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Abstract

Real-time 3D reconstruction and rendering of humans captured by a set of cameras is
important in a number of applications, such as virtual try-on and interactive mixed reality
systems. These applications create a virtual mirror by displaying a live representation of
the user embedded in an artificial environment. Image-based methods are frequently
used to perform reconstruction and rendering but suffer from poor performance at higher
resolutions. However, the performance of these methods is particularly important because
users perceive the latency between their own movements and the rendered images as
disturbing. Previous implementations computed every output image from scratch and
therefore did not reach their highest potential efficiency.

This thesis introduces novel methods to reuse information from previous images to im-
prove the performance of image-based rendering. The image-based visual hull algorithm
is a rendering method based on shape-from-silhouette reconstruction. This algorithm per-
forms reconstruction and rendering simultaneously, which is more efficient than executing
both steps separately. Combined with texturing, it generates novel viewpoints of the cap-
tured scene from arbitrary viewing angles. To improve the performance of the algorithm,
we exploit our knowledge of the input data. When users move in a virtual mirror scenario,
their motions are typically smooth and slow compared to the camera frame rate. Con-
secutive frames of such a video stream offer a certain amount of temporal coherence. To
exploit the coherence during image-based rendering, we introduce methods to detect in-
formation in the video streams that remains valid over time. By reusing this information,
the amount of required computations can be reduced considerably.

With the suggested efficient image-based rendering algorithms, various new applica-
tions become feasible, such as high fidelity telepresence systems or virtual mirrors. For
advanced applications, like virtual try-on systems and mixed reality augmentations, the
rendered image of a user must be augmented with virtual garments and accessories. This
thesis introduces the image-based augmentation process to augment users with previously
recorded image sequences. A major advantage of using recorded garment sequences over
manually modeled meshes is the short content creation time, which is on the order of
minutes. In combination with image-based rendering and image processing, we achieve
realistic augmentations that blend seamlessly with images of the user.
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Kurzfassung

Das Modell eines Benutzers in Echtzeit anhand von Kamerabildern zu rekonstruieren
und gleichzeitig darzustellen ist essentiell für die Virtuelle Realität und zeigt ein breites
Anwendungsspektrum. Virtuelle Umkleidekabinen und Mixed-Reality-Systeme basieren
zum größten Teil auf diesen Techniken. Diese Anwendungen zeigen ein aktuelles Bild
des Benutzers und erweitern es mit virtuellen, dreidimensionalen Inhalten. Bildbasierte
Anzeigeverfahren kombinieren Rekonstruktion und Darstellung, sind aber bei höheren
Auflösungen nicht schnell genug. Die Berechnungs- und Darstellungsgeschwindigkeit ist
dabei ein aktives Forschungsgebiet, da Benutzer interaktiver Systeme keine Latenz, z.B.
zur eigenen Körperbewegung, akzeptieren. Bisherige Implementierungen berechnen jedes
Bild von Grund auf neu und schöpfen daher nicht alle Möglichkeiten zur Beschleunigung
aus.

In dieser Dissertation beschreiben wir neuartige Verfahren um bereits berechnete Infor-
mationen zu nutzen um die Geschwindigkeit von bildbasierten Verfahren zu beschleunigen.
Der Visual-Hull-Algorithmus ist ein solches Verfahren und basiert auf Silhouettenbildern.
Zusammen mit Texturierungsverfahren erzeugt er neue Bilder einer Szene von beliebigen
Blickwinkeln. Um die Effizienz dieses Algorithmus zu erhöhen, wenden wir das Wissen
über die beobachtete Szene an. Benutzer bewegen sich gleichmäßig und langsam in Relati-
on zur Kamerabildrate. Zwischen einzelnen Bildern der Sequenz kommt daher häufig eine
so genannte zeitliche Kohärenz zustande. In dieser Dissertation beschreiben wir neuartige
Verfahren um die zeitliche Kohärenz in den Videodaten auszunutzen um die Geschwin-
digkeit der Bildgebung zu erhöhen. Dazu wurden Verfahren entwickelt um über die Zeit
stabile Daten zu identifizieren. Diese Daten können verwendet werden, um bildbasierte
Verfahren substantiell zu beschleunigen.

Durch diese Entwicklungen wurde es im Laufe der Arbeit möglich eine Reihe von neu-
en Anwendungsgebieten, zum Beispiel Videokonferenzsysteme oder Unterhaltungsgeräte
mit beweglichem Blickwinkel, zu erschließen. Fortgeschrittene Anwendungen, wie zum Bei-
spiel virtuelle Umkleidekabinen oder realistische virtuelle Umgebungen, erfordern es, den
Benutzer zusammen mit virtueller Kleidung und Gegenständen darzustellen. Zu diesem
Zweck entwickelten wir den Prozess der bildbasierten Augmentierung. Dieser erlaubt es
ein aktuelles Bild des Benutzers mit vorab erstellten bildbasierten Repräsentationen der
gewünschten Objekte in Echtzeit zu erweitern. Ein Vorteil dieses Verfahrens ist die kurze
Zeit, die benötigt wird, um ein Objekt, zum Beispiel ein Kleidungsstück, zu digitalisie-
ren. Durch Kombination mit den im Laufe dieser Dissertation entwickelten bildbasierten
Anzeigeverfahren geht ein virtuelles Objekt nahtlos in das Bild des Benutzers über und
ermöglicht somit einen bisher unerreichten Grad an Realismus.
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Chapter 1

Introduction

Contents
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Image-based visual hull rendering . . . . . . . . . . . . . . . . . 3
1.3 Temporal coherence in IBVH rendering . . . . . . . . . . . . . . 3
1.4 Image-based augmentations . . . . . . . . . . . . . . . . . . . . . 4
1.5 Publications about this thesis . . . . . . . . . . . . . . . . . . . . 5
1.6 Collaboration statement . . . . . . . . . . . . . . . . . . . . . . . 8

In the past few decades, the field of computer graphics has evolved tremendously.
Computer-generated images can be indistinguishable from photographs. Even for inter-
active applications, where subsecond computation times are required, the visual quality
reaches realistic levels. However, computer graphics are computed from synthetic models
that are typically created by artists. While these models can be textured with photographs,
the process is slow and is performed as part of the development of an application. Thus,
it is typically not possible for users to incorporate their own appearance into such appli-
cations.

During the same period of time, the field of computer vision also progressed consid-
erably. In particular, precise and robust methods of reconstructing surface models from
photographs emerged. Among other applications, these algorithms can be used to create
three-dimensional (3D) models of humans. Such models can be displayed with computer
graphics methods to allow users to appear in virtual worlds or to be surrounded by vir-
tual objects. Moreover, users can watch themselves from all sides with smooth viewpoint
motions.

1.1 Problem statement

The goal of surface reconstruction is to compute 3D models from two dimensional (2D)
images. This task can be regarded as the inverse of computer graphics and its image
synthesis process called rendering. As an inverse problem, surface reconstruction is con-
ceptually harder and more time consuming than image synthesis, among other issues.
However, interactive reconstruction in combination with rendering increases the sense of

1
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immersion by allowing users to see themselves and others moving and interacting in virtual
worlds.

Interactive reconstruction and rendering of humans is an important technology for a
number of applications, including interactive mixed reality systems that allow users to
see their bodies embedded in virtual worlds for entertainment purposes. Alternatively,
teleconferencing systems with 3D rendering of the participants, often referred to as telep-
resence, can create a more realistic form of remote communication. The major goal of
this project was to create a magic mirror that enables a virtual try-on application. This
application allows users to watch themselves from all sides wearing different garments on
the screen. Despite the project’s focus on a specific application, the methods described in
this thesis are suitable for all of the aforementioned applications.

Due to the increased sense of immersion, these real-time systems are more useful
than static reconstructions. However, the latency between capturing the real world and
producing the output image must be as low as possible for such applications for a number
of reasons. First, input precision benefits from a responsive system. Second, too much
latency may cause motion sickness. Finally, jitter in the output is simply undesired. Thus,
3D surface reconstruction and rendering must be as fast as possible while the visual output
quality must be sufficiently high to faithfully reproduce the user’s appearance.

To achieve this goal, we develop reconstruction and rendering algorithms that quickly
deliver images with high visual quality.

At the beginning of our project we installed ten color cameras to be able to obtain
high-resolution images of the user from all sides. Later, we extended the setup with
depth sensors and built another room equipped with up to seven Microsoft Kinect color
and depth cameras. Based on these two setups, this thesis introduces a range of novel
and improved rendering methods that create images of the user with seamless viewpoint
motions.

We focus on image-based rendering methods that combine reconstruction and render-
ing in a single step. To achieve the highest efficiency, we suggest exploiting the temporal
coherence in the videos to avoid recomputing every output image from scratch. Finally,
for our virtual try-on application we want the rendered images of the user and virtual
garments to blend seamlessly. Our goal is that it should not be possible to tell whether a
garment is real or not. Moreover, we want to be able to digitize existing garment mod-
els with the same hardware setup to avoid the labor-intensive task of modeling clothes.
Therefore, this thesis sets out to verify the following hypotheses:

1. Image-based visual hull rendering is suitable for free viewpoint rendering of
moving users and outperforms voxel-based reconstruction and rendering methods.
Moreover, it can be improved by depth sensors and lends itself to parallel execution.

2. Image-based visual hull rendering can be accelerated by exploiting the temporal
coherence of the input data.

3. Previously captured images can be used to augment users with garments. These
image-based augmentations can follow the user’s motions and blend in seam-
lessly.
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The following sections describe our hypotheses and how we evaluate these hypotheses
by implementing technical solutions.

1.2 Image-based visual hull rendering

For surface reconstruction from color cameras we choose the shape-from-silhouette class
of algorithms. Using silhouettes is a natural decision because we have a static background
and the algorithms are much quicker than stereo matching based on color consistency.
Voxel carving is a common method for shape-from-silhouette reconstruction due to its
simplicity and high level of performance.

The chained execution of reconstruction and rendering creates a pipeline that takes
images as the input and produces an image as the output. Image-based rendering methods
achieve the same goal but circumvent intermediate data representations, such as mesh
models or voxel grids. When immediate rendering is desired and a mesh or other data
structure is not needed by other components, image-based rendering methods can be faster
than a reconstruction and rendering pipeline.

