
GRAZ UNIVERSITY OF TECHNOLOGYDISSERTATIONto obtain the title ofDo
tor of Te
hni
al S
ien
esof Graz University of Te
hnology
Defended byDejan Aleksandar Pe
evski

Modelling Inferen
e and Learningin Biologi
al Networks of Neurons
Thesis Advisor: O.Univ. Prof. DI Dr.rer.nat. Wolfgang Maassdefended on O
tober, 7th, 2011Jury:Advisor: O.Univ. Prof. DI Dr.rer.nat. Wolfgang Maass - TU GrazReviewer: Univ. Prof. Dr.rer.nat. Gordon Pipa - Osnabrü
k Univ.Dean of Studies: Asso
. Prof. DI Dr.te
h. Oswin Ai
hholzer - TU Graz

Eidesstattli
he ErklärungI
h erkläre an Eides statt, dass i
h die vorliegende Arbeit selbständig verfasst, andereals die angegebenen Quellen / Hilfsmittel ni
ht benutzt, und die den benutztenQuellen wörtli
h und inhaltli
h entnommene Stellen als sol
he kenntli
h gema
hthabe.
Statutory De
larationI de
lare that I have authored this thesis independently, that I have not used otherthan the de
lared sour
es / resour
es, and that I have expli
itly marked all materialwhi
h has been quoted either literally or by
ontent from the used sour
es.

Graz, May 2011(signature)

iiiAbstra
tIn this thesis top-down and bottom-up methods are applied in the study of two
entral questions regarding the fun
tion of neural
ir
uits in the brain: what typeof
omputations they implement and how learning on a synapti
 level yields useful
omputational fun
tions on a
ir
uit and behavioral level. Motivated by the needto best support the neural modelling and simulation requirements of the resear
hdone in this thesis and other related work, a novel software framework for neuralsimulations named PCSIM was developed, whi
h is another additional
ontributionof this thesis.Probabilisti
 inferen
e in graphi
al models has been often proposed as a suitable
andidate framework for explaining the
omputations that the brain
arries out, butthe neural basis of these
omputations remains un
lear. In
hapter 2 this problem isapproa
hed, and several di�erent possible implementations of probabilisti
 inferen
ein graphi
al models with networks of spiking neurons are presented. The developedneural implementations perform probabilisti
 inferen
e through Markov
hain MonteCarlo sampling and use spe
i�
 network stru
tures or dendriti

omputations inbiologi
ally realisti
 neurons as basi
 building blo
ks to realize the required nonlinear
omputational operations. Hen
e, they propose that the
omputational fun
tion oflo
al network motifs as well as the dendriti

omputations in single neurons is tosupport the probabilisti
 inferen
e operations on a larger network level.In
hapter 3 it is analysed theoreti
ally and through
omputer simulations what
omputations
an be learned with reward-modulated spike-timing-dependent plas-ti
ity, a synapti
 plasti
ity learning rule based on experimental �ndings about long-term synapti
 e�
a
y
hanges. In parti
ular, it is shown that this plasti
ity ruleenables spiking neurons to learn
lassi�
ation of temporal spike patterns. It is alsoshown that neurons
an learn with this rule a spe
i�
 mapping from input spike pat-terns to output spike patterns. Moreover, it is analysed under whi
h
onditions andparameters values for the learning rule and the neuron model the learning in theselearning tasks is su

essful. Finally, it is also demonstrated that reward-modulatedSTDP
an explain experimental results on biofeedba
k learning in monkeys.Chapter 4 gives an overview of the Parallel neural C ir
uit SIMulator (PCSIM)with a fo
us on its integration with the Python programming language. PCSIM is aneural simulation environment intended for simulation of spiking and analog neuralnetworks with a support for distributed simulation of large-s
ale neural networks onmultiple ma
hines. In this
hapter key features of PCSIM's modular and extensibleobje
t-oriented framework and user interfa
e are outlined and it is des
ribed howthese features enable the user to develop and
onstru
t neural models easier andfaster, to speed up the simulations of the models, and to add easily
ustom extensionsto the PCSIM framework. Further, bene�ts from the integration of PCSIM withPython are elu
idated.Keywords: probabilisti
 inferen
e, sampling, graphi
al models, spikingneurons, network motifs, dendriti
 pro
essing, reward-modulated spike-

ivtiming-dependent plasti
ity, STDP, reward-based learning, biofeedba
k,PCSIM, neural simulator, parallel simulation, Python

vZusammenfassungIn dieser Dissertation werden top-down und bottom-up Methoden zur Untersu
hungvon zwei zentralen Fragen herangezogen, die die Funktion von neuralen S
haltkreisenim Gehirn betre�en: wel
he Art von Bere
hnungen sie implementieren und wie Ler-nen auf synaptis
her Ebene zu sinnvollen Bere
hnungsfunktionen auf S
haltkreis-und Verhaltensebene führt. Motiviert dur
h den Bedarf einer bestmögli
hen Unter-stützung der Anforderungen hinsi
htli
h neuronaler Modellierung und Simulationan die Fors
hung, die in dieser Dissertation und verwandten Arbeiten dur
hge-führt wurde, wurde ein neues Software-Framework für neuronale Simulationen na-mens PCSIM entwi
kelt, das einen weiteren zusätzli
hen Betrag dieser Dissertationdarstellt.Probabilistis
he Inferenz in graphis
hen Modellen ist oft als ein geeigneter Kan-didat für ein Framework zur Erklärung der Bere
hnungen vorges
hlagen worden, diedas Gehirn ausführt, die neurale Basis dieser Bere
hnungen blieb jedo
h unklar. InKapitel 2 wird an dieses Problem herangegangen, und eine Reihe von vers
hiedenenmögli
hen Implementationen von probabilistis
her Inferenz in graphis
hen Mod-ellen in Netzwerken von spikenden Neuronen werden präsentiert. Die entwi
kel-ten neuronalen Implementationen führen probabilistis
he Inferenz mittels MarkovChain Monte Carlo-Sampling aus und verwenden spezi�s
he Netzwerkstrukturenoder dendritis
he Bere
hnungen in biologis
h realistis
hen Neuronen als elementareBausteine zur Realisierung der notwendigen ni
htlinearen Bere
hnungsoperationen.Das deutet darauf hin, dass die Bere
hnungsfunktionalität von lokalen Netzwerk-motiven sowie die dendritis
hen Bere
hnungen in einzelnen Neuronen Operationenfür probabilistis
he Inferenz auf einer höheren Netzwerkebene unterstützen sollen.In Kapitel 3 wird theoretis
h und dur
h Computersimulationen analysiert,wel
he Bere
hnungen mit belohnungsmodulierter Spike-Timing-Dependent Plasti
-ity gelernt werden können, einer Lernregel für synaptis
he Plastizität, die auf experi-mentellen Erkenntnissen über langfristige änderungen der synaptis
hen Wirksamkeitberuht. Insbesondere wird gezeigt, dass diese Plastizitätsregel es spikenden Neuro-nen erlaubt, Klassi�kationen von temporalen Spike-Mustern zu lernen. Es wirdebenfalls gezeigt, dass Neuronen mit dieser Regel eine spezi�s
he Abbildung vonInput- auf Output-Spike-Mustern lernen können. Darüberhinaus wird analysiert,unter wel
hen Bedingungen und Parametern für die Lernregel und das Neuronen-modell das Lernen in diesen Aufgabenstellungen erfolgrei
h ist. Abs
hlieÿend wirddemonstriert, dass belohnungsmodulierte STDP experimentelle Resultate des Ler-nens von Biofeedba
k in A�en erklären kann.Kapitel 4 bietet einen überbli
k über den parallelen neuralen S
haltkreissimula-tor PCSIM (Parallel neural C ir
uit SIMulator) mit dem S
hwerpunkt auf dessenIntegration mit der Python Programmierspra
he. PCSIM ist eine neuronale Sim-ulationsumgebung, die für die Simulation von spikenden und analogen neuronalenNetzwerken vorgesehen ist, und die verteilte Simulationen von groÿen neuronalenNetzwerken auf mehreren Mas
hinen unterstützt. In diesem Kapitel werden dieHauptmerkmale des modularen und erweiterbaren objektorientierten Frameworks

viund User-Interfa
es vorgestellt, und es wird bes
hrieben, wie diese Merkmale esdem Benutzer ermögli
hen, neuronale Modelle einfa
her und s
hneller zu entwi
kelnund zu konstruieren sowie maÿges
hneiderte Erweiterungen des PCSIM-Frameworkseinfa
h hinzuzufügen. Des weiteren werden die Vorzüge der Integration von PCSIMin Python erläutert.S
hlüsselwörter: Probabilistis
he Inferenz, graphis
he Modelle, spikendeNeuronen, Netzwerkmotive, dendritis
he Verarbeitung, belohnungsmod-uliertes Lernen, STDP, Biofeedba
k, PCSIM, neuronaler Simulator, par-allele Simulation, Python

viiA
knowledgementsFirst of all I would like to thank my supervisor Prof. Wolfgang Maass for givingme the opportunity to work on very ex
iting resear
h topi
s and providing valuableguidan
e and
ontinuous support throughout my PhD studies. His broad expertise,inspiring ideas and demand for ex
ellen
e have greatly in�uen
ed my work. I alsowant to express my gratitude to Thomas Nats
hläger for the fruitful
ollaborationwe had during the development of the PCSIM simulator, making it a su

essful andenjoyable proje
t. Also I am very thankful to my
o-authors and
olleagues RobertLegenstein and Lars Büsing for
ontributing worthwhile ideas and doing valuablework within the resear
h that lead to our joint publi
ations. I would also like tothank Prof. Gordon Pipa for a

epting to be the se
ond reviewer of my thesis.Many thanks also go to my
olleagues at the Institute of Theoreti
al ComputerS
ien
e (IGI), who with their enthusiasm for s
ien
e, opennes to enroll in interestingdis
ussions and willingness to provide me with assistan
e when needed, made IGI anex
iting, motivating and friendly working environment. I am also grateful to DanielaPotzinger and Oliver Friedl for their assistan
e and support regarding administrativeand hardware/software matters.Apart from my
olleagues, during my stay in Graz I got to know many ex
ep-tional people outside of work, whom I be
ame good friends with. Thank you guysfor making these years in Graz a great experien
e.Finally, I would like to express my deepest gratitude to my parents Aleksandarand Ljubi
a for their en
ouragement and support in many ways throughout my life.I would also like to deeply thank my sister Ivana, for being above all always a greatfriend and for her enormous support during my PhD studies.

Contents1 Introdu
tion 12 Probabilisti
 Inferen
e in General Graphi
al Models through Sam-pling in Sto
hasti
 Networks of Spiking Neurons 72.1 Introdu
tion . 82.2 Results . 142.2.1 Se
ond Order Boltzmann Distributions with Auxiliary Ran-dom Variables (Implementation 1) 162.2.2 Using the Markov Blanket Expansion of the Log-odd Ratio . 182.2.2.1 Implementation with Auxiliary Neurons (Implemen-tation 2) . 182.2.2.2 Computer Simulation I: Comparison of two Meth-ods for Emulating �Explaining Away� in Networksof Spiking Neurons 202.2.2.3 Implementation with Dendriti
 Computation (Im-plementation 3) . 202.2.3 Using the Fa
torized Expansion of the Log-odd Ratio 222.2.3.1 Implementation with Auxiliary Neurons and Den-driti
 Bran
hes (Implementation 4) 232.2.3.2 Implementation with Dendriti
 Computation (Im-plementation 5) . 252.2.4 Probabilisti
 Inferen
e through Neural Sampling in Larger andMore Complex Bayesian Networks 252.2.4.1 Computer Simulation II: ASIA Bayesian Network . 262.2.4.2 Computer Simulation III: Randomly GeneratedBayesian Network 292.3 Dis
ussion . 312.3.1 Related Work . 342.3.2 Experimentally Testable Predi
tions of our Models 362.3.3 Con
lusion . 372.4 Methods . 382.4.1 Markov Chains . 382.4.2 Neuron Models . 382.4.3 Details to Se
ond Order Boltzmann Distributions with Aux-iliary Variables (Implementation 1) 402.4.4 Details to Implementation 2 442.4.5 Details to Implementation 3 452.4.6 Details to the Implementation 4 472.4.7 Details to the Implementation 5 48

x Contents2.4.8 Details to Computer Simulations 482.5 A
knowledgements . 533 A Learning Theory for Reward-Modulated Spike-Time-DependentPlasti
ity with Appli
ation to Biofeedba
k 553.1 Introdu
tion . 563.2 Results . 583.2.1 Theoreti
al analysis of the resulting weight
hanges 593.2.2 Appli
ation to models for biofeedba
k experiments 623.2.2.1 Computer simulation 1: Model for biofeedba
k ex-periment . 643.2.3 Rewarding spike-times . 663.2.3.1 Computer simulation 2: Learning spike times 723.2.3.2 Computer simulation 3: Testing the analyti
ally de-rived
onditions . 723.2.4 Pattern dis
rimination with reward-modulated STDP 743.2.4.1 Computer simulation 4: Learning pattern
lassi�
ation 763.2.4.2 Computer simulation 5: Training a readout neuronwith reward-modulated STDP to re
ognize isolatedspoken digits . 773.3 Methods . 793.3.1 Linear Poisson Neuron Model 793.3.2 Learning equations . 803.3.3 Derivations for the biofeedba
k experiment 833.3.4 Analysis of spike-timing dependent rewards (derivation of the
onditions (3.13)-(3.15)). 853.3.5 Analysis of the pattern dis
rimination task (derivation ofequation (3.17)). 893.3.6 Common models and parameters of the
omputer simulations 903.3.6.1 LIF neuron model 913.3.6.2 Short-term dynami
s of synapses 913.3.6.3 Model of ba
kground synapti
 a
tivity 923.3.6.4 Reward-modulated STDP 933.3.6.5 Initial weights of trained neurons 943.3.6.6 Software . 943.3.7 Details to individual
omputer simulations 943.3.7.1 Corti
al Mi
ro
ir
uits 953.3.7.2 Readout neurons . 963.3.7.3 Details to
omputer simulation 1: Model for biofeed-ba
k experiment . 973.3.7.4 Details to
omputer simulation 2: Learning spike times 973.3.7.5 Details to
omputer simulation 3: Testing the ana-lyti
ally derived
onditions 98

Contents xi3.3.7.6 Details to
omputer simulation 4: Learning pattern
lassi�
ation . 983.3.7.7 Details to
omputer simulation 5: Training a readoutneuron with reward-modulated STDP to re
ognizeisolated spoken digits 983.4 Dis
ussion . 993.4.1 Related Work . 1033.4.2 Con
lusion . 1043.5 A
knowledgments . 1054 PCSIM: a Parallel Simulation Environment for Neural Cir
uits 1074.1 Introdu
tion . 1074.2 Overview . 1104.2.1 Ar
hite
ture . 1104.2.2 S
alability and Domain of Appli
ability 1114.3 Python interfa
e generation . 1134.4 Network
onstru
tion . 1144.4.1 The example model . 1154.4.2 The framework: obje
t-oriented, modular and extensible . . . 1164.4.3 Fa
tories:
reating network elements from models 1174.4.4 Neuron populations . 1184.4.5 Proje
tions: managing synapti

onne
tions 1194.5 Custom network elements . 1214.6 Extending PCSIM using C++ . 1244.7 PCSIM add-ons implemented in Python 1264.7.1 PyNN.p
sim . 1264.7.2 pyp
simplus . 1264.7.3 pylsm . 1314.8 Dis
ussion . 1324.9 A
knowledgments . 135A List of Publi
ations 137A.1 Comments and Contributions to Publi
ations 138Bibliography 141

Chapter 1Introdu
tion
Arguably, one of the most alluring unanswered questions in modern s
ien
e is howthe human brain works and gives rise to high-level mental pro
esses and behav-ior. There is a little doubt that any signi�
ant progress towards answering thisquestion will have a profound impa
t on so
iety, s
ien
e and te
hnology. However,the degree of di�
ulty of this open problem be
omes evident as soon as we be-gin to
onsider some known fa
ts about the brain. First, it has a highly
omplexstru
ture: it is
omposed of a large number of units, approximately 100 billion neu-ral
ells and about 1000 trillion synapti

onne
tions between them whi
h throughtheir synergisti
 a
tivity yield higher
ognitive pro
essing. Se
ond, it has an ex-tremely
omplex fun
tion: it generates highly diverse behaviors when fa
ed withvarious tasks and situations by engaging a
ombination of its
ognitive pro
essingabilities like per
eption, de
ision making, memory, language, motor
ontrol et
. Fur-thermore, the neural stru
tures and their asso
iated dynami
al and
omputationalpro
esses are organized on di�erent spatial and temporal s
ales that span severalorders of magnitude (Chur
hland et al., 1993). On the spatial s
ale at the lowestlevel are the mole
ular and ele
trophysiologi
al pro
esses within individual neuronsand synapses, then lo
al networks of neurons or neural
ir
uits, brain areas, systemsand the whole brain at the highest level. On the temporal s
ale, the temporal pro-
esses range from fast sto
hasti
 dynami
s of ion
hannels and generation of a
tionpotentials and postsynapti
 responses on the order of millise
onds, to long-termsynapti
 plasti
ity me
hanisms (believed to underlie long-term memory formationand learning) and developmental
hanges that
ould span hours, days or longer.In spite of being a tremendous
hallenge, the s
ienti�
 quest of understandingthe brain has led to notable progress in the last de
ades. For example, at the levelof individual neurons many pro
esses related to how neurons transmit and pro
essele
tri
al and
hemi
al signals are well understood. Also, with the advan
ementof the ele
trophysiology re
ording te
hniques in vivo, numerous studies have beenpursued that reveal what information the spiking a
tivity of single or small groupsof neurons in di�erent parts of the brain
ontains about a given stimuli, movementor spe
i�
 behavior of the animal, as well as how the neurons en
ode this informa-tion. In another line of resear
h, on the level of brain areas, fun
tional neuroimagingte
hniques (fMRI, PET et
.) have provided means to look whi
h parts of the brainare a
tivated above average when performing di�erent
ognitive tasks and based onthat to map higher
ognitive fun
tions to di�erent brain regions. These are onlya few of many examples of progress that has been made in di�erent sub�elds of

2 Chapter 1. Introdu
tionneuros
ien
e. Still, at the level that should provide a link between the a
tivity ofindividual neurons and the fun
tion of di�erent brain areas, the level of lo
al neural
ir
uits at spatial s
ale on the order of millimeters in the
ortex, many fundamentalquestions remain largely unanswered. Namely, it is not known what is the
om-putational fun
tion of lo
al networks of biologi
al neurons, how is the
omputationorganized, how the neural
ir
uits self-organize in spe
i�
 stru
tures that implementthe
omputational fun
tion, how they represent information, how they adapt andlearn at the mi
ro-level in order to support the observed learning, memory and im-provement of performan
e at the behavioral level, and so on. In summary, we
antentatively frame these questions in three overlapping topi
s: the
omputationalfun
tion of neural
ir
uits, their realization of learning and their development.Before one starts to analyse what the
omputational fun
tion of lo
al neural
ir
uits might be, one question that arises and is important to point out
on
ernsthe degree of uniformity of the
omputational algorithms a
ross areas in the
ortex:whether all neural
ir
uits implement a spe
i�
 adapted instan
e of a generi

ompu-tational algorithm or the spe
i�
s are so large that we
an not
lassify them as doingthe same type of
omputation. Although
urrently there is not a de�nite answeron that, there are some fa
ts that go strongly in favor of the generi

orti
al algo-rithm hypothesis. One frequently given argument is that, as neuroanatomists haveobserved, there is a striking similarity in the anatomi
al
hara
teristi
s of neural
ir
uits a
ross di�erent areas of the
ortex, e.g. its laminar stru
ture,
hara
teristi

onne
tivity patterns between
ell types et
., and this anatomi
al uniformity sug-gests also an existent uniformity at a fun
tional level (Douglas and Martin, 2004a).Additionally, the presen
e of topographi
 maps of sensory information in di�erentsensory
orti
es, visual, auditory and somatosensory, indi
ates a general prin
iple ofspatial organization of information representation and pro
essing in
ortex. In fa
tit has been also shown that if the opti
 nerve of an animal (a ferret) is rerouted to theauditory
ortex early in development, auditory
ortex develops a retinotopi
 maporganization normally found in visual
ortex (von Mel
hner et al., 2000). Finally, ifwe treat the question from an evolutionary perspe
tive, it is likely to assume thatafter evolution found a brain stru
ture in early mammals that proved very e�e
tivefor providing
ertain advantageous behavioral
apabilities, it started repli
ating thisstru
ture in des
endant spe
ies produ
ing larger
ortex, sin
e it led to animals withmore
omplex and �exible behavior and in
reased their
han
e of survival.Spe
i�

ognitive fun
tions presumably involve diverse information pro
essingthat operate on inputs with di�erent dynami
s and statisti
s. Departing from thepremise that
orti
al
omputations share the same prin
iples of organization andhave similar
hara
teristi
s, they have to be general enough to a
hieve the requireddiverse types of input-output mappings. Further, their inherent learning pro
essesshould be robust and powerful enough to be able to realize the required
omputationsand be independent of the statisti
al properties of the pro
essed inputs. Thesethemes of generality of
omputational pro
esses, their e�
ien
y, robustness as well aslearning
apabilities are subje
ts of investigations in
omputer s
ien
e and, regardinglearning issues in parti
ular, its bran
h ma
hine learning. Hen
e,
omputer s
ien
e

3is an indispensible and fruitful sour
e of theoreti
al tools, models and
omputationalframeworks a
tively used in ta
kling the question of the
omputational fun
tion ofneural
ir
uits.The formulated mathemati
al models that
apture the dynami
s of parts of thebrain, e.g. the sto
hasti
 dynami
s of ion
hannels, the input-output behavior of asingle neuron or the average population a
tivity of a pat
h of the
ortex, given usu-ally in the form of
oupled nonlinear di�erential equations, are in most of the
asesnot amenable to analyti
al analysis, espe
ially in models with a high-dimensionalstate. Thus, numeri
al simulations of the
reated models on a
omputer systemare integral part of every study of the
omputational properties of biologi
al net-works of neurons. This implies an ongoing ne
essity to improve the pro
ess ofsimulation-based analysis in all aspe
ts and stimulates the resear
h on te
hniquesand algorithms for simulation of neural systems, as well as software development ofneural simulation tools that implement those te
hniques. An important
omponentof these e�orts, in addition to resear
h on e�
ient numeri
al integration algorithmsand e�
ient and �exible algorithms for
onstru
tion of neural models, are inno-vations in software design. The goal in these innovations is to
reate a generalsimulation obje
t-oriented software framework that has an easy to use interfa
e,has already implemented a wide range of neurobiologi
al model
omponents anddi�erent simulation strategies and perhaps most importantly, allows for easy userextensions on many levels. Also, as larger
omputing resour
es are available in theform of
ommodity
lusters or super
omputer systems, one other desirable featureprovided by many neural simulators is the possibility of harnessing all available
om-puting power for simulation of larger neural network models by using distributedsimulation of one large neural network on many ma
hines.There are two
omplementary approa
hes that are applied in studies
ondu
tingresear
h on the
omputational properties and organization of
omputation in neural
ir
uits: the bottom-up and the top-down approa
h. In the bottom-up approa
h,�rst mathemati
al models that des
ribe neurobiologi
al stru
tures, me
hanisms andpro
esses are derived based on su�
ient amount of experimental data that
hara
-terize well the studied phenomena. Then the resulting mathemati
al models aresimulated numeri
ally on a
omputer and analysed from a
omputational perspe
-tive where it is examined what are the
omputational
onsequen
es of these phe-nomena, i.e. what are the type of
omputations that they
an support or
arry out.Within these studues it is often analysed what is the set of input-output fun
tionsthat a model
an realize or learn, the way information is en
oded within the model,what is the e�
ien
y of the
omputation, noise robustness, possibility of s
aling upet
. In the top-down approa
h, �rst a
omputational framework or algorithm is pos-tulated as a possible
andidate being able to explain the
omputations
arried outin neural
ir
uits, and then a neural
ir
uit model is
onstru
ted that
an
arry outthe postulated
omputations whi
h at the same time is
onstrained by the availableexperimental data. Following a top-down approa
h in
reating a model is instrumen-tal and ne
essary be
ause very often there is not enough experimental data aboutthe stru
ture and dynami
s of neural
ir
uits needed to
onstrain and build the

4 Chapter 1. Introdu
tionmodels. Thus, the postulated
omputational theory
an provide hypotheses aboutthe unknown me
hanisms and their biophysi
al or neural implementation whi
h
anbe used to
omplete the model
onstru
tion. Furthermore, the theory-in�uen
edshaping of the models generates spe
i�
 predi
tions whi
h
an be a valuable inputfor ideas about new experimental studies that
an test the predi
tions dire
tly ortest
onsequen
es of them.In this thesis both top-down and bottom-up methods are applied in the studyof two
entral questions regarding the fun
tion of neural
ir
uits: what type of
omputations they implement and how learning on a synapti
 level yields useful
omputational fun
tions on a
ir
uit and behavioral level. Motivated by the need tobest support the neural modeling and simulation requirements of the resear
h donein this thesis and other related work, a novel software framework for neural simu-lations with many useful features named PCSIM was developed, whi
h is anotheradditional
ontribution of this thesis. PCSIM was su

essfully used in the extensivesimulations in the studies in this thesis as well as in many other resear
h proje
ts.Probabilisti
 inferen
e in graphi
al models has been often proposed as a suit-able
andidate for explaining the
omputations that the brain
arries out in thefa
e of great amount of un
ertainty present in the sensory inputs and its internalrepresentations of the world. But the neural basis of these
omputations, i.e. hownetworks of spiking neurons
ould implement probabilisti
 inferen
e, remains un-
lear. In
hapter 2 this problem is approa
hed, and building on previous resultsin (Büsing et al., 2011) several di�erent possible implementations of probabilisti
inferen
e in graphi
al models with networks of spiking neurons are presented. Thedeveloped neural implementations perform probabilisti
 inferen
e through Markov
hain Monte Carlo sampling and use spe
i�
 network stru
tures or dendriti

ompu-tations in biologi
ally realisti
 neurons as basi
 building blo
ks to realize the requirednonlinear
omputational operations. Hen
e, they propose that the
omputationalfun
tion of lo
al network stru
tures as well as the dendriti

omputations in singleneurons is to support the probabilisti
 inferen
e operations on a larger network level.The models further suggest that the sto
hasti
 properties of biologi
al neurons havea useful purpose to provide the ne
essary sto
hasti
ity in the sampling algorithmand should not be viewed as undesirable noise. The performan
e and s
alability ofthe neural implementations are demonstrated through
omputer simulations wherethey have been applied on several example graphi
al models.In
hapter 3 it is analysed theoreti
ally and through
omputer simulations what
omputations
an be learned with reward-modulated spike-timing-dependent plas-ti
ity, a synapti
 plasti
ity learning rule based on experimental �ndings about long-term synapti
 e�
a
y
hanges dependent on spike times and the gating e�e
t of neu-romodulators on this type of plasti
ity. Spike-timing-dependent plasti
ity (STDP) isan experimentally observed e�e
t about
hanges in synapti
 e�
a
y that is believedto underlie the learning and long-term memory pro
esses in the brain. Modulationof STDP with a neuromodulatory signal (e.g. dopamine) related to reward is a
an-didate me
hanism that
ould explain how lo
al synapti

hanges on a mi
ro-s
alesupport adaptive behavioral
hanges based on reinfor
ements on a ma
ro-s
ale. In

5
hapter 3 it is shown that this plasti
ity rule enables spiking neurons to learn
las-si�
ation of temporal spike patterns, and respond with a high �ring rate to oneof the patterns while remaining silent for the other. It is also shown that neurons
an learn with reward-modulated STDP a spe
i�
 mapping from input spike pat-terns to output spike patterns. Moreover, it is analysed theoreti
ally under whi
h
onditions and parameter values for the learning rule and the neuron model thelearning in these learning tasks is su

essful. Additionally, it is demonstrated thatreward-modulated STDP
an explain experimental results of biofeedba
k learningin monkeys (Fetz and Baker, 1973) and be used to train spiking neurons to read outinformation from a prepro
essing neural
ir
uit. The results also suggest a fun
-tional role for spontaneous a
tivity as performing random exploration needed inreward-based learning.Chapter 4 gives an overview of the Parallel neural C ir
uit SIMulator (PCSIM)with a fo
us on its integration with the Python programming language. PCSIM is aneural simulation environment intended for simulation of spiking and analog neuralnetworks with a support for distributed simulation of large-s
ale neural networkson multiple ma
hines. It is implemented in C++ with its user interfa
e exposedin the Python programming language. In
hapter 4 key features of PCSIM's mod-ular and extensible obje
t-oriented framework and user interfa
e are outlined andit is des
ribed how these features enable the user to develop and
onstru
t neuralmodels easier and faster, to speed up the simulations of the models, and to addeasily
ustom extensions to the framework in order to adapt the simulator to hisown modeling needs. Further, some of the many bene�ts the integration of PCSIMwith Python brings to the user are elu
idated: high-level, easy to use, s
ripting in-terfa
e for spe
i�
ation of the models, extending PCSIM with add-ons implementedin Python fostering a hybrid approa
h to modelling, and
ombined usage of PCSIMwith many other s
ienti�

omputing Python software pa
kages (general or neuro-s
ien
e spe
i�
). Also, the supplementary PCSIM pa
kages implemented in purePython that augment the PCSIM pa
kage bundle with additional useful fun
tion-alities are des
ribed.Chapter 2 in this thesis is based on the paper Probabilisti
 Inferen
e in GeneralGraphi
al Models through Sampling in Sto
hasti
 Networks of Spiking Neurons bymyself (DP), Lars Büsing (LB) and Wolfgang Maass (WM). The paper was sub-mitted for publi
ation in 2011 and is under review. The experiments in this workwere
on
ieved and designed by DP and WM. DP
ondu
ted the experiments andanalysed the simulation results. The paper builds on the theory of neural samplingdeveloped by LB and reported in (Büsing et al., 2011). DP and WM provided theadditional theoreti
al derivations and analysis in the paper. DP and WM wrote themanus
ript. LB provided valuable
omments that helped to improve the manus
ript.Chapter 3 is based on the journal arti
le A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasti
ity with Appli
ation to Biofeedba
k by

6 Chapter 1. Introdu
tionRobert Legenstein1 (RL), myself1 (DP) and Wolfgang Maass (WM) (PLoS Com-putational Biology 4(10): e1000180, 2008). In this arti
le RL
ontributed the theo-reti
al analysis, RL, DP and WM
on
eived and designed the experiments and DP
ondu
ted the experiments and analysed the simulation results. RL, DP and WMwrote the manus
ript.Chapter 4 is based on the journal arti
le PCSIM: A Parallel Simulation Envi-ronment for Neural Cir
uits Fully Integrated with Python by myself (DP), ThomasNats
hläger (TN) and Klaus S
hu
h (KS) (Frontiers in Neuroinformati
s 3:11,2009). The PCSIM software des
ribed in the arti
le was developed by DP andTN, with
ontributions from KS. TN supervised the software development proje
t.DP implemented and performed the
omputer simulation tests reported in the ar-ti
le. The arti
le was written by DP and TN. KS wrote the se
tion that des
ribesthe PYLSM pa
kage and gave useful
omments for improving the manus
ript.

1These authors
ontributed equally to the work in this paper.

Chapter 2Probabilisti
 Inferen
e in GeneralGraphi
al Models throughSampling in Sto
hasti
 Networksof Spiking Neurons
Contents2.1 Introdu
tion . 82.2 Results . 142.3 Dis
ussion . 312.4 Methods . 382.5 A
knowledgements . 53An important open problem of
omputational neuros
ien
e is the generi
 orga-nization of
omputations in networks of neurons in the brain. It has been arguedthat traditional models for universal
omputation, su
h as Turing ma
hines, areless suitable as a
on
eptual framework. Probabilisti
 inferen
e in graphi
al mod-els has been proposed as an alternative, that would be better suited for solvingthe
omputational tasks whi
h the brain has to
arry out, where de
isions haveto be made based on large numbers of un
ertain per
epts and memories. But ithas remained an open problem how su
h
omputations
ould be
arried out bynetworks of spiking neurons. We show here that inherent sto
hasti
 features ofspiking neurons, in
ombination with simple nonlinear
omputational operations inspe
i�
 network motifs and dendriti
 arbors, enable networks of spiking neurons to
arry out probabilisti
 inferen
e through sampling in general graphi
al models. Inparti
ular, it enables them to
arry out probabilisti
 inferen
e in Bayesian networkswith
onverging arrows (�explaining away�) and with undire
ted loops, that o

ur inmany real-world tasks. The resulting
omputational model suggests that ubiquitoussto
hasti
 features of networks of spiking neurons, su
h as trial-to-trial variabilityand spontaneous a
tivity, should not be viewed as e�e
ts of noise in deterministi

omputations, but rather as ne
essary ingredients of this underlying
omputationalorganization. We demonstrate through
omputer simulations that this approa
h
anbe s
aled up to neural emulations of probabilisti
 inferen
e in fairly large graphi
al

8 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronsmodels, yielding some of the most
omplex
omputations that have been
arried outso far in networks of spiking neurons.2.1 Introdu
tionIn spite of intense theoreti
al and experimental resear
h that spans almost a
entury,the fundamental questions how information pro
essing in the brain is organized,and whi
h
on
rete
omputational operations are
arried out by stereotypi
al
or-ti
al mi
ro
ir
uits, have remained unanswered. Turing ma
hines, logi
al inferen
ema
hines, and related universal
omputational models would provide su�
ient
om-putational power for deterministi

omputations, but their stru
ture and dynami
sis in
ompatible with basi
 aspe
ts of neural
ir
uits. Attra
tor neural networks andsyn�re
hains fair better from this perspe
tive, but it seems di�
ult to implementvery
omplex
omputations with them.Probabilisti
 inferen
e in Bayesian networks (Pearl, 1988) and other graphi
almodels (Bishop, 2007; Koller and Friedman, 2009) has emerged as an alternative
omputational framework that is espe
ially suited for
omputational tasks that thebrain has to solve: The formation of
oherent interpretations of in
omplete andambiguous sensory stimuli, fast learning of new information, integration of previ-ously a
quired knowledge with new information, movement planning, reasoning andde
ision making in the presen
e of un
ertainty (Rao et al., 2002; Doya et al., 2007;Fiser et al., 2010). In this approa
h one assumes that previously a
quired knowledge(fa
ts, rules,
onstraints, su

essful responses) is en
oded in a joint distribution pover numerous random variables (RVs) z1, . . . , zK , that represent features of sen-sory stimuli, aspe
ts of internal models for the environment, environmental andbehavioral
ontext, values of
arrying out parti
ular a
tions in parti
ular situations(Toussaint and Goeri
k, 2010), goals, et
. If the values of some of these RVs assume
on
rete values e (e.g. be
ause of observations, or be
ause a parti
ular goal needsto be rea
hed), the distribution of the remaining variables
hanges in general. Atypi
al
omputation that needs to be
arried out for probabilisti
 inferen
e for somejoint distribution p(z1, . . . , zl, zl+1, . . . , zK) is the evaluation of an expression of thetype
p(z1|e) =

∑all possible values
v2, . . . , vl for z2, . . . , zl

p(z1, v2, . . . , vl|e) , (2.1)where
on
rete values e (the "eviden
e" or �observations�) have been inserted forthe RVs zl+1, . . . , zK . These variables are then often
alled observable variables, andthe others latent variables. Note that the term �eviden
e� is somewhat misleading,sin
e the assignment e represents some arbitrary input to a probabilisti
 inferen
e
omputation, without any
onnotation that it represents
orre
t observations ormemories. The
omputation of the resulting marginal distribution p(z1|e) requires asummation over all possible values v2, . . . , vl for the RVs z2, . . . , zl that are
urrentlynot of interest for this probabilisti
 inferen
e. This
omputation is in general quite

2.1. Introdu
tion 9
omplex (in fa
t, it is NP-
omplete (Koller and Friedman, 2009)) be
ause in theworst
ase exponentially in l many terms need to be evaluated and summed up.It turned out to be surprisingly di�
ult to elu
idate how networks of neuronsin the brain
ould possibly implement su
h
omputations, even for rather simpleprobability distribution p. Most previous attempts had fo
used on belief propaga-tion, i.e., on distributed deterministi
 arithmeti
al
omputations for the evaluationof the r.h.s. of (2.1). Su
h
omputational s
hemes are hard to re
on
ile with ex-perimental data on the dynami
s of networks of neurons in the brain, for exampletheir sto
hasti
 aspe
ts su
h as trial-to-trial variability. In addition, belief prop-agation is not guaranteed to work for general Bayesian networks with undire
ted
y
les. Other modelling attempts, starting with Boltzmann ma
hines (A
kley et al.,1985), proposed that the ubiquitous sto
hasti
 aspe
ts of neuronal responses pro-vide
lues that the brain has
hosen a
ompletely di�erent way for
arrying outprobabilisti
 inferen
e: by building an internal model for the probability distribu-tion p for whi
h inferen
e has to be
arried out, and by drawing examples fromthis probability distribution p. This approa
h is referred to as sampling in ma
hinelearning. If one has a physi
al realization of p, i.e. a me
hanism that draws samples(v1, . . . , vl) of assignments to all �free� RVs z1, . . . , zl in (2.1) a

ording to the dis-tribution p(z1, . . . , zl,e), one
an estimate p(z1|e) by just observing how often ea
hpossible value v1 for z1 o

urs in these samples (v1, . . . , vl). Similarly one
an inferrelationships among RVs z1, . . . , zl, e.g. whether z1 and z2 are
orrelated by simplyobserving how often v1 = v2 o

urs in these samples.A very su

essful method for su
h probabilisti
 inferen
e through sampling hasbe
ome known in ma
hine learning under the name Markov
hain Monte Carlo(MCMC) sampling (Neal, 1993), (Andrieu et al., 2003), (Koller and Friedman, 2009).The general idea is to
onstru
t a Markov
hain whose set of states is exa
tly theset of all possible assignments (v1, . . . , vK) of values to the RVs of p, and whosestationary distribution of states (see Methods) is exa
tly the distribution p for whi
hone wants to
arry out probabilisti
 inferen
e. Under some mild
onditions therelative time that the Markov
hain spends in ea
h of its states is guaranteed to
onverge � from any initial state � to this stationary distribution p. Hen
e, as soonas the Markov
hain provides a good approximation of p, the sequen
e of states(v1, . . . , vK) that it enters (starting from any initial state)
an be viewed as almostunbiased samples from p.For a Boltzmann ma
hine a standard way of sampling is Gibbs sampling. ThisMarkov
hain is reversible, i.e., sto
hasti
 transitions between states do not have apreferred dire
tion. This sampling method works well in arti�
ial neural networks,where the e�e
t of ea
h neural a
tivity lasts for exa
tly one dis
rete time step. Butit is in
on�i
t with basi
 features of networks of spiking neurons, where ea
h a
tionpotential (spike) of a neuron triggers inherent temporal pro
esses in the neuron itself(e.g. refra
tory pro
esses), and through postsynapti
 potentials of spe
i�
 durationsin other neurons to whi
h it is synapti
ally
onne
ted. These inherent temporal pro-
esses of spe
i�
 durations are non-reversible, and are therefore in
onsistent with

10 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronsthe mathemati
al model (Gibbs sampling) that underlies probabilisti
 inferen
e inBoltzmann ma
hines. However very re
ently a somewhat di�erent mathemati
almodel (sampling in non-reversible Markov
hains) has emerged as an alternativeframework for probabilisti
 inferen
e in neural networks, that is
ompatible withthese basi
 features of the dynami
s of networks of spiking neurons (Büsing et al.,2011). In this approa
h one relates the �ring a
tivity in a network N of K spik-ing neurons ν1, . . . , νK to sampling from a distribution p(z1, . . . , zK) over binaryvariables z1, . . . , zK by setting
zk(t) = 1 if and only if neuron νk has �red within the pre
edingtime interval (t− τ, t] of length τ ,

(2.2)(we restri
t our attention here to binary RVs; multinomial RVs
ould in prin
iplebe represented by WTA
ir
uits � see Dis
ussion). The
onstant τ models theaverage length of the e�e
t of a spike on the �ring probability of other neurons orof the same neuron, and
an be set for example to τ = 20 ms. However with thisde�nition of its internal state (z1(t), . . . , zK(t)) the dynami
s of the neural network
N
an not be modelled by a Markov
hain, sin
e knowledge of this
urrent statedoes not su�
e for determining the distribution of states at future time points,say at time t + 5 ms. This distribution requires knowledge about when exa
tly aneuron νk with zk(t) = 1 had �red. Therefore auxiliary random variables ζ1, . . . , ζKwith multinomial or analog values were introdu
ed in (Büsing et al., 2011), thatkeep tra
k of when exa
tly in the pre
eding time interval of length τ a neuron
νk had �red, and thereby restore the Markov property for a Markov
hain that isde�ned over an enlarged state set
onsisting of all possible values of z1, . . . , zK and
ζ1, . . . , ζK . However the introdu
tion of these hidden variables ζ1, . . . , ζK , that keeptra
k of inherent temporal pro
esses in the network N of spiking neurons,
omesat the pri
e that the resulting Markov
hain is no longer reversible (be
ause thesetemporal pro
esses are not reversible). But it was shown in (Büsing et al., 2011)that one
an prove nevertheless for any distribution p(z1, . . . , zK) for whi
h theso-
alled neural
omputability
ondition (NCC), see below,
an be satis�ed by anetwork N of spiking neurons, that N de�nes a non-reversible Markov
hain whosestationary distribution is an expanded distribution p(z1, . . . , zK , ζ1, . . . , ζK), whosemarginal distribution over z1, . . . , zK (whi
h results when one ignores the values ofthe hidden variables ζ1, . . . , ζK) is the desired distribution p(z1, . . . , zK). Hen
e anetwork N of spiking neurons
an sample from any distribution p(z1, . . . , zK) forwhi
h the NCC
an be satis�ed. This implies that any neural system that
ontainssu
h network N
an
arry out the probabilisti
 inferen
e task (2.1): The eviden
e e
ould be implemented through external inputs that for
e neuron νk to �re at a highrate if zk = 1 in e, and not to �re if zk = 0 in e. In order to estimate p(z1|e), itsu�
es that some readout neuron estimates (after some initial transient phase) theresulting �ring rate of the neuron ν1 that represents RV z1.The NCC requires that for ea
h RV zk the �ring probability density ρk(t) ofsome
orresponding neuron νk at time t satis�es, if the neuron is not in a refra
tory

2.1. Introdu
tion 11period
ρk(t) =

1

τ
·
p(zk = 1|z\k)

p(zk = 0|z\k)
, (2.3)where z\k denotes the
urrent value of all other RVs, i.e., all zi with i 6= k. Weuse in this work the same model for a sto
hasti
 neuron as in (Büsing et al., 2011)(
ontinuous time
ase), whi
h
an be mat
hed quite well to biologi
al data a

ordingto (Jolivet et al., 2006). In the simpler version of this neuron model one assumes thatit has an absolute refra
tory period of length τ , and that the instantaneous �ringprobability ρk(t) satis�es outside of its refra
tory period ρk(t) = 1

τ exp(uk(t)), where
uk(t) is its membrane potential (see Methods for an a

ount of the more
omplexneuron model with a relative refra
tory period from (Büsing et al., 2011), that wehave also tested in our simulations). The NCC from (2.3)
an then be reformulatedas a
ondition on the membrane potential of the neuron

uk(t) = log
p(zk = 1|z\k)

p(zk = 0|z\k)
. (2.4)Let us
onsider a Boltzmann distribution p of the form

p(z1, . . . , zK) =
1

Z
exp





∑

i,j

1

2
Wijzizj +

∑

i

bizi



 (2.5)with symmetri
 weights (i.e., Wij = Wji) that vanish on the diagonal (i.e., Wii = 0).In this
ase the NCC
an be satis�ed by a uk(t) that is linear in the postsynapti
potentials that neuron νk re
eives from the neurons νi that represent other RVs zi:
uk(t) = bk +

K
∑

i=1

Wki zi(t) , (2.6)where bk is the bias of neuron νk (whi
h regulates its ex
itability),Wki is the strengthof the synapti

onne
tion from neuron νi to νk, and zi(t) approximates the time
ourse of the postsynapti
 potential
aused by a �ring of neuron νi at some time
tfi < t (zi(t) assumes value 1 during the time interval [tfi , t

f
i + τ), otherwise it hasvalue 0).However, it is well known that probabilisti
 inferen
e for distributions of theform (2.5) is too weak to model various important
omputational tasks that thebrain is obviously able to solve, at least without auxiliary variables. While (2.5)only allows pairwise intera
tions between RVs, numerous real world probabilisti
inferen
e tasks require inferen
e for distributions with higher order terms. For ex-ample, it has been shown that human visual per
eption involves �explaining away�,a well known e�e
t in probabilisti
 inferen
e, where a
hange in the probability ofone
ompeting hypothesis for explaining some observation a�e
ts the probability ofanother
ompeting hypothesis (Kersten and Yuille, 2003). Su
h e�e
ts
an usuallyonly be
aptured with terms of order at least 3, sin
e 3 RVs (for 2 hypotheses and

12 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons1 observation) may intera
t in
omplex ways. A well known example from visualper
eption is shown in Fig. 2.1, for a probability distribution p over 4 RVs z1, . . . , z4,where z1 is de�ned by the per
eived relative re�e
tan
e of two abutting 2D areas,
z2 by the per
eived 3D shape of the observed obje
t, z3 by the observed shadingof the obje
t, and z4 by the
ontour of the 2D image. The di�eren
e in shadingof the two abutting surfa
es in Fig. 2.1A
ould be explained either by a di�eren
ein re�e
tan
e of the two surfa
es, or by an underlying
urved 3D shape. The twodi�erent
ontours (RV z4) in the upper and lower part of Fig. 2.1A in�uen
e thelikelihood of a
urved 3D shape (RV z3). In parti
ular, a per
eived
urved 3D shape�explains away� the di�eren
e in shading, thereby making an uniform re�e
tan
emore likely. The results of (Knill and Kersten, 1991) and numerous related resultssuggest that the brain is able to
arry out probabilisti
 inferen
e for more
omplexdistributions than the 2nd order Boltzmann distribution (2.5).We show in this work that the neural sampling method of (Büsing et al., 2011)
an be extended to any probability distribution p, in parti
ular to distributions withhigher order dependen
ies among RVs, by using auxiliary spiking neurons in N thatdo not dire
tly represent RVs zk, or by using nonlinear
omputational pro
esses inmulti-
ompartment neuron models. As one
an expe
t, the number of required aux-iliary neurons or dendriti
 bran
hes in
reases with the
omplexity of the probabilitydistribution p for whi
h the resulting network of spiking neurons has to
arry outprobabilisti
 inferen
e. Various types of graphi
al models (Koller and Friedman,2009) have emerged as
onvenient frameworks for
hara
terizing the
omplexity ofdistributions p from the perspe
tive of probabilisti
 inferen
e for p.We will fo
us in this work on Bayesian networks, a
ommon type of graphi
almodel for probability distributions. But our results
an also be applied for othertypes of graphi
al models. A Bayesian network is a dire
ted graph (without dire
ted
y
les), whose nodes represent RVs z1, . . . , zK . Its graph stru
ture indi
ates that
p(z1, . . . , zK) admits a fa
torization of the form

p(z1, . . . , zk) =
K
∏

k=1

p(zk|pa(zk)), (2.7)where pa(zk) is the set of all (dire
t) parents of the node indexed by zk (see Fig. 2.1B,2.7A, 2.9 for examples). For example, the Bayesian network in Fig. 2.1B impliesthat the fa
torization p(z1, z2, z3, z4) = p(z1)p(z2)p(z3|z1, z2)p(z4|z3) is possible.We show that the
omplexity of the resulting network of spiking neurons for
arrying out probabilisti
 inferen
e for p
an be bounded in terms of the graph
omplexity of the Bayesian network that gives rise to the fa
torization (2.7). Morepre
isely, we present three di�erent approa
hes for
onstru
ting su
h networks ofspiking neurons:
• through a redu
tion of p to a Boltzmann distribution (2.5) with auxiliary RVs
• through a Markov blanket expansion of the r.h.s. of the NCC (2.4)

2.1. Introdu
tion 13
: relative reflectance : 3D shape

: shading : contour

or

or or

A B

 or other

spikes of

neuron

1

0

t

t

preprocessing preprocessing

preprocessingpreprocessing

C D

Figure 2.1: See next page for �gure
aption.
• through a fa
torized expansion of the r.h.s. of the NCC (2.4)We will show that there exist two di�erent neural implementation options for ea
hof the last two approa
hes, using either spe
i�
 network motifs or dendriti
 pro-
essing for nonlinear
omputation steps. This yields altogether 5 di�erent optionsfor emulating probabilisti
 inferen
e in Bayesian networks through sampling via theinherent sto
hasti
 dynami
s of networks of spiking neurons. Furthermore we willexhibit
hara
teristi
 di�eren
es in the
omplexity and performan
e of the resultingnetworks, and relate these to the
omplexity of the underlying Bayesian network.But in
ontrast to some previously suggested emulations of probabilisti
 inferen
e bynetworks of spiking neurons, all 5 of these neural implementation options
an read-ily be applied to Bayesian networks where several ar
s
onverge to a node (givingrise to the �explaining away� e�e
t), and to Bayesian networks with undire
ted
y-
les (�loops�). All methods for probabilisti
 inferen
e from general graphi
al modelsthat we propose in this work are from the mathemati
al perspe
tive spe
ial
ases ofMCMC sampling. However in view of the fa
t that they expand the neural samplingapproa
h of (Büsing et al., 2011), we will refer to them more spe
i�
ally as neuralsampling.We show through
omputer simulations for three di�erent Bayesian networks ofdi�erent sizes that neural sampling
an be
arried quite fast with the help of these
ond and third approa
h, providing good inferen
e results within a behaviorallyrelevant time span of a few hundred ms. One of these Bayesian networks addressesthe previously des
ribed
lassi
al �explaining away� e�e
t in visual per
eption from

