that the BMSme
results have been obtained for a small but finite temper-
ature of T = 0.02 |t| while all other results presented in
this work are for zero temperature.

We propose that in this setup a not fully developed
charge Kondo effect |↑↓⟩L |0⟩f |0⟩R → |0⟩L |0⟩f |↑↓⟩R me-
diated by effective pair hopping processes via the virtual
state |0⟩L |↑↓⟩f |0⟩R is responsible for increased charge

transport.74 The charge Kondo effect in the context of an
attractive Anderson model has been explored for heavy
fermion behaviour,75 in PbTe doped with Tl impuri-
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ties,76,77 as a mechanism for large thermoelectric power
in molecular quantum dots,78 and to promote supercon-
ductivity,79 in mesoscopic superconductors coupled to
normal leads.80

A sound theory of a high bias charge Kondo effect does
not yet exist and for a final proof a numerical nonequi-
librium RG treatment at large bias voltages VB ≈ W is
in order. However, the effect can be easily motivated by
considering the equilibrium Schrieffer-Wolff transforma-
tion81,82 which yields the well known effective spin flip
processes responsible for the equilibrium spin Kondo ef-
fect. In this transformation the fermionic degrees of free-
dom of the initial impurity Hamiltonian are transferred
to simpler spin degrees of freedom with an effective in-
teraction incorporating the virtual spin flips. The initial
Hamiltonian can be written in block form according to
its states in the N = 1 sector |1⟩ = (|↑⟩ ; |↓⟩) and in the
symmetric N = 0/2 sector |X⟩ = (|0⟩ ; |↑↓⟩):30

[
H11 H1X

HX1 HXX

](
ψ1 |1⟩
ψX |X⟩

)
.

In the equilibrium spin Kondo effect the ground state
energetically lies in the singly-occupied sector and one
seeks to effectively eliminate the excited sectors |X⟩
leading to the exact non-linear Schrödinger equation(
H11 +H1X(ω −HXX)−1HX1

)
ψ1 = ω ψ1. The spin

Kondo Hamiltonian is then obtained by treating the sec-
ond term perturbatively. In the high bias regime, the
zero and doubly occupied states |X⟩ lie inside the trans-
port window and predominantly contribute to the sys-
tem state. Applying the projection formalism within this
block results in an equation for a charge Kondo model,
which reads analogously

(
HXX +HX1(ω −H11)

−1H1X

)
ψX = ω ψX ,

where even the arising effective terms are the same as in
the spin Kondo effect with the mapping spin ↔ charge:
The equilibrium spin Kondo effect features a virtual
spin flip between the degenerate pair {|↑⟩ , |↓⟩}. Anal-
ogously, the high bias charge Kondo effect features a vir-
tual double hopping process between the degenerate pair
{|0⟩ , |↑↓⟩}.

V. CONCLUSIONS

We discussed the role of electronic correlations at high
bias voltage when the reservoir density of states is struc-
tured and finite and the bias voltage approaches the
bandwidth. As an illustration we discuss the particular
example of the steady-state of a single quantum dot con-
nected to two leads of semicircular electronic density of
states under bias voltage. We use density matrix renor-
malization group, time evolving block decimation, the
steady-state variational cluster approach, the auxiliary
master equation approach and a Born-Markov-secular

quantum master equation to evaluate the steady-state
double occupancy, charge current, local density of states
and the reduced steady-state many-body density matrix.

In general one expects electronic correlations to impact
transport characteristics at bias voltages smaller than the
electronic coherence temperature. For large bias voltages
it has been shown that in the wide band limit electronic
correlations are dominated by the perturbing external
bias. The system behaves like free and the effect of the
high bias voltage is comparable to a high temperature or
a high magnetic field. We do not apply the wide band
limit but discuss a system which features two electronic
leads with a finite and structured electronic density of
states. We find that the steady-state can be classified
into three regimes in bias voltage, according to the de-
gree of electronic correlation. For low bias voltages the
steady-state feels the remnants of the equilibrium spin
Kondo effect. It features enhanced magnetic fluctuations
and suppressed charge fluctuations. The charge current
in this regime is enhanced with respect to an equiva-
lent system without electron-electron interactions. Only
states at low energies contribute to transport and their
density is high due to electronic correlations. At medium
bias voltages many states reside inside the transport win-
dow and we find charge and spin fluctuations comparable
to those of an equilibrium noninteracting system or for
the high bias steady-state in the wide band limit. The
current in this regime is also comparable to the one of
an equivalent noninteracting system. The finding of this
work is that at high bias voltages, close to the band edge
of the leads, the transport is again enhanced with re-
spect to the noninteracting equivalent. We observe large
charge fluctuations and small magnetic fluctuations in
this regime. The small transport window limits the states
contributing to transport again to those at low energies.
These are strongly enhanced due to electronic correla-
tions. We propose that the high bias state features the
characteristics of a not fully developed charge Kondo ef-
fect.

Although our discussion is general we have presented
results for a particular model system. We would like
to stimulate further work in that direction by looking
at different models and differently structured electronic
reservoirs. In particular a renormalization group study
around the point of high bias and vanishing reservoir
band overlap would be desirable since here numerical ap-
proaches become difficult due to long time-scales. On
the experimental side it could be challenging to find a
nanoscopic system which exhibits the required features of
the reservoir density of states and allows for application
of a corresponding high bias voltage. We would like to
point out however, that to observe the reported features
one does not necessarily have to probe the band edges.
It may suffice to find a structured DOS with low minima.
Such an experiment could provide essential insight into
electronic correlations at high bias voltage.
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A. E. Feiguin, M. J. Rozenberg, and E. Dagotto, Phys.
Rev. B 82, 205110 (2010).
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A. Extended variational cluster approach

for Li0.9Mo6O17

Here we give some additional details to the study of Li0.9Mo6O17 presented in [41].

A.1. Crystal structure

The lattice parameters of the monoclinic crystal structure are given in Tab.A.1, the basis vectors
will be denoted ua,ub and uc in the following. We predominantly work in the b− c plane where
a four Mo orbital unit cell is de�ned as

Mo1 ∶ rA =
⎛
⎜
⎝

0.9939a
0.25b

0.23356c

⎞
⎟
⎠
,Mo4 ∶ rC =

⎛
⎜
⎝

0.16635a
0.25b

0.9206c

⎞
⎟
⎠
, Mo′1 ∶ rD =

⎛
⎜
⎝

0.00613a
0.75b

0.7664c

⎞
⎟
⎠
,Mo′4 ∶ rB =

⎛
⎜
⎝

0.8337a
0.75b

0.07938c

⎞
⎟
⎠
.

A.2. Lattice and super-lattice

The partitioning of the material's lattice γ of Lγ orbitals into clusters C of LC orbitals introduces
a super-lattice Γ of LΓ orbitals. The original lattice γ is recovered upon attaching one cluster C
at each site of the super-lattice Γ. The coordinates of the lattice may be expressed as [322]

rγi = rΓ
I + r

C
α , i→ (I,α) .

The Lγ reciprocal space vectors kγ in the �rst Brillouin zone (BZ) of the original lattice BZγ

may be expressed as

kγ =K + kΓ ,

where K belongs to both the reciprocal super-lattice Γ−1 and to BZγ while kΓ belongs to the
Brillouin zone of the super-lattice BZΓ.

lat. param. a b c β
Angström, degrees 12.762 5.523 9.499 90.61

Table A.1.: E�ective lattice parameters for the monoclinic crystal structure. We henceforth work
in the b − c plane only. β is the angle between the a and c axis. From [464].
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A.2.1. Orbital space lattice structure

For the two-dimensional lattice considered here, the four orbital physical unit cell U = {A,B,C,D}

and the eight orbital cluster C = {A,B,C,D,E,F,G,H} are described by the lattice coordinates

uA = cA = (
0
0
) , uB = cB = (

a
0
) ,

uC = cC = (
0
a⊥

) , uD = cD = (
a
a⊥

) ,

cE = (
0

a⊥ + a
′) , cF = (

a
a⊥ + a

′) ,

cG = (
0

2a⊥ + a
′) , cH = (

a
2a⊥ + a

′) ,

where a is the lattice constant in ladder direction, a⊥ the lattice constant perpendicular to the
ladder direction and a′ the ladder spacing.
The real space lattice vectors of the original lattice γ are then given by

Rγ
1 = (

2a
0
) , Rγ

2 = (
0

a⊥ + a
′) , (A.1)

The real space lattice vectors of the super lattice Γ are given by

RΓ
1 = (

2a
0
) , RΓ

2 = (
0

2(a⊥ + a
′)
) , (A.2)

A.2.2. Reciprocal space lattice structure

The reciprocal space lattice vectors of the original lattice Kγ are then given by

Kγ
1 = 2π (

1
2a
0
) , Kγ

2 = 2π (
0
1

a⊥+a′
) , (A.3)

The reciprocal space lattice vectors of the super lattice KΓ are given by

KΓ
1 = 2π (

1
2a
0
) , RΓ

2 = 2π (
0
1

2(a⊥+a′)
) . (A.4)

A.2.3. Brillouin zone and path through reciprocal space

Within the eVCA calculation three sets of wave vectors are important. For the evaluation of the
grand potential sums over the �rst Brillouin zone of the super-lattice Γ have to be conducted.
For the evaluation of the density of states, sums over the �rst Brillouin zone of the original lattice
γ have to be evaluated and �nally to obtain spectra a suitable path through the Brillouin zone
has to be chosen.
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The set of reciprocal space vectors in the �rst Brillouin zone of the super lattice Γ is given by

kΓ
x = −

π

2a
+

2π
2a

NΓ
x

× {0, . . . ,NΓ
x − 1}

kΓ
y = −

π

2(a⊥ + a′)
+

2π
2(a⊥+a′)

NΓ
y

× {0, . . . ,NΓ
y − 1} ,

where NxΓ is the number of lattice points in ladder (x) direction and NyΓ is the number of
lattice points perpendicular to the ladder (y) direction.
The set of reciprocal space vectors in the �rst Brillouin zone of the original lattice γ is given by

kγx = −
π

2a
+

2π
2a

Nγ
x
× {0, . . . ,Nγ

x − 1}

kγy = −
π

a⊥ + a′
+

2π
a⊥+a′

Nγ
y

× {0, . . . ,Nγ
y − 1} ,

where Nxγ is the number of lattice points in ladder (x) direction and Nγ
y is the number of lattice

points perpendicular to the ladder (y) direction. Note that NΓ
x = Nγ

x and 2NΓ
y = Nγ

y .
A suitable path through the �rst Brillouin zone is given by going from the center to the border
in x direction

k1.BZ
x = [0,

π

2a
]

k1.BZ
y = 0 ,

then to the border in y direction

k1.BZ
x =

π

2a

k1.BZ
y = [0,

π

a⊥ + a′
] ,

and back to the center

k1.BZ
x = [

π

2a
,0]

k1.BZ
y = [

π

a⊥ + a′
,0] .

Since the physics is expected to be quasi one-dimensional in x direction, signi�cant dispersion
should only appear in the �rst part.

A.3. Cluster Green's function

As outlined in [329], if we are dealing with a translationally invariant system it is possible to ob-
tain the ground state and single-particle Green's function of the cluster Hamiltonian Ĥcl(ϕ,∆):
gij(z,ϕ,∆) in the Q-Matrix formalism. Here z denotes a scalar complex energy variable and the
indices i, j ∈ {1, . . . , L} cluster sites. The spectral (Lehmann) representation of the single-particle
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Green's function for the zero temperature case in the energy domain is given by

gσσ
′

ij (z) = ∑
τ

⎛

⎝
∑
n

τ⟨Ψ0∣c
σ
i ∣n⟩τ τ⟨n∣cσ

′�
j ∣Ψ0⟩

τ

z − (ωτn − ω
τ
0 )

− η ∑
m

τ⟨Ψ0∣c
σ′�
j ∣m⟩τ τ⟨m∣cσi ∣Ψ0⟩

τ

z + (ωτm − ωτ0 )

⎞

⎠
. (A.5)

The sum over τ denotes a sum over a possibly d-fold degenerate set of ground states (denoted
by subscript zero). We are dealing with a Hamiltonian which both conserves spin S as well as
particle number N . Therefore the sums over n and m denote the subspaces with N0 + 1, S0 +

1
2

(particle part) and N0 − 1, S0 −
1
2
(hole part) particles respectively (all other matrix elements

vanish identically). The index η is −1 for fermions.
This may be recast in a convenient matrix form the so-called Q-matrices [458]

gσσ
′

ij (z) = ∑
τ

⎛

⎝
∑
γ

qσiγ
1

z − λγ
qσ

′�
jγ

⎞

⎠
τ

(A.6)

qσ�iγ =

⎧⎪⎪
⎨
⎪⎪⎩

1√
d
< γ∣ĉσ�i ∣Ψ0 > particle part

1√
d
< Ψ0∣ĉ

σ�
i ∣γ > hole part

λγ =

⎧⎪⎪
⎨
⎪⎪⎩

ωγ − ω0 particle part
ω0 − ωγ hole part

.

To ease the notation the degeneracy index τ is suppressed on the individual quantities. The
excited state energies are denoted by ωγ . Introducing the diagonal matrix

νγγ′(z) ∶=
δγγ′

z − λγ
,

the cluster Green's function may be rewritten in matrix form

g(z) = q ν(z)q� (A.7)

[L ×L] = [L ×Nγ][Nγ ×Nγ][Nγ ×L] .

Due to spin symmetry we de�ne from now on all Green's functions to hold just the spin up
component and use factors of two when appropriate. Here Nγ is the size of the excited state
space and L the size of the cluster. It should be noted that the dimension of the Green's function
is of cluster size (in general of system-size times spin multiplicity). The matrices q, containing
the weights of the excitations, are of dimension L ×Nγ . The matrix ν(z) is the only dynamic
quantity and is diagonal of size Nγ ×Nγ .
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A.4. Lattice Green's function

As discussed in [329], the CPT relation to obtain the Green's function of the full system G−1
(z,k)

is

G−1
(z,k) = g−1

(z) −T(k) , (A.8)

where g(z) is the cluster Green's function and T(k) is the super-lattice wavevector transform of
the (single-particle) inter-cluster Hamiltonian. In Q-matrix formulation this can be rewritten

G(z,k) = q
1

z − (Λ′ + q�T(k)q)
q� ,

where a diagonal matrix for the excitation energies λ′ of the cluster

Λ′
γγ′ ∶= λ

′
γδγγ′ , (A.9)

has been introduced. To put this into an even more handy form we introduce the matrix

Mk ∶= Λ′
+ q�T(k)q ,

so that the CPT Green's function is then given by

G(z,k) = q
1

ω −M(k)
q� . (A.10)

Upon solving the (ω-independent) eigenvalue problem

MkXk =XkΛk , (A.11)

it is possible to rewrite the fraction appearing in Eq. (A.10) as

1

z −Mk
=Xk (z −Λk)

−1
X−1
k .

The Λk are diagonal matrices holding the excitation energies of the full system on the diagonal.
They are the k-dependent equivalent to the Λ′ de�ned in Eq. (A.9) for the cluster solution.
Inserting this result into Eq. (A.10) one obtains the k-dependent weights Qk for the CPT Green's
function

G(z,k) = qXk
±
Qk

(z −Λk)
−1
X−1
k q�

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
Q�

k

, (A.12)

[L ×L] = [L ×Nγ][Nγ ×Nγ][Nγ ×L] .

A.4.1. Green's function periodization

As discussed in [329], the factorization of the total lattice into clusters breaks the translational
symmetry of the lattice. This may be circumvented by a periodization prescription Gij → Gαβ
that provides a total Green's function Gαβ(z,k), depending only on the indices of the physical
unit cell and one wave vector k. The periodization prescription proposed for systems with a
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single orbital unit cell in [322] reads:

G(z,k) =
1

L

L

∑
rC ,rC′

e
−ik⋅(rC−rC

′
) GrCrC′ (z,k)

=
1

L

L

∑
i,j

e−ik⋅(ci−cj) Gij(z,k) .

The ci are the cluster basis vectors. This expression may be generalized for physical unit cells
consisting of more than one atom:

Gαβ(z,k) =
Lphys.

L
∑
i∈α
∑
j∈β

e−ik⋅(ci−cj) Gij(z,k) ,

where α,β denote the translationally inequivalent lattice sites of the model under consideration
and Lphys. the size of the physical unit cell.

A.5. Extended variational cluster approach

We tackle the model Hamiltonian within eVCA [46, 343]. The hopping parameters are about to
be produced by down folding within Wannier90 [5] from an accurate Wien-2k DFT calculation.
The interactions possibly can be obtained from constraint RPA.
To proceed with eVCA it is necessary to partition the lattice into cluster Ĥcl and inter-cluster
Ĥinter Hamiltonian respectively

Ĥ = Ĥ
cl
+ Ĥ

inter ,

where only single-particle terms are allowed in the inter-cluster part. Since the model considered
here also contains o� diagonal Coulomb interactions, an additional mean �eld treatment is needed
for two-particle terms which extend over the cluster boundary (see Sec. A.6). In analogy to [46]
we de�ne the cluster Hamiltonian

Ĥ
cl
(∆,ϕ) = Ĥ

cl
0 (∆) + Ĥ

cl
1 + Ĥ

cl
mf(ϕ) ,

where the single-particle terms Ĥcl
0 depend on the VCA variational parameters ∆, the two-

particle terms are denoted Ĥcl
1 and the mean �eld contributions of interactions across the cluster

boundary are denoted Ĥcl
mf with mean �eld parameters ϕ. Here we choose eight-orbital clusters

which are both large enough to capture the interesting features of the Hamiltonian and small
enough to obtain feasible calculation times. In order to include as many of the interactions V
already on the cluster level we choose to include two ladders with four orbitals each.
The single-particle part of the cluster Hamiltonian is given by

Ĥ
cl
0 (∆) = (ε +∆ε) ∑

j={A,...,H},σ
n̂j,σ

− t∑
σ

(c�A,σcB,σ + c
�
C,σcD,σ + c

�
E,σcF,σ + c

�
G,σcH,σ + h.c.)

