GRAZ UNIVERSITY OF TECHNOLOGY

DISSERTATION

to obtain the title of

Doctor of Technical Sciences
of Graz University of Technology

TU

Grazm
Graz University of Technology

Defended by
Dejan Aleksandar PECEVSKI

Modelling Inference and Learning
in Biological Networks of Neurons

Thesis Advisor: O.Univ. Prof. DI Dr.rer.nat. Wolfgang MAASS
defended on October, 7th, 2011

Jury:
Advisor: O.Univ. Prof. DI Dr.rer.nat. Wolfgang MAAss - TU Graz
Reviewer: Univ. Prof. Dr.rer.nat. Gordon P1PA - Osnabriick Univ.

Dean of Studies: Assoc. Prof. DI Dr.tech. Oswin AICHHOLZER - TU Graz

Eidesstattliche Erklarung

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbsténdig verfasst, andere
als die angegebenen Quellen / Hilfsmittel nicht benutzt, und die den benutzten
Quellen wortlich und inhaltlich entnommene Stellen als solche kenntlich gemacht
habe.

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

Graz, May 2011
(signature)

iii

Abstract

In this thesis top-down and bottom-up methods are applied in the study of two
central questions regarding the function of neural circuits in the brain: what type
of computations they implement and how learning on a synaptic level yields useful
computational functions on a circuit and behavioral level. Motivated by the need
to best support the neural modelling and simulation requirements of the research
done in this thesis and other related work, a novel software framework for neural
simulations named PCSIM was developed, which is another additional contribution
of this thesis.

Probabilistic inference in graphical models has been often proposed as a suitable
candidate framework for explaining the computations that the brain carries out, but
the neural basis of these computations remains unclear. In chapter 2 this problem is
approached, and several different possible implementations of probabilistic inference
in graphical models with networks of spiking neurons are presented. The developed
neural implementations perform probabilistic inference through Markov chain Monte
Carlo sampling and use specific network structures or dendritic computations in
biologically realistic neurons as basic building blocks to realize the required nonlinear
computational operations. Hence, they propose that the computational function of
local network motifs as well as the dendritic computations in single neurons is to
support the probabilistic inference operations on a larger network level.

In chapter 3 it is analysed theoretically and through computer simulations what
computations can be learned with reward-modulated spike-timing-dependent plas-
ticity, a synaptic plasticity learning rule based on experimental findings about long-
term synaptic efficacy changes. In particular, it is shown that this plasticity rule
enables spiking neurons to learn classification of temporal spike patterns. It is also
shown that neurons can learn with this rule a specific mapping from input spike pat-
terns to output spike patterns. Moreover, it is analysed under which conditions and
parameters values for the learning rule and the neuron model the learning in these
learning tasks is successful. Finally, it is also demonstrated that reward-modulated
STDP can explain experimental results on biofeedback learning in monkeys.

Chapter 4 gives an overview of the Parallel neural Circuit SIMulator (PCSIM)
with a focus on its integration with the Python programming language. PCSIM is a
neural simulation environment intended for simulation of spiking and analog neural
networks with a support for distributed simulation of large-scale neural networks on
multiple machines. In this chapter key features of PCSIM’s modular and extensible
object-oriented framework and user interface are outlined and it is described how
these features enable the user to develop and construct neural models easier and
faster, to speed up the simulations of the models, and to add easily custom extensions
to the PCSIM framework. Further, benefits from the integration of PCSIM with
Python are elucidated.

Keywords: probabilistic inference, sampling, graphical models, spiking
neurons, network motifs, dendritic processing, reward-modulated spike-

iv

timing-dependent plasticity, STDP, reward-based learning, biofeedback,
PCSIM, neural simulator, parallel simulation, Python

Zusammenfassung

In dieser Dissertation werden top-down und bottom-up Methoden zur Untersuchung
von zwei zentralen Fragen herangezogen, die die Funktion von neuralen Schaltkreisen
im Gehirn betreffen: welche Art von Berechnungen sie implementieren und wie Ler-
nen auf synaptischer Ebene zu sinnvollen Berechnungsfunktionen auf Schaltkreis-
und Verhaltensebene fithrt. Motiviert durch den Bedarf einer bestmoglichen Unter-
stiitzung der Anforderungen hinsichtlich neuronaler Modellierung und Simulation
an die Forschung, die in dieser Dissertation und verwandten Arbeiten durchge-
fiihrt wurde, wurde ein neues Software-Framework fiir neuronale Simulationen na-
mens PCSIM entwickelt, das einen weiteren zusétzlichen Betrag dieser Dissertation
darstellt.

Probabilistische Inferenz in graphischen Modellen ist oft als ein geeigneter Kan-
didat fiir ein Framework zur Erklarung der Berechnungen vorgeschlagen worden, die
das Gehirn ausfiihrt, die neurale Basis dieser Berechnungen blieb jedoch unklar. In
Kapitel 2 wird an dieses Problem herangegangen, und eine Reihe von verschiedenen
moglichen Implementationen von probabilistischer Inferenz in graphischen Mod-
ellen in Netzwerken von spikenden Neuronen werden prisentiert. Die entwickel-
ten neuronalen Implementationen fiihren probabilistische Inferenz mittels Markov
Chain Monte Carlo-Sampling aus und verwenden spezifische Netzwerkstrukturen
oder dendritische Berechnungen in biologisch realistischen Neuronen als elementare
Bausteine zur Realisierung der notwendigen nichtlinearen Berechnungsoperationen.
Das deutet darauf hin, dass die Berechnungsfunktionalitdt von lokalen Netzwerk-
motiven sowie die dendritischen Berechnungen in einzelnen Neuronen Operationen
fiir probabilistische Inferenz auf einer hheren Netzwerkebene unterstiitzen sollen.

In Kapitel 3 wird theoretisch und durch Computersimulationen analysiert,
welche Berechnungen mit belohnungsmodulierter Spike-Timing-Dependent Plastic-
ity gelernt werden konnen, einer Lernregel fiir synaptische Plastizitdt, die auf experi-
mentellen Erkenntnissen {iber langfristige dnderungen der synaptischen Wirksamkeit
beruht. Insbesondere wird gezeigt, dass diese Plastizitatsregel es spikenden Neuro-
nen erlaubt, Klassifikationen von temporalen Spike-Mustern zu lernen. Es wird
ebenfalls gezeigt, dass Neuronen mit dieser Regel eine spezifische Abbildung von
Input- auf Output-Spike-Mustern lernen kénnen. Dariiberhinaus wird analysiert,
unter welchen Bedingungen und Parametern fiir die Lernregel und das Neuronen-
modell das Lernen in diesen Aufgabenstellungen erfolgreich ist. Abschliefend wird
demonstriert, dass belohnungsmodulierte STDP experimentelle Resultate des Ler-
nens von Biofeedback in Affen erkldren kann.

Kapitel 4 bietet einen iiberblick iiber den parallelen neuralen Schaltkreissimula-
tor PCSIM (Parallel neural Circuit SIMulator) mit dem Schwerpunkt auf dessen
Integration mit der Python Programmiersprache. PCSIM ist eine neuronale Sim-
ulationsumgebung, die fiir die Simulation von spikenden und analogen neuronalen
Netzwerken vorgesehen ist, und die verteilte Simulationen von grofen neuronalen
Netzwerken auf mehreren Maschinen unterstiitzt. In diesem Kapitel werden die
Hauptmerkmale des modularen und erweiterbaren objektorientierten Frameworks

vi

und User-Interfaces vorgestellt, und es wird beschrieben, wie diese Merkmale es
dem Benutzer ermoglichen, neuronale Modelle einfacher und schneller zu entwickeln
und zu konstruieren sowie mafigeschneiderte Erweiterungen des PCSIM-Frameworks
einfach hinzuzufiigen. Des weiteren werden die Vorziige der Integration von PCSIM
in Python erldutert.

Schliisselwrter: Probabilistische Inferenz, graphische Modelle, spikende
Neuronen, Netzwerkmotive, dendritische Verarbeitung, belohnungsmod-
uliertes Lernen, STDP, Biofeedback, PCSIM, neuronaler Simulator, par-
allele Simulation, Python

vii

Acknowledgements

First of all I would like to thank my supervisor Prof. Wolfgang Maass for giving
me the opportunity to work on very exciting research topics and providing valuable
guidance and continuous support throughout my PhD studies. His broad expertise,
inspiring ideas and demand for excellence have greatly influenced my work. I also
want to express my gratitude to Thomas Natschldger for the fruitful collaboration
we had during the development of the PCSIM simulator, making it a successful and
enjoyable project. Also I am very thankful to my co-authors and colleagues Robert
Legenstein and Lars Biising for contributing worthwhile ideas and doing valuable
work within the research that lead to our joint publications. I would also like to
thank Prof. Gordon Pipa for accepting to be the second reviewer of my thesis.

Many thanks also go to my colleagues at the Institute of Theoretical Computer
Science (IGI), who with their enthusiasm for science, opennes to enroll in interesting
discussions and willingness to provide me with assistance when needed, made IGI an
exciting, motivating and friendly working environment. I am also grateful to Daniela
Potzinger and Oliver Friedl for their assistance and support regarding administrative
and hardware/software matters.

Apart from my colleagues, during my stay in Graz I got to know many excep-
tional people outside of work, whom I became good friends with. Thank you guys
for making these years in Graz a great experience.

Finally, I would like to express my deepest gratitude to my parents Aleksandar
and Ljubica for their encouragement and support in many ways throughout my life.
I would also like to deeply thank my sister Ivana, for being above all always a great
friend and for her enormous support during my PhD studies.

Contents

1 Introduction

2 Probabilistic Inference in General Graphical Models through Sam-

pling in Stochastic Networks of Spiking Neurons
2.1 Introduction

2.2 Results

2.2.1

2.2.2

2.2.3

224

Second Order Boltzmann Distributions with Auxiliary Ran-
dom Variables (Implementation 1)
Using the Markov Blanket Expansion of the Log-odd Ratio
2.2.2.1 TImplementation with Auxiliary Neurons (Implemen-
tation 2)o
2.2.2.2 Computer Simulation I: Comparison of two Meth-
ods for Emulating “Explaining Away” in Networks
of Spiking Neurons
2.2.2.3 Implementation with Dendritic Computation (Im-
plementation 3) L.
Using the Factorized Expansion of the Log-odd Ratio
2.2.3.1 Implementation with Auxiliary Neurons and Den-
dritic Branches (Implementation 4)
2.2.3.2 Implementation with Dendritic Computation (Im-
plementation 5)
Probabilistic Inference through Neural Sampling in Larger and
More Complex Bayesian Networks
2.2.4.1 Computer Simulation IT: ASTA Bayesian Network
2.2.4.2 Computer Simulation III: Randomly Generated
Bayesian Network

2.3 Discussion e

2.3.1 Related Work
2.3.2 Experimentally Testable Predictions of our Models
2.3.3 Conclusion
24 Methods
2.4.1 Markov Chains
2.4.2 Neuron Models,
2.4.3 Details to Second Order Boltzmann Distributions with Aux-

244
24.5
24.6
24.7

iliary Variables (Implementation 1)
Details to Implementation 2
Details to Implementation 3
Details to the Implementation 4.
Details to the Implementation 5.

Contents

2.4.8 Details to Computer Simulations 48
2.5 Acknowledgementso 53

A Learning Theory for Reward-Modulated Spike-Time-Dependent

Plasticity with Application to Biofeedback 55
3.1 Introduction o6
3.2 Results. 58
3.2.1 Theoretical analysis of the resulting weight changes 99
3.2.2 Application to models for biofeedback experiments 62
3.2.2.1 Computer simulation 1: Model for biofeedback ex-
periment Lo 64
3.2.3 Rewarding spike-timeso oL 66
3.2.3.1 Computer simulation 2: Learning spike times 72
3.2.3.2 Computer simulation 3: Testing the analytically de-
rived conditions 72
3.2.4 Pattern discrimination with reward-modulated STDP 74

3.2.4.1 Computer simulation 4: Learning pattern classification 76
3.2.4.2 Computer simulation 5: Training a readout neuron
with reward-modulated STDP to recognize isolated

spoken digitso 7
3.3 Methods 79
3.3.1 Linear Poisson Neuron Model 79
3.3.2 Learning equations oL 80
3.3.3 Derivations for the biofeedback experiment 83
3.3.4 Analysis of spike-timing dependent rewards (derivation of the
conditions (3.13)-(3.15)). 85
3.3.5 Analysis of the pattern discrimination task (derivation of
equation (3.17)). 89
3.3.6 Common models and parameters of the computer simulations 90
3.3.6.1 LIF neuron model 91
3.3.6.2 Short-term dynamics of synapses 91
3.3.6.3 Model of background synaptic activity 92
3.3.6.4 Reward-modulated STDP 93
3.3.6.5 Initial weights of trained neurons 94
3.3.6.6 Software 94
3.3.7 Details to individual computer simulations 94
3.3.7.1 Cortical Microcircuits 95
3.3.7.2 Readout neurons 96
3.3.7.3 Details to computer simulation 1: Model for biofeed-
back experiment L. 97

3.3.7.4 Details to computer simulation 2: Learning spike times 97
3.3.7.5 Details to computer simulation 3: Testing the ana-
lytically derived conditions 98

Contents x1

3.3.7.6 Details to computer simulation 4: Learning pattern
clagsificationo 98

3.3.7.7 Details to computer simulation 5: Training a readout
neuron with reward-modulated STDP to recognize

isolated spoken digits 98

3.4 Discussion 99
3.4.1 Related Worko oo 103
3.4.2 Conclusion 104

3.5 Acknowledgments L 105
4 PCSIM: a Parallel Simulation Environment for Neural Circuits 107
4.1 Introduction 107
4.2 Overview 110
4.2.1 Architecture 110
4.2.2 Scalability and Domain of Applicability 111

4.3 Python interface generation 113
4.4 Network constructiono 114
4.4.1 Theexamplemodel., 115
4.4.2 'The framework: object-oriented, modular and extensible . . . 116
4.4.3 Factories: creating network elements from models 117
444 Neuron populations 118
4.4.5 Projections: managing synaptic connections 119

4.5 Custom network elements 121
4.6 Extending PCSIM using C++ 124
4.7 PCSIM add-ons implemented in Python 126
4.71 PyNN.pcsim 126
472 pypesimplus 126
4.73 pylsm . ..o 131

4.8 Discussiono e 132
4.9 Acknowledgments oL oo 135
A List of Publications 137
A.1 Comments and Contributions to Publications 138

Bibliography 141

CHAPTER 1

Introduction

Arguably, one of the most alluring unanswered questions in modern science is how
the human brain works and gives rise to high-level mental processes and behav-
ior. There is a little doubt that any significant progress towards answering this
question will have a profound impact on society, science and technology. However,
the degree of difficulty of this open problem becomes evident as soon as we be-
gin to consider some known facts about the brain. First, it has a highly complex
structure: it is composed of a large number of units, approximately 100 billion neu-
ral cells and about 1000 trillion synaptic connections between them which through
their synergistic activity yield higher cognitive processing. Second, it has an ex-
tremely complex function: it generates highly diverse behaviors when faced with
various tasks and situations by engaging a combination of its cognitive processing
abilities like perception, decision making, memory, language, motor control etc. Fur-
thermore, the neural structures and their associated dynamical and computational
processes are organized on different spatial and temporal scales that span several
orders of magnitude (Churchland et al., 1993). On the spatial scale at the lowest
level are the molecular and electrophysiological processes within individual neurons
and synapses, then local networks of neurons or neural circuits, brain areas, systems
and the whole brain at the highest level. On the temporal scale, the temporal pro-
cesses range from fast stochastic dynamics of ion channels and generation of action
potentials and postsynaptic responses on the order of milliseconds, to long-term
synaptic plasticity mechanisms (believed to underlie long-term memory formation
and learning) and developmental changes that could span hours, days or longer.

In spite of being a tremendous challenge, the scientific quest of understanding
the brain has led to notable progress in the last decades. For example, at the level
of individual neurons many processes related to how neurons transmit and process
electrical and chemical signals are well understood. Also, with the advancement
of the electrophysiology recording techniques in vivo, numerous studies have been
pursued that reveal what information the spiking activity of single or small groups
of neurons in different parts of the brain contains about a given stimuli, movement
or specific behavior of the animal, as well as how the neurons encode this informa-
tion. In another line of research, on the level of brain areas, functional neuroimaging
techniques (fMRI, PET etc.) have provided means to look which parts of the brain
are activated above average when performing different cognitive tasks and based on
that to map higher cognitive functions to different brain regions. These are only
a few of many examples of progress that has been made in different subfields of

2 Chapter 1. Introduction

neuroscience. Still, at the level that should provide a link between the activity of
individual neurons and the function of different brain areas, the level of local neural
circuits at spatial scale on the order of millimeters in the cortex, many fundamental
questions remain largely unanswered. Namely, it is not known what is the com-
putational function of local networks of biological neurons, how is the computation
organized, how the neural circuits self-organize in specific structures that implement
the computational function, how they represent information, how they adapt and
learn at the micro-level in order to support the observed learning, memory and im-
provement of performance at the behavioral level, and so on. In summary, we can
tentatively frame these questions in three overlapping topics: the computational
function of neural circuits, their realization of learning and their development.

Before one starts to analyse what the computational function of local neural
circuits might be, one question that arises and is important to point out concerns
the degree of uniformity of the computational algorithms across areas in the cortex:
whether all neural circuits implement a specific adapted instance of a generic compu-
tational algorithm or the specifics are so large that we can not classify them as doing
the same type of computation. Although currently there is not a definite answer
on that, there are some facts that go strongly in favor of the generic cortical algo-
rithm hypothesis. One frequently given argument is that, as neuroanatomists have
observed, there is a striking similarity in the anatomical characteristics of neural
circuits across different areas of the cortex, e.g. its laminar structure, characteristic
connectivity patterns between cell types etc., and this anatomical uniformity sug-
gests also an existent uniformity at a functional level (Douglas and Martin, 2004a).
Additionally, the presence of topographic maps of sensory information in different
sensory cortices, visual, auditory and somatosensory, indicates a general principle of
spatial organization of information representation and processing in cortex. In fact
it has been also shown that if the optic nerve of an animal (a ferret) is rerouted to the
auditory cortex early in development, auditory cortex develops a retinotopic map
organization normally found in visual cortex (von Melchner et al., 2000). Finally, if
we treat the question from an evolutionary perspective, it is likely to assume that
after evolution found a brain structure in early mammals that proved very effective
for providing certain advantageous behavioral capabilities, it started replicating this
structure in descendant species producing larger cortex, since it led to animals with
more complex and flexible behavior and increased their chance of survival.

Specific cognitive functions presumably involve diverse information processing
that operate on inputs with different dynamics and statistics. Departing from the
premise that cortical computations share the same principles of organization and
have similar characteristics, they have to be general enough to achieve the required
diverse types of input-output mappings. Further, their inherent learning processes
should be robust and powerful enough to be able to realize the required computations
and be independent of the statistical properties of the processed inputs. These
themes of generality of computational processes, their efficiency, robustness as well as
learning capabilities are subjects of investigations in computer science and, regarding
learning issues in particular, its branch machine learning. Hence, computer science

is an indispensible and fruitful source of theoretical tools, models and computational
frameworks actively used in tackling the question of the computational function of
neural circuits.

The formulated mathematical models that capture the dynamics of parts of the
brain, e.g. the stochastic dynamics of ion channels, the input-output behavior of a
single neuron or the average population activity of a patch of the cortex, given usu-
ally in the form of coupled nonlinear differential equations, are in most of the cases
not amenable to analytical analysis, especially in models with a high-dimensional
state. Thus, numerical simulations of the created models on a computer system
are integral part of every study of the computational properties of biological net-
works of neurons. This implies an ongoing necessity to improve the process of
simulation-based analysis in all aspects and stimulates the research on techniques
and algorithms for simulation of neural systems, as well as software development of
neural simulation tools that implement those techniques. An important component
of these efforts, in addition to research on efficient numerical integration algorithms
and efficient and flexible algorithms for construction of neural models, are inno-
vations in software design. The goal in these innovations is to create a general
simulation object-oriented software framework that has an easy to use interface,
has already implemented a wide range of neurobiological model components and
different simulation strategies and perhaps most importantly, allows for easy user
extensions on many levels. Also, as larger computing resources are available in the
form of commodity clusters or supercomputer systems, one other desirable feature
provided by many neural simulators is the possibility of harnessing all available com-
puting power for simulation of larger neural network models by using distributed
simulation of one large neural network on many machines.

There are two complementary approaches that are applied in studies conducting
research on the computational properties and organization of computation in neural
circuits: the bottom-up and the top-down approach. In the bottom-up approach,
first mathematical models that describe neurobiological structures, mechanisms and
processes are derived based on sufficient amount of experimental data that charac-
terize well the studied phenomena. Then the resulting mathematical models are
simulated numerically on a computer and analysed from a computational perspec-
tive where it is examined what are the computational consequences of these phe-
nomena, i.e. what are the type of computations that they can support or carry out.
Within these studues it is often analysed what is the set of input-output functions
that a model can realize or learn, the way information is encoded within the model,
what is the efficiency of the computation, noise robustness, possibility of scaling up
etc. In the top-down approach, first a computational framework or algorithm is pos-
tulated as a possible candidate being able to explain the computations carried out
in neural circuits, and then a neural circuit model is constructed that can carry out
the postulated computations which at the same time is constrained by the available
experimental data. Following a top-down approach in creating a model is instrumen-
tal and necessary because very often there is not enough experimental data about
the structure and dynamics of neural circuits needed to constrain and build the

4 Chapter 1. Introduction

models. Thus, the postulated computational theory can provide hypotheses about
the unknown mechanisms and their biophysical or neural implementation which can
be used to complete the model construction. Furthermore, the theory-influenced
shaping of the models generates specific predictions which can be a valuable input
for ideas about new experimental studies that can test the predictions directly or
test consequences of them.

In this thesis both top-down and bottom-up methods are applied in the study
of two central questions regarding the function of neural circuits: what type of
computations they implement and how learning on a synaptic level yields useful
computational functions on a circuit and behavioral level. Motivated by the need to
best support the neural modeling and simulation requirements of the research done
in this thesis and other related work, a novel software framework for neural simu-
lations with many useful features named PCSIM was developed, which is another
additional contribution of this thesis. PCSIM was successfully used in the extensive
simulations in the studies in this thesis as well as in many other research projects.

Probabilistic inference in graphical models has been often proposed as a suit-
able candidate for explaining the computations that the brain carries out in the
face of great amount of uncertainty present in the sensory inputs and its internal
representations of the world. But the neural basis of these computations, i.e. how
networks of spiking neurons could implement probabilistic inference, remains un-
clear. In chapter 2 this problem is approached, and building on previous results
in (Biising et al., 2011) several different possible implementations of probabilistic
inference in graphical models with networks of spiking neurons are presented. The
developed neural implementations perform probabilistic inference through Markov
chain Monte Carlo sampling and use specific network structures or dendritic compu-
tations in biologically realistic neurons as basic building blocks to realize the required
nonlinear computational operations. Hence, they propose that the computational
function of local network structures as well as the dendritic computations in single
neurouns is to support the probabilistic inference operations on a larger network level.
The models further suggest that the stochastic properties of biological neurons have
a useful purpose to provide the necessary stochasticity in the sampling algorithm
and should not be viewed as undesirable noise. The performance and scalability of
the neural implementations are demonstrated through computer simulations where
they have been applied on several example graphical models.

In chapter 3 it is analysed theoretically and through computer simulations what
computations can be learned with reward-modulated spike-timing-dependent plas-
ticity, a synaptic plasticity learning rule based on experimental findings about long-
term synaptic efficacy changes dependent on spike times and the gating effect of neu-
romodulators on this type of plasticity. Spike-timing-dependent plasticity (STDP) is
an experimentally observed effect about changes in synaptic efficacy that is believed
to underlie the learning and long-term memory processes in the brain. Modulation
of STDP with a neuromodulatory signal (e.g. dopamine) related to reward is a can-
didate mechanism that could explain how local synaptic changes on a micro-scale
support adaptive behavioral changes based on reinforcements on a macro-scale. In

chapter 3 it is shown that this plasticity rule enables spiking neurons to learn clas-
sification of temporal spike patterns, and respond with a high firing rate to one
of the patterns while remaining silent for the other. It is also shown that neurons
can learn with reward-modulated STDP a specific mapping from input spike pat-
terns to output spike patterns. Moreover, it is analysed theoretically under which
conditions and parameter values for the learning rule and the neuron model the
learning in these learning tasks is successful. Additionally, it is demonstrated that
reward-modulated STDP can explain experimental results of biofeedback learning
in monkeys (Fetz and Baker, 1973) and be used to train spiking neurons to read out
information from a preprocessing neural circuit. The results also suggest a func-
tional role for spontaneous activity as performing random exploration needed in
reward-based learning.

Chapter 4 gives an overview of the Parallel neural Circuit SIMulator (PCSIM)
with a focus on its integration with the Python programming language. PCSIM is a
neural simulation environment intended for simulation of spiking and analog neural
networks with a support for distributed simulation of large-scale neural networks
on multiple machines. It is implemented in C++ with its user interface exposed
in the Python programming language. In chapter 4 key features of PCSIM’s mod-
ular and extensible object-oriented framework and user interface are outlined and
it is described how these features enable the user to develop and construct neural
models easier and faster, to speed up the simulations of the models, and to add
easily custom extensions to the framework in order to adapt the simulator to his
own modeling needs. Further, some of the many benefits the integration of PCSIM
with Python brings to the user are elucidated: high-level, easy to use, scripting in-
terface for specification of the models, extending PCSIM with add-ons implemented
in Python fostering a hybrid approach to modelling, and combined usage of PCSIM
with many other scientific computing Python software packages (general or neuro-
science specific). Also, the supplementary PCSIM packages implemented in pure
Python that augment the PCSIM package bundle with additional useful function-
alities are described.

Chapter 2 in this thesis is based on the paper Probabilistic Inference in General
Graphical Models through Sampling in Stochastic Networks of Spiking Neurons by
myself (DP), Lars Biising (LB) and Wolfgang Maass (WM). The paper was sub-
mitted for publication in 2011 and is under review. The experiments in this work
were concieved and designed by DP and WM. DP conducted the experiments and
analysed the simulation results. The paper builds on the theory of neural sampling
developed by LB and reported in (Biising et al., 2011). DP and WM provided the
additional theoretical derivations and analysis in the paper. DP and WM wrote the
manuscript. LB provided valuable comments that helped to improve the manuscript.

Chapter 3 is based on the journal article A Learning Theory for Reward-
Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback by

6 Chapter 1. Introduction

Robert Legenstein® (RL), myself! (DP) and Wolfgang Maass (WM) (PLoS Com-
putational Biology 4(10): €1000180, 2008). In this article RL contributed the theo-
retical analysis, RL, DP and WM conceived and designed the experiments and DP
conducted the experiments and analysed the simulation results. RL, DP and WM
wrote the manuscript.

Chapter 4 is based on the journal article PCSIM: A Parallel Simulation Envi-
ronment for Neural Circuits Fully Integrated with Python by myself (DP), Thomas
Natschldger (TN) and Klaus Schuch (KS) (Frontiers in Neuroinformatics 3:11,
2009). The PCSIM software described in the article was developed by DP and
TN, with contributions from KS. TN supervised the software development project.
DP implemented and performed the computer simulation tests reported in the ar-
ticle. The article was written by DP and TN. KS wrote the section that describes
the PYLSM package and gave useful comments for improving the manuscript.

!These authors contributed equally to the work in this paper.

CHAPTER 2

Probabilistic Inference in General
Graphical Models through
Sampling in Stochastic Networks
of Spiking Neurons

Contents
2.1 Introduction e 8
22 Results. it 14
2.3 Discussion v v ittt e e e e e e e 31
2.4 Methods v v v i i i i i e e e 38
2.5 Acknowledgements. 000, 53

An important open problem of computational neuroscience is the generic orga-
nization of computations in networks of neurons in the brain. It has been argued
that traditional models for universal computation, such as Turing machines, are
less suitable as a conceptual framework. Probabilistic inference in graphical mod-
els has been proposed as an alternative, that would be better suited for solving
the computational tasks which the brain has to carry out, where decisions have
to be made based on large numbers of uncertain percepts and memories. But it
has remained an open problem how such computations could be carried out by
networks of spiking neurons. We show here that inherent stochastic features of
spiking neurons, in combination with simple nonlinear computational operations in
specific network motifs and dendritic arbors, enable networks of spiking neurons to
carry out probabilistic inference through sampling in general graphical models. In
particular, it enables them to carry out probabilistic inference in Bayesian networks
with converging arrows (“explaining away”) and with undirected loops, that occur in
many real-world tasks. The resulting computational model suggests that ubiquitous
stochastic features of networks of spiking neurons, such as trial-to-trial variability
and spontaneous activity, should not be viewed as effects of noise in deterministic
computations, but rather as necessary ingredients of this underlying computational
organization. We demonstrate through computer simulations that this approach can
be scaled up to neural emulations of probabilistic inference in fairly large graphical

8 Chapter 2. Sampling in Graphical Models with Spiking Neurons

models, yielding some of the most complex computations that have been carried out
so far in networks of spiking neurons.

2.1 Introduction

In spite of intense theoretical and experimental research that spans almost a century,
the fundamental questions how information processing in the brain is organized,
and which concrete computational operations are carried out by stereotypical cor-
tical microcircuits, have remained unanswered. Turing machines, logical inference
machines, and related universal computational models would provide sufficient com-
putational power for deterministic computations, but their structure and dynamics
is incompatible with basic aspects of neural circuits. Attractor neural networks and
synfire chains fair better from this perspective, but it seems difficult to implement
very complex computations with them.

Probabilistic inference in Bayesian networks (Pearl, 1988) and other graphical
models (Bishop, 2007; Koller and Friedman, 2009) has emerged as an alternative
computational framework that is especially suited for computational tasks that the
brain has to solve: The formation of coherent interpretations of incomplete and
ambiguous sensory stimuli, fast learning of new information, integration of previ-
ously acquired knowledge with new information, movement planning, reasoning and
decision making in the presence of uncertainty (Rao et al., 2002; Doya et al., 2007;
Fiser et al., 2010). In this approach one assumes that previously acquired knowledge
(facts, rules, constraints, successful responses) is encoded in a joint distribution p
over numerous random variables (RVs) z1,..., 2k, that represent features of sen-
sory stimuli, aspects of internal models for the environment, environmental and
behavioral context, values of carrying out particular actions in particular situations
(Toussaint and Goerick, 2010), goals, etc. If the values of some of these RVs assume
concrete values e (e.g. because of observations, or because a particular goal needs
to be reached), the distribution of the remaining variables changes in general. A
typical computation that needs to be carried out for probabilistic inference for some
joint distribution p(z1,..., 21, 2141, - .-, 2K) is the evaluation of an expression of the
type

p(z1]e) = Z p(z1,v2,...,vl€e) , (2.1)

all possible values
va,...,v for za,..., 2

where concrete values e (the "evidence" or “observations”) have been inserted for
the RVs 241, ..., 2zK. These variables are then often called observable variables, and
the others latent variables. Note that the term “evidence” is somewhat misleading,
since the assignment e represents some arbitrary input to a probabilistic inference
computation, without any connotation that it represents correct observations or
memories. The computation of the resulting marginal distribution p(z;|e) requires a
summation over all possible values va, ..., v; for the RVs 29, ..., 2; that are currently
not of interest for this probabilistic inference. This computation is in general quite

2.1. Introduction 9

complex (in fact, it is NP-complete (Koller and Friedman, 2009)) because in the
worst case exponentially in [many terms need to be evaluated and summed up.

It turned out to be surprisingly difficult to elucidate how networks of neurons
in the brain could possibly implement such computations, even for rather simple
probability distribution p. Most previous attempts had focused on belief propaga-
tion, i.e., on distributed deterministic arithmetical computations for the evaluation
of the r.h.s. of (2.1). Such computational schemes are hard to reconcile with ex-
perimental data on the dynamics of networks of neurons in the brain, for example
their stochastic aspects such as trial-to-trial variability. In addition, belief prop-
agation is not guaranteed to work for general Bayesian networks with undirected
cycles. Other modelling attempts, starting with Boltzmann machines (Ackley et al.,
1985), proposed that the ubiquitous stochastic aspects of neuronal responses pro-
vide clues that the brain has chosen a completely different way for carrying out
probabilistic inference: by building an internal model for the probability distribu-
tion p for which inference has to be carried out, and by drawing examples from
this probability distribution p. This approach is referred to as sampling in machine
learning. If one has a physical realization of p, i.e. a mechanism that draws samples
(vi,...,v;) of assignments to all “free” RVs z1,...,2 in (2.1) according to the dis-
tribution p(z1,..., 2, e), one can estimate p(z1|e) by just observing how often each
possible value vy for z; occurs in these samples (vy,...,v;). Similarly one can infer
relationships among RVs z1, ..., z;, e.g. whether z; and zy are correlated by simply
observing how often v; = vy occurs in these samples.

A very successful method for such probabilistic inference through sampling has
become known in machine learning under the name Markov chain Monte Carlo
(MCMC) sampling (Neal, 1993), (Andrieu et al., 2003), (Koller and Friedman, 2009).
The general idea is to construct a Markov chain whose set of states is exactly the
set of all possible assignments (v1,...,vx) of values to the RVs of p, and whose
stationary distribution of states (see Methods) is exactly the distribution p for which
one wants to carry out probabilistic inference. Under some mild conditions the
relative time that the Markov chain spends in each of its states is guaranteed to
converge — from any initial state — to this stationary distribution p. Hence, as soon
as the Markov chain provides a good approximation of p, the sequence of states
(v1,...,vK) that it enters (starting from any initial state) can be viewed as almost
unbiased samples from p.

For a Boltzmann machine a standard way of sampling is Gibbs sampling. This
Markov chain is reversible, i.e., stochastic transitions between states do not have a
preferred direction. This sampling method works well in artificial neural networks,
where the effect of each neural activity lasts for exactly one discrete time step. But
it is in conflict with basic features of networks of spiking neurons, where each action
potential (spike) of a neuron triggers inherent temporal processes in the neuron itself
(e.g. refractory processes), and through postsynaptic potentials of specific durations
in other neurons to which it is synaptically connected. These inherent temporal pro-
cesses of specific durations are non-reversible, and are therefore inconsistent with

10 Chapter 2. Sampling in Graphical Models with Spiking Neurons

the mathematical model (Gibbs sampling) that underlies probabilistic inference in
Boltzmann machines. However very recently a somewhat different mathematical
model (sampling in non-reversible Markov chains) has emerged as an alternative
framework for probabilistic inference in neural networks, that is compatible with
these basic features of the dynamics of networks of spiking neurons (Biising et al.,
2011). In this approach one relates the firing activity in a network A of K spik-
ing neurons vy, ...,vk to sampling from a distribution p(z1,...,2x) over binary
variables z1, ..., zx by setting

zi(t) =1 if and only if neuron vy has fired within the preceding 59
time interval (¢ — 7,t] of length 7 | (22)
(we restrict our attention here to binary RVs; multinomial RVs could in principle
be represented by WTA circuits — see Discussion). The constant 7 models the
average length of the effect of a spike on the firing probability of other neurons or
of the same neuron, and can be set for example to 7 = 20 ms. However with this
definition of its internal state (21(¢),. .., zx(t)) the dynamics of the neural network
N can not be modelled by a Markov chain, since knowledge of this current state
does not suffice for determining the distribution of states at future time points,
say at time ¢ + 5 ms. This distribution requires knowledge about when exactly a
neuron v, with z;(t) = 1 had fired. Therefore auxiliary random variables (i, ..., (x
with multinomial or analog values were introduced in (Biising et al., 2011), that
keep track of when exactly in the preceding time interval of length 7 a neuron
v, had fired, and thereby restore the Markov property for a Markov chain that is
defined over an enlarged state set consisting of all possible values of z1, ..., zx and
(1,...,Cx. However the introduction of these hidden variables (1, ..., (k, that keep
track of inherent temporal processes in the network A of spiking neurons, comes
at the price that the resulting Markov chain is no longer reversible (because these
temporal processes are not reversible). But it was shown in (Biising et al., 2011)
that one can prove nevertheless for any distribution p(z1,...,zx) for which the
so-called neural computability condition (NCC), see below, can be satisfied by a
network A of spiking neurons, that A defines a non-reversible Markov chain whose
stationary distribution is an expanded distribution p(z1,...,2x,(1,-.-,Cx), whose
marginal distribution over zq,...,zx (which results when one ignores the values of
the hidden variables (i,...,(x) is the desired distribution p(z1,...,2x). Hence a
network A of spiking neurons can sample from any distribution p(z1,...,2x) for
which the NCC can be satisfied. This implies that any neural system that contains
such network A can carry out the probabilistic inference task (2.1): The evidence e
could be implemented through external inputs that force neuron v}, to fire at a high
rate if zx = 1 in e, and not to fire if z; = 0 in e. In order to estimate p(z1|e), it
suffices that some readout neuron estimates (after some initial transient phase) the
resulting firing rate of the neuron v; that represents RV zj.
The NCC requires that for each RV zj the firing probability density px(t) of
some corresponding neuron v at time ¢ satisfies, if the neuron is not in a refractory

2.1. Introduction 11

period

plar = 1z\p)

(t) = 1 Pk = 2w
PR =2 Pz = 0|2\1)

: (2.3)

where z; denotes the current value of all other RVs, i.e., all z; with i # k. We
use in this work the same model for a stochastic neuron as in (Biising et al., 2011)
(continuous time case), which can be matched quite well to biological data according
to (Jolivet et al., 2006). In the simpler version of this neuron model one assumes that
it has an absolute refractory period of length 7, and that the instantaneous firing
probability py(t) satisfies outside of its refractory period px(t) = L exp(ux(t)), where
ug(t) is its membrane potential (see Methods for an account of the more complex
neuron model with a relative refractory period from (Biising et al., 2011), that we
have also tested in our simulations). The NCC from (2.3) can then be reformulated
as a condition on the membrane potential of the neuron

Pz = 1z\x)
up(t) = log ————= 2.4
Q p(2k = 0]2\) (24)
Let us consider a Boltzmann distribution p of the form
1 1
p(zl,...,zK) = E exp ZEWijzizj +szzz (2.5)
i, i

with symmetric weights (i.e., W;; = W};) that vanish on the diagonal (i.e., Wj; = 0).
In this case the NCC can be satisfied by a uk(t) that is linear in the postsynaptic
potentials that neuron vy receives from the neurons v; that represent other RVs z;:

K

up(t) =bp + Y Wi 2(t) (2.6)
=1

where by, is the bias of neuron vy, (which regulates its excitability), Wy, is the strength
of the synaptic connection from neuron v; to vk, and z;(t) approximates the time
course of the postsynaptic potential caused by a firing of neuron v; at some time
tzf < t (2i(t) assumes value 1 during the time interval [t{ ,t{ + 7), otherwise it has
value 0).

However, it is well known that probabilistic inference for distributions of the
form (2.5) is too weak to model various important computational tasks that the
brain is obviously able to solve, at least without auxiliary variables. While (2.5)
only allows pairwise interactions between RVs, numerous real world probabilistic
inference tasks require inference for distributions with higher order terms. For ex-
ample, it has been shown that human visual perception involves “explaining away”,
a well known effect in probabilistic inference, where a change in the probability of
one competing hypothesis for explaining some observation affects the probability of
another competing hypothesis (Kersten and Yuille, 2003). Such effects can usually
only be captured with terms of order at least 3, since 3 RVs (for 2 hypotheses and

12 Chapter 2. Sampling in Graphical Models with Spiking Neurons

1 observation) may interact in complex ways. A well known example from visual
perception is shown in Fig. 2.1, for a probability distribution p over 4 RVs z1, ..., z4,
where z; is defined by the perceived relative reflectance of two abutting 2D areas,
2o by the perceived 3D shape of the observed object, z3 by the observed shading
of the object, and z4 by the contour of the 2D image. The difference in shading
of the two abutting surfaces in Fig. 2.1A could be explained either by a difference
in reflectance of the two surfaces, or by an underlying curved 3D shape. The two
different contours (RV z4) in the upper and lower part of Fig. 2.1A influence the
likelihood of a curved 3D shape (RV z3). In particular, a perceived curved 3D shape
“explains away” the difference in shading, thereby making an uniform reflectance
more likely. The results of (Knill and Kersten, 1991) and numerous related results
suggest that the brain is able to carry out probabilistic inference for more complex
distributions than the 2" order Boltzmann distribution (2.5).

We show in this work that the neural sampling method of (Biising et al., 2011)
can be extended to any probability distribution p, in particular to distributions with
higher order dependencies among RVs, by using auxiliary spiking neurons in A that
do not directly represent RVs zj, or by using nonlinear computational processes in
multi-compartment neuron models. As one can expect, the number of required aux-
iliary neurons or dendritic branches increases with the complexity of the probability
distribution p for which the resulting network of spiking neurons has to carry out
probabilistic inference. Various types of graphical models (Koller and Friedman,
2009) have emerged as convenient frameworks for characterizing the complexity of
distributions p from the perspective of probabilistic inference for p.

We will focus in this work on Bayesian networks, a common type of graphical
model for probability distributions. But our results can also be applied for other
types of graphical models. A Bayesian network is a directed graph (without directed

cycles), whose nodes represent RVs z1,...,zx. Its graph structure indicates that
p(z1,...,2K) admits a factorization of the form
K
p(z1,- .5 z) = | [p(zrlpalz), (2.7)
k=1

where pa(zy) is the set of all (direct) parents of the node indexed by zj (see Fig. 2.1B,
2.7A, 2.9 for examples). For example, the Bayesian network in Fig. 2.1B implies
that the factorization p(z1, 22, 23, 24) = p(21)p(22)p(23|21, 22)p(24]23) is possible.

We show that the complexity of the resulting network of spiking neurons for
carrying out probabilistic inference for p can be bounded in terms of the graph
complexity of the Bayesian network that gives rise to the factorization (2.7). More
precisely, we present three different approaches for constructing such networks of
spiking neurons:

e through a reduction of p to a Boltzmann distribution (2.5) with auxiliary RVs

e through a Markov blanket expansion of the r.h.s. of the NCC (2.4)

2.1. Introduction 13

Z1: relative reflectance Z2: 3D shape
Z3: shading Z4: contour
N or
or other
spikes of A
neuron Vj; \ ‘ \ ‘ \

t

«lnnnn o,

V3 vy
| preprocessing | preprocessing |

Figure 2.1: See next page for figure caption.

e through a factorized expansion of the r.h.s. of the NCC (2.4)

We will show that there exist two different neural implementation options for each
of the last two approaches, using either specific network motifs or dendritic pro-
cessing for nonlinear computation steps. This yields altogether 5 different options
for emulating probabilistic inference in Bayesian networks through sampling via the
inherent stochastic dynamics of networks of spiking neurons. Furthermore we will
exhibit characteristic differences in the complexity and performance of the resulting
networks, and relate these to the complexity of the underlying Bayesian network.
But in contrast to some previously suggested emulations of probabilistic inference by
networks of spiking neurons, all 5 of these neural implementation options can read-
ily be applied to Bayesian networks where several arcs converge to a node (giving
rise to the “explaining away” effect), and to Bayesian networks with undirected cy-
cles (“loops”). All methods for probabilistic inference from general graphical models
that we propose in this work are from the mathematical perspective special cases of
MCMC sampling. However in view of the fact that they expand the neural sampling
approach of (Biising et al., 2011), we will refer to them more specifically as neural
sampling.