14 Chapter 2. Sampling in Graphi
al Models with Spiking NeuronsFigure 2.1: The visual per
eption experiment of (Knill and Kersten, 1991) that demon-strates �explaining away�, and the Bayesian network that models the phenomenon. A)Two visual stimuli, ea
h exhibiting the same luminan
e pro�le in the horizontal dire
tion.The two visual stimuli di�er only with regard to their
ontours, whi
h suggest di�erent 3Dshapes (�at versus 2
ylinders). This in turn in�uen
es our per
eption of the re�e
tan
eof the two halves of ea
h stimulus (a step in the re�e
tan
e at the middle line, versus uni-form re�e
tan
e): the
ylindri
al 3D shape �explains away� the re�e
tan
e step. B) TheBayesian network that models this e�e
t
onsists of 4 RVs z1, z2, z3, and z4. The relativere�e
tan
e (z1) of the two halfs
an have two values, di�erent (z1 = 1) or the same (z1 =0). The per
eived 3D shape is either
ylindri
al (z2 = 1) or �at (z2 = 0). The relativere�e
tan
e and the 3D shape are dire
t
auses of the shading (luminan
e
hange) of thesurfa
es denoted as z3, whi
h
an have the pro�le like in panel A (z3 = 1) or a di�erentone (z3 = 0). The 3D shape of the obje
t
auses di�erent per
eived
ontours z4, whi
h
anbe either straight (z4 = 0) or
urved (z4 = 1). The observed variables are the
ontour (z4)and the shading (z3) of the stimulus. Subje
ts infer the value of the relative re�e
tan
eand the 3D shape based on this eviden
e. The probability distribution p(z1, z2, z3, z4) ofthe Bayesian network fa
torizes to p(z1)p(z2)p(z3|z1, z2)p(z4|z2), and the inferen
e problemis to
al
ulate the marginal posterior probability distributions p(z1|z3, z4) and p(z2|z3, z4).C) Ea
h of these RVs zk are represented in our neural emulations of probabilisti
 infer-en
e by a prin
ipal neuron νk in su
h a way, that ea
h spike of νk sets the RV zk to 1for a time period of length τ . D) The stru
ture of a network of spiking neurons that per-forms probabilisti
 inferen
e for the Bayesian network of panel B through sampling from
onditionals of the underlying joint probability distribution p(z1, z2, z3, z4). Ea
h prin
ipalneuron employs prepro
essing to satisfy the neural
omputability
ondition (NCC), eitherby dendriti
 pro
essing or by a prepro
essing
ir
uit. Note that, in
ontrast to the dire
teda
y
li
 Bayesian network of panel B, this
omputational network (see Fig. 2.6 for a
on
reteneural emulation) is re
urrently
onne
ted, resulting from the fa
t that during probabilisti
inferen
e information �ows also against the dire
tion of the ar
s in the Bayesian network(an example is the �explaining away� e�e
t).Fig. 2.1. The other two Bayesian networks not only
ontain numerous �explainingaway� e�e
ts, but also undire
ted
y
les. Altogether, our
omputer simulations andour theoreti
al analysis demonstrate that networks of spiking neurons
an emulateprobabilisti
 inferen
e for general Bayesian networks. Hen
e we propose to viewprobabilisti
 inferen
e in graphi
al models as a generi

omputational paradigm,that
an help us to understand the
omputational organization of networks of neu-rons in the brain, and in parti
ular the
omputational role of pre
isely stru
tured
orti
al mi
ro
ir
uit motifs.2.2 ResultsWe present several ways how probabilisti
 inferen
e for a given joint distribution
p(z1, . . . , zK), that is not required to have the form of a 2nd order Boltzmann dis-tribution (2.5),
an be
arried out through sampling from the inherent dynami
s ofa re
urrent network N of sto
hasti
ally spiking neurons. All these approa
hes arebased on the idea that su
h network N of spiking neurons
an be viewed � for a

2.2. Results 15suitable
hoi
e of its ar
hite
ture and parameters � as a �physi
al model� for thedistribution p, in the sense that its distribution of network states
onverges to p,from any initial state. Then probabilisti
 inferen
e for p
an be easily
arried out byany readout neuron that observes the resulting network states, or the spikes fromone or several neurons in the network. This holds not only for sampling from theprior distribution p, but also for sampling from the posterior after some eviden
e
e has be
ome available (see (2.1)). The link between network states of N and theRVs z1, . . . , zK is provided by assuming that there exists for ea
h RV zk a neuron νkso that ea
h time when νk �res, it sets the asso
iated binary RV zk to 1 for a timeperiod of some length τ (see Fig. 2.1C). We refer to neurons νk that represent inthis way a RV zk as prin
ipal neurons. All other neurons are referred to as auxiliaryneurons.The mathemati
al basis for analyzing the distribution of network states, and re-lating it to a given distribution p, is provided by the theory of Markov
hains. Morepre
isely, it was shown in (Büsing et al., 2011) that by introdu
ing for ea
h prin
ipalneuron νk an additional hidden analog RV ζk, that keeps tra
k of time within thetime interval of length τ after a spike of νk, one
an model the dynami
s of thenetwork N by a non-reversible Markov
hain. This Markov
hain is non-reversible,in
ontrast to Gibbs sampling or other Markov
hains that are usually
onsidered inMa
hine Learning and in the theory of Boltzmann ma
hines, be
ause this fa
ilitatesthe modelling of the temporal dynami
s of spiking neurons, in parti
ular refra
torypro
esses within a spiking neuron after a spike and temporally extended e�e
ts ofits spike on the membrane potential of other neurons to whi
h it is synapti
ally
on-ne
ted (postsynapti
 potentials). The underlying mathemati
al theory guaranteesthat nevertheless the distribution of network states of this Markov
hain
onverges(for the �original� RVs zk) to the given distribution p, provided that the NCC (2.4)is met. This theoreti
al result redu
es our goal, to demonstrate ways how a networkof spiking neurons
an
arry out probabilisti
 inferen
e in general graphi
al models,to the analysis of possibilities for satisfying the NCC (2.4) in networks of spikingneurons. The networks of spiking neurons that we
onstru
t and analyze build pri-marily on the model for neural sampling in
ontinuous time from (Büsing et al.,2011), sin
e this is the more satisfa
tory model from the biologi
al perspe
tive. Butall our results also hold for the mathemati
ally simpler version with dis
rete time.We exhibit both methods for satisfying the NCC with the help of auxiliaryneurons in networks of point neurons, and in networks of multi-
ompartment neu-ron models (where no auxiliary neurons are required). All neuron models that we
onsider are sto
hasti
, where the probability density fun
tion for the �ring of aneuron at time t (provided it is
urrently not in a refra
tory state) is proportionalto exp(u(t)), where u(t) is its
urrent membrane potential at the soma. We assume(as in (Büsing et al., 2011)) that in a point neuron model the membrane potential
u(t)
an be written as a linear
ombination of postsynapti
 potentials. Thus if theprin
ipal neuron νk is modelled as a point neuron, we have

16 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons
uk(t) = bk +

K
∑

i=1

Wki zi(t) , (2.8)where bk is the bias of neuron νk (whi
h regulates its ex
itability),Wki is the strengthof the synapti

onne
tion from neuron νi to νk, and zi(t) approximates the time
ourse of the postsynapti
 potential in neuron νk
aused by a �ring of neuron νi.The ideal neuron model from the perspe
tive of the theory of (Büsing et al., 2011)has an absolute refra
tory period of length τ , whi
h is also the assumed length of apostsynapti
 potential (EPSP or IPSP). But it was shown there through
omputersimulations that neural sampling
an be
arried out also with sto
hasti
ally �ringneurons that have a relative refra
tory period, i.e. the neuron
an �re with someprobability with an interspike interval of less than τ . In addition, it was shown theretheoreti
ally that the resulting neural network samples from a slight variation of thetarget distribution p, that is in most
ases pra
ti
ally indistinguishable.Before we des
ribe two di�erent theoreti
al approa
hes for satisfying the NCC,we �rst
onsider an even simpler method for extending the neural sampling approa
hfrom (Büsing et al., 2011) to arbitrary distributions p: through a redu
tion to 2ndorder Boltzmann distributions (2.5) with auxiliary RVs.2.2.1 Se
ond Order Boltzmann Distributions with Auxiliary Ran-dom Variables (Implementation 1)It is well known (A
kley et al., 1985) that any probability distribution p(z1, . . . , zK),with arbitrarily large fa
tors in a fa
torization su
h as (2.7),
an be represented asmarginal distribution
p(z) =

∑

x∈X

p(z,x) (2.9)of an extended distribution p(z,x) with auxiliary random variables x, that
an befa
torized into fa
tors of degrees at most 2. This
an be seen as follows. Let p(z) bean arbitrary probability distribution over binary variables with higher-order fa
tors
φc(z

c). Thus
p(z) =

1

Z

C
∏

c=1

φc(z
c) , (2.10)where z

c is a ve
tor
omposed of the RVs that the fa
tor φc depends on and Z isa normalization
onstant. We additionally assume that p(z) is non-zero for ea
hvalue of z. The simple idea is to introdu
e for ea
h possible assignment v to theRVs z
c in a higher order fa
tor φc(z

c) a new RV xc
v, that has value 1 only if v is the
urrent assignment of values to the RVs in z

c. We will illustrate this idea through the
on
rete example of Fig. 2.1. Sin
e there is only one fa
tor that
ontains more than2 RVs in the probability distribution of this example (see
aption of Fig. 2.1C),the
onditional probability p(z3|z1, z2), there will be 8 auxiliary RVs x000, x001,

2.2. Results 17. . . , x111 for this fa
tor, one for ea
h of the 8 possible assignments to the 3 RVs in
p(z3|z1, z2). Let us
onsider a parti
ular auxiliary RV, e.g. x001. It assumes value 1only if z1 = 0, z2 = 0, and z3 = 1. This
onstraint for x001
an be enfor
ed throughse
ond order fa
tors between x001 and ea
h of the RVs z1, z2 and z3. For example,the se
ond order fa
tor that relates x001 and z1 has a value of 0 if x001 = 1 and
z1 = 1 (i.e., if z1 is not
ompatible with the assignment 001), and value 1 otherwise.The individual values of the fa
tor p(z3|z1, z2) for di�erent assignments to z1, z2 and
z3 are introdu
ed in the extended distribution p(z,x) through �rst-order fa
tors, onefor ea
h auxiliary RV xc

v. Spe
i�
ally, the �rst-order fa
tor that depends on x001has value µp(z3 = 1|z1 = 0, z2 = 0) − 1 (where µ is a
onstant that res
ales thevalues of the fa
tors so that µp(z3|z1, z2) > 1 for all assignments to z1, z2 and z3)if x001 = 1, and value 1 otherwise. Further details of the
onstru
tion method for
p(z,x) are given in the Methods se
tion, together with a proof of (2.9).The resulting extended probability distribution p(z,x) has the property that,in spite of deterministi
 dependen
ies between the RVs z and x, the state set ofthe resulting Markov
hain (that
onsists of all non-forbidden value assignments to
z and x) is
onne
ted. In the previous example a non-forbidden value assignmentis x001 = 1 and z1 = 0, z2 = 0, z3 = 1. But x001 = 0, z1 = 0, z2 = 0, z3 = 1 isalso a non-forbidden value assignment. Su
h non-forbidden value assignments tothe auxiliary RVs x

c
orresponding to one higher order fa
tor, where all of themassume value of 0 regardless of the values of the z
c RVs provide transition pointsfor paths of probability > 0 that
onne
t any two non-forbidden value assignments(without requiring that 2 or more RVs swit
h their values simultaneously). Theresulting
onne
tivity of all non-forbidden states (see Methods for a proof) impliesthat this Markov
hain, whi
h
an be realized through a network N of spikingneurons a

ording to (Büsing et al., 2011), has p(z,x) as its unique stationarydistribution. The given distribution p(z) arises as marginal distribution of thisstationary distribution of N , hen
e one
an use N to sample from p(z) (just ignorethe �ring a
tivity of neurons that
orrespond to auxiliary RVs xc

v).Sin
e the number of RVs in the extended probability distribution p(z,x)
anbe mu
h larger than the number of RVs in p(z), the
orresponding spiking neuralnetwork samples from a mu
h larger probability spa
e. This, as well as the presen
eof deterministi
 relations between the auxiliary and the main RVs in the expandedprobability distribution, slow down the
onvergen
e of the resulting Markov
hain toits stationary distribution. We show however in the following, that there are severalalternatives for sampling from an arbitrary distribution p(z) through a network ofspiking neurons. These alternative methods do not introdu
e auxiliary RVs x, butrather aim at dire
tly satisfying the NCC (2.4) in a network of spiking neurons. InComputer Simulation I (see Fig. 2.3) we have
ompared the resulting
onvergen
espeed with that of the previously des
ribed method via auxiliary RVs. It turns outthat the alternative strategy provides an about 10 fold speed-up for the Bayesiannetwork of Fig. 2.1B.

18 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons2.2.2 Using the Markov Blanket Expansion of the Log-odd RatioAssume that the distribution p for whi
h we want to
arry out probabilisti
 inferen
eis given by some arbitrary Bayesian network B. There are two di�erent options forsatisfying the NCC for p, whi
h di�er in the way by whi
h the term on the r.h.s.of the NCC (2.4) is expanded. The option that we will analyze �rst uses from thestru
ture of the Bayesian network B only the information about whi
h RVs are inthe Markov blanket of ea
h RV zk. The Markov blanket Bk of the
orrespondingnode zk in B (whi
h
onsists of the parents,
hildren and
oparents of this node)has the property that zk is independent from all other RVs on
e any assignment vof values to the RVs z
Bk in the Markov blanket has been �xed. Hen
e p(zk|z\k) =

p(zk|z
Bk), and the term on the r.h.s. of the NCC (2.4)
an be expanded as follows:

log
p(zk = 1|zBk = z

Bk(t))

p(zk = 0|zBk = zBk(t))
=

∑

v∈ZBk

wk
v · [zBk(t) = v] , (2.11)where

wk
v = log

p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
. (2.12)The sum indexed by v runs over the set ZBk of all possible assignments of valuesto z

Bk , and [zBk = v] denotes a predi
ate whi
h has value 1 if the
ondition in thebra
kets is true, and to 0 otherwise. Hen
e, for satisfying the NCC it su�
es if thereare auxiliary neurons, or dendriti
 bran
hes, for ea
h of these v, that be
ome a
tiveif and only if it be
omes
lear from the �ring a
tivity of the prin
ipal neurons νi thatrepresent the variables zi in the Markov blanket Bk, that these variables
urrentlyassume the value v. The
orresponding term wk
v
an be implemented with the helpof the bias bk (see (2.8)) of the auxiliary neuron that
orresponds to the assignment

v, resulting in a value of its membrane potential equal to the r.h.s. of the NCC(2.4). We will dis
uss this implementation option below as Implementation 2. Inthe subsequently dis
ussed implementation option (Implementation 3) all prin
ipalneurons will be multi-
ompartment neurons, and no auxiliary neurons are needed.In this
ase wk
v s
ales the amplitude of the signal from a spe
i�
 dendriti
 bran
hto the soma of the multi-
ompartment prin
ipal neuron νk.2.2.2.1 Implementation with Auxiliary Neurons (Implementation 2)We illustrate the implementation of the Markov blanket expansion approa
h throughauxiliary neurons for the
on
rete example of the RV z1 in the Bayesian networkof Fig. 2.1B (see Methods for a dis
ussion of the general
ase). Its Markov blanket

B1
onsists here of the RVs z2 and z3. Hen
e the resulting neural
ir
uit (seeFig. 2.2) for satisfying the NCC for the prin
ipal neuron ν1 uses 4 auxiliary neurons
α00, α01, α10 and α11, one for ea
h of the 4 possible assignments v of values tothe RVs z2 and z3. Ea
h �ring of one of these auxiliary neurons should
ause animmediately subsequent �ring of the prin
ipal neuron ν1. Lateral inhibition amongthese auxiliary neurons
an make sure that after a �ring of an auxiliary neuron no

2.2. Results 19

Figure 2.2: Implementation 2 (the neural implementation with auxiliary neurons, that usesthe Markov blanket expansion of the log-odd ratio), for the explaining away motif of theBayesian network from Fig. 2.1B. There are 4 auxiliary neurons, one for ea
h possible valueassignment to the RVs z2 and z3 in the Markov blanket of z1. The prin
ipal neuron ν2 (ν3)
onne
ts to the auxiliary neuron αv dire
tly if z2 (z3) has value 1 in the assignment v, orvia an inhibitory inter-neuron ιv if z2 (z3) has value 0 in v. The auxiliary neurons
onne
twith a strong ex
itatory
onne
tion to the prin
ipal neuron ν1, and drive it to �re wheneverany one of them �res. The larger gray
ir
le represents the lateral inhibition between theauxiliary neurons .other auxiliary neuron �res during the subsequent time interval of length τ , therebyimplementing the required absolute refra
tory period of the theoreti
al model from(Büsing et al., 2011). The presynapti
 prin
ipal neuron ν2(ν3) is
onne
ted to theauxiliary neuron αv dire
tly if v assumes that z2(z3) has value 1, otherwise viaan inhibitory interneuron v (see Fig. 2.2). In
ase of a synapti

onne
tion via aninhibitory interneuron, a �ring of ν2(ν3) prevents a �ring of this auxiliary neuronduring the subsequent time interval of length τ . The dire
t ex
itatory synapti

onne
tions from ν2 and ν3 raise the membrane potential of that auxiliary neuron
αv, for whi
h v agrees with the
urrent values of the RVs z2(t) and z3(t), so that itrea
hes the value wk

v, and �res with a probability equal to the r.h.s. of the NCC (2.4)during the time interval within whi
h the value assignment v remains valid. Theother 3 auxiliary neurons are during this period either inhibited by the inhibitoryinterneurons, or do not re
eive enough ex
itatory input from the dire
t
onne
tionsto rea
h a signi�
ant �ring probability. Hen
e, the prin
ipal neuron ν1 will alwaysbe driven to �re just by a single auxiliary neuron αv
orresponding to the
urrentvalue of the variables z2(t) and z3(t), and will �re immediately after αv �res.As αv has a �ring probability that satis�es the r.h.s. of the NCC (2.4) temporally

20 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronsduring the time interval while z2(t) and z3(t) are
onsistent with v, the �ring of theprin
ipal neuron ν1 satis�es the r.h.s. of the NCC (2.4) at any moment in time.2.2.2.2 Computer Simulation I: Comparison of two Methods for Emu-lating �Explaining Away� in Networks of Spiking NeuronsIn our pre
eding theoreti
al analysis we have exhibited two
ompletely di�erentmethods for emulating in networks of spiking neurons probabilisti
 inferen
e in gen-eral graphi
al models through sampling: either by a redu
tion to 2nd order Boltz-mann distributions (2.5) through the introdu
tion of auxiliary RVs (Implementation1), or by satisfying the NCC (2.3) via the Markov blanket expansion. We have testedthe a

ura
y and
onvergen
e speed of both methods for the Bayesian network ofFig. 2.1B, and the results are shown in Fig.2.3. The approa
h via the NCC
onvergessubstantially faster.2.2.2.3 Implementation with Dendriti
 Computation (Implementation3)We now show that the Markov blanket expansion approa
h
an also be implementedthrough dendriti
 bran
hes of multi-
ompartment neuron models (see Methods) forthe prin
ipal neurons, without using auxiliary neurons (ex
ept for inhibitory in-terneurons). We will illustrate the idea through the same Bayesian network exampleas dis
ussed in Implementation 2, and refer to Methods for a dis
ussion of the
aseof arbitrary Bayesian networks. Fig. 2.4 shows the prin
ipal neuron ν1 in the spikingneural network for the Bayesian network of Fig. 2.1B. It has 4 dendriti
 bran
hes
δ00, δ01, δ10 and δ11, ea
h of them
orresponding to one assignment v of values tothe variables z2 and z3 in the Markov blanket of z1. The input
onne
tions from theprin
ipal neurons ν2 and ν3 to the dendriti
 bran
hes of ν1 follow the same patternas the
onne
tions from ν2 and ν3 to the auxiliary neurons in Implementation 2. Let
v be an assignment that
orresponds to the
urrent values of the variables z2(t) and
z3(t). The e�
a
ies of the synapses at the dendriti
 bran
hes and their thresholdsfor initiating a dendriti
 spike are
hosen so that the total synapti
 input to thedendriti
 bran
h δv is then strong enough to
ause a dendriti
 spike in the bran
h,that
ontributes to the membrane potential at the soma a
omponent whose am-plitude1 is equal to the parameter w1

v in (2.11). This amplitude
ould for examplebe
ontrolled by the bran
h strength of this dendriti
 bran
h (see (Loson
zy et al.,2008; Legenstein and Maass, 2011)). The parameters
an be
hosen so that all otherdendriti
 bran
hes do not re
eive enough synapti
 input to rea
h the lo
al thresholdfor initiating a dendriti
 spike, and therefore do not a�e
t the membrane potentialat the soma. Hen
e, the membrane potential at the soma of ν1 will be equal to the1Sin
e the parameters w
k
v in (2.11)
an have both positive and negative values and the amplitudeof the dendriti
 spikes and the ex
itatory synapti
 e�
a
y is a positive quantity, in this and thefollowing neural implementations we always add a positive
onstant to w

k
v to shift it into the positiverange. We subtra
t the same
onstant value from the steady state of the membrane potential.

2.2. Results 21

Figure 2.3: Results of Computer Simulation I: Performan
e
omparison between an idealversion of Implementation 1 (use of auxiliary RVs, results shown in green) and an idealversion of implementations that satisfy the NCC (results shown in blue) for probabilisti
inferen
e in the Bayesian network of Fig. 2.1B (�explaining away�). Eviden
e e (see (2.1)) isentered for the RVs z3 and z4, and the marginal probability p(z1|e) is estimated. A) Targetvalues of p(z1|e) for e = (1, 1) and e = (1, 0) are shown in bla
k, results from samplingfor 0.5 s from a network of spiking neurons are shown in green and blue. Panels C) andD) show the temporal evolution of the Kullba
k-Leibler divergen
e between the resultingestimates of p(z1|e) through neural sampling, averaged over 10 trials for e = (1, 1) in C) andfor e = (1, 0) in D). The green and blue areas around the green and blue
urves represent theunbiased value of the standard deviation. Panels A, C, D show that both approa
hes yield
orre
t probabilisti
 inferen
e through neural sampling, but the approa
h via satisfying theNCC
onverges about 10 times faster. B) The �ring rates of prin
ipal neuron ν1 (solidline) and of the prin
ipal neuron ν2 (dashed line) in the approa
h via satisfying the NCC,estimated with a sliding window (alpha kernel K(t) = t

τ
exp (− t

τ
), τ = 0.1s). In thisexperiment the eviden
e e was swit
hed after 3 s (red verti
al line) from e = (1, 1) to

e = (1, 0). The �explaining away� e�e
t is
learly visible from the
omplementary evolutionof the �ring rates of the neurons ν1 and ν2. The estimated marginal posterior is
al
ulatedfor ea
h time point from the samples (number of spikes) from the beginning of the simulation(or from t = 3s for the se
ond inferen
e query with e = (1, 0)).
ontribution from the
urrently a
tive dendriti
 bran
h w1
v, implementing therebythe r.h.s of (2.11).

22 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons

Figure 2.4: Implementation 3 (the neural implementation with dendriti

omputation thatuses the Markov blanket expansion of the log-odd ratio), for the same explaining awaymotif as in Fig. 2.2. The prin
ipal neuron ν1 has 4 dendriti
 bran
hes, one for ea
hpossible assignment of values v to the RVs z2 and z3 in the Markov blanket of z1. Thedendriti
 bran
hes of neuron ν1 re
eive synapti
 inputs from the prin
ipal neurons ν2 and
ν3 either dire
tly, or via an interneuron (analogously as in Fig. 2.2). It is required that atany moment in time exa
tly one of the dendriti
 bran
hes (that one, whose index v agreeswith the
urrent �ring states of ν2 and ν3) generates dendriti
 spikes, whose amplitude atthe soma determines the
urrent �ring probability of ν1.2.2.3 Using the Fa
torized Expansion of the Log-odd RatioThe se
ond strategy to expand the log-odd ratio on the r.h.s. of the NCC (2.4) usesthe fa
torized form (2.10) of the probability distribution p(z). This form allows usto rewrite the log-odd ratio in (2.4) as a sum of log terms, one for ea
h fa
tor φc,
c ∈ Ck, that
ontains the RV zk. One
an write ea
h of these terms as a sum over allpossible assignments v of values of the variables z

c the fa
tor φc depends on (ex
ept
zk). This yields

log
p(zk = 1|z\k = z\k(t))

p(zk = 0|z\k = z\k(t))
=
∑

c∈Ck





∑

v∈Zc
\k

wc,k
v · [zc

\k(t) = v]



 , (2.13)where z
c
\k is a ve
tor
omposed of the RVs z

c that the fa
tor c depends on � without
zk, and z

c
\k(t) is the
urrent value of this ve
tor at time t. Zc

\k denotes the set of allpossible assignments to the RVs z
c
\k. The parameters wc,k

v are set to
wc,k

v = log
φc(z

c
\k = v, zk = 1)

φc(z
c
\k = v, zk = 0)

. (2.14)

2.2. Results 23The fa
torized expansion in (2.13) is similar to (2.11), but with the di�eren
e thatwe have another sum running over all fa
tors that depend on zk. Consequently,in the resulting Implementation 4 with auxiliary neurons and dendriti
 bran
hesthere will be several groups of auxiliary neurons that
onne
t to νk, where ea
hgroup implements the expansion of one fa
tor in (2.13). The alternative model thatonly uses dendriti

omputation (Implementation 5) will have groups of dendriti
bran
hes
orresponding to the di�erent fa
tors. The number of auxiliary neuronsthat
onne
t to νk in Implementation 4 (and the
orresponding number of dendriti
bran
hes in Implementation 5) is equal to the sum of the exponents of the sizesof fa
tors that depend on zk: ∑c∈Ck 2
D(zc

\k
), where D(zc

\k) denotes the numberof RVs in the ve
tor z
c
\k. This number is never larger than 2|Bk | (where |Bk| isthe size of the Markov blanket of zk), whi
h gives the
orresponding number ofauxiliary neurons or dendriti
 bran
hes that are required in the Implementation 2and 3. These two numbers
an
onsiderably di�er in graphi
al models where theRVs parti
ipate in many fa
tors, but the size of the fa
tors is small. Thereforeone advantage of this approa
h is that it requires in general fewer resour
es. On theother hand, it introdu
es a more
omplex
onne
tivity between the auxiliary neuronsand the prin
ipal neuron (
ompare Fig.2.5 with Fig.2.2). Furthermore, the networkstru
ture in Implementation 2 is
ompatible with a re
ently developed unsupervisedlearning ar
hite
ture with spiking neurons that uses a lo
al STDP learning rule(Nessler et al., 2010).2.2.3.1 Implementation with Auxiliary Neurons and Dendriti
 Bran
hes(Implementation 4)A salient di�eren
e to the Markov blanket expansion and Implementation 2 arisesfrom the fa
t that the r.h.s. of the fa
tor expansion (2.13)
ontains an additionalsummation over all fa
tors c that
ontain the RV zk (we write Ck for this setof fa
tors). This entails that the prin
ipal neuron νk has to sum up inputs fromseveral groups of auxiliary neurons, one for ea
h fa
tor c ∈ Ck. Hen
e in
ontrast toImplementation 2, where the prin
ipal neuron �red whenever one of the asso
iatedauxiliary neurons �red, we now aim at satisfying the NCC by making sure that themembrane potential of νk approximates at any moment in time the r.h.s. of theNCC (2.4). One
an a
hieve this by making sure that ea
h auxiliary neuron αk

v�res immediately when the presynapti
 prin
ipal neurons assume state v. Someimpre
ision of the sampling may arise when the value of variables in z
c
\k
hanges,while EPSPs
aused by an earlier value of these variables have not yet vanished at thesoma of νk. This problem
an be solved if the �ring of the auxiliary neuron
aused bythe new value of zc

\k shunts su
h EPSP, that had been
aused by the pre
eding valueof z
c
\k, dire
tly in the
orresponding dendrite. This shunting inhibition should haveminimal e�e
t on the membrane potential at the soma of νk. Therefore ex
itatorysynapti
 inputs from di�erent auxiliary neurons αv (that
ause a depolarization byan amount wc,k

v at the soma) should arrive on di�erent dendriti
 bran
hes δv of νk(see Fig. 2.5), that also have
onne
tions from asso
iated inhibitory neurons ι̂v.

24 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons

Figure 2.5: Implementation 4 (implementation with auxiliary neurons and dendriti
bran
hes, that uses the fa
torized expansion of the log-odd ratio) for the same explain-ing away motif as in Fig. 2.2 and 2.4. As in Fig. 2.2 there is one auxiliary neuron αv forea
h possible value assignment v to z2 and z3. The
onne
tions from the neurons ν2 and ν3(that
arry the
urrent values of the RVs z2 and z3) to the auxiliary neurons are the same asin Fig. 2.2, and when these RVs
hange their value, the auxiliary neuron that
orrespondsto the new value �res. Ea
h auxiliary neuron αv
onne
ts to the prin
ipal neuron ν1 at aseparate dendriti
 bran
h δv, and there is an inhibitory neuron ι̂v
onne
ting to the samebran
h. The rest of the auxiliary neurons
onne
t to the inhibitory interneuron ι̂v. Thefun
tion of the inhibitory neuron ι̂v is to shunt the a
tive EPSP
aused by a re
ent spikefrom the auxiliary neuron αv when the value of the z2 and z3
hanges from v to anothervalue.Fig. 2.5 shows the resulting implementation for the same explaining away motifof Fig. 2.1B as the pre
edings �gures 2 and 3. Note that the RV z1 o

urs there onlyin a single fa
tor p(z3|z1, z2), so that the previously mentioned summation of EPSPsfrom auxiliary neurons that arise from di�erent fa
tors
annot be demonstrated inthis example.

2.2. Results 252.2.3.2 Implementation with Dendriti
 Computation (Implementation5)The last neural implementation that we
onsider is an adaptation of Implementation3 (the implementation with dendriti

omputation, that uses the Markov blanketexpansion of the log-odd ratio) to the fa
torized expansion of the log-odd ratio.In this
ase ea
h prin
ipal neuron, instead of having all its dendriti
 bran
hes
or-responding to di�erent value assignments to the RVs of the Markov blanket, hasseveral groups of dendriti
 bran
hes, where ea
h group
orresponds to the linearexpansion of one fa
tor in the log-odd ratio in (2.13). Fig. 2.6 shows the
ompletespiking neural network that samples from the Bayesian network of Fig. 2.1B. Theprin
ipal neuron ν1 has the same stru
ture and
onne
tivity as in Implementation 3(see Fig. 2.4), sin
e the RV z1 parti
ipates in only one fa
tor, and the set of variablesother that z1 in this fa
tor
onstitute the Markov blanket of z1. The same is true forthe prin
ipal neurons ν3 and ν4. As the RV z2 o

urs in two fa
tors, the prin
ipalneuron ν2 has two groups of dendriti
 bran
hes, 4 for the fa
tor p(z3|z1, z2) withsynapti
 input from the prin
ipal neurons ν1 and ν3, and 2 for the fa
tor p(z4|z2)with synapti
 inputs from the prin
ipal neuron ν4. Note for
omparison, that thisneuron νk needs to have 8 dendriti
 bran
hes in Implementation 3, one for ea
hassignment of values to the variables z1, z3 and z4 in the Markov blanket of z2.The number of dendriti
 bran
hes of a prin
ipal neuron νk in this implemen-tation is the same as the number of auxiliary neurons for νk in Implementation 4,and is never larger than the number of dendriti
 bran
hes of the neuron νk in Im-plementation 3. Although this implementation is more e�
ient with respe
t to therequired number of dendriti
 bran
hes, when
onsidering the possible appli
ationof STDP for learning Implementation 3, the latter has the advantage that it
anlearn an approximate generative model of the probability distribution of the inputswithout knowing apriori the fa
torization of the probability distribution.The amplitude of the dendriti
 spikes from the dendriti
 bran
h δc,2
v of the prin-
ipal neuron ν2 should be equal to the parameter wc,2

v from (2.13). The index cidenti�es the two fa
tors that depend on z2. The membrane voltage at the somaof the prin
ipal neuron ν2 is then equal to the sum of the
ontributions from thedendriti
 spikes of the a
tive dendriti
 bran
hes. At time t there is exa
tly onea
tive bran
h in ea
h of the two groups of dendriti
 bran
hes. The sum of the
on-tributions from the two a
tive dendriti
 bran
hes results in a membrane voltage atthe soma of the prin
ipal neuron that
orresponds to the r.h.s of the (2.13). In theMethods se
tion we provide a general and detailed explanation of this approa
h.2.2.4 Probabilisti
 Inferen
e through Neural Sampling in Largerand More Complex Bayesian NetworksWe have tested the viability of the previously des
ribed approa
h for neural samplingby satisfying the NCC also on two larger and more
omplex Bayesian networks:the well-known ASIA-network (Lauritzen and Spiegelhalter, 1988), and an even

26 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons

Figure 2.6: Implementation 5 (implementation with dendriti

omputation that is based onthe fa
torized expansion of the log-odd ratio) for the Bayesian network shown in Fig. 2.1B.RV z2 o

urs in two fa
tors, p(z3|z1, z2) and p(z4|z2), and therefore ν2 re
eives synapti
inputs from ν1, ν3 and ν4 on separate groups of dendriti
 bran
hes. Altogether the synapti

onne
tions of this network of spiking neurons implement the graph stru
ture of Fig. 2.1D.larger randomly generated Bayesian network. The primary question is in both
ases,whether the
onvergen
e speed of neural sampling is in a range where a reasonableapproximation to probabilisti
 inferen
e
an be provided within the typi
al rangeof biologi
al rea
tion times of a few 100 ms. In addition, we examine for the ASIA-network the question to what extent more
omplex and biologi
ally more realisti
shapes of EPSPs a�e
t the performan
e. For the larger random Bayesian network weexamine whi
h di�eren
e in performan
e is
aused by neuron models with absoluteversus relative refra
tory periods.2.2.4.1 Computer Simulation II: ASIA Bayesian NetworkThe ASIA-network is an example for a larger
lass of Bayesian networks that are ofspe
ial interest from the perspe
tive of Cognitive S
ien
e (Mansinghka et al., 2006).Networks of this type, that
onsist of 3 types of RVs (
ontext information, true
auses, observable symptoms) with dire
ted edges only from one
lass to the next,
apture the
ausal stru
ture behind numerous domains of human reasoning. TheASIA-network (see Fig. 2.7A) en
odes knowledge about dire
t in�uen
es betweenenvironmental fa
tors, 3 spe
i�
 diseases, and observable symptoms. A
on
retedistribution p that is
ompatible with this Bayesian network was spe
i�ed through
onditional probabilities for ea
h node as in (Lauritzen and Spiegelhalter, 1988)(with one small
hange to avoid deterministi
 relationship among RVs, see Table 2

2.2. Results 27
X: positive X-ray? D: dyspnoea?

T: tuberculosis? C: lung cancer? B: bronchitis?

A: visit to Asia? S: smoking?
A

Figure 2.7: See next page for �gure
aption.in Methods). The binary RVs of the network en
ode whether a person had a re
entvisit to Asia (A), whether the person smokes (S), the presen
e of diseases tuber
ulosis(T), lung
an
er (C), and bron
hitis (B), the presen
e of the symptom dyspnoea (D),and the result of a
hest x-ray test (X). This network not only
ontains multiple�explaining away� e�e
ts (i.e., nodes with more than one parent), but also a loop(i.e., undire
ted
y
le) between the RVs S, B, D, C. Hen
e no probabilisti
 inferen
eapproa
h based on belief propagation is guaranteed to work for this ASIA-network.A typi
al example for probabilisti
 inferen
e in this network arises when oneenters as eviden
e the fa
ts that the patient visited Asia (A = 1) and has Dyspnoea(D = 1), and asks what is the likelihood of ea
h of the RVs T, C, B that represent the

28 Chapter 2. Sampling in Graphi
al Models with Spiking NeuronsFigure 2.7: Results of Computer Simulation II: Probabilisti
 inferen
e in the ASIA networkwith networks of spiking neurons that use di�erent shapes of EPSPs
loser to neurophys-iologi
al measurements. The simulated neural networks
orrespond to Implementation 2.The eviden
e is
hanged at t = 3s from e = (A = 1, D = 1) to e = (A = 1, D = 1, X = 1)(by additionally
lamping the x-ray test RV to 1). The probabilisti
 inferen
e query is toestimate marginal posterior probabilities p(T = 1|e), p(C = 1|e, and p(B = 1|e). A) TheASIA Bayesian network. B) The three di�erent shapes of EPSPs used in the simulations,an alpha shape (green
urve), a smooth plateau shape (blue
urve) and the optimal re
t-angular shape (bla
k
urve). Panels C) and D) show the estimated marginal probabilitiesfor ea
h of the diseases,
al
ulated from the samples generated during the �rst 800 ms ofthe simulation with alpha shaped (green bars), plateau shaped (blue bars) and re
tangular(red bars) EPSPs,
ompared with the
orresponding
orre
t marginal posterior probabili-ties (bla
k bars), for e = (A = 1, D = 1) in C) and e = (A = 1, D = 1, X = 1) in D).The results are averaged over 20 simulations with di�erent random initial
onditions andthe error bars show the unbiased estimate of the standard deviation. Panels E) and F)show the sum of the Kullba
k-Leibler divergen
es between the
orre
t and the estimatedmarginal posterior probability for ea
h of the diseases using alpha shaped (green
urve),plateau shaped (blue
urve) and re
tangular (red
urve) EPSPs, for e = (A = 1, D = 1)in E) and e = (A = 1, D = 1, X = 1) in F). The results are averaged over 20 simulationtrials, and the light green and light blue areas show the unbiased estimate of the standarddeviation for the green and blue
urves respe
tively (the standard deviation for the red
urve is not shown to avoid
lutter). The estimated marginal posteriors are
al
ulated forea
h time point from the gathered samples from the beginning of the simulation (or from
t = 3s for the se
ond inferen
e query with e = (A = 1, D = 1, X = 1)).diseases, and how the result of a positive x-ray test would a�e
ts these likelihoods.We tested this probabilisti
 inferen
e in a network of spiking neurons a

ordingto Implementation 2 with three di�erent shapes of the EPSPs: an alpha EPSP, aplateau EPSP and the optimal re
tangular EPSP (See Fig. 2.7A). These shapesmat
h qualitatively the shapes of EPSPs re
orded in the soma of pyramidal neuronsfor synapti
 inputs that arrive on dendriti
 bran
hes (see Fig. 2.1 in (Williamsand Stuart, 2002)). The neurons in the spiking neural network had an absoluterefra
tory period. Fig. 2.7C, D show that the network provides for all three shapesof the EPSPs within 800 ms of simulated biologi
al time quite a

urate answers tothis probabilisti
 inferen
e query. Fig. 2.7E, F show also with smoother shapes ofthe PSPs the networks arrive at good heuristi
 answers within several hundreds ofmillise
onds. The KL divergen
e
onverges in this
ase to a small non-zero value,indi
ating an error
aused by the approximation.Fig. 2.8 shows the spiking a
tivity of the neural network with alpha shapedEPSPs in one of the simulation trials. During the �rst 3 se
onds of the simulation thenetwork alternated between two di�erent modes of spiking a
tivity, that
orrespondto two di�erent modes of the posterior probability distribution. There are timeperiods when the prin
ipal neuron for the RV X (positive X-ray), T (tuber
ulosis)and C (lung
.) had a higher �ring rate, with time periods in between where theywere silent. After t = 3s, when the eviden
e that the x-ray test is positive was

2.2. Results 29

Figure 2.8: Spike raster of the spiking a
tivity of the neurons in one of the 20 simulationtrials des
ribed in Fig. 2.7 for the network of spiking neurons with alpha shaped EPSPs.The eviden
e was swit
hed after 3 s (red verti
al line) from e = (A = 1, D = 1) to
e = (A = 1, D = 1, X = 1) (by
lamping the RV X to 1). In ea
h blo
k of rows the lowestspike train shows the a
tivity of a prin
ipal neuron (see left hand side for the label of theasso
iated RV), and the spike trains above show the �ring a
tivity of the asso
iated auxiliaryneurons. After t = 3s the a
tivity of the neurons for the x-ray test RV is not shown, sin
eduring this period the RV is
lamped and the �ring rate of its prin
ipal neuron is indu
edexternally.introdu
ed, the a
tivity of the network remained in the �rst mode.2.2.4.2 Computer Simulation III: Randomly Generated Bayesian Net-workIn order to test the performan
e of neural sampling for an �arbitrary�, less stru
tured,and larger graphi
al model, we generated a random Bayesian network a

ording tothe method proposed in (Ide and Cozman, 2002) (the details of the generationalgorithm are given in the Methods se
tion). We added an additional
onstraint,that the maximum in-degree of the nodes should be not larger than 8. A resulting

30 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons
1

1

1

1 1

0

0

0Figure 2.9: A randomly generated Bayesian network, for whi
h a neural implementationof probabilisti
 inferen
e was tested in Computer Simulation III. It
ontains 20 nodes.Ea
h node has up to 8 parents. We
onsider the generi
 but more di�
ult instan
e forprobabilisti
 inferen
e where eviden
e e is entered for nodes z13, . . . , z20 in the lower partof the dire
ted graph. Conditional probability tables were also randomly generated for allRVs.randomly generated network is shown in Fig. 2.9. It
ontains nodes with up to8 parents, and it also
ontains numerous loops. For the RVs z13 to z20 we �xeda randomly
hosen assignment e. Neural sampling was tested for an ideal neuralnetwork that satis�es the NCC with a variety of random initial states, using spikingneurons with an absolute, and alternatively also with a relative refra
tory period.Fig. 2.10A shows that in most of our 10 simulations with di�erent randomly
ho-sen initial states the sum of Kullba
k-Leibler divergen
es for the 12 RVs z1, . . . , z12be
omes quite small within a se
ond. Only in a few trials several se
onds wereneeded for that. Fig. 2.10C and 2.10D show the spiking a
tivity of the neural net-work from t = 0s to t = 8s in one of the 10 trials. It is interesting to observe thatthe network went through a number of network states, ea
h of them
hara
terizedby a high �ring rate of a parti
ular subset of the neurons.Similarly spontaneous swit
hings between internal network states have been re-ported in numerous biologi
al experiments (see e.g. (Abeles et al., 1995; Miller and

2.3. Dis
ussion 31

Figure 2.10: See next page for �gure
aption.Katz, 2010)), but their fun
tional role has remained unknown. In the
ontext ofComputer Simulation III these swit
hings between network states arise be
ause thisis the only way how this network of spiking neurons
an sample from a multi-modaltarget distribution p.2.3 Dis
ussionWe have shown through rigorous theoreti
al arguments and
omputer simulationsthat networks of spiking neurons are in prin
iple able to emulate probabilisti
 in-feren
e in general graphi
al models. The latter has emerged as a quite suitablemathemati
al framework for des
ribing those
omputational tasks that arti�
ial and

32 Chapter 2. Sampling in Graphi
al Models with Spiking NeuronsFigure 2.10: Computer Simulation III: Neural emulation of probabilisti
 inferen
e throughneural sampling in the fairly large and
omplex randomly
hosen Bayesian network shownin Fig. 2.9. A) The sum of the Kullba
k-Leibler divergen
es between the
orre
t andthe estimated marginal posterior probability for ea
h of the unobserved random variables
(z1, z2, · · · , z12),
al
ulated from the generated samples (spikes) from the beginning of thesimulation up to the
urrent time indi
ated on the x-axis, for simulations with a neuronmodel with relative refra
tory period. Separate
urves with di�erent
olors are shown forea
h of the 10 trials with di�erent initial
onditions (randomly
hosen). The bold bla
k
urve
orresponds to the simulation for whi
h the spiking a
tivity is shown in C) and D).B) As in A) but the mean over the 10 trials is shown, for simulations with a neuron modelwith relative refra
tory period (solid
urve) and absolute refra
tory period (dashed
urve.).The gray area around the solid
urve shows the unbiased estimate of the standard deviation
al
ulated over the 10 trials. C) and D) The spiking a
tivity of the 12 prin
ipal neuronsduring the simulation from t = 0 s to t = 8 s, for one of the 10 simulations (neurons withrelative refra
tory period). The neural network enters and remains in di�erent networkstates (indi
ated by di�erent
olors),
orresponding to di�erent modes of the posteriorprobability distribution.biologi
al intelligent agents need to solve. Hen
e the results of this work provide alink between this abstra
t des
ription level of
omputational theory and models fornetworks of neurons in the brain. In parti
ular, they provide a prin
ipled frame-work for investigating how nonlinear
omputational operations in network motifsof
orti
al mi
ro
ir
uits and in the dendriti
 trees of neurons
ontribute to brain
omputations on a larger s
ale.We have presented three di�erent theoreti
al approa
hes for extending the resultsof (Büsing et al., 2011), so that they yield explanations how probabilisti
 inferen
ein general graphi
al models
ould be
arried out through the inherent dynami
sof re
urrent networks of sto
hasti
ally �ring neurons (neural sampling). The �rstand simplest one was based on the fa
t that any distribution
an be representedas marginal distribution of a 2nd order Boltzmann distribution (2.5) with auxiliaryRVs. However, as we have demonstrated in Fig.2.3, this approa
h yields ratherslow
onvergen
e of the distribution of network states to the target distribution.This is a natural
onsequen
e of the deterministi
 de�nition of new RVs in terms ofthe original RVs, whi
h redu
es the
ondu
tan
e (Koller and Friedman, 2009; Levinet al., 2008) (i.e., the probability to get from one set of network states to anotherset of network states) of the Markov
hain that is de�ned by the network dynami
s.Further resear
h is needed to
larify whether this de�
ien
y
an be over
ome throughother methods for introdu
ing auxiliary RVs.We have furthermore presented two approa
hes for satisfying the NCC (2.2) of(Büsing et al., 2011), whi
h is a su�
ient
ondition for sampling from a given distri-bution. These two
losely related approa
hes rely on di�erent ways of expanding theterm on the r.h.s. of the NCC (2.4). The �rst approa
h
an be used if the underlyinggraphi
al model implies that the Markov blankets of all RVs are relatively small.The se
ond approa
h yields e�
ient neural emulations under a milder
onstraint: if

2.3. Dis
ussion 33ea
h fa
tor in a fa
torization of the target distribution is rather small (and if thereare not too many fa
tors). Ea
h of these two approa
hes provides the theoreti
albasis for two di�erent methods for satisfying the NCC in a network of spiking neu-rons: either through nonlinear
omputation in network motifs with auxiliary spikingneurons (that do not dire
tly represent a RV of the target distribution), or throughdendriti

omputation in multi-
ompartment neuron models. This yields altogetherfour di�erent options for satisfying the NCC in a network of spiking neurons. Thesefour options are demonstrated in Fig. 2.2 - 2.6 for a
hara
teristi
 explaining awaymotif in the simple Bayesian network of Fig. 2.1B, that had previously been intro-du
ed to model inferen
e in biologi
al visual pro
essing (Knill and Kersten, 1991).The se
ond approa
h for satisfying the NCC never requires more auxiliary neuronsor dendriti
 bran
hes than the �rst approa
h.Ea
h of these four options for satisfying the NCC would be optimally supportedby somewhat di�erent features of the intera
tion of ex
itation and inhibition in
anoni
al
orti
al mi
ro
ir
uit motifs, and by somewhat di�erent features of den-driti

omputation. Su�
iently pre
ise and general experimental data are not yetavailable for many of these features, and we hope that the
omputational
onse-quen
es of these features that we have exhibited in this work will promote furtherexperimental work on these open questions. In parti
ular, the neural
ir
uit ofFig. 2.5 uses an implementation strategy that requires for many graphi
al models(those where Markov blankets are substantially larger than individual fa
tors) fewerauxiliary neurons. But it requires temporally pre
ise lo
al inhibition in dendriti
bran
hes that has negligible e�e
ts on the membrane potential at the soma, or inother dendriti
 bran
hes that are used for this
omputation. Some experimentalresults in this dire
tion are reported in (Williams and Stuart, 2003), where it wasshown (see e.g. their Fig. 1) that IPSPs from api
al dendrites of layer 5 pyramidalneurons are drasti
ally attenuated at the soma. The options that rely on dendriti

omputation (Fig. 2.4 and 2.6) would be optimally supported if EPSPs from den-driti
 bran
hes that are not ampli�ed by dendriti
 spikes have hardly any e�e
ton the membrane potential at the soma. Some experimental results whi
h supportthis assumption for distal dendriti
 bran
hes of layer 5 pyramidal neurons had beenreported in (Williams and Stuart, 2002), see e.g. their Fig.1. With regard to detailsof dendriti
 spikes, these would optimally support the ideal theoreti
al models withdendriti

omputation if they would have a rather short duration at the soma, inorder to avoid that they still a�e
t the �ring probability of the neuron when thestate (i.e., �ring or non-�ring within the pre
eding time interval of length τ) ofpresynapti
 neurons has
hanged. In addition, the ideal impa
t of a dendriti
 spikeon the membrane potential at the soma would approximate a step fun
tion (ratherthan a fun
tion with a pronoun
ed peak at the beginning).We have fo
used in this work on the des
ription of ideal neural emulations ofprobabilisti
 inferen
e in general graphi
al models. Our results provide the basisfor investigating how approximations to these ideal neural emulations
ould emergethrough synapti
 plasti
ity and other adaptive pro
esses in neurons. First explo-rations of these questions suggest that in parti
ular approximations to Implementa-