− t⊥ ∑
σ

(c�A,σcC,σ + c
�
B,σcD,σ + c

�
E,σcG,σ + c

�
F,σcH,σ + h.c.)

− (t′ +∆t′) ∑
σ

(c�E,σcD,σ + h.c.) , (A.13)
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where the on-site energy ε and the zig-zag inter ladder hopping t′ are extended as a VCA
variational parameter ∆ = {∆ε,∆t′}. We use a variational chemical potential for thermodynamic
consistency and a variational inter ladder hopping to introduce freedom for natural decoupling
into one-dimensional objects.

The two-particle part of the cluster Hamiltonian is given by

Ĥ
cl
1 = U ∑

j={A,...,H}
n̂j,↑n̂j,↓

+ ∑
σ,σ′

⎛

⎝

V (n̂A,σn̂B,σ′ + n̂C,σn̂D,σ′ + n̂E,σn̂F,σ′ + n̂G,σn̂H,σ′)

+ V⊥ (n̂A,σn̂C,σ′ + n̂B,σn̂D,σ′ + n̂E,σn̂G,σ′ + n̂F,σn̂H,σ′)

+ V ′
(n̂A,σn̂D,σ′ + n̂B,σn̂C,σ′ + n̂E,σn̂H,σ′ + n̂F,σn̂G,σ′)

+ V ′′
(0)

+ V ′′′
(n̂D,σn̂E,σ′)

+ V ′′′′
(n̂C,σn̂E,σ′ + n̂D,σn̂F,σ′)

⎞

⎠
. (A.14)

A.6. Mean �eld extension

A generic mean �eld part of the cluster Hamiltonian is obtained by introducing mean �elds for
each four-Fermi term which extends over the cluster boundary (indices a and b are located in
di�erent clusters and linked by Vab)

Ĥmf = Vab ∑
σ,σ′

n̂a,σn̂b,σ′

= Vab (∑
σ

(n̂a,σϕb + n̂b,σϕa) − ϕaϕb) ,

where the order parameter is de�ned spin-symmetrically: ϕj = ∑
σ
⟨n̂j,σ⟩ and the last term in the

second line stands outside of the sum. The mean �eld decoupling (n̂a − ⟨n̂a⟩)(n̂b − ⟨n̂b⟩)
!
= 0 was

used from the �rst to the second line for all spin components.

All four-Fermi terms which extend over the cluster boundary are treated within a mean �eld
approach. Thereby Ĥcl(ϕ) acquires a dependence on the mean �elds ϕ.
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Applying this decoupling scheme to eight orbital clusters we obtain

Ĥ
cl
mf(8) = ∑

σ

⎛

⎝
n̂A,σ (V ϕB + V ′ϕD + 2V ′′ϕB + 2V ′′′ϕH + V ′′′′ϕG)

+ n̂B,σ (V ϕB + V ′ϕC + 2V ′′ϕB + V ′′′′ϕH)

+ n̂C,σ (V ϕD + V ′ϕC + 2V ′′ϕB + V ′′′′ϕH)

+ n̂D,σ (V ϕC + V
′ϕB + 2V ′′ϕC)

+ n̂E,σ (V ϕF + V
′ϕH + 2V ′′ϕE + V

′′′ϕD)

+ n̂F,σ (V ϕE + V
′ϕG + 2V ′′ϕF )

+ n̂G,σ (V ϕH + V ′ϕF + 2V ′′ϕG + V
′′′′ϕB)

+ n̂H,σ (V ϕG + V
′ϕE + 2V ′′ϕH + 2V ′′′ϕB + V ′′′′ϕB)

⎞

⎠

−
⎛

⎝
V (ϕBϕB + ϕCϕD + ϕEϕF + ϕGϕH)

+ V ′
(ϕBϕD + ϕBϕC + ϕEϕH + ϕFϕG)

+ 2V ′′ (ϕ2
B + ϕ2

B + ϕ2
C + ϕ

2
D + ϕ2

E + ϕ
2
F + ϕ

2
G + ϕ

2
H)

+ V ′′′
(2ϕBϕH + ϕDϕE)

+ V ′′′′
(ϕBϕG + ϕBϕH)

⎞

⎠
.

A.7. Grand potential of the physical system

In the situation considered here the generalized grand potential depends on the mean �eld pa-
rameters ϕ, the VCA variational parameters ∆ and the type of mean �eld decoupling chosen:
Ωmf(ϕ,∆). The expression for the fermionic generalized grand potential reduces in the case of
zero temperature (β → +∞) to

Ωmf
(ϕ,∆) = Ω′mf

(ϕ,∆) − ∑
Reλ′γ<0

λ′γ +
1

NΓ ∑
Reλγ(kΓ)<0

λγ(k
Γ
) .

The excitation energies of the cluster λ′γ are obtained in Eq. (A.9), while the excitation energies
of the total system for a given super-lattice wavevector kΓ are available from the diagonalization
of Eq. (A.11). Note that the last sum is over the 1st BZ of the super-lattice Γ. NΓ is the number
of points on the super-lattice Γ, i.e. the number of clusters in the total system.
The grand potential of the physical system within the eVCA approximation has to ful�l three

conditions:

1. It is a minimum with respect to the mean �eld parameters ϕ

∂ϕΩmf
(ϕ,∆)

!
= 0

∂2
ϕΩmf

(ϕ,∆)
!
> 0 .
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2. It is a stationary point with respect to the VCA variational parameters ∆

∂∆Ωmf
(ϕ,∆)

!
= 0 .

3. It has the lowest total energy out of the possible mean �eld decompositions.

It su�ces to �nd the stationary point of the grand potential with respect to ϕ and ∆. It is
automatically a minimum in the mean �eld parameters ϕ and an arbitrary stationary point in
the VCA parameters ∆. This gives the value of the order parameters ϕopt and the stationary
VCA parameters ∆stat.
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B. Pauli Matrices

The Pauli matrices are de�ned as [158]

σ0
= 11 = (

1 0
0 1

) , σx = (
0 1
1 0

) , σy = (
0 −i
i 0

) , σz = (
1 0
0 −1

) .

The matrices are hermitian σa = (σa)� and unitary (σa)−1 = (σa)� and span the real Hilbert
space of 2 × 2 complex hermitian matrices. With some algebra one derives the commutation
relations

[σa, σb]− = 2iεabc σ
c

{σa, σb} = 2δab 11 ,

as well as the elementary properties

(σa)2
= 11

−i∏
a

σa = 11

det(σa) = −1

Tr(σa) = 0

σaσb = i∑
c

εabc σ
c
+ δab11 .

All the respective eigenvalues are {−1,+1}. The ladder operators are de�ned as

σ+ =
1

2
(σx + iσy) = (

0 1
0 0

) , σ− =
1

2
(σx − iσy) = (

0 0
1 0

) ,

where (σ−)� = σ+. The commutation relations read

[σ+, σ−]− = σ
z , [σ+, σ+]− = 0 , [σ−, σ−]− = 0

{σ+, σ−} = 11 , {σ+, σ+} = 0 , {σ−, σ−} = 0 .
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C. Heaviside step- and sign- functions

We have

sign(−x) = −sign(x)

θ(−x) = 1 − θ(x)

sign(x) = 2θ(x) − 1 .
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D. Jordan-Wigner transformation

The Jordan-Wigner transformation [465] consists in the mapping of a fermionic Fock space on L
sites to spin operators

cj = σ
z
1 ⊗ . . .⊗ σ

z
j−1 ⊗ σ

−
j ⊗ 11j+1 ⊗ . . .⊗ 11L (D.1)

= e−iπN̂jσ−j

= (−1)N̂jσ−j ,

with N̂j =
j−1

∑
i=1

n̂i, n̂i = c
�
jcj . Note that e

±iπN̂j = e
±iπ

i−1

∑
j=1

n̂j
=
i−1

∏
j=1

e±iπn̂j =
i−1

∏
j=1

(1−2n̂j). The hermitian

conjugate follows

c�j = σ
z
1 ⊗ . . .⊗ σ

z
j−1 ⊗ σ

+
j ⊗ 11j+1 ⊗ . . .⊗ 11L

= σ+j e
+iπN̂j

= σ+j (−1)N̂j .

Multiplication yields

c�jcj = σ
+
j σ

−
j ,

which upon making use of the matrix representation of σa yields

σzj = 2n̂j − 11 = (−1)n̂j+1 ,

since nj ∈ {0,1}. Using σ−σz = σ−, σ+σz = −σ+ and σ−i σ
+
j + σ

+
j σ

−
i = δij11 one can show that the c

operators ful�l fermionic commutation relations

{ci, cj} = {c�i , c
�
j} = 0

{ci, c
�
j} = δij11 .
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E. Bath correlation functions

In this appendix we elaborate in detail on the bath correlations function needed in the QME
treatment of molecular junctions. We start out by mapping a fermionic coupling Hamiltonian
onto a tensor product form. Then we present general results for the bath correlation functions
and conclude by evaluating them analytically for �at bands.

E.1. System-environment coupling

The BMsme is conveniently expressed in a speci�c form of the system-bath coupling Hamiltonian

Ĥc = ∑
α

Ŝα ⊗ B̂α . (E.1)

The Ŝα / B̂α act on the system / bath respectively. Firstly, the coupling Hamiltonian needs to be
of tensor product form which requires [Ŝα, B̂α]− = 0 and poses an a-priory problem for fermionic
operators. Secondly, the coupling operators are required to be hermitian Ŝα = Ŝ�

α , B̂α = B̂�
α,

which is not the case for the standard single-particle tunnelling terms. Below we will show that
both issues can be resolved even for standard fermionic couplings in terms of single-particle
tunnellings.

Coupling hermitization

Before that we show that it is always possible to choose hermitian coupling operators in the
general case. Since Ĥc = Ĥ�

c we may write

Ĥc =
1

2
(∑
α

Ŝ′α ⊗ B̂
′
α +∑

α

(Ŝ′α ⊗ B̂
′
α)

�
)

= ∑
α

(
1

√
2
(Ŝ′α + Ŝ

′�
α ) ⊗

1
√

2
(B̂′

α + B̂
′�
α ) +

i
√

2
(Ŝ′α − Ŝ

′�
α ) ⊗

i
√

2
(B̂′

α − B̂
′�
α )) .

The hermitian coupling operators can easily be identi�ed as the linear combinations Ŝα,1 =
1√
2
(Ŝ′α + Ŝ

′�
α ), Ŝα,2 = i√

2
(Ŝ′α − Ŝ

′�
α ), B̂α,1 = 1√

2
(B̂′

α + B̂
′�
α ) and B̂α,2 = i√

2
(B̂′

α − B̂
′�
α ).

De�nition of a general fermionic coupling Hamiltonian

We consider the general case of a fermionic coupling Hamiltonian which consists of single-particle
tunnelling events. Such a coupling applies to a broad range of systems of interest in situations
where a system is electronically coupled to electronic reservoirs. The system-bath coupling then
reads

Ĥc = ∑
ik

(Viks
�
ibk + V

∗
ikb

�

ksi) , (E.2)
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where the si/s
�
i operators annihilate / create fermions in the system with quantum number i

which usually represents a compound index for orbital j and spin σ, i.e. i = (j, σ). For the bath
operators bk/b

�

k, the index k typically represents the bath number λ, the orbital to which the
central region is coupled to j and the spin σ, i.e. k = (λ, j, σ). The matrices V are the hermitian
coupling strengths.
To bring the fermionic coupling Hamiltonian Eq. (E.2) to the tensor product form of hermitian

couplings Eq. (E.1) we have to consider two aspects: i) we need to �nd a representation of
Eq. (E.2) which is of tensor product structure between the system and bath degrees of freedom
and ii) the respective operators have to be brought to hermitian form.

Obtaining a Tensor Product form

We �rst bring Eq. (E.2) to tensor product structure which requires [Ŝα, B̂α]− = 0 For the fermionic
operators in Eq. (E.2) we have [s�i , bk]− = 2s�ibk. We start out by performing a Jordan-Wigner
transformation on the system and bath operators [457]. Using Eq. (D.1) we �nd

si = (σz1 ⊗ . . .⊗ σ
z
i−1σ

−
i 11i+1 ⊗ . . .⊗ 11LS)S ⊗ (111 ⊗ . . .⊗ 11LB)B

bk = (σz1 ⊗ . . .⊗ σ
z
LS

)
S
⊗ (τz1 ⊗ . . .⊗ τ

z
k−1τ

−
k 11k+1 ⊗ . . .⊗ 11LB)B ,

where we have chosen an ordering system S, bath B, as indicated by the brackets. Reordering
Eq. (E.2) we �nd

Ĥc = ∑
ik

(Viks
�
ibk − V

∗
iksib

�

k) ,

where the minus sign arises due to the fermionic anti-commutator. Plugging in the Jordan-
Wigner transformed operators leads to

Ĥc = ∑
ik

(Vik [(σ
z
1 ⊗ . . .⊗ σ

z
i−1 ⊗ σ

+
i ⊗ 11i+1 ⊗ . . .⊗ 11LS)S ⊗ (111 ⊗ . . .⊗ 11LB)B]

× [(σz1 ⊗ . . .⊗ σ
z
LS

)
S
⊗ (τz1 ⊗ . . .⊗ τ

z
k−1 ⊗ τ

−
k ⊗ 11k+1 ⊗ . . .⊗ 11LB)B]

+ V ∗
ik [(σ

z
1 ⊗ . . .⊗ σ

z
i−1 ⊗ σ

−
i ⊗ 11i+1 ⊗ . . .⊗ 11LS)S ⊗ (111 ⊗ . . .⊗ 11LB)B]

× [(σz1 ⊗ . . .⊗ σ
z
LS

)
S
⊗ (τz1 ⊗ . . .⊗ τ

z
k−1 ⊗ τ

+
k ⊗ 11k+1 ⊗ . . .⊗ 11LB)B] )

= ∑
ik

(Vik[σ
z
1σ

z
1 ⊗ . . .⊗ σ

z
i−1σ

z
i−1 ⊗ σ

+
i σ

z
i ⊗ 11i+1σ

z
i+1 ⊗ . . .⊗ 11LSσ

z
LS

⊗ 111τ
z
1 ⊗ . . .⊗ 11k−1τ

z
k−1 ⊗ 11kτ

−
k ⊗ 11k+111k+1 ⊗ . . .⊗ 11LB11LB]

− V ∗
ik[σ

z
1σ

z
1 ⊗ . . .⊗ σ

z
i−1σ

z
i−1 ⊗ σ

−
i σ

z
i ⊗ 11i+1σ

z
i+1 ⊗ . . .⊗ 11LSσ

z
LS

⊗ 111τ
z
1 ⊗ . . .⊗ 11k−1τ

z
k−1 ⊗ 11kτ

+
k ⊗ 11k+111k+1 ⊗ . . .⊗ 11LB11LB])

= ∑
ik

(Vik[[σ
+
i σ

z
i ] ⊗ [σzi+1 ⊗ . . .⊗ σ

z
LS

⊗ τz1 ⊗ . . .⊗ τ
z
k−1] ⊗ [τ−k ]]

− V ∗
ik[[σ

−
i σ

z
i ] ⊗ [σzi+1 ⊗ . . .⊗ σ

z
LS

⊗ τz1 ⊗ . . .⊗ τ
z
k−1] ⊗ [τ+k ]]) ,
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where in the last line we used (σa)2 = 11 and omitted all 11's. Using σ−σz = σ−, and σ+σz = −σ+

we end up with

Ĥc = ∑
ik

(Vik[σ
+
i ⊗ [−σzi+1 ⊗ . . .⊗ σ

z
LS

⊗ τz1 ⊗ . . .⊗ τ
z
k−1] ⊗ τ

−
k ]

+ V ∗
ik[σ

−
i ⊗ [−σzi+1 ⊗ . . .⊗ σ

z
LS

⊗ τz1 ⊗ . . .⊗ τ
z
k−1] ⊗ τ

+
k ])

= ∑
i

(s̄�i ⊗ b̄i + s̄i ⊗ b̄
�
i) ,

where in the last line we have de�ned new operators

s̄i = σ
−
i ⊗ [−σzi+1 ⊗ . . .⊗ σ

z
LS

]

s̄�i = [−σzi+1 ⊗ . . .⊗ σ
z
LS

] ⊗ σ+i

b̄i = ∑
k

Vik[τ
z
1 ⊗ . . .⊗ τ

z
k−1] ⊗ τ

−
k

b̄�i = ∑
k

V ∗
ikτ

+
k ⊗ [τz1 ⊗ . . .⊗ τ

z
k−1] .

Note that the phase operator P̂ik = [−σzi+1 ⊗ . . .⊗ σ
z
LS

⊗ τz1 ⊗ . . .⊗ τ
z
k−1] = (−1)

1+
LS
∑

j=i+1
n̂j+N̂k

counts
the particles between system site i and bath site k. It is straight forward to show that the bar
operators ful�l fermionic anti-commutation rules. Furthermore [s̄i, b̄i]− = 0, which allows us to
write the coupling Hamiltonian in a tensor product form. Note that in general [s̄i, b̄j]− ≠ 0 for
i ≠ j which is however not relevant for the coupling Hamiltonian where only the same i couple.

Hermitization of the tensor product form

Next we need to bring the new operators to a hermitian form. This is achieved by the transfor-
mation

Ŝ1i =
1

√
2
(s̄i + s̄

�
i), B̂1i =

1
√

2
(b̄i + b̄

�
i) (E.3)

Ŝ2i =
i

√
2
(s̄i − s̄

�
i), B̂2i =

i
√

2
(b̄i − b̄

�
i) ,

which augments each index i by an auxiliary index ∈ {1,2} and leaves us with a coupling Hamil-
tonian of the form of Eq. (E.1).

