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Abstract

The Internet of the future, the so-called Internet of Things, will be a huge
network of heterogeneous smart devices. This network is on the way to revolu-
tionize the mobile world of the present. Pervasive use of mobile devices, some
of them with computational power we are unaware of, has already become part
of our lives. Most of these devices are able to communicate with other mo-
bile items. In the future, these communication capabilities will be even more
extended. Smart items will be linked together by a large network in order to
provide new applications. The Internet of Things will have different require-
ments than the conventional Internet, because the computational capacity of
the participants on the network range from powerful to very limited. This the-
sis focuses on one of the most constrained items within the Internet of Things:
Passive RFID tags. We deal with three essential topics when developing secure
RFID applications for the Internet of Things: Security-enhanced RFID tags,
building applications based on these tags, and their connection to the Internet.

As the capabilities of RFID tags grow constantly, new complex applications
will be possible. Some of these applications will require the use of security mea-
sures. The constraints for hardware in passive RFID tags are very rigid in terms
of power, timing, size, and memory. Therefore, not all security mechanisms are
possible for the use in these tags. In this work we investigate on cryptographic
primitives and security protocols that are able to provide strong security for
passive RFID tags.

When developing security protocols for RFID tags, simulation and proto-
typing are essential steps in the design flow. First implementations could fail
or perform inadequately. Software simulations give an early indication whether
the protocol works and whether timing constraints can be met. However, a suc-
cessful simulation cannot guarantee that the application will work on dedicated
hardware. Prototyping on a hardware platform is thus also essential. In this
thesis we present a design flow for secure RFID applications and software tools
to speed up the simulation and prototyping processes. The faster the design
phase, the shorter the time to market.

The range of possible RFID applications will be enlarged by remote access
to RFID tags. In order to provide online communication with RFID tags,
we describe a concept on how to connect RFID tags to the Internet. As for all
networks, secure communication is an indispensable feature also for the Internet
of Things. Therefore, we extend the proposed communication concept by a
security layer based on IPSec mechanisms. This security layer provides secure
end-to-end communication with RFID tags on the Internet.
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1
Introduction

Nowadays we are surrounded by mobile devices with computational power that
human beings often do not realize. These devices communicate even without
human interaction. The exchange of data and the capability of these items to
act smart, up to a certain degree, make it possible to develop numerous new
and useful applications. The vision of the Internet of Things is a network,
where all types of smart devices are interconnected the same way as nodes
within the conventional Internet. This network will consist of heterogeneous
devices, some of them computationally powerful, some very restricted. This
thesis concentrates on some of the least powerful devices within the Internet of
Things: Passive RFID tags.

As the RFID topic became popular, research on advanced functionality of
RFID tags soon became a major issue. Although the computational power of
RFID tags is relatively low due to the rigid power and timing constraints, these
tags are already able to do complex computations, store a certain amount of
data, or can be provided with sensors. Advanced functionality of RFID tags
gives way to innovative applications. Many of these applications will require
security measures. Due to the rigid constraints in RFID environments, new se-
curity primitives and protocols that meet these constraints have to be developed.
We investigate on cryptographic hardware modules feasible for RFID systems.
Developing security protocols based on these hardware modules, strong security
for RFID applications is provided.

In application design, a typical design flow can be identified. We describe
six phases starting from the application specification up to the production of
tags. Within this design flow, simulation and prototyping are important steps
for validation and evaluation of the application specification. These design steps
can be sped up significantly by the use of software tools. We discuss the use

1



2 Chapter 1. Introduction

of software and prototyping tools for RFID and present two particular tools,
namely PETRA and ProtEx.

In order to profit from enhanced tag functionality, we have explored new
communication possibilities for RFID tags. It is predictable that communica-
tion with other mobile devices and exchange of data on the Internet will be
an important feature for new RFID applications. Communicating on an open
network like the Internet, security is an important requirement. Secure commu-
nication has been one of the main success factors of the conventional Internet.
There are two sides to security. On the one hand, many applications would not
have been possible: Security is a prerequisite of e-banking or e-commerce to
guarantee confidential and authenticated messaging. On the other hand, con-
fidence of users in the Internet is a critical success factor for this media. The
same will hold true for the Internet of Things. The difference to the traditional
Internet will be the diversity of the participants. Powerful devices like mobile
phones or PDAs can easily adopt traditional security protocols. For less pow-
erful items, like RFID tags, new security concepts have still to be developed.
Besides security measures for offline RFID applications, we present a security
layer for online communication with RFID tags on the Internet.

In the last years we concentrated on the feasibility of cryptographic prim-
itives and security protocols for passive RFID tags and their integration into
secure applications. We have developed new security approaches for RFID sys-
tems and have designed a concept on the integration of these security-enhanced
RFID tags into the Internet of Things. The thesis outlines our contribution to
the three main topics of secure RFID applications on the Internet of Things:
Cryptographic primitives for passive RFID tags, design and prototyping of
security-enhanced RFID tags and protocols for new applications, and the secure
connection of passive RFID tags to the Internet of Things.

Cryptographic Primitives

This part of the thesis focuses on cryptographic primitives that can be used
in RFID tags. Passive RFID devices have very rigid hardware constraints in
terms of power, time and size. Therefore, standard hardware implementations
of cryptographic algorithms usually cannot be applied without adaption to these
constraints. In the Institute for Applied Information Processing and Communi-
cations (IAIK) we have focused on the research on standardized cryptographic
primitives, like the Advanced Encryption Standard (AES). Strong security can
be provided in an optimal way by standardized and well-tested algorithms. Our
research includes the hardware-efficient implementation of the primitives as well
as the implementation of communication protocols and applications using these
primitives. The AES algorithm has already been optimized for hardware im-
plementation during its design procedure. Therefore, AES was the first choice
to prove that hardware implementations of strong security primitives can be
feasible for the constraints in passive RFID tags.

Based on the experience we had gained through our prior work on hardware
implementation of the AES, the first AES module to meet the rigid constraints
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in RFID environments was designed. The result of this development was first
published in 2005. Meanwhile, many other symmetric and asymmetric prim-
itives have been designed and implemented for the use in passive RFID tags.
In addition, quite a number of proprietary light-weight algorithms, which meet
the RFID constraints even better than standardized primitives, have been pro-
posed for this purpose. Many of these algorithms were already broken or showed
weaknesses during review. We took this as encouragement to exclusively use
standardized algorithms for strong security requirements.

Security Protocols

Based on cryptographic primitives suitable for RFID tags, security protocols for
RFID applications can be built. The development of these protocols, for RFID
as well as for any other technology, is an iterative process with various phases.
Thus, we propose a formal design flow for this process consisting of six phases
starting from the first idea to the production of new RFID tags and readers.
Our design flow focuses on secure RFID applications, therefore the development
of security measures is a separate step in this concept. Simulation and proto-
typing are important steps during the development of RFID applications, as
modifications to the previously designed protocols can be done with relatively
small effort during these steps.

We did research on how to ease the task of simulation and prototyping.
The outcome of our research are the simulation tool PETRA, as well as the
simulation and fast-prototyping tool called ProtEx. These tools provide ba-
sic functionality of existing RFID communication standards. Additional func-
tionality required for the implementation of the new application can be easily
programmed by the application developer. The application protocols are sim-
ulated and its functionality is verified in software. Hardware prototyping is a
more complex task. Existing RFID tags, in most cases, do not support the re-
quired functionality to execute new protocols. Therefore, new tags would have
to be produced to get hardware prototypes. Typically, this is an expensive and
time-consuming process. In the prototyping part of ProtEx, we use the IAIK
DemoTag as a programmable RFID platform that performs like a “real” RFID
tag in the field [Dem]. The IAIK DemoTag supports different RFID communi-
cation standards and can be programmed with additional functionality by the
user. The goal of ProtEx is to use the same resources for simulation as well as
for prototyping and to accelerate the process from the first idea of a protocol
to a working hardware prototype.

Connection to the Internet of Things

As for the Internet of Things, a clear concept that allows the heterogenous par-
ticipants on this network to communicate still does not exist. In principle, two
different approaches can be thought of: The first approach asks for every par-
ticipant to speak the same “language” (communication protocol, respectively).
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The second approach allows the items to communicate using their standard pro-
tocol and then use a translator for the standard communication protocol within
the Internet of Things. It is most likely that the common “language” on the
Internet of Things will be the Internet Protocol version 6 (IPv6) as this protocol
has a huge address space feasible also for billions of potential participants on
the Internet of Things.

We present a concept which enables passive RFID tags to connect to the
Internet via IPv6. The implementation of the entire IPv6 functionality requires
a high amount of computational and power resources. That is the reason why
our concept is based on the second approach previously mentioned. The tags
themselves do not “speak” IPv6 but their messages are translated by the reader.
In this way, we shift most of the complexity to the reader, which has more com-
putational power than the tag. As we consider security a crucial part of network
communication, we describe a security layer built upon this communication con-
cept. This security layer is based on IPSec mechanisms, which are used on the
traditional Internet.

Due to the diversity of the participants some of the paradigms of the tra-
ditional Internet do not hold true for the Internet of Things. One of the most
striking differences is the change from an “always-on” to a “sometimes-on” or
even nearly “always-off” technology: The traditional Internet was mainly de-
signed for participants that are statically connected to the network and are
almost always online. Many Internet protocols are built upon this assumption.
This is not a valid assumption within the Internet of Things; many of the par-
ticipants are mobile and connect only during a fraction of their lifetime to the
network. Sensor nodes, for instance, are only online about one percent of their
lifetime. Having this in mind, we propose additional features, which could also
handle communication with nearly “always-off” devices. We describe concepts
on how to handle this scenario in our system.

1.1 Our Contribution

At the beginning of my studies, I started to research on efficient hardware
implementations of cryptographic algorithms. Together with Manfred Aigner,
Stefan Mangard, Johannes Wolkerstorfer, and Norbert Pramstaller, we suc-
ceeded in finding resource-efficient implementations of SHA-1, SHA-256 and
AES [Dom02], [DM02], [MAD03], [PMDW05]. As RFID technology became
popular, it was common to claim that strong cryptography is far too demand-
ing for the use on passive RFID tags. Based on the experience we had gained on
the implementation of strong cryptographic algorithms, we were confident that
algorithms like the AES could be also feasible for very rigid design constraints.

In 2004, we designed an AES module in hardware to meet the requirements
of passive RFID tags. My colleague Martin Feldhofer developed a low-power
implementation of AES, which based on the prior research work we did on this
topic. Based on these findings, I implemented the first authentication protocol
for RFID systems using the AES algorithm. For this purpose I developed the
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first simulation software for an RFID communication standard (namely the ISO-
18000-3 standard [Int04b]). This simulation software, called PETRA is able to
do functional testing of the RFID communication as well as timing simulation of
the implemented protocols. This software was used to research on the feasibility
and integration of the proposed authentication protocol into an existing RFID
communication standard.

Based on the successful hardware implementation of the AES algorithm for
RFID tags, we claimed that even more demanding cryptographic algorithms
than the AES were feasible for passive RFID technology. At this time, this
was not the common opinion. With the help of my colleagues Manfred Aigner,
Elisabeth Oswald and Martin Feldhofer we did convincing work in the research
community [DOF05], [DOF06]. In order to push the research on secure RFID
technology further, we used the AES hardware module to develop several secure
RFID applications. The details of this contribution can be found in Chapter 3
as well as in the publications [FDW04] and [FAD05].

A system of virtual mobile coupons (mCoupons) was one of the RFID appli-
cations including security protocols. This was a joint work together with Martin
Feldhofer and Manfred Aigner. NFC stands for Near Field Communication and
is one particular RFID standard [Int04a]. In the mCoupons application, a user
can download coupons, for instance, from an advertisement or a poster, to a
mobile device using NFC technology. These coupons are protected from copying
or cloning, and no unauthorized person is able to alter the coupon. The security
protocol for this application was based on AES and also on asymmetric cryptog-
raphy for an extended version of the protocol. As the application of simulation
software turned out to be favorable in previous developments, I designed an
NFC simulator where the new protocol could be tested and refined before using
it on a hardware device. The mCoupon system and the security mechanisms
are described in detail in chapter 3 and also in [DA07] and [ADF07].

In order to extend the application range of the AES module, I did research
on the feasibility and performance of symmetric authentication protocols for
the EPC Gen2 communication standard [Int04c]. For this work I used an RFID
simulator called RFIDSim to implement and evaluate the authentication pro-
tocols. The particular challenge of this development was not the authentication
protocol itself, which at that time was already well known. The major part of
my work was to get familiar with the simulator. RFIDSim is able to simulate
even physical effects of the reader field. This feature is very useful for doing
research on the physical layer, but was far too complex for our purpose, namely,
to test the functionality and performance of an RFID protocol. Through the
work with this simulator I gained invaluable insights about usability and re-
quirements of RFID-protocol development tools, which were helpful to design
the prototyping tool ProtEx.

At that time the IAIK DemoTag had already been used for several years at
IAIK for prototyping and side-channel analysis. The IAIK DemoTag is an RFID
tag emulator, which can be programmed to modify and extend its functionality.
Brought into an RFID reader field, it behaves like a real RFID tag and supports
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various RFID communication standards. First steps to control the communica-
tion between an RFID reader and the IAIK DemoTag over a software interface
were taken by my colleague Michael Hutter. Based on the results of this work
I developed the idea of an all-in-one prototyping tool. The basic concept of
this tool is to join the existing simulators with a physical RFID reader and the
IAIK DemoTag. Applications written for the simulator can be re-used to do
application validation with physical devices. Additionally, software written to
program the extended functionality of the tag can be re-used in the firmware
of the IAIK DemoTag to provide the required features. I did research on an
efficient design flow for secure RFID applications and designed the simulation
and prototyping tool ProtEx to assist this development. Description of ProtEx
in detail can be found in Chapter 4.

Another important topic I researched on is privacy for RFID systems. In
order to show security mechanism involved to build privacy-preserving RFID
applications, I defined a demo application using tagged pharmaceutical prod-
ucts. To protect the privacy of the owner, the tags can only be accessed by
parties authorized by the owner. The protocol is based on reader authenti-
cation using asymmetric cryptographic primitives. The previously mentioned
simulation and prototyping tool ProtEx was used to evolve the communica-
tion protocol, to implement software prototypes, and to develop and validate
the hardware prototypes for the project. Details on the application have been
published in [Dom11] and can also be found in Chapter 3.

In working on privacy mechanisms for RFID systems, authentication and
confidentiality are applied to protect the transfer of sensitive data. In order
to profit from security-enhanced RFID tags supporting these features, online
access to these tags is the next evolution step. The lack of a clear concept on
the connection of RFID tags to the Internet of Things motivated me to develop
a new online-communication approach for passive RFID tags. This was joint
work together with my colleagues Manfred Aigner and Stefan Kraxberger. The
proposed system enables two-way communication with passive RFID tags us-
ing the Internet Protocol version 6 (IPv6). Full details of the communication
concept can be found in Chapter 5. Moreover, the concept has been published
in [DAK10] and [DGAK11]. In order to secure the end-to-end communica-
tion between correspondent nodes and RFID tags on the Internet, a security
layer based on the proposed communication approach was defined. The security
mechanisms involved to build this layer are based on Internet Protocol Security
(IPsec) concepts. Description of the establishment of secure online communi-
cation for passive RFID tags can be found in Chapter 6 and in a publication
in [DK11].

1.2 Design of the Thesis

The thesis consists of two parts. In the first part we focus on security pro-
tocols for RFID applications and the development of these applications. For
this purpose, we analyze the current cryptographic capabilities of passive RFID
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technology in Chapter 2. We give examples of how to integrate strong cryp-
tographic algorithms in Chapter 3. There, we discuss the development and
evaluation of sample RFID applications. The development process of secure
RFID applications in general is discussed in Chapter 4. Furthermore, we show
how the simulation and prototyping tools can speed up this process significantly.

The second part of the thesis deals with connection of passive RFID tags
to the Internet. Chapter 5 presents a new approach to integration of passive
RFID tags into the Internet of Things using standard Internet communication
mechanisms (IPv6). The establishment of a security layer for the proposed
communication protocol is described in Chapter 6. The following paragraphs
outline the contents of the following chapters in more detail.

Chapter 2 analyzes the cryptographic capabilities of state-of-the-art RFID
tags. We point out the current limitations for passive RFID technology,
as passive RFID tags have rigid constraints in terms of power, time and
area. Based on these figures, we present cryptographic hardware imple-
mentations that meet the constraints. The proposed hardware can be used
to build security protocols for RFID systems. Furthermore, the chapter
includes considerations on security in RFID systems in general. We elab-
orate security problems particular to RFID technology and discuss which
cryptographic algorithms and protocols can be used as countermeasures
to the identified security threats. We outline related work in this area and
describe our contribution to the area of RFID security.

Chapter 3 deals with the development and evaluation of new security proto-
cols for RFID technology. We describe different sample applications in
order to show how the algorithms and protocols presented in Chapter 2
can be used to secure these applications. As security requirements vary
depending on the application, different security measures have to be inte-
grated into the presented applications. Furthermore, the use of simulation
and prototyping tools for validation and evaluation of secure RFID appli-
cations is outlined.

Chapter 4 covers the design of secure RFID applications in general. We
present a design flow, as a best-practice guideline, that involves various
design steps from a first idea to the production of application-specific tags
and readers. Particular attention in this design flow is paid to the devel-
opment of security measures. Simulation and prototyping are considered
crucial steps for a successful application design. In this chapter, we intro-
duce simulation and prototyping tools that can be used to speed up these
steps significantly. The described tools were developed during design of
the RFID applications described in Chapter 3. We discuss structure and
design goals, and show how the tools can be integrated into the design flow.
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Chapter 5 is about integration of passive RFID technology into the Internet
of Things. We describe an approach that enables passive RFID tags to
communicate on the Internet. The proposed system is based on the mo-
bility concept of the traditional Internet (Mobile IPv6). Thus, we describe
basics of Mobile IPv6 and discuss modification to this protocol that are
required for implementation on RFID tags. Prerequisites for RFID read-
ers and tags to implement the proposed concept are identified. Most of
the complexity of IPv6 communication is handled by the reader, whereas
the tag only requires minor modifications. Furthermore, we describe how
to handle particular scenarios, like offline communication or tag-triggered
communication.

Chapter 6 focuses on secure end-to-end communication with passive RFID
tags on the Internet. As security mechanisms are an indispensable part
of a network connection, a security layer for the communication concept
proposed in Chapter 5 is described. This security layer is based on the
security protocol of the traditional Internet (IPSec). We present IPSec
basics that are used to provide confidentiality, data integrity, and au-
thentication. We discuss assumptions that have to be made for online
communication with passive RFID tags. Furthermore, we show how the
IPSec protocol can be adapted to the requirements of the proposed com-
munication concept. Security considerations close this chapter.

Conclusions and an outlook on topics open to research can be found in Chap-
ter 7.



Part I

Secure RFID Applications

9





2
Security for Passive RFID Technology

During the last years RFID has become an ubiquitous technology. It is used, for
instance, in many different fields like supply chain management, ticketing, access
control, health care, or animal tracking. The capabilities of RFID system have
extended and application fields have expanded. For many new applications
security has become an important feature. Cryptographic primitives are the
fundamental building blocks for security protocols. In order to build secure
RFID applications, research on feasible security algorithms for passive RFID
tags is necessary.

Even before researching on cryptographic capabilities for RFID tags, we
did research on efficient implementations of cryptographic hardware modules.
Parts of this research have been published in [DM02], [Dom02], [MAD03],
and [PMDW05]. The RFID technology is a new challenging platform for hard-
ware security due to its very constrained resources. In this chapter, we give a
survey on cryptographic primitives implemented in hardware, which are feasible
for the power and timing constraints in passive RFID tags. In order to select
the appropriate cryptographic primitive and the security protocol, the security
requirements of an RFID application have to be identified. This starts with
an analysis of potential threats to typical RFID applications and is followed by
research on appropriate countermeasures to prevent these threats.

In this chapter, we give an overview on state-of-the-art implementations of
cryptographic modules for RFID (see Section 2.1). Furthermore, we discuss
security threats that have to be considered especially for RFID systems in Sec-
tion 2.2. Countermeasures are presented in Section 2.3. We conclude the chap-
ter with a discussion of standardized cryptographic primitives and protocols for
providing strong security in RFID applications. Parts of the work presented
in this chapter were published at the Cryptographic Hardware and Embedded

11
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Systems conference 2004 [FDW04], at the 1st International Workshop on Secu-
rity, Privacy and Trust in Pervasive and Ubiquitous Computing 2005 [FAD05],
at the Workshop on RFID and Leight-Weight Crypto 2005 [DOF05], and at the
D.A.CH Mobility conference 2006 [DOF06].

2.1 Cryptographic Capabilities of RFID Tags

There is a large variety of RFID tags that differ significantly in their communi-
cation and computational capabilities. The Auto-ID Lab defines the following
six classes of tags depending on their functionality. Table 2.1 depicts this classi-
fication. In our work we basically consider Class 2 tags, which are passive tags
with advanced functionality. In the following we identify current constraints of
these tags to be able to decide which cryptographic primitives are feasible for
building secure RFID applications.

Table 2.1: RFID Tag Classes defined in [SE03]

Class Description

0/1 read-only passive identity tags with basic capabilities.

2 passive tags with additional functionality like read/write mem-
ory or encryption.

3 semi-passive RFID tags. They may support broadband com-
munication.

4 active tags. They may be capable of broad-band peer-to-peer
communication with other active tag in the same frequency
band, and with readers.

5 essentially readers. They can power other Class 1, 2 and 3
tags, as well as communicate with other Class 4 tags and with
each other wirelessly.

2.1.1 Constraints of Class-2 RFID Tags

In general, we pay special attention to three constraints when designing hard-
ware modules for passive RFID tags: Power consumption, timing, and size.
The available power strongly depends on the operation-frequency range and
the reading range of the system. Hardware primitives for long-range systems
can count with a power budget of some hundreds of µW s, whereas hardware
modules for close-coupling systems can consume about ten times more power.
Power consumption is a very rigid constraint for RFID systems. Timing and size
can be coped with more easily. These constraints depend mainly on limitations
set, for instance, by the RFID communication standard or the manufacturer
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of the tags. Timing problems can often be overcome by modifications of the
communication protocol. The size of tags can in many cases be adapted to
the application requirements, as new tags are often produced for the use in a
particular application. In order to develop a working hardware module of any
algorithm that should be used in RFID tags, each category of constraints has
to be met. We describe how to deal with these limitations in the following
paragraphs.

Power Consumption

Power is one of the main limiting factors for hardware modules on a passive
RFID tag. The tag is powered by the reader field and only a part of the power
dissipated by the reader can be gained by the tag. The longer the required
reading range of the tag, the less power can be gained from the field, i.e.,
the more power a tag requires the closer it must be located to the reader.
RFID systems can be categorized regarding their reading ranges; Close-coupling
systems, like contactless smart cards, have a reading range up to 1 cm. Remote-
coupling systems have a reading range between 1 cm and 1 m; all systems with
longer reading ranges are called long-range systems.

The power dissipation of the reader is limited by legal regulations and can
differ from country to country. The power distribution additionally depends on
the frequency range the reader works in. Therefore, it is difficult to estimate
an absolute value of the available power in an RFID tag at a certain distance
to the reader. In [Fin03], an example of a typical energy dissipation in the near
field (< 1 m) of an RFID reader working at a frequency of 13.56 MHz (HF)
can be found. According to [Fin03], an RFID tag located at a distance of 1 m
from the reader has an available energy of 500 µW (@ 5 V). At a distance of
65 cm the available energy has already increased by a factor of 10 to 5 mW (@
5 V). Taking losses into account, we expect all hardware modules with a power
consumption less than 1 mW to be feasible for remote-coupling systems. For
close-coupling systems we calculate with a power budget of about 5 mW.

For UHF readers, the effective radiated power (ERP) is limited to 2 W in
Europe, and to 4 W in the USA. The power decay in the far field is indirectly
proportional to the square of the distance and is also indirectly proportional
the square of the frequency. In [CDDJ] the authors present a UHF tag design
which has a reading range of 12 m. The formula the authors use to calculate
the power distribution in the far field is as follows:

PAV = PEIRP ·GR ·
λ2

(4πd)2
.

PAV denotes the power available at the tag. The equivalent isotropically ra-
diated power (EIRP) is denoted with PEIRP and has the value of 4 W in the
considered system. The antenna gain (GR) is set to 1 (= 0 dB), which means
that the tag antenna is considered as lossless for this calculation. The operation
frequency is 2.45 GHz, the wavelength λ is therefore 0.1224 m. d denotes the
distance of the tag from the reader. Using the formula, a tag with an antenna
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gain of 0 dB can harvest about 380 µW @ 1 m, about 15 µW @ 5 m, and about
3.8 µW @ 10 m. We base our estimation for the available power in UHF tags
on these values. When taking losses in the radio field and at the tag antenna
into account, the available power is smaller than the calculated values. As a
rule of thumb we consider hardware primitives that require less than 100 µW of
power (which corresponds to a reading range of about 2 m, using the formula)
as feasible for long-range RFID systems.

Timing

RFID communication standards define a maximum response time for the tag.
This means that, the time frame in which the tag has to respond to a reader
request must not exceed a certain limit. The response time is specified in
the physical layer of the communication standard used. For the HF protocol
specified in the ISO-15693 standard [Int01], which corresponds to the ISO-
18000-3 standard [Int04b], and the UHF protocol ISO-18000-6 alias EPC-Gen2
([Int04c]) the response time is about some hundreds of µ-seconds (e.g., ∼ 320
µs for ISO-18000-3). For the HF standards ISO-14443 and ISO-18092 ([Int00],
[Int04a]) the response time can be up to 4.95 seconds. In these standards, a
dedicated waiting-time-extension process has to be performed to extend the
response time to this value.

In many cases the tag response time is too short to perform complex crypto-
graphic operations within this time. To overcome this problem we use a concept
called interleaved protocol execution. This concept works for most of the existing
RFID communication standards and was first published in [FDW04]. Figure 2.1
illustrates the principle of interleaved protocol execution. We propose that a
reader sends a request to the tag without expecting an immediate response to
this request. Nevertheless, the tag can respond with an affirmation that the
request was received correctly. This immediate response does not contain the
requested calculation result. Afterwards the reader starts polling for the re-
sponse from the tag. The time between sending the request and polling for the
response can be used to send requests to other tags. If more than one tag is
present in the field, the communication protocol can be processed in parallel
for different tags. In this way, the performance loss, caused by the separation
of sending the request and polling for the response, can be limited.

In the interleaved protocol mode, the reader sends a challenge to the tag and
polls for the response afterwards. The protocol shown in Figure 2.1 involves
three tags. C1 denotes the challenge for tag 1, C2 denotes the challenge for
tag 2 and so on. After tag 1 has received the challenge, it starts calculating
the response (R1). In the meantime, the reader sends challenges to tag 2 and
to tag 3. Afterwards, it requests a response from tag 1 (Rec R1). If the tag
has already finished the calculation, it sends the response (Resp R1). Following
this concept, the calculation of cryptographic operations, which are often very
time consuming, are feasible for RFID communication standards where the
calculation time exceeds the tag response time.
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Figure 2.1: Interleaved Protocol, Picture taken from [FDW04]

Size and Memory

Apart from power and timing being the most decisive constraints, size in hard-
ware has as well to be considered when designing cryptographic hardware mod-
ules for passive RFID tags. The size of the tag hardware can be limited, for
instance, by spacial requirements of the application, limitations posed by the
manufacturer of the tags, or by financial matters. The larger the size of the
tag’s hardware, the more expensive the tag. The application designer has to
communicate the requirements for the tag used in the application. The man-
ufacturer will provide the appropriate platform for these requirements. As for
new applications also new tags will be produced, the size of the tags can be
adapted to the needs of the application. The hardware of secure tags will be
more extensive because of the additional cryptographic primitives needed. This
will impose higher costs on the application. Nevertheless, if security is a strong
requirement, these costs are inevitable.

Current RFID tags offer up to 64 KBytes of memory [Fin03]. In general,
this memory size meets the memory requirement for the calculation of even
complex cryptographic algorithms, like ECDSA. This means that one single
calculation of such an algorithm can be performed on the tag without running
out of memory. Nevertheless, an entire security protocol consists of a series
of calculations of various cryptographic algorithms and storing intermediate
values. The execution of a security protocol needs additional memory for storing
intermediate data, large keys, or certificates. Therefore, when performing a
complex security protocol, memory limitations could be a problem. Although
we expect memory availability of RFID tags to rise over time, each detail of the
protocol has to be analyzed for its memory requirements to decide whether it
is feasible for the proposed RFID tags.

2.1.2 Cryptographic Primitives

Cryptographic primitives are the building blocks of every security protocol. The
hardware implementation of some of these primitives is complex and their cal-
culation is time consuming. As passive RFID tags have limited resources, it
is a challenge to find appropriate hardware primitives for this platform. The
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RFID community follows two approaches: the first one searches for new crypto-
graphic primitives, which are “light-weight” enough for RFID tags. The second
approach tries to find new “low-power” implementations for well-established
cryptographic algorithms. We propose to build security protocols based on
standardized cryptographic algorithms and protocols. This approach offers a
high level of security, as the security features of standardized algorithms are
in general well-tested by many different communities. Furthermore, we intend
to support interoperability, which is more likely to achieve with standardized
protocols.

In order to provide the basic security services confidentiality, authentica-
tion, data integrity, and non-repudiation, the following categories of algorithms
are required: Encryption algorithms, hash algorithms, and digital signature
algorithms. For each category, hardware implementations for passive RFID
technology already exist, which meet the constraints identified in the previous
section. In the following we present the most promising publications for each
type of primitives.