From the class of shape-from-silhouette methods, we choose the image-based visual
hull (IBVH) algorithm, which creates an output depth map directly from silhouette images
without an intermediate representation. It therefore only computes the parts of the surface
that can be seen from the desired viewpoint and computes exactly one surface sample per
pixel. This behavior is particularly useful for processing video streams with low latency.
We hypothesize that in low-latency applications, it is more efficient to use IBVH rendering
than a sequence of voxel-based reconstruction and rendering for image generation. In
Chapter 3 we describe and evaluate this method.

IBVH rendering is an output-driven algorithm similar to raycasting. Therefore, it is
suitable for parallelization across multiple graphics processing units (GPUs). In addition
to standard parallelization methods, we suggest multi-frame rate rendering for an even
higher level of performance (see Chapter 4).

For view synthesis from a combination of color and depth cameras, we introduce the
concept of visual-hull carved point cloud rendering. This method utilizes many of the
advantages of depth sensors, including easier foreground segmentation and the ability to
capture concave regions, while also benefiting from the robustness of visual hulls and their
ability to hide the background scene (see Chapter 5).

1.3 Temporal coherence in IBVH rendering

The suggested view synthesis methods require quick IBVH rendering to avoid latency.
Previous IBVH implementations computed every output image from scratch and thus did
not maximize the efficiency of the system. When users pose and move in a multi-camera
system, their motions are typically smooth and slow compared to the camera frame rate.
This redundancy in the input video stream results in temporal coherence.

We hypothesize that exploiting the temporal coherence in input video streams makes
IBVH rendering more efficient.
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Our first method to exploit temporal coherence focuses on reusing visual hull patches
that remain static between two consecutive output frames. The major challenge is to
identify and distinguish static from moving regions before reconstructing the visual hull.
We achieve this goal by applying the IBVH algorithm to silhouette difference images to
create a motion detector that estimates a motion magnitude for each output pixel. This
detector can be used to decide whether a block of pixels should undergo a full IBVH
rendering pass or a more simple image-based rendering method. We use forward image
warping as an efficient way of reusing previous IBVH rendering results (see Chapter 6).

Image warping is limited to static surface patches. Exploiting coherence for surface
patches that move or deform over time is more difficult. Due to the unpredictability of
deformation, previous depth maps can not be reused reliably. A large fraction of visual
hull surface points (computed from the depth maps) can become invalid between two
consecutive frames. The IBVH algorithm computes the depth map directly from the
silhouette images, which means that without modifications of the original approach, there
is no stored data that stays valid over two consecutive frames. We analyzed the IBVH
algorithm and discovered several intermediate computation results that can be reused
from the last frame to reduce the number of computations. The resulting IBVH rendering
methods are more efficient than the original algorithm by exploiting temporal coherence
(see Chapter 7).

1.4 Image-based augmentations

After developing efficient image-based rendering algorithms, a range of applications can
be realized, such as telepresence systems, virtual mirrors or free viewpoint rendering in
entertainment applications. For the advanced mixed reality scenario of our virtual try-
on project, the rendered image of a user must be augmented with virtual garments and
accessories.

We hypothesize that the combination of capturing garments with cameras and image-
based rendering of the captured data enables a realistic virtual try-on application with
free viewpoint rendering. To achieve this task, we introduce an image-based augmentation
pipeline that uses previously recorded sequences to augment users. The appearance of a
piece of clothing is transferred from one user to another. Such an approach is challenging
in many respects. First, the best-fitting garment images must be found for the user’s
current pose. Next, the images must be rendered coherently and registered to overlap
realistically. Finally, the images of the user and the garment must be composed to form a
coherent output image.

A major advantage of using recorded garment sequences over manually modeled meshes
is the short content creation time, which is on the order of minutes. Image-based rendering
and image processing can be used to achieve a realistic augmentation quality at interactive
frame rates (see Chapter 8).

With the image-based rendering and augmentation methods described in this thesis,
we were able to verify these hypotheses. In the application section, Chapter 9, we show
a selection of applications that use these methods. Chapter 10 concludes the thesis by
summing up the contributions and achieved results.
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1.5 Publications about this thesis

The content and contributions of this thesis are based on a number of publications with
several co-authors. We grouped them into primary publications whose contents can be
found in its entirety in this thesis. Secondary publications are partly contained in this
thesis. The other publications of the author are not directly related to the thesis.

1.5.1 Primary publications

In this section the primary publications are listed along with their chapter in this thesis
and their contribution to it.

S. Hauswiesner, M. Straka, G. Reitmayr. Coherent image-based rendering of real-
world objects. Symposium on Interactive 3D Graphics and Games (I3D) 2011, San Fran-
cisco, California [90]

In this paper we introduced a motion-detector that discriminates static from moving
visual hull patches before executing the IBVH algorithm. This allowed us to reuse static
regions from the last frame by image warping (Chapter 6). As a result, the visual hull
reconstruction process became more efficient by exploiting temporal coherence, particu-
larly when the user moved rather slowly or only parts of his body. In addition, the paper
contains several detail improvements of our efficient implementation of the IBVH pipeline
(Chapter 3).

S. Hauswiesner, R. Khlebnikov, M. Steinberger, M. Straka, G. Reitmayr. Multi-
GPU Image-based Visual Hull Rendering. Proceedings of the Eurographics Symposium
on Parallel Graphics and Visualization (EGPGV) 2012, Sardinia, Italy [89]

In this work we introduced several methods to parallelize the IBVH algorithm over two
to four GPUs. To further increase the performance and achieve a better scaling behavior
with the output resolution, we suggested a multi-frame rate approach that decouples
viewing from rendering without synchronization (Chapter 4).

S. Hauswiesner, M. Straka, G. Reitmayr. Temporal Coherence in Image-based Vi-
sual Hull Rendering. Under major revisions at: IEEE Transactions on Visualization and
Computer Graphics (TVCG), Year 2012 [93]

In this article we developed the temporal coherence idea further. In contrast to our
previous method [90] we found ways to exploit coherence even for dynamic/moving visual
hull patches. To achieve this we analyzed the IBVH pipeline to find intermediate compu-
tation results that stay valid between two consecutive frames. These results can be reused
to avoid unnecessary computations (Chapter 7).

S. Hauswiesner, M. Straka, G. Reitmayr. Image-based Clothes Transfer. Proceed-
ings of the 10th IEEE International Symposium on Mixed and Augmented Reality (IS-
MAR) 2011, Basel, Switzerland [92]

and
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S. Hauswiesner, M. Straka, G. Reitmayr. Virtual Try-On Through Image-based
Rendering. Under major revisions at: IEEE Transactions on Visualization and Computer
Graphics (TVCG), Year 2012 [94]

In this paper that was later extended to a journal article we introduced an image-
based augmentation pipeline. It works by capturing users wearing a piece of clothing to
augment other users. The capturing process is very quick and cheap compared to manual
3D modeling. The augmentations are created by IBVH rendering and image processing to
adapt the garments shape to the new user. This way we achieve the realism that is inherent
to image-based rendering and correct overlap between user and garment (Chapter 8).

1.5.2 Secondary publications

These publications are partly contained in this thesis.

S. Hauswiesner, D. Kalkofen, D. Schmalstieg. Multi-Frame Rate Volume Render-
ing. Eurographics Symposium on Parallel Graphics and Visualization (EGPGV) 2010,
Norrköping, Sweden [88]

This paper introduces multi-frame rate volume rendering: a quick way of parallelizing
the rendering of complex volumetric datasets at the cost of visual fidelity. The parallel,
hardware-accelerated image warping implementation that is described in Chaper 6 was
initially developed for this approach. Volume rendering in the form of raycasting shares
important properties with IBVH rendering: it is an independent per-pixel operation and
computationally expensive. Therefore, improvements like parallelization can be used for
both algorithms (Chapter 4).

M. Steinberger, B. Kainz, B. Kerbl, S. Hauswiesner, M. Kenzel, D. Schmalstieg.
Softshell: Dynamic Scheduling on GPUs. ACM SIGGRAPH Asia 2012 papers, Singa-
pore [197]

For this work Markus Steinberger et al. developed a GPU-based scheduler that enables
more complex execution configurations than the conventional Nvidia compute unified de-
vice architecture (CUDA). For the guaranteed frame rate approach described in Section 6.2
we used the scheduling framework’s ability to make decisions depending on the elapsed
time during kernel execution.

B. Kainz, S. Hauswiesner, G. Reitmayr, M. Steinberger, R. Grasset, L. Gruber, E.
Veas, D. Kalkofen, H. Seichter, D. Schmalstieg. OmniKinect: Real-Time Dense Volu-
metric Data Acquisition and Applications. Symposium on Virtual Reality Software and
Technology (VRST) 2012, Toronto, Canada [108]

For this work we designed a room equipped with up to seven Microsoft Kinect devices.
To avoid interference between the infrared projectors, all devices are mounted on oscillating
poles. We used this setup to compare point cloud rendering to visual hull rendering and
to develop a combined algorithm (Chapter 5).

M. Straka, S. Hauswiesner, M. Rüther, H. Bischof. A Free-Viewpoint Virtual Mirror
with Marker-Less User Interaction. Proceedings of the 17th Scandinavian Conference on
Image Analysis (SCIA) 2011, Ystad Saltsjöbad, Sweden [200]
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In this work the multi-camera setup used in this thesis is introduced along with the
processing and display hardware. The low-level computer vision components are described,
like background segmentation and compensation for radial image distortion (Chapter 3).

S. Hauswiesner, M. Straka, G. Reitmayr. Free viewpoint virtual try-on with commod-
ity depth cameras. Proceedings of the 10th International Conference on Virtual Reality
Continuum and Its Applications in Industry (VRCAI) 2011, Hong Kong, China [91]

In this paper we suggested a simplified virtual try-on application that users can run on
their home PCs. It extracts a virtual avatar mesh by using the multi-camera system that
is used throughout this thesis. This avatar can be taken home by users and animated by
skeleton tracking from a Microsoft Kinect sensor. In addition to the multi-camera setup,
the application shares the view-dependent texturing implementation with this thesis.

1.5.3 Other publications

The author participated in different teams to research various topics that are not directly
related to this thesis.