Criteria for the use of the original fermion operators

Next we show, by examining the BMsme Eq. (3.26), that in most cases the additional phase
operator in b̄ drops out of the calculations and we are even allowed to use the original s and
b operators instead of the bared ones. The operators b̄ only enter the equations in the bath
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correlation functions Cαβ(τ) as de�ned in Eq. (3.32). Plugging in the barred operators we �nd

Cαβ(τ) = Tr (e+iĤBτ B̂αe−iĤBτ B̂β ρ̄B)

∝ Tr (e+iĤBτ(b̄i ± b̄
�
i)e

−iĤBτ(b̄i ± b̄
�
i)ρ̄B)

∝ Tr
⎛

⎝
e+iĤBτ(∑

k

VikP̂ikbk ±∑
k

V ∗
ikb

�

kP̂ik)e
−iĤBτ(∑

q

ViqP̂iqbq ±∑
q

V ∗
iqb

�
qP̂iq)ρ̄B

⎞

⎠

∝∑
kq

Tr (e+iĤBτ(P̂ikbk ± b
�

kP̂ik)e
−iĤBτ(P̂iqbq ± b

�
qP̂iq)ρ̄B)

∝

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∝ ∑
kq
Tr (e+iĤBτ P̂ikbke−iĤBτ P̂iqbqρ̄B) ∝ ⟨bkbq⟩ = 0

∝ ∑
kq
Tr (e+iĤBτ P̂ikbke−iĤBτ b�qP̂iqρ̄B) ∝ ⟨bkb

�
q⟩ ∝ δkq

∝ ∑
kq
Tr (e+iĤBτ b�kP̂ike

−iĤBτ P̂iqbqρ̄B) ∝ ⟨b�kbq⟩ ∝ δkq

∝ ∑
kq
Tr (e+iĤBτ b�kP̂ike

−iĤBτ b�qP̂iqρ̄B) ∝ ⟨b�kb
�
q⟩ = 0

,

where the last equality, in general, is valid for normal systems which preserve particle number.
We then �nd

Cαβ(τ) ∝∑
k

Tr (e+iĤBτ b�kP̂ike
−iĤBτ P̂ikbkρ̄B)

∝∑
k

Tr (e+iĤBτ b�ke
−iĤBτ P̂ 2

ikbkρ̄B)

= ∑
k

Tr (e+iĤBτ b�ke
−iĤBτ bkρ̄B) ,

with P̂ 2
ik = 11 where we required that [ĤB , P̂ik]− = 0. Therefore the dropping out of the phase

operators implies that for normal systems where the disconnected baths conserve particle number
we can omit the Jordan-Wigner transformation and do all calculations as is with the original
bath creation/annihilation operators in hermitian form.

General Result

If the fermionic coupling Hamiltonian consist of single-particle tunnelling events, as de�ned
in Eq. (E.2) then the coupling Hamiltonian can be written in the form of Eq. (E.1) with the
coupling operators de�ned in Eq. (E.3). If furthermore the particle number is conserved in each
individual subsystem, the barred bath operators in Eq. (E.3) can be replaced by the original
fermion operators, i.e. those without the additional phase operators, since those drop out in the
evaluation of the bath correlation functions, which is the only place they appear in.

Coupling of a single orbital to Nλ baths

Here we exercise the evaluation of the coupling Hamiltonian in the fermionic system Eq. (E.2)
for a system consisting of a single fermionic orbital coupled to Nλ baths. Then the coupling
Hamiltonian takes the form

Ĥ
SE

=
Nλ

∑
λ=1

tλ (s�bλ0 + b
�

λ0s) ,

232



in which the system couples to the �rst site 0 of lead λ with equal strength tλ. We furthermore
take the leads to be non-interacting and particle number conserving which allows us to write

Ĥ
SE

=
Nλ

∑
λ=1

tλ (s� ⊗ bλ0 + s⊗ b
�

λ0) ,

i.e. for the application at hand we may omit transformation to the Jordan-Wigner bar operators.
Using Eq. (E.3) we �nd a suitable coupling Hamiltonian

Ĥ
SE

=
2

∑
α=1

Ŝα ⊗ B̂α with

Ŝ1 =
1

√
2
(s + s�), B̂1 =

1
√

2
∑
λ

tλ(bλ0 + b
�

λ0)

Ŝ2 =
i

√
2
(s − s�), B̂2 =

i
√

2
∑
λ

tλ(bλ0 − b
�

λ0) .

E.2. Time dependence of the coupling operators

For the bath correlation function we have to evaluate Eq. (3.32)

Cαβ(τ) = Tr (B̂α(τ)B̂β ρ̄B) .

The Heisenberg time evolution for the �rst bath operators is given by

B̂1(τ) =
1

√
2
∑
λ

t′λ(bλ0 + b
�

λ0)(τ)

=
1

√
2
∑
λ

t′λ∑
k

(hλkbλk(τ) + h
∗
λkb

�

λk(τ))

=
1

√
2
∑
λ

t′λ∑
k

(hλke
−iωλkτ bλk + h

∗
λke

+iωλkτ b�λk) ,

where we used a transformation to the eigenmodes of the bath bλj = ∑
k
hλke

+ikjbλk and b�λj =

∑
k
h∗λke

−ikjbλk so bλ0 = ∑
k
hλkbλk and b

�

λ0 = ∑
k
h∗λkbλk. Furthermore the time evolution of the bath

operators in the eigenbasis is

iḃλk(τ) = [ĤB , bλk]−

= [∑
λ′k′

ωλ′k′b
�

λ′k′bλ′k′ , bλk]−

= −bλkωλk ,

which leads to

bλk(τ) = e
−iωλkτ bλk

b�λk(τ) = e
+iωλkτ b�λk
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The time evolution for the second bath operator then is

B̂2(τ) =
i

√
2
∑
λ

t′λ(bλ0 − b
�

λ0)(τ)

=
i

√
2
∑
λ

t′λ∑
k

(hλke
−iωλkτ bλk − h

∗
λke

+iωλkτ b�λk) .

E.3. Evaluation of the correlation functions

Plugging these operators into Cαβ(τ) we �nd

C11(τ) = Tr (B̂1(τ)B̂1ρ̄B)

= Tr([
1

√
2
∑
λ

t′λ∑
k

(hλke
−iωλkτ bλk + h

∗
λke

+iωλkτ b�λk)] [
1

√
2
∑
λ′
t′λ′∑

k′
(hλ′k′bλ′k′ + h

∗
λ′k′b

�

λ′k′)] ρ̄B)

=
1

2
∑
λλ′

t′λt
′
λ′∑
kk′

Tr(((hλkhλ′k′e
−iωλkτ bλkbλ′k′) + (hλkh

∗
λ′k′e

−iωλkτ bλkb
�

λ′k′)

+ (h∗λkhλ′k′e
+iωλkτ b�λkbλ′k′) + (h∗λkh

∗
λ′k′e

+iωλkτ b�λkb
�

λ′k′))ρ̄B)

=
1

2
∑
λλ′

t′λt
′
λ′∑
kk′

((hλkhλ′k′e
−iωλkτ ⟨bλkbλ′k′⟩) + (hλkh

∗
λ′k′e

−iωλkτ ⟨bλkb
�

λ′k′⟩)

+ (h∗λkhλ′k′e
+iωλkτ ⟨b�λkbλ′k′⟩) + (h∗λkh

∗
λ′k′e

+iωλkτ ⟨b�λkb
�

λ′k′⟩) ) ,

where in our system ⟨bλkbλ′k′⟩ = 0, ⟨bλkb
�

λ′k′⟩ ∝ δkk′δλλ′ , ⟨b�λkbλ′k′⟩ ∝ δkk′δλλ′ and ⟨b�λkb
�

λ′k′⟩.
Therefore we may write

C11(τ) =
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
((e−iωλkτ(1 − ⟨b�λkbλk⟩)) + (e+iωλkτ ⟨b�λkbλk⟩) )

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨b�λkbλk⟩ (e

+iωλkτ − e−iωλkτ) + e−iωλkτ)

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨n̂λk⟩2i sin (ωλkτ) + e

−iω,λkτ)

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2ipFD(ωλk, βλ, µλ) sin (ωλkτ) + e

−iωλkτ) ,

where

pFD(ω,β,µ) =
1

eβ(ω−µ) + 1
,
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is the Fermi-Dirac distribution function for energy ω, inverse temperature β and chemical po-
tential µ. Exercising the same calculation for C22, we �nd

C22(τ) = Tr (B̂2(τ)B̂2ρ̄B)

= Tr([
i

√
2
∑
λ

t′λ∑
k

(hλke
−iωλkτ bλk − h

∗
λke

+iωλkτ b�λk)] [
i

√
2
∑
λ′
tλ′(bλ′0 − b

�

λ′0)] ρ̄B)

= −
1

2
∑
λ′λ

t′λtλ′∑
k′k

Tr(((hλkhλ′k′e−iωλkτ bλkbλ′k′) − (hλkh
∗
λ′k′e

−iωλkτ bλkb
�

λ′k′)

− (h∗λkhλ′k′e
+iωλkτ b�λkbλ′k′) + (h∗λkh

∗
λ′k′e

+iωλkτ b�λkb
�

λ′k′))ρ̄B)

= −
1

2
∑
λ′λ

t′λtλ′∑
k′k

((hλkhλ′k′e
−iωλkτ ⟨bλkbλ′k′⟩) − (hλkh

∗
λ′k′e

−iωλkτ ⟨bλkb
�

λ′k′⟩)

− (h∗λkhλ′k′e
+iωλkτ ⟨b�λkbλ′k′⟩) + (h∗λkh

∗
λ′k′e

+iωλkτ ⟨b�λkb
�

λ′k′)⟩)

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
((e−iωλkτ(1 − ⟨b�λkbλk⟩)) + (e+iωλkτ ⟨b�λkbλk⟩))

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨b�λkbλk⟩(e

+iωλkτ − e−iωλkτ) + e−iωλkτ)

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨n̂λk⟩2i sin (ωλkτ) + e

−iωλkτ)

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2ipFD(ωλk, βλ, µλ) sin (ωλkτ) + e

−iωλkτ)

= C11(τ) .
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For C12, we �nd

C12(τ) = Tr (B̂1(τ)B̂2ρ̄B)

= Tr([
1

√
2
∑
λ

t′λ∑
k

(hλke
−iωλkτ bλk + h

∗
λke

+iωλkτ b�λk)] [
i

√
2
∑
λ

t′λ∑
k

(hλkbλk − h
∗
λkb

�

λk)] ρ̄B)

=
i

2
∑
λλ′

t′λt
′
λ′∑
kk′

Tr(((hλkhλ′k′e−iωλkτ bλkbλ′k′) − (hλkh
∗
λ′k′e

−iωλkτ bλkb
�

λ′k′)

+ (h∗λkhλ′k′e
+iωλkτ b�λkbλ′k′) − (h∗λkh

∗
λ′k′e

+iωλkτ b�λkb
�

λ′k′))ρ̄B)

=
i

2
∑
λλ′

t′λt
′
λ′∑
kk′

((hλkhλ′k′e
−iωλkτ ⟨bλkbλ′k′⟩) − (hλkh

∗
λ′k′e

−iωλkτ ⟨bλkb
�

λ′k′⟩)

+ (h∗λkhλ′k′e
+iωλkτ ⟨b�λkbλ′k′⟩) − (h∗λkh

∗
λ′k′e

+iωλkτ ⟨b�λkb
�

λ′k′⟩))

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
( − (e−iωλkτ(1 − ⟨b�λkbλk⟩)) + (e+iωλkτ ⟨b�λkbλk⟩))

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨b�λkbλk⟩(e

+iωλkτ + e−iωλkτ) − e−iωλkτ)

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨b�λkbλk⟩2 cos (ωλkτ) − e

−iωλkτ)

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨n̂�λk⟩2 cos (ωλkτ) − e

−iωλkτ)

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2pFD(ωλk, βλ, µλ) cos (ωλkτ) − e

−iωλkτ) .
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The evaluation for C21 yields

C21(τ) = Tr (B̂2(τ)B̂1ρ̄B)

= Tr([
i

√
2
∑
λ

t′λ∑
k

(hλke
−iωλkτ bλk − h

∗
λke

+iωλkτ b�λk)] [
1

√
2
∑
λ′
t′λ′∑

k′
(hλ′k′bλ′k′ + h

∗
λ′k′b

�

λ′k′)] ρ̄B)

=
i

2
∑
λλ′

t′λt
′
λ′∑
kk′

Tr(((hλkhλ′k′e−iωλkτ bλkbλ′k′) + (hλkh
∗
λ′k′e

−iωλkτ bλkb
�

λ′k′)

− (h∗λkhλ′k′e
+iωλkτ b�λkbλ′k′) − (h∗λkh

∗
λ′k′e

+iωλkτ b�λkb
�

λ′k′))ρ̄B)

=
i

2
∑
λλ′

t′λt
′
λ′∑
kk′

((hλkhλ′k′e
−iωλkτ ⟨bλkbλ′k′⟩) + (hλkh

∗
λ′k′e

−iωλkτ ⟨bλkb
�

λ′k′⟩)

− (h∗λkhλ′k′e
+iωλkτ ⟨b�λkbλ′k′⟩) − (h∗λkh

∗
λ′k′e

+iωλkτ ⟨b�λkb
�

λ′k′⟩))

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
((e−iωλkτ(1 − b�λk⟨bλk⟩)) − (e+iωλkτ ⟨b�λkbλk⟩))

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(⟨b�λkbλk⟩(−e

+iωλkτ − e−iωλkτ) + e−iωλkτ)

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
( − ⟨b�λkbλk⟩2 cos (ωλkτ) + e

−iωλkτ)

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
( − ⟨n̂λk⟩2 cos (ωλkτ) + e

−iωλkτ)

=
i

2
∑
λ

t′2λ ∑ lim, itsk ∣hλk ∣
2
( − 2pFD(ωλk, βλ, µλ) cos (ωλkτ) + e

−iωλkτ)

= −C12(τ) .

E.4. Symmetry of the correlation functions

Symmetry requires Cαβ(τ) = C∗
βα(−τ). Explicitly we have

C11(τ) = C22(τ) =
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2ipFD(ωλk, βλ, µλ) sin (ωλkτ) + e

−iωλkτ)

C∗
11(−τ) = C

∗
22(−τ) =

1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2(−i)pFD(ωλk, βλ, µλ) sin (ωλk(−τ)) + e

−(−i)ωλk(−τ))

=
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2ipFD(ωλk, βλ, µλ) sin (ωλkτ) + e

−iωλkτ) ,
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and

C12(τ) =
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2pFD(ωλk, βλ, µλ) cos (ωλkτ) − e

−iωλkτ)

C∗
21(−τ) =

(−i)

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
( − 2pFD(ωλk, βλ, µλ) cos (ωλk(−τ)) + e

−(−i)ωλk(−τ))

=
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(2pFD(ωλk, βλ, µλ) cos (ωλkτ) − e

−iωλkτ) .

Therefore the symmetry requirements are met.

E.5. Energy integral representation of the correlation

functions

We now switch to an energy-integral representation of the time dependent bath correlation
functions Cαβ(τ), which will prove useful for the subsequent Fourier transformation

C11(τ) = C22(τ) =
1

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
(e−iωλkτ + 2ipFD(ωλk, βλ, µλ) sin (ωλkτ))

=
1

4π
∑
λ

∞

∫
−∞

dν 2πt′2λ ∑
k

∣hλk ∣
2δ(ν − ωλk)(e

−iντ
+ 2ipFD(ν, βλ, µλ) sin (ντ))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ

+ 2ipFD(ν, βλ, µλ) sin (ντ)) ,

where we de�ned the coupling functions to the leads, which roughly speaking is the single-particle
coupling strength times the density of states of the decoupled leads Γλ(ν) = 2πt′2λ ∑

k
∣hλk ∣

2δ(ν −

ωλk). For the o� diagonal components we �nd

C12(τ) = −C21(τ) =
i

2
∑
λ

t′2λ ∑
k

∣hλk ∣
2
( − e−iωλkτ + 2pFD(ωλk, βλ, µλ) cos (ωλkτ))

=
i

4π
∑
λ

∞

∫
−∞

dν 2πt′2λ ∑
k

∣hλk ∣
2δ(ν − ωλk)( − e

−iντ
+ 2pFD(ν, βλ, µλ) cos (ντ))

=
i

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)( − e
−iντ

+ 2pFD(ν, βλ, µλ) cos (ντ))
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E.6. Even Fourier transform of the bath correlation

functions

Next we obtain the Fourier transformed bath correlation functions

ξαβ(ω) =

∞

∫
−∞

dτ e+iωτCαβ(τ) .

For the diagonal components we �nd

ξ11(ω) = ξ22(ω) =

∞

∫
−∞

dτ e+iωτ
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ

+ 2ipFD(ν, βλ, µλ) sin (ντ))

=
1

2
∑
λ

∞

∫
−∞

dν Γλ(ν)
1

2π

∞

∫
−∞

dτ (ei(ω−ν)τ + pFD(ν, βλ, µλ)(e
+i(ω+ν)τ

− ei(ω−ν)τ))

=
1

2
∑
λ

∞

∫
−∞

dν Γλ(ν)(δ(ω − ν) + pFD(ν, βλ, µλ) (δ(ω + ν) − δ(ω − ν))) ,

where we used

1

2π

∞

∫
−∞

dτ ei(ω−ν)τ = δ(ω − ν) .

De�ning p̄FD(ω,β,µ) = 1 − pFD(ω,β,µ) we end up with

ξ11(ω) = ξ22(ω) =
1

2
∑
λ

Γλ(ω) + pFD(−ω,βλ, µλ)Γλ(−ω) − pFD(ω,βλ, µλ)Γλ(ω)

=
1

2
∑
λ

Γλ(ω)p̄FD(ω,βλ, µλ) + Γλ(−ω)pFD(−ω,βλ, µλ) .