Symmetric Encryption

Symmetric encryption algorithms provide confidentiality and can be used for
authentication. Each participant owns the same secret key. The knowledge
of the key proves the authenticity of the owner. Authorized parties can en-
crypt messages by using the secret key. Confidentiality is provided as only the
owner of the secret key can decrypt encrypted messages and reveal its content.
Authentication can be provided by using a challenge-response protocol: The
verifier sends a challenge, which is encrypted by the prover. Only if the prover
knows the secret key, it can produce the correct response to the challenge. If
the verifier receives the correct response, it authenticates the prover.

The first hardware implementation of the Advanced Encryption Standard
(AES) [Nat01] for the use in passive RFID tags has been published in [FWR05].
This module has a size of 3,400 gate equivalents (GE). It needs 4.5 µW of
power and about 10 milliseconds to perform an AES calculation at a frequency
of 100 kHz. Another promising work in this area is the implementation of
Kim [KRCJ06]. This hardware module is a bit larger than the first one, it
requires 3,900 GE. It needs 4.9 µW of power and about 9 milliseconds to perform
an AES calculation. Considering the constraints described in Section 2.1.1, both

Table 2.2: AES Primitives I - Power consumption

Reference Technology Supply Power Current
[µm] [V] [µW] [µA]

[FWR05] 0.35 1.5 4.5 3.00

[KRCJ06] 0.25 2.5 4.9 1.94
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Table 2.3: AES Primitives II - Size and Timing

Reference Size Freqency Cycles Time
[GE] [kHz] [msec]

[FWR05] 3,400 100 1032 10.3

[KRCJ06] 3,900 100 870 8.7

implementations are feasible for passive RFID tags. The two hardware modules
are compared in detail in Table 2.2 and Table 2.3.

Hash Algorithms

Hash algorithms are used to produce “fingerprints” of a message. They map a
message of unlimited size to a hash value with fixed size. This mapping works
only one-way: It should be infeasible to generate the original message only from
knowing the hash value. Furthermore, it should be hard to find two messages
that map to the same hash value. If these conditions are met, the hash value
can be treated as a representative of the message. Hash algorithms can be part
of digital signature algorithms, which are described in the next paragraph, and
can be employed to build message authentication codes (MAC). MACs provide
data integrity, this means that they are used to check whether a message has
been modified or not.

The most common hash algorithms used nowadays are the Secure Hash
Algorithm (SHA) families 1 (SHA-1) and 2 (SHA-224, SHA-256, SHA-384, SHA-
512). Both families are specified in [Nat02]. Table 2.4 and Table 2.5 show the
results of five different works on low-power implementations of SHA-1 and SHA-
256. The size of the hardware modules ranges from 5,527 GE to 10,868 GE.
The calculation time can be about 3 milliseconds for [O’N08] up to about 12
milliseconds for [FW07]. The most rigid constraint for passive RFID tags is the

Table 2.4: HASH Primitives I - Power Consumption

Algorithm Reference Technology Supply Energy Current
[µm] [V] [µW] [µA]

SHA-1 [FR06] 0.35 3.3 35.20 10.68

SHA-1 [FW07] 0.35 1.5 5.90 3.93

SHA-1 [O’N08] 0.18 1.8 13.80 7.70

SHA-1 [O’N08] 0.13 1.2 2.32 1.90

SHA-256 [FR06] 0.35 3.3 52.40 15.87

SHA-256 [FW07] 0.35 1.5 8.80 5.86
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Table 2.5: HASH Primitives II - Size and Timing

Algorithm Reference Size Frequency Cycles Time
[GE] [kHz] [msec]

SHA-1 [FR06] 8,120 100 1,247 12.5

SHA-1 [FW07] 8,120 100 1,247 12.5

SHA-1 [O’N08] 6,122 100 344 3.4

SHA-1 [O’N08] 5,527 100 344 3.4

SHA-256 [FR06] 10,868 100 1,128 11.3

SHA-256 [FW07] 10,868 100 1,128 11.3

power consumption. The presented hash algorithms require from 5.9 µW up
to 52.4 µW of power. These power consumptions meet the constraints even for
long-range systems.

In 2007, the National Institute of Standards and Technology (NIST) issued
a call for competition to find a new standardized hash algorithm, as the SHA-1
algorithm had already shown some weaknesses (like described in [WYY05]). The
main objective of the competition was to find a new hash primitive, which would
be defined as the SHA-3 algorithm and would extend the existing SHA standard.
The candidates were encouraged to show that the possible hash algorithm could
be effectively implemented in hardware. This is also an important point for
implementing such algorithms on RFID tags. At the moment of writing this
thesis, the five final candidates are under review. The decision will be taken in
2012.

Digital Signature Algorithms & Asymmetric Encryption

A digital signature algorithm is used to provide authentication, non-repudiation,
or confidentiality. Digital signature algorithms work with asymmetric keys, this
means that each system participant owns a key pair consisting of a public and
a private key. The private key must be kept secret, the public key can be dis-
tributed. To provide authentication, a challenge-response protocol is performed:
The owner of the private key signs a challenge with its private key. The prover
verifies the signature by using the public key of the signer. If the signature
is valid, the prover authenticates the verifier. Furthermore, the signer cannot
deny having signed the message, which corresponds to the security service of
non-repudiation. If a sender wants to encrypt a message for only one particular
receiver, the sender can encrypt the message using the public key of the receiver.
In that way, only the receiver is able to decrypt the message with its private
key. In this way, confidentiality is provided.

Asymmetric cryptographic algorithms are very demanding primitives in terms
of size, power and time. The use of Elliptic Curve Cryptography (ECC) allows
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Table 2.6: ECC Primitives I - Power Consumption

Algorithm Reference Techn. Supp. Energy Current
[µm] [V] [µW] [µA]

GF(P192) [Wol05] 0.35 3.3 30.00 9.10

GF(P192) [Aue08] 0.35 2.5 613.70 245.46

GF(2191) [Wol05] 0.35 3.3 30.00 9.10

GF(2163) [HWF08] 0.35 2.5 54.70 21.88

GF(2163) [HWF08] 0.18 1.8 10.80 6.00

ECDSA GF(P192) [Aue08] 0.35 2.5 497.47 199.00

ECDSA GF(P192) [HFP10] 0.35 3.3 1,277.00 387.00

ECDSA GF(P160) [KF10] 0.35 3.3 860.00 260.60

DH GF(2163) [BBD+08] FPGA 3.3 79.00 23.90

to reduce this effort significantly. Therefore, most of the public-key algorithms
proposed for the use in RFID tags base on ECC. One very common digital-
signature algorithm based on ECC is the Elliptic Curve Digital Signature Algo-
rithm (ECDSA), which is specified in [Nat00]. ECDSA can be performed with
so-called point operations on elliptic curves. Some of the implementations we
consider for use in RFID tags only provide these operations. Here, the ECDSA
has to be composed from the single operations. Other hardware modules provide
the calculation of the complete algorithm in one step. Table 2.6 and Table 2.7
give an overview of low-power implementations of ECC primitives.

The proposed solutions offer different features. Some hardware modules
only provide point operations, like [Wol05], [Aue08], or [HWF08]. The point
operations are furthermore performed on different arithmetic fields (GF(P192),
GF(2191), and GF(2163)). Other implementations provide the calculation of
a complete cryptographic algorithm like ECDSA ([Aue08], [HFP10], [KF10])
or Diffie-Hellmann Authentication ([BBD+08]). [HFP10] and [BBD+08] also
include a random number generator (RNG), which is also an essential service
for building security protocols.

The benchmarks of the hardware modules are as different as the features
they provide. The size of the implementations ranges from about 13,000 GE
to nearly 25,000 GE. The amount of time required for one calculation differ
significantly. The fastest module needs 95 milliseconds (for performing a DH
Authentication), whereas the slowest implementation takes 11 seconds for an
elliptic-curve scalar multiplication. As we have shown in Section 2.1.1, timing
issues can be met by using interleaved protocols. Therefore, even a calculation
time of various seconds is acceptable for the use in an RFID communication
protocol. Power consumption of the different modules range from 10.8 µW to
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Table 2.7: ECC Primitives II - Size and Timing

Reference Features Size Frequency Cycles Time
[GE] [kHz] [msec]

[Wol05] 23,800 60 677,500 11,450

[Aue08] 24,745 1,000 953,854 953

[Wol05] 23,800 60 426,300 7,100

[HWF08] 13,320 106 296,000 2,960

[HWF08] 13,250 106 296,000 2,960

[Aue08] 24,745 1,000 1,030,656 1,030

[HFP10] SHA-1, RNG 19,115 847 859,188 1,014

[KF10] 18,247 1,000 511,864 512

[BBD+08] DH, RNG 12,876 847 80,465 95

1,277 µW. This means that the most demanding hardware modules in terms of
power are not applicable for long-range RFID systems, where the power con-
sumption of an RFID tag should be less than 100 µW to provide an acceptable
reading range. Nevertheless, these modules can be used in short-range and
close-coupling systems. We have described the power limits for the different
RFID systems in Section 2.1.1.

Due to the different features they provide, the different implementations do
not compare. An application developer has to consider the application require-
ments to select an appropriate cryptographic module. The security requirements
of an application strongly depend on the security threats that are relevant for
the application. Therefore, a threat analysis has to be done before the decision
on the cryptographic algorithm can be taken. In the next section we discuss
potential security threats when using RFID technology.

2.2 Security Threats

As RFID applications are manifold and are thus susceptible to several security
risks. RFID technology works “non-interactive”. This means that RFID tags
may communicate with readers without the user even noticing it, which im-
plies a security risk per se. RFID works also “non-line-of-sight” which enables
the attacker to act remotely without any physical contact to the tag. These
properties cause typical security threats that are to be considered in develop-
ment of RFID systems. for RFID systems can be identified. In this section, we
identify three main threat categories, namely tracking and tracing, cloning and
counterfeiting, and unauthorized access to the tag. The first approach to this
categorization has been published in [DOF06]. Inputs from other authors (e.g.,
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[GJP05], [Jue06], [Lan09a], or [SE09]) have been considered during development
of a more detailed categorization, which is presented in this section.

Speaking of RFID security, one of the main concerns is privacy. This topic
has been discussed since the beginning of RFID technology and is still present
in the media. Privacy can be defined as a person’s right to control access to
his or her personal information. This means that, the owner of information
can define authorized parties with access rights. All others have to be excluded
from access. We define three requirements that should be fulfilled for an optimal
control of a person over her information:

� The person should be aware of the access to her data.

� The person should be able to accept or decline the access.

� The person should be able to stop or launch an access to her data.

Two types of privacy can be distinguished: Data privacy and location privacy.
In the first case, sensitive data has to be protected against unauthorized access.
In the second case, the unauthorized person should not be able to determine
the current or past location of a person or item. These two types of privacy are
treated separately in the presented categorization.

In this section, attacks and threats on the application layer are considered.
Attacks on the physical layer like implementation attacks or side-channel anal-
ysis are out of scope. When dealing with RIFD, three major security threats
are identified: Tracking and Tracing, Forgery and Counterfeiting, and Unau-
thorized Read/Write Access to the tag’s memory. In the following we explain
these threats in detail.

2.2.1 Tracking and Tracing

As unprotected tags reveal their identity to every standard reader, an attacker
can easily find out the identifiers (IDs) of items. Information about valuables
and goods a person has on her can easily be used to victimize a person or to
draw a precise picture of the person’s life. Things like the current location
or personal preferences can be acquired from these data. Langheinrich sees
this aspect also as one of the novel privacy challenges ubiquitous computing
is confronted with [Lan09b], [FM05]. In addition to the temporal and spacial
expansion of the data acquisition, the author describes a change of quality in
data acquisition: Readers vanish in the environment and the user is no longer
aware that information is exchanged.

If items can be associated with a person, this person can be identified when
moving from one reader field to another. This scenario is called tracking and
affects the location privacy of a user. Another problem arises if tracking data is
stored in a database and the past locations of an item (and the assigned user)
can be accessed by unauthorized parties. This scenario is called tracing. The
public discussion about tracking and tracing has created a bad image of RFID
technology in the past. To get a broad public acceptance of this technology, it
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will be essential to address this topic. Also, the European Commission states
that “RFID will only be able to deliver its numerous economic and social benefits
if effective measures are in place to safeguard personal data protection, privacy
and the associated ethical principles that are central to the debate on public
acceptance of RFID” [Com09].

2.2.2 Cloning and Counterfeiting

RFID tags are used to identify items. This property is used in access systems
(e.g., car immobilizers, ticketing) as well as for proof-of-origin applications.
The mere existence of tags attached to a product complicates counterfeiting. If
an attacker is able to counterfeit or even clone the RFID tag attached to the
product, the proof-of-origin property of the tag vanishes. Especially for access
systems, forged tags can cause a serious damage. For performing such an attack,
the attacker monitors the communication of existing tags or even has physical
access to a tag. From the data gained through this monitoring the attacker can
build her fake tag. The difference between cloning and counterfeiting is, that
cloning produces a fake tag that pretends to be an already existing tag, whereas
counterfeiting produces a fake tag that generates new data to pretend to belong
to an authorized group of tags.

A special type of counterfeiting is a relay attack. In this attack, the attacker
has one or more connected devices that have access to both the reader and an
original tag. One device plays the role of the reader for the tag (fake-reader
device), and one device plays the role of the original tag for the reader (fake-tag
device). Fake-reader and fake-tag device are connected, either wireless or by
cable. The fake-reader device relays the messages from the original reader to
the fake-tag device. The fake-tag device sends the received messages to the
original tag, which responds to the message. The response from the original tag
is relayed via fake-tag and fake-reader to the original reader. In this way, an
attacker can impersonate the original tag.

2.2.3 Unauthorized Read/Write Operations

At the beginning of this section we have defined privacy as the user’s right to
control the access to her data. The European Commission states that: “Ap-
plication of cryptographic primitives on tags as privacy enhancing technology
(PET) to protect personal data on tags is suggested.” [Eur05]. When consider-
ing sensitive data (like health or financial data) the threat scenario is obvious:
If an attacker gets access to sensitive data, she can use it to the disadvantage
of the tag’s owner. An employer might, for instance, take advantage of the
information about one of her employee’s serious disease or pregnancy. Another
scenario could be a thief who gets information about the value of a product a
person has on her. Therefore, read operations should only be granted to autho-
rized readers in certain applications. Unauthorized write access to a tag can
also have negative consequences: If an attacker could modify the data stored on
the memory, the tag could be invalidated (e.g., in ticketing or access systems).
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If the attacker is the owner of the tag, she can change the data to her favor, for
instance, by adding extra value in ticketing systems.

In many applications, only authorized readers should have access to the
tag’s data. The owner of the tagged item and/or the manager of the tag should
have the possibility to manage these access rights. Each time a read or write
command is being performed the tag is supposed to check the authorization
of the reader. Another service which has to be provided when handling access
rights is the possibility to transfer the control over the tag to a new owner. This
service is called transfer of ownership.

2.3 Meeting Security Requirements

In the previous section we have defined different types of threats for RFID sys-
tems. In this section we discuss a set of countermeasures that can be used to
handle these threats. Various protocols have been proposed to address RFID
security in the past few years. The building blocks of security protocols are
cryptographic primitives. As we have mentioned in Section 2.1.2, there are two
different approaches when searching for cryptographic primitives for RFID: Us-
ing standardized algorithms or designing proprietary light-weight algorithms.
In the following we map the proposed algorithms and protocols to the security
threat they address. In our security protocols, we exclusively use standard-
ized algorithms in order to provide a high level of security and interoperability.
Therefore, we finish this section by giving an outline, how standardized cryp-
tographic protocols can be used as countermeasures for the different types of
threats.

2.3.1 Tracking and Tracing

The property which has to be provided by a security protocol to prevent tracking
and tracing is location privacy. This means that no unauthorized party is able
to locate the tag (the user, respectively), neither in the present nor in the
past. This requirement can be met, if the tag does not send its identifier to
unauthorized readers. Another measure to “hide” the identity of a tag is to
change its identifier over time.

Many approaches have been published to prevent tracking and tracing. The
first group of countermeasures disable the tag physically. In this case, the tag
is not able to talk to any reader, not even to authorized ones. A kill command
authorized by a password can permanently deactivate the functionality of the
tag. The same effect is reached by ripping off the tag from the item. These
measures prevent the access to the tag permanently but not only for unautho-
rized parties but also for the owner, who cannot take advantage from the RFID
functionality after deactivation. Another physical measure of location-privacy
protection is shielding of the tag while it should not be read. This measure
presumes awareness of the owner whether the tag has to be protected or not
in different situations. A similar effect can be reached by using the so-called
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blocker tag proposed by Juels [JRS03]. The blocker tag is able to simulate a
whole range of IDs and jams the inventory procedure of an unauthorized reader.
In that way, the reader cannot determine the ID of the “real” tag.

Other proprietary approaches that address the tracking threat, are, for ex-
ample, the hash-lock schemes published in [WSRE03] and [JW06]. In these
schemes, the tag sends its ID only to readers knowing a particular key, which is
unique for the tag. The key is searched in a database on basis of the hash value
the tag sends as response to the inventory request. A similar approach, which
also uses hash functions and a large back-end database, has been suggested by
NTT Labs [OSK03]. Other pseudonym schemes based on a key-search in trees
have been published in [MW04] and [MSW05].

Further approaches to prevent tracking and tracing are silent tree walk-
ing (used for a particular anti-collision algorithm) [WSRE03], one-time pad
schemes (where the tag and the reader have to exchange lists of one-time
pads) [Jue04], global and private IDs, or light-weight authentication proto-
cols [VB03]. Floerkemeier et. al., Rieback et al., and Juels et al. suggest
methods, where a mobile device different from the RFID tag intermediates the
reader requests and collects information from the reader. This mobile device
acts as a guardian for the tag and controls the information flow for the protected
tags [FSL04], [RCT05], [JSB05].

The algorithms mentioned above represent a selection of light-weight imple-
mentations providing location privacy. The list of proprietary countermeasures
to tracking and tracing is very long. In difference to the light-weight security
approach, we address the tracking threat using standardized cryptographic al-
gorithms. We suggest the use of random identifiers (= pseudonyms) for this
purpose. The tag requires a random-number generator to provide this function-
ality. Each time the tag enters a reader field, it generates a new pseudonym
and uses this identifier in the inventory procedure. Afterwards, the reader has
to authenticate before the tag reveals its ID. We first presented this approach
in [DOF05].

Authentication in our approach is performed using standardized algorithms
and protocols. Reader authentication can be obtained by different means, which
we describe in Section 2.3.4. The proposed protocol is a special case of an
authenticated read operation on the tag. We handle this scenario in detail in
Section 2.3.3. Another point to be observed is the security of the communication
channel even to authorized readers. An eavesdropper should not be able to
perceive the transmitted ID. Otherwise, the use of pseudonyms in the inventory
procedure is useless. Therefore, we suggest to encrypt further communication
between the authorized reader and the tag.

2.3.2 Cloning and Counterfeiting

The property a security protocol should offer to prevent cloning and counterfeit-
ing is the proof of origin of the tag. Only tags that originate from an authorized
party can perform this proof. This requirement can be reached by tag authenti-
cation. Tag authentication works like reader authentication, but the roles of the
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parties have changed: The tag is the prover, and the reader is the verifier. We
describe authentication protocols for RFID systems in detail in Section 2.3.4.

A hardware approach to prevent cloning and counterfeiting are Physical
Unclonable Functions (PUFs). The idea that physical properties of a hard-
ware device can be used to identify this device uniquely has been published
in [Pap01]. Proposals how this technique can be used for RFID tags can be
found in [REC04], [BR07], [DSP+08] or [SVW10]. As this approach is only
applicable on the physical layer, it is out of scope of our considerations of coun-
termeasures on the application layer.

In Section 2.2 we have defined the relay attack as a special case of coun-
terfeiting. The most effective countermeasure against relay attacks seem to be
Distance Bounding Protocols. These protocols measure the round-trip time of
the radio signal and define an upper bound for the distance between the reader
and the tag. As the signal takes some additional time to propagate through the
transmission line between fake-reader device and fake-tag device, a relay attack
can be detected. Various distance bounding protocols have been proposed over
time, for instance, [HK05], [MOP06], [RNTS06], [AT09], [Han10], or [KKBD11].
We do not further consider these protocols, as the proposed protocols do not
exclusively work on the application layer.

A very interesting approach for tag authentication is the Direct Anonymous
Attestation (DAA). This algorithm combines a proof of origin with providing
location privacy. Basically, a party can prove to be a member of an autho-
rized group, but does not reveal the particular identity. It was first published
in [BCC04] and has been adopted by the Trust Computing Group for remote
anonymous attestation of Trusted Platform Modules (TPMs). DAA is compu-
tationally very expensive and is at the moment not suitable for today’s low-end
devices on the Internet of Things. Efforts to reduce the resources for DAA and
studies on the feasibility of DAA for RFID systems are ongoing.

2.3.3 Unauthorized Read/Write Operations

The property a security protocol has to provide to prevent unauthorized read
and write operations on the tag is access control. The reader has to prove that
it is allowed to access some of the tag’s data. The tag verifies access rights. To
obtain access, the reader has to authenticate to the tag. Reader authentication
can be done using different mechanisms. In the last years, many so-called ”light-
weight” mechanisms have been proposed to omit the computational overhead of
standardized cryptographic primitives. In the following, we give some examples
of proprietary reader-authentication schemes. Some of them have already been
mentioned in section 2.3.1, as location privacy can also be reached by reader
authentication.

The so-called hash-lock scheme [WSRE03] proposes that tags send the hash
value of their secret key to the reader. The reader can find out the corresponding
key by searching a data base and prove the knowledge of this key. In that
way, the reader is authenticated. If always the same hash value is transmitted,
tracking of the tag is possible. Therefore, this scheme is also available in a
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randomized variant. Ohkubo proposes an improvement of this scheme by using
two hash functions and building a hash chain [OSK03]. Molnar and Wagner
propose a tree-based key search in [MW04], i.e., each tag stores a set of keys
organized in a tree. Only authorized readers know the key tree and can therefore
derive the correct key in a challenge-response scheme.

Another approach to access control for RFID tags are agent schemes. In
these schemes an agent device mediates the communication between reader and
tag. Juels suggests the use of so-called proxy devices which can presume the
identity of all supported tags and acts on behalf of these tags in respect to the
reader [JSB05]. One advantage of using agents is the computational power of
agent devices. As the agent has in general more computational power than a
tag it can easily perform even elaborated cryptographic protocols and take over
complex calculations instead of the tag.

Rieback et al. suggest another agent scheme, which does not require ad-
ditional functionality on the tag [RCT05]. They present a privacy guardian
with a security policy which lets the guardian selectively allow or jam differ-
ent reader-tag communications. The security policy determines which reader,
in which situation, has access to which tag. If a reader is not authorized, the
communication with the tag is jammed. When using agent schemes, the owner
of the tags has to decide wether a communication is established or refused.
Configuration of this policy should be easy for the user.

In all of the mentioned methods the reader has to prove that it is allowed to
access the tag’s data. This process is called reader authentication. In difference
to the approach of using light-weight or proprietary algorithms for reader au-
thentication, we follow the approach of using standardized cryptographic prim-
itives and protocols for this purpose. As we base the development of secure
RFID applications on this approach, we describe methods of standardized au-
thentication in detail in the next section.

Additional security services that has to be provided as regards access control
is the transfer of ownership as well as confidential message exchange. Transfer
of ownership can in general be provided by key-management functions, as in
most applications authentication is performed by showing the knowledge of a
key. The key of the new owner has to be transferred to the tag. This operation
should only be performed by an authorized party (former owner, tag manager).

Confidential message exchange can be provided by encryption. Confidential-
ity is an issue for authorized read operations on the tag, because the requested
data have to be somehow transmitted to the authorized reader. An unautho-
rized reader that is located near to the authorized reader is able to sniff the
communication between the RFID components. Although the unauthorized
reader cannot control the type of information it gets, this scenario should also
be considered as, for instance, the location privacy can be corrupted if the iden-
tity of the tag leaks. Therefore, we propose to encrypt the communication to
hide the transmitted data from unauthorized access.

As authentication is an essential countermeasure for each of the discussed
security threats, we describe how authentication is provided by standardized
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algorithms and protocols in the next section. Authentication can either be
provided by symmetric or asymmetric cryptographic primitives. We compare
symmetric and asymmetric approaches and describe standard key-management
methods.

2.3.4 Standardized Protocols for RFID Security

In the last section we have presented an overview of various countermeasures
to handle security threats in RFID technology. These countermeasures also
contain proprietary and light-weight algorithms. In this section we focus on
standardized cryptographic protocols. Table 2.8 lists security threats, assigned
security requirements, and the proposed security services. The security threats
to RFID systems addressed in the table are described in Section 2.2. A security
requirement is the property of a security protocol that has to be provided to
prevent a particular threat. A security service is a mechanism that can be used
to meet the security requirement. Each security service (e.g., reader authenti-
cation) can be implemented by different algorithms and protocols.

To provide location privacy we suggest to use pseudonyms in the inventory
process. Each time the tag enters a new reader field a random number is
generated which is used as identifier for this reader session. As every time a
new pseudonym is used, this number does not uniquely identify the tag, and
the tag can no longer be tracked. To provide this service a (Pseudo) Random
Number Generator (PRNG) is required. Implementations of PRNGs for RFID
can be found in some hardware modules presented in Section 2.1 where the
PRNG functionality comes as part of another algorithm ([HFP10] or [BBD+08]).
Other suggestions for implementing a PRNG on an RFID tag can be found, for
instance, in [GJR07] or [PLHCETR07]. For most applications, readers has to
reveal the identity of the tag, which is prevented when using pseudonyms in the
inventory process. Therefore, an authorized reader uses a dedicated command
to request the identifier of a tag. By using encryption for the transfer of the
ID, sniffing of another (unauthorized) reader can be prevented.

Cloning and counterfeiting of a tag can be prevented by a proof of origin
of the tag. The tag proves to the reader that it knows a secret (key) which is
only known by authentic tags. This means that the tag has to authenticate to

Table 2.8: Security Threats, Requirements and Services

Threat Security Requirement Security Service

Tracking and Tracing Location Privacy Pseudonyms
Reader Authentication
Encryption

Cloning and Counterfeiting Proof of Origin Tag Authentication

Unauthorized Read/Write
Access

Access Control

Transfer of Ownership

Reader Authentication
Encryption
Key Management
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the reader. Unauthorized read/write accesses to the tag can also be prevented
by using authentication. In this scenario, the reader has to authenticate to the
tag. The tag reveals its information only to authorized readers. For communica-
tion between authorized parties, encryption should be used to prevent sniffing.
Transfer of ownership is also a requirement for authenticated operations. If the
owner of the tag changes, the former owner should transfer the control over
all access rights to the new owner. This requirement can be met by setup of
key-management mechanisms on the tag. The previous owner can, for instance,
authenticate the key of the new owner on the tag.

It is evident that authentication is one central security requirement for RFID
security. In the following we describe how authentication can be provided by
using standardized cryptographic algorithms and protocols. In an authentica-
tion protocol two parties are involved: the prover (P) and the verifier (V ). The
prover proves its identity, the verifier checks this proof. The prover owns a
secret (key) and proves this ownership to the verifier. The proof is in general
performed using a challenge-response protocol, which works as follows:

V → P : C

P → V : Enc(C)K

The prover claims its identity. The verifier sends a challenge C to the prover.
This challenge is random and not predictable. The prover performs a crypto-
graphic operation (Enc) on this challenge using its secret key (K ) to generate a
response and sends the response to the verifier. The verifier checks the prover’s
response and if it is correct, the prover’s identity is treated as authenticated.

For performing challenge-response protocols, symmetric as well as asym-
metric cryptographic primitives can be used. Symmetric challenge-response
authentication is standardized in [Int99]. In this scenario, both parties hold
the same secret key. The prover encrypts the challenge with the key, the ver-
ifier can prove the response by encrypting the challenge or by decrypting the
response using the same key. Asymmetric challenge-response authentication is
standardized in [Int93]. In this scenario the prover owns a key pair consisting
of a public and a private key, whereby the public key is shared with the verifier.
The prover signs the challenge with its private key, the verifier can prove the
response by verifying the signature with the public key of the prover. As sym-
metric primitive for RFID systems we suggest to use the Advanced Encryption
Standard(AES), specified in [Nat01]. As asymmetric primitive we suggest the
Elliptic Curve Digital Signature Algorithm (ECDSA) specified in [Nat00].

We have already presented cryptographic primitives implemented in hard-
ware for the use in passive RFID tags in Section 2.1. It is obvious from the
performance figures, that symmetric algorithms are more power-efficient and
less time-consuming than asymmetric algorithms. The drawback of symmetric
algorithms lies in the key management: Each participant keeps the same key,
which has to be kept secret. Depending on the application, there will be a lot
of devices holding the same key. If one of the devices leaks the key, the whole
system is corrupted. Generation and particularly the distribution of a new key
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to all participants is complicated. For this reason, symmetric primitives are
mainly used in closed-loop applications, where one central instance has control
over all participants.

Key management is easier when using asymmetric primitives. Each par-
ticipant owns a key pair consisting of public and private key. One particular
private key is stored exclusively on one device and is kept secret. The public
keys of all participants are published. With a public key, a signature generated
with the corresponding private key can be verified. It is also possible to “en-
crypt” a message with the public key, which can only be “decrypted” with the
corresponding private key. In this way private messages can be addressed to
only one particular device in the system. If one device is corrupted the other
participants are not concerned, because each device only holds its own private
key. Furthermore, scalability for a system using asymmetric primitives is easy to
provide: A new participant generates its public/private key pair and publishes
the public key. Due to the easier key management and scalability, asymmetric
or public-key cryptography is often used for open-loop applications.

A common practice when using asymmetric primitives is the establishment
of a Public Key Infrastructure (PKI). A PKI is a hierarchical trust model with
a Certification Authority (CA) on top. The CA is trusted from all participants
and can sign public keys from participants in the system. This signed public
keys are called certificates, which also hold additional information about the
participant and the CA. If one participant wants to verify the authenticity of the
public key and/or identity of another participant, she can verify the certificate
by proving the signature of the CA. The public key of the CA is in general
well-known or easy to retrieve.