J. K. Mühl, B. Kainz, A. Bornik, M. Grabner, S. Hauswiesner, D. Schmalstieg. The
Future of Volume Graphics in Medical Virtual Reality. World Congress on Medical Physics
and Biomedical Engineering, IFMBE Proceedings 2009, Munich, Germany

B. Kainz, M. Grabner, A. Bornik, S. Hauswiesner, J. K. Mühl, D. Schmalstieg.
Efficient Ray Casting of Volumetric Datasets With Polyhedral Boundaries on Manycore
GPUs. Transactions on Graphics, ACM SIGGRAPH Asia 2009, Yokohama, Japan

A. Hartl, L. Gruber, C. Arth, S. Hauswiesner, D. Schmalstieg. Rapid Reconstruction
of Small Objects on Mobile Phones. Proceedings of the Embedded Computer Vision
Workshop 2011, Colorado Springs, USA

B. Kainz, M. Steinberger, S. Hauswiesner, R. Khlebnikov, D. Schmalstieg.
Stylization-based ray prioritization for guaranteed frame rates. Proceedings of the
Non-photorealistic Animation and Rendering Symposium (NPAR) 2011, Vancouver,
Canada

M. Straka, S. Hauswiesner, M. Rüther, H. Bischof. Skeletal Graph Based Human
Pose Estimation in Real-Time. Proceedings of the British Machine Vision Conference
(BMVC) 2011, Dundee, Scotland

M. Steinberger, B. Kainz, S. Hauswiesner, R. Khlebnikov, D. Kalkofen, D. Schmal-
stieg. Ray Prioritization Using Stylization and Visual Saliency. Computers and Graphics,
Year 2012

S. Hauswiesner, P. Grasmug, D. Kalkofen, D. Schmalstieg. Frame Cache Manage-
ment for Multi-frame Rate Systems. Proceedings of the 8th International Symposium on
Visual Computing (ISVC) 2012, Crete, Greece
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M. Straka, S. Hauswiesner, M. Rüther, H. Bischof. Simultaneous Shape and Pose
Adaption of Articulated Models using Linear Optimization. Proceedings of the 12th Eu-
ropean Conference on Computer Vision (ECCV) 2012, Firenze, Italy

M. Straka, S. Hauswiesner, M. Rüther, H. Bischof. Rapid Skin: Estimating the 3D
Human Pose and Shape in Real-Time. Proceedings of the International Conference on 3D
Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT) 2012, Zürich,
Switzerland

1.6 Collaboration statement

Aside from the supervisor Prof. Gerhard Reitmayr, a number of colleagues contributed
to the hardware setup, software modules, publications and experiments that this thesis is
based on. In this section the most important collaborators are mentioned.

Matthias Straka was the closest collaborator and involved in the design of the hard-
ware setup and first computer vision modules. During the virtual try-on project, Matthias
Straka and the author of this thesis worked closely on many software modules and most
publications.

Dr. Bernhard Kainz designed and built the OmniKinect setup, a room equipped
with up to seven Microsoft Kinect devices. We used it to compare our IBVH method to
point cloud rendering and develop combined algorithms to utilize both color and depth
sensors. The collaboration lead to a joint publication OmniKinect: Real-Time Dense
Volumetric Data Acquisition and Applications [108].

Markus Steinberger developed a GPU-based work scheduler that allows CUDA
programs to make decisions based on the elapsed computation time. The IBVH method
described in this thesis can utilize this framework to guarantee a certain frame rate when
quality degradation is acceptable. The collaboration lead to a joint publication Softshell:
Dynamic Scheduling on GPUs [197].
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Veas, Dr. Judith Mühl, Dr. Markus Grabner, Dr. Alexander Bornik, Dr. Clemens Arth,
Rostislav Khlebnikov, Andreas Hartl and Lukas Gruber from the Institute for Computer
Graphics and Vision. Moreover, some experiments and software modules were developed
by the lab students Christoph Bauernhofer, Michael Kenzel, Bernhard Kerbl, Philipp
Grasmug and David Fandler.
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Magic mirrors and virtual try-on systems need to sense the position and pose of the
user and capture his or her body shape to react on motions and create mixed reality output
images. Therefore, this chapter focuses on reconstruction and image processing methods.

Previous work in the field can be categorized according to the data representation that
is reconstructed from the camera images. Frequently, an explicit data representation, like
meshes or voxel grids is extracted. This is usually called 3D reconstruction and the topic
of the next section. When immediate rendering of novel viewpoints is required, the detour
of explicit geometry can often be avoided to reduce latency. Computing novel views di-
rectly from other images is called image-based rendering (Section 2.2). Reconstruction and
image-based rendering methods are computationally expensive. When image sequences
showing smooth object or user motions are processed, it is often possible to reuse infor-
mation from previous images. This is called temporal coherence (Section 2.3). The last
section in this chapter lists previous virtual try-on systems, which were mostly based on
CAD-modeled meshes.

2.1 3D reconstruction

To display a user and virtual garments from all sides it is necessary to obtain a three-
dimensional geometry that describes the user’s body surface. Such a surface can be re-
constructed from active or passive sensors [34].

Active sensors send a signal into the scene and measure its reflection to compute a
depth map. These sensors can operate in a wide range of lighting conditions, but multiple
sensors might interfere [147]. Unlike conventional cameras, they do not provide color
images that are useful for texturing the reconstructed surfaces.

9
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Conventional color cameras are passive sensors. Many of them can be operated at the
same time because they do not interfere. Geometric information can be obtained when
two or more sensors see a moving object at the same moment in time. The camera’s
relative location and viewing directions need to be known (calibrated) before geometry
can be reconstructed. Given the calibration, pixel locations in both cameras that show
the same point can be triangulated to obtain a 3D point on the surface. This is called
shape-from-stereo [83, 181].

In shape-from-stereo, pixel locations showing the same part of the scene are called cor-
responding points or correspondences. These are usually found using matching algorithms
that analyze the color values in the images or derived values, like gradients, histograms
etc. Given enough computation time and texturedness of the scene, these methods recon-
struct surfaces with remarkable quality [58, 139]. This method was used to reconstruct
and track human body parts [33].

A shape-from-stereo variant called shape-from-silhouette reconstructs an object from
its foreground/background segmentation [8]. While this method requires an additional
segmentation step, it is usually quicker than shape-from-stereo and delivers water-tight
and smooth surfaces called visual hulls. Visual hulls can be incorrect at concavities, which
can be fixed by photo-consistency checks [182].

The general field of 3D reconstruction from images is very large. In addition to shape-
from-stereo and shape-from-silhouette, it includes photometric stereo [21, 103] which re-
quires a specific light setup for reconstruction. Shape-from-focus [49, 161] and shape-
from-zooming [121] approaches need special camera hardware or a controlled motion of
the reconstructed object. Marker or pattern-based methods [226] require a specific pat-
tern on the reconstructed surface. Due to these limitations, this section describes previous
work on selected topics like clothes and human body surface reconstruction. Then we
describe the shape-from-silhouette approach, which is faster than shape-from-stereo and
often used in interactive systems. Finally, we show previous work on active depth sensors
which are becoming increasingly cheap and therefore popular.

2.1.1 Human body model reconstruction and motion capture

Reconstruction algorithms that are specialized on human bodies frequently adapt a tem-
plate mesh to the camera images. At the same time, the user’s body pose needs to be
determined [4].

Motion capture, or human pose tracking, is the task of determining the user’s body
pose. It usually involves a pose and shape model that is fitted to sensor data and therefore
comprises a model-based tracking problem. By using markers, tracking is possible from a
single color camera [174]. Our system and the following related works only consider optical,
marker-less pose tracking because we assume that any sort of markers is too obtrusive for
virtual try-on applications.

Marker-less pose tracking and shape adaption is usually achieved by using multiple
cameras [5, 7, 25, 37, 38, 59, 101, 102, 193, 204, 207, 215]. These systems first adapt
a template skeleton to the observed image data by adjusting pose parameters and com-
paring the rigged template mesh to the images. Then the mesh shape is adapted to the
observation, which in turn yields better a skeleton pose. The process is repeated until
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convergence. Often, visual hulls are reconstructed from the camera images to guide the
adaption. The shape and pose adaption is often formulated as an optimization problem
to achieve robustness against noisy or wrong input data. For example, optical flow and
silhouette constraints [205] can be used to refine the model.

Recent systems can track a user’s pose even from single video streams [225], but typ-
ically can not provide accurately reconstructed geometry which makes them not relevant
for our work.

Shape reconstruction and motion capture can be used to create new animations of
humans [143, 195]. New animations can be embedded into the original video, which
allows to change the shape of humans in videos [106]. Image-based rendering can be used
for realistic rendering of such sequences [232]. A system for marker-less human motion
transfer [28, 29] was suggested to transfer motions from one person to another. This can
be seen inversely: the appearance of a user is transferred, which makes it similar to a
virtual try-on application.

Most of the systems described above require a human template model. It usually
consists of a mesh, a skeleton definition and skinning weights that describe how mesh and
skeleton joints are connected. The SCAPE model is a popular template [4] and is used
by some of the works above for adaption. Another parametric model was introduced [3]
for real time animation. A humanoid animation standardization project called hAnim ∗

provides a format to describe human joints, skeleton parts and feature points and sample
datasets.

Recent developments in sensor technologies have enabled the acquisition of depth im-
ages in real-time, which opened up new possibilities for pose tracking with a single camera.
Full body motions can be tracked by using a time-of-flight camera [60]. The more recent
Microsoft Kinect camera allows for real-time recording of color and depth images at a
very low cost, as well as high-quality real-time human pose estimation [183]. Tracking by
synthesis [167] works by offline rendering of an articulated template mesh into a database
and find the database entry with the lowest error to a range image.

Systems with laser scanners can provide a better avatar quality [2, 140, 233], but suffer
from shortcomings. For example, most of these systems can only capture static models
instead of motion sequences due to the slow scanning speed.

2.1.2 Visual hull reconstruction

Extracting geometry from a set of calibrated camera images when a foreground segmen-
tation is available is a common technique in computer vision called shape-from-silhouette
or space carving. Many systems use it to reconstruct a surface geometry estimation called
the visual hull [120]. Visual hulls enclose the true object’s surface, but do not fit tightly
everywhere: concavities that are not contained in any of the silhouette images are filled.
Therefore, visual hulls often serve as a first estimate of the surface and are refined by
photoconsistency algorithms [182].

