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Abstract

Structure-from-Motion, a technique to reconstruct 3D information from multiple overlap-
ping 2D images, has reached maturity. Since the processing of thousands of high-resolution
unordered images is quite efficient, it is routinely applied for obtaining reconstructions from
photo community collections but also for applications like architectural reconstruction, ge-
ological surveying and scene documentation.

This thesis focuses on Structure-from-Motion for applications where images can be
deliberately acquired for the reconstruction process. Such applications typically have re-
quirements on the accuracy and completeness of the reconstruction. Since these parameters
largely depend on the acquired input images, the image acquisition becomes an integral
part of the reconstruction process. This provides the opportunity to couple the recon-
struction and the image acquisition to guarantee the user’s requirements. Therefore, two
methods are proposed in this thesis that exploit this opportunity in different ways.

The first approach couples the image acquisition and the reconstruction process tightly
by a new closed-loop Structure-from-Motion method that incrementally performs the re-
construction in real-time. The novel surface extraction method that operates on sparse
triangulated feature points in real-time and in a fully incremental manner, allows to visu-
alize important reconstruction parameters like the redundancy and the resolution of the
reconstruction. This instant feedback on-site allows the user to continuously asses the
reconstruction’s quality already during the image acquisition and to recognize problems
at an early stage. Since this feedback is provided in real-time, the user can adapt the
image acquisition to avoid these problems. As a consequence, the presented interactive
Structure-from-Motion method greatly improves the reliability of image-based reconstruc-
tion in practical applications when the user is in the loop.

The second proposed method, that exploits the controllability of the image acquisition,
is a view planning approach that is specifically designed for large-scale, close-range recon-
structions from wide-baseline images. The novel method takes the user’s requirements on

the accuracy, resolution and completeness of the reconstruction into account but also the
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requirements of state-of-the-art Structure-from-Motion pipelines on the image data, which
are redundancy and a certain spatial distribution of the images to allow wide-baseline fea-
ture matching. The method selects a small subset of a large number of potential view
points such that the most important parameters of a reconstruction are fulfilled. Exper-
iments show that the proposed view planning approach provides image datasets that are
suitable for reliable processing by todays Structure-from-Motion pipelines.

To summarize, the interactive Structure-from-Motion and the novel view planning ap-
proach increase the reliability of image-based reconstruction from high-resolution wide-

baseline images and therefore, opens new applications for this reconstruction method.



Kurzfassung

Die 3D Rekonstruktion aus mehreren redundanten Bildern, auch Structure-from-Motion
genannt, hat in den letzten Jahren betrichtliche Fortschritte gemacht und somit sind
heutige Verfahren in der Lage tausende von ungeordneten und hochaufgelésten Bildern
zu verarbeiten. Typische Anwendungsbereiche von Structure-from-Motion sind z.B. die
Rekonstruktion von Sehenswiirdigkeiten aus Internet-Bilddatenbanken, Archéologie, Ge-

ologie und Vermessungskunde.

Diese Dissertation konzentriert sich auf die bildbasierte Rekonstruktion fiir Anwendun-
gen, in denen Bilder speziell fiir den 3D Rekonstruktionsprozess aufgenommen werden.
Solche Anwendungen stellen oft bestimmte Anforderungen wie z.B. eine hohe Genauigkeit
oder die Vollsténdigkeit, an die Rekonstruktion. Da diese Parameter sehr stark von den
verwendeten Bildern abhéingig sind, muss die Bildaufnahme in den Rekonstruktionsprozess
eingebunden werden damit die finale Rekonstruktion die Erwartungen erfiillen kann. Daher
werden in dieser Arbeit zwel neue Verfahren vorgestellt, die die 3D Rekonstruktion und

die Bildaufnahme eng miteinander verbinden.

Das erste entwickelte Verfahren verbindet die Bildaufnahme und die Rekonstruktion
indem die klassische, sequentielle Rekonstruktionsmethode durch ein neues inkrementelles
und echtzeitfihiges Verfahren ersetzt wird. In Verbindung mit einem neuen Algorithmus
zur Extraktion von Oberflichen aus wenigen 3D Punkten, das ebenfalls in Echtzeit und
inkrementell arbeitet, erméglicht dieses interaktive Verfahren die Rekonstruktion bereits
wahrend der Bildaufnahme durchzufiihren. Durch die stdndige Visualisierung von wichtigen
Rekonstruktionsparametern, wie der Redundanz und der Rekonstruktionsauflésung, kon-
nen Probleme frithzeitig erkannt werden und der Benutzer kann diese umgehen, indem er
seine Bildaufnahmestrategie anpasst. Diese Methode macht die bildbasierte Rekonstruktion

zuverldssiger und erweitert damit den Anwendungsbereich dieser Rekonstruktionsmethode.

Die zweite vorgestellte Methode berticksichtigt die Mdglichkeit, die Aufnahmeorte der

Bilder fiir die Rekonstruktion frei zu wihlen, indem sie ein Kameranetzwerk berechnet,

vil
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das wichtige Parameter der bildbasierten 3D Rekonstruktion beriicksichtigt. Im Gegensatz
zu vielen existierenden Verfahren wurde diese Methode speziell fiir hochaufgléste Bilder
entwickelt, bei denen korrespondierende Punkte zwischen den Bildern ohne zeitliches Vor-
wissen gefunden werden miissen. Das Verfahren bezieht daher neben Anforderungen des
Nutzers an Genauigkeit, Auflésung und Vollstdndigkeit auch die Anforderungen des Rekon-
struktionsverfahren beziiglich der relativen rdumlichen Verteilung der Kamerapositionen
in die Berechnung ein. Die mit diesem neuen Verfahren berechneten Kamerapositionen
erlauben eine zuverldssige 3D Rekonstruktion mittels der heute gingigen Methoden.
Sowohl die interaktive, echtzeitfihige Rekonstruktionsmethode als auch die Planung
eines Kameranetzwerkes machen die bildbasierte Rekonstruktion zuverldssiger und damit

attraktiver fiir neue Anwendungsbereiche.
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Chapter 1

Introduction

Our life takes place in a 4-dimensional world: three spatial and one time-related dimension.
Nowadays, we are able to capture a two-dimensional projection of our physical world
and the time dimension easily with photographs or videos. However, capturing all three
spatial dimension in a dense manner is a hard task and is an unsolved issue. For special
applications like the 3D capturing of indoor environments or the 3D reconstruction of
microscopic objects, specialized hardware devices are available. But right now, there exists

no universal device for capturing our world in all three spatial dimensions.

As a human, we mainly derive 3D information visually from two basic principles: stereo-
vision and monocular cues. The strongest cue for depth perception is the disparity infor-
mation that is derived from our two eyes. But also depth cues that can be derived from a

single view like motion, shading and occlusions are important for our depth perception.

These biological principles triggered fundamental research in computer vision and re-
sulted in sophisticated methods for reconstructing depth information from stereo-images as
well as from moving monocular cameras. The latter technique is well-known in computer
vision as Structure-from-Motion (SfM) or Structure-and-Motion. The reconstruction from
stereo-images requires a specialized hardware setup whereas SfM can be calculated from
a set of images acquired by widely used consumer-grade cameras. The goal of SfM is to
recover camera poses as well as the 3D scene structure given only a set of 2D images that
are partially redundant. Figure 1.1 shows the typical input and output of a StM processing

pipeline.
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(a) Input images

(b) Sparse reconstruction (¢) Dense reconstruction (d) Meshed result

Figure 1.1: Structure-from-Motion example. (a) A set of overlapping images is used to
determine the camera positions and a sparse scene representation as shown in (b). Given
this information, typically the point cloud is (c¢) densified and finally (d) a triangular
surface mesh is extracted.

Fundamental research on the geometric relation between 2D images such as the calcula-
tion of the relative motion has been already done at the beginning of the 20th century and
became popular with the development of computational hardware. This research phase
is summarized in the book of Hartley and Zisserman [31]. The enormous computational
complexity, the absence of robust image features and missing robust image registration
methods prevented SfM of being practically usable for large-scale high-resolution scene re-
construction in the past. With the development of robust features like the Scale Invariant
Feature Transform (SIFT) [62] and the continuously growing computational power, SfM
became again very popular in the 2000’s where pipelines have been presented that were
able to recover the scene structure of thousands of unordered images completely automat-

ically [2]. In this scenes, images acquired by tourists are used to reconstruct important
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sights. These approaches benefit from the ultra-high redundancy of the set of input images.

This work triggered research on the scalability and reliability of SfM for images that are
not deliberately acquired for the purpose of 3D reconstruction. However, many applications
realized so far, are based on images that are especially captured for the reconstruction
process. Such applications are for example scene documentation, geological surveying or
archaeological documentation. Typically, these applications have specific requirements on

the reconstruction’s quality. Two major requirements are completeness and accuracy.

Both requirements, completeness and accuracy, are primarily dependent on the set of
input images and therefore, the image acquisition is crucial for the whole reconstruction
process. We observed that it is difficult for an expert user and even more for a non-expert
user to obtain an image set that fulfills the user’s needs. Therefore, many reconstructions
completely fail or they do not fit to the user’s expectations. Therefore, we investigate in
this thesis methods that support the user in the image acquisition process to obtain an
image dataset that leads reliably to an accurate and complete 3D reconstruction using

SEM.

In the rest of this chapter, we first motivate our work by showing examples for typical
applications that are realized with SfM. Secondly, we analyze the challenges that have to

be solved to realize this applications.

1.1 The Future of SfM and its Challenges

These days SfM pipelines are able to automatically reconstruct a 3D scene of hundreds
of images within reasonable time. Since these pipelines are designed to handle large-scale
unordered image datasets with very high redundancy, they often do not meet the demands
of application scenarios where images acquired deliberately for the reconstruction process.
In order to analyze the differences, we first give examples for the contemplated applications.
Secondly, we also motivate our work by a new class of image acquisition devices, namely
Micro Aerial Vehicles (MAVs) that expand the range of SfM applications. Finally, the
challenges of the new devices in combination with the aforementioned applications lead to

the main research question that is addressed in this thesis.
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1.1.1 Applications

The capability to capture the world in 3D using only a set of redundant 2D images is benefi-
cial for many applications. In contrast to special 3D acquisition devices like laser scanners,
the acquisition of images with a standard consumer-grade camera is very cheap. Todays
cameras deliver high-quality images and are easy to handle such that even non-expert users
have the possibility to build high-resolution 3D reconstructions. In the following, we give
a showcase of potential applications for SfM.

One potential application for automated SfM is the documentation of scenes in 3D. Typ-
ical domains are the documentation of archaeological excavations |78, 98|, traffic accidents
or construction site monitoring [25, 49]. In [110], we describe a system for construction site
monitoring in 4D. Here, images of the construction site are acquired regularly which are
subsequently used for 3D reconstruction. Figure 1.2 shows a typical result of two recon-
structions obtained at different points in time. The advantage of a full 3D reconstruction
over a documentation using only images is twofold: first, the scene itself is available in
3D which can be used for sophisticated visualization techniques like Augmented Reality or
as input for further processing steps like the detection of changes over time. And second,
the spatial position of the camera poses is available. This facilitates the navigation within
thousands of images and it also gives the spatial context of the image.

Another application where SfM is used is geological surveying where the task is to
create a map of a geological formation. The size of the geological formation ranges from

a few meters to several kilometers when thinking of open pit mining. Here, SfM can

Figure 1.2: Example of the construction site monitoring application. Two reconstructions
at different points in time are used to calculate the progress.
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support classic geological surveying by delivering a detailed 3D reconstruction and also
visual information in the form of images. For many task-specific analyses both types of
information are important.

A further application domain is the mapping of constructions. Today often laser scan-
ners are used to capture the 3D information of buildings. The resulting point clouds are
then used to determine distance measures like the size of a window. Again, SfM is ben-
eficial because it delivers 3D information as well as the visual information which is often
important for subsequent processing.

For these applications typically images are acquired especially for the reconstruction
purpose. Furthermore, the user has specific requirements on the resulting reconstruction
like completeness and accuracy. In this context completeness means that the reconstruction
contains all scene parts that are relevant for the specific task. The term accuracy is also
task dependent. For some applications like the visualization of scenes it is sufficient that the
reconstruction preserves basic scene properties like planarity or the correct ratio between
different lengths measured in the reconstruction. For other tasks like the documentation
of archaeological excavations, it is required that the reconstruction is metrically correct
and that scene coordinates can be determined with an accuracy that is higher than a few
millimeters.

The common ground of all applications is that they are large-scale and they require
a high resolution reconstruction. Furthermore, many of the outlined applications are not
feasible with ground-based images. Therefore, a new class of image acquisition devices, Mi-
cro Aerial Vehicles (MAVSs) which are small flying devices equipped with a high-resolution

camera, opens up the possibility to realize large-scale but close-range reconstructions using

SEM.

1.1.2 New Devices

Micro Aerial Vehicles (MAVs) are small and lightweight fixed-wing planes or multi-roter
copters equipped with a high-resolution still image camera. Two MAVs used within this
thesis are shown in Figure 1.3. They either act autonomously or they are controlled
by a user remotely. Since they are stabilized by sophisticated control algorithms, even
non-expert users are able to operate these MAVs. The typical flight time varies between

20 and 40 minutes and the operation height is between 3 m and 150 m above the ground



6 Chapter 1. Introduction

(a) (b)

Figure 1.3: Two different Micro Aerial Vehicles. (a) Asctec Falcon 8 octo-copter equipped
with a 16 Mpx still image camera. The flight time is around 20 minutes and the operation
height varies between 3 m and 150 m above ground level. (b) The Ebee MAV manufactured
by Sensefly is a fixed-wing MAV equipped with a 12 Mpx still image camera. After the
definition of a flight plan, it operates up to 45 minutes autonomously. The camera is
mounted such that nadir images are collected. Its operation height is between 70 m and
300 m.

level. Furthermore, multi-copter are very agile and often can approach each point in space.
Since their safety border to objects is very low (2 m to 4 m), they can be operated even in
densely populated areas and allow the collection of closeup images of vertical and horizontal
structures. These capabilities bridge the gap between ground-based image acquisition
and high-altitude flying planes. Hence, the combination of powerful SfM pipelines and
images acquired from these small flying devices enable the realization of the previously
mentioned applications. Figure 1.4 shows sample images acquired by a fixed-wing MAV
and a multi-rotor copter and demonstrates the new challenges that especially arise with
multi-copters. Their capability to approach each point in space increases the number of
possible viewpoints as shown in Figure 1.4(a) and 1.4(b). This variability cannot be reached
by using only ground-based images and therefore is a new challenge for SfM. Furthermore,
to efficiently use the limited flight time, the user typically explores a very limited part of
all possible view points and therefore the resulting image set is typically more sparse than

ground-based datasets.

1.1.3 New Challenges

State-of-the-art SfM pipelines like [89] are designed for processing unordered but highly
redundant image datasets. Furthermore, they assume that the image acquisition process

is uncontrollable and therefore they have to stick to the provided data. Hence, quality
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(a) (b) (c)

Figure 1.4: (a),(b) Sample images acquired by a octo-copter. (c) Image acquired by a

fixed-wing MAV. Due to its flexibility, the octo-copter acquires images from very unusual
view points. The sample also shows one problem that comes up with the flexibility: images
can have very diverse viewing angles and therefore can be difficult to process by SfM.

parameters of the reconstruction like accuracy and completeness that largely depend on

the image set cannot be influenced.

However, to realize such applications as outlined in Section 1.1.1, often quality parame-
ters like a certain accuracy or completeness have to be guaranteed. Since these parameters
largely depend on the input data, the image dataset must fulfill certain requirements so
that the subsequent reconstruction process is able to obtain the required quality parame-
ters. The consequence is that typically an arbitrary collection of images is not suited and
the image acquisition process has to be carefully designed according to the requirements
of the reconstruction. Therefore, the image acquisition becomes a working stage in the
processing pipeline that often requires manual effort which is time- and cost-consuming.
Hence, one possibility to be efficient is to acquire a small but well-suited set of images be-
cause this reduces the time on-site as well as the processing time. Therefore, these datasets
often have quite different characteristics than datasets taken from the Internet. The most
important difference is that the collected image sets are typically more sparsely distributed
over the scene than the highly redundant datasets that are used to reconstruct sights from

tourists photo.

But the reliability and accuracy of todays SfM pipelines is often reached by the highly
redundant input data. For example, the triangulation accuracy of a 3D point is related

to the number of images that observe a specific scene part. Furthermore, a reduced re-
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dundancy has a severe impact in reliability. Since the state-of-the-art in SfM relies on
automatic correspondence estimation between image pairs which is prone to errors, high
redundancy increases the probability that the full scene can be reconstructed even if some
images cannot be used in the reconstruction process. Another issue that is related to
redundancy but also to the spatial distribution of the input images over the scene is cov-
erage. The coverage of a reconstruction is the property that all relevant parts are being
reconstructed. Although this is an obligatory requirement for many applications, it is of-
ten not obvious how the cameras have to be spatially distributed to obtain full coverage.
Figure 1.5(a) shows a typical failure case that is caused by the insufficient distribution of
camera view points within the scene. Here, a wall of the building is completely missing
because there are only a few input images that capture this part of the building. Another
failure case that is caused by an insufficient distribution of the images over the scene is
illustrated in Figure 1.5(b) and 1.5(c). Here, the SfM result is fragmented into two parts al-
though the reconstructions are overlapping. The reason is that the viewing angles between
some images are too large such that the pairwise camera orientation calculation partially
fails.

An ad-hoc solution to these problems that comes into mind is to equally distribute
the images over the input scene. A short numeric example shows why this is not feasible.

Assuming we want to reconstruct a rather small volume of 50 m x 50 m x 50 m. If we

(a) (b) (©)

Figure 1.5: Typical failure cases of SfM. (a) Although the image dataset was acquired by
an experienced SfM user, some parts of the facade could not be reconstructed because the
spatial distribution of view points in the scene was not sufficient. (b),(c) The SfM result

is fragmented into different parts although the reconstructions are overlapping.
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want to place a camera each single meter this would result in 125,000 camera positions.
When additionally considering the viewing angles and discretize the viewing direction into
20 degree steps, this results in about 40 Million camera positions. When assuming that
a state-of-the-art consumer-grade camera that is typically mounted on an MAV is able
to capture every second a high-resolution image, it is not feasible to acquire that amount
of images. Furthermore, it is often also not required because most of the pictures are
completely redundant or show irrelevant scene structures like the sky. Hence, these images

only cause additional processing time without improving the overall reconstruction result.

Hence, a user typically acquires a set of images with much less redundancy whereupon
the spatial distribution complies with the geometry of the object of interest. An expert
in SfM often finds a valid view point configuration that leads to reasonable reconstruction
results if the object of interest is not geometrically complex, e.g. a detached house or a
single wall. But when thinking of geometrically complex objects like the nave of a baroque
style church as shown in Figure 1.6, then even experts often fail. We observed that it
is difficult for a user to remember after a few minutes the parts that have been already
captured. Therefore, it often happens that parts are completely missing, images are not
overlapping or that the viewing angle or the baseline between images is too large to allow

feature matching.

Beside the geometric configuration of the view points, the texture of the scene also
impacts the reconstruction result. If the scene is well textured as for example rocks or
wood, many corresponding points can be matched across images and therefore the pairwise
orientation of images is reliable. In contrast, if the scene consists of repetitive texture or
large untextured regions, the pairwise orientation estimation might fail although the images
are overlapping. For a user, it is often very difficult to estimate if a texture is well suited for
feature matching. For example, the structure of plaster looks very repetitive for a human,
but we found that it is perfectly suited for feature matching. On the other hand, images of
vegetation are often very hard to match because of the self-similarity of the texture. Since
the properties of the texture are a huge uncertainty factor in the reconstruction process,

it is difficult to predict if the result meets the users expectations.

Therefore, acquiring an image dataset with reduced redundancy of a geometrically
complex scene that meets all requirements is a challenging task. For a non-expert user this

is even harder as the image set in Figure 1.7 shows. This image set has been acquired by a
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non-expert user who got a ten-minute instruction how images for SfM have to be collected.
Although the complexity of the scene is rather low, the resulting set is not processable by
state-of-the-art pipelines due too large view distortions between the images that is caused
by the small amount of redundancy.

This experiment shows that the acquisition of an optimal image set with a reduced
redundancy without any intermediate feedback is challenging for a non-expert user. But
the property that the image acquisition can be controlled opens up the possibility to
actively influence this important step. The potential to actively control the acquisition
process has not been exploited extensively in SfM for getting more accurate and more
reliable reconstructions.

Hence, in this thesis, we investigate how the fact that the image acquisition process

can be controlled can be exploited to
e Speed-up the reconstruction process
e Increase reliability
e Achieve high accuracy

In particular, we propose two methods that exploit the fact that the image acquisi-
tion process is part of the reconstruction pipeline. Qur first method is an interactive SfM
pipeline that performs a reconstruction from high-resolution still images in an incremen-

tal manner. Beside the real-time estimation of camera poses and sparse 3D points, this

Figure 1.6: The nave of a baroque church is geometrically very complex. Acquiring a set
of images that is sufficient for a complete reconstruction is a very challenging task.
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Figure 1.7: Typical dataset for the reconstruction of the suitcase acquired by a non-expert
user. The floor is very repetitive and the texture of the suitcase creates only a few feature
points. Furthermore, the angles between the images are very large. State-of-the-art SfM
pipelines are not able to successfully reconstruct the scene using the input images.

method also extracts a triangular surface in a fully incremental manner. We demonstrate
that the interactive SfM is an efficient tool to provide an instant feedback of the current
reconstruction quality already during the image acquisition. Hence, this method supports
the user in acquiring an image dataset that meets the requirements of a SfM pipeline. In
our second method, we exploit the fact that the acquisition process can be controlled by
proposing a view planning approach. Assuming that the geometry of the scene of interest
is roughly given, we calculate a small set of view points that meets the requirements that
are mandatory for a successful reconstruction. This approach is not limited to SfM but it

is a general framework to calculate camera poses for a multi-view setup.

1.2 Contributions

In particular, we make the following contributions in this thesis.

Real-time incremental SfM. Standard SfM pipelines are batch-based methods that
require up to hours to finish. This means that the delay between image acquisition and
getting feedback about the reconstruction result is high. In order to provide the user a

faster feedback, we propose a novel SfM method that incrementally reconstructs the scene
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from high-resolution images already during the collection of images. We therefore introduce
a novel image-based localization that allows very fast processing. With this method the
user instantly gets feedback if an image can be localized within the existing reconstruction.
The method ensures that if the acquired images can be processed by the incremental SfM,

they all can be integrated into a common reconstruction.

Efficient and robust image-based localization. Todays research on image-based
localization focuses on the registration of high-resolution images within SfM point clouds.
The major focus of recent research is to efficiently scale image-based localization to ultra-
large image databases [4, 57]. In the setting of the aforementioned real-time SfM, the scene
size is typically much smaller but efficiency is an even more important issue. Therefore, we
propose a novel image-based localization method that is designed for being computational
efficient. We extend an image-retrieval approach to work efficiently with a scale-space pyra-
mid of images. Together with a new feature matching method and an improved RANSAC

procedure, we achieve real-time localization rates even for high-resolution image datasets.

Incremental surface extraction. The extraction of a surface mesh from a noisy
and irregularly sampled point cloud provided by a SfM pipeline is a hard task. Our
solution estimates the surface from sparse triangulated image features for the purpose of
visualization without a densification step. We formulate the problem as a binary labeling
problem of a tetrahedralized point cloud and propose a new random field energy function.
Furthermore, the energy function can be efficiently adapted to a growing point cloud. This
property together with a dynamic graph cut that optimizes the adapted energy efficiently,
enables incremental surface extraction from a growing point cloud while being largely

independent from the overall scene size.

Large-scale view planning for close-range SfM. Finding a small number of view
points around an object of interest whose images are suited for SfM is a non-trivial task. Al-
though this problem is well-known in photogrammetry, the number of existing approaches
for solving the close-range problem at a large scale is very low. We formulate the cal-
culation of suited view points around an object of interest as a constrained multi-cover
problem. Given the rough shape of the area of interest, we first generate a huge number
of potential view points which are then reduced according to a novel quality criterion.
Our formulation respects important SfM constraints like redundancy, resolution and tri-

angulation angles. Since the quality function meets the demand of submodularity, we can
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apply efficient optimization methods while guaranteeing properties on the final solution.
Thanks to the efficiency, our method is able to handle large-scale objects of interest. We
demonstrate that the resulting view points can be approached by an MAV and that the

resulting image set is suited for SfM.

1.3 Publications

This thesis is partially composed of publications that have been authored by myself. In

particular, the following sections are based on publications:

e Section 4.2 is based on the paper:

C. Hoppe, M. Klopschitz, M. Rumpler, A. Wendel, S. Kluckner, H. Bischof, and
G. Reitmayr. Online feedback for structure-from-motion image acquisition. In British

Machine Vision Conference (BMVC), 2012

e Section 4.3 is based on the paper:

C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof. Incremental surface extraction
from sparse structure-from-motion point clouds. In British Machine Vision Confer-

ence (BMVC), 2013

e Chapter 5 is based on the paper:

C. Hoppe, A. Wendel, S. Zollmann, K. Pirker, A. Irschara, H. Bischof, and S. Kluck-
ner. Photogrammetric camera network design for micro aerial vehicles. In Computer

Vision Winter Workshop (CVWW), 2012

1.4 Outline of the Thesis

The remainder of this thesis consists of five chapters. In Chapter 2, we review the history
and the state-of-the-art in SfM and in view planning. In the following Chapter 3, we
provide background information about the techniques that have been used in this thesis.
In particular, these are multi-view reconstruction from 2D images, image-based localization
and surface extraction methods. We present our interactive SfM method in Chapter 4 which
consists of a method for real-time SfM, an incremental surface meshing from sparse points

and visualization techniques of reconstruction qualities. In this chapter, we also perform
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experiments on the individual contributions. Our second method that exploits the fact
that images are acquired for the SfM process, is an off-line view planning approach which
is presented in Chapter 5. Finally, we summarize our work in Chapter 6 and give an

outlook on future work.



Chapter 2

Related Work

Building 3D maps of the environment or a special object is a complex task and involves
a large number of aspects as shown in Figure 2.1. The large number of requirements

concerning the map itself, the type of reconstruction process, the process of data acquisition

requirements map

completeness requirements
sensor type accuracy data acquisition
active depth sensor resolution cost efficiency
passive monocular camera complexity expert
passive stereo camera non-expert
mobile sensor difficult accessible

. requirments
data modality Mapping reconstruction process
still images offline
video stream online
interactive
prior knowledge scene size
of scene micro - microscope
detailed small - table top
rough large - buildings
unknown ultralarge - landscape

Figure 2.1: Map building has a large number of aspects. The requirements concerning
the reconstruction process, the map, the data acquisition and the scene size influences the
type of sensor and the data modality. Furthermore, the amount of prior knowledge also
influence the choice of the applied reconstruction method. This list does not claim to be
complete. Since the amount of factors is so large, we restrict ourselves to the green marked
topics.