For the Fourier transformation of the o� diagonal components we �nd

γ12(ω) = −γ21(ω) =

∞

∫
−∞

dτ e+iωτ
i

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)( − e
−iντ

+ 2pFD(ν, βλ, µλ) cos (ντ))

=
i

2
∑
λ

∞

∫
−∞

dν
1

2π

∞

∫
−∞

dτ Γλ(ν)( − e
i(ω−ν)τ

+ pFD(ν, βλ, µλ)(e
i(ω+ν)τ

+ ei(ω−ν)τ))

=
i

2
∑
λ

∞

∫
−∞

dν Γλ(ν)( − δ(ω − ν) + pFD(ν, βλ, µλ)(δ(ω + ν) + δ(ω − ν)))

=
i

2
∑
λ

−Γλ(ω) + Γλ(−ω)pFD(−ω,βλ, µλ) + Γλ(ω)pFD(ω,βλ, µλ)

=
i

2
∑
λ

Γλ(−ω)pFD(−ω,βλ, µλ) − Γλ(ω)p̄FD(ω,βλ, µλ) .
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E.7. Odd Fourier transform of the bath correlation functions

What is left, is to evaluate the odd Fourier transform of the time dependent correlation function
Eq. (3.31). The component σ11(ω) is given by

λ11(ω) = λ22(ω) =

∞

∫
−∞

dτ sign(τ)e+iωτC11(τ)

=

∞

∫
−∞

dτ sign(τ)e+iωτ(
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ

+ 2ipFD(ν, βλ, µλ) sin (ντ)))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)

∞

∫
−∞

dτ sign(τ)e+iωτ(e−iντ + 2ipFD(ν, βλ, µλ) sin (ντ))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)

∞

∫
−∞

dτ sign(τ)(ei(ω−ν)τ + pFD(ν, βλ, µλ) (e
i(ω+ν)τ

− ei(ω−ν)τ))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)
⎛
⎜
⎝

0

∫
−∞

dτ +

∞

∫
0

dτ
⎞
⎟
⎠
sign(τ)(p̄FD(ν, βλ, µλ)e

i(ω−ν)τ
+ pFD(ν, βλ, µλ)e

i(ω+ν)τ
)

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)
⎛
⎜
⎝
−

0

∫
−∞

dτ +

∞

∫
0

dτ
⎞
⎟
⎠

(p̄FD(ν, βλ, µλ)e
i(ω−ν)τ

+ pFD(ν, βλ, µλ)e
i(ω+ν)τ

)

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(

∞

∫
0

−dτ ′ (p̄FD(ν, βλ, µλ)e
−i(ω−ν)τ ′

+ pFD(ν, βλ, µλ)e
−i(ω+ν)τ ′

)

+

∞

∫
0

dτ (p̄FD(ν, βλ, µλ)e
i(ω−ν)τ

+ pFD(ν, βλ, µλ)e
i(ω+ν)τ

))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)

∞

∫
0

dτ (p̄FD(ν, βλ, µλ) (e
i(ω−ν)τ

− e−i(ω−ν)τ)

+ pFD(ν, βλ, µλ) (e
i(ω+ν)τ

− e−i(ω+ν)τ))

=
i

2π
∑
λ

∞

∫
−∞

dν Γλ(ν)

∞

∫
0

dτ (p̄FD(ν, βλ, µλ) sin ((ω − ν)τ) + pFD(ν, βλ, µλ) sin ((ω + ν)τ))

=
i

2π
∑
λ

∞

∫
−∞

dν Γλ(ν)

∞

∫
0

dτ (p̄FD(ν, βλ, µλ)Im (e(i(ω−ν)τ)) + pFD(ν, βλ, µλ)Im (e(i(ω+ν)τ)))

=
i

2π
∑
λ

∞

∫
−∞

dν Γλ(ν)(p̄FD(ν, βλ, µλ)Im
⎛

⎝

∞

∫
−∞

dτ e(i(ω−ν)τ)θ(τ)
⎞

⎠

+ pFD(ν, βλ, µλ)Im
⎛

⎝

∞

∫
−∞

dτ e(i(ω+ν)τ)θ(τ)
⎞

⎠
)

=
i

2π
∑
λ

∞

∫
−∞

dν Γλ(ν)(p̄FD(ν, βλ, µλ)Im(pv
i

ω − ν
+ πδ(ω − ν))

+ pFD(ν, βλ, µλ)Im(
i

ω + ν
+ πδ(ω + ν))

=
i

2π
∑
λ

∞

∫
−∞
P dν Γλ(ν)(p̄FD(ν, βλ, µλ)

1

ω − ν
+ pFD(ν, βλ, µλ)

1

ω + ν
)

=
i

2π
∑
λ

∞

∫
−∞
P dν Γλ(ν)(pFD(ν, βλ, µλ)

1

ν + ω
− p̄FD(ν, βλ, µλ)

1

ν − ω
) .
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Another way to arrive at the same result is

λ11(ω) = λ22(ω) =
i

π

∞

∫
−∞
P dν

γ11(ν)

ω − ν

=
i

π

∞

∫
−∞
P dν

1
2 ∑
λ

Γλ(ν)p̄FD(ν, βλ, µλ) + Γλ(−ν)pFD(−ν, βλ, µλ)

ω − ν

=
i

2π
∑
λ

∞

∫
−∞
P dν

1

ω − ν
(Γλ(ν)p̄FD(ν, βλ, µλ) + Γλ(−ν)pFD(−ν, βλ, µλ))

=
i

2π
∑
λ

∞

∫
−∞
P dν(Γλ(ν)

1

ω − ν
p̄FD(ν, βλ, µλ) + Γλ(ν)

1

ω + ν
pFD(ν, βλ, µλ))

=
i

2π
∑
λ

∞

∫
−∞
P dνΓλ(ν)(

pFD(ν, βλ, µλ)

ν + ω
−
p̄FD(ν, βλ, µλ)

ν − ω
) .

The o� diagonal component is given by

λ12(ω) = −λ21(ω) =
i

π

∞

∫
−∞
P dν

γ12(ν)

ω − ν

=
i

π

∞

∫
−∞
P dν

i
2 ∑
λ

Γλ(−ν)pFD(−ν, βλ, µλ) − Γλ(ν)p̄FD(ν, βλ, µλ)

ω − ν

= −
1

2π
∑
λ

∞

∫
−∞
P dν(

Γλ(−ν)pFD(−ν, βλ, µλ)

ω − ν
−

Γλ(ν)p̄FD(ν, βλ, µλ)

ω − ν
)

= −
1

2π
∑
λ

∞

∫
−∞
P dνΓλ(ν)(

pFD(ν, βλ, µλ)

ω + ν
−
p̄FD(ν, βλ, µλ)

ω − ν
)

= −
1

2π
∑
λ

∞

∫
−∞
P dνΓλ(ν)(

pFD(ν, βλ, µλ)

ν + ω
+
p̄FD(ν, βλ, µλ)

ν − ω
)

E.8. Flat band at zero temperature

E.8.1. De�nition of the coupling function and particle distribution
function

As the most simple case possible we consider baths which have a constant electronic density of
states ρλ = 1

2Dλ
, i.e. the coupling function Γλ(ω) is constant within the electronic bandwidth
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ω ∈ [−Dλ,+Dλ],D ∈ R ≥ 0 at zero temperature, T = 0. This simpli�es the coupling function to

Γλ(ω) = Γλ(−ω) = 2πt′2λ ρλ(θ(ω +Dλ) − θ(ω −Dλ))

=
πt′2λ
Dλ

(θ(ω +Dλ) − θ(ω −Dλ))

= Γλ(θ(ω +Dλ) − θ(ω −Dλ)) .

The restriction to zero temperature βλ →∞, simpli�es the Fermi-Dirac distribution to Heaviside
step functions, see App. C

pFD(ω,βλ, µλ) = θ(−ω + µλ)

p̄FD(ω,βλ, µλ) = 1 − θ(−ω + µλ) = θ(ω − µλ) .
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E.8.2. Evaluation of the time dependent bath correlation functions

For the time dependent correlation functions we �nd

C11(τ) = C22(τ) =
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ

+ 2ipFD(ν, βλ, µλ) sin (ντ))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(θ(ω +Dλ) − θ(ω −Dλ))(e
−iντ

+ 2iθ(−ω + µλ) sin (ντ))

=
1

4π
∑
λ

Γλ(

+Dλ

∫

−Dλ

dν e−iντ + 2i

+∞

∫
−∞

dν (θ(ω +Dλ) − θ(ω −Dλ))(1 − θ(ω − µλ)) sin (ντ))

=
1

4π
∑
λ

Γλ(

+Dλ

∫

−Dλ

dν e−iντ + 2i

+Dλ

∫

−Dλ

dν sin (ντ)

− 2i

+∞

∫
−∞

dν (θ(ω +Dλ) − θ(ω −Dλ))θ(ω − µλ) sin (ντ))

=
1

4π
∑
λ

Γλ(
1

−iτ
e−iντ ∣+Dλ−Dλ + 2i

− cos (ντ)

τ
∣
+Dλ
−Dλ − 2i

+Dλ

∫

max(−Dλ,µλ)

dν sin (ντ))

=
1

4π
∑
λ

Γλ(
1

−iτ
e−iντ ∣+Dλ−Dλ + 2i

− cos (ντ)

τ
∣
+Dλ
−Dλ

+

⎧⎪⎪
⎨
⎪⎪⎩

−2i− cos (ντ)
τ

∣
+Dλ
max(−Dλ,µλ) for µλ < +Dλ

0 else
)

=
1

4π
∑
λ

Γλ(
−2i

−iτ

e−iDλτ − e+iDλτ

−2i
−

2i

τ
(cos (+Dλτ) − cos (−Dλτ))

+

⎧⎪⎪
⎨
⎪⎪⎩

+ 2i
τ
(cos (+Dλτ) − cos (max(−Dλ, µλ)τ)) for µλ < +Dλ

0 else
)

=
1

2πτ
∑
λ

Γλ( sin (Dλτ) − i cos (+Dλτ) + i cos (−Dλτ)

+

⎧⎪⎪
⎨
⎪⎪⎩

+i cos (+Dλτ) − i cos (max(−Dλ, µλ)τ) for µλ < +Dλ

0 else
)

=
1

2πτ
∑
λ

Γλ( sin (Dλτ) +

⎧⎪⎪
⎨
⎪⎪⎩

+i cos (+Dλτ) − i cos (max(−Dλ, µλ)τ) for µλ < +Dλ

0 else
)

=
1

2πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (Dλτ) for µλ ≤ −Dλ

sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

) .
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As a check, rearranging the terms in a di�erent order we obtain the same result

C11(τ) = C22(τ) =
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ

+ 2ipFD(ν, βλ, µλ) sin (ντ))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ

+ pFD(ν, βλ, µλ) (e
+iντ

− e−iντ))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(e
−iντ p̄FD(ν, βλ, µλ) + e

+iντpFD(ν, βλ, µλ))

=
1

4π
∑
λ

∞

∫
−∞

dν Γλ(θ(ν +Dλ) − θ(ν −Dλ))(e
−iντθ(ν − µλ) + e

+iντθ(−ν + µλ))

=
1

4π
∑
λ

Γλ

∞

∫
−∞

dν ((θ(ν +Dλ) − θ(ν −Dλ))θ(−ν + µλ)e
+iντ

+ (θ(ν +Dλ) − θ(ν −Dλ))θ(ν − µλ)e
−iντ

)

=
1

4π
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min(µλ,Dλ)
∫

−Dλ
dν e+iντ for µλ > −Dλ

0 else

+

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

+Dλ
∫

max(µλ,−Dλ)
dν e−iντ for µλ < +Dλ

0 else
)

=
1

4π
∑
λ

Γλ(

⎧⎪⎪
⎨
⎪⎪⎩

1
iτ
e+iντ ∣

min(µλ,Dλ)
−Dλ for µλ > −Dλ

0 else

+

⎧⎪⎪
⎨
⎪⎪⎩

1
−iτ e

−iντ ∣+Dλ
max(µλ,−Dλ) for µλ < +Dλ

0 else
)

=
1

4πτi
∑
λ

Γλ(

⎧⎪⎪
⎨
⎪⎪⎩

e+imin(µλ,Dλ)τ − e−iDλτ for µλ > −Dλ

0 else

+

⎧⎪⎪
⎨
⎪⎪⎩

e−imax(µλ,−Dλ)τ − e−iDλτ for µλ < +Dλ

0 else
)

= −
i

4πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e+iDλτ − e−iDλτ for µλ ≤ −Dλ

−e−iDλτ − e−iDλτ + e+iµλτ + e−iµλτ + e+iDλτ − e+iDλτ for −Dλ < µλ < +Dλ

e+iDλτ − e−iDλτ for µλ ≥ +Dλ

)

=
1

4πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (Dλτ) for µλ ≤ −Dλ

sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

)

245



As well as

C12(τ) = −C21(τ) =
i

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)( − e
−iντ

+ 2pFD(ν, βλ, µλ) cos (ντ))

=
i

4π
∑
λ

∞

∫
−∞

dν Γλ(θ(ω +Dλ) − θ(ω −Dλ))( − e
−iντ

+ 2θ(−ω + µλ) cos (ντ))

=
i

4π
∑
λ

Γλ( −

+Dλ

∫

−Dλ

dν e−iντ + 2

∞

∫
−∞

dν (θ(ω +Dλ) − θ(ω −Dλ))(1 − θ(−ω + µλ)) cos (ντ))

=
i

4π
∑
λ

Γλ( −

+Dλ

∫

−Dλ

dν e−iντ + 2

+Dλ

∫

−Dλ

dν cos (ντ)

− 2

∞

∫
−∞

dν (θ(ω +Dλ) − θ(ω −Dλ))θ(−ω + µλ)) cos (ντ))

=
i

4π
∑
λ

Γλ( −
1

−iτ
e−iντ ∣+Dλ−Dλ +

2

τ
sin (ντ)∣+Dλ−Dλ

+

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−2
+Dλ
∫

max(−Dλ,µλ)
dν (θ(ω +Dλ) − θ(ω −Dλ))θ(−ω + µλ)) cos (ντ) for µλ < +Dλ

0 else
)

=
i

4π
∑
λ

Γλ( −
−2i

−iτ

e−iDλτ − e+iDλτ

−2i
+

2

τ
(sin (+Dλτ) − sin (−Dλτ))

+

⎧⎪⎪
⎨
⎪⎪⎩

− 2
τ

sin (ντ)∣+Dλ
max(−Dλ,µλ) for µλ < +Dλ

0 else
)

=
i

2πτ
∑
λ

Γλ( − sin (Dλτ) + sin (Dλτ) + sin (Dλτ)

+

⎧⎪⎪
⎨
⎪⎪⎩

− sin (+Dλτ) + sin (max(−Dλ, µλ)τ) for µλ < +Dλ

0 else
)

=
i

2πτ
∑
λ

Γλ( sin (Dλτ)

+

⎧⎪⎪
⎨
⎪⎪⎩

− sin (+Dλτ) + sin (max(−Dλ, µλ)τ) for µλ < +Dλ

0 else
)

=
i

2πτ
∑
λ

Γλ(

⎧⎪⎪
⎨
⎪⎪⎩

sin (Dλτ) − sin (+Dλτ) + sin (max(−Dλ, µλ)τ) for µλ < +Dλ

sin (Dλτ) else
)

=
i

2πτ
∑
λ

Γλ(

⎧⎪⎪
⎨
⎪⎪⎩

sin (max(−Dλ, µλ)τ) for µλ < +Dλ

sin (Dλτ) else
)

=
i

2πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (−Dλτ) for µλ ≤ −Dλ

sin (µλτ) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

) .
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As a check we compute the terms arranged in a di�erent way

C12(τ) = −C21(τ) =
i

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)( − e
−iντ

+ 2pFD(ν, βλ, µλ) cos (ντ))

=
i

4π
∑
λ

∞

∫
−∞

dν Γλ(ν)(pFD(ν, βλ, µλ)e
+iντ

− p̄FD(ν, βλ, µλ)e
−iντ

)

=
i

4π
∑
λ

∞

∫
−∞

dν Γλ(θ(ν +Dλ) − θ(ν −Dλ))(e
+iντθ(−ν + µλ) − e

−iντθ(ν − µλ))

=
i

4π
∑
λ

Γλ

∞

∫
−∞

dν ((θ(ν +Dλ) − θ(ν −Dλ))θ(−ν + µλ)e
+iντ

− (θ(ν +Dλ) − θ(ν −Dλ))θ(ν − µλ)e
−iντ

)

=
i

4π
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

min(µλ,Dλ)
∫

−Dλ
dν e+iντ for µλ > −Dλ

0 else

−

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

+Dλ
∫

max(µλ,−Dλ)
dν e−iντ for µλ < +Dλ

0 else
)

=
i

4π
∑
λ

Γλ(

⎧⎪⎪
⎨
⎪⎪⎩

1
iτ
e+iντ ∣

min(µλ,Dλ)
−Dλ for µλ > −Dλ

0 else

−

⎧⎪⎪
⎨
⎪⎪⎩

1
−iτ e

−iντ ∣+Dλ
max(µλ,−Dλ) for µλ < +Dλ

0 else
)

=
1

4πτ
∑
λ

Γλ(

⎧⎪⎪
⎨
⎪⎪⎩

eimin(µλ,Dλ)τ − e−iDλτ for µλ > −Dλ

0 else

+

⎧⎪⎪
⎨
⎪⎪⎩

−e−imax(µλ,−Dλ)τ + e−iDλτ for µλ < +Dλ

0 else
)

=
1

4πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

e−iDλτ − e+iDλτ for µλ ≤ −Dλ

e+iµλτ − e−iDλτ − e−iµλτ + e−iDλτ for −Dλ < µλ < +Dλ

e+iDλτ − e−iDλτ for µλ ≥ +Dλ

=
i

2πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (−Dλτ) for µλ ≤ −Dλ

sin (µλτ) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

) .
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E.8.3. Evaluation of the even Fourier transformed bath correlation
functions

Evaluating the respective Fourier transforms via direct transformation of Cαβ(τ), we �nd

ξ11(ω) = ξ22(ω) =

∞

∫
−∞

dt e+iωtC11(τ)

=

∞

∫
−∞

dt e+iωt
1

2πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (Dλτ) for µλ ≤ −Dλ

sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

)

=
1

2π
∑
λ

Γλ

∞

∫
−∞

dt e+iωt(

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

sin (Dλτ)
τ

for µλ ≤ −Dλ
sin (Dλτ)

τ
+ i ( cos (Dλτ)