For a 3D production studio [194], the type and arrangement of cameras, calibration,
background material and light setup were explored to optimize the quality of a visual hull

∗http://h-anim.org, retrieved 2012-12-18

http://h-anim.org
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reconstruction system. Prior to visual hull reconstruction, the foreground or background
of the camera images need to be segmented.

Foreground segmentation

Segmentation is the process of assigning labels to pixels. For shape-from-silhouette recon-
struction, each pixel should be classified as either foreground or background. This can
be achieved by simply subtracting the known background image from the current image.
Differences indicate foreground and can be thresholded to obtain a binary classification.
However, this method is not very robust, even when the operation is performed in illu-
mination invariant color spaces. To achieve a more robust behavior in slightly moving
background regions, several approaches have been suggested [48, 196] that estimate back-
ground models. Visual hulls can be computed despite static occluders in the scene [79].
Other robust techniques rely on optimization methods, for example, graph-cut segmenta-
tion [18, 148].

In a multi-camera scenario, it is possible to take advantage of the fact that all cameras
observe the same foreground object. Visual hull reconstruction of intermediate segmenta-
tion results can be used to create priors that can be applied iteratively until the segmenta-
tion converged [42, 51, 67, 124, 125]. Visual hull approaches can be extended to detect and
track multiple objects or users [77, 78] by learning their appearance. Automatic calibration
and synchronization can be performed by analyzing the silhouette images [17, 97, 186].

Visual hull reconstruction methods can be divided into three groups. Voxel-based
approaches are most common due to their simplicity. Mesh-based methods can provide
higher resolutions because only the surface is calculated and stored. The third group
consists of methods that utilize the conventional hardware-accelerated rendering pipeline
of modern GPUs for reconstruction.

Voxel carving and voxel coloring

Voxel carving is a well known shape-from-silhouette technique [152]. It works by projecting
all voxel locations onto all camera image planes. If any projected location of a voxel falls
on a background pixel the voxel is discarded. The remaining voxels describe the object’s
spatial extent, including surface and interior. The interior of the object, however, is not
of interest and subsequent processing usually skips the interior voxels. Similarly, all the
discarded background voxels are unnecessary. This redundancy is a major disadvantage
because the method requires much memory and even additional computations for skipping
over interior and background voxels. Constructing octrees [170] was one of the first ways
of alleviating the problem.

Many voxel carving systems utilize small clusters of personal computers (PCs) to
achieve higher voxel resolutions by parallelization [68, 206, 230]. Other systems [165] are
implemented as shader programs to use GPU hardware-acceleration. A recent voxel-based
approach using GPUs on four PCs was shown [118]. Other systems use a PC network just
for camera connectivity [211].

When voxel carving is extended by photoconsistency measurements, the result is often
called voxel coloring [117, 182]. This method extends the voxel carving approach by com-



2.1. 3D reconstruction 13

paring the color values at the projected voxel locations. Voxels are marked as background
if these colors do not match. Recent implementations [104] also utilize GPU hardware.

Voxel-based visual hull reconstruction can be enhanced to help calibrate the cameras
extrinsically [30]. Furthermore, motion capture of humans can be realized by fitting a
skeleton [31] to the voxel grid.

Neither voxel carving nor voxel coloring can efficiently provide higher output resolu-
tions [16]. Workarounds have been suggested, for example, using higher resolutions at a
focus region like the user’s head [115]. Other systems use low resolution voxel carving to
create a rough proxy for further computations [191]. Instead of only alleviating the reso-
lution problem, mesh-based methods solve it by computing and storing only the object’s
surface.

Mesh-based methods

Mesh-based shape-from-silhouette methods are more efficient at higher reconstruction res-
olutions because only the surface is stored (and not the background or interior of an object).
The silhouette intersection tests can be performed in image space to ensure numerical sta-
bility [155]. A reconstruction algorithm [16, 50, 52, 53] triangulates the silhouette edges
and discards non-surface triangles. An inverted CSG logic can be used to make the system
robust to input cameras which do not capture the entire scene. Another system constructs
the visual hull mesh from silhouette edges [122]. The Grimage system [54] utilizes a PC
cluster for mesh-based visual hull reconstruction.

Visual hull reconstructions of complex objects can suffer from phantom surface parts.
Phantoms [27, 159] can be removed by computing safe and unsafe regions for each camera
image. Such regions can be identified by the number of their ray-silhouette intersections.
This method requires a view-dependent visual hull reconstruction for each camera image,
which makes it too slow for our purposes.

Similar to voxel carving, visual hull meshes can also be carved by photoconsistency
measurements [57, 192]. The resulting image-based modeling process benefits from the
robustness at the visual hull edges and from the color information between the edges.
Phantoms can be removed and concavities can be restored, but the additional computa-
tions and memory transactions reduce the performance considerably.

Rendering pipeline-based

More specialized methods have been developed for visual hull rendering. The advent of
powerful GPUs enabled interactive visual hull reconstruction applications. These systems
usually do not use the standard space carving methods described above, but employ several
hardware-specific solutions like proxy geometries and custom fragment shaders.

The work of Li [130, 134] categorizes two GPU-enabled visual hull rendering methods:
CSG-based and texture-mapping based, and introduces a hybrid approach. The CSG-
based approach [81, 235] uses depth-peeling of silhouette cones for correct results. The
texture-mapping approach [131, 150] renders the cones and relies on alpha-tests to carve
the final silhouette. The fidelity of the texture-mapping approach can be increased [123] by
using silhouette maps. A visibility test was suggested [132] that works by reconstructing
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the depth map for every camera image. A plane-sweep algorithm [63, 133, 137, 138, 234]
can be utilized to find point-correspondences on the GPU and use it for triangulation.

2.1.3 Clothes reconstruction

Many virtual dressing applications display a textured clothes mesh over a camera image.
Obtaining that mesh is a key aspect of such systems. Some approaches use meshes that
were manually modeled with computer aided design (CAD) software. This process is
labor intensive and requires physical simulation for animation (see Section 2.4). Clothes
can also be reconstructed from images. Reconstructing the garment from a video sequence
is a difficult task, especially because of occlusions and the non-rigid shape of cloth. Many
approaches use markers on the cloth to tackle this problem [82, 179, 212, 226]. However,
these methods can only capture the garment’s shape and not its color, which makes them
less suitable for our method.

More recent approaches do not require markers [19, 173, 176, 178]. They usually use
a shape-from-stereo approach and apply complex processing to the data to account for
occlusions. However, all approaches that rely on point correspondences that are computed
from the image data assume a certain texturedness of the garment. By using a light
dome [216] or a laser scanner [199] this limitation can be removed, but such hardware
is expensive and processing can not be performed in real time. Some systems allow to
capture garments from single cameras, but require a complex shape model to do so [209].

When garments are worn by a user during the reconstruction, a segmentation is needed
to distinguish body parts and different pieces of clothing [56]. The segmentation can be
guided by pose tracking. Reconstructed garment models can be used along with image-
based representations [99] to increase the realism. The system selects the best fitting pose
from the recorded sequence and deforms it according to a target mesh.

Once the shape of a garment is digitized, it needs to be fitted to the user’s body model.
This is a complex problem [129] that is usually not handled in real time. Volumetric
Laplacian deformation [128, 223] can achieve this, but it requires correspondences which
can be hard to define.

2.1.4 Interactive systems

Our mixed reality methods were implemented in an interactive system that reacts to user
motion with little latency. Such systems have been built for the purpose of teleconferencing
and 3D video capturing.

The Blue-C is an augmented reality system which includes 3D video acquisition and
visual hull rendering [75]. It features of a small room consisting of display panels at all
sides. The panels can become transparent for short periods of time to allow the user
to be captured by outside cameras. The system can be used for telepresence, 3D video,
entertainment etc. Moreover, a concept for a flexible virtual shopping system was intro-
duced [119]. It includes ideas on how 3D remote viewing can be used for virtual try-on,
car shopping etc.

The Grimage [1, 168] is a telepresence system which uses mesh-based visual hull re-
construction before rendering. The 3D Live system [172] builds on IBVH rendering, but
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it uses a rather simplistic sampling approach along each viewing ray. This causes many
projections and texture lookups, resulting in bad scaling with higher resolutions. An-
other approach is voxel-based [84, 85] and uses marching cubes to display the surface.
Billboards [69] can also be used for display. Due to the voxel- or mesh reconstruction
step, immediate 3D output with little end-to-end latency is difficult to achieve with these
systems. Shape-from-silhouette was also used for rendering the head in a tele-presence
application [12].

2.1.5 Active depth sensors

Active sensors send a light, laser or other electromagnetic signal into the scene and usually
measure either the reflection time of the signal or a disparity vector to compute a depth
map. These sensors do not rely on the existing scene light, which makes them robust even
in dim lighting conditions. Integrated sensor systems perform the required time-of-flight
or structured light computations on the device [110]. Due to onboard processing, they
relief the central processing uint (CPU) from reconstruction computations.

However, it is often not possible to operate a number of sensors simultaneously because
the emitted signals interfere with each other. The ability to use a number of sensors is
particularly important if a user should be captured from all sides simultaneously. While
some systems solve this by time-slicing or using different wavelength signals [76, 114], they
tend to be expensive. Cheaper sensors, like the Microsoft Kinect, suffer from interference.

The capabilities of the Microsoft Kinect have been explored for a variety of applica-
tions. Kinect-based body scanning [208] enables virtual try-on applications at low costs.
Newcombe et al. have shown with their work on KinectFusion [163] that dense volumet-
ric reconstructions can be created in real time. Because the Kinect is so inexpensive,
combining multiple devices has also been investigated for different research projects. For
example, Wilson et al. [228] and Berger et al. [9] use up to four depth sensors to moni-
tor a room. Both ensure that the reconstruction light patterns do not overlap, to avoid
interferences of the structures light patterns emitted by multiple sensors. Maimone and
Fuchs [145] propose advanced hole filling and meshing techniques to use a multi-Kinect
setup for telepresence applications.

The problem of overlapping reconstruction light pattern has been solved by Maimone
et al. [147] and Butler et al. [24] with a similar approach. Letting the whole RGB-D
camera vibrate at a relatively high frequency blurs the light pattern for other, concurrently
capturing sensors. The rigid connection of the vibrating sensor and the light pattern
supports a clear reconstruction without interferences from other Kinects. In our setup, we
altered this approach slightly to gain more flexibility, as detailed in Chapter 5. A similar
setup was presented [146] with a modified KinectFusion algorithm.