The knowledge of the public key of the CA is the only requirement to do
a verification of a certificate and a signature, therefore such systems are often
used for offline applications. An offline system works as follows: Each partici-
pant has stored the public key of the CA and can therefore verify all certificates
issued by the CA. A certificate contains the public key of another participant
in the system. If the certificate is valid, the public key can be treated as au-
thenticated and can be used to perform a secure protocol without accessing an
online database. The hierarchy of a PKI can be very flat, if there is only one
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Figure 2.2: Public Key Infrastructures
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CA which issues all certificates of the participants. The hierarchy can also be
very steep, if intermediate CAs are used. Intermediate CAs require a certificate
from a CA which belongs to a higher hierarchy level and can issue certificates
for other intermediate CAs or participants belonging to a lower hierarchy level.
Figure 2.2 shows the principle of PKIs with and without intermediate CAs.

Symmetric as well as asymmetric authentication protocols use challenge-
response mechanisms for proving the knowledge of a secret or private key. Sym-
metric algorithms offer a higher performance, whereas key management is easier
in asymmetric systems. The decision which security protocols and primitives
to use mainly depends on the requirements of the application.

2.4 Conclusion

In Chapter 2 we identify three main types of security threats for RFID systems:
Tracking and tracing, cloning and counterfeiting, and unauthorized access to
the tag. We show, that authentication is able to address all of these potential
security threats. Symmetric as well as asymmetric cryptographic primitives can
be used for standardized authentication protocols. Symmetric algorithms have
a higher performance than asymmetric ones, but key management is easier in
security systems using asymmetric primitives. Depending on the application re-
quirements, the application developer has to decide which algorithms to use for
authentication. As standardized security algorithms offer a higher level of pro-
tection and interoperability, we propose to use the AES as symmetric primitive
and ECDSA as asymmetric primitive for RFID systems. For these algorithms,
hardware implementations meeting the constraints presented in Section 2.1.1
are already available. With these cryptographic primitives security protocols
can be built. Based on the presented authentication methods we describe the
development of various secure RFID applications in the next chapter.
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Applications

The cryptographic primitives and protocols, as described in Chapter 2, are
the building blocks of secure RFID applications. In this chapter we describe
the design and evaluation of different RFID applications. For all applications,
we have defined and implemented cryptographic services in order to provide
a strong level of security. First, we present different protocols that provide
authentication of both reader and tags. We propose to use the AES as crypto-
graphic primitive for symmetric authentication. This algorithm was the first
standardized security algorithm to be implemented in hardware for passive
RFID tags. Secondly, we present mobile coupons as a secure application for the
Near Field Communication (NFC) technology. This system defines electronic
coupons stored on RFID devices and protected against unauthorized modifi-
cation and cloning. Third, we describe a privacy-preserving RFID application
dealing with pharmaceuticals that are protected from unauthorized access.

The chapter contains results of joint work together with Manfred Aigner,
Martin Feldhofer, Stefan Mangard, Elisabeth Oswald and Johannes Wolker-
storfer. Parts of the outcomes were published at the Cryptographic Hard-
ware and Embedded Systems conference 2004 [FDW04], at the International
Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Com-
puting 2005 [FAD05], at the Workshop on RFID and Leight-Weight Crypto
2005 [DOF05], at the D.A.CH Mobility conference 2006 [DOF06], at the IEEE
International Symposium on Ubisafe Computing 2007 [DA07], at the Workshop
on Pervasive RFID/NFC Technology and Applications (PerTec07) [ADF07],
and at the IEEE International Conference on RFID-Technology and Applica-
tions 2011 [Dom11].
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3.1 Symmetric Authentication for RFID Sys-
tems

In 2005, the first AES hardware module feasible for passive RFID tags was
published in [FWR05]. With this new feature for RFID tags, authentication
protocols for RFID systems using this strong cryptographic algorithm can be
designed. In this section, we describe the development and evaluation of sym-
metric reader and tag authentication protocols. We start with the identification
of RFID applications where symmetric authentication can be useful. After-
wards, we describe four authentication protocols with different security features
and evaluate their performance and practicability using the ISO-18000-3 RFID
communication standard.

Key management is an important issue when using symmetric primitives, as
described in Chapter 2. Therefore, such protocols are more feasible for closed-
loop systems, where one central instance has control over all participants. All
devices can get their keys and key updates from the central instance. An airport-
luggage tracking system is an example for an RFID application, which can be
implemented as a closed-loop system. Each piece of luggage is equipped with
an RFID tag. All available tags are registered in a central server. In that way,
automated cargo and baggage transportation is possible. Also access control
to restricted areas and checks if the luggage is on the same plane as the owner
can be performed. In this scenario, tag cloning and unauthorized access to the
tag must be avoided. Tracking and writing or reading of the tag should is only
possible for authorized readers.

Further examples where symmetric authentication can be applied are car
immobilizers or transportation applications. As for transportation, unautho-
rized parties should be prevented from sniffing the IDs of transported goods.
Thus, spying and tag cloning can be avoided. Furthermore, only authorized
parties should be allowed to manipulate the stored data on the tag. Having
such closed-loop applications in mind, we describe reader and tag authentica-
tion protocols, which are suitable to provide the required security services, in
the following.

3.1.1 Design of Security Protocols

The security protocol uses symmetric challenge-response techniques based on
encryption, which are defined in the ISO/IEC 9798-2 standard [Int99]. We
explain an unilateral authentication in Section 2.3.3: The verifier (V ) sends a
random challenge (C) to the prover (P ), which encrypts (Enc) this challenge
with its secret key (K) and sends back the response. The mutual authentication
protocol works similarly.

V ← P : CV

V → P : Enc(CV , CP )K

V ← P : Enc(CP , CV )K



3.1. Symmetric Authentication for RFID Systems 33

Here, the verifier and the prover change their roles in the middle of the protocol.
First, the verifier sends its challenge (CV ) to the prover, like in an unilateral
authentication. Now, the prover generates a new random challenge (CP ), con-
catenates it with the challenge from the verifier and encrypts the whole message.
The result of the encryption is sent to the verifier. The verifier can decrypt the
message and can verify that it contains the original challenge. The other part
of the message is the challenge from the prover. The verifier changes the se-
quence of the two challenges and encrypts it again with the secret key. The
prover receives the response from the verifier, decrypts it and checks whether
the two challenges are correct. If the protocol is finished successfully, both par-
ties have proven their knowledge of the key and have therefore authenticated
their identities.

In Section 2.3 we have explained three security requirements for RFID sys-
tems: location privacy to prevent tracking and tracing, proof of origin to prevent
cloning and counterfeiting, and access control to prevent unauthorized tag ac-
cess. All these requirements can be met by authentication protocols. Depending
on the security requirements of an RFID application, reader authentication, tag
authentication, and/or mutual authentication services are required. In the fol-
lowing, we describe four authentication protocols for meeting different security
requirements.

Protocol 1: Tag Authentication with UID

The tag authenticates by proving the knowledge of a secret key. If the key
has been issued by the producer of the tagged product, a proof of origin of
this product is provided. In this way, cloning and counterfeiting are prevented.
Tracking is still possible as the tag reveals its identity by sending its UID in
every inventory process. In the following protocol, R denotes the reader, which
is the verifier, and T denotes the tag, which is the prover in the protocol. The
“|” denotes a concatenation of values.

R → T : Inventory

R ← T : UID

R → T : AuthRequest | UID | CR

R ← T : Enc(CR | C?
T )K | C?

T

The first two steps represent the standard inventory procedure, where the tag
reveals its unique ID (UID). The reader sends an authentication request
(AuthRequest), addressed with the UID of the tag. The request contains the
challenge (CR) for the tag. The tag encrypts the challenge using its secret key
(K) and sends the response to the reader, which can then verify the result. In
order to avoid chosen-plaintext attacks, this means that an attacker can con-
trol the value of CR, the tag can “hide” the challenge by also using a random
number (CT ) as input for the encryption. The use of this random number is
optional, which is indicated by ?.
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Protocol 2: Tag Authentication with Pseudonym

Like in the previous protocol, the tag authenticates to the reader. This means
that proof of origin is provided. The difference to the previous protocol is the
use of a pseudonym during the inventory procedure. The tag sends a different
random number each time a reader performs an inventory protocol. Thus,
unauthorized readers cannot reveal the ID of the tag and are therefore not able
to uniquely identify an item. The UID is only sent to authenticated readers. In
this way, tracking and tracing of the tag is prevented.

R → T : Inventory

R ← T : PT

R → T : AuthRequest | PT | CR

R ← T : Enc(CR | UID)K

In this protocol the tag uses the pseudonym PT for the inventory process. The
authentication request is addressed with this pseudonym. The challenge from
the reader is concatenated with the UID of the tag for encryption. An au-
thenticated reader can check the authenticity of the tag and reveal the UID by
decrypting the tag’s response.

Protocol 3: Reader Authentication

In this protocol, the reader authenticates to the tag. The tag can check if a
reader is authorized to access its data. In this way, access control is provided
and unauthorized access to the tag’s memory can be avoided. The tag takes
part in the inventory process with a pseudonym (PT ). This measure provides
location privacy. All further reader requests use the pseudonym as tag address.
After authorization of the reader, the tag sends its UID and grants access to its
memory to the reader. We suggest to encrypt further communication to prevent
sniffing.

R → T : Inventory

R ← T : P ◦
T

R → T : ReaderAuth | PT | Enc(PT | C?
R)K | C?

R

R ← T : Enc(UID)K

We denote the pseudonym of the tag by ◦ to indicate that the tag uses a flag to
show that reader authentication is required. The pseudonym is used as challenge
for the reader. The reader encrypts the challenge (pseudonym) and sends an
reader-authentication request (ReaderAuth) containing the encryption result to
the tag, which can then verify the authenticity of the reader. Like in protocol
1, the reader can use a random number (CR) and combine it with the challenge
of the tag. The use of this random number is optional.



3.1. Symmetric Authentication for RFID Systems 35

Protocol 4: Mutual Authentication

In this protocol both, reader and tag, authenticate themselves. In this way, the
features from the protocols 2 and 3 are accumulated. The proposed protocol
provides proof of origin as well as access control to the tag’s memory. Tracking
is prohibited by the use of pseudonyms.

R → T : Inventory

R ← T : P ◦
T

R → T : MutualAuth | PT | Enc(PT | CR)K | CR

R ← T : Enc(CR | PT | UID)K

The tag takes part in the inventory procedure with a pseudonym (PT ), indicat-
ing by a flag that reader authentication is expected. The pseudonym is used as
challenge for the reader. The reader also generates a random challenge for the
tag and sends a mutual-authentication request (MutualAuth) containing the
encryption result of both challenges. The tag changes the sequence of the two
challenges, concatenates it with its UID and sends the encrypted value back to
the reader. If all verifications succeed, tag and reader are authenticated and
the reader knows the UID of the tag. All further communication should be
encrypted to provide sniffing.

3.1.2 Implementation of Authentication Protocols

In order to implement the protocols defined in Section 3.1.1 various RFID com-
munication standards can be used. All of these standards describe, besides
physical aspects, the communication protocol between RFID readers and tags.
The different standards use different frequencies and timing parameters to es-
tablish the communication link. In principle, the proposed authentication pro-
tocols can be implemented with any of these RFID standards. We choose the
ISO-18000-3 standard [Int04b] for this purpose. This standard uses a frequency
of 13.56 MHz for establishment of an RFID communication.

The implementation of our authentication protocols has to conform to the
communication protocol described in the ISO-18000-3 standard. The standard
defines the structure of reader requests and tag responses. Four categories
of reader requests can be differentiated: Mandatory, optional, custom, and
proprietary requests. Mandatory commands have to be implemented by all
tags conforming to the standard. In the ISO-18000-3 standard the Inventory
and the StayQuite requests are mandatory. Optional requests are also defined

Figure 3.1: Custom Command Format in ISO-18000-3 [Int04b]
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in the standard and can optionally by provided by the tags. The user can also
define custom and/or proprietary requests on her own. Custom requests must
conform to the frame structure defined in the standard. Proprietary requests can
also have a proprietary structure. In the following, we extend the ISO-18000-3
standard to support cryptography in order to provide strong authentication of
tags and readers.

Some of the protocols, described in Section 3.1.1, require that the tag indi-
cates that reader authentication is necessary. This can be done by setting a flag
in the inventory response. The standard reserves six bits of the response flags
for future use. These bits can be used for our purpose. For implementation of
the required additional requests we use the structure of custom requests defined
in the ISO-18000-3 standard [Int04b]. This structure is illustrated in Figure 3.1.

A custom request in ISO-18000-3 consists of eight bits for the request flags,
an 8-bit custom-command code (between 0xA0 and 0xDF), an 8-bit manufac-
turer code (ICMFG), data of variable length, and a 16-bit CRC value. For im-
plementation of the proposed authentication protocols, three additional requests
have to be defined: Authentication Request (AuthRequest), Reader Authentica-
tion Request (ReaderAuth) and Mutual Authentication Request (MutualAuth).
These requests are mapped to the custom-command structure by choosing a
command code between 0xA0 and 0xDF and by packing all necessary informa-
tion in the data field of variable length.

Another point to consider for integration of authentication protocols into
the ISO-18000-3 standard is the tag waiting time. This value defines the time
frame within a tag is supposed to respond to a reader request. Note that the
time is measured from the detection of an EOF (End of Frame) of the reader
request. In ISO-18000-3, this time frame ranges from 318.6 µs to 323.3 µs. This
is a very short time especially to perform cryptographic computations. In most
of the cases, these computations on the tag will exceed the tag waiting time.
The AES module described in [FWR05] needs about 10 ms (@ 100 kHz) to
finish its calculation, for instance. This means, the execution of an encryption
or decryption cannot be performed within one request and response exchange.
Therefore, we have to use a modification of the standard communication flow
in our protocols.

One way to overcome the issue of too short time frames, which are given by
the ISO standard, is to interleave the cryptographic protocol as we have pro-
posed in [FDW04] and also have presented in Section 2.1.1. The basic concept
on interleaved protocols is to use two reader requests instead of one. When
using one reader request, the tag has to provide the response in the defined
tag waiting time, which is not possible for the proposed AES hardware module.
Therefore, the reader request is split into two requests: the first one sends the
challenge, but does not expect an immediate response to the challenge. The
second request asks for the response to the challenge after a certain time delay.
Figure 3.2 demonstrates tag authentication using an interleaved protocol.

The time frames in the figure are calculated with the simulation tool PE-
TRA, which we describe in Chapter 4. The reader sends an authentication
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AuthRequestReader

Calculation of AES

IWT Idle GetResponse

TWT Tag ResponseIdleTag

8.87 ms 0.31 ms 4.04 ms

~ 10 ms 0.32 ms 6.04 ms

Figure 3.2: Tag Authentication with Interleaved Protocol

request and the tag starts the calculation after having received the EOF. The
reader has to wait at least for 302.9 µs until sending the next request, this is
called the interrogator waiting time (IWT) defined in the ISO-18000-3 stan-
dard. The calculation time of the AES is about 10 ms and exceeds the IWT by
far. After a certain time, in which the reader is idle, the reader sends a request
to receive the response to the challenge (GetResponse). If the tag has already
finished its calculation, it responds to this request with the encryption result
after the tag waiting time (TWT). If the tag is still busy, it does not respond
and the reader has to wait again at least for the interrogator waiting time until
it can issue the next GetResponse request.

The performance of the interleaved authentication protocol strongly depends
on the AES calculation time. To increase the performance of the proposed pro-
tocols, the interleaved protocol offers the possibility of concurrent tag sessions.
The reader can use its idle time to start new protocols with other tags. Fig-
ure 2.1 in Chapter 2 shows the concept on the concurrent interleaved approach
involving three tags. We discuss the impact of this concurrency on the per-
formance in the following section, where we evaluate the performance of the
different authentication protocols.

3.1.3 Evaluation of the Protocols

For development and evaluation of the proposed security protocols, we have
designed a simulation tool called PETRA. It simulates the ISO-18000-3 com-
munication standard for RFID systems. The user implements own applications
by using mandatory, optional, and custom reader requests. Furthermore, the
behavior of the tag during simulation can be modified. The output of PETRA is
a logfile containing the communication protocol flow, timing, internal behavior
of reader and tags, as well as all communication frames of the protocol. Timing
requirements of tags and reader can be defined by the user, too. She can, for
instance, define that an AES calculation needs 10 ms. This feature is required
to simulate interleaved protocols.

When programming of the host application is finished, the user defines the
tags that should be simulated. The number of tags, as well as their moving be-
havior is set. During simulation, PETRA generates a log-file, where reader and
tags communication and timing is logged. The software offers the possibility to
consecutively execute the host application with random tag UIDs automatically



38 Chapter 3. Integration of Security into RFID Applications

Table 3.1: Performance Evaluation of Authentication Protocol using AES

1 tag / 1 slot 20 tags / 16 slots

Inventory 11 ms 365 ms

Protocol 1 48 ms 798 ms

Protocol 2 51 ms 847 ms

Protocol 3 51 ms 864 ms

Protocol 4 53 ms 903 ms

and to calculate the average protocol execution time. We describe this property
and the simulation tool PETRA in detail in Section 4.2.1. We use the simula-
tion tool for performance evaluation of the authentication protocols defined in
Section 3.1.1. Table 3.1 shows some of the results of this evaluation.

The figures in the table represent the average protocol-execution time for
100 executions of one particular protocol. The AES-calculation time for the tag
is set to 10 ms. Therefore, the protocols can only be performed in interleaved
mode, as the AES calculation on the tag exceeds the tag waiting time. We
assume that the AES calculation on the reader does not exceed the interrogator
wait time. When considering only one tag in the field, we apply the anti-
collision protocol with one slot describe in the ISO-18000-3 standard. Using
this approach, all tags answer the inventory request at the same time. For 20
tags in the field, we apply the 16-slots variant. In this variant, the anti-collision
procedure is split into 16 slots, where the slot number is represented by four
bits. Tags answer in the slot where the four least significant bits of the UID
correspond to the slot number.

The time required for performing an authentication protocol is about 5 times
the execution time of handling a standard inventory request for one tag. The
more tags are in the field the more concurrency can be exploited using the inter-
leaved protocol mode. In this way, the time needed for executing the protocol
involving 20 tags is only about 3 times longer than the time for the standard
inventory protocol. With the figures gained from the simulation of the proto-
cols we show that the performance overhead for authentication is small enough
to consider these techniques in real-world applications. In the next section we
discuss the feasibility of symmetric authentication using the AES algorithm for
another RFID communication standard (EPCglobal Gen-2).

3.2 Feasibility of AES Authentication for EPC
Gen-2

In this section, we investigate the feasibility of symmetric authentication proto-
cols using the AES algorithm on EPCglobal Gen-2 tags [Int04c]. The EPCglobal
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Gen-2 standard is an RFID communication standard for UHF tags. In this stan-
dard, tags are uniquely identified by their Electronic Product Codes (EPCs).
In [Plo07], tag authentication with AES is suggested as a security enhance-
ment for the EPCglobal Gen-2 standard. This suggestion has been adapted
from our previous work described in Section 3.1. As in the previous section,
we use a challenge-response authentication protocol for the feasibility study.
The calculation time of the AES exceeds the tag waiting time. Therefore, we
implement the authentication protocol in an interleaved mode. In the follow-
ing, we describe the proposed authentication protocol and the results from the
performance evaluation in detail.

3.2.1 Implementation of Authentication Protocol

In order to implement software prototypes of the tags, we use the software sim-
ulation tool RFIDSim ([FWS08], [FP08]). The simulation is used to verify the
functionality of the tag and the protocol as well as for performance evaluation
of the protocol. RFIDSim implements the EPCglobal Gen-2 standard. The
user can define various application parameters (number of readers, number of
tags, tags mobility, etc.), system parameters (data rate, timing constants, etc.),
as well as physical parameters (field strength, fading, error rates, environmental
temperature and noise, etc.).

For implementation of the authentication protocol using RFIDSim, we con-
sider a system consisting of one reader and several non-moving tags. The EPCs
and the locations of the tags are chosen randomly at the beginning of one sim-
ulation run. The error rates due to field effects and noise are set to zero during
simulation. The reader tari value, which is defined as the reference interval for
reader-to-tag signaling in the communication standard, is set to 25 µs. This
value is the basis for all further timing estimations. For more detailed informa-
tion on the EPGglobal Gen-2 timing refer to [Int04c].

We simulate the system with a constant slot count for all inventory rounds.
The concept on the slotted inventory process is defined in the EPCglobal Gen-2
standard [Int04c] and works as follows: The tags choose a random number in
the range of the number of slots at the beginning of the inventory process. This
random number is the slot count for the tag in this particular inventory process.
The reader starts the inventory process by asking all tags with the slot count 0
to answer. Afterwards, the slot count of the reader is incremented and all tags
with a slot count of 1 answer the next request. This is repeated until all slot
counts have passed through.

Figure 3.3 illustrates the tag-state diagram for Gen-2 tags. It contains the
inventory procedure up to the commands to get the tag into the Open State.
Tags have to reach the Open State in order to handle further custom protocols.
At this point, the handling of the proposed authentication protocol starts.

For evaluation of the symmetric authentication protocol using the AES algo-
rithm we implement a challenge-response protocol, as described in Section 2.3.4.
We use the AES hardware module presented in [FWR05], which has an AES
calculation time of about 10 ms. The AES calculation time exceeds the tag
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Figure 3.3: Tag State Diagram for EPCglobal Gen-2 Tags

response time of 187.5 µs. This means that the authentication protocol has to
be handled as interleaved protocol (see Section 2.1.1). Two separate requests
are required to perform the tag authentication: One for sending the challenge,
and one for getting the response. These two commands can be integrated into
the EPCglobal Gen-2 standard by defining them as custom commands. They
can be issued by the reader when the tag is in Open State. The structure
of the requests and the structure of the tag responses are defined in [Plo07].
The principle of the interleaved authentication protocol, used for performance
evaluation, is shown in the following.

Reader → Tag : SendChallenge(C)

Tag → Reader : ChallengeReceived

Reader → Tag : GetResponse

Tag → Reader : Enc(C)Key

We compare two different strategies as regards the protocol sequence: The
two authentication commands (SendChallenge, GetResponse) can either be sent
within one inventory slot or can be separated and issued in different inventory
rounds. One inventory round has 2Q slots. The value of Q can be defined by
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the user. Following the first strategy, the two authentication commands are
issued consecutively during one single inventory slot. Right after identifying a
tag, the reader sends the corresponding commands to get the tag in Open State.
Then a SendChallenge command is issued. The tag answers with its handle,
which is a number to identify one tag during one particular session. Directly
after receiving the tag response, the reader issues a GetResponse command. If
the reader does not receive any response, it polls the tag again until it reaches
a time-out or the tag sends a response. The maximum number of GetResponse
commands before time-out is defined in the reader application. After finishing
the inventory round, Select commands are issued for each of the tags to exclude
them from further inventory procedures. We refer to this method as one-slot
approach.

Following the second strategy, the two commands are separated and issued
in different inventory rounds. After the reader has identified a tag, it gets the
tag in Open State. A SendChallenge command follows. The reader ends this
part of the authentication session and continues with the inventory procedure.
The reader stores the challenges it has sent to the tags together with their EPCs
in a database. If the reader identifies one of the tags in the database in one of
the following inventory rounds, it gets the tag again in Open State and sends
a GetResponse command. If the tag’s response corresponds to the encrypted
challenge, the tag is authenticated. We refer to this strategy as different-round
approach. In the next section, we present a performance evaluation of both
strategies when using different numbers of tags and slots, and with different
amount of time required for the AES calculation.

3.2.2 Performance Evaluation of Authentication Protocol

The performance of an authentication protocol, using the AES algorithm, im-
plemented with the EPCglobal Gen-2 standard depends on the numbers of tags
in the field, on the slots used for one inventory round, and on the calculation
time for the AES algorithm. The authentication protocol is implemented as
an interleaved challenge-response protocol (as described in Section 3.2.1). This
means that two commands are used: One for sending the challenge to the tag,
and one for requesting the response from the tag.

For simulation, we have defined AES calculation times of 0 ms up to 24
ms in 3-ms steps. An AES calculation time of 0 ms does not mean that the
AES algorithm requires 0 ms, but that the calculation time is smaller than the
tag waiting time. In Table 3.2, the results for the simulations with an AES
calculation time of 0 ms, 9 ms, and 24 ms are shown. The column Ref. lists
the time required to perform a reference protocol, which is a protocol consisting
of an inventory procedure until getting the identified tags into Open State. The
columns named OS represent the one-slot approach, which we have described in
Section 3.2.1. The columns named DR represent the different-round approach,
also described in the previous section. The figures in the table represent the
average protocol-execution time over 50 protocol runs measured in milliseconds.

The table shows that the performance strongly depends on the combination



42 Chapter 3. Integration of Security into RFID Applications

Table 3.2: Selected Performance Figures for Gen-2 Authentication Protocol

AES Calculation Time

0 ms 9 ms 24 ms

Tags Slots Ref. OS DR OS DR OS DR
[ms] [ms] [ms] [ms] [ms] [ms] [ms]

1 1 13.2 34.3 43.8 43.8 54.9 59.9 68.9
1 2 13.9 35.0 45.2 44.5 54.9 60.7 69.8
1 4 15.1 36.2 47.7 45.9 61.0 60.9 74.1
1 8 17.6 38.8 52.7 48.3 64.3 64.6 79.0

5 2 76.3 182.0 260.0 231.2 290.6 318.5 329.6
5 4 65.0 171.1 228.2 220.1 252.7 298.7 273.4
5 8 65.7 170.0 229.4 220.2 240.6 301.6 257.4
5 16 69.9 176.7 240.3 225.3 256.3 308.4 283.6

10 4 142.1 354.6 484.4 451.0 537.2 618.0 593.9
10 8 129.4 342.5 474.0 438.3 475.5 608.0 511.7
10 16 135.1 344.3 462.2 442.6 501.0 617.9 524.0
10 32 147.3 362.8 489.8 460.1 532.3 632.5 573.5

50 16 726.3 1,786.3 2,421.0 2,282.5 2,551.4 3,129.2 2,653.1
50 32 651.8 1,708.8 2,345.0 2,215.5 2,438.3 3,058.3 2,509.2
50 64 671.4 1,723.4 2,420.9 2,256.0 2,473.9 3,105.8 2,611.9
50 128 732.9 1,780.5 2,572.1 2,346.6 2,675.5 3,252.8 2,842.7

100 128 1,355.8 3,454.9 4,921.9 4,554.1 5.017,7 6,292.0 5,198.6

of tags and slots and on the AES calculation time. If the number of slots is
similar to the number of tags, the performance increases. As expected, the
timing overhead raises as the AES calculation time gets longer. The overhead
factor for authentication ranges from 2.20 to 5.23 in respect to the reference
protocol. We demonstrate the results and its dependence on the AES calculation
time in Figure 3.4.

The four graphs show the performance figures for different tag and slot
numbers. The graph for one tag and one slot illustrates, that the overhead
for the different-round approach is higher than for the one-slot approach for
this setting. This is logical, because for one tag no pipelining of the protocol
execution can be reached. For all other combinations of tags and slots, the
different-slot approach is worse than the one-slot approach up to a certain AES
calculation time. For 50 tags and 64 slots, the intersection point lies between 13
ms and 14 ms of AES calculation time. If the AES calculation time is longer,
the different-slot approach becomes favorable in terms of performance. The
more tags are in the field the earlier this point is reached. Then, the different-
round approach has an advantage over the one-slot strategy because the protocol
execution can be pipelined.

During the feasibility study we implemented software prototypes of EPC-
global Gen-2 tags providing symmetric authentication. The simulation tool
RFIDSim was used to implement and verify the functionality on the tag. The
protocol was simulated with different parameters (number of tags, number of
slots, AES calculation time) to get an idea of the practical impact of using au-
thentication techniques on the performance. Furthermore, we have shown the



3.3. Secure Mobile Coupons 43

Figure 3.4: Gen-2 Authentication Depending on AES Calculation Time

impact of different protocol-execution strategies.

Authentication can be used as countermeasure to various security threats
in RFID systems. We have discussed this fact in Section 2.3.4. In this sec-
tion, as well as in Section 3.1, we have dealt with the feasibility of symmetric
authentication for different RFID communication standards. In the next sec-
tion we describe the development of an RFID application where symmetric as
well as asymmetric primitives are used to prevent cloning, counterfeiting and
unauthorized tag access.

3.3 Secure Mobile Coupons

In this section, we describe a system of electronic coupons that can be transmit-
ted from an RFID tag to an RFID reader device. Passive RFID tags, which are,
for instance, attached to a billboard or magazine, act as issuers of the coupons.
The RFID readers are the clients that collect the coupons from the tags and
carry them to another RFID reader, the cashier. Here, the mobile coupons
(mCoupons) are cashed in.

As mCoupons have a certain value, security is an important requirement for
the developed system. Unprotected mCoupons can be cloned and modified. The
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mCoupon protocols use symmetric and asymmetric cryptographic primitives to
provide the following security features:

� An attacker is not able to use the same mCoupon multiple times (multiple
cash-in).

� An attacker is not able to generate new valid mCoupons (counterfeiting).

� An attacker is not able to change the information of an mCoupon without
invalidating it (unauthorized access).

� An attacker is not able to produce a valid copy of an mCoupon (cloning).

The mCoupons system has been developed on basis of the Near Field Com-
munication standard (NFC) [Int04a]. NFC is an RFID communication stan-
dard that works on a frequency of 13.56 MHz. The applications of NFC follow
the principle of touching communicating devices. This means that devices are
brought closely together (a few centimeters) to share data. NFC provides the
feature that NFC devices can act in both, active and passive mode. In passive
mode, the initiator of the communication establishes a radio-frequency field that
is used from the passive participant to send data over the air interface. In active
mode, both communication devices generate their own radio-frequency field for
data transfer. In the following, we explain why these two modes are the reason
to select the NFC standard for implementation of the mCoupon protocols.