15



16 Chapter 2. Related Work

and foremost the size and the visual appearance of the scene have an impact on the
applied sensor and reconstruction method. Due to the large number of impact factors,
we concentrate in this thesis on a restricted number of applications that fulfill the green
marked topics of Figure 2.1. Hence, we concentrate on applications that require a complete,
accurate and a high resolution map of a large-scale but limited scene like an individual
building. These assumptions suggests that a cost-efficient mapping can be performed by
SfM using high-resolution monocular still images. Furthermore, we consider applications
that require view points that are difficult to access like airborne positions. Finally, we
assume that for certain proposed methods rough prior knowledge of the scene geometry
exists.

Given the scope of this thesis, we will review the major research in two topics that
are most relevant for this thesis. In particular, we first investigate the history and state-
of-the art of image-based reconstruction and show the weaknesses that prevent SfM to be
successful in our desired applications. In the second part, we discuss the related work of
sensor planning which is the problem of defining a set of sensor locations such that a map
with the desired parameters can be obtained. Since this is a topic that is well-known in

photogrammetry and robotics, we will review also research from this disciplines.

2.1 History of Image-based Reconstruction

The history of image-based reconstruction started already in 1870 where a technique has
been proposed to measure coordinates from 2D images. At this time the name photogram-
metry has been suggested to describe the new technique [5]. In the early 1900, photogram-
metry started as a new research discipline. Photogrammetry can be classified into two
parts: close-range photogrammetry and aerial photogrammetry. In the 1920s with the
development of airplanes, it was for the first time possible to create large-scale and high-
resolution maps. Beside the 2D information there already existed methods to derive 3D
information from a pair of images but he manual computation of the analytic solutions was
time-consuming. For example, the spatial resectioning of a camera using logarithmic ta-
bles took up to three days. Therefore, opto-mechanical measurement instruments like the
Stereoautograph have been developed to derive height information from a stereo image pair.

In the 1970s with the development of computational hardware the mathematical problems
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became feasible: the time for re-sectioning decreased from days to milliseconds. The next
boost for photogrammetry was in the 1990s where digital cameras became available. With
decreasing costs, continuously growing resolutions and increasing computational power,
photogrammetric methods became available also for new applications like in industrial

metrology or nowadays in mobile phones.

One of the fundamental issues in large-scale photogrammetry is the problem of error
propagation. If images are aligned only pairwise, small errors in the pose estimation may
sum up and the result is geometrically inconsistent. For example, if images are taken in
a loop around an object, a pairwise orientation typically results in an unclosed loop. To
bypass this problem, bundle adjustment was developed. Bundle adjustment refines the
reconstruction result by jointly optimizing camera poses and 3D structure with respect
to some cost function [93]. Classically, bundle adjustment is formulated as a non-linear
least-squares problem and therefore an accurate initialization of the problem is required,

i.e. camera poses and 3D structure must be close to the final solution.

In 1992, Tomasi and Kanade [92] formulated the multi-view reconstruction problem
as a global optimization problem. However, the limitation of this approach is that it is
only applicable for affine cameras. Furthermore, it is not robust to outlier correspondences
due to the squared error function and the corresponding points have to be visible in all
images (each 3D point is visible in each camera). Since this cannot be guaranteed in
large-scale reconstructions, this is not applicable in practice. Therefore, researchers tried
to find mathematical formulations to solve SfM in a global optimal sense with missing
correspondences. Kahl [45] showed that a global optimal solution under the Lo, norm
can be found by quasi-convex optimization but only if the camera rotations are known in
advance. However, the L., is very sensitive to corrupted data and for automatic recon-
struction unsuited. Following the idea of estimating the camera rotations independently
from their translation, several approaches [14, 64, 108] first estimate the rotation between
images in a least squares sense and second optimize for the translation between the cam-
eras. The advantages are faster processing and a better initialization for the final bundle
adjustment |70]. However, Nister |75] has proven that finding the global optimum of a SfM
problem is NP-hard if camera orientations as well as camera translations are involved if

missing data exists.

The common ground of all SfM systems are corresponding points. In the beginning of
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photogrammetry, corresponding points have been determined manually by a human oper-
ator. Since this is a very tedious task, computer vision tries to automate the detection of
corresponding points by finding visually significant image areas that can be re-identified in
other images. Since the available feature matching algorithms in the decade between 1990
and 2000 have been far from being perfect (and they are still not perfect), geometric esti-
mation methods that operate on the matches had to become robust against incorrect cor-
respondences. This resulted in approaches that solve geometric problems with a minimum
number of inlier correspondences within a Random Sampling Consensus (RANSAC) [20]
loop. However, the limited computational power still prevented large-scale reconstructions.

The research of this phase is summarized in the textbook of Hartley and Zisserman [31].

In the 2010s, with the increasing number of photographers that publish their private
images on the Internet, SfM became popular to obtain 3D reconstructions from important
sights by using Internet image collections. In this time, several SfM pipelines have been
proposed that combine robust geometric estimation algorithms with bundle adjustment in
an incremental manner. After initializing the reconstruction with a pair or a triplet of
images and computing 3D points, further images are inserted with a robust 3-point pose
algorithm [51]. To compensate the parameter drifting that causes error accumulation, the
bundle adjustment problem is solved iteratively. Although bundle adjustment is computa-
tionally complex, it became feasible even for large reconstructions thanks to the increasing
computational power. Hence, methods like |2, 89] register thousands of inhomogeneous and
unordered images in a very short time. These approaches demonstrate that incremental
methods are very robust and accurate while being computational efficient. Therefore, they

are still state-of-the-art and we will explain them in more detail in Section 3.5.

The reliability of these approaches is mainly achieved by the ultra-high redundancy
contained in publicly available photo community collections. But the enormous redundancy
that is required is also a limitation of these methods. Figure 2.2 for example shows the
reconstruction and the camera poses of Notre Dame. As it is shown, only the main part
of the facade can be reconstructed because the image dataset contains here the most
redundancy. Other parts which have not been captured that often, are completely missing.
Although the overall redundancy is high, it often happens that the reconstruction becomes
decomposed into several parts. Already a small part of the object that is captured with a

low redundancy can cause this problem.
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Another issue is the amount of data that cannot be integrated into the reconstruc-
tion. For example, to obtain the reconstruction of Notre Dame, 2,635 images have been
processed, where only 598 (22%) images can be finally registered [89]. This very low reg-
istration rate basically shows two things. First, SfM is picky concerning the input images.
A large number of images is rejected for example because their scale or view point change
is too large to allow robust pairwise pose estimation. Second, a very large part of the com-
putation time is wasted for images that finally cannot be registered and therefore a large
amount of processing time is wasted. This analysis demonstrates that a reconstruction
based on fairly randomly taken images requires a very large dataset to obtain reasonable
results. Hence, to use SfM reliably and efficiently in applications, where images are ac-
quired deliberately for the reconstruction process, the goal is to acquire an input dataset
that contains enough redundancy to obtain an accurate and complete reconstruction with-
out collecting a large number of unneeded images. Hence, a solution to reduce the number
of unneeded images and to increases the reliability of SfM is to couple the reconstruction

and the image acquisition process instead of handling both problems separately.

2.2  View Planning for Mapping

One fundamental problem of 3D reconstruction or map generation in general is that only
scene parts are mapped that are captured by the sensor. This is in fact a big problem
when mapping large-scale and cluttered scenes. Here it is often not obvious where to
place the sensors such that all relevant parts can be mapped. Furthermore, the sensor
locations largely influence the accuracy of the resulting map. Typically, the measurement
uncertainty increases as the distance between object and sensor grows. Hence, placing
sensors close to the surface increases accuracy but also more sensor locations are required
to capture the overall scene. Hence, the goal for sensor location planning is to derive
mathematical models that find a trade-off between accuracy and completeness with a low
number of sensor locations. The two main disciplines that deal with these problems in the
field of map generation are robotics and photogrammetry. Therefore, we give an overview

of the related work in both research areas.
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Figure 2.2: Reconstruction Notre Dame. According to [89], 2,635 images have been pro-
cessed to obtain the final reconstruction that contains only 598 images. As we can see from
the distribution of the camera positions, the obtained images are highly redundant.

2.2.1 View Planning in Robotics

The typical application scenario for autonomous mobile robots is to explore an unknown
environment and simultaneously build a complete map of a limited environment in real-
time. Typically, the robot builds an initial map around its starting position and then
determines a next sensing position that enhances the map. This procedure is known as
Next-Best-View (NBV) planning and the goal is to require as few as possible locations to
build an overall map. In the past, research concentrated on wheeled or underwater robots
where the weight of the sensor plays a secondary role which allows to carry sensors like
laser scanners or sonar. These sensors deliver a 2D or 3D range image of the environment
with a single scan. A good overview of existing approaches and their classification can
be found in [87]. Recent research on NBV for autonomous robotics is concerned with the
question where an object is graspable by a gripper [54, 94, 103]. Typically, some kind of
range sensor is mounted on an artificial arm which moves around the object of interest

and performs a reasonable 3D reconstruction to identify possible grasping positions. Since
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Figure 2.3: Sonar view planning of Hollinger et al. [33]. The goal is to minimize the
uncertainty of the sensed ship surface. (a) The planned sensor locations and the remaining
uncertainty of the surface. High-curvature parts have a higher uncertainty than planar
regions. (b) The development uncertainty of the overall surface with respect to the plan
execution time.

the objects are relatively small and the reconstruction accuracy is not a major concern,
it is assumed that potential view points are located in a sphere around the object. The
diameter of the sphere is often much larger than the object of interest. For large-scale,

close-range reconstructions of arbitrary shapes these assumptions cannot be made.

NBYV has to solve two complex problems simultaneously: building a map and defining
the view points that can be safely approached to gather new information. Due to the
complexity, those methods not only require powerful hardware to solve both problems in
real-time but they are also prone to errors. Making an error in one of the tasks has severe

impact on the result.

Another application area of robotics, where view planning is required, is inspection.
Here, a robot equipped with some type of sensor senses its environment and delivers in-
formation about the current state of the object of interest. In those applications often
geometric prior information of the object of interest is available which can be used to

design a view plan off-line.

Such an off-line view planning approach for the inspection of a ship with an underwater
robot equipped with sonar is presented by Hollinger et al. [33]. Given a 3D mesh of the
underwater part of a ship, they first model the uncertainty of the surface estimate by a

Gaussian process regression. The idea is to identify parts that are prone to measurement
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noise and therefore need to be inspected with higher precision. The final goal is to de-
termine a set of sensor locations that minimize the uncertainty of the mesh. Hollinger
et al. [33] formulate this problem as a sensor selection problem: given a large number of
randomly sampled potential locations, a small subset that minimizes the uncertainty of the
mesh is determined. Since this selection is a submodular problem in most cases, perfor-
mance guarantees from submodular optimization theory can be applied directly. Figure 2.3
shows the resulting path of their approach and the reduction in uncertainty with respect
to the execution time of the mission.

Since the goal of the mapping process is always to reduce the uncertainty of the envi-
ronment, the approach of Hollinger et al. [33] is self-evident. However, we show later that
in case of a SfM reconstruction, the reduction of uncertainty as the single objective does

not deliver the best solution for a reliable reconstruction.

2.2.2 View Planning in Image-based Reconstruction

Active sensors like laser scanners or sonars that are frequently used in robotics deliver a
range scan of their environment. In contrast, passive cameras only capture a 2D projection
of the environment and therefore at least two images acquired from different positions are
required to extract range information. Hence, accuracy as well as completeness of the
resulting map does not depend on the view point of a single image alone, but it is a result
of the overall camera network. Therefore, sensor planning for passive cameras is much
more important but also more difficult.

Whereas in most autonomous robotics applications the completeness of the map is often
of most interest, in aerial photogrammetry and even more in close-range photogrammetry,
accuracy is a major issue and therefore is discussed in more detail. In aerial photogram-
metry, images of the landscape are acquired by a high-flying aircraft which are used for
reconstructing a 2.5D surface model. Since the aircrafts are flying in a cruising altitude of
around 1000 m, which is often much higher than the buildings or vegetation, it is assumed
that the observed landscape can be approximated by a 2D plane. Since the cameras are
often mounted strictly nadir, the design of a camera network that guarantees certain tri-
angulation angles and overlap is relatively easy. The rules of thumb propose a forward
overlap between 60% and 80% and a side-lap of 50% to 60%. With such a design it is

guaranteed that each point on the ground is visible in 10 to 15 images. This is motivated
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by the fact that the accuracy runs into saturation if a point is visible in more than 15

images as shown for example in [81].

The difference between aerial and close-range photogrammetry is that in the close-range
case cameras are located much closer to the object such that the assumption of capturing a
2D plane does not hold anymore. Furthermore, in close-range photogrammetry the camera
has often more degrees of freedom than just nadir view points. Since the major application
of close-range photogrammetry is to measure the relative dimensions of objects, accuracy
is a major issue and therefore existing methods focus on minimizing the uncertainty of the

reconstructed points.

In order to measure the accuracy of a single reconstructed point, Wenhardt et
al. [103] propose three different measures, called D(eterminant)-, E(igenvalues)-, and
T(race)-Optimality. The measures are based on properties of the covariance matrix of the
reconstructed point. To find a set of view points that maximize the accuracy, Wenhardt
et al. propose the following Next-Best-View algorithm. Starting from an arbitrary
position, the next position is determined that maximizes the accuracy. Since an efficient
optimization is not possible, each time all possible camera positions are evaluated and
the best is selected. Therefore, this brute-force approach is limited to a relatively small
number of possible positions. The conclusion of this work is that the different measures
result in similar reconstructions and the planning delivers more accurate results than just
using random camera positions. Building on this work, Trummer et al. [94] propose an
extended E-criterion. The extended E-criterion describes the roundness of the uncertainty
ellipse of a reconstructed 3D point. The goal is to obtain an isotropic ellipsoid which
induces that the uncertainty in all directions is distributed equally. For a single point, the
globally optimal camera position to minimize the extended E-criterion can be found in
closed-form under the assumption that the camera moves on a sphere around the object.
However, it is not straight forward to generalize this to a set of points or for arbitrary
camera motion and furthermore, the extended E-criterion does not consider the size of

the uncertainty ellipsoid.

Haner et al. [28] propose a NBV system based on covariances specifically designed
to work in SfM frameworks, which incrementally adds new images to an existing recon-
struction. According to their findings the order in which the images are added plays an

important role for the reconstruction quality. Instead of adding the image that has the
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largest overlap to the existing reconstruction as it is usually done, they calculate the ex-
pected covariance for each camera and add the image that has the smallest covariance. In
order to determine the covariance of a new camera, they have to propagate the covariance
through the whole camera network. Since they integrate cameras only by spatial resec-
tioning without applying bundle adjustment, the impact of adding this procedure into a
standard SfM pipeline stays unclear. Furthermore, this work only answers the question in
which order images are inserted but the question where the images have to be taken, stays

unaffected.

The aforementioned approaches concentrate on the problem of finding a set of view
points that minimize the uncertainty of the reconstructed points. However, the important
problem of the identification of corresponding points is either bypassed by using video
streams that allow frame-to-frame feature tracking or is completely ignored. In aerial
photogrammetry, where the view distortions between images are relatively low, automatic
feature matching using sophisticated features is also relatively unproblematic. But in the
application that we are interested in (close-range, wide-baseline), failures from missing
correspondences are predominant. The most common failure is that images cannot be
integrated into a single reconstruction and therefore it is decomposed into partial recon-
structions. Therefore, a view planning algorithm for our applications has to take into

account the wide-baseline feature matching problem.

Up to now, the number of approaches for view planning that take into account the
wide-baseline feature matching problem is very low. Schmid et al. [86] propose a method
that considers this problem in their view planning approach. They developed a method for
off-line view planning for large-scale reconstructions using still images that are acquired
by an MAV. They assume that a 2.5D digital surface model (DSM) of the object of
interest is given. This DSM is smoothed and eroded to remove sharp edges. Then a large
number of potential view points is created that observe the dilated DSM. Finally, a subset
of the potential view points is selected. The selection process is based on heuristics that
take into account the special requirements of wide-bageline feature matching which is in
particular the viewing angle between neighboring views. The approach mainly concentrates
on finding a set of view points that cover the overall object. But additional constraints

like the accuracy or the redundancy of the reconstructed surface are not considered.

On the one hand, the view distortion, which depends on the geometry of the scene
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Figure 2.4: Live dense reconstruction of with a single moving camera. The individually
depth maps are stitched into a common representation. It is not possible to modify the
reconstruction after the depth maps have been stitched. Visualization taken from [71]

and the relative camera orientations, plays an important role for feature matching but also
the texture has significant impact on the feature matching problem. Since it is difficult to
predict if enough features can be matched to determine relative poses, the most reliable
way is to perform the relative pose estimation and therefore the whole reconstruction in
real-time already during the image acquisition. This has the advantage that the user
can instantly check if the relative pose of a new image to another existing image can
be established and therefore a single reconstruction can be obtained. However, such a
real-time reconstruction method has not been realized for high-resolution still images but
only for video sequences. The realization for video sequences is much easier because they
circumvent wide-baseline feature matching problem but typically the resolution of videos

is much lower than using still images.

A well-known real-time reconstruction using a video stream has been proposed by
Newcombe et al. [71]. They perform at first a sparse reconstruction in a SLAM-like manner
and furthermore generate depth maps for selected frames. These depth maps are then
stitched together to obtain a dense 3D model (see Figure 2.4). The key contribution of this
work is the generation of depth maps using multiple input images. Since dense matching is
computationally complex, they first create a rough depth map using the sparse 3D points
obtained from the SLAM process. This map serves as a prior do calculate a disparity map
using optical flow. The whole procedure works in real-time but once the depth maps are
created, they cannot be updated and therefore a refinement is not possible, even if new

images are acquired later. In [73] Newcombe et al. extended their work by a new method
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for integrating the depth maps. Instead of stitching the depth maps, they integrate the
depth information into a voxel volume using a signed distance function which allows an
easy update if new information is available. The limitation of this approach is that the
volume and the resolution of the volume have to be known in advance. The same approach
can be directly used for integrating depth maps generated by a RGB-D sensor like the
Kinect [72].

To summarize, the existing view planning approaches for image-based reconstruction
mainly focused on optimizing the reconstruction accuracy. The wide-baseline feature
matching problem is often not considered. Either the approaches are based on a video
stream where correspondences are found by frame-to-frame feature matching or the view
distortion and texture of the scene is of good nature that feature matching is a minor is-
sue. Hence, there is a lack in research that considers accuracy as well as the wide-baseline

feature matching problem in the view planning.

2.3 Conclusion

The analysis of the related work shows that research in SfM concentrated on improving
the scalability and robustness of image-based reconstruction and nowadays, state-of-the-art
methods are able to process thousands of unordered real-world images. Since the success
of these methods is based on the enormous redundancy of the input data, they often fail if
the redundancy in the dataset significantly drops. Hence, to realize applications with these
pipelines reliably, the constitution of the input dataset is of major importance. Another
disadvantage of the current state-of-the-art is that the processing follows a strictly feed-
forward pattern and therefore, the success and the quality of a reconstruction can be only
assessed at the very end of the long-lasting processing. Hence, from our perspective, the
uncertainty between the image acquisition and the final result about the reconstruction
success is the major obstacle for the success of SfM. This triggered our idea to propose an
interactive SfM method, similar to the real-time dense reconstruction from video sequences,
that allows an instant assessment of the reconstruction quality.

Calculating a set of view points that allows the reconstruction with a certain accuracy
is well-known in photogrammetry and robotics. In robotics, many solutions are specially

designed for active range sensors. Therefore, they are often not applicable to SfM re-
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construction using monocular, passive cameras. In aerial photogrammetry, the problem
is very restricted because it is assumed that cameras are mounted strictly nadir and the
landscape is assumed to be a 2D plane. This assumption only holds if the object-camera
distance is much larger than the height of the objects located on the surface. Overall, the
view planning for image-based reconstruction mainly concentrates on the calculation of
a view plan that delivers a maximum degree of accuracy. Since many of these methods
rely on video data, the problem of wide-baseline feature matching is not considered during
view planning. Since for our problem, the reconstruction of high-resolution 3D data from
wide-baseline still images, feature matching causes the majority of errors, a view plan-
ning approach has to consider this special property. To our best knowledge, the number
of approaches that consider accuracy, completeness and the feature matching problem is

extremely low.






Chapter 3

Image-based 3D Scene

Reconstruction

Reconstructing 3D scene information using multiple input images is one of the fundamental
problems in computer vision which is denoted as Structure-from-Motion (SfM). Given a
set of 2D images, the goal is to jointly recover their six-degrees-of-freedom (6DoF') pose and
the scene structure by using only 2D image information. Thanks to fundamental research,
nowadays the basic geometric relationships between 2D images and the 3D environment
are well understood. Research in the last decade focused on automating the reconstruc-
tion process. Today, we are able to recover camera poses and 3D scene information fully
automatic from scenes captured by thousands of images. This basic scene representation
by triangulated sparse feature points often serves as input for further processing, e.g. the
calculation of a dense point cloud or the extraction of a surface mesh.

In this chapter, we will explain the fundamental geometric concepts between the 3D en-
vironment and 2D images and their application to robustly recover 3D information in a
fully automatic fashion. In Section 3.1, we start with the mathematical model of a pinhole
camera model followed by the mathematical relation between two images in Section 3.2. In
Section 3.3, we explain the triangulation of a 3D point from multiple 2D observations and
how corresponding points can be identified using image features in Section 3.4. Section 3.5
summarizes the previous sections by describing a state-of-the-art SfM pipeline.

Furthermore, we present two methods that are based on the SfM result, i.e. the extrac-
tion of a surface mesh and the localization of new images with respect to a SfM result. In

Section 3.6, we review a standard image-based localization approach and in Section 3.7,

29
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we have a closer look on existing surface reconstruction algorithms that operate on sparse

and dense scene information.

3.1 Camera Model

In this section, we describe the geometric relation between 3D points and their projection
onto a 2D image. We limit ourselves to the pinhole camera model since this model is
appropriate for most consumer cameras. First, we describe the idealized linear camera

model and then the non-linear distortions that occur in real cameras.

The principle of the pinhole camera model has been discovered already 1021 AD by
the persian scientist Alhazan [99]: A light ray reflected by an object travels through a
pinhole and impacts on a planar surface. Mathematically, the pinhole camera is defined
by the center of projection C' which is the pinhole, the image plane 7 and the focal length
f which is the distance between 7 and C. The projection of X = [X,Y, Z]T € R? to the
point x = [u,v]7 € R? on 7 is given by the intersection of the ray that starts in X travels

through C' and intersects m:

X
“l (12 (3.1)

Y
v f7

By introducing homogeneous coordinates, we can rewrite Equation 3.1 to a system of

linear equations

F 00
x=|v =10 f 0] [/3x3]03x1] = (3.2)
0 0 1

= NN

where x is given in homogeneous coordinates and [I35x3|03x1] is a 3 x 3 identity matrix

T

concatenated with a 3 x 1 zero vector. The image coordinates (u,v)’ can be obtained from

x by normalizing x with its third coordinate: v = u//w and v = v’ /w.

So far, we assumed that the origin of the image plane coincides with the projection of
the camera center C to m. In practice, when dealing with a digital camera, the origin of the
image plane is often translated by an offset p = (ps, py), called principal point, for example

to the upper left corner of the image. Considering the principal point, Equation 3.2 turns
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Figure 3.1: The pinhole camera model. The scene point X is projected to the 2D point =
on the image plan. The intersection of the ray that starts in X and ends in C' with the
image plane is the projected point. The principal point p is the projection of the camera
center C to the image plane. The focal length is the distance between C' and the image
plane.
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The first 3 x 3 matrix K describes the intrinsic parameters of the camera and is therefore
called camera calibration matrix. K multiplied with the 3 x 4 matrix results in the ho-
mogeneous projection matrix P which describes the mapping of a homogeneous 3D point
X to a homogeneous 2D point x on the image plane. The intrinsic matrix K defined in
Equation 3.3 implicitly assumes that the shape of a pixel on the image plane is a square
which is the general case in modern digital cameras. In the rare case that the pixel are

sheared an additional parameter s is introduced and K becomes

f s D
Ks=10 f Py | - (34)
0 0 1
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So far, we assumed that the coordinates of point X are defined in the (Euclidean) coordinate
system that is spanned by the camera. The more general case is that the 3D point is
defined with respect to a world coordinate frame. To describe the transformation between
the camera coordinate frame and the external world coordinate frame, we integrate an

Euclidean transformation into the projection matrix P

Ry t
P=Kk|" 7| = KRt (3.5)
01X3 1

The matrix [R|t] rotates and translates the 3D world point into the coordinate system of
the camera before the point is projected on the image plane. Since [R|t] describes the
orientation of the camera to the world coordinate frame the matrix is denoted as external
parameters. The projection center (', in world coordinates can be calculated by the inverse
transformation of the cameras origin C' = (0 00 1>T
-1
Risxs t

Cp = C=-RTt (3.6)
01x3 1

The mathematical model of the pinhole camera (Equation 3.3) is a linear mapping
between a homogeneous 3D point and a homogeneous 2D point on the image plane. In real
camera systems, this linear model does not always hold due to the use of imperfect lenses
which causes non-linear distortions namely tangential and radial distortion. The tangential
distortion is produced by an imperfect alignment of the lens and the image plane. The
radial distortion shifts points projected by the linear model inwards or outwards which
leads to the effect that straight lines are bended. In practice, the radial distortion is more
important and the effect increases as the focal length decreases. Mathematically, the radial
distortion is defined by a function L(r) that depends on the Euclidean distance r of the
distorted point x4 = (ug,vq) to the center of distortion which is typically assumed to be
the principal point (pg,py). The undistorted point x; = (w;,v;) that corresponds to the
point that would have been obtained with a perfect linear camera is obtained by

AN P+ L(r)ug . (3.7)

v Dy + L(1) vg
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The distortion function L(r) is often approximated by a Taylor function:
L(r) =r+ k1r 4 kor? + k3r® + ..., (3.8)

where k,, are called distortion coefficients.

Many computer vision algorithms like the estimation of the cameras pose assume a
linear projection model. Therefore, the compensation of the non-linear radial distortion
is very often a pre-processing step and therefore the estimation of the parameters k,, of
L(r) is part of a calibration step. It is often formulated as a minimization problem of an
objective function that penalizes the deviation from the linear projection. For more details

on camera calibration we refer the reader to [95, 109].

3.2 Two-View Geometry

In this section, we derive the geometric relation of two projection matrices P and P’ that
project the same point X to the points z and 2/, respectively. The relation between x and

2’ is well known as the epipolar geometry.