Active sensors usually do not provide color information. Colors are useful for texturing
the reconstructed surfaces. The Microsoft Kinect is equipped with an additional color
camera, but it operates like a rigidly mounted external camera. The FreeCam system [116]
combines color cameras and depth cameras in a system for free-viewpoint rendering. The
depth hull rendering method [13] performs a depth enhanced visual hull reconstruction.
A point-based variant [80] was shown. A similar method utilizes structured light [109].
Clothes texture overlay can also be achieved with commodity depth cameras [95].
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The Kinect sensor and software package also features a built-in skeleton tracking al-
gorithm. The companies AR Door † and Topshop use skeleton tracking to overlay virtual
garments and display the result at a large TV screen. A similar system is Swivel from
FaceCake ‡. In these cheap and rather simple systems, garments and users do not have a
coherent appearance and the garment motions look synthetic.

2.2 Image-based rendering

Image-based rendering (IBR) is the process of creating novel views on existing images.
As such, it combines computer vision and graphics methods in a single step. The field
covers a wide range of algorithms [184] that can be classified according to the image-based
rendering continuum [126].

The continuum starts with purely image-based methods that do not reconstruct any
three dimensional geometry or camera positions. Image morphing and view interpolation
techniques are popular methods. On the other side of the continuum, an explicit geometry,
like a mesh, is available or has previously been reconstructed. These methods include
projective and conventional texture mapping.

Purely image-based methods require a large number of images to work properly. Con-
versely, geometry-based methods require a geometric description but only a low number
of images [184]. In our system, we have a medium number of cameras (up to ten) and
the need to operate in three dimensional space to allow for free viewpoint rendering and
correct overlap between virtual objects and the user. Therefore, the image synthesis meth-
ods described below are focused on the center of the IBR continuum, where techniques
like free viewpoint rendering, the image-based visual hull algorithm, image warping and
view-dependent texture mapping are prominent.

2.2.1 Free viewpoint video rendering

Free viewpoint video rendering methods often operate on previously recorded video footage
and add the ability to change the viewpoint [144].

Three-dimensional television (3D-TV) is an important application of free viewpoint
video capturing and playback [189]. However, 3D-TV systems usually do not perform a
3D surface reconstruction that allows absolutely free viewpoint motions. Instead, only a
small parallax effect is achieved by showing different images to the user’s eyes. Advanced
systems use camera arrays [157] for capturing and auto-stereoscopic displays. Lightfields
or unstructured lumigraph rendering [22] can produce the small viewpoint and viewing
angle offsets that are required to achieve a parallax effect.

Some methods are found on the image-based side of the IBR continuum, so the max-
imum change in viewpoint or viewing angle are usually restricted. They use image mor-
phing and blending [46, 198, 238] between cameras for free viewpoint video. No geometry
is reconstructed, even the cameras do not require calibration. These works are based on
image correspondences [136] and are suitable for scenes that can not be reconstructed
†http://ar-door.com/, retrieved 2013-01-02
‡http://www.facecake.com/, retrieved 2013-01-02

http://ar-door.com/
http://www.facecake.com/
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reliably, like fire, fog etc. However, these methods are restricted to interpolate between
existing viewpoints. Novel views outside of this range are not supported. Moreover, due
to the lack of 3D information, a virtual try-on application with correct depth order is not
possible.

By taking the principles of image morphing and view interpolation to the third di-
mension, an unrestricted image-based rendering can be built [213, 214]. These systems
utilize an extended optical flow formulation called three-dimensional scene flow. It de-
scribes how surface patches move over time in 3D space. Unfortunately, these methods
are computationally expensive.

Other methods are less restricted in viewpoint motion and include a three-dimensional
surface reconstruction. 3D video recording and playback can be realized using point cloud
reconstruction and rendering [231] or billboard clouds [62, 224] to create a remote viewing
application that can display humans.

Smooth and reliable reconstruction can be achieved by a particle-based optimization
approach [105]. This method benefits from GPU hardware acceleration.

A recent system combines reconstruction and video-based rendering [6] to navigate
even casually captured videos in space and time. It relies on image-based methods to
enable realistic transitions between the cameras. In another system, cameras can move
during capturing [202].

Variational methods can be used for deblurring and super-resolution [66] or segmenta-
tion and surface reconstruction [64] in a multi-camera reconstruction and rendering setup.

Free viewpoint rendering methods allow users to view previously recorded sequences.
Such sequences can be augmented with additional information, like overlays or textures.

2.2.2 Image and video retexturing and overlays

Augmented reality (AR) systems produce overlay images that are registered with the
original image or video. This section focuses on a subclass of systems that change the
appearance of clothes or augment humans with new virtual clothes. Image or video retex-
turing is a form of AR that uses a video background, but it does not insert new virtual
objects to the scene. Instead, an object of the real world is augmented with new surface
properties, like a new texture. This requires a very good spatial registration of the image
and the new texture.

Completely retexturing a piece of clothing with realistic draping of textures to pho-
tographs [229] is a complex process and requires the knowledge of seams, contours and
orientation of the desired garment. It is an artistic approach that is not suitable for
interactive, automatic systems.

Simpler systems therefore make assumptions about the original garment that is worn
by the user. Some use markers on the garment to replace the texture [20]. Later approaches
do not need markers, but require a known texture [169, 227] of the original piece of cloth.
Some systems can even handle self-occlusions of cloth [61]. Recent systems do not require
a known texture, but a general texturedness for tracking. This enables interactive magic
mirror applications where users wearing non-textured shirts with a printed region can
see their shirt with a new printed logo and different color [98, 100]. These systems are
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relatively cheap by using a single camera and operate in 2D, but they do not support
arbitrary clothes or changing the view.

Video overlay systems are AR systems that insert new objects into a real scene that
is captured by a camera. Garment overlays can be produced by capturing a user wearing
the garment [43, 201] before augmentation. During runtime, garment images are selected
from the recorded sequence and registered with the user by matching the silhouettes.
For performance reasons, sparse features are extracted from the silhouette images. These
features can be compressed to obtain even more descriptive feature vectors that allow
for a real-time augmentation of moving users. This method inspired our image-based
augmentation work. However, it operates in 2D on a single camera and therefore does not
allow to change the viewpoint.

Other systems are specialized on specific tasks, like the augmentation of new shoes [47].
The system is interactive and relatively simple, but the analysis-by-synthesis approach that
is taken here would not be suitable for more general purposes.

Retexturing and overlay systems can be used to augment users with garments, but do
not provide free viewpoint rendering. As a consequence, we had to combine image-based
rendering with overlays. A lightweight approach to free viewpoint IBR is image-based
visual hull rendering.

2.2.3 Image-based visual hull rendering

When immediate rendering of novel viewpoints is required, the detour of explicit geometry
can be avoided to reduce latency. To directly create novel views from silhouette images,
the image-based visual hull (IBVH) [23, 156] method was introduced. It involves on-the-
fly ray-silhouette intersection and CSG operations to recover a depth map of the current
view.

Many extensions of the original approach have been developed. IBVH rendering can be
improved by stereo matching [135, 187] to recover concavities. It can be enhanced to render
transparent [158] objects. Other systems find body parts to improve the rendering of
humans [236]. A GPU implementation and the use of silhouette segment caching can speed
up intersection tests considerably [221]. Intersection testing then resolves to comparing
angles, which also allows for a fast check of relevant pixels. Another method to speed up
the ray-silhouette intersection testing is to chain-code the silhouette segments [113].

Recent GPU implementations [72] utilize Nvidia CUDA to avoid the overhead of a
conventional rendering pipeline like OpenGL. To connect a larger number of cameras, a
network of several PCs [73] can be used. Adaptive sampling was introduced to improve
the performance of IBVH rendering [154].

Image-based visual hull rendering produces a depth map as the output. To produce
the final color image that shows the user or a piece of clothing from a particular viewing
angle, a texturing method needs to be applied to the depth map.

2.2.4 Projective and view-dependent texture mapping

Texture mapping is the process of adding details to a surface by using images [26, 96].
The mapping function defines how the image relates to the surface. In our multi-camera
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scenario, the captured images are subject to a perspective distortion. Using camera images
as textures can be performed by projective texturing [164, 180]: surface points are pro-
jected on the camera’s image plane by applying the transformation matrix that contains
the camera’s intrinsic and extrinsic calibration. By looking up the color values from all the
camera images at the projected locations, it is possible to determine the output color, for
example, by averaging. Given the surface reconstruction of the object, it is also possible
to detect occlusions and thus discard wrong color samples and improve the result. In our
setup projective texture mapping is applied to the depth buffer that holds the frontmost
surface points of the visual hull.

The geometric reconstruction that is textured is often not perfectly registered with
the camera images for a number of reasons: calibration accuracy, noise, wrong point
correspondences, insufficient sampling densities etc. To cope with these problems, view-
dependent texture mapping (VDTM) [40] was introduced. It is an extension to projective
texture mapping that favors images with a viewing direction similar to the currently
desired view.

View-dependent texture mapping and lumigraph rendering were generalized [22] to
obtain camera blending maps for texture mapping proxy geometries. This allows to com-
pensate bad geometry by supplying more images (a more dense camera placement). Our
texture mapping stage uses a variant of this technique.

Modern texturing approaches [44] are capable of compensating for an even worse ge-
ometric proxy by applying optimization procedures to align texture maps from different
cameras. This can also compensate for calibration inaccuracies. It works by combining
VDTM and optical flow for image registration to remove ghosting artifacts. A different
approach uses an adaptive blur filter to make ghosting less apparent [45].

2.2.5 Image warping

Image warping is the process of moving image fragments according to a new projection
matrix. It requires the depth values of all pixels and was introduced to compensate for
jitter induced by network latency in a remote viewing application [151] and used for
numerous applications.

Forward image warping uses the screen space coordinates of a pixel and its depth value
to determine the position in world space, which then is projected using a new matrix. This
way, pixels are moved independently of each other, which may result in holes and collisions
in the output image. Image processing operations, like morphological closing, have been
suggested to fix these artifacts [184].