We show through computer simulations for three different Bayesian networks of
different sizes that neural sampling can be carried quite fast with the help of the
second and third approach, providing good inference results within a behaviorally
relevant time span of a few hundred ms. One of these Bayesian networks addresses
the previously described classical “explaining away” effect in visual perception from

14 Chapter 2. Sampling in Graphical Models with Spiking Neurons

Figure 2.1: The visual perception experiment of (Knill and Kersten, 1991) that demon-
strates “explaining away”, and the Bayesian network that models the phenomenon. A)
Two visual stimuli, each exhibiting the same luminance profile in the horizontal direction.
The two visual stimuli differ only with regard to their contours, which suggest different 3D
shapes (flat versus 2 cylinders). This in turn influences our perception of the reflectance
of the two halves of each stimulus (a step in the reflectance at the middle line, versus uni-
form reflectance): the cylindrical 3D shape “explains away” the reflectance step. B) The
Bayesian network that models this effect consists of 4 RVs z1, 29, z3, and z4. The relative
reflectance (z1) of the two halfs can have two values, different (z; = 1) or the same (21 =
0). The perceived 3D shape is either cylindrical (2o = 1) or flat (22 = 0). The relative
reflectance and the 3D shape are direct causes of the shading (luminance change) of the
surfaces denoted as z3, which can have the profile like in panel A (z3 = 1) or a different
one (z3 = 0). The 3D shape of the object causes different perceived contours z4, which can
be either straight (z4 = 0) or curved (24 = 1). The observed variables are the contour (z4)
and the shading (z3) of the stimulus. Subjects infer the value of the relative reflectance
and the 3D shape based on this evidence. The probability distribution p(z1, 22, 23, z4) of
the Bayesian network factorizes to p(z1)p(22)p(23|21, 22)p(24|22), and the inference problem
is to calculate the marginal posterior probability distributions p(z1|z3, z4) and p(22|z3, 24).
C) Each of these RVs zj are represented in our neural emulations of probabilistic infer-
ence by a principal neuron vy in such a way, that each spike of 4 sets the RV zp to 1
for a time period of length 7. D) The structure of a network of spiking neurons that per-
forms probabilistic inference for the Bayesian network of panel B through sampling from
conditionals of the underlying joint probability distribution p(z1, 22, 23, 24). Each principal
neuron employs preprocessing to satisfy the neural computability condition (NCC), either
by dendritic processing or by a preprocessing circuit. Note that, in contrast to the directed
acyclic Bayesian network of panel B, this computational network (see Fig. 2.6 for a concrete
neural emulation) is recurrently connected, resulting from the fact that during probabilistic
inference information flows also against the direction of the arcs in the Bayesian network
(an example is the “explaining away” effect).

Fig. 2.1. The other two Bayesian networks not only contain numerous “explaining
away” effects, but also undirected cycles. Altogether, our computer simulations and
our theoretical analysis demonstrate that networks of spiking neurons can emulate
probabilistic inference for general Bayesian networks. Hence we propose to view
probabilistic inference in graphical models as a generic computational paradigm,
that can help us to understand the computational organization of networks of neu-
rons in the brain, and in particular the computational role of precisely structured
cortical microcircuit motifs.

2.2 Results

We present several ways how probabilistic inference for a given joint distribution
p(z1,...,2K), that is not required to have the form of a 2"¢ order Boltzmann dis-
tribution (2.5), can be carried out through sampling from the inherent dynamics of
a recurrent network N of stochastically spiking neurons. All these approaches are
based on the idea that such network A of spiking neurons can be viewed — for a

2.2. Results 15

suitable choice of its architecture and parameters — as a “physical model” for the
distribution p, in the sense that its distribution of network states converges to p,
from any initial state. Then probabilistic inference for p can be easily carried out by
any readout neuron that observes the resulting network states, or the spikes from
one or several neurons in the network. This holds not only for sampling from the
prior distribution p, but also for sampling from the posterior after some evidence
e has become available (see (2.1)). The link between network states of A/ and the
RVs z1,..., 2k is provided by assuming that there exists for each RV zj a neuron vy,
so that each time when vy fires, it sets the associated binary RV z; to 1 for a time
period of some length 7 (see Fig. 2.1C). We refer to neurons vy that represent in
this way a RV z; as principal neurons. All other neurons are referred to as auxiliary
neurons.

The mathematical basis for analyzing the distribution of network states, and re-
lating it to a given distribution p, is provided by the theory of Markov chains. More
precisely, it was shown in (Biising et al., 2011) that by introducing for each principal
neuron v, an additional hidden analog RV (g, that keeps track of time within the
time interval of length 7 after a spike of vy, one can model the dynamics of the
network A/ by a non-reversible Markov chain. This Markov chain is non-reversible,
in contrast to Gibbs sampling or other Markov chains that are usually considered in
Machine Learning and in the theory of Boltzmann machines, because this facilitates
the modelling of the temporal dynamics of spiking neurons, in particular refractory
processes within a spiking neuron after a spike and temporally extended effects of
its spike on the membrane potential of other neurons to which it is synaptically con-
nected (postsynaptic potentials). The underlying mathematical theory guarantees
that nevertheless the distribution of network states of this Markov chain converges
(for the “original” RVs z) to the given distribution p, provided that the NCC (2.4)
is met. This theoretical result reduces our goal, to demonstrate ways how a network
of spiking neurons can carry out probabilistic inference in general graphical models,
to the analysis of possibilities for satisfying the NCC (2.4) in networks of spiking
neurons. The networks of spiking neurons that we construct and analyze build pri-
marily on the model for neural sampling in continuous time from (Biising et al.,
2011), since this is the more satisfactory model from the biological perspective. But
all our results also hold for the mathematically simpler version with discrete time.

We exhibit both methods for satisfying the NCC with the help of auxiliary
neurons in networks of point neurons, and in networks of multi-compartment neu-
ron models (where no auxiliary neurons are required). All neuron models that we
consider are stochastic, where the probability density function for the firing of a
neuron at time ¢ (provided it is currently not in a refractory state) is proportional
to exp(u(t)), where u(t) is its current membrane potential at the soma. We assume
(as in (Biising et al., 2011)) that in a point neuron model the membrane potential
u(t) can be written as a linear combination of postsynaptic potentials. Thus if the
principal neuron v is modelled as a point neuron, we have

16 Chapter 2. Sampling in Graphical Models with Spiking Neurons

K
up(t) = b+ Y Wi 2(t) (2.8)
i=1
where by, is the bias of neuron vy, (which regulates its excitability), Wy, is the strength
of the synaptic connection from neuron v; to vk, and z;(t) approximates the time
course of the postsynaptic potential in neuron vy caused by a firing of neuron v;.
The ideal neuron model from the perspective of the theory of (Biising et al., 2011)
has an absolute refractory period of length 7, which is also the assumed length of a
postsynaptic potential (EPSP or IPSP). But it was shown there through computer
simulations that neural sampling can be carried out also with stochastically firing
neurons that have a relative refractory period, i.e. the neuron can fire with some
probability with an interspike interval of less than 7. In addition, it was shown there
theoretically that the resulting neural network samples from a slight variation of the
target distribution p, that is in most cases practically indistinguishable.

Before we describe two different theoretical approaches for satisfying the NCC,
we first consider an even simpler method for extending the neural sampling approach
from (Biising et al., 2011) to arbitrary distributions p: through a reduction to 2"¢
order Boltzmann distributions (2.5) with auxiliary RVs.

2.2.1 Second Order Boltzmann Distributions with Auxiliary Ran-
dom Variables (Implementation 1)

It is well known (Ackley et al., 1985) that any probability distribution p(z1,...,2x),
with arbitrarily large factors in a factorization such as (2.7), can be represented as
marginal distribution

pz) =3 p(z.x) (2.9)
xeX
of an extended distribution p(z,x) with auxiliary random variables x, that can be
factorized into factors of degrees at most 2. This can be seen as follows. Let p(z) be
an arbitrary probability distribution over binary variables with higher-order factors
¢c(z¢). Thus

1 C
p(z) = - [[#cz) . (2.10)
c=1

where z€ is a vector composed of the RVs that the factor ¢. depends on and Z is
a normalization constant. We additionally assume that p(z) is non-zero for each
value of z. The simple idea is to introduce for each possible assignment v to the
RVs z¢ in a higher order factor ¢.(z¢) a new RV ¢, that has value 1 only if v is the
current assignment of values to the RVs in z¢. We will illustrate this idea through the
concrete example of Fig. 2.1. Since there is only one factor that contains more than
2 RVs in the probability distribution of this example (see caption of Fig. 2.1C),
the conditional probability p(z3|z1,22), there will be 8 auxiliary RVs zgpo, Zoo01,

2.2. Results 17

..., x111 for this factor, one for each of the 8 possible assignments to the 3 RVs in
p(23|21, 22). Let us consider a particular auxiliary RV, e.g. zgo1. It assumes value 1
only if z1 =0, z0 = 0, and z3 = 1. This constraint for xgg1 can be enforced through
second order factors between xgg1 and each of the RVs 21, 20 and z3. For example,
the second order factor that relates xgg1 and z; has a value of 0 if zgg1 = 1 and
z1 =1 (i.e., if 21 is not compatible with the assignment 001), and value 1 otherwise.
The individual values of the factor p(z3|z1, 22) for different assignments to 21, zo and
zg are introduced in the extended distribution p(z, x) through first-order factors, one
for each auxiliary RV «¢. Specifically, the first-order factor that depends on xgg1
has value pp(zs = 1|21 = 0,22 = 0) — 1 (where p is a constant that rescales the
values of the factors so that up(zs|z1,22) > 1 for all assignments to z1, 22 and z3)
if xgo1 = 1, and value 1 otherwise. Further details of the construction method for
p(z,x) are given in the Methods section, together with a proof of (2.9).

The resulting extended probability distribution p(z,x) has the property that,
in spite of deterministic dependencies between the RVs z and x, the state set of
the resulting Markov chain (that consists of all non-forbidden value assignments to
z and x) is connected. In the previous example a non-forbidden value assignment
is zgor = 1 and 21 = 0,20 = 0,23 = 1. But 2991 = 0,21 = 0,29 = 0,23 = 1 is
also a non-forbidden value assignment. Such non-forbidden value assignments to
the auxiliary RVs x¢ corresponding to one higher order factor, where all of them
assume value of 0 regardless of the values of the z° RVs provide transition points
for paths of probability > 0 that connect any two non-forbidden value assignments
(without requiring that 2 or more RVs switch their values simultaneously). The
resulting connectivity of all non-forbidden states (see Methods for a proof) implies
that this Markov chain, which can be realized through a network N of spiking
neurons according to (Biising et al., 2011), has p(z,x) as its unique stationary
distribution. The given distribution p(z) arises as marginal distribution of this
stationary distribution of N, hence one can use N to sample from p(z) (just ignore
the firing activity of neurons that correspond to auxiliary RVs z¢).

Since the number of RVs in the extended probability distribution p(z,x) can
be much larger than the number of RVs in p(z), the corresponding spiking neural
network samples from a much larger probability space. This, as well as the presence
of deterministic relations between the auxiliary and the main RVs in the expanded
probability distribution, slow down the convergence of the resulting Markov chain to
its stationary distribution. We show however in the following, that there are several
alternatives for sampling from an arbitrary distribution p(z) through a network of
spiking neurons. These alternative methods do not introduce auxiliary RVs x, but
rather aim at directly satisfying the NCC (2.4) in a network of spiking neurons. In
Computer Simulation I (see Fig. 2.3) we have compared the resulting convergence
speed with that of the previously described method via auxiliary RVs. It turns out
that the alternative strategy provides an about 10 fold speed-up for the Bayesian
network of Fig. 2.1B.

18 Chapter 2. Sampling in Graphical Models with Spiking Neurons

2.2.2 Using the Markov Blanket Expansion of the Log-odd Ratio

Assume that the distribution p for which we want to carry out probabilistic inference
is given by some arbitrary Bayesian network B. There are two different options for
satisfying the NCC for p, which differ in the way by which the term on the r.h.s.
of the NCC (2.4) is expanded. The option that we will analyze first uses from the
structure of the Bayesian network B only the information about which RVs are in
the Markov blanket of each RV z;. The Markov blanket Bj of the corresponding
node zx in B (which consists of the parents, children and coparents of this node)
has the property that zj is independent from all other RVs once any assignment v
of values to the RVs zP* in the Markov blanket has been fixed. Hence p(zklz\i) =
p(z1|zP*), and the term on the r.h.s. of the NCC (2.4) can be expanded as follows:

Pl = 1z = 2P1(t)) _ o(t) =
log p(zp = 0|zBr = zBr(t)) v;k ka; ‘ [ZB (t) = v]) (2.11)

where

= 1|z8 =
wf, = log P |z v)

p(zx = 0|28 = v) (2.12)

The sum indexed by v runs over the set ZB* of all possible assignments of values
to zP%, and [zP* = v] denotes a predicate which has value 1 if the condition in the
brackets is true, and to 0 otherwise. Hence, for satisfying the NCC it suffices if there
are auxiliary neurons, or dendritic branches, for each of these v, that become active
if and only if it becomes clear from the firing activity of the principal neurons v; that

represent the variables z; in the Markov blanket Bj, that these variables currently

k
v

assume the value v. The corresponding term wy can be implemented with the help
of the bias by (see (2.8)) of the auxiliary neuron that corresponds to the assignment
v, resulting in a value of its membrane potential equal to the r.h.s. of the NCC
(2.4). We will discuss this implementation option below as Implementation 2. In
the subsequently discussed implementation option (Implementation 3) all principal
neurons will be multi-compartment neurons, and no auxiliary neurons are needed.
In this case w? scales the amplitude of the signal from a specific dendritic branch

to the soma of the multi-compartment principal neuron vy.

2.2.2.1 Implementation with Auxiliary Neurons (Implementation 2)

We illustrate the implementation of the Markov blanket expansion approach through
auxiliary neurons for the concrete example of the RV z; in the Bayesian network
of Fig. 2.1B (see Methods for a discussion of the general case). Its Markov blanket
By consists here of the RVs z5 and z3. Hence the resulting neural circuit (see
Fig. 2.2) for satisfying the NCC for the principal neuron v; uses 4 auxiliary neurons
@00, a1, 10 and aqq, one for each of the 4 possible assignments v of values to
the RVs 29 and z3. Each firing of one of these auxiliary neurons should cause an
immediately subsequent firing of the principal neuron vq. Lateral inhibition among
these auxiliary neurons can make sure that after a firing of an auxiliary neuron no

2.2. Results 19

2]

Figure 2.2: Implementation 2 (the neural implementation with auxiliary neurons, that uses
the Markov blanket expansion of the log-odd ratio), for the explaining away motif of the
Bayesian network from Fig. 2.1B. There are 4 auxiliary neurons, one for each possible value
assignment to the RVs z9 and z3 in the Markov blanket of z;. The principal neuron vy (v3
) connects to the auxiliary neuron a., directly if z (z3) has value 1 in the assignment v, or
via an inhibitory inter-neuron ¢y if 2 (23) has value 0 in v. The auxiliary neurons connect
with a strong excitatory connection to the principal neuron vy, and drive it to fire whenever
any one of them fires. The larger gray circle represents the lateral inhibition between the
auxiliary neurons .

other auxiliary neuron fires during the subsequent time interval of length 7, thereby
implementing the required absolute refractory period of the theoretical model from
(Biising et al., 2011). The presynaptic principal neuron v5(v3) is connected to the
auxiliary neuron oy directly if v assumes that z9(z3) has value 1, otherwise via
an inhibitory interneuron v (see Fig. 2.2). In case of a synaptic connection via an
inhibitory interneuron, a firing of v9(v3) prevents a firing of this auxiliary neuron
during the subsequent time interval of length 7. The direct excitatory synaptic
connections from v and vg raise the membrane potential of that auxiliary neuron
vy, for which v agrees with the current values of the RVs z9(t) and z3(t), so that it
reaches the value w”, and fires with a probability equal to the r.h.s. of the NCC (2.4)
during the time interval within which the value assignment v remains valid. The
other 3 auxiliary neurons are during this period either inhibited by the inhibitory
interneurons, or do not receive enough excitatory input from the direct connections
to reach a significant firing probability. Hence, the principal neuron v; will always
be driven to fire just by a single auxiliary neuron as corresponding to the current
value of the variables z5(t) and 23(t), and will fire immediately after o, fires.

As o, has a firing probability that satisfies the r.h.s. of the NCC (2.4) temporally

20 Chapter 2. Sampling in Graphical Models with Spiking Neurons

during the time interval while z5(¢) and z3(t) are consistent with v, the firing of the
principal neuron vy satisfies the r.h.s. of the NCC (2.4) at any moment in time.

2.2.2.2 Computer Simulation I: Comparison of two Methods for Emu-
lating “Explaining Away” in Networks of Spiking Neurons

In our preceding theoretical analysis we have exhibited two completely different
methods for emulating in networks of spiking neurons probabilistic inference in gen-
eral graphical models through sampling: either by a reduction to 2"¢ order Boltz-
mann distributions (2.5) through the introduction of auxiliary RVs (Implementation
1), or by satisfying the NCC (2.3) via the Markov blanket expansion. We have tested
the accuracy and convergence speed of both methods for the Bayesian network of
Fig. 2.1B, and the results are shown in Fig.2.3. The approach via the NCC converges
substantially faster.

2.2.2.3 Implementation with Dendritic Computation (Implementation
3)

We now show that the Markov blanket expansion approach can also be implemented
through dendritic branches of multi-compartment neuron models (see Methods) for
the principal neurons, without using auxiliary neurons (except for inhibitory in-
terneurons). We will illustrate the idea through the same Bayesian network example
as discussed in Implementation 2, and refer to Methods for a discussion of the case
of arbitrary Bayesian networks. Fig. 2.4 shows the principal neuron v; in the spiking
neural network for the Bayesian network of Fig. 2.1B. It has 4 dendritic branches
000, 001,910 and d11, each of them corresponding to one assignment v of values to
the variables zo and z3 in the Markov blanket of z;. The input connections from the
principal neurons vy and v to the dendritic branches of v follow the same pattern
as the connections from v and v to the auxiliary neurons in Implementation 2. Let
v be an assignment that corresponds to the current values of the variables z5(¢) and
z3(t). The efficacies of the synapses at the dendritic branches and their thresholds
for initiating a dendritic spike are chosen so that the total synaptic input to the
dendritic branch dy is then strong enough to cause a dendritic spike in the branch,
that contributes to the membrane potential at the soma a component whose am-
plitude! is equal to the parameter w) in (2.11). This amplitude could for example
be controlled by the branch strength of this dendritic branch (see (Losonczy et al.,
2008; Legenstein and Maass, 2011)). The parameters can be chosen so that all other
dendritic branches do not receive enough synaptic input to reach the local threshold
for initiating a dendritic spike, and therefore do not affect the membrane potential
at the soma. Hence, the membrane potential at the soma of 11 will be equal to the

!Since the parameters w¥ in (2.11) can have both positive and negative values and the amplitude
of the dendritic spikes and the excitatory synaptic efficacy is a positive quantity, in this and the
following neural implementations we always add a positive constant to w¥ to shift it into the positive
range. We subtract the same constant value from the steady state of the membrane potential.

2.2. Results 21

A B
1.0y
= rel. reflect.
60 = = 3D shape

© 8

. 40

Il a0

o £

2 =

Sy =20t

O I I I |
curved straight 20 25 30 35 40 45
contour time [s]

C contour = curved D contour = straight
10 .10

< ©

5 0.8 S 0.8

=06 =06

ok <

X 04 &04

N N

=02 = 0.2

< R

S 0.0 S 0.0 L =

0 1 2 3 0 1 2 3
time [s] time]

Figure 2.3: Results of Computer Simulation I: Performance comparison between an ideal
version of Implementation 1 (use of auxiliary RVs, results shown in green) and an ideal
version of implementations that satisfy the NCC (results shown in blue) for probabilistic
inference in the Bayesian network of Fig. 2.1B (“explaining away”). Evidence e (see (2.1)) is
entered for the RVs z3 and z4, and the marginal probability p(z1]e) is estimated. A) Target
values of p(z1]e) for e = (1,1) and e = (1,0) are shown in black, results from sampling
for 0.5 s from a network of spiking neurons are shown in green and blue. Panels C) and
D) show the temporal evolution of the Kullback-Leibler divergence between the resulting
estimates of p(z1|e) through neural sampling, averaged over 10 trials for e = (1,1) in C) and
for e = (1,0) in D). The green and blue areas around the green and blue curves represent the
unbiased value of the standard deviation. Panels A, C, D show that both approaches yield
correct probabilistic inference through neural sampling, but the approach via satisfying the
NCC converges about 10 times faster. B) The firing rates of principal neuron v (solid
line) and of the principal neuron v, (dashed line) in the approach via satisfying the NCC,
estimated with a sliding window (alpha kernel K(t) = £ exp (—%),7 = 0.1s). In this
experiment the evidence e was switched after 3 s (red vertical line) from e = (1,1) to
e = (1,0). The “explaining away” effect is clearly visible from the complementary evolution
of the firing rates of the neurons v and v5. The estimated marginal posterior is calculated
for each time point from the samples (number of spikes) from the beginning of the simulation
(or from ¢ = 3s for the second inference query with e = (1,0)).

1

contribution from the currently active dendritic branch wy,

the r.h.s of (2.11).

implementing thereby

22 Chapter 2. Sampling in Graphical Models with Spiking Neurons

Figure 2.4: Implementation 3 (the neural implementation with dendritic computation that
uses the Markov blanket expansion of the log-odd ratio), for the same explaining away
motif as in Fig. 2.2. The principal neuron v; has 4 dendritic branches, one for each
possible assignment of values v to the RVs 29 and z3 in the Markov blanket of z;. The
dendritic branches of neuron vy receive synaptic inputs from the principal neurons 5 and
v3 either directly, or via an interneuron (analogously as in Fig. 2.2). It is required that at
any moment in time exactly one of the dendritic branches (that one, whose index v agrees
with the current firing states of 5 and v3) generates dendritic spikes, whose amplitude at
the soma determines the current firing probability of v.

2.2.3 Using the Factorized Expansion of the Log-odd Ratio

The second strategy to expand the log-odd ratio on the r.h.s. of the NCC (2.4) uses
the factorized form (2.10) of the probability distribution p(z). This form allows us
to rewrite the log-odd ratio in (2.4) as a sum of log terms, one for each factor ¢,
¢ € C*, that contains the RV z;. One can write each of these terms as a sum over all
possible assignments v of values of the variables z¢ the factor ¢. depends on (except
z1). This yields

log p(ek = 1|Z\k - Z\k(t)) — Z Z wy Z\k t) =v]) (2.13)

plze = Olzyve = 24(8) 25, vezs,

where z{, is a vector composed of the RVs z¢ that the factor ¢ depends on — without
2k, and zik() is the current value of this vector at time ¢. Z\k denotes the set of all

possible assignments to the RVs z‘\Ek. The parameters wv’k are set to

(2.14)

2.2. Results 23

The factorized expansion in (2.13) is similar to (2.11), but with the difference that
we have another sum running over all factors that depend on z;. Consequently,
in the resulting Implementation 4 with auxiliary neurons and dendritic branches
there will be several groups of auxiliary neurons that connect to vg, where each
group implements the expansion of one factor in (2.13). The alternative model that
only uses dendritic computation (Implementation 5) will have groups of dendritic
branches corresponding to the different factors. The number of auxiliary neurons
that connect to v, in Implementation 4 (and the corresponding number of dendritic
branches in Implementation 5) is equal to the sum of the exponents of the sizes
of factors that depend on zy: > .o 2D(Z<k), where D(zik) denotes the number

of RVs in the vector z{,. This number is never larger than 21Bkl (where |By| is
the size of the Markov blanket of zx), which gives the corresponding number of
auxiliary neurons or dendritic branches that are required in the Implementation 2
and 3. These two numbers can considerably differ in graphical models where the
RVs participate in many factors, but the size of the factors is small. Therefore
one advantage of this approach is that it requires in general fewer resources. On the
other hand, it introduces a more complex connectivity between the auxiliary neurons
and the principal neuron (compare Fig.2.5 with Fig.2.2). Furthermore, the network
structure in Implementation 2 is compatible with a recently developed unsupervised
learning architecture with spiking neurons that uses a local STDP learning rule
(Nessler et al., 2010).

2.2.3.1 Implementation with Auxiliary Neurons and Dendritic Branches
(Implementation 4)

A salient difference to the Markov blanket expansion and Implementation 2 arises
from the fact that the r.h.s. of the factor expansion (2.13) contains an additional
summation over all factors ¢ that contain the RV z, (we write C* for this set
of factors). This entails that the principal neuron vy has to sum up inputs from
several groups of auxiliary neurons, one for each factor ¢ € Cj. Hence in contrast to
Implementation 2, where the principal neuron fired whenever one of the associated
auxiliary neurons fired, we now aim at satisfying the NCC by making sure that the

membrane potential of v, approximates at any moment in time the r.h.s. of the

k

NCC (2.4). One can achieve this by making sure that each auxiliary neuron o

fires immediately when the presynaptic principal neurons assume state v. Some
imprecision of the sampling may arise when the value of variables in zik changes,
while EPSPs caused by an earlier value of these variables have not yet vanished at the
soma of 1. This problem can be solved if the firing of the auxiliary neuron caused by
the new value of Zik shunts such EPSP, that had been caused by the preceding value
of zik, directly in the corresponding dendrite. This shunting inhibition should have
minimal effect on the membrane potential at the soma of v;. Therefore excitatory
synaptic inputs from different auxiliary neurons «,, (that cause a depolarization by
an amount wS" at the soma) should arrive on different dendritic branches dy of v
(see Fig. 2.5), that also have connections from associated inhibitory neurons iy.

24 Chapter 2. Sampling in Graphical Models with Spiking Neurons

Vo

Figure 2.5: Implementation 4 (implementation with auxiliary neurons and dendritic
branches, that uses the factorized expansion of the log-odd ratio) for the same explain-
ing away motif as in Fig. 2.2 and 2.4. As in Fig. 2.2 there is one auxiliary neuron ., for
each possible value assignment v to zo and z3. The connections from the neurons v5 and v
(that carry the current values of the RVs z5 and z3) to the auxiliary neurons are the same as
in Fig. 2.2, and when these RVs change their value, the auxiliary neuron that corresponds
to the new value fires. Each auxiliary neuron «, connects to the principal neuron vy at a
separate dendritic branch dy, and there is an inhibitory neuron i, connecting to the same
branch. The rest of the auxiliary neurons connect to the inhibitory interneuron i,,. The
function of the inhibitory neuron 7y is to shunt the active EPSP caused by a recent spike
from the auxiliary neuron «, when the value of the z, and z3 changes from v to another
value.

Fig. 2.5 shows the resulting implementation for the same explaining away motif
of Fig. 2.1B as the precedings figures 2 and 3. Note that the RV z; occurs there only
in a single factor p(z3|z1, 22), so that the previously mentioned summation of EPSPs
from auxiliary neurons that arise from different factors cannot be demonstrated in
this example.

2.2. Results 25

2.2.3.2 Implementation with Dendritic Computation (Implementation
5)

The last neural implementation that we consider is an adaptation of Implementation
3 (the implementation with dendritic computation, that uses the Markov blanket
expansion of the log-odd ratio) to the factorized expansion of the log-odd ratio.
In this case each principal neuron, instead of having all its dendritic branches cor-
responding to different value assignments to the RVs of the Markov blanket, has
several groups of dendritic branches, where each group corresponds to the linear
expansion of one factor in the log-odd ratio in (2.13). Fig. 2.6 shows the complete
spiking neural network that samples from the Bayesian network of Fig. 2.1B. The
principal neuron v has the same structure and connectivity as in Implementation 3
(see Fig. 2.4), since the RV z; participates in only one factor, and the set of variables
other that z; in this factor constitute the Markov blanket of z;. The same is true for
the principal neurons v3 and v4. As the RV 2, occurs in two factors, the principal
neuron v, has two groups of dendritic branches, 4 for the factor p(z3|z1, 2z2) with
synaptic input from the principal neurons 14 and vz, and 2 for the factor p(z4|z2)
with synaptic inputs from the principal neuron v4. Note for comparison, that this
neuron v needs to have 8 dendritic branches in Implementation 3, one for each
assignment of values to the variables 21, z3 and z4 in the Markov blanket of zs.

The number of dendritic branches of a principal neuron v in this implemen-
tation is the same as the number of auxiliary neurons for v in Implementation 4,
and is never larger than the number of dendritic branches of the neuron v in Im-
plementation 3. Although this implementation is more efficient with respect to the
required number of dendritic branches, when considering the possible application
of STDP for learning Implementation 3, the latter has the advantage that it can
learn an approximate generative model of the probability distribution of the inputs
without knowing apriori the factorization of the probability distribution.

The amplitude of the dendritic spikes from the dendritic branch 6% of the prin-
cipal neuron vy should be equal to the parameter w? from (2.13). The index ¢
identifies the two factors that depend on z3. The membrane voltage at the soma
of the principal neuron v is then equal to the sum of the contributions from the
dendritic spikes of the active dendritic branches. At time ¢ there is exactly one
active branch in each of the two groups of dendritic branches. The sum of the con-
tributions from the two active dendritic branches results in a membrane voltage at
the soma of the principal neuron that corresponds to the r.h.s of the (2.13). In the
Methods section we provide a general and detailed explanation of this approach.

2.2.4 Probabilistic Inference through Neural Sampling in Larger
and More Complex Bayesian Networks

We have tested the viability of the previously described approach for neural sampling
by satisfying the NCC also on two larger and more complex Bayesian networks:
the well-known ASIA-network (Lauritzen and Spiegelhalter, 1988), and an even

26 Chapter 2. Sampling in Graphical Models with Spiking Neurons

N

vy

Figure 2.6: Implementation 5 (implementation with dendritic computation that is based on
the factorized expansion of the log-odd ratio) for the Bayesian network shown in Fig. 2.1B.
RV 25 occurs in two factors, p(z3|z1,22) and p(24|22), and therefore v receives synaptic
inputs from v4, 3 and v4 on separate groups of dendritic branches. Altogether the synaptic
connections of this network of spiking neurons implement the graph structure of Fig. 2.1D.

larger randomly generated Bayesian network. The primary question is in both cases,
whether the convergence speed of neural sampling is in a range where a reasonable
approximation to probabilistic inference can be provided within the typical range
of biological reaction times of a few 100 ms. In addition, we examine for the ASIA-
network the question to what extent more complex and biologically more realistic
shapes of EPSPs affect the performance. For the larger random Bayesian network we
examine which difference in performance is caused by neuron models with absolute
versus relative refractory periods.

2.2.4.1 Computer Simulation II: ASTA Bayesian Network

The ASTA-network is an example for a larger class of Bayesian networks that are of
special interest from the perspective of Cognitive Science (Mansinghka et al., 2006).
Networks of this type, that consist of 3 types of RVs (context information, true
causes, observable symptoms) with directed edges only from one class to the next,
capture the causal structure behind numerous domains of human reasoning. The
ASIA-network (see Fig. 2.7A) encodes knowledge about direct influences between
environmental factors, 3 specific diseases, and observable symptoms. A concrete
distribution p that is compatible with this Bayesian network was specified through
conditional probabilities for each node as in (Lauritzen and Spiegelhalter, 1988)
(with one small change to avoid deterministic relationship among RVs, see Table 2

2.2. Results 27

B
3 V.
L
" 10 ms
C - = D - = iti
10- x-ray = unknown e x-ray = positive
0.8 0.8f
0.6 0.6
0.4} 0.4}
0.2F 0.2
0.0
p(tuberc.) p(lung c.) p(bronch.) p(tuberc.) p(lung c.) p(bronch.)
E __ F -
o 12r 1.2
& &
= =
> 0.8 > 0.8
5 5
g g
e ;&\\’_ e
< <
_Q _Q ——
5 — , — S . ‘ ‘
) 0.0] 0.0
00 06 12 18 24 30 00 06 12 18 24 30
time [s] time [s]

Figure 2.7: See next page for figure caption.

in Methods). The binary RVs of the network encode whether a person had a recent
visit to Asia (A), whether the person smokes (S), the presence of diseases tuberculosis
(T), lung cancer (C), and bronchitis (B), the presence of the symptom dyspnoea (D),
and the result of a chest x-ray test (X). This network not only contains multiple
“explaining away” effects (i.e., nodes with more than one parent), but also a loop
(i.e., undirected cycle) between the RVs S, B, D, C. Hence no probabilistic inference
approach based on belief propagation is guaranteed to work for this ASTA-network.

A typical example for probabilistic inference in this network arises when one
enters as evidence the facts that the patient visited Asia (A = 1) and has Dyspnoea
(D =1), and asks what is the likelihood of each of the RVs T, C, B that represent the

28 Chapter 2. Sampling in Graphical Models with Spiking Neurons

Figure 2.7: Results of Computer Simulation II: Probabilistic inference in the ASIA network
with networks of spiking neurons that use different shapes of EPSPs closer to neurophys-
iological measurements. The simulated neural networks correspond to Implementation 2.
The evidence is changed at t =3sfrome=(A=1,D=1)toe=(A=1,D=1,X =1)
(by additionally clamping the x-ray test RV to 1). The probabilistic inference query is to
estimate marginal posterior probabilities p(T' = 1|e), p(C = 1|e, and p(B = 1le). A) The
ASTA Bayesian network. B) The three different shapes of EPSPs used in the simulations,
an alpha shape (green curve), a smooth plateau shape (blue curve) and the optimal rect-
angular shape (black curve). Panels C) and D) show the estimated marginal probabilities
for each of the diseases, calculated from the samples generated during the first 800 ms of
the simulation with alpha shaped (green bars), plateau shaped (blue bars) and rectangular
(red bars) EPSPs, compared with the corresponding correct marginal posterior probabili-
ties (black bars), fore = (A=1,D=1)in C)ande=(A=1,D=1X =1) in D).
The results are averaged over 20 simulations with different random initial conditions and
the error bars show the unbiased estimate of the standard deviation. Panels E) and F)
show the sum of the Kullback-Leibler divergences between the correct and the estimated
marginal posterior probability for each of the diseases using alpha shaped (green curve),
plateau shaped (blue curve) and rectangular (red curve) EPSPs, for e = (A =1,D = 1)
inE)ande=(A=1,D=1,X =1)in F). The results are averaged over 20 simulation
trials, and the light green and light blue areas show the unbiased estimate of the standard
deviation for the green and blue curves respectively (the standard deviation for the red
curve is not shown to avoid clutter). The estimated marginal posteriors are calculated for
each time point from the gathered samples from the beginning of the simulation (or from
t = 3s for the second inference query with e = (A=1,D =1,X =1)).

diseases, and how the result of a positive x-ray test would affects these likelihoods.

We tested this probabilistic inference in a network of spiking neurons according
to Implementation 2 with three different shapes of the EPSPs: an alpha EPSP, a
plateau EPSP and the optimal rectangular EPSP (See Fig. 2.7A). These shapes
match qualitatively the shapes of EPSPs recorded in the soma of pyramidal neurons
for synaptic inputs that arrive on dendritic branches (see Fig. 2.1 in (Williams
and Stuart, 2002)). The neurons in the spiking neural network had an absolute
refractory period. Fig. 2.7C, D show that the network provides for all three shapes
of the EPSPs within 800 ms of simulated biological time quite accurate answers to
this probabilistic inference query. Fig. 2.7E, F show also with smoother shapes of
the PSPs the networks arrive at good heuristic answers within several hundreds of
milliseconds. The KL divergence converges in this case to a small non-zero value,
indicating an error caused by the approximation.

Fig. 2.8 shows the spiking activity of the neural network with alpha shaped
EPSPs in one of the simulation trials. During the first 3 seconds of the simulation the
network alternated between two different modes of spiking activity, that correspond
to two different modes of the posterior probability distribution. There are time
periods when the principal neuron for the RV X (positive X-ray), T (tuberculosis)
and C (lung c.) had a higher firing rate, with time periods in between where they
were silent. After ¢ = 3s, when the evidence that the x-ray test is positive was

2.2. Results 29

x-ray = unknown x-ray = positive

X-ray L hun

brOnChitiS HELLULU DL L0 E A L1 O L LR L L R L LU D CR L L 1 L
]]]]

IUng cancer & 1 L1 u u [R TTTTT TR (I R AT} [T TR T

tUberCUIOSiS 3 i TR n i

smoking

00 05 10 15 20 25 30 35 40 45 50 55 60
time [s]

Figure 2.8: Spike raster of the spiking activity of the neurons in one of the 20 simulation
trials described in Fig. 2.7 for the network of spiking neurons with alpha shaped EPSPs.
The evidence was switched after 3 s (red vertical line) from e = (A = 1,D = 1) to
e=(A=1,D=1,X =1) (by clamping the RV X to 1). In each block of rows the lowest
spike train shows the activity of a principal neuron (see left hand side for the label of the
associated RV), and the spike trains above show the firing activity of the associated auxiliary
neurons. After ¢ = 3s the activity of the neurons for the x-ray test RV is not shown, since
during this period the RV is clamped and the firing rate of its principal neuron is induced
externally.

introduced, the activity of the network remained in the first mode.

2.2.4.2 Computer Simulation IIl: Randomly Generated Bayesian Net-
work

In order to test the performance of neural sampling for an “arbitrary”, less structured,
and larger graphical model, we generated a random Bayesian network according to
the method proposed in (Ide and Cozman, 2002) (the details of the generation
algorithm are given in the Methods section). We added an additional constraint,
that the maximum in-degree of the nodes should be not larger than 8. A resulting

30 Chapter 2. Sampling in Graphical Models with Spiking Neurons

Figure 2.9: A randomly generated Bayesian network, for which a neural implementation
of probabilistic inference was tested in Computer Simulation III. It contains 20 nodes.
Each node has up to 8 parents. We consider the generic but more difficult instance for
probabilistic inference where evidence e is entered for nodes z13, ..., 290 in the lower part
of the directed graph. Conditional probability tables were also randomly generated for all
RVs.

randomly generated network is shown in Fig. 2.9. It contains nodes with up to
8 parents, and it also contains numerous loops. For the RVs 213 to 299 we fixed
a randomly chosen assignment e. Neural sampling was tested for an ideal neural
network that satisfies the NCC with a variety of random initial states, using spiking
neurons with an absolute, and alternatively also with a relative refractory period.

Fig. 2.10A shows that in most of our 10 simulations with different randomly cho-
sen initial states the sum of Kullback-Leibler divergences for the 12 RVs z1,..., 219
becomes quite small within a second. Only in a few trials several seconds were
needed for that. Fig. 2.10C and 2.10D show the spiking activity of the neural net-
work from ¢ = Os to t = 8s in one of the 10 trials. It is interesting to observe that
the network went through a number of network states, each of them characterized
by a high firing rate of a particular subset of the neurons.

Similarly spontaneous switchings between internal network states have been re-
ported in numerous biological experiments (see e.g. (Abeles et al., 1995; Miller and

2.3. Discussion 31

(zrle)l|p(zxe))

‘X

>k Drr(

(@)

, V12

neurons uvi,---

O

, V12

neurons v, ---

Katz,

fa;
N
=9
B
X
&
=~
i
<IN
3 0 il s P s]
2 0 2 4 6 8
time [s] time [s]
AN PO BRI IR IO OO RO 1 O AT RE AR A 1
O 0 RN T
{1l IO [11 1R | il Il
O U IO IONT ORI A 0 R D 1 1 1 | [e A R A (I (i
| | [LIS |1 11
A | [(il O AN XA AT AR O AT AEE NRTATE (TN THTTN It
N AR A (1 TR
| (11 | Il [l [
| D1 000 0 OO OO O 00O 0O OO ORI OO O OO
30O 00 0O OO OO OO AN 00000 OO 0000000 OO OO0 000000 OO0 OO0 0 000 1D
| | L Il
1 00 000 000000 0 30000000 000000 0
0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0
time [s]
(T I T I R
1H NIRRT RO AR AVERIOMOE O OCARACREOE WEEE DMEE O MUY IO OFROROE O DO 0SB AR RO 0 WO ORI O
L B 11 [| Lt T A NN ARALTNTAT 1
9 L 0t 1 1 A 4 N TN IEITE e me 1l
Il [T 1 [TR TN T \‘H‘\ IFEINE T a1 \‘\ | H‘}HH HHH\H‘\HH\HHHHHH I T
IEIE 0 SR N U CFRARMRO RO A 1 T 0 TR T
I A \H‘H‘\‘HHH\HHHHHHHHHHHHHH\H\ T H\\HHHH\HHH\‘\HH\HHHIHHHHHHH}H ‘\ [NIRRT A | HH\HHHH}HH\H\ \H}\
3 RO OO0 00 00 00000 OO OO0 00O 00 0000 OO0 OO OO AT 0 0P O 0
| [
1 \HHHHHHH\HHHHHHHHH\HHH\}\ \HHHHHHHH\HH‘\HHHHIH\H\\H\HHH\HHHHHHHW\HH \HHHH\HHHNIHHH\HHHH\HHHHHHHHHH] HHHIHHH\HHHHHU\HHH\H\HHH\H) HHHHHHHHHIHH\H‘
4.0 4.5 5.0 55 6.0 6.5 7.0 7.5 8.0
time [s]
Figure 2.10: See next page for figure caption.
2010)), but their functional role has remained unknown. In the context of

Computer Simulation III these switchings between network states arise because this
is the only way how this network of spiking neurons can sample from a multi-modal

target distribution p.

2.3

Discussion

We have shown through rigorous theoretical arguments and computer simulations
that networks of spiking neurons are in principle able to emulate probabilistic in-
ference in general graphical models. The latter has emerged as a quite suitable
mathematical framework for describing those computational tasks that artificial and

32 Chapter 2. Sampling in Graphical Models with Spiking Neurons

Figure 2.10: Computer Simulation III: Neural emulation of probabilistic inference through
neural sampling in the fairly large and complex randomly chosen Bayesian network shown
in Fig. 2.9. A) The sum of the Kullback-Leibler divergences between the correct and
the estimated marginal posterior probability for each of the unobserved random variables
(21,22, ,212), calculated from the generated samples (spikes) from the beginning of the
simulation up to the current time indicated on the x-axis, for simulations with a neuron
model with relative refractory period. Separate curves with different colors are shown for
each of the 10 trials with different initial conditions (randomly chosen). The bold black
curve corresponds to the simulation for which the spiking activity is shown in C) and D).
B) Asin A) but the mean over the 10 trials is shown, for simulations with a neuron model
with relative refractory period (solid curve) and absolute refractory period (dashed curve.).
The gray area around the solid curve shows the unbiased estimate of the standard deviation
calculated over the 10 trials. C) and D) The spiking activity of the 12 principal neurons
during the simulation from ¢ = 0 s to ¢t = 8 s, for one of the 10 simulations (neurons with
relative refractory period). The neural network enters and remains in different network
states (indicated by different colors), corresponding to different modes of the posterior
probability distribution.

biological intelligent agents need to solve. Hence the results of this work provide a
link between this abstract description level of computational theory and models for
networks of neurons in the brain. In particular, they provide a principled frame-
work for investigating how nonlinear computational operations in network motifs
of cortical microcircuits and in the dendritic trees of neurons contribute to brain
computations on a larger scale.

We have presented three different theoretical approaches for extending the results
of (Biising et al., 2011), so that they yield explanations how probabilistic inference
in general graphical models could be carried out through the inherent dynamics
of recurrent networks of stochastically firing neurons (neural sampling). The first
and simplest one was based on the fact that any distribution can be represented
as marginal distribution of a order Boltzmann distribution (2.5) with auxiliary
RVs. However, as we have demonstrated in Fig.2.3, this approach yields rather
slow convergence of the distribution of network states to the target distribution.

2nd

This is a natural consequence of the deterministic definition of new RVs in terms of
the original RVs, which reduces the conductance (Koller and Friedman, 2009; Levin
et al., 2008) (i.e., the probability to get from one set of network states to another
set of network states) of the Markov chain that is defined by the network dynamics.
Further research is needed to clarify whether this deficiency can be overcome through
other methods for introducing auxiliary RVs.

We have furthermore presented two approaches for satisfying the NCC (2.2) of
(Biising et al., 2011), which is a sufficient condition for sampling from a given distri-
bution. These two closely related approaches rely on different ways of expanding the
term on the r.h.s. of the NCC (2.4). The first approach can be used if the underlying
graphical model implies that the Markov blankets of all RVs are relatively small.
The second approach yields efficient neural emulations under a milder constraint: if

2.3. Discussion 33

each factor in a factorization of the target distribution is rather small (and if there
are not too many factors). Each of these two approaches provides the theoretical
basis for two different methods for satisfying the NCC in a network of spiking neu-
rons: either through nonlinear computation in network motifs with auxiliary spiking
neurons (that do not directly represent a RV of the target distribution), or through
dendritic computation in multi-compartment neuron models. This yields altogether
four different options for satisfying the NCC in a network of spiking neurons. These
four options are demonstrated in Fig. 2.2 - 2.6 for a characteristic explaining away
motif in the simple Bayesian network of Fig. 2.1B, that had previously been intro-
duced to model inference in biological visual processing (Knill and Kersten, 1991).
The second approach for satisfying the NCC never requires more auxiliary neurons
or dendritic branches than the first approach.