The clients in the mCoupon system act on the one hand as RFID readers,
when collecting the mCoupons. On the other hand, the clients are supposed to
communicate with other RFID readers, when cashing in the mCoupons. The
communication between two RFID readers over the radio link is in general
not provided by an RFID communication standard. Nevertheless, using the
NFC standard, two active devices can communicate with each other. We use
the active mode for communication between client and cashier. For the link
between the passive issuer tag and the client we use the passive mode of NFC.

3.3.1 The mCoupon Protocol

The following parties are involved in the mCoupon protocol: The issuer, the
client, and the cashier. An mCoupon is issued by the issuer, which is a passive
RFID device attached, for instance, to a newspaper advertisement or a poster.
The client has to “touch” the issuer to establish a connection and receive the
mCoupon . The client takes the mCoupon to a cashier that verifies the valid-
ity. If verification is successful, the cashier hands the value represented by the
mCoupon (a product or service) over to the client.

Two protocols providing different security services have been developed for
the mCoupon system: The “simple” protocol provides protection against coun-
terfeiting and modification of the coupons. The “advanced” protocol extends
the simple version by cloning and copy protection. In the following, we describe
both protocols in detail.
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Figure 3.5: Simple mCoupon Protocol

The Simple mCoupon Protocol

The simple mCoupon concept works with symmetric cryptography. We suggest
to use the AES algorithm as cryptographic primitive. Each issuer holds a secret
key, which is also stored in a key database. Only authorized cashiers have
access to this database. Figure 3.5 shows the issuing and the cashing-in of an
mCoupon in the simple protocol variant.

The client wants to receive an mCoupon from the issuer and initiates a
connection by sending a random number as a challenge (CCL). The issuer
encrypts this random number and the offer with its secret key (KI). The offer
basically represents information on the mCoupon. Together with the encryption
result, the issuer sends its ID, the random number, and the offer to the client.
The client stores this response, which represents the mCoupon, and carries the
mCoupon to a cashier. The client connects to the cashier via radio link and
sends the mCoupon. In order to verify the validity of the coupon, the cashier
connects to the database and sends the issuer’s ID. The database verifies the
authenticity of the cashier and sends the secret key corresponding to the ID to
the cashier. This transfer is secured to provide confidentiality. Authentication
of the cashier to the database is required for the proposed protocol. We do not
define the authentication mechanism at this point, as authentication mechanism
between two computers on the Internet are already well established. We suggest
to apply a standardized authentication procedure for network connections.

Counterfeiting and modification of the mCoupon is prevented, as only autho-
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rized issuers and cashiers know the secret key. Multiple cash-in can be prevented
on the cashier’s site. Each mCoupon has to hold a unique identifier (e.g., the
ID of the issuer and an ascending number). The cashier can, for instance, store
the identifiers of mCoupons that are already cashed-in in the central database.
If a new mCoupon is transmitted to the cashier, it can check if the mCoupon of
the client is already stored in the database. In this way, the cashier can decide
if the coupon has already been cashed-in before.

Cloning and Copying of the mCoupons from one client to another is possible
in the simple mCoupons protocol. An attacker can sniff the conversation and
store the mCoupon (plain and encrypted information) on the tag. The mCoupon
could also be transferred to another device. In the following, we describe an
advanced protocol which extends the features of the simple protocol by copying
and cloning protection.

The Advanced mCoupon Protocol

The advanced protocol involves, besides symmetric algorithms, asymmetric
cryptographic primitives to provide additional authentication of the client. With
this measure, cloning of the mCoupon is prevented. The client generates a key
pair consisting of public and private key which are stored in a secure memory.
The client transfers its ID and the public key to a Public Key Infrastructure
(PKI) server. We have described the principles of a PKI in Section 2.3.4. The
client can also get a certificate from a Certification Authority (CA). In both ap-
proaches, either using a PKI server or certificates, the cashier can get the public
key of the client and authenticate it. This feature is used to provide cloning
and copy protection. In the following we will describe the advanced mCoupon
protocol, illustrated in Figure 3.6, in detail.

As in the simple protocol, the client “touches” the issuer and sends a request
to receive an mCoupon. This request contains a random number (CCL). In the
advanced protocol, the issuer wants the client to authenticate and sends as
well a challenge (CI) to the client. The client signs this challenge by using
its private key (PrivKCL). The client sends its ID (IDCL) and the signature
to the issuer. The issuer is not able to verify the signature, because of its
limited computational resources. Therefore, the verification of the signature is
postponed until the mCoupon is cashed in. The issuer encrypts the following
values: The client’s ID, the challenge CI , the signature received from the client,
the offer, and the random number CCL. Now the issuer generates the mCoupon,
which consists of the issuer’s ID, the challenge CCL, the offer, and the encryption
result, and sends it to the client.

At cashing-in, the client transfers the mCoupon data to the cashier. The
cashier wants the client to authenticate and sends a challenge (CCA). The client
signs this challenge and sends it together with its ID to the cashier. The cashier
has meanwhile encrypted the mCoupon and can compare the identity from the
coupon and the received identity. The public key of the client can either be
looked up through an online PKI service or can be derived from a certificate.
Using a PKI service, the cashier has to trust this service. Using certificates,
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Figure 3.6: Advanced mCoupon Protocol

the client has to send the certificate, signed by the CA, to the cashier. The
certificate can be verified by the cashier, if he knows the CA’s public key. Once,
the cashier has received a valid public key from the client, it can verify the
signature over CCA and also the signature contained in the mCoupon. If both
signatures are valid, the cashier can be sure, that the mCoupon has been issued
to the same client that wants to cash it in.

Like the simple protocol, the advanced protocol offers countermeasures against
unauthorized access and counterfeiting of mCoupons. Furthermore, cloning and
copying is prevented, as the client has to authenticate itself during issuing as
well as during cashing-in. Only if the same public key can be used to verify
both authentication results and if the client’s ID is linked to that public key,
the mCoupon is valid.
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Figure 3.7: mCoupon Protocol Simulation

3.3.2 Simulation of the Protocols

For designing and evaluating the protocol we have developed an mCoupon-
protocol simulator in Java. In Figure 3.7 the structure of the mCoupon software
is shown. The simulator is able to emulate the behavior of the mCoupon devices
conforming to the NFC standard [Int04a]. The software supports the definition
of real-world protocol parameters such as command codes or datarates.

The output of the mCoupon simulator is a log-file containing all sent and
received frames conforming to the chosen datarate in the NFC standard. With
this log-file, verification and modification of the protocol functionality is sup-
ported. The Java simulator can also be used for the generation of reference
values that can be used as test vectors for further implementations of the pro-
tocols.

In this section we have described the development of a system of mobile
electronic coupons. We provide security measures that prevent counterfeit-
ing, cloning, and copying of mCoupons, as well as unauthorized access to the
mCoupons. In the next section we present an application where privacy is a
strong requirement.

3.4 Preserving Privacy in RFID Applications

In this section, we deal with privacy for RFID systems. We define a set of
privacy-preserving mechanisms to prevent tracking and tracing and also un-
wanted memory access. In order to demonstrate how these mechanisms work,
we have developed a demo application (MedAssist) published in [Dom11]. For
design of the application and implementation of the application prototype we
have designed and implemented the simulation and prototyping tool ProtEx. In
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Section 4.2.2 we describe this tool in detail.
One focus during the development of the MedAssist was the integration of

RFID devices into the Internet of Things. Remote authentication of a network
device to a tag can be a useful feature for the MedAssist application, as well
as for many other secure RFID applications. In order to enable remote access
to a tag, a concept on two-way communication with passive RFID tags using
the Internet Protocol version 6 (IPv6) has been developed. Furthermore, secure
connections on top of this concept has been investigated. The secure connection
of passive RFID tags to the Internet of Thingswill be discussed in detail in Part
II. In the following, we describe the MedAssist application. We discuss security
requirements and the developed security protocols, which provide location and
data privacy for the application.

3.4.1 The MedAssist Application

Privacy can be defined as the right of the user to control the access to his data.
This is especially important when dealing with sensitive data. For demon-
stration purposes, we design a demo application where medical information is
protected from unwanted access. The threat scenario is obvious, as medical
data are in general treated as sensitive ones. The application is also supposed
to offer an added value to the consumer. In the proposed application, the added
value is offered by a device called Medical Assistant (MedAssist). The Medical
Assistant can be a chest to store pharmaceuticals and/or can have sensors to
observe the physical status of its owner (e.g., blood pressure or glucose level)
and is able to:

� Suggest pharmaceuticals for particular diseases,

� give information about side effects of pharmaceuticals,

� show contraindications of a group of pharmaceuticals or with personal
properties of the owner (e.g., hypertension, diabetes),

� alert if pharmaceuticals are expired,

� alert the consumer of taking his medicine, and

� log the usage of pharmaceuticals.

Pharmaceuticals in the proposed application are tagged during production.
The producer delivers the pharmaceutical over the supply chain to the retailer
(pharmacist). In the supply chain and in the retailer’s shop, the tag information
can be read by anyone with a standard RFID reader. At the moment a consumer
buys the product, the tag is personalized for this consumer. This means that
from the point of sales (POS) the tag is exclusively under the control of the
consumer. The user wants the Medical Assistant to communicate with the tags
on the pharmaceuticals, but she wants the tags to exclude all other readers
from accessing the tag’s data. An employer, for example, could use information
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about medication to the disadvantage of an employee. Therefore, the consumer
can grant access rights to particular readers and exclude others from tag access.
Figure 3.8 illustrates the basic application steps. In the following, we describe
the parties involved in the application protocol.

Pharmaceutical
Consumer MedAssist

Grant Access Rights

Pharmaceutical
Pharmacist

Consumer

Personalization

Producer

Pharmacist

Pharmaceutical

Tagging and Delivery
Authorization

Figure 3.8: MedAssist Application

Producer

The producer adds tags to her pharmaceuticals. These tags can be used for
logistic purposes and are freely readable for all readers until a certain point
in the supply chain. When reaching this point, the tag is personalized and is
further controlled by only one owner. The producer can decide to equip the
tag with a key pair consisting of a public and a private key to enable a proof
of origin of the tag. For this purpose, the producer has to sign the public key
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and store the certificate on the tag. Furthermore, the producer has to assign
authorization rights to dedicated retailers.

Retailer

The retailer (pharmacist) can use the tags to ease inventory management in
her store. All readers can access the tags at this point. Everybody holding
a reader can, for example, perform a proof of origin. If a customer buys a
pharmaceutical, the pharmacist initializes the personalization of the tag. The
personalization has to be done by a trusted party, this means either by the
producer or an authorized retailer. Authorization of the retailer has to be done
by the producer. When the tag is personalized, only the owner can control the
access to the tag.

Consumer

The consumer holds an RFID reader (e.g., a mobile phone with NFC capabili-
ties). This device is defined as the manager of the tag at personalization. Using
this device, the consumer is able to manage access rights to the tag. For this
purpose, a graphical user interface is available on the managing device. The
managing device stores the keys and IDs of applications, the consumer wants
to authorize. Authorization of an application can grant full access, but can also
be restricted access to particular memory areas and/or particular commands.

Application

The application, in our case the Medical Assistant, has an integrated RFID
reader. The NFC device of the consumer can read out the identity and key of
the Medical Assistant and stores this information on the managing device. The
consumer grants access rights to the application by configuration of the tag.
The tag is configured by use of the managing device. The key of the application
is stored together with the defined access right in the Access Rights Database
of the tag. Depending on the information the application is able to collect,
different services can be provided to the consumer.

3.4.2 The Security Protocol

In this section, we present the communication protocols for the MedAssist appli-
cation. Security measures are integrated into the protocols in a way that loca-
tion and data privacy as well as transfer of ownership are provided. The security
protocol uses the Elliptic Curve Digital Signature Algorithm (ECDSA) [Nat00]
as cryptographic primitive. In the following, we describe the protocol steps
required for application execution in detail.
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Issuing of the Tag

During the issuing process, the producer stores her public key as master key
on the tag. Furthermore, each tag can optionally be equipped with an own
private/public key pair for tag authentication. The producer signs the public
key of the tag and stores the resulting certificate on the tag. With this certifi-
cate, the tag can perform a proof of origin. Figure 3.9 demonstrates the issuing
procedure.

KPpub: Public Key
KPpri:   Private Key 

KTpub

TagProducer

KPpub,

Cert(KTpub)KPpri

Master Key:      KPpub
Master Cert:     Cert(KTpub)KPpri

Managing Key: not set

KTpub: Public Key
KTpri:   Private Key 

Figure 3.9: MedAssist - Issuing of the Tag

Authorization of the Retailer

Only authorized retailers can personalize the tag. Retailers are authorized by
the producer. The retailer generates a key pair consisting of a public and a
private key. The retailer sends her public key as well as some prove of authen-
tication (e.g., a trading license) to the producer. The producer signs the public
key and sends the resulting certificate back to the retailer. Figure 3.10 shows
the issuing of a certificate for the pharmacist.
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KRpub, Proof of auth.

RetailerProducer
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Figure 3.10: MedAssist - Authorization of the Retailer
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Figure 3.11: MedAssist - Personalization of the Tag

Personalization of the Tag

Personalization can only be done by authorized parties, which are the producer
or authorized retailers. In general, the retailer performs the personalization
for her customers. The customer possesses a managing device holding a pub-
lic/private key pair. At the POS, the public key of the managing device is
transferred to the RFID reader of the retailer. The retailer sends a request to
perform the initial personalization to the tag. The tag answers with a challenge
for the retailer, which should now prove her authorization. The retailer signs
this challenge with her public key using the ECDSA algorithm. The retailer
sends the signature together with her certificate to the tag. The tag can verify
the certificate of the retailer with the public key of the producer, which has
been stored as master key during the issuing process. If the certificate is valid,
the tag verifies the signature of the challenge. If this proof is successful, the
retailer is authenticated and the tag accepts the transfer of the new managing
key. Figure 3.11 illustrates the personalization of the tag.

Another variant of personalization is an online procedure. This process is
necessary if the producer wants to perform personalization herself and does not
delegate this task to the retailers. In this case, the retailer has to connect to the
producer’s server and log in via a challenge-response protocol using the private
key. The first part of the protocol works as in the previous described protocol
until the tag sends a challenge to the retailer. Now, the retailer forwards the
challenge of the tag to the producer. If the retailer is authenticated, the producer
signs the challenge with her public key and sends the result to the retailer, which
once again forwards this response to the tag. The tag can verify the response by
using the stored master key. With this online approach the revocation issue can
be addressed. If a retailer loses the authorization, the producer does no longer
sign the tag’s challenge on behalf of the retailer. For the offline approach, using
certificates, revocation is a problem as the tag has no possibility to check the
current validity of the retailer’s certificate.
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Access Control

The customer, as owner of the tag, has the exclusive authority to define ac-
cess rights of other readers or applications on the tag. For this purpose, the
customer holds a managing device. The public key of the managing device is
stored as managing key on the tag. From the point of personalization, all read
or write activities on the tag are denied for readers other than the managing
device. The customer can send a request to grant access rights for particular
applications to the tag. The managing device holds the public keys of these ap-
plications. The identity and the public key of the application as well as a list of
commands, which the application is allowed to perform, is sent to the tag. The
(Set Access Rights) command has to be authenticated by the managing device.
The tag sends a challenge and the managing device signs this challenge with its
private key. The response is sent back to the tag. If verification is successful,
the tag stores the new access data in the Access Rights Database. Also the ID
of the tag is only revealed to authorized readers. The inventory procedure is
performed with a pseudonym in order to provide location privacy. Figure 3.12
shows the definition of new access rights.

Consumer
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KApub: Application Key 

C(T)
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Access_Rights_Stored

Set_Access_Rights,
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Tag

Application Key: KApub + Services

KTpub: Public Key
KTpri:               Private Key
Master Key:      KPpub
Master Cert:     Cert(KTpub)KPpri

Managing Key: KCpub

Figure 3.12: Setting of New Access Rights

Accessing the Tag

All readers (applications, respectively) that are permitted to access certain tag
services can request access to the tag. The reader starts this procedure by
sending its identity, public key, and a (Service Request). The Service Request
contains the command that the reader wants the tag to process. If the public key
is stored as an application key in the Access Rights Database, the tag indicates
that authentication is required and sends a challenge. The application owns
a public/private key pair and signs the challenge with its private key. If the
signature is successfully verified by the tag, the tag sends the response to the
processed Service Request to the reader. Figure 3.13 illustrates the tag access.
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Figure 3.13: Access to the Tag

Transfer of Ownership

The customer can decide to transfer the control over the tag access to another
user. The user becomes the new manager of the tag. For this purpose, the
public key of the managing device, belonging to the new owner, is transferred
to the tag. This command (Set New Owner) can only be performed by the
current tag manager. The tag requests authorization and sends a challenge.
The previous owner (= customer) signs this challenge and sends the response
to the tag. If verification is successful, the tag stores the public key of the
new owner as managing key and clears the Access Rights Database. Figure 3.14
demonstrates the transfer of ownership.
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Figure 3.14: Transfer of Ownership

Recovery

If the customer somehow loses access to her private key, she should be able to
recover ownership of the tag. Therefore, the public key of the producer is still
stored as master key on the tag. The only service that is allowed with this
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key at this point is to set a new managing key. The customer can contact an
authorized retailer to set a new managing key to the tag. The recovery works
like the personalization shown in Figure 3.11. The recovery should only be
performed, if the customer can authenticate itself (e.g., by showing the bill) as
the legal owner of the product.

For recovery, an online scenario is possible, too: The producer personalizes
the tag over the Internet. As no retailer is involved in this procedure, the
customer has to send its public key to the producer. Together with sending the
public key the customer has to authenticate the ownership of the product, for
example, by a code on the bill that has been communicated to the producer at
purchase. If the producer has authenticated the ownership and the public key
of the customer, it can establish a secure connection to the RFID tag on the
product and send the new managing key. The tag authenticates this command
by performing a challenge-response protocol with the producer. For this online
procedure, two-way communication with passive tags on the Internet has to be
provided. The online scenario is out of scope of this section, but we present
an approach to connect passive RFID tags securely to the Internet via IPv6 in
Part II.

3.4.3 Prototyping of the MedAssist Application

In the prototyping phase, we provide software and hardware models of readers
and tags performing the MedAssist application as a proof of concept. The
ISO-18000-3 standard [Int04b] is used as RFID communication standard. The
first step is the development of a functional simulation of reader and tags. The
simulation and prototyping tool ProtEx is used to adapt the tag functionality
to the requirements of the application and to implement a reader application.
The basic software tag in ProtEx already provides the handling of the basic
requests in ISO-18000-3 (mandatory and optional commands). The user has to
specify extended functionality (handling of custom commands) in an own Java
class, called Custom Tag. During programming the software model, various
modifications to the application specification and protocol had to be done in
order to optimize the application protocol. We describe the development of
RFID applications with ProtEx in Section 4.2.2. The outcome from simulation
is a functional software model as well as the tag specification, describing the
additional functionality and memory structures the tag has to provide. In the
following we discuss the tag specification of the MedAssist tag in detail.

Tag Specification

The tag in the MedAssist application can have the following states: NOT ISSUED,
NOT PERSONALIZED, or PERSONALIZED. The following commands can always be
performed without authentication: Inventory Procedure, Select, Stay Quiet, and
Reset to Ready.

When the tag is issued, a unique ID is assigned, the state is set to NOT

ISSUED and a public/private key pair is generated. The tag handles all requests
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like a regular tag without access restrictions. Commands that require an au-
thentication are prohibited. The producer has to set a master key, then the tag
is set to NOT-PERSONALIZED state. Also, a certificate can be stored on the tag.
For this purpose, the public key is read out by a Get-Public-Key request, which
is then signed with the producer’s private key. The certificate is sent to the tag
with a Set-Certificate request and has to be authenticated with the master key.

If the tag is in NOT-PERSONALIZED state, the tag is still accessible for all
readers without authentication. Commands that require authentication are
prohibited, except the Set-Certificate and Set-Managing-Key requests, which
have to be authenticated with the master key. If the managing key is set, the
tag gets into PERSONALIZED state. In this state, all commands except inven-
tory commands have to be authenticated and are only accessible for authorized
readers. The inventory procedure is done with a pseudonym to provide loca-
tion privacy. The ID of the tag can be received by sending a Get-UID request,
which requires authentication of the reader. The managing key can authorize
all commands except the setting of the managing key and the certificate. The
owner of a tag can use a Set-New-Owner request to perform a transfer of owner-
ship and must authorize this request with the managing key. Figure 3.15 gives
an overview of possible and prohibited requests in the different states of the tag.

All commands that require authentication are handled in the following way:

� A Service Request is issued by the reader. The tag checks whether autho-
rization is required. If this is the case, the tag sends an Error Response
indicating that authentication is required to access this service.

� The reader sends a Get-Challenge request containing its public key. The
tag checks if this public key has the access rights for the requested service.
If the public key is authorized, the tag returns a challenge. If the public
key is not accepted, the tag returns an error response (Access denied). If
the reader sends a Get-Challenge request containing a certificate (which
is possible only for the Set-Managing-Key service), the tag returns a chal-
lenge and starts to verify the certificate. If the verification fails, the tag
responds to the next request with an error response (Access denied).

� The reader appends the Service Request to the challenge and signs the
result with its private key using the ECDSA algorithm. It sends an Auth-
Response request containing the result. The tag sends a No-Error re-
sponse to indicate that the request was regularly received. The tag veri-
fies the signature of the challenge appended with the Service Request and
authorizes the service if the verification was successful.

� The reader sends a Get-Authorized-Service request and receives the re-
sponse to the previous sent Service Request. If verification of the signature
has not been successful, the tag sends an error response (Access denied).

The reason for the splitting the last two steps is that the tag requires some time
to perform the ECDSA calculation and certificate verification. Therefore, it is
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Figure 3.15: Tag Access Permissions

not able to answer the Service Request within the defined response-time period.
During calculation, the tag does not answer any other request. Therefore, the
reader has to wait a certain time between sending the Auth-Response request
and sending the Get-Authorized-Service request. For this application, we con-
sider an ECDSA signing and verification time of 1 seconds and a certificate
verification time of 1.2 seconds.

During the authorization process, the tag goes through the following authen-
tication states: NOT AUTHORIZED, WAIT FOR READER KEY, WAIT FOR TAG AUTH,
and AUTHORIZED. Figure 3.16 shows the state diagram for the authentication
procedures.

Reader Application and Prototyping

The reader application is developed and validated with ProtEx. The ProtEx tool
provides mandatory and optional reader requests as well as custom requests to
develop the reader application. The reader application implemented for the
MedAssist application is able to test all tag features automatically. Figure 3.17
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Figure 3.16: Authentication State Diagram for MedAssist Tag

shows a screenshot from ProtEx while testing the tag functionality. On the
left side of the programm, the application flow is shown, where breakpoints are
documented and the flow can be controlled by the user (application simulation
to next breakpoint, simulate all, restart application aso.). The middle part of
the console shows the tag status. Here, the user can observe the internal status
of the tag. The left part of the program shows the log panel, which prints out
the log messages scheduled by the user when writing the program code. In the
figure, a successful tag testing can be seen, which ends up with an “All Tests
Passed” message.

The next step in prototyping is the design of a tag in hardware that provides
the same functionality as the tag model in software. For this purpose the
IAIK DemoTag can be used. This device is a hardware module with an RFID
interface and a programmable microcontroller. The microcontroller determines
the request handling of the tag, the RFID interface receives and transmits RFID
frames conforming to various RFID communication standards. The firmware
of the microcontroller has been developed in a way, that the most common
requests of ISO-18000-3 can be handled by the tag. It provides more or less
the same functionality as the basic software tag in ProtEx. Therefore, the
code for programming the additional functionality in the software tag can be
transferred to the firmware of the physical tag. The tag firmware is written
in C, so the code has to be translated from Java to C. The reader application
developed for the software tags can also be used to test the tag prototypes in
hardware. While writing this thesis, prototyping of the MedAssist application
is in progress. Therefore, results cannot be presented at this point.
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Figure 3.17: Screenshot from Testing the Functionality of the Software Tag

3.5 Conclusion

In Chapter 3 we discuss the development of three particular RFID applications
including security measures. In all these applications, authentication is used to
provide either (location or data) privacy, cloning and counterfeiting prevention,
or access control. We show that authentication using the AES algorithm is
feasible for different RFID communication standards. In Section 2.1 we have
found cryptographic primitives, like AES or ECDSA, that can be used in passive
RFID tags. Based on these findings, we describe sample applications includ-
ing symmetric and/or asymmetric authentication. Symmetric authentication is
favorable in closed-loop systems and provide a higher performance. Asymmet-
ric algorithms can be used in open-loop systems as they provide an easier key
management and better scaling capabilities.

In Section 3.4.3 we discuss the development of a secure RFID application
starting from an application specification up to the design of a software model for
a prototype tag. This description serves as an example for a typical application
design flow. Based on the experiences from the development of the applications
described in this chapter, we have defined a design flow consisting of six design
phases for secure RFID applications. We describe this design flow in detail in
the next chapter. During the development and evaluation of the application
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protocols, we use simulation and prototyping tools to verify and adapt the
functionality of the protocol and to evaluate its performance. In Section 4.2.1
and Section 4.2.2 we deal with simulation and prototyping tools, which can be
used to speed up the application-design process.





4
The Design of Secure RFID Applications

Security is a requirement in many RFID applications. In the last two chapters
we have discussed cryptographic primitives and protocols which have been de-
signed for the use in RFID systems. In this chapter we go a step further and deal
with the development of secure RFID applications. This task involves various
phases starting from a first idea up to the production of RFID components.

During the work on the applications described in Chapter 3 we have evolved
a set of best practices for the development of secure RFID applications. In
Section 4.1 we classify the phases of the development process in a formal de-
sign flow. The design flow pays special attention to the integration of security
mechanisms into RFID systems.

Simulation and prototyping are very important tasks during the application
design flow. In these steps an evaluation and re-design of a system is relatively
simple and not very costly. In order to ease and speed up these two steps, we
have designed the simulation tool PETRA, and the simulation and prototyping
tool ProtEx. We describe these tools in Section 4.2.1 and Section 4.2.2.

4.1 Application Design Flow

Developing RFID applications is a complex task, especially if they are supposed
to include security measures. In order to ease this task, we have evolved a
formal design flow. This design flow is based on an analysis of the development
of several secure RFID applications (described in Chapter 3). It should serve
as a kind of guideline and tasklist for application developers.

The design flow consists of various steps starting from the application speci-
fication down to the production of the components. From each step, a feedback
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loop is possible to adapt former steps. In most cases, several iterations through
various steps of the design flow have to be done before functional models of the
application and its components can be implemented. The later in the design
flow the feedback loop is used, the more costly is this step. Therefore, it is
favorable to use feedback loops in the first few steps and avoid modifications in
the last ones. Figure 4.1 shows the design flow. In the following, we describe
the steps of the design flow in detail.

Application Specification Security Protocol

Feedback Loop >>>

<<< Feedback Loop

Hardware Specification

Production & Testing Prototypes & Verification Software Models & 
Simulation

Reader 
Simulation

Tag Model
Reader 

Application
Tag 

Prototype

Figure 4.1: Design Flow for Secure RFID Applications

4.1.1 Application Specification

The starting point of each application development is the application specifica-
tion. The result from the application-specification step is a document containing
all information about the application. In the following, we describe the content
of this document. The most important point is the definition of the purpose.
This means that the developer has to specify which service should be provided to
a particular group of persons. Furthermore, she has to identify the advantages
that this group can draw from making use of the service. In the specifica-
tion, all participants in the system are described with their responsibilities and
capabilities.

The next task should be the definition of the interaction between the partic-
ipants. In this step the communication between the participants is described in
an informal way. It is defined at which point during the application flow which
data is transferred from one participant to another. Also, the data processing
that has to be performed by each participant to execute the application is spec-
ified. The particular implementation of the communication flow is defined in
the next step, the security-protocol definition.

For RFID applications it is especially important to consider the reading
range of the application. In short-range applications the tags are brought very
close (a few centimeters) to the reader for communication. In long-range appli-
cations the reader can communicate with the tags even if they are a few meters
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away. Another point to consider is the performance of the system: The ap-
plication developer has to specify how many tags the reader is able to process
in a certain amount of time. Based on the required reading range and perfor-
mance of the application, the RFID communication standard (e.g., ISO-18000-3
or ISO-14443) that should be used for implementation of the application can
be defined.

4.1.2 Security Protocol

The security-protocol step in the presented design flow involves the development
of the general communication protocol for the participants as well as the def-
inition of the applied security measures. The general communication protocol
is based on the interaction definition in the application-specification step. The
defined data flow is translated in a formal communication protocol, specifying
the format and structure of the exchanged data frames.

Security measures are implemented upon the communication protocol. In
order to find appropriate security measures, a threat analysis of the application
has to be performed. The potential risks and attackers of the application are
identified. The threats are categorized according to the damage they could cause
and to their probability to happen. The application developer has to decide
which threats she wants to avert and which to neglect. The outcome of the
threat analysis is a specification of the parts of the communication protocol that
should be secured. Based on these findings, the application developer analyzes
security mechanisms that can be used as countermeasures to the defined threats.

We have already explained the relation between threats in RFID applications
and security services that can be provided for RFID systems in Section 2.3.4.
After the security services, e.g., proof of origin, reader authentication, or trans-
fer of ownership, have been identified, the application developer defines the
cryptographic algorithms and protocols she wants to use to provide these ser-
vices. When searching for security algorithms, the developer has to consider
the feasibility of the cryptographic primitive for RFID components.