τ
−

cos (µλτ)
τ

) for −Dλ < µλ < +Dλ

sin (Dλτ)
τ

for µλ ≥ +Dλ

)

=
1

2π
∑
λ

Γλ(

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

π
2
(sign(ω +Dλ) − sign(ω −Dλ)) for µλ ≤ −Dλ

π
2
(sign(ω +Dλ) − sign(ω −Dλ))

+i iπ
2

((sign(ω +Dλ) + sign(ω −Dλ) − sign(ω + µλ) − sign(ω − µλ))) for −Dλ < µλ < +Dλ

π
2
(sign(ω +Dλ) − sign(ω −Dλ)) for µλ ≥ +Dλ

)

=
1

4
∑
λ

Γλ(

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sign(ω +Dλ) − sign(ω −Dλ) for µλ ≤ −Dλ

sign(ω +Dλ) − sign(ω −Dλ)

−sign(ω +Dλ) − sign(ω −Dλ) + sign(ω + µλ) + sign(ω − µλ) for −Dλ < µλ < +Dλ

sign(ω +Dλ) − sign(ω −Dλ) for µλ ≥ +Dλ

)

=
1

4
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sign(ω +Dλ) − sign(ω −Dλ) for µλ ≤ −Dλ

−2sign(ω −Dλ) + sign(ω + µλ) + sign(ω − µλ) for −Dλ < µλ < +Dλ

sign(ω +Dλ) − sign(ω −Dλ) for µλ ≥ +Dλ

)

=
1

2
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θ(ω +Dλ) − θ(ω −Dλ) for µλ ≤ −Dλ

−2θ(ω −Dλ) + θ(ω + µλ) + θ(ω − µλ) for −Dλ < µλ < +Dλ

θ(ω +Dλ) − θ(ω −Dλ) for µλ ≥ +Dλ

) .
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For the o� diagonal component we obtain

ξ12(ω) = −ξ21(ω) =

∞

∫
−∞

dt e+iωtC12(τ)

=

∞

∫
−∞

dt e+iωt
i

2πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (−Dλτ) for µλ ≤ −Dλ

sin (µλτ) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

)

=
i

2π
∑
λ

Γλ

∞

∫
−∞

dt e+iωt(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (−Dλτ)
τ

for µλ ≤ −Dλ
sin (µλτ)

τ
for −Dλ < µλ < +Dλ

sin (Dλτ)
τ

for µλ ≥ +Dλ

)

=
i

2π
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

π
2
(sign(ω + (−Dλ)) − sign(ω − (−Dλ))) for µλ ≤ −Dλ

π
2
(sign(ω + µλ) − sign(ω − µλ)) for −Dλ < µλ < +Dλ

π
2
(sign(ω +Dλ) − sign(ω −Dλ)) for µλ ≥ +Dλ

)

=
i

4
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sign(ω + (−Dλ)) − sign(ω − (−Dλ)) for µλ ≤ −Dλ

sign(ω + µλ) − sign(ω − µλ) for −Dλ < µλ < +Dλ

sign(ω +Dλ) − sign(ω −Dλ) for µλ ≥ +Dλ

)

=
i

2
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θ(ω + (−Dλ)) − θ(ω − (−Dλ)) for µλ ≤ −Dλ

θ(ω + µλ) − θ(ω − µλ) for −Dλ < µλ < +Dλ

θ(ω +Dλ)θ(ω −Dλ) for µλ ≥ +Dλ

) .

E.8.4. Evaluation of the odd Fourier transformed bath correlation
functions

Next we evaluate the odd Fourier transform λαβ(ω) of the bath correlation functions via direct
transformation of Cαβ(τ)

λ11(ω) = λ22(ω) =

∞

∫
−∞

dτ sign(τ)e+iωτC11(τ)

=

∞

∫
−∞

dτ sign(τ)e+iωτ
1

2πτ
∑
λ

Γλ( sin (Dλτ) + i (cos (Dλτ) − cos (µλτ))) ,

where the �rst term with the sine is valid in all regions A ∶ µλ ≤ −Dλ, B ∶ −Dλ < µλ < +Dλ and
C ∶ µλ ≥ +Dλ while the cosine terms only appear in region B. By unwrapping the sign function
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we �nd

λ11(ω) = λ22(ω) =
1

2π
∑
λ

Γλ(

∞

∫
0

dτ −

0

∫
−∞

dτ) e+iωτ
1

τ
( sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)))

=
1

2π
∑
λ

Γλ(

∞

∫
0

dτ e+iωτ
1

τ
( sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)))

−

0

∫
−∞

dτ e+iωτ
1

τ
( sin (Dλτ) + i (cos (Dλτ) − cos (µλτ))))

=
1

2π
∑
λ

Γλ(

∞

∫
0

dτ e+iωτ
1

τ
( sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)))

−

0

∫
∞

−dτ e−iωτ
1

−τ
( sin (−Dλτ) + i (cos (−Dλτ) − cos (−µλτ))))

=
1

2π
∑
λ

Γλ(

∞

∫
0

dτ e+iωτ
1

τ
( sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)))

+

∞

∫
0

dτ e−iωτ
1

τ
( − sin (Dλτ) + i (cos (Dλτ) − cos (µλτ))))

=
1

2π
∑
λ

Γλ

∞

∫
0

dτ

τ
( sin (Dλτ)(e

+iωτ
− e−iωτ)

+ i (cos (Dλτ) − cos (µλτ)) (e
+iωτ

+ e−iωτ))

=
1

2π
∑
λ

Γλ

∞

∫
0

dτ

τ
( sin (Dλτ)2i sin (ωτ) + i (cos (Dλτ) − cos (µλτ))2 cos (ωτ))

=
i

π
∑
λ

Γλ

∞

∫
0

dτ

τ
( sin (Dλτ) sin (ωτ) + (cos (Dλτ) − cos (µλτ)) cos (ωτ)) ,

where the sin sin integral converges while the separate cos cos integrals diverge at τ → 0. Therefore
they have to be treated together using

cos (x) − cos (y) = 2 sin (
y + x

2
) sin (

y − x

2
) ,

we �nd

λ11(ω) = λ22(ω) =
i

π
∑
λ

Γλ

∞

∫
0

dτ

τ
( sin (Dλτ) sin (ωτ) + 2 sin (

µλ +Dλ

2
τ) sin (

µλ −Dλ

2
τ) cos (ωτ)) .

Furthermore with

sin (x) cos (y) =
1

2
( sin (x − y) + sin (x + y)) ,
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we end up with

λ11(ω) = λ22(ω) =
i

π
∑
λ

Γλ

∞

∫
0

dτ

τ
( sin (Dλτ) sin (ωτ)

+ 2 sin (
µλ +Dλ

2
τ)(

1

2
sin (

µλ −Dλ − 2ω

2
τ) + sin (

µλ −Dλ + 2ω

2
τ)))

=
i

π
∑
λ

Γλ

∞

∫
0

dτ

τ
( sin (Dλτ) sin (ωτ)

+ sin (
µλ +Dλ

2
τ) sin (

µλ −Dλ − 2ω

2
τ)

+ sin (
µλ +Dλ

2
τ) sin (

µλ −Dλ + 2ω

2
τ)) .

With

+∞

∫
0

dτ

τ
sin (xτ) sin (yτ) =

1

2
ln(∣

x + y

x − y
∣) ,

we �nally end up with

λ11(ω) = λ22(ω) =
i

π
∑
λ

Γλ(
1

2
ln(∣

Dλ + ω

Dλ − ω
∣)

+
1

2
ln(∣

µλ +Dλ + µλ −Dλ − 2ω

µλ +Dλ − µλ +Dλ + 2ω
∣)

+
1

2
ln(∣

µλ +Dλ + µλ −Dλ + 2ω

µλ +Dλ − µλ +Dλ − 2ω
∣) )

=
i

2π
∑
λ

Γλ(ln(∣
Dλ + ω

Dλ − ω
∣) + ln(∣

µλ − ω

Dλ + ω
∣) + ln(∣

µλ + ω

Dλ − ω
∣) )

=
i

2π
∑
λ

Γλ(ln(∣
Dλ + ω

Dλ − ω
∣) + ln(∣

µ2
λ − ω

2

D2
λ − ω

2
∣))

=
i

2π
∑
λ

Γλ

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ln (∣
ω+Dλ+
ω−Dλ ∣) for µλ ≤ −Dλ

ln (∣
ω+Dλ+
ω−Dλ ∣) + ln (∣

ω2−µ2
λ

ω2−D2
λ

∣) for −Dλ < µλ < +Dλ

ln (∣
ω+Dλ+
ω−Dλ ∣) for µλ ≥ +Dλ

.

For the o� diagonal component we �nd

λ12(ω) = −λ21(ω) =

∞

∫
−∞

dτ sign(τ)e+iωτC12(τ)

=

∞

∫
−∞

dτ sign(τ)e+iωτ
i

2πτ
∑
λ

Γλ sin (Xλτ) ,
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with Xλ = −Dλ in region A, Xλ = µλ in region B and Xλ = +Dλ in region C. We continue

λ12(ω) = −λ21(ω) =
i

2π
∑
λ

Γλ(

∞

∫
0

−

0

∫
−∞

)
dτ

τ
e+iωτ sin (Xλτ)

=
i

2π
∑
λ

Γλ(

∞

∫
0

dτ

τ
e+iωτ sin (Xλτ) −

0

∫
∞

−dτ

−τ
e−iωτ sin (−Xλτ))

=
i

2π
∑
λ

Γλ(

∞

∫
0

dτ

τ
(e+iωτ − e−iωτ) sin (Xλτ))

= −
1

π
∑
λ

Γλ

∞

∫
0

dτ

τ
sin (Xλτ) sin (ωτ)

= −
1

π
∑
λ

Γλ
1

2
ln(∣

Xλ + ω

Xλ − ω
∣)

=
1

2π
∑
λ

Γλln(∣
ω −Xλ

ω +Xλ
∣)

=
1

2π
∑
λ

Γλ

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ln (∣
ω−(−Dλ)
ω+(−Dλ) ∣) for µλ ≤ −Dλ

ln (∣
ω−µλ
ω+µλ ∣) for −Dλ < µλ < +Dλ

ln (∣
ω−Dλ
ω+Dλ ∣) for µλ ≥ +Dλ

.

E.8.5. Summary of the results

For �at bands at zero temperature, see Fig. E.1, Fig. E.2, Fig. E.3 and Fig. E.4, the time depen-
dent correlation functions Cαβ(τ) are given by

C11(τ) = C22(τ) =
1

2πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (Dλτ) for µλ ≤ −Dλ

sin (Dλτ) + i (cos (Dλτ) − cos (µλτ)) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

) ,

C12(τ) = −C21(τ) =
i

2πτ
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

sin (−Dλτ) for µλ ≤ −Dλ

sin (µλτ) for −Dλ < µλ < +Dλ

sin (Dλτ) for µλ ≥ +Dλ

) .
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Figure E.1.: Coupling function Γ(ω) and distribution function pFD(ω) for one bath with constant
density of states in the region [−D,D] at zero temperature. The chemical potential
is marked as a cyan vertical line.

The even Fourier transforms ξαβ(ω) read

ξ11(ω) = ξ22(ω) =
1

2
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θ(ω +Dλ) − θ(ω −Dλ) for µλ ≤ −Dλ

−2θ(ω −Dλ) + θ(ω + µλ) + θ(ω − µλ) for −Dλ < µλ < +Dλ

θ(ω +Dλ) − θ(ω −Dλ) for µλ ≥ +Dλ

)

=
1

2
∑
λ

Γλ [θ(ω +Dλ) − θ(ω −Dλ)] [θ(ω + µλ) + θ(ω − µλ)] ,

ξ12(ω) = −ξ21(ω) =
i

2
∑
λ

Γλ(

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θ(ω + (−Dλ)) − θ(ω − (−Dλ)) for µλ ≤ −Dλ

θ(ω + µλ) − θ(ω − µλ) for −Dλ < µλ < +Dλ

θ(ω +Dλ)θ(ω −Dλ) for µλ ≥ +Dλ

)

=
i

2
∑
λ

Γλ [θ(ω +Dλ) − θ(ω −Dλ)] [θ(ω + µλ) − θ(ω − µλ)] .

And for the odd Fourier transforms λαβ(ω) we �nd

λ11(ω) = λ22(ω) =
i

2π
∑
λ

Γλ

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

ln (∣
ω+Dλ
ω−Dλ ∣) for µλ ≤ −Dλ

ln (∣
ω+Dλ
ω−Dλ ∣) + ln (∣

ω2−µ2
λ

ω2−D2
λ

∣) for −Dλ < µλ < +Dλ

ln (∣
ω+Dλ
ω−Dλ ∣) for µλ ≥ +Dλ

,

λ12(ω) = −λ21(ω) =
1

2π
∑
λ

Γλ

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

ln (∣
ω−(−Dλ)
ω+(−Dλ) ∣) for µλ ≤ −Dλ

ln (∣
ω−µλ
ω+µλ ∣) for −Dλ < µλ < +Dλ

ln (∣
ω−Dλ
ω+Dλ ∣) for µλ ≥ +Dλ

.
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Figure E.2.: Time dependent bath correlation function Cαβ(τ) for one bath with constant density
of states in the region [−D,D] at zero temperature.
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Figure E.3.: Even Fourier transform of the bath correlation function ξαβ(ω) for one bath with
constant density of states in the region [−D,D] at zero temperature.
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Figure E.4.: Odd Fourier transform of the bath correlation function λαβ(ω) for one bath with
constant density of states in the region [−D,D] at zero temperature.
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F. Lindblad master equation for

non-interacting fermions

In the following we consider fermions on a lattice described by a Hamiltonian

Ĥ = Ĥ0 + ĤI ,

where the non-interacting part

Ĥ0 = Ĥn + Ĥa = c
�
µhµνcν + (cµaµνcν + c

�
µa

∗
νµc

�
ν) ,

is quadratic in the fermion creation c� and annihilation c operators, obeying the standard
fermionic anti-commutation relations

{c�µ, c
�
ν} = {cµ, cν} = 0,{c�µ, cν} = δµν , (F.1)

where the anti-commutator is de�ned as {Â, B̂} = {B̂, Â} = ÂB̂ + B̂Â. Besides the normal part
Ĥn we explicitly take anomalous terms Ĥa into account. Greek indices µ, ν quite generally denote
compound indices of N fermionic quantum numbers where we have in mind for example a site
i, orbital α and a spin σ index. Our notation relies on Einstein's summation convention where
doubly occurring indices have to be summed over. The matrix representation of the normal part
has to be hermitian

hµν = h
∗
νµ ,

and the anomalous part antisymmetric

aµν = −aνµ .

Note that this implies zeros on the diagonal of aµν . This leaves of course (N+1)N
2

independent
parameters in hµν and (N−1)N

2
in aµν , which are N2 overall.

F.1. Open quantum systems and the Lindblad master

equation

The Lindblad quantum master equation for the time evolution of the hermitian density operator
ρ̂ reads [454, 466, 456]

˙̂ρ = −i
ˆ̂
Lρ̂ = −i

⎛

⎝
[Ĥ, ρ̂]− + 2i ∑

µνα

Γµνα (L̂µαρ̂L̂
�
να −

1

2
{L̂�

ναL̂µα, ρ̂})
⎞

⎠
, (F.2)
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where ˆ̂
L is the Lindbladian super-operator and L̂(�)

µα are called dissipators with dissipation index
α. The �rst term with the commutator [Â, B̂]− = −[B̂, Â]− = ÂB̂ − B̂Â represents the unitary
part of the time evolution, which is the only part present in closed systems. There arise two
additional dissipative terms in open systems. The �rst one describes quantum jumps between
the levels of the system, while the second term with the anti-commutator balances quantum
�uctuations and quantum jumps and is needed for a trace preserving time evolution. In general
there exist M2 − 1 dissipators L̂(�)

µα where M is the size of the Hilbert space. In the following we
consider quadratic ones only i.e. the two normal options

L̂µ+ = c
�
µ, L̂µ− = cµ with Γµνα = Γµν+ and

L̂µ+ = cµ, L̂µ− = c
�
µ with Γµνα = Γµν− ,

as well as the two anomalous ones

L̂µ+ = c
�
µ, L̂µ− = c

�
µ with Γµνα = Υµν+ and

L̂µ+ = cµ, L̂µ− = cµ with Γµνα = Υµν− .

The dissipation matrices Γµν are hermitian

Γµν = Γ∗νµ ,

due to the anti-commutation relation of the fermionic creation and annihilation operators and
positive semide�nite in order to preserve the positivity of the density matrix during time evolu-
tion. The matrices Υµν ful�l

Υµν = −Υνµ .

Time evolution with the Lindblad quantum master equation preserves the [61]

� trace of the density operator: Tr (ρ̂(τ)) = Tr (ρ̂(0)),

� hermiticity of the density operator: ρ̂(τ) = ρ̂�(τ) if ρ̂(0) = ρ̂�(0),

� positivity of the density operator: ⟨Ψ∣ρ̂(τ)∣Ψ⟩ ≥ 0 ∀ Ψ if ⟨Ψ∣ρ̂(0)∣Ψ⟩ ≥ 0 ∀ Ψ.

It is helpful to split the Lindbladian into three parts

ˆ̂
L =

ˆ̂
L0 +

ˆ̂
LI

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
unitary

+
ˆ̂
LD
°

dissipative

,

which are the unitary contributions of the non-interacting Hamiltonian Ĥ0 and the interacting
Hamiltonian ĤI as well as the non unitary dissipative terms.
Explicitly these terms read

ˆ̂
L0●̂ = [Ĥ0, ●̂]− (F.3a)
ˆ̂
LI ●̂ = [ĤI , ●̂]− (F.3b)

ˆ̂
LD●̂ = 2i ∑

µνα

Γµνα (L̂µα●̂L̂
�
να −

1

2
{L̂�

ναL̂µα, ●̂}) . (F.3c)
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In the following we will furthermore split ˆ̂
L0 =

ˆ̂
Ln +

ˆ̂
La where the normal component n includes

the normal part of the non-interacting Hamiltonian Ĥn and the anomalous component a holds

the anomalous parts Ĥa. Likewise we decompose ˆ̂
LD =

ˆ̂
LDn +

ˆ̂
LDa .