3.2.1 Epipolar Geometry

Given a 3D point X projected by a camera P to point x, the epipolar geometry restricts
the point 2’ to be located on a line I’ in the image of a second camera P’. Figure 3.2 shows
that the scene point X and the camera centers C' and C” form a plane H, which is called
epipolar plane. The points e and €', the epipoles, are the projected camera centers C’ in P
and C in P’. The distance between the C' and C” is called baseline. The intersection of the
plane H, with the image planes defines then the epipolar lines [ and I’. Since I’ connects
¢ and 2’ it can be written as ¢/ x 2/ = [¢/] <2’ where [€/]« is the skew symmetric matrix of

€’. Because 2’ can also be expressed by 2’ = H,z, we can write

I'=[e]x2’ = [¢/|xHrx = Fux, (3.9)
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where F' = [¢/|« H is the fundamental matrix. If 2’ and = correspond, which means that

they are the projections of the same point X, then 2’ is located on I’ and

2T =0 (3.10)
holds. From this the correspondence condition

P’Fz =0 (3.11)

is derived. This condition is necessary if x and 2’ are corresponding points but it is not

sufficient, because all points on I’ satisfy Equation 3.11.

The 3 x 3 fundamental matrix is a homogeneous matrix F' and is uniquely defined up
to a scaling factor and therefore has 8 independent ratios. Furthermore, the determinant

of F' is zero and therefore I' has 7 degrees-of-freedom.

If the relative orientation and translation between both cameras are known, the funda-
mental matrix can be easily calculated by the essential matrix E that encodes the relative

orientation:

E = R[R"t], (3.12)

where R is the 3 x 3 relative rotation matrix and t the relative translation. F' then can be

| baseline |

Figure 3.2: Epipolar geometry. The scene point X is projected by two cameras to the
points z and x’. The points where the baseline, the line that connects C' and C’, intersects
the image plane are the epipoles e and €’. C, C’ and X span the plane H.
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computed by
F=KEK! (3.13)

In the SfM process images are given without knowledge of their exact position. There-
fore, one of the main tasks is to recover the relative orientations between image pairs.
In the next section, we describe methods to calculate the fundamental matrix F' and the

essential matrix F by using point correspondences.

3.2.2 Estimation of Epipolar Geometry

To estimate the fundamental matrix F' from a set of sufficient many corresponding points,
we can use the correspondence condition of Equation 3.11 to setup a linear system of
equations where each correspondence pair x; <> z generates one linear equation. Given
the points z; = (z,y,1) and =, = (2/,4/,1) in homogeneous coordinates, the resulting

linear equation is

a'wfin+ 2y fio + @' fis +y'afor + Yy for + Y fas + 2 f31 + yfae + faz =0, (3.14)

where f;; are the entries of the fundamental matrix F'. Re-writing Equation 3.14 as a

vector inner product leads to
(:c’x,:n'y,x',y/x,y/y,y',x,y, 1)f =0, (315)

where f is the 9-vector containing the coefficients of F'. By stacking all equations obtained
by n (at least eight, therefore the algorithm is called eight point algorithm) corresponding

points together to a n x 9 matrix A, we obtain
Af = 0. (3.16)

If more than eight correspondences are given, f can be found by solving Equation 3.16 in a
least-square sense while taking care that F' has rank 2. For more details on the eight-point
algorithm, we refer the reader to [31].

In many practical problems the intrinsic camera parameters K and K’ are known in
advance and therefore the estimation of the fundamental matrix reduces to the calculation

of the essential matrix E. Although F is also a 3 x 3 matrix, it describes 3 parameters for
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the rotation and 3 for translation. Since F is a homogeneous matrix, it is only defined up
to scale and therefore E has only 5 degrees-of-freedom which leads to additional constraints

on E. Since F is a special version of the fundamental matrix, the constraint
det (E) =0 (3.17)

must be fulfilled. Furthermore, Huang and Faugeras [38] has proven that two singular
values of F are equal and the third one is zero, which leads to an additional, cubic algebraic

constraint

1
1ﬂﬂE—§deEEﬁE:o. (3.18)

These constraints lead to the Five-Point algorithm proposed by Nister [74] that calcu-
lates the essential matrix from 5 correspondences. Similar to Equation 3.16, a system of
linear equations is set up

AE =0, (3.19)

where A is the 5 X 9 matrix build in the same way as described in Equation 3.15. Then
four vectors X,Y, Z, W that span the right nullspace are computed by a QR-factorization.
By re-writing the vectors X, 17, Z,W to 3 x 3 matrices X,Y, Z, W the essential matrix can

be written as a linear combination
E=51X+ Y + 832+ s4W, (3.20)

where s1...s4 are scalar. Since F is defined only up to scale, s4 is assumed to be one.
The factorized essential matrix is then put into the ten cubic constraints obtained by the
constraint on the trace and the determinant. After performing Gauss-Jordan elimination
with partial pivoting a system of linear equations is obtained. This system is then re-
written to a new matrix B that has the constraint that det (B) = 0. The determinant of
B is a tenth degree polynomial. To find the roots of the polynomial which are then the
solution, Nister proposes to use Sturm-sequences [24| due to their computational efficiency.

The full algorithm and more details on the accuracy and the stability are available in [74].
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3.3 Triangulation

In Section 3.1 we described the relation between a 3D point X and its projection to x under
the projection matrix P: x = PX. Triangulation denotes the inverse problem where we
determine X given two or more corresponding 2D points x; and their projection matrices

P;.

The projection of X to x = (u,v,w) can be re-written into three individual equations

wu = PIX
wv = P{X (3.21)
w= P{X,

where PT" denotes the n'" row of the projection matrix P. To eliminate the scaling factor w
the projection can be written as a cross product [30] which then results in two independent
linear equations
0= P/'X - P Xu
(3.22)
0= Py X — P{Xuv.
Since we are dealing with homogeneous coordinates, our scene point X has 4 unknowns.
Therefore, we require at least two image correspondences x <> & and their projection

matrices P and P to solve the following equation system

Pl — Plu
PI — Py
23T IX = AX =0. (3.23)
Pl — Pla
Py — PI'v

This equation system can be easily solved in a least-square sense by performing a singular
value decomposition (SVD) on A. The Eigenvector corresponding to the smallest Figen-
value is then the 3D triangulated point. If more than n > 2 correspondences are available,
each additional correspondence adds two more equations to A resulting in a 2n x 3 matrix.

The solution can also be obtained by the SVD as before.

In practice, the position of the image correspondences are perturbed by noise and
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therefore the correspondence condition of Equation 3.11 is only met approximately x F'& ~
0. Geometrically, this has the effect that the rays spanned by the corresponding points
do not intersect in a single point X, but they form a glancing intersection. Due to the
uncertainty in the localization of the corresponding points, the triangulation result also has
an uncertainty. The relation between the 2D uncertainty originated by the corresponding
point estimation and the resulting 3D uncertainty is shown in [9]. They demonstrate that
the covariance matrix of X can be calculated by the covariance matrices of the individual

corresponding points.

3.4 Visual Features

In the previous section we discussed how the relative orientation between two cameras can
be automatically recovered if corresponding points z; <+ z; are available. Hence, the key
component for automatic image-based scene reconstruction is the ability to find correspon-
dences between image pairs reliably. Because this is one of the fundamental problems in
computer vision, an enormous number of approaches to establish correspondences auto-
matically has been developed. A detailed survey of state-of-the-art methods is available
in [96].

The basic concept of most methods is to extract points, called keypoints, that are dis-
criminative according to their surrounding and then to find a description of its neighbor-
hood (called feature) that is discriminative and stable under transformations like lighting,
viewpoint, scale and rotation. Most descriptors are represented by an n-dimensional vector
whose entries stay nearly constant even under the aforementioned distortions. To estab-
lish correspondences between two images, for each feature of one image its counterpart is
determined by finding the feature of the second image that is most similar. Hence, the
matching problem can be casted to a nearest neighbor problem.

The selection of a certain keypoint/descriptor combination always depends on the re-
quirements of the underlying application concerning computational complexity and vari-
ance of the input images. For example, when tracking 2D points frame-wise in a video
stream, the descriptor does not have to be extremely robust against lighting and viewpoint
changes. Therefore, lightweight descriptors which are computational efficient can be used.

On the other hand, the reconstruction of wide-baseline images by SfM requires features
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that are highly robust against a large number of distortions: viewpoint changes, lighting,
scale and rotation. The robustness of the used feature is directly related to the variety of

images that can be reconstructed by the SfM process.

For SfM using wide-baseline images the Scale Invariant Feature Transform (SIFT) [62]
proposed by Lowe is an approved keypoint/descriptor combination. SIFT combines a
keypoint detector that identifies blob-like structures in a scale-space pyramid using the
difference-of-Gaussian (DoG) function and a descriptor that represents the distribution of
gradient orientations around the keypoint in a histogram with 128 entries. The information
on which scale the maximum response of the DoG function occurs is used to define the
patch size that is taken into account for building the descriptor and therefore makes the
descriptor invariant against scale changes. The descriptor itself is inspired by the biological
observation that gradient information is much more stable under 3D viewpoint variations
than the gray-scale information. Loewe has shown in [62] that the matching quality is

stable up to a viewpoint change of about 30 degrees.

Since SIFT achieves very good results for wide-baseline matching, several modifica-
tions have been proposed to either reduce the computational effort like the Speeded Up
Robust Features (SURF) [8] or for being more robust against affine viewpoint changes
like the Affine-SIFT (ASIFT) [68]. Nevertheless, the original SIFT method is a trade-off
between quality and computational complexity and thanks to the availability of efficient
implementations on the GPU [105], the computation is feasible even for high resolution

images.

A new class of descriptors that have been developed in the last years are binary descrip-
tors that directly operate on the gray-scale pixel values instead of the images first-order-
derivatives. These descriptors have in common that they are built from a pairwise intensity
comparisons. The result of each comparison is thresholded and then stored as a single bit
in the feature. Hence, a feature consists of a bitstring instead of a floating-valued vector.
As a similarity measure typically the Hamming distance is used because this can be very
efficiently calculated on today’s computational hardware. Typically, the distance calcula-
tion of a feature pair requires less than 0.3 micro-second which is two orders of magnitude
faster than the distance calculation between two SIFT features (33 micro-seconds) [91].
However, most of these binary features are not as robust against view distortions as for

example SIFT, and therefore they are rarely used for wide-baseline feature matching. They
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are often applied for feature matching in video sequences. An exhaustive comparison of

binary features can be found in [32]

3.4.1 Feature Matching

Feature matching is the task to identify corresponding features given two sets of features
F and F’. We will explain the procedure using the example of SIFT but the principle can
be applied to most real-valued features.

Given an n-dimensional feature f € F we want to find the corresponding feature
f' € F’ that shows the same scene point. To make things worse, it is not known if F’ even
contains the feature that shows the same scene point. The matching procedure proposed
by Lowe [62] is based on the features f) and f/ € F’ that are the nearest and second

nearest neighbor of f under some metric ||-||

fr = min [[ff = f]| (3.24)

fler’

Typically, the Euclidean distance is used as metric. The second nearest neighbor f/, is

used to decide if f and f] are correspondences. If

IF =gl _

1= 1ol (3.25)

the match is established otherwise it is discarded. Depending on the application 7 is chosen
between 0.5 and 0.8. The intuition behind this definition is to measure the discriminativety
of the match. The smaller the ratio of Equation 3.25 is, the more reliable the match is.
Lowe has shown that this measure establishes more correct matches than just using a
threshold on ||f — £/ |

Since several thousand features can be extracted from high resolution images, the brute-
force nearest neighbor search is computationally expensive. Therefore, various approaches
have been presented to speed up the search [88]. However, the current solutions for ex-
act nearest neighbor search are exponential in the feature’s dimension in either time or
space complexity [3]. Fortunately, the brute-force method to calculate all possible pair-
wise feature distances in case of normalized feature vectors can be efficiently parallelized

and therefore computed on the GPU. Given two normalized feature vectors ¢ and d, their
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Euclidean distance can be expressed by
lg—dl =2-2" qid; (3.26)
i

as a vector multiplication [76]. Hence, the pairwise feature distances can be calculated by
a dense matrix multiplication. Query features are stacked row-wise to a matrix ) of size
n X k, where n is the number of features k the feature dimension. In the same way, matrix
D of size m X k is build using the other set of features. The distance matrix G is then

obtained by the matrix multiplication
G =QDT, (3.27)

where G is of size n x m. Since the matrix multiplication can be efficiently parallelized, the
computation on the GPU is very fast. Also the calculation of the row-wise or column-wise

minimum to find the nearest neighbor can be easily parallelized.

3.5 Multi-view Reconstruction

In multi-view reconstruction we are interested in recovering a previously unknown 3D scene
structure from a set of redundant 2D images by just using image information. This is
one of the fundamental computer vision problems and therefore is active research over
the last three decades. As described in Section 2.1, the State-of-the-art for SfM from
unordered images are incremental reconstruction pipelines that iteratively perform global
optimization to obtain an accurate result. In the following, we describe the different steps
of such a pipeline.

The reconstruction pipeline typically consists of several steps that are conducted sub-

sequently:

e Visual feature extraction

Pairwise feature matching

Geometric verification

Geometry estimation

Geometry optimization
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In the first two steps, visual features are extracted and corresponding points are estab-
lished by matching features pairwise. In the third step, the relative camera orientations,
more formally the essential matrix £ between all image pairs are computed. This results
in the epipolar graph that encodes which camera pairs share common scene parts. In the
subsequent step, the relative orientations are integrated into a common coordinate system
and scene points are triangulated. To prevent error propagation during the integration,

the structure as well as camera positions are globally optimized by bundle adjustment.

Visual feature extraction

The first step of the pipeline is to extract distinct visual features and their corresponding
descriptors. Since SfM is often performed on still images that are taken from quite different
positions, a descriptor is required that is robust against a large number of distortions.
Because SIFT [62| has a good trade-off between speed and robustness, it is used in many
standard SfM pipelines. However, the feature itself is only important for the subsequent
feature matching to establish corresponding points. For all other reconstruction steps the

feature itself is irrelevant since only corresponding points are of interest.

Pairwise feature matching

Feature matching between image pairs is performed to find corresponding image points
that are later used for calculating the epipolar geometry as described in Section 3.2.2.
Because images are unordered and it is not known which images show a common scene
part, it is required to match all possible image pairs. The computational effort therefore is
n? in the number of images. On large datasets containing hundreds or thousands of images
matching is often the most time consuming part. Klopschitz et al. [48] propose to split the
matching in a coarse and a detailed matching step to reduce the computational complexity.
The goal of the coarse matching is to restrict the matching to images that potentially show
the same scene part. The authors propose to use an image retrieval approach [74] to rank
images according to their visual similarity. Feature matching is then performed only on
the k top-ranked images. Therefore, the computational complexity is n k and therefore is
linear in the number of images. This allows to speed up the feature matching and even

large image sets can be processed.
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Geometric Verification

In this step, we estimate the relative orientation between the matched image pairs by
calculating their fundamental matrix F'. In the case where the intrinsic camera parameters
of both images are known, this reduces to an estimation of the essential matrix £ using the
Five-point [74] algorithm. The geometric verification is performed for two reasons. First,
false feature matches can be identified and eliminated. Second, the relative orientations

provide information about the special distribution of the images and their redundancy.

To calculate the fundamental or essential matrix, the corresponding points obtained
from the feature matching are used. Since they are potentially highly contaminated by
false matches, the estimation has to be performed in a robust manner. The standard
technique for fitting models to point sets that contain a large number of outlier is the
random sampling and consensus (RANSAC) [20]. RANSAC estimates the optimal solution
by randomly selecting the minimum number of correspondences that is required to calculate
a hypothesis H. Then the portion of corresponding points is determined that supports
H. To decide if a correspondence supports H, an error metric and threshold have to be
defined. In case of the epipolar estimation, the support is measured by the number of
correspondences whose Sampson error [31] is below a certain threshold. The procedure of
hypothesizing and testing is repeated a fixed number of times to find the hypothesis Hy,qz
that has the highest number of inlier. If H,,,, contains less than k inlier, we assume that no
epipolar geometry between the image pair can be determined using corresponding points.
Instead of setting k to a fixed pre-defined value, Irschara et al. [40] propose a method
to calculate k by taking the spatial distribution of inliers into account. In practice, this
method reduces the chance of getting wrong relative poses especially if a very large number

of correspondences are given or the scene consists of repetitive structures.

The result of the geometric verification is the so-called epipolar graph Eg. Eg is a
directed graph whose nodes are the images and the edges are the relative orientations
between the image pairs. It is typically used to initialize the next processing step that lifts
the pairwise relative orientations into a common coordinate system. Figure 3.4 shows two

epipolar graphs that have different characteristics.
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(a) (b)

Figure 3.3: Two examples of a verified image pair. The right camera is in the origin and
the second camera is set to the pose estimated by the five-point algorithm. The yellow
lines indicate the viewing rays to the triangulated image features.

Geometry estimation

In this step, the individual relative orientations determined in the geometric verification
are lifted into a common coordinate system following the greedy approach of [89].

Given the relative orientation from an initial image pair, we triangulate the corre-
sponding points that are inliers of the geometric verification. Next, an additional image
is selected that is registered with respect to the existing reconstruction using an absolute
pose algorithm [51]. In case of known camera intrinsics, at least three 2D-3D correspon-
dences have to be known to compute the pose of the new image. To be robust against
misleadingly identified corresponding points, the pose is estimated in a RANSAC loop. If
the new image can be localized, the 3D structure is expanded by triangulating new corre-
spondences. This procedure is repeated until all images are integrated or no image can be
registered anymore.

Although the algorithm is basically very simple,the selection of the initial image pair is
very crucial. It influences the reconstructions accuracy as well as the number of images that

can be localized within a common reconstruction. Snavely et al. [89] propose to choose an
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(a) Reconstruction of aerial dataset consisting of (b) Epipolar graph FEg.
271 images.

(c¢) Reconstruction of a facade using 72 images. (d) Epipolar graph.

Figure 3.4: Two reconstructions and their corresponding epipolar graphs. The reconstruc-
tion in (a) is obtained by 271 images acquired by a fixed wing Micro Aerial Vehicle in two
flights with crossing stripes. The epipolar graph represented as a 2D matrix in (b) shows
if a relative pose between an image pair has been determined by the five-point algorithm.
The second scene (c) is reconstructed by 72 images. (d) The epipolar graph here is much
more dense than at the aerial reconstruction. From this we can conclude that the images
are more redundant than in the aerial dataset.

initial pair that has a large baseline as well as a large number of correspondences to get
a well-constraint initial reconstruction. Klopschitz et al. [48] in contrast propose to first
find the image in the epipolar graph Eg that has the highest degree, i.e. has the most
verified epipolar geometries and therefore is a central element of the reconstruction. The
second image is then chosen among all neighbors with a large baseline and a large number

correspondences .
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Since the reconstruction is the result of an incremental approach the problem of error
propagation occurs, i.e. small errors in the camera pose estimation may accumulate to
larger errors as more and more images are getting integrated. Periodically, the estimated

geometry is globally optimized to avoid error accumulation.

Geometry Optimization

The global optimization of the estimated geometric configuration of the previous step
is known as Bundle Adjustment |31, 60, 93] which is defined as follows: given a set of
projection matrices F;, a set of 3D points X; and the observation x;; which is the measured
2D position of X; in image F;. The task is to jointly optimize P; and X, such that a cost

function is minimized. Typically, the reprojection error
€ij(Pi, X;j) = d(PiXj, xij) (3.28)

is used to define the cost function C(P;, X;). The reprojection error measures the Euclidean
distance d(-) between the re-projected position X in camera P; and the observed position
x;j. The overall cost function to be minimized is then defined as the sum over all residuals
€ij

C(h, X;) = Z Z vijp(€ij), (3.29)

where p(-) is a function on the residuals and v;; is a binary variable that indicates if the
point X is visible in camera P;.

Under the assumption that the observations x;; are perturbed by Gaussian noise the
maximum likelihood estimate is obtained by setting p(-) = 5(-)2. Hence, the minimization

of Equation 3.29 turns into a least-squares optimization problem.

In practice, the noise of the observations is not Gaussian because the observations x;;
are obtained by feature matching and therefore can be contaminated by severe outlier.
In case of the least-squares solution, a single outlier can distort the whole reconstruction.
Therefore, it is desired to find a cost function p(-) that is robust against those outlier.
In 1964 Huber et al. [39] proposed the class of M-estimator functions (“M” stands for
“maximum likelihood-type”) that gives individual samples different importance according

to their residual €;;. Functions often used in robust bundle adjustment are for example the
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Tukey and the Huber [39] M-estimator. The Tukey M-estimator

CA—[1—(e5/02), if | < ¢
pTuk:ey(Eij) = 5

(3.30)
%, if|€ij| >c

assigns outlier above a threshold ¢ a constant value whereas residuals below ¢ have a
squared impact on the optimization result. Figure 3.5(b) shows the shape of the Tukey
M-estimator. In contrast, the Huber M-estimator (Figure 3.5(c))

pHuber(eij) = (331)

combines a squared part for points with a reprojection error below ¢ and points above ¢
have a linear influence.

The cost function 3.29 is non-convex and therefore finding the global optimum efficiently
is not possible [75]. To determine a local optimum, typically iterative non-linear least-
square solvers like the Levenberg-Marquardt [93] algorithm are used. Due to the high

non-convexity a good initial guess of the parameters is essential.
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Figure 3.5: Common cost functions for bundle adjustment. (a) Squared error function.
(b) Tukey M-estimator. (¢) Huber M-estimator.

3.6 Image-based Localization based on SfM Results

Recovering the 6DoF camera pose for localizing a query image with respect to a 3D point

cloud recently has been a popular field of research, especially due to the recent advances
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in SfM which now allow the reconstruction of large-scale 3D models of urban scenes within
a few hours. It has a wide range of applications starting from the localization of user
community photos [40, 57, 83, 85| up to the localization of video sequences as used in

Augmented Reality (AR) [4] or autonomous robotic applications |58, 102].

Most image-based localization methods can be divided into three consecutive steps: ex-
tracting features, establishing 2D-3D correspondences by feature matching and analyzing
the obtained correspondences in a robust hypothesize-and-verify algorithm like RANSAC
to estimate the camera pose. Existing methods can be classified into two categories de-
pending on how they establish the 2D 3D correspondences, either image-retrieval based or
by brute-force 2D 3D matching. Methods based on image-retrieval reduce the number of
3D point candidates for matching by constraining the search to the visually most similar
images in the database using well known image retrieval techniques like the vocabulary
tree [76]. The main advantage of such approaches is that they are able to handle even
very large 3D reconstructions, since image-retrieval scales well with increasing database
sizes. In such a way the quality of the ranking is very important for the localization per-
formance. To increase the retrieval quality, e. g. Irschara et al. [40] proposed a new ranking
method (probabilistic scoring) and introduced synthetic views that simulate additional

camera poses within the reconstruction.

Sattler et al. [83] have shown that in many cases brute-force 2D-3D matching between
the query and the whole point cloud increases the number of successfully localized frames.
To reduce the matching effort, features of the point cloud are stored within a vocabulary
tree. For matching a query feature, only 3D points are considered that are assigned to the
same leaf node as the query feature. For this method, they report timings between 160 ms
and 740 ms per image. The disadvantage of direct matching is that all features have to be
stored in memory which is critical for very large reconstructions. In [84], the same authors
combine the image-retrieval approach with direct matching. A ranking of the input images
based on a limited matching is used to improve the image retrieval quality. To reduce the
memory demands, they introduce quantized SIFT features that can be efficiently matched

by calculating their Hamming distance.
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3.7 Surface Extraction from SfM results

The result of a Structure-from-Motion pipeline are the camera poses as well as a set of
triangulated, sparse image features. For many applications in robotics, Augmented Re-
ality (AR) or for visualization, a sparse point representation of the environment is not
sufficient because the inhomogeneous sampling of the surface makes a geometric interpre-
tation of the scene very difficult. Tasks like obstacle avoidance or physic simulations often
require a denser representation or even better, an implicit or explicit representation of the
surface. Most state-of-the-art methods for image-based surface reconstruction operate on
dense depth information which means that the scene is represented by significantly more
3D points as obtained by the point cloud generated by the SfM pipeline. Due to the enor-
mous amount of data to be processed, most of these algorithms are computational very
demanding. For applications where computational power is limited, it is an alternative to
work on the sparse data directly. However, the sparseness and the limited redundancy of

the scene representation makes the extraction from such data even more challenging.

Most approaches formulate the surface extraction problem as a classification problem
of a discretized volume into free- or occupied space. Therefore, we first introduce two
different volume discretization methods, namely a regular and an irregular discretization
schema. Second, we give an overview of existing methods that require dense and regularly
sampled 3D points of the scene to extract a surface. Finally, we concentrate on state-of-
the-art methods for surface reconstruction methods from sparsely and irregularly sampled

point clouds which are obtained from SfM.

3.7.1 Volume Discretization

Most existing surface reconstruction methods are based on a volumetric discretization of
the space. The discretization can be classified by the shape of volume elements which can
be regular or irregular. The best-known regular volume element is the voxel which is the
generalization of a 2D pixel in 3D. A well-known irregularly shaped volume element is the

tetrahedron that is often used for the surface extraction from sparse data.

In the following, we describe the discretization methods and analyze their advantages

and disadvantages.
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(a) (b)

Figure 3.6: Two volume elements. (b)Voxel. (a) Tetrahedron.

Regular Discretization

The basic element of a regular discretization is a voxel which is an equilateral cube and
can be seen as an extruded pixel in 3D as shown in Figure 3.6(b). The advantage of the
voxel-based discretization is that it can be easily obtained if the dimension of the volume
and the discretization resolution are known. Assuming an axis-aligned Euclidean volume,
the voxel coordinates for a certain 3D point can calculated by a division and a rounding
operation. Due to the regular structure of the volume discretized into voxel, it is very well
suited for being processed on modern GPU hardware. However, the regular discretization
requires that the resolution as well as the dimension of the volume has to be chosen at
the programs start. A belated modification of both parameters is often not possible. In
case of a surface reconstruction, a disadvantage is that the volume is uniformly discretized.
Since a large number of reconstructed scene points are typically close to the surface, most
voxel are empty whereas in parts of the surface several points are discretized into a single
voxel. An alternative to bypass this problem are octrees [82| that are hierarchical 8-ary
tree structures with varying resolution. However, those cannot be handled efficiently on

the GPU anymore.

Irregular Discretization

Most existing surface reconstruction algorithms for sparse point clouds perform an irregular
discretization into tetrahedra. In contrast to the regular discretization that ignores the
density of the 3D points, the irregular discretization is based directly on the 3D points and

therefore adapts to the density of the point cloud. A tetrahedron is a volume element that
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is spanned by 4 3D points where each of the 4 points is connected to all other points. This
results in a volume element that is bordered by 4 triangles and looks like a pyramid with a
triangle footprint (Figure 3.6(a)). Given an arbitrary set of points, there is a large number
of alternatives to connect 4 points such that they form a tetrahedral structure. However,
for a detailed surface reconstruction we are interested in a discretization that results in
small and equally shaped triangles. The Delaunay Triangulation (DT) [16] method is one

approach that meets these requirements.

Formally, the DT is defined as follows: Given a triangulation DT (P) of a point set
P € R", DT(P) is a DT if no point of P is inside the circum-hypersphere of any simplex
of DT(P). In the case of a 2D point set (n = 2), the circum-hypersphere is a circle and

(a) (b)

Figure 3.7: Triangulations in 2D. (a) is a triangulation in 2D that does not fulfill the empty
sphere property of a valid DT. In contrast the triangulation of the same point set in (b)
is a valid DT.