Backward image warping operates differently. It computes the viewing ray of each
pixel in the output image and intersects it with the source image plane by using the old
projection matrix. In the source image the projected ray is traversed to find the surface
intersection. This method does not suffer from holes, but due to the searching process
it is considerably slower than forward image warping. Recent GPU implementations [71]
have reached interactive frame rates. A different approach iteratively finds the correct
backward warp for each pixel without searching the epipolar line [15].
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2.3 Temporal coherence

Temporal coherence in the context of visual computing usually describes the situation
that the rendered or captured scene changes smoothly over time [177]. For example, the
viewpoint and the viewing angle in a virtual scene often move slowly. As a result, many
pixels in a sequence of output images are identical and moved only slightly. This knowledge
can be exploited to either reduce the runtime of an algorithm by reusing information over
time [162], or to improve the quality of the result by distributing information across
time [127].

Exploiting temporal coherence can improve the runtime performance of interactive
raytracing. For example, the Tapestry system [185] builds a 3D mesh that acts as a cache
for previous rendering results. The cache is updated incrementally and rendered instead of
the scene. Adaptive frame less rendering [35] combines two efficient rendering techniques.
Frame less rendering updates single pixels or patches instead of the whole image at each
time step. Adaptive rendering guides this process to favor important pixels, for example,
at depth discontinuities. The render cache [222] and the reverse reprojection cache [162]
follow a similar notion. These systems are tailored to synthetic scenes and can not handle
arbitrarily deforming objects.

In multi-camera systems that capture and reconstruct users, the input video streams
often provide temporal coherence. Given a camera update rate of only a fraction of a
second, the changes between two consecutive images are only minor.

For voxel-based visual hull reconstruction in multi-camera systems, temporal coherence
has also been exploited [11] to improve the performance. It is the most similar method to
our dynamic temporal coherence methods and works by incrementally updating a voxel
grid for improved visual hull reconstruction performance. For each new frame, only the
voxels whose corresponding silhouette pixels have changed are updated. This approach
is limited in resolution due to using a voxel representation, and slower than our IBVH
method despite the incremental update scheme.

To improve the quality of the reconstruction by temporal coherence, spatio-temporal
texture atlases [107] were used to fill holes caused by occlusions and compress the cam-
era video streams by exploiting the coherence as a form of redundancy over time. The
animation cartography [203] is a similar approach. Other works use the temporal coher-
ence [65, 70] to improve the quality of the visual hull reconstruction. These methods can
fill holes in the reconstruction [127] with patches from other points in time.

2.3.1 Multi-frame rate rendering

Multi-frame rate rendering [190] decouples display updates from image generation in a
pipeline with asynchronous communication. The display update stage can guarantee fast
viewing frame rates and nearly latency-free response to interaction, while one or multiple
rendering nodes in the backend stage can produce new high quality images at their own,
usually slower pace. Rendering nodes can be multiple GPUs assembled in a single PC or
workstations in a distributed system.

Multi-frame rate systems make extensive use of temporal/frame coherence because
they use the last rendering result to synthesize novel viewpoints until a new image be-
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comes available. Motion in the scene is allowed [188] as long as it can be described by a
transformation matrix. Image warping is often used to compensate for jitter induced by
latency.

2.4 Manual clothes mesh modeling

Garment mesh models can be reconstructed, as described above, or modeled manually. The
modeling process can work in a very similar way to the real process of sewing garments.
Two-dimensional cutting patterns are used to create patches that are connected at some
of the edges. This can be achieved by a set of virtual cutting and sewing tools [112]
to directly modify garments inside a framework for rendering and simulation. Physical
simulation is important to transform the modeled planar patches into realistically looking
meshes. The virtual sewing result can also be applied to the underlying planar cutting
patterns, which makes user-driven customization possible. MIRACloth [218] is another
cloth modeling application with integrated rendering and physical simulation. Special
interfaces [210] facilitate clothes modeling.

The Virtual Try-On project was conducted [41, 219] to provide a set of applications
for various tailoring, modeling and simulation tools. 3D scans of real garments with color-
coded cloth are also used. Cloth properties are measured from real samples. Rule-based
morphing techniques were employed to obtain different sizes of a garment piece. A surface
reflectance measurement device called gonioreflectometer was used to digitize clothes very
realistically. Two companies called Human Solutions and Assyst offer similar tools §.

The OptiTex company maintains an application called 3D Runway Designer - 3D
Draping Solution ¶. It allows the user to model and simulate garments. Moreover, it
offers solutions for fabric analysis, cutting pattern creation from 3D models etc. The focus
of this application lies on 3D modeling and prototyping of cloth pieces for later production.

Physical simulation of cloth patches is important for a realistic appearance as well as
believable dynamic effects, like swinging and folding [217]. The simulation parameters,
like cloth stretch, friction etc. can be measured from real cloth samples [142]. Information
about cut and seams, however, need to be known [166].

The physical simulation process is computationally expensive. The most prominent
feature of clothes are wrinkles of different sizes. A bilayered approach was proposed [111]
to reduce the number of computations by approximating the wrinkles. First, a coarse
mesh is simulated with a stable but slower algorithm, while an in-between mesh creates
realistic wrinkles at lower cost. Other systems add the wrinkles after the physical cloth
simulation [175] to achieve better performance. Another multi-layer approach [32] sim-
plifies the simulation for tight-fitting garments. A very detailed analysis on cloth seams
and wrinkles and a realistic implementation [141] was shown, but this approach does not
run in real-time. Physical simulation parameters, like cloth stiffness and friction, can be
estimated from videos [10]. Other systems extract linear transformation models [36] from
clothes simulations to approximate the complicated cloth behavior for real time rendering.

§http://www.human-solutions.com/, retrieved 2013-01-02
¶http://www.optitex.com/products/3DRunway_Tools/, retrieved 2013-01-02

http://www.human-solutions.com/
http://www.optitex.com/products/3DRunway_Tools/
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Before a physical clothes animation can be performed, the garment mesh model needs
to be positioned on a body model that serves as a collision and friction proxy. Automatic
prepositioning algorithms [55, 74] were developed to relieve the user from manually placing
the planar patterns around the virtual model prior to the physics simulation. The method
relies on a segmentation of the major body parts that is given by a shape prior and several
feature points. The feature points allow for matching the pattern parts to body parts.
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Many mixed reality systems require realtime view synthesis from camera images, for
example, telepresence applications or magic mirrors such as our virtual try-on system. To
build an interactive reconstruction and rendering device, we decided to equip a room with
ten color cameras to be able to capture the user from all sides with high quality [90]. In
our setup we assume a static background and a single or a small number of users. These
assumptions allow us to use shape-from-silhouette algorithms for reconstruction. Process-
ing silhouettes is more efficient than stereo matching based on color consistency. From
the silhouette-based algorithms we chose the image-based visual hull (IBVH) method.
Figure 3.1 shows the output of IBVH rendering visualized with different shading methods.

The IBVH algorithm creates an output depth map directly from silhouette images
without an intermediate representation. As such, it can be classified as an image-based
rendering algorithm. It only computes the parts of the surface that can be seen from the
desired viewpoint, and it computes exactly one surface sample per pixel. This behavior is
particularly useful for processing video streams with little latency.

The latency between capturing the scene and producing the output needs to be as
little as possible for a number of reasons. If the user should interact with the system, the
input precision benefits from a responsive system. During our experiments we experienced
that too much latency to the body motion is irritating and may even cause sickness.
Furthermore, jitter in the output is simply undesired and lowers the sense of immersion.

Visual hull-based methods have a major drawback in terms of the reconstructed surface
quality: they can not cover all concavities of the object. At the same time, the visual hull
is a good geometric proxy for projective texturing because it consists of large, smooth
surface patches that can be textured with little distortions.

23
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Figure 3.1: IBVH rendering of a user in our multi-camera system. Left: phong-shaded depth
map, right: same depth map rendered with view-dependent texture mapping.

In this chapter, the multi-camera setup that is used for reconstruction and rendering
is described and the IBVH pipeline’s stages are explained in detail. The contribution that
is described in this chapter includes improvements over the conventional pipeline. We
describe efficient methods for silhouette segment caching, a quick interval intersection for-
mulation that facilitates early background detection, an efficient visibility map generation
method and a heuristic to determine a quick camera processing order.

3.1 The multi-camera capturing room

Our virtual mirror system requires three components: multiple cameras to capture images
of the user from all sides, a computer to process the data and a monitor to show the
output image to the user [200].

We needed to build a room that is sufficiently large to allow a limited number of
cameras to capture the whole body of a user from all sides. At the same time, the room
footprint should remain small to exploit the full camera image resolutions. The resulting
proportions are a 3×2 meters footprint and a height of about 2 meters. The floor and the
walls were covered with green cloth to facilitate background detection. The side walls are
usually closed during capturing and rendering to guarantee a static background. Opening
a side wall to allow for spectators is possible but may reduce the texturing quality for
some views.
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Figure 3.2: An illustration of the camera arrangement used in our capturing and virtual-try
on room.

At the walls we mounted ten cameras that are focused on the center of the room, where
the user is allowed to stand and move. Figure 3.2 illustrates the room and the camera
frustums. After a first prototype with cameras evenly spaced around the user, we mounted
most cameras in the front half of the room and point at the user’s head. We found that
this arrangement yields a better visual quality for the user’s head and face region. This
was required because users were very sensitive to distortion or artifacts in this region.

The ten industrial grade color cameras are connected to a single PC via three sepa-
rate FireWire buses. We decided to use a single PC to avoid the latency that would be
introduced by a network of machines. Such a distributed computing network could deliver
higher frame rates by pipelining all processing stages, but the end-to-end latency would
increase. In early experiments we found that the latency to body motions was perceived
negatively by all users, so we valued latency very highly in our design choices.

The cameras are synchronized and calibrated intrinsically and extrinsically before cap-
turing and rendering. We obtain extrinsic camera parameters using a 1300mm high cal-
ibration target, shown in Figure 3.3 with StbTracker [220] targets. Each of the target’s
three sides (400 × 500mm) shows four markers. The intrinsic calibration is obtained by
capturing a checkerboard pattern [237]. The back-projection error of the resulting cali-
bration is in the sub-pixel range, which is precise enough for image-based rendering.

They deliver 640 × 480 pixel images with 16 bit color resolution at 15 frames per
second. The amount of data that needs to be transferred and processed can reach up to
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(a) (b)

Figure 3.3: The StbTracker calibration target that is used to obtain the extrinsic camera
parameters (a) and the calibration view (b) showing the detected markers. Please note that
these images show the Kinect-based setup that is described in Chapter 5 which uses the same
calibration target.