34 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronstions 1,2 and 4
ould emerge through STDP in an ubiquitous network network mo-tif of
orti
al mi
ro
ir
uits (Douglas and Martin, 2004b): Winner-Take-All
ir
uitsformed by populations of pyramidal neurons with lateral inhibition. This learning-based approa
h relies on the observation that STDP enables pyramidal neurons inthe presen
e of lateral inhibition to spe
ialize ea
h on a parti
ular pattern of presy-napti
 �ring a
tivity, and to �re after learning only when this presynapti
 �ringpattern appears (Nessler et al., 2010). These neurons would then assume the roleof the auxiliary neurons, both in the �rst option with auxiliary RVs, and in theoptions shown in Fig. 2.2 and 2.5. Furthermore, the results of (Legenstein andMaass, 2011) suggest that STDP in
ombination with bran
h strength potentiationenables individual dendriti
 bran
hes to spe
ialize on parti
ular patterns of presy-napti
 inputs, similarly as in the theoreti
ally optimal
onstru
tions of Fig. 2.4 and2.6. One di�eren
e between the theoreti
ally optimal neural emulations and learn-ing based approximations is that auxiliary neurons or dendriti
 bran
hes learn torepresent only the most frequently o

urring patterns of presynapti
 �ring a
tivity,rather than
reating a
omplete
atalogue of all theoreti
ally possible presynapti
�ring patterns. This has the advantage that fewer auxiliary neurons and dendriti
bran
hes are needed in these biologi
ally more realisti
 learning-based approxima-tions.Other ongoing resear
h explores neural emulations of probabilisti
 inferen
e fornon-binary RVs. In this
ase a sto
hasti
 prin
ipal neuron νk that represents abinary RV zk is repla
ed by a Winner-Take-All
ir
uit, that en
odes the value of amultinomial or analog RV through population
oding, see (Nessler et al., 2010).2.3.1 Related WorkThere are a number of studies proposing neural network ar
hite
tures that im-plement probabilisti
 inferen
e (A
kley et al., 1985; Hinton and Sejnowski, 1986;Deneve, 2008; Steimer et al., 2009; Litvak and Ullman, 2009; Rao, 2004, 2007; Bo-browski et al., 2009; Siegelmann and Holzman, 2010; Be
k and Pouget, 2007; Raoand Ballard, 1999; Ma et al., 2008, 2006; Deneve et al., 2001; Yu and Dayan, 2005;Shi and Gri�ths, 2009). Most of these models propose neural emulations of the be-lief propagation algorithm, where the a
tivity of neurons or populations of neuronsen
odes intermediate values (
alled messages or beliefs) needed in the arithmeti
al
al
ulation of the posterior probability distribution. With some ex
eptions (Den-eve, 2008), most of the approa
hes assume rate-based
oding of information and userate-based neuron models or mean-�eld approximations.In parti
ular, in (Litvak and Ullman, 2009) a spiking neural network model wasdeveloped that performs the max-produ
t message passing algorithm, a variant ofbelief propagation, where the ne
essary maximization and produ
t operations wereimplemented by spe
ialized neural
ir
uits. A spiking neural implementation of thesum-produ
t belief propagation algorithm was proposed in (Steimer et al., 2009),where the
al
ulation and passing of the messages was a
hieved in a re
urrent net-work of inter
onne
ted liquid state ma
hines (Maass et al., 2002a). In these studies,

2.3. Dis
ussion 35that implemented probabilisti
 inferen
e with spiking neurons through emulationof the belief propagation algorithm, the probability distributions or the messagesduring the
al
ulation of the posterior distributions were en
oded in an average �r-ing rate of a population of neurons. Another interesting approa
h, that adopts analternative spike-time based
oding s
heme, was des
ribed in (Deneve, 2008). Inthis study a spiking neuron model estimates the log-odd ratio of a hidden binarystate in a hidden Markov
hain, and it outputs a spike only when it re
eives neweviden
e from the inputs that
auses a shift in the estimated log-odd ratio thatex
eeds a
ertain threshold, that is, only when new information about a
hange inthe log-odd ratio is presented that
annot be predi
ted by the pre
eding spikes ofthe neuron. However, this study
onsiders only a very restri
ted
lass of graphi
almodels: Bayesian networks that are trees (where for example no explaining away
an o

ur).The idea that nonlinear dendriti
 me
hanisms
ould a

ount for the nonlinearpro
essing that is required in neural models that perform probabilisti
 inferen
ehas been proposed previously in (Rao, 2007) and (Siegelmann and Holzman, 2010),albeit for the belief propagation algorithm. In (Rao, 2007) the authors introdu
e aneural model that implements probabilisti
 inferen
e in hidden Markov models viathe belief propagation algorithm, and suggest that the nonlinear fun
tions that arisein the model
an be mapped to the nonlinear dendriti
 �ltering. In (Siegelmann andHolzman, 2010) another rate-based neural model that implements the loopy beliefpropagation algorithm in general graphi
al models was des
ribed, where the requiredmultipli
ation operations in the algorithm were proposed to be implemented by thenonlinear pro
essing in individual dendriti
 trees.While there exist several di�erent spiking neural network models in the litera-ture that perform probabilisti
 inferen
e based on the belief propagation algorithm,there is a la
k of spiking neural network models that implement probabilisti
 in-feren
e through Markov
hain Monte Carlo (MCMC sampling). To the best of ourknowledge, the neural implementations proposed in this work are the only spikingneural networks for probabilisti
 inferen
e via MCMC in general graphi
al models.In (Hinton and Sejnowski, 1986) a non-spiking neural network
omposed of sto
has-ti
 binary neurons was introdu
ed, that performs probabilisti
 inferen
e via Gibbssampling. The neural network in (Hinton and Sejnowski, 1986) performs inferen
evia sampling in probability distributions that have only pairwise
ouplings betweenthe RVs. An extension was proposed in (Sejnowski, 1987), that
an perform Gibbssampling in probability distributions with higher-order dependen
ies between thevariables, whi
h
orresponds to the
lass of probability distributions that we
on-sider in this work. A spiking neural network model based on the results in (Hintonand Sejnowski, 1986) had been proposed in (Hinton and Brown, 2000), for a re-stri
ted
lass of probability distributions that only have se
ond order fa
tors, andwhi
h satisfy some additional
onstraints on the
onditional independen
ies betweenthe variables. To the best of our knowledge, this approa
h had not been extendedto more general probability distributions.The existing gap between abstra
t
omputational models of brain pro
essing

36 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronsthat use MCMC algorithms for probabilisti
 inferen
e on one hand, and neuros
i-enti�
 data about neural stru
tures and neural pro
esses on the other hand, hasbeen pointed out and emphasized by several studies (Hoyer and Hyvärinen, 2003;Gershman et al., 2009; Fiser et al., 2010). The results in (Büsing et al., 2011) andin this work propose neural
ir
uit models that aim to bridge this existing gap, andthereby suggest new means for analysis and interpretations for both the
omputa-tional models and experimental neuros
ienti�
 �ndings. For instan
e, per
eptualmultistability in ambiguous visual stimuli and several of its related phenomena wereexplained through abstra
t
omputational models that employ sequential samplingwith the Metropolis MCMC algorithm (Gershman et al., 2009). In our simulations(see Fig. 2.10) we showed that a spiking neural network
an exhibit multistability,where the state
hanges from one mode of the posterior distribution to another,even though the Markov
hain de�ned by the neural network does not satisfy thedetailed balan
e property like the Metropolis algorithm.2.3.2 Experimentally Testable Predi
tions of our ModelsOur models postulate that knowledge is en
oded in the brain in the form of proba-bility distributions p, that are not required to be of the restri
ted form of 2nd orderBoltzmann distributions (2.5). Furthermore they postulate that these distributionsare en
oded through synapti
 weights and neuronal ex
itabilities, and possibly alsothrough the strength of dendriti
 bran
hes. Finally, our approa
h postulates thatthese learnt and stored probability distributions p are a
tivated through the inher-ent sto
hasti
 dynami
s of networks of spiking neurons, using nonlinear features ofnetwork motifs and neurons to represent higher order dependen
ies between RVs.It also predi
ts that (in
ontrast to the model of (Büsing et al., 2011)) synapti

onne
tions between neurons are in general not symmetri
, be
ause this enables thenetwork to en
ode higher order fa
tors of p.The postulate that knowledge is stored in the brain in the form of probabilitydistributions, that are realized through the sto
hasti
 dynami
s of neural
ir
uits,is
onsistent with the ubiquitous trial-to-trial variability found in experimental data(Dean, 1981; Tolhurst et al., 1983). It has been partially
on�rmed through moredetailed analyses, whi
h show that spontaneous brain a
tivity shows many
hara
-teristi
 features of brain responses to natural external stimuli ((Kenet et al., 2003;Rai
hle, 2010; Berkes et al., 2011)). Further analysis of spontaneous a
tivity isneeded in order to verify this predi
tion. Beyond this predi
tion regarding spon-taneous a
tivity, our approa
h proposes that �u
tuating neuronal responses to ex-ternal stimuli (or internal goals) represent samples from a
onditional marginaldistribution, that results from entering eviden
e e for a subset of RVs of the storeddistribution p (see (2.1)). A veri�
ation of this predi
tion requires an analysis ofthe distributions of network responses � rather than just averaging � for repeatedpresentations of the same sensory stimulus or task. Similar analyses of human re-sponses to repeated questions have already been
arried out in
ognitive s
ien
e(Gri�ths and Tenenbaum, 2006; Vul and Pashler, 2008; Denison et al., 2010), and

2.3. Dis
ussion 37have been interpreted as eviden
e that humans respond to queries by sampling frominternally stored probability distributions.Our resulting model for neural emulations of probabilisti
 inferen
e predi
ts,that even strong �ring of a single neuron (provided it represents a RV whose valuehas a strong impa
t on many other RVs) may drasti
ally
hange the a
tivity patternof many other neurons (see the
hange of network a
tivity after 3 s in Fig. 2.8, whi
hresults from a
hange in value of the RV that represents �x-ray�). One experimentalresult of this type had been reported in (Li et al., 2009). Fig. 2.8 also suggests thatdi�erent neurons may have drasti
ally di�erent �ring rates, where a few neurons �rea lot, and many others �re rarely. This is a
onsequen
e both of di�erent marginalprobabilities for di�erent RVs, but also of the quite di�erent
omputational role anddynami
s of neurons that represent RVs (�prin
ipal neurons�), and auxiliary neuronsthat support the realization of the NCC, and whi
h are only a
tivated by a veryspe
i�
 a
tivation patterns of other presynapti
 neurons. Su
h strong di�eren
es inthe �ring a
tivity of neurons has already been found in some experimental studies,see (Koulakov et al., 2009; Yassin et al., 2010). In addition, Fig. 2.10 predi
ts thatre
ordings from multiple neurons
an typi
ally be partitioned into time intervals,where a di�erent �ring pattern dominates during ea
h time interval (see (Abeleset al., 1995; Miller and Katz, 2010)) for some related experimental data.Apart from these more detailed predi
tions, a
entral predi
tion of our model is,that a subset of
orti
al neurons (the �prin
ipal neurons�) represent through their�ring a
tivity the
urrent value of di�erent salient RVs. This
ould be tested, forexample, through simultaneous re
ordings from large numbers of neurons duringexperiments, where the values of several RVs that are relevant for the subje
t, andthat
ould potentially be stored in the
orti
al area from whi
h one re
ords, are
hanged in a systemati
 manner.It will be more di�
ult to test, whi
h of the
on
rete implementations of
om-putational prepro
essing for satisfying the NCC that we have proposed, are imple-mented in some neural tissue. Both the underlying theoreti
al framework and our
omputer simulations (see Fig. 2.8) predi
t that the auxiliary neurons involved inthese lo
al
omputations are rarely a
tive. More spe
i�
ally, the model predi
ts thatthey only be
ome a
tive when some spe
i�
 set of presynapti
 neurons (whose �ringstate represents the
urrent value of the RVs in z\k) assumes a spe
i�
 pattern of �r-ing and non-�ring. Implementation 3 and 5 make
orresponding predi
tions for thea
tivity of di�erent dendriti
 bran
hes of pyramidal neurons, that
ould potentiallybe tested through Ca++-imaging.2.3.3 Con
lusionWe have proposed a new modelling framework for brain
omputations, based onprobabilisti
 inferen
e. We have shown through
omputer simulations, that sto
has-ti
 networks of spiking neurons
an
arry out demanding
omputational tasks withinthis modelling framework. This framework predi
ts spe
i�
 fun
tional roles for non-linear
omputations in network motifs and dendriti

omputation: They support

38 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronslearning and representation of higher order dependen
ies between salient randomvariables. On the mi
ro level this framework proposes that lo
al
omputational op-erations of neurons super�
ially resemble logi
al operations like AND and OR, butthat these atomi

omputational operations are embedded into a sto
hasti
 networkdynami
s. Our framework proposes that the fun
tional role of this sto
hasti
 net-work dynami
s
an be understood from the perspe
tive of probabilisti
 inferen
ethrough sampling from
omplex learnt probability distributions, that represent theknowledge base of the brain.2.4 Methods2.4.1 Markov ChainsA Markov
hain M = 〈S, T 〉 in dis
rete time is de�ned by a set S of states s (we
onsider for dis
rete time only the
ase where S has a �nite size, denoted by |S|)together with a transition operator T . T is a
onditional probability distribution
T (s|s′) for the next state s of M , given its pre
eding state s′. The Markov
hain Mis started in some initial state s(0), and moves through a traje
tory of states s(t) viaiterated appli
ation of the sto
hasti
 transition operator T (more pre
isely, if s(t−1)is the state at time t − 1, then the next state s(t) is drawn from the
onditionalprobability distribution T (s|s(t− 1)). A powerful theorem from probability theory(see e.g. p. 232 in (Grimmett and Stirzaker, 2001)) states that if M is irredu
ible(i.e., any state in S
an be rea
hed from any other state in S in �nitely many stepswith probability > 0) and aperiodi
 (i.e., its state transitions
annot be trappedin deterministi

y
les), then the probability p(s(t) = s|s(0) was the initial state)
onverges for t → ∞ to a probability p(s) that does not depend on s(0). This statedistribution p is
alled the stationary distribution of M . The irredu
ibility of Mimplies that p is the only distribution over the states S that is invariant under thetransition operator T , i.e.

p(s) =
∑

s′∈S

T (s|s′) · p(s′) . (2.15)Thus, in order to
arry out probabilisti
 inferen
e for a given distribution p, it su�
esto
onstru
t an irredu
ible and aperiodi
 Markov
hain M that leaves p invariant,i.e., satis�es (2.15). Analogous results hold for Markov
hains in
ontinuous time(Grimmett and Stirzaker, 2001)), on whi
h we will fo
us in this work.2.4.2 Neuron ModelsWe use two types of neurons, a sto
hasti
 point neuron model as in (Büsing et al.,2011), and a multi-
ompartment neuron model.Point neuron model. We use the same point neuron model as in (Büsing et al.,2011). In (Büsing et al., 2011) rigorous proofs of the validity of neural sampling

2.4. Methods 39
an only be given for spiking neurons with an absolute refra
tory period of length τ(the length of a PSP). The same holds for our results. But it was already shown in(Büsing et al., 2011) that pra
ti
ally also a variation of the neurons model with arelative refra
tory period
an be used. In this variation of the model one
an have aquite arbitrary refra
tory me
hanism modeled with a refra
tory fun
tion g(t), thatrepresents the readiness of the neuron to �re within the refra
tory period. The �ringprobability of the neuron model is then
ρ(t) = f(u(t))g(t− t̂) , (2.16)where t̂ is the time of the last �ring of the neuron before time t. The g(t) fun
tionusually has value 0 for g(0), meaning that the neuron
annot �re a se
ond spikeimmediately after it has �red, and its value rises until g(s) = 1 for s > τ , indi
atingthat after time interval of duration τ the neuron fully re
overs from its refra
toryperiod (this is a slight variation of the de�nition of g in (Büsing et al., 2011)).For a given g(t) fun
tion that models the refra
tory me
hanism, the fun
tion

f(u) in the �ring rate equation
an be obtained as a solution from the equation
∀u ∈ R : f(u)

∫ 1

0
exp

(

f(u)

∫ r

0
g(t)dt

)

dr = exp(u) . (2.17)It
an be shown that for any
ontinuous fun
tion g(t) there is a unique
ontinuousfun
tion f(u) that satis�es this equation (see (Büsing et al., 2011)). The multipli
a-tive refra
tory fun
tion g(t) together with a modi�ed �ring probability fun
tion f(u)were derived in (Büsing et al., 2011) to ensure that ea
h neuron performs
orre
tlo
al
omputations and generates
orre
t samples from the desired probability dis-tribution if one assumes that the other neurons do not
hange their state. This doesnot guarantee in the general
ase that the global
omputation of the network whenall neurons operate simultaneously generates
orre
t samples. However, as in (Büs-ing et al., 2011) we observed no signi�
ant deviations from the
orre
t posteriors inour simulations.Multi-
ompartment neuron model. For the neural implementations with den-driti

omputation (Implementations 3 and 5) we used a multi-
ompartment neuronmodel whi
h is a modi�ed version of the neuron model introdu
ed in (Legenstein andMaass, 2011). It extends the sto
hasti
 point neuron model des
ribed above (withseparate
ompartments that represent the dendriti
 bran
hes) in order to
apturethe nonlinear e�e
ts in the integration of synapti
 inputs at the dendriti
 bran
hesof CA1 pyramidal neurons reported in (Loson
zy et al., 2008) for radial obliquedendrites.The lo
al membrane voltage Ai(t) of the bran
h i has a passive
omponent ai(t)equal to the summation of the PSPs eli
ited by the spikes at the lo
al synapti
inputs
ai(t) =

∑

j

wijεij(t) (2.18)

40 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronswhere wij is the synapti
 e�
a
y of input j to bran
h i and wijεij(t) is the postsy-napti
 potential eli
ited in the bran
h i by the spikes from input j. We model εij(t)as
εij(t) =

{

1 if t− t̂ij < τ

0 otherwise ,
(2.19)where t̂ij is the time of the last spike before t that arrived at input j. If a syn
hronoussynapti
 input from many synapses at one bran
h ex
eeds a
ertain threshold, themembrane voltage at the bran
h exhibits a sudden jump due to regenerative integra-tion pro
esses resulting in a dendriti
 spike (Loson
zy et al., 2008). This nonlinearityis modeled by a se
ond a
tive
omponent âi(t)

âi(t) = βiH(ai(t) − θi) (2.20)where H(·) denotes the Heaviside step fun
tion, and θi is the threshold of bran
h i.The bran
h potential Ai(t) is equal to the sum of the passive
omponent and thea
tive
omponent
aused by the dendriti
 spike
Ai(t) = ai(t) + âi(t) . (2.21)The passive and a
tive
omponents
ontribute with a di�erent weighting fa
tor tothe membrane potential at the soma. The passive
omponent is
ondu
ted passivelywith a weighting fa
tor vi < 1 that models the attenuation of the passive signal.We assume in the neural implementations that the attenuation of the passive signalis strong, i.e. that vi ≪ 1. The dendriti
 spike is s
aled by the bran
h strength

v̂i. The membrane potential at the soma of the neuron is a sum of the a
tive andpassive
ontributions from all bran
hes
u(t) = b+

∑

i

viai(t) + v̂iâi(t) (2.22)The �ring probability in this neuron model and its refra
tory me
hanism are thesame as for the point neuron model des
ribed above. It also
an have an arbitraryrefra
tory me
hanism de�ned with the �readiness to �re� multipli
ative fun
tion g(t)and a modi�ed �ring probability f(u).2.4.3 Details to Se
ond Order Boltzmann Distributions with Aux-iliary Variables (Implementation 1)Let p(z) be a probability distribution
p(z) =

1

Z

F
∏

f=1

γf (zf
<3)

C
∏

c=1

φc(z
c) (2.23)that
ontains higher-order fa
tors, where z = (z1, z2, . . . , zK) is a ve
tor of binaryRVs. γf (zf) are the fa
tors that depend on one or two RVs, and φc(z

c) are the

2.4. Methods 41higher order fa
tors that depend on more than 2 RVs. z
c is the ve
tor of the RVs

zi in the fa
tor φc(z
c), z

f
<3 is the ve
tor of RVs zi that the fa
tor γf (zf

<3) dependson, and Z is the normalization
onstant. F is the number of �rst and se
ond orderfa
tors, and C is the total number of fa
tors of order 3 or higher. To simplify thenotation, in the following we set γ(z) :=
∏F

f=1 γf (zf
<3), sin
e this set of fa
tors in

p(z) will not be
hanged in the extended probability distribution.Auxiliary RVs are introdu
ed for ea
h of the higher order fa
tors. Spe
i�
ally,the higher-order relation of fa
tor φc is represented by a set of auxiliary binary RVs
x

c = {xc
v|v ∈ Zc}, where we have a random variable xc

v for ea
h possible assignment
v ∈ Zc to the RVs in z

c (Zc is the domain of values of the ve
tor z
c). With theadditional sets of RVs x

c we de�ne a probability distribution p(z,x) by
p(z,x) =

1

Z
γ(z)

∏

c

(

∏

v∈Zc

ψc
v(xc

v)
∏

i∈Ic

βc
v,i(x

c
v, zi)

)

. (2.24)We denote the ordered set of indi
es of the RVs that
ompose the ve
tor z
c as I

c,i.e.
I
c = (i1, i2, . . . , i|Ic|) ⇔ z

c = (zi1 , zi2 , . . . , zi|Ic|) , (2.25)where |Ic| denotes the number of indi
es in I
c.The se
ond order fa
tors βc

v,i(x, z) are de�ned as
βc
v,i(x, z) = xδv(i),z + (1 − x) , (2.26)where v(i) denotes the
omponent of the assignment v to z

c that
orresponds tothe variable zi, and δv(i),zi
is the Krone
ker-delta fun
tion. The fa
tors βc

v,i(x
c
v, zi)represent a
onstraint that if the auxiliary RV xc

v has value 1, then the values ofthe RVs in the
orresponding fa
tor z
c must be equal to the assignment v that xc

v
orresponds to. If all
omponents of xc are zero, then there is not any
onstraint onthe z
c variables. This implies another property: at most one of the RVs xc

v in theve
tor x
c, the one that
orresponds to the state of z

c,
an have value 1. Hen
e, theve
tor x
c
an have two di�erent states. Either all its RVs are zero, or exa
tly one
omponent xc

v is equal to 1, in whi
h
ase one has z
c = v. The probability p(z,x)of states of x and z that do not satisfy these
onstraints is 0.The values of the fa
tors φc in p(z) for various assignments of zc are representedin p(z,x) by �rst-order fa
tors that depend on a single one of the RVs xc

v. For ea
h
xc
v we have a new fa
tor with value ψc

v(xc
v) = φc(v) − 1 if xc

v = 1, and ψc
v(xc

v) = 1otherwise. We assume that the original fa
tors are �rst res
aled, so that φc(z
c) > 1for all values of c and z

c. We had to modify the values of the new fa
tors bysubtra
ting 1 from the original value φc(v), be
ause we introdu
ed an additionalzero state for x
c that is
onsistent with any of the possible assignments of z

c.The resulting probability distribution p(z,x)
onsists of �rst and se
ond orderfa
tors, and one
an prove that it has the property

42 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons
∑

x

p(z,x) = p(z) . (2.27)This
an be seen as follows. If p(z,x) 6= 0, then for ea
h c either x
c = 0 (where

0 denotes the zero ve
tor), or x
c has one
omponent xc

zc = 1, and xc
v = 0 for all

v 6= z
c. The latter value of x

c is denoted by x̂
c
zc . For all other values of x

c we have
p(z,x) = 0. Hen
e

∑

x

p(z,x) =
∑

x1∈{0,x̂1
zc}

∑

x2∈{0,x̂2
zc}

. . .
∑

xC∈{0,x̂C
zc}

p(z,x) . (2.28)From the de�nition of the new fa
tors ψc we have
p(z,x) =

1

Z
γ(z)

∏

c

ψc
zc(xc

zc) =
1

Z
γ(z)

∏

c

(φc(z
c) − 1)x

c
zc . (2.29)Hen
e we
an rewrite (2.28) as

∑

x

p(z,x) =
∑

x1
zc∈{0,1}

∑

x2
zc∈{0,1}

. . .
∑

xC
zc∈{0,1}

p(z,x) =

=
∑

x1
zc∈{0,1}

∑

x2
zc∈{0,1}

. . .
∑

xC
zc∈{0,1}

1

Z
γ(z)

∏

c

(φc(z
c) − 1)x

c
zc =

=
1

Z
γ(z)

∏

c

φc(z
c) = p(z) ,

(2.30)
yielding a proof of (2.27).The resulting spiking neural network N
onsists of prin
ipal neurons νk, one forea
h of the original RVs zk, and one prin
ipal neuron ν̂c

v for ea
h of the auxiliary RVs
xc
v. If we assume that the fa
tor φc depends on zk, then the deterministi

onstraintthat governs the relation between z and x is implemented by very strong ex
itatory
onne
tions Mexc (ideally equal to +∞) between the prin
ipal neuron νk and allprin
ipal neurons ν̂c

v for whi
h zk is 1 in the assignment v to z
c. If for the prin
ipalneuron ν̂c

v in the
orresponding assignment v to z
c the value of zk is 0, then thereare strong inhibitory
onne
tions Minh (ideally equal to −∞) through an inhibitoryinterneuron between neuron νk and neuron ν̂c

v. Additionally, ea
h of the prin
ipalneurons ν̂c
v has a bias

bcv = log(φc(v) − 1) − η(v)Mexc , (2.31)where the fun
tion η(v) denotes the number of
oordinates of the ve
tor v thathave value 1. The biases of the prin
ipal neurons νk and the e�
a
ies of the dire
tsynapti

onne
tions between the prin
ipal neurons νk that
orrespond to the se
ondorder fa
tors in p(z) are determined in the same way as for the spiking neuralnetwork stru
ture in (Büsing et al., 2011) and depend only on the �rst and se
ondorder fa
tors of p(z).

2.4. Methods 43We show in the following that the Markov
hain represented by the spiking neuralnetwork that performs neural sampling in the 2nd Boltzmann distribution p(z,x) isirredu
ible. We designate a state of the neural network with the ve
tor (z, ζ,x, ξ).Here ζ = (ζ1, ζ2, . . . , ζK), where ζk is the refra
tory variable of the prin
ipal neuron
νk, and ξ is a ve
tor of all refra
tory variables ξc

v for the prin
ipal neurons ν̂c
v that
orrespond to the auxiliary RVs xc

v. The latter are de�ned as in (Büsing et al.,2011). At ea
h spike of a
orresponding neuron the refra
tory variable is set to τ (τin neural sampling in dis
rete time is an integer number, that denotes the durationof the PSP in terms of dis
rete time steps). It de
reases by 1 at ea
h subsequenttime step, until it rea
hes 0. We denote the transition operators for the refra
toryvariables ζk
hanging from state i+ 1 to i with T k
i,i+1, and
hanging from state 0 to

τ with T k
τ,0. For the refra
tory variables ξc

v the transition operators are T v,c
i,i+1 and

T v,c
τ,0 . In the proof we
onsider the ideal
ase where Mexc → +∞ and Minh → −∞,whi
h
an result in in�nitely large membrane potentials equal to +∞ or −∞. Thesevalues of the membrane potentials forbid the neuron to
hange the value of its RV,be
ause if uk = +∞ then T k

0,1 = 0, and if uk = −∞ then T k
τ,0 = 0 (see (Büsinget al., 2011) for details), and the neuron is lo
ked to one value of the RV. In all other
ases, when the value of the membrane potential remains �nite, we have T k

τ,0 > 0and T k
0,1 > 0. In this
ase the prin
ipal neuron
an rea
h any value of ζk from anyother value in at most τ time steps. The same holds for the prin
ipal neurons ν̂c

v.If we
onsider now an initial arbitrary non-forbidden state (z̄, ζ̄, x̄, ξ̄), then ea
hrefra
tory variable ξc
v with v 6= z̄

c is equal to 0, and ξc
v with v = z̄

c
an be eithernon-zero or 0. If ξc
z̄c is non-zero then, sin
e the membrane potential of the prin
ipalneuron ν̂c

z̄c is log(φc(z̄
c) − 1), whi
h is �nite, there is a non-vanishing probabilityfor the network state (z̄, ζ̄, x̄, ξ̄) to
hange to another state in whi
h ξc

z̄c = 0 in atmost τ time steps. Therefore we
an
on
lude, that from the state (z̄, ζ̄, x̄, ξ̄) we
anrea
h the state (z̄, ζ̄,0,0) that has x = 0 and ξ = 0 in at most τ time steps with anon-vanishing probability. In this new state all prin
ipal neurons νk are allowed to
hange the value of their RV, be
ause their membrane potentials have �nite valuesdetermined by the sum of their biases and the e�
a
ies of the synapti

onne
tionsfrom the se
ond order fa
tors. Hen
e ea
h non-zero ζk
an
hange its value to 0in at most τ time steps. From this it follows that from any non-forbidden state
(z̄, ζ̄, x̄, ξ̄) we
an rea
h the zero state (0,0,0,0) in at most 2τ time steps withnon-vanishing probability. We pro
eed in a similar manner to prove that from thezero state we
an rea
h any other non-forbidden state (z̃, ζ̃, x̃, ξ̃). First we observethat from the zero state the prin
ipal neurons νk
an
hange their states ζk to ζ̃kin at most τ time steps, sin
e they all have �nite membrane potentials, i.e. we
anrea
h the state (z̃, ζ̃,0,0). Then in the state (z̃, ζ̃,0,0) the prin
ipal neurons ν̂c

vwith v = z̃
c have �nite membrane potentials equal to log(φc(z̃

c)− 1), and they
an
hange their states ζc
z̃c to ζ̃c

z̃c in at most τ steps. Hen
e we have shown that we
anrea
h any non-forbidden state (z̃, ζ̃, x̃, ξ̃) from any other other non-forbidden state
(z̄, ζ̄, x̄, ξ̄) in at most 4τ steps with non-vanishing probability, i.e. the Markov
hainis irredu
ible.

44 Chapter 2. Sampling in Graphi
al Models with Spiking Neurons2.4.4 Details to Implementation 2In this neural implementation ea
h prin
ipal neuron νk has a dedi
ated prepro
essinglayer of auxiliary neurons with lateral inhibition. All neurons in the network aresto
hasti
 point neuron models.The auxiliary neurons for the prin
ipal neuron νk re
eive as inputs the outputsof the prin
ipal neurons
orresponding to all RVs in the Markov blanket of zk. Thenumber of auxiliary ex
itatory neurons that
onne
t to the prin
ipal neuron νk is
2|Bk| (|Bk| is the number of elements of Bk), and we index these neurons with allpossible assignments of values to the RVs in the ve
tor z

Bk . Thus, for ea
h state
v of values at the inputs z

Bk we have a
orresponding auxiliary neuron αk
v. Therealization of the NCC is a
hieved by a spe
i�

onne
tivity between the inputsand the auxiliary neurons and appropriate values for the intrinsi
 ex
itabilities ofthe auxiliary neurons, so that at ea
h moment in time only the auxiliary neuron αk

v
orresponding to the
urrent state of the inputs z
Bk(t) = v, if it is not inhibited bythe lateral inhibition due to a re
ent spike from another auxiliary neuron, �res witha probability density as demanded by the NCC (2.3):

ρv(t) =
1

τ
·
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
) . (2.32)During the time when the state v of the inputs is a
tive, the other auxiliary neuronsare either strongly inhibited, or do not re
eive enough ex
itatory input to rea
h asigni�
ant �ring probability.The inputs
onne
t to the auxiliary neuron αk

v either with a dire
t strong ex-
itatory
onne
tion, or through an inhibitory interneuron ιkv that
onne
ts to theauxiliary neuron. The inhibitory interneuron ιkv �res whenever any of the prin
ipalneurons of the RVs z
Bk that
onne
t to it �res. The auxiliary neuron αk

v re
eivessynapti

onne
tions a

ording to the following rule: if the assignment v assignsa value of 1 to the RV zi in the Markov blanket z
Bk , then the prin
ipal neuron

νi
onne
ts to the neuron with a strong ex
itatory synapti
 e�
a
y wk
v,i = Mk

v ,whereas if v assigns a value of 0 to zi then the prin
ipal neuron νi
onne
ts to theinhibitory interneuron ιkv. Thus, whenever νi �res, the inhibitory interneuron �resand prevents the auxiliary neuron αk
v to �re for a time period τ . We will assumethat the synapti
 e�
a
y Mk

v is mu
h larger than the log-odd ratio value of the RV
zk given z

Bk = v a

ording to the r.h.s. of (2.3). We set the bias of the auxiliaryneuron αk
v equal to

bkv = log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
− η(v)Mk

v , (2.33)where η(v) gives the number of
omponents of the ve
tor v that are 1.If the value of the inputs at time t is z
Bk(t), and none of the neurons �red in thetime interval [t−τ, t], then for an auxiliary neuron αk

v su
h that v 6= z
Bk(t) there aretwo possibilities. Either there exists a
omponent of v that is 0 and its
orrespondinginput zBk

i (t) = 1, in whi
h
ase the prin
ipal neuron of the RV zBk

i
onne
ts to

2.4. Methods 45the inhibitory interneuron ιkv and inhibits αk
v. Or one has η(zBk(t)) < η(v) inwhi
h
ase the number of a
tive inputs that
onne
t to neuron αk

v do not provideenough ex
itatory input to rea
h the high threshold for �ring. In this
ase the �ringprobability of the neuron αk
v is

ρk
v(t) =

1

τ
exp

(

log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
− (η(v) − η(zBk(t))Mk

v

)

, (2.34)and be
ause of the strong synapti
 e�
a
ies of the ex
itatory
onne
tions equal to
Mk

v , whi
h are by de�nition mu
h larger than the log-odd ratio of the RV zk, itis approximately equal to 0. Hen
e, only the neuron αk
v with v = z

Bk(t) has anon-vanishing �ring probability equal to (2.32).The lateral inhibition between the auxiliary neurons is implemented througha
ommon inhibitory
ir
uit to whi
h they all
onne
t. The role of the lateralinhibition is to enfor
e the ne
essary refra
tory period of νk after any of the auxiliaryneurons �res. When an auxiliary neuron �res, the inhibitory
ir
uit is a
tive duringthe duration of the ex
itatory PSP (equal to τ), and strongly inhibits the otherneurons, preventing them from �ring. The auxiliary neurons
onne
t to the prin
ipalneuron νk with an ex
itatory
onne
tion strong enough to drive it to �re a spikewhenever any one of them �res. During the time when the state of the input variablessatis�es z
Bk(t) = v, the �ring probability of the auxiliary neuron αk

v satis�es theNCC (2.3). This implies that the prin
ipal neuron νk satis�es the NCC as well.Introdu
ing an eviden
e of a known value of a RV in this model is a
hieved bydriving the prin
ipal neuron with an external ex
itatory input to �re a spike trainwith a high �ring rate when the observed value of the RV is 1, or by inhibiting theprin
ipal neuron with an external inhibitory input so that it remains silent whenthe observed value of the RV is 0.2.4.5 Details to Implementation 3We assume that the prin
ipal neuron νk has a separate dendriti
 bran
h δk
v forea
h possible assignment of values to the RVs z

Bk , and that the prin
ipal neurons
orresponding to the RVs z
Bk in the Markov blanket Bk
onne
t to these dendriti
bran
hes.It is well known that syn
hronous a
tivation of several synapses at one bran
h, ifit ex
eeds a
ertain threshold,
auses the membrane voltage at the bran
h to exhibita sudden jump resulting from a dendriti
 spike. Furthermore the amplitude of su
hdendriti
 spike is subje
t to plasti
ity (Loson
zy et al., 2008). We use a neuron modela

ording to (Legenstein and Maass, 2011), that is based on these experimentaldata. The details of this multi-
ompartment neuron model were presented in thepre
eding subse
tion of Methods on Neuron Models. We assume in this modelthat the
ontribution of ea
h dendriti
 bran
h to the soma membrane voltage ispredominantly due to dendriti
 spikes, and that the passive
ondu
tan
e to thesoma
an be negle
ted. Thus, a

ording to (2.22), the membrane potential at the

46 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronssoma is equal to the sum of the nonlinear a
tive
omponents
ontributed from ea
hof the bran
hes δk
v:

uk(t) = bk +
∑

v

v̂k
vâ

k
v(t) , (2.35)where âk

v(t) is the nonlinear
ontribution from bran
h δk
v, and v̂k

v is the strength ofbran
h δk
v (see (Loson
zy et al., 2008) for experimental data on bran
h strengths).

bk is the target value of the membrane potential in the absen
e of any synapti
input. The nonlinear a
tive
omponent (dendriti
 spike) âk
v(t) is assumed to beequal to

âk
v(t) = βk

vH(ak
v(t) − θk

v) , (2.36)where H(·) denotes the Heaviside step fun
tion, ak
v(t) is the lo
al a
tivation, and θk

vis the threshold of bran
h δk
v. The amplitude of the total
ontribution of bran
h δk

vto the membrane potential at the soma is then v̂k
vβ

k
v.As
an be seen in Fig. 2.4, the
onne
tivity from the inputs to the dendriti
bran
hes is analogous as in Implementation 2 with auxiliary neurons: from ea
hprin
ipal neuron νi so that zi is in the Markov blanket of zk there is a dire
t synapti

onne
tion to the dendriti
 bran
h δk

v if the assignment v assigns to zi the value
1, or a
onne
tion to the inhibitory interneuron ιkv in
ase v assigns the value 0 to
zi. The inhibitory interneuron ιkv
onne
ts to its
orresponding bran
h δk

v, and �reswhenever any of the prin
ipal neurons that
onne
t to it �re. The synapti
 e�
a
iesof the dire
t synapti

onne
tions are assumed to satisfy the
ondition
∑

i∈Sk
v

wk
v,i > θk

v , (2.37)where Sk
v is the set of indi
es of prin
ipal neurons νi that dire
tly
onne
t to thedendriti
 bran
h δk

v, wk
v,i is the e�
a
y of the synapti

onne
tion to the bran
hfrom νi, and θk

v is the threshold at the dendriti
 bran
h for triggering a dendriti
spike. Additionally, ea
h synapti
 weight wk
v,i should also satisfy the
ondition

wk
v,i >

∑

j∈Sk
v

wk
v,j − θk

v . (2.38)The same
ondition applies also for the e�
a
y yk
v of the synapti

onne
tion frominhibitory interneuron ιkv to the dendriti
 bran
h δk
v.These
onditions ensure that if the
urrent state of the inputs is z

Bk(t) = v,then the dendriti
 bran
h δk
v will have an a
tive dendriti
 spike, whereas all otherdendriti
 bran
hes do not re
eive enough total synapti
 input to trigger a dendriti
spike. The amplitude of the dendriti
 spike from bran
h δk

v at the soma is
v̂k
vβ

k
v = log

p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
+ λk , (2.39)

2.4. Methods 47where λk is a positive
onstant that is larger than all possible negative values of thelog-odd ratio. If the steady value of the membrane potential is equal to bk = −λk,then we have at ea
h moment a membrane potential that is equal to the sum of theamplitude of the nonlinear
ontribution of the single a
tive dendriti
 bran
h and thesteady value of the membrane potential, whi
h yields the expression for the NCC(2.4).2.4.6 Details to the Implementation 4In this implementation a prin
ipal neuron νk has a separate group of auxiliaryneurons for ea
h fa
tor c that depends on the variable zk. The group of auxiliaryneurons for the fa
tor c re
eives inputs from the prin
ipal neurons that
orrespondto the set of the random variables z
c
\k that fa
tor c depends on, but without zk. Forea
h possible assignment of values v to the inputs z

c
\k, there is an auxiliary neuronin the group for the fa
tor c, whi
h we will denote with αc,k

v . The neuron αc,k
v spikesimmediately when the state of the inputs swit
hes to v from another state, i.e. thespike marks the moment of the state
hange. This
an a
hieved by setting the biasof the neuron similarly as in (2.33) to bkv = b0 − η(v)Mk

v where η(v)) is the numberof
omponents of the ve
tor v that are equal to 1, Mk
v is the e�
a
y of the dire
tsynapti

onne
tions from the prin
ipal neurons to αc,k
v and b0 is a
onstant thatensures high �ring probability of this neuron when the
urrent value of the inputsis v.The
onne
tivity from the auxiliary neurons to the prin
ipal neuron keeps thesoma membrane voltage of the prin
ipal neuron νk equal to the log-odd ratio of zk (=r.h.s. of (2.4)). From ea
h auxiliary neuron αc,k

v there is one ex
itatory
onne
tionto the prin
ipal neuron, terminating at a separate dendriti
 bran
h δc,k
v . The e�
a
yof this synapti

onne
tion is ŵc,k

v = wc,k
v + λc

k, where wc,k
v is the parameter from(2.13), and λc

k is a
onstant that shifts all these synapti
 e�
a
ies ŵc,k
v into thepositive range.Additionally, there is an inhibitory interneuron ι̂c,kv
onne
ting to the same den-driti
 bran
h δc,k

v . The inhibitory interneuron ι̂c,kv re
eives input from all otherauxiliary neurons in the same sub-
ir
uit as the auxiliary neuron αc,k
v , but not from

αc,k
v . The purpose of this inhibitory neuron is to shunt the a
tive EPSP when the in-puts z

c
\k
hange their state from v to another state v

′. Namely, at the time momentwhen the inputs
hange to state v
′, the
orresponding auxiliary neuron αc,k

v′ will �re,and this will
ause �ring of the inhibitory interneuron ι̂c,kv . A spike of the inhibitoryinterneuron should have just a lo
al e�e
t: to shunt the a
tive EPSP
aused by theprevious state v at the dendriti
 bran
h δc,k
v . If there is not any a
tive EPSP, thisspike of the inhibitory interneuron should not a�e
t the membrane potential at thesoma of the prin
ipal neuron νk.At any time t, ea
h group of auxiliary neurons for a fa
tor c
ontributes one EPSPto the prin
ipal neuron, through the synapti
 input originating from the auxiliaryneuron that
orresponds to the
urrent state of the inputs. The amplitude of the

48 Chapter 2. Sampling in Graphi
al Models with Spiking NeuronsEPSP from the sub-
ir
uit that
orresponds to the fa
tor c is equal to ŵc,k
v = wc,k

v +

λc
k. If we assume that the bias of the soma membrane potential is bk = −

∑

c∈Ck λc
k,then the total membrane potential at the soma of the prin
ipal neuron νk is equalto:

uk(t) = bk +
∑

c∈Ck

(wc,k
v + λc

k) =
∑

c∈Ck

wc,k
v , (2.40)whi
h is equal to the expression on the r.h.s. of (2.13) when one assumes that

z
c
\k(t) = v. Hen
e, the prin
ipal neuron νk satis�es the NCC.2.4.7 Details to the Implementation 5In this implementation ea
h prin
ipal neuron is a multi-
ompartment neuron of thesame type as in Implementation 3, with a separate group of dendriti
 bran
hesfor ea
h fa
tor c in the probability distribution that depends on zk. In the group c(
orresponding to fa
tor φc) there is a dendriti
 bran
h δc,k

v for ea
h assignment v tothe variables z
c
\k that the fa
tor c depends on (without zk). The dendriti
 bran
hesin group c re
eive synapti
 inputs from the prin
ipal neurons that
orrespond to theRVs z

c
\k. Ea
h dendriti
 bran
h δc,k

v
an
ontribute a
omponent v̂c,k
v âc,k

v (t) to thesoma membrane voltage uk(t) (where v̂c,k
v is like in Implementation 3 the bran
hstrength of this bran
h), but only if the lo
al a
tivation ac,k

v (t) in the bran
h ex
eedsthe threshold for triggering a dendriti
 spike. The
onne
tivity from the prin
ipalneurons
orresponding to the RVs z
c
\k to the dendriti
 bran
hes of νk in the group cis su
h so that at time t only the dendriti
 bran
h
orresponding to the
urrent stateof the inputs z

c
\k(t) re
eives total synapti
 input that
rosses the lo
al threshold forgenerating a dendriti
 spike and initiates a dendriti
 spike. This is realized with thesame
onne
tivity pattern from the inputs to the bran
hes as in Implementation 3depi
ted in Fig. 2.4. The amplitude of the dendriti
 spike of bran
h δc,k

v at the somashould be ŵc,k
v = wc,k

v +λc
k where wc,k

v is the parameter from (2.13) and λc
k is
hosenas in Implementation 3.The membrane voltage at the soma of the prin
ipal neuron νk is then equal tothe sum of the dendriti
 spikes from the a
tive dendriti
 bran
hes. At time t thereis exa
tly one a
tive bran
h in ea
h group of dendriti
 bran
hes, the one whi
h
orresponds to the
urrent state of the inputs. If we additionally assume that thebias of neuron νk is bk = −

∑

c∈Ck λc
k, then the membrane voltage at the soma hasthe desired value (2.40).2.4.8 Details to Computer SimulationsDetails to Computer Simulation I. The simulations with the neural networkthat
orresponds to the approa
h where the �ring of the prin
ipal neurons satis�esthe NCC were performed with the ideal version of the implementations 2, whi
hassumes using re
tangular PSPs and no delays in the synapti

onne
tions. In the

2.4. Methods 49Table 2.1: The
onditional probability tables for the Bayesian network in Fig. 2.1B.
p(z3 = 1|z1, z2) z1 = 0 z1 = 1
z2 = 0 0.15 0.85
z2 = 1 0.85 0.15

p(z4 = 1|z2)

z2 = 0 0.15
z2 = 1 0.85simulation with the neural network that
orresponds to Implementation 1, the net-work was also implemented with the ideal version of neural sampling. In both
asesthe duration of the re
tangular PSPs was τ = 20ms and the neurons had absoluterefra
tory period of duration τ . The simulations lasted for 6 se
onds biologi
al time,where in the �rst 3 se
onds the RV for the
ontour (z4) was
lamped to 1 and in these
ond 3 se
onds
lamped to 0. For ea
h spiking neural network 10 simulation trialswere performed, ea
h time with di�erent randomly
hosen initial state. The valuesof the synapti
 e�
a
ies Mexc and Minh in the simulation of implementation 1 wereset to 10 times the largest value of any of the fa
tors in the probability distribution.This ensures that a neuron with a
tive input from a synapse with e�
a
y Mexc willhave a very high membrane potential and will
ontinuously stay a
tive regardlessof the state of the other inputs, and a

ordingly a neuron with a
tive input froma synapse with e�
a
y Minh will remain silent regardless of the state of the otherinputs.The values for the
onditional probabilities p(z3|z2, z1) and p(z4|z2) in theBayesian network from Fig. 2.1 used in these simulations are given in Table 2.1.The prior probabilities p(z1 = 1) and p(z2 = 1) are both equal to 0.5.Details to Computer Simulation II. The
onditional probability tables of theASIA-network are given in Table 2.2. We modi�ed the original network from (Lau-ritzen and Spiegelhalter, 1988) by eliminating the �tuber
ulosis or
an
er?� RV inorder to get it in suitable form to be able to perform neural sampling in it. In theoriginal ASIA network the �tuber
ulosis or
an
er?� RV had deterministi
 links withthe RVs �tuber
ulosis?� and �
an
er?� whi
h results in a Markov
hain that is not
onne
ted. The model
aptures the following qualitative medi
al knowledge fa
ts:1. Shortness of breath or dyspnoea may be due to tuber
ulosis, lung
an
er orbron
hitis, none of them or many of them at the same time.2. A re
ent visit to Asia in
reases the
han
e for tuber
ulosis.3. Smoking is a risk fa
tor for both lung
an
er and bron
hitis.