Each of these four options for satisfying the NCC would be optimally supported
by somewhat different features of the interaction of excitation and inhibition in
canonical cortical microcircuit motifs, and by somewhat different features of den-
dritic computation. Sufficiently precise and general experimental data are not yet
available for many of these features, and we hope that the computational conse-
quences of these features that we have exhibited in this work will promote further
experimental work on these open questions. In particular, the neural circuit of
Fig. 2.5 uses an implementation strategy that requires for many graphical models
(those where Markov blankets are substantially larger than individual factors) fewer
auxiliary neurons. But it requires temporally precise local inhibition in dendritic
branches that has negligible effects on the membrane potential at the soma, or in
other dendritic branches that are used for this computation. Some experimental
results in this direction are reported in (Williams and Stuart, 2003), where it was
shown (see e.g. their Fig. 1) that IPSPs from apical dendrites of layer 5 pyramidal
neurons are drastically attenuated at the soma. The options that rely on dendritic
computation (Fig. 2.4 and 2.6) would be optimally supported if EPSPs from den-
dritic branches that are not amplified by dendritic spikes have hardly any effect
on the membrane potential at the soma. Some experimental results which support
this assumption for distal dendritic branches of layer 5 pyramidal neurons had been
reported in (Williams and Stuart, 2002), see e.g. their Fig.1. With regard to details
of dendritic spikes, these would optimally support the ideal theoretical models with
dendritic computation if they would have a rather short duration at the soma, in
order to avoid that they still affect the firing probability of the neuron when the
state (i.e., firing or non-firing within the preceding time interval of length 7) of
presynaptic neurons has changed. In addition, the ideal impact of a dendritic spike
on the membrane potential at the soma would approximate a step function (rather
than a function with a pronounced peak at the beginning).

We have focused in this work on the description of ideal neural emulations of
probabilistic inference in general graphical models. Our results provide the basis
for investigating how approximations to these ideal neural emulations could emerge
through synaptic plasticity and other adaptive processes in neurons. First explo-
rations of these questions suggest that in particular approximations to Implementa-

34 Chapter 2. Sampling in Graphical Models with Spiking Neurons

tions 1,2 and 4 could emerge through STDP in an ubiquitous network network mo-
tif of cortical microcircuits (Douglas and Martin, 2004b): Winner-Take-All circuits
formed by populations of pyramidal neurons with lateral inhibition. This learning-
based approach relies on the observation that STDP enables pyramidal neurons in
the presence of lateral inhibition to specialize each on a particular pattern of presy-
naptic firing activity, and to fire after learning only when this presynaptic firing
pattern appears (Nessler et al., 2010). These neurons would then assume the role
of the auxiliary neurons, both in the first option with auxiliary RVs, and in the
options shown in Fig. 2.2 and 2.5. Furthermore, the results of (Legenstein and
Maass, 2011) suggest that STDP in combination with branch strength potentiation
enables individual dendritic branches to specialize on particular patterns of presy-
naptic inputs, similarly as in the theoretically optimal constructions of Fig. 2.4 and
2.6. One difference between the theoretically optimal neural emulations and learn-
ing based approximations is that auxiliary neurons or dendritic branches learn to
represent only the most frequently occurring patterns of presynaptic firing activity,
rather than creating a complete catalogue of all theoretically possible presynaptic
firing patterns. This has the advantage that fewer auxiliary neurons and dendritic
branches are needed in these biologically more realistic learning-based approxima-
tions.

Other ongoing research explores neural emulations of probabilistic inference for
non-binary RVs. In this case a stochastic principal neuron v, that represents a
binary RV zj is replaced by a Winner-Take-All circuit, that encodes the value of a
multinomial or analog RV through population coding, see (Nessler et al., 2010).

2.3.1 Related Work

There are a number of studies proposing neural network architectures that im-
plement probabilistic inference (Ackley et al., 1985; Hinton and Sejnowski, 1986;
Deneve, 2008; Steimer et al., 2009; Litvak and Ullman, 2009; Rao, 2004, 2007; Bo-
browski et al., 2009; Siegelmann and Holzman, 2010; Beck and Pouget, 2007; Rao
and Ballard, 1999; Ma et al., 2008, 2006; Deneve et al., 2001; Yu and Dayan, 2005;
Shi and Griffiths, 2009). Most of these models propose neural emulations of the be-
lief propagation algorithm, where the activity of neurons or populations of neurons
encodes intermediate values (called messages or beliefs) needed in the arithmetical
calculation of the posterior probability distribution. With some exceptions (Den-
eve, 2008), most of the approaches assume rate-based coding of information and use
rate-based neuron models or mean-field approximations.

In particular, in (Litvak and Ullman, 2009) a spiking neural network model was
developed that performs the max-product message passing algorithm, a variant of
belief propagation, where the necessary maximization and product operations were
implemented by specialized neural circuits. A spiking neural implementation of the
sum-product belief propagation algorithm was proposed in (Steimer et al., 2009),
where the calculation and passing of the messages was achieved in a recurrent net-
work of interconnected liquid state machines (Maass et al., 2002a). In these studies,

2.3. Discussion 35

that implemented probabilistic inference with spiking neurons through emulation
of the belief propagation algorithm, the probability distributions or the messages
during the calculation of the posterior distributions were encoded in an average fir-
ing rate of a population of neurons. Another interesting approach, that adopts an
alternative spike-time based coding scheme, was described in (Deneve, 2008). In
this study a spiking neuron model estimates the log-odd ratio of a hidden binary
state in a hidden Markov chain, and it outputs a spike only when it receives new
evidence from the inputs that causes a shift in the estimated log-odd ratio that
exceeds a certain threshold, that is, only when new information about a change in
the log-odd ratio is presented that cannot be predicted by the preceding spikes of
the neuron. However, this study considers only a very restricted class of graphical
models: Bayesian networks that are trees (where for example no explaining away
can occur).

The idea that nonlinear dendritic mechanisms could account for the nonlinear
processing that is required in neural models that perform probabilistic inference
has been proposed previously in (Rao, 2007) and (Siegelmann and Holzman, 2010),
albeit for the belief propagation algorithm. In (Rao, 2007) the authors introduce a
neural model that implements probabilistic inference in hidden Markov models via
the belief propagation algorithm, and suggest that the nonlinear functions that arise
in the model can be mapped to the nonlinear dendritic filtering. In (Siegelmann and
Holzman, 2010) another rate-based neural model that implements the loopy belief
propagation algorithm in general graphical models was described, where the required
multiplication operations in the algorithm were proposed to be implemented by the
nonlinear processing in individual dendritic trees.

While there exist several different spiking neural network models in the litera-
ture that perform probabilistic inference based on the belief propagation algorithm,
there is a lack of spiking neural network models that implement probabilistic in-
ference through Markov chain Monte Carlo (MCMC sampling). To the best of our
knowledge, the neural implementations proposed in this work are the only spiking
neural networks for probabilistic inference via MCMC in general graphical models.
In (Hinton and Sejnowski, 1986) a non-spiking neural network composed of stochas-
tic binary neurons was introduced, that performs probabilistic inference via Gibbs
sampling. The neural network in (Hinton and Sejnowski, 1986) performs inference
via sampling in probability distributions that have only pairwise couplings between
the RVs. An extension was proposed in (Sejnowski, 1987), that can perform Gibbs
sampling in probability distributions with higher-order dependencies between the
variables, which corresponds to the class of probability distributions that we con-
sider in this work. A spiking neural network model based on the results in (Hinton
and Sejnowski, 1986) had been proposed in (Hinton and Brown, 2000), for a re-
stricted class of probability distributions that only have second order factors, and
which satisfy some additional constraints on the conditional independencies between
the variables. To the best of our knowledge, this approach had not been extended
to more general probability distributions.

The existing gap between abstract computational models of brain processing

36 Chapter 2. Sampling in Graphical Models with Spiking Neurons

that use MCMC algorithms for probabilistic inference on one hand, and neurosci-
entific data about neural structures and neural processes on the other hand, has
been pointed out and emphasized by several studies (Hoyer and Hyvérinen, 2003;
Gershman et al., 2009; Fiser et al., 2010). The results in (Biising et al., 2011) and
in this work propose neural circuit models that aim to bridge this existing gap, and
thereby suggest new means for analysis and interpretations for both the computa-
tional models and experimental neuroscientific findings. For instance, perceptual
multistability in ambiguous visual stimuli and several of its related phenomena were
explained through abstract computational models that employ sequential sampling
with the Metropolis MCMC algorithm (Gershman et al., 2009). In our simulations
(see Fig. 2.10) we showed that a spiking neural network can exhibit multistability,
where the state changes from one mode of the posterior distribution to another,
even though the Markov chain defined by the neural network does not satisfy the
detailed balance property like the Metropolis algorithm.

2.3.2 Experimentally Testable Predictions of our Models

Our models postulate that knowledge is encoded in the brain in the form of proba-
bility distributions p, that are not required to be of the restricted form of 2"¢ order
Boltzmann distributions (2.5). Furthermore they postulate that these distributions
are encoded through synaptic weights and neuronal excitabilities, and possibly also
through the strength of dendritic branches. Finally, our approach postulates that
these learnt and stored probability distributions p are activated through the inher-
ent stochastic dynamics of networks of spiking neurons, using nonlinear features of
network motifs and neurons to represent higher order dependencies between RVs.
It also predicts that (in contrast to the model of (Biising et al., 2011)) synaptic
connections between neurons are in general not symmetric, because this enables the
network to encode higher order factors of p.

The postulate that knowledge is stored in the brain in the form of probability
distributions, that are realized through the stochastic dynamics of neural circuits,
is consistent with the ubiquitous trial-to-trial variability found in experimental data
(Dean, 1981; Tolhurst et al., 1983). It has been partially confirmed through more
detailed analyses, which show that spontaneous brain activity shows many charac-
teristic features of brain responses to natural external stimuli ((Kenet et al., 2003;
Raichle, 2010; Berkes et al., 2011)). Further analysis of spontaneous activity is
needed in order to verify this prediction. Beyond this prediction regarding spon-
taneous activity, our approach proposes that fluctuating neuronal responses to ex-
ternal stimuli (or internal goals) represent samples from a conditional marginal
distribution, that results from entering evidence e for a subset of RVs of the stored
distribution p (see (2.1)). A verification of this prediction requires an analysis of
the distributions of network responses — rather than just averaging — for repeated
presentations of the same sensory stimulus or task. Similar analyses of human re-
sponses to repeated questions have already been carried out in cognitive science
(Griffiths and Tenenbaum, 2006; Vul and Pashler, 2008; Denison et al., 2010), and

2.3. Discussion 37

have been interpreted as evidence that humans respond to queries by sampling from
internally stored probability distributions.

Our resulting model for neural emulations of probabilistic inference predicts,
that even strong firing of a single neuron (provided it represents a RV whose value
has a strong impact on many other RVs) may drastically change the activity pattern
of many other neurons (see the change of network activity after 3 sin Fig. 2.8, which
results from a change in value of the RV that represents “x-ray”). One experimental
result of this type had been reported in (Li et al., 2009). Fig. 2.8 also suggests that
different neurons may have drastically different firing rates, where a few neurons fire
a lot, and many others fire rarely. This is a consequence both of different marginal
probabilities for different RVs, but also of the quite different computational role and
dynamics of neurons that represent RVs (“principal neurons”), and auxiliary neurons
that support the realization of the NCC, and which are only activated by a very
specific activation patterns of other presynaptic neurons. Such strong differences in
the firing activity of neurons has already been found in some experimental studies,
see (Koulakov et al., 2009; Yassin et al., 2010). In addition, Fig. 2.10 predicts that
recordings from multiple neurons can typically be partitioned into time intervals,
where a different firing pattern dominates during each time interval (see (Abeles
et al., 1995; Miller and Katz, 2010)) for some related experimental data.

Apart from these more detailed predictions, a central prediction of our model is,
that a subset of cortical neurons (the “principal neurons”) represent through their
firing activity the current value of different salient RVs. This could be tested, for
example, through simultaneous recordings from large numbers of neurons during
experiments, where the values of several RVs that are relevant for the subject, and
that could potentially be stored in the cortical area from which one records, are
changed in a systematic manner.

It will be more difficult to test, which of the concrete implementations of com-
putational preprocessing for satisfying the NCC that we have proposed, are imple-
mented in some neural tissue. Both the underlying theoretical framework and our
computer simulations (see Fig. 2.8) predict that the auxiliary neurons involved in
these local computations are rarely active. More specifically, the model predicts that
they only become active when some specific set of presynaptic neurons (whose firing
state represents the current value of the RVs in 2y;) assumes a specific pattern of fir-
ing and non-firing. Implementation 3 and 5 make corresponding predictions for the
activity of different dendritic branches of pyramidal neurons, that could potentially
be tested through Ca™-imaging.

2.3.3 Conclusion

We have proposed a new modelling framework for brain computations, based on
probabilistic inference. We have shown through computer simulations, that stochas-
tic networks of spiking neurons can carry out demanding computational tasks within
this modelling framework. This framework predicts specific functional roles for non-
linear computations in network motifs and dendritic computation: They support

38 Chapter 2. Sampling in Graphical Models with Spiking Neurons

learning and representation of higher order dependencies between salient random
variables. On the micro level this framework proposes that local computational op-
erations of neurons superficially resemble logical operations like AND and OR, but
that these atomic computational operations are embedded into a stochastic network
dynamics. Our framework proposes that the functional role of this stochastic net-
work dynamics can be understood from the perspective of probabilistic inference
through sampling from complex learnt probability distributions, that represent the
knowledge base of the brain.

2.4 Methods

2.4.1 Markov Chains

A Markov chain M = (S,T) in discrete time is defined by a set S of states s (we
consider for discrete time only the case where S has a finite size, denoted by |S|)
together with a transition operator 7. T is a conditional probability distribution
T(s|s’) for the next state s of M, given its preceding state s’. The Markov chain M
is started in some initial state s(0), and moves through a trajectory of states s(¢) via
iterated application of the stochastic transition operator 7" (more precisely, if s(t—1)
is the state at time ¢ — 1, then the next state s(¢) is drawn from the conditional
probability distribution T'(s|s(t — 1)). A powerful theorem from probability theory
(see e.g. p. 232 in (Grimmett and Stirzaker, 2001)) states that if M is irreducible
(i.e., any state in S can be reached from any other state in S in finitely many steps
with probability > 0) and aperiodic (i.e., its state transitions cannot be trapped
in deterministic cycles), then the probability p(s(t) = s|s(0) was the initial state)
converges for ¢ — oo to a probability p(s) that does not depend on s(0). This state
distribution p is called the stationary distribution of M. The irreducibility of M
implies that p is the only distribution over the states S that is invariant under the
transition operator T, i.e.

p(s) =Y T(sls')-p(s") . (2.15)
s'esS
Thus, in order to carry out probabilistic inference for a given distribution p, it suffices
to construct an irreducible and aperiodic Markov chain M that leaves p invariant,
i.e., satisfies (2.15). Analogous results hold for Markov chains in continuous time
(Grimmett and Stirzaker, 2001)), on which we will focus in this work.

2.4.2 Neuron Models

We use two types of neurons, a stochastic point neuron model as in (Biising et al.,
2011), and a multi-compartment neuron model.

Point neuron model. We use the same point neuron model as in (Biising et al.,
2011). In (Biising et al., 2011) rigorous proofs of the validity of neural sampling

2.4. Methods 39

can only be given for spiking neurons with an absolute refractory period of length 7
(the length of a PSP). The same holds for our results. But it was already shown in
(Biising et al., 2011) that practically also a variation of the neurons model with a
relative refractory period can be used. In this variation of the model one can have a
quite arbitrary refractory mechanism modeled with a refractory function g(t), that
represents the readiness of the neuron to fire within the refractory period. The firing
probability of the neuron model is then

p(t) = flu(t)gt —1) (2.16)
where £ is the time of the last firing of the neuron before time ¢. The g(t) function
usually has value 0 for g(0), meaning that the neuron cannot fire a second spike
immediately after it has fired, and its value rises until g(s) = 1 for s > 7, indicating
that after time interval of duration 7 the neuron fully recovers from its refractory
period (this is a slight variation of the definition of ¢ in (Biising et al., 2011)).

For a given ¢(t) function that models the refractory mechanism, the function
f(u) in the firing rate equation can be obtained as a solution from the equation

YueR: f(u) /0 L esp < Fw) /0 ' g(t)dt) dr = exp(u) . (2.17)

It can be shown that for any continuous function g(t) there is a unique continuous
function f(u) that satisfies this equation (see (Biising et al., 2011)). The multiplica-
tive refractory function g(t) together with a modified firing probability function f(u)
were derived in (Biising et al., 2011) to ensure that each neuron performs correct
local computations and generates correct samples from the desired probability dis-
tribution if one assumes that the other neurons do not change their state. This does
not guarantee in the general case that the global computation of the network when
all neurons operate simultaneously generates correct samples. However, as in (Biis-
ing et al., 2011) we observed no significant deviations from the correct posteriors in
our simulations.

Multi-compartment neuron model. For the neural implementations with den-
dritic computation (Implementations 3 and 5) we used a multi-compartment neuron
model which is a modified version of the neuron model introduced in (Legenstein and
Maass, 2011). It extends the stochastic point neuron model described above (with
separate compartments that represent the dendritic branches) in order to capture
the nonlinear effects in the integration of synaptic inputs at the dendritic branches
of CA1l pyramidal neurons reported in (Losonczy et al., 2008) for radial oblique
dendrites.

The local membrane voltage A;(t) of the branch ¢ has a passive component a;(t)
equal to the summation of the PSPs elicited by the spikes at the local synaptic
inputs

ai(t) = Z’wijEij(t) (2.18)

40 Chapter 2. Sampling in Graphical Models with Spiking Neurons

where wj; is the synaptic efficacy of input j to branch i and w;je;;(t) is the postsy-
naptic potential elicited in the branch i by the spikes from input j. We model €;;(t)
as

1 ift—t, <7t
(1) = J 2.19
ialt) { 0 otherwise , (2.19)

where fij is the time of the last spike before ¢t that arrived at input j. If a synchronous
synaptic input from many synapses at one branch exceeds a certain threshold, the
membrane voltage at the branch exhibits a sudden jump due to regenerative integra-
tion processes resulting in a dendritic spike (Losonczy et al., 2008). This nonlinearity
is modeled by a second active component a;(t)

a;(t) = BiH (a;(t) — 0;) (2.20)

where H(-) denotes the Heaviside step function, and 6; is the threshold of branch i.
The branch potential A;(t) is equal to the sum of the passive component and the
active component caused by the dendritic spike

The passive and active components contribute with a different weighting factor to
the membrane potential at the soma. The passive component is conducted passively
with a weighting factor v; < 1 that models the attenuation of the passive signal.
We assume in the neural implementations that the attenuation of the passive signal
is strong, i.e. that v; < 1. The dendritic spike is scaled by the branch strength
v;. The membrane potential at the soma of the neuron is a sum of the active and
passive contributions from all branches

u(t) =b+ Y viai(t) + diaq(t) (2.22)

The firing probability in this neuron model and its refractory mechanism are the
same as for the point neuron model described above. It also can have an arbitrary
refractory mechanism defined with the “readiness to fire” multiplicative function g(t)
and a modified firing probability f(u).

2.4.3 Details to Second Order Boltzmann Distributions with Aux-
iliary Variables (Implementation 1)

Let p(z) be a probability distribution

F C
1
plz) = 17 [¢ez) (2.23)
f=1 c=1
that contains higher-order factors, where z = (z1, 29, ...,2K) is a vector of binary

RVs. ~¢(z/) are the factors that depend on one or two RVs, and ¢.(z°) are the

2.4. Methods 41

higher order factors that depend on more than 2 RVs. z¢ is the vector of the RVs
z; in the factor ¢.(z¢), z£3 is the vector of RVs z; that the factor 'yf(zi?)) depends
on, and Z is the normalization constant. F' is the number of first and second order
factors, and C' is the total number of factors of order 3 or higher. To simplify the
notation, in the following we set v(z) := Hfj:l ’yf(zjig), since this set of factors in
p(z) will not be changed in the extended probability distribution.

Auxiliary RVs are introduced for each of the higher order factors. Specifically,
the higher-order relation of factor ¢. is represented by a set of auxiliary binary RVs
x¢ = {z$|v € Z¢}, where we have a random variable z§ for each possible assignment
v € Z€ to the RVs in z¢ (Z¢ is the domain of values of the vector z¢). With the
additional sets of RVs x¢ we define a probability distribution p(z,x) by

1
p(z,x) = —7(2) I1 (IT w9 11 55,1-(963,21')) - (2.24)
c veze 1ele
We denote the ordered set of indices of the RVs that compose the vector z¢ as I¢,

ie.

IC:(il,iQ,...,iuc‘)<:>zc:(zi1,zi2,...,ziuc‘) s (2.25)

where |I¢| denotes the number of indices in I¢.
The second order factors g ;(z, z) are defined as

Ouile, z) = xby -+ (1 —2) (2.26)

where v(;) denotes the component of the assignment v to z° that corresponds to
the variable z;, and 5%.)721. is the Kronecker-delta function. The factors ﬁf,ﬂ-(wf,, i)
represent a constraint that if the auxiliary RV z¢ has value 1, then the values of
the RVs in the corresponding factor z¢ must be equal to the assignment v that x<
corresponds to. If all components of x¢ are zero, then there is not any constraint on
the z¢ variables. This implies another property: at most one of the RVs z¢ in the
vector x¢, the one that corresponds to the state of z¢, can have value 1. Hence, the
vector x° can have two different states. Either all its RVs are zero, or exactly one
component z< is equal to 1, in which case one has z¢ = v. The probability p(z,x)
of states of x and z that do not satisfy these constraints is 0.

The values of the factors ¢, in p(z) for various assignments of z¢ are represented
in p(z,x) by first-order factors that depend on a single one of the RVs z§. For each
x§, we have a new factor with value ¢S (z$) = ¢o(v) — 1 if 2§ =1, and ¢$(2) =1
otherwise. We assume that the original factors are first rescaled, so that ¢.(z¢) > 1
for all values of ¢ and z°. We had to modify the values of the new factors by
subtracting 1 from the original value ¢.(v), because we introduced an additional
zero state for x¢ that is consistent with any of the possible assignments of z°.

The resulting probability distribution p(z,x) consists of first and second order
factors, and one can prove that it has the property

42 Chapter 2. Sampling in Graphical Models with Spiking Neurons

> plzx) =pz) . (2.27)

This can be seen as follows. If p(z,x) # 0, then for each ¢ either x° = 0 (where
0 denotes the zero vector), or x° has one component zg. = 1, and z{ = 0 for all
v # z°. The latter value of x° is denoted by X.. For all other values of x° we have
p(z,x) = 0. Hence

Zp(z, x) = Z Z e Z p(z,x) . (2.28)

xle{oxl.} x2e{0,x2.} xCe{0xC}

From the definition of the new factors ¥¢ we have

plex) = 2o [V55 = pr@ [[6e) ~ % (229)

[

Hence we can rewrite (2.28) as

Zp(z,x): Z Z Z p(z,x) =

zl.e{0,1} xiCE{O,l} ISCE{O,l}

D D DR SEETP) | (RGO R

xl.e{0,1} 22.€{0,1} zC.€{0,1} ¢

= @ o) =p@

yielding a proof of (2.27).

The resulting spiking neural network A consists of principal neurons vy, one for
each of the original RVs 2, and one principal neuron 7 for each of the auxiliary RVs
xS, If we assume that the factor ¢. depends on zj, then the deterministic constraint
that governs the relation between z and x is implemented by very strong excitatory
connections M., (ideally equal to +00) between the principal neuron vy and all
principal neurons 2§ for which z is 1 in the assignment v to z¢. If for the principal
neuron v in the corresponding assignment v to z¢ the value of z; is 0, then there
are strong inhibitory connections M, (ideally equal to —oo) through an inhibitory
interneuron between neuron v and neuron 5. Additionally, each of the principal
neurons v, has a bias

bG =log(¢e(v) = 1) = n(v)Meze (2.31)

where the function 7(v) denotes the number of coordinates of the vector v that
have value 1. The biases of the principal neurons v and the efficacies of the direct
synaptic connections between the principal neurons vy, that correspond to the second
order factors in p(z) are determined in the same way as for the spiking neural
network structure in (Biising et al., 2011) and depend only on the first and second
order factors of p(z).

2.4. Methods 43

We show in the following that the Markov chain represented by the spiking neural
network that performs neural sampling in the 2"¢ Boltzmann distribution p(z,x) is
irreducible. We designate a state of the neural network with the vector (z, ¢, x, &).
Here ¢ = ((1,(2,-..,Cx), where (i is the refractory variable of the principal neuron
v, and & is a vector of all refractory variables £ for the principal neurons ¢ that
correspond to the auxiliary RVs x§. The latter are defined as in (Biising et al.,
2011). At each spike of a corresponding neuron the refractory variable is set to 7 (7
in neural sampling in discrete time is an integer number, that denotes the duration
of the PSP in terms of discrete time steps). It decreases by 1 at each subsequent
time step, until it reaches 0. We denote the transition operators for the refractory
variables (j, changing from state i + 1 to ¢ with TfZ 11, and changing from state 0 to
T with Trk,o- For the refractory variables £ the transition operators are 7;;¢, and
TT‘be. In the proof we consider the ideal case where M.,. — 400 and M;,, — —o0,
which can result in infinitely large membrane potentials equal to 400 or —oo. These
values of the membrane potentials forbid the neuron to change the value of its RV,
because if u, = 400 then T§; = 0, and if uy = —oo then TTk’o = 0 (see (Biising
et al., 2011) for details), and the neuron is locked to one value of the RV. In all other
cases, when the value of the membrane potential remains finite, we have T7]'€,0 > 0
and Téfl > 0. In this case the principal neuron can reach any value of (j from any
other value in at most 7 time steps. The same holds for the principal neurons <.

If we consider now an initial arbitrary non-forbidden state (z,{, %, §), then each
refractory variable £ with v # z° is equal to 0, and £ with v = z° can be either
non-zero or 0. If 5. is non-zero then, since the membrane potential of the principal
neuron 5. is log(¢.(z¢) — 1), which is finite, there is a non-vanishing probability
for the network state (2, (,%,£) to change to another state in which &5 = 0 in at
most 7 time steps. Therefore we can conclude, that from the state (z, {, %, £) we can
reach the state (z,¢,0,0) that has x = 0 and £ = 0 in at most 7 time steps with a
non-vanishing probability. In this new state all principal neurons vy are allowed to
change the value of their RV, because their membrane potentials have finite values
determined by the sum of their biases and the efficacies of the synaptic connections
from the second order factors. Hence each non-zero (i can change its value to 0
in at most 7 time steps. From this it follows that from any non-forbidden state
(z,¢,%,€) we can reach the zero state (0,0,0,0) in at most 27 time steps with
non-vanishing probability. We proceed in a similar manner to prove that from the
zero state we can reach any other non-forbidden state (z, f , X, é) First we observe
that from the zero state the principal neurons v, can change their states (i to fk
in at most 7 time steps, since they all have finite membrane potentials, i.e. we can
reach the state (z,¢,0,0). Then in the state (z,¢,0,0) the principal neurons D¢
with v = z¢ have finite membrane potentials equal to log(¢.(z¢) — 1), and they can
change their states (5. to Egc in at most 7 steps. Hence we have shown that we can
reach any non-forbidden state (2, ¢, %, €) from any other other non-forbidden state
(z,¢, %, &) in at most 47 steps with non-vanishing probability, i.e. the Markov chain
is irreducible.

44 Chapter 2. Sampling in Graphical Models with Spiking Neurons

2.4.4 Details to Implementation 2

In this neural implementation each principal neuron v, has a dedicated preprocessing
layer of auxiliary neurons with lateral inhibition. All neurons in the network are
stochastic point neuron models.

The auxiliary neurons for the principal neuron vy receive as inputs the outputs
of the principal neurons corresponding to all RVs in the Markov blanket of z;. The
number of auxiliary excitatory neurons that connect to the principal neuron vy is
21Bkl (| By| is the number of elements of By), and we index these neurons with all

By

possible assignments of values to the RVs in the vector z”+. Thus, for each state

v of values at the inputs z®* we have a corresponding auxiliary neuron of. The
realization of the NCC is achieved by a specific connectivity between the inputs
and the auxiliary neurons and appropriate values for the intrinsic excitabilities of

the auxiliary neurons, so that at each moment in time only the auxiliary neuron o

v
corresponding to the current state of the inputs z%*(t) = v, if it is not inhibited by
the lateral inhibition due to a recent spike from another auxiliary neuron, fires with

a probability density as demanded by the NCC (2.3):

1 p(zr = 1|sz =v)

pv(t) =

During the time when the state v of the inputs is active, the other auxiliary neurons
are either strongly inhibited, or do not receive enough excitatory input to reach a

T p(zp = 0[zB = v)) : (2.32)

significant firing probability.
The inputs connect to the auxiliary neuron of either with a direct strong ex-
citatory connection, or through an inhibitory interneuron :* that connects to the

auxiliary neuron. The inhibitory interneuron (£ fires whenever any of the principal

k

v recerves

neurons of the RVs zP that connect to it fires. The auxiliary neuron o
synaptic connections according to the following rule: if the assignment v assigns
a value of 1 to the RV z; in the Markov blanket z®#, then the principal neuron
v; connects to the neuron with a strong excitatory synaptic efficacy w‘]‘;i = MF,
whereas if v assigns a value of 0 to z; then the principal neuron v; connects to the
inhibitory interneuron «*. Thus, whenever v; fires, the inhibitory interneuron fires
and prevents the auxiliary neuron of to fire for a time period 7. We will assume
that the synaptic efficacy M¥ is much larger than the log-odd ratio value of the RV
2 given zP% = v according to the r.h.s. of (2.3). We set the bias of the auxiliary
neuron of equal to

k p(z = 1]z% = v)
bV

= log —n(v)MEF | (2.33)

v

p(z = 0[zBr =)

where n(v) gives the number of components of the vector v that are 1.

If the value of the inputs at time ¢ is z%*(t), and none of the neurons fired in the
time interval [t —7,t], then for an auxiliary neuron o such that v # z(t) there are
two possibilities. Either there exists a component of v that is 0 and its corresponding
input ziB #(t) = 1, in which case the principal neuron of the RV zZB ¥ connects to

2.4. Methods 45

the inhibitory interneuron (% and inhibits of. Or one has n(z%*(t)) < n(v) in
which case the number of active inputs that connect to neuron af, do not provide
enough excitatory input to reach the high threshold for firing. In this case the firing
probability of the neuron of is

(zx = 1|28 = v)

(2, = 0|zPx = v)

) = S oxp (1og - aa) (23
and because of the strong synaptic efficacies of the excitatory connections equal to
MP, which are by definition much larger than the log-odd ratio of the RV z, it
is approximately equal to 0. Hence, only the neuron of with v = zP(t) has a
non-vanishing firing probability equal to (2.32).

The lateral inhibition between the auxiliary neurons is implemented through
a common inhibitory circuit to which they all connect. The role of the lateral
inhibition is to enforce the necessary refractory period of v after any of the auxiliary
neurons fires. When an auxiliary neuron fires, the inhibitory circuit is active during
the duration of the excitatory PSP (equal to 7), and strongly inhibits the other
neurons, preventing them from firing. The auxiliary neurons connect to the principal
neuron v, with an excitatory connection strong enough to drive it to fire a spike
whenever any one of them fires. During the time when the state of the input variables
satisfies zP* (1) = v, the firing probability of the auxiliary neuron of satisfies the
NCC (2.3). This implies that the principal neuron vy, satisfies the NCC as well.

Introducing an evidence of a known value of a RV in this model is achieved by
driving the principal neuron with an external excitatory input to fire a spike train
with a high firing rate when the observed value of the RV is 1, or by inhibiting the
principal neuron with an external inhibitory input so that it remains silent when
the observed value of the RV is 0.

2.4.5 Details to Implementation 3

We assume that the principal neuron v, has a separate dendritic branch 6% for
each possible assignment of values to the RVs z%*, and that the principal neurons
corresponding to the RVs zP* in the Markov blanket By, connect to these dendritic
branches.

It is well known that synchronous activation of several synapses at one branch, if
it exceeds a certain threshold, causes the membrane voltage at the branch to exhibit
a sudden jump resulting from a dendritic spike. Furthermore the amplitude of such
dendritic spike is subject to plasticity (Losonczy et al., 2008). We use a neuron model
according to (Legenstein and Maass, 2011), that is based on these experimental
data. The details of this multi-compartment neuron model were presented in the
preceding subsection of Methods on Neuron Models. We assume in this model
that the contribution of each dendritic branch to the soma membrane voltage is
predominantly due to dendritic spikes, and that the passive conductance to the
soma can be neglected. Thus, according to (2.22), the membrane potential at the

46 Chapter 2. Sampling in Graphical Models with Spiking Neurons

soma is equal to the sum of the nonlinear active components contributed from each
of the branches §%:

ur(t) =bp +Y_ias(t) (2.35)
v
where a%(t) is the nonlinear contribution from branch 6%, and 9F is the strength of
branch 6% (see (Losonczy et al., 2008) for experimental data on branch strengths).
b is the target value of the membrane potential in the absence of any synaptic
input. The nonlinear active component (dendritic spike) a%(¢) is assumed to be
equal to

ay(t) = BeH (ay(t) - 63) (2.36)

where H(-) denotes the Heaviside step function, a¥(¢) is the local activation, and 6%

is the threshold of branch ¢%. The amplitude of the total contribution of branch 6%
to the membrane potential at the soma is then 9% 3%

As can be seen in Fig. 2.4, the connectivity from the inputs to the dendritic
branches is analogous as in Implementation 2 with auxiliary neurons: from each
principal neuron v; so that z; is in the Markov blanket of z;, there is a direct synaptic

connection to the dendritic branch 6% if the assignment v assigns to z; the value

k

1, or a connection to the inhibitory interneuron ¢g

k
v

in case v assigns the value 0 to
z;. The inhibitory interneuron (¥ connects to its corresponding branch 6%, and fires
whenever any of the principal neurons that connect to it fire. The synaptic efficacies

of the direct synaptic connections are assumed to satisfy the condition

S owki>08 (2.37)
€Sk

where S]V"’ is the set of indices of principal neurons v; that directly connect to the
k

v,i

from v;, and 0% is the threshold at the dendritic branch for triggering a dendritic
spike. Additionally, each synaptic weight wfw should also satisfy the condition

dendritic branch 6%, w” ; is the efficacy of the synaptic connection to the branch

wh; > wh -0y (2.38)
jesk
The same condition applies also for the efficacy y¥ of the synaptic connection from
inhibitory interneuron (% to the dendritic branch &% .

These conditions ensure that if the current state of the inputs is zB+(t) = v,
then the dendritic branch 5"3 will have an active dendritic spike, whereas all other
dendritic branches do not receive enough total synaptic input to trigger a dendritic
spike. The amplitude of the dendritic spike from branch §% at the soma is

p(zp = 1|zP = v)

~k ok
=1 A 2.39
Uvﬁv 0g p(Zk — 0|ZB’€ — V) + Ak) ()

2.4. Methods 47

where Ay is a positive constant that is larger than all possible negative values of the
log-odd ratio. If the steady value of the membrane potential is equal to by = —Ag,
then we have at each moment a membrane potential that is equal to the sum of the
amplitude of the nonlinear contribution of the single active dendritic branch and the
steady value of the membrane potential, which yields the expression for the NCC
(2.4).

2.4.6 Details to the Implementation 4

In this implementation a principal neuron 1 has a separate group of auxiliary
neurons for each factor ¢ that depends on the variable z;. The group of auxiliary
neurons for the factor ¢ receives inputs from the principal neurons that correspond
to the set of the random variables zik that factor ¢ depends on, but without z;. For
each possible assignment of values v to the inputs zik, there is an auxiliary neuron

in the group for the factor ¢, which we will denote with a$". The neuron oS spikes
immediately when the state of the inputs switches to v from another state, i.e. the
spike marks the moment of the state change. This can achieved by setting the bias
of the neuron similarly as in (2.33) to bX = by — n(v)ME where n(v)) is the number
of components of the vector v that are equal to 1, MF is the efficacy of the direct
synaptic connections from the principal neurons to af,’k and by is a constant that
ensures high firing probability of this neuron when the current value of the inputs
is v.

The connectivity from the auxiliary neurons to the principal neuron keeps the
soma membrane voltage of the principal neuron vy equal to the log-odd ratio of z; (=
r.h.s. of (2.4)). From each auxiliary neuron a$" there is one excitatory connection
to the principal neuron, terminating at a separate dendritic branch §S%. The efficacy
k= wf,’k + A%, where wf,’k is the parameter from
(2.13), and Aj, is a constant that shifts all these synaptic efficacies wSF into the
positive range.

. . . . ~AC
of this synaptic connection is wy

Additionally, there is an inhibitory interneuron 5" connecting to the same den-
dritic branch 6%*. The inhibitory interneuron i$* receives input from all other
auxiliary neurons in the same sub-circuit as the auxiliary neuron «y", but not from
af,’k. The purpose of this inhibitory neuron is to shunt the active EPSP when the in-
puts zik change their state from v to another state v/. Namely, at the time moment

when the inputs change to state v/, the corresponding auxiliary neuron af,’,k will fire,
and this will cause firing of the inhibitory interneuron iSFA spike of the inhibitory
interneuron should have just a local effect: to shunt the active EPSP caused by the
previous state v at the dendritic branch 87 If there is not any active EPSP, this
spike of the inhibitory interneuron should not affect the membrane potential at the
soma of the principal neuron vy.

At any time t, each group of auxiliary neurons for a factor ¢ contributes one EPSP
to the principal neuron, through the synaptic input originating from the auxiliary
neuron that corresponds to the current state of the inputs. The amplitude of the

48 Chapter 2. Sampling in Graphical Models with Spiking Neurons

EPSP from the sub-circuit that corresponds to the factor c¢ is equal to weF = wf,’k +
A%. If we assume that the bias of the soma membrane potential is by, = — > ccon AL,

then the total membrane potential at the soma of the principal neuron vy is equal
to:

up(t) =bp+ Y (Wi +A5) = Y wit (2.40)
ceCk ceCk

which is equal to the expression on the r.h.s. of (2.13) when one assumes that
z‘\zk (t) = v. Hence, the principal neuron vy, satisfies the NCC.

2.4.7 Details to the Implementation 5

In this implementation each principal neuron is a multi-compartment neuron of the
same type as in Implementation 3, with a separate group of dendritic branches
for each factor ¢ in the probability distribution that depends on z;. In the group ¢
(corresponding to factor ¢.) there is a dendritic branch 85" for each assignment v to
the variables Zik that the factor ¢ depends on (without z;). The dendritic branches
in group c receive synaptic inputs from the principal neurons that correspond to the

RVs z‘\jk. Each dendritic branch 6¢* can contribute a component f)f,’k&f,’k(t) to the

soma membrane voltage ug(t) (where 05" is like in Implementation 3 the branch
strength of this branch), but only if the local activation a$*(¢) in the branch exceeds
the threshold for triggering a dendritic spike. The connectivity from the principal
neurons corresponding to the RVs zik to the dendritic branches of v in the group c
is such so that at time ¢ only the dendritic branch corresponding to the current state
of the inputs zik (t) receives total synaptic input that crosses the local threshold for
generating a dendritic spike and initiates a dendritic spike. This is realized with the
same connectivity pattern from the inputs to the branches as in Implementation 3
depicted in Fig. 2.4. The amplitude of the dendritic spike of branch 5% at the soma
should be Uf)f,k = wf,’k + A, where wf,’k is the parameter from (2.13) and AL is chosen
as in Implementation 3.

The membrane voltage at the soma of the principal neuron vy is then equal to
the sum of the dendritic spikes from the active dendritic branches. At time t there
is exactly one active branch in each group of dendritic branches, the one which
corresponds to the current state of the inputs. If we additionally assume that the
bias of neuron vy is by, = — > _cox A7, then the membrane voltage at the soma has
the desired value (2.40).

2.4.8 Details to Computer Simulations

Details to Computer Simulation I. The simulations with the neural network
that corresponds to the approach where the firing of the principal neurons satisfies
the NCC were performed with the ideal version of the implementations 2, which
assumes using rectangular PSPs and no delays in the synaptic connections. In the

2.4. Methods 49

Table 2.1: The conditional probability tables for the Bayesian network in Fig. 2.1B.

p(zs=1]z1,22) 21 =0 2z =1

29 =0 0.15 0.85
29 = 1 0.85 0.15
p(za = 122)
z9 =0 0.15
29 = 1 0.85

simulation with the neural network that corresponds to Implementation 1, the net-
work was also implemented with the ideal version of neural sampling. In both cases
the duration of the rectangular PSPs was 7 = 20ms and the neurons had absolute
refractory period of duration 7. The simulations lasted for 6 seconds biological time,
where in the first 3 seconds the RV for the contour (z4) was clamped to 1 and in the
second 3 seconds clamped to (. For each spiking neural network 10 simulation trials
were performed, each time with different randomly chosen initial state. The values
of the synaptic efficacies M., and M;,; in the simulation of implementation 1 were
set to 10 times the largest value of any of the factors in the probability distribution.
This ensures that a neuron with active input from a synapse with efficacy M. will
have a very high membrane potential and will continuously stay active regardless
of the state of the other inputs, and accordingly a neuron with active input from
a synapse with efficacy M;,, will remain silent regardless of the state of the other
inputs.

The values for the conditional probabilities p(z3|z2,21) and p(z4|22) in the
Bayesian network from Fig. 2.1 used in these simulations are given in Table 2.1.
The prior probabilities p(z; = 1) and p(z2 = 1) are both equal to 0.5.

Details to Computer Simulation II. The conditional probability tables of the
ASTA-network are given in Table 2.2. We modified the original network from (Lau-
ritzen and Spiegelhalter, 1988) by eliminating the “tuberculosis or cancer?” RV in
order to get it in suitable form to be able to perform neural sampling in it. In the
original ASTA network the “tuberculosis or cancer?” RV had deterministic links with
the RVs “tuberculosis?” and “cancer?” which results in a Markov chain that is not
connected. The model captures the following qualitative medical knowledge facts:

1. Shortness of breath or dyspnoea may be due to tuberculosis, lung cancer or
bronchitis, none of them or many of them at the same time.

2. A recent visit to Asia increases the chance for tuberculosis.

3. Smoking is a risk factor for both lung cancer and bronchitis.

50 Chapter 2. Sampling in Graphical Models with Spiking Neurons

Table 2.2: The conditional probability tables for the ASIA Bayesian network.

p(C =1]5)
p(A=1) 0.0l S=0 0.01
S—1 0.10

p(S=1) 0.5

pX=1T,C) C=0 C=1

W= 14)
T = 0.05 0.98
A=0 0.01
A1 0.05 T = 0.98 0.98
D=1T,C,B) T-0 T-1
p(B = 1]5) no— e
- C=0,B 0.1 0.7
g: 32 C-0,B-1 0.8 0.9
— : C=1,B=0 0.7 0.7
C=1,B-=1 0.9 0.9

4. Tuberculosis and lung cancer significantly increase the chances of a positive
chest x-ray test.

We used a point neuron model as in (Biising et al., 2011) described in the
Introduction section of this work, where the membrane potential of the neuron is a
linear sum of the PSPs elicited by the input spikes. We performed all simulations
with three different shapes for the EPSPs. The first EPSP was an alpha shaped
EPSP curve ¢;(t) defined as

[(t) = { q - e(% + 1) - exp(—(% +1t1)) — % if 0 <t<(to—ty)T, | (2.41)

0 otherwise.

where the #; and to are the points in time where the alpha kernel e - ¢ -exp(—t) = %,
q1 = 2.3 is a scaling factor and 7 = 17ms is the time constant of the alpha kernel.
The second used EPSP was a plateau shaped curve e5(t) defined with the following
equation

qQ-(sin(”TtS) it0 <t <7,
Q2 fre<t<rt—r1,
eo(t) = _ ;o (2.42
2(t) qo - (—ng_t — %sin(L(T;:e t))) fr—re<t<t+r7e, (242)
0 otherwise.

where 7 = 30ms defines the duration of the EPSP and we use 7 also to calculate the
generated samples from the spike times. The 73 = Tms defines the duration of the

2.4. Methods 51

rise of the EPSP kernel after an input spike, 27, = 18ms determines the duration of
part of the EPSP curve corresponding to the fall of the PSP back to the baseline,
modeled here with the sine function and ¢o = 1.03 is a scaling factor. The third
shape of the EPSP that we used is the theoretically optimal rectangular shape with
duration 7. All neurons have an absolute refractory period of duration 7.

The indirect connections going through inhibitory interneurons from the princi-
pal neurons to the auxiliary neurons are modeled as direct connections with negative
synaptic efficacies with IPSPs that match the shape of the EPSPs described above.