100 MB/s in this configuration. While the cameras could deliver higher resolutions, the
buses and processors were at their limits. For processing, we exploit the computational
power of modern GPUs and their programming capabilities. An Nvidia GTX 480 graphics
card receives the camera images and performs all image processing and rendering stages.
These stages are implemented as Nvidia CUDA kernels, which provided us with enough
flexibility to realize even very complex algorithms.

The following section describes the general layout of our visual hull rendering pipeline.
We then point out components which were improved over previous implementations.

3.2 The IBVH pipeline

The general architecture of our system consists of several main modules (see Figure 3.4).
The pipeline starts with the segmentation module which reads the current image from all
cameras in a synchronized fashion [89, 90].

Segmentation The camera images are uploaded to the GPU and segmented there by
applying background subtraction. We assume a static background that is captured before
the user enters the scene, and a contrasting foreground. This is achieved by using green
walls inside our prototype, and users are not allowed to wear green clothing. We use
background subtraction in normalized RGB space in order to handle shadows correctly.
The subtracted images are thresholded and holes are closed by applying morphological
dilation and erosion to the segmented image.

Edge extraction and segment caching From each silhouette image, all edges are
transformed to 2D line segments. Every pixel is checked on whether it lies at the border
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Figure 3.4: The image-based visual hull rendering process of our system without exploiting
any coherence. Red shows where coherence can occur: successive camera frames may be
similar, and viewpoint motion is usually smooth.

of the silhouette, and a line segment is emitted if it does. Pixels are processed in parallel,
and interior silhouette edges are included because they help to identify regions where the
user’s body forms a loop, e.g., with his hands.

Since the IBVH algorithm performs many line-line intersection tests, a caching
data structure can speed up the process of identifying potentially intersecting line
segments [221]. Figure 3.5 illustrates the involved geometry. Every viewing ray can be
projected onto the camera’s image planes, where it can be described by an angle ϕ to
one of the axes. The origin of the viewing rays projects to a point on every image plane,
called the epipole. All projected rays emit from the epipole or converge to it. Similarly,
every line segment of a silhouette lies on the image plane of the corresponding camera. It
can therefore be described by two angles. Each endpoint of the line segment produces
one angle: the angle between one of the axes and the vector between the endpoint and
the projected virtual camera’s center. If a viewing ray’s angle lies between the two angles
of a line segment, this line segment is hit by the viewing ray. For caching, the whole
angular range is covered with a set of bins. The line segments are stored in all the bins
which are covered by the range of their two angles.

Ray-silhouette intersection This is the main IBVH stage [90]. A viewing ray is
created for every pixel in the output image. Rays start from the desired viewpoint and
intersect the image plane at the pixel’s location and end at the back plane. Each viewing
ray is projected onto all of the camera images. The subsequent steps are performed for
each camera image i. The line resulting from the projection is searched for intersections
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Figure 3.5: Angle ϕ which has been used by previous angle caching approaches.

with the user’s silhouette. The angle of the line can be used to index the correct bin
in the line segment cache. All segments in the bin are checked for 2D line intersection,
using the line segment itself and the projection of the viewing ray onto the image plane of
camera i. Intersections are sorted and lifted back onto the 3D ray by projection. Pairs of
intersections build intervals that describe where the user is located along the viewing ray.
These intervals have to be intersected by a set operation to compute the intervals along the
ray that are located inside the object. From these intervals, the frontmost interval starts
with the frontmost ray-object intersection which in turn yields the depth buffer value at
this pixel. We call these values geometry fragments. See Figure 3.6 for an illustration.

Visibility map computation The subsequent stages for stereo matching and view-
dependent texturing require a visibility map to avoid occlusion artifacts. Previous ap-
proaches either used a search along the epipolar line of each pixel to determine visibility
or project the reconstructed depth map in a shadow-mapping fashion. In any case, the
result of this stage is a buffer that encodes which pixel of the output image is visible for
which camera.

Stereo matching Similar to other IBVH approaches, we use the visual hull as a search
range for stereo matching. We calculate the similarity of pixel neighborhoods by building
sums of absolute differences (SAD). For each reconstructed point on the visual hull, we
calculate the SAD between pairs of nearby cameras in which the point is visible. We
usually use a set of three cameras, whose viewing angle matches the surface normal best.
This step greatly improves visual quality, but also has major impact on the performance
(see Section 3.4). Fortunately, this step amortizes when exploiting temporal coherence
because improved depth values help the image warping to produce high quality output.

Texture mapping In a final step, each point on the visual hull is textured from a set
of three nearby camera images. We employ a variant of view-dependent texture mapping.
Cameras which are not visible from the current point on the hull are skipped. Results from
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Figure 3.6: Illustrating the concept of image-based visual hull rendering. For every pixel its
viewing ray (red arrow) is projected onto each camera plane (red line). All interior intervals
In,1..m on each ray are found and intersected with each other. The frontmost interval starts
with the desired depth output value.

multiple cameras are blended according to the angle between the virtual and the physical
camera’s viewing directions to provide a smooth transition between camera images.

3.3 Improvements to the IBVH-pipeline

We improved several components of a conventional IBVH pipeline both in terms of ro-
bustness and performance. We describe efficient methods for silhouette segment caching,
a quick interval intersection formulation that facilitates early background detection and
an efficient visibility map generation method.

Finally, we observed that the angle between the cameras and the desired viewing
direction has a strong impact on the foreground/background decision during rendering.
Based on this observation we derived a method that reduces the execution time of the
IBVH algorithm. We evaluated the effectiveness of the suggested methods under varying
degrees of coherence and different resolutions.

3.3.1 Segment caching

Previous caching calculations have problems with their angle calculations when the desired
viewpoint approaches a critical plane, where its epipole projects to infinity. Unfortunately,
every camera in the system has such a plane. This formulation not only fails when the
viewpoint is exactly on one of these planes, but also when it is close to any of the planes.
There, the epipole lies at a finite point, but this point may be very distant from the image
plane. As a result, the angular range of the whole silhouette falls within a tiny interval and
precision is irreversibly lost. When line segments are added to the cache in such a scenario,
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Figure 3.7: Our angle caching approach uses the dihedral angle φ which is spanned by the
planes ΠP and Πup.

many segments are assigned to the same bin which either causes an overflow of these bins,
or in the case of very large bin sizes, in bad performance. Other than Waizenegger et
al. [221], we observed this problem to be fairly common in our system.

The point where this formulation becomes unstable is the division by Z, when pro-
jecting the viewpoint. This division may project the viewpoint to its very distant epipole.
Our formulation avoids this projection when computing the cache bins for a line segment
by calculating the dihedral angle φ. φ is the angle between the two planes ΠP and Πup
which are defined by their normal vectors.

φ(ΠP ,Πup) = acos( ΠP
‖ΠP ‖

· Πup
‖Πup‖

) (3.1)

with
ΠP = (P − Cdesired)× (Ci − Cdesired)

Πup = (0, 0, 0)− Cdesired
and P being the 3D-projection of one of the endpoints of the line segment. The depth

value, which is required for the projection, can be chosen arbitrarily, since it has no impact
on the resulting angle. Cdesired is the desired viewpoint, Ci is the camera center of image
i. Figure 3.7 illustrates the calculation. Because the whole computation is performed in
3D object space, no singularity problems can occur.

3.3.2 Ray-silhouette intersection

Most prior approaches compute the silhouette intervals Vx,y of each ray according to:

Vx,y =
⋂
i∈I

Ωi with Ωi =
⋃
j∈Ji

[starti,j , endi,j ] (3.2)
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Such approaches first enumerate all silhouette intersections Ji for image i along the
viewing ray at pixel x,y and combine them in a set Ωi. This set in turn is intersected over
all camera images. As a result, only intervals which are identified to contain the object
by all images remain. Unfortunately, when one or more cameras do not contain the whole
object in their frustum, the partially invisible parts are removed. Since one requirement
of our application setup is a small footprint, cameras often do not see the whole object
because they are too close. Due to the lack of high quality wide angle lenses, we had to
solve this problem algorithmically.

In the work of Boyer et al. [16], a dual formulation of equation 3.2 is used to accom-
modate for visibility problems during reconstruction:

Vx,y =
⋃
i∈I

Di \ Ωi (3.3)

Di denotes the viewing frustum for camera i. This formulation computes the union of
all intervals that describe the outside of the silhouette. This effectively prevents partially
visible regions from being removed. Computing the result for each viewing ray can be
performed particularly fast because no intermediate results need to be stored. Instead,
inverted intervals can be added directly to the result list for each image. As a consequence,
we need less memory per multiprocessor. We use the GPU’s shared memory for storage
of intervals because it is the fastest indexable memory available on CUDA-programmable
GPUs. While it provides very high bandwidth, excessive shared memory usage decreases
performance considerably when the GPU scheduler is no longer capable of switching exe-
cution blocks. Therefore, algorithms which use less memory are generally faster.

Another key performance factor for IBVH rendering is to determine quickly which
viewing rays do not hit the foreground object. When interval intersection is based on
equation 3.2, this is simple. The evaluation can be aborted as soon as the interval set
has become empty. For our approach, which is based on equation 3.3, this is less trivial:
the interval set has to be checked if it covers the whole ray, i.e., the whole ray is covered
with empty space. To achieve this, we merge intervals during the computation. After
computing Di \ Ωi for image i, we do not directly append the obtained intervals to the
result list, but first check for overlapping intervals of previous images. If intervals overlap,
we extend the existing interval to span over both intervals. Then, all intervals are again
checked for overlap and merged in direction of the beginning of the list if possible. As
a result, the first interval of each ray always contains the whole interval when a ray is
empty. This condition can be quickly checked after each image is processed. Moreover,
merged intervals require less shared memory than complete lists, thus resulting in an even
greater speed up. During our tests, this early-termination method increased the speed of
this stage to about six times as fast, which is roughly a 3.5 times overall speed up.