50 Chapter 2. Sampling in Graphi
al Models with Spiking NeuronsTable 2.2: The
onditional probability tables for the ASIA Bayesian network.
p(A = 1) 0.01
p(S = 1) 0.5
p(T = 1|A)A = 0 0.01A = 1 0.05
p(B = 1|S)S = 0 0.3S = 1 0.6

p(C = 1|S)S = 0 0.01S = 1 0.10
p(X = 1|T,C) C = 0 C = 1T = 0 0.05 0.98T = 1 0.98 0.98
p(D = 1|T,C,B) T = 0 T = 1C = 0, B = 0 0.1 0.7C = 0, B = 1 0.8 0.9C = 1, B = 0 0.7 0.7C = 1, B = 1 0.9 0.94. Tuber
ulosis and lung
an
er signi�
antly in
rease the
han
es of a positive
hest x-ray test.We used a point neuron model as in (Büsing et al., 2011) des
ribed in theIntrodu
tion se
tion of this work, where the membrane potential of the neuron is alinear sum of the PSPs eli
ited by the input spikes. We performed all simulationswith three di�erent shapes for the EPSPs. The �rst EPSP was an alpha shapedEPSP
urve ε1(t) de�ned as

ε1(t) =

{

q1 · e(
t
τ + t1) · exp(−(t

τ + t1)) −
1
2 if 0 < t < (t2 − t1)τ,

0 otherwise. , (2.41)where the t1 and t2 are the points in time where the alpha kernel e · t · exp(−t) = 1
2 ,

q1 = 2.3 is a s
aling fa
tor and τ = 17ms is the time
onstant of the alpha kernel.The se
ond used EPSP was a plateau shaped
urve ε2(t) de�ned with the followingequation
ε2(t) =



















q2 · (sin(πt
2τs

) if 0 < t < τs,

q2 if τs < t < τ − τe,

q2 · (
τ+τe−t

2τe
− 1

2π sin(2π(τ+τe−t)
2τe

)) if τ − τe < t < τ + τe,

0 otherwise. , (2.42)where τ = 30ms de�nes the duration of the EPSP and we use τ also to
al
ulate thegenerated samples from the spike times. The τs = 7ms de�nes the duration of the

2.4. Methods 51rise of the EPSP kernel after an input spike, 2τe = 18ms determines the duration ofpart of the EPSP
urve
orresponding to the fall of the PSP ba
k to the baseline,modeled here with the sine fun
tion and q2 = 1.03 is a s
aling fa
tor. The thirdshape of the EPSP that we used is the theoreti
ally optimal re
tangular shape withduration τ . All neurons have an absolute refra
tory period of duration τ .The indire
t
onne
tions going through inhibitory interneurons from the prin
i-pal neurons to the auxiliary neurons are modeled as dire
t
onne
tions with negativesynapti
 e�
a
ies with IPSPs that mat
h the shape of the EPSPs des
ribed above.All synapti

onne
tions in the network have delay equal to dsyn = 0.1ms. Theex
itatory synapti
 weight from the prin
ipal neuron νi to an auxiliary neuron αk
vwas set to

wk
v,i = max

(

log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
+ 10, 0

)

, (2.43)and the synapti
 weight for the inhibitory synapti

onne
tion from the prin
ipalneuron νi to an auxiliary neuron αk
v (whi
h models the indire
t inhibitory
onne
tionthrough the inhibitory interneuron ιkv) is set to

wk
v,i = min

(

−10 − log
p(zk = 1|zBk = v)

p(zk = 0|zBk = v)
, 0

)

. (2.44)The e�
a
y of the synapti

onne
tions from the auxiliary neurons to theirprin
ipal neuron are set to wap = 30. The lateral inhibition is implemented bya single inhibitory neuron that re
eives ex
itatory
onne
tions from all auxiliaryneurons with synapti
 e�
a
y equal to wai = 30. The inhibitory neuron
onne
tsba
k to all auxiliary neurons and these synapti

onne
tions have re
tangular shapedIPSPs with duration τi = 30 ms. These re
tangular IPSPs approximate the e�e
tthat a
ir
uit of fast-spiking bursting inhibitory neuron with short IPSPs would haveon the membrane potential of the auxiliary neurons. The e�
a
y of the synapti

onne
tion from the inhibitory neuron for the lateral inhibition to the auxiliaryneuron αk
v is set equal to wk

v,i in the previous equation. The bias of the prin
ipalneurons are set to b = −10 and the biases of the auxiliary neurons are set a

ordingto (2.33). The inhibitory interneuron for the lateral inhibition has bias b = −10.The eviden
e about known random variables in the neural network was intro-du
ed by inje
ted
onstant
urrent in the
orresponding prin
ipal neurons of ampli-tude A+ = 40 if the value of the RV is 1 and A− = −40 if the value of the RV is 0.The simulations were performed for Tsim = 6 se
. biologi
al time. For the separate
ases of ea
h EPSP shape the results were averaged over 20 simulation trials withdi�erent initial states of the spiking neural network and di�erent noise through thesimulation. The initial states were randomly
hosen from the prior distribution ofthe ASIA network whi
h
orresponds to a random state in the a
tivity of the spikingnetwork when no eviden
e is introdu
ed. For
ontrol we performed the same sim-ulations with randomly
hosen initial states from an uniform distribution, and theresults showed slightly slower
onvergen
e (data not shown). The initial states wereset by inje
ting
onstant
urrent pulse in the prin
ipal neurons at the beginning of

52 Chapter 2. Sampling in Graphi
al Models with Spiking Neuronsthe simulation, for the unknown RVs with amplitude A+ = 40 (A− = −40) if thevalue of the RV in the initial state is 1 (0) and duration equal to τinit = 15ms.The simulations in Computer Simulation II were performed with the PCSIM2simulator for neural
ir
uits (Pe
evski et al., 2009).Details to Computer Simulation III. The simulations were performed with theideal implementation of the NCC, whi
h
orresponds to using re
tangular PSPs andzero delays in the synapti

onne
tions in the implementations 2-5. We performed 10simulations with an implementation that uses the neuron model relative refra
toryperiod and another 10 simulations with an implementation that uses the neuronmodel with absolute refra
tory period. The duration of the PSPs was τ = 20 ms.The Bayesian network in this simulation was randomly generated with a vari-ation of the Markov
hain Monte Carlo sampling algorithm proposed in (Ide andCozman, 2002). Instead of allowing ar
s in the Bayesian network in both dire
-tions between the nodes and
he
king at ea
h new iteration whether the generatedBayesian network graph is a
y
li
 like in (Ide and Cozman, 2002), we preserved anordering of the nodes in the graph and allow an edge from the node zi to the node
zj only if i < j. We started with a simple
onne
ted graph where ea
h node zi,ex
ept for the �rst node z1, has
onne
tion from node zi−1. We then performed thefollowing MCMC iterations1. Choose randomly a pair of nodes (zi, zj) where i < j ;2. If there is an edge from zi to zj then remove the edge if the Bayesian net-work remains
onne
ted, otherwise keep the same Bayesian network from theprevious iteration;3. If there is not an ar
, then
reate an edge from zi to zj if the node zj hasless than 8 parents, otherwise keep the Bayesian network from the previousiteration.Similarly to the proofs in (Ide and Cozman, 2002), one
an prove that the sta-tionary distribution of the above Markov
hain is a uniform distribution over allvalid Bayesian networks that satisfy the
onstraint that a node
an not have morethan 8 parents. To generate the Bayesian network used in the simulations we per-formed 500000 iterations of the above Markov
hain. The
onditional probabilitydistributions for the Bayesian network were sampled from Diri
hlet distributionswith priors (α1, α2, . . . , αk) with αi = 0.6 for all i.In the simulations that use a neuron model with a relative refra
tory me
hanism,we used the following form for the refra
tory fun
tion gk(t)

g(t) =
t

τ
−

sin(2πt
τ)

2π
. (2.45)The
orresponding fun
tion f(u) for the �ring probability is de�ned impli
itly by(2.17).2web site: www.igi.tugraz.at/p
sim

2.5. A
knowledgements 532.5 A
knowledgementsThis
hapter is based on the paper Probabilisti
 Inferen
e in General Graphi
al Mod-els through Sampling in Sto
hasti
 Networks of Spiking Neurons by Dejan Pe
evski(DP), Lars Büsing (LB) and Wolfgang Maass (WM). The paper was submitted forpubli
ation in 2011 and is under review. The experiments in the paper were
on-
ieved and designed by DP and WM. DP
ondu
ted the experiments and analysedthe simulation results. The paper builds on the theory of neural sampling developedby LB and reported in (Büsing et al., 2011). DP and WM provided the additionaltheoreti
al derivations and analysis in the paper. DP andWMwrote the manus
ript.LB provided valuable
omments that helped to improve the manus
ript.

Chapter 3A Learning Theory forReward-ModulatedSpike-Time-Dependent Plasti
itywith Appli
ation to Biofeedba
k
Contents3.1 Introdu
tion . 563.2 Results . 583.3 Methods . 793.4 Dis
ussion . 993.5 A
knowledgments . 105Reward-modulated spike-timing-dependent plasti
ity (STDP) has re
entlyemerged as a
andidate for a learning rule that
ould explain how behaviorally rele-vant adaptive
hanges in
omplex networks of spiking neurons
ould be a
hieved ina self-organizing manner through lo
al synapti
 plasti
ity. However the
apabilitiesand limitations of this learning rule
ould so far only be tested through
omputersimulations. This work provides tools for an analyti
 treatment of reward-modulatedSTDP, whi
h allows us to predi
t under whi
h
onditions reward-modulated STDPwill a
hieve a desired learning e�e
t. These analyti
al results imply that neurons
an learn through reward-modulated STDP to
lassify not only spatial, but alsotemporal �ring patterns of presynapti
 neurons. They also
an learn to respondto spe
i�
 presynapti
 �ring patterns with parti
ular spike patterns. Finally, theresulting learning theory predi
ts that even di�
ult
redit-assignment problems,where it is very hard to tell whi
h synapti
 weights should be modi�ed in order toin
rease the global reward for the system,
an be solved in a self-organizing mannerthrough reward-modulated STDP. This yields an explanation for a fundamental ex-perimental result on biofeedba
k in monkeys by Fetz and Baker. In this experimentmonkeys were rewarded for in
reasing the �ring rate of a parti
ular neuron in the
ortex, and were able to solve this extremely di�
ult
redit assignment problem.Our model for this experiment relies on a
ombination of reward-modulated STDPwith variable spontaneous �ring a
tivity. Hen
e it also provides a possible fun
tional

56 Chapter 3. A Learning Theory for Reward-Modulated STDPexplanation for trial-to-trial variability, whi
h is
hara
teristi
 for
orti
al networksof neurons, but has no analogue in
urrently existing arti�
ial
omputing systems.In addition our model demonstrates that reward-modulated STDP
an be appliedto all synapses in a large re
urrent neural network without endangering the stabilityof the network dynami
s.3.1 Introdu
tionNumerous experimental studies (see Abbott and Nelson (2000) for a review; Ja
obet al. (2007) dis
usses more re
ent in-vivo results) have shown that the e�
a
y ofsynapses
hanges in dependen
e of the time di�eren
e ∆t = tpost − tpre betweenthe �ring times tpre and tpost of the pre- and postsynapti
 neurons. This e�e
tis
alled spike-timing-dependent plasti
ity (STDP). But a major puzzle for under-standing learning in biologi
al organisms is the relationship between experimentallywell-established rules for STDP on the mi
ros
opi
 level, and adaptive
hanges ofthe behavior of biologi
al organisms on the ma
ros
opi
 level. Neuromodulatorysystems, whi
h send di�use signals related to reinfor
ements (rewards) and behav-ioral state to several large networks of neurons in the brain, have been identi�ed aslikely intermediaries that relate these two levels of plasti
ity. It is well-known thatthe
onsolidation of
hanges of synapti
 weights in response to pre- and postsynap-ti
 neuronal a
tivity requires the presen
e of su
h third signals Bailey et al. (2000);Gu (2002). In parti
ular, it has been demonstrated that dopamine (whi
h is behav-iorally related to novelty and reward predi
tion S
hultz (2007)) gates plasti
ity at
orti
ostriatal synapses Reynolds et al. (2001); Reynolds and Wi
kens (2002) andwithin the
ortex Bao et al. (2001). It has also been shown that a
etyl
holine gatessynapti
 plasti
ity in the
ortex (see for example Shulz et al. (2000) and Thiel et al.(2002); Shulz et al. (2003)
ontains a ni
e review of the literature).Corresponding spike-based rules for synapti
 plasti
ity of the form
d

dt
wji(t) = cji(t)d(t) (3.1)have been proposed in Izhikevi
h (2007) and Florian (2007) (see Fig. 3.1 for anillustration of this learning rule), where wji is the weight of a synapse from neuron ito neuron j, cji(t) is an eligibility tra
e of this synapse whi
h
olle
ts weight
hangesproposed by STDP, and d(t) = h(t)− h̄ results from a neuromodulatory signal h(t)with mean value h̄. It was shown in Izhikevi
h (2007) that a number of interestinglearning tasks in large networks of neurons
an be a

omplished with this simplerule (3.1). It has re
ently been shown that quite similar learning rules for spikingneurons arise when one applies the general framework of distributed reinfor
ementlearning from Baxter and Bartlett (1999) to networks of spiking neurons Baras andMeir (2007); Florian (2007), or if one maximizes the likelihood of postsynapti
 �ringat desired �ring times P�ster et al. (2006). However no analyti
al tools have beenavailable, whi
h make it possible to predi
t for what learning tasks, and under whi
hparameter settings, reward-modulated STDP will be su

essful. This work provides

3.1. Introdu
tion 57su
h analyti
al tools, and demonstrates their appli
ability and signi�
an
e througha variety of
omputer simulations. In parti
ular, we identify
onditions under whi
hneurons
an learn through reward-modulated STDP to
lassify temporal presynapti
�ring patterns, and to respond with parti
ular spike patterns.We also provide a model for the remarkable operant
onditioning experimentsof Fetz and Baker (1973) (see also Fetz (1969, 2007)). In the simpler ones of theseexperiments the spiking a
tivity of single neurons (in area 4 of the pre
entral gyrusof monkey
ortex) was re
orded, the deviation of the
urrent �ring rate of an arbi-trarily sele
ted neuron from its average �ring rate was made visible to the monkeythrough the displa
ement of an illuminated meter arm, whose rightward position
orresponded to the threshold for the feeder dis
harge. The monkey re
eived foodrewards for in
reasing (or in alternating trials for de
reasing) the �ring rate of thisneuron. The monkeys learnt quite reliably (within a few minutes) to
hange the �r-ing rate of this neuron in the
urrently rewarded dire
tion.1 Obviously the existen
eof learning me
hanisms in the brain whi
h are able to solve this extremely di�
ult
redit assignment problem provides an important
lue for understanding the orga-nization of learning in the brain. We examine in this work analyti
ally under what
onditions reward-modulated STDP is able to solve su
h learning problem. We testthe
orre
tness of analyti
ally derived predi
tions through
omputer simulations ofbiologi
ally quite realisti
 re
urrently
onne
ted networks of neurons, where an in-
rease of the �ring rate of one arbitrarily sele
ted neuron within a network of 4000neurons is reinfor
ed through rewards (whi
h are sent to all 142813 synapses be-tween ex
itatory neurons in this re
urrent network). We also provide a model for themore
omplex operant
onditioning experiments of Fetz and Baker (1973) by show-ing that pairs of neurons
an be di�erentially trained through reward-modulatedSTDP, where one neuron is rewarded for in
reasing its �ring rate, and simulta-neously another neuron is rewarded for de
reasing its �ring rate. More pre
isely,we in
reased the reward signal d(t) whi
h is transmitted to all synapses between1Adja
ent neurons tended to
hange their �ring rate in the same dire
tion, but also di�erential
hanges of dire
tions of �ring rates of pairs of neurons are reported in Fetz and Baker (1973) (whenthese di�erential
hanges were rewarded). For example, it was shown in Fig. 3.9 of Fetz and Baker(1973) (see also Fig. 3.1 in Fetz (2007)) that pairs of neurons that were separated by no more thana few hundred mi
rons
ould be independently trained to in
rease or de
rease their �ring rates. Itwas also reported in Fetz and Baker (1973), and further examined in Fetz and Fino

hio (1975),that bursts of the reinfor
ed neurons were often a

ompanied by a
tivations of spe
i�
 mus
les.But the relationship between bursts of the re
orded neurons in pre
entral motor
ortex and mus
lea
tivations was reported to be quite
omplex and often dropped out after
ontinued reinfor
ementof the neuron alone. Furthermore in Fetz and Fino

hio (1975) it was shown that all neurons testedin that study
ould be disso
iated from their
orrelated mus
le a
tivity by di�erentially reinfor
ingsimultaneous suppression of EMG a
tivity. These results suggest that the solution of the
reditassignment problem by the monkeys (to stronger a
tivate that neuron out of billions of neuronsin their pre
entral gyrus that was reinfor
ed) may have been supported by large s
ale explorationstrategies that were asso
iated with mus
le a
tivations. But the previously mentioned results ondi�erential reinfor
ements of two nearby neurons suggest that this large s
ale exploration strategyhad to be
omplemented by exploration on a �ner spatial s
ale that is di�
ult to explain on thebasis of mus
le a
tivations (see se
tion 3.2 of Fetz (2007) for a detailed dis
ussion).

58 Chapter 3. A Learning Theory for Reward-Modulated STDPex
itatory neurons in the network whenever the �rst neuron �red, and de
reasedthis reward signal whenever the se
ond neuron �red (the resulting
omposed reward
orresponds to the displa
ement of the meter arm that was shown to the monkey inthese more
omplex operant
onditioning experiments).Our theory and
omputer simulations also show that reward-modulated STDP
an be applied to all synapses within a large network of neurons for long time periods,without endangering the stability of the network. In parti
ular this synapti
 plasti
-ity rule keeps the network within the asyn
hronous irregular �ring regime, whi
h hadbeen des
ribed in Brunel (2000) as a dynami
 regime that resembles spontaneousa
tivity in the
ortex. Another interesting aspe
t of learning with reward-modulatedSTDP is that it requires spontaneous �ring and trial-to-trial variability within thenetworks of neurons where learning takes pla
e. Hen
e our learning theory for thissynapti
 plasti
ity rule provides a foundation for a fun
tional explanation of these
hara
teristi
 features of
orti
al network of neurons that are undesirable from theperspe
tive of most
omputational theories.3.2 ResultsWe �rst give a pre
ise de�nition of the learning rule (3.1) for reward-modulatedSTDP. The standard rule for STDP, whi
h spe
i�es the
hange W (∆t) of thesynapti
 weight of an ex
itatory synapse in dependen
e on the time di�eren
e
∆t = tpost − tpre between the �ring times tpre and tpost of the pre- and postsy-napti
 neuron, is based on numerous experimental data (see Abbott and Nelson(2000)). It is
ommonly modeled by a so-
alled learning
urve of the form

W (∆t) =

{

A+e
−∆t/τ+ , if ∆t ≥ 0

−A−e
∆t/τ− , if ∆t < 0

, (3.2)where the positive
onstants A+ and A− s
ale the strength of potentiation anddepression respe
tively, and τ+ and τ− are positive time
onstants de�ning the widthof the positive and negative learning window. The resulting weight
hange at time tof synapse ji for a presynapti
 spike train Spre
i and a postsynapti
 spike train Spost

jis usually modeled Gerstner and Kistler (2002) by the instantaneous appli
ation ofthis learning rule to all spike pairings with the se
ond spike at time t
[

d

dt
wji(t)

]

STDP

=

∫ ∞

0
dr W (r)Spost

j (t)Spre
i (t− r)

+

∫ ∞

0
dr W (−r)Spost

j (t− r)Spre
i (t). (3.3)The spike train of a neuron i whi
h �res a
tion potentials at times t(1)i , t

(2)
i , t

(3)
i , . . .is formalized here by a sum of Dira
 delta fun
tions Si(t) =

∑

n δ(t− t
(n)
i).The model analyzed in this work is based on the assumption that positive andnegative weight
hanges suggested by STDP for all pairs of pre- and postsynapti
spikes at synapse ji (a

ording to the two integrals in (3.3)) are
olle
ted in an

3.2. Results 59eligibility tra
e cji(t) at the site of the synapse. The
ontribution to cij(t) of allspike pairings with the se
ond spike at time t− s is modeled for s > 0 by a fun
tion
fc(s) (see Fig. 3.1A); the time s
ale of the eligibility tra
e is assumed in this workto be on the order of se
onds. Hen
e the value of the eligibility tra
e of synapse jiat time t is given by

cji(t) =

∫ ∞

0
dsfc(s)

[

d

dt
wji(t− s)

]

STDP

, (3.4)see Fig. 3.1B. The a
tual weight
hange d
dtwji(t) at time t for reward-modulatedSTDP is the produ
t cij(t) · d(t) of the eligibility tra
e with the reward signal

d(t) as de�ned by equation (3.1). Sin
e this simple model
an in prin
iple leadto unbounded growth of weights, we assume that weights are
lipped at the lowerboundary value 0 and an upper boundary wmax.The network dynami
s of a simulated re
urrent network of spiking neurons whereall
onne
tions between ex
itatory neurons are subje
t to STDP is quite sensitive tothe parti
ular STDP-rule that is used. Therefore we have
arried out our networksimulations not only with the additive STDP-rule (3.3), whose e�e
t
an be analyzedtheoreti
ally, but also with the more
omplex rule proposed in Morrison et al. (2007)(whi
h was �tted to experimental data from hippo
ampal neurons in
ulture Bi andPoo (1998)), where the magnitude of the weight
hange depends on the
urrent valueof the weight. An implementation of this STDP-rule (with the parameters proposedin Morrison et al. (2007)) produ
ed in our network simulations of the biofeedba
kexperiment (
omputer simulation 1) as well as for learning pattern
lassi�
ation(
omputer simulation 4) qualitatively the same result as rule (3.3).3.2.1 Theoreti
al analysis of the resulting weight
hangesIn this se
tion, we derive a learning equation for reward-modulated STDP. Thislearning equation relates the
hange of a synapti
 weight wji over some su�
ientlylong time interval T to statisti
al properties of the joint distribution of the rewardsignal d(t) and pre- and postsynapti
 �ring times, under the assumption that theweight and
orrelations between pre- and postsynapti
 spike times are slowly varyingin time. We treat spike times as well as the reward signal d(t) as sto
hasti
 variables.This mathemati
al framework allows us to derive the expe
ted weight
hange oversome time interval T (see Gerstner and Kistler (2002)), with the expe
tation takenover realizations of the sto
hasti
 input- and output spike trains as well as sto
hasti
realizations of the reward signal, denoted by the ensemble average 〈·〉E

〈wji(t+ T) − wji(t)〉E
T

=
1

T

〈
∫ t+T

t

d

dt
wji(t

′)dt′
〉

E

=

〈〈

d

dt
wji(t)

〉

T

〉

E

, (3.5)where we used the abbreviation 〈f(t)〉T = T−1
∫ t+T
t f(t′) dt′. If synapti
 plasti
ity issu�
iently slow, synapti
 weights integrate a large number of small
hanges. In this
ase, the weight wji
an be approximated by its average 〈wji〉E (it is �self-averaging�,

60 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.1: S
heme of reward-modulated STDP a

ording to equations (3.1) - (3.4). A)Eligibility fun
tion fc(t), whi
h s
ales the
ontribution of a pre/post spike pair (with these
ond spike at time 0) to the eligibility tra
e c(t) at time t. B) Contribution of a pre-before-post spike pair (in red) and a post-before-pre spike pair (in green) to the eligibilitytra
e c(t) (in bla
k), whi
h is the sum of the red and green
urves. A

ording to equation(3.1) the
hange of the synapti
 weight w is proportional to the produ
t of c(t) with areward signal d(t).see Gerstner and Kistler (2002)). We
an thus drop the expe
tation on the left handside of equation (3.5) and write it as d
dt 〈wji(t)〉T . Using equation (3.1), this yields(see Methods)

d

dt
〈wji(t)〉T =

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T

+

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r) 〈Dji(t, s, r) νji(t− s, r)〉T .

(3.6)This formula
ontains the reward
orrelation for synapse ji
Dji(t, s, r) = 〈d(t)| Neuron j spikes at t− s, and neuron i spikes at t− s− r〉E ,(3.7)whi
h is the average reward at time t given a presynapti
 spike at time t − s − rand a postsynapti
 spike at time t− s. The joint �ring rate νji(t, r) = 〈Sj(t)Si(t−

3.2. Results 61
r)〉E des
ribes
orrelations between spike timings of neurons j and i, i.e., it is theprobability density for the event that neuron i �res an a
tion potential at time t− rand neuron j �res an a
tion potential at time t. For synapses subje
t to reward-modulated STDP,
hanges in e�
a
y are obviously driven by
o-o

urren
es of spikepairings and rewards within the time s
ale of the eligibility tra
e. Equation (3.6)
lari�es how the expe
ted weight
hange depends on how the
orrelations betweenthe pre- and postsynapti
 neurons
orrelate with the reward signal.If one assumes for simpli
ity that the impa
t of a spike pair on the eligibilitytra
e is always triggered by the postsynapti
 spike, one gets a simpler equation (seeMethods)

d

dt
〈wji(t)〉T =

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r) 〈Dji(t, s, r) νji(t− s, r)〉T . (3.8)The assumption introdu
es a small error for post-before-pre spike pairs, be
ause fora reward signal that arrives at some time dr after the pairing, the weight updatewill be proportional to fc(dr) instead of fc(dr + r). The approximation is justi�ed ifthe temporal average is performed on a mu
h longer time s
ale than the time s
aleof the learning window, the e�e
t of ea
h pre-post spike pair on the reward signalis delayed by an amount greater than the time s
ale of the learning window, and

fc
hanges slowly
ompared to the time s
ale of the learning window (see Methodsfor details). For the analyzes presented in this work, the simpli�ed equation (3.8)is a good approximation for the learning dynami
s. Equation (3.8) is a general-ized version of the STDP learning equation d
dtwji(t) =

∫∞
−∞ dr W (r) 〈νji(t− s, r)〉Tin Gerstner and Kistler (2002) that in
ludes the impa
t of the reward
orrelationweighted by the eligibility fun
tion. To see the relation between standard STDPand reward-modulated STDP,
onsider a
onstant reward signal d(t) = d0. Thenalso the reward
orrelation is
onstant and given by D(t, s, r) = d0. We re
overthe standard STDP learning equation s
aled by d0 if the eligibility fun
tion isan instantaneous delta-pulse fc(s) = δ(s). Furthermore, if the statisti
s of thereward signal d(t) is time-independent and independent from the pre- and post-synapti
 spike statisti
s of some synapse ji, then the reward
orrelation is givenby Dji(t, s, r) = 〈d(t)〉E = d0 for some
onstant d0. Then, the weight
hangefor synapse ji is d

dt〈wji(t)〉T = d0

∫∞
−∞ dr W (r)

∫∞
0 dsfc(s) 〈νji(t− s, r)〉T . Thetemporal average of the joint �ring rate 〈νji(t− s, r)〉T is thus �ltered by the el-igibility tra
e. We assumed in the pre
eding analysis that the temporal averageis taken over some long time interval T . If the time s
ale of the eligibility tra
eis mu
h smaller than this time interval T , then the weight
hange is approxi-mately d

dt〈wji(t)〉T ≈ d0(
∫∞
0 dsfc(s))

∫∞
−∞ dr W (r) 〈νji(t, r)〉T , and the weight wjiwill
hange a

ording to standard STDP s
aled by a
onstant proportional to themean reward and the integral over the eligibility fun
tion. In the remainder of this
hapter, we will always use the smooth time-averaged weight
hange d

dt 〈wji(t)〉T ,but for brevity, we will drop the angular bra
kets and simply write d
dtwji(t).The learning equation (3.8) provides the mathemati
al basis for our followinganalyses. It allows us to determine synapti
 weight
hanges if we
an des
ribe a

62 Chapter 3. A Learning Theory for Reward-Modulated STDPlearning situation in terms of reward
orrelations and
orrelations between pre- andpostsynapti
 spikes.3.2.2 Appli
ation to models for biofeedba
k experimentsWe now apply the pre
eding analysis to the biofeedba
k experiment of Fetz andBaker (1973) that were des
ribed in the introdu
tion. These experiments pose the
hallenge to explain how learning me
hanisms in the brain
an dete
t and exploit
orrelations between rewards and the �ring a
tivity of one or a few neurons within alarge re
urrent network of neurons (the
redit assignment problem), without
hang-ing the overall fun
tion or dynami
s of the
ir
uit.We show that this phenomenon
an in prin
iple be explained by reward-modulated STDP. In order to do that, we de�ne a model for the experiment whi
hallows us to formulate an equation for the reward signal d(t). This enables us to
al
ulate synapti
 weight
hanges for this parti
ular s
enario. We
onsider as modela re
urrent neural
ir
uit where the spiking a
tivity of one neuron k is re
ordedby the experimenter.2 We assume that in the monkey brain a reward signal d(t)is produ
ed whi
h depends on the visual feedba
k (through an illuminated meter,whose pointer de�e
tion was dependent on the
urrent �ring rate of the randomlysele
ted neuron k) as well as previously re
eived liquid rewards, and that this signal
d(t) is delivered to all synapses in large areas of the brain. We
an formalize thiss
enario by de�ning a reward signal whi
h depends on the spike rate of the arbi-trarily sele
ted neuron k (see Fig. 3.2A, B). More pre
isely, a reward pulse of shape
εr(r) (the reward kernel) is produ
ed with some delay dr every time the neuron kprodu
es an a
tion potential

d(t) =

∫ ∞

0
dr Spost

k (t− dr − r)εr(r). (3.9)Note that d(t) = h(t) − h̄ is de�ned in equation (3.1) as a signal with zero mean.In order to satisfy this
onstraint, we assume that the reward kernel εr has zeromass, i.e., ε̄r =
∫∞
0 dr εr(r) = 0. For the analysis, we use the linear Poisson neuronmodel des
ribed in Methods. The mean weight
hange for synapses to the reinfor
edneuron k is then approximately (see Methods)

d

dt
wki(t) ≈

∫ ∞

0
ds fc(s+ dr)εr(s)

∫ ∞

−∞
dr W (r) 〈νki(t− dr − s, r)〉T . (3.10)This equation des
ribes STDP with a learning rate proportional to ∫∞

0 ds fc(s +

dr)εr(s). The out
ome of the learning session will strongly depend on this integraland thus on the form of the reward kernel εr. In order to reinfor
e high �ring ratesof the reinfor
ed neuron we have
hosen a reward kernel with a positive bump in2Experiments where two neurons are re
orded and reinfor
ed were also reported in Fetz andBaker (1973). We tested this
ase in
omputer simulations (see Fig. (3.4)) but did not treat itexpli
itly in our theoreti
al analysis.

3.2. Results 63
A

0 2.5 5

0

0.5

e
lig

.
fu

n
c
ti
o

n

s [sec]

C

0

1.5

re
w

a
rd

 k
e

rn
e

l

0 1 2 3
−5

0

5

10

15

time [sec]

re
w

a
rd

 s
ig

n
a

l
d

(t
)

B

Figure 3.2: Setup of the model for the experiment by Fetz and Baker Fetz and Baker(1973). A) S
hema of the model: The a
tivity of a single neuron in the
ir
uit determinesthe amount of reward delivered to all synapses between ex
itatory neurons in the
ir
uit. B)The reward signal d(t) in response to a spike train (shown at the top) of the arbitrarilysele
ted neuron (whi
h was sele
ted from a re
urrently
onne
ted
ir
uit
onsisting of 4000neurons). The level of the reward signal d(t) follows the �ring rate of the spike train. C)The eligibility fun
tion fc(s) (bla
k
urve, left axis), the reward kernel εr(s) delayed by 200ms (red
urve, right axis), and the produ
t of these two fun
tions (blue
urve, right axis)as used in our
omputer experiment. The integral of fc(s+ dr)εr(s) is positive, as requireda

ording to equation (3.10) in order to a
hieve a positive learning rate for the synapses tothe sele
ted neuron.the �rst few hundred millise
onds, and a long negative tail afterwards. Fig. 3.2Cshows the fun
tions fc and εr that were used in our
omputer model, as well asthe produ
t of these two fun
tions. One sees that the integral over the produ
t ispositive and a

ording to equation (3.10) the synapses to the reinfor
ed neuron aresubje
t to STDP.This does not guarantee an in
rease of the �ring rate of the reinfor
ed neuron.Instead, the
hanges of neuronal �ring will depend on the statisti
s of the inputs. Inparti
ular, the weights of synapses to neuron k will not in
rease if that neuron doesnot �re spontaneously. For un
orrelated Poisson input spike trains of equal rate, the�ring rate of a neuron trained by STDP stabilizes at some value whi
h depends onthe input rate (see Song et al. (2000); Kempter et al. (2001)). However, in
ompari-son to the low spontaneous �ring rates observed in the biofeedba
k experiment Fetzand Baker (1973), the stable �ring rate under STDP
an be mu
h higher, allowingfor a signi�
ant rate in
rease. It was shown in Fetz and Baker (1973) that also low�ring rates of a single neuron
an be reinfor
ed. In order to model this, we have
hosen a reward kernel with a negative bump in the �rst few hundred millise
onds,and a long positive tail afterwards, i.e. we inverted the kernel used above to obtaina negative integral ∫∞
0 ds fc(s+dr)εr(s). A

ording to equation (3.10) this leads to

64 Chapter 3. A Learning Theory for Reward-Modulated STDPanti-STDP where not only inputs to the reinfor
ed neuron whi
h have low
orrela-tions with the output are depressed (be
ause of the negative integral of the learningwindow), but also those whi
h are
ausally
orrelated with the output. This leadsto a qui
k �ring rate de
rease at the reinfor
ed neuron.The mean weight
hange of synapses to non-reinfor
ed neurons j 6= k is givenby
d

dt
wji(t) ≈

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r)

∫ ∞

0
dr′εr(r

′)

〈

νkj(t− dr − r′, s− dr − r′)

νj(t− s)
νji(t− s, r)

〉

T

,

(3.11)where νj(t) = 〈Sj(t)〉E is the instantaneous �ring rate of neuron j at time t. Thisequation indi
ates that a non-reinfor
ed neuron is trained by STDP with a learningrate proportional to its
orrelation with the reinfor
ed neuron given by νkj(t −

dr − r′, s − dr − r′)/νj(t − s). In fa
t, it was noted in Fetz and Baker (1973)that neurons nearby the reinfor
ed neuron tended to
hange their �ring rate in thesame dire
tion. This observation might be explained by putative
orrelations ofthe re
orded neuron with nearby neurons. On the other hand, if a neuron j isun
orrelated with the reinfor
ed neuron k, we
an de
ompose the joint �ring rateinto νkj(t− dr − r′, s− dr − r′) = νk(t− dr − r′)νj(t− s). In this
ase, the learningrate for synapse ji is approximately zero (see Methods). This ensures that mostneurons in the
ir
uit keep a
onstant �ring rate, in spite of
ontinuous weight
hanges a

ording to reward-modulated STDP.Altogether we see that the weights of synapses to the reinfor
ed neuron k
anonly
hange if there is spontaneous a
tivity in the network, so that in parti
ularalso this neuron k �res spontaneously. On the other hand the spontaneous networka
tivity should not
onsist of repeating large-s
ale spatio-temporal �ring patterns,sin
e that would entail
orrelations between the �ring of neuron k and other neurons
j, and would lead to similar
hanges of synapses to these other neurons j. Apart fromthese requirements on the spontaneous network a
tivity, the pre
eding theoreti
alresults predi
t that stability of the
ir
uit is preserved, while the neuron whi
h is
ausally related to the reward signal is trained by STDP, if ∫∞

0 ds fc(s+ dr)εr(s) ispositive.3.2.2.1 Computer simulation 1: Model for biofeedba
k experimentWe tested these theoreti
al predi
tions through
omputer simulations of a generi

orti
al mi
ro
ir
uit re
eiving a reward signal whi
h depends on the �ring of onearbitrarily
hosen neuron k from the
ir
uit (reinfor
ed neuron). The
ir
uit was
omposed of 4000 LIF neurons, with 3200 being ex
itatory and 800 inhibitory, inter-
onne
ted randomly by 228954
ondu
tan
e based synapses with short term dynam-i
s 3. In addition to the expli
itly modeled synapti

onne
tions,
ondu
tan
e noise3All
omputer simulations were also
arried out as a
ontrol with stati

urrent based synapses,see Methods and Suppl.

3.2. Results 65(generated by an Ornstein-Uhlenbe
k pro
ess) was inje
ted into ea
h neuron a
-
ording to data from Destexhe et al. (2001), in order to model synapti
 ba
kgrounda
tivity of neo
orti
al neurons in-vivo.4 This ba
kground noise eli
ited spontaneous�ring in the
ir
uit at about 4.6 Hz. Reward-modulated STDP was applied
ontin-uously to all synapses whi
h had ex
itatory presynapti
 and postsynapti
 neurons,and all these synapses re
eived the same reward signal. The reward signal was mod-eled a

ording to equation (3.9). Fig. 3.2C shows one reward pulse
aused by asingle postsynapti
 spike at time t = 0 with the parameters used in the experiment.For several postsynapti
 spikes, the amplitude of the reward signal follows the �ringrate of the reinfor
ed neuron, see Fig. 3.2B.This model was simulated for 20 minutes of biologi
al time. Panels A, B, D ofFig. 3.3 show that the �ring rate of the reinfor
ed neuron in
reases within a fewminutes (like in the experiment of Fetz and Baker (1973)), while the �ring ratesof the other neurons remain largely un
hanged. The in
rease of weights to thereinfor
ed neuron shown in Fig. 3.3C
an be explained by the
orrelations betweenits presynapti
 and postsynapti
 spikes shown in panel E. This panel shows thatpre-before-post spike pairings (bla
k
urve) are in general more frequent than post-before-pre spike pairings. The reinfor
ed neuron in
reases its rate from around 4Hz to 12 Hz, whi
h is
omparable to the measured �ring rates in Fetz and Baker(1973) before and after learning.In Fig. 3.9 of Fetz and Baker (1973) and Fig. 3.1 of Fetz (2007) the results ofanother experiment were reported where the a
tivity of two adja
ent neurons wasre
orded, and high �ring rates of the �rst neuron and low �ring rates of the se
-ond neuron were reinfor
ed simultaneously. This kind of di�erential reinfor
ementresulted in an in
rease and de
rease of the �ring rates of the two neurons
orre-spondingly. We implemented this type of reinfor
ement by letting the reward signalin our model depend on the spikes of the two randomly
hosen neurons (we refer tothese neurons as neuron A and neuron B), i.e. d(t) = dA
+(t) + dB

−(t), where dA
+(t)is the
omponent that positively rewards spikes of neuron A, and dB

−(t) negativelyrewards spikes of neuron B. Both parts of the reward signal, dA
+(t) and dB

−(t), werede�ned as in equation (3.9) for the
orresponding neuron. For dA
+(t) we used thereward kernel εr as de�ned in equation (3.29), whereas for dB

−(t) we used εr− = −εr(note that the integral over εr− is still zero). At the middle of the simulation (simu-lation time t = 10min), we
hanged the dire
tion of the reinfor
ements by negativelyrewarding the �ring of neuron A and positively rewarding the �ring of neuron B (i.e.,
d(t) = dA

−(t)+dB
+(t)). The results are summarized in Fig. 3.4. With a reward signalmodeled in this way, we were able to independently in
rease and de
rease the �ringrates of the two neurons a

ording to the reinfor
ements, while the �ring rates of theother neurons remained un
hanged. Changing the type of reinfor
ement during the4More pre
isely, for 50% of the ex
itatory neurons the amplitude of the noise inje
tion wasredu
ed to 20%, and instead their
onne
tion probabilities from other ex
itatory neurons were
hosen to be larger (see Methods and Fig. S1 and S2 for details). The reinfor
ed neuron had tobe
hosen from the latter population, sin
e reward-modulated STDP does not work properly if thepostsynapti
 neuron �res too often be
ause of dire
tly inje
ted noise.

66 Chapter 3. A Learning Theory for Reward-Modulated STDPsimulation from positive to negative for neuron A and from negative to positive forneuron B resulted in a
orresponding shift in their �ring rate
hange in the dire
tionof the reinfor
ement.The dynami
s of a network where STDP is applied to all synapses between ex
i-tatory neurons is quite sensitive to the spe
i�

hoi
e of the STDP-rule. The pre
ed-ing theoreti
al analysis (see equation (3.10), (3.11)) predi
ts that reward-modulatedSTDP a�e
ts in the long run only those ex
itatory synapses where the �ring of thepostsynapti
 neuron is
orrelated with the reward signal. In other words: the rewardsignal gates the e�e
t of STDP in a re
urrent network, and thereby
an keep thenetwork within a given dynami
 regime. This predi
tion is
on�rmed qualitativelyby the two panels of Fig. 3.3A, whi
h show that even after all ex
itatory synapses inthe re
urrent network have been subje
t to 20 minutes (in simulated biologi
al time)of reward-modulated STDP, the network stays within the asyn
hronous irregular �r-ing regime. It is also
on�rmed quantitatively through Fig. 3.5. These �gures showresults for the simple additive version of STDP (a

ording to equation (3.3)). Verysimilar results (see Fig. S3 and S4) arise from an appli
ation of the more
omplexSTDP-rule proposed in Morrison et al. (2007) where the weight-
hange depends onthe
urrent weight value.3.2.3 Rewarding spike-timesThe pre
eding model for the biofeedba
k experiment of Fetz and Baker fo
usedon learning of �ring rates. In order to explore the
apabilities and limitations ofreward-modulated STDP in
ontexts where the temporal stru
ture of spike trainsmatters, we investigated another reinfor
ement learning s
enario where a neuronshould learn to respond with parti
ular temporal spike patterns. We �rst applyanalyti
al methods to derive
onditions under whi
h a neuron subje
t to reward-modulated STDP
an a
hieve this.In this model, the reward signal d(t) is given in dependen
e on how well theoutput spike train Spost
j of a neuron j mat
hes some rather arbitrary spike train S∗(whi
h might for example represent spike output from some other brain stru
tureduring a developmental phase). S∗ is produ
ed by a neuron µ∗ that re
eives the same

n input spike trains S1, . . . , Sn as the trained neuron j, with some arbitrarily
hosenweights w
∗ = (w∗

1 , . . . , w
∗
n)T , w∗

i ∈ {0, wmax}. But in addition the neuron µ∗ re
eives
n′ − n further spike trains Sn+1, . . . , Sn′ with weights w∗

n+1, . . . , w
∗
n′ = wmax. Thesetup is illustrated in Fig. 3.6A. It provides a generi
 reinfor
ement learning s
enario,when a quite arbitrary (and not perfe
tly realizable) spike output is reinfor
ed, butsimultaneously the performan
e of the learner
an be evaluated
learly a

ording tohow well its weights wj1, . . . , wjn mat
h those of the neuron µ∗ for those n inputspike trains whi
h both of them have in
ommon. The reward d(t) at time t dependsin this task on both the timing of a
tion potentials of the trained neuron and spiketimes in the target spike train S∗

d(t) =

∫ ∞

−∞
dr κ(r)Spost

j (t− dr)S
∗(t− dr − r), (3.12)

3.2. Results 67

Figure 3.3: Simulation of the experiment by Fetz and Baker Fetz and Baker (1973) for the
ase where an arbitrarily sele
ted neuron triggers global rewards when it in
reases its �ringrate. A) Spike response of 100 randomly
hosen neurons within the re
urrent networkof 4000 neurons at the beginning of the simulation (20se
 - 23se
, left plot), and at theend of the simulation (the last 3 se
onds, right plot). The �ring times of the reinfor
edneuron are marked by blue
rosses. B) The �ring rate of the positively rewarded neuron(blue line) in
reases, while the average �ring rate of 20 other randomly
hosen neurons(dashed line) remains un
hanged. C) Evolution of the average weight of ex
itatory synapsesto the reinfor
ed neuron (blue line), and of the average weight of 1663 randomly
hosenex
itatory synapses to other neurons in the
ir
uit (dashed line). D) Spike trains of thereinfor
ed neuron before and after learning. E) Histogram of the time-di�eren
es betweenpresynapti
 and postsynapti
 spikes (bin size 0.5ms), averaged over all ex
itatory synapsesto the reinfor
ed neuron. The bla
k
urve represents the histogram values for positive timedi�eren
es (when the presynapti
 spike pre
edes the postsynapti
 spike), and the red
urverepresents the histogram for negative time di�eren
es.where the fun
tion κ(r) with κ̄ =
∫∞
−∞ ds κ(s) > 0 des
ribes how the reward signaldepends on the time di�eren
e r between a postsynapti
 spike and a target spike,

68 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.4: Di�erential reinfor
ement of two neurons (within a simulated network of 4000neurons, the two rewarded neurons are denoted as A and B),
orresponding to the exper-imental results shown in Fig. 3.9 of Fetz and Baker (1973) and Fig. 3.1 of Fetz (2007).A) The spike response of 100 randomly
hosen neurons at the beginning of the simulation(20se
 - 23se
, left plot), and at the middle of simulation just before the swit
hing of thereward poli
y (597se
-600se
, right plot). The �ring times of the �rst reinfor
ed neuronA are marked by blue
rosses and those of the se
ond reinfor
ed neuron B are markedby green
rosses. B) The dashed verti
al line marks the swit
h of the reinfor
ements at
t = 10min. The �ring rate of neuron A (blue line) in
reases while it is positively reinfor
edin the �rst half of the simulation and de
reases in the se
ond half when its spiking is nega-tively reinfor
ed. The �ring rate of the neuron B (green line) de
reases during the negativereinfor
ement in the �rst half and in
reases during the positive reinfor
ement in the se
ondhalf of the simulation. The average �ring rate of 20 other randomly
hosen neurons (dashedline) remains un
hanged. C) Evolution of the average weight of ex
itatory synapses to therewarded neurons A and B (blue and green lines respe
tively), and of the average weightof 1744 randomly
hosen ex
itatory synapses to other neurons in the
ir
uit (dashed line).and dr > 0 is the delay of the reward.Our theoreti
al analysis (see Methods) predi
ts that under the assumption of
onstant-rate un
orrelated Poisson input statisti
s this reinfor
ement learning task
an be solved by reward-modulated STDP for arbitrary initial weights if three
on-straints are ful�lled:

3.2. Results 69

Figure 3.5: Evolution of the dynami
s of a re
urrent network of 4000 LIF neurons duringappli
ation of reward-modulated STDP. A) Distribution of the synapti
 weights of ex
ita-tory synapses to 50 randomly
hosen non-reinfor
ed neurons, plotted for 4 di�erent periodsof simulated biologi
al time during the simulation. The weights are averaged over 10 sam-ples within these periods. The
olors of the
urves and the
orresponding intervals are asfollows: red (300−360 se
), green (600−660 se
), blue (900−960 se
), magenta (1140−1200se
). B) The distribution of average �ring rates of the non-reinfor
ed ex
itatory neurons inthe
ir
uit, plotted for the same time periods as in A). The
olors of the
urves are the sameas in A). The distribution of the �ring rates of the neurons in the
ir
uit remains un
hangedduring the simulation, whi
h
overs 20 minutes of biologi
al time. C) Cross-
orrelogramof the spiking a
tivity in the
ir
uit, averaged over 200 pairs of non-reinfor
ed neurons andover 60 s, with a bin size of 0.2 ms, for the period between 300 and 360 se
onds of simulatedbiologi
al time. It is
al
ulated as the
ross-
ovarian
e divided by the square root of theprodu
t of varian
es. D) As in C), but between se
onds 1140 and 1200.(Separate plots ofpanel B, C, D for two types of ex
itatory neurons that re
eived di�erent amounts of noise
urrents are given in Fig. S1 and S2.)
− νpost

minW̄ > wmaxW̄ε (3.13)
∫ ∞

−∞
dr W (r)ε(r)εκ(r) ≥ −νpost

maxW̄

∫ ∞

0
dr ε(r)εκ(r) (3.14)

∫ ∞

−∞
dr W (r)εκ(r) > −W̄ κ̄

[

ν∗νpost
max

wmax

f̄c

fc(dr)
+

ν∗

wmax
+ ν∗ + νpost

max

](3.15)

70 Chapter 3. A Learning Theory for Reward-Modulated STDP
A

−100 −50 0 50 100

−1

0

1

2

s [ms]

κ
(s

)

B

Figure 3.6: Setup for reinfor
ement learning of spike times. A) Ar
hite
ture. The trainedneuron re
eives n input spike trains. The neuron µ∗ re
eives the same inputs plus addi-tional inputs not a

essible to the trained neuron. The reward is determined by the timingdi�eren
es between the a
tion potentials of the trained neuron and the neuron µ∗. B) Areward kernel with optimal o�set from the origin of tκ = −6.6ms. The optimal o�set forthis kernel was
al
ulated with respe
t to the parameters from
omputer simulation 1 inTable 3.1. Reward is positive if the neuron spikes around the target spike or somewhatlater, and negative if the neuron spikes mu
h too early.The following parameters o

ur in these equations: ν∗ is the output rate of neu-ron µ∗, νpost
min is the minimal output rate, νpost

max is the maximal output rate ofthe trained neuron, f̄c =
∫∞
0 dr fc(r) is the integral over the eligibility tra
e,

W̄ =
∫∞
−∞ dr W (r) is the integral over the STDP learning
urve (see equation(3.2)), εκ(r) =

∫∞
−∞ dr′ κ(r′)ε(r − r′) is the
onvolution of the reward kernel withthe shape of the postsynapti
 potential (PSP) ε(s), and W̄ε =

∫∞
−∞ dr ε(r)W (r) isthe integral over the PSP weighted by the learning window.If these inequalities are ful�lled and input rates are larger than zero, then theweight ve
tor of the trained neuron
onverges on average from any initial weightve
tor to w

∗ (i.e., it mimi
s the weight distribution of neuron µ∗ for those n inputswhi
h both have in
ommon). To get an intuitive understanding of these inequalities,we �rst examine the idea behind
onstraint (3.13). This
onstraint assures thatweights of synapses i with w∗
i = 0 de
ay to zero in expe
tation. First note thatinput spikes from a spike train Si with w∗

i = 0 have no in�uen
e on the target spiketrain S∗. In the linear Poisson neuron model, this leads to weight
hanges similarto STDP whi
h
an be des
ribed by two terms. First, all synapses are subje
t todepression stemming from the negative part of the learning
urve W and randompre-post spike pairs. This weight
hange is bounded from below by ανpre
i νpost

minW̄ forsome positive
onstant α. On the other hand, the positive in�uen
e of input spikeson postsynapti
 �ring leads to potentiation of the synapse bounded from above by
ανpre

i wmaxW̄ε. Hen
e the weight de
ays to zero if −ανpre
i νpost

minW̄ > ανpre
i wmaxW̄ε,leading to inequality (3.13). For synapses i with w∗

i = wmax, there is an additionaldrive, sin
e ea
h presynapti
 spike in
reases the probability of a
losely following

3.2. Results 71spike in the target spike train S∗. Therefore, the probability of a delayed rewardsignal after a presynapti
 spike is larger. This additional drive leads to positiveweight
hanges if inequalities (3.14) and (3.15) are ful�lled (see Methods).Note that also for the learning of spike times spontaneous spikes (whi
h might beregarded as �noise�) are important, sin
e they may lead to reward signals that
anbe exploited by the learning rule. It is obvious that in reward-modulated STDP,a silent neuron
annot re
over from its silent state, sin
e there will be no spikeswhi
h
an drive STDP. But in addition,
ondition (3.13) shows that in this learnings
enario, the minimal output rate νpost
min � whi
h in
reases with in
reasing noise �has to be larger than some positive
onstant, su
h that depression is strong enoughto weaken synapses if needed. On the other hand, if the noise is too strong alsosynapses i with wi = wmax will be depressed and may not
onverge
orre
tly. This
an happen when the in
reased noise leads to a maximal postsynapti
 rate νpost

maxsu
h that
onstraints (3.14) and (3.15) are not satis�ed anymore.The
onditions (3.13)-(3.15) also reveal how parameters of the model in�uen
ethe appli
ability of this setup. For example, the eligibility tra
e enters the equationsonly in the form of its integral and its value at the reward delay in equation (3.15). Infa
t, the exa
t shape of the eligibility tra
e is not important. The important propertyof an ideal eligibility tra
e is that it is high at the reward delay and low at othertimes as expressed by the fra
tion in
ondition (3.15). Interestingly, the formulas alsoshow that one has quite some freedom in
hoosing the form of the STDP window,as long as the reward kernel εκ is adjusted a

ordingly. For example, instead of astandard STDP learning window W with W (r) ≥ 0 for r > 0 and W (r) ≤ 0 for
r < 0 and a
orresponding reward kernel κ, one
an use a reversed learning window
W ′ de�ned by W ′(r) ≡ W (−r) and a reward kernel κ′ su
h that εκ′(r) = εκ(−r).If (3.15) is satis�ed for W and κ, then it is also satis�ed for W ′ and κ′ (and in most
ases also
ondition (3.14) will be satis�ed). This re�e
ts the fa
t that in rewardmodulated STDP the learning window de�nes the weight
hanges in
ombinationwith the reward signal.For a given STDP learning window, the analysis reveals what reward kernels κare suitable for this learning setup. From
ondition (3.15), we
an dedu
e that theintegral over κ should be small (but positive), whereas the integral ∫∞

−∞ dr W (r)εκ(r)should be large. Hen
e, for a standard STDP learning window W withW (r) ≥ 0 for
r > 0 and W (r) ≤ 0 for r < 0, the
onvolution εκ(r) of the reward kernel with thePSP should be positive for r > 0 and negative for r < 0. In the
omputer simulationwe used a simple kernel depi
ted in Fig. 3.6B, whi
h satis�es the aforementioned
onstraints. It
onsists of two double-exponential fun
tions, one positive and onenegative, with a zero
rossing at some o�set tκ from the origin. The optimal o�set
tκ is always negative and in the order of several millise
onds for usual PSP-shapes
ε. We
on
lude that for su

essful learning in this s
enario, a positive reward shouldbe produ
ed if the neuron spikes around the target spike or somewhat later, and anegative reward should be produ
ed if the neuron spikes mu
h too early.