All synaptic connections in the network have delay equal to dsy, = 0.lms. The

k

excitatory synaptic weight from the principal neuron v; to an auxiliary neuron oy

was set to

(zp = 1|zP* = v)
(2 = 0]zBr = v)

and the synaptic weight for the inhibitory synaptic connection from the principal

wf,z- = max (log p
’ p

+ 10, 0) : (2.43)

neuron v; to an auxiliary neuron o (which models the indirect inhibitory connection

through the inhibitory interneuron Lf,) is set to
A plai = 125 = v)
wy; = min <—10 —log o Py - 0 . (2.44)

The efficacy of the synaptic connections from the auxiliary neurons to their
principal neuron are set to wg, = 30. The lateral inhibition is implemented by
a single inhibitory neuron that receives excitatory connections from all auxiliary
neurons with synaptic efficacy equal to w,; = 30. The inhibitory neuron connects
back to all auxiliary neurons and these synaptic connections have rectangular shaped
I[PSPs with duration 7; = 30 ms. These rectangular IPSPs approximate the effect
that a circuit of fast-spiking bursting inhibitory neuron with short IPSPs would have
on the membrane potential of the auxiliary neurons. The efficacy of the synaptic
connection from the inhibitory neuron for the lateral inhibition to the auxiliary
neuron of is set equal to wfw
neurons are set to b = —10 and the biases of the auxiliary neurons are set according
to (2.33). The inhibitory interneuron for the lateral inhibition has bias b = —10.

The evidence about known random variables in the neural network was intro-

in the previous equation. The bias of the principal

duced by injected constant current in the corresponding principal neurons of ampli-
tude Ay = 40 if the value of the RV is 1 and A_ = —40 if the value of the RV is 0.
The simulations were performed for Ty, = 6 sec. biological time. For the separate
cases of each EPSP shape the results were averaged over 20 simulation trials with
different initial states of the spiking neural network and different noise through the
simulation. The initial states were randomly chosen from the prior distribution of
the ASTA network which corresponds to a random state in the activity of the spiking
network when no evidence is introduced. For control we performed the same sim-
ulations with randomly chosen initial states from an uniform distribution, and the
results showed slightly slower convergence (data not shown). The initial states were
set by injecting constant current pulse in the principal neurons at the beginning of

52 Chapter 2. Sampling in Graphical Models with Spiking Neurons

the simulation, for the unknown RVs with amplitude Ay =40 (A_ = —40) if the
value of the RV in the initial state is 1 (0) and duration equal to 7;,; = 15ms.

The simulations in Computer Simulation II were performed with the PCSIM?
simulator for neural circuits (Pecevski et al., 2009).

Details to Computer Simulation ITI. The simulations were performed with the
ideal implementation of the NCC, which corresponds to using rectangular PSPs and
zero delays in the synaptic connections in the implementations 2-5. We performed 10
simulations with an implementation that uses the neuron model relative refractory
period and another 10 simulations with an implementation that uses the neuron
model with absolute refractory period. The duration of the PSPs was 7 = 20 ms.

The Bayesian network in this simulation was randomly generated with a vari-
ation of the Markov chain Monte Carlo sampling algorithm proposed in (Ide and
Cozman, 2002). Instead of allowing arcs in the Bayesian network in both direc-
tions between the nodes and checking at each new iteration whether the generated
Bayesian network graph is acyclic like in (Ide and Cozman, 2002), we preserved an
ordering of the nodes in the graph and allow an edge from the node z; to the node
zj only if i < j. We started with a simple connected graph where each node z;,
except for the first node 21, has connection from node z;_;. We then performed the
following MCMC iterations

1. Choose randomly a pair of nodes (z;, z;) where i < j ;

2. If there is an edge from z; to z; then remove the edge if the Bayesian net-
work remains connected, otherwise keep the same Bayesian network from the
previous iteration;

3. If there is not an arc, then create an edge from z; to z; if the node z; has
less than 8 parents, otherwise keep the Bayesian network from the previous
iteration.

Similarly to the proofs in (Ide and Cozman, 2002), one can prove that the sta-
tionary distribution of the above Markov chain is a uniform distribution over all
valid Bayesian networks that satisfy the constraint that a node can not have more
than 8 parents. To generate the Bayesian network used in the simulations we per-
formed 500000 iterations of the above Markov chain. The conditional probability
distributions for the Bayesian network were sampled from Dirichlet distributions
with priors (o, o, ..., ax) with a; = 0.6 for all 4.

In the simulations that use a neuron model with a relative refractory mechanism,
we used the following form for the refractory function g (t)
27rt)

g(t) = ; - % (2.45)

The corresponding function f(u) for the firing probability is defined implicitly by
(2.17).

*web site: www.igi.tugraz.at/pcsim

2.5. Acknowledgements 53

2.5 Acknowledgements

This chapter is based on the paper Probabilistic Inference in General Graphical Mod-
els through Sampling in Stochastic Networks of Spiking Neurons by Dejan Pecevski
(DP), Lars Biising (LB) and Wolfgang Maass (WM). The paper was submitted for
publication in 2011 and is under review. The experiments in the paper were con-
cieved and designed by DP and WM. DP conducted the experiments and analysed
the simulation results. The paper builds on the theory of neural sampling developed
by LB and reported in (Biising et al., 2011). DP and WM provided the additional
theoretical derivations and analysis in the paper. DP and WM wrote the manuscript.
LB provided valuable comments that helped to improve the manuscript.

CHAPTER 3

A Learning Theory for
Reward-Modulated
Spike-Time-Dependent Plasticity
with Application to Biofeedback

Contents
3.1 Imntroduction 56
3.2 Results.0 i i i i i e e e e 58
33 Methods v v i i i e e e e 79
3.4 Discussion v v vttt e e e e e e e e e e 99
3.5 Acknowledgments 000, 105

Reward-modulated spike-timing-dependent plasticity (STDP) has recently
emerged as a candidate for a learning rule that could explain how behaviorally rele-
vant adaptive changes in complex networks of spiking neurons could be achieved in
a self-organizing manner through local synaptic plasticity. However the capabilities
and limitations of this learning rule could so far only be tested through computer
simulations. This work provides tools for an analytic treatment of reward-modulated
STDP, which allows us to predict under which conditions reward-modulated STDP
will achieve a desired learning effect. These analytical results imply that neurons
can learn through reward-modulated STDP to classify not only spatial, but also
temporal firing patterns of presynaptic neurons. They also can learn to respond
to specific presynaptic firing patterns with particular spike patterns. Finally, the
resulting learning theory predicts that even difficult credit-assignment problems,
where it is very hard to tell which synaptic weights should be modified in order to
increase the global reward for the system, can be solved in a self-organizing manner
through reward-modulated STDP. This yields an explanation for a fundamental ex-
perimental result on biofeedback in monkeys by Fetz and Baker. In this experiment
monkeys were rewarded for increasing the firing rate of a particular neuron in the
cortex, and were able to solve this extremely difficult credit assignment problem.
Our model for this experiment relies on a combination of reward-modulated STDP
with variable spontaneous firing activity. Hence it also provides a possible functional

56 Chapter 3. A Learning Theory for Reward-Modulated STDP

explanation for trial-to-trial variability, which is characteristic for cortical networks
of neurons, but has no analogue in currently existing artificial computing systems.
In addition our model demonstrates that reward-modulated STDP can be applied
to all synapses in a large recurrent neural network without endangering the stability
of the network dynamics.

3.1 Introduction

Numerous experimental studies (see Abbott and Nelson (2000) for a review; Jacob
et al. (2007) discusses more recent in-vivo results) have shown that the efficacy of
synapses changes in dependence of the time difference At = t,,5 — tpre between
the firing times ?,,. and t,,s of the pre- and postsynaptic neurons. This effect
is called spike-timing-dependent plasticity (STDP). But a major puzzle for under-
standing learning in biological organisms is the relationship between experimentally
well-established rules for STDP on the microscopic level, and adaptive changes of
the behavior of biological organisms on the macroscopic level. Neuromodulatory
systems, which send diffuse signals related to reinforcements (rewards) and behav-
ioral state to several large networks of neurons in the brain, have been identified as
likely intermediaries that relate these two levels of plasticity. It is well-known that
the consolidation of changes of synaptic weights in response to pre- and postsynap-
tic neuronal activity requires the presence of such third signals Bailey et al. (2000);
Gu (2002). In particular, it has been demonstrated that dopamine (which is behav-
iorally related to novelty and reward prediction Schultz (2007)) gates plasticity at
corticostriatal synapses Reynolds et al. (2001); Reynolds and Wickens (2002) and
within the cortex Bao et al. (2001). It has also been shown that acetylcholine gates
synaptic plasticity in the cortex (see for example Shulz et al. (2000) and Thiel et al.
(2002); Shulz et al. (2003) contains a nice review of the literature).
Corresponding spike-based rules for synaptic plasticity of the form

d
iji(t) = ¢;i(t)d(?) (3.1)

have been proposed in Izhikevich (2007) and Florian (2007) (see Fig. 3.1 for an
illustration of this learning rule), where wj; is the weight of a synapse from neuron ¢
to neuron j, ¢;;(t) is an eligibility trace of this synapse which collects weight changes
proposed by STDP, and d(t) = h(t) — h results from a neuromodulatory signal h(t)
with mean value h. It was shown in Izhikevich (2007) that a number of interesting
learning tasks in large networks of neurons can be accomplished with this simple
rule (3.1). It has recently been shown that quite similar learning rules for spiking
neurons arise when one applies the general framework of distributed reinforcement
learning from Baxter and Bartlett (1999) to networks of spiking neurons Baras and
Meir (2007); Florian (2007), or if one maximizes the likelihood of postsynaptic firing
at desired firing times Pfister et al. (2006). However no analytical tools have been
available, which make it possible to predict for what learning tasks, and under which
parameter settings, reward-modulated STDP will be successful. This work provides

3.1. Introduction 57

such analytical tools, and demonstrates their applicability and significance through
a variety of computer simulations. In particular, we identify conditions under which
neurons can learn through reward-modulated STDP to classify temporal presynaptic
firing patterns, and to respond with particular spike patterns.

We also provide a model for the remarkable operant conditioning experiments
of Fetz and Baker (1973) (see also Fetz (1969, 2007)). In the simpler ones of these
experiments the spiking activity of single neurons (in area 4 of the precentral gyrus
of monkey cortex) was recorded, the deviation of the current firing rate of an arbi-
trarily selected neuron from its average firing rate was made visible to the monkey
through the displacement of an illuminated meter arm, whose rightward position
corresponded to the threshold for the feeder discharge. The monkey received food
rewards for increasing (or in alternating trials for decreasing) the firing rate of this
neuron. The monkeys learnt quite reliably (within a few minutes) to change the fir-
ing rate of this neuron in the currently rewarded direction.! Obviously the existence
of learning mechanisms in the brain which are able to solve this extremely difficult
credit assignment problem provides an important clue for understanding the orga-
nization of learning in the brain. We examine in this work analytically under what
conditions reward-modulated STDP is able to solve such learning problem. We test
the correctness of analytically derived predictions through computer simulations of
biologically quite realistic recurrently connected networks of neurons, where an in-
crease of the firing rate of one arbitrarily selected neuron within a network of 4000
neurons is reinforced through rewards (which are sent to all 142813 synapses be-
tween excitatory neurons in this recurrent network). We also provide a model for the
more complex operant conditioning experiments of Fetz and Baker (1973) by show-
ing that pairs of neurons can be differentially trained through reward-modulated
STDP, where one neuron is rewarded for increasing its firing rate, and simulta-
neously another neuron is rewarded for decreasing its firing rate. More precisely,
we increased the reward signal d(¢) which is transmitted to all synapses between

! Adjacent neurons tended to change their firing rate in the same direction, but also differential
changes of directions of firing rates of pairs of neurons are reported in Fetz and Baker (1973) (when
these differential changes were rewarded). For example, it was shown in Fig. 3.9 of Fetz and Baker
(1973) (see also Fig. 3.1 in Fetz (2007)) that pairs of neurons that were separated by no more than
a few hundred microns could be independently trained to increase or decrease their firing rates. It
was also reported in Fetz and Baker (1973), and further examined in Fetz and Finocchio (1975),
that bursts of the reinforced neurons were often accompanied by activations of specific muscles.
But the relationship between bursts of the recorded neurons in precentral motor cortex and muscle
activations was reported to be quite complex and often dropped out after continued reinforcement
of the neuron alone. Furthermore in Fetz and Finocchio (1975) it was shown that all neurons tested
in that study could be dissociated from their correlated muscle activity by differentially reinforcing
simultaneous suppression of EMG activity. These results suggest that the solution of the credit
assignment problem by the monkeys (to stronger activate that neuron out of billions of neurons
in their precentral gyrus that was reinforced) may have been supported by large scale exploration
strategies that were associated with muscle activations. But the previously mentioned results on
differential reinforcements of two nearby neurons suggest that this large scale exploration strategy
had to be complemented by exploration on a finer spatial scale that is difficult to explain on the
basis of muscle activations (see section 3.2 of Fetz (2007) for a detailed discussion).

58 Chapter 3. A Learning Theory for Reward-Modulated STDP

excitatory neurons in the network whenever the first neuron fired, and decreased
this reward signal whenever the second neuron fired (the resulting composed reward
corresponds to the displacement of the meter arm that was shown to the monkey in
these more complex operant conditioning experiments).

Our theory and computer simulations also show that reward-modulated STDP
can be applied to all synapses within a large network of neurons for long time periods,
without endangering the stability of the network. In particular this synaptic plastic-
ity rule keeps the network within the asynchronous irregular firing regime, which had
been described in Brunel (2000) as a dynamic regime that resembles spontaneous
activity in the cortex. Another interesting aspect of learning with reward-modulated
STDP is that it requires spontaneous firing and trial-to-trial variability within the
networks of neurons where learning takes place. Hence our learning theory for this
synaptic plasticity rule provides a foundation for a functional explanation of these
characteristic features of cortical network of neurons that are undesirable from the
perspective of most computational theories.

3.2 Results

We first give a precise definition of the learning rule (3.1) for reward-modulated
STDP. The standard rule for STDP, which specifies the change W (At) of the
synaptic weight of an excitatory synapse in dependence on the time difference
At = tpost — tpre between the firing times t,.. and t,,5 of the pre- and postsy-
naptic neuron, is based on numerous experimental data (see Abbott and Nelson
(2000)). It is commonly modeled by a so-called learning curve of the form

Aje Ut i At >0
LWA”:{—AJNM-,iMM<o’ (32)

where the positive constants A, and A_ scale the strength of potentiation and
depression respectively, and 7, and 7_ are positive time constants defining the width
of the positive and negative learning window. The resulting weight change at time ¢
of synapse ji for a presynaptic spike train S and a postsynaptic spike train S;’ ost
is usually modeled Gerstner and Kistler (2002) by the instantaneous application of
this learning rule to all spike pairings with the second spike at time ¢

[%“’j"“)} o /ooo dr W (r)S7*" (8) S (t — 1)

[e.9]
+/dwwﬂ$%—w¢@(w)
0

The spike train of a neuron ¢ which fires action potentials at times tz(-l),t?), tl(-g)

is formalized here by a sum of Dirac delta functions S;(t) = >, o(t — tgn)).
The model analyzed in this work is based on the assumption that positive and
negative weight changes suggested by STDP for all pairs of pre- and postsynaptic
spikes at synapse ji (according to the two integrals in (3.3)) are collected in an

PRI

3.2. Results 59

eligibility trace cj;(t) at the site of the synapse. The contribution to ¢;;(t) of all
spike pairings with the second spike at time ¢ — s is modeled for s > 0 by a function
fe(s) (see Fig. 3.1A); the time scale of the eligibility trace is assumed in this work
to be on the order of seconds. Hence the value of the eligibility trace of synapse ji
at time ¢ is given by

ci(t) = [dsgo) | Gt - , (3.4

s)}
STDP
see Fig. 3.1B. The actual weight change %wji(t) at time ¢ for reward-modulated
STDP is the product c;;(t) - d(t) of the eligibility trace with the reward signal
d(t) as defined by equation (3.1). Since this simple model can in principle lead
to unbounded growth of weights, we assume that weights are clipped at the lower
boundary value 0 and an upper boundary wp,q..

The network dynamics of a simulated recurrent network of spiking neurons where
all connections between excitatory neurons are subject to STDP is quite sensitive to
the particular STDP-rule that is used. Therefore we have carried out our network
simulations not only with the additive STDP-rule (3.3), whose effect can be analyzed
theoretically, but also with the more complex rule proposed in Morrison et al. (2007)
(which was fitted to experimental data from hippocampal neurons in culture Bi and
Poo (1998)), where the magnitude of the weight change depends on the current value
of the weight. An implementation of this STDP-rule (with the parameters proposed
in Morrison et al. (2007)) produced in our network simulations of the biofeedback
experiment (computer simulation 1) as well as for learning pattern classification
(computer simulation 4) qualitatively the same result as rule (3.3).

3.2.1 Theoretical analysis of the resulting weight changes

In this section, we derive a learning equation for reward-modulated STDP. This
learning equation relates the change of a synaptic weight w;; over some sufficiently
long time interval T to statistical properties of the joint distribution of the reward
signal d(t) and pre- and postsynaptic firing times, under the assumption that the
weight and correlations between pre- and postsynaptic spike times are slowly varying
in time. We treat spike times as well as the reward signal d(t) as stochastic variables.
This mathematical framework allows us to derive the expected weight change over
some time interval 7" (see Gerstner and Kistler (2002)), with the expectation taken
over realizations of the stochastic input- and output spike trains as well as stochastic
realizations of the reward signal, denoted by the ensemble average (-)p

(wji(t + T;— wji(t) g _ % </tt+T %wji(t/)dt/>E = <<%wji(t)>T>E, (3.5)

where we used the abbreviation (f(t))y = T—1 tt+T f(#') dt’. If synaptic plasticity is
sufficiently slow, synaptic weights integrate a large number of small changes. In this
case, the weight w;; can be approximated by its average (w;;) g (it is “self-averaging”,

60 Chapter 3. A Learning Theory for Reward-Modulated STDP

A
0.5
Jel(t)
0
0.0 1.0 2.0
t [sec]
B — 200 ms
post I I L1
pre —1 1

eligibility trace c¢(t)

|\£ward signal d(t)

synaptic weight w(t)

|

Figure 3.1: Scheme of reward-modulated STDP according to equations (3.1) - (3.4). A)
Eligibility function f.(t), which scales the contribution of a pre/post spike pair (with the
second spike at time 0) to the eligibility trace ¢(t) at time ¢. B) Contribution of a pre-
before-post spike pair (in red) and a post-before-pre spike pair (in green) to the eligibility
trace ¢(t) (in black), which is the sum of the red and green curves. According to equation
(3.1) the change of the synaptic weight w is proportional to the product of ¢(t) with a
reward signal d(t).

see Gerstner and Kistler (2002)). We can thus drop the expectation on the left hand
side of equation (3.5) and write it as & (wj;(t)),. Using equation (3.1), this yields
(see Methods)

< twsi(t)) = /OOO dr W (r) /OOO ds fu(s) (Dji(t, 5,7) vjilt — 5,7y

0 0o
—I—/ dr W(r)/l ds fe(s+ 1) (Dji(t,s,7) vji(t —s,7)) 7

—00 7|

This formula contains the reward correlation for synapse ji

Dji(t,s,r) = (d(t)| Neuron j spikes at ¢t — s, and neuron i spikes at t —s —r)g ,
(3.7)
which is the average reward at time ¢ given a presynaptic spike at time ¢t — s — r
and a postsynaptic spike at time ¢t — s. The joint firing rate v;;(t,r) = (S;(t)S;(t —

3.2. Results 61

r))g describes correlations between spike timings of neurons j and i, i.e., it is the
probability density for the event that neuron ¢ fires an action potential at time ¢t —r
and neuron j fires an action potential at time t. For synapses subject to reward-
modulated STDP, changes in efficacy are obviously driven by co-occurrences of spike
pairings and rewards within the time scale of the eligibility trace. Equation (3.6)
clarifies how the expected weight change depends on how the correlations between
the pre- and postsynaptic neurons correlate with the reward signal.

If one assumes for simplicity that the impact of a spike pair on the eligibility
trace is always triggered by the postsynaptic spike, one gets a simpler equation (see
Methods)

d

oy = [T s £6) [~ dr WO Dsttosr) vt =y 39

The assumption introduces a small error for post-before-pre spike pairs, because for
a reward signal that arrives at some time d, after the pairing, the weight update
will be proportional to f.(d,) instead of f.(d, +r). The approximation is justified if
the temporal average is performed on a much longer time scale than the time scale
of the learning window, the effect of each pre-post spike pair on the reward signal
is delayed by an amount greater than the time scale of the learning window, and
fe changes slowly compared to the time scale of the learning window (see Methods
for details). For the analyzes presented in this work, the simplified equation (3.8)
is a good approximation for the learning dynamics. Equation (3.8) is a general-
ized version of the STDP learning equation %wji(t) = [Z dr W(r) (vi(t — s,7))p
in Gerstner and Kistler (2002) that includes the impact of the reward correlation
weighted by the eligibility function. To see the relation between standard STDP
and reward-modulated STDP, consider a constant reward signal d(t) = dyp. Then
also the reward correlation is constant and given by D(t,s,r) = dy. We recover
the standard STDP learning equation scaled by dy if the eligibility function is
an instantaneous delta-pulse f.(s) = d(s). Furthermore, if the statistics of the
reward signal d(t) is time-independent and independent from the pre- and post-
synaptic spike statistics of some synapse j¢, then the reward correlation is given
by Dji(t,s,r) = (d(t))r = do for some constant dyp. Then, the weight change
for synapse ji is &(w;(t))r = do (5 dr W(r) Iy~ ds fe(s) (vji(t — s,7))p. The
temporal average of the joint firing rate (v;;(t — s,7)), is thus filtered by the el-
igibility trace. We assumed in the preceding analysis that the temporal average
is taken over some long time interval 7. If the time scale of the eligibility trace
is much smaller than this time interval 7', then the weight change is approxi-
mately < (w;i(t))r ~ do([y~ dsfeo(s)) [*o dr W(r) (vji(t, 7))y, and the weight wj,
will change according to standard STDP scaled by a constant proportional to the
mean reward and the integral over the eligibility function. In the remainder of this
chapter, we will always use the smooth time-averaged weight change % (wjs () p,
but for brevity, we will drop the angular brackets and simply write %fwji(t).

The learning equation (3.8) provides the mathematical basis for our following
analyses. It allows us to determine synaptic weight changes if we can describe a

62 Chapter 3. A Learning Theory for Reward-Modulated STDP

learning situation in terms of reward correlations and correlations between pre- and
postsynaptic spikes.

3.2.2 Application to models for biofeedback experiments

We now apply the preceding analysis to the biofeedback experiment of Fetz and
Baker (1973) that were described in the introduction. These experiments pose the
challenge to explain how learning mechanisms in the brain can detect and exploit
correlations between rewards and the firing activity of one or a few neurons within a
large recurrent network of neurons (the credit assignment problem), without chang-
ing the overall function or dynamics of the circuit.

We show that this phenomenon can in principle be explained by reward-
modulated STDP. In order to do that, we define a model for the experiment which
allows us to formulate an equation for the reward signal d(t). This enables us to
calculate synaptic weight changes for this particular scenario. We consider as model
a recurrent neural circuit where the spiking activity of one neuron k is recorded

by the experimenter.?

We assume that in the monkey brain a reward signal d(t)
is produced which depends on the visual feedback (through an illuminated meter,
whose pointer deflection was dependent on the current firing rate of the randomly
selected neuron k) as well as previously received liquid rewards, and that this signal
d(t) is delivered to all synapses in large areas of the brain. We can formalize this
scenario by defining a reward signal which depends on the spike rate of the arbi-
trarily selected neuron k (see Fig. 3.2A, B). More precisely, a reward pulse of shape
gr(r) (the reward kernel) is produced with some delay d, every time the neuron k

produces an action potential
d(t) = / dr SP(t — dy — 1)z (r). (3.9)
0

Note that d(t) = h(t) — h is defined in equation (3.1) as a signal with zero mean.
In order to satisfy this constraint, we assume that the reward kernel e, has zero
mass, i.e., & = fooo dr €,(r) = 0. For the analysis, we use the linear Poisson neuron
model described in Methods. The mean weight change for synapses to the reinforced
neuron k is then approximately (see Methods)

%wki(t) R~ /000 ds fo(s+dy)er(s) /OO dr W(r) (vg(t —dy — s,7))p . (3.10)

—00

This equation describes STDP with a learning rate proportional to fooo ds fe(s +
d,)er(s). The outcome of the learning session will strongly depend on this integral
and thus on the form of the reward kernel ¢,. In order to reinforce high firing rates
of the reinforced neuron we have chosen a reward kernel with a positive bump in

?Experiments where two neurons are recorded and reinforced were also reported in Fetz and
Baker (1973). We tested this case in computer simulations (see Fig. (3.4)) but did not treat it
explicitly in our theoretical analysis.

3.2. Results 63

A d(t) B
J4RY UMD 1

15
Reward =
— 10}
C g
0.5 1.5 k=)
[(0] 175 5
(@] [y
= o °
g < g o
2 ® o
o 0 0 =2 _5 ‘ ‘ ‘
) o 0 1 2 3
0 2.5 5 time [sec]
s [sec]

Figure 3.2: Setup of the model for the experiment by Fetz and Baker Fetz and Baker
(1973). A) Schema of the model: The activity of a single neuron in the circuit determines
the amount of reward delivered to all synapses between excitatory neurons in the circuit. B)
The reward signal d(¢) in response to a spike train (shown at the top) of the arbitrarily
selected neuron (which was selected from a recurrently connected circuit consisting of 4000
neurons). The level of the reward signal d(t) follows the firing rate of the spike train. C)
The eligibility function f.(s) (black curve, left axis), the reward kernel €,(s) delayed by 200
ms (red curve, right axis), and the product of these two functions (blue curve, right axis)
as used in our computer experiment. The integral of f.(s+ d,)e,(s) is positive, as required
according to equation (3.10) in order to achieve a positive learning rate for the synapses to
the selected neuron.

the first few hundred milliseconds, and a long negative tail afterwards. Fig. 3.2C
shows the functions f. and ¢, that were used in our computer model, as well as
the product of these two functions. One sees that the integral over the product is
positive and according to equation (3.10) the synapses to the reinforced neuron are
subject to STDP.

This does not guarantee an increase of the firing rate of the reinforced neuron.
Instead, the changes of neuronal firing will depend on the statistics of the inputs. In
particular, the weights of synapses to neuron k will not increase if that neuron does
not fire spontaneously. For uncorrelated Poisson input spike trains of equal rate, the
firing rate of a neuron trained by STDP stabilizes at some value which depends on
the input rate (see Song et al. (2000); Kempter et al. (2001)). However, in compari-
son to the low spontaneous firing rates observed in the biofeedback experiment Fetz
and Baker (1973), the stable firing rate under STDP can be much higher, allowing
for a significant rate increase. It was shown in Fetz and Baker (1973) that also low
firing rates of a single neuron can be reinforced. In order to model this, we have
chosen a reward kernel with a negative bump in the first few hundred milliseconds,
and a long positive tail afterwards, i.e. we inverted the kernel used above to obtain
a negative integral [;° ds fe(s+d;)e,(s). According to equation (3.10) this leads to

64 Chapter 3. A Learning Theory for Reward-Modulated STDP

anti-STDP where not only inputs to the reinforced neuron which have low correla-
tions with the output are depressed (because of the negative integral of the learning
window), but also those which are causally correlated with the output. This leads
to a quick firing rate decrease at the reinforced neuron.

The mean weight change of synapses to non-reinforced neurons j # k is given
by

it~ [as 1.0 [arw [are)

vt —dp — 7' s —dp — 1)
I/j(t - S)

(3.11)

ij‘(t—s,r)> :

T

where v;(t) = (S;j(t)) g is the instantaneous firing rate of neuron j at time ¢. This
equation indicates that a non-reinforced neuron is trained by STDP with a learning
rate proportional to its correlation with the reinforced neuron given by v;(t —
dr —1',s —d, — 1")/vj(t — s). In fact, it was noted in Fetz and Baker (1973)
that neurons nearby the reinforced neuron tended to change their firing rate in the
same direction. This observation might be explained by putative correlations of
the recorded neuron with nearby neurons. On the other hand, if a neuron j is
uncorrelated with the reinforced neuron k, we can decompose the joint firing rate
into vg;(t —dp — 7', s —d — ') = v (t — dr —7")vj(t — s). In this case, the learning
rate for synapse ji is approximately zero (see Methods). This ensures that most
neurons in the circuit keep a constant firing rate, in spite of continuous weight
changes according to reward-modulated STDP.

Altogether we see that the weights of synapses to the reinforced neuron k£ can
only change if there is spontaneous activity in the network, so that in particular
also this neuron k fires spontaneously. On the other hand the spontaneous network
activity should not consist of repeating large-scale spatio-temporal firing patterns,
since that would entail correlations between the firing of neuron k and other neurons
7, and would lead to similar changes of synapses to these other neurons j. Apart from
these requirements on the spontaneous network activity, the preceding theoretical
results predict that stability of the circuit is preserved, while the neuron which is
causally related to the reward signal is trained by STDP, if [;° ds f.(s +d;)e,(s) is
positive.

3.2.2.1 Computer simulation 1: Model for biofeedback experiment

We tested these theoretical predictions through computer simulations of a generic
cortical microcircuit receiving a reward signal which depends on the firing of one
arbitrarily chosen neuron k from the circuit (reinforced neuron). The circuit was
composed of 4000 LIF neurons, with 3200 being excitatory and 800 inhibitory, inter-
connected randomly by 228954 conductance based synapses with short term dynam-
ics 3. In addition to the explicitly modeled synaptic connections, conductance noise

3 All computer simulations were also carried out as a control with static current based synapses,
see Methods and Suppl.

3.2. Results 65

(generated by an Ornstein-Uhlenbeck process) was injected into each neuron ac-
cording to data from Destexhe et al. (2001), in order to model synaptic background
activity of neocortical neurons in-vivo.# This background noise elicited spontaneous
firing in the circuit at about 4.6 Hz. Reward-modulated STDP was applied contin-
uously to all synapses which had excitatory presynaptic and postsynaptic neurons,
and all these synapses received the same reward signal. The reward signal was mod-
eled according to equation (3.9). Fig. 3.2C shows one reward pulse caused by a
single postsynaptic spike at time ¢ = 0 with the parameters used in the experiment.
For several postsynaptic spikes, the amplitude of the reward signal follows the firing
rate of the reinforced neuron, see Fig. 3.2B.

This model was simulated for 20 minutes of biological time. Panels A, B, D of
Fig. 3.3 show that the firing rate of the reinforced neuron increases within a few
minutes (like in the experiment of Fetz and Baker (1973)), while the firing rates
of the other neurons remain largely unchanged. The increase of weights to the
reinforced neuron shown in Fig. 3.3C can be explained by the correlations between
its presynaptic and postsynaptic spikes shown in panel E. This panel shows that
pre-before-post spike pairings (black curve) are in general more frequent than post-
before-pre spike pairings. The reinforced neuron increases its rate from around 4
Hz to 12 Hz, which is comparable to the measured firing rates in Fetz and Baker
(1973) before and after learning.

In Fig. 3.9 of Fetz and Baker (1973) and Fig. 3.1 of Fetz (2007) the results of
another experiment were reported where the activity of two adjacent neurons was
recorded, and high firing rates of the first neuron and low firing rates of the sec-
ond neuron were reinforced simultaneously. This kind of differential reinforcement
resulted in an increase and decrease of the firing rates of the two neurons corre-
spondingly. We implemented this type of reinforcement by letting the reward signal
in our model depend on the spikes of the two randomly chosen neurons (we refer to
these neurons as neuron A and neuron B), i.e. d(t) = d{(t) + dB(t), where di(t)
is the component that positively rewards spikes of neuron A, and d”(t) negatively
rewards spikes of neuron B. Both parts of the reward signal, d4\(¢) and d?(t), were
defined as in equation (3.9) for the corresponding neuron. For d4(t) we used the
reward kernel £, as defined in equation (3.29), whereas for d®(t) we used ¢,_ = —¢,
(note that the integral over e,_ is still zero). At the middle of the simulation (simu-
lation time ¢ = 10min), we changed the direction of the reinforcements by negatively
rewarding the firing of neuron A and positively rewarding the firing of neuron B (i.e.,
d(t) = d?(t)+d¥(t)). The results are summarized in Fig. 3.4. With a reward signal
modeled in this way, we were able to independently increase and decrease the firing
rates of the two neurons according to the reinforcements, while the firing rates of the
other neurons remained unchanged. Changing the type of reinforcement during the

“More precisely, for 50% of the excitatory neurons the amplitude of the noise injection was
reduced to 20%, and instead their connection probabilities from other excitatory neurons were
chosen to be larger (see Methods and Fig. S1 and S2 for details). The reinforced neuron had to
be chosen from the latter population, since reward-modulated STDP does not work properly if the
postsynaptic neuron fires too often because of directly injected noise.

66 Chapter 3. A Learning Theory for Reward-Modulated STDP

simulation from positive to negative for neuron A and from negative to positive for
neuron B resulted in a corresponding shift in their firing rate change in the direction
of the reinforcement.

The dynamics of a network where STDP is applied to all synapses between exci-
tatory neurons is quite sensitive to the specific choice of the STDP-rule. The preced-
ing theoretical analysis (see equation (3.10), (3.11)) predicts that reward-modulated
STDP affects in the long run only those excitatory synapses where the firing of the
postsynaptic neuron is correlated with the reward signal. In other words: the reward
signal gates the effect of STDP in a recurrent network, and thereby can keep the
network within a given dynamic regime. This prediction is confirmed qualitatively
by the two panels of Fig. 3.3A, which show that even after all excitatory synapses in
the recurrent network have been subject to 20 minutes (in simulated biological time)
of reward-modulated STDP, the network stays within the asynchronous irregular fir-
ing regime. It is also confirmed quantitatively through Fig. 3.5. These figures show
results for the simple additive version of STDP (according to equation (3.3)). Very
similar results (see Fig. S3 and S4) arise from an application of the more complex
STDP-rule proposed in Morrison et al. (2007) where the weight-change depends on
the current weight value.

3.2.3 Rewarding spike-times

The preceding model for the biofeedback experiment of Fetz and Baker focused
on learning of firing rates. In order to explore the capabilities and limitations of
reward-modulated STDP in contexts where the temporal structure of spike trains
matters, we investigated another reinforcement learning scenario where a neuron
should learn to respond with particular temporal spike patterns. We first apply
analytical methods to derive conditions under which a neuron subject to reward-
modulated STDP can achieve this.

In this model, the reward signal d(¢) is given in dependence on how well the
output spike train S¥ 5! of a neuron j matches some rather arbitrary spike train S*
(which might for example represent spike output from some other brain structure
during a developmental phase). S* is produced by a neuron p* that receives the same
n input spike trains Si, ..., 5, as the trained neuron j, with some arbitrarily chosen
)T

weights w* = (w],...,w})", wS € {0, wpnq}. But in addition the neuron p* receives

n' — n further spike trains S,1,...,S, with weights Wy 1y-ee Wy = Wingg- The

n
setup is illustrated in Fig. 3.6A. It provides a generic reinforcement learning scenario,
when a quite arbitrary (and not perfectly realizable) spike output is reinforced, but
simultaneously the performance of the learner can be evaluated clearly according to
how well its weights wj1,...,wj, match those of the neuron p* for those n input
spike trains which both of them have in common. The reward d(t) at time ¢ depends
in this task on both the timing of action potentials of the trained neuron and spike

times in the target spike train S*

d(t) = /_ " dr w(r)SP(E — d)S"(t— dy — 1), (3.12)

3.2. Results 67

A
al
ol
gk
.
<.
ol
=)
0 3 ° ’ ’
time [sec] time sec
. C
/_é
12
- § 0.70
élo s
£ £ 0.60
8 oo
5 [0
6 e 2050 Fr~---ommosm om0
4 ‘ ‘ w : & ‘ ‘ ‘
5 10 15 20 o0 s 1 s 20
time [min] time [min]
D E
25
ceoe (LTI I
learning

time [sec] time [ms]

(&)

cross-correlation (-1073)
=
ol

o

Figure 3.3: Simulation of the experiment by Fetz and Baker Fetz and Baker (1973) for the
case where an arbitrarily selected neuron triggers global rewards when it increases its firing
rate. A) Spike response of 100 randomly chosen neurons within the recurrent network
of 4000 neurons at the beginning of the simulation (20sec - 23sec, left plot), and at the
end of the simulation (the last 3 seconds, right plot). The firing times of the reinforced
neuron are marked by blue crosses. B) The firing rate of the positively rewarded neuron
(blue line) increases, while the average firing rate of 20 other randomly chosen neurons
(dashed line) remains unchanged. C) Evolution of the average weight of excitatory synapses
to the reinforced neuron (blue line), and of the average weight of 1663 randomly chosen
excitatory synapses to other neurons in the circuit (dashed line). D) Spike trains of the
reinforced neuron before and after learning. E) Histogram of the time-differences between
presynaptic and postsynaptic spikes (bin size 0.5ms), averaged over all excitatory synapses
to the reinforced neuron. The black curve represents the histogram values for positive time
differences (when the presynaptic spike precedes the postsynaptic spike), and the red curve
represents the histogram for negative time differences.

where the function x(r) with & = [*°_ds k(s) > 0 describes how the reward signal
depends on the time difference r between a postsynaptic spike and a target spike,

68 Chapter 3. A Learning Theory for Reward-Modulated STDP

A

2|

S

E

[ONH

o

ol

S|

0 1 2 3 0 1 2 3
time [sec] time [sec]
B C
16 AT+ Bl : Al + BT =07 AT+ Bl : Al + BT
12 <06

~ 3
= Py
2 8 2 0.5
e .o0

4 £04

) i
0 & 03 ; ‘ ‘
0 5 10 15 20
time [min] time [min]

Figure 3.4: Differential reinforcement of two neurons (within a simulated network of 4000
neurons, the two rewarded neurons are denoted as A and B), corresponding to the exper-
imental results shown in Fig. 3.9 of Fetz and Baker (1973) and Fig. 3.1 of Fetz (2007).
A) The spike response of 100 randomly chosen neurons at the beginning of the simulation
(20sec - 23sec, left plot), and at the middle of simulation just before the switching of the
reward policy (597sec-600sec, right plot). The firing times of the first reinforced neuron
A are marked by blue crosses and those of the second reinforced neuron B are marked
by green crosses. B) The dashed vertical line marks the switch of the reinforcements at
t = 10min. The firing rate of neuron A (blue line) increases while it is positively reinforced
in the first half of the simulation and decreases in the second half when its spiking is nega-
tively reinforced. The firing rate of the neuron B (green line) decreases during the negative
reinforcement in the first half and increases during the positive reinforcement in the second
half of the simulation. The average firing rate of 20 other randomly chosen neurons (dashed
line) remains unchanged. C) Evolution of the average weight of excitatory synapses to the
rewarded neurons A and B (blue and green lines respectively), and of the average weight
of 1744 randomly chosen excitatory synapses to other neurons in the circuit (dashed line).

and d, > 0 is the delay of the reward.

Our theoretical analysis (see Methods) predicts that under the assumption of
constant-rate uncorrelated Poisson input statistics this reinforcement learning task
can be solved by reward-modulated STDP for arbitrary initial weights if three con-
straints are fulfilled:

3.2. Results 69

>
v)

16 [— 300-360 sec 2 f — 300-360 sec
= === 600-660 sec —_— === 600-660 sec
> — 900-960 sec X 20 | — 900-960 sec

w 12 == 1140-1200 sec —_ == 1140-1200 sec
@ 2
8 S 15
] =1
c 8 2 10
g 4 g 5
0 Il | | | O | i
0.0 0.2 0.4 0.6 0.8 1.0 0 4 8 12 16
synaptic weight (w/wmaz) firing rate [Hz]
C D

10 1 10 1
T s
!

—~ 0
=
QO
-5
-100 -50 0 50 100 -100 -50 0 50 100
7 [ms] 7 [ms]

Figure 3.5: Evolution of the dynamics of a recurrent network of 4000 LIF neurons during
application of reward-modulated STDP. A) Distribution of the synaptic weights of excita-
tory synapses to 50 randomly chosen non-reinforced neurons, plotted for 4 different periods
of simulated biological time during the simulation. The weights are averaged over 10 sam-
ples within these periods. The colors of the curves and the corresponding intervals are as
follows: red (300—360 sec), green (600—660 sec), blue (900—960 sec), magenta (1140— 1200
sec). B) The distribution of average firing rates of the non-reinforced excitatory neurons in
the circuit, plotted for the same time periods as in A). The colors of the curves are the same
asin A). The distribution of the firing rates of the neurons in the circuit remains unchanged
during the simulation, which covers 20 minutes of biological time. C) Cross-correlogram
of the spiking activity in the circuit, averaged over 200 pairs of non-reinforced neurons and
over 60 s, with a bin size of 0.2 ms, for the period between 300 and 360 seconds of simulated
biological time. It is calculated as the cross-covariance divided by the square root of the
product of variances. D) As in C), but between seconds 1140 and 1200.(Separate plots of
panel B, C, D for two types of excitatory neurons that received different amounts of noise
currents are given in Fig. S1 and S2.)

- VﬁZﬁW > wmazWE (313)
/ dr W(r)e(r)en(r) > —uPosty / dr e(r)ex(r) (3.14)
—00 0

—o0 Wmax fc (dr) Wmax

) . post r *
/ dr W(r)en(r) > —W& [” Vinaz _Je | ¥ +y*+ug§;g%.15)

70 Chapter 3. A Learning Theory for Reward-Modulated STDP

A B
2
reward d(t) critic
1
£ \w output SPost(t) &
Sy —L LIl ™o 1 | z 0
Sty L1l | 1
R target S*(t)
w - neuron —
W -100 -50 0 50 100
otherinpus s [ms]

Figure 3.6: Setup for reinforcement learning of spike times. A) Architecture. The trained
neuron receives n input spike trains. The neuron p* receives the same inputs plus addi-
tional inputs not accessible to the trained neuron. The reward is determined by the timing
differences between the action potentials of the trained neuron and the neuron p*. B) A
reward kernel with optimal offset from the origin of ¢, = —6.6ms. The optimal offset for
this kernel was calculated with respect to the parameters from computer simulation 1 in
Table 3.1. Reward is positive if the neuron spikes around the target spike or somewhat
later, and negative if the neuron spikes much too early.

The following parameters occur in these equations: v* is the output rate of neu-
ron pu*, Vfr;‘;t
the trained neuron, f. = fooo dr f.(r) is the integral over the eligibility trace,
W = [_dr W(r) is the integral over the STDP learning curve (see equation
(3.2)), ex(r) = [dr’ k(r")e(r — ') is the convolution of the reward kernel with
the shape of the postsynaptic potential (PSP) e(s), and W, = [~ dr e(r)W (r) is
the integral over the PSP weighted by the learning window.

If these inequalities are fulfilled and input rates are larger than zero, then the

is the minimal output rate, Uﬁfiﬁ is the maximal output rate of

weight vector of the trained neuron converges on average from any initial weight
vector to w* (i.e., it mimics the weight distribution of neuron p* for those n inputs
which both have in common). To get an intuitive understanding of these inequalities,
we first examine the idea behind constraint (3.13). This constraint assures that
weights of synapses ¢ with w] = 0 decay to zero in expectation. First note that
input spikes from a spike train .S; with w; = 0 have no influence on the target spike
train S*. In the linear Poisson neuron model, this leads to weight changes similar
to STDP which can be described by two terms. First, all synapses are subject to
depression stemming from the negative part of the learning curve W and random
pre-post spike pairs. This weight change is bounded from below by av? “vP%'W for
some positive constant a. On the other hand, the positive influence of input spikes
on postsynaptic firing leads to potentiation of the synapse bounded from above by
aufTewmaxWE. Hence the weight decays to zero if —aufrel/%ffW > ozufrewman_Vg,
leading to inequality (3.13). For synapses ¢ with w} = Wy, there is an additional
drive, since each presynaptic spike increases the probability of a closely following

3.2. Results 71

spike in the target spike train S*. Therefore, the probability of a delayed reward
signal after a presynaptic spike is larger. This additional drive leads to positive
weight changes if inequalities (3.14) and (3.15) are fulfilled (see Methods).