As mentioned in Section 2.1.2, there are two approaches for RFID security:
Using light-weight proprietary algorithms, or using standardized algorithms and
protocols. We apply the second approach in our developments, as it offers a
higher exploration level of the primitives and therefore stronger security. Fur-
thermore, it is always desirable to use standardized algorithms for the sake of
interoperability of different systems. We have presented standardized crypto-
graphic primitives which provide important security services for RFID applica-
tions in Section 2.1. Furthermore, we have described how to use these primitives
in standardized security protocols in Section 2.3 and Chapter 3. After defini-
tion of the cryptographic algorithms, the security protocol is integrated into the
communication protocol. The outcome is a security-enhanced communication
protocol, defining the interaction between the participants in detail.

After definition of the security-enhanced protocol, the proposed communi-
cation protocol has to be investigated with respect to the implementation in
the used RFID communication standard. The RFID communication standard,
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e.g., ISO-18000-3 or ISO-14443, has already been defined in the application-
specification step. In the security-protocol step, new reader requests and tag
responses are specified according to the command structure of the communica-
tion standard. Furthermore, the use of these requests and responses within the
standard has to be defined at this point.

Another point to consider is the security policy on the data used in the
application. Here, the developer has to decide which data has to be protected
and which can be published. Based on these considerations, a specification of the
data storage and access policy is developed. In this specification, the locations
where data can be stored are described. Furthermore, the access rights of the
applications participants to these data locations are defined. The output of the
security-protocol step is an extended communication protocol formally defining
interactions between the participants. The extension of the protocol includes
the defined security protocols and algorithms. Furthermore, the data-access
policy is defined.

4.1.3 Hardware Specification

The hardware-specification step consists of a detailed specification of the target
platform. According to the required reading range and performance of the ap-
plications, an appropriate RFID communication standard has already be chosen
in the application-definition step. For this communication standard, new com-
mands have been defined in the security-protocol step. Considering the new
commands, the protocol and the used cryptographic primitives, the following
constraints have to be estimated: Memory usage, power, timing and size.

The application developer has to find target platforms for the reader and the
tags that can be used for building the real-world application. These hardware
platforms have to meet the constraints estimated before. One important point
when estimating the constraints is the selection of a hardware module, imple-
menting the required cryptographic primitive. Cryptographic operations are in
many cases complex and time-consuming and are therefore very demanding for a
passive RFID tag. Nevertheless, even very demanding cryptographic operations
are feasible for RFID tags, as we have already discussed in Section 2.1. Another
approach to provide cryptographic operations for RFID tags is the design of a
new hardware module. The design of the hardware module is out of scope for
the application developer. Therefore, she cooperates with a digital designer.
The developer defines the requirements for the hardware module imposed by
the application. The digital designer tries to meet these requirements in her
development.

Another task in this step is the definition of a prototyping platform that is
appropriate for testing the protocol in hardware. It should be highly probable
that a protocol implemented on the prototyping platform will also work on the
real-world hardware platform. The output of this step is the definition of a the
destination tag and reader platform used in the real-world application, as well
as the specification of the hardware used for prototyping. The definition of the
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hardware platform also includes the selection of an appropriate cryptographic-
hardware module.

4.1.4 Software Models & Simulation

In this step, the security-enhanced communication protocol containing new
RFID commands are implemented in software. The software models of reader
and tags are used to simulate their behavior during execution of the specified
application. The functionality of the components as well as the protocol flow
are validated and evaluated. The reader can make use of the newly defined
requests that comply with the selected RFID communication standard. The
tag handles these requests and returns an appropriate response defined in the
application protocol to the reader.

The developer implements the tag and the reader behavior as software mod-
els and simulates the interaction between these models according to the applica-
tion protocol. The software models also include the simulation of the used RFID
communication standard, as the protocol is built upon this standard commu-
nication. By the use of pre-defined commands and the simulation environment
provided by simulation tools, the implementation process of the software mod-
els can be sped up significantly. We describe tools providing this feature in
Section 4.2.1 and Section 4.2.2.

Timing is an essential point to consider when validating the functionality of a
communication protocol. Especially the time the tag needs to perform complex
calculations is often not negligible. The delay that is inferred by the tag has to
be taken into account during simulation. If this delay is neglected, the protocol
can possibly not be implemented on the real-world hardware platform. If the
tag-calculation time exceeds the time interval when the reader expects a re-
sponse from the tag, alternative protocol-handling mechanisms (like interleaved
protocols, see Section 2.1.1 or Section 3.1) have to be implemented. It is favor-
able to use protocol modifications that comply with the RFID communication
standard used in the application.

Although commands and responses have already been defined in detail in
the security-protocol step, implementation of the protocol can be difficult or
even impossible for the target platform. Also, more efficient protocol-execution
strategies can be developed during simulation. Therefore, a feedback loop to the
former steps is very important at this point. Modifications done to the protocol
and/or target platform can be performed less costly than in the following steps.
The output of the simulation step are functional software models of the reader
and the tags implementing the defined communication protocol, as well as a
simulation of the interaction between these models. The simulation is used for
validation and evaluation of the security-enhanced communication protocol and
can lead to a possible re-design of the communication protocol.
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4.1.5 Prototypes & Verification

Based on the software models and simulation done in the previous step, hard-
ware prototypes of the components are implemented. The prototyping platform
has already been specified in the hardware-specification step. The implemen-
tation of a reader prototype is easy in most of the cases. RFID readers are
controlled by an application software, which in general provides the features
required to implement a new application protocol. This task can even be fa-
cilitated by re-using as much as possible from the application code used in the
reader software model. In very complex protocols, a modification of the reader
firmware can be possible.

Prototyping is in general more costly for the tags than for the reader. The
tag behavior is often implemented as a fixed state machine that cannot be
modified after production. The manufacturing of a tag prototype providing new
functions is expensive and time-consuming. Therefore, it is best practice to use
a programmable evaluation platform for tags, like the IAIK DemoTag. In this
case, only the firmware of the tag has to be adapted to provide new functions.
The IAIK DemoTag, for instance, can emulate various RFID communication
standards and behaves like a “real” tag in the reader field. The processing of
the data on the tag can be investigated and debugged. Another advantage is
that the program code from the tag model in software can be re-used up to a
certain point for programming the firmware. One important point to consider
when using programmable tag emulators is the matching of the target platform:
The programmable tag should meet the physical constraints of the target tag
platform (memory, power, size). These constraints have to be considered in
the hardware-specification step, where also the target prototyping platform is
defined.

If no programmable tag can be used, the prototyping of the tags has to be
delayed to the production step, where new hardware chips for RFID tags are
designed and produced. In this case, the software models should be exhaustively
tested before reaching the production step because a re-production of new tags is
expensive. The production of prototype chips is also necessary after prototyping
with a programmable platform, but the probability to get a functional prototype
chip in the first run is much higher in this case.

After reader application and tag prototype are implemented on the prototyp-
ing platform, their interaction is verified. A reader controlled by the application
software should be able to perform the specified communication protocol with
the tag prototype. We call the components, required to perform the verifica-
tion, the verification environment. The output of the prototyping step is a set of
functional reader and tag prototypes which are able to perform all interactions
specified in the communication protocol.

4.1.6 Production & Testing

If the hardware prototypes have passed the verification, the tag circuit for the
application can be produced. Therefore, a digital designer implements the spec-
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ified (and tested) tag functionality in hardware, which is a very time-consuming
and expensive task. The analog frontend of the tag can in general be re-used
from existing solutions. The design, integration and production of the tag chip
is performed following a digital design flow and using a tool chain defined by the
manufacturer of the chip. This task is out of scope for the application developer.
The first production lot will be small (only a few chips) to perform various tests
with the new RFID tags. In many cases, the verification environment set up in
the prototyping step can be re-used for testing. If the testing is successful mass
production of the circuits can be started.

Readers will in general not have to be re-designed as the standard commu-
nication protocols they provide offer the possibility to extend the command set
of the reader. So, only the application software controlling the reader has to
be provided to the real-world readers supporting the application. This software
has, in the best case, already been developed in the previous steps.

Table 4.1 gives an overview of the steps in the RFID-application design
flow. It lists parameters that are considered in each design step, and the output
that can be at best expected from each step. In the next section we describe
prototyping tools, which can be used in the simulation and prototyping steps
of the design flow to speed up these processes.

4.2 Tools for Simulation and Prototyping

In the previous section we have described the design flow for secure RFID appli-
cations. The simulation step as well as the prototyping step are crucial phases
in the design process. These phases can be significantly simplified and sped
up by the use of simulation and prototyping tools. In this section, we describe
two simulation and prototyping tools we have developed during the research on
secure RFID applications.

The first simulation tool is called PETRA, which has already been mentioned
in Section 3.1. PETRA is able to simulate the behavior of tags conforming to
the ISO-18000-3 RFID standard. This tool is mainly used for verification of the
functionality and the evaluation the performance of RFID-application protocols.
We describe PETRA in detail in Section 4.2.1. The code of PETRA has been
used as the basis of another tool that is able to perform simulation as well
as prototyping of RFID applications. The code developed for simulation can
be re-used for implementation of prototypes in hardware. In Section 4.2.2 we
describe this software, called ProtEx, in detail and show how to integrate the
tool into the design flow.

4.2.1 PETRA – Simulation of RFID Protocols

PETRA is a software designed for the simulation of RFID systems conforming
to the ISO-18000-3 communication standard [Int04b]. The acronym PETRA
stands for “Protocol Evaluation Tool for RFID Applications”. In the following



70 Chapter 4. The Design of Secure RFID Applications

Table 4.1: Overview of the Design Flow Steps

Step Input Output

Application
Specification

Purpose,
Participants,
Performance,
Reading Range

Specification Document:
Functionality of Participants,
Interactions between Participants,
Data Processing,
RFID Communication Standard

Security
Protocol

Interactions,
Data Processing,
Threats,
Countermeasures,
Cryptographic Primitives,
RFID Communication Standard

Protocol Specification:
Communication Protocol (includ-
ing Security Algorithms),
Data Storage and Access Policy,
New Requests,
New Responses

Hardware
Specification

RFID Communication Standard,
Cryptographic Primitives,
Physical Constraints

Specification of:
Destination Hardware,
Cryptographic Hardware Modules,
Prototyping Hardware

Software
Models
and
Simulation

Reader Functionality,
Tag Functionality,
Communication Protocol,
Timing,
RFID Communication Standard

Reader Application,
Tag Model,
Simulation Environment

Prototypes
and
Verification

Reader Application,
Tag Prototyping Platform,
Physical Constraints

Reader Prototype (implementing
Reader Application),
Tag Prototype,
Verification Environment

Production
and
Testing

Reader Prototype,
Tag Prototype

Tag-Chip Prototypes,
Reader Application Software,
Test Environment,
Real-World Tags and Readers

we describe the structure of PETRA, which is based on the structure of a real-
world RFID system.

A standard RFID system consists of an RFID reader and various RFID tags
entering and leaving the reader field. Reader and tags communicate using radio
frequency via an air interface, where data and power is transmitted. Synchro-
nization is also done over the radio-frequency field. The host is connected to the
reader and executes the application. If necessary, the host sends reader com-
mands and the reader issues RFID requests to the tags available in the field.
The reader processes the responses of the tags and passes the result over to the
host, which is able to use these data for building the application. Figure 4.2
demonstrates the structure of a standard RFID system.

The structure of a real-world RFID system can be mapped to the structure
of PETRA, which is written in Java. Figure 4.3 demonstrates this mapping.
In Java, the actors in a system are implemented as classes. In PETRA, the
class HostApplication represents the host, and the Reader class represents the
reader. The tag is mapped to the Tag class and the air interface converts to
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Figure 4.2: Basic RFID System

the class Transmission Line. The host uses Reader Commands to control the
reader activity. The reader performs the requested action (e.g., wait, send a
request, perform an inventory process). If the reader wants to communicate
with the tag, it generates a valid RFID frame conforming to the corresponding
RFID communication standard and sends the frame to the Transmission Line.
The communication standard defines various requests that a reader can send to
a tag. Each available request is implemented as an own Java class. In PETRA
the following requests are implemented: Inventory request, Stay-Quiet request,
and Custom request. The set of requests can be extended according to the
user’s requirements.

Tags process the received reader requests and send a response back to the
Transmission Line. The developer can use either a Data response or a No-
Answer response as reply to a reader request. The set of responses can also
be extended to the user’s needs. In simulation, the Transmission Line collects
the response frames from all available tags. If more than one tag answers,
a Collision response is generated. If no tag answers, a No-Answer response is
returned. If only one tag issues a response, this response is relayed to the reader.
The reader processes the response from the Transmission Line. The resulting
Reader Response is sent to the Host Application, which uses the received data
for building an application.

Besides the handling of the tags’ responses, the Transmission Line class

Host Application
Reader Command

Reader Response
Reader

Request

Response
Transmission Line

3 x Request

3x Response

Tag

Tag

Tag

Custom Tag

Custom Tag

Custom Tag

Data

No Answer

Inventory

Stay Quiet

Custom

Data

No Answer

Collision

Data

Error

No Answer

Inventory

Send Request

Figure 4.3: Structure of PETRA Software
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processes all timing information of the system. The simulation starts at 0
ms. With each request and response, the execution time is increased. When
sending a request, the Transmission Line calculates the time used to transmit
the number of bytes contained in the request frame. Furthermore, the tag
waiting time is added for a Data or Collision response. If a No-Answer response
is issued, the time for a reader time-out is added. For each response frame, the
Transmission Line calculates the time used to transmit the number of bytes
contained. Furthermore, it derives the time the reader has to wait before sending
a subsequent request. These times are added to the Protocol Execution Time.
The Transmission Line always holds the current execution time of the system.

The tags also hold timing information. For each tag a Start Time and an
End Time is defined. The Start Time represents the time when a tag enters
the reader field. The End Time defines the time when the tag leaves the reader
field. When receiving a request, the current execution time is derived from
the Transmission Line. Each tag decides whether it is present in the reader
field at the current time or not. If the tag is not available it sends a No-
Answer response. The Tag class offers the basic functionality of the ISO-18000-
3 standard: The tag can handle mandatory requests, namely the Inventory
and Stay Quiet requests. The handling of optional and custom requests are
not implemented in the Tag class. Nevertheless, the tag has to handle these
commands as well. The user is supposed to implement additional functionality
in the Custom Tag class. This class extends the Tag class.

Additional functions of the tag require an extra amount of time, that has
to be considered in the simulation. Every time calculations on the tag exceed
the tag waiting time, the response data is not ready at the time of sending the
response. In this case, we suggest to use an interleaved protocol described in
Section 2.1.1 and Section 3.1. The timing behavior of the tags can be simulated
by PETRA by setting a tag calculation time for the handling of particular
requests. When receiving a request from the Transmission Line, the tag adds
the calculation time for this request to the current time and decides, if the
response data can be ready at the time the response is sent. If this is not the
case, the tag sends a No-Answer response and stores the time when response
data will be ready. When the tag receives the next request, it compares the
current time with the stored time. If the current time is higher than the stored
time, the tag responds to the request. Otherwise, it does not answer.

The User Interface of PETRA

The user has to perform three tasks for implementation of software models and
simulation of the application: Programming of the application, programming
of the additional functionality of the tag, and configuration of the simulation
parameters. In order to implement the application, the user has to modify the
Host-Application class. She can use the defined Reader Commands and requests
to receive data from the tags. With these data, the application can be built.

Two basic Reader Commands are available: One that gets the UIDs of the
tags in the field (inventory procedure), and one to send a request, for instance,
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Figure 4.4: Manual Configuration of PETRA Parameters

a Stay-Quiet or a Custom request. The user can define new request classes,
which she can use in the application. The interface of the requests classes is
designed in a way that the reader does not have to care about the structure of
the request frame. The requests are translated into valid frames, corresponding
to the RFID communication standard, automatically. Thus, the user does not
have to care about bit- and byte-order, Start of Frame (SOF) sequence, End
of Frame (EOF) sequence, or Cyclic Redundancy Checks (CRCs). She can use
the requests by generating an instance of the desired Request class and setting
the parameters (e.g., UID, data). The user can also make the application wait
a certain time until issuing the next request. This time is added to the protocol
execution time in the Transmission Line class.

The handling of additional requests (e.g., proprietary or Custom requests)
on the tag can be implemented by modification of the Custom-Tag class. In
order to program the tag, the user can access information about the tag state,
timing, and UID, from the basic Tag class. By setting a tag calculation time
for the handling of certain requests, the user can control the timing behavior
of the tag. For generation of a valid Data response, the user can use dedicated
methods to build a valid response frame. A No-Answer response is also possible.
The response frame is returned to the Transmission Line.

When the application and the tag behavior have been implemented, the
simulation of the application protocol can be performed. The specifies the
simulation parameters, as tag properties, number of slots used during inventory,
number of iterations, and the log-file name. Figure 4.4 shows the graphical



74 Chapter 4. The Design of Secure RFID Applications

interface for the user to set the simulation parameters. The same parameters
can also be set by using configuration files. The properties assigned to a tag
are the Start Time and the End Time of the tag, and the use of an Application
Family Identifier (AFI) byte during the inventory procedure. If the tag supports
the use of the AFI byte it only responds to inventory requests containing the
correct AFI code. This behavior complies with the ISO-18000-3 standard.

As regards the inventory procedure, the user can select to use one slot or
16 slots. The use of this parameter is specified in the ISO-18000-3 standard.
In the one-slot variant, all tags answer the inventory request at the same time.
In the 16-slots variant, each slot is coded with four bits. Only tags where the
four least significant bits of the UID correspond to the slot number answer the
inventory procedure in this slot. The number of iterations defines the number of
simulation runs that are performed with the application protocol. At startup of
one simulation run, all instances of the Tag class are initialized with a random
8-byte UID. Therefore, each run is simulated with a different tag UIDs, which
results in different protocol-execution times. We explain this behavior in the
next paragraph. After all runs have been passed, an average execution time
over all simulation runs is calculated.

A simulation run with different tag UIDs results in different execution times
even for an inventory procedure without any further protocol steps. This be-
havior is due to the anti-collision protocol specified in the ISO-18000-3 standard
[Int04b]. In this protocol, the reader sends an inventory request and if more
than one tag answer, a collision is detected. The reader can determine the bits
up to the point where the collision occurs. It generates a mask with these bits,
which are correctly received and extends it with one bit (either 0 or 1). Now,
the reader sends a new inventory request including the mask. Only tags where
the UID is equal to the mask answer this request. With different UIDs the colli-
sion occurs at different points in the protocol. Therefore the protocol execution
time differs as well.

The output the user gets from the simulations is a log file. Depending
on the log level, different information is logged. The log-file name and the
log level are also set during configuration of the simulation parameters. In
programming, pre-defined logger statements can be used to control the logged
output. Figure 4.5 shows two parts of a log file. The reader and tag activities
are logged in detail. The current protocol-execution time is given in each line
to check the timing behavior of the application. At the end of each simulation
run, the required execution time is stored. The average execution time of all
simulation runs is calculated and logged at the end of the file when all runs are
finished.

Supporting the Design Flow with PETRA

The simulation tool PETRA is mainly used to support step four of the design
flow (Software Models & Simulation). The application developer can make
use of pre-defined reader commands to program the host application. Basic
tag functionality complying the ISO-18000-3 standard ([Int04b]) already exists
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Figure 4.5: Log-File Examples for PETRA

and can be used without further modifications. Additional tag functionality is
supposed to be programmed in a separate Java class (Custom Tag). In this way,
all modifications and extensions to the basic tag functionality are performed in
one place, which helps to reduce complexity of the programming task.

When software models of the tag and the reader have been implemented,
tag functionality and reader application are validated by simulation. PETRA
writes a log file where the application developer can examine the reader and
tag activities in detail. The logging functionality can easily be extended to the
requirements of the developer. In this way, PETRA supports the developer in
her task of validating the application.

PETRA is also used to evaluate the performance of the application protocols.
The developer can set up different scenarios with different numbers of tags,
which move at different times through the reader field. Also different inventory-
slot numbers and AFI settings can be used to investigate on the performance.
The simulation tool calculates the average protocol-execution time for each
setting. In this way, different settings can be compared in regard to performance.
The evaluation feature of PETRA is limited to the application level, which
means that delays by physical effects and transmission errors are not taken into
account.

The use of PETRA helps to speed up the prototyping process due to reusabil-
ity of the code of the software models. The implementation of the host appli-
cation can be used in step five of the design flow (Protoypes & Verification) for
building the reader prototype. The implementation of the additional tag func-
tionality can be re-used to configure the tag prototype. The degree of reusability
strongly depends on the hardware platform that is used for prototyping. In the
next section we describe the simulation and prototyping tool ProtEx, which has
been developed to maximize the reusability of the application and the tag code
in the hardware prototypes. When taking advantage of the similarities of both
platforms, the prototyping process can be sped up significantly.
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4.2.2 ProtEx – Joining Simulation and Prototyping

ProtEx is a simulation and prototyping tool that uses synergies between soft-
ware models and hardware prototypes to speed up the RFID-application design
process. The simulation part of ProtEx is based on PETRA, the simulation
tool described in Section 4.2.1. ProtEx extends the simulation part of PETRA
and adds a prototyping part where physical hardware is involved. Therefore, we
named it PROTotyping EXpress (ProtEx ). The software can control an RFID
reader and a programmable tag emulator via the serial interface. ProtEx is
designed in a way that applications programmed for simulation of the software
models can be used without modifications for controlling the physical reader.
The code for the software model of the tag can be to a high degree re-used in
the programmable tag. As the programming languages of both platforms differ,
certain modifications to the code have to be done anyway. Nevertheless, the
structure and methods used in the software model can also be embedded in the
tag hardware platform.

The Idea of ProtEx

The idea of developing a tool that is able to perform simulations and prototyping
as well is based on various experiences with other simulation tools for RFID
applications. Besides PETRA we have experienced other types of software
simulation tools during our research. For the development of the application
described in Section 3.3, we have designed a simulator of an NFC application.
The simulation was very helpful for development and implementation of the
application, but as it was programmed for this particular purpose it was not
reusable for other applications.

Furthermore, we used the simulation tool RFIDSim, described in [FP08]
and [FWS08]. This tool is able to simulate, besides the functionality of the
components, also physical effects of radio transmission like pathloss, fading,
and backscatter. RFIDSim works with the ISO-18000-6C standard, which is
also called EPCglobal Gen2 standard [Int04c]. We implemented an authentica-
tion protocol on this simulator and evaluated the performance of this protocol.
During the work with RFIDSim we experienced that simulation of physical ef-
fects in RFID systems adds very high complexity to the simulator and is not
necessary for prototyping at application level. Furthermore, RFIDSim has not
been designed for building new applications. Therefore, implementation of new
protocols is not intuitive and user-friendly. The user has to examine and un-
derstand the structure of the simulation tool to add new functionality to the
simulator.

In ProtEx we want to circumvent the disadvantages we previously described.
We have derived a set of constraints and features we want to meet. Thus,
we have designed our simulation and prototyping tool ProtEx under the the
following directives:

1. The software framework is supposed to be reusable for all kind of RFID
applications.
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2. Basic functionality of the chosen communication standard is to be pro-
vided to the user.

3. The usage of the framework is to be as intuitive as possible. This means
that, the user does not have to care about details of the communication
standard or the framework structure.

4. A high degree of reusability from the software models to the hardware
prototypes is to be provided.

The Structure of ProtEx

As ProtEx is based on the simulation tool PETRA, the structure of the pro-
gram is partly similar. Figure 4.6 shows an overview of the structure of ProtEx.
Additional to the software modules, hardware components are used that are
connected to the serial interfaces and can be controlled by ProtEx. We use
the IAIK HF RFID Reader as reader device and the IAIK DemoTag as tag
prototype for ProtEx. Before starting the simulation or the prototyping pro-
cess, the software models configuring the tag behavior or the firmware of the
programmable tag prototype has to be implemented.

When the tag behavior in the application has been programmed, the reader
application can be built. The host application uses, like in PETRA, Reader
Commands to control the reader activity. The application can tell the reader
to get the UIDs of the tags in the field (Inventory), to send a defined request to
a tag, or to perform some reader configurations (e.g., reset, setting a data rate
or modulation). After the host application has been implemented, the user can
select wether she wants a simulation with the software modules or a prototyping
test with the hardware modules.

If simulation has been selected, the commands are handled by the software
model of the Reader. Every time communication with the tag is required, the
reader sends the appropriate request to the Air Interface, which corresponds
to the Transmission-Line class in PETRA. The Air Interface sends the request
to all available tag instances, which are represented by the software model of
the tag in simulation. Each tag handles the received request and returns a
response to the Air Interface. The Air Interface collects all tag responses and
preprocesses them before sending a response to the reader. If all tag instances
answer with a No-Answer response, a No-Answer response will be returned.
A single Data response or an Error response is simply relayed to the reader.
If more than one tag response containing data has been received, a Collision
response is returned.

If prototyping has been selected, the Reader Commands are translated into
control frames for the physical reader. These frames are sent via the serial
interface to the reader. If communication with the tag is required, the reader
and the tag prototype execute the RFID communication protocol for the cor-
responding reader request. The response from the tag prototype is sent to the
reader, which translates the response in a reader response frame. The frame is
sent back to ProtEx via the serial interface. As the frames from the physical
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Figure 4.6: Structure of ProtEx

reader are different from the ProtEx reader responses, the frames are decoded
and translated into response-frame format defined in ProtEx.

Independent from where the response received from the Air Interface orig-
inates from (software model or prototype) the Reader class translates the re-
sponse into a Reader Response format, which can be further processed by the
Host Application. This means that the user does not have to care about the
platform she uses. The developer can control both simulation and prototyping
in the same way by using the same commands and requests. This is the basis for
the reusability of the host application in simulation as well as for prototyping.

When using the software models for simulation, timing information can be
derived. Like in PETRA, the system has a current Protocol Execution Time
that is updated with every request or response sent over the Air Interface.
Furthermore, the mobility of tags can be emulated by using the tag timing
parameters. The software model of the tag holds a Start Time and an End
Time, which represent the times when a tag enters and leaves the reader field.
Each tag receiving a request determines whether it is present in the field at the
time a request is received before handling the request or not. If the tag is out
of the field, a No-Answer response is issued.

Another timing issue, also already handled in Section 4.2.1, is the tag cal-
culation time. If a complex process on the tag exceeds the response time until
the reader detects a time out, this must also be handled in simulation. So the
user can define calculation times for certain processes on the tag. If the tag
performs such a process, the tag is set busy for this calculation-time period and
does not answer to any further request. The tag calculates the time when the
process will finish the calculation. This is done by simply adding the current
protocol execution time with the calculation time. When receiving a subsequent
request, the tag determines whether the tag is busy or if it has already finished
the calculation. If the tag has finished the process, it responds to the request.
If the tag is still busy, a No-Answer response is issued.
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Configuring ProtEx for Different RFID Communication Standards

The general structure of ProtEx allows the implementation of frameworks for
different RFID communication standards. In this section we show which steps
are required to get a framework for any particular standard. In the first version
of ProtEx we have implemented the ISO-18000-3 standard [Int04b]. Therefore,
we refer to this standard when giving implementation examples in this section.
For a proof of concept, we also have implemented an ISO-14443 version of
ProtEx.

Table 4.2: Implementation Tasks for ProtEx for a particular RFID standard

Part Component Task

General

Requests Implementation of required request classes

Responses Implementation of required response classes

ReaderCommands
Definition of new reader commands (e.g., con-
figuration)

Simulation

Reader

Implementation of basic reader commands
(inventory, send request)

Implementation of new reader commands
(configuration)

Preprocessing of the responses for the appli-
cation (collision handling)

Tag
Implementation of basic requests

Handling of custom commands in Custom Tag

Timing

Definition of timing constants

Implementation of timing calculation for
transactions in Air Interface

Prototyping

Reader
Implementation of missing basic functionality
in firmware (rarely)

Tag
Implementation of missing basic functionality
in firmware (rarely)

Encode/Decode

Implementation of the mapping between re-
quests and control strings for physical readers

Implementation of the mapping between re-
ceived response strings and defined responses

In Table 4.2 we give an overview of the tasks necessary when configuring
ProtEx for a new RFID communication standard. The first task is the definition
and implementation of basic requests and responses the user should be provided
with. These commands are the link between simulation and prototyping, as they
are used equally for both platforms. The structure and definition of requests
and responses can be found in the corresponding RFID standard, e.g., [Int04b],
[Int00], [Int04a], or [Int04c].

In the ISO-18000-3 variant of ProtEx, we have extended the set of available
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requests in PETRA by several optional requests (read and write operations on
the tag’s memory, Select, Reset to Ready, Get System Information). In that way,
we have provided the most common functions for this standard. Nevertheless,
the set of requests and responses can be even more extended by the user. The
framing of the commands should be abstracted from the user. This means that
the user only has to generate an instance of the required request or response
class with the necessary parameters (e.g., UID, header, or data). The building
of the correct frame structure for the corresponding communication standard is
done automatically by the software.

For the simulation part of ProtEx, the tag functionality and the reader be-
havior have to be defined. The Reader Commands, which are available to control
the reader via the Host Application, are an inventory command, and the com-
mand to send a request and return the response. At least these two Reader
Commands have to be implemented according to the selected communication
standard. The set of Reader Commands can be extended, for instance, if some
configuration parameters can be set in the reader device. For the ISO-18000-3
standard, there exist various possibilities of modulation, data rates, and coding
of the data sent or received by the reader. These parameters have an influence
on the timing behavior of the reader and should be considered during simulation.
Therefore, we have implemented the configuration of the reader parameters as
additional Reader Commands. The developer can use these commands to con-
figure the software model of the reader as well as the physical reader.

The next step is the modification of the Reader class. The processing of
the responses received from the Air Interface has to be defined. For different
communication standards, different pre-processing is possible. Especially, the
handling of a collision has to be considered. The Air-Interface class returns
either a No Answer, a Collision or another response defined by the user. The
translation of the responses into a Reader Response that can be handled by the
Host Application has to be defined.