Figure 3.8: Real-world 3D Delaunay Triangulation example. (a)Input point cloud. (b) DT
illustrated in a wire-frame presentation. Qutlier points in front of the facade cause large
volume elements whereas the dense points on the surface yield a fine-detailed discretization.
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the simplex is a triangle, whereas in 3D (n = 3), the simplex is called tetrahedron and
the circum-hypersphere is the circum-sphere. One of the most important properties is
that this triangulation maximizes the minimum angle of all simplexes in the triangulation
and therefore avoids the generation of skinny simplexes. Figure 3.7 shows two possible
triangulations of 4 points in 2D. The triangulation shown in Figure 3.7(a) does not meet the
empty circle criterion in contrast to the triangulation illustrated in Figure 3.7(b). The DT
has several properties. The tetrahedral structure is regular, i.e. each tetrahedron (except
tetrahedra on the convex hull) is connected to four neighboring tetrahedra by sharing one
face which in 3D is a triangle. In 2D the number of simplexes in the triangulation is O(n)
whereas in 3D the number can vary between O(n) and O(n?). Attali et al. [6] have shown
that the complexity of the construction is bounded by O(nlogn) under a mild uniform
sampling condition which often holds in the case of surface reconstructions. Figure 3.8
shows a real-world example of a triangulated sparse point cloud.

For the generation of a valid DT, numerous methods exist like divide-and-conquer
approaches; local improvement or incremental insertion methods [65]. For our desired
purposes, the incremental insertion approach is the most suitable one. The basic concept
of the incremental DT algorithms is to start with the minimum set of points that define
the simplex and to add points in an iterative manner. Each time a new point is added, the
simplex that contains the new point is partitioned. Then the circum-hypersphere criterion
is tested for all simplexes adjacent to the new ones. If the criterion does not hold, a
local transformation is performed which is the flip of a face between adjacent tetrahedra.
Local transformations are performed recursively until the empty-sphere criterion is again
true for all simplexes in the triangulation. More details on the incremental DT and local
transformations can be found in [44]. In the worst case, all existing tetrahedra are destroyed
and replaced by completely new set of volume elements. In practice, the tetrahedra that
are destroyed are bounded locally such that only a limited number of new tetrahedra are

created.

3.7.2 Surface Reconstruction from Dense Data

State-of-the-art methods for surface extraction from dense depth data can be classified into

two groups:

e Implicit surface representation in a discretized volumetric space.
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Figure 3.9: Voxel in front and behind the estimated depth of a viewing ray. Pixel in front
get positive and voxel behind get negative values. The surface is then the zero crossing.
(Illustration courtesy of [26]).

e Robust meshing of a densified point cloud.

The above mentioned methods have in common that they assume a “sufficiently dense”
and equally distributed 3D sampling of the underlying surface.

A very popular method for solving the surface estimation problem given dense
depthmaps is based on the embedding of an implicit function into a regularly discretized
volume [72, 80, 104]. The surface itself is then found by extracting an appropriate
iso-surface of this function. In particular, many successful methods are based on a
truncated signed distance function [107]. Given a 2.5-dimensional depthmap and the
corresponding camera pose, a truncated signed distance field along the viewing ray is
accumulated in the voxel space. Since the density of the depth information is typically
higher than the resolution of the discretized space, the surface can be robustly obtained
by finding the iso-surface within the volume. The enormous amount of redundancy
in the depthmap also causes that the method is very robust against noisy depth
information. Inherently, this approach can work in an incremental manner and thanks
to powerful GPU hardware, it can be applied by real-time applications |26, 72]. The
disadvantage is that for efficient calculation the whole volume has to be stored on
the GPU or sophisticated methods for memory handling between CPU and GPU are
required [80, 104|. Furthermore, since the computational effort is high, it is not well

suited for applications like robotics or AR where computational power is often limited.
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The second class of methods explicitly densifies the sparse point cloud directly in
3D space by triangulating additional 3D points and then interpolate a surface into these
points. For the densification process a large number of approaches exists |7, 10, 22|. They
differ in their computational effort and in their quality of the resulting point cloud. The
PMVS approach of |22] for example requires several hours to generate a point cloud from
a medium-sized dataset. However, the result is very accurate and is nearly free of outlier
as shown in Figure 3.10(a). In contrast, planesweep methods like [7] can be efficiently
implemented on the GPU but are also prone to outlier. The presence of outlier as well
as the spatial distribution of the points is crucial for the subsequent surface extraction

algorithm.

For regularly sampled point clouds that contain only a few outlier like that obtained
from [22], the Poisson surface reconstruction [46] is well suited. This algorithm extracts
the surface from a point cloud by computing an indicator function and then extracts an
appropriate iso-surface. Since this method only rely on the scene points and their normals,
this approach is not limited to the reconstruction of point clouds obtained by image-
based methods but can be used for any kind of point clouds. However, since the indicator
function is represented by an octree the memory consumption can be very high, if a detailed
reconstruction is required. Furthermore, if the surface is not sampled homogeneously, the

algorithm tends to produce bubble-like artifacts as shown in Figure 3.10(b).

Figure 3.10: (a) PMVS point cloud [22] and (b) the corresponding surface extracted with
the Poisson surface reconstruction method [46]. The Poisson reconstruction tends to create
bubble-like structures if 3D points are missing on the surface.
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The Poisson surface as well as the implicit surface extraction from a truncated signed
distance function rely on a discretization into a regular voxel grid (the octree that is used
by the Poisson reconstruction can be seen as a voxel discretization with varying resolution).
In contrast the approach of Labatut et al. [56] relies on a discretization into tetrahedra
by performing a DT on the triangulated points. Given the discretized volume, Labatut et
al. formulate the surface extraction as a binary labeling problem into free- and occupied
tetrahedra. The final surface is then the interface between differently labeled neighbors.
To find the optimal labeling, they formulate the labeling problem as a conditional random
field:

E(S) = Evis(S) + aphotoEphoto(S) + areaLiarea(S), (3.32)

where § is the actual binary label configuration for all tetrahedra. The visibility term F,;
is related to the number of violated visibility constraints. Visibility constraints are given
by the information which 3D point projects into which camera. Epp.4, defines a photo
consistency measure and Ey.e, favors compact surfaces. appoto and agreq are factors to
weight between the different terms. Since the overall energy is a binary submodular func-
tion, the globally optimal labeling can be efficiently found for example by graph cuts [53].
The authors showed that this approach works for quasi-dense point clouds that contain a

significant amount of outlier.

The approach has several useful properties. Based on the adaptive and irregular dis-
cretization, this method is suited to extract surfaces from largely varying point densities
as shown in Figure 3.11(b). On the left side of the tower, the point density is very high
whereas on the right side only a few 3D points are triangulated on parts that are well
textured. In contrast to the Poisson reconstruction that creates bubble-like artifacts, miss-
ing parts are linearly interpolated. For man-made scenes like buildings this is often more
appropriate than the Poisson interpolation. Since the DT can be easily updated if new
3D points are available, it is suited to perform the discretization in an incremental man-
ner. Furthermore, the memory consumption does not depend on the volume covered by

the point cloud but only on the number of 3D points.



56 Chapter 3. Image-based 3D Scene Reconstruction

(a) (b)

Figure 3.11: Example of graph cut based surface extraction proposed by [56]. The closeup
in (b) shows that different densities are handled inherently. Missing data is approximated
by planes which is appropriate especially in man-made environment.

3.7.3 Surface Reconstruction from Sparse Data

Surface extraction from sparse point clouds that are the result of a standard SfM pipeline
has not gained much interest in the past. One reason is that due to the sparseness of the
3D points, the extracted surface has limited resolution and therefore it is thought that the
additional knowledge is not very useful for many applications. But we will show later that
many applications can benefit from even such a low-resolution surface.

From an algorithmic point of view, the sparseness is also challenging. In case of dense
data, robustness is achieved due to the enormous redundancy which is not available in the
sparse point cloud. In this section, we give an overview over the related work and explain
important methods for surface reconstruction from sparse data in more detail.

Basically all existing methods follow a two-step approach: first, the space is irregularly
discretized into tetrahedra using the DT and second, all tetrahedra are classified into free-
or occupied space. The interface is then the resulting surface. The existing methods differ
from each other in their way to classify free- and occupied space. However, all methods use
the visibility information associated with each triangulated 3D point for the classification.

In this context, the visibility constraint is defined as the set £ of line segment /;; that

connects 3D points X; with camera centers C; they are visible in. Since it is known which
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triangulated scene point is originated by which image features, the visibility constraint
L can be directly obtained from the sparse reconstruction. Figure 3.12(b) illustrates the
visibility constraints in a toy example.

The simplest method for the classification is to use the visibility constraints of a scene
point directly. Given a line segment /;; € £, all volume elements intersected by [;; have to
be free-space and all remaining tetrahedra are occupied space. This simple algorithm is
also known as free-space carving [61]. The resulting surface is then constructed from the
triangles that are at the interface between free- and occupied tetrahedra. The disadvantage
is that this is not robust against outlier 3D points. Only a single outlier point that is
located inside of an object causes a hole in the object’s surface. Furthermore, the extracted
surface is not a watertight manifold which is important for many applications like physical
simulations.

Therefore, this basic approach has been improved over time. Pan et al. [77] focused
on being robust against noisy point estimates that are close to the real surface. Instead
of classifying a tetrahedron as free space if it is intersected by a single visibility constraint
l;j, they define for each triangle of the DT a probability score for being an element of the

surface. The probability depends on the number of intersections as well as on the distance
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Figure 3.12: Principle of free-space carving. (a) Given the Delaunay triangulation of 6
points, we can extract the surface using visibility constraints. For each simplex of the DT
it is tested if it violates a visibility constraint. The visibility constraints are given by the
line segments that connect a 3D point with the camera centers it is triangulated of (green
lines). If a simplex violates this constraint (gray triangle), it is classified as free-space
otherwise it is occupied space (white triangles). Finally, the surface is defined as the set
of faces between free- and occupied simplexes (blue lines).
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Figure 3.13: Probabilistic free-space carving of Pan et al. [77]. (a) Instead of removing a
triangle if it is intersected by a visibility constraint, they also take the distance between
the intersection point and the scene point into account. If the intersection is close to the
scene point, the probability is high that the triangle belongs to the surface otherwise the
probability is low. The function is modeled such that it compensates Gaussian noise of
scene points. (Figure courtesy of [77])

between the intersected triangle and X;. If the intersected triangle is close to X;, the
probability is high that the triangle is on the surface. Obviously, the larger the distance
between an intersected triangle and the scene point X; is, the lower is the probability that
the triangle is on the surface. This probability is modeled by a Gaussian function to handle
scene points that are perturbed by Gaussian noise. However, this method is not able to
handle severe outlier that are located far from the real surface.

The aforementioned approaches for surface extraction are designed to work in a batch-
based manner, i.e. it is assumed that all input data are given at the programs start. How-
ever, when thinking of applications like Simultaneous Localization and Mapping (SLAM)
where new 3D points are created constantly, these methods are not suited to integrate
the new obtained scene information. Hence, for applications where new scene information
comes available, surface extraction algorithms have to be designed such that they integrate
the new data in an incremental manner.

Lovi et al. [61] adopted the free-space carving approach to work in an incremental
manner in a SLAM framework. In the context of tetrahedral space carving two steps have
to be adopted for an incremental method: the DT and the classification. As mentioned
in Section 3.7.1, there exist DT methods that inherently work in an incremental manner.
Every time a new 3D point is integrated into the DT, new tetrahedra are created which
subsequently have to be classified. In case of the free-space carving this is the crucial point,

because all new created tetrahedra have to be tested if they violate any visibility constraint
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(a) (b) (©)

Figure 3.14: Incremental free-space carving of Lovi et al. [61]. (a) Initial state of the
triangulation. (b) Integration of a new point (red cross) invalidates the DT and the yellow
marked triangles are destroyed. (¢) The new created tetrahedra are again tested against
the visibility constraints (red dashed lines). Visualization of [61].

l;j € L. Hence, in a naive implementation this algorithm grows at least linear in the number
of visibility constraints and is computationally demanding if |£| is large. To overcome this
problem, Lovi et al. propose to store in each tetrahedron the visibility constraints that
intersect this volume element. If this volume element is destroyed due to the insertion
of a new scene point, the new created tetrahedra only have to be tested against line
segments that passed the destroyed tetrahedron. A visualization of the procedure is shown
in Figure 3.14. This approach reduces the number of intersection checks but increases the
memory consumption drastically. Furthermore, the computational complexity for inserting
a new point may vary drastically. Due to the adaptive triangulation, sometimes very large
volume elements are generated that are passed by a very large number or even all line
segments. If this tetrahedron is destroyed, new created tetrahedra have to be tested against
all line segments. To bypass this problem, Lovi et al. propose a heuristic to store only a
selected number of visibility constraints per tetrahedron. However, the basic problem that

free-space carving is not robust against outlier still exists.

Yu et al. [106] propose a different approach for incremental surface reconstruction.
Instead of carving tetrahedra that are classified as free-space, they aggregate them. The
classification into free- and occupied space is performed by checking if a tetrahedron violates
the visibility constraint. The border of the set of free-space tetrahedra is then the surface.
Since this results in an arbitrary surface shape which is often not a 2-manifold, they
implement methods to guarantee that the extracted surface maintains this property. Their

method is incremental in that way that they are able to add new 3D points in scene parts
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where no surface has been extracted before. Hence, this algorithm is not able to refine
existing parts of the mesh which restricts the method to strictly forward camera motion.
Litvinov et al. [59] extended this approach to also allow the refinement of existing surface
parts. The method itself is computational as well as from an implementation point-of-view

quite complex and it is not clear how robust this approach against outlier is.

3.8 Conclusion

In this chapter, we provided the background of image-based scene reconstruction. We first
described the geometric relations of single-view, two-view and multi-view reconstructions
and gave an exemplary description of a state-of-the-art Structure-from-Motion reconstruc-
tion pipeline. In the second part, we reviewed the related work in the field of surface
extraction from SfM results. We described the advantages and disadvantages of differ-
ent volume discretization methods and presented state-of-the-art algorithms for surface
extraction from sparse as well as from dense visual information.

To sum up, the research on automatic orientation of a large number of unordered
images has reached maturity and therefore, several methods like image-based localization
and surface reconstruction methods that are based on SfM results have been developed.

Nevertheless, the number of applications that are realized by SfM is rather low.



Chapter 4

Real-time and Interactive

Structure-from-Motion

The properties of an image dataset to obtain an accurate, fully connected and complete
reconstruction are versatile. The main influencing parameters are the degree of redundancy,
the spatial distribution of view points over the area of interest, the relative orientation
between view points and the texture of the scene. The acquisition of an input dataset that
fulfills all parameters such that the expected reconstruction quality is obtained, is quite
difficult for several reasons. The first issue is that the photographer has to be aware of
these parameters. A non-expert user in 3D reconstruction is often not able to acquire a
suitable image set because he has no knowledge about the important parameters. Even if
the user gets an intensive briefing, we observed that the resulting image sets are not well-
suited for the reconstruction because (a) the user underestimates the required redundancy
and (b) the importance of the relative orientation between the images to allow automatic
feature matching. However, even if the user is an expert in SfM, it is not guaranteed
that he acquires a well-suited image set because even for an expert it is difficult to ensure
redundancy and completeness in large-scale and geometrically complex scenes. Beside the
well-known theoretical requirements like overlap and triangulation angles, many practical
problems arise from implementation details of the SfM pipeline used e.g. the applied
feature descriptor, the way how images are integrated into the reconstruction and so on.
Because the number of factors that influence the reconstruction result is so large, it is very

difficult to define abstract rules for a photographer how to acquire a suited image dataset.
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Our idea to tackle this problem is to integrate the acquisition process directly into the
SfM pipeline. Instead of first acquiring a set of images and then processing the whole
dataset in batch-based manner, we propose a closed-loop interactive SfM processing that
performs an incremental reconstruction in real-time. Our closed-loop approach first deter-
mines the camera pose of a new acquired image, updates the sparse point cloud and then
extracts a surface mesh from the triangulated image features. This allows us to compute
quality parameters like the Ground Sampling Distance (GSD) and the image overlap which
are then visualized directly on the surface mesh.

The advantages of the interactive SfM are versatile. First, the user instantly gets
feedback if an image can be integrated into the reconstruction. This decreases the risk
that in a final batch-processing the reconstruction fragemnts into different parts. Second,
the representation of the reconstruction as a surface mesh eases the interpretation of the
StfM result also for non-expert users. And finally, the visualization of quality parameters
supports users to ensure that all relevant parts of the environment have been captured
with enough overlap and with the desired resolution.

In order to realize the closed-loop schema as it is visualized in Figure 4.1(b), all com-
ponents have to work (a) in a fully incremental manner and (b) in real-time. Therefore,
we developed a novel incremental sparse reconstruction method and a fully incremental
surface meshing method which are then integrated into a full real-time system. In the next

section, we outline our methods in detail.

4.1 Method Overview

As shown in Figure 4.1(a), a standard SfM pipeline typically consists of four steps: image
acquisition, multi-view sparse reconstruction, densification and finally a surface meshing.
In order to give an instant feedback about the contribution of a new image, we propose a
modified processing pipeline as shown in Figure 4.1(b). Given a freshly acquired image, we
first perform SfM incrementally, i. e. we calculate the pose of the new image and expand the
sparse scene reconstruction. However, assessing the reconstruction’s quality by using the
sparse reconstruction only, can be difficult even for an experienced user. A representation
that is easier to understand is a surface mesh. Since most existing methods for a surface

extraction rely on a dense 3D point cloud the is computationally expensive, our goal is
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to skip the densification and perform a meshing directly on the sparse points. Therefore,
we propose a new surface extraction method that is able to cope with sparse and inho-
mogeneous point data in a fully incremental manner. Finally, we visualize parameters of
the image dataset like redundancy and resolution on the extracted surface. The accuracy
of the resulting sparse orientation is sufficient that a standard densification method like

PMVS |22]| can be performed afterwards. In particular, our contributions are:
1. Real-time SfM with efficient image-based localization.
2. Incremental surface reconstruction using sparse point clouds.
3. Visualization of quality parameters of the current reconstruction.
4. Integration of all methods into a common application.

The remainder of this chapter is structured as follows. In Section 4.2, we propose

our incremental SfM framework and present our novel efficient image-based localization

Image _| Multi-View _ . . _ Surface
o = ) »| Densification = )
Acquisition Reconstruction Reconstruction

(a) Standard reconstruction process

- 1r 1

Image Multi-View . Surface
T > . Dens)qcation .
Acquisition Reconstruction Reconstruction

Quality
Visualization

(b) Our modified SfM pipeline for optimized image acquisition

Figure 4.1: Classical and interactive reconstruction pipelines. (a) The classical processing is
a pure feedforward method. Image acquisition is decoupled from the subsequent processing.
(b) In our proposed interactive reconstruction method, we combine an on-line multi-view
approach with a surface reconstruction from sparse point clouds and provide feedback to
the user by calculating important scene parameters. The whole processing requires only a
second to integrate a new image into the reconstruction.
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method. Section 4.3 describes the incremental surface extraction algorithm. In Section 4.4,
we demonstrate how the surface mesh can be used to visualize quality information like
Ground Sampling Distance and image overlap. Since the integration of all parts into a
real-time system is not straight forward, implementation details are outlined in Section 4.5.
Finally, the evaluation of all individual contributions and the overall method is given in

Section 4.6.

4.2 Real-time SfM with Efficient Image-based Localization

Many batch-based SfM approaches assume spatially unordered images as input and there-
fore require up to hours to determine the spatial ordering by constructing an epipolar
graph [89]. In order to integrate a new image in real-time, we have to solve the SfM
problem in an incremental fashion. This is closely related to SLAM systems [47] but in
contrast, we do not work on a continuous video stream but on high resolution still images.

Since the construction of the epipolar graph comprises the calculation of relative ori-
entations between all image pairs, this is the most time-consuming task in batch SfM
pipelines. In our addressed problem, we can assume that a user does not acquire images
in a totally random order. If we assume that a new input image I has an overlap to an
already reconstructed scene part, we can skip the epipolar graph construction and the SfM
problem can be split into two tasks that are easier to solve: a localization and a structure
expansion part. More formally, given a freshly acquired input image I and a reconstructed
scene M, we determine the position of I within M and finally, we expand the map M. For
bootstrapping the scene M, we rely on initialization schemes that are also used in batch-
based SfM methods. In the following sections, we describe the bootstrapping as well as the
expansion of the reconstruction if the pose of the image I is known. Finally, we present our
new image-based localization approach to determine the pose of I in a computationally

efficient manner.

4.2.1 Structure Initialization and Expansion

For bootstrapping the initial map M, we require two images taken from different viewpoints
and perform brute-force feature matching. The Five-Point pose estimation algorithm of

Nister [74] in a RANSAC |20] loop is used to find the relative orientation between both
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cameras. Using the inlier correspondences returned by the RANSAC, we triangulate the
initial set of 3D points. Since the initialization is crucial for the whole subsequent process,
we have to ensure that the initial model is consistent. Therefore, we require that the
triangulation angle of the triangulated features exceed a minimum threshold and that the
initial map consists of a minimum number of features. If this cannot be achieved, the user
is asked to take new images until an image pair is found that fulfills the requirements.

For the expansion of the structure, we assume that the pose of a new I image with
respect to the map M is calculated by an image-based localization approach as described
in the subsequent Section 4.2.2. Since image correspondences between [ and other re-
constructed images are already determined within the localization step and the pose of I
is known, we can eagily triangulate image features to create new 3D points. To discard
erroneous correspondences before triangulation, we perform an epipolar consistency check,
i.e. we calculate the distance of a corresponding feature pair x <+ 2’ to their epipolar line
in the corresponding image.

If the image cannot be localized instantly, the user can manually trigger the localization
of this image at a later point in time. Alternatively, this can be performed by a background
process.

To prevent scene drift caused by incremental map building, we use a global optimization
scheme to obtain a consistent map. Hence, we perform iterative bundle adjustment [93] in

a parallel thread.

4.2.2 Efficient Image-based Localization

The problem of determining the pose of I within M is an image-based localization prob-
lem. Because our aim is to provide feedback to the user if the image can be integrated as
fast as possible, the computational complexity is an issue. Most research on image-based
localization focuses on the localization of an image within a reconstruction containing tens
of thousands of images [42, 57, 83, 85]. The goal of these approaches is to be scalable
to ultra-large databases while being computational efficient. Our application has different
requirements. We typically deal with a much lower number of images but computational
complexity and response times are a major issue. The same requirements are also impor-
tant in AR applications where video streams are localized [4] or in autonomous robotics

applications [58, 102]. Therefore, we propose a new image-based localization method that
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is much faster than existing methods.

The reduction in complexity is motivated by the insight of state-of-the-art methods
like [42] and [83] that showed that only a few correct 2D-3D correspondences are sufficient
to recover a valid pose. Based on this observation, the question arises if matching has to be
performed for all n features of the query image or if it is possible to a-priori find a subset
of features that lead to a valid pose with high probability. We will show that considering
only a subset of query features according to their keypoint scale information can reduce the
computational costs significantly. Starting with features connected to keypoints at a large
scale, we iteratively consider a larger number of query features by adding more and more
features extracted on increasingly finer details. Consequently, this leads to a localization
approach based on a hierarchical principle. Since testing all scales takes twice as much
time than using only the largest scale, our localization method has to recover the valid
pose on coarse scale features with high probability.

We performed an initial experiment (see Section 4.6.1) to investigate which of the
the two state-of-the-art approaches (brute-force or image-retrieval) is able to handle low-
resolution images more reliable. Based on the result that the image-retrieval method is
better suited in such a low-resolution scenario, we propose three contributions to increase
the localization quality. First, we improve the image-retrieval ranking in case that the
resolution of query and database images is very different. Second, we reduce the 2D-3D
matching effort by an order of magnitude when localizing low-resolution images by taking
the keypoint size into account. Finally, we propose a RANSAC pre-verification test that

discards wrong hypotheses in an early stage.

4.2.2.1 Improved Image-Ranking

Basically, the ranking process of image retrieval (IR) depends on a (robust) comparison
between bag-of-words histograms of database and query images [76]. To get reasonable
results, scoring methods like term frequency inverse document frequency (TF-IDF) im-
plicitly require that the number of features between a database image D; and @ is in the
same range. When considering situations where D; and @ have very different resolutions
and therefore the number of features varies drastically, the histogram shapes are also much
different which has a large impact on the ranking quality as we show in the experiments.

To increase the ranking quality, Irschara et al. [42| proposed a scoring method called
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probabilistic scoring that models the voting process as a binomial stochastic process. They,
as well as [84], have shown that for a localization scenario, probabilistic scoring achieves
better results than TF-IDF scoring. Therefore, we shortly describe the idea of probabilistic

scoring to outline the emerging problem when comparing images of different resolutions.

Let fiQ be a feature of the query image @ and iji a feature of a database image D;.
The probability p; that fZQ and iji are equal and fall into the same leaf node is assumed
to be relatively high and to have a constant value. In contrast, the probability that fZ-Q
and ff)i are not the same landmark but fall in the same leaf depends on the number of

leaf nodes that are occupied by D;. This can be calculated by

#D;

p(D;) = Zeaves’ (4.1)

where #D; is the number of leaf nodes where features of D; are located in and #leaves is
the number of overall leaves in the vocabulary tree. With these probabilities, we can cal-
culate the chance of getting k votes for a document D; if QQ = D; as a binomial probability

function

k~B(|Ql.p1) if Q= D;, (4.2)

where |@| is the number of features in the query image. The probability for getting k votes
if @ # D; is modeled as

k~B(|Ql,p(Dy)) if Q# D;. (4.3)

To obtain a score for each document given the raw votes, the score is derived from the

posterior probability by Bayes’ rule:

P(#votes = k|Q = D)
P(#votes = k|Q # D;)

In practice, the log-value of the posterior probability is used as the scoring value.

We found that the ranking quality degrades if the number of query features is small.
This is caused by the assumption of Equation 4.3 that features vote for unrelated docu-
ments uniformly. The larger the number of query features, the more likely it is that this
assumption holds. In contrast, when the number of query features is small this assump-
tion is often violated. We also recognized that an unbalanced number of features between

query and database intensifies this problem. To reduce the imbalance, one could either
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down-sample the database images to the size of the query image or adapt the sensitivity
of the keypoint detector such that query and database images are represented by the same
number of features. However, this requires that the resolution of the query image has to be
known in advance and in a multi-scale approach, multiple vocabulary trees for each scale

are required, which increases memory consumption.

A general solution to get better rankings is to reduce the number of votes for false
documents, for example by an additional feature matching step to all features within
the leaf node, as proposed by Sattler et al. [84]. However, we follow the idea of Jegou
et al. [43] to consider the keypoint scale information for reducing the number of false
votes. The scale reports the size of a landmark in image space. A high-resolution image
typically contains a large number of fine-detailed structures that are not visible in its low-
resolution counterpart. For the voting process, these fine details are problematic, because
they increase the number of votes for a particular document although such a fine detailed
feature could not have been extracted on the low-resolution image. Hence, our idea is to
vote only for documents whose features also could have been extracted in the corresponding
low-resolution query image. For that purpose we make use of the scale information provided

by the keypoint detector.