Note that also for the learning of spike times spontaneous spikes (which might be
regarded as “noise”) are important, since they may lead to reward signals that can
be exploited by the learning rule. It is obvious that in reward-modulated STDP,
a silent neuron cannot recover from its silent state, since there will be no spikes
which can drive STDP. But in addition, condition (3.13) shows that in this learning
scenario, the minimal output rate Uﬁf;f
has to be larger than some positive constant, such that depression is strong enough
to weaken synapses if needed. On the other hand, if the noise is too strong also
synapses ¢ with w; = wyq, will be depressed and may not converge correctly. This

. . . . t
can happen when the increased noise leads to a maximal postsynaptic rate vhyae

— which increases with increasing noise —

such that constraints (3.14) and (3.15) are not satisfied anymore.

The conditions (3.13)-(3.15) also reveal how parameters of the model influence
the applicability of this setup. For example, the eligibility trace enters the equations
only in the form of its integral and its value at the reward delay in equation (3.15). In
fact, the exact shape of the eligibility trace is not important. The important property
of an ideal eligibility trace is that it is high at the reward delay and low at other
times as expressed by the fraction in condition (3.15). Interestingly, the formulas also
show that one has quite some freedom in choosing the form of the STDP window,
as long as the reward kernel ¢, is adjusted accordingly. For example, instead of a
standard STDP learning window W with W (r) > 0 for » > 0 and W(r) < 0 for
r < 0 and a corresponding reward kernel x, one can use a reversed learning window
W' defined by W'(r) = W(—r) and a reward kernel £’ such that e./(r) = e, (—r).
If (3.15) is satisfied for W and &, then it is also satisfied for W’ and ' (and in most
cases also condition (3.14) will be satisfied). This reflects the fact that in reward
modulated STDP the learning window defines the weight changes in combination
with the reward signal.

For a given STDP learning window, the analysis reveals what reward kernels
are suitable for this learning setup. From condition (3.15), we can deduce that the
integral over should be small (but positive), whereas the integral [*_dr W (r)e.(r)
should be large. Hence, for a standard STDP learning window W with W (r) > 0 for
r >0 and W(r) <0 for r < 0, the convolution e,(r) of the reward kernel with the
PSP should be positive for » > 0 and negative for » < 0. In the computer simulation
we used a simple kernel depicted in Fig. 3.6B, which satisfies the aforementioned
constraints. It consists of two double-exponential functions, one positive and one
negative, with a zero crossing at some offset ¢, from the origin. The optimal offset
t, is always negative and in the order of several milliseconds for usual PSP-shapes
€. We conclude that for successful learning in this scenario, a positive reward should
be produced if the neuron spikes around the target spike or somewhat later, and a
negative reward should be produced if the neuron spikes much too early.

72 Chapter 3. A Learning Theory for Reward-Modulated STDP

3.2.3.1 Computer simulation 2: Learning spike times

In order to explore this learning scenario in a biologically more realistic setting,
we trained a LIF neuron with conductance based synapses exhibiting short term
facilitation and depression. The trained neuron and the neuron p* which produced
the target spike train S* both received inputs from 100 input neurons emitting
spikes from a constant rate Poisson process of 15 Hz. The synapses to the trained
neuron were subject to reward-modulated STDP. The weights of neuron p* were
set to w; = Wyqe for 0 <7 < 50 and w; = 0 for 50 <4 < 100. In order to simulate
a non-realizable target response, neuron u* received 10 additional synaptic inputs
(with weights set t0 Wpq,/2). During the simulations we observed a firing rate of
18.2 Hz for the trained neuron, and 25.2 Hz for the neuron p*. The simulations
were run for 2 hours simulated biological time.

We performed 5 repetitions of the experiment, each time with different randomly
generated inputs and different initial weight values for the trained neuron. In each
of the 5 runs, the average synaptic weights of synapses with w; = w4, and w; =0
approached their target values, as shown in Fig. 3.7A. In order to test how closely
the trained neuron reproduces the target spike train S* after learning, we performed
additional simulations where the same spike input was applied to the trained neuron
before and after the learning. Then we compared the output of the trained neuron
before and after learning with the output S* of neuron p*. Fig. 3.7B shows that
the trained neuron approximates the part of S* which is accessible to it quite well.
Panels C-F of Fig. 3.7 provide more detailed analyses of the evolution of weights
during learning. The computer simulations confirmed the theoretical prediction that
the neuron can learn well through reward-modulated STDP ounly if a certain level
of noise is injected into the neuron (see preceding discussion and the Fig. S6).

Both the theoretical results and these computer simulations demonstrate that
a neuron can learn quite well through reward-modulated STDP to respond with
specific spike patterns.

3.2.3.2 Computer simulation 3: Testing the analytically derived condi-
tions

Equations (3.13) - (3.15) predict under which relationships between the parameters
involved the learning of particular spike responses through reward-modulated STDP
will be successful. We have tested these predictions by selecting 6 arbitrary settings
of these parameters, which are listed in Table 3.1. In 4 cases (marked by light gray
shading in Fig. 3.8) these conditions were not met (either for the learning of weights
with target value wypqq, or for the learning of weights with target value 0. Fig. 3.8
shows that the derived learning result is not achieved in exactly these 4 cases. On
the other hand, the theoretically predicted weight changes (black bar) predict in
all cases the actual weight changes (gray bar) that occur for the chosen simulation
times (listed in the last column of Table 3.1) remarkably well.

3.2. Results 73

A B
—~— 1.0
seoresming || [1111111111
508
s o NI
= L = rewarded
@ 0.6 (spil:evtvir;es)
D04 Ty sl MITTNINE A
5] AR of target S*
202 e s taring | |||||||||||||||| ||||||
%o 0.0 IR g asonen €
0 30 60 90 120 0.0 0.4
time [min] time [sec]
C D
10 1
5 =
207t 5 0.6
8 . 0.4
£o6 | N
& 0.2
[
05 ‘ ‘ ‘ ‘ ‘ ‘ 00 ‘ ‘ ‘ ‘
0 20 40 60 80 100 120 0 30 60 90 120
time [min] time [min]
F
—~ 1.0 H 1
= RS
206 \” Nk o g
- iy I a 05 3
04 g =
o > 3
%02
<,
“0.0 0

0 30 60 90 120
time [min]

synapse #

Figure 3.7: Results for reinforcement learning of exact spike times through reward-
modulated STDP. A) Synaptic weight changes of the trained LIF neuron, for 5 different
runs of the experiment. The curves show the average of the synaptic weights that should
converge to w} = 0 (dashed lines), and the average of the synaptic weights that should
converge t0 W = Wyqqe (solid lines) with different colors for each simulation run. B) Com-
parison of the output of the trained neuron before (top trace) and after learning (bottom
trace). The same input spike trains and the same noise inputs were used before and after
training for 2 hours. The second trace from above shows those spike times S* which are
rewarded, the third trace shows the realizable part of S* (i.e. those spikes which the trained
neuron could potentially learn to reproduce, since the neuron p* produces them without
its 10 extra spike inputs). The close match between the third and fourth trace shows that
the trained neuron performs very well. C) Evolution of the spike correlation between the
spike train of the trained neuron and the realizable part of the target spike train S*. D)
The angle between the weight vector w of the trained neuron and the weight vector w* of
the neuron p* during the simulation, in radians. E) Synaptic weights at the beginning of
the simulation are marked with X, and at the end of the simulation with e, for each plastic
synapse of the trained neuron. F) Evolution of the synaptic weights w/wy,q, during the
simulation (we had chosen w} = w4, for i < 50, wf = 0 for ¢ > 50).

74 Chapter 3. A Learning Theory for Reward-Modulated STDP

= 05
Il 0.0

205
3
a-10 t

Exp. # 1 2 3 4 5 6

Figure 3.8: Test of the validity of the analytically derived conditions (3.13)-(3.15) on the
relationship between parameters for successful learning with reward-modulated STDP. Pre-
dicted average weight changes (black bars) calculated from equation (3.22) match in sign
and magnitude the actual average weight changes (gray bars) in computer simulations, for 6
different experiments with different parameter settings (see Table 3.1). A) Weight changes
for synapses with w} = wy,q,. B) Weight changes for synapses with w} = 0. Four cases
where the constraints (3.13) - (3.15) are not fulfilled are shaded in light gray. In all of
these four cases the weights move into the opposite direction, i.e., a direction that decreases
rewards.

Ex. || 7e[ms] | wimaz Vfr;‘;t [Hz] |4, 106 2—; 74 [ms]| A%, AT | 75 [ms| | teim [h]
1 10 0.012 10 16.62| 1.05 20 3.34, -3.12 20 5
2 7 0.020 5 11.08] 1.02 15 4.58, -4.17 16 10
3 20 10.010 6 5.54 | 1.10 25 1.50, -1.39 40 19
4 7 0.020 5 11.08 | 1.07 25 4.67, -4.17 16 13
5 10 10.015 6 20.77| 1.10 25 3.75, -3.12 20 2
6 25 10.005 3 13.85| 1.01 25 3.34, -3.12 20 18

Table 3.1: Parameter values used for computer simulation 3 (see Fig. 3.8).

3.2.4 Pattern discrimination with reward-modulated STDP

We examine here the question whether a neuron can learn through reward-
modulated STDP to discriminate between two spike patterns P and N of its presy-
naptic neurons, by responding with more spikes to pattern P than to pattern N.
Our analysis is based on the assumption that there exist internal rewards d(¢) that
could guide such pattern discrimination. This reward based learning architecture
is biologically more plausible than an architecture with a supervisor which provides
for each input pattern a target output and thereby directly produces the desired
firing behavior of the neuron (since the question becomes then how the supervisor
has learnt to produce the desired spike outputs).

3.2. Results 75

We consider a neuron that receives input from n presynaptic neurons. A pattern
X consists of n spike trains, each of time length 7', one for each presynaptic neuron.
There are two patterns, P and N, which are presented in alternation to the neuron,
with some reset time between presentations. For notational simplicity, we assume
that each of the n presynaptic spike trains consists of exactly one spike. Hence, each
pattern can be defined by a list of spike times: P = (tI', ... t"), N = (t),...,t}),
where ¢X is the time when presynaptic neuron i spikes for pattern X € {P,N}. A
generalization to the easier case of learning to discriminate spatio-temporal presy-
naptic firing patterns (where some presynaptic neurons produce different numbers
of spikes in different patterns) is straightforward, however the main characteristics
of the learning dynamics are better accessible in this conceptually simpler setup.
It had already been shown in Izhikevich (2007) that neurons can learn through
reward-modulated STDP to discriminate between different spatial presynaptic fir-
ing patterns. But in the light of the analysis of Farries and Fairhall (2007) it is
still open whether neurons can learn with simple forms of reward-modulated STDP,
such as the one considered in this work, to discriminate temporal presynaptic firing
patterns.

We assume that the reward signal d(t) rewards — after some delay d, — action
potentials of the trained neuron if pattern P was presented, and punishes action
potentials of the neuron if pattern N was presented. More precisely, we assume that

d(t) = ol [09dr ep(r)SPost(t —d, —7) , if a pattern P was presented
Lo [0 dr e, (r)SPOst(t —d, —7) , if a pattern N was presented
(3.16)

with some reward kernel &, and constants a” < 0 < a. The goal of this learning
task is to produce many output spikes for pattern P, and few or no spikes for pattern
N.

The main result of our analysis is an estimate of the expected weight change of
synapse ¢ of the trained neuron for the presentation of pattern P, followed after a
sufficiently long time T” by a presentation of pattern N

Aw; = /oT, . [<duélit(t)>Ep i <dwd;'t(t)>E|N] ’

where (-) E|x is the expectation over the ensemble given that pattern X was pre-
sented. This weight change can be estimated as (see Methods)

Aw; :/ drw (r) [P (tF +r) AP + N (N + 1) AN], (3.17)

where vX (¢) is the postsynaptic rate at time ¢ for pattern X, and the constants A:
for X € {P,N} are given by

00 T
AX =X / dr'e, (1) [fc(dr +7') + dtf.(t —t VXt —d, — 7). (3.18)
0 0

76 Chapter 3. A Learning Theory for Reward-Modulated STDP

As we will see shortly, an interesting learning effect is achieved if AZP is positive
and AY is negative. Since f.(r) is non-negative, a natural way to achieve this is to
choose a positive reward kernel £,.(r) > 0 for » > 0 and &,(r) = 0 for r < 0 (also,
fe(r) and e, (r) must not be identical to zero for all).

We use equation (3.17) to provide insight on when and how the classification of
temporal spike patterns can be learnt with reward-modulated STDP. Assume for the
moment that AN = —AF. We first note that it is impossible to achieve through any
synaptic plasticity rule that the time integral over the membrane potential of the
trained neuron has after training a larger value for input pattern P than for input
pattern N. The reason is that each presynaptic neuron emits the same number
of spikes in both patterns (namely one spike). This simple fact implies that it is
impossible to train a linear Poisson neuron (with any learning method) to respond
to pattern P with more spikes than to pattern N. But equation (3.17) implies
that reward-modulated STDP increases the variance of the membrane potential for
pattern P, and reduces the variance for pattern N. This can be seen as follows.
Because of the specific form of the STDP learning curve W(r), which is positive
for (small) positive r, negative for (small) negative r, and zero for large r, Aw; =
f_oooo drW (r)vf (tF +r)AF has a potentiating effect on synapse i if the postsynaptic
rate for pattern P is larger (because of a higher membrane potential) shortly after
the presynaptic spike at this synapse ¢ than before that spike. This tends to further
increase the membrane potential after that spike. On the other hand, since Afv
is negative, the same situation for pattern N has a depressing effect on synapse
i, which counteracts the increased membrane potential after the presynaptic spike.
Dually, if the postsynaptic rate shortly after the presynaptic spike at synapse i is
lower than shortly before that spike, the effect on synapse i is depressing for pattern
P. This leads to a further decrease of the membrane potential after that spike. In
the same situation for pattern NV, the effect is potentiating, again counteracting the
variation of the membrane potential. The total effect on the postsynaptic membrane
potential is that the fluctuations for pattern P are increased, while the membrane
potential for pattern NV is flattened.

For the LIF neuron model, and most reasonable other non-linear spiking neuron
models, as well as for biological neurons in-vivo and in-vitro Stevens and Zador
(1998); Mainen and Sejnowski (1995); Silberberg et al. (2004), larger fluctuations
of the membrane potential lead to more action potentials. As a result, reward-
modulated STDP tends to increase the number of spikes for pattern P for these
neuron models, while it tends to decrease the number of spikes for pattern N, thereby
enabling a discrimination of these purely temporal presynaptic spike patterns.

3.2.4.1 Computer simulation 4: Learning pattern classification

We tested these theoretical predictions through computer simulations of a LIF neu-
ron with conductance based synapses exhibiting short-term depression and facilita-
tion. Both patterns, P and N, had 200 input channels, with 1 spike per channel
(hence this is the extreme where all information lies in the timing of presynaptic

3.2. Results 77

spikes). The spike times were drawn from an uniform distribution over a time inter-
val of 500ms, which was the duration of the patterns. We performed 1000 training
trials where the patterns P and N were presented to the neuron in alternation. To
introduce exploration for this reinforcement learning task, the neuron had injected
20% of the Ornstein-Uhlenbeck process conductance noise (see Methods for further
details).

The theoretical analysis predicted that the membrane potential will have after
learning a higher variance for pattern P, and a lower variance for pattern N. When
in our simulation of a LIF neuron the firing of the neuron was switched off (by setting
the firing threshold potential too high) we could observe the membrane potential
fluctuations undisturbed by the reset mechanism after each spike (see Fig. 3.9C,
D). The variance of the membrane potential did in fact increase for pattern P
from 2.49(mV)? to 5.43(mV)? (panel C), and decrease for pattern N (panel D),
from 2.34(mV)? to 1.33(mV)2. The corresponding plots with the firing threshold
included are given in panels E and F, showing an increased member of spikes of
the LIF neuron for pattern P, and a decreased number of spikes for pattern V.
Furthermore, as panels A and B in Fig. 3.9 show, the increased variance of the
membrane potential for the positively reinforced pattern P led to a stable temporal
firing pattern in response to pattern P.

We repeated the experiment 6 times, each time with different randomly gener-
ated patterns P and NN, and different random initial synaptic weights of the neuron.
The results in Fig. 3.9 G and H show that the learning of temporal pattern discrimi-
nation through reward-modulated STDP does not depend on the temporal patterns
that are chosen, nor on the initial values of synaptic weights.

3.2.4.2 Computer simulation 5: Training a readout neuron with reward-
modulated STDP to recognize isolated spoken digits

A longstanding open problem is how a biologically realistic neuron model can be
trained in a biologically plausible manner to extract information from a generic cor-
tical microcircuit. Previous work Maass et al. (2002b, 2004); Destexhe and Marder
(2004); Maass et al. (2007); Nikoli¢ et al. (2007) has shown that quite a bit of salient
information about recent and past inputs to the microcircuit can be extracted by
a non-spiking linear readout neuron (i.e., a perceptron) that is trained by linear
regression or margin maximization methods. Here we examine to what extent a
LIF readout neuron with conductance based synapses (subject to biologically re-
alistic short term synaptic plasticity) can learn through reward-modulated STDP
to extract from the response of a simulated cortical microcircuit (consisting of 540
LIF neurons), see Fig. 3.10A, the information which spoken digit (transformed into
spike trains by a standard cochlea model) is injected into the circuit. In comparison
with the preceding task in simulation 4, this task is easier because the presynaptic
firing patterns that need to be discriminated differ in temporal and spatial aspects
(see Fig. 3.10B; Fig. S10 and 11 show the spike trains that were injected into the
circuit). But this task is on the other hand more difficult, because the circuit re-

78 Chapter 3. A Learning Theory for Reward-Modulated STDP

A response to pattern P B response to pattern N
T i T
400 {o it 1 400 4
ST ‘i | e : } ,
i nol i
2 200 !1 P £ 200 oo L
* ,'\ s \ l | l] ': ' :
i 0 L o ey
0 " vl 0 YRS A R ALY
C response to pattern P D response to pattern N

Vin(t) [mV]
Vin(t) [mV]

E response to pattern P F response to pattern N
= -60 S
£ £
=64 =
=5 -68 of
72 i 72 L
0 100 200 300 400 500 0 100 200 300 400 500
time [ms] time [ms]

G H
8 before learning 8 after learning
550 580
54 514
E%2 E%2

1 2 3 4 5 6 1 2 3 4 5 6

experiment # experiment #

Figure 3.9: See next page for figure caption.

sponse (which creates the presynaptic firing pattern for the readout neuron) differs
also significantly for two utterances of the same digit (Fig. 3.10C), and even for two
trials for the same utterance (Fig. 3.10D) because of the intrinsic noise in the circuit
(which was modeled according to Destexhe et al. (2001) to reflect in-vivo conditions
during cortical UP-states). The results shown in Fig. 3.10E - H demonstrate that
nevertheless this learning experiment was successful. On the other hand we were
not able to achieve in this way speaker-independent word recognition, which had
been achieved in Maass et al. (2002b) with a linear readout. Hence further work will
be needed in order to clarify whether biologically more realistic models for readout
neurons can be trained through reinforcement learning to reach the classification
capabilities of perceptrons that are trained through supervised learning.

3.3. Methods 79

Figure 3.9: Training a LIF neuron to classify purely temporal presynaptic firing patterns: a
positive reward is given for firing of the neuron in response to a temporal presynaptic firing
pattern P, and a negative reward for firing in response to another temporal pattern V.
A) The spike response of the neuron for individual trials, during 500 training trials when
pattern P is presented. Ounly the spikes from every 4-th trial are plotted. B) As in A),
but in response to pattern N. C) The membrane potential V,,(¢) of the neuron during a
trial where pattern P is presented, before (blue curve) and after training (red curve), with
the firing threshold removed. The variance of the membrane potential increases during
learning, as predicted by the theory. D) As in C), but for pattern N. The variance of the
membrane potential for pattern N decreases during learning, as predicted by the theory.
E) The membrane potential V;,(¢) of the neuron (including action potentials) during a
trial where pattern P is presented before (blue curve) and after training (red curve). The
number of spikes increases. F) As in E), but for trials where pattern N is given as input.
The number of spikes decreases. G) Average number of output spikes per trial before
learning, in response to pattern P (gray bars) and pattern N (black bars), for 6 experiments
with different randomly generated patterns P and N, and different random initial synaptic
weights of the neuron. H) As in G), for the same experiments, but after learning. The
average number of spikes per trial increases after training for pattern P, and decreases for
pattern N.

3.3 Methods

We first describe the simple neuron model that we used for the theoretical analysis,
and then provide derivations of the equations that were discussed in the preceding
section. After that we describe the models for neurons, synapses, and synaptic
background activity ("noise") that we used in the computer simulations. Finally we
provide technical details to each of the 5 computer simulations that we discussed in
the preceding section.

3.3.1 Linear Poisson Neuron Model

In our theoretical analysis, we use a linear Poisson neuron model whose output spike
train S (1) is a realization of a Poisson process with the underlying instantaneous
firing rate R;(t). The effect of a spike of presynaptic neuron i at time ¢’ on the
membrane potential of neuron j is modeled by an increase in the instantaneous
firing rate by an amount w;;(t')e(t — t'), where ¢ is a response kernel which models
the time course of a postsynaptic potential (PSP) elicited by an input spike. Since
STDP according to Izhikevich (2007) has been experimentally confirmed only for
excitatory synapses, we will consider plasticity only for excitatory connections and
assume that wj; > 0 for all ¢ and e(s) > 0 for all s. Because the synaptic response
is scaled by the synaptic weights, we can assume without loss of generality that
the response kernel is normalized to [ds e(s) = 1. In this linear model, the
contributions of all inputs are summed up linearly:

R;(t) = Z/OOO ds wji(t — s) e(s) Si(t —s) , (3.19)
=1

80 Chapter 3. A Learning Theory for Reward-Modulated STDP

A D
.
2 IRry
o : . . -.1
“2 . CARE P s'.
o Xl
o .
o Nt e,
'BER
0 100 200 300 400 200 100 200 100 200
time [ms] time [ms]
readout response readout response
E to digit ”tF\)NO” to digit ”c?ne” mF
1000 rygpeseTee —T g,
; &
750 -
3 3 3
E 500 §2
b e
250 °1
£
0 " 20
0 100 200 300 400 0O 100 200 300 400 500 1000 1500 2000
time [ms] time [ms] trial #
G response to utterance of digit "two” H response to utterance of digit "one”
-51 -55
-53 57
= -55 =)
E -57 E 59
= -59 = -61
N gé =5 63
65 -65
67 L L I -67 L L L |
0 100 200 300 400 0 100 200 300 400
time [ms] time [ms]

Figure 3.10: See next page for figure caption.

where Si,...,S5, are the n presynaptic spike trains. Since the instantaneous fir-
ing rate R(t) is analogous to the membrane potential of other neuron models, we
occasionally refer to R(t) as the “membrane potential” of the neuron.

3.3.2 Learning equations

In the following, we denote by (x) BISPo (1), 577 () the ensemble average of a random
variable x given that neuron k spikes at time ¢ and neuron i spikes at time ¢/. We
will also sometimes indicate the variables Y7, Y, ... over which the average of z is
taken by writing (7)y, y,,. ...

Derivation of equation (3.6). Using equation (3.5), (3.1), and (3.4), we obtain the

3.3. Methods 81

Figure 3.10: A LIF neuron is trained through reward-modulated STDP to discriminate as a
“readout neuron” responses of generic cortical microcircuits to utterances of different spoken
digits. A) Circuit response to an utterance of digit “one” (spike trains of 200 out of 540
neurons in the circuit are shown). The response within the time period from 100 to 200 ms
(marked in gray) is used as a reference in the subsequent 3 panels. B) The circuit response
from A) (black) for the period between 100 and 200 ms, and the circuit response to an
utterance of digit “two” (red). C) The circuit spike response from A) (black) and a circuit
response for another utterance of digit “one” (red), also shown for the period between 100
and 200 ms. D) The circuit spike response from A) (black), and another circuit response
to the same utterance in another trial (red). The responses differ due to the presence of
noise in the circuit. E) Spike response of the LIF readout neuron for different trials during
learning, for trials where utterances of digit “two” (left plot) and digit “one” (right plot) are
presented as circuit inputs. The spikes from each 4th trial are plotted. F) Average number
of spikes in the response of the readout during training, in response to digit “one” (blue) and
digit “two” (green). The number of spikes were averaged over 40 trials. G) The membrane
potential V,,(¢) of the neuron during a trial where an input pattern corresponding to an
utterance of digit “two” is presented, before (blue curve) and after training (red curve), with
the firing threshold removed. H) As in G), but for an input pattern corresponding to an
utterance of digit “one”. The variance of the membrane potential increases during learning
for utterances of the rewarded digit, and decreases for the non-rewarded digit.

expected weight change between time ¢t and ¢t + T

(wji(t + T) —wiit)e

/dsfc /er <<d SPOSt —8)S7(t - s_r)>T>E+
[0 [e o= ensae),),
:/0 dr W(T)/ ds fe(s << Spost S)SfTE(t_S_r)>E>T+
X .

[awo /| s fuls+1) (A0S0 (¢ = 9)SP (=5 = 1)))

—o0 7|

= /OO dr W (r) /OO ds fo(s)(Dji(t,s,r) vji(t —s,7))p +
0 0
0 00
/_ dr W(r) /|| ds fo(s+1)(Dji(t,s,r) vji(t —s,7))p,

with Dj;(t,s,r) = (d(t)| Neuron j spikes at t—s, and neuron 7 spikes at t—s—r)g,
and the joint firing rate vj;(t,7) = (S;(t)S;(t — r))g describes correlations between
spike timings of neurons j and i. The joint firing rate vj;(t — s,r) depends on the
weight at time ¢ — s. If the learning rate defined by the magnitude of W (r) is small,
the synaptic weights can be assumed constant on the time scale of T'. Thus, the
time scales of neuronal dynamics are separated from the slow time scale of learning.
For slow learning, synaptic weights integrate a large number of small changes. We

82 Chapter 3. A Learning Theory for Reward-Modulated STDP

can then expect that averaged quantities enter the learning dynamics. In this case,
we can argue that fluctuations of a weight wj; about its mean are negligible and it
can well be approximated by its average (wj;)g (it is “self-averaging”, see Gerstner
and Kistler (2002); Kempter et al. (1999)). To ensure that average quantities enter
the learning dynamics, many presynaptic and postsynaptic spikes as well as many
independently delivered rewards at varying delays have to occur within 7. Hence, in
general, the time scale of single spike occurrences and the time scale of the eligibility
trace is required to be much smaller than the time scale of learning. If time scales
can be separated, we can drop the expectation on the left hand side of the last
equation and write

(st +T) —wji(t)p _ wji(t +T) —wyi(t) _ 1 /”T d
T T T J;

We thus obtain equation (3.6):

% (wis () = /000 dr W(r) /000 ds fe(s) (Dji(t,s,7) vji(t —s,7)) 1

0 00
+ / dr W(r)/| ds fe(s+ 1) (Dji(t,s,7) vji(t —s,7))

—o0 7|

Simplification of equation (8.6). In order to simplify this equation, we first observe
that W (r) is vanishing for large |r|. Hence we can approximate the integral over
the learning window by a bounded integral [*_ dr W (r) ~ _TWW dr W (r) for some
Tw > 0 and Tyy < T. In the analyzes of this work, we consider the case where
reward is delivered with a relatively large temporal delay. To be more precise, we
assume that a pre-post spike pair has an effect on the reward signal only after some
minimal delay d, and that we can write Dj;(t,s,7) = do + Df:e’po‘gt(t, s,r) for some
baseline reward dyp and a part which depends on the timing of pre-post spike pairs
with D;’Ze’p”t(t,s,r) =0 for s < d, and d, > Tyy. We can then approximate the
second term of equation (3.6):

0 [e's)
/ dr W(r)/ ds fo(s+ 1) (Dji(t, s,) vi(t —s,7))p

—00 7|

0 o0
~ / dr W (r) ds fo(s+r) <(do + D;’Z&Post(t’ 5,m) vislt — s, 7")>T

—Tw |7|

~ /0 dr W(r) [/Ooo ds fe(s)do (vji(t — s,7))p

—Tw

+ /oo ds fo(s+r) <D§-’Ze’p08t(t, s,17) vji(t — s, 7“)>T]

|

because (v;i(t —s—r,7))r =~ (vj(t —s,r))r for r € [=Tw,Tw] and Ty < T'. Since
D;); P OSt(t, s,r) = 0 for s < Ty, the second term in the brackets is equivalent to

3.3. Methods 83

Jo" ds fe(s+7) <D§-’:e’p08t(t, s,1) vji(t — s, 1")>T which in turn is approximately given

by [57ds fe(s) <D§-’:e’p08t(t, s, 1) vyt — s,r)>T if we assume that f.(s +7) = fc(s)
for s > d, and |r| < Ty. We can thus approximate the second term of equation
(3.6) as

0 0o
/ dr W(r)/ ds fe(s+ 1) (Dji(t, s,) vji(t —s,7))p

—00 7|

~ /0 dr W (r) [/Ooo ds fe(s)do (vji(t — s,7))p

—Tw

[T ds) (D) vt -5, |
~ /0 dr W(r) /000 ds fo(s)(Dji(t,s,r) vji(t —s,7)) .

—00

With this approximation, the first and second term of equation (3.6) can be com-
bined in a single integral to obtain equation (3.8).

3.3.3 Derivations for the biofeedback experiment

We assume that a reward with the functional form e, is delivered for each postsy-
naptic spike with a delay d,.. The reward as time ¢ is therefore

d(t) = /0 S dr St — dy — 1), ().

Weight change for the reinforced neuron (derivation of equation (3.10)). The reward
correlation for a synapse ki afferent to the reinforced neuron is

Dyi(t, s,7) = (d(t)) ggrost (1_g), 57 (1—s—1)
— /OOO dr’ ET(T/)(Szost(t —d, — ’["/)>E|S£ost(t_s)’sg7r€(t_s_T)
= /OO dr' e, (r') [vp(t — dp — ') + wpie(s + 17— dp — 1)
0 +6(s —dp — 1))
= /OOO dr'e, (Mgt — dr — ') + wi; /OOO dr' e.(Me(s+r—d, — ") +e.(s—d,).

If we assume that the output firing rate is constant on the time scale of the reward
function, the first term vanishes. We rewrite the result as

o

Dyi(t,s,m) =¢er(s — d,.) + wki/ dr’ e.(s —d, +r")e(r —).

—00

84 Chapter 3. A Learning Theory for Reward-Modulated STDP

The mean weight change for weights to the reinforced neuron is therefore

d

Cnnalt) = /_ S W) (/0 "V ds Fu(8)en(s — dy) (et — 5,7)bp +

e /_OO ' er =) /ooo ds fe(s)er(s = dr +77) (vhilt — s, 7")>T> - (3.20)

We show that the second term in the brackets is very small compared to the first
term:

Wi /Oo dr' e(r —r") /OOO ds fe(s)er(s — dr + 1) (vgi(t — 8,7))p =

—00

W /OO dr’ e(r —r') /OOO ds fe(s —1")en(s — dy) <’/’ﬂ'(t —s—r 7")>T ~

—00

W /OO dr' e(r —r") /OOO ds fe(s)er(s — dr) (vri(t — s,7))p -

—00

The last approximation is based on the assumption that f.(s) ~ f.(s — /) and
(Vi(t —r'yr))r =~ (vgi(t, r))r for v’ € [-Tw — T, Tw]|. Here, Ty is the time scale
of the learning window (see above), and 7T is time scale of the PSP, i.e., we have
e(s) = 0 for s > T.. Since [*_dr e(r) = 1 by definition, we see that this is the first
term in the brackets of equation (3.20) scaled by wy;. For neurons with many input
synapses we have wy; < 1. Thus the second term in the brackets of equation (3.20)
is small compared to the first term. We therefore have

jw,m / ds fo(s + d)en(s)/_OO dr W (r) (vis(t — dv — 5,7)) .

Weight change for non-reinforced neurons (derivation of equation (3.11)). The re-
ward correlation of a synapse ji to a non-reinforced neuron j is given by
Dji(t7 8,7’) = (d(t»E\spost(5),8P"¢(t—s—r)
o0
t
— \/O d'f'/ E,«(’I"/)<S£OS (t — dr — T,)>E|S§)05t(t—8),szpre(t—8—7‘)'

We have

ost
(Sg (t — d?“ — T,)>E|S§)05t(t—5),5frﬁ(t—5—7”)
(P (t = dp — ") SF* (8 = 8)) pysrre (1—s—n)

(STt —) 157 (1—s—r)
vt —dp — 7' s —dp — 1) + wpiwjie(s +r — dp — 1")e(r)

= N

vj(t — s) + wjie(r)

for which we obtain

Dj;(t,s,r) / dr' e ij(dy — 1,5 — dy — 1) + wpiwgie(s +r —dp — T')E(T).
vi(t —s) +wje(r)

3.3. Methods 85

In analogy to the previous derivation, we assume here that the firing rate v;(t — s)
in the denominator results from many PSPs. Hence, the single PSP wj;e(r) is
small compared to vj(t — s). Similarly, we assume that with weights wy;, wj; <
1, the second term in the nominator is small compared to the joint firing rate
vt —dr —1',s — d, — r’). We therefore approximate the reward correlation by

[ele) . t _ dr _ /’ _ dr _ /
Dji(t,s,r) %/ dr' ET(T/)Vk](i)
0 vi(t —s)

Hence, the reward correlation of a non-reinforced neuron depends on the correlation

of this neuron with the reinforced neuron. The mean weight change for a non-
reinforced neuron j # k is therefore

d ©° > o vgj(t —dp — /’ —d — '
iji(t) R~ /Ods fC(S)/oC(i)T W(r)/odrlsr(r')< k(! I/j(tr—i) !)I/ji(t = s,r)>T

This equation deserves a remark for the case that v;(t —s) is zero, since it appears in
the denominator of the fraction. Note that in this case, both vy;(t—d, —r', s—d, —1")

and vj;(t — s,r) are zero. In fact, if we take the limit v;(t — s) — 0, then both of
these factors approach zero at least as fast. Hence, in the limit of v;(t —s) — 0,
the term in the angular brackets evaluates to zero. This reflects the fact that since
STDP is driven by pre- and postsynaptic spikes, there is no weight change if no
postsynaptic spikes occur.

For uncorrelated neurons, equation 3.11 evaluates to zero. For uncorrelated neurons
k, j, vgj(t —d, —r',s — d, — ') can be factorized into vy (t — d, — r")v;(t — s), and
we obtain

d o0 o0 (o]
—wji(t) = / ds fc(s)/ dr W(r)/ dr/s,n(r/) <1/k(t —d, — r/)yji(t — s,r)>T.
dt 0 —00 0

This evaluates approximately to zero if the mean output rate of neuron k& is constant
on the time scale of the reward kernel.

3.3.4 Analysis of spike-timing dependent rewards (derivation of
the conditions (3.13)-(3.15)).

Below, we will indicate the variables Y7, Ys,... over which the average of z is taken
by writing (z)y; y,,..|..- From equation (3.12), we can determine the reward corre-
lation for synapse @

Dislt,5,7) = / k() (ST — d)S (- dr — 1)) B
J oo < J >ES§7 (t—s),5P"¢(t—s—7)

— /OO dr' k(1) [ug’m(t —dy)+0(s —dy) +wji(s+r—d)e(s+71— dr)]

—00

[t —dp —1') +wie(s+r—dr —7)], (3.21)

where I/fo‘gt(t) = <S§708t(t)E denotes the instantaneous firing rate of the trained

neuron at time ¢, and v*(t) = (S*(t))p denotes the instantaneous rate of the target

86 Chapter 3. A Learning Theory for Reward-Modulated STDP

spike train at time ¢. Since weights are changing very slowly, we have wj;(t—s—r) ~
wji(t). In the following, we will drop the dependence of wj; on ¢t for brevity. For
simplicity, we assume that input rates are stationary and uncorrelated. In this case
(since the weights are changing slowly), also the correlations between inputs and
outputs can be assumed stationary, vj;(t,r) = v;;(r). With constant input rates, we
can rewrite (3.21) as

Dji(t, s,r) = "' vi™ + kv*6(s — dy) + v wjie(s + r — dy)
+ wj / dr's(re(s +r —d. — ')

[yg’”t(t —dy)+0(s—dr) +wji(s+r—dp)e(s+r—d)|,

with & = [°°_ds k(s). We use this results to obtain the temporally smoothed weight
change for synapse ji. With stationary correlations, we can drop the dependence
of vj; on t and write v;;(t,7) = vj(r). Furthermore, we define 1/]‘2/(7“) = vji(r)W(r)
and obtain

Gui) = [ar W) [T ds 1.6 Ditts)y

_ /“ dr vl¥ () [y o+ foldy)

—00

+V*wji/ ds fe(s)e(s+r — d,n)} +

0

/ dr V}’f(r)wjyp“t/ dr'm(r')/ ds fo(s)e(s+r—dp — 1) +
0

—00 — 00

/OO dr vy} (r)yw; /OO dr'k(r') fo(dy)e(r — ') +

/ dr U]‘-/Z!/(r)wf / dr’m(r’)wji/o ds fe(s)e(s+r —d.)e(s+r—d, — 7).

We assume that the eligibility function f.(d,) =~ f.(d, 4+) if |r| is on the time scale
of a PSP, the learning window, or the reward kernel, and that d,. is large compared
to these time scales. Then, we have

/OO dr Vﬂ/(r) /oo dr’ k(r') fe(d)e(r — ') = fo(d,) /00 dr I/E/(T‘)E;{(T‘)

— 00 —00 — 00

where ,(r) = [T dr’ k(r')e(r — ') is the convolution of the reward kernel with
the PSP. Furthermore, we find

/OO dr vj; (T)/OO dr’ k(r") /Oods fe(s)e(s+r—dy)e(s+r—d. — 1)

—0o0

zfc(dT)/ dry / dr’ k(r /Oods6(s+r—d7«)s(s—|—r—d,«—r’)

:fc(dr)/ dru / ds £(8)ex(s

3.3. Methods 87

With these simplifications, and the abbreviation I/]VZV =/~ druﬁ/(r) we obtain the

weight change at synapse ji

d

dtwﬂ(t)zk * post ch+fc()17017 |:I/ iy wﬂ—kw* ;mst]

oo

+ fu(do)w! /_ AW (1) vjs(r)en(r) + foldrywjit / dr e(r)en(r),

—00

where I/JVY = [7 drW (r)vji(r).

For uncorrelated Poisson input spike trains of rate v//" and the linear Poisson
neuron model, the input-output correlations are v;;(r) = v"* p ot 4 wj e (r).
With these correlations, we obtain 17}2/ = I/ZP 7481/§"’“VT/ + wjzl/f7 W, where W =
[Z5 dr W(r),and W, = [%_dr e(r)W(r). The weight change at synapse ji is then

d
dtwﬂ(t) ~ /ffc * PTe Post[pOStW—Fw]ZW}

J

wadawn o [e we) g [e W 0)]

+/‘ffc(r) PTe[pOStW—Fw]ZW} [l/ +u wﬂ_{_w* post}

+foldy)w! w]ZVPTe { postyyr 4 wﬂwg} /00 dr e(r)e.(r), (3.22)
0

We will now bound the expected weight change for synapses ji with w] = w4,
and for synapses jk with w; = 0. In this way we can derive conditions for which
the expected weight change for the former synapses is positive, and that for the
latter type is negative. First, we assume that the integral over the reward kernel is
positive. In this case, the weight change given by (3.22) is negative for synapses i
pre Postyfy wjiV_V In the worst case, wj; is

with w; = 0 if and only if ;" > 0, and —v;

t.
P05t s small. We have to guarantee some minimal output rate 7% such

Wynae and v;
that even 1f Wj; = Wmag, this inequality is fulfilled. This could be guaranteed by
some noise current. Given such minimal output rate, we can state the first inequality
which guarantees convergence of weights wj; with w; = 0

pOStW > wmarWz—:

mzn

For synapses ji with w; = wyqe, We obtain two more conditions. The approximate

88 Chapter 3. A Learning Theory for Reward-Modulated STDP

weight change is given by
d 1 _ - -
dtw‘”(t)F ~ K {1/;”05 W + 'U)]ZWE:|

[* pOStfc + fc()V* + fc(dr)y*wji + fc(dr)yfostwmax

+fc()wman]pOSt /_oo dr W(T)EK(T)

+fc(dr)wmazwji / dr W(T>E(T)ER(T)

— o0

+fc(dr)wmaijz’7/§mstw/0 dr E(T)EH(’I")

+fc(d7“)wmaww]2‘iW5 /OO dr E(’I")ER(T).
0

The last term in this equation is positive and small. We can ignore it in our sufficient
condition. The second to last term is negative. We will include in our condition
that the third to last term compensates for this negative term. Hence, the second
condition is

[ee] . [ee]

/ dr W(r)e(rjes(r) > - W/ dr e(r)ex(r),

—00 0

which should be satisfied in most setups. If we assume that this holds, we obtain

d 05 *_ POS * 05
dtwﬂ(t) = [P tW—I_wJZW][p tfc+fc()V ‘|‘fc()V w]2+fc(r) ? tlUmaac

+fe(d)wmafoOSt/_ dr W(r)eg(r).

which should be positive. We obtain the following inequality

0st -
* I/P

/OO dr W(r)ex(r) > -Wk 7Y Je + v + v 4 pPost
—o0 " Wmax fc(dr) Wmax

All three inequalities are summarized in the following:

postyt
—VoinW > Winaa W,

/OO dr W(r)e(r)ex(r) > ,’q’flf;W/ dr e(r)e.(r)

—00

)

—00 Wmagz fc(dr) Wmagx

o0 _ I/*I/pOSt f U
/ dr W(r)eg(r) > —-Wg mar_CC _+ +v* +Vf,fj£

where 2% is the maximal output rate. If these inequalities are fulfilled and input

rates are positive, then the weight vector converges on average from any initial weight
vector to w*. The second condition is less severe, and should be easily fulfilled in
most setups. If this is the case, the first condition (3.13) ensures that weights with
w* = 0 are depressed while the third condition (3.15) ensures that weights with
w* = Wpee are potentiated.

3.3. Methods 89

3.3.5 Analysis of the pattern discrimination task (derivation of
equation (3.17)).

We assume that a trial consists of the presentation of a single pattern starting at
time t = 0. We compute the weight change for a single trial given that pattern
X € {P, N} was presented with the help of equations (3.1), (3.3), and (3.4) as

Ewi(t)‘ = /Ooo dsfe(s) [/000 drW (r)SPost(t — 5)(t — s — r — t5X)
+ /OOO drW (—r)SPost(t — s —r)6(t — s — tf()} d(t)
= o /000 dsfe(s) [/000 drW (r)SPost(t — s)8(t — s — r —)
+ /000 drW (—r)SPost(t —s —r)o(t — s — tzx)} /000 dr'e,(r')SPS(t — d,. — 1)
= a¥ /Ooo drfe(t —r — t;X)W(r) /000 dr'e, (r')SPoSt (1 + t;X)SpOSt(t —d, —1")
+ o /000 dr f.(t — YW (=r) /000 dr'e, (r')SPOSt (X — 1) SPOSt(t — d, — 1.
We can compute the average weight change given that pattern X was presented:
(), = o [
W) [e 4)5 = dy = 1)
+ of /Ooodrfc(t—t;x)
W(er) [e ()7 E St~ d = i

If we assume that f. is approximately constant on the time scale of the learning
window W, we can simplify this to

d o0 o / / ost ost /
<£wi(t)>“: /_ W) /0 dr'e, (1) (SO (X) SPO5t (t—d,—1")) gyl

For the linear Poisson neuron, we can write the auto-correlation function as

(SPOSE(EX 4) SPOSt(t — d, — "ex = X&)t —d, 1)
AN+)OS+ —t+ de)]
= XX+)Nt —dr—)+
St 4+ —t4dp + 1),

where v~ (1) = (SP°°4(t)) | x is the ensemble average rate at time ¢ given that pattern
X was presented. If an experiment for a single pattern runs over the time interval

90 Chapter 3. A Learning Theory for Reward-Modulated STDP

[0,T"], we can compute the total average weight change Aw:X of a trial given that
pattern X was presented as

X r d
at’ Bix

T’ oo
= / drw (r)yvX (£ 4 r) dtfc(t—t;x)/ dr'e, (r')
0

0
Xt —d, —r)+5(tX+r—t+d +)]

:(ﬁ/;m%ww(%+ﬂAwWaW)

T/
felr+d. +7") + / dtfo(t —)X (t —d, — r')]

X /_Z AW ()X (X 4 1) /000 dr'e, (1)

o
[fc(dr + ') + /0 dtfo(t — X (t —d,. — r’)] (3.23)

%

By defining

T/

X =a / dr'e,(r [fc(d + ') + dtfc(t—t;X)UX(t—dr—r’)],

0

we can write equation (3.23) as
Awi® :/ drWw (r)yrX (55 4 r) A

We assume that eligibility traces and reward signals have settled to zero before a new
pattern is presented. The expected weight change for the successive presentation of
both patterns is therefore

Awi:/ drw (r) [P (tF +r)AY + N (@Y +r)ANT .