72 Chapter 3. A Learning Theory for Reward-Modulated STDP3.2.3.1 Computer simulation 2: Learning spike timesIn order to explore this learning s
enario in a biologi
ally more realisti
 setting,we trained a LIF neuron with
ondu
tan
e based synapses exhibiting short termfa
ilitation and depression. The trained neuron and the neuron µ∗ whi
h produ
edthe target spike train S∗ both re
eived inputs from 100 input neurons emittingspikes from a
onstant rate Poisson pro
ess of 15 Hz. The synapses to the trainedneuron were subje
t to reward-modulated STDP. The weights of neuron µ∗ wereset to w∗
i = wmax for 0 ≤ i < 50 and w∗

i = 0 for 50 ≤ i < 100. In order to simulatea non-realizable target response, neuron µ∗ re
eived 10 additional synapti
 inputs(with weights set to wmax/2). During the simulations we observed a �ring rate of
18.2 Hz for the trained neuron, and 25.2 Hz for the neuron µ∗. The simulationswere run for 2 hours simulated biologi
al time.We performed 5 repetitions of the experiment, ea
h time with di�erent randomlygenerated inputs and di�erent initial weight values for the trained neuron. In ea
hof the 5 runs, the average synapti
 weights of synapses with w∗

i = wmax and w∗
i = 0approa
hed their target values, as shown in Fig. 3.7A. In order to test how
loselythe trained neuron reprodu
es the target spike train S∗ after learning, we performedadditional simulations where the same spike input was applied to the trained neuronbefore and after the learning. Then we
ompared the output of the trained neuronbefore and after learning with the output S∗ of neuron µ∗. Fig. 3.7B shows thatthe trained neuron approximates the part of S∗ whi
h is a

essible to it quite well.Panels C-F of Fig. 3.7 provide more detailed analyses of the evolution of weightsduring learning. The
omputer simulations
on�rmed the theoreti
al predi
tion thatthe neuron
an learn well through reward-modulated STDP only if a
ertain levelof noise is inje
ted into the neuron (see pre
eding dis
ussion and the Fig. S6).Both the theoreti
al results and these
omputer simulations demonstrate thata neuron
an learn quite well through reward-modulated STDP to respond withspe
i�
 spike patterns.3.2.3.2 Computer simulation 3: Testing the analyti
ally derived
ondi-tionsEquations (3.13) - (3.15) predi
t under whi
h relationships between the parametersinvolved the learning of parti
ular spike responses through reward-modulated STDPwill be su

essful. We have tested these predi
tions by sele
ting 6 arbitrary settingsof these parameters, whi
h are listed in Table 3.1. In 4
ases (marked by light grayshading in Fig. 3.8) these
onditions were not met (either for the learning of weightswith target value wmax, or for the learning of weights with target value 0. Fig. 3.8shows that the derived learning result is not a
hieved in exa
tly these 4
ases. Onthe other hand, the theoreti
ally predi
ted weight
hanges (bla
k bar) predi
t inall
ases the a
tual weight
hanges (gray bar) that o

ur for the
hosen simulationtimes (listed in the last
olumn of Table 3.1) remarkably well.

3.2. Results 73

Figure 3.7: Results for reinfor
ement learning of exa
t spike times through reward-modulated STDP. A) Synapti
 weight
hanges of the trained LIF neuron, for 5 di�erentruns of the experiment. The
urves show the average of the synapti
 weights that should
onverge to w∗

i
= 0 (dashed lines), and the average of the synapti
 weights that should
onverge to w∗

i
= wmax (solid lines) with di�erent
olors for ea
h simulation run. B) Com-parison of the output of the trained neuron before (top tra
e) and after learning (bottomtra
e). The same input spike trains and the same noise inputs were used before and aftertraining for 2 hours. The se
ond tra
e from above shows those spike times S∗ whi
h arerewarded, the third tra
e shows the realizable part of S∗ (i.e. those spikes whi
h the trainedneuron
ould potentially learn to reprodu
e, sin
e the neuron µ∗ produ
es them withoutits 10 extra spike inputs). The
lose mat
h between the third and fourth tra
e shows thatthe trained neuron performs very well. C) Evolution of the spike
orrelation between thespike train of the trained neuron and the realizable part of the target spike train S∗. D)The angle between the weight ve
tor w of the trained neuron and the weight ve
tor w

∗ ofthe neuron µ∗ during the simulation, in radians. E) Synapti
 weights at the beginning ofthe simulation are marked with ×, and at the end of the simulation with •, for ea
h plasti
synapse of the trained neuron. F) Evolution of the synapti
 weights w/wmax during thesimulation (we had
hosen w∗

i = wmax for i < 50, w∗

i = 0 for i ≥ 50).

74 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.8: Test of the validity of the analyti
ally derived
onditions (3.13)-(3.15) on therelationship between parameters for su

essful learning with reward-modulated STDP. Pre-di
ted average weight
hanges (bla
k bars)
al
ulated from equation (3.22) mat
h in signand magnitude the a
tual average weight
hanges (gray bars) in
omputer simulations, for 6di�erent experiments with di�erent parameter settings (see Table 3.1). A) Weight
hangesfor synapses with w∗

i
= wmax. B) Weight
hanges for synapses with w∗

i
= 0. Four
aseswhere the
onstraints (3.13) - (3.15) are not ful�lled are shaded in light gray. In all ofthese four
ases the weights move into the opposite dire
tion, i.e., a dire
tion that de
reasesrewards.Ex. τε[ms℄ wmax νpost

min [Hz℄ A+106 A−

A+
τ+ [ms℄ Aκ

+, Aκ
− τκ

2 [ms℄ tsim [h℄1 10 0.012 10 16.62 1.05 20 3.34, -3.12 20 52 7 0.020 5 11.08 1.02 15 4.58, -4.17 16 103 20 0.010 6 5.54 1.10 25 1.50, -1.39 40 194 7 0.020 5 11.08 1.07 25 4.67, -4.17 16 135 10 0.015 6 20.77 1.10 25 3.75, -3.12 20 26 25 0.005 3 13.85 1.01 25 3.34, -3.12 20 18Table 3.1: Parameter values used for
omputer simulation 3 (see Fig. 3.8).3.2.4 Pattern dis
rimination with reward-modulated STDPWe examine here the question whether a neuron
an learn through reward-modulated STDP to dis
riminate between two spike patterns P and N of its presy-napti
 neurons, by responding with more spikes to pattern P than to pattern N .Our analysis is based on the assumption that there exist internal rewards d(t) that
ould guide su
h pattern dis
rimination. This reward based learning ar
hite
tureis biologi
ally more plausible than an ar
hite
ture with a supervisor whi
h providesfor ea
h input pattern a target output and thereby dire
tly produ
es the desired�ring behavior of the neuron (sin
e the question be
omes then how the supervisorhas learnt to produ
e the desired spike outputs).

3.2. Results 75We
onsider a neuron that re
eives input from n presynapti
 neurons. A pattern
X
onsists of n spike trains, ea
h of time length T , one for ea
h presynapti
 neuron.There are two patterns, P and N , whi
h are presented in alternation to the neuron,with some reset time between presentations. For notational simpli
ity, we assumethat ea
h of the n presynapti
 spike trains
onsists of exa
tly one spike. Hen
e, ea
hpattern
an be de�ned by a list of spike times: P = (tP1 , . . . , t

P
n), N = (tN1 , . . . , t

N
n),where tXi is the time when presynapti
 neuron i spikes for pattern X ∈ {P,N}. Ageneralization to the easier
ase of learning to dis
riminate spatio-temporal presy-napti
 �ring patterns (where some presynapti
 neurons produ
e di�erent numbersof spikes in di�erent patterns) is straightforward, however the main
hara
teristi
sof the learning dynami
s are better a

essible in this
on
eptually simpler setup.It had already been shown in Izhikevi
h (2007) that neurons
an learn throughreward-modulated STDP to dis
riminate between di�erent spatial presynapti
 �r-ing patterns. But in the light of the analysis of Farries and Fairhall (2007) it isstill open whether neurons
an learn with simple forms of reward-modulated STDP,su
h as the one
onsidered in this work, to dis
riminate temporal presynapti
 �ringpatterns.We assume that the reward signal d(t) rewards � after some delay dr � a
tionpotentials of the trained neuron if pattern P was presented, and punishes a
tionpotentials of the neuron if pattern N was presented. More pre
isely, we assume that

d(t) =

{

αP
∫∞
0 dr εr(r)S

post(t− dr − r) , if a pattern P was presented
αN
∫∞
0 dr εr(r)S

post(t− dr − r) , if a pattern N was presented(3.16)with some reward kernel εr and
onstants αN < 0 < αP . The goal of this learningtask is to produ
e many output spikes for pattern P , and few or no spikes for pattern
N . The main result of our analysis is an estimate of the expe
ted weight
hange ofsynapse i of the trained neuron for the presentation of pattern P , followed after asu�
iently long time T ′ by a presentation of pattern N

∆wi =

∫ T ′

0
dt

[

〈

dwi(t)

dt

〉

E|P

+

〈

dwi(t)

dt

〉

E|N

]

,where 〈·〉E|X is the expe
tation over the ensemble given that pattern X was pre-sented. This weight
hange
an be estimated as (see Methods)
∆wi =

∫ ∞

−∞
drW (r)

[

νP (tPi + r)AP
i + νN (tNi + r)AN

i

]

, (3.17)where νX(t) is the postsynapti
 rate at time t for pattern X, and the
onstants AX
ifor X ∈ {P,N} are given by

AX
i = αX

∫ ∞

0
dr′εr(r

′)

[

fc(dr + r′) +

∫ T ′

0
dtfc(t− tXi)νX(t− dr − r′)

]

. (3.18)

76 Chapter 3. A Learning Theory for Reward-Modulated STDPAs we will see shortly, an interesting learning e�e
t is a
hieved if AP
i is positiveand AN

i is negative. Sin
e fc(r) is non-negative, a natural way to a
hieve this is to
hoose a positive reward kernel εr(r) ≥ 0 for r > 0 and εr(r) = 0 for r < 0 (also,
fc(r) and εr(r) must not be identi
al to zero for all r).We use equation (3.17) to provide insight on when and how the
lassi�
ation oftemporal spike patterns
an be learnt with reward-modulated STDP. Assume for themoment that AN

i = −AP
i . We �rst note that it is impossible to a
hieve through anysynapti
 plasti
ity rule that the time integral over the membrane potential of thetrained neuron has after training a larger value for input pattern P than for inputpattern N . The reason is that ea
h presynapti
 neuron emits the same numberof spikes in both patterns (namely one spike). This simple fa
t implies that it isimpossible to train a linear Poisson neuron (with any learning method) to respondto pattern P with more spikes than to pattern N . But equation (3.17) impliesthat reward-modulated STDP in
reases the varian
e of the membrane potential forpattern P , and redu
es the varian
e for pattern N . This
an be seen as follows.Be
ause of the spe
i�
 form of the STDP learning
urve W (r), whi
h is positivefor (small) positive r, negative for (small) negative r, and zero for large r, ∆wi =

∫∞
−∞ drW (r)νP (tPi + r)AP

i has a potentiating e�e
t on synapse i if the postsynapti
rate for pattern P is larger (be
ause of a higher membrane potential) shortly afterthe presynapti
 spike at this synapse i than before that spike. This tends to furtherin
rease the membrane potential after that spike. On the other hand, sin
e AN
iis negative, the same situation for pattern N has a depressing e�e
t on synapse

i, whi
h
ountera
ts the in
reased membrane potential after the presynapti
 spike.Dually, if the postsynapti
 rate shortly after the presynapti
 spike at synapse i islower than shortly before that spike, the e�e
t on synapse i is depressing for pattern
P . This leads to a further de
rease of the membrane potential after that spike. Inthe same situation for pattern N , the e�e
t is potentiating, again
ountera
ting thevariation of the membrane potential. The total e�e
t on the postsynapti
 membranepotential is that the �u
tuations for pattern P are in
reased, while the membranepotential for pattern N is �attened.For the LIF neuron model, and most reasonable other non-linear spiking neuronmodels, as well as for biologi
al neurons in-vivo and in-vitro Stevens and Zador(1998); Mainen and Sejnowski (1995); Silberberg et al. (2004), larger �u
tuationsof the membrane potential lead to more a
tion potentials. As a result, reward-modulated STDP tends to in
rease the number of spikes for pattern P for theseneuron models, while it tends to de
rease the number of spikes for pattern N , therebyenabling a dis
rimination of these purely temporal presynapti
 spike patterns.3.2.4.1 Computer simulation 4: Learning pattern
lassi�
ationWe tested these theoreti
al predi
tions through
omputer simulations of a LIF neu-ron with
ondu
tan
e based synapses exhibiting short-term depression and fa
ilita-tion. Both patterns, P and N, had 200 input
hannels, with 1 spike per
hannel(hen
e this is the extreme where all information lies in the timing of presynapti

3.2. Results 77spikes). The spike times were drawn from an uniform distribution over a time inter-val of 500ms, whi
h was the duration of the patterns. We performed 1000 trainingtrials where the patterns P and N were presented to the neuron in alternation. Tointrodu
e exploration for this reinfor
ement learning task, the neuron had inje
ted20% of the Ornstein-Uhlenbe
k pro
ess
ondu
tan
e noise (see Methods for furtherdetails).The theoreti
al analysis predi
ted that the membrane potential will have afterlearning a higher varian
e for pattern P , and a lower varian
e for pattern N . Whenin our simulation of a LIF neuron the �ring of the neuron was swit
hed o� (by settingthe �ring threshold potential too high) we
ould observe the membrane potential�u
tuations undisturbed by the reset me
hanism after ea
h spike (see Fig. 3.9C,D). The varian
e of the membrane potential did in fa
t in
rease for pattern Pfrom 2.49(mV)2 to 5.43(mV)2 (panel C), and de
rease for pattern N (panel D),from 2.34(mV)2 to 1.33(mV)2. The
orresponding plots with the �ring thresholdin
luded are given in panels E and F, showing an in
reased member of spikes ofthe LIF neuron for pattern P , and a de
reased number of spikes for pattern N .Furthermore, as panels A and B in Fig. 3.9 show, the in
reased varian
e of themembrane potential for the positively reinfor
ed pattern P led to a stable temporal�ring pattern in response to pattern P.We repeated the experiment 6 times, ea
h time with di�erent randomly gener-ated patterns P and N , and di�erent random initial synapti
 weights of the neuron.The results in Fig. 3.9 G and H show that the learning of temporal pattern dis
rimi-nation through reward-modulated STDP does not depend on the temporal patternsthat are
hosen, nor on the initial values of synapti
 weights.3.2.4.2 Computer simulation 5: Training a readout neuron with reward-modulated STDP to re
ognize isolated spoken digitsA longstanding open problem is how a biologi
ally realisti
 neuron model
an betrained in a biologi
ally plausible manner to extra
t information from a generi

or-ti
al mi
ro
ir
uit. Previous work Maass et al. (2002b, 2004); Destexhe and Marder(2004); Maass et al. (2007); Nikoli¢ et al. (2007) has shown that quite a bit of salientinformation about re
ent and past inputs to the mi
ro
ir
uit
an be extra
ted bya non-spiking linear readout neuron (i.e., a per
eptron) that is trained by linearregression or margin maximization methods. Here we examine to what extent aLIF readout neuron with
ondu
tan
e based synapses (subje
t to biologi
ally re-alisti
 short term synapti
 plasti
ity)
an learn through reward-modulated STDPto extra
t from the response of a simulated
orti
al mi
ro
ir
uit (
onsisting of 540LIF neurons), see Fig. 3.10A, the information whi
h spoken digit (transformed intospike trains by a standard
o
hlea model) is inje
ted into the
ir
uit. In
omparisonwith the pre
eding task in simulation 4, this task is easier be
ause the presynapti
�ring patterns that need to be dis
riminated di�er in temporal and spatial aspe
ts(see Fig. 3.10B; Fig. S10 and 11 show the spike trains that were inje
ted into the
ir
uit). But this task is on the other hand more di�
ult, be
ause the
ir
uit re-

78 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.9: See next page for �gure
aption.sponse (whi
h
reates the presynapti
 �ring pattern for the readout neuron) di�ersalso signi�
antly for two utteran
es of the same digit (Fig. 3.10C), and even for twotrials for the same utteran
e (Fig. 3.10D) be
ause of the intrinsi
 noise in the
ir
uit(whi
h was modeled a

ording to Destexhe et al. (2001) to re�e
t in-vivo
onditionsduring
orti
al UP-states). The results shown in Fig. 3.10E - H demonstrate thatnevertheless this learning experiment was su

essful. On the other hand we werenot able to a
hieve in this way speaker-independent word re
ognition, whi
h hadbeen a
hieved in Maass et al. (2002b) with a linear readout. Hen
e further work willbe needed in order to
larify whether biologi
ally more realisti
 models for readoutneurons
an be trained through reinfor
ement learning to rea
h the
lassi�
ation
apabilities of per
eptrons that are trained through supervised learning.

3.3. Methods 79Figure 3.9: Training a LIF neuron to
lassify purely temporal presynapti
 �ring patterns: apositive reward is given for �ring of the neuron in response to a temporal presynapti
 �ringpattern P , and a negative reward for �ring in response to another temporal pattern N .A) The spike response of the neuron for individual trials, during 500 training trials whenpattern P is presented. Only the spikes from every 4-th trial are plotted. B) As in A),but in response to pattern N . C) The membrane potential Vm(t) of the neuron during atrial where pattern P is presented, before (blue
urve) and after training (red
urve), withthe �ring threshold removed. The varian
e of the membrane potential in
reases duringlearning, as predi
ted by the theory. D) As in C), but for pattern N . The varian
e of themembrane potential for pattern N de
reases during learning, as predi
ted by the theory.E) The membrane potential Vm(t) of the neuron (in
luding a
tion potentials) during atrial where pattern P is presented before (blue
urve) and after training (red
urve). Thenumber of spikes in
reases. F) As in E), but for trials where pattern N is given as input.The number of spikes de
reases. G) Average number of output spikes per trial beforelearning, in response to pattern P (gray bars) and pattern N (bla
k bars), for 6 experimentswith di�erent randomly generated patterns P and N , and di�erent random initial synapti
weights of the neuron. H) As in G), for the same experiments, but after learning. Theaverage number of spikes per trial in
reases after training for pattern P , and de
reases forpattern N .3.3 MethodsWe �rst des
ribe the simple neuron model that we used for the theoreti
al analysis,and then provide derivations of the equations that were dis
ussed in the pre
edingse
tion. After that we des
ribe the models for neurons, synapses, and synapti
ba
kground a
tivity ("noise") that we used in the
omputer simulations. Finally weprovide te
hni
al details to ea
h of the 5
omputer simulations that we dis
ussed inthe pre
eding se
tion.3.3.1 Linear Poisson Neuron ModelIn our theoreti
al analysis, we use a linear Poisson neuron model whose output spiketrain Spost
j (t) is a realization of a Poisson pro
ess with the underlying instantaneous�ring rate Rj(t). The e�e
t of a spike of presynapti
 neuron i at time t′ on themembrane potential of neuron j is modeled by an in
rease in the instantaneous�ring rate by an amount wji(t

′)ε(t− t′), where ε is a response kernel whi
h modelsthe time
ourse of a postsynapti
 potential (PSP) eli
ited by an input spike. Sin
eSTDP a

ording to Izhikevi
h (2007) has been experimentally
on�rmed only forex
itatory synapses, we will
onsider plasti
ity only for ex
itatory
onne
tions andassume that wji ≥ 0 for all i and ε(s) ≥ 0 for all s. Be
ause the synapti
 responseis s
aled by the synapti
 weights, we
an assume without loss of generality thatthe response kernel is normalized to ∫∞
0 ds ε(s) = 1. In this linear model, the
ontributions of all inputs are summed up linearly:

Rj(t) =
n
∑

i=1

∫ ∞

0
ds wji(t− s) ε(s) Si(t− s) , (3.19)

80 Chapter 3. A Learning Theory for Reward-Modulated STDP

Figure 3.10: See next page for �gure
aption.where S1, . . . , Sn are the n presynapti
 spike trains. Sin
e the instantaneous �r-ing rate R(t) is analogous to the membrane potential of other neuron models, weo

asionally refer to R(t) as the �membrane potential� of the neuron.3.3.2 Learning equationsIn the following, we denote by 〈x〉E|Spost
k

(t),Spre
i (t′) the ensemble average of a randomvariable x given that neuron k spikes at time t and neuron i spikes at time t′. Wewill also sometimes indi
ate the variables Y1, Y2, . . . over whi
h the average of x istaken by writing 〈x〉Y1,Y2,...|....Derivation of equation (3.6). Using equation (3.5), (3.1), and (3.4), we obtain the

3.3. Methods 81Figure 3.10: A LIF neuron is trained through reward-modulated STDP to dis
riminate as a�readout neuron� responses of generi

orti
al mi
ro
ir
uits to utteran
es of di�erent spokendigits. A) Cir
uit response to an utteran
e of digit �one� (spike trains of 200 out of 540neurons in the
ir
uit are shown). The response within the time period from 100 to 200 ms(marked in gray) is used as a referen
e in the subsequent 3 panels. B) The
ir
uit responsefrom A) (bla
k) for the period between 100 and 200 ms, and the
ir
uit response to anutteran
e of digit �two� (red). C) The
ir
uit spike response from A) (bla
k) and a
ir
uitresponse for another utteran
e of digit �one� (red), also shown for the period between 100and 200 ms. D) The
ir
uit spike response from A) (bla
k), and another
ir
uit responseto the same utteran
e in another trial (red). The responses di�er due to the presen
e ofnoise in the
ir
uit. E) Spike response of the LIF readout neuron for di�erent trials duringlearning, for trials where utteran
es of digit �two� (left plot) and digit �one� (right plot) arepresented as
ir
uit inputs. The spikes from ea
h 4th trial are plotted. F) Average numberof spikes in the response of the readout during training, in response to digit �one� (blue) anddigit �two� (green). The number of spikes were averaged over 40 trials. G) The membranepotential Vm(t) of the neuron during a trial where an input pattern
orresponding to anutteran
e of digit �two� is presented, before (blue
urve) and after training (red
urve), withthe �ring threshold removed. H) As in G), but for an input pattern
orresponding to anutteran
e of digit �one�. The varian
e of the membrane potential in
reases during learningfor utteran
es of the rewarded digit, and de
reases for the non-rewarded digit.expe
ted weight
hange between time t and t+ T

〈wji(t+ T) −wji(t)〉E
T

=
∫ ∞

0
dsfc(s)

∫ ∞

0
drW (r)

〈〈

d(t)Spost
j (t− s)Spre

i (t− s− r)
〉

T

〉

E
+

∫ ∞

0
ds fc(s)

∫ 0

−∞
dr W (r)

〈〈

d(t)Spost
j (t− s+ r)Spre

i (t− s)
〉

T

〉

E

=

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s)

〈〈

d(t)Spost
j (t− s)Spre

i (t− s− r)
〉

E

〉

T
+

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r)

〈〈

d(t)Spost
j (t− s)Spre

i (t− s− r)
〉

E

〉

T

=

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T +

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r) 〈Dji(t, s, r) νji(t− s, r)〉T ,with Dji(t, s, r) = 〈d(t)| Neuron j spikes at t−s, and neuron i spikes at t−s−r〉E ,and the joint �ring rate νji(t, r) = 〈Sj(t)Si(t− r)〉E des
ribes
orrelations betweenspike timings of neurons j and i. The joint �ring rate νji(t − s, r) depends on theweight at time t− s. If the learning rate de�ned by the magnitude of W (r) is small,the synapti
 weights
an be assumed
onstant on the time s
ale of T . Thus, thetime s
ales of neuronal dynami
s are separated from the slow time s
ale of learning.For slow learning, synapti
 weights integrate a large number of small
hanges. We

82 Chapter 3. A Learning Theory for Reward-Modulated STDP
an then expe
t that averaged quantities enter the learning dynami
s. In this
ase,we
an argue that �u
tuations of a weight wji about its mean are negligible and it
an well be approximated by its average 〈wji〉E (it is �self-averaging�, see Gerstnerand Kistler (2002); Kempter et al. (1999)). To ensure that average quantities enterthe learning dynami
s, many presynapti
 and postsynapti
 spikes as well as manyindependently delivered rewards at varying delays have to o

ur within T . Hen
e, ingeneral, the time s
ale of single spike o

urren
es and the time s
ale of the eligibilitytra
e is required to be mu
h smaller than the time s
ale of learning. If time s
ales
an be separated, we
an drop the expe
tation on the left hand side of the lastequation and write
〈wji(t+ T) −wji(t)〉E

T
=
wji(t+ T) − wji(t)

T
=

1

T

∫ t+T

t

d

dt
wji(t

′)dt′ =
d

dt
〈wji(t)〉T .We thus obtain equation (3.6):

d

dt
〈wji(t)〉T =

∫ ∞

0
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T

+

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s+ r) 〈Dji(t, s, r) νji(t− s, r)〉T .Simpli�
ation of equation (3.6). In order to simplify this equation, we �rst observethat W (r) is vanishing for large |r|. Hen
e we
an approximate the integral overthe learning window by a bounded integral ∫∞

−∞ dr W (r) ≈
∫ TW

−TW
dr W (r) for some

TW > 0 and TW ≪ T . In the analyzes of this work, we
onsider the
ase wherereward is delivered with a relatively large temporal delay. To be more pre
ise, weassume that a pre-post spike pair has an e�e
t on the reward signal only after someminimal delay dr and that we
an write Dji(t, s, r) = d0 +Dpre,post
ji (t, s, r) for somebaseline reward d0 and a part whi
h depends on the timing of pre-post spike pairswith Dpre,post

ji (t, s, r) = 0 for s < dr and dr > TW . We
an then approximate these
ond term of equation (3.6):
∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s + r) 〈Dji(t, s, r) νji(t− s, r)〉T

≈

∫ 0

−TW

dr W (r)

∫ ∞

|r|
ds fc(s+ r)

〈

(d0 +Dpre,post
ji (t, s, r)) νji(t− s, r)

〉

T

≈

∫ 0

−TW

dr W (r)

[
∫ ∞

0
ds fc(s)d0 〈νji(t− s, r)〉T

+

∫ ∞

|r|
ds fc(s+ r)

〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T

]be
ause 〈νji(t− s− r, r)〉T ≈ 〈νji(t− s, r)〉T for r ∈ [−TW , TW] and TW ≪ T . Sin
e
Dpre,post

ji (t, s, r) = 0 for s ≤ TW , the se
ond term in the bra
kets is equivalent to

3.3. Methods 83
∫∞
0 ds fc(s+r)

〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T
whi
h in turn is approximately givenby ∫∞

0 ds fc(s)
〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T
if we assume that fc(s + r) ≈ fc(s)for s ≥ dr and |r| < TW . We
an thus approximate the se
ond term of equation(3.6) as

∫ 0

−∞
dr W (r)

∫ ∞

|r|
ds fc(s + r) 〈Dji(t, s, r) νji(t− s, r)〉T

≈

∫ 0

−TW

dr W (r)

[∫ ∞

0
ds fc(s)d0 〈νji(t− s, r)〉T

+

∫ ∞

0
ds fc(s)

〈

Dpre,post
ji (t, s, r) νji(t− s, r)

〉

T

]

≈

∫ 0

−∞
dr W (r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r) νji(t− s, r)〉T .With this approximation, the �rst and se
ond term of equation (3.6)
an be
om-bined in a single integral to obtain equation (3.8).3.3.3 Derivations for the biofeedba
k experimentWe assume that a reward with the fun
tional form εr is delivered for ea
h postsy-napti
 spike with a delay dr. The reward as time t is therefore

d(t) =

∫ ∞

0
dr Spost

k (t− dr − r)εr(r).Weight
hange for the reinfor
ed neuron (derivation of equation (3.10)). The reward
orrelation for a synapse ki a�erent to the reinfor
ed neuron is
Dki(t, s, r) = 〈d(t)〉E|Spost

k
(t−s),Spre

i (t−s−r)

=

∫ ∞

0
dr′ εr(r

′)〈Spost
k (t− dr − r′)〉E|Spost

k
(t−s),Spre

i (t−s−r)

=

∫ ∞

0
dr′ εr(r

′)
[

νk(t− dr − r′) + wkiε(s+ r − dr − r′)

+δ(s − dr − r′)
]

=

∫ ∞

0
dr′εr(r

′)νk(t− dr − r′) +wki

∫ ∞

0
dr′ εr(r

′)ε(s+ r − dr − r′) + εr(s− dr).If we assume that the output �ring rate is
onstant on the time s
ale of the rewardfun
tion, the �rst term vanishes. We rewrite the result as
Dki(t, s, r) = εr(s− dr) + wki

∫ ∞

−∞
dr′ εr(s − dr + r′)ε(r − r′).

84 Chapter 3. A Learning Theory for Reward-Modulated STDPThe mean weight
hange for weights to the reinfor
ed neuron is therefore
d

dt
wki(t) =

∫ ∞

−∞
dr W (r)

(∫ ∞

0
ds fc(s)εr(s − dr) 〈νki(t− s, r)〉T +

wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s)εr(s− dr + r′) 〈νki(t− s, r)〉T

)

. (3.20)We show that the se
ond term in the bra
kets is very small
ompared to the �rstterm:
wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s)εr(s − dr + r′) 〈νki(t− s, r)〉T =

wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s− r′)εr(s − dr)

〈

νki(t− s− r′, r)
〉

T
≈

wki

∫ ∞

−∞
dr′ ε(r − r′)

∫ ∞

0
ds fc(s)εr(s − dr) 〈νki(t− s, r)〉T .The last approximation is based on the assumption that fc(s) ≈ fc(s − r′) and

〈νki(t − r′, r)〉T ≈ 〈νki(t, r)〉T for r′ ∈ [−TW − Tε, TW]. Here, TW is the time s
aleof the learning window (see above), and Tε is time s
ale of the PSP, i.e., we have
ε(s) ≈ 0 for s ≥ Tε. Sin
e ∫∞

−∞ dr ε(r) = 1 by de�nition, we see that this is the �rstterm in the bra
kets of equation (3.20) s
aled by wki. For neurons with many inputsynapses we have wki ≪ 1. Thus the se
ond term in the bra
kets of equation (3.20)is small
ompared to the �rst term. We therefore have
d

dt
wki(t) ≈

∫ ∞

0
ds fc(s+ dr)εr(s)

∫ ∞

−∞
dr W (r) 〈νki(t− dr − s, r)〉T .Weight
hange for non-reinfor
ed neurons (derivation of equation (3.11)). The re-ward
orrelation of a synapse ji to a non-reinfor
ed neuron j is given by

Dji(t, s, r) = 〈d(t)〉E|Spost
j (t−s),Spre

i (t−s−r)

=

∫ ∞

0
dr′ εr(r

′)〈Spost
k (t− dr − r′)〉E|Spost

j (t−s),Spre
i (t−s−r).We have

〈Spost
k (t− dr − r′)〉E|Spost

j (t−s),Spre
i (t−s−r)

=
〈Spost

k (t− dr − r′)Spost
j (t− s)〉E|Spre

i (t−s−r)

〈Spost
j (t− s)〉E|Spre

i (t−s−r)

=
νkj(t− dr − r′, s− dr − r′) + wkiwjiε(s + r − dr − r′)ε(r)

νj(t− s) + wjiε(r)
,for whi
h we obtain

Dji(t, s, r) =

∫ ∞

0
dr′ εr(r

′)
νkj(t− dr − r′, s− dr − r′) + wkiwjiε(s + r − dr − r′)ε(r)

νj(t− s) + wjiε(r)
.

3.3. Methods 85In analogy to the previous derivation, we assume here that the �ring rate νj(t− s)in the denominator results from many PSPs. Hen
e, the single PSP wjiε(r) issmall
ompared to νj(t − s). Similarly, we assume that with weights wki, wji ≪

1, the se
ond term in the nominator is small
ompared to the joint �ring rate
νkj(t− dr − r′, s − dr − r′). We therefore approximate the reward
orrelation by

Dji(t, s, r) ≈

∫ ∞

0
dr′ εr(r

′)
νkj(t− dr − r′, s− dr − r′)

νj(t− s)
.Hen
e, the reward
orrelation of a non-reinfor
ed neuron depends on the
orrelationof this neuron with the reinfor
ed neuron. The mean weight
hange for a non-reinfor
ed neuron j 6= k is therefore

d

dt
wji(t) ≈

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r)

∫ ∞

0
dr′εr(r

′)

〈

νkj(t− dr − r′, s− dr − r′)

νj(t− s)
νji(t− s, r)

〉

TThis equation deserves a remark for the
ase that νj(t−s) is zero, sin
e it appears inthe denominator of the fra
tion. Note that in this
ase, both νkj(t−dr−r
′, s−dr−r

′)and νji(t − s, r) are zero. In fa
t, if we take the limit νj(t − s) → 0, then both ofthese fa
tors approa
h zero at least as fast. Hen
e, in the limit of νj(t − s) → 0,the term in the angular bra
kets evaluates to zero. This re�e
ts the fa
t that sin
eSTDP is driven by pre- and postsynapti
 spikes, there is no weight
hange if nopostsynapti
 spikes o

ur.For un
orrelated neurons, equation 3.11 evaluates to zero. For un
orrelated neurons
k, j, νkj(t− dr − r′, s− dr − r′)
an be fa
torized into νk(t− dr − r′)νj(t− s), andwe obtain
d

dt
wji(t) ≈

∫ ∞

0
ds fc(s)

∫ ∞

−∞
dr W (r)

∫ ∞

0
dr′εr(r

′)
〈

νk(t− dr − r′)νji(t− s, r)
〉

T
.This evaluates approximately to zero if the mean output rate of neuron k is
onstanton the time s
ale of the reward kernel.3.3.4 Analysis of spike-timing dependent rewards (derivation ofthe
onditions (3.13)-(3.15)).Below, we will indi
ate the variables Y1, Y2, . . . over whi
h the average of x is takenby writing 〈x〉Y1,Y2,...|.... From equation (3.12), we
an determine the reward
orre-lation for synapse i

Dji(t, s, r) =

∫ ∞

−∞
dr′κ(r′)

〈

Spost
j (t− dr)S

∗(t− dr − r′)
〉

E|Spost
j (t−s),Spre

i (t−s−r)

=

∫ ∞

−∞
dr′κ(r′)

[

νpost
j (t− dr) + δ(s − dr) + wji(s+ r − dr)ε(s+ r − dr)

]

[

ν∗(t− dr − r′) + w∗
i ε(s+ r − dr − r′)

]

, (3.21)where νpost
j (t) = 〈Spost

j (t)〉E denotes the instantaneous �ring rate of the trainedneuron at time t, and ν∗(t) = 〈S∗(t)〉E denotes the instantaneous rate of the target

86 Chapter 3. A Learning Theory for Reward-Modulated STDPspike train at time t. Sin
e weights are
hanging very slowly, we have wji(t−s−r) ≈

wji(t). In the following, we will drop the dependen
e of wji on t for brevity. Forsimpli
ity, we assume that input rates are stationary and un
orrelated. In this
ase(sin
e the weights are
hanging slowly), also the
orrelations between inputs andoutputs
an be assumed stationary, νji(t, r) = νji(r). With
onstant input rates, we
an rewrite (3.21) as
Dji(t, s, r) = κ̄ν∗νpost

j + κ̄ν∗δ(s − dr) + κ̄ν∗wjiε(s + r − dr)

+ w∗
i

∫ ∞

−∞
dr′κ(r′)ε(s + r − dr − r′)

[

νpost
j (t− dr) + δ(s − dr) + wji(s+ r − dr)ε(s + r − dr)

]

,with κ̄ =
∫∞
−∞ ds κ(s). We use this results to obtain the temporally smoothed weight
hange for synapse ji. With stationary
orrelations, we
an drop the dependen
eof νji on t and write νji(t, r) = νji(r). Furthermore, we de�ne νW

ji (r) = νji(r)W (r)and obtain
d

dt
wji(t) =

∫ ∞

−∞
dr W (r)νji(r)

∫ ∞

0
ds fc(s) 〈Dji(t, s, r)〉T

=

∫ ∞

−∞
dr νW

ji (r)κ̄
[

ν∗νpost
j f̄c + ν∗fc(dr)

+ν∗wji

∫ ∞

0
ds fc(s)ε(s + r − dr)

]

+

∫ ∞

−∞
dr νW

ji (r)w∗
i ν

post

∫ ∞

−∞
dr′κ(r′)

∫ ∞

0
ds fc(s)ε(s + r − dr − r′) +

∫ ∞

−∞
dr νW

ji (r)w∗
i

∫ ∞

−∞
dr′κ(r′)fc(dr)ε(r − r′) +

∫ ∞

−∞
dr νW

ji (r)w∗
i

∫ ∞

−∞
dr′κ(r′)wji

∫ ∞

0
ds fc(s)ε(s + r − dr)ε(s + r − dr − r′).We assume that the eligibility fun
tion fc(dr) ≈ fc(dr + r) if |r| is on the time s
aleof a PSP, the learning window, or the reward kernel, and that dr is large
omparedto these time s
ales. Then, we have

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

−∞
dr′ κ(r′)fc(dr)ε(r − r′) = fc(dr)

∫ ∞

−∞
dr νW

ji (r)εκ(r)where εκ(r) =
∫∞
−∞ dr′ κ(r′)ε(r − r′) is the
onvolution of the reward kernel withthe PSP. Furthermore, we �nd

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

−∞
dr′ κ(r′)

∫ ∞

0
ds fc(s)ε(s + r − dr)ε(s + r − dr − r′)

≈ fc(dr)

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

−∞
dr′ κ(r′)

∫ ∞

0
ds ε(s+ r − dr)ε(s + r − dr − r′)

= fc(dr)

∫ ∞

−∞
dr νW

ji (r)

∫ ∞

0
ds ε(s)εκ(s).

3.3. Methods 87With these simpli�
ations, and the abbreviation ν̄W
ji =

∫∞
−∞ drνW

ji (r) we obtain theweight
hange at synapse ji
d

dt
wji(t) ≈ κ̄ν∗νpost

j ν̄W
ji f̄c + fc(dr)κ̄ν̄

W
ji

[

ν∗ + ν∗wji + w∗
i ν

post
j

]

+ fc(dr)w
∗
i

∫ ∞

−∞
drW (r)νji(r)εκ(r) + fc(dr)wjiw

∗
i ν̄

W
ji

∫ ∞

−∞
dr ε(r)εκ(r),where ν̄W

ji =
∫∞
−∞ drW (r)νji(r).For un
orrelated Poisson input spike trains of rate νpre

i and the linear Poissonneuron model, the input-output
orrelations are νji(r) = νpre
i νpost

j + wjiν
pre
i ε(r).With these
orrelations, we obtain ν̄W

ji = νpre
i νpost

j W̄ + wjiν
pre
i W̄ε where W̄ =

∫∞
−∞ dr W (r), and W̄ε =

∫∞
−∞ dr ε(r)W (r). The weight
hange at synapse ji is then

d

dt
wji(t) ≈ κ̄f̄cν

∗νpre
i νpost

j

[

νpost
j W̄ +wjiW̄ε

]

+κ̄fc(dr)ν
pre
i

[

νpost
j W̄ +wjiW̄ε

] [

ν∗ + ν∗wji + w∗
i ν

post
j

]

+fc(dr)w
∗
i ν

pre
i

[

νpost
j

∫ ∞

−∞
dr W (r)εκ(r) + wji

∫ ∞

−∞
dr W (r)ε(r)εκ(r)

]

+fc(dr)w
∗
iwjiν

pre
i

[

νpost
j W̄ + wjiW̄ε

]

∫ ∞

0
dr ε(r)εκ(r), (3.22)We will now bound the expe
ted weight
hange for synapses ji with w∗

i = wmaxand for synapses jk with w∗
k = 0. In this way we
an derive
onditions for whi
hthe expe
ted weight
hange for the former synapses is positive, and that for thelatter type is negative. First, we assume that the integral over the reward kernel ispositive. In this
ase, the weight
hange given by (3.22) is negative for synapses iwith w∗

i = 0 if and only if νpre
i > 0, and −νpost

j W̄ > wjiW̄ε. In the worst
ase, wji is
wmax and νpost

j is small. We have to guarantee some minimal output rate νpost
min su
hthat even if wji = wmax, this inequality is ful�lled. This
ould be guaranteed bysome noise
urrent. Given su
h minimal output rate, we
an state the �rst inequalitywhi
h guarantees
onvergen
e of weights wji with w∗

i = 0

−νpost
minW̄ > wmaxW̄ε.For synapses ji with w∗

i = wmax, we obtain two more
onditions. The approximate

88 Chapter 3. A Learning Theory for Reward-Modulated STDPweight
hange is given by
d

dt
wji(t)

1

νpre
i

≈ κ̄
[

νpost
j W̄ + wjiW̄ε

]

[

ν∗νpost
j f̄c + fc(dr)ν

∗ + fc(dr)ν
∗wji + fc(dr)ν

post
j wmax

]

+fc(dr)wmaxν
post
j

∫ ∞

−∞
dr W (r)εκ(r)

+fc(dr)wmaxwji

∫ ∞

−∞
dr W (r)ε(r)εκ(r)

+fc(dr)wmaxwjiν
post
j W̄

∫ ∞

0
dr ε(r)εκ(r)

+fc(dr)wmaxw
2
jiW̄ε

∫ ∞

0
dr ε(r)εκ(r).The last term in this equation is positive and small. We
an ignore it in our su�
ient
ondition. The se
ond to last term is negative. We will in
lude in our
onditionthat the third to last term
ompensates for this negative term. Hen
e, the se
ond
ondition is

∫ ∞

−∞
dr W (r)ε(r)εκ(r) ≥ −νpost

j W̄

∫ ∞

0
dr ε(r)εκ(r),whi
h should be satis�ed in most setups. If we assume that this holds, we obtain

d

dt
wji(t) ≥ κ̄

[

νpost
j W̄ + wjiW̄ε

] [

ν∗νpost
j f̄c + fc(dr)ν

∗ + fc(dr)ν
∗wji + fc(dr)ν

post
j wmax

]

+fc(dr)wmaxν
post
j

∫ ∞

−∞
dr W (r)εκ(r).whi
h should be positive. We obtain the following inequality

∫ ∞

−∞
dr W (r)εκ(r) > −W̄ κ̄

[

ν∗νpost
j

wmax

f̄c

fc(dr)
+

ν∗

wmax
+ ν∗ + νpost

]

.All three inequalities are summarized in the following:
−νpost

minW̄ > wmaxW̄ε
∫ ∞

−∞
dr W (r)ε(r)εκ(r) ≥ −νpost

maxW̄

∫ ∞

0
dr ε(r)εκ(r)

∫ ∞

−∞
dr W (r)εκ(r) > −W̄ κ̄

[

ν∗νpost
max

wmax

f̄c

fc(dr)
+

ν∗

wmax
+ ν∗ + νpost

max

]

,where νpost
max is the maximal output rate. If these inequalities are ful�lled and inputrates are positive, then the weight ve
tor
onverges on average from any initial weightve
tor to w

∗. The se
ond
ondition is less severe, and should be easily ful�lled inmost setups. If this is the
ase, the �rst
ondition (3.13) ensures that weights with
w∗ = 0 are depressed while the third
ondition (3.15) ensures that weights with
w∗ = wmax are potentiated.

3.3. Methods 893.3.5 Analysis of the pattern dis
rimination task (derivation ofequation (3.17)).We assume that a trial
onsists of the presentation of a single pattern starting attime t = 0. We
ompute the weight
hange for a single trial given that pattern
X ∈ {P,N} was presented with the help of equations (3.1), (3.3), and (3.4) as
d

dt
wi(t)

∣

∣

∣

∣

X

=

∫ ∞

0
dsfc(s)

[∫ ∞

0
drW (r)Spost(t− s)δ(t− s− r − tXi)

+

∫ ∞

0
drW (−r)Spost(t− s− r)δ(t− s− tXi)

]

d(t)

= αX

∫ ∞

0
dsfc(s)

[∫ ∞

0
drW (r)Spost(t− s)δ(t− s− r − tXi)

+

∫ ∞

0
drW (−r)Spost(t− s− r)δ(t− s− tXi)

]
∫ ∞

0
dr′εr(r

′)Spost(t− dr − r′)

= αX

∫ ∞

0
drfc(t− r − tXi)W (r)

∫ ∞

0
dr′εr(r

′)Spost(r + tXi)Spost(t− dr − r′)

+ αX

∫ ∞

0
drfc(t− tXi)W (−r)

∫ ∞

0
dr′εr(r

′)Spost(tXi − r)Spost(t− dr − r′).We
an
ompute the average weight
hange given that pattern X was presented:
〈

d

dt
wi(t)

〉

E|X

= αX

∫ ∞

0
drfc(t− r − tXi)

W (r)

∫ ∞

0
dr′εr(r

′)〈Spost(tXi + r)Spost(t− dr − r′)〉E|X

+ αX

∫ ∞

0
drfc(t− tXi)

W (−r)

∫ ∞

0
dr′εr(r

′)〈Spost(tXi − r)Spost(t− dr − r′)〉E|X .If we assume that fc is approximately
onstant on the time s
ale of the learningwindow W , we
an simplify this to
〈

d

dt
wi(t)

〉

E|X

=

∫ ∞

−∞
drfc(t−t

X
i)W (r)

∫ ∞

0
dr′εr(r

′)〈Spost(tXi +r)Spost(t−dr−r
′)〉E|Xα

X .For the linear Poisson neuron, we
an write the auto-
orrelation fun
tion as
〈Spost(tXi + r)Spost(t− dr − r′)〉E|X = [νX(tXi + r)νX(t− dr − r′)

+νX(tXi + r)δ(tXi + r − t+ dr + r′)]

= νX(tXi + r)[νX(t− dr − r′) +

δ(tXi + r − t+ dr + r′)],where νX(t) = 〈Spost(t)〉E|X is the ensemble average rate at time t given that pattern
X was presented. If an experiment for a single pattern runs over the time interval

90 Chapter 3. A Learning Theory for Reward-Modulated STDP
[0, T ′], we
an
ompute the total average weight
hange ∆wX

i of a trial given thatpattern X was presented as
∆wX

i =

∫ T ′

0
dt

〈

d

dt
wi(t)

〉

E|X

= αX

∫ ∞

−∞
drW (r)νX(tXi + r)

∫ T ′

0
dtfc(t− tXi)

∫ ∞

0
dr′εr(r

′)

[νX(t− dr − r′) + δ(tXi + r − t+ dr + r′)]

= αX

∫ ∞

−∞
drW (r)νX(tXi + r)

∫ ∞

0
dr′εr(r

′)

[

fc(r + dr + r′) +

∫ T ′

dr

dtfc(t− tXi)νX(t− dr − r′)

]

≈ αX

∫ ∞

−∞
drW (r)νX(tXi + r)

∫ ∞

0
dr′εr(r

′)

[

fc(dr + r′) +

∫ T ′

0
dtfc(t− tXi)νX(t− dr − r′)

] (3.23)By de�ning
AX

i = αX

∫ ∞

0
dr′εr(r

′)

[

fc(dr + r′) +

∫ T ′

0
dtfc(t− tXi)νX(t− dr − r′)

]

,we
an write equation (3.23) as
∆wX

i =

∫ ∞

−∞
drW (r)νX(tXi + r)AX

i .We assume that eligibility tra
es and reward signals have settled to zero before a newpattern is presented. The expe
ted weight
hange for the su

essive presentation ofboth patterns is therefore
∆wi =

∫ ∞

−∞
drW (r)

[

νP (tPi + r)AP
i + νN (tNi + r)AN

i

]

.The equations
an easily be generalized to the
ase where multiple input spikes persynapse are allowed and where jitter on the templates is allowed. However, the maine�e
t of the rule
an be read o� the equations given here.3.3.6 Common models and parameters of the
omputer simula-tionsWe des
ribe here the models and parameter values that were used in all our
omputersimulations. We will spe
ify in a subsequent se
tion the values of other parametersthat had to be
hosen di�erently in individual
omputer simulations, in dependen
eof their di�erent setups and requirements of ea
h
omputer simulation.