A keypoint detector like the Difference of Gaussian (DoG) as used in SIFT reports
the layer of the scale-space pyramid where the maximum response is detected. The layer
depends on the size of the landmark and the focal length of the camera. To make feature
scales between images acquired by different cameras and at different resolutions compara-

ble, we derive following normalization.

Given the 2D scale s reported by the keypoint detector and the focal length of the

camera c; we can reconstruct the feature size L of the landmark by

I_ dsi(f) ’ (4.5)

C1

where d is the distance between the image plane and the landmark L. If this landmark
is pictured by a second camera with focal length co having the same distance d to the

landmark as c¢p, the feature size so can be computed by

N L62

slf) =5 (46
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Hence

- (4.7)

holds for cameras with different focal lengths ¢; and co. Therefore, we propose to normalize

the feature scale s(f) of a feature f by

(f) = ) ; (4.8)

C

vl

where s(f) is the scale of the feature reported by the keypoint detector and ¢ the focal
length of the camera. In many cases, the focal length can be read out from the EXIF data
stored along with the image or in case of robotics or augmented reality applications often
calibrated cameras are used. Figure 4.2 illustrates the relation between pictured scale and

focal length.

>
~\S1 S
2
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C

Figure 4.2: Feature scale normalization. Two different cameras with focal length ¢; and
co having the same distance d to the landmark L. The pictured scales s; and sg if L are
related to each other according to Equation 4.7

Under the assumption that @) and D; are taken at the same position, corresponding
features have the same normalized scale. With this condition, we could reduce the number
of false votes during scoring by excluding all database features whose scale differs from the
query feature. But this assumption is too strong, because in many scenarios the position
of Q and D; is not identical. Therefore, we weaken this assumption and assume that the
position of @ is located between the scene structure and a certain distance behind D;.
This leads to the fact that the scale of all corresponding features of Q and D; are larger
or equal in ). Consequently, we can ignore all features of D; that are smaller than the
smallest feature of ). Therefore, we can exclude the fine details of D; that could not have

been extracted in @) which removes a large number of spurious features if the resolution of
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@ is much higher than D,.
More formally, we define the smallest features ming = ming(f)(Q) of @ and minp, =

ming ) (D;) of D; and take the maximum of both by
m(Q, D;) = a * max(ming, minp,) , (4.9)

where a < 1 is a weighting parameter. This parameter indirectly defines the maximum
distance that @ is allowed to be located behind D; with respect to the scene structure. We
fixed @ = 0.5 for all datasets used in the experimental evaluation. To ignore all features
that are smaller than m(Q, D;) in the scoring process, the sets @ and D; of Equations 4.1-
4.4 are replaced by new sets () and D; that contain all features larger m(Q, D;) defined

as

Q= UfZ.Q where E(fZQ) > m(Q,D;) and (4.10)
D; = LJfJDZ where E(f]DL) >m(Q, D). (4.11)
J

If o is set to zero, Q and D; are identical to Q and D; and the voting turns into the original
probabilistic scoring.

For implementing this scoring approach, we do not have to build @ and D; explicitly.
Equation 4.2 and 4.3 require only |@Q| which is achieved by simply counting all features that
are larger than m(Q, D;). This can be efficiently computed using sorted lists. Equation 4.1
counts the occupied leaf nodes which depends on m(Q, D;). This can be pre-computed for
different discretized steps of m(Q, D;). For scoring, we use only features of D; whose scale
is larger than m(Q, D;). This requires that for each database feature its scale E(f]D‘) is
stored within the leaf node. The additional memory overhead is small, since § is a single
floating number. The computational overhead for the scoring is negligible since we only
have to compare if a feature scale E(f]DZ) in a certain leaf node is larger than m(Q, D;). This
can also be optimized by storing the features in each leaf node in a sorted list. Figure 4.3
illustrates the scoring process.

We also experimented with other criteria for voting for a document for example by
applying a tophat function to the ratio between s(fl-Q) and s(f]D’) We found that the
results were similar to the proposed method but are more restrictive since this limits the

query to lie in a circle around the database image.
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m(Q, Di) =0.20vi

5(f9)=0.23

Doc ID s(f)

12 0.03

12 0.10

16 0.12

3 0.32

23 0.34

- 25 0.55

Figure 4.3: Hlustration of scale dependent feature selection. Given a query feature with
normalized scale 5(f) that falls into the third leaf node votes for documents 3, 23 and 25.
12 and 16 are ignored since their scale is smaller than m(Q, D;) = 0.20V%i.

Our scoring formulation is not restricted to tasks where the query is smaller than the
database image. Furthermore, the relevant features for the scoring are determined for
each image pair (@, D;) individually and can be efficiently computed during the query.
Therefore, our ranking supports databases of inhomogeneous resolutions and requires no
additional information when creating the vocabulary tree.

Finally, after obtaining the shortlist S of visually similar images by applying the de-
scribed image retrieval approach, we aim at establishing 2D-3D correspondences by feature

matching as it is described in the next section.

4.2.2.2 Reduced 2D-3D Correspondence Matching

For finding the absolute pose of ), we match its features against S; where S; is a single
image of S. Since we want to establish 2D-3D correspondences, we are only interested
in features of S; that are connected to a 3D point. A match is established if the SIFT
distance ratio test passes 0.7. This measure enforces that only features are matched that
are discriminative within the feature set of S;. Typically, the more features contained in
Si, the lower is the number of matches. If S; is a high-resolution image, it also contains
fine-detailed features that could not have been extracted in @ due to scale difference. With
the same argument as in the image-retrieval step, we can remove the fine-detailed features.

This has two positive effects: First, the number of features for matching between (Q, S;) is
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lower and therefore it is faster. Second, the chance of missing correct matches is lower due
to the smaller number of features. We take only features into account whose normalized
scale 5(f) is larger than m(Q, S;). We demonstrate in the experiment that this reduces
the matching effort significantly while increasing the number of localized low-resolution

frames.

4.2.2.3 RANSAC Pre-Verification Test

To estimate the pose given the 2D-3D correspondences typically the absolute pose problem
is solved within a robust hypothesize-and-verify algorithm like RANSAC. All these methods
have in common that they randomly sample the minimum number of correspondences
that is required to estimate the 6 degrees-of-freedom pose and then verify this pose using
all other correspondences. To reduce the effort for hypothesis verification, we propose,
related to the idea of [12], a pre-verification step which again is based on feature scale
information. Note that our pre-verification step can be integrated into any hypothesize-

and-verify algorithm.

Since each 3D point P of the point cloud is connected to at least two features f and
the distance between the camera of f and P is known, we can reconstruct the size L of
the landmark according to Equation 4.5. By establishing a match of query feature f,
with a point P, we estimate the distance d, of the query camera to P using the feature
scale s(fy). Next, we select three correspondences according to the sampling schema of
the applied RANSAC variant and calculate a hypothesis H. If H is a valid hypothesis,
we expect that our estimated distance d. and the distance of H to P, denoted dy, are
similar. Empirically we found that the expected distance d. and the distance H to P
typically differs by less than 50% if H is a valid hypothesis. Hence, if at least one of
the three correspondences that were used to generate H differ by more than 50%, we
reject this hypothesis without verifying all correspondences. The difference between d,
and dp is mainly caused by the inaccuracy of the keypoint detector. In the experiments
in Section 4.6.1, we show that this simple pre-verification procedure reduces the number

of required hypothesis verification steps by more than 80%.
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(b) (c) (d)

Figure 4.4: (a) Feedback for the user if the acquired images can be registered within
the map M. Red indicates that the image was not registered. A green border marks a
successful localization. The algorithm is not able to register the red marked image although
it is visually similar to its neighboring images. This shows who difficult it is for a user
to predict if an image is usable for the reconstruction. (b)-(d) Sparse reconstruction at
different points in time obtained by on-line SfM.

4.2.3 Discussion of Real-time SfM

The incremental real-time SfM makes the image acquisition for batch-based SfM more
reliable in two ways. First, the user gets a feedback within a second if the new acquired
image can be registered within the previously reconstructed map M. Hence, the user
instantly discovers if the new image fulfills fundamental parameters like overlap and relative
camera position that allows feature matching. For an unexperienced user the notification
if the image could have been localized or not is very helpful to intuitively learn about the
spatial relation between successfully localized images.

Furthermore, the real-time SfM can be almost completely realized with methods from
standard batch-based methods. Hence, important parts like feature extraction and match-
ing and relative pose estimation whose results often depend on the actual implementation
can be shared. This is not only an advantage in the implementation but this also guarantees

that the batch-based reconstruction will also be successful.
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The second advantage of the real-time SfM is that the sparse reconstruction can be vi-
sualized directly to the user. Therefore, an experienced user can evaluate the completeness
of the reconstruction on site and missing parts can be identified. Hence, these parts can
be easily captured by additional images. Figure 4.4 illustrates the feedback information
that is given to the user.

In the next section, we present our novel surface extraction method that operates on

the sparse point clouds directly in a fully incremental manner.

4.3 Incremental Surface Reconstruction from Sparse Points

() (d)

Figure 4.5: Workflow of the surface reconstruction method. (a) Starting with a sparse
point cloud, a 3D Delaunay triangulation is performed which is shown in (b). The labeling
of the tetrahedra results in a classification of free- or occupied space. Figure (c) shows a
slice through the labeled tetrahedra where green is occupied space and blue is free space.
The final surface (d) is than extracted as the set of triangles that are at the interface of
free- and occupied tetrahedra.



4.3. Incremental Surface Reconstruction from Sparse Points 75

The extraction of a surface from a sparse point cloud is not only important for an
intuitive visualization of the current reconstruction quality but it is also beneficial for

other application areas like occlusion handling in AR or navigation tasks in robotics.

Extracting surfaces from the 3D point cloud that is obtained from image-based recon-
struction is a complex problem because the density of the points is highly irregular and
perturbed by outliers. Existing solutions often either assume a densely, regularly sampled
surface [46] or make use of additional knowledge like visibility information [56]. The infor-
mation content of meshes that are extracted by the latter mentioned approaches is higher

than using 3D points only, because the visibility information is also exploited.

The problem gets even harder if the surface has to be extracted from a continuously
growing point cloud as generated by our real-time SfM. The same problem also occurs in
Simultaneous Localization and Mapping (SLAM) methods [15, 18], where additional scene
information is continuously provided. Such methods have to handle an increasing amount
of data in real-time, which means that several hundred points have to be integrated into the
surface per second. The state-of-the-art methods for incremental surface reconstruction
such as |26, 72| make heavy use of powerful GPGPU units which are often not available in
application areas like robotics or AR. Furthermore, these approaches represent the scene
in an equally discretized voxel space and consequently, they are restricted to a limited

scene size.

Therefore, we propose a new method to incrementally extract a surface from a con-
tinuously growing SfM point cloud in real-time. Our method is based on the Delaunay
Triangulation of the 3D points. The core idea is to robustly label the tetrahedra into
free- and occupied space using a random field formulation and to extract the surface as
the interface between differently labeled tetrahedra. Therefore, we propose a new energy
function that achieves the same accuracy as state-of-the-art methods but reduces the com-
putational effort significantly. Furthermore, our new formulation allows us to extract the
surface in an incremental manner, i. e. whenever the point cloud is updated, we adapt our
energy function. Instead of minimizing the updated energy with a standard graph cut, we
employ the dynamic graph cut of Kohli et al. [52] which allows an efficient minimization
of a series of similar random fields by re-using the previous solution. The combination of
the dynamic graph cut with our new formulation allows us to extract the surface from a

continuously growing point cloud nearly independent of the overall scene size.
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4.3.1 Energy Function for Surface Extraction

Our method for extracting a surface from a sparse SfM point cloud is motivated by the
truncated signed distance function (TSDF), which is known from voxel-based surface re-
constructions like [26, 107]. The TSDF models for all voxels along the ray connecting the
camera and a 3D point X their probability of being free space or occupied. Typically, this
information is aggregated for a large number of 3D points obtained by several dense depth
maps, where the resulting surface is then extracted as the zero crossing within the volume

exploiting inherent redundancy.

By contrast, when using sparse points as in our intended application field, redundancy
is limited and an extraction of the surface by finding the zero crossing is not possible.
Therefore, our main idea is that given the tetrahedralized point cloud, we formulate surface
extraction as a binary labeling problem, with the goal of assigning each tetrahedron either
a free- or occupied label. For this reason, we model the probabilities that a tetrahedron
is free- or occupied space analyzing the entire available visibility information R, which
consists of the set of rays that connect all 3D points to image features. Following the idea
of the TSDF, a tetrahedron in front of a point X has a high probability to be free space,
whereas the tetrahedron behind X is presumably occupied space. We further assume that
it is very unlikely that neighboring tetrahedra obtain different labels, except for tetrahedra
close to a point X. Such a labeling problem can be elegantly formulated as a pairwise

random field.

Formally, given a set of tetrahedra V' obtained by the Delaunay Triangulation (DT) of
the point cloud, we define a random field where the random variables are the tetrahedra of
V. Our goal is to identify the binary labels £ that give the maximum a posteriori (MAP)
solution for our random field, analyzing the provided visibility information R. The binary
labels specify if a certain tetrahedron V; € V is free- or occupied space. To identify the

optimal labels £, we define a standard pairwise energy function
E(L) = 2i(Bu(Vi, Ri) + Xjen; Eo(Vi, Vj, Ri)) (4.12)

where N is the set of the four neighboring tetrahedra of the tetrahedron V; and R; is a

subset of R, consisting of all rays connected to the vertices that span Vj.

For defining the unary costs E,(V;,R;), we follow the idea of the TSDF that the
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Figure 4.6: (a) For defining the unary term for a specific tetrahedron V; we only analyze
rays (dashed lines) connected to vertices that span V;. (b) For the pairwise term we only
consider rays that pass through the tetrahedron and that are connected to the vertices of
the tetrahedron. (c) Graph representation of the energy function. The pairwise weights
that are not shown are set to B;n:t.

probability that a certain tetrahedron V; is free space is high, if many rays of R; pass
through V;. Therefore, we set costs for labeling V; as occupied space to nfafpe., where ny
is the number of rays of R; that pass through V;. In contrast if V; is located in extension
of many rays of R; the probability is high that V; is occupied space. For this reason, the
costs for labeling V; as free space are set to n,apee, Where n, is the number of rays in front
of V;. Figure 4.6(a) illustrates the unary costs for a small example. Here, n; is 1 since
only the light green ray passes V; and n, is 3 because V; is in extension of the three green
rays. The red rays do not contribute to the unary costs.

For the pairwise terms we assume that it is very unlikely that neighboring tetrahedra
obtain different labels, except for pairs (Vj, V;) that have a ray through the triangle con-
necting both. Let Ry, be a ray of R; that passes V;. If Ry, intersects the triangle (V;,V}),
Ey(Vi, Vj, R;) is set to Buis. Triangles (V;, V;) that are not intersected by any ray of R;

are set to Binit. Figure 4.6(b) shows the pairwise costs in an example and Figure 4.6(c)
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visualizes the graphical model of the energy function for a small example.

Since Vi is passed by three rays, the costs for labeling Vi free is set to 3o free. In
contrast, V5 is in extension of three rays and therefore V5 is connected to the occupied
node with the weight 3a.. The edge weights between all neighboring tetrahedra are set
to Binit except the edges (V1,Vy) and (Vq, V3) which are set to SBys-

Having defined all terms for our random field formulation, we are then able to derive a
globally optimal labeling solution for our surface extraction problem using standard graph
cuts since our energy function is submodular.

At a first glance, our energy seems to be similar to the visibility part of the energy
defined by Labatut et al. [56]. The major difference is the definition of the pairwise costs
which has a large impact on the computational complexity when adapting the energy to a
new DT structure. Labatut et al. initialize the pairwise costs with a low value and increase
the costs if an arbitrary ray R, € R intersects V; as well as Vj, i.e. if R, intersects
the triangle between V; and V. Therefore, the pairwise costs are not restricted to local
visibility around V; but may depend on the global distribution of the rays. This might
drastically increase the computational complexity for updating the energy to a new DT
structure, although only a small part of the DT has changed as we demonstrate in the

experiments in Section 4.6.2.

4.3.2 Incremental Surface Extraction

To enable an efficient incremental surface reconstruction, our method has to consecutively
integrate new scene information (3D points as well as visibility information) in the energy
function and to repeatedly find the optimal labeling. In this section, we first show how
the energy terms are updated and second, how the modified optimization problem can be

efficiently solved in an incremental manner using the dynamic graph cut.

4.3.2.1 Energy Update

The energy function E (L) depends on the structure of the DT and the visibility information
R and therefore has to be updated if either the DT structure changes or new visibility
information becomes available. First, we describe the energy update from E, (L) at time
n to the new energy E,;1(L£) if new visibility information is available followed by the

description how the energy is adapted to a modified DT structure.
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Visibility update. The integration of new visibility, i. e. a new ray Ry is added, affects
only the tetrahedra next to the 3D point the ray is connected to. To update the unary
costs, we determine the tetrahedra V; and Vj, that are located in front and behind the 3D
point with respect to the ray direction respectively and add the terms a . and e to
our energy. Since the destination of Ry is a point of the DT, V; and V} can be efficiently
found as follows. We slightly shift the destination according to the ray direction and test
in which tetrahedron the shifted point is located. For the pairwise term, we additionally
determine the faces of V; that are not intersected by Ry and set their costs to [Bys.

Since the integration of new visibility does not affect the structure of the DT, the
number of terms in the energy stays constant and only a few terms are changed: two terms
of the unary costs and three terms of the pairwise costs which are the faces of V; that are
not intersected by Ry. Hence, in contrast to space carving algorithms the integration of
new visibility information is independent of the number of tetrahedra intersected by the
ray.

DT update. The energy function has to be adapted if the DT structure changes,
i.e. whenever a new 3D point is added, removed or shifted. Typically, the modification of
a single point (usually) only effects a local area A, i.e. some tetrahedra are deleted and
new tetrahedra are created. Technically, all tetrahedra within A are destroyed and the DT
is re-triangulated for the points in A (see Figure 4.7). Consequently, we remove all terms
from E, (L) that are related to deleted tetrahedra and add costs for new tetrahedra. The
costs for the new terms are updated as explained before for the visibility update.

The case that A comprises all tetrahedra and therefore the whole energy function has
to be recomputed, can theoretically occur but this case has never been observed in any of
our experiments.

The complexity for adapting the energy F,, (L) to a new DT structure depends on the
number of rays connected to 3D points located in A. Assuming N 3D points are located

in A and each is connected to M rays on average, the complexity is N x M.

4.3.2.2 Incremental Energy Optimization

In order to extract the surface after updating E, (L) to En4m (L), we have to solve the
minimization problem again. Static graph cuts like [11] are designed to solve a random

field only once. For this reason, if we want to directly use [11]|, we would have to re-build
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Figure 4.7: Insertion of a new point in the upper triangle changes the DT. Triangles within
the change boundary A (green lines) are destroyed and the blue triangles are created.

the graph for each energy E,(L£) and repeatedly solve the minimization problem from
scratch, where the runtime for finding an optimal solution grows in practice linearly with
the number of terms as we show in the experiments in Section 4.6.2. Although the overall
problem size grows over time, the energies E, (L) and E, 4, (L) typically differ only by
a few terms. Kohli et al. [52] proposed a dynamic graph cut for such problems where a
sequence of energy minimization problems has to be solved and the corresponding energy
functions only differ by a few terms. The complexity for updating the weights in the graph
is linear in the number of changed weights. In our case, also the time for optimization
depends on the number of changed terms and therefore on average is independent of the
overall scene size. This property combined with our fast adaption of the energy function to
new 3D points and visibility information as described in Section 4.3.2.1 allows us a surface

extraction in real-time independent of the overall scene size.

We start with the set of initial tetrahedra V;,;; obtained from the DT of the point cloud
Pinit. We setup the energy Eo(L£) according to Section 4.3.2.1 and minimize Ey(L) with
the graph cut algorithm of [11]. We then extract the triangular surface mesh by finding all
pairs of tetrahedra (V;, V) where V; and V; are labeled differently. Finally, we smooth the
resulting mesh using a Laplacian kernel [29]. For each new 3D point, we first update the
DT and the energy function and then integrate the new visibility information. Finally, we
solve the labeling problem for the new function E,,1,,(£) by the dynamic graph cut [52].
Typically, we integrate several new points with their visibility information into the energy
before solving the minimization, i.e. m is between 500 and 2000, dependent on the user

requirements. The evolution of a mesh over time is shown in Figure 4.8.
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(a) (b) ()

Figure 4.8: Evolution of the mesh over time. (a) Even a mesh extracted from 6 000 sparse
3D points gives information about the basic shape of the building. We can see how the
mesh quality increases over time if (b) 14.000 or (c¢) 34.000 scene points are integrated.

4.4 Quality Visualization

The combination of the real-time SfM with the incremental surface reconstruction enables
us to obtain camera poses, the sparse point cloud and the surface mesh in real-time. This
information can be instantly provided to the user already during the image acquisition. In
order to support the user to judge on the reconstruction quality, we visualize additional
quality measures of the reconstruction. In particular, the Ground Sampling Distance
(GSD) and the degree of redundancy are overlaid on the current surface mesh. To evaluate
the GSD, we calculate the maximum resolution a mesh triangle is mapped to in image
space. We re-project each triangle T; of the mesh S to each aligned camera I;. We then

calculate the maximum resolution which corresponds to the minimum value of the GSD

R(T;) = min A(T)

L\l P(T;, I,) (4.13)

where P(-,-) is the number of pixels that triangle T; covers in camera I; and A(-) is the
area of the triangle in 3D space. To handle self-occlusions of the mesh correctly and
for efficient calculation we employ the GPU that is optimized for visibility estimation of
meshes. For calculating R(T;), we assign a unique color to each triangle. We then render
S using OpenGL from viewpoint I; and read out the image buffer. We calculate P(T;, I;)
by counting the pixels that have the color assigned to 7j.

The degree of redundancy can be computed at the same time by counting the number
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of of cameras T} is visible in. We define that 7} is visible in I; if less than 50% of T}’s area is
occluded. This prevents triangles from being counted as visible that are largely occluded.
Since the mesh is rendered on graphics hardware and only counting is performed on the
CPU, the coverage computation takes around 50 ms for a single viewpoint.

To visualize both measures, we overlay the mesh by a color map according to the mea-
sure’s value. The user interactively selects which information he requires for the decision
on his next step. Since the scale of the SfM result is arbitrary, A(-) is typically not in
metric scale and we determine the range of the color map by a-trimming all values of
R(T;) where a = 10%. If the scale of the reconstruction can be determined, for example
by aligning the reconstruction to GPS data, we can choose the color map according to
predefined resolutions. Figure 4.9 demonstrates this visualization for the reconstructed of

an atrium.

3 cameras 50 cameras low-resolution high-resolution
(a) (b)

Figure 4.9: Visualization of redundancy (a) and (b) resolution

4.5 Integration into Real-Time Feedback Application

We combine the real-time SfM, the incremental surface reconstruction and the quality
visualization into a common application that integrates a new high-resolution still image
within less than two seconds. To achieve real-time performance, we make use of todays
multi-core CPUs and distribute the individual parts onto different threads. The localization

of a new image as well as the structure expansion part are running in a single thread. SIFT
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features that are used for localization and point triangulation are extracted by the GPU
implementation of Wu [105]. Because the camera positions and the triangulation of 3D
points is performed incrementally, the problem of error accumulation may occur. We reduce
this effect by performing bundle adjustment in a parallel thread. Since bundle adjustment
for a large set of cameras is computationally complex and grows with the number of involved
cameras and points, we follow the idea of Klein et al. [47] and perform bundle adjustment
in a sliding window, i.e. we limit the number of cameras that are optimized to the last
n = 10 added cameras. Hence, the optimization complexity stays constant over time.

Thread 2
Bundle Adjustment

m Thread 3

Image 5| Online | updated Surface
Acquisition SfM | periodically | Extraction
Thread 1
- Thread 4

newimage _ Quiality
available Visualization

Figure 4.10: Overview over implementation details. We split the individual steps into
separate threads for parallel execution. Bundle adjustment also runs in a parallel thread
to prevent error accumulation. The GPU is used for feature extraction, feature matching
and the visualization of the reconstruction’s quality.

The continuous bundle adjustment causes that the integration of the incremental sur-
face extraction method is not straight forward. Our method presented in Section 4.3 can
add new triangulated 3D points but once integrated, points cannot be changed anymore.
However, bundle adjustment may modify also the position of the points that are already
integrated into the surface. We circumvent this problem by a so-called late fusion. Instead
of using all sparse points for meshing, we only select those points that have been optimized
by bundle adjustment several times. Once a point is integrated into the DT its position
is not updated within the DT anymore. Over a long time or if a loop closure occurs this
may cause a deviation between the extracted surface mesh and the real-time SfM result.
However, the problem that SfM and the extracted surface mesh differ is diminished by the
fact that only the last n cameras are considered during bundle adjustment and therefore

most of the scene points remain constant.
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In the fourth thread we perform the quality visualization. In our implementation we
update the quality measures if either a new frame is localized within the on-line SfM or
the mesh is updated. In case of a new frame, the mesh is only projected into the according
camera. In case of a mesh update, we recalculate the mesh quality using all registered
cameras. In an improved implementation one could first determine the triangles that has
been changed during the mesh update and identify the cameras they are visible in. This

would further reduce the computational complexity.

Figure 4.11 shows the user interface. On the top part of the window the user sees the
acquired images. If an image is not surrounded by a colored border, this implies that the
image is not yet processed. Green marked images have been registered successfully whereas
red have not been localized. Hence, the user instantly recognizes if a new collected image
has been successfully integrated into the reconstruction. On the left window, the sparse
point cloud and the camera positions are presented. On the right side, the surface mesh
is shown and color coded according the quality measure. The user can move freely in the

scene and can select between the visualization of the redundancy and the resolution.

Figure 4.11: User Interface. In the top row the users sees the acquired images and if the
image has been integrated in the spare reconstruction. On the left side, the reconstruction
of the SfM is shown. The extracted and color coded mesh is shown then on the right. The
user can move freely within the scene.
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4.6 Experiments

The presented method for interactive SfM consists of several subsystem where each of them
is considered as an individual contribution. Therefore, we first evaluate each subsystem
and finally perform an experiment that takes into account the combination of all methods.

In Section 4.6.1, we analyze the properties of our new image-based localization method.
In the following Section 4.6.2, we demonstrate that a rough surface mesh that is extracted
from sparse points is useful for various applications. Furthermore, we provide evidence that
the proposed method is suited to create a surface mesh in real-time while the computational
complexity is largely independent from the overall scene size. Finally in Section 4.6.3, we
perform experiments that demonstrate that the interactive feedback method is a useful

tool to reliably generate image sets that are suited for SfM.