The equations can easily be generalized to the case where multiple input spikes per
synapse are allowed and where jitter on the templates is allowed. However, the main
effect of the rule can be read off the equations given here.

3.3.6 Common models and parameters of the computer simula-
tions

We describe here the models and parameter values that were used in all our computer
simulations. We will specify in a subsequent section the values of other parameters
that had to be chosen differently in individual computer simulations, in dependence
of their different setups and requirements of each computer simulation.

3.3. Methods 91

3.3.6.1 LIF neuron model

For the computer simulations LIF neurons with conductance-based synapses were
used. The membrane potential V,,(¢) of this neuron model is given by:

dVin(t)
dt

Vin(t) =V, K. Ki

m — Vrestin

Cy, _ - 2N " 9O Vi (t)=Ee) =Y _ gi i (Vin ()= E;)—Tnoise (),
" J=1 j=1

(3.24)
where Cp, is the membrane capacitance, R,, is the membrane resistance, Viesting is
the resting potential, and g ;(t) and g; ;(t) are the K. and K; synaptic conductances
from the excitatory and inhibitory synapses respectively. The constants F. and E;
are the reversal potentials of excitatory and inhibitory synapses. I,,,se represents
the synaptic background current which the neuron receives (see below for details).

Whenever the membrane potential reaches a threshold value Vipresh, the neuron
produces a spike, and its membrane potential is reset to the value of the reset
potential Vi.cser. After a spike, there is a refractory period of length T}.c 40, during
which the membrane potential of the neuron remains equal to the value V,,(t) =
Vieset- After the refractory period V,,(t) continues to change according to equation
(3.24).

For a given synapse, the dynamics of the synaptic conductance g(t) is defined
by

dil—f) = —i(Z - %:A(t(k) F Laetay) 0t — 15 — tgeray) (3.25)
where A(t) is the amplitude of the postsynaptic response (PSR) to a single presy-
naptic spike, which varies over time due to the inherent short-term dynamics of the
synapse, and {t(k)} are the spike times of the presynaptic neuron. The conduc-
tance of the synapse decreases exponentially with time constant 7s,,, and increases
instantaneously by amount of A(f) whenever the presynaptic neuron spikes.

In all computer simulations we used the following values for the neuron and
synapse parameters. The membrane resistance of the neurons was R, = 100M(2,
the membrane capacitance C,, = 0.3nF’, the resting potential, reset potential and
the initial value of the membrane potential had the same value of Vicsting = Vieser =
Vin(0) = —=70mV, the threshold potential was set to Vipresn = —H9mV and the
refractory period Tj.cfrqe = Sms. For the synapses we used a time constant set to
Tsyn = Oms, reversal potential £, = 0 mV for the excitatory synapses and FE, = —75
mV for the inhibitory synapses. All synapses had a synaptic delay of ¢gejqy = 1ms.

3.3.6.2 Short-term dynamics of synapses

We modeled the short-term dynamics of synapses according to the phenomenological
model proposed in Markram et al. (1998), where the amplitude Ay = A(t;+14delay) of
the postsynaptic response for the & spike in a spike train with inter-spike intervals

92 Chapter 3. A Learning Theory for Reward-Modulated STDP

source/dest. | exc.(U,D,F) inh. (U,D,F)
exc. 0.5, 1.1, 0.02 025, 0.7, 0.02
inh. 0.05, 0.125, 1.2 0.32, 0.144, 0.06

Table 3.2: Mean values of the U, D and F parameters in the model from Markram et al.
(1998) for the short-term dynamics of synapses, depending on the type of the presynaptic
and postsynaptic neuron (excitatory or inhibitory). These mean values, based on experi-
mental data from Markram et al. (1998); Gupta et al. (2000), were used in all computer
simulations.

A1, Ao, ... Ak is calculated with the following equations

A =w-u - R
up = U +up_1 (1 —U)e Br-1/F (3.26)
Ry, =1+ (Rg—1 — ug—1Rp—1 — 1) 21/D,

with hidden dynamic variables u € [0,1] and R € [0,1] whose initial values for
the 15! spike are u; = U and R = 1 (see Maass and Markram (2002) for a justi-
fication of this version of the equations, which corrects a small error in Markram
et al. (1998)). The variable w is the synaptic weight which scales the amplitudes
of postsynaptic responses. If long-term plasticity is introduced, this variable is a
function of time. In the simulations, for the neurons in the circuits the values for the
U, D and F parameters were drawn from Gaussian distributions with mean values
which depended on whether the type of presynaptic and postsynaptic neuron of the
synapse is excitatory or inhibitory, and were chosen according to the data reported
in Markram et al. (1998) and Gupta et al. (2000). The mean values of the Gaussian
distributions are given in Table 3.2, and the standard deviation was chosen to be
50% of its mean. Negative values were replaced with values drawn from uniform
distribution with a range between 0 and twice the mean value. For the simulations
involving individual trained neurons, the U, D and F parameters of these neurons
were set to the values from Table 3.2.

We have carried out control experiments with current-based synapses that were
not subject to short-term plasticity (see Fig. S5, S8, S9; successful control experi-
ments with static current-based synapses were also carried out for computer simula-
tion 1, results not shown). We found that the results of all our computer simulations
also hold for static current-based synapses.

3.3.6.3 Model of background synaptic activity

To reproduce the background synaptic input cortical neurons receive in vivo, the
neurons in our models received an additional noise process as conductance input.
The noise process we used is a point-conductance approximation model, described
in Destexhe et al. (2001). According to Destexhe et al. (2001), this noise process
models the effect of a bombardment by a large number of synaptic inputs in vivo,
which causes membrane potential depolarization, referred to as “high conductance”

3.3. Methods 93

state. Furthermore, it was shown that it captures the spectral and amplitude char-
acteristics of the input conductances of a detailed biophysical model of a neocortical
pyramidal cell that was matched to intracellular recordings in cat parietal cortex
in vivo. The ratio of average contributions of excitatory and inhibitory background
conductances was chosen to be 5 in accordance to experimental studies during sen-
sory responses (see Borg-Graham et al. (1998),Hirsch et al. (1998), and Anderson
et al. (2000)). In this model, the noisy synaptic current Ipsise in equation (3.24) is
a sum of two currents:

Inoise(t) = ge(t)(vm(t) - Ee) + gz(t)(vm(t) - Ez)’ (327)
where ¢¢(t) and g;(t) are time-dependent excitatory and inhibitory conductances.
The values of the respective reversal potentials were £, = 0 mV and F; = —75 mV.

The conductances g.(t) and g;(t) were modeled according to Destexhe et al. (2001)
as a one-variable stochastic process similar to an Ornstein-Uhlenbeck process:

dge(t) 1

= o loelt) — geo] + vV Dexa(t)
dg;it) = —%[gi(t) — gio] + \/EX2(t),

with mean g.o = 0.012uS, noise-diffusion constant D, = 0.003uS and time constant
T, = 2.7ms for the excitatory conductance, and mean g;o = 0.057uS, noise-diffusion
constant D; = 0.0066uS, and time constant 7, = 10.5ms for the inhibitory conduc-
tance. x1(t) and xa(t) are Gaussian white noise of zero mean and unit standard
deviation.

Since these processes are Gaussian stochastic processes, they can be numerically
integrated by an exact update rule:

A

ge(t + A) = ge0 + [ge(t) - geO]e Te + AeNl(Oa 1)
PN

gi(t + A) = gio + [9:(t) — giole ™ + A;N2(0,1),

where N;(0,1) and N5(0,1) are normal random numbers (zero mean, unit standard
deviation) and A., A; are amplitude coefficients given by:

Dee —
Ae:\/ QT 1—ee]

. —2A
A = \ D;Tl[l_e ~ J-

3.3.6.4 Reward-modulated STDP

For the computer simulations we used the following parameters for the STDP win-
dow function W(r): Ay = 0.0lwpmeg, A—/A+ = 1.05, 74 = 7= = 30ms. Wmax
denotes the hard bound of the synaptic weight of the particular plastic synapse.
Note that the parameter A, can be given arbitrary value in this plasticity rule,

94 Chapter 3. A Learning Theory for Reward-Modulated STDP

since it can be scaled together with the reward signal, i.e. multiplying the reward
signal by some constant and dividing Ay by the same constant results in identical
time evolution of the weight changes. We have set A, to be 1% of the maximum
synaptic weight.

We used the a-function to model the eligibility trace kernel f.(t)

t -
Le e ift>0
t) = Te ’ , 3.28
felt) { 0 , otherwise ()

where the time constant 7, was set to 7, = 0.4s in all computer simulations.

For computer simulations 1 and 4 we performed control experiments (see Fig. S3,
S4 and S7) with the weight-dependent synaptic update rule proposed in Morrison
et al. (2007), instead of the purely additive rule (3.3). We used the parameters
proposed in Morrison et al. (2007), i.e. u = 0.4, a = 0.11, 7 = 7— = 20ms. The
wo parameter was calculated according to the formula: wy = %wmmal/ =1 where
Wmae 18 the maximum synaptic weight of the synapse. %wmaw is equal to the initial
synaptic weight for the circuit neurons, or to the mean of the distribution of the
initial weights for the trained neurons.

3.3.6.5 Initial weights of trained neurons

The synaptic weights of excitatory synapses to the trained neurons in experiments
2-5 were initialized from a Gaussian distribution with mean w4, /2. The standard
deviation was set to wWy,q, /10 bounded within the range [3wnqs /10, Twpa./10].

3.3.6.6 Software

All computer simulations were carried out with the PCSIM software package
(http://www.lsm.tugraz.at/pcsim). PCSIM is a parallel simulator for biologically
realistic neural networks with a fast c++ simulation core and a Python interface.
It has been developed by Thomas Natschldger and Dejan Pecevski. The time step
of simulation was set to 0.1ms.

3.3.7 Details to individual computer simulations

For all computer simulations, both for the cortical microcircuits and readout neu-
rons, the same parameters values for the neuron and synapse models and the reward-
modulated STDP rule were used, as specified in the previous section (except in
computer simulation 3, where the goal was to test the theoretical predictions for
different values of the parameters). Each of the computer simulations in this work
modeled a specific task or experimental finding. Consequently, the dependence of
the reward signal on the behavior of the system had to be modeled in a specific way
for each simulation (a more detailed discussion of the reward signal can be found
in the Discussion section). The parameters for that are given below in separate
subsections which address the individual simulations. Furthermore, some of the re-
maining parameters in the experiments, i.e. the values of the synaptic weights, the

3.3. Methods 95

| Cortical microcircuits

| simulation No. | neurons | pec, peisPeirPii | Weae(0) [0S] | winn(0) [nS] | Cou |
1 4000 | 0.02,0.02,0.024,0.016 10.7 211.6 1.0, 0.2
5 540 0.1 0.784 5.1 0.4

Table 3.3: Specific parameter values for the cortical microcircuits in computer simulation
1 and 5. peonn is the connection probability, we.(0) and w;,,(0) are the initial synaptic
weights for the excitatory and inhibitory synapses respectively, and Coy is the scaling
factor for the Ornstein-Uhlenbeck noise injected in the neurons.

‘ Trained (readout) neurons ‘

‘ simulation No. ‘ num. synapses ‘ Winaz 1S ‘ Cou ‘

2 100 11.9 1.0
4 200 5.73 0.2
) 432 2.02 0.2

Table 3.4: Specific parameter values for the trained neurons in computer simulation 2, 4
and 5. Wyq, is the upper hard bound of the synaptic weights of the synapses. Coy is the
scaling factor for the Ornstein-Uhlenbeck noise injected in the neurons.

number of synapses of a neuron, number of neurons in the circuit and the Ornstein-
Uhlenbeck (OU) noise levels were chosen to achieve different goals depending on the
particular experiment. Briefly stated, these values were tuned to achieve a certain
level of firing activity in the neurons, a suitable dynamical regime of the activity in
the circuits, and a specific ratio between amount of input the neurons receive from
the input synapses and the input generated by the noise process.

We carried out two types of simulations: simulations of cortical microcircuits
in computer simulations 1 and 5, and training of readout neurons in computer
simulations 2, 3, 4 and 5. In the following we discuss these two types of simulations
in more detail.

3.3.7.1 Cortical Microcircuits

The values of the initial weights of the excitatory and inhibitory synapses for the
cortical microcircuits are given in Table 3.3. All synaptic weights were bounded in
the range between 0 and twice the initial synaptic weight of the synapse.

The cortical microcircuit was composed of 4000 neurons connected randomly
with connection probabilities described in Details to computer simulation 1. The
initial synaptic weights of the synapses and the levels of OU noise were tuned to
achieve a spontaneous firing rate of about 4.6 Hz, while maintaining an asynchronous
irregular firing activity in the circuit. 50% of all neurons (randomly chosen, 50%
excitatory and 50% inhibitory) received downscaled OU noise (by a factor 0.2 from
the model reported in Destexhe et al. (2001)), with the subtracted part substituted
by additional synaptic input from the circuit. The input connection probabilities of

96 Chapter 3. A Learning Theory for Reward-Modulated STDP

these neurons were scaled up, so that the firing rates remain in the same range as for
the other neurons. This was done in order to observe how the learning mechanisms
work when most of the input conductance in the neuron comes from a larger number
of input synapses which are plastic, rather than from a static noise process. The
reinforced neurons were randomly chosen from this group of neurons.

We chose a smaller microcircuit, composed of 540 neurons, for the computer
simulation 5 in order to be able to perform a large number of training trials. The
synaptic weights in this smaller circuit were chosen (see Table 3.3) to achieve an
appropriate level of firing activity in the circuit that is modulated by the external in-
put. The circuit neurons had injected an Ornstein-Uhlenbeck (OU) noise multiplied
by 0.4 in order to emulate the background synaptic activity in neocortical neurons
in vivo, and test the learning in a more biologically realistic settings. This produced
significant trial-to-trial variability in the circuit response (see Fig. 3.10D). A lower
value of the noise level could also be used without affecting the learning, whereas
increasing the amount of injected noise would slowly deteriorate the information
that the circuit activity maintains about the injected inputs, resulting in a decline
of the learning performance.

3.3.7.2 Readout neurons

The maximum values of the synaptic weights of readout neurons for computer sim-
ulations 2, 4 and 5, together with the number of synapses of the neurons, are given
in Table 3.4.

The neuron in computer simulation 2 had 100 synapses. We chose 200 synapses
for the neuron in computer simulation 4, in order to improve the learning per-
formance. Such improvement of the learning performance for larger numbers of
synapses is in accordance with our theoretical analysis (see equation (3.17), since
for learning the classification of temporal patterns the temporal variation of the
voltage of the postsynaptic membrane turns out to be of critical importance (see
the discussion after equation (3.17)). This temporal variation depends less on the
shape of a single EPSP and more on the temporal pattern of presynaptic firing when
the number of synapses is increased. In computer simulation 5 the readout neuron
received inputs from all 432 excitatory neurons in the circuit. The synaptic weights
were chosen in accordance with the number of synapses in order to achieve a firing
rate suitable for the particular task, and to balance the synaptic input and the noise
injections in the neurons.

For the pattern discrimination task (computer simulation 4) and the speech
recognition task (computer simulation 5), the amount of noise had to be chosen to
be high enough to achieve sufficient variation of the membrane potential from trial
to trial near the firing threshold, and low enough so that it would not dominate the
fluctuations of the membrane potential. In the experiment where the exact spike
times were rewarded (computer simulation 2), the noise had a different role. As
described in the Results section, there the noise effectively controls the amount of
depression. If the noise (and therefore the depression) is too weak, w* = 0 synapses

3.3. Methods 97

do not converge to 0. If the noise is too strong, w* = W synapses do not converge
t0 Wpaz- To achieve the desired learning result, the noise level should be in a range
where it reduces the correlations of the synapses with w* = 0 so that the depression
of STDP will prevail, but at the same time is not strong enough to do the same for
the other group of synapses with w* = w4z, since they have stronger pre-before-
post correlations. For our simulations, we have set the noise level to the full amount
of OU noise.

3.3.7.3 Details to computer simulation 1: Model for biofeedback exper-
iment

The cortical microcircuit model consisted of 4000 neurons with twenty percent of the
neurons randomly chosen to be inhibitory, and the others excitatory. The connec-
tions between the neurons were created randomly, with different connectivity prob-
abilities depending on whether the postsynaptic neuron received the full amount
of OU noise, or downscaled OU noise with an additional compensatory synaptic
input from the circuit. For neurons in the latter sub-population, the connection
probabilities were p.. = 0.02, p; = 0.02, p;e = 0.024 and p; = 0.016 where the
ee, ei, ie, ii indices designate the type of the presynaptic and postsynaptic neurons
(e=excitatory or i=inhibitory). For the other neurons the corresponding connection
probabilities were downscaled by 0.4. The resulting firing rates and correlations for
both types of excitatory neurons are plotted in Fig. S1 and S2.

The shape of the reward kernel €, (t) was chosen as a difference of two a-functions

t 1-+ t 1-+t
et)=Af—e o — AT —e ™, (3.29)

r
Tr Ty

one positive a-pulse with a peak at 0.4 sec after the corresponding spike, and one
long-tailed negative a-pulse which makes sure that the integral over the reward
kernel is zero. The parameters for the reward kernel were A = 1.379, A, = 0.27,
7.5 =0.28, 7,7 = 1s, and d,, = 0.2s, which produced a peak value of the reward pulse
0.4s after the spike that caused it.

3.3.7.4 Details to computer simulation 2: Learning spike times

We used the following function for the reward kernel x(r)

ot t—ty
Af(e T —e), ift—t.,>0
K(r) = +(t—ty t—tp) "= (3.30)

—Af(e T —e 5) , otherwise

where A% and A" are positive scaling constants, 7" and 75" define the shape of the
two double-exponential functions the kernel is composed of, and ¢, defines the offset
of the zero-crossing from the origin. The parameter values used in our simulations
were AT = 0.1457, A® = —0.1442, 7 = 30ms, 75 = 4ms and ¢, = —1ms. The
reward delay was equal to d, = 0.4s.

98 Chapter 3. A Learning Theory for Reward-Modulated STDP

3.3.7.5 Details to computer simulation 3: Testing the analytically de-
rived conditions

We used a linear Poisson neuron model as in the theoretical analysis with static
synapses and exponentially decaying postsynaptic responses e(s) = e(=5/7e) /7e. The
neuron had 100 excitatory synapses, except in experiment #6, where we used 200
synapses. In all experiments the target neuron received additional 10 excitatory
synapses with weights set to wye,. The input spike trains were Poisson processes
with a constant rate of r,,. = 6Hz, except in experiment # 6 where the rate was
rpre = 3Hz. The weights of the target neuron were set to w; = Wy, for 0 < i < 50
and w; = 0 for 50 <4 < 100.

The time constants of the reward kernel were 75° = 4ms, whereas 7| had different
values in different experiments (reported in table 3.1). The value of t, was always
set to an optimal value such that the ,(0) = [7° k(—s)e(s) = 0. The time constant
7_ of the negative part of the STDP window function W (r) was set to 7. The
reward signal was delayed by 74 = 0.4s. The simulations were performed for varying
durations of simulated biological time (see the tg,-column in Table 3.1).

3.3.7.6 Details to computer simulation 4: Learning pattern classification

We used the reward signal from equation (3.16), with an a-function for the reward
e

kernel e,.(r) = ;te_t/ 7, and the reward delay d, set to 300 ms. The amplitudes of
the positive and negative pulses were ap = —ay = 1.435. and the time constant of

the reward kernel was 7 = 100ms.

3.3.7.7 Details to computer simulation 5: Training a readout neuron
with reward-modulated STDP to recognize isolated spoken dig-
its
Spike representations of speech utterances. The speech utterances were prepro-
cessed by the cochlea model described in Lyon (1982), which captures the filtering
properties of the cochlea and hair cells in the human inner ear. The resulting
analog signals were encoded by spikes with the BSA spike encoding algorithm
described in Schrauwen and Campenhout (2003). We used the same preprocessing
to generate the spikes as in Verstraeten et al. (2005). The spike representations
had a duration of about 400 ms and 20 input channels. The input channels were
connected topographically to the cortical microcircuit model. The neurons in the
circuit were split into 20 disjunct subsets of 27 neurons, and each input channel
was connected to the 27 neurons in its corresponding subsets. The readout neuron
was trained with 20 different spike inputs to the circuit, where 10 of them resulted
from utterances of digit “one”, and the other 10 resulted from utterances of digit
“two” by the same speaker.

Training procedure. We performed 2000 training trials, where for each trial a spike
representation of a randomly chosen utterance out of 10 utterances for one digit

3.4. Discussion 99

was injected into the circuit. The digit changed from trial to trial. Whenever the
readout neuron spiked during the presentation of an utterance of digit “two”, a
positive pulse was generated in the reward signal, and accordingly, for utterances of
digit “one”, a negative pulse in the reward was generated. We used the reward signal
from equation (3.16). The amplitudes of the positive and negative pulses were
ap = —ayn = 0.883. The time constant of the reward kernel ¢,(r) was 7 = 100ms.
The pulses in the reward were delayed d, = 300 ms from the spikes that caused them.

Cortical microcircuit details. The cortical microcircuit model consisted of 540 neu-
rons with twenty percent of the neurons randomly chosen to be inhibitory, and the
others excitatory. The recurrent connections in the circuit were created randomly
with a connection probability of 0.1. Long-term plasticity was not modeled in the
circuit synapses.

The synapses for the connections from the input neurons to the circuit neurons
were static, current based with axon conduction delay of 1ms, and exponentially
decaying PSR with time constant 7. = 3 ms and amplitude w;pput = 0.715 nA.

3.4 Discussion

We have presented in this work analytical tools which make it possible to predict
under which conditions reward-modulated STDP will achieve a given learning goal
in a network of neurons. These conditions specify relationships between parameters
and auxiliary functions (learning curves for STDP, eligibility traces, reward signals
etc.) that are involved in the specification of the reward-modulated STDP learning
rule. Although our analytical results are based on some simplifying assumptions,
we have shown that they predict quite well the outcomes of computer simulations
of quite complex models for cortical networks of neurons.

We have applied this learning theory for reward-modulated STDP to a number
of biologically relevant learning tasks. We have shown that the biofeedback result of
Fetz and Baker Fetz and Baker (1973) can in principle be explained on the basis of
reward-modulated STDP. The underlying credit assignment problem was extremely
difficult, since the monkey brain had no direct information about the identity of the
neuron whose firing rate was relevant for receiving rewards. This credit assignment
problem is even more difficult from the perspective of a single synapse, and hence for
the application of a local synaptic plasticity rule such as reward-modulated STDP.
However our theoretical analysis (see equation (3.10), (3.11)) has shown that the
longterm evolution of synaptic weights depended only on the correlation of pairs
of pre- and postsynaptic spikes with the reward signal. Therefore the firing rate of
the rewarded neuron increased (for a computer simulation of a recurrent network
consisting of 4000 conductance based LIF neurons with realistic background noise
typical for in-vivo conditions, and 228954 synapses that exhibited data-based short
term synaptic plasticity) within a few minutes of simulated biological time, like in
the experimental data of Fetz and Baker (1973), whereas the firing rates of the other

100 Chapter 3. A Learning Theory for Reward-Modulated STDP

neurons remained invariant (see Fig. 3.3B). We were also able to model differential
reinforcement of two neurons in this way (Fig. 3.4). These computer simulations
demonstrated a remarkable stability of the network dynamics (see Fig. 3.3A, 3.4A,
3.5) in spite of the fact that all excitatory synapses were continuously subjected to
reward-modulated STDP. In particular, the circuit remained in the asynchronous ir-
regular firing regime, that resembles spontaneous firing activity in the cortex Brunel
(2000). Other STDP-rules (without reward modulation) that maintain this firing
regime have previously been exhibited in Morrison et al. (2007).

Whereas this learning task focused on firing rates, we have also shown (see
Fig. 3.7) that neurons can learn via reward-modulated STDP to respond to in-
puts with particular spike trains, i.e., particular temporal output patterns. It has
been pointed out in Farries and Fairhall (2007) that this is a particularly difficult
learning task for reward-modulated STDP, and it was shown there that it can be ac-
complished with a modified STDP rule and more complex reward prediction signals
without delays. We have complemented the results of Farries and Fairhall (2007)
by deriving specific conditions (equation (3.13)-(3.15)) under which this learning
task can be solved by the standard version of reward-modulated STDP. Extensive
computer simulations have shown that these analytically derived conditions for a
simpler neuron model predict also for a LIF neuron with conductance based synapses
whether it is able to solve this learning task. Fig. 3.8 shows that this learning the-
ory for reward-modulated STDP is also able to predict quite well how fast a neuron
can learn to produce a desired temporal output pattern. An interesting aspect of
Farries and Fairhall (2007) is that there also the utility of third signals that provide
information about changes in the expectation of reward was explored. We have
considered in this work only learning scenarios where reward prediction is not possi-
ble. A logical next step will be to extend our learning theory for reward-modulated
STDP to scenarios from classical reinforcement learning theory that include reward
prediction.

We have also addressed the question to what extent neurons can learn via reward-
modulated STDP to respond with different firing rates to different spatio-temporal
presynaptic firing patterns. It had already been shown in Izhikevich (2007) that this
learning rule enables neurons to classify spatial firing patterns. We have comple-
mented this work by deriving an analytic expression for the expected weight change
in this learning scenario (see equation (3.17)), which clarifies to what extent a neu-
ron can learn by reward-modulated STDP to distinguish differences in the temporal
structure of presynaptic firing patterns. This theoretical analysis showed that in the
extreme case, where all incoming information is encoded in the relative timing of
presynaptic spikes, reward-modulated STDP is not able to produce a higher aver-
age membrane potential for selected presynaptic firing patterns, even if that would
be rewarded. But it is able to increase the variance of the membrane potential,
and thereby also the number of spikes of any neuron model that has (unlike the
simple linear Poisson neuron) a firing threshold. The simulation results in Fig. 3.9
confirm that in this way a LIF neuron can learn with the standard version of reward-
modulated STDP to discriminate even purely temporal presynaptic firing patterns,

3.4. Discussion 101

by producing more spikes in response to one of these patterns.

A surprising feature is, that although the neuron was rewarded here only for
responding with a higher firing rate to one presynaptic firing pattern P, it automat-
ically started to respond to this pattern P with a specific temporal spike pattern,
that advanced in time during training (see Fig. 3.9A).

Finally, we have shown that a spiking neuron can be trained by reward-
modulated STDP to read out information from a simulated cortical microcircuit
(see Fig. 3.10). This is insofar of interest, as previous work Maass et al. (2002b);
Héusler and Maass (2007); Maass et al. (2007) had shown that models of generic
cortical microcircuits have inherent capabilities to serve as preprocessors for such
readout neurons, by combining in diverse linear and nonlinear ways information
that was contained in different time segments of spike inputs to the circuit ("liquid
computing model"). The classification of spoken words (that were first transformed
into spike trains) had been introduced as a common benchmark task for the evalu-
ation of different approaches towards computing with spiking neurons Hopfield and
Brody (2001); Maass et al. (2002b, 2004); Destexhe and Marder (2004); Verstraeten
et al. (2005). But so far all approaches that were based on learning (rather than
on clever constructions) had to rely on supervised training of a simple linear read-
out. This gave rise to the question whether also biologically more realistic models
for readout neurons can be trained through a biologically more plausible learning
scenario to classify spoken words. The results of Fig. 3.10 may be interpreted as a
tentative positive answer to this question. We have demonstrated that LIF neurons
with conductance based synapses (that are subject to biologically realistic short
term plasticity) can learn without a supervisor through reward-modulated STDP
to classify spoken digits. In contrast to the result of Fig. 3.9, the output code that
emerged here was a rate code. This can be explained through the significant in-class
variance of circuit responses to different utterances of the same word (see Fig. 3.10C,
D). Although the LIF neuron learnt here without a supervisor to respond with dif-
ferent firing rates to utterances of different words by the same speaker (whereas
the rate output was very similar for both words at the beginning of learning, see
Fig. 3.10E), the classification capability of these neurons has not yet reached the
level of linear readouts that are trained by a supervisor (for example, speaker in-
dependent word classification could not yet be achieved in this way). Further work
is needed to test whether the classification capability of LIF readout neurons can
be improved through additional preprocessing in the cortical microcircuit model,
through a suitable variation of the reward-modulated STDP rule, or through a dif-
ferent learning scenario (mimicking for example preceding developmental learning
that also modifies the presynaptic circuit).

The new learning theory for reward-modulated STDP will also be useful for
biological experiments that aim at the clarification of details of the biological im-
plementation of synaptic plasticity in different parts of the brain, since it allows
to make predictions which types and time courses of signals would be optimal for
a particular range of learning tasks. For each of the previously discussed learning
tasks, the theoretical analysis provided conditions on the structure of the reward

102 Chapter 3. A Learning Theory for Reward-Modulated STDP

signal d(t) which guaranteed successful learning. For example, in the biofeedback
learning scenario (Fig. 3.3), every action potential of the reinforced neuron led —
after some delay — to a change of the reward signal d(¢). The shape of this change
was defined by the reward kernel e(r). Our analysis revealed that this reward ker-
nel can be chosen rather arbitrarily as long as the integral over the kernel is zero,
and the integral over the product of the kernel and the eligibility function is posi-
tive. For another learning scenario, where the goal was that the output spike train
S¥ 5 of some neuron j approximates the spike timings of some target spike train S*

(Fig. 3.7), the reward signal has to depend on both, S?O‘gt and S*. The dependence
of the reward signal on these spike timings was defined by a reward kernel x(r). Our
analysis showed that the reward kernel has to be chosen for this task so that the
synapses receive positive rewards if the postsynaptic neuron fires close to the time
of a spike in the target spike train S* or somewhat later, and negative rewards when
an output spike occurs in the order of ten milliseconds too early. In the pattern
discrimination task of Fig. 3.9 each postsynaptic action potential was followed —
after some delay — by a change of the reward signal which depended on the pattern
presented. Our theoretical analysis predicted that this learning task can be solved
if the integrals A” and A defined by equation (3.18) are such that A” > 0 and
AN ~ —AP. Again, this constraints are fulfilled for a large class of reward kernels,
and a natural choice is to use a non-negative reward kernel ¢,. There are currently
no data available on the shape of reward kernels in biological neural systems. The
previous sketched theoretical analysis makes specific prediction for the shape of re-
ward kernels (depending on the type of learning task in which a biological neural
system is involved) which can potentially be tested through biological experiments.

An interesting general aspect of the learning theory that we have presented
in this work is that it requires substantial trial-to-trial variability in the neural
circuit, which is often viewed as “noise” of imperfect biological implementations of
theoretically ideal circuits of neurons. This learning theory for reward-modulated
STDP suggests that the main functional role of noise is to maintain a suitable level
of spontaneous firing (since if a neuron does not fire, it cannot find out whether
this will be rewarded), which should vary from trial to trial in order to explore
which firing patterns are rewarded.®> On the other hand if a neuron fires primarily
on the basis of a noise current that is directly injected into that neuron, and not
on the basis of presynaptic activity, then STDP does not have the required effect
on the synaptic connections to this neuron (see Fig. S6). This perspective opens
the door for subsequent studies that compare for concrete biological learning tasks
the theoretically derived optimal amount and distribution of trial-to-trial variability
with corresponding experimental data.

°It had been shown in Maass et al. (2002b); Hiusler and Maass (2007); Maass et al. (2007) that
such highly variable circuit activity is compatible with a stable performance of linear readouts.

3.4. Discussion 103

3.4.1 Related Work

The theoretical analysis of this model is directly applicable to the learning rule
considered in Izhikevich (2007). There, the network behavior of reward-modulated
STDP was also studied some situations different from the ones in this work. The
computer simulations of Izhikevich (2007) operate apparently in a different dynamic
regime, where LTD dominates LTP in the STDP-rule, and most weights (except
those that are actively increased through reward-modulated STDP) have values
close to 0 (see Fig. 1b and d in Izhikevich (2007), and compare with Fig. 3.5 in this
chapter). This setup is likely to require for successful learning a larger dominance of
pre-before-post over post-before-pre pairs than the one shown in Fig. 3.3E. Further-
more, whereas a very low spontaneous firing rate of 1 Hz was required in Izhikevich
(2007), computer simulation 1 shows that reinforcement learning is also feasible
at spontaneous firing rates which correspond to those reported in Fetz and Baker
(1973) (the preceding theoretical analysis had already suggested that the success of
the model does not depend on particularly low firing rates). The articles Baras and
Meir (2007) and Florian (2007) investigate variations of reward-modulated STDP
rules that do not employ learning curves for STDP that are based on experimental
data, but modified curves that arise in the context of a very interesting top-down the-
oretical approach (distributed reinforcement learning Baxter and Bartlett (1999)).
The authors of Pfister et al. (2006) arrive at similar learning rules in a supervised
scenario which can be reinterpreted in the context of reinforcement learning. We
expect that a similar theory as we have presented in this work for the more com-
monly discussed version of STDP can also be applied to their modified STDP rules,
thereby making it possible to predict under which conditions their learning rules
will succeed. Another reward based learning rule for spiking neurons was recently
presented in Fiete and Seung (2006). This rule exploits correlations of a reward
signal with noisy perturbations of the neuronal membrane conductance in order to
optimize some objective function. One crucial assumption of this approach is that
the synaptic plasticity mechanism “knows” which contributions to the membrane po-
tential arise from synaptic inputs, and which contributions are due to internal noise.
Such explicit knowledge of the noise signal is not needed in the reward-modulated
STDP rule of Izhikevich (2007), which we have considered in this work. The price
one has to pay for this potential gain in biological realism is a reduced generality of
the learning capabilities. While the learning rule in Fiete and Seung (2006) approx-
imates gradient ascent on the objective function, this cannot be stated for reward-
modulated STDP at present. Timing-based pattern discrimination with a spiking
neuron, as discussed in the section “Pattern discrimination with reward-modulated
STDP” of this work, was recently tackled in Giitig and Sompolinsky (2006). The
authors proposed the tempotron learning rule, which increases the peak membrane
voltage for one class of input patterns (if no spike occurred in response to the input
pattern) while decreasing the peak membrane voltage for another class of input pat-
terns (if a spike occurred in response to the pattern). The main difference between
this learning rule and reward-modulated STDP is that the tempotron learning rule

104 Chapter 3. A Learning Theory for Reward-Modulated STDP

is sensitive to the peak membrane voltage, whereas reward-modulated STDP is sen-
sitive to local fluctuations of the membrane voltage. Since the time of the maximal
membrane voltage has to be determined for each pattern by the synaptic plasticity
mechanism, the basic tempotron rule is perhaps not biologically realistic. There-
fore, an approximate and potentially biologically more realistic learning rule was
proposed in Giitig and Sompolinsky (2006), where plasticity following error trials
is induced at synapse ¢ only if the voltage within the postsynaptic integration time
after their activation exceeds a plasticity threshold . Omne potential problem of
this rule is the plasticity threshold &, since a good choice of this parameter strongly
depends on the mean membrane voltage after input spikes. This problem is cir-
cumvented by reward-modulated STDP, which considers instead the local change
in the membrane voltage. Further work is needed to compare the advantages and
disadvantages of these different approaches.

3.4.2 Conclusion

Reward-modulated STDP is a very promising candidate for a synaptic plasticity rule
that is able to orchestrate local synaptic modifications in such a way that particular
functional properties of larger networks of neurons can be achieved and maintained
(we refer to Izhikevich (2007) and Farries and Fairhall (2007) for discussion of po-
tential biological implementations of this plasticity rule). We have provided in this
work analytical tools which make it possible to evaluate this rule and variations of
this rule not just through computer simulations, but through theoretical analysis.
In particular we have shown that successful learning is only possible if certain rela-
tionships hold between the parameters that are involved. Some of these predicted
relationships can be tested through biological experiments.

Provided that these relationships are satisfied, reward-modulated STDP turns
out to be a powerful rule that can achieve self-organization of synaptic weights
in large recurrent networks of neurons. In particular, it enables us to explain
seemingly inexplicable experimental data on biofeedback in monkeys. In addition
reward-modulated STDP enables neurons to distinguish complex firing patterns of
presynaptic neurons, even for data-based standard forms of STDP, and without
the need for a supervisor that tells the neuron when it should spike. Furthermore
reward-modulated STDP requires substantial spontaneous activity and trial-to-trial
variability in order to support successful learning, thereby providing a functional
explanation for these ubiquitous features of cortical networks of neurons. In fact,
not only spontaneous activity but also STDP itself may be seen in this context
as a mechanism that supports the exploration of different firing chains within a
recurrent network, until a solution is found that is rewarded because it supports a
successful computational function of the network.

3.5. Acknowledgments 105

3.5 Acknowledgments

This chapter is based on the journal article A Learning Theory for Reward-
Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback by
Robert Legenstein® (RL), myself! (DP) and Wolfgang Maass (WM) (PLoS Com-
putational Biology 4(10): 1000180, 2008). In this article RL contributed the theo-
retical analysis, RL, DP and WM conceived and designed the experiments and DP
conducted the experiments and analysed the simulation results. RL, DP and WM
wrote the manuscript.

Markus Diesmann, Eberhard Fetz, Razvan Florian, Yves Fregnac, Wulfram Ger-
stner, Nikos Logothetis, Abigail Morrison, Matthias Munk, Gordon Pipa and Dan
Shulz contributed with helpful discussions during the preparation of the article.
Malcolm Slaney provided a MATLAB implementation of the cochlea model from
Lyon (1982). Benjamin Schrauwen, David Verstraeten, Michiel D’Haene and Ste-
fan Klampfl provided additional code that used in the speech classification task
(computer simulation 5).

!These authors contributed equally to the work in the paper.

CHAPTER 4

PCSIM: a Parallel Simulation
Environment for Neural Circuits

Contents
4.1 Introduction it 107
4.2 OVEIVIEW . v v v v v vttt it e e e e e e e e e e e e e e 110
4.3 Python interface generation 113
4.4 Network construction 114
4.5 Custom network elements 121
4.6 Extending PCSIM using C++ v v v v v v v v v v v v 124
4.7 PCSIM add-ons implemented in Python 126
4.8 Discussion v vttt e e e e e e e e e e 132
4.9 Acknowledgments 0000, 135

The Parallel Circuit SIMulator (PCSIM) is a software package for simulation
of neural circuits. It is primarily designed for distributed simulation of large scale
networks of spiking point neurons. Although its computational core is written in
C++, PCSIM’s primary interface is implemented in the Python programming lan-
guage, which is a powerful programming environment and allows the user to easily
integrate the neural circuit simulator with data analysis and visualization tools to
manage the full neural modeling life cycle. The main focus of this work is to describe
PCSIM’s full integration into Python and the benefits thereof. In particular we will
investigate how the automatically generated bidirectional interface and PCSIM’s
object-oriented modular framework enable the user to adopt a hybrid modeling ap-
proach: using and extending PCSIM’s functionality either employing pure Python
or C++ and thus combining the advantages of both worlds. Furthermore, we de-
scribe several supplementary PCSIM packages written in pure Python and tailored
towards setting up and analyzing neural simulations.

4.1 Introduction

Given the complex nonlinear nature of the dynamics of biological neural systems,
many of their properties can be investigated only through computer simulations.
The need of researchers to increase their productivity while implementing increas-
ingly complex models without each time having to reinvent the wheel has become a

108 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

driving force to develop simulators for neural systems that incorporate best known
practices in simulation algorithms and technologies, and make it accessible to the
user through a high-level user-friendly interface (Brette et al., 2007). It has also
been brought to attention that it is of importance to use large neural networks with
biologically realistic connectivity (on the order of 10* synapses per neuron) as simu-
lation models of mammalian cortical networks (Morrison et al., 2005). Simulation of
such large models can practically be done only by exploiting the computing power
and the memory of multiple computers by means of a distributed simulation.

There are different neural simulation environments presently available and al-
though many of them were initially envisioned for a specific purpose and domain
of applicability, during continuing development their set of features expanded to
improve generality and support construction of a wide range of different neural
models; see (Brette et al., 2007) for a recent overview. The two most prominent
tools are NEURON (Hines and Carnevale, 1997; Carnevale and Hines, 2006) and
GENESIS (Bower and Beeman, 1998) which aim at simulation of detailed multi-
compartmental neuron models and small networks of detailed neurons. Another
class of quite general neural simulation environments which focus on the simula-
tion of large-scale cortical network models and the improvement of their simulation
efficiency through distributed computing include NEST (Gewaltig and Diesmann,
2007; Plesser et al., 2007), NCS (Brette et al., 2007) and SPLIT (Hammarlund and
Ekeberg, 1998). There are also more dedicated neural simulation tools like iNVT
(iLab Neuromorphic Vision Toolkit!) which is an example of a package specifically
tailored for the domain of brain-inspired neuromorphic vision. All of the above
simulation environments support parallel simulation of one model on multiple pro-
cessing nodes by using commodity clusters and many of them can also be run on
super-computers. The simulation tool PCSIM described in this work is designed for
simulating neural circuits with a support for distributed simulation of large scale
neural networks. Its development started as an effort to redesign the previous CSIM
simulator? (Natschliger et al., 2003) and augment its capabilities, with the major
extension being the implementation of a distributed simulation engine in C++ and
a new convenient programming interface. The aim was to provide a general extensi-
ble framework for simulation of hybrid neural models that include both spiking and
analog neural network components together with other abstract processing elements
while making the setup and control of parallel simulations as convenient as possible
for the user. Hence, given its current set of features, the PCSIM simulator is clos-
est to the second group (NEST, NCS, SPLIT) of neural simulation environments
mentioned above.

Performing a neural network simulation usually requires combined usage of sev-
eral additional software tools together with the simulator, for stimulus preparation,
analysis of output data and visualization. Being able to steer all the necessary tools
from one programming environment reduces the complexity of setting up simulation

"http://ilab.usc.edu/toolkit/home.shtml
http://www.lsm.tugraz.at/csim

http://ilab.usc.edu/toolkit/home.shtml
http://www.lsm.tugraz.at/csim

4.1. Introduction 109

experiments since all development can be done in a single programming language
and the burden of developing utilities for conversion of data formats between het-
erogeneous tools is avoided. Given its object-oriented capabilities and its strong
support for integration with other programming languages, the Python program-
ming language is a very promising candidate for providing such a unifying software
environment for simultaneous use of various scientific software libraries. As Python
is becoming increasingly popular in the scientific community as an interpreting lan-
guage of choice for scientific applications, the developers of many neural simulator
tools decided to provide a Python interface for their simulator in addition to its
legacy interface in a custom scripting language. Moreover, a simulation tool called
Brian which uses Python as an implementation language was recently developed to
bring to the user the full flexibility of an interpreting language in specifying and
manipulating neural models (Goodman and Brette, 2008).

In spite of the evident practical advantages in using Python as the single pro-
gramming language for all tasks during a neural modeling life cycle, there is the
apparent discrepancy between the need for computational performance of the sim-
ulation and construction of the model on one hand, and rapid development of the
model on the other. Using C++ can solve the performance issue, but will decrease
the productivity of the modeler and requires higher level of programming skills and
experience. In contrast Python is easy to learn, flexible to use and significantly
increases the productivity of the modeler, however it lags far behind C++ in per-
formance.? Hence, instead of adopting a single language, an alternative is to enable
an easy mix and match of both languages during the development of a model, i.e.
to introduce a hybrid modeling approach (Abrahams and Grosse-Kunstleve, 2003).

In this chapter we will describe how the modular object-oriented framework of
PCSIM in combination with an automated interface generation supports such a
hybrid modeling approach.

In particular, we briefly review PCSIM’s main features (Sec. 4.2) before we
describe the automated process to generate the Python interface (Sec. 4.3). In
Sec. 4.4 we detail PCSIM’s network construction application programming interface
(API), which is a central part of PCSIM’s object-oriented modular framework. In
Sec. 4.5 we demonstrate another advantage of the hybrid modeling approach: we
show how PCSIM’s concept of a general network element can be used as an interface
to another simulation tool. While these examples concentrate on the Python aspect
of the hybrid modeling, we show in Sec. 4.6 how the user can easily extend PCSIM’s
functionality using C++. Additional PCSIM packages implemented in Python are
reviewed in section 4.7. In Sec. 4.8 we discuss and summarize the presented concepts
and approaches.