The behavior of the tag is specified in the selected communication stan-
dard. The tag processes RFID requests and returns the corresponding RFID
responses. Handling of basic RFID requests has to be implemented. Custom
commands can also be provided, but the implementation of their processing is
left to the application developer. For this purpose, the ProtEx software defines
a method handleCustomCommand(Request) that is a mandatory method to be
implemented in the Custom Tag class.

In order to calculate the protocol-execution time during simulation, timing
parameters must be defined. In general, the programmer defines constants like
the tag waiting time, the reader waiting time, and the time used to transmit
one byte of data. The values of these constants can be derived from the cor-
responding RFID communication standard and are used during calculation of
the execution time. The calculation of the current time is performed in the Air
Interface class. For each transaction in the Air Interface (sending of request,
receiving of response) the timing calculation has to be defined.

For the prototyping part, a physical reader and a programmable tag support-
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ing the selected RFID communication protocol are required. These components
are supposed to be already available before the integration into ProtEx. For the
ISO-18000-3 variant of, we used the IAIK HF RFID Reader device and the IAIK
DemoTag. If a particular request defined in the basic functionality of ProtEx
is not supported by the reader or the tag, this request has to be implemented
in the firmware of the appropriate device. When using standard requests and
existing reader and tag devices, this case will occur very rarely.

The last task for the configuration of ProtEx to a particular RFID com-
munication standard, is the definition of the link between the simulation and
the prototyping part: The programmer has to define the translation between
requests and the command strings sent over the serial interface to the reader
(encoding). Furthermore, the mapping between the response strings received
from the reader over the serial interface to defined responses (decoding) has
to be specified. For this purpose, the programmer has to consult the reader’s
manual to find the appropriate control and response strings. Afterwards, she
maps the basic requests and responses, defined in ProtEx, to these strings. The
mapping is executed in the Encode and Decode methods of the reader.

When ProtEx has been configured for a particular communication standard,
the application developer can implement all kinds of RFID applications using
this standard. The implementation of the application is abstracted from the
communication standard as the basic functionality is already provided by the
tool. These features correspond to the first two points in the directive list
we defined for the development of ProtEx (see Section 4.2.2). The task of the
application developer is the programming of the additional functions of the tag
and of the application by using pre-defined commands, requests and responses.

Developing RFID Applications with ProtEx

ProtEx is used for the development of new RFID applications. In the following,
we describe the steps that are required to get a working simulation and pro-
totyping environment for a new RFID application. By re-using parts from the
simulation environment in the prototyping phase, the application-development
process can be simplified and accelerated. In this section, we explain some as-
pects of the handling of the ProtEx software in order to show that the tool can
be handled very intuitively, which was one of the design goals, namely point
three in the directive list in Section 4.2.2.

Testing of Basic Functionality

For the sake of convenience, application simulation in ProtEx can be controlled
by a graphical user interface (GUI). Before starting to implement the program-
ming parts, the application developer can test the functionality of the selected
RFID communication standard by using the testing mode of ProtEx. The test-
ing mode consists of a GUI which enables the user to send requests manually,
either to the simulation platform or the prototyping platform. Figure 4.7 shows
the GUI for testing mode. The command panel on the left side of the GUI offers
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Figure 4.7: GUI for Testing Mode of ProtEx

the user the possibility to issue an inventory command with different parame-
ters (slots, AFI, mask), to send a defined or custom request, or to modify the
reader configuration. When selecting a request, the required input parameters
for the request are enabled. The parameters that are not required are disabled.
The functions accessible in this panel show the basic functionality implemented
in ProtEx. These functions have already been pre-defined for convenience of the
user.

The tag-control panel is located in the middle of the GUI. In this panel,
the user can select either the simulation or the prototyping platform by clicking
on the corresponding tab. In Figure 4.7, the simulation platform of ProtEx is
selected. The user defines tags in the text area by using the syntax shown in the
figure. Alternatively, she can load the tag configuration from a file. The content
of the text area can be stored in a file for future use. The user can define single
tags with a defined UID and/or a group of tags (with the same properties)
with random UIDs. By pressing the button “Create Tags”, the tag instances
with the defined configurations are initialized for simulation. The status of all
created tags is displayed at the bottom of the tag-control panel.

If the prototyping platform is chosen, the tag-control panel consists of a GUI
for controlling the IAIK DemoTag and two areas that show the current status
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of the tag. Figure 4.8 shows the tag-control panel for the IAIK DemoTag. The
user can, for example, set a new UID to the tag, change the communication
standard for the tag, set the AFI, or refresh the status information for the IAIK
DemoTag. The first status area displays the general settings and the state of
the tag. The second area shows the messages received and sent by the tag.

Figure 4.8: Tag Control Panel for IAIK DemoTag

After configuration of the software tags or the connection to the physical
reader and the IAIK DemoTag, the command panel can be used to issue reader
commands and send requests to the tags. The communication between reader
and tags is logged in the logging panel on the right side. Here, the user can
examine the communication flow, the request handling, and the communication
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frames as well as the timing. The amount of details in the logging messages
can be controlled by configuring the log levels at the top of the logging panel.
At the bottom of the command panel, the estimated protocol-execution time
is displayed. At the bottom of the tag-control panel, the user can find a drop-
down list of all identified UIDs. By pressing the button “Select Tag” under the
list, the selected UID is written in the UID field of the command panel, in order
to ease the selection of a particular tag UID.

Implementation and Testing of Custom Commands

If the application developer is already familiar with the RFID communication
standard, she can start to implement the additional functionality for the new
RFID application. For this purpose, new requests and responses are defined.
Each new command is implemented in an own Java class. The main part of this
step is the programming of the additional functionality of the tag. The handling
of new requests is implemented in the Custom Tag class. After programming
of the new functionality, the testing mode can be used once again to manually
check the behavior of the custom configured tag.

It is advisable to use the software model of the tag for validation of the
new functionality at this stage. The programming of the physical tag is done
after the complete application involving the software tags has been validated.
Modifications are likely to be done to the tag functionality after the application-
testing phase. The software model can easily be modified, but modifications
can be even more effort when they have to be implemented on the hardware
platform.

Implementation and Simulation of Host Application.

Programming a new application in ProtEx, the application developer creates
a new application class, which extends the RFID Application class. The user
can send Reader Commands (inventory, send request, configure reader) to the
reader. The reader can send all pre-defined and additional requests to the tag.
Sending of a request results in a tag response, relayed from the reader to the host
application, which contains information that are used to build the application.
Figure 4.9 shows a very simple example of a host application, where an inventory
request is issued and a Stay Quiet request is sent to all identified tags.

In the application code, some additional commands for simplifying the de-
bugging of the application code can be used. The user can apply logging com-
mands, which output logging messages in the logging panel. The user can
determine at which log level the message is written on the panel. Furthermore,
the developer can define breakpoints in the code. These breakpoints are used
to control the application flow during simulation. ProtEx is able to pause the
execution of the application at these breakpoints. When defining a breakpoint
the user assigns a text to the breakpoint which is displayed in the Applica-
tion Panel when the breakpoint is reached. Figure 4.10 shows the application
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Figure 4.9: Sample Application Code for ProtEx

mode of ProtEx. On the right side, the command panel is substituted by the
application panel. The other panels stay the same as for testing mode.

Using the application panel, the customized tags can be tested with the
host application. In the upper part of the application panel, the available ap-
plications are displayed. All of them are Java classes that extend the RFID
Application class and are placed in the appropriate directory. The buttons at
the bottom of the panel (“>>”, “>|”, “->”, “>ms”, and “Restart”) control the
application execution. The application can be executed until the end of the
code is reached. Also an execution to the next breakpoint or an execution over
a certain amount of time is possible. The protocol execution time is logged at
the bottom of the application panel.

By examining the application status and the logging panel, the developer
can verify the functionality of the customized tags and validate the application
protocol. During this phase, modifications in the behavior of the tags or the
application flow can easily be performed by adapting the source code to the
requirements of the RFID application. When the developer has sufficiently
tested the application and is satisfied with the behavior of the software models,
she can go to the next step: The implementation of the prototypes.

Implementation and Verification of Prototypes.

When the software model of the tag has been validated, the same functionality
should be implemented on the hardware platform. The application developer
has to transfer the code from the Custom Tag to the tag prototype. In our
case, the tag prototype is the IAIK DemoTag, which is a programmable hard-
ware platform. The firmware of the tag prototype is written in C. Thus, some
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Figure 4.10: Application Mode for ProtEx

adaptations have to be done to transfer the Java code of the Custom Tag to
the firmware of the IAIK DemoTag. Nevertheless, the firmware of the IAIK
DemoTag is written in a way, that custom commands can be implemented sep-
arately from the basic functionality. This is also true for the tag software model
in ProtEx. All necessary modifications can be found in the Custom Tag class.
Therefore, the implementation of the additional functionality in the software
module can be used as the basis for coding the new commands in the tag pro-
totype.

The customized tag prototype can be tested either manually in the testing
mode or can be automatically verified with the host application. The host-
application code does not have to be changed, as the same reader commands
and requests are used to control the software model of the reader and the hard-
ware reader. This means that, the application code is completely reusable for
the prototyping phase. Verification of the prototype functionality with the ap-
plication is performed in the application mode of ProtEx Ḣere, the prototyping
tab is selected and the existing application code (already used for simulation) is
executed. Controlling the application flow also works the same way as for simu-
lation. The output of the logging panel shows the communication flow between
the hardware devices. In the tag control panel, the status and the message
buffer of the IAIK DemoTag can be examined.
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Supporting the Design Flow with ProtEx

In this section we have described the simulation and prototyping tool ProtEx
for developing RFID applications. ProtEx can be used in the Software Models
& Simulation step and in the Prototypes & Verification step of the design flow.
During simulation, the tool is used to adapt the application protocol and tag
behavior very quickly to the application requirements. By providing the basic
functionality of the selected communication standard to the application devel-
oper, the implementation of the tag software model and the reader application is
simplified and sped up. Furthermore, a performance evaluation of the protocol
can be done before even hardware is involved.

In the prototyping phase the code from the tag software model can be used
as basis for programming the tag prototype. The application code can be com-
pletely re-used for verification of the prototypes. By using large parts of the
software model and the application code for the prototyping and verification
phase we provide a maximum of reusability, which corresponds to point four in
the directive list in Section 4.2.2. After verification of the functionality of the tag
prototype, the prototyping phase is finished and further steps like production
of a chip prototype can be started.

4.3 Conclusion

In Chapter 4 we deal with the design process of secure RFID applications. We
describe a design flow including six design steps starting from the application
specification up to the production of tags. The second step in this design flow
represents the design of the security protocol. During this step, cryptographic
algorithms and hardware modules, described in Chapter 2, are used for provid-
ing security services to RFID applications. We have described some examples
of the development of security protocols for RFID systems in Chapter 3.

Simulation and prototyping are important steps in the design flow. During
these steps, modifications to the application protocol can be done with low
effort. Therefore, the application developer is to be supported especially during
simulation and prototyping. We have designed the simulation tool PETRA and
the simulation and prototyping tool ProtEx for this purpose. We describe these
tools in Section 4.2.1 and Section 4.2.2. The developer is supported by pre-
defined basic functionality for the RFID communication standard that can be
used for application programming and for implementation of the tag software
model. Using the software ProtEx a high degree of reusability of the reader
application and the tag code is provided. In this way, a fast prototyping process
can be triggered.

This chapter finishes the first part of the thesis, where we discuss three im-
portant factors of designing secure RFID applications: Cryptographic hardware,
security protocols, and the integration of the protocols into secure applications.
In many secure applications communication with other remote devices on the
Internet can add an extra value. With this capability also new RFID applica-
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tions will be enabled. Therefore we dedicate the second part of the thesis to
the connection of RFID tags to the Internet of Things. In the following chapter
we describe an approach, how passive RFID tags can communicate using the
Internet Protocol version 6 (IPv6). In Chapter 6 we develop a security layer for
the online communication.
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5
Connecting RFID Tags to the Internet

In Part I, we have discussed the design process for secure RFID applications.
In this part, we describe how to securely connect RFID tags to the Internet of
Things. As RFID tags have evolved from a mere bar-code replacement to com-
puting devices, new applications including complex functionality are enabled.
Taking advantage of tag capabilities using a remote connection over the Internet
will be a real advance. Remote communication with other devices and exchange
of data over the Internet can be used for building new applications.

In this chapter we present an approach to connect passive RFID tags to
the Internet without adding too much workload on the tags. As the common
“language” of the Internet is the Internet Protocol (IP), we base the proposed
communication concept on this protocol. As there will be a huge amount of
tags and other mobile devices on the Internet of Things, we use IP version 6
(IPv6), which has a large address space. In particular, we use mobility concepts
defined for IPv6 (Mobile IPv6, respectively) where tags can be considered as
mobile nodes on the Internet. In this way we enable two-way communication
between any node on the Internet and passive RFID tags. In the following
we describe the basic concept on the Internet of Things. We present basics of
Mobile IPv6 (MIPv6), and show how passive RFID tags can “talk” IPv6 with
other participants on the Internet of Things.

The chapter contains results of joint work together with Manfred Aigner and
Stefan Kraxberger. Parts of the outcomes were published at the International
Conference for Internet Technology and Secured Transactions 2010 [DAK10],
at the RFIDsec Asia Workshop 2011 [DGAK11], and in the Journal of Secu-
rity and Communication Networks, Special Issue on Protecting the Internet of
Things [DK11].
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5.1 RFID and the Internet of Things

Nowadays, mobile devices containing microprocessors pervade everyday life of
most people. Objects which we do not perceive as computing devices act like
computers. In most cases, these objects are everyday objects constantly around
us. They can process, receive and send data and can even connect themselves
to other objects. Many mobile devices are able to measure and “sense” their
environment. In an important essay, Mark Weiser has introduced the term ubiq-
uitous computing already in 1988 [Wei91]. He described ubiquitous computing
as follows: “The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are indistinguishable
from it. [...] a new way of thinking about computers in the world, one that
takes into account the natural human environment and allows the computers
themselves to vanish into the background. [...] Indeed, the opposition between
the notion of virtual reality and ubiquitous, invisible computing is so strong that
some of us use the term ”embodied virtuality” to refer to the process of drawing
computers out of their electronic shells.”

In 2000, Sarma et al. presented their vision of an Internet of Things based on
RFID-tagged items [SBA00]. Their system allows tracking and tracing of items
by individual identification of items on basis of low-cost RFID tags. Now, years
later, this vision has already become reality. Mobile communication, Internet,
as well as RFID technologies are omnipresent. Regardless of the protocols they
use, objects are connecting and communicating to other devices. They exchange
data and learn more about their environment. These features enable the objects
to act like they were “smart”. Even RFID tags, which represent one of the most
restricted devices on the Internet of Things, already offer advanced functionality
and they are evolving.

The concept on the EPCglobal network described in [EPC07] is the first step
towards integration of RFID technology into the conventional Internet. Data
collected from RFID tags are sent to servers on the Internet, where they can be
retrieved by other nodes. The EPCglobal network defines a set of services that
are similar to services on a traditional IP network (e.g., naming service, dis-
covery service, information service, and security service). The RFID tags used
in this system are EPC (Electronic Product Code) tags specified in [EPC03]
or [Int04c]. Within the EPCglobal network, RFID tags play a passive role.
They do not interact with other nodes or items on the Internet.

Our aim is to extend the communication capabilities of passive RFID tags.
In the proposed system, RFID tags are able to interactively communicate with
other participants on the network. In this way, RFID tags are integrated as
active parts into the Internet of Things. The possibility to interactively com-
municate with tags as well as the increased functionality of tags will lead to
applications, where, for instance,

� an authorized party can remotely access a tag over the Internet in order
to, for instance, poll information or write new data on the tag,

� an RFID tag can request information from a remote server,
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� or an RFID tag can communicate with other RFID tags.

Examples for such applications are guarantee and maintenance management,
which can be done over the Internet. Another possible scenario is remote revo-
cation of RFID tags, for example, during passport control at the border. Online
access management is also a application scenario: The RFID tag requests in-
formation about the reader from a remote server. From the server response,
the tag can decide which information to reveal. It is difficult to predict the
whole variety of future applications. However, the capability to interactively
communicate and exchange information with other parties on a network is a
tremendous change in paradigms for the use of passive RFID tags.

To make a long story short, the Internet of Things can be considered as
a huge extension of the traditional Internet. All computing devices that are
able to communicate are connected to this network. One main concern of this
vision is that the devices are very heterogeneous and communicate in many
different “languages” (communication protocols, respectively). So the following
questions arise:

� What should be the common communication protocol of the Internet of
Things?

� How can devices learn to communicate conforming to this protocol?

� Which kind of devices can be integrated into the Internet of Things?

As already mentioned, the Internet Protocol is the common “language” of the
conventional Internet. Hence, it is highly probable that it also will be established
as the standard communication protocol of the Internet of Things. There are
two possibilities how devices can be adapted in order to communicate over IP:
The first approach is the implementation of IP communication and IP packet
handling on the device. This approach is suitable for computational powerful
devices, which have the resources to integrate the IP communication into their
standard functionality. The second approach is to use a translator from the
original communication protocol to IP. This concept is suitable for restricted
devices, where the implementation of an IP stack is out of scope for the resources
of these devices. As passive RFID tags are restricted devices, we follow the
second approach. Before we describe the communication concept, we give a
short overview of previous work done on integration of RFID tags into the
Internet.

5.1.1 Previous Work

As already mentioned, the EPCglobal network was the first approach towards
integration of RFID technology into the traditional Internet. In [Eng02], En-
gels compared the EPC identification scheme with the IP address scheme. He
concluded that both schemes are similar in structure, but with essential differ-
ences: IP addresses cannot serve as unique identifiers, EPCs cannot be used
for routing. In 2008, Yao-Chung et al. proposed a so-called IPv6-EPC Bridge
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Mechanism [CYCSM08]. Here, each EPCglobal network is connected to the IP
network via RFIPv6 gateways. Nodes outside the EPCglobal network can find
information on the tags using the anycast mechanism of IPv6. IP addresses are
created from the EPC and the subnet address of the EPC Information Service
(EPCIS) server.

In 2007, Sang-Do et al. presented a concept on the use of EPCs to create
conventional IPv6 addresses [SDMKHJ07]. In this concept, the network prefix
of the IPv6 address is replaced by a 64-bit EPC. The address generation is done
by the reader, where the tag is present, which transmits it to the (EPCIS) server.
The EPCIS service is defined for storing and retrieving information about par-
ticular tags on the EPCglobal network. In the system proposed by Sang-Do et
al. the current IP address of a tag is stored as additional information. If a node
on the Internet wants to retrieve data from the tag, the EPCIS can request the
tag information in real-time using the stored IP address. This scheme provides
some useful concepts on network communication with RFID tags (e.g., address
mapping, central server as relay for the tags). Therefore, we adapted some of
the ideas in this work for the use in the proposed communication protocol.

Most published work mainly focuses on the EPC standards and the EPC-
global network. In our work we have a more general approach, which can be used
for all types of RFID standards. Furthermore, we do not limit our communica-
tion concept to the EPCglobal network, but use the standard communication
protocol on the Internet to connect passive RFID tags. In the proposed ap-
proach, RFID tags can be treated as mobile nodes in the IPv6 network. We use
concepts from the Mobile IPv6 (MIPv6) scheme to integrate these tags into the
IP network. In the next section we give an overview of MIPv6 concepts and
describe how they can be used to build MIPv6-enabled RFID tags.

5.2 Mobile IPv6

The current standard protocol for Internet communication is the Internet Pro-
tocol Version 4 (IPv4). As the address space of IPv4 is 32 bits wide, it can
be predicted that the number of Internet-enabled devices will soon exceed the
number of available IP addresses. Therefore, the successor of IPv4, the Internet
Protocol Version 6 (IPv6) was developed. The extension of the address space
to 128 bits is the most important change from IPv4 to IPv6. With that address
space about 1500 addresses per square foot of the earth’s surface can be issued.
Thus, IPv6 can be a basis for an Internet of Things, where a huge amount of
mobile devices want to communicate and need IP addresses. Additionally, the
IPv6 was provided with new functionality and more flexibility. In the following,
we describe the basic properties of IPv6, including the mobility concept, that
are required for the development of remote communication with passive RFID
tags on the Internet.
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5.2.1 MIPv6 Addresses and Packets

IPv6 is specified in RFC 2640 [DH98]. IPv6 addresses hold 128 bits which are
separated into 16-bit blocks. Each block is represented by a hexadecimal number
consisting of 4 digits, e.g., 2354:1493:2984:AF53:0001:0000:3AFB:103B. If
subnets are used, like in mobile IPv6, the first 64 bits of the address are defined
as the Address Prefix. The address is divided into the network part, which
corresponds to the address prefix, and the host part. The network part contains
the subnet identifier, which uniquely identifies a subnet where a node is present.
The last 64 bits, the host part, represents a unique identifier of the device.

The address types that are defined in IPv6 are unicast, multicast, and any-
cast addresses. Unicast addresses exactly identify one particular destination. A
multicast address is shared by a group of nodes. Multicast addresses are used to
reach more than one destinations in parallel by only specifying one destination
address. An anycast address is also shared by a group of nodes, but here the
packet is only sent to one node which holds the address. This is, for example,
the next reachable node with the specified address. Starting from the first node,
the packet is spread to all other members of the group. This concept is useful
for mobile nodes, as not all members of the group must be online at the same
time.

In order to provide the Mobile IPv6 (MIPv6) functionality a mobile node
is identified by a EUI-64 address (Extended Unique Identifier). This address
consist of 64 bits and is derived from the MAC (Media Access Control) address
of the mobile node. The MAC address is a physical LAN address consisting of
a Company ID (24 bits) and a Manufacturer ID (24 bits). These two values are
separated and two bytes (0xFF, 0xFE) are inserted in the middle, which leads
to a 64-bit address. The mobile IPv6 address is composed of the subnet prefix of
the node’s home subnet and the derived address from the MAC. This process is
called stateless address (auto)configuration and specified in RFC 4862 [TNJ07]
and RFC 4861 [NNSS07]. Figure 5.1 shows the structure of an MIPv6 address.
An IPv6 packet consists of header and payload. The header has a static part

64 bits

Subnet Prefix

24 bits 16 bits

Manufact. ID

MAC Address

Company ID

24 bits

FFh FEh

24 bits 24 bits

Figure 5.1: Structure of an MIPv6 Address

of 40 bytes, which we call the basic header, and can be extended by optional
headers, called extension headers. The basic IPv6 header consists of

� a version field (4 bits) which indicates the version of the IP protocol,
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� a traffic-class field (8 bits) where a priority of transported packages can
be defined,

� a flow-label field (20 bits) to indicated that some packages can be routed
directly over an end-to-end connection,

� a payload-length field (16 bits) where the number of following payload
bytes is indicated,

� a next-header field (8 bits) which indicates the header type following the
basic header, for example, TCP header, or UDP header, or an extension
header,

� a hop-limit field (8 bits) which indicates the maximum number of routers
a package can pass until it is deleted,

� and a source and destination address field with 128 bits each.

Various extension headers, following the basic header, are possible, namely:
Hop-by-Hop Options Header, Routing Header, Fragment Header, Destination
Options Header, Authentication Header, Encapsulation Security Payload, and
Mobility Header. Mobile IPv6 packets contain the Mobility Header and the
Routing Header. For the proposed concept, the Mobility Header, Routing Header
and the Fragment Header are of interest. The Mobility Header contains various
messages to provide mobility of nodes (e.g., binding messages). We describe
these mobility concepts in the next section. The Routing Header is used to con-
trol point-to-point communication between a mobile node and a correspondent
node. With the Fragment Header an IP packet can be separated into various
parts and can be composed again at the destination node. The Authentication
Header and the Encapsulation Security Payload are useful for securing an IP
connection. We explain the use of these headers in Chapter 6, when introducing
IPSec basics.

5.2.2 Mobile IPv6 Concepts

The IPv6 standard provides concepts on how to handle mobile nodes. A node
is called mobile if it is able to move within the network from one subnet to
another. Different routing and detection mechanisms have to be provided than
for “static” nodes. The MIPv6 concept is described in [JPA04]. A mobile
node has a home subnet where the so-called Home Agent (HA) of the node is
located. The Home Agent always knows the last locations (IP addresses) where
its mobile nodes were situated. As already mentioned, the Home Address of the
mobile node is the subnet address of the Home Agent concatenated with the
EUI-64 address of the node.

If a Correspondent Node (CN) wants to send a message to the mobile node, it
uses the Home Address of the node as destination address. Thus, the IP packet
first reaches the Home Agent as the subnet prefix of the Home Address is the
subnet address of the HA. The HA holds the so-called Binding Cache where all
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current IP addresses of its mobile nodes are stored. The Home Agent looks up
the current IP address (Care-of Address) in its Binding Cache and relays the
message to this address. If the Corresponding Node is not MIPv6-enabled, all
communication (also the responses from the mobile node) is relayed over the
Home Agent. If the Correspondent Node is MIPv6-enabled, a point-to-point
communication can be established, where the Correspondent Node stores the
new Care-of Address of the mobile node and uses it as destination address for
further messages.

MIPv6 defines processes to manage the mobility of nodes on the Internet.
Mobile nodes are able to connect to different MIPv6 routers over time. Each
MIPv6 router manages a particular subnet. If the mobile node leaves the subnet,
where it was connected, the following steps are carried out:

� Subnet Discovery: Each MIPv6 router periodically sends a Router Ad-
vertisement, where the subnet prefix is contained. A mobile node listens
to the Router Advertisements and if it receives two different prefixes sub-
sequently, the node realizes that the subnets had changed. This procedure
is called Neighbor Discovery.

� Generation of new Address: The IP address of a mobile node changes
by moving from one subnet to another. The current IP address is com-
posed by the current subnet prefix and the EUI-64 address of the node.
The current IP address is called Care-of Address (CoA).

� Discovery of Home Agent : The mobile node has to know the IP ad-
dress of its Home Agent in order to communicate with it. This address can
be manually configured for each mobile node. If the Home Agent address
changes, the MIPv6 protocol provides a Home Agent Address Discovery
service to find out the new address.

� Setup of Security Association (optional): If communication between
the mobile node and the Home Agent is to be secured, IPSec can be
used. For this purpose, mobile node and Home Agent have to agree on
the security algorithms and protocols used in the communication. This
agreement is called Security Association (SA).

� Home Agent Binding: The mobile node sends its Care-of Address to
the Home Agent using a Binding Update message. The Home Agent stores
the new IP address in its Binding Cache. Here the current IP addresses
of all mobile nodes managed by the HA are stored. The Home Agent con-
firms the receipt of the new Care-of Address with a Binding Acknowledge
message.

� Correspondent Node Binding (optional): If a point-to-point commu-
nication has been established between a Correspondent Node and the mo-
bile node before the subnet changed, the node has to update this binding,
i.e., it must send its new CoA to the Correspondent Node.
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The most important steps in this procedure are the generation of new Care-of
Addresses and the home-agent binding. Providing these features, a Home Agent
can establish communication between each CN and the mobile node. Based on
the described mechanisms, we have developed a system to connect passive RFID
tags to the Internet of Things. We describe this system in detail in the next
section.

5.3 Connecting RFID Tags via MIPv6

In this section we address two points which have to be considered when inte-
grating RFID tags into a network: Addressing of the tags and communication
principles. We discuss two approaches how IP addresses can be assigned to
tags in Section 5.3.1. In the following Section 5.3.2 we show how Mobile-IPv6
concepts can be used for interactive communication with tags. As in Mobile
IPv6, we work with a Home Agent which manages IP addresses and information
about tags.

5.3.1 Addressing RFID Tags on the Internet of Things

In order to contact tags over an IP network it is necessary that the tags can be
uniquely addressed. Like every other mobile node on the IPv6 network, they
must hold an MIPv6 address. We have already described the structure of an
MIPv6 address in Section 5.2.1. In principle, two approaches can be used to
address tags within an IP network: The unique identifiers of the tags can be
mapped to an MIPv6 address, or IP addresses can be assigned randomly to the
tags. In the following we discuss these two approaches.

Address Mapping

Deriving the Home Address of a tag from the tag identifier, no additional com-
munication is needed for a Correspondent Node to find out the tag’s IP address.
In this approach, we assume that the Correspondent Node knows the identifier of
the tag and can therefore derive its Home Address. As different RFID commu-
nications standards exist (e.g., [Int00], [Int04b], [Int04c], [Int04a], or [EPC03]),
there is no common structure for unique identifier of tags. Even within one
standard, there can exist different types of identifiers with different structures.
This means that, a general approach to map tag identifiers to MIPv6 addresses
does not work. For each communication standard a specific addressing concept
would have to be developed.