3.3. Methods 913.3.6.1 LIF neuron modelFor the
omputer simulations LIF neurons with
ondu
tan
e-based synapses wereused. The membrane potential Vm(t) of this neuron model is given by:
Cm

dVm(t)

dt
= −

Vm(t) − Vresting

Rm
−

Ke
∑

j=1

ge,j(t)(Vm(t)−Ee)−
Ki
∑

j=1

gi,j(Vm(t)−Ei)−Inoise(t),(3.24)where Cm is the membrane
apa
itan
e, Rm is the membrane resistan
e, Vresting isthe resting potential, and ge,j(t) and gi,j(t) are theKe andKi synapti

ondu
tan
esfrom the ex
itatory and inhibitory synapses respe
tively. The
onstants Ee and Eiare the reversal potentials of ex
itatory and inhibitory synapses. Inoise representsthe synapti
 ba
kground
urrent whi
h the neuron re
eives (see below for details).Whenever the membrane potential rea
hes a threshold value Vthresh, the neuronprodu
es a spike, and its membrane potential is reset to the value of the resetpotential Vreset. After a spike, there is a refra
tory period of length Trefract, duringwhi
h the membrane potential of the neuron remains equal to the value Vm(t) =

Vreset. After the refra
tory period Vm(t)
ontinues to
hange a

ording to equation(3.24).For a given synapse, the dynami
s of the synapti

ondu
tan
e g(t) is de�nedby
dg(t)

dt
= −

g(t)

τsyn
+
∑

k

A(t(k) + tdelay)δ(t − t(k) − tdelay) , (3.25)where A(t) is the amplitude of the postsynapti
 response (PSR) to a single presy-napti
 spike, whi
h varies over time due to the inherent short-term dynami
s of thesynapse, and {t(k)} are the spike times of the presynapti
 neuron. The
ondu
-tan
e of the synapse de
reases exponentially with time
onstant τsyn, and in
reasesinstantaneously by amount of A(t) whenever the presynapti
 neuron spikes.In all
omputer simulations we used the following values for the neuron andsynapse parameters. The membrane resistan
e of the neurons was Rm = 100MΩ,the membrane
apa
itan
e Cm = 0.3nF , the resting potential, reset potential andthe initial value of the membrane potential had the same value of Vresting = Vreset =

Vm(0) = −70mV, the threshold potential was set to Vthresh = −59mV and therefra
tory period Trefract = 5ms. For the synapses we used a time
onstant set to
τsyn = 5ms, reversal potential Ee = 0 mV for the ex
itatory synapses and Ee = −75mV for the inhibitory synapses. All synapses had a synapti
 delay of tdelay = 1ms.3.3.6.2 Short-term dynami
s of synapsesWe modeled the short-term dynami
s of synapses a

ording to the phenomenologi
almodel proposed in Markram et al. (1998), where the amplitude Ak = A(tk+tdelay) ofthe postsynapti
 response for the kth spike in a spike train with inter-spike intervals

92 Chapter 3. A Learning Theory for Reward-Modulated STDPsour
e/dest. ex
.(U,D,F) inh. (U,D,F)ex
. 0.5, 1.1, 0.02 0.25, 0.7, 0.02inh. 0.05, 0.125, 1.2 0.32, 0.144, 0.06Table 3.2: Mean values of the U, D and F parameters in the model from Markram et al.(1998) for the short-term dynami
s of synapses, depending on the type of the presynapti
and postsynapti
 neuron (ex
itatory or inhibitory). These mean values, based on experi-mental data from Markram et al. (1998); Gupta et al. (2000), were used in all
omputersimulations.
∆1,∆2, . . . ,∆k−1 is
al
ulated with the following equations

Ak = w · uk ·Rk

uk = U + uk−1(1 − U)e−∆k−1/F

Rk = 1 + (Rk−1 − uk−1Rk−1 − 1)e−∆k−1/D,

(3.26)with hidden dynami
 variables u ∈ [0, 1] and R ∈ [0, 1] whose initial values forthe 1st spike are u1 = U and R = 1 (see Maass and Markram (2002) for a justi-�
ation of this version of the equations, whi
h
orre
ts a small error in Markramet al. (1998)). The variable w is the synapti
 weight whi
h s
ales the amplitudesof postsynapti
 responses. If long-term plasti
ity is introdu
ed, this variable is afun
tion of time. In the simulations, for the neurons in the
ir
uits the values for theU, D and F parameters were drawn from Gaussian distributions with mean valueswhi
h depended on whether the type of presynapti
 and postsynapti
 neuron of thesynapse is ex
itatory or inhibitory, and were
hosen a

ording to the data reportedin Markram et al. (1998) and Gupta et al. (2000). The mean values of the Gaussiandistributions are given in Table 3.2, and the standard deviation was
hosen to be
50% of its mean. Negative values were repla
ed with values drawn from uniformdistribution with a range between 0 and twi
e the mean value. For the simulationsinvolving individual trained neurons, the U, D and F parameters of these neuronswere set to the values from Table 3.2.We have
arried out
ontrol experiments with
urrent-based synapses that werenot subje
t to short-term plasti
ity (see Fig. S5, S8, S9; su

essful
ontrol experi-ments with stati

urrent-based synapses were also
arried out for
omputer simula-tion 1, results not shown). We found that the results of all our
omputer simulationsalso hold for stati

urrent-based synapses.3.3.6.3 Model of ba
kground synapti
 a
tivityTo reprodu
e the ba
kground synapti
 input
orti
al neurons re
eive in vivo, theneurons in our models re
eived an additional noise pro
ess as
ondu
tan
e input.The noise pro
ess we used is a point-
ondu
tan
e approximation model, des
ribedin Destexhe et al. (2001). A

ording to Destexhe et al. (2001), this noise pro
essmodels the e�e
t of a bombardment by a large number of synapti
 inputs in vivo,whi
h
auses membrane potential depolarization, referred to as �high
ondu
tan
e�

3.3. Methods 93state. Furthermore, it was shown that it
aptures the spe
tral and amplitude
har-a
teristi
s of the input
ondu
tan
es of a detailed biophysi
al model of a neo
orti
alpyramidal
ell that was mat
hed to intra
ellular re
ordings in
at parietal
ortexin vivo. The ratio of average
ontributions of ex
itatory and inhibitory ba
kground
ondu
tan
es was
hosen to be 5 in a

ordan
e to experimental studies during sen-sory responses (see Borg-Graham et al. (1998),Hirs
h et al. (1998), and Andersonet al. (2000)). In this model, the noisy synapti

urrent Inoise in equation (3.24) isa sum of two
urrents:
Inoise(t) = ge(t)(Vm(t) − Ee) + gi(t)(Vm(t) − Ei), (3.27)where ge(t) and gi(t) are time-dependent ex
itatory and inhibitory
ondu
tan
es.The values of the respe
tive reversal potentials were Ee = 0 mV and Ei = −75 mV.The
ondu
tan
es ge(t) and gi(t) were modeled a

ording to Destexhe et al. (2001)as a one-variable sto
hasti
 pro
ess similar to an Ornstein-Uhlenbe
k pro
ess:

dge(t)

dt
= −

1

τe
[ge(t) − ge0] +

√

Deχ1(t)

dgi(t)

dt
= −

1

τi
[gi(t) − gi0] +

√

Diχ2(t),with mean ge0 = 0.012µS, noise-di�usion
onstant De = 0.003µS and time
onstant
τe = 2.7ms for the ex
itatory
ondu
tan
e, and mean gi0 = 0.057µS, noise-di�usion
onstant Di = 0.0066µS, and time
onstant τi = 10.5ms for the inhibitory
ondu
-tan
e. χ1(t) and χ2(t) are Gaussian white noise of zero mean and unit standarddeviation.Sin
e these pro
esses are Gaussian sto
hasti
 pro
esses, they
an be numeri
allyintegrated by an exa
t update rule:

ge(t+ ∆) = ge0 + [ge(t) − ge0]e
− ∆

τe +AeN1(0, 1)

gi(t+ ∆) = gi0 + [gi(t) − gi0]e
−∆

τi +AiN2(0, 1),where N1(0, 1) and N2(0, 1) are normal random numbers (zero mean, unit standarddeviation) and Ae, Ai are amplitude
oe�
ients given by:
Ae =

√

Deτe
2

[1 − e
−2∆
τe]

Ai =

√

Diτi
2

[1 − e
−2∆

τi].3.3.6.4 Reward-modulated STDPFor the
omputer simulations we used the following parameters for the STDP win-dow fun
tion W (r): A+ = 0.01wmax, A−/A+ = 1.05, τ+ = τ− = 30ms. wmaxdenotes the hard bound of the synapti
 weight of the parti
ular plasti
 synapse.Note that the parameter A+
an be given arbitrary value in this plasti
ity rule,

94 Chapter 3. A Learning Theory for Reward-Modulated STDPsin
e it
an be s
aled together with the reward signal, i.e. multiplying the rewardsignal by some
onstant and dividing A+ by the same
onstant results in identi
altime evolution of the weight
hanges. We have set A+ to be 1% of the maximumsynapti
 weight.We used the α-fun
tion to model the eligibility tra
e kernel fc(t)

fc(t) =

{

t
τe
e−

t
τe , if t > 0

0 , otherwise , (3.28)where the time
onstant τe was set to τe = 0.4s in all
omputer simulations.For
omputer simulations 1 and 4 we performed
ontrol experiments (see Fig. S3,S4 and S7) with the weight-dependent synapti
 update rule proposed in Morrisonet al. (2007), instead of the purely additive rule (3.3). We used the parametersproposed in Morrison et al. (2007), i.e. µ = 0.4, α = 0.11, τ+ = τ− = 20ms. The
w0 parameter was
al
ulated a

ording to the formula: w0 = 1

2wmaxα
1/1−µ where

wmax is the maximum synapti
 weight of the synapse. 1
2wmax is equal to the initialsynapti
 weight for the
ir
uit neurons, or to the mean of the distribution of theinitial weights for the trained neurons.3.3.6.5 Initial weights of trained neuronsThe synapti
 weights of ex
itatory synapses to the trained neurons in experiments2-5 were initialized from a Gaussian distribution with mean wmax/2. The standarddeviation was set to wmax/10 bounded within the range [3wmax/10, 7wmax/10].3.3.6.6 SoftwareAll
omputer simulations were
arried out with the PCSIM software pa
kage(http://www.lsm.tugraz.at/p
sim). PCSIM is a parallel simulator for biologi
allyrealisti
 neural networks with a fast
++ simulation
ore and a Python interfa
e.It has been developed by Thomas Nats
hläger and Dejan Pe
evski. The time stepof simulation was set to 0.1ms.3.3.7 Details to individual
omputer simulationsFor all
omputer simulations, both for the
orti
al mi
ro
ir
uits and readout neu-rons, the same parameters values for the neuron and synapse models and the reward-modulated STDP rule were used, as spe
i�ed in the previous se
tion (ex
ept in
omputer simulation 3, where the goal was to test the theoreti
al predi
tions fordi�erent values of the parameters). Ea
h of the
omputer simulations in this workmodeled a spe
i�
 task or experimental �nding. Consequently, the dependen
e ofthe reward signal on the behavior of the system had to be modeled in a spe
i�
 wayfor ea
h simulation (a more detailed dis
ussion of the reward signal
an be foundin the Dis
ussion se
tion). The parameters for that are given below in separatesubse
tions whi
h address the individual simulations. Furthermore, some of the re-maining parameters in the experiments, i.e. the values of the synapti
 weights, the

3.3. Methods 95Corti
al mi
ro
ir
uitssimulation No. neurons pee, pei, pei, pii wexc(0) [nS℄ winh(0) [nS℄ COU1 4000 0.02,0.02,0.024,0.016 10.7 211.6 1.0, 0.25 540 0.1 0.784 5.1 0.4Table 3.3: Spe
i�
 parameter values for the
orti
al mi
ro
ir
uits in
omputer simulation1 and 5. pconn is the
onne
tion probability, wexc(0) and winh(0) are the initial synapti
weights for the ex
itatory and inhibitory synapses respe
tively, and COU is the s
alingfa
tor for the Ornstein-Uhlenbe
k noise inje
ted in the neurons.Trained (readout) neuronssimulation No. num. synapses wmax [nS℄ COU2 100 11.9 1.04 200 5.73 0.25 432 2.02 0.2Table 3.4: Spe
i�
 parameter values for the trained neurons in
omputer simulation 2, 4and 5. wmax is the upper hard bound of the synapti
 weights of the synapses. COU is thes
aling fa
tor for the Ornstein-Uhlenbe
k noise inje
ted in the neurons.number of synapses of a neuron, number of neurons in the
ir
uit and the Ornstein-Uhlenbe
k (OU) noise levels were
hosen to a
hieve di�erent goals depending on theparti
ular experiment. Brie�y stated, these values were tuned to a
hieve a
ertainlevel of �ring a
tivity in the neurons, a suitable dynami
al regime of the a
tivity inthe
ir
uits, and a spe
i�
 ratio between amount of input the neurons re
eive fromthe input synapses and the input generated by the noise pro
ess.We
arried out two types of simulations: simulations of
orti
al mi
ro
ir
uitsin
omputer simulations 1 and 5, and training of readout neurons in
omputersimulations 2, 3, 4 and 5. In the following we dis
uss these two types of simulationsin more detail.3.3.7.1 Corti
al Mi
ro
ir
uitsThe values of the initial weights of the ex
itatory and inhibitory synapses for the
orti
al mi
ro
ir
uits are given in Table 3.3. All synapti
 weights were bounded inthe range between 0 and twi
e the initial synapti
 weight of the synapse.The
orti
al mi
ro
ir
uit was
omposed of 4000 neurons
onne
ted randomlywith
onne
tion probabilities des
ribed in Details to
omputer simulation 1. Theinitial synapti
 weights of the synapses and the levels of OU noise were tuned toa
hieve a spontaneous �ring rate of about 4.6 Hz, while maintaining an asyn
hronousirregular �ring a
tivity in the
ir
uit. 50% of all neurons (randomly
hosen, 50%ex
itatory and 50% inhibitory) re
eived downs
aled OU noise (by a fa
tor 0.2 fromthe model reported in Destexhe et al. (2001)), with the subtra
ted part substitutedby additional synapti
 input from the
ir
uit. The input
onne
tion probabilities of

96 Chapter 3. A Learning Theory for Reward-Modulated STDPthese neurons were s
aled up, so that the �ring rates remain in the same range as forthe other neurons. This was done in order to observe how the learning me
hanismswork when most of the input
ondu
tan
e in the neuron
omes from a larger numberof input synapses whi
h are plasti
, rather than from a stati
 noise pro
ess. Thereinfor
ed neurons were randomly
hosen from this group of neurons.We
hose a smaller mi
ro
ir
uit,
omposed of 540 neurons, for the
omputersimulation 5 in order to be able to perform a large number of training trials. Thesynapti
 weights in this smaller
ir
uit were
hosen (see Table 3.3) to a
hieve anappropriate level of �ring a
tivity in the
ir
uit that is modulated by the external in-put. The
ir
uit neurons had inje
ted an Ornstein-Uhlenbe
k (OU) noise multipliedby 0.4 in order to emulate the ba
kground synapti
 a
tivity in neo
orti
al neuronsin vivo, and test the learning in a more biologi
ally realisti
 settings. This produ
edsigni�
ant trial-to-trial variability in the
ir
uit response (see Fig. 3.10D). A lowervalue of the noise level
ould also be used without a�e
ting the learning, whereasin
reasing the amount of inje
ted noise would slowly deteriorate the informationthat the
ir
uit a
tivity maintains about the inje
ted inputs, resulting in a de
lineof the learning performan
e.3.3.7.2 Readout neuronsThe maximum values of the synapti
 weights of readout neurons for
omputer sim-ulations 2, 4 and 5, together with the number of synapses of the neurons, are givenin Table 3.4.The neuron in
omputer simulation 2 had 100 synapses. We
hose 200 synapsesfor the neuron in
omputer simulation 4, in order to improve the learning per-forman
e. Su
h improvement of the learning performan
e for larger numbers ofsynapses is in a

ordan
e with our theoreti
al analysis (see equation (3.17), sin
efor learning the
lassi�
ation of temporal patterns the temporal variation of thevoltage of the postsynapti
 membrane turns out to be of
riti
al importan
e (seethe dis
ussion after equation (3.17)). This temporal variation depends less on theshape of a single EPSP and more on the temporal pattern of presynapti
 �ring whenthe number of synapses is in
reased. In
omputer simulation 5 the readout neuronre
eived inputs from all 432 ex
itatory neurons in the
ir
uit. The synapti
 weightswere
hosen in a

ordan
e with the number of synapses in order to a
hieve a �ringrate suitable for the parti
ular task, and to balan
e the synapti
 input and the noiseinje
tions in the neurons.For the pattern dis
rimination task (
omputer simulation 4) and the spee
hre
ognition task (
omputer simulation 5), the amount of noise had to be
hosen tobe high enough to a
hieve su�
ient variation of the membrane potential from trialto trial near the �ring threshold, and low enough so that it would not dominate the�u
tuations of the membrane potential. In the experiment where the exa
t spiketimes were rewarded (
omputer simulation 2), the noise had a di�erent role. Asdes
ribed in the Results se
tion, there the noise e�e
tively
ontrols the amount ofdepression. If the noise (and therefore the depression) is too weak, w∗ = 0 synapses

3.3. Methods 97do not
onverge to 0. If the noise is too strong, w∗ = wmax synapses do not
onvergeto wmax. To a
hieve the desired learning result, the noise level should be in a rangewhere it redu
es the
orrelations of the synapses with w∗ = 0 so that the depressionof STDP will prevail, but at the same time is not strong enough to do the same forthe other group of synapses with w∗ = wmax, sin
e they have stronger pre-before-post
orrelations. For our simulations, we have set the noise level to the full amountof OU noise.3.3.7.3 Details to
omputer simulation 1: Model for biofeedba
k exper-imentThe
orti
al mi
ro
ir
uit model
onsisted of 4000 neurons with twenty per
ent of theneurons randomly
hosen to be inhibitory, and the others ex
itatory. The
onne
-tions between the neurons were
reated randomly, with di�erent
onne
tivity prob-abilities depending on whether the postsynapti
 neuron re
eived the full amountof OU noise, or downs
aled OU noise with an additional
ompensatory synapti
input from the
ir
uit. For neurons in the latter sub-population, the
onne
tionprobabilities were pee = 0.02, pei = 0.02, pie = 0.024 and pii = 0.016 where theee, ei, ie, ii indi
es designate the type of the presynapti
 and postsynapti
 neurons(e=ex
itatory or i=inhibitory). For the other neurons the
orresponding
onne
tionprobabilities were downs
aled by 0.4. The resulting �ring rates and
orrelations forboth types of ex
itatory neurons are plotted in Fig. S1 and S2.The shape of the reward kernel εr(t) was
hosen as a di�eren
e of two α-fun
tions
εr(t) = A+

r

t

τ+
r
e
1− t

τ
+
r −A−

r

t

τ−r
e
1− t

τ
−
r , (3.29)one positive α-pulse with a peak at 0.4 se
 after the
orresponding spike, and onelong-tailed negative α-pulse whi
h makes sure that the integral over the rewardkernel is zero. The parameters for the reward kernel were A+

r = 1.379, A−
r = 0.27,

τ+
r = 0.2s, τ−r = 1s, and dr = 0.2s, whi
h produ
ed a peak value of the reward pulse0.4s after the spike that
aused it.3.3.7.4 Details to
omputer simulation 2: Learning spike timesWe used the following fun
tion for the reward kernel κ(r)

κ(r) =







Aκ
+(e

− t−tκ
τκ
1 − e

− t−tκ
τκ
2) , if t− tκ ≥ 0

−Aκ
−(e

t−tκ
τκ
1 − e

t−tκ
τκ
2) , otherwise (3.30)where Aκ

+ and Aκ
− are positive s
aling
onstants, τκ

1 and τκ
2 de�ne the shape of thetwo double-exponential fun
tions the kernel is
omposed of, and tκ de�nes the o�setof the zero-
rossing from the origin. The parameter values used in our simulationswere Aκ

+ = 0.1457, Aκ
− = −0.1442, τκ

1 = 30ms, τκ
2 = 4ms and tκ = −1ms. Thereward delay was equal to dr = 0.4s.

98 Chapter 3. A Learning Theory for Reward-Modulated STDP3.3.7.5 Details to
omputer simulation 3: Testing the analyti
ally de-rived
onditionsWe used a linear Poisson neuron model as in the theoreti
al analysis with stati
synapses and exponentially de
aying postsynapti
 responses ε(s) = e(−s/τε)/τε. Theneuron had 100 ex
itatory synapses, ex
ept in experiment #6, where we used 200synapses. In all experiments the target neuron re
eived additional 10 ex
itatorysynapses with weights set to wmax. The input spike trains were Poisson pro
esseswith a
onstant rate of rpre = 6Hz, ex
ept in experiment # 6 where the rate was
rpre = 3Hz. The weights of the target neuron were set to w∗

i = wmax for 0 ≤ i < 50and w∗
i = 0 for 50 ≤ i < 100.The time
onstants of the reward kernel were τκ

2 = 4ms, whereas τκ
1 had di�erentvalues in di�erent experiments (reported in table 3.1). The value of tκ was alwaysset to an optimal value su
h that the εκ(0) =

∫∞
0 κ(−s)ε(s) = 0. The time
onstant

τ− of the negative part of the STDP window fun
tion W (r) was set to τ+. Thereward signal was delayed by τd = 0.4s. The simulations were performed for varyingdurations of simulated biologi
al time (see the tsim-
olumn in Table 3.1).3.3.7.6 Details to
omputer simulation 4: Learning pattern
lassi�
ationWe used the reward signal from equation (3.16), with an α-fun
tion for the rewardkernel εr(r) = e
τ te

−t/τ , and the reward delay dr set to 300 ms. The amplitudes ofthe positive and negative pulses were αP = −αN = 1.435. and the time
onstant ofthe reward kernel was τ = 100ms.3.3.7.7 Details to
omputer simulation 5: Training a readout neuronwith reward-modulated STDP to re
ognize isolated spoken dig-itsSpike representations of spee
h utteran
es. The spee
h utteran
es were prepro-
essed by the
o
hlea model des
ribed in Lyon (1982), whi
h
aptures the �lteringproperties of the
o
hlea and hair
ells in the human inner ear. The resultinganalog signals were en
oded by spikes with the BSA spike en
oding algorithmdes
ribed in S
hrauwen and Campenhout (2003). We used the same prepro
essingto generate the spikes as in Verstraeten et al. (2005). The spike representationshad a duration of about 400 ms and 20 input
hannels. The input
hannels were
onne
ted topographi
ally to the
orti
al mi
ro
ir
uit model. The neurons in the
ir
uit were split into 20 disjun
t subsets of 27 neurons, and ea
h input
hannelwas
onne
ted to the 27 neurons in its
orresponding subsets. The readout neuronwas trained with 20 di�erent spike inputs to the
ir
uit, where 10 of them resultedfrom utteran
es of digit �one�, and the other 10 resulted from utteran
es of digit�two� by the same speaker.Training pro
edure. We performed 2000 training trials, where for ea
h trial a spikerepresentation of a randomly
hosen utteran
e out of 10 utteran
es for one digit

3.4. Dis
ussion 99was inje
ted into the
ir
uit. The digit
hanged from trial to trial. Whenever thereadout neuron spiked during the presentation of an utteran
e of digit �two�, apositive pulse was generated in the reward signal, and a

ordingly, for utteran
es ofdigit �one�, a negative pulse in the reward was generated. We used the reward signalfrom equation (3.16). The amplitudes of the positive and negative pulses were
αP = −αN = 0.883. The time
onstant of the reward kernel εr(r) was τ = 100ms.The pulses in the reward were delayed dr = 300 ms from the spikes that
aused them.Corti
al mi
ro
ir
uit details. The
orti
al mi
ro
ir
uit model
onsisted of 540 neu-rons with twenty per
ent of the neurons randomly
hosen to be inhibitory, and theothers ex
itatory. The re
urrent
onne
tions in the
ir
uit were
reated randomlywith a
onne
tion probability of 0.1. Long-term plasti
ity was not modeled in the
ir
uit synapses.The synapses for the
onne
tions from the input neurons to the
ir
uit neuronswere stati
,
urrent based with axon
ondu
tion delay of 1ms, and exponentiallyde
aying PSR with time
onstant τe = 3 ms and amplitude winput = 0.715 nA.3.4 Dis
ussionWe have presented in this work analyti
al tools whi
h make it possible to predi
tunder whi
h
onditions reward-modulated STDP will a
hieve a given learning goalin a network of neurons. These
onditions spe
ify relationships between parametersand auxiliary fun
tions (learning
urves for STDP, eligibility tra
es, reward signalset
.) that are involved in the spe
i�
ation of the reward-modulated STDP learningrule. Although our analyti
al results are based on some simplifying assumptions,we have shown that they predi
t quite well the out
omes of
omputer simulationsof quite
omplex models for
orti
al networks of neurons.We have applied this learning theory for reward-modulated STDP to a numberof biologi
ally relevant learning tasks. We have shown that the biofeedba
k result ofFetz and Baker Fetz and Baker (1973)
an in prin
iple be explained on the basis ofreward-modulated STDP. The underlying
redit assignment problem was extremelydi�
ult, sin
e the monkey brain had no dire
t information about the identity of theneuron whose �ring rate was relevant for re
eiving rewards. This
redit assignmentproblem is even more di�
ult from the perspe
tive of a single synapse, and hen
e forthe appli
ation of a lo
al synapti
 plasti
ity rule su
h as reward-modulated STDP.However our theoreti
al analysis (see equation (3.10), (3.11)) has shown that thelongterm evolution of synapti
 weights depended only on the
orrelation of pairsof pre- and postsynapti
 spikes with the reward signal. Therefore the �ring rate ofthe rewarded neuron in
reased (for a
omputer simulation of a re
urrent network
onsisting of 4000
ondu
tan
e based LIF neurons with realisti
 ba
kground noisetypi
al for in-vivo
onditions, and 228954 synapses that exhibited data-based shortterm synapti
 plasti
ity) within a few minutes of simulated biologi
al time, like inthe experimental data of Fetz and Baker (1973), whereas the �ring rates of the other

100 Chapter 3. A Learning Theory for Reward-Modulated STDPneurons remained invariant (see Fig. 3.3B). We were also able to model di�erentialreinfor
ement of two neurons in this way (Fig. 3.4). These
omputer simulationsdemonstrated a remarkable stability of the network dynami
s (see Fig. 3.3A, 3.4A,3.5) in spite of the fa
t that all ex
itatory synapses were
ontinuously subje
ted toreward-modulated STDP. In parti
ular, the
ir
uit remained in the asyn
hronous ir-regular �ring regime, that resembles spontaneous �ring a
tivity in the
ortex Brunel(2000). Other STDP-rules (without reward modulation) that maintain this �ringregime have previously been exhibited in Morrison et al. (2007).Whereas this learning task fo
used on �ring rates, we have also shown (seeFig. 3.7) that neurons
an learn via reward-modulated STDP to respond to in-puts with parti
ular spike trains, i.e., parti
ular temporal output patterns. It hasbeen pointed out in Farries and Fairhall (2007) that this is a parti
ularly di�
ultlearning task for reward-modulated STDP, and it was shown there that it
an be a
-
omplished with a modi�ed STDP rule and more
omplex reward predi
tion signalswithout delays. We have
omplemented the results of Farries and Fairhall (2007)by deriving spe
i�

onditions (equation (3.13)-(3.15)) under whi
h this learningtask
an be solved by the standard version of reward-modulated STDP. Extensive
omputer simulations have shown that these analyti
ally derived
onditions for asimpler neuron model predi
t also for a LIF neuron with
ondu
tan
e based synapseswhether it is able to solve this learning task. Fig. 3.8 shows that this learning the-ory for reward-modulated STDP is also able to predi
t quite well how fast a neuron
an learn to produ
e a desired temporal output pattern. An interesting aspe
t ofFarries and Fairhall (2007) is that there also the utility of third signals that provideinformation about
hanges in the expe
tation of reward was explored. We have
onsidered in this work only learning s
enarios where reward predi
tion is not possi-ble. A logi
al next step will be to extend our learning theory for reward-modulatedSTDP to s
enarios from
lassi
al reinfor
ement learning theory that in
lude rewardpredi
tion.We have also addressed the question to what extent neurons
an learn via reward-modulated STDP to respond with di�erent �ring rates to di�erent spatio-temporalpresynapti
 �ring patterns. It had already been shown in Izhikevi
h (2007) that thislearning rule enables neurons to
lassify spatial �ring patterns. We have
omple-mented this work by deriving an analyti
 expression for the expe
ted weight
hangein this learning s
enario (see equation (3.17)), whi
h
lari�es to what extent a neu-ron
an learn by reward-modulated STDP to distinguish di�eren
es in the temporalstru
ture of presynapti
 �ring patterns. This theoreti
al analysis showed that in theextreme
ase, where all in
oming information is en
oded in the relative timing ofpresynapti
 spikes, reward-modulated STDP is not able to produ
e a higher aver-age membrane potential for sele
ted presynapti
 �ring patterns, even if that wouldbe rewarded. But it is able to in
rease the varian
e of the membrane potential,and thereby also the number of spikes of any neuron model that has (unlike thesimple linear Poisson neuron) a �ring threshold. The simulation results in Fig. 3.9
on�rm that in this way a LIF neuron
an learn with the standard version of reward-modulated STDP to dis
riminate even purely temporal presynapti
 �ring patterns,

3.4. Dis
ussion 101by produ
ing more spikes in response to one of these patterns.A surprising feature is, that although the neuron was rewarded here only forresponding with a higher �ring rate to one presynapti
 �ring pattern P , it automat-i
ally started to respond to this pattern P with a spe
i�
 temporal spike pattern,that advan
ed in time during training (see Fig. 3.9A).Finally, we have shown that a spiking neuron
an be trained by reward-modulated STDP to read out information from a simulated
orti
al mi
ro
ir
uit(see Fig. 3.10). This is insofar of interest, as previous work Maass et al. (2002b);Häusler and Maass (2007); Maass et al. (2007) had shown that models of generi

orti
al mi
ro
ir
uits have inherent
apabilities to serve as prepro
essors for su
hreadout neurons, by
ombining in diverse linear and nonlinear ways informationthat was
ontained in di�erent time segments of spike inputs to the
ir
uit ("liquid
omputing model"). The
lassi�
ation of spoken words (that were �rst transformedinto spike trains) had been introdu
ed as a
ommon ben
hmark task for the evalu-ation of di�erent approa
hes towards
omputing with spiking neurons Hop�eld andBrody (2001); Maass et al. (2002b, 2004); Destexhe and Marder (2004); Verstraetenet al. (2005). But so far all approa
hes that were based on learning (rather thanon
lever
onstru
tions) had to rely on supervised training of a simple linear read-out. This gave rise to the question whether also biologi
ally more realisti
 modelsfor readout neurons
an be trained through a biologi
ally more plausible learnings
enario to
lassify spoken words. The results of Fig. 3.10 may be interpreted as atentative positive answer to this question. We have demonstrated that LIF neuronswith
ondu
tan
e based synapses (that are subje
t to biologi
ally realisti
 shortterm plasti
ity)
an learn without a supervisor through reward-modulated STDPto
lassify spoken digits. In
ontrast to the result of Fig. 3.9, the output
ode thatemerged here was a rate
ode. This
an be explained through the signi�
ant in-
lassvarian
e of
ir
uit responses to di�erent utteran
es of the same word (see Fig. 3.10C,D). Although the LIF neuron learnt here without a supervisor to respond with dif-ferent �ring rates to utteran
es of di�erent words by the same speaker (whereasthe rate output was very similar for both words at the beginning of learning, seeFig. 3.10E), the
lassi�
ation
apability of these neurons has not yet rea
hed thelevel of linear readouts that are trained by a supervisor (for example, speaker in-dependent word
lassi�
ation
ould not yet be a
hieved in this way). Further workis needed to test whether the
lassi�
ation
apability of LIF readout neurons
anbe improved through additional prepro
essing in the
orti
al mi
ro
ir
uit model,through a suitable variation of the reward-modulated STDP rule, or through a dif-ferent learning s
enario (mimi
king for example pre
eding developmental learningthat also modi�es the presynapti

ir
uit).The new learning theory for reward-modulated STDP will also be useful forbiologi
al experiments that aim at the
lari�
ation of details of the biologi
al im-plementation of synapti
 plasti
ity in di�erent parts of the brain, sin
e it allowsto make predi
tions whi
h types and time
ourses of signals would be optimal fora parti
ular range of learning tasks. For ea
h of the previously dis
ussed learningtasks, the theoreti
al analysis provided
onditions on the stru
ture of the reward

102 Chapter 3. A Learning Theory for Reward-Modulated STDPsignal d(t) whi
h guaranteed su

essful learning. For example, in the biofeedba
klearning s
enario (Fig. 3.3), every a
tion potential of the reinfor
ed neuron led �after some delay � to a
hange of the reward signal d(t). The shape of this
hangewas de�ned by the reward kernel ε(r). Our analysis revealed that this reward ker-nel
an be
hosen rather arbitrarily as long as the integral over the kernel is zero,and the integral over the produ
t of the kernel and the eligibility fun
tion is posi-tive. For another learning s
enario, where the goal was that the output spike train
Spost

j of some neuron j approximates the spike timings of some target spike train S∗(Fig. 3.7), the reward signal has to depend on both, Spost
j and S∗. The dependen
eof the reward signal on these spike timings was de�ned by a reward kernel κ(r). Ouranalysis showed that the reward kernel has to be
hosen for this task so that thesynapses re
eive positive rewards if the postsynapti
 neuron �res
lose to the timeof a spike in the target spike train S∗ or somewhat later, and negative rewards whenan output spike o

urs in the order of ten millise
onds too early. In the patterndis
rimination task of Fig. 3.9 ea
h postsynapti
 a
tion potential was followed �after some delay � by a
hange of the reward signal whi
h depended on the patternpresented. Our theoreti
al analysis predi
ted that this learning task
an be solvedif the integrals AP

i and AN
i de�ned by equation (3.18) are su
h that AP

i > 0 and
AN

i ≈ −AP
i . Again, this
onstraints are ful�lled for a large
lass of reward kernels,and a natural
hoi
e is to use a non-negative reward kernel εr. There are
urrentlyno data available on the shape of reward kernels in biologi
al neural systems. Theprevious sket
hed theoreti
al analysis makes spe
i�
 predi
tion for the shape of re-ward kernels (depending on the type of learning task in whi
h a biologi
al neuralsystem is involved) whi
h
an potentially be tested through biologi
al experiments.An interesting general aspe
t of the learning theory that we have presentedin this work is that it requires substantial trial-to-trial variability in the neural
ir
uit, whi
h is often viewed as �noise� of imperfe
t biologi
al implementations oftheoreti
ally ideal
ir
uits of neurons. This learning theory for reward-modulatedSTDP suggests that the main fun
tional role of noise is to maintain a suitable levelof spontaneous �ring (sin
e if a neuron does not �re, it
annot �nd out whetherthis will be rewarded), whi
h should vary from trial to trial in order to explorewhi
h �ring patterns are rewarded.5 On the other hand if a neuron �res primarilyon the basis of a noise
urrent that is dire
tly inje
ted into that neuron, and noton the basis of presynapti
 a
tivity, then STDP does not have the required e�e
ton the synapti

onne
tions to this neuron (see Fig. S6). This perspe
tive opensthe door for subsequent studies that
ompare for
on
rete biologi
al learning tasksthe theoreti
ally derived optimal amount and distribution of trial-to-trial variabilitywith
orresponding experimental data.5It had been shown in Maass et al. (2002b); Häusler and Maass (2007); Maass et al. (2007) thatsu
h highly variable
ir
uit a
tivity is
ompatible with a stable performan
e of linear readouts.

3.4. Dis
ussion 1033.4.1 Related WorkThe theoreti
al analysis of this model is dire
tly appli
able to the learning rule
onsidered in Izhikevi
h (2007). There, the network behavior of reward-modulatedSTDP was also studied some situations di�erent from the ones in this work. The
omputer simulations of Izhikevi
h (2007) operate apparently in a di�erent dynami
regime, where LTD dominates LTP in the STDP-rule, and most weights (ex
eptthose that are a
tively in
reased through reward-modulated STDP) have values
lose to 0 (see Fig. 1b and d in Izhikevi
h (2007), and
ompare with Fig. 3.5 in this
hapter). This setup is likely to require for su

essful learning a larger dominan
e ofpre-before-post over post-before-pre pairs than the one shown in Fig. 3.3E. Further-more, whereas a very low spontaneous �ring rate of 1 Hz was required in Izhikevi
h(2007),
omputer simulation 1 shows that reinfor
ement learning is also feasibleat spontaneous �ring rates whi
h
orrespond to those reported in Fetz and Baker(1973) (the pre
eding theoreti
al analysis had already suggested that the su

ess ofthe model does not depend on parti
ularly low �ring rates). The arti
les Baras andMeir (2007) and Florian (2007) investigate variations of reward-modulated STDPrules that do not employ learning
urves for STDP that are based on experimentaldata, but modi�ed
urves that arise in the
ontext of a very interesting top-down the-oreti
al approa
h (distributed reinfor
ement learning Baxter and Bartlett (1999)).The authors of P�ster et al. (2006) arrive at similar learning rules in a superviseds
enario whi
h
an be reinterpreted in the
ontext of reinfor
ement learning. Weexpe
t that a similar theory as we have presented in this work for the more
om-monly dis
ussed version of STDP
an also be applied to their modi�ed STDP rules,thereby making it possible to predi
t under whi
h
onditions their learning ruleswill su

eed. Another reward based learning rule for spiking neurons was re
entlypresented in Fiete and Seung (2006). This rule exploits
orrelations of a rewardsignal with noisy perturbations of the neuronal membrane
ondu
tan
e in order tooptimize some obje
tive fun
tion. One
ru
ial assumption of this approa
h is thatthe synapti
 plasti
ity me
hanism �knows� whi
h
ontributions to the membrane po-tential arise from synapti
 inputs, and whi
h
ontributions are due to internal noise.Su
h expli
it knowledge of the noise signal is not needed in the reward-modulatedSTDP rule of Izhikevi
h (2007), whi
h we have
onsidered in this work. The pri
eone has to pay for this potential gain in biologi
al realism is a redu
ed generality ofthe learning
apabilities. While the learning rule in Fiete and Seung (2006) approx-imates gradient as
ent on the obje
tive fun
tion, this
annot be stated for reward-modulated STDP at present. Timing-based pattern dis
rimination with a spikingneuron, as dis
ussed in the se
tion �Pattern dis
rimination with reward-modulatedSTDP� of this work, was re
ently ta
kled in Gütig and Sompolinsky (2006). Theauthors proposed the tempotron learning rule, whi
h in
reases the peak membranevoltage for one
lass of input patterns (if no spike o

urred in response to the inputpattern) while de
reasing the peak membrane voltage for another
lass of input pat-terns (if a spike o

urred in response to the pattern). The main di�eren
e betweenthis learning rule and reward-modulated STDP is that the tempotron learning rule

104 Chapter 3. A Learning Theory for Reward-Modulated STDPis sensitive to the peak membrane voltage, whereas reward-modulated STDP is sen-sitive to lo
al �u
tuations of the membrane voltage. Sin
e the time of the maximalmembrane voltage has to be determined for ea
h pattern by the synapti
 plasti
ityme
hanism, the basi
 tempotron rule is perhaps not biologi
ally realisti
. There-fore, an approximate and potentially biologi
ally more realisti
 learning rule wasproposed in Gütig and Sompolinsky (2006), where plasti
ity following error trialsis indu
ed at synapse i only if the voltage within the postsynapti
 integration timeafter their a
tivation ex
eeds a plasti
ity threshold κ. One potential problem ofthis rule is the plasti
ity threshold κ, sin
e a good
hoi
e of this parameter stronglydepends on the mean membrane voltage after input spikes. This problem is
ir-
umvented by reward-modulated STDP, whi
h
onsiders instead the lo
al
hangein the membrane voltage. Further work is needed to
ompare the advantages anddisadvantages of these di�erent approa
hes.3.4.2 Con
lusionReward-modulated STDP is a very promising
andidate for a synapti
 plasti
ity rulethat is able to or
hestrate lo
al synapti
 modi�
ations in su
h a way that parti
ularfun
tional properties of larger networks of neurons
an be a
hieved and maintained(we refer to Izhikevi
h (2007) and Farries and Fairhall (2007) for dis
ussion of po-tential biologi
al implementations of this plasti
ity rule). We have provided in thiswork analyti
al tools whi
h make it possible to evaluate this rule and variations ofthis rule not just through
omputer simulations, but through theoreti
al analysis.In parti
ular we have shown that su

essful learning is only possible if
ertain rela-tionships hold between the parameters that are involved. Some of these predi
tedrelationships
an be tested through biologi
al experiments.Provided that these relationships are satis�ed, reward-modulated STDP turnsout to be a powerful rule that
an a
hieve self-organization of synapti
 weightsin large re
urrent networks of neurons. In parti
ular, it enables us to explainseemingly inexpli
able experimental data on biofeedba
k in monkeys. In additionreward-modulated STDP enables neurons to distinguish
omplex �ring patterns ofpresynapti
 neurons, even for data-based standard forms of STDP, and withoutthe need for a supervisor that tells the neuron when it should spike. Furthermorereward-modulated STDP requires substantial spontaneous a
tivity and trial-to-trialvariability in order to support su

essful learning, thereby providing a fun
tionalexplanation for these ubiquitous features of
orti
al networks of neurons. In fa
t,not only spontaneous a
tivity but also STDP itself may be seen in this
ontextas a me
hanism that supports the exploration of di�erent �ring
hains within are
urrent network, until a solution is found that is rewarded be
ause it supports asu

essful
omputational fun
tion of the network.

3.5. A
knowledgments 1053.5 A
knowledgmentsThis
hapter is based on the journal arti
le A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasti
ity with Appli
ation to Biofeedba
k byRobert Legenstein1 (RL), myself1 (DP) and Wolfgang Maass (WM) (PLoS Com-putational Biology 4(10): e1000180, 2008). In this arti
le RL
ontributed the theo-reti
al analysis, RL, DP and WM
on
eived and designed the experiments and DP
ondu
ted the experiments and analysed the simulation results. RL, DP and WMwrote the manus
ript.Markus Diesmann, Eberhard Fetz, Razvan Florian, Yves Fregna
, Wulfram Ger-stner, Nikos Logothetis, Abigail Morrison, Matthias Munk, Gordon Pipa and DanShulz
ontributed with helpful dis
ussions during the preparation of the arti
le.Mal
olm Slaney provided a MATLAB implementation of the
o
hlea model fromLyon (1982). Benjamin S
hrauwen, David Verstraeten, Mi
hiel D'Haene and Ste-fan Klamp� provided additional
ode that used in the spee
h
lassi�
ation task(
omputer simulation 5).

1These authors
ontributed equally to the work in the paper.

Chapter 4PCSIM: a Parallel SimulationEnvironment for Neural Cir
uits
Contents4.1 Introdu
tion . 1074.2 Overview . 1104.3 Python interfa
e generation 1134.4 Network
onstru
tion . 1144.5 Custom network elements . 1214.6 Extending PCSIM using C++ 1244.7 PCSIM add-ons implemented in Python 1264.8 Dis
ussion . 1324.9 A
knowledgments . 135The Parallel C ir
uit SIMulator (PCSIM) is a software pa
kage for simulationof neural
ir
uits. It is primarily designed for distributed simulation of large s
alenetworks of spiking point neurons. Although its
omputational
ore is written inC++, PCSIM's primary interfa
e is implemented in the Python programming lan-guage, whi
h is a powerful programming environment and allows the user to easilyintegrate the neural
ir
uit simulator with data analysis and visualization tools tomanage the full neural modeling life
y
le. The main fo
us of this work is to des
ribePCSIM's full integration into Python and the bene�ts thereof. In parti
ular we willinvestigate how the automati
ally generated bidire
tional interfa
e and PCSIM'sobje
t-oriented modular framework enable the user to adopt a hybrid modeling ap-proa
h: using and extending PCSIM's fun
tionality either employing pure Pythonor C++ and thus
ombining the advantages of both worlds. Furthermore, we de-s
ribe several supplementary PCSIM pa
kages written in pure Python and tailoredtowards setting up and analyzing neural simulations.4.1 Introdu
tionGiven the
omplex nonlinear nature of the dynami
s of biologi
al neural systems,many of their properties
an be investigated only through
omputer simulations.The need of resear
hers to in
rease their produ
tivity while implementing in
reas-ingly
omplex models without ea
h time having to reinvent the wheel has be
ome a

108 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitsdriving for
e to develop simulators for neural systems that in
orporate best knownpra
ti
es in simulation algorithms and te
hnologies, and make it a

essible to theuser through a high-level user-friendly interfa
e (Brette et al., 2007). It has alsobeen brought to attention that it is of importan
e to use large neural networks withbiologi
ally realisti

onne
tivity (on the order of 104 synapses per neuron) as simu-lation models of mammalian
orti
al networks (Morrison et al., 2005). Simulation ofsu
h large models
an pra
ti
ally be done only by exploiting the
omputing powerand the memory of multiple
omputers by means of a distributed simulation.There are di�erent neural simulation environments presently available and al-though many of them were initially envisioned for a spe
i�
 purpose and domainof appli
ability, during
ontinuing development their set of features expanded toimprove generality and support
onstru
tion of a wide range of di�erent neuralmodels; see (Brette et al., 2007) for a re
ent overview. The two most prominenttools are NEURON (Hines and Carnevale, 1997; Carnevale and Hines, 2006) andGENESIS (Bower and Beeman, 1998) whi
h aim at simulation of detailed multi-
ompartmental neuron models and small networks of detailed neurons. Another
lass of quite general neural simulation environments whi
h fo
us on the simula-tion of large-s
ale
orti
al network models and the improvement of their simulatione�
ien
y through distributed
omputing in
lude NEST (Gewaltig and Diesmann,2007; Plesser et al., 2007), NCS (Brette et al., 2007) and SPLIT (Hammarlund andEkeberg, 1998). There are also more dedi
ated neural simulation tools like iNVT(iLab Neuromorphi
 Vision Toolkit1) whi
h is an example of a pa
kage spe
i�
allytailored for the domain of brain-inspired neuromorphi
 vision. All of the abovesimulation environments support parallel simulation of one model on multiple pro-
essing nodes by using
ommodity
lusters and many of them
an also be run onsuper-
omputers. The simulation tool PCSIM des
ribed in this work is designed forsimulating neural
ir
uits with a support for distributed simulation of large s
aleneural networks. Its development started as an e�ort to redesign the previous CSIMsimulator2 (Nats
hläger et al., 2003) and augment its
apabilities, with the majorextension being the implementation of a distributed simulation engine in C++ anda new
onvenient programming interfa
e. The aim was to provide a general extensi-ble framework for simulation of hybrid neural models that in
lude both spiking andanalog neural network
omponents together with other abstra
t pro
essing elementswhile making the setup and
ontrol of parallel simulations as
onvenient as possiblefor the user. Hen
e, given its
urrent set of features, the PCSIM simulator is
los-est to the se
ond group (NEST, NCS, SPLIT) of neural simulation environmentsmentioned above.Performing a neural network simulation usually requires
ombined usage of sev-eral additional software tools together with the simulator, for stimulus preparation,analysis of output data and visualization. Being able to steer all the ne
essary toolsfrom one programming environment redu
es the
omplexity of setting up simulation1http://ilab.us
.edu/toolkit/home.shtml2http://www.lsm.tugraz.at/
sim

http://ilab.usc.edu/toolkit/home.shtml
http://www.lsm.tugraz.at/csim

4.1. Introdu
tion 109experiments sin
e all development
an be done in a single programming languageand the burden of developing utilities for
onversion of data formats between het-erogeneous tools is avoided. Given its obje
t-oriented
apabilities and its strongsupport for integration with other programming languages, the Python program-ming language is a very promising
andidate for providing su
h a unifying softwareenvironment for simultaneous use of various s
ienti�
 software libraries. As Pythonis be
oming in
reasingly popular in the s
ienti�

ommunity as an interpreting lan-guage of
hoi
e for s
ienti�
 appli
ations, the developers of many neural simulatortools de
ided to provide a Python interfa
e for their simulator in addition to itslega
y interfa
e in a
ustom s
ripting language. Moreover, a simulation tool
alledBrian whi
h uses Python as an implementation language was re
ently developed tobring to the user the full �exibility of an interpreting language in spe
ifying andmanipulating neural models (Goodman and Brette, 2008).In spite of the evident pra
ti
al advantages in using Python as the single pro-gramming language for all tasks during a neural modeling life
y
le, there is theapparent dis
repan
y between the need for
omputational performan
e of the sim-ulation and
onstru
tion of the model on one hand, and rapid development of themodel on the other. Using C++
an solve the performan
e issue, but will de
reasethe produ
tivity of the modeler and requires higher level of programming skills andexperien
e. In
ontrast Python is easy to learn, �exible to use and signi�
antlyin
reases the produ
tivity of the modeler, however it lags far behind C++ in per-forman
e.3 Hen
e, instead of adopting a single language, an alternative is to enablean easy mix and mat
h of both languages during the development of a model, i.e.to introdu
e a hybrid modeling approa
h (Abrahams and Grosse-Kunstleve, 2003).In this
hapter we will des
ribe how the modular obje
t-oriented framework ofPCSIM in
ombination with an automated interfa
e generation supports su
h ahybrid modeling approa
h.In parti
ular, we brie�y review PCSIM's main features (Se
. 4.2) before wedes
ribe the automated pro
ess to generate the Python interfa
e (Se
. 4.3). InSe
. 4.4 we detail PCSIM's network
onstru
tion appli
ation programming interfa
e(API), whi
h is a
entral part of PCSIM's obje
t-oriented modular framework. InSe
. 4.5 we demonstrate another advantage of the hybrid modeling approa
h: weshow how PCSIM's
on
ept of a general network element
an be used as an interfa
eto another simulation tool. While these examples
on
entrate on the Python aspe
tof the hybrid modeling, we show in Se
. 4.6 how the user
an easily extend PCSIM'sfun
tionality using C++. Additional PCSIM pa
kages implemented in Python arereviewed in se
tion 4.7. In Se
. 4.8 we dis
uss and summarize the presented
on
eptsand approa
hes.3The simulation tool Brian mentioned above, heavily uses the numeri
al Python pa
kage numpy(Oliphant, 2007) written in C to a
hieve reasonable performan
e.