4.6.1 Evaluation of Efficient Image-based Localization

In this section, we evaluate the efficiency of our optimized image-based localization method.
In an initial experiment, we investigate which of the state-of-the-art methods (brute-force
matching or image-retrieval based approach) are better suited for a coarse-to-fine local-
ization approach. The result that image-retrieval methods are more successful in case of
small images led to our new localization approach. In the second experiment we provide
evidence that each of our improvements increases the localization rate of small images
while reducing the computational complexity at the same time. In the final experiment,
we show that in a coarse-to-fine setting our method can reduce the computation time to

state-of-the-art methods by a factor of three.

Brute-Force vs. Image-Retrieval

We first investigate which of the state-of-the-art approaches, brute-force (BF) or image-
retrieval based localization (IR), is better suited in a scenario where the resolution difference
between reconstruction and localization is large. Therefore, we setup the following experi-
ment. We acquired 354 still images of an outdoor scene with a resolution of 1280 x 720 and
reconstructed the scene by a SfM pipeline. In a second run, we acquired a 4 minute video
of the same scene also with the same resolution. We cropped one frame per second (238

frames in total) from this video and tried to estimate the camera pose with respect to the
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point cloud using both, the BF and the IR approach. For the reconstruction as well as for
the localization we use the SIFT implementation of Wu et al. [105]. For both sequences

the intrinsic camera parameters are known.

For the BF approach, we follow the setup defined in [83]. We select for each recon-
structed 3D point a single SIFT representative that has the minimum distance to all others
belonging to the same 3D point. To establish 2D-3D correspondences, we apply an approx-
imated nearest neighbor search to establish feature matches. A correspondence between a

2D feature and a 3D point is established if the SIFT distance ratio test is smaller than 0.7.

For the IR based approach, we follow the main pipeline proposed in [42], which effi-
ciently searches visually similar images using a vocabulary tree |76]. Given a query image
Q@ the task is to find a shortlist S of £ = 10 images that contains the most similar images
within the database D, that was used to reconstruct the 3D point model. To determine
S we use all the extracted features within the database images D;. The shortlist S is
then used to establish 2D-3D correspondences between () and the point cloud. As ranking
scheme we used the probabilistic scoring proposed in [42]. The vocabulary tree was trained
on arbitrary images downloaded from the internet. We choose a branch factor of 50 and a
depth of 3 which results in 125 000 leaf nodes. In all experiments, we set the parameter p;
of the probabilistic scoring to 0.2. We then establish 2D-3D correspondences between each
pair (@, S;) individually using the SIFT ratio test where only features of S; are considered

that are connected to a 3D point.

In both cases we solve the absolute pose problem with a RANSAC variant [13] where
correspondences are ordered according to the SIFT matching quality. Following [42, 83|,

a pose is classified as valid if 12 or more 2D-3D inlier correspondences are found.

Figure 4.12(a) shows the number of localized frames for the BF and the IR approach
when reducing the size of the query image stepwise from 1280 x 720 to 160 x 90 pixel.
As expected, the number of extracted features varies between 8000 features on the full
resolution and 100 on the smallest scale. For full resolution images, both methods are
nearly identical but the performance of BF drops drastically if the image resolution (and
as a consequence the number of features) gets smaller. In contrast, the performance of IR
stays constant even if the resolution of @ is half the size. When using only a quarter of the
resolution the advantage is even more explicit. Where BF localizes only 32 frames, IR is

able to localize more than 103 frames correctly. And in case of only 1/8 of the resolution
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(160x90 pixel) still 5 images can be registered using IR whereas BF completely fails.

The explanation for the weak performance of BF is as follows. The features of @) are
matched to all features of the point cloud. In such a way only very discriminative features
are selected. If the query image contains a large number of features such an approach is
successful because enough 2D-3D correspondences can be established. If the number of
features is small, discarding features that are not discriminative with respect to the point
cloud is crucial because often not enough 2D-3D correspondences for estimating a valid pose
are found. In contrast, IR establishes 2D-3D correspondences between features of ) and
S. Hence, a feature of @) has to be discriminative only with respect to S;. This may cause
more spurious correspondences but also reduces the number of missed matches. Spurious
correspondences effect the runtime of RANSAC, whereas missed matches may prevent a
successful localization. This explanation is also supported by the average number of inlier,

which is consistently lower for BF than for IR (Figure 4.12(b)).

To summarize, this experiment has shown that in a low-resolution scenario IR achieves
much better results than BF. Therefore we decided to improve the IR approach to reduce

the overall localization complexity.

960x540 320x180
960x540 320x180
1280x720 640x360 160x90 1280x720 640x360 160x90
Resolution of Q

Resolution of Q
(a) (b)

Figure 4.12: Resolution-dependent performance: (a) While localization performance stays
constant for IR even if bisecting the image resolution, for BF the performance significantly
drops. (b) IR has more than twice the number of average inlier compared to BF.
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Outdoor | City-of-Sights
Image size | 1280x720 640x480
Images 354 383

3D Points | 164,424 106,506
Features 938,861 1,005,675

Table 4.1: Key information of the used reconstructions.

Comparison to State-of-the-Art

In this section, we repeat the experiment of the previous Section 4.6.1 with our new method
of Section 4.2.2 and investigate the performance difference to the baseline method (IR).

We use the dataset of Section 4.6.1 (Outdoor) and the publicly available City-of-
Sights [27]| dataset. This dataset (referred as CoS) consists of 10 different videos (called
FARO 3 to FARO 12) at a resolution of 640x480 that are acquired by a camera mounted
on a robot arm and moved within the scene. For the reconstruction, we have chosen every
second frame of the sequence FARO 6. Key information on both datasets is shown in
Table 4.1. For the localization, we consider the sequence FARO 4 which consists of 932
frames. Figure 4.13 shows the sparse reconstructions of both datasets.

Figure 4.14 shows that our method consistently outperforms the baseline at all resolu-
tions on both datasets. On the Outdoor scene, the largest gain of our method is obtained at
a resolution of 320 x 160, where the baseline method localizes 103 images and our proposed
method registers 163 frames. Compared to BF we even increase the number of registered
frames by a factor of five. When using the full resolution of @) which is the same as the
resolution of the images used for reconstruction, our extensions do not adversely influence

the result.

Increased Robustness

In this experiment, we show that the modified image ranking as well as the removal of fine
details during the 2D-3D matching improves the overall localization rate of low-resolution
images.

When performing feature selection as outlined in Section 4.2.2.2, localization perfor-
mance is slightly increased (blue fine-dotted curve) over the baseline. The reason is that

by filtering the fine confusing features the probability that the SIFT ratio test is passed
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increases. By applying our improved ranking as introduced in Section 4.2.2.1, the overall
number of localized frames increases by more than 30% on the Qutdoor scene and 15% on
the CoS dataset (green solid curve). Combining both of our proposals yields the highest
number of localized frames (green dashed curve). The increased ranking quality is also
visually noticeable. The baseline method delivers a shortlist where 8 out of 10 images are
showing a completely different part of the scene, whereas our method delivers consistent

results, as it is illustrated in Figure 4.16.

Since we remove features from the matching process, we potentially loose correspon-
dences. Figure 4.17 disproves this concern for both sequences. The number of inlier per

localized image is nearly identical in comparison to the baseline method for both datasets.

Figure 4.13: Underlying reconstructions that are used for the evaluation. (a) Reconstruc-
tion obtained from 354 images acquired by an MAV. (b) Reconstruction of the City-of-
Sights dataset.
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Figure 4.14: Localization performance when integrating our method of Section 4.2.2. Our
approach increases the number of localized frames by more than 50% on images with a
resolution of 320 x 180 on the Outdoor dataset (a). On the CoS sequence (b) the number
of localized low-resolution images increases by 153.
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Figure 4.15: Detailed analysis of the ranking and the feature selection in the localization
process for (a) Outdoor with query resolution of 320 x 160 and FARO 4 (b) with query
resolution of 160 x 120.

On small resolutions it is even slightly increased, i.e. on the CoS dataset our approach

obtains 28 inlier on average compared to 24 inlier for the baseline method.

Reduced Computation Time

Beside an increase of robustness, our method reduces the computational complexity. Fig-
ure 4.18 highlights the required computation time for registering an image at different

resolutions. The timings include feature extraction on the GPU, image ranking based on
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Figure 4.16: Comparison of image ranking using the probabilistic scoring (first row) and
our modified version of Section 4.2.2.1 (second row). The query image (first column) has
a resolution of 320x180 whereas the images in the database have 1280x720 pixel. The
baseline method top-ranks 8 out of 10 images that do not show the same scene. Our
method ranks the images in a more meaningful order.

retrieval, matching on the GPU and the RANSAC as explained in Section 4.2.2.3. Timings
are measured on a Intel Core i7 960 and a NVIDA GTX 560 GPGPU. We can observe
that our proposed method decreases the computation time in comparison to the baseline
method. Caused by the filtering of features during 2D-3D matching, the complexity reduc-
tion gets larger, the more the resolutions of @) and D; differ. For example, on the Oudoor
sequences 105 features per 320 x 180 query image are extracted on average. For the baseline
method these are matched against 2609 features per shortlisted image S;. After filtering
the fine-detailed features, this reduces to a matching problem of 105 query features against
170 point cloud features per image. Overall, the number of feature comparisons decreases
from 270 000 to 18 000. The same is true for the smallest scale images of the CoS sequence.

Here, we reduce the matching problem down from 71 vs. 3281 to 71 vs. 190 features.

The proposed modification of the scoring process requires computational overhead.

First, m(Q, D;) has to be determined, the number of query features and database features
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Figure 4.17: Inlier per localized frame dependent on the query resolution. For both se-
quences, the number of inlier is not affected by our proposed feature selection.
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Figure 4.18: Required time for registration in dependence of the query image resolution.
The filtering of unmatchable features decreases computational complexity. For larger dif-
ferences between the query and database image resolution, this can save more than 50%
of the time.

that are larger than m(Q, D;) (Equation 4.2 and 4.3) have to be counted and finally, only
votes for documents whose features are larger than m(Q, D;) are counted. In absolute
values, the voting of our method requires 5.7 ms per image on the full resolution and 3.5 ms
using the baseline method. This overhead of 2.2 ms per image is negligible in comparison
to the overall computational time of 326 ms for the localization of a full resolution image.
As shown in Figure 4.18, the overhead for the scoring is over-compensated by the reduced
time for feature matching.

Our pre-verification step as outlined in Section 4.2.2.3 reduces the number of required
verifications drastically, especially if the number of inlier is very low or if no valid pose can
be found. As shown in Figure 4.19, 90% of the hypotheses can be discarded if the inlier
ratio is below 10%. If the ratio of inlier increases, our applied hypothesize-and-verify algo-
rithm [13] already terminates after a few iterations and therefore in such cases the benefits
are small. However, our pre-verification approach reduces computational complexity for

images that are difficult to localize.

Multi-Scale Localization

Since we are now able to localize low-resolution images with high probability, we show that
a multi-scale localization approach can drastically reduce the overall localization effort
on datasets that are representative for robotics and AR applications. We start with a
downscaled version of the full-resolution image, try to localize it and if it fails, we iteratively

consider increasingly larger scales.
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Figure 4.19: Percentage of hypothesis discarded by the pre-verification step according to
the percentage of inlier.

Derived by Figure 4.14, we introduce three scales for the localization with scale factors
0.25 (level 0), 0.5 (level 1) and 0.75 (level 2) of the original image size. So we have at
maximum three cycles for the localization of a single image. Each cycle comprises re-
scaling, feature extraction, ranking of the database images, 2D-3D matching and finally

absolute pose estimation.

For the Outdoor dataset we obtain an average runtime of 73 ms per image which
corresponds to a frame rate of more than 13 frames per second which is close to a frame
rate that is required for tracking in robotics or AR applications. We found for 225 images
a valid pose, where 163 images are localized on level 0, 60 frames on level 1 and 2 frames
on level 2. The average number of inlier is 31.63 per localized frame. In contrast, the
baseline method was only able to register 211 images on all three scales, where 94 images
are localized on level 0, 110 on level 1 and 7 on level 2 with an average runtime for each
image of 202 ms (5 frames per second) which is a reduction of 64%. Since our approach
is able to register more images than the baseline, this demonstrates that the reduction of

computational effort is not at the expense of the localization performance.

For the City-of-Sights dataset we register all 8 available image sequences (FARO 4
- FARO 12, except FARO 6) that show the complete scene. Each sequence consists of
800-1000 images summing up to 7338 in total. Our scale-space approach as well as the
IR approach register 6 605 images (90%). In Figure 4.20 the average timings required for

registering a certain image within the scene is shown. Our approach requires between 44ms
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up to 120ms to register a single image (green). The average time over the whole dataset
is 87 ms whereas the baseline approach used in a multi-scale approache (IR, scale-space)
requires 192 ms on average which shows that we can save more than 55% of the time.
For comparison we also show the timing when using the baseline approach on images
of level 2 (IR, level 2). On average, it has the same complexity as the baseline approach
integrated into a multi-scale setup. This shows that our contributions are required to

reduce the computational effort of the localization.
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Figure 4.20: Average time required for registering frame within the scene.

4.6.2 Evaluation of Incremental Surface Extraction

The second important part of our interactive SfM pipeline is the incremental surface re-
construction using the sparse point cloud. Similar to the experiments of the efficient
image-based localization, we individually evaluate this method. In the first experiment
we show on a well-known groundtruth dataset that our proposed energy function reaches
the same quality as the computational more complex state-of-the-art function proposed
in [56]. We then demonstrate that our formulation is suited to incrementally extract a
surface from a continuously growing point cloud in real-time and that the complexity typ-
ically is independent from the overall scene size. For all experiments we set the costs as
follows: afree = 103, apee = 103, Binit = 10% and Bys = 1073, For the optimization we
use the dynamic graph cut implementation of [52] and for the Delaunay Triangulation, we
use the CGAL [1] software package because it reports which tetrahedra are deleted and

created due to the insertion of a new point.
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Comparison to State-of-the-Art

In this experiment, we show that our novel energy achieves the same accuracy on sparse
as well as on dense SfM point clouds as the more complex energy of Labatut et al. [56].
For accuracy evaluation, we use the dataset Fountain provided by Strecha et al. [90]. The
dataset provides 11 high-resolution images and ground truth for camera positions and depth
maps for each image. The sparse reconstruction is performed by an approach similar to
Bundler [89] and results in 7 123 sparse 3D points. Each point is connected to 4.8 cameras
on average.

We apply the surface extraction method of [56] as well as our proposed method on
the provided data in a batch-based manner, i.e. we add all 3D points to the DT, setup
and minimize the energy function only once. Figure 4.21(a) and 4.21(b) show the surfaces
obtained by [56] and our method. Both the error maps and a visual comparison demon-
strate that the surfaces are very similar. The accumulated histogram of depth map errors
in Figure 4.21(e) quantifies the error in metric scale and gives evidence that both surfaces
are very similar. We repeated this experiment with a densified point cloud obtained by
PMVS2 |22] (370000 points). The two upper curves in Figure 4.21(e) again show that the
extracted surfaces are very similar.

On a second dataset we compare our result to [56] as well as to raycasting. This dataset
consists of 77300 3D points each connected to 4.4 rays on average but also around 20%
of the points are triangulated by only two image features and therefore contain significant
noise. Figure 4.22(c) shows that raycasting yields a noisy surface and hence is not suitable
for such data. In contrast the surfaces obtained by our method and [56] are nearly identical
(Figure 4.22(a) and 4.22(b)) but the computational complexity is very different: [56] re-
quires 79 seconds for defining their energy function and solving it by graph cuts, whereas
our approach needs only 32 seconds on a Intel Core i7-960 processor. The difference in
computational effort is mainly caused by the definition of the energy function. While [56]
has to perform a full raycast for each ray, we only have to identify the tetrahedra in front
and behind the vertex and the first triangle that is intersected by the ray. Furthermore,
our energy can be solved faster by the graph cut. While the optimization of [56] requires
740 ms, our energy is fully optimized in 430 ms.

Note that beside visibility information Labatut et al. [56] also include two further

terms, a photo consistency and a smoothness term. Both can be integrated into our
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Figure 4.21: Fountain mesh. (a) Mesh extracted by our approach. (b) Surface extracted
by [56] using only the visibility term of their energy function. (¢) Color coded depth map
error of our reconstruction of image 6. (d) Same evaluation for the result obtained by [56].
Blue indicates an error of less than 5 mm whereas distances above 2.56 m are coded in red
(best viewed in color). (e) Accumulated errors for surface extraction from sparse as well
as dense data using both approaches.
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energy function without violating the incremental fashion of our method since they only

depend on triangle properties of neighboring tetrahedra.

Figure 4.22: (a) Surface extracted by the method of Labatut et al. [56]. (b) Ours. (c) Space
carving.
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Incremental Surface Reconstruction

In this experiment, we investigate the computational complexity of our proposed method
in an incremental scenario. Similar to SLAM applications, we incrementally add new
3D points and visibility information and update the surface mesh after the integration of
several hundred points. We determine the surface of two reconstructions that both consist
of around 70000 3D points. The first sequence was acquired by a Micro Aerial Vehicle
showing an elongated building of 200m length. The second scene shows a medieval entrance
where two figures are integrated into the wall.

We initialize our method with 1000 3D points, calculate the unary and pairwise costs,
extract the surface and incrementally add new points according to their creation time

within the SfM pipeline. Our energy is updated each time a new 3D point is added to the

Figure 4.23: Incremental surface extraction over time. (a) Overview image of the recon-
structed scene. (d) Reconstruction obtained at two different points in time. The gray part
has been extracted from 40 000 3D points while additional 20 000 points create the red part
of the reconstruction (best viewed in color).
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DT and optimized after a defined number of points, e.g. 10000 points, have been added.
Figure 4.23 shows the surface of the building at different points in time after the integration
of 40000 and 60 000 points respectively. The red marked triangles indicate the part of the
surface that has been changed since the last optimization. Since the images are recorded

by a camera with forward motion, we can observe the growing of the surface over time.

The acquisition ordering of the second scene is quite different. Here, the photographer
started the image acquisition with overview images and then took more detailed views of
the two figures. This sequence demonstrates that our approach makes no assumption about
the camera motion and is able to refine parts of an already extracted surface (Figure 4.24).
After 10 000 points, only the basic structure of the scene is observable. With the integration

of more and more sparse points at the figures, the details become more and more visible.

In our approach we assume that camera positions and 3D points are fixed and not
modified after the insertion. When integrating our method into a keyframe-based SLAM
system like PTAM [47] which uses local bundle adjustment for map optimization this
assumption may be violated. To attenuate this problem a late integration step can be
implemented, i.e. new 3D points are not integrated into the mesh directly after their
triangulation but at the time when they have been optimized several times by local bundle

adjustment. This decreases the probability that the structure is drastically changed.

For the evaluation of the computational complexity, we compare our approach to an
incremental implementation of [56]. Since such an implementation is not yet available, we
combine their method with the incremental space carving approach of [61]. We store for
each tetrahedron a list of rays that pass through it. When the DT is changed, we update
the energy function of [56| and minimize the new energy with the dynamic graph cut.
For adapting the energy to a new DT, we have to intersect all rays going through deleted
tetrahdra with all new created tetrahdra which is computationally expensive. Furthermore,

we have to store the ray to tetrahdra assignment which requires a large amount of memory.

The incremental adaptation of [56] and our method consist of basically two parts:
Update of the energy function according to new 3D points and the optimization using the
dynamic graph cut. Figure 4.25 quantifies the complexity difference when updating the
energy to a changed DT for the building sequence. The blue bars show the number of
rays that are involved in updating the energy of 1000 points. In our approach, we have to

determine for each ray the tetrahedron in front and behind the destination vertex of the ray
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(c) (d) (e)

Figure 4.24: Surface evolution of the entrance sequence after the integration of (a) 10000
and (b) 40000 points. Consecutively added 3D points incrementally increase the quality
of the right figure. (¢) and (d) Cut-out of the right figure. (e) Right figure.

and the intersected interface in front of the vertex. On average, the adaption of the energy
to the modified DT structure requires 0.44 ms per integrated 3D point. Typical SLAM
applications like [15] generate a few hundred 3D points per second which can be integrated
into the surface in the same time with our approach. The incremental implementation
of [56] has to test for each ray which of the modified tetrahedra are intersected by which
ray. The number of rays involved in the energy update of [56] is an order of magnitude
higher than in our approach. Since for each ray [56] has to determine the set of tetrahedra
that are intersected by the ray, the absolute time is on average more than 20 times higher
(9159 ms vs. 440 ms). Another important fact for real-time applications is the variance

of the complexity. The large deviations in [56] are caused by the following problem. If a
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tetrahedron is modified that is intersected by large number of rays, all of these rays have
to be taken into account to update the pairwise energy term. For example, in the building
sequence several tetrahedra are passed by more than 50000 rays and if one of these is

modified the integration time rises drastically.
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Figure 4.25: (a) Difference in runtime for updating the energy function for 1000 3D points.
The x-axis shows the total number of 3D points in the mesh. (b) and (c¢) Time for energy
update and the number of rays involved in the update. Please note, that scaling differs
significantly.

The second part is to solve the labeling problem by minimizing the energy function.
Standard graph cut methods are designed to solve static problems, i.e. the energy is once
defined and the minimum is calculated. In contrast, our approach generates a series of
energies with an increasing number of terms. Figure 4.26(b) shows that the number of
terms grows nearly linear in the number of points integrated in the DT. When using a
static graph cut solver like [11], the time for solving also increases linearly and requires
430 ms for the final energy. In contrast, the time for solving the dynamic graph cut largely
depends on the number of changed terms (Figure 4.26(a)) and does not depend on the
overall problem size. In the building sequence, typically between 10000 to 15000 terms
are updated when integrating 1000 points into the reconstruction. The time required for
the optimization varies between 20 ms and 30 ms. Compared to the time for the energy
update which is around 440 ms for 1 000 points, the time for optimization is relatively small.
This comparison gives evidence that the dynamic graph cut reduces the computational
complexity and is independent of the overall scene size.

To summarize, our experiments demonstrate that our approach achieves the same accu-
racy as state-of-the-art methods for sparse SfM point clouds with a reduced computational

effort. Our energy is suited to work in an incremental manner and in combination with
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Figure 4.26: Dynamic graph cut vs. static graph cut. The runtime for solving the dynamic
graph cut depends on the number of changed terms in the energy function, whereas in the
static case, the runtime depends of the overall number of terms.

SfM Runtime | # sparse | avg measurements || # dense

points per 3D point points
Bundler 930s 28215 3.33 2416 144
real-time SfM 129 23218 3.85 2399999

Table 4.2: Comparison Bundler vs. our real-time SfM

the dynamic graph cut, computation time for energy minimization largely depends on the

number of changed terms in the energy function.

4.6.3 Evaluation of Interactive SfM Feedback System

After evaluating the individual methods of our interactive SfM pipeline, we perform ex-
periments with the overall system in this section. We first show that the real-time SfM
reconstructs images up to 7 times faster when assuming that images are not taken ran-
domly. We also tested the accuracy of the SfM result and demonstrate that the accuracy is
comparable to batch-based SfM methods. Furthermore, we show that the instant feedback
helps even a very experienced user to increase the number of images that are suited for a
reconstruction. Finally, we demonstrate the versatile application areas our approach can

be used in.

Incremental Real-time SfM vs. Offline Batch-based SfM

To compare the accuracy of real-time SfM to a state-of-the-art batch-based SfM approach,
namely Bundler [89], we acquired an image sequence of 74 outdoor images (10 Mpx) of a

church entry (Figure 4.28) and reconstructed them using both SfM methods. Because it is
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difficult to generate ground truth data for a large-scale outdoor dataset, a good indicator
is the result of the dense matching step. Small errors in the camera alignment have large
effects in the final dense reconstruction.

For both methods, we extract 4000 SIFT features per image that have largest scale.
The features are calculated by the SIFTGPU [105] implementation. Table 4.2 shows the
comparison between both methods. The visual result is shown in Figure 4.27. Our ap-
proach requires 129 seconds which is 7.2 times faster than Bundler. Our approach generates
less 3D points which is because we only find matches between the current image and the
visually closest n = 6 that are obtained from the image-based localization. In contrast,
we obtain an increased number of measurements per 3D point compared to Bundler. This
allows to conclude that our cameras are connected more densely and therefore we can
expect a similar accuracy. On average, our approach requires 1.8 seconds to integrate a
new image into the map and to expand the map. Since we fix the number of images for
matching, the insertion time is independent of the map size. The undistortion and feature
extraction are dependent on the image size whereas the subsequent feature matching and
map extension steps only depend on the number of features used for matching. Hence,
these two parameters can be adjusted if less computational power is available or if faster
image integration is needed.

In order to compare the accuracy of the real-time approach, we perform a densification
using PMVS2. Since our approach performs only local bundle adjustment during the
integration, we optimize the whole reconstruction before the densification. Figure 4.28
shows the dengified SfTM point cloud when using the sparse SfM result obtained by our
real-time approach and the result when using the off-line reconstruction of Bundler. Both
point clouds have nearly the same number of 3D points and their visual appearance is also
very similar. This demonstrates that the real-time SfM result is accurate and can be used

directly for subsequent processing steps like dense matching.

User Support

To demonstrate that our approach supports the user during image acquisition, we per-
formed an experiment with a user that has deep knowledge about SfM methods and is
familiar with image acquisition for 3D reconstruction. We asked the user to acquire im-

ages of a church entrance that are processed by our real-time SfM algorithm. We advised
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Figure 4.27: Comparison of sparse reconstruction obtained by (a) the real-time SfM and
(b) the batch-based method.

Figure 4.28: Comparison of dense results obtained by PMVS [22] when using the sparse
result calculate by our online SfM (a) and the result achieved by Bundler (b). Both are
visually similar and also the number of reconstructed 3D points is comparable. (c¢) Example
of input images.

him to take images that have enough overlap to be integrated into the existing reconstruc-
tion. We were interested in an outside reconstruction as well as on the reconstruction of
the vaulted ceiling, which made image acquisition more complicated because of the non-
convex object’s shape (see Figure 4.29). We performed the experiment twice: Without
feedback and with real-time feedback. During the first experiment without feedback he

was advised to acquire 100 images, in the second experiment with feedback he should stop
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Figure 4.29: Sequence of acquired images. (a) If acquiring images without real-time feed-
back, the user did not recognize that images cannot be aligned to the reconstruction (red).
The next 20 images could not be added incrementally. (b) With feedback, the user rec-
ognized the problem and reacted on that. Therefore, the following images are inserted
correctly.

image acquisition once 100 images were integrated into the reconstruction by our system.

Without feedback, our method successfully integrated 74 of 100 images into a consis-
tent reconstruction. Most images that cannot be reconstructed were acquired when looking
from the inside of the entrance to the brighter background. The dynamic range of the cam-
era is insufficient and parts of the vaulted ceiling are underexposed. Since the user did
not recognize this, a sequence of 20 images are missing in the reconstruction. When incor-
porating feedback, the user recognized this problem after 3 images because our algorithm
reports that the underexposed images could not be integrated into the reconstruction and
the user adjusted the exposure settings. Figure 4.29 illustrates the difference between both
experiments. He captured 118 images to achieve that 100 images are integrated into the
reconstruction,which is a rate of 15% missed images compared to 26% in the experiment

without feedback.