F.2. Lindbladian in super-fermion space

Here we consider the time evolution of the single-particle density matrix ρµν as described by
the Lindblad master equation Eq. (F.2). One elegant way of obtaining this, is by making use
of the super-fermion formalism [467]. Introducing the left-vacuum ∣I⟩ and the nonequilibrium
wave function ∣ρ(t)⟩ = ρ∣I⟩ one can write the Lindblad master equation in a Schrödinger type
formalism

d

dt
∣ρ(t)⟩ = −i

ˆ̂
Lρ̂∣I⟩ .

F.2.1. Applying the super-operator

The problem is that ρ̂ is trapped inside the super-operator. To shift it to the far right we use
super-fermions c̃µ/c̃

�
µ which commute with ρ̂. To obtain super-fermions we have to shift all

fermionic operators to the far right and apply them on ∣I⟩ �rst. Note that the problem always
occurs in the second part of the commutator while the �rst part is �ne from the beginning.

We start out by considering the action of the non-interacting normal part ˆ̂
Lnρ̂ (Eq. (F.3a)).

L̂n∣ρ(t)⟩ = [Ĥn, ρ̂]−∣I⟩

= (c�µhµνcν ρ̂ − ρ̂c
�
µhµνcν) ∣I⟩

= (c�µhµνcν ρ̂ − ρ̂c
�
µhµν(−ic̃

�
ν)) ∣I⟩

= (c�µhµνcν ρ̂ − ρ̂hµν(−ic̃
�
ν)(−c

�
µ)) ∣I⟩

= (c�µhµνcν ρ̂ − ρ̂hµν(−ic̃
�
ν)(ic̃µ)) ∣I⟩

= (c�µhµνcν − hµν c̃
�
ν c̃µ) ρ̂∣I⟩

= (c�µhµνcν − c̃
�
µhνµc̃ν) ∣ρ(t)⟩

= (c�µhµνcν − c̃
�
µh

∗
µν c̃ν) ∣ρ(t)⟩ , (F.4)

From line two to three we applied the fermion annihilation operator cν on the left vacuum,
resulting in the creation of a super-fermion

cµ∣I⟩ = −ic̃
�
µ∣I⟩

c�µ∣I⟩ = −ic̃µ∣I⟩ . (F.5)

Shifting c�µ to the right and using the fermion - super-fermion anti-commutation relations

{cµ, c̃ν} = {c�µ, c̃
�
ν} = {cµ, c̃

�
ν} = 0 . (F.6)

Finally we used the fact that all super-fermions commute with the density operator ρ̂µν = c�µcν .
This directly follows from Eq. (F.6).
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The non-interacting anomalous part similarly yields

L̂a∣ρ(t)⟩ = [Ĥa, ρ̂]−∣I⟩ = (cµaµνcν − c̃µa
∗
µν c̃ν + c

�
µa

∗
νµc

�
ν − c̃

�
µaνµc̃

�
ν)∣ρ(t)⟩ . (F.7)

For the normal dissipative term we �nd

L̂Dn∣ρ(t)⟩ = 2i(Γµν+ (c�µρ̂cν −
1

2
cνc

�
µρ̂ −

1

2
ρ̂cνc

�
µ)

+Γµν− (cµρ̂c
�
ν −

1

2
c�νcµρ̂ −

1

2
ρ̂c�νcµ))∣ρ(t)⟩

= (2 (c�µΓµν+c̃
�
ν + cνΓνµ−c̃µ)

+ i (Γµν+ − Γνµ−) (c
�
µcν + c̃

�
ν c̃µ)

− 2iΓµν+δµν)∣ρ(t)⟩ . (F.8)

For the anomalous dissipative contribution we obtain

L̂Da∣ρ(t)⟩ = 2i(Υµν+ (c�µρ̂c
�
ν −

1

2
c�νc

�
µρ̂ −

1

2
ρ̂c�νc

�
µ)

+Υµν− (cµρ̂cν −
1

2
cνcµρ̂ −

1

2
ρ̂cνcµ))∣ρ(t)⟩

= (c�µ2Υµν+c̃ν + c
�
µiΥµν+c

�
ν − c̃µiΥµν+c̃ν

− c̃�µ2ΥT
µν−cν − cµiΥ

T
µν−cν + c̃

�
µiΥ

T
µν−c̃

�
ν)∣ρ(t)⟩ . (F.9)

Note that in this chapter we discussed L̂ and not −iL̂.

F.2.2. Super-hole representation

We now change to a slightly more advantageous notation by introducing super-holes d̃µ/d̃
�
µ.

This representation has the advantage that the system stays normal as long as the starting
Hamiltonian is normal and only acquires anomalous terms if they are present from the beginning
i.e. the super-space does not introduce anomalous contributions as in Eq. (F.8). The super-
holes obey standard fermionic anti-commutation relations Eq. (F.1). In particular we apply a
particle-hole transmutation to the super-fermion sector

d̃µ = c̃
�
µ and d̃�µ = c̃µ .

The super-holes again anti-commute with the original fermions in the same fashion as the super-
fermion Eq. (F.6).
From this we �nd for the normal part of the Lindbladian Eq. (F.4)

L̂n∣ρ(t)⟩ = (c�µhµνcν + d̃
�
µhµν d̃ν − hµνδµν) ∣ρ(t)⟩ , (F.10)
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and for the anomalous part Eq. (F.7)

L̂a∣ρ(t)⟩ = (cµaµνcν + d̃µaµν d̃ν + c
�
µa

∗
νµc

�
ν + d̃

�
µa

∗
νµd̃

�
ν)∣ρ(t)⟩ (F.11)

The dissipative part Eq. (F.8) becomes normal

L̂Dn ∣ρ(t)⟩ = (2 (c�µΓµν+d̃ν − d̃
�
µΓTµν−cν)

+ i (Γµν+ − ΓTµν−) (c
�
µcν − d̃

�
µd̃ν)

− i (Γµν+ + ΓTµν−) δµν)∣ρ(t)⟩ . (F.12)

For the anomalous dissipative contribution stays anomalous

L̂Da∣ρ(t)⟩ = (c�µ2Υµν+d̃
�
ν + c

�
µiΥµν+c

�
ν − d̃

�
µiΥµν+d̃

�
ν

− d̃µ2ΥT
µν−cν − cµiΥ

T
µν−cν + d̃µiΥ

T
µν−d̃ν)∣ρ(t)⟩ . (F.13)

The convenient end result for the non-interacting case is

L̂∣ρ(t)⟩ = (c�µ (hµν + iΩµν) cν + d̃
�
µ (hµν − iΩµν) d̃ν

+ c�µ (2Γµν+) d̃ν − d̃
�
µ (2ΓTµν−) cν + c

�
µ(2Υµν+)d̃

�
ν − d̃µ(2ΥT

µν−)cν

+ cµ(aµν − iΥ
T
µν−)cν + d̃µ(aµν + iΥ

T
µν−)d̃ν + c

�
µ(a

∗
νµ + iΥµν+)c

�
ν + d̃

�
µ(a

∗
νµ − iΥµν+)d̃

�
ν

− (hµν + iΛµν) δµν)∣ρ(t)⟩ . (F.14)

Where we introduced the following symbols:

Λµν = (Γµν+ + ΓTµν−) ,Λ = tr (Λµν)

Ωµν = (Γµν+ − ΓTµν−) ,Ω = tr (Ωµν)

Xαβ +
−
= (Υαβ +

−
+Υβα +

−
) = 0 ⋅ 11αβ

Yαβ +
−
= (Υαβ +

−
−Υβα +

−
)

Aµν = (aµν − aνµ) = −Aνµ = 2aµν .

Note the order of indices in the last de�nition. Again note that this is L̂ and not −iL̂.

F.3. Time evolution of the single-particle density matrix

In the following we present two di�erent, independent approaches to obtain the time evolution
of the single-particle density matrix (equal time quadratic correlation function). They di�er in
computational complexity and stability. A third approach would be to do all calculations in the
full Fock space, which results in an unfavourable scaling of the numeric algorithm.
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F.3.1. Commutator approach

To actually evaluate the time evolution [467] of the density matrix ⟨ρ(t)⟩ = ⟨I ∣ρ̂∣ρ(t)⟩, we make
use of the fact that ⟨I ∣L̂ = 0

ρ̇αβ =
d

dt
⟨ρ(t)⟩ = −i⟨I ∣c�αcβL̂∣ρ(t)⟩ = −i⟨I ∣ [c

�
αcβ , L̂]−

∣ρ(t)⟩ .

Note that c�αcβL̂ would be a four-Fermi quantity, while the commutator is quadratic.
When dealing with anomalous systems we introduce the corresponding anomalous densities

ηαβ(t) = ⟨I ∣cαcβ ∣ρ(t)⟩ and ξαβ(t) = ⟨I ∣c�αc
�

β ∣ρ(t)⟩ in the same way as the normal density. Note
that ηαβ = −ηβα, ξαβ = −ξβα and ραβ = ρ∗βα. In the general case we will acquire a coupled system
of equations for ραβ , ηαβ and ξαβ .

Equations governing the time evolution

All that is left now is to evaluate the commutators [c
(�)
α c

(�)
β , L̂]− using Eq. (F.14). This is straight

forwardly done by using the general properties of commutators

[Â, B̂Ĉ]− = [Â, B̂]−Ĉ + B̂[Â, Ĉ]−

= {Â, B̂}Ĉ − B̂{Â, Ĉ} ,

as well as the elementary fermionic anti-commutation relations Eq. (F.1). Note that from now
on the −i of the time evolution is included in contrast to Eq. (F.14).
Introducing

Kαβ ∶= (ihαβ +Λαβ)

Rαβ ∶= (ihαβ −Λαβ)

Fαβ ∶= (iA∗
αβ −Xαβ+)

Gαβ ∶= (iAαβ +Xαβ−) ,

for the normal part ραβ we �nd

ρ̇αβ = ∑
µ

⎛

⎝
Rµαρµβ −Kβµραµ +Gαµηβµ + Fβµξαµ

⎞

⎠
+ 2Γβα+ . (F.15a)

The �rst anomalous component ηαβ is given by

η̇αβ = ∑
µ

⎛

⎝
Kβµηµα −Kαµηµβ − Fβµρµα + Fαµρµβ

⎞

⎠
− (iA∗

αβ + Yαβ+) . (F.15b)

The second anomalous component ξαβ is given by

ξ̇αβ = ∑
µ

⎛

⎝
−Rµβξµα +Rµαξµβ −Gβµραµ +Gαµρβµ

⎞

⎠
+ (−iAαβ + Y

T
αβ−) . (F.15c)

It has been checked that Eq. (F.15c) is the hermitian conjugate of Eq. (F.15b) and vice versa,
that Eq. (F.15a) is hermitian and that the fermionic relations η̇αβ = −η̇βα and ξ̇αβ = −ξ̇βα hold in
Eq. (F.15).
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The system above is for 3N2 variables and can be further reduced due to symmetry arguments:
i) ραβ = ρ∗βα, ii) ξαβ = η∗βα and iii) ηαβ = −ηβα. The fact that the diagonal anomalous densities
vanish allows for reducing the dimension of the above system. Therefore we cast it into a form
which describes the diagonal and upper triangle of ρ i.e. α ≤ β

ρ̇αβ = Rβαρββ −Kβαραα

+ ∑
µ<β

Rµαρµβ − Fαµηµβ + ∑
µ>β

Rµαρ
∗
βµ + Fαµηβµ

+ ∑
µ<α

−Kβµρ
∗
µα +Gβµη

∗
µα + ∑

µ>α
−Kβµραµ −Gβµη

∗
αµ

+ 2Γβα+ ,

as well as the upper triangle of η i.e. α < β

η̇αβ = Fαβρββ − Fβαραα

+ ∑
µ<β

Fαµρµβ −Kαµηµβ + ∑
µ>β

Fαµρ
∗
βµ +Kαµηβµ

+ ∑
µ<α

−Fβµρµα +Kβµηµα + ∑
µ>α

−Fβµρ
∗
αµ −Kβµηαµ

− (iA∗
αβ + Yαβ+) .

The other components can be straightforwardly determined by the relations stated above.

Solution to the time dynamics and steady-state

The solution of Eq. (F.15) is straight forward and can for example be elegantly done in matrix
notation. We reorder the matrices ραβ , ηαβ and ξαβ in a suitable column vector form ρ⃗, η⃗ and ξ⃗
(for example column wise). We introduce a compound vector notation Ξ⃗ = (ρ⃗; η⃗; ξ⃗). Performing
the same reordering on the prefactors in Eq. (F.15) we call M the coe�cients of Ξ⃗ and S the
constant, inhomogeneous part. Then the time evolution takes the matrix form

˙⃗Ξ =M Ξ⃗ + S⃗ ,

which upon diagonalization of M

λ = U−1MU

ζ⃗ = U−1Ξ⃗, Ξ⃗ = Uζ⃗

σ⃗ = U−1S⃗, S⃗ = Uσ⃗ ,

where λ is diagonal and U the transformation which diagonalizes M , reads

˙⃗
ζ = λζ⃗ + σ⃗ .

The solution of this decoupled system of ordinary inhomogeneous di�erential equations, in the
eigenmodes is

ζ⃗i(t) = (ζi(0) +
σi
λii

) eλiit −
σi
λii

. (F.16)
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It can be shown that Re(λi) < 0 ∀ i so that the steady-state is given by

ζ⃗i(t→∞) = −
σi
λii

. (F.17)

Note that the numerical evaluation is extremely sensitive to values of σ which should be exactly
zero but are very small but �nite due to the transformation of s into the eigenbasis of L. Such
errors get ampli�ed beyond limits by dividing through small eigenvalues in Eq. (F.17).

Practical considerations

This time evolution of non-interacting open quantum systems scales like ∝ (N2)3 + Nt(N
2)2,

where N is the number of distinct fermionic quantum numbers α (i.e. the system size times spin
degeneracy), the squared comes essentially from the introduction of a super-space and is easily
visible in the matrix reordering procedure in Sec. F.3.1 and the number of time slices of interest
Nt. The complexity of the algorithm is essentially proportional to the full diagonalization of M
which essentially scales with the third power plus corrections due to matrix vector multiplications
which scale like the size squared albeit with a prefactor which is the number of time slices of
interest. Note that for normal systems this scaling ∝ N6 makes accessing large system sizes
even in the non-interacting system problematic. For full diagonalization ≈ 48 orbitals should be
easily accessible on standard machines. The initial condition for time evolution is just given by
ραβ(0), ηαβ(0) and ξαβ(0) in concatenated reshaped form.
In short the evolution of the density matrix can be implemented by

� start with an initial density matrix Ξαβ(0) and the dynamics M , S as described by the
parameters of the Hamiltonian and the Lindbladian dissipators;

� reshape to matrix-vector form → Ξ⃗,M, S⃗;

� solve the full eigenvalue problem for M → U,λ;

� obtain σ⃗ = U−1S⃗;

� A) for time evolution:

� obtain starting eigenmodes ζ⃗(0) = U−1Ξ⃗(0);

� loop desired times and evaluate ζ⃗(t) by Eq. (F.16);

� transform back for all times Ξ⃗(t) = Uζ⃗(t);

� B) for the steady-state:

� obtain steady-state eigenmodes ζ⃗(∞) by Eq. (F.17);

� transform back Ξ⃗(∞) = Uζ⃗(∞).

F.3.2. Nonequilibrium quasi-particles

After outlining the �commutator method� for obtaining the time evolution of the density ma-
trix which could be obtained by solving an inhomogeneous system of di�erential equations by
diagonalization we present an alternative �nonequilibrium quasi-particle� method. To start with
we rewrite the Lindbladian in the super-hole picture Eq. (F.14) into a compact vector notation.
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De�ning

g⃗ =

⎛
⎜
⎜
⎜
⎜
⎝

c⃗
c⃗�

⃗̃
d
⃗̃
d�

⎞
⎟
⎟
⎟
⎟
⎠

, g⃗� = (c⃗� c⃗
⃗̃
d�

⃗̃
d) , g⃗�g⃗ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c⃗�c⃗ c⃗�c⃗� c⃗�
⃗̃
d c⃗�

⃗̃
d�

c⃗c⃗ c⃗c⃗� c⃗
⃗̃
d c⃗

⃗̃
d�

⃗̃
d�c⃗

⃗̃
d�c⃗�

⃗̃
d�

⃗̃
d

⃗̃
d�

⃗̃
d�

⃗̃
dc⃗

⃗̃
dc⃗�

⃗̃
d
⃗̃
d

⃗̃
d
⃗̃
d�

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so that

L = g⃗�Lg⃗ + q⃗ . (F.18)

Bringing Eq. (F.14) by symmetrizing explicitly in the form above it becomes

L = g⃗�
⎛
⎜
⎜
⎜
⎝

1
2
(hµν + iΩµν) a∗νµ + iΥµν+

1
2
(2Γµν+)

1
2
2Υµν+

aµν − iΥ
T
µν−

1
2
(−(hνµ + iΩνµ))

1
2
2Υµν−

1
2
(2ΓTνµ−)

1
2
(−2ΓTµν−) − 1

2
2Υνµ+

1
2
(hµν − iΩµν) a∗νµ − iΥµν+

− 1
2
2ΥT

µν−
1
2
(−2Γνµ+) aµν + iΥ

T
µν−

1
2
(−(hνµ − iΩνµ))

⎞
⎟
⎟
⎟
⎠

g⃗ − tr (iΛµν) ,

(F.19)

where L and q⃗ can be conveniently read o�. For normal systems (aµν ≡ Υµν +
−
≡ 0) the system

above separates into two equivalent ones and one ends up in a reduced space

L = g⃗′
�
(
hµν + iΩµν 2Γµν+
−2ΓTµν− hµν − iΩµν

) g⃗′ − tr (hµν + iΛµν) with g⃗′ = (
c⃗
⃗̃
d
) .

Equations governing the time evolution

One diagonalizes L in Eq. (F.19)

λ = U−1LU .

and obtains the nonequilibrium eigenmodes

ζ⃗ = U−1g⃗

⃗̄ζ = g⃗�U .