110 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uits

Figure 4.1: Ar
hite
ture overview of PCSIM4.2 Overview4.2.1 Ar
hite
tureThe high-level ar
hite
ture of PCSIM is depi
ted in Fig. 4.1. The PCSIM librarywritten in C++ (libp
sim)
onstitutes the
ore of the simulator. The API of thePCSIM library is exposed to the Python programming language by means of thePython extension module pyp
sim (see Se
. 4.3 for details). The library is made upof three main
omponents: the simulation engine with its
ommuni
ation system, apool of built-in network elements (i.e. neuron and synapse types) and the network
onstru
tion layer. Before presenting the network
onstru
tion layer in detail inSe
. 4.4 we will brie�y des
ribe in the next paragraphs the main features of theunderlying simulation engine and its
ommuni
ation system.The simulation engine integrates all the network elements (typi
ally neurons andsynapses) and advan
es the simulation to the next time step, and uses its
ommu-ni
ation system to handle the routing and delivery of dis
rete and analog messages(i.e. spikes and e.g. �ring rates or membrane voltages) between the
onne
tednetwork elements. PCSIM's simulation engine is
apable of running distributedsimulations where the individual network elements are lo
ated at di�erent
omput-ing nodes. Setting up a distributed simulation is handled easily from a users point ofview: there are no (or very little)
ode
hanges ne
essary when swit
hing from a non-distributed to a distributed simulation. The distributed simulation mode is intendedfor employing a
luster of ma
hines for simulation of one large network where ea
hma
hine integrates the equations of a subset of neurons and synapses in the network.A distributed PCSIM simulation runs as an MPI4 based appli
ation
omposed ofmultiple MPI pro
esses lo
ated on di�erent ma
hines5. The implementation of thespike routing, transfer and delivery algorithm between the nodes in a distributedsimulation is based on the ideas presented in (Morrison et al., 2005). In additionPCSIM o�ers the possibility to run a simulation as a multi-threaded appli
ation,both in a non-distributed and a distributed setup. The multi-threaded mode is in-4http://www-unix.m
s.anl.gov/mpi/5To be pre
ise, we use the C++ bindings o�ered by the MPICH2 library, where
urrently noneof the advan
ed features of the MPI-2 standard are used.

http://www-unix.mcs.anl.gov/mpi/

4.2. Overview 111

Figure 4.2: Simulation times of the CUBA network distributed over di�erent number ofpro
essing nodes,
ompared to the expe
ted simulation time (dashed line) (see text fordetails). Four di�erent sizes of networks were simulated: 4000 neurons with on average
1.6 × 106 synapses (diamonds), 20000 neurons with on average 40 × 106 synapses (stars),50000 neurons with on average 250 × 106 synapse (
ir
les) and 100000 neurons with onaverage 1 × 109 synapses (squares). The plotted simulation times are averages over 12simulation runs. The variation of simulation time between di�erent simulation runs wassmall, therefore we did not show it.tended for performing simulations on one multi-pro
essor ma
hine when one wantsto split the
omputational workload among multiple threads in one pro
ess, ea
hrunning on a di�erent pro
essor. However, we should note that the multi-threadedsimulation engine is still undergoing optimization, as we are working on improve-ment of the s
aling of the multi-threaded simulation to mat
h the s
aling a
hievedwith an equivalent distributed simulation.4.2.2 S
alability and Domain of Appli
abilityOne of the goals of the development of PCSIM was enabling simulations of largeneural networks on standard
omputer
lusters through distributed
omputing. Byutilizing the parallel
apabilities of PCSIM the simulation time for a model
an beredu
ed by using more pro
essors (on multiple ma
hines) as
omputing resour
es.As a test of the s
alability, we performed multiple simulations with the PCSIMimplementation of the CUBA model des
ribed in (Brette et al., 2007), with dif-ferent number of leaky integrate-and-�re neurons (4000, 20000, 50000 and 100000)and distributed over a di�erent number of pro
essors (ea
h pro
essor on a di�erentma
hine). We
hanged the resting potential in the neuron equations from −49mVto −60mV su
h that the network does not show any spontaneous a
tivity. In or-

112 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitsder to eli
it a spiking a
tivity in the network, an input neuron population of 1000neurons was
onne
ted randomly to it with probability 0.1, i.e. ea
h neuron in thenetwork re
eives inputs from on average 100 input neurons. The input neurons �redhomogeneous Poisson spike trains at a rate of 5 Hz. The simulation was performedfor 1 se
 biologi
al time with a time step of 0.1 ms. We have set the
onne
tionprobability within the network to 0.1, in order to rea
h realisti
 number of 10000synapses per neuron for the network size of 100000 neurons. The transmission delayof spikes was set to 1 ms. We s
aled the weights of the network so that the mean�ring rate of the neurons was between 2.4 and 2.7 Hz for all network sizes (morepre
isely 2.68 Hz, 2.55 Hz, 2.52 Hz and 2.45 Hz for the network with 4000 , 20000,50000 and 10000 neurons, respe
tively).The used ma
hines had Intel R© XeonTM64 bit CPUs with 2.66 GHz and 4 MBlevel-2 pro
essor
a
he, and 8 GB of RAM. They were
onne
ted in a 1 Gbit/sEthernet LAN.If we assume ideal linear speed-up, then the expe
ted simulation time of a modelon N ma
hines given the a
tual simulation time on K ma
hines is equal to thesimulation time on K ma
hines times K divided by N . In the evaluation of thes
aling, for the estimation of the expe
ted simulation time (see Fig. 4.2) we usedthe measured simulation time of the model on the minimum number of ma
hinesused for that parti
ular network size. Namely, we used the a
tual simulation time on
K = 1 ma
hine for the network sizes of 4000 and 20000 neurons, and the simulationtime on K = 4 and K = 16 ma
hines for the network sizes of 50000 and 100000neurons respe
tively.Fig. 4.2 shows that in the
ase of 4000 neurons the
omputational load on ea
hnode is quite low, hen
e the
ost of the spike message passing dominates the sim-ulation time whi
h results in sub-linear s
aling. For the networks with 20000 and50000 neurons the a
tual simulation time is shorter than the expe
ted simulationtime indi
ating a supra-linear speed-up for up to 24 nodes. For more than 24 nodesthe a
tual simulation time approa
hes the expe
ted simulation time. The reasonfor the supra-linear speed-up is more e�
ient usage of the pro
essor
a
he when thenetwork is distributed over larger number of nodes (Morrison et al. (2005)). For thenetwork with 100000 neurons the speed-up is not distinguishable from the expe
tedlinear speed-up (taking K = 16 nodes as the base measurement).The
ombination of features that PCSIM supports makes it suitable for varioustypes of neural models. Its domain of appli
ability
an be
onsidered a
ross two
omplementary aspe
ts: the size of networks that
an be simulated, and the varietyof di�erent models that
an be
onstru
ted and simulated, determined by the avail-able neuron and synapse models, plasti
ity me
hanisms,
onstru
tion algorithmsand similar. Con
erning the size of models, be
ause of its distributed
apabilitiesPCSIM is mainly targeted towards large neural systems with realisti

orti
al
on-ne
tivity
omposed of 105 neurons and above. As the results from the s
alabilitytest show, a spiking network with 105 neurons and 104 synapses per neuron
anbe simulated in a reasonable time on a
ommodity
luster with about 20 ma
hines,and the speed-up is linear when more ma
hines are employed for the simulation.

4.3. Python interfa
e generation 113Regarding the support for
onstru
tion of various di�erent models in PCSIM, thegenerality of the
ommuni
ation system and the extensibility with
ustom networkelements enables simulation of hybrid models (spiking and analog networks) in
or-porating di�erent levels of abstra
tion. By utilizing the
onstru
tion framework alsostru
tured models with diversity of neuron and synapse types and varying parametervalues
an be de�ned and simulated, and the built-in support for synapti
 plasti
ityfurther expands the domain of usability towards models that investigate synapti
plasti
ity me
hanisms.4.3 Python interfa
e generationIn order to enable a hybrid modeling approa
h we wanted to use a Python interfa
egeneration tool that was
apable of wrapping PCSIM's obje
t-oriented and modu-lar API su
h that the Python API will be as
lose as possible to the C++ API.Our
hoi
e for this purpose was the Boost.Python6 library (Abrahams and Grosse-Kunstleve, 2003). The strength of Boost.Python is that by using advan
ed C++
ompile-time introspe
tion and template meta-programming te
hniques it provides
omprehensive mappings between C++ and Python
onstru
ts and idioms. Thereis support, amongst others, for ex
eption handling, iterators, operator overloading,standard template library (STL)
ontainers and Python
olle
tions, smart pointersand virtual fun
tions that
an be overridden in Python. The later feature makes theinterfa
e bidire
tional, meaning that in addition to the possibility of
alling C++
ode from Python, user extension
lasses implemented in Python
an be
alled fromwithin the C++ framework. This is an enabler for the targeted hybrid modelingapproa
h; we will see examples for this later on in this
hapter.However, using Boost.Python without any additional tools does not lead to asolution where the interfa
e
an be generated in an automati
 fashion sin
e for ea
hnew
lass added to the library's API one would have to write a substantial pie
eof Boost.Python
ode. As automati
 Python wrapping of the C++ interfa
e is oneof the main prerequisites for leveraging a hybrid modeling approa
h, a solution isneeded to automati
ally syn
hronize the Python and C++ API of a library likelibp
sim. Fortunately, there exists the Py++ pa
kage7 whi
h was developed to alle-viate the repetitive pro
ess of writing and maintaining Boost.Python
ode. Py++by itself is an obje
t-oriented framework for
reating
ustom Boost.Python
odegenerators for an appli
ation library written in C++. It builds on GCC-XML8, aC++ parser based on the GCC
ompiler that outputs an XML representation ofthe C++
ode. Py++ uses this stru
tured information together with some user in-put, in form of a Python program, and produ
es the ne
essary Boost.Python
ode,
onstituting the Python interfa
e for a spe
i�ed set of C++
lasses and fun
tions(see Fig. 4.3).6http://www.boost.org/do
/libs/release/libs/python/do
/7http://www.language-binding.net/8http://www.g

xml.org

http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.language-binding.net/
http://www.gccxml.org

114 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uits
Figure 4.3: The pro
essing steps in the generation of the Python interfa
e for PCSIM.Finally the Boost.Python C++
ode is
ompiled and linked together with theC++ library under
onsideration (libp
sim in our
ase) to produ
e the Python ex-tension module
ontaining the Python API of the library (pyp
sim in our
ase).Thus, the work of the developer (and the user as we will see later on) redu
es to ade�nition of high-level rules to sele
t whi
h
lasses and methods should be exposed.For the generation of the PCSIM Python interfa
e pyp
sim, we split the rulesPy++ needs into two subsets, in
lusion and ex
lusion rules (see Fig. 4.3). Thein
lusion rules
ontain the rules that mark a sele
ted set of
lasses to be exposed toPython. The ex
lusion rules
ontain the post-pro
essing, where some of the methodsof the
lasses that were in
luded in the in
lusion rules are marked to be ex
luded,and
all poli
ies are de�ned for the in
luded methods that require them9. Py++allows to spe
ify the rules in a high-level, generi
 fashion, making them robust to
hanges in the interfa
e of the PCSIM C++ library. Hen
e, in most
ases
hanges inthe PCSIM API did not require
hanges in the Python program that generates thewrapper
ode, whi
h simpli�ed its maintenan
e. An example of su
h a high-levelrule would be �In all
lasses that are derived from
lass A, do not expose the methodthat returns a pointer of type B�. Su
h a general rule will then be still valid if forexample we introdu
e more
lasses derived from A, or add additional fun
tions thatreturn a pointer of type B in some of the
lasses.To summarize, the Python integration of PCSIM using Boost.Python togetherwith the Py++
ode generator allowed us to
ome up with a solution to automat-i
ally expose PCSIM's obje
t-oriented and modular API bidire
tionally in Python.In the following se
tions we will show how su
h an bidire
tional integration of PC-SIM into Python
an pra
ti
ally be used and whi
h possibilities and advantagesarise.4.4 Network
onstru
tionA large portion of the Python PCSIM interfa
e is devoted to the
onstru
tion ofneural
ir
uits. At the lowest level PCSIM provides methods to
reate individual9Call poli
ies de�ne the
hange of ownership of obje
ts that
ross the boundaries of the C++library, i.e. the obje
t passed from Python to the C++ library and from the C++ library toPython.

4.4. Network
onstru
tion 115network elements (i.e. neurons and synapses) and to
onne
t them together.On top of these primitives a powerful and extensible framework for
ir
uit
on-stru
tion based on probabilisti
 rules is built. The sour
e of inspiration for the in-terfa
e of the framework was the Cir
uit Tool in the CSIM simulator10 and PyNN,an API for simulator-independent pro
edural de�nition of spiking neural networks(Davison et al., 2008). We will use a
on
rete example11, des
ribed in more depthin the next subse
tion, to present the network
onstru
tion framework and its typ-i
al use
ases where emphasis is put on those features that were enabled by thebidire
tional Python interfa
e generated by the approa
h des
ribed in Se
.4.3.4.4.1 The example modelWe sele
ted the model to be simple enough for dida
ti
 reasons, but
omplete enoughwith all the elements ne
essary to explain the main novel
on
epts of the interfa
eand its Python extensibility features. The
onne
tivity patterns are based on ex-perimental data that we use in our
urrent resear
h work. The model
onsists of aspatial population of neurons lo
ated on a 3D grid with integer
oordinates withina volume of 20 × 20 × 6. 80% of the neurons in the model are ex
itatory, andthe rest are inhibitory. The ex
itatory neurons are modeled as regular spiking andthe inhibitory neurons as fast spiking Izhikevi
h neurons (Izhikevi
h, 2004). The
onne
tions between ex
itatory neurons in the network are
reated a

ording tothe trivariate probabilisti
 model de�ned in (Buzas et al., 2006). This
onne
tivitymodel des
ribes the distribution of the ex
itatory pat
hy long-range lateral
onne
-tions found in the super�
ial layers of the primary visual
ortex in
ats that dependson the lateral distan
e of the
ells and their orientation preferen
e. Orientation pref-eren
e is the a�nity of V1
ells to �re more when a bar with a spe
i�
 orientationangle is present in their re
eptive �elds. The
onne
tivity rule is de�ned by the fol-lowing equations that express the
onne
tivity probability between two ex
itatory
ells.
P (li, lj, φi, φj) =C G(li, lj)V (φi, φj) (4.1)

G(li, lj) =e−
|li−lj|

2

2σ2 (4.2)
V (φi, φj) =eκ cos 2(φi−φj) (4.3)

li = (xi, yi) and lj = (xj , yj) are the 2D lo
ations and φi and φj are the orien-tation preferen
es of the pre- and postsynapti
 neurons i and j. The fun
tion Gintrodu
es the dependen
e of the
onne
tivity probability on the lateral distan
ebetween the neurons, and V models the dependen
y on the di�eren
es in the ori-entation preferen
es of the neurons. C, κ and σ are s
aling
oe�
ients. The valuesfor the preferred orientation angles of the neurons in the example are generated byevolving a self-organizing map (SOM) (Obermayer and Blasdel, 1993). Additionally10http://www.lsm.tugraz.at/
ir
uits11The full sour
e
ode of this example is available in the supplementary material.

http://www.lsm.tugraz.at/circuits

116 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uits
Figure 4.4: A diagram of the most important
on
epts within the network
onstru
tioninterfa
e. The arrows indi
ate a �uses� relationship between the
on
epts.the
ondu
tion delay of a
onne
tion between ex
itatory neurons is probabilisti
allydependent on the distan
e between the 3D lo
ations of its pre- and postsynapti
neurons.

D(li, lj) = D0
|li − lj|

N(µ, σ, bl, bu)
(4.4)Here N(µ, σ, bl, bu) is a bounded normal distribution representing the transmissionvelo
ity of the axon. A random value from N(µ, σ, bl, bu) is sampled as follows: �rsta random number from a normal distribution with mean µ and standard deviation

σ is drawn and if that value is not within the range [bl, bu], then it is drawn from anuniform distribution with that range. D0 represents a proper s
aling fa
tor in theformula.4.4.2 The framework: obje
t-oriented, modular and extensibleFig. 4.4 shows the basi

on
epts of PCSIM's
onstru
tion framework together withtheir intera
tions during the
onstru
tion pro
ess. This framework allows modelspe
i�
ation in terms of populations of neurons
onne
ted by probabilisti
ally de-�ned
onne
tivity patterns
alled proje
tions.A population of network elements utilizes several obje
t fa
tories to generatethe network elements. A fa
tory en
apsulates the logi
 for the neuron and synapsegeneration de
oupled from the other parts of the
onstru
tion pro
ess. Every timea new neuron is to be
reated in a population the fa
tory is used to generate theneuron obje
t. The obje
t fa
tories
an use either random distribution obje
ts orvalue generators to generate values for the parameters and attributes of the networkelement instan
es. When we talk about a parameter we mean a parameter of thedi�erential equations used to model a neuron or synapse. In
ontrast an attributedes
ribes any other (more abstra
t) property of a network element. In our examplethe orientation preferen
e φ will be su
h an attribute of an ex
itatory neuron.A proje
tion manages
onne
tions between two populations. During the
on-stru
tion phase of a proje
tion a
onne
tion de
ision predi
ate is used to determinewhether a
onne
tion should be
reated for a pair of neurons. A
onne
tor fa
tory isthen used to
reate instan
es of the
onne
tor elements like synapses (this is analo-gous to the obje
t fa
tory for populations). The
onne
tor fa
tory also uses randomdistributions or
onne
tor value generators for the parameter values of the
onne
tor

4.4. Network
onstru
tion 117elements. In order to implement a spe
i�

onstru
tion algorithm, the user typi
allyjust needs to implement
ustom value generator and
onne
tion de
ision predi
ate
lasses, as we will demonstrate in the following subse
tions.4.4.3 Fa
tories:
reating network elements from modelsWe will start
onstru
ting the network model by de�ning the
lasses (or families) ofneurons models: inhibitory and ex
itatory neurons. This is a

omplished by de�ningan element fa
tory for ea
h family. As explained in Se
. 4.4.1 the ex
itatory neuronshave an orientation preferen
e φ whi
h depends on the lo
ation of the neuron in thepopulation. For this reason we will asso
iate the attribute phi with ea
h ex
itatoryneuron:ex
_fa
tory = Fa
tory(model = IzhiNeuron(type = "RS"),Vinit = UniformDistribution(-50e-3, -60e-3),attribs = di
t(phi = OrientationPreferValGen())The statement above
reates a fa
tory for the ex
itatory family of neurons basedon a regular spiking (RS) Izhikevi
h neuron model (Izhikevi
h, 2004) whereIzhiNeuron is a built-in network element
lass. The keyword argument Vinit= UniformDistribution(...) asso
iates a uniform random number generatorwith the initial membrane voltage Vinit. This has the e�e
t that wheneverthe fa
tory is used to generate an a
tual instan
e of an ex
itatory neuron, theparameter Vinit will be randomly
hosen from the interval [−50,−60]mV. Finallythe keyword argument attribs = di
t(phi = ...) has two e�e
ts: a) theattribute phi is atta
hed to ex
_fa
tory and b) the
ustom value generatorOrientationPreferValGen is used to generate a parti
ular value for phi ea
htime ex
_fa
tory is asked to generate an instan
e of an ex
itatory model neuron.The value of the phi attribute will be used afterwards for the
reation of synapti

onne
tions.In the example we implement the
ustom value generatorOrientationPreferValGen in pure Python. This is enabled by the parti
u-lar feature of Boost.Python whi
h allows C++ virtual fun
tions to be overriddenfrom within Python.
lass OrientationPreferValGen(PyAttributePopObje
tValueGenerator):def __init__(self):PyAttributePopObje
tValueGenerator.__init__(self)self.map = som.OrientationMapSOM([20,20℄)def generate(self, rng):return self.map.pref(self.lo
().x(), self.lo
().y())Value generators (in this
ase to be derived fromPyAttributePopObje
tValueGenerator) have a simple interfa
e
omposed ofthe
onstru
tor __init__ and the method generate whi
h have to be implemented

118 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitsby the user. In our parti
ular example we
reate the orientation map, that maps2D
oordinates to an orientation preferen
e angle in the
onstru
tor, and will useit in the method generate. The map is based on the SOM algorithm en
apsulatedin the Python
lass OrientationMapSOM (details not relevant here). The generatemethod is
alled to determine the value of the orientation angle attribute phiwhenever a neuron instan
e from the fa
tory has to be
reated. The value generatorinherits several
onvenient methods from its base
lass that one
an use for a

essingproperties of the neuron for whi
h generate is
alled, like self.lo
 to get the 3Dlo
ation of the neuron within a population (see next se
tion). We then pass the xand y
oordinates to the orientation map (method pref) in order to
al
ulate thevalue of the orientation preferen
e angle.For the inhibitory neuron model we
reate a similar fa
tory:inh_fa
tory = Fa
tory(model = IzhiNeuron(type = "FS"),Vinit = UniformDistribution(-50e-3, -60e-3),attribs = di
t())The di�eren
e to the ex
itatory neuron model is that a fast spiking (FS) Izhikevi
hneuron model is used and the attribute di
tionary attribs = di
t() is empty.This is be
ause there is no orientation preferen
e of the inhibitory
ells in the
onsidered model.4.4.4 Neuron populationsA population in PCSIM represents an organized set of neurons that
an be manip-ulated as one stru
tural unit in the model. In the AugmentedSpatialPopulationthat we will use in this example, the neurons have asso
iated 3D
oordinates, afamily identi�er, and an extensible set of
ustom attributes that the user
an at-ta
h to ea
h of the neurons. We already en
ountered this in the previous se
tion.The family identi�er allows the de�nition of multiple families/
lasses of neurons, i.e.subsets of neurons with similar properties, within a single population. Our popu-lation will have two families of neurons, the family of ex
itatory and the family ofinhibitory neurons. For ea
h of the two families of neurons we have spe
i�ed in theprevious se
tion a fa
tory that will be used to generate the neuron instan
es withinthe population.pop = AugmentedSpatialPopulation(net, [ex
_fa
tory(), inh_fa
tory() ℄,RatioBasedFamilies([4, 1 ℄),CuboidIntegerGrid3D(20, 20, 6))ex
_pop, inh_pop = pop.splitFamilies()Note that the �rst argument (net) spe
i�es the overall network to whi
h thispopulation of neurons will belong. The
lass CuboidIntegerGrid3D, whi
h is abuilt-in spe
ialization of the more general
on
ept of an arbitrary set of points in3D, de�nes the possible lo
ations for the neurons (integer
oordinates within avolume of 20×20×6). The population is to be
omposed of two families of neurons

4.4. Network
onstru
tion 119(ex
itatory and inhibitory),
reated by the two given fa
tories (ex
_fa
tory andinh_fa
tory). To a

omplish this we use a RatioBasedFamilies obje
t whi
hrandomly
hooses for ea
h 3D lo
ation from whi
h family of neurons the parti
ularinstan
e will be
reated. Spe
ifying the ratio 4:1 for ex
itatory to inhibitory neuronsyields the desired 80% ex
itatory neurons. The
lass RatioBasedFamilies is abuilt-in spe
ialization of the general
on
ept of a spatial family identi�er generatorwhi
h en
apsulates the logi
 for de
iding whi
h fa
tory to use depending on the 3Dlo
ation.For the purpose of more
onvenient setup of
onne
tions later on, the
reatedpopulation is split into two sub-populations, one for ea
h family.4.4.5 Proje
tions: managing synapti

onne
tionsThe synapti

onne
tions in the network
onstru
tion interfa
e are
reated by meansof proje
tions. A proje
tion is a
onstru
t that represents a set of synapti

onne
-tions originating from one population of neurons and terminating at another pop-ulation12. PCSIM has built-in
onstru
tion algorithms for
reating various typesof
onne
tion proje
tions, like
onstant probability random
onne
tivity or random
onne
tivity with probability dependent on the distan
e (or lateral distan
e) be-tween the neurons.However, to
reate a proje
tion with a spe
i�

onne
tivity pattern, one usuallyde�nes a
ustom
onne
tion de
ision predi
ate. A de
ision predi
ate de
ides for anindividual pair of neurons whether to form a
onne
tion based on the parametersand attributes of those neurons. In our example we implemented the
onne
tionde
ision predi
ate OrientationSpe
ifi
ConnPredi
ate in pure Python, en
apsu-lating the probabilisti
 rule for
onne
tion making from Equ. 4.1, whi
h states thatthe
onne
tion probability depends on the distan
e between and the orientationpreferen
es of the pre- and postsynapti
 neurons.
lass OrientationSpe
ifi
ConnPredi
ate(PyAugmentedConne
tionDe
isionPredi
ate):def __init__(self, C):PyAugmentedConne
tionDe
isionPredi
ate.__init__(self)self.orient_
onn_prob = OrientationSpe
ConnProbability(C)self.unidist = UniformDistribution(0.0, 1.0)def de
ide(self, sr
, dst, rnd):prob = self.orient_
onn_prob(self.sr
_attr(sr
, 'phi'),self.dest_attr(dst, 'phi'),self.dist_2d(sr
, dst))return self.unidist(rnd) < probThe PyAugmentedConne
tionDe
isionPredi
ate base
lass is used when one hasto de�ne a
ustom
onne
tion de
ision predi
ate that uses the neuron attributes12The sour
e and destination populations
an be the same if the goal is to
reate re
urrent
onne
tions in one population.

120 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitsand
onne
ts neurons from populations of type AugmentedSpatialPopulation. To
omplete the implementation of the predi
ate, it is required to override the de
idemethod and �ll the
onstru
tor with the ne
essary initializations. The methodde
ide is
alled within the
onne
tion
onstru
tion pro
ess for ea
h
andidatepair of neurons that
ould be
onne
ted and is expe
ted to output true (makea
onne
tion) or false (no
onne
tion). In our example, we
reate an instan
e(orient_
onn_prob) of the OrientationSpe
ConnProbability
lass to
al
ulatethe probability a

ording to the Equ. 4.1 (the full implementation of the
lass isavailable in the supplementary material). This instan
e is
alled in the de
idemethod with the orientation preferen
es of the
andidate sour
e and destinationneurons and their lateral distan
e as arguments. The orientation preferen
es areobtained via the sr
_attr and dest_attr methods (inherited from the base
lass),and the lateral distan
e via the dist_2d method. By
omparing a uniformlydistributed random number to the
al
ulated probability a Bernoulli distributionwith the desired probability for the out
ome true is generated.Before we
an
reate the proje
tion we have to de�ne a
onne
tor fa
tory (
lassConnFa
tory) that will be used to generate the synapse obje
ts within the proje
-tion.ee_syn_fa
tory = ConnFa
tory(model = Stati
SpikingSynapse(W = 1e-4),delay = DelayCond(v_mean = 2e2, v_SH = 0.2,v_min = 0.1e-3, v_max = 5e-3))The
onne
tor fa
tory di�ers from the element fa
tory obje
ts used in
onjun
tionwith neuron populations, in that the parameters of the
reated obje
ts (typi
allysynapses)
an depend on the attributes of the sour
e and destination networkelements they are
onne
ting. In our example, the
onne
tor fa
tory for the
onne
tions between ex
itatory neurons is based on a
urrent-based synapse modelwith exponential de
ay post-synapti
 response (
lass Stati
SpikingSynapsein PCSIM). Additionally, the DelayCond value generator is asso
iated to thedelay parameter of the synapse, whi
h produ
es distan
e dependent delay valuesa

ording to Equ. 4.4. The DelayCond is a built-in value generator in PCSIM.Now we
an
reate the proje
tion that will generate all re
urrent
onne
tionsbetween the ex
itatory neurons.ee_proj = Conne
tionsProje
tion(ex
_pop, ex
_pop, ee_syn_fa
tory(),Predi
ateBasedConne
tions(OrientationSpe
ifi
ConnPredi
ate(1.0)))We spe
ify in the
onstru
tor of the proje
tion the
onne
tor fa
tory for gen-eration of the synapses and the Predi
ateBasedConne
tions
lass instan
ethat iterates over all
andidate pre- and postsynapti
 neurons and delegatesthe de
ision whether to make a
onne
tion to the
onne
tion de
ision predi
ateOrientationSpe
ifi
ConnPredi
ate given as an argument.A
onne
tion de
ision predi
ate is typi
ally used when in the probabilisti

on-

4.5. Custom network elements 121ne
tivity de�nition the probability that two neurons are
onne
ted depends on theattributes and parameters of the two neurons and is independent from the other
reated
onne
tions. In the general
ase, with su
h a
onne
tivity, a separate de
i-sion whether to make a
onne
tion has to be made at ea
h
andidate neuron pair,yielding a
omplexity of the wiring algorithm that is quadrati
 with respe
t to thenumber of neurons. In a distributed s
enario, a speed-up of the
onstru
tion ispossible by splitting the wiring workload among the multiple ma
hines the model issimulated on. If the number of ma
hines is in
reased with the number of neurons,keeping the number of neurons per node �xed, and if we assume that the number ofinput synapses per neuron does not in
rease, then the wiring time will s
ale linearlywith the number of neurons.For other
onne
tivity s
hemes where further optimizations are possible, a fasterwiring algorithm
an be implemented dire
tly in the
lass that iterates over the neu-ron pairs. For example, for the
ase of
onstant probability random
onne
tions,a spe
ial RandomConne
tions
lass that implements faster wiring
an be used in-stead of Predi
ateBasedConne
tions. When using the RandomConne
tions, thewiring time is proportional to the number of
reated
onne
tions if the network is
onstru
ted on a single ma
hine, and remains
onstant in the distributed
ase withthe assumption that the number of ma
hines is in
reased proportionally with thenumber of neurons.134.5 Custom network elementsThe PCSIM
ommuni
ation system is general in a sense that it supports spikingand analog messages as
ommuni
ation between network elements. The networkelements are not restri
ted to one type of message and
an have multiple input andoutput ports, ea
h of them
apable of either re
eiving or sending spiking or analogmessages (see Fig. 4.5A and Fig. 4.5B).The generality of the framework allows the user to implement
ustom pro
essingelements that map multiple inputs to multiple outputs and plug them in a networkmodel inter-
onne
ted together with spiking or analog neural networks. Su
h
us-tom network elements
an either be implemented in C++ (see Se
. 4.6) or in purePython. This feature of PCSIM has various potential uses. For example the user
an implement new neuron types for a preliminary experiment in Python �rst, in-stead of dire
tly implementing them in C++ (see Se
. 4.6). Another possible usageis to implement more abstra
t or
omplex elements like a whole population of spik-ing neurons in Python by using ve
tors from the numeri
al Python pa
kage numpy14 (Oliphant, 2007) for step-by-step integration of the equations. This approa
hhas been shown to have good performan
e, and is appli
able for homogeneous neu-ron populations, where all neuron instan
es have the same neuron model (Brian13It is out of s
ope of this work to detail the algorithms behind the e�
ient implementation ofthe network
onstru
tion framework in the distributed simulation s
enario; this will be reportedelsewhere.14http://numpy.s
ipy.org

http://numpy.scipy.org

122 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uits

Figure 4.5: A) Network elements of di�erent type (with di�erent arrangement of inputand output ports) inter
onne
ted together in a PCSIM network. Di�erent
olors of ports,gray or white, mark their di�erent types, spiking or analog. B) Neurons and synapses arespe
i�
 subtypes of the more general
on
ept of an network element. C) S
hemati
 diagramof the embedding of a network simulated with the Brian simulator into a PCSIM networkelement.simulator, (Goodman and Brette, 2008)).We detail su
h an example in this se
tion, where the Brian simulator is used toimplement a population of spiking neurons as a single network element, and thenplug it into a PCSIM simulation together with other built-in network elements.The spiking neural network model we will simulate with Brian is the modi�edversion of the CUBA ben
hmark model des
ribed in Se
. 4.2.2, with a network sizeof 4000 neurons. We have used the same
onne
tivity probability of 0.02 and thesame weights as in (Brette et al., 2007), instead of the modi�ed 0.1
onne
tivityprobability and s
aled weights in Se
. 4.2.2. The PCSIM network element that wewill
reate to en
apsulate the Brain network has 1000 spiking input ports and 4000spiking output ports (see Fig. 4.5C). Ea
h of the output ports is asso
iated to oneneuron.To implement this model as a PCSIM network element, one has to implement aPython
lass BrianCir
uit derived from PySimObje
t. In the
onstru
tor of this
lass the Brian spiking network is
reated and initialized.

4.5. Custom network elements 123
lass BrianCir
uit(PySimObje
t):def __init__(self):PySimObje
t.__init__(self)self.registerSpikingOutputPorts(arange(4000))self.registerSpikingInputPorts(arange(1000))input = PCSIMInputNeuronGroup(1000, self)self.P = P = brian.NeuronGroup(4000, model = eqs,threshold=-50*mV, reset=-60*mV)Pe = P.subgroup(3200)Pi = P.subgroup(800)Ce = brian.Conne
tion(Pe, P, 'ge')Ci = brian.Conne
tion(Pi, P, 'gi')Ce.
onne
t_random(Pe, P, p = 0.02, weight = 1.62*mV)Ci.
onne
t_random(Pi, P, p = 0.02, weight = -9*mV)Cinp = brian.Conne
tion(input, P, 'ge')Cinp.
onne
t_random(input, P, p = 0.1, weight = 3.5*mV)self.brian = brian.Network(input, P, Ce, Ci, Cinp)self.brian.prepare()self.brian.
lo
k.set_duration(2.0*se
ond)The mapping of the PCSIM input ports to a Brian neuron group is managedby the simple auxiliary neuron group named PCSIMInputNeuronGroup (see thesupplementary material for the implementation). The reset method resets thestate of the network to time step t = 0, whi
h is a
hieved by
alling the reinitmethod of the Brian network, and initializing the membrane potential ve
tor P.Vto random values from an uniform distribution.def reset(self, dt):self.brian.reinit()self.P.V = -60*mV+10*mV*rand(len(self.P))return 0The step-by-step iteration of the network is done in the overridden advan
e methodwhi
h performs one time-step update of the Brian network with the update methodand the ti
k method of the asso
iated Brian
lo
k obje
t. At the end of ea
htime step the generated spikes of the population are gathered and delivered to theoutput ports of the PCSIM network element.def advan
e(self, ai):self.brian.update()self.brian.
lo
k.ti
k()self.setOutputSpikes(ai, self.P.get_spikes())self.
learSpikeBuf()return 0Note that no Python loops are present, the setOutputSpikes method that transfersthe spikes is implemented in C++ in the base
lass PySimObje
t, so there is noperforman
e loss
aused by the transfer of spikes from Brian to PCSIM and vi
eversa.The new BrianCir
uit network element
lass
an then be instantiated and

124 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitsadded to a PCSIM simulation. The following
ode segment
reates an instan
e ofthe Brian spiking network, adds it as a network element, sets up the input and runsthe simulation for 2.0 se
onds (1000 neurons that emit Poisson spike trains at rate5 Hz (PoissonInputNeuron) are
onne
ted to the 1000 input ports of the Briannetwork element15).net = SingleThreadNetwork()inpNrnPop = SimObje
tPopulation(net,PoissonInputNeuron(rate = 5, duration = 1000), 1000)py
ir
 = BrianCir
uit()py
ir
_id = net.add(py
ir
)for i in range(inpNrnPop.size()):net.
onne
t(inpNrnPop[i℄, 0, py
ir
_id, i)net.reset()net.simulate(2.0)4.6 Extending PCSIM using C++The obje
t-oriented framework of PCSIM
an be extended by the user at manydi�erent levels. Typi
al extensions of PCSIM in
lude either implementations ofnew neuron and synapse types, or implementations of
lasses en
apsulating
ustom
onstru
tion rules in the network
onstru
tion interfa
e, as we have illustrated inthe previous se
tions. By utilizing the features of the Boost.Python library andPy++, the extensions
an be implemented either in pure Python as already shownor in C++.For
reating C++ extensions, PCSIM provides a tool that
ompiles the
ustomC++
lasses, automati
ally generates the Python wrapper interfa
e for these andpa
ks everything into a separate Python extension module. In order to simplifythe pro
edure of
reating a
ustom extension, the user starts the implementationfrom an extension template
ontained in the PCSIM distribution. Let us assumethat we want to implement two
lasses: a new neuron type MyNeuron and a newsynapse type MySynapse. On
e the C++ implementation is �nished, there are threeadditional steps that have to be done to produ
e the PCSIM extension module.First, the C++ sour
e �les of the extension have to be enlisted in the �lemodule_re
ipe.
make. This �le is read by PCSIM's C++ build tool CMake16.15The net.
onne
t(sr
_id, sr
_port, dest_id, dest_port) method
onne
ts the port num-ber sr
_port of the element with id sr
_id, to the port number dest_port of the element withid dest_id.16http://www.
make.org

4.6. Extending PCSIM using C++ 125SET(MODULE_SOURCESsr
/MySynapse.
ppsr
/MyNeuron.
pp) As the se
ond step, we have to spe
ify the names of the
lasses we want to in
ludein the Python interfa
e in the �le python_interfa
e_spe
ifi
ation.py whi
hholds the extension module interfa
e spe
i�
ation. For our example the insertedlines should look like:def spe
ify(M, options):M.
lass_('MySynapse').in
lude()M.
lass_('MyNeuron').in
lude()return MNote that the argument M in the
ode above represents the Py++ representation ofthe C++
ode of the
ustom PCSIM extension to be built, with its rather intuitivequery interfa
e.The name of the extension module (in our example my_p
sim_module) is spe
-i�ed in both module_re
ipe.
make and python_interfa
e_spe
ifi
ation.py�les. Finally, the
ompilation is done using the spe
ial purpose
ommand-line
om-pilation tool for PCSIM extensions:> Python p
sim_extension.py buildThe
ompiled extension module then
an be imported and used within Python asany other module.import pyp
simimport my_p
sim_moduleThe main pyp
sim module should always be imported before any PCSIM extensionmodules, be
ause the
lasses in the extension are derived from
lasses in pyp
simand these
lasses should be already in the Python namespa
e. The user
andevelop multiple PCSIM extension modules that
an be used simultaneously in onesimulation.The
reation of PCSIM extensions as a separate Python extension module relieson the support of Boost.Python and Py++ for
omponent-based development, sothat C++ types from one Python extension module
an be passed to fun
tionsfrom another extension module while still preserving the information about the
ross-module C++ inheritan
e relationships. This enables obje
t instan
es fromthe
lasses in the extension module to be used within the PCSIM obje
t-orientedframework in the main pyp
simmodule. The
omponent-based development has alsothe advantage that during the development of new
ustom
lasses only the extensionmodule has to be re
ompiled, not the whole pyp
sim library.During the
ompilation of the PCSIM extension module the same pro
essingsteps happen as for the main pyp
sim module (see Fig. 4.3). We use the same

126 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitss
ripts both for generation of the Python interfa
e of the main PCSIM pa
kage andfor the Python integration of PCSIM extension modules. Sin
e the post-pro
essingex
lusion rules are expressed with the Py++ query interfa
e in a generi
 way, theyare appli
able also to the wrapping of the extension
lasses. This is due to the fa
tthat extension
lasses are derived from base
lasses in the PCSIM obje
t-orientedframework and as su
h share their
ommon properties on whi
h the rules are based.Hen
e, the intera
tion of the user with the interfa
e generation and the module
ompilation redu
es to spe
ifying a list of the C++ sour
e �les, and a list of
lassesto be exposed in Python. The rest of the pro
ess is automatized and the detailsare hidden behind the
ommand-line interfa
e of the spe
ial
ompilation tool forPCSIM extensions.4.7 PCSIM add-ons implemented in PythonOn top of the main PCSIM Python API (en
apsulated in pyp
sim) several addi-tional pa
kages have been developed. They are implemented in pure Python andheavily rely on many third party s
ienti�
 Python pa
kages. The purpose of thesepa
kages is either to augment the
apabilities of PCSIM, or add additional separatefun
tionalities that are suitable to be used together with PCSIM.4.7.1 PyNN.p
simThe obje
tive of the PCSIM development to adopt ongoing initiatives to de�ne stan-dards for model spe
i�
ation of neural networks that would foster interoperabilitybetween di�erent simulators is re�e
ted in the support of the PyNN proje
t17 (Davi-son et al., 2008). The PyNN proje
t is an e�ort to
reate a standardized, uni�edPython-based API for pro
edural spe
i�
ation of neural network models aiming ateasier ex
hange of models between simulators. The user interfa
e of PCSIM has beenaugmented with an additional software layer to support the PyNN API making itpossible to use models spe
i�ed in PyNN within PCSIM. Due to the fa
t that PyNNwas one of the sour
es for inspiration of the PCSIM interfa
e, the
on
epts betweenthe two interfa
es mat
h
losely, so the translation of the PyNN statements in
or-responding PCSIM statements was straightforward and did not require substantialprogramming logi
 that
ould have hindered the performan
e of the interfa
e. ThepyNN.p
sim pa
kage is an integral part of the PyNN distribution.4.7.2 pyp
simplusAfter we started to use PCSIM for our simulation purposes, it was be
oming ap-parent that adding another layer above the interfa
e of the pyp
sim module
angreatly simplify the routine tasks that are usually performed while setting up andrunning simulations. The pyp
simplus pa
kage was
reated with the intention to �llthis gap. Note that the pyp
simplus pa
kage is dependent on PCSIM. For a more17http://neuralensemble.org/tra
/PyNN/

http://neuralensemble.org/trac/PyNN/

4.7. PCSIM add-ons implemented in Python 127
omprehensive, simulator independent tool-set for neural simulations, we refer thereader to the NeuroTools pa
kage18. In the following paragraphs we will des
ribetwo main
omponents of the pyp
simplus pa
kage and give a demonstration of itsuse19.Re
ordings. In PCSIM the value of a parameter or output port is re
orded duringa simulation by
onne
ting it to a proper re
ording network element. The purposeof the Re
ordings
lass is to provide simpler means to set up re
orders and savingthe re
orded data during a PCSIM simulation. For example it allows to
reate apopulation of re
orders that re
ord the a
tivity of a population of elements with ea
hre
order
onne
ted to one of the elements (e.g. the spiking output of a populationof neurons). For exampler = Re
ordings(net)r.spikes = nrn_popul.re
ord(SpikeTimeRe
order())r.Vm = net.re
ord(my_nrn, ``Vm'', AnalogRe
order())r.weights = synapses.re
ord(AnalogRe
order(samplingTime), ``W'')s
hedules the re
ording of all spikes in the population nrn_popul, the membranepotential Vm of a single neuron (my_nrn), and the weights of a group of plasti
synapses. To save that data to an HDF5 �le20 one would use the
ommandr.saveInOneH5File(f)At any time later on, the saved data
an be loaded from the �le in a new Re
ordingsobje
t.r =
onstru
tRe
ordingsFromH5File(f)plot(r.Vm)The members and attributes of the newly
reated Re
ordings obje
t r are numpyarrays or Python lists holding the re
orded data. For example r.Vm and r.W willbe numpy arrays with the re
orded values of the membrane potential of the neuronand with the evolution of the re
orded synapti
 weights during the simulation,respe
tively. Note that if the user swit
hes to a distributed simulation the same
ode, without any
hanges,
an be used.To summarize, the Re
ordings
lass simpli�es the spe
i�
ation, storage andretrieval of re
orded data by
• providing automati
 dete
tion of the type of the re
orded data based on there
order
lasses, and
onversion of the re
orded data to appropriate HDF518http://neuralensemble.org/tra
/NeuroTools19There are other mis
ellaneous utilities present within the pyp
simplus pa
kage, as for exampletools for easier management of IPython parallel
omputing
luster instan
es, routines for inspe
tionof the stru
ture of an already
reated networks in PCSIM and routines for pro
essing and analysisof spike train data.20http://www.hdfgroup.org/HDF5/

http://neuralensemble.org/trac/NeuroTools

128 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitsdata stru
tures.
• implementing automati
 gathering and sorting of re
orded data from all pro-
essing nodes in a distributed simulation, and saving it in HDF5 in the sameformat as if the simulation was exe
uted on a single node.These fun
tionalities are hidden behind a
onvenient user interfa
e and are manip-ulated in the same manner in both single-node and distributed simulation modes.For the implementation of the Re
ordings
lass, the mpi4py21 (Dal
ín et al., 2008)and pytables22 pa
kages were used.Experiment-Model Framework. Simulation, modeling and development envi-ronments in various �elds (e.g. ele
troni

ir
uit design, software engineering, signalpro
essing, me
hani
al engineering) usually in
lude a library of already developedreusable
omponents that are readily available to the modeler. In the area of
ompu-tational neuros
ien
e, there is a similar e�ort to provide resour
es for easier reusabil-ity of models, e.g. online databases of already published models (Hines et al., 2004),or
onstru
ts within the simulator that allow en
apsulation of a simpler model asa well-de�ned
omponent that
an be used as a building blo
k at a higher-levelof abstra
tion. As a �rst step towards a
omponent-based modeling with PCSIM,we have set up a light-weight framework that
ould leverage and en
ourage en
ap-sulation of some generi
 parts of a model as reusable
omponents, whi
h
an beex
hanged among modelers.The basis of the framework is
omposed of three
lasses: Model, Experiment andParameters. The Model is a base
lass whi
h the user inherits from when he wants todevelop a model
omponent. Several model
omponents
an be
ombined together to
reate a new model
omponent. The Experiment
lass provides means to perform a
ontrolled simulation with an already developed
ustom Model
lass. It en
apsulatesdi�erent fa
ilities regarding saving output data to �les,
on�guration of models,saving the
urrent version of the s
ripts, naming of di�erent runs of experiments et
.The
on�guration of the models is done with a Parameters
lass holding the modelparameters in a hierar
hi
al stru
ture. For
reating instan
es of the Experiment andModel
lasses remotely within the IPython parallel
omputing framework23 (Pérezand Granger, 2007) there are RemoteExperiment and RemoteModel proxy
lasses,whi
h
an be used to manipulate remote experiment and model instan
es in thesame way as if they were lo
al.pyp
simplus in a
tion. We will demonstrate in the following paragraphs howpyp
simplus, together with other general s
ienti�
 and
omputational neuros
ien
ePython pa
kages,
an be utilized to perform an analysis of the a
tivity of the Brianspiking network example from Se
. 4.5. In parti
ular we will investigate what e�e
t21http://mpi4py.s
ipy.org22http://www.pytables.org/moin23http://ipython.s
ipy.org

http://mpi4py.scipy.org
http://www.pytables.org/moin
http://ipython.scipy.org

4.7. PCSIM add-ons implemented in Python 129a
hange in the inje
ted input in the network will have on the
ross-
orrelogram ofits spike response.At the beginning we will set up the re
ording of the spiking output of all 4000neurons in the network. After
reating a Re
ordings obje
t, we
reate a populationof re
orders to re
ord the spikes from the 4000 output ports of the BrianCir
uitnetwork element.r = Re
ordings()r.spikes = re
ord_ports(net, py
ir
_id, range(4000),SpikeTimeRe
order())net.simulate(2.0)r.saveInOneH5File('results.h5')We have a

omplished this by using the re
ord_ports fun
tion from thepyp
simplus pa
kage, used to spe
ify re
ording of a set of output ports. Afterthe simulation is performed, the re
ordings are saved in a HDF5 �le for subsequentretrieval.In another s
ript we setup the analysis of the output data and the plotting.After the
reation of the Re
ordings obje
t by loading the re
orded data from thesaved HDF5 �le, we plot the spiking a
tivity of the network for the �rst 0.4 se
ondsof the simulation with the plot_raster fun
tion in pyp
simplus (see Fig. 4.6A).r =
onstru
tRe
ordingsFromH5File('results.h5')figure(1)plot_raster(r.spikes, time_range = (0,0.4), fmt = ',')plot_raster uses the plotting routines from the matplotlib24 pa
kage (Hunter,2007) to realize the plotting.Additionally we will
al
ulate and plot the
ross-
orrelogram of the spiking a
-tivity, de�ned as the histogram of time di�eren
es between the spike times from twodi�erent spike trains,
al
ulated and summed over a set of randomly
hosen pairsof neurons from the network. To a
hieve this, we utilize the pyp
simplus fun
tionavg_
ross_
orrelate_spikes.
orr = avg_
ross_
orrelate_spikes(r.spikes, num_pairs = 2000,binsize = 1e-3,
orr_range = (-200e-3,200e-3))figure(2)bar(arange(-200e-3,201e-3, 1e-3),
orr, width = 1e-3,
olor = 'k')In our
ase the
ross-
orrelogram is
al
ulated from the spike times of 2000randomly
hosen pairs of neurons from the network, for time lags within the range24http://matplotlib.sour
eforge.net

130 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uits

Figure 4.6: Plots from the output analysis example with the pyp
simplus pa
kage. A)Spike response of the spiking network implemented in Se
. 4.5, with input neurons emittingspikes generated from a homogeneous Poisson pro
ess with a rate of 5 Hz, for the �rst 0.4se
onds of the simulation. B) Cross-
orrelogram of the spike response of the network modelfrom A). C) Spike response of the spiking network implemented in Se
. 4.5, when the inputneurons emit spikes generated from a inhomogeneous Poisson pro
ess with a rate
hanginga

ording to a sinusoidal fun
tion (see text for details). D) Cross-
orrelogram of the spikeresponse of the network model from C).
[−200ms, 200ms] and a bin size of 1ms. We then plot the
ross-
orrelogram valueswith the bar fun
tion from matplotlib (the plot is shown in Fig. 4.6B)25In the example in Se
. 4.5, the input neurons were setup to generate a homoge-neous Poisson spike trains with 5 Hz rate. Now we will modify the input generationso that the input neurons will emit inhomogeneous Poisson spike trains, with a �ringrate r(t) = 5(1 + sin(2π10t)). First we
reate a population of input neurons of typeSpikingInputNeuron that emit an expli
itly given sequen
e of spike times.inpNrnPop = SimObje
tPopulation(net, SpikingInputNeuron(), 1000)Then we iterate through all the input neurons and set the spike sequen
e of ea
hinput neuron a

ording to the previously de�ned inhomogeneous Poisson pro
ess.25For
larity reasons, we only give the main matplotlib plotting
ommand in the example
odeblo
ks, and omit the additional formatting
ommands used for Fig. 4.6.