Images | 3D points | SfM time | Triangles
City-of-Sights 61 22752 110s 18810
Atrium 127 28 374 238s 22798

Table 4.3: Reconstruction results for the two different scenes. The meshing time includes
the time needed for calculating the GSD and the redundancy information.
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Figure 4.30: Results of the Atrium and the City-of-Sights scene. (a) and (d) Sample image
of the two datasets. (b) and (e) Redundancy map. (c) and (f) Visualization of the GSD.
Best viewed in color.

Application Areas

We performed experiments on a large number of different scenes and also with different ac-
quisition methods. The datasets vary between small paper models of the City-of-Sights [27]
to very large-scale reconstructions of open pits. We collected the images with different
modalities like a multi-copter, a fixed wing plane, a high-flying ultralight plane and by a

handheld camera.

We observed that our method is useful for all listed types of scenes as well as for all
acquisition methods. The largest benefit is obtained if the object of interest is geometrically
complex like the church entrance in Figure 4.28 or if the type of acquisition allows large
variations between individual pictures. This is especially a problem when acquiring images
with a multi-copter because here, the user often changes the viewing angle between images

drastically which prevents from successful feature matching. The instant feedback of the
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(a) (b) ()

Figure 4.31: Reconstruction of a weakly-textured facade at different scales. The instant
feedback is important to determine the distance where even the fine details become visible
and matchable across images. Furthermore, when taking images at different distances
it often happens that images cannot be registered across the different scales. With the
real-time SfM the feedback reports this issues instantly

real-time SfM calls the attention of the user in such cases.

The major issue when dealing with cameras that are attached to an MAV, is the
transmission of the high-resolution images in real-time to the laptop that is located on the
ground. Right now, it only exists a few hardware devices that are able to transmit the
images wireless over a few meters in near real-time. For our experiments, we used a Secure
Digital card that is able to transmit the images stored on the card using WiFi. The card
can be installed in all consumer grade cameras. Since the range of this card is limited to
3 to b meters, we amplify the signal with an external repeater that is also mounted on
the MAV. This allows the transmission of a 10 Mpx image over 30 meters in about 2 to 3

seconds.

One case study where we used our method is the reconstruction of a facade that is
weakly textured. In order to guarantee that enough features can be found, one has to be
very close to the surface. Here, our system instantly reports if the resolution is sufficient for
the reconstruction. It is also helpful to check if images can be registered that are acquired
at different distances of the fagade. Figure 4.31 shows sample images of this challenging
object. The mesh that evolves over time and the corresponding quality values are shown

in Figure 4.32

Another application scenario is the documentation of a changing environment like con-
struction sites. Such applications require that the reconstructions obtained at different

points in time are aligned in the same coordinate system. For large reconstructions where
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significant parts changed over time, this is even for a human a non-trivial task. Here, our
method can ease this task by assuring that images of parts are acquired that are static over
time. The user performs an real-time SfM reconstruction when he or she collects images of
the changing environment for the first time. If the user captures the environment for the
second time, he or she can integrate the new images directly into the old reconstruction.
Since the system gives feedback if a new image can be registered within the old reconstruc-
tion, the user can take images until a new image is localized within the old reconstruction.
This ensures that both datasets can be registered automatically in a common coordinate

system.

4.7 Conclusion

In this chapter, we presented an interactive SfM that couples the image acquisition process
and the SfM pipeline tightly. The basis of our method is the ability to perform the SfM
reconstruction from high-resolution still images in an incremental manner in real-time. We
achieved this by splitting the reconstruction process into an image-based localization and
a structure expansion part. To reduce the computational complexity of the image-based
localization part, we developed a new method that takes account the scale of an image
feature to improve a state-of-the-art image-based image-based localization method. In
particular, we improved the image ranking, reduced the 2D-3D feature matching costs and
implemented a pre-verification step in the RANSAC to discard erroneous hypotheses. In
the experiments, we showed that this reduces the computational complexity and increases
the robustness if images with different resolutions are localized against each other. The real-
time processing of the images allows us to provide the user instant feedback if an image can
be registered within the existing reconstruction. This helps the user to recognize possible
problems of the acquired image already during the image acquisition.

Besides the camera poses, the real-time SfM provides a continuously growing set of
triangulated sparse feature points. To obtain a surface representation, we developed a new
algorithm that incrementally extracts a surface mesh given theses points. Based on a 3D
Delaunay Triangulation of the sparse points, we formulated the meshing as an optimal
binary labeling problem of tetrahedra which is formulated as a submodular optimization

problem. The specialty of our formulation is that the energy can be easily adapted to
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Figure 4.32: Evolution of the reconstructed facade at different points in time. The first
column shows the color coding of the GSD where blue indicates a low resolution and
red a high resolution. The images in the second column is the image overlap of the
reconstruction. Red colored parts are seen by 30 and more cameras. The last column
shows the reconstructed mesh without any color. The meshes are extracted after 50, 100,
150 and 200 integrated images.
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the growing point cloud. By using a fully dynamic graph cut to solve the optimization
problem, we ensure that the computational complexity is independent of the overall scene
size.

The surface mesh allows us to derive important reconstruction parameters like the
image overlap or the Ground Sampling Distance directly for individual parts of scene. By
visualizing these parameters by color coding the mesh, the user gets an instant feedback
which allows to assess the reconstruction’s quality. Since this is also performed in real-time,
the user can react immediately on that and can adapt the image acquisition strategy.

The integration of the real-time SfM, the incremental surface extraction and the quality
visualization in a common framework that makes use of multi-core processors which allows
to run the application on a standard laptop. We used the overall method to support the
image acquisition in diverse scenarios, e.g. that collection from octo-copters, fixed wing
MAVs or by a handheld camera. We experienced that the instant reconstruction on-site
is a very useful tool to ensure that the image dataset is suited for an off-line batch-based

reconstruction and therefore increases the reliability of SfM
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Large-scale View Planning using

(Geometric Priors

The quality and completeness of an image-based 3D reconstruction method largely depends
on the spatial distribution of the input images around the object of interest. While inter-
active methods as proposed in the previous chapter are useful for the manual acquisition
by a human user, remotely operated image acquisition systems like Micro Aerial Vehi-
cles (MAVSs) require a different strategy to be time- and cost-efficient. They either need
pre-defined positions where images should be acquired or they explore the environment

and autonomously decide where useful image positions are located.

The latter approach is well-known in robotics under the name of Next-Best-View (NBV)
planning. Here, an autonomous device like a robot has to explore an unknown environment
and to simultaneously build a map of the environment. Those approaches are related to
Simultaneous Localization and Mapping methods and therefore are often computationally
complex and require powerful processing capabilities. Since todays Micro Aerial Vehicles
often have a limited flight time as well as limited computational resources, NBV approaches
for acquiring images of a large-scale outdoor object like a complex of buildings are not yet
directly applicable.

Generating a universally valid plan of viewpoints independent of the object of interest
is in the field of close-range photogrammetry often not possible, since requirements like
complete coverage largely depend on the scene geometry. Hence, the scene geometry has

to be taken into account already during the view planning. Although 3D reconstruction

111
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(a) (b)

Figure 5.1: A-priori information for view planning. (a)Mesh of a house during construction
obtained from a previous flight. (b) DSM of a 1 km x 1km open pit reconstructed by
nadir views acquired by a microlight plane.

specifically aims to obtain the object’s geometry, there are many applications where the
objects geometry is (roughly) known in advance. For example, when acquiring images
of a construction site the footprint is often available as prior knowledge. Or in case of
reconstructing an open pit for topographical survey, terrain models, like the NASA SRTM
data [19] or digital elevation models (DEM) of national mapping agencies, are available.
If no a-priori knowledge is available, one can generate the rough geometry from nadir
images acquires by a high flying MAV using the sparse incremental meshing proposed in

Section 4.3.

Even if the geometry is known, acquiring a set of images that allow to sufficiently
reconstruct the object of interest remains a complex task due to the large number and
partially competing requirements of the problem. First, view planning should deliver a
small number of views that cover the entire object to guarantee short flight- and processing
times. Second, redundancy is necessary to achieve an accurate reconstruction. Third, the
algorithm has to satisfy constraints like overlap and viewing angle between images to
facilitate vision—based similarity computations [96]. Finally, the epipolar graph should be

connected, otherwise disjoint reconstructions are obtained.

In our view planning approach, we embed the most important requirements for a suc-
cessful reconstruction into a multi-coverage set problem. Given a-priori information about
the object of interest as a triangular mesh, we first create a large set of hypothetical camera

positions which are then reduced such that each part of the surface is at least covered by
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k cameras. Since redundancy is a necessary but not a sufficient condition for accuracy,
we extend the multi-coverage approach taking the relative spatial distribution of cameras
into account. The multi-coverage approach is a submodular maximization problem, but in
contrast to a submodular minimization problem which can be solved in polynomial times,
the submodular maximization problem is known to be NP-hard. However, the property
of submodularity guarantees that a simple greedy optimization schema gives reasonable
results with theoretical bounds on the solution’s quality [55, 97]. In [21], the theoretical
bounds for the quality of the approximated solution are derived.

In our experimental evaluation we demonstrate the effectiveness on synthetic data as
well as on a real-world experiment with an MAV. Qur comparison to a state-of-the-art
view planning approach that directly minimizes the reconstruction accuracy shows that

the view plan generated by our method is better suited for SfM.

5.1 View Planning as Constrained Set Multi-Covering

Calculating view points around a known 3D geometry can be casted as a sensor placement
problem. In the sensor placement problem, a large number of potential sensor locations
are defined and each sensor covers a limited part of the scenery. The goal is to select the
minimum number of locations such that the whole scenery is captured by sensors.

Mathematically, this is described by the set-coverage problem. Given a set U of el-
ements U = {uy,---uy} that have to be covered and an overlapping partition A of U.
The partition is given as a set A = {S1,---Sr} where each S; consists of elements u € U:
S; = {w, ---w, }. The union of all elements in A is again ¢. Please note that the sets
S; € A may overlap. The goal is to find set A* = {S;,... S} such that each element of
U is in A* and | A*| should be as small as possible. In case of our view planning problem,
the set U corresponds to the faces of the prior mesh or points that are equally sampled on
the surface mesh. A set S; contains all faces or points u that are visible from a camera
that is positioned at K;. Figure 5.2 illustrates the different sets in case of view planning
and Table 5.1 summarizes the definitions.

However, the formulation as a standard set coverage problem is not suitable for SfM
using images from a monocular camera because the greedy optimization algorithm simply

finds the most disjoint sets S; to minimize |A*|. In contrast, for SfM we require that
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Figure 5.2: Definition of the different sets for the set covering. The green dots U are
the equally sampled points on the prior knowledge surface mesh. Each potential camera
position K; creates a set S; CU.

Variable FExplanation

All faces / points of the mesh

Set of all possible camera locations

All points that are visible in a specific camera Kj;

{Sl’ .. SL}

D RSN

Table 5.1: Definition of view planning in set-coverage notation

each u € U is visible in at least two cameras in order to triangulate a certain point. This
requirement is equivalent to the property that each w is visible in at least two subsets S;.
But for being robust and accurate, it is desired that the point has a higher redundancys, i.e.
is visible in k > 2 cameras. Adding the constraint that a point is contained in more than
a single set S; leads to an instance of a multi-cover problem which is also submodular [21].

But the accuracy does not only depend on the redundancy but also on the spatial
distribution of the cameras used for triangulation: the larger the triangulation angles, the
higher is the expected accuracy [9]. But even finding an optimal subset of k cameras that
maximizes the triangulation angle for certain 3D points is computationally expensive as a
short numerical example illustrates: Assuming a point u is visible in R cameras we can
create (}]j) sets containing k elements. If we assume that R = 150 and k = 4 this results
in 20 M possible camera sets. Finding the set that maximizes the triangulation angle is

therefore computationally not feasible for a large number of points.

Furthermore, maximizing the triangulation angle increases the triangulation accuracy
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but it complicates feature matching because the feature descriptors are often only stable
up to a certain degree, e.g. SIFT is said to be stable up to out-of-plane rotations of
about 30 degrees. Furthermore, the larger the viewing angles are, the more problematic
are occlusion effects. Hence, we want to find a trade-off between large viewing angles and

relative camera orientations that allows feature matching.

:
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Figure 5.3: Camera clustering. The set of cameras K; that observe wu is partitioned into
different clusters ¢; according to angle between K; and n(u). (a) illustrates the clustering
for a point u. (b) exemplary shows the assignment of S; to the clusters of a point u.

In order to cope with these competing requirements, we propose to build clusters ac-
cording to the spatial distribution of the cameras. Given a point u and all sets S; that
contain u, we cluster the sets S; according to the viewing angle of the associated cameras
K; with respect to the normal of u. Figure 5.3 illustrates the clustering. We then enforce
that the final set A* contains at least one set of each cluster. This guarantees (a) a mini-
mum triangulation angle, (b) a minimum redundancy for each 3D point, and (c) a limited
viewing angle between selected view points such that feature matching is possible.

Beside the constraints for the reconstructed surface, there are also constraints on the
set of selected cameras A*. Since we are interested in a reconstruction that contains all
images, we have to ensure that the epipolar graph is not fragmented into several subgraphs.
We obtain this by enforcing that cameras are selected such that pair-wise matching leads
to an epipolar graph that contains a subgraph that connects all images. We show later,
how these constraints can be easily integrated in the optimization.

Before going into the details of the view planning, we first start to explain how the

camera hypotheses IC are created.
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5.1.1 Camera View Hypotheses

Before selecting the set of camera views A*, we have to create the set of potential camera
views . We assume that our image acquisition device can access each point in space,
hence K contains infinitely many elements. Since a regular discretization of all possible
view points results in a very large set K, we propose a different sampling strategy. This
strategy is based on the assumption that the surface of the object of interest has to be
reconstructed with a user-defined Ground Sampling Distance (GSD). The ground sampling
distance defines the resolution of the reconstruction. Assuming a pinhole camera, the GSD
g is related to the camera’s focal length f and the distance d from the camera plane to the

object as follows:

gf =d. (5.1)

Hence, in order to ensure a certain GSD, the cameras have to be positioned at a certain
distance d from the surface. Motivated by this requirement of a specific GSD, we propose

the following sampling strategy.

Given our prior knowledge represented as a triangular mesh M, we assume that the
object is textured in a way that yields equally distributed keypoints on its surface. Since
our goal is to recover each potential feature point, these points build our set U. In other
words, U consists of 3D points that are equally sampled from the objects surface. Finally,
we want to cover U by our potential camera set K. Therefore, we create for each point
u € U a camera that observes u fronto-parallel with the distance d that depends on the

user defined GSD g.

The density of U heavily depends on the texture of the object’s surface, e.g. a pure
white wall generates much weaker keypoints than a well-textured facade of bricks. In order
to get a number of features per image that is independent of the texture, SfM pipelines
typically tune the sensitivity of the keypoint detector such that the number of extracted
keypoints per image is constant. Another solution to obtain a constant number of keypoints
that are equally distributed over the image plane is to divide the image into an n x n grid
and extract a single feature from each grid cell. Given the expected number of features

per image and the distance d that depends on the required GSD, we can determine the
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density v of the potential 3D points on the objects surface as follows:

L7

5.2
e (52)

where |F'| denotes the number of extracted features per image, wh the number of pixels in
the image and g the GSD. For example, we are given an image with 12 Mpx, |F'| = 5000
expected features per image, and a GSD of 5 mm per pixel, this results in a density of
16.67 feature points per square meter.

When thinking of non-convex geometric structures, self-occlusions may occur and the
optimal camera position for a certain u might by located within a part of the object. In
that case, we try to find a position along n(u) whose distance is close to d. To guarantee
positions that can be approached safely by the MAV, we define a margin around each

obstacle. Camera positions within this margin are marked as infeasible and are removed.

5.1.2 Generating Classes of Equivalent Cameras

Having defined the set of potential views K, we have to determine the sets S; which
contain the points that are visible from camera K. Because the surface is represented as
a triangular mesh, we perform a simple raytracing to determine the points that are visible
in K;. Since it is very unlikely that a point w is matched reliably in images that have a
very oblique view, we discard such highly distorted points from .5;. More formally, if the
angle a = <[(n_(1>t)7 K—Zz:) is larger than a certain value A\, we exclude u from S;. Here, m
denotes the ray emitted by K; and passing u and n(u) denotes the surface normal of w.
In order to build sets of equivalent cameras that guarantee a certain triangulation
angle while restricting the relative view point changes such that feature matching is still
possible, we propose the following method. We group the sets \S; that contain u according
to their viewing angle « into k clusters C' = {¢;,...cx} and force that at least a single
camera of each cluster is contained in the final solution A*. This formulation has several
advantages. First, clustering according to the viewing angle prevents that only cameras are
selected that have a similar viewing angle with respect to each other and therefore we can
guarantee a minimum triangulation angle for u. Second, the k selected cameras for u have
roughly equally distributed viewing angles to n(u). This is beneficial for automatic feature

matching because the viewing angles between neighboring views cannot be arbitrarily large.
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Finally, this formulation can be casted to a submodular coverage problem and therefore
can be efficiently optimized as we show in the next section.

The clustering can be obtained for example by an equal discretization of the viewing
angle into a histogram of k bins. Alternatively, a standard cluster algorithm that provides

a constant number of clusters like k-means [63] can be applied.

5.1.3 Finding Optimal Viewpoints

Finding the smallest set A* C A such that each point u is covered from k cameras is
NP-hard and therefore only approximately solvable. Mathematically, this can be written

as follows:

A* = argmin [A| s.t. F(A") =Y Cyu(A%) = Uk, (5.3)
As€P(A) wel

where P(-) generates the power set of A and therefore contains all possible sub-sets of A.
The function Cy,(A*) returns the number of the covered clusters of point u given A*. Hence,
the maximum value for each point is k and the sum over all u € U is |U|k. Figure 5.4 gives
an example for C\,(A) for a single point u.

Although the problem is a submodular maximization problem an therefore NP-hard,
it is approximately solvable by a greedy optimization approach. Despite its simplicity,
the greedy optimization guarantees an upper bound on the solutions quality. Hence, we
re-formulate Equation 5.3 to an optimization problem, where the objective function F'(A*)

has to be maximized with the constraint that |.A*| is small:

F(A") =Y Cu(A*) = 5(Ulk). (5.4)
uelU

Starting with an empty set A* = {0}, the greedy optimization adds the element s € A to
A* that in each iteration maximizes F'(A*). The algorithm iterates until F'(A*) > o(|U|xk)
where 0 is typically set to 0.95 which means that 95% of all points have to be covered.
For finding the next best element s, the naive implementation has to evaluate F'(A* U {s})
for each s € A which can be computational expensive if A is very large. Thanks to the

submodular nature of F'(A*), the evaluation can be sped up using lazy evaluations [79].
Maximizing Equation 5.4 guarantees that each point u is visible in at least k£ cameras

from different view points but it does not ensure that the resulting epipolar graph of A*
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Figure 5.4: Given a set A*, C,(A*) returns the number of clusters that are occupied by
elements in A*. Lets assume in this example A* = {S5, Ss, S15, Sao} then A* covers two
of four clusters and therefore C,(A*) = 2

is not fragmented into subgraphs. To ensure this important property, we constrain the
viewing angle and the overlap of the selected cameras in the greedy optimization: instead
of adding s € A that maximizes F(A* U {s}) directly, we require that s has a certain
image overlap to an element in A* and at the same time does not exceed a certain viewing
angle. This formulation has the advantage that each additional view can be registered
within the previously chosen subset A*. Hence, incremental reconstruction algorithms like
our method proposed in [36] can be used to perform the reconstruction already during
acquisition.

From an algorithmic point of view, these constraints can be easily included in the greedy
optimization. Instead of testing each s € A if it maximizes F'(A* U {s}), we build in each
iteration a subset A. C A that fulfills our requirements concerning overlap and maximum
angle. Then s. € A, is selected that maximizes F(A* U {s.}). Adding the constraints to
the optimization problem violates the property of submodularity, where we will discuss the

consequences later in the experimental section.

The exact formulation of the constraints depends on the implementation details of the
underlying SfM pipeline. In SfM pipelines like [89] that are designed for unordered im-
ages, an epipolar graph is calculated to determine the spatial relationship between images.
Therefore, the constraints must be chosen such that it is possible to estimate for each
image at least a single fundamental matrix. The requirement therefore is that a minimum
number of putative feature correspondences can be determined between image pairs. This
depends on the texture of the surface (which cannot be controlled by us) but also on the
overlap and on the viewing angle between the image pairs. Hence, we force that a camera
s € A, must have at least n points in common with at least a single camera in A* which

have a triangulation angle lower than 8. In the experiments, we set § = 30 degrees which
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is motivated by the maximum angle that is matchable using STF'T. The number of common
points is determined as a ratio of common visible points as follows. Given camera K; and
K that observe S; and S points respectively, then n is set to n = a min(|S;], |S}|) where
« describes roughly the common overlap between both images and therefore is a value
between 0 and at most 1. In the experiments we set @ = 0.33. But also other methods

like [69] can be used to measure the pair-wise image overlap.

Algorithm 1 outlines the selection procedure in pseudo code. After initializing A* as
an empty set (Line 1), in each iteration the set A, € A is selected that fulfills the defined
constraints (Line 3). Then the element s’ € A, is identified that maximizes the utility
function F(AU{s'}) (Line 4). The maximum element is finally added to A* (Line 5). This
procedure is repeated until F'(A*) > 0(|U|k) is reached. In Algorithm 2, it is outlined how

the set A, is determined.

Algorithm 1 Constrained view selection algorithm.
AT = {0}
repeat
A. = constraints(A*, A) {see Algorithm 2}
s’ = argmax F({A* Us})
s€Ac
A* = {A*U s}
until F(A*) = §(|U|k)

L

Algorithm 2 constraints(A*, A). Formulation of the pairwise constraint function
constraints(A*, A). The function parameters are the current set of selected cameras A*
and the set of all cameras A. The function return A, which consists of all cameras that
have enough overlap to another camera in A*. commonpoints() returns the number of
common points of s and b whose triangulation angle is smaller than 5.

1: AC = {@}

2: for all s € A\ A* do
3: for all be A* do
4 if commonpoints(s,b, 3) > n then
5 A, ={A.Us}
6: end if
7
8:

end for
end for
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5.2 Experimental Evaluation

We show in this section that our algorithm determines a set of camera positions that al-
lows a state-of-the-art SfM algorithm to compute an overall connected reconstruction. We
analyze how the constraints on the camera positions concerning overlap and the maximum
viewing angle, impact the optimization result. Furthermore, we show that the greedy
optimization of our proposed objective function is beneficial in several aspects. Further-
more, we compare our method to a state-of-the-art view planning approach that directly
minimizes the uncertainty of the reconstruction.

We tested our method on two synthetically generated datasets but also in a real-world

outdoor experiment which shows the limitation of our method.

5.2.1 Dataset

For evaluating our method, we selected two buildings of medium size. The first mesh
represents a house that has been reconstructed by an SfM approach [41] using 273 images
captured by a manually controlled MAV. From the resulting semi-dense point cloud [22], we
determine a surface mesh containing 14 871 faces using the Poisson surface reconstruction
algorithm [46]. As the second object of interest, we use the surface mesh of a medieval
tower as shown in Figure 5.5(a). Both meshes are given in metric scale.

Since we generate for each point u € U a potential camera view that is fronto-parallel to
the underlying triangle, it may happen that cameras are generated at sharp edges that do
not overlap. For example, at the corner of a house where two walls intersect, the resulting
camera views are perpendicular to each other. To bypass this problem, we smooth the
prior mesh using an Laplacian kernel as illustrated in Figure 5.5(a). For all experiments,
we consider a point u as visible in a camera K; if A\ < 30 degree and wu is not occluded
by any part of the mesh. For each point u, we build £k = 4 clusters of cameras with
respect to the angle between the surface normal and viewing angle of the camera. We use

k-means [63] to find the clusters in the one dimensional data.

5.2.2 Constrained vs. Unconstrained View Planning

In the first experiment, we investigate how strong our constraints that guarantee a single,

connected reconstruction influence the number of selected cameras. Since the constraints
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(a) (b)

Figure 5.5: Input mesh medieval tower. (a) Original input mesh. (b) Smoothed input mesh
that is used for planning. The smoothing avoids the creation of cameras whose viewing
angles are too large to allow feature matching.

violate the submodularity property of F/(A*), unfortunately the greedy optimization gives
no theoretical guarantees on the quality of the solution. However, we show that the prac-
tical impact of the constraints is relatively small.

For this experiment, we create cameras that are located at 30 m distance to the objects
surface. As intrinsic parameters we choose a standard wide angle consumer grade camera
with an aperture of 76 degree. The potential camera positions K for the detached house
are shown in Figure 5.6. For each triangle of the mesh we computed the number of cameras
that observe it and visualize it as a color coded mesh (Figure 5.8(a)). Here, we only take
cameras into account where the viewing angle and the normal of the triangle is smaller
than thirty degrees. Obviously, planar parts are seen by a very large number of cameras
whereas parts with a high curvature are seen by less cameras. However, as can be seen in
Figure 5.8(b), even those high curvature parts are visible in more than 10 cameras. Only
parts below the roof overhang are seen by less cameras which is because we restrict the
cameras to be located above the ground plan.

In our first experiment, we run our method as proposed in Algorithm 1 without using
the constraints that guarantee pairwise overlap, i.e. we set A, = A\ A*. Hence, the

next best camera s’ is selected from all potential view points K. In this configuration,
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Figure 5.7: Selected view points for the detached house.
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(a) (b)

Figure 5.8: Redundancy of visibility. (a) Number of cameras that observe a certain triangle
color-coded. Red parts are seen by more than 500 cameras and dark blue parts are seen by
less than 10 cameras. (b) explicitly marks triangles that are seen by less than 10 cameras
in red.

95% of all points are covered by selecting only 133 cameras from around 12232 potential
view points in K. In the second experiment, we include our constraints as described in
Algorithm 2 into the selection process. Since the additional constraints reduce the size of
the solution set, we expect that the number of required cameras to reach 95% coverage,
increases. However, we found that the number stays constant in this example, i. e. again
133 cameras are selected to reach the expected coverage. The resulting set of cameras is

shown in Figure 5.7.

We run the same experiment also for the medieval tower. Here, our set of potential view
points contains around 4 732 cameras. In the unconstrained case, 292 camera view points
are selected whereas in the constrained case 322 view points are required to cover 95% of the
points. Although the constraints cause an overhead of about 10%, the impact in practice
is relatively small because the last 30 selected cameras only increase the coverage rate from
94.21% to 95%. Figure 5.9 shows the coverage for the constrained and unconstrained case
after selecting 292 camera views. As the figures also express, the difference in coverage is

very low.

Figure 5.10 shows how the constraints influence the evolution of the objective function
F(A*). In the unconstrained case, the objective function is submodular whereas in the
constrained case, the objective function is only monotone. The monotonicity shows that
even in the constrained case a full coverage is obtained under the assumption that their

exists a graph that connects all cameras.
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(a) (b)

Figure 5.9: Final coverage with (a) constraints and (b) without constraints. Blue parts
are completely covered, triangles where three of four clusters are covered are turquoise.
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(a) objective function of medieval tower

Figure 5.10: Values of objective function plotted against the number of selected cameras
in the unconstrained (blue) and constrained case (red).