Note that the fermionic commutation relations Eq. (F.1) hold for the nonequilibrium eigen-
operators ζ/ζ̄ but they are not hermitian conjugate. As a result we can write Eq. (F.18) in
the ζ basis

L = ⃗̄ζλζ⃗ + q . (F.20)
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The time evolution of an equal time quadratic expectation value ⟨ζ̄αζβ⟩ = ⟨I ∣ζ̄αζβ ∣ρ(t)⟩ is given
by

d⟨ζ̄αζβ⟩

dτ
= −i

d

dτ
⟨I ∣ζ̄αζβ ∣ρ(t)⟩

= −i⟨I ∣ζ̄αζβL∣ρ(t)⟩

= −i⟨I ∣[ζ̄αζβ ,L]−∣ρ(t)⟩

= −i⟨I ∣(λββ − λαα)ζ̄αζβ ∣ρ(t)⟩

= −i(λββ − λαα)⟨ζ̄αζβ⟩ ,

The solution of this decoupled system of di�erential equations is

⟨ζ̄αζβ⟩(τ) = e
−i(λββ−λαα)τ ⟨ζ̄αζβ⟩(0) .

A steady-state can only exist if Im(λββ − λαα) ≤ 0, which is only guaranteed for λγγ − q but not
for λγγ only. Next we transform to modes which ful�l this criterion

ςγ =

⎧⎪⎪
⎨
⎪⎪⎩

ζγ , if Im(λγγ) ≤ 0

ζ̄γ , if Im(λγγ) > 0

ωγ = −λγγsign (Im(λγγ)) .

Eq. (F.20) becomes in the ς basis

L = ∑
Im(λγγ)≤0

λγγ ζ̄γζγ + ∑
Im(λγγ)>0

λγγ ζ̄γζγ + q

= ∑
Im(λγγ)≤0

ωγγ ς̄γςγ − ∑
Im(λγγ)>0

ωγγ(1 − ς̄γςγ) + q

= ∑
γ

ωγγ ς̄γςγ + q + ∑
Im(λγγ)>0

λγγ ,

where the new constant is zero υ = q + ∑
Im(λγγ)>0

λγγ is zero. Note that in contrast to the

commutator case, here L is really L and not −iL.

Solution to the time dynamics and steady-state

Quadratic steady-state expectation values in the original g⃗ space are obtained from the modi�ed
nonequilibrium eigenmodes ς by

⟨g�αgβ⟩(∞) = ∑
Im(λγγ)>0

((U−1
)
T
)αγλγγ(U

T
)γβ . (F.21)

The time evolution is performed in the nonequilibrium eigenbasis ζ

⟨g�αgβ⟩(τ) = ((U−1
)
T
)αγ e

−i(λαα−λββ)τz(0) (UT )γβ (F.22)

z(0) = UT γ(0)(U−1
)
T ,

where γαβ(0) is the initial density matrix in g⃗ space.
To transform any given ραβ , ηαβ , ξαβ into a form needed for propagation with Eq. (F.19)
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we calculate the individual components of γαβ = ⟨g�αgβ⟩ = ⟨I ∣g⃗�g⃗∣ρ⟩ and re-express them in the
quantities above by commuting and eliminating super-holes using relations Eq. (F.5)

γαβ = ⟨g�αgβ⟩ =

⎛
⎜
⎜
⎜
⎝

ραβ ξαβ i(11 − ραβ) −iξαβ
ηαβ 11 − ρTαβ −iηαβ iρTαβ
−iραβ −iξαβ 11 − ραβ −ξαβ
−iηαβ −i(11 − ρTαβ) −ηαβ ρTαβ

⎞
⎟
⎟
⎟
⎠

.

Again for normal systems this reduces to

γ′αβ = ⟨g
′�
α g

′

β ⟩ = (
ραβ i(11 − ραβ)
−iραβ 11 − ραβ

) .

Practical considerations

The algorithm is based on the diagonalization of the Lindbladian L in the original particle (c)
and super-hole (d̃) space which we call (g⃗). The time evolution is done in the diagonalized non-
hermitian quasi-particle space ζ. The space needed to directly extract the steady-state is the one
where all positive imaginary parts of the eigenvalues in the ζ basis are particle hole transformed
to the ς modes. Pure steady-state calculations scale like the solution of an eigenvalue problem
and an inversion in 4N/2N dimensions in the anomalous/normal system which in leading order
scales like ∝ 256/32N3. Time evolution calculations scale like the evaluation of an eigenvalue
problem plus an inversion plus matrix multiplications in each time step in 4N/2N dimensions
which amounts to ∝ (128/16 + 192/24Nτ)N

3

In short the evolution of the density matrix is easily implemented by

� start with an initial density matrix γαβ(0) and the matrix L, q;

� solve the full eigenvalue problem for L → U,λ;

� A) for time evolution:

� obtain nonequilibrium eigenmodes ζ;

� evaluate the time dependent density matrix by Eq. (F.22);

� B) for the steady-state:

� obtain steady-state eigenmodes ς;

� evaluate the steady-state density matrix by Eq. (F.21);

The procedure is numerically very sensitive. For a stable time evolution it is necessary to
perform three numerical regularizations: i) Those exponents (λαα − λββ) which are supposed to
be exactly zero due to round o� errors and are not for numerical reasons should be set to zero
manually. ii) Those exponents which couple to zero entries in the transformed density matrix
zαβ should be set to zero. iii) The entries in the time dependent density matrix γαβ which are
not exactly zero due to round o� errors arising from the transformation in the eigenbasis set to
zero manually. For a stable evaluation of the steady-state also the resulting steady-state density
matrix γαβ(∞) should be cleared from numerical noise arising from the transformation in the
eigenbasis. Even more importantly when evaluating the constant contribution in the ς basis υ
and when choosing the states with Im(λγγ) > 0 one has to try some cut-o�s, maybe > −∣ε∣ or so,
otherwise one will end up in spurious steady-states. This point is numerically highly sensitive
and it is best to check the steady-state calculation vs. the time evolution for large times and vs.
the commutator method.

265



F.4. Single-particle Green's functions

We de�ne the following single-particle Green's functions as a function of real time τ

G>
αβ(τ) = −ı⟨gα(τ)g

�

β⟩

G<
αβ(τ) = −ηı⟨g

�

βgα(τ)⟩

GKαβ(τ) = G
>
αβ(τ) +G

<
αβ(τ)

GRαβ(τ) = Θ(τ) (G>
αβ(τ) −G

<
αβ(τ))

GAαβ(τ) = −Θ(−τ) (G>
αβ(τ) −G

<
αβ(τ)) ,

where η = −1 for fermions, see Sec. 3.3.1.

The open quantum system described by the super-operator ˆ̂
L (Eq. (3.43)) can be recast in

an elegant way as a standard operator problem in a super fermion space with twice as many
orbitals [467, 468, 469, 470]. The Fock space of the auxiliary problem formulated in d /d�:
{∣n⟩} with ∑

n
∣n⟩⟨n∣ = 1̂1, ⟨n∣m⟩ = δn,m is augmented by a copy of super fermionic states d̃ /d̃�:

{∣ñ⟩} with ∑
ñ
∣ñ⟩⟨ñ∣ = ˆ̃11, ⟨ñ∣m̃⟩ = δñ,m̃. We rewrite the Lindblad master equation in the super Fock

space spanned by ∣n⟩⊗∣ñ⟩. Introducing the left-vacuum ∣I⟩ = ∑
{n}

(−i)∑n∣n⟩⊗∣ñ⟩ and the nonequi-

librium wave function ∣ρ(t)⟩ = ρ̂(t)∣I⟩ one can write the Lindblad master equation in a Schrödinger
type fashion [467] d

dt
∣ρ(t)⟩ = L̂∣ρ(t)⟩ . Within a vector notation g� = (d�0,⋯, d

�
Nb
, h̃�0,⋯, h̃

�
Nb

) ,
where the h̃/h̃� operators are particle-hole transformed super-fermions d̃�/d̃, the non-interacting
part of the Lindbladian becomes

iL0 = ∑
σ

g� (
E + iΩ 2Γ(2)

−2Γ(1)T E − iΩ
)g − tr (E + iΛ) , (F.23)

where Λ = (Γ(2)
+Γ(1)T

) and Ω = (Γ(2)
−Γ(1)T

).

We start out by calculating the two time correlation function [456]

⟨B̂(t2), Â(t1)⟩ ≡ trU (B̂(t2)Â(t1)ρ̂U) = tr (B̂Ât1(t))

for t = t2 − t1 > 0, where ρ̂U is the density operator of the universe, and trU = tr⊗ trE is the trace
over the universe degrees of freedom, whereby tr is the one over the system, and trE the one over
the environment. Here,

At1(t) = trE (e−iĤU tÂρ̂U(t1)e
+iĤU t)

and ĤU is the total Hamiltonian of the universe.

By virtue of the Quantum regression theorem [456] which hold under the same assumptions
for which Eq. (3.42) holds, one �nds for t > 0

d

dt
Ât1(t) = L̂Ât1(t) ,
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which can be solved to yield

⟨B̂(t2), Â(t1)⟩ = tr(B̂e
ˆ̂Lt
(Âρ̂(t1))) .

Using this result we evaluate the greater Green's function for times t > 0 is de�ned as

G>,∞
0,µν(t) ∶= −i⟨dµ(t)d

�
ν⟩∞

= −itr(dµe
ˆ̂Lt (d�ν ρ̂∞))

= −i⟨I ∣dµe
L̂td�ν ∣ρ∞⟩ .

Diagonalizing the non-interacting non-hermitian Lindbladian Eq. (F.23) λ = U−1LU , we obtain
nonequilibrium eigenmodes ξ = U−1g / ξ̄ = g�U , which are not hermitian conjugate but still
fermionic commutation relations hold. As a result the non-interacting Lindbladian takes the
form L = ξ̄λξ + η . The expression for the greater Green's function can be readily evaluated in
the nonequilibrium eigenmodes ξ of L

⟨ξα(t)ξ̄β⟩∞ ∶= ⟨I ∣ξαe
L̂tξ̄β ∣ρ∞⟩ = ⟨I ∣eL̂teλααtξαξ̄β ∣ρ∞⟩ = eλααt⟨I ∣ξαξ̄β ∣ρ∞⟩ ,

since ⟨I ∣eL̂t = ⟨I ∣. A steady-state can only exist if Re(λγγ) ≤ 0, which is only guaranteed for
λγγ − η but not for λγγ . The left vacuum ⟨I ∣ is the vacuum for the transformed modes

ςγ =

⎧⎪⎪
⎨
⎪⎪⎩

ξγ , if Re(λγγ) ≤ 0

ξ̄γ , if Re(λγγ) > 0

ωγ = −λγγsign (Re(λγγ)) .

In this basis the Lindbladian becomes L = ∑
γ
ωγγ ς̄γςγ + υ , where the new constant υ = η +

∑
Re(λγγ)>0

λγγ is zero. Transforming back to the orbital basis

⟨dα(t)d
�

β⟩∞ = ∑
γε

Uαγ⟨ξγ(t)ξ̄ε ⟩∞(U−1
)εβ

= ∑
γε

Uαγe
λγγt⟨I ∣δγε − ξ̄εξγ ∣ρ∞⟩(U−1

)εβ

= ∑
ε

Uαγe
λγγt⟨I ∣∑

γ

δγε − ( ∑
Re(λγγ)≤0

ς̄ε ςγ

+ ∑
Re(λγγ)>0

(δγε − ς̄ε ςγ))∣ρ∞⟩(U−1
)εβ

= ∑
ε

Uαγe
λγγt⟨I ∣∑

γ

δγε

− ∑
Re(λγγ)>0

δγε∣ρ∞⟩(U−1
)εβ

= ∑
γ

Uαγe
λγγtDγγ(U

−1
)γβ ,
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since ∣ρ∞⟩ is the vacuum of the ς modes. We introduced a matrix

Dγγ =

⎧⎪⎪
⎨
⎪⎪⎩

0 Re(λγγ) ≤ 0

1 Re(λγγ) > 0
,

which selects exponentially growing eigenmodes and D̄ = (11 −D) de�nes its complement. The
component for t < 0 is obtained by taking the hermitian conjugate and exchanging t by −t
in the above expression. Then the greater Green's function is governed by contributions with
Re(λγγ) ≤ 0

G>,∞
µν (t) =

⎧⎪⎪
⎨
⎪⎪⎩

−i (UeλtD̄U−1
)
µν

t ≥ 0

−i (Ue−λtD̄U−1
)
∗
νµ

t < 0
.

Its Fourier transform

G>,∞
µν (ω) = ∫

∞

−∞
dt eiωtG>,∞

µν (t) ,

yields

G>,∞
µν (ω) = (U

1

11 − iλD̄
U−1

)
µν
− (U

1

11 − iλD̄
U−1

)

∗

νµ
,

where 11 is the unit in the fermion+super-fermion space. Note that G>,∞
µν (ω) = G>,∞∗

νµ (ω).
The lesser Green's function

G<,∞
0,µν(t) ∶= i⟨d

�
ν(t)dµ⟩∞ ,

is evaluated in an analogous way and is governed by contributions with Re(λγγ) > 0

G<,∞
µν (t) =

⎧⎪⎪
⎨
⎪⎪⎩

i (Ue−λtDU−1
)
∗
νµ

t ≥ 0

i (UeλtDU−1
)
µν

t < 0
.

Its Fourier transform yields

G<,∞
µν (ω) = (U

1

11 − iλD
U−1

)
µν
− (U

1

11 − iλD
U−1

)

∗

νµ
,

which satis�es G<,∞
µν (ω) = G<,∞∗

νµ (ω).

The Keldysh Green's function is given by contributions from all λγγ : GK,∞µν = G>,∞
µν +G<,∞

µν

GK,∞µν (t) =

⎧⎪⎪
⎨
⎪⎪⎩

i (Ue−λtDU−1
)
∗
νµ
− i (UeλtD̄U−1

)
µν

t ≥ 0

i (UeλtDU−1
)
µν
− i (Ue−λtD̄U−1

)
∗
νµ

t < 0
.

Its Fourier transform yields

GK,∞µν (ω) = (U
1

11 − iλ
U−1

)
µν
− (U

1

11 − iλ
U−1

)

∗

νµ
, (F.24)

for which GK,∞µν (ω) = −GK,∞νµ (ω) holds.
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The retarded Green's function is given by GR,∞µν (t) = θ(t) (G>,∞
µν (t) −G<,∞

µν (t)), where the
step-function θ(t) selects times t > 0

GR,∞µν (t) =

⎧⎪⎪
⎨
⎪⎪⎩

−i (UeλtD̄U−1
)
µν
− i (Ue−λtDU−1

)
∗
νµ

t ≥ 0

0 t < 0
.

Its Fourier transform yields

GR,∞µν (ω) = (U
1

11 − iλD̄
U−1

)
µν
− (U

1

11 − iλD
U−1

)

∗

νµ
. (F.25)

The advanced Green's function is given by GA,∞µν (t) = θ(−t) (G<,∞
µν (t) −G>,∞

µν (t)), where the
step-function θ(−t) selects times t < 0

GA,∞µν (t) =

⎧⎪⎪
⎨
⎪⎪⎩

0 t ≥ 0

i (UeλtDU−1
)
µν
+ i (Ue−λtD̄U−1

)
∗
νµ

t < 0
.

Its Fourier transform yields

GA,∞µν (ω) = (U
1

11 − iλD
U−1

)
µν
− (U

1

11 − iλD̄
U−1

)

∗

νµ
,

where GR,∞µν = −GA,∞∗
νµ .

Next we show how to simplify the above expressions based on symmetries of the Lindbladian
in the super-fermionic representation. We de�ne matrices V which block diagonalize the non-
interacting Lindbladian (Eq. (F.23)) iL0 = V BV

−1 with

B = ∑
σ

(
E − iΛ 0

0 E + iΛ
) ,

where the two blocks are complex conjugate to each other and an Ansatz for V

V = (
11d X
−iX i(11d −X)

) ,V −1
= (

(11d −X) iX
11d −i11d

) ,

where X is a hermitian matrix and 11d is the unit in either the fermion or the super-fermion
space. The expression for the retarded Green's function Eq. (F.25) takes the form

GR,∞
0 (ω) = V (

(ω11d −E + iΛ)−1 0
0 0

)V −1

+ (V (
0 0
0 (ω11d −E − iΛ)−1)V

−1
)

�

,

which (for real ω) becomes independent ofX and yields upon projection to the degrees of freedom
of the fermions

GR,∞
0 (ω) = (ω11d −E + iΛ)

−1 ,
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and

GA,∞
0 (ω) = (ω11d −E − iΛ)

−1 .

The Keldysh Green's function Eq. (F.24) takes the form

GK,∞
0 (ω) = V (

(ω11d −E + iΛ)−1 0
0 ω11d −E + iΛ)−1)V

−1

+ (V (
(ω11d −E − iΛ)−1 0

0 (ω11d −E + iΛ)−1)V
−1

)

�

,

which yields upon projection to the degrees of freedom of the fermions

GK,∞
0 (ω) = (ω11d −E + iΛ)

−1
(11d − 2X)

+ (2X − 11d)(ω11d −E − iΛ)
−1

=GR,∞
0 (ω)(11d − 2X) + (2X − 11d)G

A,∞
0 (ω) ,

which using (G−1
)K = −(G−1

)RGK
(G−1

)A yields

(G∞−1
0

)
K
(ω) = (2X − 11d)(ω11d −E − iΛ)

+ (ω11d −E + iΛ)(11d − 2X)

= −2([X,E] + i{X,Λ}) + 2iΛ

= −2iΩ ,

since [X,E]+ i{X,Λ} = 2iΓ(2) which follows directly from the block elements of iL0 = V BV
−1.