In the following, we give an example how mapping can be done for a GID-
96 identifier of EPC tags: A GID-96 identifier consists of 96 bits, which are
arranged in header, serial number, an object class, and a manager number.
Figure 5.2 shows the structure of a GID-96 identifier. The header consists of 8
bits. It is followed by a 28-bit General Manager Number. This number is an
unique identifier for the object manager, which is responsible for the assignment
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of the serial-number and object-class fields. The object class is encoded as a
24-bit value. This value must be unique within the object-manager domain and
identifies the object type. The 36-bit serial number is unique within an object
class and uniquely identifies a particular entity of an object. For the GID-96

Header Serial #Obj. ClassManager #

8 bits 28 bits 24 bits 36 bits

Figure 5.2: Structure of a GID-96 Identifier

identifier, 96 bits have to be mapped to the 128 bits of an MIPv6 address. As
we have described in Section 5.2.1, the MIPv6 address consists of the subnet
prefix and the EUI-64 address. The EUI-64 address is derived from the MAC
address of the item and is unique for the device. The GID-96 identifier holds 28
bits to identify the company, which manages the tags (object manager). This
General Manager Number can be used as part of the subnet prefix of the Home
Agent. The object-class and serial-number fields are used to uniquely identify
the item and can be mapped to the last 64 bits of the MIPv6 address which
are item-related. In Figure 5.3 we show the address mapping from a GID-96
identifier to an MIPv6 address. The General Manager Number consists of 28

Subnet Prefix (64 bits) Tag Identifier (64 bits)

Manager # Obj. Class Serial # 

28 bits 24 bits 36 bits
36 bits

4
 b

it
s

Figure 5.3: Address Mapping from GID-96 Identifier to MIPv6 Address

bits, whereas the subnet prefix is decoded with 64 bits. Therefore 36 bits for
the subnet prefix cannot be derived from the GID-96 identifier and have to
be assigned randomly. If the subnet prefix depends exclusively on the General
Manager Number, the available address space used to identify the Home Agent
of a tag is reduced to 28 bits. Another issue is the transfer of ownership of a
tag. We consider the tags to change their manager during lifetime. In case of
an ownership transfer, the new Home Agent address has to be encoded into the
unique identifier. This means that, the tag identifier has to be modified in this
case.

For the item-related part of the MIPv6 address, 60 bits from the GID-96 can
be used (serial number and object class). In this case, 60 bits are mapped to
the 64-bit host part of the Home Address. The leads to a reduction of the item-
related address space to 60 bits, which is not as drastic as for the subnet part.
Only 4 bits have to be randomly assigned. In case of an ownership transfer,
collisions can occur: The tag identifier is unique within the Home Agent domain,
but this is not guaranteed for a new Home Agent domain.
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Random Assignment

In difference to the address-mapping approach previously described, MIPv6
addresses could be randomly assigned to a tag at the issuing process. In this
process, the unique identifier is assigned to the tag, too. We assume that the
tag manager, which issues the tag, provides the Home Agent service for this
tag. Thus, the tag manager can, besides the ID, assign a unique Home Address
to the tag. The emph{Home Address conforms to the MIPv6 structure: The
first 64 bits of the address consist of the subnet prefix of the Home Agent (=
tag manager). The last 64 bits identify the tag uniquely within the Home-Agent
domain. The Home Address of the tag is stored in the Binding Cache of the
Home Agent as well as in the tag’s memory.

If IP addresses are assigned randomly, the establishment of a look-up service
is useful. Issuing a tag, the Home Agent registers the tag at the look-up server
by sending the tag identifier and the Home Address. If any Correspondent Node
(CN) wants to contact one particular tag it has to know the unique identifier.
The CN can first contact the Home-Address Look-Up Service to derive the Home
Address of the tag. In the following, the Correspondent Node can use the Home
Address to contact the tag. In the random-assignment approach, a transfer of
ownership can be easily performed. When a tag is assigned to a new owner and
therefore to a new Home Agent domain, the tag’s Home Address is changed
as needed, and updated in the tag’s memory as well as in the database of the
look-up service.

5.3.2 Communication Principle

In the proposed communication scenario, four parties are involved: The tag,
the reader, the Home Agent (HA) and the Correspondent Node (CN). The
following prerequisites have to be met in order to set up remote communication
with passive RFID tags over an IP network.

� The tag holds an unique MIPv6 address. The address assignment is dis-
cussed in Section 5.3.1.

� The Home Agent manages the tag information and stores the current IP
address of the tag (Care-of Address) in the Binding Cache. Furthermore,
the Home Agent processes all IPv6 packets addressed for tags that are
managed by the HA.

� The reader is connected to the Internet and acts as an MIPv6 router and
translator for the tags in the field. The reader manages the communication
between tags and the network and translates the received MIPv6 packets
into communication frames according to the used RFID communication
standard, and vice versa.

Communication with tags works as follows: A Correspondent Node that wants
to talk to an RFID tag sends an IPv6 packet, addressed with Home Address of
the tag, over the network. The packet is first routed to the Home Agent as the
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Figure 5.4: Communication Principle for MIPv6-Enabled RFID Tags

subnet prefix of the Home Address represents the Home Agent’s subnet address.
The Home Agent looks up the current IP address (Care-of Address, CoA) of
the tag in the Binding Cache. The HA exchanges the destination address of
the packet with the CoA. If the Correspondent Node has no MIPv6 capabilities,
the Home Agent also exchanges the source address of the packet with its own
IP address. Then the modified packet is sent again over the network.

As the destination address of the modified IPv6 packet is the current location
of the tag, the packet is routed to the reader where the tag is present. The reader
translates the packet into an RFID frame and sends the frame to the tag with
the Home Address corresponding to the destination address. The tag sends
an RFID response frame, which the reader re-translates into an IPv6 packet.
This packet is sent back to the source address of the received packet. If the
Correspondent Node has MIPv6 capabilities, the packet is returned to the CN,
which can establish a binding and a point-to-point communication with the tag.
If this is not the case, the response is sent to the Home Agent, which also serves
as relay for all further communication. Figure 5.4 shows an overview of the
proposed system.

In Section 5.2.2, we have described how mobility of nodes can be handled in
IPv6. In the following, we discuss how the described concepts can be used for
RFID tags, moving from one reader to another. Moreover, we can simplify the
required steps when using RFID tags and shift most of the protocol complexity
to the reader. The main difference to MIPv6 is, that not the mobile node (the
tag, respectively) communicates with the Home Agent, but the reader does.
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� Subnet Discovery(not required): This feature is not required in our
concept. The tag does not care about its current location. If a tag enters
a reader field, the tag indicates to the reader that it should be treated as
mobile node. This can be done, for example, by modifying the response
header during the inventory process. An inventory procedure is performed
by every standard RFID reader. If the reader supports MIPv6 function-
ality it is able to handle this response header in an appropriate way. The
tag does not have to be aware of this functionality.

� Generation of new Address: The reader generates the Care-of Address
(CoA) of the tag. It uses its own subnet prefix for the first 64 bits of the
CoA, the last 64 bits of the CoA are taken from the tag’s Home Address.
The tag itself is not aware of its new CoA. However, this is not necessary,
as all network communication is managed by the reader.

� Discovery of Home Agent : The reader sends a request to the tag to
reveal its Home Address stored in the tag’s memory. From this address,
the subnet address of the Home Agent can be extracted. It is possible that
the IP address of the Home Agent changes during the time the tag is not
online. In this case, the reader receives an error response when sending
a packet to the old IP address of the HA. The new address of the Home
Agent has to be derived. This can be done by using the Home-Address
Look-Up Service, described in Section 5.3.1. In this scenario the reader
sends the unique ID of the tag to the look-up service and receives the new
Home Address of the tag. The Home Address is also to be updated in the
tag’s memory. This can be done remotely by the Home Agent after an
authentication procedure.

� Setup of Security Association (optional): As reader and Home Agent
are participants on the IP network, they can establish a secure communi-
cation with the standard IPSec protocol. The IPSec concept is described
in Chapter 6.

� Home Agent Binding: The reader sends the Care-of Address of the
tag to the Home Agent. The HA stores this new address in its Binding
Cache. In the Binding Cache the current IP addresses of all mobile nodes
managed by the Home Agent are stored. The Home Agent confirms the
receipt of the new CoA with a Binding Acknowledge message. The reader
stores the Care-of Address and the tag identifier in a database, which
we call Linking Table, in order to relay the received IPv6 packets to the
correct tags. Figure 5.5 shows the updating of the tag’s IP address.

� Correspondent Node Binding (not possible): Although a point-to-
point communication can be established between a Correspondent Node
(CN) and the RFID tag, corresponding node binding is not possible in this
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Figure 5.5: Home Agent Binding for MIPv6-Enabled Tags

case. The tags itself are not aware of the Correspondent Nodes they com-
municate with. The reader, where the tag is currently located, manages
the connection and knows the IP addresses of the Correspondent Nodes.
As the reader changes when the tag moves and the tag does not store the
CN addresses, the new reader cannot be aware of former bindings of the
tag. Thus, this step is omitted in the proposed communication protocol.

Using the indicated communication protocol, Correspondent Nodes can com-
municate with passive RFID tags via IPv6. The Home Agent service is an es-
sential part of the system. Therefore, we suggest to use multiple Home Agent
servers with an anycast address to provide this service. Using anycast addresses,
several servers can hold the same IP address. Messages to the IP address can
be received and handled by each of the servers. If necessary, the server that
received the message forwards the packet to the other servers with the same
anycast address.

In the proposed system this anycast addresses can be used as follows. For
communication between Correspondent Node and tag, IPv6 packets are for-
warded to the destination address. The first Home Agent server that receives
the packet processes it. A forwarding of the communication packets to the
other HA servers is not necessary, as no information about the communication
is stored on the Home Agent. For address-updating messages, the Home Agent
receiving the Home Agent Binding message forwards the updating information
to all other servers, until all Binding Caches are up to date. In this way, the
HA service is also available if one ore more servers are down.

The difference when dealing with passive RFID tags on the IPv6 network
to conventional mobile nodes is the implementation of the IPv6 stack. In the
proposed concept, RFID tags do not implement the IPv6 themselves, but use
the reader as gateway to the network. All communication is translated and
routed by the reader. In the next section we work out the capabilities RFID
components must provide to execute the proposed communication concept.
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5.3.3 Requirements for RFID Components

In the proposed system, readers act as translators and routers for the RFID
tags. Therefore, RFID readers must be able to receive, process, and send IPv6
packets. Reader devices are in general connected to a computer, the so-called
host, that executes the reader application, controls the reader, and processes
the data received from the tags. Most computers are already connected to the
Internet and have enough computational power to implement the IPv6 protocol.
The hosts provide the IPv6 functionality for the readers. Furthermore, they offer
their computational power for implementation of the translation and routing
tasks.

The Neighbor Discovery functionality is used in MIPv6 for mobile nodes to
check whether the subnet has changed. If a change of the subnet occurs, a new
Home Agent Binding is initiated, i.e., the new IPv6 address of the mobile node
is communicated to the Home Agent. In MIPv6 the mobile nodes themselves
execute this binding, whereas in the proposed concept only the reader is involved
in the communication with the Home Agent. The RFID tag itself is not aware of
neither the current subnet nor of its current IP address. Therefore, the tag is not
able to notice if the subnet has changed to initiate a Home Agent Binding. This
function is taken over by the readers: A standard RFID reader continuously
executes an inventory procedure to register all tags that are present in its radio
field. In this way, the reader gets to know if a new tag has entered the field. An
MIPv6-enabled tag responds to an inventory request with a modified inventory
response, which means that a flag in the header indicates the MIPv6 capability.
If such a tag enters the reader field, the reader has to find out the Home Address
of the tag, generates a new Care-of Address, performs a Home Agent Binding,
and stores the link between the tag identifier and the Care-of Address in the
Linking Table.

The reader acts as a translator from IPv6 to the RFID communication stan-
dard required to communicate with the tag. The reader device looks up the
destination address of the received IPv6 packet in its Linking Table and gets
the ID of the addressed tag. The IPv6-packet payload is translated into a valid
RFID frame and sent as an RFID request to the tag with the corresponding
ID. In order to manage the communication with the tag, the reader stores the
source address of the received IPv6 packet. Afterwards, this address is required
to build up the response packet for the Correspondent Node or the Home Agent.
The reader converts the tag response into an IPv6 packet and sends it back to
the source of the received packet.

Translation of the IPv6 payload into an RFID frame and vice versa can be
complicated. In the most simple case, the IPv6 packet holds the RFID-frame
bytes as payload which can be directly sent to the tag. A different approach
encodes the reader commands in the IPv6 packet payload, which can then be
carried out by the reader. In these cases, the Correspondent Node has to be
aware of the RFID communication standard to use for the destination tag. In
order to provide a more general approach, we suggest to define a public IPv6-
command set for RFID tags, which can be looked up on the Internet, that
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can be easily translated into various RFID communication standards. The tag
managers can decide which of these commands are supported by their tags.

RFID tags do not require too much additional functionality to conform to
the proposed concept. MIPv6-enabled tags have to indicate, that readers should
do a Home Agent Binding, when entering the field. This can be done with a flag
in the inventory response header. They need an extra memory to store their
Home Address (128 bits), and the capability to send and update this address.
This can be done by defining two additional commands, for example, GetIP
and ChangeIP. The complexity of the proposed approach is mainly handled by
the reader. This is only true for standard communication, i.e., a Corresponding
Node wants to send data to the tag or receive data from the tag without further
functionality like security. Secure connections based on IPSec can also be es-
tablished with RFID tags, although much more functionality is required on the
tag in this case. We describe how to establish a secure end-to-end connection
between a Correspondent Node and an RFID tag in Chapter 6.

In the most simple scenario of the proposed communication concept, the
Correspondent Node triggers communication and the destination tag is always
reachable (“online”). Some applications may require the tag to trigger commu-
nication, or they have to handle communication with “offline” tags. We describe
how to deal with these scenarios in the next section.

5.3.4 Advanced Features for MIPv6-Enabled Tags

In applications that require the tags to report some actions to a server, or to
request information from another node on the network, tag-triggered commu-
nication has to be provided. This means that, the tag indicates that it wants
to establish a remote connection. This feature is not provided for standard
RFID communication in which always the reader initiates the communication
protocol. The tag indicates to the reader that it wants to establish an IPv6
communication by using a particular flag in the inventory response header. As
the reader continuously polls for new tags in its radio field, the tag has the
opportunity to send its inventory response during this polling.

Each RFID communication standard provides requests to exclude a tag from
the inventory process, for instance, if required tag data have already been re-
ceived. In this case, the tag has no possibility to indicate its communication
requirement to the reader via the inventory response. Therefore, we propose
to modify the standard functionality of advanced RFID tags: If an event oc-
curs (e.g., a sensor measurement exceeds a limit) that triggers the tag to start
remote communication, the tag can wake up from its “excluded” state and re-
sponds to the next inventory request. If a reader, that supports MIPv6-enabled
tags, receives an inventory-response header where the communication flag is
set, it sends a request asking for more information on the tag’s communication
needs. The tag sends data required to build an IPv6 packet that is to be sent to
the Correspondent Node. These data has to consist at least of the destination
address and the payload of the packet.

Another issue that has to be considered is the offline status of tags. If tags



106 Chapter 5. Connecting RFID Tags to the Internet

Select (UID)

No response

IPv6 packet 
(CoA, payload)

Home Agent

ReaderTag

Subnet prefix Part of IP

Care-of Address (CoA)

Out of Field

UID

Linking Table

Correspondent Node

IPv6 packet

Not available
CoATag ID

Binding Cache

...
Not 

available

Figure 5.6: Offline Scenario for MIPv6-Enabled Tags

move, they are often not located in a reader field, which means that they cannot
communicate. In the following, we describe how communication with offline tags
can be established, anyway. If a Correspondent Node wants to contact a tag,
the Home Agent relays the IPv6 packet to the last known IP address of the
tag. If the reader receives a packet for a tag that is no longer present in its
radio field, the reader sends an Out-Of-Field message to the Home Agent. The
reader deletes the tag from its Linking Table. The Home Agent can update
the Binding Cache and mark the tag as not available. It sends a Not-Available
message back to the Correspondent Node.

Using extension headers of the IPv6 packet, the Correspondent Node can
specify what should happen to the packet if the addressed tag is offline. If a
prompt response to the packet is necessary, the packet is deleted after the Home
Agent has got to know that the tag is not available. If a response to the packet
can be useful within a certain time, the Correspondent Node can define a time-
out for the packet. The Home Agent stores this packet for delayed transmission.
If the Home Agent receives a new Care-of Address of the addressed tag before
the specified time-out is reached, it re-transmits the packet to the tag. The
further protocol is performed as in the standard procedure. Figure 5.6 shows
the offline scenario for MIPv6-enabled tags.

5.4 Conclusion

In Chapter 5 we describe a system how to integrate passive RFID tags into the
Internet of Things. The system is based on the mobility concept of IPv6 that
deals with mobile nodes that can move through different subnets. We map this
mobility concept to RFID tags, which also move through different reader fields.
The reader is used as translator and router of IPv6 packets for the tags. A
Home Agent manages the communication with the tags: If any Correspondent
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Node wants to send a packet to a tag, it contacts the Home Agent, which holds
the current IPv6 address of the tag in its Binding Cache. Then the packet is
transmitted to this IPv6 address by the HA. If a tag enters a new reader field,
the IPv6 address in the Binding Cache is updated. In this way, the Home Agent
always knows how to contact the tag and offers a relay service for any other
node on the net.

As RFID tags are constrained devices, the handling of the IPv6 communica-
tion is mainly performed by the reader. If a tag is not located in a reader field,
the tag is not able to communicate. As RFID applications often require the
tags to cover long distances from one reader to another, they are often offline.
Therefore, we discuss strategies to establish offline communication with tags,
where packets can be stored by the Home Agent and handled with a certain
time delay. With the proposed system a two-way communication between any
Correspondent Node on the Internet and passive RFID tags is established.

Communication with tags via IPv6 is a useful feature for RFID applications.
However, most applications will profit from the possibility to secure online com-
munication with RFID tags. Security is an essential feature, in particular for
an open network like the Internet. As RFID tags in the proposed concept do
not execute the IPv6 protocol itself, standard security measures for IPv6 con-
nections, like the IPSec protocol, are not fully applicable. In the next chapter
we show how to modify IPSec mechanisms in order to build a security layer for
communication with MIPv6-enabled RFID tags on the Internet.





6
Security Layer for MIPv6-Enabled Tags

Security is an indispensable feature for quite a number of RFID applications.
If applications require online access to RFID tags on the Internet, the estab-
lishment of a secure communication channel is essential. We learned from the
traditional Internet, that protection of information is an important feature for
applications. Information leakage can cause severe financial damage. Further-
more, the public acceptance of a technology depends on its reliability and secu-
rity. Obviously, the Internet of Things will need secure communication mech-
anisms as well. In this chapter we present a security layer for MIPv6-enabled
tags connected to the Internet.

The presented security layer is built upon the communication concept de-
scribed in Chapter 5. In this concept, the IPv6 connection is set up by the
reader, which manages the further communication with the RFID tag. The
connection between the reader and any other node on an IP network can be
secured by standard mechanisms, defined in the IPSec standard [KS05]. In this
case, the secure channel ends at the reader device. Communication with the tag
has to be secured separately. A secure channel between a tag and a reader can
only be established if the tag trusts the reader, i.e., the tag can be sure that the
reader does not modify or leak packets. As a tag in our scenario cannot trust the
reader per default, additional security mechanisms are necessary to establish a
secure point-to-point connection between the tag and the Correspondent Node.
Although IPSec cannot be implemented without modifications on an RFID tag,
we use concepts from IPSec to provide authentication and confidentiality for the
proposed communication protocol. In the following, we describe IPSec basics
and how to use them in order to establish a secure IPv6 connection involving
MIPv6-enabled RFID tags.

The chapter contains results of joint work together with Stefan Kraxberger.
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Parts of the outcome have been published in the Journal of Security and Com-
munication Networks, Special Issue on Protecting the Internet of Things [DK11].

6.1 IPSec Basics

Internet Protocol Security (IPSec) is a set of security mechanisms that pro-
vide confidentiality, authenticity, and integrity of an IP communication. The
use of IPSec is optional for IPv4, but is mandatory for IPv6. IPSec was stan-
dardized by the Internet Engineering Task Force (IETF) in several documents.
The general architecture is described in [KS05], which is extended by other
RFCs (Request for Comments) specifying various cryptographic protocols and
key management mechanisms that can be used in IPSec. In the following, we
describe the basic principles of IPSec in order to identify mechanisms that can
be used for securing communication with RFID tags over IPv6.

6.1.1 Security Association

IPSec is used to provide secure end-to-end communication between two nodes
on an IP network. Before a secure connection can be established, the commu-
nicating partners have to agree on a set of algorithms and parameters that are
used to encrypt and authenticate the exchanged messages. Such a set is called
Security Association (SA). Each SA is uniquely defined by a Security Parame-
ters Index (SPI), the destination IP address and the used IPsec protocol (AH
or ESP, described later on).

Security associations are established using the Internet Security Association
and Key Management Protocol (ISAKMP). ISAKMP can be used with different
mechanisms such as pre-shared secrets or Internet Key Exchange (IKE) [HC98,
Kau05]. In the proposed communication protocol, including passive RFID tags,
a modification of IKE version 2 (IKEv2) is used for establishing a Security
Association. We describe the IKEv2 protocol in Section 6.1.5.

Each node that wants to securely communicate on the network has to pro-
vide a Security Association Database (SADB) where Security Associations for
particular connections are stored, i.e., this database holds information how a
particular incoming packet must be handled and how an outgoing packet must
be protected. The lifetime of an SA is stored in this database, too. Furthermore,
The SADB contains information about the mode of operation used. Each host
or gateway has its own Security Policy Database (SPD) which specifies on which
type of packets IPSec protection should be applied, which should be bypassed,
and which should be discarded.

6.1.2 Modes of Operation

Secure end-to-end communication can be provided to a pair of hosts, a gateway
and a host, or to two gateways on an IP network. Hosts are the endpoints
of a communication channel, whereas gateways are intermediate nodes that
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provide routing functionality for other nodes. Two modes of operation can be
distinguished for IPSec: The Transport Mode and the Tunnel Mode.

� Transport Mode: This mode is used for host-to-host communication.
The IPSec header is inserted as extension header between the IP header
and the payload. The IP header is not modified in this mode. As the IP
header contains the source and destination address, routing can be done
like for a regular IP packet. Only the payload of the IP packet is protected.
Nevertheless, if used with an Authentication Header, described in the fol-
lowing, the source and destination address of the packet are included in
the integrity check, so they cannot be modified without detection.

� Tunnel Mode: This mode can be used for gateway-to-gateway, host-
to-gateway, or host-to-host communication. Here, the entire IP packet is
authenticated and/or encrypted. The result is embedded into a new IP
packet. The source and destination addresses in the new IP header can be
different from the endpoints of the communication, as, for instance, only
the gateway can be addressed. When the gateway receives the packet,
it removes the encapsulation and receives the original IP packet which is
then forwarded to the host corresponding to the destination address in
the original IP header.

In each mode of operation, IPSec works with extension headers of an IP packet.
We have described the structure of an IPv6 packet and the use of extension
headers in Section 5.2.1. Transport Mode as well as Tunnel Mode can be used
with Authentication Header (AH) and/or with Encapsulating Security Payload
(ESP). We describe the use of these extension headers in the following.

6.1.3 Authentication Header

The Authentication Header (AH) is defined in [Ken05a]. It holds a sequence
number, which is intended to prevent replay attacks, and the authentication
data, which is in principle a checksum over the payload and some parts of the
header. Since some of the IP-header fields are modified during transmission of
the IP packet, not all header fields can be protected by using the AH. Authenti-
cation data is calculated using algorithms such as keyed Message Authentication
Codes. These algorithms are based on symmetric encryption algorithms or on
one-way hash functions. A keyed Message Authentication Code provides data
integrity and authentication of the sender.

The Authentication Header is used as an extension header in the IPv6 stan-
dard. It contains the following fields: Next Header, Payload Length, Security
Parameters Index (SPI), Sequence Number, and Integrity Check Value (ICV).
The SPI is used to identify the Security Association of the sending node. The
sequence number is used to protect the packet against replay attacks. The ICV
contains a checksum for verifying data integrity. Figure 6.1 shows the use of
the Authentication Header in Transport Mode and Tunnel Mode.
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Figure 6.1: Usage of Authentication Header in IPSec

6.1.4 Encapsulating Security Payload

The Encapsulating Security Payload (ESP) is an extension header used in IPv6
packets. It is defined in [Ken05b] and can be used stand-alone or in addition
to the Authentication Header. ESP provides confidentiality, data integrity and
authentication of the sender. Nevertheless, it does not provide protection of the
IP header. Only if used in Tunnel Mode, the IPv6 header is included in the
protection. ESP is separated into two parts when used in an IPv6 packet: The
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Figure 6.2: Usage of Encapsulating Security Payload in IPSec

ESP header and the ESP trailer. The ESP header consists of a Security Pa-
rameters Index (SPI), used to identify the Security Association, and a Sequence
Number for prevention of replay attacks. The ESP header is followed by the
payload of the original IP packet. The ESP trailer is located after the payload
and contains a Padding field, a Padding Length field, which contains padding
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data that has to be used to provide a correct input-data length for the used
encryption algorithm, and a Next Header field. At the end of the packet, an
Integrity Check Value (ICV) is added which is used to provide data integrity of
the IP packet. All fields starting from the ESP header and ending with the ESP
trailer are encrypted, and thus confidentiality of the data is provided. Figure
6.2 shows the use of ESP in Transport Mode and Tunnel Mode.

6.1.5 Key Exchange and SA Agreement

A common key-establishment mechanism in IPv6 is the Internet Key Exchange
version 2 (IKEv2). This key-agreement protocol is defined in [KHNE10]. The
actors in the scenario are the Initiator, which initiates the communication, and
the Responder, which answers to the messages of the Initiator. The protocol
is divided into two phases: During phase one, keys are exchanged using the
Diffie-Hellman key-exchange algorithm [DH76] and a secure and authenticated
channel is established. During phase two, Security Associations for other ser-
vices, like IPSec, are negotiated. The IKEv2 protocol is shown in Figure 6.3.
The Initiator starts phase one by sending an IKE SA INIT request. This mes-

Initiator Responder

IKE_SA_INIT (HDR, SA1i, KEi, Ni) 

IKE_SA_INIT (HDR, SA1r, KEr, Nr, [CERTREQ]) 

IKE_AUTH (HDR, SK {IDi, [CERT,] [CERTREQ,] AUTH, SA2i, TSi, TSr}) 

IKE_AUTH (HDR, SK {IDr, [CERT,] AUTH, SA2r, TSi, TSr}) 

CREATE_CHILD_SA (HDR, SK {[N], SA, Ni, [KEi], [TSi, TSr]}) 

CREATE_CHILD_SA (HDR, SK {SA, Nr, [KEr], [TSi, TSr]}) 

PHASE 1

PHASE 2

Figure 6.3: Key Exchange and Security Association Agreement in IPSec

sage basically consists of a suggestion for a Security Association (SA1i), the
public Diffie-Hellman value (KEi) and a random number Ni. The header of all
key exchange messages (HDR) contains the Security Parameter Indices (SPIs),
version numbers, and various flags. SA1i contains all cryptographic algorithms
supported by the Initiator for the key exchange procedure. The Responder
answers the request with an IKE SA INIT response. The response contains the
selected Security Association (SA1r), which is a subset of cryptographic algo-
rithms and protocol suggested in SA1i, the public Diffie-Hellman value of the
Responder (KEr), and a random number Nr. Optionally, the Responder can
add a certificate request ([CERTREQ]) to the IKE SA INIT response. From
these two IKE SA INIT messages, Initiator and Responder calculate a session
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key (SKEYSEED) for this session by using the following equation.

SKEY SEED = PRF (Ni|Nr, g
Sx)

Sx denotes either be the secret of the Initiator (Si) or the Reponder (Sr). Each
of the two parties uses its own secret to calculate the session key. g can be
derived from the public Diffie-Hellman values, which were exchanged before.
PRF refers to a pseudo-random function. Details on the calculation of the
session key can be found in [DH76], where the Diffie-Hellman key-exchange
algorithm is described. From the session key several other keys are derived.
Keys for encryption are denoted with SKe, keys for authentication are denoted
with SKa. For each direction separate keys for authentication and encryption
are computed, which results in four keys: SKai and SKei for the Initiator, and
SKar and SKer for the Responder. Furthermore, both parties derive a master
secret (SKd) from SKEYSEED.

After exchange of the IKE SA INIT messages, the Initiator sends an IKE AUTH

request. This message exchange is used for mutual authenticate of both parties.
The message contains the identity of the Initiator (IDi) and an authentica-
tion parameter (AUTH), which authenticates the identity of the Initiator and
protects data integrity of the message. Furthermore, the message contains a
suggestion for a Security Association for the next phase (SA2i), and the traffic
selectors TSi and TSr, which define what traffic has to be protected by this
SA. The payload of the message is encrypted using the SKei key, derived from
the session key.

The authentication parameter AUTH can be either generated using a pre-
shared key derived from SKEYSEED, or by using the public key of the Ini-
tiator. Pre-shared keys do not authenticate the identity of the Initiator, i.e.,
the Initiator could use any identity in this message. The Responser can not
be certain about the correctness of the identity parameter. Nevertheless, the
AUTH parameter proves that the Initiator is the same party that has started
the protocol, as only the Initiator and the Responder know the session key
(and all other keys derived from it). The Initiator can also use its public key
to generate the AUTH parameter. If a certificate has been requested by the
Responder in the previous message, the certificate to this public key is sup-
posed to be sent within the IKE AUTH request. A certificate authenticates the
identity of the Initiator, as the certificate links its identity to the public key. If
the Initiator wants the Responder to send its public key as well, an optional
certificate request ([CERTREQ]) is appended to the IKE AUTH request.

The Responder answers the request with an IKE AUTH response, which con-
tains the identity of the Responder (IDr) and the authentication parameter
AUTH. As for the Initiator, the Responder can use either a pre-shared key or
its public key to calculate the authentication parameter. If a certificate has
been requested by the Initiator, the Responder appends its certificate to the
message ([CERT]). The response also contains the selected SA for the next step
(SA2r), which is a subset from the suggested algorithms and protocols in SA2i.
Furthermore, the IKE AUTH response holds the traffic selectors TSi and TSr.
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The payload of the response is encrypted using the SKer key. With the receipt
of the IKE AUTH response by the Initiator, phase one ends.