5.2.3 Greedy optimization

Optimizing our utility function with the greedy optimization scheme has various advantages
which we will discuss in this section.

Since the greedy optimization is working in an iterative manner, we can stop the algo-
rithm at any point in time and we obtain valid set of cameras, i.e. the greedy optimization
is an anytime algorithm. Furthermore, the greedy optimization in conjunction with the

submodular property of our objective selects cameras first, that increase the objective
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function at most (see Figure 5.10). Hence, we can stop the algorithm at a certain iteration
when we obtain a solution that fulfills a certain stopping criterion, for example if 95%
of the points are covered. Furthermore, the greedy optimization implicitly results in an
importance ordering. Cameras selected first, often cover more parts than cameras that
are selected at a later point. This is a nice property also for our interactive SfM method
because if the images are acquired in the ordering obtained by the optimization, the first
images already cover a large part of the scene. Figure 5.11 illustrates the coverage at

different iterations of the greedy optimization.

To demonstrate the efficiency of the greedy optimization method, we perform the exper-
iment of the previous section again but choosing cameras randomly. In the unconstrained
case, the greedy approach selected 133 cameras to obtain the full coverage for the detached

house. When selecting 133 cameras randomly from the set K on average 72.8% of the

(a) 20 (b) 40 (c) 60 (d) 80 (e) 100 (f) 300

(g) 20 (h) 40 (i) 60 (j) 80 (k) 100 (1) 300

Figure 5.11: Evolution of coverage value C;, of the medieval tower from two different view
points. The coverage increases over time and already after 100 selected view points a large
part is covered. Triangles where C, = 0 are red, C,, = 1 are yellow, C), = 2 are green,
C, = 3 are turquoise and C, > 4 are blue.
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points in U are completely covered. We additionally evaluated how many cameras we have
to be select randomly to obtain a coverage rate of 95%. The result is that 418 cameras
have to be selected on average, with a standard deviation of 38, to obtain the required
coverage rate. Both experiments were repeated 100 times. This experiment shows that the

greedy optimization method is valuable to minimize the number of required cameras.

5.2.4 Evaluation of Pairwise Constraints

In order to demonstrate that our pairwise constraint meets the requirements of a state-of-
the-art SfM pipeline to obtain a single non-fragmented reconstruction, we run the following
simulation. Given the a-priori mesh, we texture it randomly and render the model from the
calculated view points. The random texture ensures that our assumption that the surface
vields in equally spaced feature points holds. The rendered images serve as input to a
standard SfM pipeline for unordered images. Figure 5.12 shows some rendered example
view points of the medieval tower.

The epipolar graph in Figure 5.13 shows for the medieval tower that our proposed pair-
wise criterion is sufficient to generate an epipolar graph that allows to integrate all images

into a common non-fragmented reconstruction. Furthermore, the constraints generate an

Figure 5.12: The a-priori mesh of the medieval tower rendered with random texture from
the selected view points.
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epipolar graph such that the images can be processed by our interactive SfM approach.
This can be seen from the lower triangular part of the matrix. This part encodes the
estimated epipolar geometries of an image to previously selected images. Because for each
image at least a single epipolar geometry to a previously selected image was found, it fulfills

the requirements of our interactive SfM pipeline.

5.2.5 Comparison to Direct Uncertainty Minimization

Since our method optimizes the accuracy only implicitly by selecting cameras from different
viewing directions, we compare our method to an approach that minimizes the uncertainty

of an observed point directly. As stated by Hollinger et al. [33], this is state-of-the-art for

(a) (b)

Figure 5.13: Epipolar graph of the synthetic experiments of the medieval tower.(a) Lower
triangular part of the epipolar matrix. (b) The number of estimated epipolar geometries
to previously selected images (color-coded). Red means a high connection to previously
acquired images and blue indicates a low number.
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Figure 5.14: Evolution of the interactive SfM result using the planned view points. All im-
ages can be added sequentially which shows that our pairwise overlap criterion is sufficient
to get a single reconstruction.

planning methods.

The uncertainty of the position of a triangulated point is encoded in the covariance
matrix. For example, Beder and Steffen [9] showed how the covariance matrix can be
calculated under the assumption that the 2D matching uncertainty is Gaussian distributed
and the cameras have a very low uncertainty. Given the covariance of a point, Wenhardt et
al. [103] derive three accuracy criteria which are related to the determinant, the eigenvalues
or the trace of the covariance matrix. Since the conclusion states that all criteria perform
equally well under the assumption that cameras can only be positioned on a sphere around
the object, we decided to minimize the trace of the covariance matrix. Another reason to

minimize the trace of the covariance matrix is that this criterion is typically submodular
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IA]

Figure 5.15: The uncertainty of a triangulated point is infinity if the point is seen by less
than two cameras (red curve). In that case, we approximate the uncertainty by a linear
function (blue).

as shown in [55]. Therefore, it can be directly used in our framework as an alternative

objective function. Hence, our alternative objective function is

F/(A*) = tr(cov(u, AY)), (5.5)
uelU

where tr(-) is the trace of the covariance matrix cov(-) of point w. In the following, we
refer to this alternative objective as direct uncertainty minimization. The difficulty of
minimizing this objective function is that the covariance of a 3D point can be calculated
only if the point is visible in two or more images. If the point is not visible in any camera, its
uncertainty is infinite. But even if the point is visible in a single camera, the uncertainty
in the depth direction remains infinite and therefore the trace of the covariance is still

infinite. This property violates the submodularity property of diminishing returns:
VACBCS,s #B:F(AU{s'}) - F(4) > F(BU{s'}) — F(B). (5.6)

Starting with an empty set A = {(}} and adding a single camera s’ does not improve F(A):
F(A)— F(AU{s'}) = 0. Whereas if | B| = 1 and adding a second camera s', this improves
F(B) from infinity to a bounded uncertainty: F(B) — F(B U {s'}) > 0. Hence, to bypass

this problem, we modify Equation 5.5 as follows:

F(A%) =) G(AY), (5.7)

uelU
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where

S A%+ b if |AY] < 2

G(A") = (5.8)

tr(cov(u, A*)) else
and A} is the set of cameras where w is visible in. This means if the number of cameras
that observe u is smaller than two, we approximate the uncertainty by a linear function.
The negative slope § must be larger than the maximum gradient that can occur in the
case of |A%| > 2. We can easily find such a § by estimating the worst-case accuracy when
triangulating a point with two cameras with a Monte Carlo simulation and then fitting a
line through this point and the point (3,0) which is the ideal point where three cameras are
sufficient to determine the points location with zero uncertainty, which will be impossible.
Figure 5.15 visualizes Equation 5.8. However, each linear function which passes through
x = 2 with a larger gradient than the maximum that can occur in the case |A}| > 2 is
valid.

We repeated the experiment with the detached house using our proposed approach and
the direct uncertainty optimization. We stopped both algorithms after selecting 150 camera
positions. Figure 5.16 shows the performance values for both algorithms. Figure 5.16(a)
illustrates that after the selection of 150 cameras approximately the same number of points
are not reconstructable, i.e. they are either never seen by any camera or by just a single
camera. The histogram also shows that our approach finds a distribution of camera views
such that more than 12000 points are seen by 9 or more cameras whereas this value for
the direct uncertainty optimization is only 10000. This demonstrates that the overall
redundancy obtained by our method is higher than optimizing Equation 5.8. This higher
redundancy is also reflected in the point-wise accuracy that is shown in Figure 5.16(b) and
Figure 5.16(c). These plots illustrate the mean trace of the covariance matrix of all points
that are seen by two or more cameras, i.e. |AS5| > 1. In case of the direct uncertainty
optimization, the gradient of the linear function in the case that |A}| < 2 is set to a
high negative value. This favors the greedy optimization to select cameras first, such that
each point is seen at least two times. Therefore, the mean accuracy of the individual
reconstructable points at the beginning is relatively high. Nevertheless, the mean accuracy
of all points after selecting 150 cameras is twice as much higher than the accuracy obtained

by our method.

Since we are interested in reconstructions whose accuracy is equally distributed over
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the scene, the standard deviation of the accuracy should be low. Figure 5.16(d) and
Figure 5.16(e) demonstrate that the standard deviation is much higher when performing the
direct uncertainty optimization. When stopping the algorithm at 150 selected cameras, the
standard deviation of the accuracy is two orders of magnitude smaller using our approach.
This demonstrates that the selection of cameras that are equally distributed locally around

a point reduces the mean uncertainty as well as the variance of the uncertainty.

Beside an equal distribution of the uncertainty, we are also interested in a set of cameras
that is well suited for pair-wise feature matching. One factor for reliable feature matching
is that the view distortions between the images should be small. To evaluate the degree
of the view distortion, we perform the following experiment. Given a point u and all
selected cameras A} that observe u, we want to determine the matching ordering of the
cameras such that the sum of the pair-wise triangulation angles and therefore the pair-
wise view distortion is as small as possible. Figure 5.17 shows an example of such an
ordering. Finding the optimal ordering is an instance of the traveling salesman problem
where the nodes are the cameras and the edge weights are the pair-wise triangulation
angles. Since this is not efficiently solvable, we approximate the search by choosing each
camera as starting point and determine the shortest path that includes all cameras using
Dijkstras [17]| algorithm. The resulting path is the ordering where the pair-wise view
distortion is as small as possible. The best case is, from a feature matching point of view,
if all edges in the path are zero, i.e. all cameras have the same viewing direction. To
provide a quantitative result for each camera network, we calculate for each point u the

shortest path P(u) and calculate the mean path length:

%Z 3 w(e), (5.9)

ueU e P(u)

where e is an edge of the shortest path P(u) and w(e) is the weight, i.e. the triangulation
angle of the edge; m gives the overall number of summed up edges. Therefore this formula

calculates the mean path length.

Figure 5.16(f) shows how this value changes in relation to the number of selected
cameras. In our approach the value is nearly constant at 19 degrees whereas the value
of the alternative accuracy optimization behaves linearly. At the beginning the average

pair-wise triangulation is relatively large and gets smaller the more cameras are added to



5.2. Experimental Evaluation

133

14000

12000 W Alternative

10000 | ®OUrs

8000
6000
4000
2000

points

0.3

0.25
—— Ours

o
S o
SN

mean tr(cov(u))

o
PN

0.05

— Alternative

0
1 12 23 34 45 56 67 78 89 100111122133144

cameras

(b) Point-wise accuracy

02

018 = Ours

0.16 = Alternative

0.14
0.12

0.08
0.06
0.04
0.02

0

std tr(cov(u))

cameras

(d) Point-wise accuracy

1 12 23 34 45 56 67 78 89 100111122133144

—— Ours

5 — Alternative

0
1 11 21 31 41 51 61 71 81 91 101111121131141

cameras

(f) Average pair-wise triangulation an-

gle

cameras

(a) Visibility

1

0.1 —— Ours
—— Alternative

0.01

0.001

mean log(tr(cov(u)))

0.0001
1 12 23 34 45 56 67 78 89 100111122133144

cameras

(¢) Point-wise accuracy (log scale)

! —— Ours

—— Alternative
0.1
0.01

0.001 '\'W

0.0001
1 12 23 34 45 56 67 78 89 100111122133144

cameras

std log(tr(cov(u)))

(e) Point-wise accuracy (log scale)

——Ours

—— Alternative
1 11 21 31 41 51 61 71 81 91 101111121131141

cameras

(g) Standard deviation of pair-wise tri-
angulation angle

Figure 5.16: Comparison between our approach and the objective function of Equation 5.8.
(a) histogram of redundancy after selection of 150 cameras. In both approaches most of
the points are visible in more than 9 cameras. (b) point-wise accuracy evaluation. As
expected the point-wise accuracy for all points that are seen by two or more cameras is

a bit lower when optimizing for the accuracy directly.

(f) mean triangular distance between cameras

However, the difference is low.
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A*. This again shows that our selected cameras are better distributed in the scene. We
also evaluate the standard deviation of the average triangulation angle which is shown
in Figure 5.16(g). We observe that the standard deviation from the mean triangulation
angle is smaller with our method which demonstrates that the cameras are more equally

distributed in the scene.

K
K3 2

K, ‘ * | K, : .v621 K
3 8, “
Figure 5.17: Optimal ordering of cameras such that the pair-wise view distortion is as small

as possible. In this case, the following matching order minimizes the sum of the pair-wise
view distortions: {K1, Ko, K3, K4}.

The impact of the more equally distributed images is also measurable in the synthetic
experiment. Similar to the evaluation of the pair-wise constraint in Section 5.2.4, we
synthetically render 150 images of both camera networks and reconstruct them using a
state-of-the-art SfM method. The epipolar graph obtained by the images of our approach
contains 5813 edges, i.e. 38.75 edges (fundamental matrices) per image on average. In
contrast when using the direct uncertainty minimization, the epipolar graph contains only
5346 edges which are roughly 8% less compared to our approach. We also observe an
improved number of measurements per 3D point when using our approach (Figure 5.18).
The reconstructions of both methods contain about 40% of 3D points that are visible only
in two images. But the reconstruction obtained by our camera network contains 25% points
that are visible in nine or more cameras compared to 20% of the alternative approach. The
finding that our method results in more high-redundant 3D points coincides with the result
of the planning process. During the planning process our approach also generates more

high-redundant points than the alternative approach (see Figure 5.16(a)).

5.2.6 Real-world Experiment with a MAV

The synthetic experiments that we performed before assume that the acquired images are

taken at the exact calculated camera positions. However, when acquiring a set of images
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Figure 5.18: Distribution of measurements per point. The reconstructions of both camera
networks contain about 40% points that are only visible in two images. However, the
reconstruction of the camera network obtained by our approach contains 25% points that
are visible in nine or more cameras whereas the reconstruction of the alternative approach
contains only 20% of such redundant points. This supports our argument that our approach
allows better feature matching.

with a Global Positioning System (GPS) controlled vehicle like an MAV, inaccuracies occur
at different steps. First, in order to generate a camera plan where the camera positions are
given as GPS coordinates, the prior mesh where the planning is based on, has to be geo-
referenced, i.e. the coordinates of the mesh are also given in GPS coordinates. An error
in the geo-referencing directly leads to erroneous camera positions. The second source
of inaccuracy is the absolute position uncertainty of a standard GPS receiver which is
about 5 to 10 meters. This can be potentially reduced to 1 to 2meters by incorporating
additional sensors like an IMU or using a differential GPS. Nevertheless, for the high-
resolution reconstruction of small objects of interest like a detached house whose size is
about 10 to 15 meters, the positioning with standard GPS is too low to guarantee that
the calculated and acquired images are identical. Beside the errors in the translational
positioning, rotational errors have a large impact. Especially a positioning error at the
yaw axis which is controlled with a magnetic compass on a MAV, might change the view
point drastically. In the worst case, the camera does not even observe the object of interest

anymore.

In order to demonstrate how important an accurate positioning is, we performed the
following experiment. We reconstructed a detached house from 274 images using SfM,
densified the result with PMVS [22] and extracted a surface mesh using the Poisson surface
reconstruction [46]. We used [101] to geo reference our mesh. For view planning, we set

the GSD to 6 mm which results in a camera distance d = 15m. The camera we used for
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image acquisition is a Panasonic DMC-LX3 still image camera, which has a resolution of

10Mpx and a 24 mm lens.

By running our view-planning algorithm, we obtain 133 camera poses that are ap-
proached autonomously by an MAV. Given the 133 acquired images, the applied SfM
pipeline reconstructs 20,762 feature points. However, only 81 of the 133 camera positions
can be integrated into common reconstruction. We believe that this happens because of
the positioning inaccuracies. The example in Figure 5.19 shows that the expect view point
and the one which has been acquired by the MAV. In horizontal direction both images
differ by around 12%.

To attenuate this problems we propose two ideas. First, the positioning accuracy has
to be increased by a more accurate GPS for example. Another possibility would be to
register the current image against the prior knowledge mesh to get a position that is closer
to the pre-calculated camera position. However, since we are dealing with an MAV that
is moving in turbulent air, there will always be an uncertainty in the positioning. Hence,
our second idea is to consider the expected positioning accuracy already during the view
planning. The idea here is to rate the potential view points according to the robustness
to location changes. For example, a view point that observes only a small part of the
object is more susceptible for localization errors than a view that shows the overall object.
Figure 5.20 shows two views where one is stable against view point changes but the other
one will change drastically if the view point changes only slightly. By favoring stable views,

the probability that the reconstruction splits into different parts will decrease.

Figure 5.19: Difference between expected and acquired view. The real and the expected
view are shifted around 12% of the image width.
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5.3 Conclusion and Future Work

In this chapter, we presented a view planning approach that takes care of the requirements
of SfM. These are, on the object side, redundancy and a a triangulation angle that allows
feature matching. On the image side, our view planning ensures overlapping images and
maximum viewing angles such that an epipolar graph is generated that is not fragmented.
We integrated these constraints into submodular optimization problem which allows us to

efficiently find a small set of cameras that are suited for a SfM reconstruction.

We found that the formulation as a submodular optimization problem and solving the
problem with a greedy approach has several advantages. First, the greedy optimization is
an anytime algorithm, i.e. even if the algorithm is stopped before the maximum value of the
objective function is reached, the selected set of view points can be used to obtain a partial
but a single connected reconstruction. Second, the iterative selection gives an ordering
of the view points: view points selected at the beginning are more important for the
exploration whereas later selected views are more important to guarantee the redundancy
for each point. And finally, intermediate results like coverage can be visualized during the
selection process. This helps the user understand where view points are important and

which parts are difficult to capture.

Our proposed method is a first starting point for large-scale view planning for auto-
mated mobile image acquisition. As we have shown in the last experiment there are still
issues to solve in the future. For example, the robustness to positioning errors of the cam-

era with respect to the calculated camera position has to be increased as the experiment

(a) (b)

Figure 5.20: Stable vs. unstable view points.
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in Section 5.2.6 shows. Furthermore, our criterion for full coverage is a very strict criterion
and often requires a large number of cameras as we have seen in the experiments. Hence,
one could integrate also add additional criteria for optimization like the uncertainty of the
triangulated point. Finally, the combination of the interactive SfM with this view plan-
ning method could be beneficial to consider additional impact factors like the texture of

the environment in the planning.
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Conclusion

The presented thesis deals with the problem of reconstructing large-scale scenes with high-
resolution still images using Structure-from-Motion (SfM). The thesis concentrates on
applications where images can be deliberately acquired for the task of 3D reconstruction like
scene documentation or geological surveys. This implies that the image acquisition process
is a part of the reconstruction pipeline. In this theseis, two methods were introduced that
exploit the property that the image acquisition is controllable.

The key findings of our work are presented in Section 6.1 and an outlook on further

potential research directions in image-based reconstruction is given in Section 6.2.

6.1 Summary

Although SfM is a well-investigated research topic in computer vision, there exists still
problems when using SfM for applications like architectural reconstruction or scene doc-
umentation in 3D where images are typically acquired deliberately for the reconstruction
process. The property that the images are acquired especially for the reconstruction task,
raises problems but the same property can be exploited to attenuate the problems as it
is shown in this thesis. Typical problems that often occur are incomplete, fragmented or
inaccurate reconstructions. The main reason for these errors is that the acquired input
dataset is not sufficient for the reconstruction. Hence, to make SfM more reliable for the
aforementioned applications, the reconstruction and the image acquisition process have to
be coupled. Therefore, this thesis deals with the question how the image acquisition and

the reconstruction can be interleaved to make SfM more reliable.
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The first introduced approach replaces the standard feed-forward processing pipeline by
an interactive, closed-loop method that adds images incrementally and in real-time. This
method supports a user in three ways. First, the user instantly gets a feedback if an ac-
quired images can be used to extend the existing reconstruction. Second, the surface mesh,
that is incrementally extracted from the sparse triangulated feature points, visualizes the
reconstruction such that even non-expert users can interpret the reconstruction’s quality.
And finally, quality parameters like the ground sampling distance and the redundancy can

be visualized on the extracted surface.

The users that acquired image datasets with the support of the interactive SfM method,
experienced that the instant feedback is very helpful, especially when the scene is geomet-
rically complex or in case it is not obvious if the texture is sufficient for automatic image
alignment. The possibility to check the reconstruction’s quality on-site is a great benefit
when performing reconstructions for commercial reasons because it reduces the probability
that a re-take of the images is required. Furthermore, the system is not only helpful for
expert users but even more for non-experts. Non-experts often acquire image datasets that
are not suited for a reconstruction. In the batch-based processing, the user experiences
only the final result which potentially does not meet the users requirements. In that case,
a non-expert user often has no idea about the reason for the error. In contrast, the novel
interactive SfM visualizes the contribution of each individual image for the whole recon-
struction. Therefore, the user gets quickly an intuition about the image parameters that

lead to a successful reconstruction.

From a technical point of view, the interactive SfM is based on two novel methods which
both can be also used for other tasks. The novel image-based localization method registers
low-resolution images to SfM results that are obtained from high-resolution images much
faster and more reliable than existing methods. Beside it application in our interactive
SfM approach, the method can be also used for registering low-quality video streams to 3D
point clouds obtained from high-resolution data. In the future, more and more low-quality
cameras will be used in devices like mobile phones or wearable gadgets. Hence, we expect
that for the localization of such images, our approach also delivers better a performance

then existing approaches.

The second important contribution of the interactive SfM is the fully incremental mesh

extraction from sparse and noisy 3D points. Thanks to the simplicity and the low compu-
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tational complexity, this approach is suited for applications in robotics or in Augmented
Reality where the surface extraction can now be a lightweight process. Although the ex-
tracted mesh is not as detailed as a dense 3D reconstruction, it delivers significantly more
information about a scene than a plain and sparse point cloud because the mesh considers
3D points as well as visibility information. In the future, the surface mesh can be used
in AR for occlusion handling, or in robotics for path planning. Furthermore, the surface
information could be used in many applications as prior knowledge. For example, the mesh
can be used to easily segment the scene in planar regions. This information can be used

for example to initialize a multi-directional planesweep approach like [23].

The second proposed approach in this thesis, is a view planning method. Many existing
view planning approaches for image-based reconstruction mainly consider the completeness
and the accuracy of the reconstruction while the problem of wide-baseline feature match-
ing is often ignored. However, we found that in case of reconstructions from wide-baseline
images, most issues are related to insufficient feature matches. Hence, the approach that is
presented in this thesis considers the spatial distribution of the images such that problems
related to feature matching are avoided. The formulation as a multi-cover problem with
spatial constraints allows the use of efficient optimization schemes to determine a small
set of camera views that is suited for SfM. The experimental evaluation shows that the
proposed formulation creates camera sets that are more equally distributed over the scene,
compared to related algorithms that only take into account the accuracy and the com-
pleteness of the reconstruction. However, the real-world experiment with a Micro Aerial
Vehicle has shown that further research has to improve the robustness of the camera net-
work such that small deviations from the desired camera position do not degrade the whole
reconstruction. A further, more conceptual problem of off-line view planning for passive
image-based reconstruction is the uncertainty that is caused by object’s texture. Hence, in
future research a goal is to combine the interactive SfM with the view planning approach
to build a Next-Best-View method that takes into account not only the geometry of the

object but also the texture.

To sum up, the integration of the image acquisition into the SfM pipeline by perform-
ing (a) SfM interactively and (b) planning the view points makes the SfM result more
predictable. Since reliability is one of the major impact factors for the success of a tech-

nology, our work increases the chance that SfM will be used in the future for more and
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more applications. Nevertheless, for realizing a full system, several problems have to be

solved in future research which will be discussed in the next section.

6.2 Outlook

We build numerous 3D reconstructions for various applications during the work on this
thesis and meanwhile different types of issues which basically can be classified into two
groups occurred. The first class of problems is related to the creation of 3D data and the
second class is concerned with the processing of 3D data. In the following, we will have a
closer look on both problem classes.

We presented two methods that ease the image acquisition for SfM but right now, it
is still not completely automated. For example, for using SfM in the large with MAVs,
the image acquisition should be performed completely autonomously. To realize such a
system, the combination of our view planning with the interactive SfM into a Next-Best-
View system would be a first starting point. Hence, the actual reconstruction result of
the interactive SfM can be used to plan a camera path. This also allows to incorporate
additional knowledge about the scene like the type of texture which is not available when
performing an off-line view planning.

Another issue for some applications is the absolute accuracy of the obtained image-
based reconstruction, for example, when measuring objects like windows or doors in 3D.
Here, the main issue is the large number of parameters that are typically involved in a
reconstruction setting, which are for example the image features used, the parameters for
the bundle adjustment, the quality of the texture, the geometric complexity of the scene,
etc. Once the images are taken and the camera positions are calculated, it is possible to
estimate the uncertainty for camera and scene parameters. However, a practical application
that supports the user on site during the image acquisition by giving hints where to take
images such that a certain accuracy can be guaranteed, is still missing.

Current SfM pipelines work quite well if the scene is static and well-textured. However,
a large number of applications cannot guarantee these requirements. For example, when
performing SfM on scenes that contain a lot of vegetation, many of todays state-of-the-
art descriptors completely fail due to the self-similarity of the structure. Furthermore,

vegetation like trees is moving in the wind which violates the assumption of a static scene.
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Another issue are scene parts that are non-Lambertian like glass and mirrors. Especially
in the reconstruction of architectural scenes, reflecting surfaces are a major problem for
nowadays SfM pipelines.

A solution for this problem could be the fusion of different sensors for 3D reconstruction.
The number of sensors for 3D perception combined with the ongoing miniaturization and
increasing computational power will make the integration of several sensors possible in the
near future. The impact of a new 3D sensor on research has been impressively shown by
the Kinect sensor. But not only new sensors can be integrated to form novel systems, but
also methods of computer vision that are developed independently can be combined. For
example, optical flow and sparse SfM from wide-baseline images can be fused to obtain
more accurate results.

The increasing number of sensors combined with higher resolutions brings us to the
second type of problem which is the processing of data. Even existing sensors like the
Kinect create up to 210 000 3D measurements per image with a framerate of 30 Hz. Saving
this amount of data is demanding but even more important, processing and interpreta-
tion of the data is very challenging. The aim of many applications is to extract more
high-level information. For example one application is to match a CAD plan with the
actual reconstruction to identify differences between both. Hence, for this task a CAD
like representation of a building has to be derived. In general, for many applications the
full data is not required but only a semantically meaningful approximation. Hence, one
of the major research directions in the future is to find semantical descriptions of a 3D
scene for various tasks. So a first step to a full semantic interpretation is to bring methods
for 2D interpretation to 3D. But in further consequence, semantics obtained from the 2D

representation can also improve the 3D reconstruction results.
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Acronyms

SfM Structure-from-Motion

6DoF six-degrees-of-freedom

SIFT Scale Invariant Feature Transform

MAYV Micro Aerial Vehicle

AR Augmented Reality

SLAM Simultaneous Localization and Mapping
DT Delaunay Triangulation

GSD Ground Sampling Distance

GIS Geographic Information System

GPS Global Positioning System
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