Altogether we �nd the convenient end result for the non-interacting Green's function of the
fermionic orbitals

G∞−1
0

(ω) = (
ω11d −E + iΛ −2iΩ

0 ω11d −E − iΛ
) .
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G. Optimized representation of

non-interacting electronic reservoirs

The ideas presented in this appendix have been discussed with Markus Aichhorn and Manuel
Zingl who both fruitfully contributed to the developments. The study of the SIAM in [329] and
the CPT based DMFT solver developed in [471] by Martin Nuss, Manuel Zingl and Markus
Aichhorn as well as the distributed ED algorithm [472] and the e�cient real frequency DMFT
solver presented in [473] served as a seed for the need of an optimized bath in CPT. The scheme
proposed here is useful for all CPT based methods in equilibrium or out-of-equilibrium when parts
of the entire system are non-interacting. This is the case when studying the steady-state of small
interacting devices contacted to in�nite non-interacting leads under bias voltage as in the main
part of this thesis. It is also useful when constructing �nite size representations of hybridization
functions as needed in the equilibrium DMFT problem, see also [474]. In a benchmark for a
single correlated orbital we �nd that the optimization scheme is capable of reproducing even
di�cult observables, like the equilibrium Kondo temperature remarkably well, see also [357].

G.1. Reservoir representation

Within the steady-state quantum cluster methods stsCPT, stsVCA and meCPT, the electronic
self-energy Σ̃sts(ω) is approximated by the self-energy computed on a �nite size reference system
Σ̃rs(ω). Consider a small interacting device ĤS of size LS , coupled by a single-particle hopping
ĤSE to non-interacting leads ĤE of in�nite size. A natural cluster decomposition for steady-
state quantum cluster methods would be into ĤS and ĤE while treating the device-lead coupling
ĤSE within CPT perturbatively. Only the interacting subsystem ĤS yields a contribution to
the electronic self-energy Σ̃rs(ω). That is the self-energy of an LS site system is used. The
non-interacting leads enter the calculation just via their local single-particle Green's function at
the contact point g̃0E

00 (ω) which is typically available analytically [303].
However, electronic correlations inside the device can be treated more accurately when this

perturbation lies further away from the interacting device i.e. when LB orbitals of the non-
interacting leads are incorporated in the central interacting cluster of size LC = LS + LB . This
implies that the electronic self-energy Σ̃rs(ω) is now computed from an LC > LS site interacting
system, ultimately reaching its exact value at LC → ∞. In the following we shortly discuss the
simplest way of incorporating a non-interacting reservoir partially into the interacting cluster:
the chain representation. Leaving the non-interacting reservoir Green's function g̃0E

00 (ω) invari-
ant, the non-interacting reservoir can always be transformed to a tridiagonal representation via
unitary transformations. The reservoir on-site energies εi and nearest-neighbour-hopping ti can
be obtained using a Lanczos tridiagonalization procedure [329] yielding a chain representation
of the reservoir. The on-site energies {ε1, . . . , εLB} and hopping {t1, . . . , tLB−1} then enter the
Hamiltonian of the interacting cluster. The complexity for solving this part grows exponentially
with its size LC . The new inter-cluster perturbation is the single-particle hopping tLB . The
dynamics of the remainder of the non-interacting leads can still be solved exactly for example
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via a continued fraction representation

g0E,R
(ω) =

1

ω+ + εLB+1 −
t2
LB+1

ω++εLB+2−
t2
LB+2

ω++εLB+3−

t2
LB+3

ω++...

.

This representation straight forwardly allows to successively incorporate parts of the reservoir
into the interacting cluster. The situation is not so clear in other representations. Consider for
example the case of a star geometry, where all reservoir orbitals couple once to the interacting
device only. Then their on-site energies directly re�ect their energetic location in the Green's
function and the respective hopping their weight. Incorporating just any LB of these star orbitals
into the interacting cluster will lead to a poor self-energy due to the fragmentary contribution
of the reservoir to the self-energy.
In general any unitary transformation on the non-interacting reservoir degrees of freedom leaves

the physics of the interacting device invariant. It is however clear, that such a transformation
will alter the electronic self-energy of the interacting cluster signi�cantly due to the perturbative
nature of CPT. However such transformations will also alter the o�-diagonal perturbative blocks
between the interacting cluster and the remaining reservoir, rendering the resulting perturbation
in some cases larger than in other. There exist an in�nite set of reservoirs of in�nite size which
all describe the non-interacting reservoir at the device exactly and which are related via unitary
transformations. In the following we explore what characterizes good reservoirs in CPT and
how to improve on the reservoir parametrization. We will present a way to e�ciently construct
reservoirs which are especially favourable for the CPT method. We conclude by presenting results
for the physics of a single interacting orbital.

G.2. Optimized electronic reservoir

In the following, for illustration purposes, we restrict ourself to a single correlated orbital LS = 1
coupled to one non-interacting reservoir of L − 1 → ∞ orbitals. We use a semicircular reservoir
DOS, i.e. the local Green's function of a non-interacting semi-in�nite tight binding chain. In
general the non-interacting Green's function is speci�ed by the non-interacting Hamiltonian H0,
that is a matrix in orbital space of size L×L. Out of this space a cluster of size LC is chosen such
that it consists of the LS = 1 device orbitals and the LC − LS ��rst� reservoir orbitals (in any
given order), this is the upper left LC × LC block in H0 subsequently Hcluster

0 . The remaining,
lower (L−LC)×(L−LC) block describes the remainder of the reservoir, subsequently Hreservoir

0 .
Note that explicitly LC − 1 reservoir orbitals are also included in Hcluster

0 and Hreservoir
0 just

describes the rest of the reservoir. In CPT both these Hamiltonians are solved exactly for their
non-interacting single-particle Green's functions g̃0cluster(w) of size LC × LC and g̃0reservoir(w)

of size (L − LC) × (L − LC). Subsequently they are joined to yield the L × L non-interacting
single-particle Green's function of the full system G̃0−1(w) by the CPT relation

G̃0−1
(ω) = (

g̃0cluster(ω) 0
0 g̃0reservoir(ω)

)

−1

− T̃ ,

which becomes exact as long as only non-interacting subsystems are considered. Here T is the
inter-cluster perturbation which consists of the two o�-diagonal blocks in H0 connecting the
interacting cluster and the remainder of the reservoir, i.e. T =H0(1 ∶ LC , LC +1 ∶ L)+H0(LC +1 ∶
L,1 ∶ LC). As soon as an interaction on the impurity is switched on, the non-interacting Green's
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functions become replaced by their interacting equivalents. Then the CPT relation is no longer
exact but a result of perturbation theory in T .
Therefore the CPT method itself suggests which reservoirs might be the best: Those which

�minimize� the o� diagonal perturbative elements ∣∣T ∣∣. Using unitary transformations just on
the reservoir we can �nd those reservoirs with minimal ∣∣T ∣∣, which suggest the best system for
the CPT perturbation theory and therefore the best self-energy, see Fig.G.1 (B).
The full non-interacting Hamiltonian reads for L→∞

H0 = c
�
0h00c0 +

L−1

∑
i=1

c�ihi0c0 +
L−1

∑
i=1

c�0h0ici +
L−1

∑
i,j=1

c�ihijcj ,

where the impurity is denoted by 0 and all L − 1 reservoir orbitals by i and j. We now perform
a unitary transformation in the reservoir only, which leaves the impurity 0 invariant

cα = (R�)
iα
ci = R

∗
αici

c�α = c�iRiα

ci = Riαcα ,

c�i = c
�
α (R�)

iα
= c�αR

∗
αi ,

with a unitary transformation RR� = 11. This leads to the reservoir-transformed Hamiltonian

H0 = c
�
0h00c0 +

L−1

∑
i=1

L−1

∑
α=1

c�αR
∗
αihi0c0 +

L−1

∑
i=1

L−1

∑
α=1

c�0h0iRiαcα +
L−1

∑
i,j=1

L−1

∑
α,β=1

c�αR
∗
αihijRjβcβ

= c�0h00c0 +
L−1

∑
α=1

c�αhα0c0 +
L−1

∑
α=1

c�0h0αcα +
L−1

∑
α,β=1

c�αhαβcβ ,

with

hα0 =
L−1

∑
i=1

R∗
αihi0

hα0 =
L−1

∑
i=1

h0iRiα

hαβ =
L−1

∑
i,j=1

R∗
αihijRjβ .

The �energy� of a certain reservoir con�guration H0 is determined via the 2- norm of the o�
diagonal blocks T

E =
1

NT
∑
ij

wij ∣Tij ∣
2 , (G.1)

where the number of elements in T is NT = LC ⋅ (L − LC). Performing transformations on the
reservoir degrees of freedom included in the interacting cluster does not in�uence the resulting
self-energy in any way. The same is true for transformations on the reservoir orbitals in the
remainder of the reservoir. This imposes a constraint on the energy: It has to be invariant with
respect to such transformations, which is ful�lled by the two norm proposed above. In general
one could think of a more complicated scheme including weighing factors wij which die o� with
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distance from the interacting device. We use wij = 1.

G.3. Optimization scheme

To �nd the minimum in energy Eq. (G.1) in the high dimensional space Tij , we propose a simu-
lated annealing strategy. We move through the space of possible H0 by proposing random local
updates R. In general any unitary updates R = eiM , with M =M � is allowed. Here we restrict
ourselves to two-dimensional rotation matrices

R =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0 . . . 0 . . . 0
0 1 . . . 0 0 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . 0
0 0 . . . cos (θ) 0 . . . − sin (θ) . . . 0
0 0 . . . 0 1 . . . 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . 0
0 0 . . . sin (θ) 0 . . . cos (θ) . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 . . . 0 . . . 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

An update R(x, y, φ) is drawn by choosing two random integers x, y ∈ [1, L − 1] representing the
plane of rotation and one random double θ ∈ [0,2π[ representing the rotation angle.
Here we discuss a single interacting impurity in a particle-hole symmetric setting. Although

reservoir rotations leave the particle-hole symmetry invariant on the L site H0, they destroy it
on the LC site cluster in the interacting case. Therefore we split the reservoir space into an
equal amount of positive and negative energy modes and one zero mode and perform updates
simultaneously on the positive and negative modes which leaves the whole reservoir, the reservoir
in the cluster as well as the remaining reservoir particle-hole invariant also in the interacting
system.
To obtain a set of low energy, i.e. in the sense of CPT, reservoir con�gurations we propose a

Monte Carlo update, see Fig.G.1 (A)

1. Given the non-interacting reservoir DOS, obtain H0 in star form on L−1 reservoir orbitals
by a Lanczos procedure.

2. Perform a global random update in all dimensions and therefore obtain a random starting
representation of H0.

3. From now on perform single random two dimensional rotation updates R(x, y, θ and accept
them with probability

p =min (1, e−β(Etrial−E)) .

If rejected, stay with the old con�guration. A suitable inverse temperature β has to be
chosen according to the acceptance rate.

The resulting reservoir will

� minimize the perturbative matrix elements,

� leave the non-interacting Green's function invariant and

� ful�l particle-hole symmetry at the cluster level also for interacting systems.
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Figure G.1.: Optimized representation of non-interacting reservoirs: optimization process. (A)
Minimization of the non-interacting reservoir representation. The Monte Carlo en-
ergy E is plotted vs. the Monte Carlo time τ in a doubly logarithmic fashion. In
addition we show the initial energy (pink), the energy of an arbitrary star (orange)
and the energy of a chain (green) representation. (B) Unitary updates are per-
formed in the space of negative energies (blue) and the equivalent ones in the space
of positive energies (red) to respect particle-hole symmetry. The diagonal blocks
from top to bottom represent: 1) the impurity, 2) the zero mode inside the cluster,
3) two negative modes inside the cluster, 4) two positive modes inside the cluster, 5)
the remaining negative modes in the reservoir and 6) the remaining positive modes
in the reservoir. (C) Evolution of the hybridization function χcluster, generated by
considering only the interacting cluster. (D) Evolution of the di�erence of the self-
energy of the cluster to the self-energy of the full system ∆Σ as obtained by second
order perturbation theory.
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We gauge the quality of each reservoir representation by three indicators, see Fig.G.1 (C,D)

1. The energy E as de�ned in Eq. (G.1) which re�ects the magnitude of the perturbation.

2. The in�uence of the CPT truncation can be judged on the non-interacting level. We
compare the exact non-interacting DOS at the device − 1

π
Im (g0R

00 (ω)), that is the one
yielded by the in�nite reservoir to the one obtained by considering the orbitals in the
interacting cluster only − 1

π
Im (g0R

00,cluster(ω)). The resulting quantity

∆χcluster =

∞

∫
−∞

dω ∣Im (g0R
00 (ω)) − Im (g0R

00,cluster(ω))∣
2
,

can readily be evaluated and re�ects the ability of the interacting cluster to represent the
reservoir degrees of freedom.

3. The in�uence of the CPT truncation should be judged on level of the self-energy. In analogy
to ∆χcluster we de�ne ∆Σ as the di�erence in cluster self-energy to the self-energy of the
full in�nite system

∆Σ =

∞

∫
−∞

dω ∣Σ00(ω) −Σ00,cluster(ω)∣
2 .

Of course Σ00(ω) can not be obtained exactly for interacting systems. This is why we
propose a guess for this quantity for small U , based on second order perturbation theory.
We evaluate both Σ00,cluster(ω) as well as Σ00,cluster(ω) using an integral over imaginary
time τ [36, 42]

Σ
(2)
00 (ωn) = U

2

β

∫
0

dτ(g0
00)

2
(τ)g0

00(−τ)e
iωnτ .

Since we compute both Σ00,cluster(ω) and Σ00,cluster(ω) within this approximation and
compare only quotients we can hope for a cancellation of perturbative errors.

A-priori a positive correlation of these three objects is not ensured but expected. In CPT one
wants to use the best self-energy that is the minimum ∆Σ, which however cannot be obtained
exactly. A positive correlation of ∆Σ with ∆χcluster is for example assumed in ED based DMFT
solvers. We will show below that both ∆χcluster and an approximate guess for ∆Σ correlate
positively with E, validating the proposed scheme.

G.4. Optimization results

We start out by discussing the correlation of the three indicators ∆χcluster, ∆Σ and E. In this
section we use a particle-hole symmetric reservoir of 81 orbitals, a single interacting impurity
and an interacting cluster of LC = 6. That is the cluster hosts the impurity, one reservoir zero
mode and two additional positive and negative reservoir modes each. In Fig.G.2 we plot the
results of a typical annealing run (blue pluses). Fig.G.2 (A) shows that smaller perturbative
elements E correlate positively with smaller ∆χcluster, indicating a better representation of the
non-interacting reservoir inside the interacting cluster. Fig.G.2 (B) shows the positive correla-
tions of E with the guess for ∆Σ. We compare the reservoir con�gurations to the random initial
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Figure G.2.: Optimized representation of non-interacting reservoirs: optimized reservoir. (A)
Correlation of Monte Carlo energy E and the representation of the hybridization
function by the interacting cluster only ∆χcluster. (B) Correlation of Monte Carlo
energy E and the estimate for the error in the self-energy ∆Σ, as obtained by
second order perturbation theory. In both panel (A) and (B) we plot in addition
the respective values for the chain (green), an arbitrary star (orange) and the initial
(pink) representation. (C) The spectral function of the full system is invariant
under change of basis. (D) Histogram of the perturbative matrix elements Tij
of the minimum energy (blue), the chain (green) and an arbitrary star (orange)
representation.

con�guration (pink star) which shows a much higher ∆χcluster and a much higher ∆Σ. When
using a star representation of the reservoir and choosing �ve orbitals at random to enter the
interacting cluster one again �nds a much higher ∆χcluster and a much higher ∆Σ with respect
to the optimized results. The chain representation (green circles) hosts only one perturbative
matrix element which is however large. The optimized representation can yield a better ∆χcluster,
however the guess for ∆Σ of the chain seems to be as good as the one for the optimized result.
The optimization procedure leaves the DOS of the non-interacting reservoir at the impurity in-
variant, see Fig.G.2 (C). Fig.G.2 (D) shows that as expected the number of perturbative matrix
elements Tij grows during the optimization but their magnitude becomes tiny as compared to
the chain or the star.
In Fig.G.3 we present the resulting CPT spectral function A(ω) and self-energy Σ(iωn) for

an interaction strength of U = 2 ∆. The arbitrary initial and star representations yield results
far away from the chain and the optimized representation. Results obtained with the optimized

277



ω/ ∆
-4 -2 0 2 4

A
(ω

, 
U

=
2
|
∆

|)
/(
π
∆

)

0

0.5

1

1.5

ω
n

0 5 10

Im
(
Σ

(i
ω

n
, 
U

=
2
∆

))

-0.6

-0.4

-0.2

0

minimum

chain

star

initial

Figure G.3.: Optimized representation of non-interacting reservoirs: Interacting spectral function
and self-energy. (Left) The CPT spectral function A(ω) at U = 2 ∆. (Right) The
corresponding Matsubara self-energy Σ(iω). The key is valid for both panels

ω
n

0 5 10

Im
(
Σ

(i
ω

n
, 

U
))

-15

-10

-5

0

U=0 ∆

U=5 ∆

U=10 ∆

U=15 ∆

U=20 ∆

ω/∆
-4 -2 0 2 4

-1
/
π

Im
(G

(
ω

, 
U

))

0

0.5

1

1.5

2

2.5

U/∆
0 5 10

T
K

10
-3

10
-2

10
-1

10
0

Bethe Ansatz

CPT min

CPT chain

CPT star

Figure G.4.: Optimized representation of non-interacting reservoirs: Evolution with interaction
strength. (Left) Interacting spectral function as obtained by the optimized reser-
voir representation with CPT. (Middle) Matsubara self-energy as obtained by the
optimized reservoir representation with CPT. The key is also valid for panel (A).
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reservoir are plotted in Fig.G.4 as a function of interaction strength U . Our results are based on
LC = 6 site clusters. Therefore dynamic quantities like the DOS show strong �nite size e�ects.
The quality of the approximation can however be judged by considering a static physical quantity
like the Kondo temperature TK [53]. Fig.G.4 shows that the optimized CPT representation
yields results close to the Bethe Ansatz result [53] and outperforms CPT studies not using the
optimization which also predict an exponential scaling of TK , however with an underestimated
exponential factor [357].
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