4.7. PCSIM add-ons implemented in Python 131For the generation of the inhomogeneous Poisson spike time sequen
es we invoke theinh_poisson_generator method of an instan
e of the StGen (stimulus generator)
lass available in the NeuroTools Python pa
kage for
omputational neuros
ien
e.The method a

epts three parameters, a sequen
e spe
ifying the time momentswhere the rate
hanges (parameter t), the sequen
e of the new �ring rate valuesat these time moments (parameter rate) and the duration of the spiking pro
ess(parameter t_stop)26.time_steps = arange(0,2000,1); stgen = StGen()for i in range(inpNrnPop.size()):spikelist = stgen.inh_poisson_generator(rate = 5*(1 + sin(time_steps/1000.0*20*pi)),t = time_steps, t_stop = 2000.0)inpNrnPop.obje
t(i).setSpikes(spikelist.spike_times/1000)The spike raster and the
ross-
orrelogram obtained after rerunning the simula-tion with the newly de�ned input are shown in Fig. 4.6, panels C and D, respe
tively.Through this demo we have elu
idated to the reader how a typi
al PCSIM sim-ulation run is performed in Python, and the bene�ts that
ome from the utilizationof Python as a unifying s
ripting environment within whi
h PCSIM is used togetherwith its add-on pyp
simplus and other s
ienti�
 and
omputational neuros
ien
ePython pa
kages. Additionally to their side-by-side usage with PCSIM, the Pythons
ienti�
 pa
kages are harnessed also in the bundling of
ommon re
ipes and re-o

urring usage patterns in the PCSIM extra add-on pa
kages, as in the
ase ofpyp
simplus. The
olle
tion of Python s
ienti�
 pa
kages presently available
overa broad enough range of fun
tionalities to enable, in almost all
ases, handling allof the steps of a modeling e�ort in Python (e.g. stimulus preparation, responseanalysis and plotting as shown in the demo). The data
ommuni
ation between thedi�erent pa
kages and PCSIM typi
ally redu
es to passing Python sequen
es (listsor numpy arrays) from one pa
kage to another.4.7.3 pylsmThe pylsm pa
kage is aimed to support the analysis of the
omputational propertiesof
orti
al mi
ro
ir
uits within the liquid state ma
hine (LSM) approa
h (Maasset al. (2002
)). In this approa
h multiple simulation trials are performed whereinput spike trains, drawn from a de�ned input distribution, are inje
ted in the
orti
al
ir
uit, and a readout whi
h reads the spiking a
tivity of the
ir
uit istrained by a supervised learning algorithm to approximate some fun
tion of theseinputs.The framework
ontains all the ne
essary ma
hinery for performing the simula-tions and the training of the readout27. In a typi
al task the user de�nes the neural26Time in neurotoools is spe
i�ed in millise
onds, hen
e the division by 1000 when we need to
onvert the spike time sequen
e in se
onds before inserting it in a PCSIM neuron.27It has similar features as the pa
kage des
ribed in (Nats
hläger et al., 2003), whi
h was imple-

132 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uits
ir
uit to be used as a liquid,
hooses the desired input distribution, the input-outputmapping fun
tion, and the learning algorithm for the readout from the ones avail-able in the pa
kage, and then performs the LSM training and testing pro
edures.For example, the user
an de�ne a distribution of inputs whi
h
onsist of di�erenttime segments, and ea
h of these time segments
ontains a jittered version of someprede�ned spike train template. In the available learning algorithms for the readouta least-square algorithm with non-negative
onstraints is also in
luded. It
an beused to train a linear readout with the biologi
ally more realisti

onstraint that allthe weights originating from ex
itatory (inhibitory) neurons are positive (negative)(Haeusler and Maass, 2007).4.8 Dis
ussionThe appli
ation programming interfa
e of PCSIM is an obje
t-oriented framework
omposed of many
lasses intera
ting together to a
hieve the desired operation.Within this framework we introdu
ed several novel
on
epts like element and
on-ne
tor fa
tories, value generators and
onne
tion de
ision predi
ates. The user
an
ustomize and extend this framework by deriving from the interfa
e
lasses of theAPI to implement his own spe
i�
 network elements or network
onstru
tion algo-rithms.The wrapping approa
h. There exist several possible approa
hes for implement-ing a Python interfa
e of a simulation software library implemented in C/C++. Anextension to the NCS software
alled Brainlab (Drewes, 2005) uses generation of a�le from Python with de
larative spe
i�
ation of the model whi
h is then loaded inthe simulator. Another
ommon method is to use interpreter-to-interpreter intera
-tion with the
onversion of data stru
tures between Python and C++ handled bymeans of the Python/C API, an approa
h adopted by NEURON (Hines et al., 2009)and NEST (Eppler et al., 2008). This method is appli
able only if the simulator al-ready has an interpreting interfa
e. For the
reation of PyMoose (Ray and Bhalla,2008), the Python interfa
e of MOOSE (http://moose.sour
eforge.net/), thedevelopers applied the interfa
e generator tool SWIG28 (Beazley, 2003). Certainly,one
an also implement a Python interfa
e by using solely the Python/C API.Sin
e PCSIM's interfa
e was to be newly developed, only the later two optionswere appli
able. We opted for the interfa
e generator tool approa
h
ombined withautomati
 wrapper
ode generation, sin
e from the available options it seemed to usthe fastest way, in terms of the amount of development e�ort required, to a
hievethe desired Python wrapping of the PCSIM obje
t-oriented framework. One ofour goals for the integration of PCSIM with Python was to simplify and supporta hybrid modeling approa
h by enabling the user to implement extensions of thePCSIM obje
t-oriented framework in Python and/or C++, while not having tomented in Matlab and was part of the CSIM pa
kage.28http://www.swig.org

http://moose.sourceforge.net/
http://www.swig.org

4.8. Dis
ussion 133bother with details regarding the interoperability between these two programminglanguages.The ex
ellent support of Boost.Python for advan
ed C++
on
epts and appro-priate mapping of
orresponding idioms between the two languages allowed us toexpose the
omplete PCSIM API,
urrently ≈ 300
lasses, to Python in a non-intrusive way. This means that the fa
t that the PCSIM API is to be exposed toPython does not impose any
hanges at the C++ level nor does it put any
on-straints on its design. Furthermore the
ompilation of the libp
sim library itselfdoes not depend on any Python library or wrapping
ode.Bidire
tional interfa
e and hybrid model de�nition. One of the features ofBoost.Python enabling the hybrid approa
h is the ability to derive Python
lassesfrom the wrapped interfa
e
lasses, and override the virtual fun
tions. Hen
e, su
h
ustom Python
lass methods
an be
alled from within C++ and thus allow anintegration of Python
ode into the PCSIM C++
ode. A similar bidire
tionalinterfa
e has been implemented between Python and NEURON (Hines et al., 2009),where Python
an issue
ommands towards NEURON, but also Python
ode
an be
alled and exe
uted from within NEURON in an a
tive Ho
 session 29. In PCSIMthe two-way intera
tion between Python and C++ enables user
ustomizations tobe
oded in pure Python, and then plugged into the PCSIM C++ framework. Thisbrings additional �exibility and freedom to the user, meaning that he
an �rst do fastimplementations in Python, e.g. extensions to the network
onstru
tion interfa
e(Se
. 4.4), in the prototyping phase, and afterwards the implementation
an beported to C++ to gain maximum performan
e.The ability to de�ne PCSIM network elements in Python opens a possibilityfor a seamless Python-C++ integration also during the simulation, not only in thenetwork
onstru
tion stage. The example des
ribed in Se
. 4.5 shows that networkelements
an be implemented in Python, by using ve
torized te
hniques employingthe highly e�
ient numeri
al Python pa
kage numpy (whi
h is implemented in C).This adds �exibility, sin
e the equations des
ribing the element
an be
hangedqui
kly without any ne
essary
ompilation while not sa
ri�
ing performan
e, sin
eby using numpy ve
tors, the integration algorithm is broken down in elementaryve
tor operations thus avoiding any loops within Python that
ould be detrimentalfor the performan
e.This approa
h seems also to be advantageous when one wants to implementnetwork elements that have some abstra
t pro
essing logi
, e.g. signal pro
essing�lters, ma
hine learning algorithms or similar. In this
ase one
an utilize a large setof available C++ libraries that have Python bindings, for an e�
ient implementa-tion, and handle in Python the transfer of data from the input ports of the networkelement to the input methods of the library, and from the output of the library tothe output ports of the network element.The possibility to implement PCSIM network elements in pure Python o�ers29Ho
 is the native NEURON interpreting language.

134 Chapter 4. PCSIM: Simulation Environment for Neural Cir
uitsa
onvenient way to a
hieve run-time interoperability between PCSIM and otherneural network simulators (Cannon et al., 2007), provided that the simulator has aPython interfa
e, allows
ontrol of the simulation pro
ess at individual time steps,and has the possibility to write input and read output data during the simula-tion at ea
h time step. As shown in the example in Se
.4.5, we have su

essfullyimplemented interoperability with the Brian simulator, whi
h possesses the afore-mentioned
apabilities. One interesting further appli
ation of this interoperability
ould be a distributed simulation of a large neural network where the sub-networkson ea
h node are implemented with the Brian simulator, and the parallel
ommuni-
ation is handled by PCSIM's
ommuni
ation system. Another possible approa
h ofusing Python as a glue language to a
hieve simulator interoperability is to setup aPython s
ript as a top-level
oordinator of a step-by-step simultaneous exe
ution oftwo simulators, where the ne
essary data transfer between the simulators is realizedthrough intermediate Python data stru
tures (Ray and Bhalla, 2008).High-level wrapping spe
i�
ation and extensibility. Sin
e the interfa
e hasa �ne granular stru
ture,
omposed of many de
oupled
lasses (≈ 300) this impliesthat there are many
lasses to be wrapped and exposed to Python. It would simplybe impossible to manually manage all the ne
essary Boost.Python wrapper
ode.Furthermore, the possibility of adding extensions to the interfa
e puts additional
onstraints to the wrapping approa
h to be robust enough to work for the exten-sion
lasses too, without any signi�
ant intervention from the user. Nevertheless,by exploiting the powerful interfa
e generator tool Py++ the wrapping of su
h alarge number of
lasses is rendered feasible.30 We were able to spe
ify high-levelgeneri
 rules within Py++ for the de�nition of the wrapping of all the
lasses inthe PCSIM API and their sensible extensions. To be pre
ise, the Python programthat spe
i�es the rules for the Python interfa
e generation for ≈ 300
lasses is about400 lines of Python
ode. As these rules apply for the extensions too, the user
aneasily extend the PCSIM simulator with its own
ustom C++
lasses and
ompilethem in a separate Python extension pa
kage, whi
h
an be used together with themain pyp
sim pa
kage (the tool support for this is in
luded in PCSIM). This wasmade possible by the Boost.Python and Py++ support for
ross-module inheritan
erelationships and
omponent-based development (see Se
. 4.6).To summarize, by the easy extensibility of its interfa
e both in Python andC++, PCSIM enables the modelers to think hybrid when developing their models(Abrahams and Grosse-Kunstleve, 2003).Python as a s
ripting environment. Providing a Python interfa
e to a neuralsimulator in
reases its versatility and
onsequently the produ
tivity of the model-ers in many ways. The obje
t oriented design of the language, its expressive and
lean syntax, allows the modeler to fo
us on the high-level logi
 of the model in-30The only drawba
k we en
ounter is the rather long
ompile time when re
ompiling the wholePython interfa
e. This is due to the fa
t that Boost.Python heavily uses C++ templates.

4.9. A
knowledgments 135stead of struggling with the intri
a
ies and the nuts and bolts of the programminglanguage. Furthermore, there is a growing number of general s
ienti�
 and spe-
i�

omputational neuros
ien
e software tools available as Python pa
kages, fornumeri
al
al
ulations, s
ienti�
 fun
tions, plotting, saving data to �les, parallel
omputing et
. We have used several s
ienti�
 Python pa
kages to enhan
e PCSIMwith useful utilities on top of its basi
 interfa
e. As we have illustrated through asimple example in Se
. 4.7, in
ombination with su
h Python pa
kages PCSIM
anbe used as the main
omponent of a Python-based neural simulation environmentwhere all steps within a neural model development life-
y
le, from the spe
i�
ationof the model and performing the simulations, to storage of simulation output data,data analysis and visualization
an be performed. Overall, the integration of PCSIMwith Python added additional valuable fa
ilities to the user, turning PCSIM into afull-�edged neural simulation environment.PCSIM Resour
es. Many resour
es for PCSIM
an be found at its webpage http://www.igi.tugraz.at/p
sim. The web page
ontains a user man-ual, examples, installation instru
tions,
omplete
lass referen
e do
umentationand the
omplete material for the tutorial that was given at the FIAS The-oreti
al Neuros
ien
e and Complex Systems summer s
hool held in Frankfurt,Germany in August, 2008. The users
an dis
uss topi
s and pose questions
on
erning usage and installation of PCSIM on the p
sim-users mailing list onSour
eforge R©(http://www.sour
eforge.net/proje
ts/p
sim) where the PCSIMdevelopment proje
t is hosted. In the future, the user manual will
ontinuouslyundergo extensions and revisions to better organize the
ontent and to in
lude ad-ditional topi
s and more elaborate information about the PCSIM
on
epts and
on-stru
ts. Additional examples
overing various PCSIM features will also be madeavailable on the web site.4.9 A
knowledgmentsThis
hapter is based on the journal arti
le PCSIM: A Parallel Simulation Environ-ment for Neural Cir
uits Fully Integrated with Python by myself (DP), ThomasNats
hläger (TN) and Klaus S
hu
h (KS) (Frontiers in Neuroinformati
s 3:11,2009). The PCSIM neural simulator des
ribed in the arti
le was developed byDP and TN, with
ontributions from KS. TN supervised the software developmentproje
t. DP implemented and performed the
omputer simulation tests reported inthe arti
le. The arti
le was written by DP and TN. KS wrote the se
tion that de-s
ribes the PYLSM pa
kage and gave useful
omments for improving the manus
ript.

http://www.igi.tugraz.at/pcsim
http://www.sourceforge.net/projects/pcsim

Appendix AList of Publi
ations
1. R. Brette, M. Rudolph ,T. Carnevale,M. Hines,D. Beeman,J.M. Bower, M.Diesmann, A. Morrison, P.H. Goodman, F.C. Harris Jr.,M. Zirpe , T.Nats
hläger, D. Pe
evski, B. Ermentrout , M. Djurfeldt, A. Lansner, O.Ro
hel, T. Vieville, E. Muller, A.P. Davison, S. El Boustani, and A. Destexhe.Simulation of networks of spiking neurons: a review of tools and strategies,Journal of Computational Neuros
ien
e 23(3):349-398, 2007.2. R. Legenstein1, D. Pe
evski1, and W. Maass Theoreti
al analysis of learningwith reward-modulated spike-timing-dependent plasti
ity, In Pro
. of NIPS2007, Advan
es in Neural Information Pro
essing Systems, volume 20. MITPress, 2008.3. Legenstein R., Pe
evski D. and Maass W. A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasti
ity with Appli
ation to Biofeedba
k,PLoS Computational Biology 4(10): e1000180, 2008.4. A.P. Davison , D. Brüderle, J. Kremkow , E. Muller , Pe
evski D., Perrinet,L. and P. Yger, PyNN: a
ommon interfa
e for neuronal network simulators,Frontiers in Neuroinformati
s. Conferen
e Abstra
t: Neuroinformati
s 2008.5. A.P. Davison, D. Brüderle, J. Eppler, J. Kremkow, E. Muller, D. Pe
evski,L. Perrinet and P. Yger, PyNN: a
ommon interfa
e for neuronal networksimulators, Frontiers in Neuroinformati
s 2:11, 2008.6. D. Pe
evski, T. Nats
hläger and K. S
hu
h PCSIM: A Parallel SimulationEnvironment for Neural Cir
uits Fully Integrated with Python, Frontiers inNeuroinformati
s 3:11, 2009.7. E. Muller, A. P. Davison, T. Brizzi, D. Bruederle, M. J. Eppler, J. Kremkow,D. Pe
evski, L. Perrinet, M. S
hmuker and P. Yger (2009) NeuralEnsem-ble.Org: Unifying neural simulators in Python to ease the model
omplexitybottlene
k, Frontiers in Autonomi
 Neuros
ien
e. Conferen
e Abstra
t: Neu-roinformati
s 2009.8. D. Pe
evski, L. Büsing, W. Maass. Probabilisti
 Inferen
e in General Graphi
alModels through Sampling in Sto
hasti
 Networks of Spiking Neurons, submit-ted for publi
ation, 2011.1These authors
ontributed equally to the paper

138 Appendix A. List of Publi
ationsA.1 Comments and Contributions to Publi
ationsThe �rst publi
ation Simulation of networks of spiking neurons: a review of tools andstrategies is a review publi
ation whi
h overviews di�erent simulation environmentsfor networks of spiking neurons. In this publi
ation I prepared and performed theben
hmark simulations for the simulators CSIM and its su

essor PCSIM.The publi
ation Theoreti
al analysis of learning with reward-modulated spike-timing-dependent plasti
ity was written by Robert Legenstein (RK), myself (DP)and my supervisor Wolfgang Maass (WM). RK provided the theoreti
al analysis,RL, DP and WM
on
ieved the experiments and DP prepared and performed thesimulations for the experiments and analysed the simulation results. RL, DP andWM wrote the paper. The paper was sele
ted for a spotlight poster presentation atthe 21th Annual Conferen
e on Neural Information Pro
essing Systems (NIPS) 2007,Van
ouver, Canada. The results from this paper were extended and published ina journal arti
le A Learning Theory for Reward-Modulated Spike-Timing-DependentPlasti
ity with Appli
ation to Biofeedba
k by the same authors, published in PLOSComputational Biology. Apart from
ontaining in a more elaborate form the resultsfrom the
onferen
e publi
ation, the journal publi
ation also in
ludes additionaltheoreti
al analysis and additional results from elaborate simulation experiments.In this arti
le RL
ontributed the theoreti
al analysis, RL, DP and WM
on
ievedthe experiments and DP
ondu
ted the simulation experiments and analysed thesimulation results. RL, DP and WM wrote the paper. The journal arti
le providesthe basis for Chapter 3 of this thesis.The journal publi
ation PyNN: a
ommon interfa
e for neuronal network sim-ulators published in Frontiers in Neuroinformati
s des
ribes the software pa
kagePyNN, a simulator-independent Python-based interfa
e for spe
i�
ation and simula-tion of models
omposed of networks of spiking neurons. All those who
ontributed
ode to PyNN were added as
o-authors of this arti
le. I
ontributed to PyNN themodule that implements the support for the PCSIM simulator.The journal arti
le PCSIM: A Parallel Simulation Environment for Neural Cir-
uits Fully Integrated with Python published in Frontiers in Neuroinformati
s givesan overview of the fun
tionalities of the PCSIM simulator and its integration withthe Python programming language. The PCSIM simulator was developed by myself(DP) and Thomas Nats
hläger (TN), with
ontributions from Klaus S
hu
h (KS).DP implemented and performed the
omputer simulation tests reported in the ar-ti
le. The paper was written by DP and TN. KS wrote the se
tion that des
ribesthe PYLSM pa
kage. This arti
le provides the basis for Chapter 4 of this thesis.The arti
le Probabilisti
 Inferen
e in General Graphi
al Models through Samplingin Sto
hasti
 Networks of Spiking Neurons is a joint work together with Lars Büsing(LB) and Wolfgang Maass (WM). It was submitted for publi
ation in 2011 andis under review. The experiments were
on
ieved and designed by myself (DP)and WM. DP
ondu
ted the experiments and analysed the simulation results. Thepaper builds on the theory of neural sampling developed by LB and reported in(Büsing et al., 2011). DP and WM provided the additional theoreti
al derivations

A.1. Comments and Contributions to Publi
ations 139and analysis in the paper. DP and WM wrote the paper. LB provided valuable
omments that helped to improve the paper. This arti
le provides the basis forChapter 2 of this thesis.

BibliographyAbbott, L. F. and Nelson, S. B. (2000). Synapti
 plasti
ity: taming the beast.Nature Neuros
ien
e, 3:1178�1183. 56, 58Abeles, M., Bergman, H., Gat, I., Meilijson, I., Seidemann, E., Tishby, N., andVaadia, E. (1995). Corti
al a
tivity �ips among quasi-stationary states. Pro
Natl A
ad S
i U S A, 92(19):8616�8620. 30, 37Abrahams, D. and Grosse-Kunstleve, R. W. (2003). Building hybrid systems withBoost.Python. C/C++ Users Journal, 21(7):29�36. 109, 113, 134A
kley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm forboltzmann ma
hines. Cognitive S
ien
e, 9:147�169. 9, 16, 34Anderson, J., Lampl, I., Rei
hova, I., Carandini, M., and Ferster, D. (2000). Stim-ulus dependen
e of two-state �u
tuations of membrane potential in
at visual
ortex. Nature Neuros
ien
e, 3(6):617�621. 93Andrieu, C., Freitas, N. D., Dou
et, A., and Jordan, M. I. (2003). An introdu
tionto MCMC for ma
hine learning. Ma
hine Learning, 50:5�43. 9Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R.(2000). Is heterosynapti
 modulation essential for stabilizing Hebbian plasti
ityand memory? Nature Reviews Neuros
ien
e, 1:11�20. 56Bao, S., Chan, V. T., and Merzeni
h, M. M. (2001). Corti
al remodelling indu
edby a
tivity of ventral tegmental dopamine neurons. Nature, 412(6842):79�83. 56Baras, D. and Meir, R. (2007). Reinfor
ement learning, spike-time-dependent plas-ti
ity, and the b
m rule. Neural Computation, 19(8):2245�2279. 56, 103Baxter, J. and Bartlett, P. L. (1999). Dire
t gradient-based reinfor
ement learning:I. gradient estimation algorithms. Te
hni
al report, Resear
h S
hool of Informa-tion S
ien
es and Engineering, Australian National University. 56, 103Beazley, D. (2003). Automated s
ienti�
 software s
ripting with SWIG. FutureGeneration Computer Systems, 19(5):599 � 609. 132Be
k, J. M. and Pouget, A. (2007). Exa
t inferen
es in a neural implementation ofa hidden Markov model. Neural Computation, 19(5):1344�1361. 34Berkes, P., Orban, G., Lengyel, M., and Fiser, J. (2011). Spontaneous
orti
al a
-tivity reveals hallmarks of an optimal internal model of the environment. S
ien
e,331:83�87. 36

142 BibliographyBi, G. and Poo, M. (1998). Synapti
 modi�
ations in
ultured hippo
ampal neurons:dependen
e on spike timing, synapti
 strength, and postsynapti

ell type. JNeuros
ien
e, 18(24):10464�10472. 59Bishop, C. M. (2007). Pattern Re
ognition and Ma
hine Learning (InformationS
ien
e and Statisti
s). Springer, 1st ed. 2006.
orr. 2nd printing edition. 8Bobrowski, O., Meir, R., and Eldar, Y. C. (2009). Bayesian �ltering in spiking neuralnetworks: Noise, adaptation, and multisensory integration. Neural Computation,21(5):1277�1320. 34Borg-Graham, L. J., Monier, C., and Frégna
, Y. (1998). Visual input evokes tran-sient and strong shunting inhibition in visual
orti
al neurons. Nature, 393:369�373. 93Bower, J. M. and Beeman, D. (1998). The book of GENESIS (2nd ed.): exploringrealisti
 neural models with the GEneral NEural SImulation System. Springer-Verlag New York, In
., New York, NY, USA. 108Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., Dies-mann, M., Morrison, A., Goodman, P. H., Jr., F. C. H., Zirpe, M., Nats
hläger,T., Pe
evski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Ro
hel, O., Vieville,T., Muller, E., Davison, A. P., Boustani, S. E., and Destexhe, A. (2007). Simula-tion of networks of spiking neurons: a review of tools and strategies. Journal ofComputational Neuros
ien
e, 23(3):349�398. 108, 111, 122Brunel, N. (2000). Dynami
s of networks of randomly
onne
ted ex
itatory andinhibitory spiking neurons. Journal of Physiology-Paris, 94:445�463. 58, 100Büsing, L., Bill, J., Nessler, B., and Maass, W. (2011). Neural dynami
s as sampling:A model for sto
hasti

omputation in re
urrent networks of spiking neurons.submitted for publi
ation. 4, 5, 10, 11, 12, 13, 15, 16, 17, 19, 32, 36, 38, 39, 42,43, 50, 53, 138Buzas, P., Kova
s, K., Fere
sko, A. S., Budd, J. M. L., Eysel, U. T., and Kisvarday,Z. F. (2006). Model-based analysis of ex
itatory lateral
onne
tions in the visual
ortex. J Comp Neurol, 499(6):861�81. 115Cannon, R., Gewaltig, M.-O., Gleeson, P., Bhalla, U., Cornelis, H., Hines, M.,Howell, F., Muller, E., Stiles, J., Wils, S., and S
hutter, E. D. (2007). Interoper-ability of neuros
ien
e modeling software: Current status and future dire
tions.Neuroinformati
s, 5(2):127�138. 134Carnevale, N. T. and Hines, M. L. (2006). The NEURON Book. Cambridge Uni-versity Press, New York, NY, USA. 108Chur
hland, P. S., Ko
h, C., and Sejnowski, T. J. (1993). What is
omputationalneuros
ien
e?, pages 46�55. MIT Press, Cambridge, MA, USA. 1

Bibliography 143Dal
ín, L., Paz, R., Storti, M., and D'Elía, J. (2008). Mpi for python: Perfor-man
e improvements and mpi-2 extensions. Journal of Parallel and DistributedComputing, 68(5):655�662. 128Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pe
evski, D.,Perrinet, L., and Yger, P. (2008). PyNN: a
ommon interfa
e for neuronal networksimulators. Front. Neuroinform., 2(11). 115, 126Dean, A. F. (1981). The variability of dis
harge of simple
ells in the
at striate
ortex. Experimental Brain Resear
h, 44:437�440. 36Deneve, S. (2008). Bayesian spiking neurons I: Inferen
e. Neural Computation,20(1):91�117. 34, 35Deneve, S., Latham, P. E., and Pouget, A. (2001). E�
ient
omputation and
ueintegration with noisy population
odes. Nat Neuros
i, 4(8):826�831. 34Denison, S., Bonawitz, E., Gopnik, A., and Gri�ths, T. (2010). Pres
hoolers samplefrom probability distributions. In Pro
. of the 32nd Annual Conferen
e of theCognitive S
ien
e So
iety. 36Destexhe, A. and Marder, E. (2004). Plasti
ity in single neuron and
ir
uit
ompu-tations. Nature, 431:789�795. 77, 101Destexhe, A., Rudolph, M., Fellous, J. M., and Sejnowski, T. J. (2001). Flu
tu-ating synapti

ondu
tan
es re
reate in vivo-like a
tivity in neo
orti
al neurons.Neuros
ien
e, 107(1):13�24. 65, 78, 92, 93, 95Douglas, R. J. and Martin, K. A. (2004a). Neuronal
ir
uits of the neo
ortex. AnnuRev Neuros
i, 27:419�451. 2Douglas, R. J. and Martin, K. A. (2004b). Neuronal
ir
uits of the neo
ortex.Annual Review of Neuros
ien
e, 27(1):419�451. 34Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N. (2007). Bayesian Brain: Proba-bilisti
 Approa
hes to Neural Coding. MIT-Press. 8Drewes, R. (2005). Modeling the brain with NCS and brainlab. Linux Journal,2005(134):2. 132Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008).Pynest: a
onvenient interfa
e to the nest simulator. Front. Neuroinform, 2(12).132Farries, M. A. and Fairhall, A. L. (2007). Reinfor
ement learning with modulatedspike timing-dependent synapti
 plasti
ity. Journal of Neurophysiology, 98:3648�3665. 75, 100, 104Fetz, E. E. (1969). Operant
onditioning of
orti
al unit a
tivity. S
ien
e,163(870):955�958. 57

144 BibliographyFetz, E. E. (2007). Volitional
ontrol of neural a
tivity: impli
ations for brain-
omputer interfa
es. J Physiol, 579(3):571�579. 57, 65, 68Fetz, E. E. and Baker, M. A. (1973). Operantly
onditioned patterns of pre
entralunit a
tivity and
orrelated responses in adja
ent
ells and
ontralateral mus
les.J Neurophysiol, 36(2):179�204. 5, 57, 62, 63, 64, 65, 67, 68, 99, 103Fetz, E. E. and Fino

hio, D. V. (1975). Correlations between a
tivity of motor
ortex
ells and arm mus
els during operantly
onditioned response patterns.Exp. Brain Resear
h, 23(3):217�240. 57Fiete, I. R. and Seung, H. S. (2006). Gradient learning in spiking neural networks bydynami
 perturbation of
ondu
tan
es. Physi
al Review Letters, 97(4):048104�1to 048104�4. 103Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statisti
ally optimal per-
eption and learning: from behavior to neural representations. Trends in CognitiveS
ien
es, 14(3):119 � 130. 8, 36Florian, R. V. (2007). Reinfor
ement learning through modulation of spike-timing-dependent synapti
 plasti
ity. Neural Computation, 6:1468�1502. 56, 103Gershman, S. J., Vul., E., and Tenenbaum, J. (2009). Per
eptual multistability asMarkov
hain Monte Carlo inferen
e. Advan
es in Neural Information Pro
essingSystems, 22:611�619. 36Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models. Cambridge Uni-versity Press, Cambridge. 58, 59, 60, 61, 82Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool). S
hol-arpedia, 2(4):1430. 108Goodman, D. and Brette, R. (2008). Brian: a simulator for spiking neural networksin python. Front. Neuroinform., 2(5). 109, 122Gri�ths, T. L. and Tenenbaum, J. B. (2006). Optimal Predi
tions in EverydayCognition. Psy
hologi
al S
ien
e, 17(9):767�773. 36Grimmett, G. R. and Stirzaker, D. R. (2001). Probability and Random Pro
esses.Oxford University Press, 3rd edition. 38Gu, Q. (2002). Neuromodulatory transmitter systems in the
ortex and their rolein
orti
al plasti
ity. Neuros
ien
e, 111(4):815�835. 56Gupta, A., Wang, Y., and Markram, H. (2000). Organizing prin
iples for a diversityof GABAergi
 interneurons and synapses in the neo
ortex. S
ien
e, 287:273�278.92Gütig, R. and Sompolinsky, H. (2006). The tempotron: a neuron that learns spiketiming-based de
isions. Nature Neuros
ien
e, 9(3):420�428. 103, 104

Bibliography 145Haeusler, S. and Maass, W. (2007). A statisti
al analysis of information-pro
essing properties of lamina-spe
i�

orti
al mi
ro
ir
uit models. Cereb Cor-tex, 17(1):149�62. 132Hammarlund, P. and Ekeberg, O. (1998). Large neural network simulations onmultiple hardware platforms. Journal of
omputational neuros
ien
e, 5(4):443�459. 108Häusler, S. and Maass, W. (2007). A statisti
al analysis of information pro
ess-ing properties of lamina-spe
i�

orti
al mi
ro
ir
uit models. Cerebral Cortex,17(1):149�162. 101, 102Hines, M., Davison, A. P., and Muller, E. (2009). Neuron and python. Front.Neuroinform, 3(1). 132, 133Hines, M. L. and Carnevale, N. T. (1997). The neuron simulation environment.Neural Computation, 9(6):1179�1209. 108Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., and Shepherd, G. M.(2004). ModelDB: A database to support
omputational neuros
ien
e. Journalof Computational Neuros
ien
e, 17(1):7�11. 128Hinton, G. E. and Brown, A. D. (2000). Spiking Boltzmann ma
hines. In In Ad-van
es in Neural Information Pro
essing Systems 12, Cambridge, MA. MIT Press.35Hinton, G. E. and Sejnowski, T. J. (1986). Learning and relearning in Boltzmannma
hines. In Rumelhart, D. E. and M
Clelland, J. L., editors, Parallel DistributedPro
essing: Explorations in the Mi
rostru
ture of Cognition, volume 1 of Le
tureNotes in Computer S
ien
e. MIT Press, Cambridge, MA. 34, 35Hirs
h, J. A., Alonso, J. M., Reid, R. C., and Martinez, L. M. (1998). Synapti
integration in striate
orti
al simple
ells. J. Neuros
i., 18(22):9517�9528. 93Hop�eld, J. J. and Brody, C. D. (2001). What is a moment? Transient syn
hronyas a
olle
tive me
hanism for spatio-temporal integration. Pro
. Nat. A
ad. S
i.USA, 98(3):1282�1287. 101Hoyer, P. O. and Hyvärinen, A. (2003). Interpreting neural response variability asMonte Carlo sampling of the posterior. In S. Be
ker, S. T. and Obermayer, K.,editors, Advan
es in Neural Information Pro
essing Systems 15, pages 277�284.MIT Press, Cambridge, MA. 36Hunter, J. D. (2007). Matplotlib: A 2d graphi
s environment. Computing in S
ien
eand Engineering, 9(3):90�95. 129Ide, J. and Cozman, F. (2002). Random generation of Bayesian networks. In Bitten-
ourt, G. and Ramalho, G., editors, Advan
es in Arti�
ial Intelligen
e, volume

146 Bibliography2507 of Le
ture Notes in Computer S
ien
e, pages 366�376. Springer Berlin /Heidelberg. 29, 52Izhikevi
h, E. (2004). Whi
h model to use for
orti
al spiking neurons? NeuralNetworks, IEEE Transa
tions on, 15(5):1063�1070. 115, 117Izhikevi
h, E. M. (2007). Solving the distal reward problem through linkage of STDPand dopamine signaling. Cerebral Cortex, 17:2443�2452. 56, 75, 79, 100, 103, 104Ja
ob, V., Brasier, D., Er
hova, I., Feldman, D., and Shulz, D. E. (2007). Spiketiming-dependent synapti
 depression in the in vivo barrel
ortex of the rat. JNeuros
ien
e, 27(6):1271�84. 56Jolivet, R., Rau
h, A., Lüs
her, H.-R., and Gerstner, W. (2006). Predi
ting spiketiming of neo
orti
al pyramidal neurons by simple threshold models. Journal ofComputational Neuros
ien
e, 21:35�49. 11Kempter, R., Gerstner, W., and van Hemmen, J. L. (1999). Hebbian learning andspiking neurons. Phys. Rev. E, 59(4):4498�4514. 82Kempter, R., Gerstner, W., and van Hemmen, J. L. (2001). Intrinsi
 stabilization ofoutput rates by spike-based hebbian learning. Neural Computation, 13:2709�2741.63Kenet, T., Bibit
hkov, D., Tsodyks, M., Grinvald, A., and Arieli, A. (2003).Spontaneously emerging
orti
al representations of visual attributes. Nature,425(6961):954�956. 36Kersten, D. and Yuille, A. (2003). Bayesian models of obje
t per
eption. CurrentOpinion in Neurobiology, 13(2):150 � 158. 11Knill, D. C. and Kersten, D. (1991). Apparent surfa
e
urvature a�e
ts lightnessper
eption. Nature, 351:228�230. 12, 14, 33Koller, D. and Friedman, N. (2009). Probabilisti
 Graphi
al Models: Prin
iples andTe
hniques (Adaptive Computation and Ma
hine Learning). MIT Press. 8, 9, 12,32Koulakov, A. A., Hromadka, T., and Zador, A. M. (2009). Correlated
onne
tivityand the distribution of �ring rates in the neo
ortex. The Journal of Neuros
ien
e,29(12):3685�3694. 37Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Lo
al
omputations with probabil-ities on graphi
al stru
tures and their appli
ation to expert systems. Journal ofthe Royal Statisti
al So
iety, Series B, 50(2):157�224. 25, 26, 49Legenstein, R. and Maass, W. (2011). Bran
h-spe
i�
 plasti
ity enables self-organization of nonlinear
omputation in single neurons. The Journal of Neu-ros
ien
e. in press. 20, 34, 39, 45

Bibliography 147Levin, D. A., Peres, Y., and Wilmer, E. L. (2008). Markov Chains and MixingTimes. Ameri
an Mathemati
al So
iety. 32Li, C. T., Poo, M., and Dan, Y. (2009). Burst spiking of a single
orti
al neuronmodi�es global brain state. S
ien
e, 324:643�646. 37Litvak, S. and Ullman, S. (2009). Corti
al
ir
uitry implementing graphi
al models.Neural Computation, 21(11):3010�3056. 34Loson
zy, A., Makara, J. K., and Magee, J. C. (2008). Compartmentalized dendriti
plasti
ity and input feature storage in neurons. Nature, 452:436�441. 20, 39, 40,45, 46Lyon, R. (1982). A
omputational model of �ltering, dete
tion, and
ompression inthe
o
hlea. In Pro
eedings of IEEE International Conferen
e on ICASSP, pages1282�1285. 98, 105Ma, W. J., Be
k, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inferen
ewith probabilisti
 population
odes. Nat Neuros
i, 9(11):1432�1438. 34Ma, W. J., Be
k, J. M., and Pouget, A. (2008). Spiking networks for Bayesianinferen
e and
hoi
e. Current Opinion in Neurobiology, 18(2):217 � 222. Cognitiveneuros
ien
e. 34Maass, W., Joshi, P., and Sontag, E. D. (2007). Computational aspe
ts of feedba
kin neural
ir
uits. PLoS Computational Biology, 3(1):e165, 1�20. 77, 101, 102Maass, W. and Markram, H. (2002). Synapses as dynami
 memory bu�ers. NeuralNetworks, 15:155�161. 92Maass, W., Nats
hlaeger, T., and Markram, H. (2002a). Real-time
omputing with-out stable states: A new framework for neural
omputation based on perturba-tions. Neural Computation, 14(11):2531�2560. 34Maass, W., Nats
hläger, T., and Markram, H. (2002b). Real-time
omputing with-out stable states: A new framework for neural
omputation based on perturba-tions. Neural Computation, 14(11):2531�2560. 77, 78, 101, 102Maass, W., Nats
hlager, T., and Markram, H. (2002
). Real-time
omputing with-out stable states: A new framework for neural
omputation based on perturba-tions. Neural Comp., 14(11):2531�2560. 131Maass, W., Nats
hläger, T., and Markram, H. (2004). Fading memory and kernelproperties of generi

orti
al mi
ro
ir
uit models. Journal of Physiology � Paris,98(4�6):315�330. 77, 101Mainen, Z. and Sejnowski, T. (1995). Reliability of spike timing in neo
orti
alneurons. S
ien
e, 268:1503�1505. 76

148 BibliographyMansinghka, V. K., Kemp, C., Tenenbaum, J. B., and Gri�ths, T. L. (2006). Stru
-tured priors for stru
ture learning. In In Pro
eedings of the 22nd Conferen
e onUn
ertainty in Arti�
ial Intelligen
e (UAI). AUAI Press. 26Markram, H., Wang, Y., and Tsodyks, M. (1998). Di�erential signaling via the sameaxon of neo
orti
al pyramidal neurons. Pro
. Nat. A
ad. S
i. USA, 95:5323�5328.91, 92Miller, P. and Katz, D. (2010). Sto
hasti
 transitions between neural states in tastepro
essing and de
ision-making. J. of Neuros
., 30(7):2559�2570. 30, 37Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plas-ti
ity in balan
ed random networks. Neural Computation, 19:1437�1467. 59, 66,94, 100Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005).Advan
ing the Boundaries of High-Conne
tivity Network Simulation with Dis-tributed Computing. Neural Comp., 17(8):1776�1801. 108, 110, 112Nats
hläger, T., Markram, H., and Maass, W. (2003). Computer models and analy-sis tools for neural mi
ro
ir
uits. In Kötter, R., editor, Neuros
ien
e Databases. APra
ti
al Guide,
hapter 9, pages 123�138. Kluwer A
ademi
 Publishers (Boston).108, 131Neal, R. M. (1993). Probabilisti
 inferen
e using markov
hain monte
arlo methods.Te
hni
al report, University of Toronto Department of Computer S
ien
e. 9Nessler, B., Pfei�er, M., and Maass, W. (2010). STDP enables spiking neurons todete
t hidden
auses of their inputs. In Pro
. of NIPS 2009: Advan
es in NeuralInformation Pro
essing Systems, volume 22, pages 1357�1365. MIT Press. 23, 34Nikoli¢, D., Haeusler, S., Singer, W., and Maass, W. (2007). Temporal dynami
sof information
ontent
arried by neurons in the primary visual
ortex. In Pro
.of NIPS 2006, Advan
es in Neural Information Pro
essing Systems, volume 19,pages 1041�1048. MIT Press. 77Obermayer, K. and Blasdel, G. G. (1993). Geometry of orientation and o
ulardominan
e
olumns in monkey striate
ortex. J Neuros
i, 13(10):4114�29. 115Oliphant, T. E. (2007). Python for s
ienti�

omputing. Computing in S
ien
e &Engineering, 9(3):10�20. 109, 121Pearl, J. (1988). Probabilisti
 Reasoning in Intelligent Systems. Morgan-Kaufmann,San Fran
is
o, CA. 8Pe
evski, D., Nats
hläger, T., and S
hu
h, K. (2009). PCSIM: a parallel simula-tion environment for neural
ir
uits fully integrated with Python. Frontiers inNeuroinformati
s, 3(0). 52

Bibliography 149Pérez, F. and Granger, B. E. (2007). IPython: A system for intera
tive s
ienti�

omputing. Computing in S
ien
e and Engineering, 9(3):21�29. 128P�ster, J.-P., Toyoizumi, T., Barber, D., and Gerstner, W. (2006). Optimal spike-timing-dependent plasti
ity for pre
ise a
tion potential �ring in supervised learn-ing. Neural Computation, 18(6):1318�1348. 56, 103Plesser, H., Eppler, J., Morrison, A., Diesmann, M., and Gewaltig, M.-O. (2007).E�
ient parallel simulation of large-s
ale neuronal networks on
lusters of multi-pro
essor
omputers. Le
ture Notes in Computer S
ien
e, 4641:672�681. 108Rai
hle, M. E. (2010). Two views of brain fun
tion. Trends in Cognitive S
ien
es,14(4):180�190. 36Rao, R. P. and Ballard, D. H. (1999). Predi
tive
oding in the visual
ortex: a fun
-tional interpretation of some extra-
lassi
al re
eptive-�eld e�e
ts. Nat Neuros
i,2(1):79�87. 34Rao, R. P. N. (2004). Bayesian
omputation in re
urrent neural
ir
uits. NeuralComputation, 16(1):1�38. 34Rao, R. P. N. (2007). Neural models of Bayesian belief propagation. In Doya, K.,Ishii, S., Pouget, A., and Rao, R. P. N., editors, Bayesian Brain., pages 239�267.MIT-Press, Cambridge, MA. 34, 35Rao, R. P. N., Olshausen, B. A., and Lewi
ki, M. S. (2002). Probabilisti
 Models ofthe Brain. MIT Press. 8Ray, S. and Bhalla, U. S. (2008). PyMOOSE: Interoperable s
ripting in Python forMOOSE. Front. Neuroinform., 2(6). 132, 134Reynolds, J. N., Hyland, B. I., and Wi
kens, J. R. (2001). A
ellular me
hanism ofreward-related learning. Nature, 413:67�70. 56Reynolds, J. N. and Wi
kens, J. R. (2002). Dopamine-dependent plasti
ity of
or-ti
ostriatal synapses. Neural Networks, 15(4-6):507�521. 56S
hrauwen, B. and Campenhout, J. V. (2003). BSA, a fast and a

urate spike trainen
oding s
heme. In Pro
eedings of the International Joint Conferen
e on NeuralNetworks, volume 4, pages 2825�2830. 98S
hultz, W. (2007). Behavioral dopamine signals. Trends in Neuros
ien
e, 30:203�210. 56Sejnowski, T. J. (1987). Higher-order Boltzmann ma
hines. In AIP Conferen
ePro
eedings 151 on Neural Networks for Computing, pages 398�403, Woodbury,NY, USA. Ameri
an Institute of Physi
s In
. 35

150 BibliographyShi, L. and Gri�ths, T. (2009). Neural implementation of hierar
hi
al Bayesianinferen
e by importan
e sampling. In Bengio, Y., S
huurmans, D., La�erty, J.,Williams, C. K. I., and Culotta, A., editors, Advan
es in Neural InformationPro
essing Systems 22, pages 1669�1677. MIT Press, Cambridge, MA. 34Shulz, D. E., Ego-Stengel, V., and Ahissar, E. (2003). A
etyl
holine-dependentpotentiation of temporal frequen
y representation in the barrel
ortex does notdepend on response magnitude during
onditioning. J Physiol Paris, 97(4�6):431�439. 56Shulz, D. E., Sosnik, R., Ego, V., Haidarliu, S., and Ahissar, E. (2000). A neuronalanalogue of state-dependent learning. Nature, 403(6769):549�553. 56Siegelmann, H. T. and Holzman, L. E. (2010). Neuronal integration of dynami
sour
es: Bayesian learning and Bayesian inferen
e. Chaos: An Interdis
iplinaryJournal of Nonlinear S
ien
e, 20(3):037112. 34, 35Silberberg, G., Bethge, M., Markram, H., Pawelzik, K., and Tsodyks, M. (2004).Dynami
s of population rate
odes in ensembles of neo
orti
al neurons. J Neuro-physiology, 91(2):704�709. 76Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive hebbian learningthrough spike-timing dependent synapti
 plasti
ity. Nature Neuros
ien
e, 3:919�926. 63Steimer, A., Maass, W., and Douglas, R. (2009). Belief propagation in networks ofspiking neurons. Neural Computation, 21(9):2502�2523. 34Stevens, C. F. and Zador, A. M. (1998). Input syn
hrony and the irregular �ring of
orti
al neurons. Nature Neuros
ien
e, 1:210�217. 76Thiel, C. M., Friston, K. J., and Dolan, R. J. (2002). Cholinergi
 modulation ofexperien
e-dependent plasti
ity in human auditory
ortex. Neuron, 35(3):567�574. 56Tolhurst, D., Movshon, J., and Dean, A. (1983). The statisti
al reliability of signalsin single neurons in
at and monkey visual
ortex. Vision Resear
h, 23(8):775 �785. 36Toussaint, M. and Goeri
k, C. (2010). A Bayesian view on motor
ontrol andplanning. In Sigaud, O. and Peters, J., editors, From motor to intera
tion learningin robots. Studies in Computational Intelligen
e, pages 227�252. Springer. 8Verstraeten, D., S
hrauwen, B., Stroobandt, D., and Campenhout, J. V. (2005).Isolated word re
ognition with the liquid state ma
hine: a
ase study. InformationPro
essing Letters, 95(6):521�528. 98, 101von Mel
hner, L., Pallas, S. L., and Sur, M. (2000). Visual behaviour mediated byretinal proje
tion dire
ted to the auditory pathway. Nature, 404:871�876. 2

Bibliography 151Vul, E. and Pashler, H. (2008). Measuring the
rowd within: Probabilisti
 repre-sentations within individuals. Psy
hologi
al S
ien
e, 19(7):645�647. 36Williams, S. R. and Stuart, G. J. (2002). Dependen
e of EPSP e�
a
y on synapselo
ation in neo
orti
al pyramidal neurons. S
ien
e, 295(5561):1907�1910. 28, 33Williams, S. R. and Stuart, G. J. (2003). Voltage- and site-dependent
ontrol of thesomati
 impa
t of dendriti
 ipsps. J Neuros
i, 23(23):7358�7367. 33Yassin, L., Benedetti, B. L., Jouhanneau, J.-S., Wen, J. A., Poulet, J. F. A., andBarth, A. L. (2010). An embedded subnetwork of highly a
tive neurons in theneo
ortex. Neuron, 68:1043�1050. 37Yu, A. J. and Dayan, P. (2005). Inferen
e, attention, and de
ision in a Bayesianneural ar
hite
ture. In Saul, L., Weiss, Y., and Bottou, L., editors, Advan
es inNeural Information Pro
essing Systems 17, pages 1577�1584. MIT Press, Cam-bridge, MA. 34

	Introduction
	Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons
	Introduction
	Results
	Second Order Boltzmann Distributions with Auxiliary Random Variables (Implementation 1)
	Using the Markov Blanket Expansion of the Log-odd Ratio
	Implementation with Auxiliary Neurons (Implementation 2)
	Computer Simulation I: Comparison of two Methods for Emulating ``Explaining Away'' in Networks of Spiking Neurons
	Implementation with Dendritic Computation (Implementation 3)

	Using the Factorized Expansion of the Log-odd Ratio
	Implementation with Auxiliary Neurons and Dendritic Branches (Implementation 4)
	Implementation with Dendritic Computation (Implementation 5)

	Probabilistic Inference through Neural Sampling in Larger and More Complex Bayesian Networks
	Computer Simulation II: ASIA Bayesian Network
	Computer Simulation III: Randomly Generated Bayesian Network

	Discussion
	Related Work
	Experimentally Testable Predictions of our Models
	Conclusion

	Methods
	Markov Chains
	Neuron Models
	Details to Second Order Boltzmann Distributions with Auxiliary Variables (Implementation 1)
	Details to Implementation 2
	Details to Implementation 3
	Details to the Implementation 4
	Details to the Implementation 5
	Details to Computer Simulations

	Acknowledgements

	A Learning Theory for Reward-Modulated Spike-Time-Dependent Plasticity with Application to Biofeedback
	Introduction
	Results
	Theoretical analysis of the resulting weight changes
	Application to models for biofeedback experiments
	Computer simulation 1: Model for biofeedback experiment

	Rewarding spike-times
	Computer simulation 2: Learning spike times
	Computer simulation 3: Testing the analytically derived conditions

	Pattern discrimination with reward-modulated STDP
	Computer simulation 4: Learning pattern classification
	Computer simulation 5: Training a readout neuron with reward-modulated STDP to recognize isolated spoken digits

	Methods
	Linear Poisson Neuron Model
	Learning equations
	Derivations for the biofeedback experiment
	Analysis of spike-timing dependent rewards (derivation of the conditions (3.13)-(3.15)).
	Analysis of the pattern discrimination task (derivation of equation (3.17)).
	Common models and parameters of the computer simulations
	LIF neuron model
	Short-term dynamics of synapses
	Model of background synaptic activity
	Reward-modulated STDP
	Initial weights of trained neurons
	Software

	Details to individual computer simulations
	Cortical Microcircuits
	Readout neurons
	Details to computer simulation 1: Model for biofeedback experiment
	Details to computer simulation 2: Learning spike times
	Details to computer simulation 3: Testing the analytically derived conditions
	Details to computer simulation 4: Learning pattern classification
	Details to computer simulation 5: Training a readout neuron with reward-modulated STDP to recognize isolated spoken digits

	Discussion
	Related Work
	Conclusion

	Acknowledgments

	PCSIM: a Parallel Simulation Environment for Neural Circuits
	Introduction
	Overview
	Architecture
	Scalability and Domain of Applicability

	Python interface generation
	Network construction
	The example model
	The framework: object-oriented, modular and extensible
	Factories: creating network elements from models
	Neuron populations
	Projections: managing synaptic connections

	Custom network elements
	Extending PCSIM using C++
	PCSIM add-ons implemented in Python
	PyNN.pcsim
	pypcsimplus
	pylsm

	Discussion
	Acknowledgments

	List of Publications
	Comments and Contributions to Publications

	Bibliography