3The simulation tool Brian mentioned above, heavily uses the numerical Python package numpy
(Oliphant, 2007) written in C to achieve reasonable performance.

110 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

Python ‘ add-ons ‘

pypcsim
Boost.Python

libpcsim (C++)

‘ network construction layer ‘

built-in simulation engine
neuron and synapse and
types communication system
‘ Boost H MPI H GSL ‘

Figure 4.1: Architecture overview of PCSIM

4.2 Overview

4.2.1 Architecture

The high-level architecture of PCSIM is depicted in Fig. 4.1. The PCSIM library
written in C++ (libpcsim) constitutes the core of the simulator. The API of the
PCSIM library is exposed to the Python programming language by means of the
Python extension module pypcsim (see Sec. 4.3 for details). The library is made up
of three main components: the simulation engine with its communication system, a
pool of built-in network elements (i.e. neuron and synapse types) and the network
construction layer. Before presenting the network construction layer in detail in
Sec. 4.4 we will briefly describe in the next paragraphs the main features of the
underlying simulation engine and its communication system.

The simulation engine integrates all the network elements (typically neurons and
synapses) and advances the simulation to the next time step, and uses its commu-
nication system to handle the routing and delivery of discrete and analog messages
(i.e. spikes and e.g. firing rates or membrane voltages) between the connected
network elements. PCSIM’s simulation engine is capable of running distributed
simulations where the individual network elements are located at different comput-
ing nodes. Setting up a distributed simulation is handled easily from a users point of
view: there are no (or very little) code changes necessary when switching from a non-
distributed to a distributed simulation. The distributed simulation mode is intended
for employing a cluster of machines for simulation of one large network where each
machine integrates the equations of a subset of neurons and synapses in the network.
A distributed PCSIM simulation runs as an MPI* based application composed of
multiple MPI processes located on different machines®. The implementation of the
spike routing, transfer and delivery algorithm between the nodes in a distributed
simulation is based on the ideas presented in (Morrison et al., 2005). In addition
PCSIM offers the possibility to run a simulation as a multi-threaded application,
both in a non-distributed and a distributed setup. The multi-threaded mode is in-

“http://www-unix.mcs.anl.gov/mpi/
°To be precise, we use the C-++ bindings offered by the MPICH2 library, where currently none
of the advanced features of the MPI-2 standard are used.

http://www-unix.mcs.anl.gov/mpi/

4.2. Overview 111

64
32
16
o
8 s
]
E
-
c 2
.2
-
L
: -
g 0.5 OO 4000 neurons ~.
0.25 | ©—0O 20000 neurons R -
O—0 50000 neurons BRI -
»—X 100000 neurons S~
1 2 4 8 16 32
of nodes

Figure 4.2: Simulation times of the CUBA network distributed over different number of
processing nodes, compared to the expected simulation time (dashed line) (see text for
details). Four different sizes of networks were simulated: 4000 neurons with on average
1.6 x 10° synapses (diamonds), 20000 neurons with on average 40 x 10° synapses (stars),
50000 neurons with on average 250 x 10° synapse (circles) and 100000 neurons with on
average 1 x 10° synapses (squares). The plotted simulation times are averages over 12
simulation runs. The variation of simulation time between different simulation runs was
small, therefore we did not show it.

tended for performing simulations on one multi-processor machine when one wants
to split the computational workload among multiple threads in one process, each
running on a different processor. However, we should note that the multi-threaded
simulation engine is still undergoing optimization, as we are working on improve-
ment of the scaling of the multi-threaded simulation to match the scaling achieved
with an equivalent distributed simulation.

4.2.2 Scalability and Domain of Applicability

One of the goals of the development of PCSIM was enabling simulations of large
neural networks on standard computer clusters through distributed computing. By
utilizing the parallel capabilities of PCSIM the simulation time for a model can be
reduced by using more processors (on multiple machines) as computing resources.
As a test of the scalability, we performed multiple simulations with the PCSIM
implementation of the CUBA model described in (Brette et al., 2007), with dif-
ferent number of leaky integrate-and-fire neurons (4000, 20000, 50000 and 100000)
and distributed over a different number of processors (each processor on a different
machine). We changed the resting potential in the neuron equations from —49m V'
to —60mV such that the network does not show any spontaneous activity. In or-

112 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

der to elicit a spiking activity in the network, an input neuron population of 1000
neurons was connected randomly to it with probability 0.1, i.e. each neuron in the
network receives inputs from on average 100 input neurons. The input neurons fired
homogeneous Poisson spike trains at a rate of 5 Hz. The simulation was performed
for 1 sec biological time with a time step of 0.1 ms. We have set the connection
probability within the network to 0.1, in order to reach realistic number of 10000
synapses per neuron for the network size of 100000 neurons. The transmission delay
of spikes was set to 1 ms. We scaled the weights of the network so that the mean
firing rate of the neurons was between 2.4 and 2.7 Hz for all network sizes (more
precisely 2.68 Hz, 2.55 Hz, 2.52 Hz and 2.45 Hz for the network with 4000 , 20000,
50000 and 10000 neurons, respectively).

The used machines had Intel® Xeon™64 bit CPUs with 2.66 GHz and 4 MB
level-2 processor cache, and 8 GB of RAM. They were connected in a 1 Gbit/s
Ethernet LAN.

If we assume ideal linear speed-up, then the expected simulation time of a model
on N machines given the actual simulation time on K machines is equal to the
simulation time on K machines times K divided by N. In the evaluation of the
scaling, for the estimation of the expected simulation time (see Fig. 4.2) we used
the measured simulation time of the model on the minimum number of machines
used for that particular network size. Namely, we used the actual simulation time on
K = 1 machine for the network sizes of 4000 and 20000 neurons, and the simulation
time on K = 4 and K = 16 machines for the network sizes of 50000 and 100000
neurons respectively.

Fig. 4.2 shows that in the case of 4000 neurons the computational load on each
node is quite low, hence the cost of the spike message passing dominates the sim-
ulation time which results in sub-linear scaling. For the networks with 20000 and
50000 neurons the actual simulation time is shorter than the expected simulation
time indicating a supra-linear speed-up for up to 24 nodes. For more than 24 nodes
the actual simulation time approaches the expected simulation time. The reason
for the supra-linear speed-up is more efficient usage of the processor cache when the
network is distributed over larger number of nodes (Morrison et al. (2005)). For the
network with 100000 neurons the speed-up is not distinguishable from the expected
linear speed-up (taking K = 16 nodes as the base measurement).

The combination of features that PCSIM supports makes it suitable for various
types of neural models. Its domain of applicability can be considered across two
complementary aspects: the size of networks that can be simulated, and the variety
of different models that can be constructed and simulated, determined by the avail-
able neuron and synapse models, plasticity mechanisms, construction algorithms
and similar. Concerning the size of models, because of its distributed capabilities
PCSIM is mainly targeted towards large neural systems with realistic cortical con-
nectivity composed of 10° neurons and above. As the results from the scalability
test show, a spiking network with 10° neurons and 10* synapses per neuron can
be simulated in a reasonable time on a commodity cluster with about 20 machines,
and the speed-up is linear when more machines are employed for the simulation.

4.3. Python interface generation 113

Regarding the support for construction of various different models in PCSIM, the
generality of the communication system and the extensibility with custom network
elements enables simulation of hybrid models (spiking and analog networks) incor-
porating different levels of abstraction. By utilizing the construction framework also
structured models with diversity of neuron and synapse types and varying parameter
values can be defined and simulated, and the built-in support for synaptic plasticity
further expands the domain of usability towards models that investigate synaptic
plasticity mechanisms.

4.3 Python interface generation

In order to enable a hybrid modeling approach we wanted to use a Python interface
generation tool that was capable of wrapping PCSIM’s object-oriented and modu-
lar API such that the Python API will be as close as possible to the C++ API.
Our choice for this purpose was the Boost.Python library (Abrahams and Grosse-
Kunstleve, 2003). The strength of Boost.Python is that by using advanced C++
compile-time introspection and template meta-programming techniques it provides
comprehensive mappings between C++ and Python constructs and idioms. There
is support, amongst others, for exception handling, iterators, operator overloading,
standard template library (STL) containers and Python collections, smart pointers
and virtual functions that can be overridden in Python. The later feature makes the
interface bidirectional, meaning that in addition to the possibility of calling C+-+
code from Python, user extension classes implemented in Python can be called from
within the C++ framework. This is an enabler for the targeted hybrid modeling
approach; we will see examples for this later on in this chapter.

However, using Boost.Python without any additional tools does not lead to a
solution where the interface can be generated in an automatic fashion since for each
new class added to the library’s API one would have to write a substantial piece
of Boost.Python code. As automatic Python wrapping of the C++ interface is one
of the main prerequisites for leveraging a hybrid modeling approach, a solution is
needed to automatically synchronize the Python and C++ API of a library like
libpcsim. Fortunately, there exists the Py++ package” which was developed to alle-
viate the repetitive process of writing and maintaining Boost.Python code. Py++
by itself is an object-oriented framework for creating custom Boost.Python code
generators for an application library written in C++. It builds on GCC-XMLS8, a
C++ parser based on the GCC compiler that outputs an XML representation of
the C++ code. Py++ uses this structured information together with some user in-
put, in form of a Python program, and produces the necessary Boost.Python code,
constituting the Python interface for a specified set of C++ classes and functions
(see Fig. 4.3).

®http://www.boost.org/doc/libs/release/libs/python/doc/
"http://www.language-binding.net/
$http://www.gccxml . org

http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.language-binding.net/
http://www.gccxml.org

114 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

Boost.Python i
XML wrapper script C++ ‘ C++ compiler, linker pypcsim
/ \ code f \ L
Boost.Python libpcsim
. . . library P
inclusion || exclusion

Py++ rules rules

user implementation

Figure 4.3: The processing steps in the generation of the Python interface for PCSIM.

Finally the Boost.Python C++ code is compiled and linked together with the
C++ library under consideration (libpcsim in our case) to produce the Python ex-
tension module containing the Python API of the library (pypcsim in our case).
Thus, the work of the developer (and the user as we will see later on) reduces to a
definition of high-level rules to select which classes and methods should be exposed.

For the generation of the PCSIM Python interface pypcsim, we split the rules
Py-++ needs into two subsets, inclusion and exclusion rules (see Fig. 4.3). The
inclusion rules contain the rules that mark a selected set of classes to be exposed to
Python. The exclusion rules contain the post-processing, where some of the methods
of the classes that were included in the inclusion rules are marked to be excluded,
and call policies are defined for the included methods that require them®. Py -+
allows to specify the rules in a high-level, generic fashion, making them robust to
changes in the interface of the PCSIM C++ library. Hence, in most cases changes in
the PCSIM API did not require changes in the Python program that generates the
wrapper code, which simplified its maintenance. An example of such a high-level
rule would be “In all classes that are derived from class A, do not expose the method
that returns a pointer of type B”. Such a general rule will then be still valid if for
example we introduce more classes derived from A, or add additional functions that
return a pointer of type B in some of the classes.

To summarize, the Python integration of PCSIM using Boost.Python together
with the Py++ code generator allowed us to come up with a solution to automat-
ically expose PCSIM’s object-oriented and modular API bidirectionally in Python.
In the following sections we will show how such an bidirectional integration of PC-
SIM into Python can practically be used and which possibilities and advantages
arise.

4.4 Network construction

A large portion of the Python PCSIM interface is devoted to the construction of
neural circuits. At the lowest level PCSIM provides methods to create individual

Call policies define the change of ownership of objects that cross the boundaries of the C++
library, i.e. the object passed from Python to the C++ library and from the C++ library to
Python.

4.4. Network construction 115

network elements (i.e. neurons and synapses) and to connect them together.

On top of these primitives a powerful and extensible framework for circuit con-
struction based on probabilistic rules is built. The source of inspiration for the in-
terface of the framework was the Circuit Tool in the CSIM simulator'® and PyNN,
an API for simulator-independent procedural definition of spiking neural networks
(Davison et al., 2008). We will use a concrete example!!, described in more depth
in the next subsection, to present the network construction framework and its typ-
ical use cases where emphasis is put on those features that were enabled by the
bidirectional Python interface generated by the approach described in Sec.4.3.

4.4.1 The example model

We selected the model to be simple enough for didactic reasons, but complete enough
with all the elements necessary to explain the main novel concepts of the interface
and its Python extensibility features. The connectivity patterns are based on ex-
perimental data that we use in our current research work. The model consists of a
spatial population of neurons located on a 3D grid with integer coordinates within
a volume of 20 x 20 x 6. 80% of the neurons in the model are excitatory, and
the rest are inhibitory. The excitatory neurons are modeled as regular spiking and
the inhibitory neurons as fast spiking Izhikevich neurons (Izhikevich, 2004). The
connections between excitatory neurons in the network are created according to
the trivariate probabilistic model defined in (Buzas et al., 2006). This connectivity
model describes the distribution of the excitatory patchy long-range lateral connec-
tions found in the superficial layers of the primary visual cortex in cats that depends
on the lateral distance of the cells and their orientation preference. Orientation pref-
erence is the affinity of V1 cells to fire more when a bar with a specific orientation
angle is present in their receptive fields. The connectivity rule is defined by the fol-
lowing equations that express the connectivity probability between two excitatory
cells.

Gl L) = ot (4.2)
V (@1, ;) =€t e 200) (43)

i = (z4,9;) and lj = (z;,y;) are the 2D locations and ¢; and ¢; are the orien-
tation preferences of the pre- and postsynaptic neurons ¢ and j. The function G
introduces the dependence of the connectivity probability on the lateral distance
between the neurons, and V' models the dependency on the differences in the ori-
entation preferences of the neurons. C, k and ¢ are scaling coefficients. The values
for the preferred orientation angles of the neurons in the example are generated by
evolving a self-organizing map (SOM) (Obermayer and Blasdel, 1993). Additionally

Yhttp://www.lsm. tugraz.at/circuits
UThe full source code of this example is available in the supplementary material.

http://www.lsm.tugraz.at/circuits

116 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

Projection > Population
% + A
Connection Decision Predicate Connector Factory Factory
A J
‘ Connector Value Generator ‘ ‘ Random Distribution ‘ ‘ Value Generator

Figure 4.4: A diagram of the most important concepts within the network construction
interface. The arrows indicate a “uses” relationship between the concepts.

the conduction delay of a connection between excitatory neurons is probabilistically
dependent on the distance between the 3D locations of its pre- and postsynaptic

neurons.
1 — 1]

N(/.L, a, blv bu)
Here N(u,0,b;,b,) is a bounded normal distribution representing the transmission
velocity of the axon. A random value from N (u, o, by, by,) is sampled as follows: first

D(13,1) = Do (4.4)

a random number from a normal distribution with mean p and standard deviation
o is drawn and if that value is not within the range [b;, b,], then it is drawn from an
uniform distribution with that range. Dj represents a proper scaling factor in the
formula.

4.4.2 The framework: object-oriented, modular and extensible

Fig. 4.4 shows the basic concepts of PCSIM’s construction framework together with
their interactions during the construction process. This framework allows model
specification in terms of populations of neurons connected by probabilistically de-
fined connectivity patterns called projections.

A population of network elements utilizes several object factories to generate
the network elements. A factory encapsulates the logic for the neuron and synapse
generation decoupled from the other parts of the construction process. Every time
a new neuron is to be created in a population the factory is used to generate the
neuron object. The object factories can use either random distribution objects or
value generators to generate values for the parameters and attributes of the network
element instances. When we talk about a parameter we mean a parameter of the
differential equations used to model a neuron or synapse. In contrast an attribute
describes any other (more abstract) property of a network element. In our example
the orientation preference ¢ will be such an attribute of an excitatory neuron.

A projection manages connections between two populations. During the con-
struction phase of a projection a connection decision predicate is used to determine
whether a connection should be created for a pair of neurons. A connector factory is
then used to create instances of the connector elements like synapses (this is analo-
gous to the object factory for populations). The connector factory also uses random
distributions or connector value generators for the parameter values of the connector

4.4. Network construction 117

elements. In order to implement a specific construction algorithm, the user typically
just needs to implement custom value generator and connection decision predicate
classes, as we will demonstrate in the following subsections.

4.4.3 Factories: creating network elements from models

We will start constructing the network model by defining the classes (or families) of
neurons models: inhibitory and excitatory neurons. This is accomplished by defining
an element factory for each family. As explained in Sec. 4.4.1 the excitatory neurons
have an orientation preference ¢ which depends on the location of the neuron in the
population. For this reason we will associate the attribute phi with each excitatory
neuron:

exc_factory = Factory(model IzhiNeuron(type = "RS"),
Vinit = UniformDistribution(-50e-3, -60e-3),
attribs = dict(phi = OrientationPreferValGen())

The statement above creates a factory for the excitatory family of neurons based
on a regular spiking (RS) Izhikevich neuron model (Izhikevich, 2004) where
IzhiNeuron is a built-in network element class. The keyword argument Vinit
= UniformDistribution(...) associates a uniform random number generator
with the initial membrane voltage Vinit. This has the effect that whenever
the factory is used to generate an actual instance of an excitatory neuron, the
parameter Vinit will be randomly chosen from the interval [—50, —60] mV. Finally
the keyword argument attribs = dict(phi = ...) has two effects: a) the
attribute phi is attached to exc_factory and b) the custom walue generator
OrientationPreferValGen is used to generate a particular value for phi each
time exc_factory is asked to generate an instance of an excitatory model neuron.
The value of the phi attribute will be used afterwards for the creation of synaptic
connections.

In the example we implement the custom value generator
OrientationPreferValGen in pure Python. This is enabled by the particu-
lar feature of Boost.Python which allows C++ virtual functions to be overridden
from within Python.

class OrientationPreferValGen(PyAttributePopObjectValueGenerator) :

def __init__(self):
PyAttributePopObjectValueGenerator.__init__(self)
self.map = som.OrientationMapSOM([20,20])

def generate(self, rng):
return self.map.pref(self.loc().x(), self.loc().y())

Value generators (in this case to be derived from
PyAttributePopObjectValueGenerator) have a simple interface composed of
the constructor __init__ and the method generate which have to be implemented

118 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

by the user. In our particular example we create the orientation map, that maps
2D coordinates to an orientation preference angle in the constructor, and will use
it in the method generate. The map is based on the SOM algorithm encapsulated
in the Python class OrientationMapSOM (details not relevant here). The generate
method is called to determine the value of the orientation angle attribute phi
whenever a neuron instance from the factory has to be created. The value generator
inherits several convenient methods from its base class that one can use for accessing
properties of the neuron for which generate is called, like self.loc to get the 3D
location of the neuron within a population (see next section). We then pass the z
and y coordinates to the orientation map (method pref) in order to calculate the
value of the orientation preference angle.
For the inhibitory neuron model we create a similar factory:

inh_factory = Factory(model IzhiNeuron(type = "FS"),
Vinit = UniformDistribution(-50e-3, -60e-3),
attribs = dict())

The difference to the excitatory neuron model is that a fast spiking (FS) Izhikevich
neuron model is used and the attribute dictionary attribs = dict() is empty.
This is because there is no orientation preference of the inhibitory cells in the
considered model.

4.4.4 Neuron populations

A population in PCSIM represents an organized set of neurons that can be manip-
ulated as one structural unit in the model. In the AugmentedSpatialPopulation
that we will use in this example, the neurons have associated 3D coordinates, a
family identifier, and an extensible set of custom attributes that the user can at-
tach to each of the neurons. We already encountered this in the previous section.
The family identifier allows the definition of multiple families/classes of neurons, i.e.
subsets of neurons with similar properties, within a single population. Our popu-
lation will have two families of neurons, the family of excitatory and the family of
inhibitory neurons. For each of the two families of neurons we have specified in the
previous section a factory that will be used to generate the neuron instances within
the population.

pop = AugmentedSpatialPopulation(net, [exc_factory(), inh_factory() 1,
RatioBasedFamilies([4, 1]),
CuboidIntegerGrid3D(20, 20, 6))

exc_pop, inh_pop = pop.splitFamilies()

Note that the first argument (net) specifies the overall network to which this
population of neurons will belong. The class CuboidIntegerGrid3D, which is a
built-in specialization of the more general concept of an arbitrary set of points in
3D, defines the possible locations for the neurons (integer coordinates within a
volume of 20 x 20 x 6). The population is to be composed of two families of neurons

4.4. Network construction 119

(excitatory and inhibitory), created by the two given factories (exc_factory and
inh_factory). To accomplish this we use a RatioBasedFamilies object which
randomly chooses for each 3D location from which family of neurons the particular
instance will be created. Specifying the ratio 4:1 for excitatory to inhibitory neurons
yields the desired 80% excitatory neurons. The class RatioBasedFamilies is a
built-in specialization of the general concept of a spatial family identifier generator
which encapsulates the logic for deciding which factory to use depending on the 3D
location.

For the purpose of more convenient setup of connections later on, the created
population is split into two sub-populations, one for each family.

4.4.5 Projections: managing synaptic connections

The synaptic connections in the network construction interface are created by means
of projections. A projection is a construct that represents a set of synaptic connec-
tions originating from one population of neurons and terminating at another pop-
12 PCSIM has built-in construction algorithms for creating various types
of connection projections, like constant probability random connectivity or random

ulation

connectivity with probability dependent on the distance (or lateral distance) be-
tween the neurons.

However, to create a projection with a specific connectivity pattern, one usually
defines a custom connection decision predicate. A decision predicate decides for an
individual pair of neurons whether to form a connection based on the parameters
and attributes of those neurons. In our example we implemented the connection
decision predicate OrientationSpecificConnPredicate in pure Python, encapsu-
lating the probabilistic rule for connection making from Equ. 4.1, which states that
the connection probability depends on the distance between and the orientation
preferences of the pre- and postsynaptic neurons.

class OrientationSpecificConnPredicate(
PyAugmentedConnectionDecisionPredicate) :

def __init__(self, C):
PyAugmentedConnectionDecisionPredicate.__init__(self)
self.orient_conn_prob = OrientationSpecConnProbability(C)
self.unidist = UniformDistribution(0.0, 1.0)

def decide(self, src, dst, rnd):
prob = self.orient_conn_prob(self.src_attr(src, ’phi’),
self.dest_attr(dst, ’phi’),
self.dist_2d(src, dst))
return self.unidist(rnd) < prob

The PyAugmentedConnectionDecisionPredicate base class is used when one has
to define a custom connection decision predicate that uses the neuron attributes

2The source and destination populations can be the same if the goal is to create recurrent
connections in one population.

120 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

and connects neurons from populations of type AugmentedSpatialPopulation. To
complete the implementation of the predicate, it is required to override the decide
method and fill the constructor with the necessary initializations. The method
decide is called within the connection construction process for each candidate
pair of neurons that could be connected and is expected to output true (make
a connection) or false (no connection). In our example, we create an instance
(orient_conn_prob) of the OrientationSpecConnProbability class to calculate
the probability according to the Equ. 4.1 (the full implementation of the class is
available in the supplementary material). This instance is called in the decide
method with the orientation preferences of the candidate source and destination
neurons and their lateral distance as arguments. The orientation preferences are
obtained via the src_attr and dest_attr methods (inherited from the base class),
and the lateral distance via the dist_2d method. By comparing a uniformly
distributed random number to the calculated probability a Bernoulli distribution
with the desired probability for the outcome true is generated.

Before we can create the projection we have to define a connector factory (class
ConnFactory) that will be used to generate the synapse objects within the projec-
tion.

ee_syn_factory = ConnFactory(
model = StaticSpikingSynapse(W = le-4),
delay = DelayCond(v_mean = 2e2, v_SH = 0.2,
v_min = 0.le-3, v_max = 5e-3))

The connector factory differs from the element factory objects used in conjunction
with neuron populations, in that the parameters of the created objects (typically
synapses) can depend on the attributes of the source and destination network
elements they are connecting. In our example, the connector factory for the
connections between excitatory neurons is based on a current-based synapse model
with exponential decay post-synaptic response (class StaticSpikingSynapse
in PCSIM). Additionally, the DelayCond value generator is associated to the
delay parameter of the synapse, which produces distance dependent delay values
according to Equ. 4.4. The DelayCond is a built-in value generator in PCSIM.

Now we can create the projection that will generate all recurrent connections
between the excitatory neurons.

ee_proj = ConnectionsProjection(exc_pop, exc_pop, ee_syn_factory(),
PredicateBasedConnections (
OrientationSpecificConnPredicate(1.0)))

We specify in the constructor of the projection the connector factory for gen-
eration of the synapses and the PredicateBasedConnections class instance
that iterates over all candidate pre- and postsynaptic neurons and delegates
the decision whether to make a connection to the connection decision predicate
OrientationSpecificConnPredicate given as an argument.

A connection decision predicate is typically used when in the probabilistic con-

4.5. Custom network elements 121

nectivity definition the probability that two neurons are connected depends on the
attributes and parameters of the two neurons and is independent from the other
created connections. In the general case, with such a connectivity, a separate deci-
sion whether to make a connection has to be made at each candidate neuron pair,
yielding a complexity of the wiring algorithm that is quadratic with respect to the
number of neurons. In a distributed scenario, a speed-up of the construction is
possible by splitting the wiring workload among the multiple machines the model is
simulated on. If the number of machines is increased with the number of neurons,
keeping the number of neurons per node fixed, and if we assume that the number of
input synapses per neuron does not increase, then the wiring time will scale linearly
with the number of neurons.

For other connectivity schemes where further optimizations are possible, a faster
wiring algorithm can be implemented directly in the class that iterates over the neu-
ron pairs. For example, for the case of constant probability random connections,
a special RandomConnections class that implements faster wiring can be used in-
stead of PredicateBasedConnections. When using the RandomConnections, the
wiring time is proportional to the number of created connections if the network is
constructed on a single machine, and remains constant in the distributed case with
the assumption that the number of machines is increased proportionally with the

number of neurons.13

4.5 Custom network elements

The PCSIM communication system is general in a sense that it supports spiking
and analog messages as communication between network elements. The network
elements are not restricted to one type of message and can have multiple input and
output ports, each of them capable of either receiving or sending spiking or analog
messages (see Fig. 4.5A and Fig. 4.5B).

The generality of the framework allows the user to implement custom processing
elements that map multiple inputs to multiple outputs and plug them in a network
model inter-connected together with spiking or analog neural networks. Such cus-
tom network elements can either be implemented in C++ (see Sec. 4.6) or in pure
Python. This feature of PCSIM has various potential uses. For example the user
can implement new neuron types for a preliminary experiment in Python first, in-
stead of directly implementing them in C++ (see Sec. 4.6). Another possible usage
is to implement more abstract or complex elements like a whole population of spik-
ing neurons in Python by using vectors from the numerical Python package numpy
14 (Oliphant, 2007) for step-by-step integration of the equations. This approach
has been shown to have good performance, and is applicable for homogeneous neu-
ron populations, where all neuron instances have the same neuron model (Brian

131t is out of scope of this work to detail the algorithms behind the efficient implementation of
the network construction framework in the distributed simulation scenario; this will be reported
elsewhere.

Yhttp://numpy.scipy.org

http://numpy.scipy.org

122 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

A C
1000 input 4000 output
= network Ports [BrianCircuit: PCSIM Network Element ports
" — element [
networl
element | |:

network (3 I:

element g

o
P onon

neuron syn.| neuron

Brian neural network in Python

Figure 4.5: A) Network elements of different type (with different arrangement of input
and output ports) interconnected together in a PCSIM network. Different colors of ports,
gray or white, mark their different types, spiking or analog. B) Neurons and synapses are
specific subtypes of the more general concept of an network element. C) Schematic diagram
of the embedding of a network simulated with the Brian simulator into a PCSIM network
element.

simulator, (Goodman and Brette, 2008)).

We detail such an example in this section, where the Brian simulator is used to
implement a population of spiking neurons as a single network element, and then
plug it into a PCSIM simulation together with other built-in network elements.

The spiking neural network model we will simulate with Brian is the modified
version of the CUBA benchmark model described in Sec. 4.2.2; with a network size
of 4000 neurons. We have used the same connectivity probability of 0.02 and the
same weights as in (Brette et al., 2007), instead of the modified 0.1 connectivity
probability and scaled weights in Sec. 4.2.2. The PCSIM network element that we
will create to encapsulate the Brain network has 1000 spiking input ports and 4000
spiking output ports (see Fig. 4.5C). Each of the output ports is associated to one
neuron.

To implement this model as a PCSIM network element, one has to implement a
Python class BrianCircuit derived from PySimObject. In the constructor of this
class the Brian spiking network is created and initialized.

4.5. Custom network elements 123

class BrianCircuit(PySimObject):

def __init__(self):
PySimObject.__init__(self)
self.registerSpikingOutputPorts (arange (4000))
self.registerSpikingInputPorts (arange (1000))
input = PCSIMInputNeuronGroup(1000, self)
self.P = P = brian.NeuronGroup(4000, model = egs,

threshold=-50*mV, reset=-60*mV)

Pe = P.subgroup (3200)
Pi = P.subgroup(800)
Ce = brian.Connection(Pe, P, ’ge’)
Ci = brian.Connection(Pi, P, ’gi’)
Ce.connect_random(Pe, P, p = 0.02, weight = 1.62*mV)
Ci.connect_random(Pi, P, p = 0.02, weight = -9*mV)
Cinp = brian.Connection(input, P, ’ge’)

Cinp.connect_random(input, P, p = 0.1, weight = 3.5%mV)
self.brian = brian.Network(input, P, Ce, Ci, Cinp)
self.brian.prepare()
self.brian.clock.set_duration(2.0*second)

The mapping of the PCSIM input ports to a Brian neuron group is managed
by the simple auxiliary neuron group named PCSIMInputNeuronGroup (see the
supplementary material for the implementation). The reset method resets the
state of the network to time step ¢ = 0, which is achieved by calling the reinit
method of the Brian network, and initializing the membrane potential vector P.V
to random values from an uniform distribution.

def reset(self, dt):
self.brian.reinit ()
self.P.V = -60*mV+10*mV*rand (len(self.P))
return 0O

The step-by-step iteration of the network is done in the overridden advance method
which performs one time-step update of the Brian network with the update method
and the tick method of the associated Brian clock object. At the end of each
time step the generated spikes of the population are gathered and delivered to the
output ports of the PCSIM network element.

def advance(self, ai):
self.brian.update()
self.brian.clock.tick()
self.setOutputSpikes(ai, self.P.get_spikes())
self.clearSpikeBuf ()
return 0

Note that no Python loops are present, the setOutputSpikes method that transfers
the spikes is implemented in C++ in the base class PySimObject, so there is no
performance loss caused by the transfer of spikes from Brian to PCSIM and vice
versa.

The new BrianCircuit network element class can then be instantiated and

124 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

added to a PCSIM simulation. The following code segment creates an instance of
the Brian spiking network, adds it as a network element, sets up the input and runs
the simulation for 2.0 seconds (1000 neurons that emit Poisson spike trains at rate
5 Hz (PoissonInputNeuron) are connected to the 1000 input ports of the Brian
network element!%).

net = SingleThreadNetwork ()
inpNrnPop = SimObjectPopulation(net,

PoissonInputNeuron(rate = 5, duration = 1000), 1000)

pycirc = BrianCircuit()

pycirc_id = net.add(pycirc)

for i in range (inpNrnPop.size()):
net.connect (inpNrnPop[il, O, pycirc_id, i)

net.reset ()
net.simulate(2.0)

4.6 Extending PCSIM using C++

The object-oriented framework of PCSIM can be extended by the user at many
different levels. Typical extensions of PCSIM include either implementations of
new neuron and synapse types, or implementations of classes encapsulating custom
construction rules in the network construction interface, as we have illustrated in
the previous sections. By utilizing the features of the Boost.Python library and
Py+-+, the extensions can be implemented either in pure Python as already shown
or in C++.

For creating C++ extensions, PCSIM provides a tool that compiles the custom
C++ classes, automatically generates the Python wrapper interface for these and
packs everything into a separate Python extension module. In order to simplify
the procedure of creating a custom extension, the user starts the implementation
from an extension template contained in the PCSIM distribution. Let us assume
that we want to implement two classes: a new neuron type MyNeuron and a new
synapse type MySynapse. Once the C++ implementation is finished, there are three
additional steps that have to be done to produce the PCSIM extension module.

First, the C++ source files of the extension have to be enlisted in the file
module_recipe.cmake. This file is read by PCSIM’s C++ build tool CMake'®.

5The net.connect (src_id, src_port, dest_id, dest_port) method connects the port num-
ber src_port of the element with id src_id, to the port number dest_port of the element with
id dest_id.

Yhttp:/ /www.cmake.org

4.6. Extending PCSIM using C++ 125

SET (MODULE_SOURCES
src/MySynapse. cpp
src/MyNeuron. cpp

As the second step, we have to specify the names of the classes we want to include
in the Python interface in the file python_interface_specification.py which
holds the extension module interface specification. For our example the inserted
lines should look like:

def specify(M, options):
M.class_(’MySynapse’).include()
M.class_(’MyNeuron’).include()
return M

Note that the argument M in the code above represents the Py representation of
the C+-+ code of the custom PCSIM extension to be built, with its rather intuitive
query interface.

The name of the extension module (in our example my_pcsim_module) is spec-
ified in both module_recipe.cmake and python_interface_specification.py
files. Finally, the compilation is done using the special purpose command-line com-
pilation tool for PCSIM extensions:

> Python pcsim_extension.py build

The compiled extension module then can be imported and used within Python as
any other module.

import pypcsim
import my_pcsim_module

The main pypcsim module should always be imported before any PCSIM extension
modules, because the classes in the extension are derived from classes in pypcsim
and these classes should be already in the Python namespace. The user can
develop multiple PCSIM extension modules that can be used simultaneously in one
simulation.

The creation of PCSIM extensions as a separate Python extension module relies
on the support of Boost.Python and Py++ for component-based development, so
that C++ types from one Python extension module can be passed to functions
from another extension module while still preserving the information about the
cross-module C++ inheritance relationships. This enables object instances from
the classes in the extension module to be used within the PCSIM object-oriented
framework in the main pypcsim module. The component-based development has also
the advantage that during the development of new custom classes only the extension
module has to be recompiled, not the whole pypcsim library.

During the compilation of the PCSIM extension module the same processing
steps happen as for the main pypcsim module (see Fig. 4.3). We use the same

126 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

scripts both for generation of the Python interface of the main PCSIM package and
for the Python integration of PCSIM extension modules. Since the post-processing
exclusion rules are expressed with the Py-++ query interface in a generic way, they
are applicable also to the wrapping of the extension classes. This is due to the fact
that extension classes are derived from base classes in the PCSIM object-oriented
framework and as such share their common properties on which the rules are based.
Hence, the interaction of the user with the interface generation and the module
compilation reduces to specifying a list of the C++ source files, and a list of classes
to be exposed in Python. The rest of the process is automatized and the details
are hidden behind the command-line interface of the special compilation tool for
PCSIM extensions.

4.7 PCSIM add-ons implemented in Python

On top of the main PCSIM Python API (encapsulated in pypcsim) several addi-
tional packages have been developed. They are implemented in pure Python and
heavily rely on many third party scientific Python packages. The purpose of these
packages is either to augment the capabilities of PCSIM, or add additional separate
functionalities that are suitable to be used together with PCSIM.

4.7.1 PyNN.pcsim

The objective of the PCSIM development to adopt ongoing initiatives to define stan-
dards for model specification of neural networks that would foster interoperability
between different simulators is reflected in the support of the PyNN project!” (Davi-
son et al., 2008). The PyNN project is an effort to create a standardized, unified
Python-based API for procedural specification of neural network models aiming at
easier exchange of models between simulators. The user interface of PCSIM has been
augmented with an additional software layer to support the PyNN API making it
possible to use models specified in PyNN within PCSIM. Due to the fact that PyNN
was one of the sources for inspiration of the PCSIM interface, the concepts between
the two interfaces match closely, so the translation of the PyNN statements in cor-
responding PCSIM statements was straightforward and did not require substantial
programming logic that could have hindered the performance of the interface. The
pyNN.pcsim package is an integral part of the PyNN distribution.

4.7.2 pypcsimplus

After we started to use PCSIM for our simulation purposes, it was becoming ap-
parent that adding another layer above the interface of the pypcsim module can
greatly simplify the routine tasks that are usually performed while setting up and
running simulations. The pypcsimplus package was created with the intention to fill
this gap. Note that the pypcsimplus package is dependent on PCSIM. For a more

"http://neuralensemble.org/trac/PyNN/

http://neuralensemble.org/trac/PyNN/

4.7. PCSIM add-ons implemented in Python 127

comprehensive, simulator independent tool-set for neural simulations, we refer the
reader to the NeuroTools package'®
two main components of the pypcsimplus package and give a demonstration of its

. In the following paragraphs we will describe
use!?,

Recordings. In PCSIM the value of a parameter or output port is recorded during
a simulation by connecting it to a proper recording network element. The purpose
of the Recordings class is to provide simpler means to set up recorders and saving
the recorded data during a PCSIM simulation. For example it allows to create a
population of recorders that record the activity of a population of elements with each
recorder connected to one of the elements (e.g. the spiking output of a population
of neurons). For example

r = Recordings (net)

r.spikes = nrn_popul.record(SpikeTimeRecorder())

r.Vm net.record(my_nrn, ‘‘Vm’’, AnalogRecorder())

r.weights = synapses.record(AnalogRecorder(samplingTime), ‘‘W’’)

schedules the recording of all spikes in the population nrn_popul, the membrane
potential Vm of a single neuron (my_nrn), and the weights of a group of plastic
synapses. To save that data to an HDF5 file?® one would use the command

r.savelnOneH5File (f)

At any time later on, the saved data can be loaded from the file in a new Recordings
object.

r = constructRecordingsFromH5File (f)
plot(r.Vm)

The members and attributes of the newly created Recordings object r are numpy
arrays or Python lists holding the recorded data. For example r.Vm and r.W will
be numpy arrays with the recorded values of the membrane potential of the neuron
and with the evolution of the recorded synaptic weights during the simulation,
respectively. Note that if the user switches to a distributed simulation the same
code, without any changes, can be used.

To summarize, the Recordings class simplifies the specification, storage and
retrieval of recorded data by

e providing automatic detection of the type of the recorded data based on the
recorder classes, and conversion of the recorded data to appropriate HDF5

¥http://neuralensemble.org/trac/NeuroTools

9There are other miscellaneous utilities present within the pypcsimplus package, as for example
tools for easier management of IPython parallel computing cluster instances, routines for inspection
of the structure of an already created networks in PCSIM and routines for processing and analysis
of spike train data.

*http://www.hdfgroup.org/HDF5/

http://neuralensemble.org/trac/NeuroTools

128 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

data structures.

e implementing automatic gathering and sorting of recorded data from all pro-
cessing nodes in a distributed simulation, and saving it in HDF5 in the same
format as if the simulation was executed on a single node.

These functionalities are hidden behind a convenient user interface and are manip-
ulated in the same manner in both single-node and distributed simulation modes.
For the implementation of the Recordings class, the mpi4py?! (Dalcin et al., 2008)
and pytables?? packages were used.

Experiment-Model Framework. Simulation, modeling and development envi-
ronments in various fields (e.g. electronic circuit design, software engineering, signal
processing, mechanical engineering) usually include a library of already developed
reusable components that are readily available to the modeler. In the area of compu-
tational neuroscience, there is a similar effort to provide resources for easier reusabil-
ity of models, e.g. online databases of already published models (Hines et al., 2004),
or constructs within the simulator that allow encapsulation of a simpler model as
a well-defined component that can be used as a building block at a higher-level
of abstraction. As a first step towards a component-based modeling with PCSIM,
we have set up a light-weight framework that could leverage and encourage encap-
sulation of some generic parts of a model as reusable components, which can be
exchanged among modelers.

The basis of the framework is composed of three classes: Model, Experiment and
Parameters. The Model is a base class which the user inherits from when he wants to
develop a model component. Several model components can be combined together to
create a new model component. The Experiment class provides means to perform a
controlled simulation with an already developed custom Model class. It encapsulates
different facilities regarding saving output data to files, configuration of models,
saving the current version of the scripts, naming of different runs of experiments etc.
The configuration of the models is done with a Parameters class holding the model
parameters in a hierarchical structure. For creating instances of the Experiment and
Model classes remotely within the IPython parallel computing framework?? (Pérez
and Granger, 2007) there are RemoteExperiment and RemoteModel proxy classes,
which can be used to manipulate remote experiment and model instances in the
same way as if they were local.

pypcsimplus in action. We will demonstrate in the following paragraphs how
pypcesimplus, together with other general scientific and computational neuroscience
Python packages, can be utilized to perform an analysis of the activity of the Brian
spiking network example from Sec. 4.5. In particular we will investigate what effect

http://mpidpy.scipy.org
2http: //www.pytables.org/moin
Zhttp://ipython.scipy.org

http://mpi4py.scipy.org
http://www.pytables.org/moin
http://ipython.scipy.org

4.7. PCSIM add-ons implemented in Python 129

a change in the injected input in the network will have on the cross-correlogram of
its spike response.

At the beginning we will set up the recording of the spiking output of all 4000
neurons in the network. After creating a Recordings object, we create a population
of recorders to record the spikes from the 4000 output ports of the BrianCircuit
network element.

r = Recordings()
r.spikes = record_ports(net, pycirc_id, range(4000),
SpikeTimeRecorder())

net.simulate(2.0)

r.saveInOneH5File (’results.h5?)

We have accomplished this by using the record_ports function from the
pypcsimplus package, used to specify recording of a set of output ports. After
the simulation is performed, the recordings are saved in a HDF5 file for subsequent
retrieval.

In another script we setup the analysis of the output data and the plotting.
After the creation of the Recordings object by loading the recorded data from the
saved HDF5 file, we plot the spiking activity of the network for the first 0.4 seconds
of the simulation with the plot_raster function in pypcsimplus (see Fig. 4.6A).

r = constructRecordingsFromH5File (’results.h5?)

figure (1)
plot_raster(r.spikes, time_range = (0,0.4), fmt = ’,?)

plot_raster uses the plotting routines from the matplot1lib®* package (Hunter,
2007) to realize the plotting.

Additionally we will calculate and plot the cross-correlogram of the spiking ac-
tivity, defined as the histogram of time differences between the spike times from two
different spike trains, calculated and summed over a set of randomly chosen pairs
of neurons from the network. To achieve this, we utilize the pypcsimplus function
avg_cross_correlate_spikes.

corr = avg_cross_correlate_spikes(r.spikes, num_pairs = 2000,
binsize = le-3, corr_range = (-200e-3,200e-3))

figure(2)
bar (arange (-200e-3,201e-3, 1e-3), corr, width = 1le-3, color = ’k’)

In our case the cross-correlogram is calculated from the spike times of 2000
randomly chosen pairs of neurons from the network, for time lags within the range

#http: //matplotlib.sourceforge.net

130 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

150

100

neuron # (-10%)
counts/bin

C D
300 1

5 = 200
= 2
F 2
5 3
3 © 100
f=

0

-0.2 -0.1 0 0.1 0.2

time [sec] time lag [sec]

Figure 4.6: Plots from the output analysis example with the pypcsimplus package. A)
Spike response of the spiking network implemented in Sec. 4.5, with input neurons emitting
spikes generated from a homogeneous Poisson process with a rate of 5 Hz, for the first 0.4
seconds of the simulation. B) Cross-correlogram of the spike response of the network model
from A). C) Spike response of the spiking network implemented in Sec. 4.5, when the input
neurons emit spikes generated from a inhomogeneous Poisson process with a rate changing
according to a sinusoidal function (see text for details). D) Cross-correlogram of the spike
response of the network model from C).

[—200ms,200ms] and a bin size of 1lms. We then plot the cross-correlogram values
with the bar function from matplotlib (the plot is shown in Fig. 4.6B)2%°

In the example in Sec. 4.5, the input neurons were setup to generate a homoge-
neous Poisson spike trains with 5 Hz rate. Now we will modify the input generation
so that the input neurons will emit inhomogeneous Poisson spike trains, with a firing
rate r(t) = 5(1 + sin(2710¢)). First we create a population of input neurons of type
SpikingInputNeuron that emit an explicitly given sequence of spike times.

inpNrnPop = SimObjectPopulation(net, SpikingInputNeuron(), 1000)

Then we iterate through all the input neurons and set the spike sequence of each
input neuron according to the previously defined inhomogeneous Poisson process.

Z5For clarity reasons, we only give the main matplotlib plotting command in the example code
blocks, and omit the additional formatting commands used for Fig. 4.6.