In phase two the Security Association used for IPSec is negotiated. A pos-
sible SA was already agreed upon in the IKE AUTH messages. The parties can
use either this SA or negotiate a new one. The Initiator starts phase two by
sending a CREATE CHILD SA request. This request must contain an offer for a
Security Association (either the previously agreed one or a new offer) and a
random number Ni, which should be different from the random number used in
phase one. Optionally, the request can contain a parameter N , which indicates
that a new SA should be negotiated, and a new Diffie-Hellman value, which
can be used to calculate new keys for IPSec. The traffic selectors TSi and TSr

can also be contained in the message.
The Responder answers the request with a CREATE CHILD SA response, which

contains the accepted SA and a random number Nr. If a new Diffie-Hellman
value is required, this value is added as KEr. If necessary, the message contains
the traffic selectors TSi and TSr. After exchange of these messages, the keys for
IPSec (for AH and ESP) are either derived from the master key SKd previously
calculated or by using the new Diffie-Hellman values. The random numbers are
used in this calculation to refresh the key material.

After the IKEv2 protocol has been executed, a secure channel between the
two involved nodes is established. IPSec uses the negotiated parameters to es-
tablish this secure connection. The essential parameters for this connection are
the mode of operation (Tunnel Mode or Transport Mode), the selected exten-
sion header (Authentication Header or Encapsulating Security Payload), and
the keys. The IKEv2 key-exchange mechanism is computational demanding.
As RFID tags are computationally constrained, we researched on modifications
that can be done to the IKEv2 protocol in order to provide the same function-
ality but with less computational effort. We discuss the results of this research
in the next section, where we present a security layer for communication with
MIPv6-enabled tags on the IPv6 network.

6.2 Secure Communication with RFID Tags

We have presented a communication concept on RFID tags connected to the In-
ternet in Chapter 5. Online communication requires security measures, which
is provided by the IPSec protocol for standard IPv6 communication. IPSec
was not designed for constrained devices like passive RFID tags. Nevertheless,
passive RFID tags are already able to perform complex calculations like cryp-
tographic algorithms. We have given some examples of available primitives in
Section 2.1.2. Furthermore, we have shown in Chapter 3 that secure applica-
tions can be built upon RFID technology. These findings lead to the conclusion
that also a secure channel over the Internet can be established with passive
RFID tags.

In this section we show how the IPSec protocol can be modified to be suit-
able for communication with MIPv6-Enabled tags. In Section 6.2.1 we define
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the restrictions that have to be imposed on the IPSec protocol. Section 6.1.5
describes the modified key-exchange mechanism, which is followed by a discus-
sion of the establishment of a secure end-to-end communication with passive
RFID tags over IPv6.

6.2.1 Assumptions

Due to the limited resources of RFID tags we impose some constraints on the
IPSec protocol. Assumptions have to be made, especially as regards traffic
load, availability of keys, and functionality of the reader. We describe these
assumptions in detail in the following.

IPv6 packet size

Standard IPv6 packets can have a size of up to 64 kBytes. It is also possible
to create huge “Jumbo” packets by using the Hop-By-Hop Options extension
header. We have discussed in Section 2.1.1 that state-of-the-art RFID tags can
hold up to 64 kBytes of volatile memory. Thus, RFID tags will not be able
to handle large IPv6 packets. In the proposed concept, a tag does not handle
the IPv6 packets itself, but the readers translate the packets into RFID frames.
Nevertheless, at least the payload of the IPv6 packet will be forwarded to the
tag, which has to process these data.

The payload of huge packages exceeds a tag’s memory and also processing
capabilities. Therefore, we limit the size of data which is allowed to be sent
from any node on the network to the tag. We do not define a fixed maximum
size at this point, as the particular limit depends on the capabilities of the used
tags and can change over time. The restriction on the IPv6 packet size is not a
drastic one, as RFID applications are in general not data intensive for the tags.

Number of Connections

Due to memory and processing limitations of the RFID tag we limit the number
of open IPSec connections to one. This means that only one Correspondent
Node is able to communicate with a particular RFID tag at a time. If we would
allow various numbers of connections, each connection has to be managed by
the tag, maybe with different Security Associations. This could easily exceed
the computational power and memory capabilities of a tag.

We also refuse connections from other nodes during the setup phase and
impose a kind of minimum timeout interval. As soon as a connection from
one Correspondent Node is accepted by the tag, no other node can connect
to the tag during a certain amount of time. This amount of time should be
correlated to the time used for the setup of a communication (key exchange,
SA agreement) and the time used to exchange data. If we did not define such
a timeout interval, it would be possible to break an existing connection during
or directly after the SA agreement. In this case, there would be not enough
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time to send application-related data to the tag. We want to avoid this case by
imposing a timeout interval.

Traffic Policy

In order to reduce the computational effort, we apply the same policy to all
network traffic. We assume that all network traffic is to be secured by the use
of IPSec. In this way, we omit the management of the Security Policy Database.
Furthermore, we limit the traffic policy to only one kind of protocol and one
mode of operation, namely we use Encapsulating Security Payload in Transport
Mode. We define the Encapsulating Security Payload as extension header as we
want to provide authentication as well as confidentiality, which is not provided
by using the Authentication Header. The Transport Mode is used as it provides
a secure end-to-end communications between two hosts. Only the payload, not
the IP header, is encrypted in this mode. In this way, routing and the handling
of the IP header can be done as usual. In the proposed system, the reader takes
over the IPv6 handling. Using Transport Mode, the reader is still able to provide
the IPv6 communication for the tag. Therefore, the IP header is not sent to
the tag. Thus, the communication frames are smaller and only the payload has
to be processed by the tag.

The Security Association is a set of possible cryptographic algorithms for
particular security services during an IP communication. As cryptographic
algorithms are often computationally demanding, passive RFID tags will only
provide a small set of them. Therefore, we define only one Security Association
per tag. In this way we also omit the management of a Security Association
Database, which reduces complexity again.

Certificates

Certificates can be used for the authentication process during the IKEv2 pro-
tocol. In principle, certificates are authenticated public keys. In public-key
cryptography each communicating party holds a public/private key pair. The
public key of each party can be signed by a Certification Authority (CA), which
is a highly trusted party in the so-called Public-Key Infrastructure (PKI). In
standard public-key infrastructures, each party stores its own certificate and
sends it to the communicating counterpart when establishing a secure connec-
tion.

For the proposed communication concept, the standard use of certificates is
modified. In order to save memory and computational effort on the tag, the
certificates are managed by the Home Agent. In our case, the Home Agent takes
over the role of the CA and stores the certificates as well. When issuing a tag,
a public/private key pair is generated and stored on the tag. The public key
of the tag is signed by the Home Agent and the resulting certificate is stored
in the Binding Cache of the Home Agent. For a transfer of ownership, where
the tag is transferred to a new tag manager, the new Home Agent can sign the
public key again and save the new certificate in its Binding Cache. Figure 6.4



118 Chapter 6. Security Layer for MIPv6-Enabled Tags

Tag
Home Agent

PubT

PubHA/PrivHA

PubT/PrivT

PubHA

PubHA

CoATag ID

Binding Cache

Cert{PubT}PrivHA

Figure 6.4: Issuing of a Tag Certificate by the Home Agent

shows the issuing of a tag certificate. PrivHA and PubHA denote the private
and public key of the Home Agent, PrivT and PubT denote the private key and
the public key of the tag. The certificate is denoted as Cert{PubT }PrivHA.

A Correspondent Node which wants to send confidential messages to the
tag or verify a signature generated by the tag needs the public key of the tag.
If the tag is supposed to prove its identity, a certificate on this public key is
necessary. As we want to reduce communication effort with the tags, the CN
applies for the tag’s certificate at the Home Agent. Figure 6.5 shows how the
certificate is exchanged. Pub denotes a public key, Priv denotes a private key,
and Cert denotes a certificate. The indices are defined as follows: CN for the
Correspondent Node, T for the tag, and HA for the Home Agent. In order to
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Figure 6.5: Corresponding Node Requesting the Tag Certificate

authenticate to the tag, the Correspondent Node needs a certificate from the
Home Agent as well. In order to receive a certificate, the CN sends its public
key to the Home Agent. Then, the HA can decide wether the node is allowed
to talk to its tags or not. If the Correspondent Node is considered as a possible
communication partner for the tags, the Home Agent signs the public key of
the Correspondent Node and sends the resulting certificate back. A tag is able
to verify the certificate of the CN by using the public key of the Home Agent.
For the sake of simplicity, we propose to store the Home Agent’s public key on
the tag during the issuing phase of the tag.

If the Correspondent Node and the tag have verified each others certificate,
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the public keys can be used for confidential and authenticated messaging. When
using IPSec for the establishment of a secure IP connection, certificates can
optionally be used during execution of the key-exchange protocol. In the next
section we show how a modified version of IKEv2 can be used to exchange keys
with passive RFID tags.

6.2.2 Key Agreement

The key-agreement mechanism for MIPv6-enabled RFID tags is based on IKEv2,
described in Section 6.1.5. In order to unburden the tag from several resource-
consuming tasks we modify the key-exchange protocol in some steps. In the
following we describe the steps of the modified IKEv2 protocol in detail.

As in the IKEv2 protocol, the Correspondent Node is the Initiator and starts
phase one of the key agreement by sending an IKE SA INIT request. This request
contains the same values as in the original version of IKEv2: The Security As-
sociation (SA1i), the public Diffie-Hellman value (KEi) and a random number
Ni. The message is first routed to the Home Agent. Here, the first modification
to the IKEv2 protocol applies: The first protocol step is not handled by the
tag, but by the Home Agent. The HA holds information about the Security
Association provided for key exchange by the destination tag. In the proposed
concept, only one SA for each tag is allowed, as described in Section 6.2.1. The
Home Agent stores the SAs for key exchange for all its tags in the Binding
Cache. As this Security Association is only transmitted in this first step, which
is handled by the HA, there is no need to store it on the tag as well.

The Home Agent handles the first part of the key-agreement protocol in
the following way: If the suggested Security Association SA1r contains no al-
gorithms that are feasible for the tag, the Home Agent refuses the connection.
If an agreement is possible, the Home Agent replaces the suggested SA1i by
the single Security Association supported by the tag (SA1r). Then the mes-
sage is transmitted to the Care-of Address of the tag. The reader, where the
tag is located, receives the IPv6 packet and translates it into an RFID frame
(IPsec KE Init). The reader omits the SA1r parameter as the tag does not
hold any data about the Security Association and cannot process this informa-
tion.

The tag generates a response to the IPsec KE Init command. The response
contains its public Diffie-Hellman value (KEr) and a random number Nr. The
tag can optionally request a certificate from the Correspondent Node by insert-
ing a certificate request ([CERTREQ]). From these data, the reader builds an
IKE SA INIT response. The reader inserts the SA1r parameter and sends the
response back to the source address of the received packet (which can be either
the IP address of the Home Agent or the Correspondent Node). Figure 6.6
shows the first step of the proposed key-exchange mechanism.

After exchange of the IKE SA INIT messages, the Correspondent Node as
well as the tag calculate the SKEYSEED value, like described in Section 6.1.5.
They derive the encryption and authentication keys SKex and SKax as well as
the master key SKd from the SKEYSEED value. All following messages are
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Correspondent
Node Home Agent

CoATag ID

Binding Cache

Cert{PubT}PrivHA SA1r

ReaderTag

IKE_SA_INIT (HDR, SA1i, KEi, Ni) 

IKE_SA_INIT 
(HDR, SA1r, KEi, Ni) 

IPSec_KE_INIT (HDR, KEi, Ni) 

IPSec_KE_INIT (KEr, Nr, [CERTREQ]) 
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Figure 6.6: Key Exchange Initialization for RFID Tags

encrypted with the SKex and authenticated either with the SKax keys or by
using public keys of the participants. If public keys are used, certificates can be
requested to link the identity of the sender to its public key.

In the next step, the Correspondent Node sends an IKE AUTH request contain-
ing its identity IDi, its certificate [CERT] (if requested), an optional certificate
request [CERTREQ], an authentication parameter AUTH, a suggestion for the
IPSec Security Association SA2i, and the traffic selectors TSi and TSr. De-
pending on the MIPv6 capability of the Correspondent Node, the message is sent
to the CoA of the tag or sent via the Home Agent. For the sake of clarity we
omit the HA in our further description as its task in the further steps is limited
to relaying the messages and has no influence on the key-exchange protocol.

The reader translates the received IKE AUTH request into an RFID frame
(IPsec KE Auth). As the payload of this message is encrypted with SKe, which
the reader does not know, and the header is included in the authentication, the
whole packet is transmitted to the tag. The tag can decrypt the payload and
verify the authenticity of the sender and the integrity of the message. If a public
key with certificate is used for authentication, the tag has to verify the validity
of the certificate before verifying the AUTH parameter. If all verifications are
successful, the tag has to check the Security Association SA2i. If the Security
Association for communication with IPSec, which is stored on the tag, for ex-
ample, during the issuing process, is a subset of SA2i, the tag accepts the key
exchange.

The IPsec KE Auth response consists of a header and an encrypted and
authenticated payload. The payload includes the identity of the tag IDr, a



6.2. Secure Communication with RFID Tags 121

certificate link CERTLINK (if requested), an authentication parameter AUTH,
the accepted Security Association SA2r, and the traffic selectors TSi and TSr.
We have already discussed the certificate handling of the tag in Section 6.2.1.
The certificate of the tag is not stored on the tag itself, but in the Binding Cache
of the Home Agent. If certificates are used for key exchange, the Correspondent
Node has to request the certificate of the tag from the Home Agent. Instead of
the certificate, the tag sends the link to the Home Agent to the Correspondent
Node. Figure 6.7 shows the authentication step of the key exchange. After

Correspondent
Node Reader Tag

IKE_AUTH 
(HDR, SK {Payload 1}) 

IKE_AUTH 
(HDR, SK {Payload 2}) 

Payload 1: IDi, [CERT,] [CERTREQ,] AUTH, SA2i, TSi, TSr

Payload 2: IDr, [CERTLINK,]  AUTH, SA2r, TSi, TSr

IPsec_KE_AUTH 
(HDR, SK {Payload 1}) 

IPsec_KE_AUTH 
(HDR, SK {Payload 2}) 

Figure 6.7: Key Exchange Authentication for RFID Tags

exchange of the IKE AUTH messages, the key-exchange protocol enters the second
phase. The Correspondent Node sends a CREATE CHILD SA request, which is
used to set up the Security Association for IPSec. Although a SA for IPSec
has already been negotiated in the previous step, the CN could request the
negotiation of a new Security Association as described in Section 6.1.5. For
the proposed key-exchange protocol with MIPv6-enabled tags this feature is
omitted because the tag is computationally limited and only one SA for IPSec
per tag is allowed. Thus, new key negotiation would result in the same SA than
proposed in the authentication step. The CREATE CHILD SA contains the agreed
Security Association SA, a new random number Ni, optionally a new Diffie-
Hellman value [KEi], and the traffic selectors TSi and TSr. As the calculation
of new Diffie-Hellman values is a very resource-consuming task, we propose to
omit this procedure for RFID tags. Nevertheless, if refreshing of the key is
essential for security, the calculation of new DH values can be included in the
protocol.

The reader sends an IPsec Child SA command to the RFID tag. As the
payload of the CREATE CHILD SA request is encrypted and the header is authen-
ticated, the whole packet has to be transmitted to the tag. The tag can decrypt
the payload and verify the authenticity of the message. The IPsec Child SA

response from the tag contains the accepted Security Association SA, a new
random number Nr, and the traffic selectors TSi and TSr. The tag’s response
is translated into an IPsec Child SA response and sent back to the Correspon-
dent Node. With the new random numbers and the previous derived master key
SKd, new keys are generated which are used in the following IPSec communi-
cation. Figure 6.8 shows phase two of the key-exchange protocol.
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Figure 6.8: Create IPSec SA for RFID Tags

6.2.3 Secure End-to-End Communication

Once the IPSec keys are exchanged, secure communication can be establish.
All IPv6 packets sent over the secure channel between the Correspondent Node
and the tag are encrypted and authenticated using the exchanged keys. As we
described in Section 6.2.1, we use Encapsulating Security Payload in Transport
Mode as security policy for the communication. The structure of an IPv6 packet
using the ESP header in Transport Mode is presented in Figure 6.2. Using this
policy, confidentiality, message integrity, and authentication are provided.

Secure end-to-end communication works as follows: When the reader re-
ceives an protected IPv6 packet from the Correspondent Node, it generates an
ESP Pkt RFID command and sends it to the tag. The tag can decrypt and verify
the payload and sends its response, which is again encrypted and authenticated,
back to the reader. The reader builds a valid IPv6 packet inserting the tag’s
response as payload. The correct addresses are inserted and the packet is sent
to the CN. As only the tag and the Correspondent Node know the session keys,
end-to-end security is provided. The reader cannot neither modify the pay-
load without detection nor read the content of the exchanged data. Figure 6.9
shows a secure IPSec session between tag and Correspondent Node. The IPv6

Correspondent
Node

Reader Tag
IPv6 Packet

IPv6 Packet

ESP_Pkt

ESP_Pkt

(IP HDR, ESP HDR,
 SK{PL1, ESP TRL}, ESP AUTH)

(IP HDR, ESP HDR,
 SK{PL2, ESP TRL}, ESP AUTH)

(ESP HDR, SK{PL1, ESP TRL}, 
 ESP AUTH)

(ESP HDR, SK{PL2, ESP TRL}, 
 ESP AUTH)

Figure 6.9: Secure End-to-End Communication with RFID Tag

packet received by the reader starts with the IP header, followed by the ESP
header (ESP HDR). The next part of the packet is encrypted. This encrypted
part holds the payload (PL1) , and the ESP trailer (ESP TRL). The last part of
the packet is the ESP-authentication field (ESP AUTH), which is used to provide
message integrity. The reader translates the IPv6 packet into an RFID com-
mand (ESP Pkt), which contains the encrypted part of the packet as well as the
ESP header and the ESP-authentication field.
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The tag verifies the authenticity of the message and decrypts the encrypted
part of the packet. It processes the payload PL1 and generates a response to
the received packet. The response (PL2) and a new ESP trailer are encrypted,
and new ESP header and authentication fields are generated. These values are
sent back to the reader, which appends an IP header with exchanged source
and destination addresses in order to build an IPv6 response packet for the
Correspondent Node.

Using the proposed concept, secure end-to-end communication with RFID
tags on the Internet is provided. In the next section we consider the feasibility
of implementing the required functionality in passive RFID tags. Furthermore,
we discuss the security of the communication protocol in Section 6.2.5.

6.2.4 Feasibility for Passive RFID Tags

RFID tags have to provide advanced functionality to implement the proposed
protocol. Various cryptographic primitives are available for the use in passive
RFID tags. We have presented hardware implementations of common cryp-
tographic algorithms in Section 2.1. In the following, we consider how secure
online communication can be implemented on the tag by using these crypto-
graphic primitives.

For secure end-to-end communication over an secure channel, which has
been established before, symmetric encryption and authentication algorithms
are used. We propose to use the AES algorithm for encryption and the the
HMAC-SHA-1 algorithm for authentication. When considering the implemen-
tations described in Section 2.1.2, we are confident that both algorithms can
be used in parallel on current passive RFID tags. Another possibility to pro-
vide encryption and authentication is to use the AES algorithm as stand-alone
cryptographic primitive as specified in [Sch05]. Based on this RFC, the AES
algorithm can be used for encryption, for authentication, and for random value
generation.

The establishment of a secure channel is much more demanding than secure
communication. The proposed key-exchange protocol is based on the Diffie-
Hellman key-exchange algorithm [DH76]. In Section 2.1, we have presented a
hardware implementation of a Diffie-Hellman Authentication [BBD+08]. Based
on the findings of this publication, we consider a Diffie-Hellman key exchange
and calculation of a Diffie-Hellman value feasible for passive RFID tags. The
messages exchanged during the IKEv2 protocol are encrypted and authenti-
cated. For providing these functions, AES and SHA-1-HMAC can be used, like
for secure communication.

If certificates are used during the authentication phase of the key-exchange
protocol, an asymmetric digital-signature algorithm has to be provided. Based
on the type of public key, an appropriate algorithm has to be applied. We
propose to use an ECDSA signature and verification algorithm for this purpose.
Several hardware modules implementing this algorithm for passive RFID tags
are available (c.f., Section 2.1).
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Using the described cryptographic primitives, the proposed key exchange
protocol as well as the secure communication protocol can be implemented on
passive RFID tags. Although all of these algorithms are feasible for passive
RFID tags when implemented as stand-alone algorithms, they could exceed
the tag’s capabilities when implemented in parallel on one tag. Also memory
requirements for handling of the protocol have to be considered. In order to
evaluate the implementation requirements of the proposed protocol, the devel-
opment of a prototype providing all necessary functionality is in progress. Until
this development is not finished, we cannot give reliable figures on the feasibility
of the communication protocol for current RFID tags.

6.2.5 Security Considerations

The security of IPSec and the IKE protocol have been analyzed in many research
articles (e.g., [Bel96, Mea99, PK00, GHT00, ARM07, TG05, Aur06]), which
came to the conclusion that IPSec is at the moment the best IP security protocol
available. As most of the security problems within IPSec are related to its
complexity (outlined in [FS00]), we consider the proposed protocol, which is an
even more restricted version of IPSec, more secure than the original one.

One main difference of the proposed protocol is the limitation to only one
connection to the tag at a certain time. In this way we omit the Security
Associations database. Furthermore, we allow only one protocol and mode of
operation (ESP in Transport Mode), i.e., we omit all security concerns regarding
the AH protocol and the Tunnel Mode. One issue that must be considered
is the suggestion to use a timeout before establishing a new connection (see
Section 6.2.1). An attacker could take advantage of this procedure to perform
subsequent Denial-of-Service attacks. We can mitigate this threat by using
randomized timeout values to prevent synchronization of the attackers activity,
and by enabling the reader to block suspicious behavior of a Correspondent
Node.

Identity management is another issue to consider for security. A problem
that is often addressed in several works in this area, as, for instance, in [ARM07],
is that IP addresses are used as both host identifiers and location addresses.
Mismatches between the identifiers used in the Security Policy Database and the
identifiers provided by the authentication protocol can occur. We can handle
this problem by using IKEv2 with certificates. When using certificates, the
identity of the sender can be verified, because a certificate links the identity
to the public key of the sender. The infrastructure for a central Certification
Authority is already established in the proposed concept: The Home Agent can
issue certificates for the tags as well as for every Correspondent Node. The
Correspondent Node is only able to establish a secure connection, if there is no
mismatch in the identity used during key exchange and the identity given in
the certificate. With the described assumptions we have made on the IPSec
protocol, even a higher level of security can be provided than for the original
one.
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6.3 Conclusion

In Chapter 6, we discuss the establishment of a security layer based on the
communication concept presented in Chapter 5. We base the proposed concept
on the security protocol of the traditional Internet, namely the IPSec proto-
col. In order to adapt IPSec to the requirements of passive RFID tags, some
assumptions have to made on the IP packet size, the number of connections,
the traffic policy, and the use of certificates. In the proposed system, only one
open connection at a time and only one traffic policy, namely Encapsulating
Security Payload in Transport Mode are allowed. Certificates are handled by
the Home Agent to unburden the tags from this task. We also limit the number
of Security Associations to one per tag.

Applying the assumptions previously mentioned, the IKEv2 protocol as well
as the IPSec protocol can be modified in order to enable key exchange and se-
cure communication using IPv6 for passive RFID tags. As most of the security
problems in IPSec originate from its complexity, the limitations we have ap-
plied to the protocol are supposed to have a positive effect on its security. The
feasibility of an implementation of the protocol on current RFID tags has still
to be investigated. Nevertheless, each cryptographic algorithm required to im-
plement the protocol is available as hardware module feasible for passive RFID
tags. The research on the feasibility of the proposed protocol on passive RFID
tags is an open task. Implementation of a working tag prototype implementing
secure communication on the Internet is ongoing. The outcome of this feasibil-
ity study will be an important step towards secure online RFID applications on
the Internet of Things.
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Conclusions and Outlook

In this doctoral thesis we discuss the basics for the development of secure appli-
cations involving passive RFID tags on the future Internet of Things. Attention
goes to the three building parts essential to that development: cryptographic
primitives for passive RFID tags, the design of secure applications using these
primitives, and a concept on how to securely connect RFID tags to the Internet.

In order to identify cryptographic capabilities of current passive RFID tags
limitations of power, time, and size are discussed. Taking these limitations
into account, cryptographic hardware primitives that are feasible even for the
constrained environment in such tags are presented. For providing security
measures in RFID applications we propose to use standardized cryptographic
algorithms and protocols, as they offer a high level of security and interoperabil-
ity. With the presented hardware implementations of standardized encryption
algorithms, hash algorithms and digital-signature algorithms, the basic security
services confidentiality, integrity, authentication, and non-repudiation can be
provided to RFID applications.

In order to find appropriate ways to secure an RFID application, threats
to security have to be identified first. Due to the non-line-of-sight character of
RFID and the automatic way tags interact with readers, RFID technology is
very susceptible to remote attacks. We have found tracking and tracing, cloning
and counterfeiting, and unauthorized tag access as the three main categories of
security threats in RFID applications. Discussing appropriate countermeasures
to each threat, we conclude that authentication is one of the most important
security service that has to be provided for building secure RFID applications.

We present the design and evaluation of RFID applications that include au-
thentication with standardized cryptographic algorithms and protocols. The
development of the presented applications demonstrates the feasibility of au-
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thentication mechanisms in real-world RFID systems and documents the prac-
tical impact of introducing security in RFID applications. A formal design flow
for these applications with special attention to the integration of security mech-
anisms is presented. The design flow consists of six phases from the application
specification to the production of the tags.

The design step of developing software models and simulation, as well as the
prototyping step are essential parts in the design flow. Based on the findings in
these steps, the outcome of former design phases, like application specification
or security-enhanced communication protocol, can be modified and adapted to
new requirements without much effort. Modifications in a later design phase
would be much more costly. Therefore, successful simulation together with
prototyping of the application proved to be a critical success factor of developing
RFID applications.

In order to simplify and speed up the simulation and prototyping phases
of the RFID-application design flow, simulation and prototyping tools can be
employed. We present two of these tools, namely PETRA and ProtEx. The
simulation tool PETRA is mainly used for developing software models of the
tags and the reader application. The software models are used to verify the
functionality and evaluate the performance of the application. The simulation
and prototyping tool ProtEx is based on PETRA, as it uses parts of this tool
as basis for simulation of RFID protocols. Nevertheless, the simulation capa-
bilities of PETRA have been extended for ProtEx. Besides the simulation and
development of software models, ProtEx is able to re-use the reader applica-
tion and parts of the software model for prototyping. ProtEx was developed
with special attention to a high level of reusability and user-friendliness. We
integrated the IAIK DemoTag, which is a programmable RFID tag, into the
design flow with ProtEx to create a first hardware prototype of the tag. With
a physical reader and the programmable tag platform connected via the serial
ports, the developer can use ProtEx to do a proof of concept in hardware very
quickly.

ProtEx can be adapted to various RFID communication standards. The
existing ProtEx variants support the ISO-18000-3 standard as well as the ISO-
14443 standard. In the future, other communication standards will be im-
plemented on ProtEx in order to extend its application range. Another task
remains open to future research, namely to maximize the reusability between
the tag software and the used tag prototype. At the moment modifications
are inevitable due to different programming platforms. With these advances,
prototyping of RFID applications will be even more efficient.

As online communication with passive RFID tags is an important feature
for future RFID applications, we discuss the integration of these tags as mobile
nodes into the Internet of Things. As we see the Internet Protocol version 6
(IPv6) as the common language of the future Internet, a concept on connecting
passive RFID tags using mobile IPv6 mechanisms is presented. The most im-
portant concepts from mobile IPv6 used in our proposal are described. In the
presented communication concept, tags do not have to perform IPv6 processing
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itself, but the reader works as router and translator for the tags in its field. The
reader, which is computationally strong enough for this challenge, takes over the
more complex tasks in IP communication. As RFID tags are often not present
in any reader field, they are often offline. Therefore, a delayed-messaging ap-
proach has been proposed to address this issue. Another RFID-related issue is
the tag-triggered communication, as in a standard RFID communication pro-
tocol the reader talks first. We present a method that helps to overcome this
restriction. Using the proposed communication protocol, two-way communica-
tion with passive RFID tags on the Internet is enabled.

Various applications require secure interaction with RFID tags, especially
if the tags are addressed remotely over the Internet. Secure communication
on the conventional Internet is established by using Internet Protocol Security
(IPSec). As RFID tags are limited devices, they cannot be expected to im-
plement the standard IPSec protocol. Based on the proposed communication
concept a modified IPSec protocol feasible for passive RFID tags is presented.
The modified protocol involves the key exchange, which is based on the Internet
Key Exchange protocol, as well as secure communication via IPv6. In this way,
a secure end-to-end connection between a Correspondent Node and a passive
RFID tag can be established.

For implementation of the key exchange and communication protocol, the
tag has to support various cryptographic algorithms and protocols, namely
the Diffie-Hellman key exchange, Advanced Encryption Standard (AES), and
Secure-Hash Algorithm (SHA-1). Also the Elliptic-Curve Digital-Signature Al-
gorithm (ECDSA) might be necessary if certificates are involved for authen-
tication. All of these primitives are feasible for the use in passive RFID tags
as stand-alone implementations. At the moment we have no data about the
conjunctive use of all these algorithms on one tag. This fact leads us to the
outlook on future activities in this area.

At the moment of writing this thesis, prototyping of the proposed commu-
nication concept is in progress. The results of this prototyping process will give
feedback on the feasibility of the protocol implementation on current RFID
tags. Even if the proposed protocol implementation exceeded current tag’s ca-
pabilities, we are confident that future tags are able to provide the required
functionality. This is due to the evolvement of extended tag capabilities based
on new semi-conductor technologies and antenna development. Progression in
tag capabilities and the research on even less power-consuming cryptographic
primitives will lead to passive RFID tags communicating securely on the Inter-
net. We claim that our contribution is an important advance on the way to an
all-embracing Internet of Things.
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