4.7. PCSIM add-ons implemented in Python 131

For the generation of the inhomogeneous Poisson spike time sequences we invoke the
inh_poisson_generator method of an instance of the StGen (stimulus generator)
class available in the NeuroTools Python package for computational neuroscience.
The method accepts three parameters, a sequence specifying the time moments
where the rate changes (parameter t), the sequence of the new firing rate values
at these time moments (parameter rate) and the duration of the spiking process

(parameter t_stop)?S.

time_steps = arange(0,2000,1); stgen = StGen()
for i in range (inpNrnPop.size()):
spikelist = stgen.inh_poisson_generator (
rate = 5x(1 + sin(time_steps/1000.0%20*pi)),
t = time_steps, t_stop = 2000.0)
inpNrnPop.object (i) .setSpikes (spikelist.spike_times/1000)

The spike raster and the cross-correlogram obtained after rerunning the simula-
tion with the newly defined input are shown in Fig. 4.6, panels C and D, respectively.

Through this demo we have elucidated to the reader how a typical PCSIM sim-
ulation run is performed in Python, and the benefits that come from the utilization
of Python as a unifying scripting environment within which PCSIM is used together
with its add-on pypcsimplus and other scientific and computational neuroscience
Python packages. Additionally to their side-by-side usage with PCSIM, the Python
scientific packages are harnessed also in the bundling of common recipes and re-
occurring usage patterns in the PCSIM extra add-on packages, as in the case of
pypcsimplus. The collection of Python scientific packages presently available cover
a broad enough range of functionalities to enable, in almost all cases, handling all
of the steps of a modeling effort in Python (e.g. stimulus preparation, response
analysis and plotting as shown in the demo). The data communication between the
different packages and PCSIM typically reduces to passing Python sequences (lists
or numpy arrays) from one package to another.

4.7.3 pylsm

The pylsm package is aimed to support the analysis of the computational properties
of cortical microcircuits within the liquid state machine (LSM) approach (Maass
et al. (2002c)). In this approach multiple simulation trials are performed where
input spike trains, drawn from a defined input distribution, are injected in the
cortical circuit, and a readout which reads the spiking activity of the circuit is
trained by a supervised learning algorithm to approximate some function of these
inputs.

The framework contains all the necessary machinery for performing the simula-
tions and the training of the readout?’. In a typical task the user defines the neural

Z6Time in neurotoools is specified in milliseconds, hence the division by 1000 when we need to
convert the spike time sequence in seconds before inserting it in a PCSIM neuron.
"1t has similar features as the package described in (Natschliger et al., 2003), which was imple-

132 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

circuit to be used as a liquid, chooses the desired input distribution, the input-output
mapping function, and the learning algorithm for the readout from the ones avail-
able in the package, and then performs the LSM training and testing procedures.
For example, the user can define a distribution of inputs which consist of different
time segments, and each of these time segments contains a jittered version of some
predefined spike train template. In the available learning algorithms for the readout
a least-square algorithm with non-negative constraints is also included. It can be
used to train a linear readout with the biologically more realistic constraint that all
the weights originating from excitatory (inhibitory) neurons are positive (negative)
(Haeusler and Maass, 2007).

4.8 Discussion

The application programming interface of PCSIM is an object-oriented framework
composed of many classes interacting together to achieve the desired operation.
Within this framework we introduced several novel concepts like element and con-
nector factories, value generators and connection decision predicates. The user can
customize and extend this framework by deriving from the interface classes of the
API to implement his own specific network elements or network construction algo-
rithms.

The wrapping approach. There exist several possible approaches for implement-
ing a Python interface of a simulation software library implemented in C/C++. An
extension to the NCS software called Brainlab (Drewes, 2005) uses generation of a
file from Python with declarative specification of the model which is then loaded in
the simulator. Another common method is to use interpreter-to-interpreter interac-
tion with the conversion of data structures between Python and C++ handled by
means of the Python/C API, an approach adopted by NEURON (Hines et al., 2009)
and NEST (Eppler et al., 2008). This method is applicable only if the simulator al-
ready has an interpreting interface. For the creation of PyMoose (Ray and Bhalla,
2008), the Python interface of MOOSE (http://moose.sourceforge.net/), the
developers applied the interface generator tool SWIG?® (Beazley, 2003). Certainly,
one can also implement a Python interface by using solely the Python/C APL.
Since PCSIM’s interface was to be newly developed, only the later two options
were applicable. We opted for the interface generator tool approach combined with
automatic wrapper code generation, since from the available options it seemed to us
the fastest way, in terms of the amount of development effort required, to achieve
the desired Python wrapping of the PCSIM object-oriented framework. One of
our goals for the integration of PCSIM with Python was to simplify and support
a hybrid modeling approach by enabling the user to implement extensions of the
PCSIM object-oriented framework in Python and/or C++, while not having to

mented in Matlab and was part of the CSIM package.
Bhttp://www.swig.org

http://moose.sourceforge.net/
http://www.swig.org

4.8. Discussion 133

bother with details regarding the interoperability between these two programming
languages.

The excellent support of Boost.Python for advanced C++ concepts and appro-
priate mapping of corresponding idioms between the two languages allowed us to
expose the complete PCSIM API, currently ~ 300 classes, to Python in a non-
intrusive way. This means that the fact that the PCSIM API is to be exposed to
Python does not impose any changes at the C++ level nor does it put any con-
straints on its design. Furthermore the compilation of the libpcsim library itself
does not depend on any Python library or wrapping code.

Bidirectional interface and hybrid model definition. One of the features of
Boost.Python enabling the hybrid approach is the ability to derive Python classes
from the wrapped interface classes, and override the virtual functions. Hence, such
custom Python class methods can be called from within C++ and thus allow an
integration of Python code into the PCSIM C++ code. A similar bidirectional
interface has been implemented between Python and NEURON (Hines et al., 2009),
where Python can issue commands towards NEURON, but also Python code can be
called and executed from within NEURON in an active Hoc session 2?. In PCSIM
the two-way interaction between Python and C++ enables user customizations to
be coded in pure Python, and then plugged into the PCSIM C++ framework. This
brings additional flexibility and freedom to the user, meaning that he can first do fast
implementations in Python, e.g. extensions to the network construction interface
(Sec. 4.4), in the prototyping phase, and afterwards the implementation can be
ported to C++ to gain maximum performance.

The ability to define PCSIM network elements in Python opens a possibility
for a seamless Python-C++ integration also during the simulation, not only in the
network construction stage. The example described in Sec. 4.5 shows that network
elements can be implemented in Python, by using vectorized techniques employing
the highly efficient numerical Python package numpy (which is implemented in C).
This adds flexibility, since the equations describing the element can be changed
quickly without any necessary compilation while not sacrificing performance, since
by using numpy vectors, the integration algorithm is broken down in elementary
vector operations thus avoiding any loops within Python that could be detrimental
for the performance.

This approach seems also to be advantageous when one wants to implement
network elements that have some abstract processing logic, e.g. signal processing
filters, machine learning algorithms or similar. In this case one can utilize a large set
of available C++ libraries that have Python bindings, for an efficient implementa-
tion, and handle in Python the transfer of data from the input ports of the network
element to the input methods of the library, and from the output of the library to
the output ports of the network element.

The possibility to implement PCSIM network elements in pure Python offers

2Hoc is the native NEURON interpreting language.

134 Chapter 4. PCSIM: Simulation Environment for Neural Circuits

a convenient way to achieve run-time interoperability between PCSIM and other
neural network simulators (Cannon et al., 2007), provided that the simulator has a
Python interface, allows control of the simulation process at individual time steps,
and has the possibility to write input and read output data during the simula-
tion at each time step. As shown in the example in Sec.4.5, we have successfully
implemented interoperability with the Brian simulator, which possesses the afore-
mentioned capabilities. One interesting further application of this interoperability
could be a distributed simulation of a large neural network where the sub-networks
on each node are implemented with the Brian simulator, and the parallel communi-
cation is handled by PCSIM’s communication system. Another possible approach of
using Python as a glue language to achieve simulator interoperability is to setup a
Python script as a top-level coordinator of a step-by-step simultaneous execution of
two simulators, where the necessary data transfer between the simulators is realized
through intermediate Python data structures (Ray and Bhalla, 2008).

High-level wrapping specification and extensibility. Since the interface has
a fine granular structure, composed of many decoupled classes (&~ 300) this implies
that there are many classes to be wrapped and exposed to Python. It would simply
be impossible to manually manage all the necessary Boost.Python wrapper code.
Furthermore, the possibility of adding extensions to the interface puts additional
constraints to the wrapping approach to be robust enough to work for the exten-
sion classes too, without any significant intervention from the user. Nevertheless,
by exploiting the powerful interface generator tool Py+-+ the wrapping of such a
large number of classes is rendered feasible.?? We were able to specify high-level
generic rules within Py-++ for the definition of the wrapping of all the classes in
the PCSIM API and their sensible extensions. To be precise, the Python program
that specifies the rules for the Python interface generation for &~ 300 classes is about
400 lines of Python code. As these rules apply for the extensions too, the user can
easily extend the PCSIM simulator with its own custom C-++ classes and compile
them in a separate Python extension package, which can be used together with the
main pypcsim package (the tool support for this is included in PCSIM). This was
made possible by the Boost.Python and Py++ support for cross-module inheritance
relationships and component-based development (see Sec. 4.6).

To summarize, by the easy extensibility of its interface both in Python and
C++, PCSIM enables the modelers to think hybrid when developing their models
(Abrahams and Grosse-Kunstleve, 2003).

Python as a scripting environment. Providing a Python interface to a neural
simulator increases its versatility and consequently the productivity of the model-
ers in many ways. The object oriented design of the language, its expressive and
clean syntax, allows the modeler to focus on the high-level logic of the model in-

39The only drawback we encounter is the rather long compile time when recompiling the whole
Python interface. This is due to the fact that Boost.Python heavily uses C++ templates.

4.9. Acknowledgments 135

stead of struggling with the intricacies and the nuts and bolts of the programming
language. Furthermore, there is a growing number of general scientific and spe-
cific computational neuroscience software tools available as Python packages, for
numerical calculations, scientific functions, plotting, saving data to files, parallel
computing etc. We have used several scientific Python packages to enhance PCSIM
with useful utilities on top of its basic interface. As we have illustrated through a
simple example in Sec. 4.7, in combination with such Python packages PCSIM can
be used as the main component of a Python-based neural simulation environment
where all steps within a neural model development life-cycle, from the specification
of the model and performing the simulations, to storage of simulation output data,
data analysis and visualization can be performed. Overall, the integration of PCSIM
with Python added additional valuable facilities to the user, turning PCSIM into a
full-fledged neural simulation environment.

PCSIM Resources. Many resources for PCSIM can be found at its web
page http://www.igi.tugraz.at/pcsim. The web page contains a user man-
ual, examples, installation instructions, complete class reference documentation
and the complete material for the tutorial that was given at the FIAS The-
oretical Neuroscience and Complex Systems summer school held in Frankfurt,
Germany in August, 2008. The users can discuss topics and pose questions
concerning usage and installation of PCSIM on the pcsim-users mailing list on
Sourceforge® (http://www.sourceforge.net/projects/pcsim) where the PCSIM
development project is hosted. In the future, the user manual will continuously
undergo extensions and revisions to better organize the content and to include ad-
ditional topics and more elaborate information about the PCSIM concepts and con-
structs. Additional examples covering various PCSIM features will also be made
available on the web site.

4.9 Acknowledgments

This chapter is based on the journal article PCSIM: A Parallel Simulation Environ-
ment for Neural Circuits Fully Integrated with Python by myself (DP), Thomas
Natschldger (TN) and Klaus Schuch (KS) (Frontiers in Neuroinformatics 3:11,
2009). The PCSIM neural simulator described in the article was developed by
DP and TN, with contributions from KS. TN supervised the software development
project. DP implemented and performed the computer simulation tests reported in
the article. The article was written by DP and TN. KS wrote the section that de-
scribes the PYLSM package and gave useful comments for improving the manuscript.

http://www.igi.tugraz.at/pcsim
http://www.sourceforge.net/projects/pcsim

APPENDIX A

List of Publications

1. R. Brette, M. Rudolph ,T. Carnevale,M. Hines,D. Beeman,J.M. Bower, M.
Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr., M. Zirpe , T.
Natschlager, D. Pecevski, B. Ermentrout , M. Djurfeldt, A. Lansner, O.
Rochel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, and A. Destexhe.
Simulation of networks of spiking neurons: a review of tools and strategies,
Journal of Computational Neuroscience 23(3):349-398, 2007.

2. R. Legenstein', D. Pecevski', and W. Maass Theoretical analysis of learning
with reward-modulated spike-timing-dependent plasticity, In Proc. of NIPS
2007, Advances in Neural Information Processing Systems, volume 20. MIT
Press, 2008.

3. Legenstein R., Pecevski D. and Maass W. A Learning Theory for Reward-
Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback,
PLoS Computational Biology 4(10): 1000180, 2008.

4. A.P. Davison , D. Briiderle, J. Kremkow , E. Muller , Pecevski D., Perrinet,
L. and P. Yger, PyNN: a common interface for neuronal network simulators,
Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2008.

5. A.P. Davison, D. Briiderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski,
L. Perrinet and P. Yger, PyNN: a common interface for neuronal network
simulators, Frontiers in Neuroinformatics 2:11, 2008.

6. D. Pecevski, T. Natschliager and K. Schuch PCSIM: A Parallel Simulation
Environment for Neural Circuits Fully Integrated with Python, Frontiers in
Neuroinformatics 3:11, 2009.

7. E. Muller, A. P. Davison, T. Brizzi, D. Bruederle, M. J. Eppler, J. Kremkow,
D. Pecevski, L. Perrinet, M. Schmuker and P. Yger (2009) NeuralEnsem-
ble.Org: Unifying neural simulators in Python to ease the model complexity
bottleneck, Frontiers in Autonomic Neuroscience. Conference Abstract: Neu-
roinformatics 2009.

8. D. Pecevski, L. Biising, W. Maass. Probabilistic Inference in General Graphical
Models through Sampling in Stochastic Networks of Spiking Neurons, submit-
ted for publication, 2011.

!These authors contributed equally to the paper

138 Appendix A. List of Publications

A.1 Comments and Contributions to Publications

The first publication Simulation of networks of spiking neurons: a review of tools and
strategies is a review publication which overviews different simulation environments
for networks of spiking neurons. In this publication I prepared and performed the
benchmark simulations for the simulators CSIM and its successor PCSIM.

The publication Theoretical analysis of learning with reward-modulated spike-
timing-dependent plasticity was written by Robert Legenstein (RK), myself (DP)
and my supervisor Wolfgang Maass (WM). RK provided the theoretical analysis,
RL, DP and WM concieved the experiments and DP prepared and performed the
simulations for the experiments and analysed the simulation results. RL, DP and
WM wrote the paper. The paper was selected for a spotlight poster presentation at
the 21th Annual Conference on Neural Information Processing Systems (NIPS) 2007,
Vancouver, Canada. The results from this paper were extended and published in
a journal article A Learning Theory for Reward-Modulated Spike-Timing-Dependent
Plasticity with Application to Biofeedback by the same authors, published in PLOS
Computational Biology. Apart from containing in a more elaborate form the results
from the conference publication, the journal publication also includes additional
theoretical analysis and additional results from elaborate simulation experiments.
In this article RL contributed the theoretical analysis, RL, DP and WM concieved
the experiments and DP conducted the simulation experiments and analysed the
simulation results. RL, DP and WM wrote the paper. The journal article provides
the basis for Chapter 3 of this thesis.

The journal publication PyNN: a common interface for neuronal network sim-
ulators published in Frontiers in Neuroinformatics describes the software package
PyNN, a simulator-independent Python-based interface for specification and simula-
tion of models composed of networks of spiking neurons. All those who contributed
code to PyNN were added as co-authors of this article. I contributed to PyNN the
module that implements the support for the PCSIM simulator.

The journal article PCSIM: A Parallel Simulation Environment for Neural Cir-
cuits Fully Integrated with Python published in Frontiers in Neuroinformatics gives
an overview of the functionalities of the PCSIM simulator and its integration with
the Python programming language. The PCSIM simulator was developed by myself
(DP) and Thomas Natschlager (TN), with contributions from Klaus Schuch (KS).
DP implemented and performed the computer simulation tests reported in the ar-
ticle. The paper was written by DP and TN. KS wrote the section that describes
the PYLSM package. This article provides the basis for Chapter 4 of this thesis.

The article Probabilistic Inference in General Graphical Models through Sampling
in Stochastic Networks of Spiking Neurons is a joint work together with Lars Biising
(LB) and Wolfgang Maass (WM). It was submitted for publication in 2011 and
is under review. The experiments were concieved and designed by myself (DP)
and WM. DP conducted the experiments and analysed the simulation results. The
paper builds on the theory of neural sampling developed by LB and reported in
(Biising et al., 2011). DP and WM provided the additional theoretical derivations

A.1. Comments and Contributions to Publications 139

and analysis in the paper. DP and WM wrote the paper. LB provided valuable
comments that helped to improve the paper. This article provides the basis for
Chapter 2 of this thesis.

Bibliography

Abbott, L. F. and Nelson, S. B. (2000). Synaptic plasticity: taming the beast.
Nature Neuroscience, 3:1178-1183. 56, 58

Abeles, M., Bergman, H., Gat, 1., Meilijson, I., Seidemann, E., Tishby, N., and
Vaadia, E. (1995). Cortical activity flips among quasi-stationary states. Proc
Natl Acad Sci U S A, 92(19):8616-8620. 30, 37

Abrahams, D. and Grosse-Kunstleve, R. W. (2003). Building hybrid systems with
Boost.Python. C/C++ Users Journal, 21(7):29-36. 109, 113, 134

Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for
boltzmann machines. Cognitive Science, 9:147-169. 9, 16, 34

Anderson, J., Lampl, L., Reichova, I., Carandini, M., and Ferster, D. (2000). Stim-
ulus dependence of two-state fluctuations of membrane potential in cat visual
cortex. Nature Neuroscience, 3(6):617-621. 93

Andrieu, C., Freitas, N. D., Doucet, A.; and Jordan, M. I. (2003). An introduction
to MCMC for machine learning. Machine Learning, 50:5-43. 9

Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R.
(2000). Is heterosynaptic modulation essential for stabilizing Hebbian plasticity
and memory? Nature Reviews Neuroscience, 1:11-20. 56

Bao, S., Chan, V. T., and Merzenich, M. M. (2001). Cortical remodelling induced
by activity of ventral tegmental dopamine neurons. Nature, 412(6842):79-83. 56

Baras, D. and Meir, R. (2007). Reinforcement learning, spike-time-dependent plas-
ticity, and the bem rule. Neural Computation, 19(8):2245-2279. 56, 103

Baxter, J. and Bartlett, P. L. (1999). Direct gradient-based reinforcement learning:
I. gradient estimation algorithms. Technical report, Research School of Informa-
tion Sciences and Engineering, Australian National University. 56, 103

Beazley, D. (2003). Automated scientific software scripting with SWIG. Future
Generation Computer Systems, 19(5):599 — 609. 132

Beck, J. M. and Pouget, A. (2007). Exact inferences in a neural implementation of
a hidden Markov model. Neural Computation, 19(5):1344-1361. 34

Berkes, P., Orban, G., Lengyel, M., and Fiser, J. (2011). Spontaneous cortical ac-
tivity reveals hallmarks of an optimal internal model of the environment. Science,
331:83-87. 36

142 Bibliography

Bi, G. and Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J
Neuroscience, 18(24):10464-10472. 59

Bishop, C. M. (2007). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 1st ed. 2006. corr. 2nd printing edition. 8

Bobrowski, O., Meir, R., and Eldar, Y. C. (2009). Bayesian filtering in spiking neural
networks: Noise, adaptation, and multisensory integration. Neural Computation,
21(5):1277-1320. 34

Borg-Graham, L. J., Monier, C., and Frégnac, Y. (1998). Visual input evokes tran-
sient and strong shunting inhibition in visual cortical neurons. Nature, 393:369—
373. 93

Bower, J. M. and Beeman, D. (1998). The book of GENESIS (2nd ed.): exploring
realistic neural models with the GEneral NEural SImulation System. Springer-
Verlag New York, Inc., New York, NY, USA. 108

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Dies-
mann, M., Morrison, A., Goodman, P. H., Jr., F. C. H., Zirpe, M., Natschliger,
T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville,
T., Muller, E., Davison, A. P., Boustani, S. E., and Destexhe, A. (2007). Simula-
tion of networks of spiking neurons: a review of tools and strategies. Journal of
Computational Neuroscience, 23(3):349-398. 108, 111, 122

Brunel, N. (2000). Dynamics of networks of randomly connected excitatory and
inhibitory spiking neurons. Journal of Physiology-Paris, 94:445-463. 58, 100

Biising, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynamics as sampling:
A model for stochastic computation in recurrent networks of spiking neurons.
submitted for publication. 4, 5, 10, 11, 12, 13, 15, 16, 17, 19, 32, 36, 38, 39, 42,
43, 50, 53, 138

Buzas, P., Kovacs, K., Ferecsko, A. S., Budd, J. M. L., Eysel, U. T., and Kisvarday,
Z. F. (2006). Model-based analysis of excitatory lateral connections in the visual
cortex. J Comp Neurol, 499(6):861-81. 115

Cannon, R., Gewaltig, M.-O., Gleeson, P., Bhalla, U., Cornelis, H., Hines, M.,
Howell, F., Muller, E., Stiles, J., Wils, S., and Schutter, E. D. (2007). Interoper-
ability of neuroscience modeling software: Current status and future directions.
Neuroinformatics, 5(2):127-138. 134

Carnevale, N. T. and Hines, M. L. (2006). The NEURON Book. Cambridge Uni-
versity Press, New York, NY, USA. 108

Churchland, P. S., Koch, C., and Sejnowski, T. J. (1993). What is computational
neuroscience?, pages 46-55. MIT Press, Cambridge, MA, USA. 1

Bibliography 143

Dalcin, L., Paz, R., Storti, M., and D’Elia, J. (2008). Mpi for python: Perfor-
mance improvements and mpi-2 extensions. Journal of Parallel and Distributed
Computing, 68(5):655-662. 128

Davison, A. P., Briiderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2008). PyNN: a common interface for neuronal network
simulators. Front. Neuroinform., 2(11). 115, 126

Dean, A. F. (1981). The variability of discharge of simple cells in the cat striate
cortex. Ezperimental Brain Research, 44:437-440. 36

Deneve, S. (2008). Bayesian spiking neurons I: Inference. Neural Computation,
20(1):91-117. 34, 35

Deneve, S., Latham, P. E.; and Pouget, A. (2001). Efficient computation and cue
integration with noisy population codes. Nat Neurosci, 4(8):826-831. 34

Denison, S., Bonawitz, E., Gopnik, A., and Griffiths, T. (2010). Preschoolers sample
from probability distributions. In Proc. of the 32nd Annual Conference of the
Cognitive Science Society. 36

Destexhe, A. and Marder, E. (2004). Plasticity in single neuron and circuit compu-
tations. Nature, 431:789-795. 77, 101

Destexhe, A., Rudolph, M., Fellous, J. M., and Sejnowski, T. J. (2001). Fluctu-
ating synaptic conductances recreate in vivo-like activity in neocortical neurons.
Neuroscience, 107(1):13-24. 65, 78, 92, 93, 95

Douglas, R. J. and Martin, K. A. (2004a). Neuronal circuits of the neocortex. Annu
Rev Neurosci, 27:419-451. 2

Douglas, R. J. and Martin, K. A. (2004b). Neuronal circuits of the neocortex.
Annual Review of Neuroscience, 27(1):419-451. 34

Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N. (2007). Bayesian Brain: Proba-
bilistic Approaches to Neural Coding. MIT-Press. 8

Drewes, R. (2005). Modeling the brain with NCS and brainlab. Linuz Journal,
2005(134):2. 132

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008).
Pynest: a convenient interface to the nest simulator. Front. Neuroinform, 2(12).
132

Farries, M. A. and Fairhall, A. L. (2007). Reinforcement learning with modulated
spike timing-dependent synaptic plasticity. Journal of Neurophysiology, 98:3648—
3665. 75, 100, 104

Fetz, E. E. (1969). Operant conditioning of cortical unit activity. Science,
163(870):955-958. 57

144 Bibliography

Fetz, E. E. (2007). Volitional control of neural activity: implications for brain-
computer interfaces. J Physiol, 579(3):571-579. 57, 65, 68

Fetz, E. E. and Baker, M. A. (1973). Operantly conditioned patterns of precentral
unit activity and correlated responses in adjacent cells and contralateral muscles.
J Neurophysiol, 36(2):179-204. 5, 57, 62, 63, 64, 65, 67, 68, 99, 103

Fetz, E. E. and Finocchio, D. V. (1975). Correlations between activity of motor
cortex cells and arm muscels during operantly conditioned response patterns.
Ezxp. Brain Research, 23(3):217-240. 57

Fiete, I. R. and Seung, H. S. (2006). Gradient learning in spiking neural networks by
dynamic perturbation of conductances. Physical Review Letters, 97(4):048104-1
to 048104—4. 103

Fiser, J., Berkes, P., Orban, G., and Lengyel, M. (2010). Statistically optimal per-
ception and learning: from behavior to neural representations. Trends in Cognitive
Sciences, 14(3):119 — 130. 8, 36

Florian, R. V. (2007). Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity. Neural Computation, 6:1468-1502. 56, 103

Gershman, S. J., Vul., E., and Tenenbaum, J. (2009). Perceptual multistability as
Markov chain Monte Carlo inference. Advances in Neural Information Processing
Systems, 22:611-619. 36

Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models. Cambridge Uni-
versity Press, Cambridge. 58, 59, 60, 61, 82

Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool). Schol-
arpedia, 2(4):1430. 108

Goodman, D. and Brette, R. (2008). Brian: a simulator for spiking neural networks
in python. Front. Neuroinform., 2(5). 109, 122

Griffiths, T. L. and Tenenbaum, J. B. (2006). Optimal Predictions in Everyday
Cognition. Psychological Science, 17(9):767-773. 36

Grimmett, G. R. and Stirzaker, D. R. (2001). Probability and Random Processes.
Oxford University Press, 3rd edition. 38

Gu, Q. (2002). Neuromodulatory transmitter systems in the cortex and their role
in cortical plasticity. Neuroscience, 111(4):815-835. 56

Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for a diversity
of GABAergic interneurons and synapses in the neocortex. Science, 287:273-278.
92

Giitig, R. and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike
timing-based decisions. Nature Neuroscience, 9(3):420-428. 103, 104

Bibliography 145

Haeusler, S. and Maass, W. (2007). A statistical analysis of information-
processing properties of lamina-specific cortical microcircuit models. Cereb Cor-
tex, 17(1):149-62. 132

Hammarlund, P. and Ekeberg, O. (1998). Large neural network simulations on
multiple hardware platforms. Journal of computational neuroscience, 5(4):443~
459. 108

Héusler, S. and Maass, W. (2007). A statistical analysis of information process-
ing properties of lamina-specific cortical microcircuit models. Cerebral Cortex,
17(1):149-162. 101, 102

Hines, M., Davison, A. P., and Muller, E. (2009). Neuron and python. Front.
Neuroinform, 3(1). 132, 133

Hines, M. L. and Carnevale, N. T. (1997). The neuron simulation environment.
Neural Computation, 9(6):1179-1209. 108

Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M.
(2004). ModelDB: A database to support computational neuroscience. Journal
of Computational Neuroscience, 17(1):7-11. 128

Hinton, G. E. and Brown, A. D. (2000). Spiking Boltzmann machines. In In Ad-
vances in Neural Information Processing Systems 12, Cambridge, MA. MIT Press.
35

Hinton, G. E. and Sejnowski, T. J. (1986). Learning and relearning in Boltzmann
machines. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed
Processing: FEzplorations in the Microstructure of Cognition, volume 1 of Lecture
Notes in Computer Science. MIT Press, Cambridge, MA. 34, 35

Hirsch, J. A., Alonso, J. M., Reid, R. C., and Martinez, L. M. (1998). Synaptic
integration in striate cortical simple cells. J. Neurosci., 18(22):9517-9528. 93

Hopfield, J. J. and Brody, C. D. (2001). What is a moment? Transient synchrony
as a collective mechanism for spatio-temporal integration. Proc. Nat. Acad. Sci.
USA, 98(3):1282-1287. 101

Hoyer, P. O. and Hyvérinen, A. (2003). Interpreting neural response variability as
Monte Carlo sampling of the posterior. In S. Becker, S. T. and Obermayer, K.,
editors, Advances in Neural Information Processing Systems 15, pages 277-284.
MIT Press, Cambridge, MA. 36

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science
and Engineering, 9(3):90-95. 129

Ide, J. and Cozman, F. (2002). Random generation of Bayesian networks. In Bitten-
court, G. and Ramalho, G., editors, Advances in Artificial Intelligence, volume

146 Bibliography

2507 of Lecture Notes in Computer Science, pages 366-376. Springer Berlin /
Heidelberg. 29, 52

Izhikevich, E. (2004). Which model to use for cortical spiking neurons? Neural
Networks, IEEE Transactions on, 15(5):1063-1070. 115, 117

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cerebral Cortex, 17:2443-2452. 56, 75, 79, 100, 103, 104

Jacob, V., Brasier, D., Erchova, I., Feldman, D., and Shulz, D. E. (2007). Spike
timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J
Neuroscience, 27(6):1271-84. 56

Jolivet, R., Rauch, A., Liischer, H.-R., and Gerstner, W. (2006). Predicting spike
timing of neocortical pyramidal neurons by simple threshold models. Journal of
Computational Neuroscience, 21:35-49. 11

Kempter, R., Gerstner, W., and van Hemmen, J. L. (1999). Hebbian learning and
spiking neurons. Phys. Rev. E, 59(4):4498-4514. 82

Kempter, R., Gerstner, W., and van Hemmen, J. L. (2001). Intrinsic stabilization of
output rates by spike-based hebbian learning. Neural Computation, 13:2709-2741.
63

Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., and Arieli, A. (2003).
Spontaneously emerging cortical representations of visual attributes. Nature,
425(6961):954-956. 36

Kersten, D. and Yuille, A. (2003). Bayesian models of object perception. Current
Opinion in Neurobiology, 13(2):150 — 158. 11

Knill, D. C. and Kersten, D. (1991). Apparent surface curvature affects lightness
perception. Nature, 351:228-230. 12, 14, 33

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques (Adaptive Computation and Machine Learning). MIT Press. 8,9, 12,
32

Koulakov, A. A., Hromadka, T., and Zador, A. M. (2009). Correlated connectivity
and the distribution of firing rates in the neocortex. The Journal of Neuroscience,
29(12):3685-3694. 37

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabil-
ities on graphical structures and their application to expert systems. Journal of
the Royal Statistical Society, Series B, 50(2):157-224. 25, 26, 49

Legenstein, R. and Maass, W. (2011). Branch-specific plasticity enables self-
organization of nonlinear computation in single neurons. The Journal of Neu-
roscience. in press. 20, 34, 39, 45

Bibliography 147

Levin, D. A., Peres, Y., and Wilmer, E. L. (2008). Markov Chains and Mizing
Times. American Mathematical Society. 32

Li, C. T., Poo, M., and Dan, Y. (2009). Burst spiking of a single cortical neuron
modifies global brain state. Science, 324:643-646. 37

Litvak, S. and Ullman, S. (2009). Cortical circuitry implementing graphical models.
Neural Computation, 21(11):3010-3056. 34

Losonczy, A., Makara, J. K., and Magee, J. C. (2008). Compartmentalized dendritic
plasticity and input feature storage in neurons. Nature, 452:436-441. 20, 39, 40,
45, 46

Lyon, R. (1982). A computational model of filtering, detection, and compression in
the cochlea. In Proceedings of IEEE International Conference on ICASSP, pages
1282-1285. 98, 105

Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inference
with probabilistic population codes. Nat Neurosci, 9(11):1432-1438. 34

Ma, W. J., Beck, J. M., and Pouget, A. (2008). Spiking networks for Bayesian
inference and choice. Current Opinion in Neurobiology, 18(2):217 — 222. Cognitive
neuroscience. 34

Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational aspects of feedback
in neural circuits. PLoS Computational Biology, 3(1):e165, 1-20. 77, 101, 102

Maass, W. and Markram, H. (2002). Synapses as dynamic memory buffers. Neural
Networks, 15:155-161. 92

Maass, W., Natschlaeger, T, and Markram, H. (2002a). Real-time computing with-
out stable states: A new framework for neural computation based on perturba-
tions. Neural Computation, 14(11):2531-2560. 34

Maass, W., Natschldger, T., and Markram, H. (2002b). Real-time computing with-
out stable states: A new framework for neural computation based on perturba-
tions. Neural Computation, 14(11):2531-2560. 77, 78, 101, 102

Maass, W., Natschlager, T., and Markram, H. (2002¢). Real-time computing with-
out stable states: A new framework for neural computation based on perturba-
tions. Neural Comp., 14(11):2531-2560. 131

Maass, W., Natschlager, T., and Markram, H. (2004). Fading memory and kernel
properties of generic cortical microcircuit models. Journal of Physiology — Paris,
98(4-6):315-330. 77, 101

Mainen, Z. and Sejnowski, T. (1995). Reliability of spike timing in neocortical
neurons. Science, 268:1503-1505. 76

148 Bibliography

Mansinghka, V. K., Kemp, C., Tenenbaum, J. B.; and Griffiths, T. L. (2006). Struc-
tured priors for structure learning. In In Proceedings of the 22nd Conference on
Uncertainty in Artificial Intelligence (UAI). AUAI Press. 26

Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the same
axon of neocortical pyramidal neurons. Proc. Nat. Acad. Sci. USA, 95:5323-5328.
91, 92

Miller, P. and Katz, D. (2010). Stochastic transitions between neural states in taste
processing and decision-making. J. of Neurosc., 30(7):2559-2570. 30, 37

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plas-
ticity in balanced random networks. Neural Computation, 19:1437-1467. 59, 66,
94, 100

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005).
Advancing the Boundaries of High-Connectivity Network Simulation with Dis-
tributed Computing. Neural Comp., 17(8):1776-1801. 108, 110, 112

Natschldger, T., Markram, H., and Maass, W. (2003). Computer models and analy-
sis tools for neural microcircuits. In Kétter, R., editor, Neuroscience Databases. A
Practical Guide, chapter 9, pages 123-138. Kluwer Academic Publishers (Boston).
108, 131

Neal, R. M. (1993). Probabilistic inference using markov chain monte carlo methods.
Technical report, University of Toronto Department of Computer Science. 9

Nessler, B., Pfeiffer, M., and Maass, W. (2010). STDP enables spiking neurons to
detect hidden causes of their inputs. In Proc. of NIPS 2009: Advances in Neural
Information Processing Systems, volume 22, pages 1357-1365. MIT Press. 23, 34

Nikoli¢, D., Haeusler, S., Singer, W., and Maass, W. (2007). Temporal dynamics
of information content carried by neurons in the primary visual cortex. In Proc.

of NIPS 2006, Advances in Neural Information Processing Systems, volume 19,
pages 1041-1048. MIT Press. 77

Obermayer, K. and Blasdel, G. G. (1993). Geometry of orientation and ocular
dominance columns in monkey striate cortex. J Neurosci, 13(10):4114-29. 115

Oliphant, T. E. (2007). Python for scientific computing. Computing in Science €
Engineering, 9(3):10-20. 109, 121

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann,
San Francisco, CA. 8

Pecevski, D., Natschldger, T., and Schuch, K. (2009). PCSIM: a parallel simula-
tion environment for neural circuits fully integrated with Python. Frontiers in
Neuroinformatics, 3(0). 52

Bibliography 149

Pérez, F. and Granger, B. E. (2007). IPython: A system for interactive scientific
computing. Computing in Science and Engineering, 9(3):21-29. 128

Pfister, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006). Optimal spike-
timing-dependent plasticity for precise action potential firing in supervised learn-
ing. Neural Computation, 18(6):1318-1348. 56, 103

Plesser, H., Eppler, J., Morrison, A., Diesmann, M., and Gewaltig, M.-O. (2007).
Efficient parallel simulation of large-scale neuronal networks on clusters of multi-
processor computers. Lecture Notes in Computer Science, 4641:672-681. 108

Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences,
14(4):180-190. 36

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the visual cortex: a func-
tional interpretation of some extra-classical receptive-field effects. Nat Neurosci,
2(1):79-87. 34

Rao, R. P. N. (2004). Bayesian computation in recurrent neural circuits. Neural
Computation, 16(1):1-38. 34

Rao, R. P. N. (2007). Neural models of Bayesian belief propagation. In Doya, K.,
Ishii, S., Pouget, A., and Rao, R. P. N., editors, Bayesian Brain., pages 239-267.
MIT-Press, Cambridge, MA. 34, 35

Rao, R. P. N., Olshausen, B. A., and Lewicki, M. S. (2002). Probabilistic Models of
the Brain. MIT Press. 8

Ray, S. and Bhalla, U. S. (2008). PyMOOSE: Interoperable scripting in Python for
MOOSE. Front. Neuroinform., 2(6). 132, 134

Reynolds, J. N., Hyland, B. I., and Wickens, J. R. (2001). A cellular mechanism of
reward-related learning. Nature, 413:67-70. 56

Reynolds, J. N. and Wickens, J. R. (2002). Dopamine-dependent plasticity of cor-
ticostriatal synapses. Neural Networks, 15(4-6):507-521. 56

Schrauwen, B. and Campenhout, J. V. (2003). BSA, a fast and accurate spike train
encoding scheme. In Proceedings of the International Joint Conference on Neural
Networks, volume 4, pages 2825-2830. 98

Schultz, W. (2007). Behavioral dopamine signals. Trends in Neuroscience, 30:203—
210. 56

Sejnowski, T. J. (1987). Higher-order Boltzmann machines. In AIP Conference
Proceedings 151 on Neural Networks for Computing, pages 398-403, Woodbury,
NY, USA. American Institute of Physics Inc. 35

150 Bibliography

Shi, L. and Griffiths, T. (2009). Neural implementation of hierarchical Bayesian
inference by importance sampling. In Bengio, Y., Schuurmans, D., Lafferty, J.,
Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information
Processing Systems 22, pages 1669-1677. MIT Press, Cambridge, MA. 34

Shulz, D. E., Ego-Stengel, V., and Ahissar, E. (2003). Acetylcholine-dependent
potentiation of temporal frequency representation in the barrel cortex does not
depend on response magnitude during conditioning. J Physiol Paris, 97(4-6):431—
439. 56

Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S., and Ahissar, E. (2000). A neuronal
analogue of state-dependent learning. Nature, 403(6769):549-553. 56

Siegelmann, H. T. and Holzman, L. E. (2010). Neuronal integration of dynamic
sources: Bayesian learning and Bayesian inference. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 20(3):037112. 34, 35

Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., and Tsodyks, M. (2004).
Dynamics of population rate codes in ensembles of neocortical neurons. J Neuro-
physiology, 91(2):704-709. 76

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learning
through spike-timing dependent synaptic plasticity. Nature Neuroscience, 3:919—
926. 63

Steimer, A., Maass, W., and Douglas, R. (2009). Belief propagation in networks of
spiking neurons. Neural Computation, 21(9):2502-2523. 34

Stevens, C. F. and Zador, A. M. (1998). Input synchrony and the irregular firing of
cortical neurons. Nature Neuroscience, 1:210-217. 76

Thiel, C. M., Friston, K. J., and Dolan, R. J. (2002). Cholinergic modulation of
experience-dependent plasticity in human auditory cortex. Newron, 35(3):567—
574. 56

Tolhurst, D., Movshon, J., and Dean, A. (1983). The statistical reliability of signals
in single neurons in cat and monkey visual cortex. Vision Research, 23(8):775 —
785. 36

Toussaint, M. and Goerick, C. (2010). A Bayesian view on motor control and
planning. In Sigaud, O. and Peters, J., editors, From motor to interaction learning
wn robots. Studies in Computational Intelligence, pages 227-252. Springer. 8

Verstraeten, D., Schrauwen, B., Stroobandt, D., and Campenhout, J. V. (2005).
Isolated word recognition with the liquid state machine: a case study. Information
Processing Letters, 95(6):521-528. 98, 101

von Melchner, L., Pallas, S. L., and Sur, M. (2000). Visual behaviour mediated by
retinal projection directed to the auditory pathway. Nature, 404:871-876. 2

Bibliography 151

Vul, E. and Pashler, H. (2008). Measuring the crowd within: Probabilistic repre-
sentations within individuals. Psychological Science, 19(7):645-647. 36

Williams, S. R. and Stuart, G. J. (2002). Dependence of EPSP efficacy on synapse
location in neocortical pyramidal neurons. Science, 295(5561):1907-1910. 28, 33

Williams, S. R. and Stuart, G. J. (2003). Voltage- and site-dependent control of the
somatic impact of dendritic ipsps. J Neurosci, 23(23):7358-7367. 33

Yassin, L., Benedetti, B. L., Jouhanneau, J.-S., Wen, J. A., Poulet, J. F. A., and
Barth, A. L. (2010). An embedded subnetwork of highly active neurons in the
neocortex. Newuron, 68:1043-1050. 37

Yu, A. J. and Dayan, P. (2005). Inference, attention, and decision in a Bayesian
neural architecture. In Saul, L., Weiss, Y., and Bottou, L., editors, Advances in
Neural Information Processing Systems 17, pages 1577-1584. MIT Press, Cam-
bridge, MA. 34

	Introduction
	Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
	Introduction
	Results
	Second Order Boltzmann Distributions with Auxiliary Random Variables (Implementation 1)
	Using the Markov Blanket Expansion of the Log-odd Ratio
	Implementation with Auxiliary Neurons (Implementation 2)
	Computer Simulation I: Comparison of two Methods for Emulating ``Explaining Away'' in Networks of Spiking Neurons
	Implementation with Dendritic Computation (Implementation 3)

	Using the Factorized Expansion of the Log-odd Ratio
	Implementation with Auxiliary Neurons and Dendritic Branches (Implementation 4)
	Implementation with Dendritic Computation (Implementation 5)

	Probabilistic Inference through Neural Sampling in Larger and More Complex Bayesian Networks
	Computer Simulation II: ASIA Bayesian Network
	Computer Simulation III: Randomly Generated Bayesian Network

	Discussion
	Related Work
	Experimentally Testable Predictions of our Models
	Conclusion

	Methods
	Markov Chains
	Neuron Models
	Details to Second Order Boltzmann Distributions with Auxiliary Variables (Implementation 1)
	Details to Implementation 2
	Details to Implementation 3
	Details to the Implementation 4
	Details to the Implementation 5
	Details to Computer Simulations

	Acknowledgements

	A Learning Theory for Reward-Modulated Spike-Time-Dependent Plasticity with Application to Biofeedback
	Introduction
	Results
	Theoretical analysis of the resulting weight changes
	Application to models for biofeedback experiments
	Computer simulation 1: Model for biofeedback experiment

	Rewarding spike-times
	Computer simulation 2: Learning spike times
	Computer simulation 3: Testing the analytically derived conditions

	Pattern discrimination with reward-modulated STDP
	Computer simulation 4: Learning pattern classification
	Computer simulation 5: Training a readout neuron with reward-modulated STDP to recognize isolated spoken digits

	Methods
	Linear Poisson Neuron Model
	Learning equations
	Derivations for the biofeedback experiment
	Analysis of spike-timing dependent rewards (derivation of the conditions (3.13)-(3.15)).
	Analysis of the pattern discrimination task (derivation of equation (3.17)).
	Common models and parameters of the computer simulations
	LIF neuron model
	Short-term dynamics of synapses
	Model of background synaptic activity
	Reward-modulated STDP
	Initial weights of trained neurons
	Software

	Details to individual computer simulations
	Cortical Microcircuits
	Readout neurons
	Details to computer simulation 1: Model for biofeedback experiment
	Details to computer simulation 2: Learning spike times
	Details to computer simulation 3: Testing the analytically derived conditions
	Details to computer simulation 4: Learning pattern classification
	Details to computer simulation 5: Training a readout neuron with reward-modulated STDP to recognize isolated spoken digits

	Discussion
	Related Work
	Conclusion

	Acknowledgments

	PCSIM: a Parallel Simulation Environment for Neural Circuits
	Introduction
	Overview
	Architecture
	Scalability and Domain of Applicability

	Python interface generation
	Network construction
	The example model
	The framework: object-oriented, modular and extensible
	Factories: creating network elements from models
	Neuron populations
	Projections: managing synaptic connections

	Custom network elements
	Extending PCSIM using C++
	PCSIM add-ons implemented in Python
	PyNN.pcsim
	pypcsimplus
	pylsm

	Discussion
	Acknowledgments

	List of Publications
	Comments and Contributions to Publications

	Bibliography