In implementations that allow for objects which are invisible to some cameras, phantom
artifacts can occur. These artifacts show reconstructed geometry in regions where there
is no foreground object. This happens when a camera’s frustum is not sufficiently covered
by other cameras. We implemented a counting algorithm to solve this problem. This
algorithm eliminates intervals in Vx,y which are not contained in a certain number of
camera frustums Di. The threshold should be selected according to the camera setup as
the minimum number of cameras that see a point inside the intended bounding box.
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Figure 3.8: (a) visibility map computation based on rasterization of lines. Ray segments of
the virtual viewpoint are projected onto the image plane of each camera i and rasterized with
interpolated depth values of the ray start and endpoints. (b) illustrates the camera angle ai.
Two cameras (red and blue) with their frustums and a viewing ray (black arrow) are illustrated.
Camera 1 (red) covers a larger interval on the viewing ray and therefore can carve more empty
space than camera 0. Camera 1 is therefore more useful for skipping background pixels. The
angle ai can be used to sort cameras accordingly.

3.3.3 Visibility map computation

The epipolar search [156] is bound to be quite slow because for every pixel in the desired
view, for each camera image the epipolar lines have to be traversed and compared with the
ray intervals. The shadow-mapping visibility test can be implemented more efficiently on
current GPU hardware: the depth map of the previous step is projected onto all camera
image planes which results in a depth buffer for each of the cameras. However, a depth
map is not a full description of the foreground object, and therefore produces visibility
artifacts. To remove most of them, we again exploit the IBVH rendering algorithm.
When calculating ray-silhouette intersections, the backmost intersection can be found at
no additional cost. Each pair of front and back intersections describe a 3D ray which is
located inside the object. Of course, this is just an approximation: more correct results
can be achieved by using all intervals along the rays, but this also induces more overhead.

After projecting the front and back point of a 3D ray onto a camera’s image plane,
we rasterize the line and write interpolated depth values into the visibility map using the
atomic minimum operation of CUDA. See Figure 3.8(a) for an illustration. Low sampling
densities can occur, for example, when the desired viewpoint is far away from the object.
We counter this by using a visibility map resolution which is smaller than the scene’s
projected footprint from what we assume to be the maximum distance to the object.
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Figure 3.9: The plot shows statistical data that was captured over a user motion sequence
with a rotating viewpoint. The x-axis denotes the angle ai between a camera’s optical axis
and the viewing direction. The y-axis indicates the average percentages that are carved away
from the viewing rays and the relative number of surface point associations.

3.3.4 Camera order

The IBVH algorithm computes every pixel’s depth value by iterating over all silhouette
images. For each image the viewing ray is intersected with the silhouette and resulting
intervals are stored in a list. Finally, these intervals are intersected to find the frontmost
ray-object intersection - the surface. Previous IBVH implementations process the cameras
in an arbitrary order because the result is independent of it. However, the execution time
is not.

To detect background pixels quickly, the interval finding and intersection steps should
be interleaved. Once the intersection operation results in an empty set, processing can
be stopped and the pixel can be marked as background. As was shown in this chapter,
this early termination strategy can speed up the algorithm considerably. To improve the
performance even further, the order in which cameras are processed should facilitate early
termination.

When cameras that cover large intervals of a viewing ray are processed first then empty
intersection sets are found earlier. We found that the optical axes of the cameras can be
used to sort them. Figure 3.8(b) illustrates how the optical axis of a camera relates to
the size of the interval it covers: cameras with steep angles relative to the current viewing
direction tend to cover larger intervals. Therefore, to quickly approximate the percentage
of average ray coverage of a camera i, we use the angle ai.

ai = abs(dot(axisi, axisview)) (3.4)
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It is the angle between the normalized camera’s optical axis axisi and the normalized
current viewing direction axisview. An arccos is not required because we use the value
only for sorting. The absolute value of the dot product computes the angle of the shortest
arc between the axes.

Figure 3.9 shows how the angle ai relates to the relative number of surface points that
are associated to a camera i. From the measurements we can conclude that most surface
points are associated to cameras with low to medium angles. From this we can derive
that cameras with low ai are more likely to produce a surface fragment. Conversely, the
most space along the viewing rays is carved away by cameras with relatively high ai. This
means that cameras with high ai’s are likely to be more powerful at identifying background
pixels.

All our methods therefore sort the cameras according to their ai in descending order
before rendering. The average performance improvement over several tested camera orders
reached up to 12%, depending on the amount of background surrounding the visual hull.

3.4 Results

We analysed the IBVH pipeline in terms of memory transfers and processing [89, 93] to
find out how it scales with different input and output resolutions and numbers of cameras.

3.4.1 Data flow

Before the first stage begins, the camera images are read from the driver and uploaded to
the GPU. There, the images are segmented and passed to the angle binning kernels. The
amount of data that is passed is proportional to the camera resolution and camera count.
After angle binning, the bins are passed to the intersection kernel. The size and number
of the angle bins must be chosen such that the overall capacity (size multiplied by number
of bins) is sufficient to hold all line segments of a camera. Choosing many small bins is
beneficial for performance, while few large bins require less memory. Usually, this part
of the pipeline creates the largest data flow, which makes it a bad spot for sharing data
between GPUs. After the IBVH kernel, the desired depth map is computed and passed
to a shading kernel. This final stage and the associated data flow has only minor impact
on the overall performance and therefore marks the end of the pipeline that is analyzed
here. Figure 3.10 shows the amount of data that flows through our pipeline.

3.4.2 Performance of the stages

Figure 3.11(a) illustrates the execution times of all stages. The system was configured to
use ten cameras at a 640×480 resolution and 15 Hz. The output resolution was 1600×900
with about 1550× 750 pixels covered with foreground. It can be observed that the main
IBVH computation (the ray-silhouette intersection) is the most time consuming step.

Figure 3.11(b) compares IBVH rendering and voxel carving and rendering. Execution
times are given for three different resolutions. The voxel grid resolution is set such that
every visible voxel projects to one pixel to make the two approaches comparable. It can
be observed that voxel carving and raycasting can only keep up with IBVH rendering at
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Figure 3.10: A typical image-based visual hull rendering pipeline. The first part consists of
segmentation and undistortion. The second part builds a cache data structure to speed up
the third part, the ray-silhouette interval extraction and interval intersection. The last part is
responsible for texturing and display. The data traffic between stages is indicated for a single
rendering pass. The value ranges cover camera resolutions from 320× 240 to 1280× 960 and
a maximum output resolution of 2 Megapixels.

very small resolutions. The voxel resolutions were 700× 350× 1400, 450× 225× 900 and
250× 125× 500 for the three test runs.

3.4.3 Scaling with inputs

First, the segmentation and edge cache generation extract information from the camera
images. These tasks are defined per camera image, which means the runtime is propor-
tional to the number of cameras and their resolution. Next, the IBVH core computes a
depth map from the cached edges. This stage scales with the output resolution, and, to a
lesser extent, with the number of edges. The number of edges is driven by the number of
cameras and their resolutions. The final display step scales only with the output resolu-
tion. Figure 3.12 shows the runtime of the stages for different resolutions and number of
cameras.

From this data we can derive that for increasing display resolutions, the computation
of the depth map (the core IBVH step) becomes the dominant performance factor. This
part also scales with the number of cameras. The resolution of the camera images on the
other hand does not have a strong impact. This means that optimizing the IBVH method
and workload is more important than the other stages.

3.4.4 Improved camera order

For this test we compared the IBVH pipeline with and without improved camera order.
Figure 3.13 shows the results for a recorded sequence of various user motions. Averages
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Figure 3.11: (a) shows the kernel execution times of the IBVH pipeline’s stages on a single
GPU at an output resolution of 1600 × 900. (b) gives a comparison of IBVH rendering and
voxel carving and rendering at different resolutions. The number of surface points equals the
number of foreground pixels, where the voxel resolution is set such that each voxel projects to
the area of one pixel.

0 

0,5 

1 

1,5 

2 

2,5 

3 

3,5 
Angle cache 

0 

20 

40 

60 

80 

100 

120 

140 

160 
IBVH Display Misc 

input resolution output resolution in thousand pixels 

m
ill

is
ec

o
n

d
s 

0 

2 

4 

6 

8 

10 

12 

14 

3 5 7 9 

IBVH 

number of cameras 

m
ill

is
ec

o
n

d
s 

Figure 3.12: Kernel execution times on a single GPU with different numbers of cameras
and different input (=camera) and output (=screen) resolutions. Angle caching scales with
the camera resolution, while the other kernels scale with the output resolution. The IBVH
algorithm also scales with the number of cameras. Unless specified otherwise, the timings
are given for 10 cameras, an input resolution of 640× 480 pixels and an output resolution of
480× 870 pixels.

are built over the whole sequence, over rather static frames with slow user motions and
over dynamic frames with much user motion. The improved camera sorting by angle ai
reduces execution times by around 7%.
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Figure 3.13: Evaluation of the suggested improved camera order.

3.5 Summary

In this chapter we introduced our multi-camera hardware setup. Next, we have shown how
a full IBVH pipeline with visibility, texturing and stereo matching can be implemented.
We introduced several extensions to the original approach to achieve better performance
for GPU implementations and robustness of the angular formulation. Furthermore, we
introduced the angle between a camera’s optical axis and the viewing direction as a reliable
statistic for skipping empty space and thus unnecessary computations.

We analyzed all stages of the pipeline in terms of processing time and the amount
of data flow between them. The measurements showed that the resulting pipeline is
much faster than the popular voxel carving method, which verifies the first part of our
image-based rendering hypothesis. The evaluation also indicates that the IBVH pipeline
scales better with resolution than voxel carving. The result of such a hard- and software
arrangement is an interactive device that displays the image of a user from arbitrary
viewpoints.
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In our free viewpoint rendering system, a set of cameras is mounted around the area
where the user is allowed to move. The cameras provide a color video stream. As we
described above, the image-based visual hull (IBVH) algorithm can be applied for the
purpose of rendering the user from an arbitrary viewpoint. It performs a depth map
reconstruction directly from the silhouette images [90]. Similar to raycasting it is a ray-
based algorithm: for every pixel a viewing ray is computed. It therefore scales badly with
an increasing output resolution. As the user immediately sees the rendering of himself, high
computational performance and low latency are crucial for a satisfactory user experience.
This is also important to avoid simulator sickness during extended sessions. Moreover,
user-interaction through gestures benefits from low latency.

The high performance to cost ratio of a single PC equipped with multiple graphics
processing units (GPUs) makes it an attractive platform for such complex interactive
visualization tasks. Moreover, data transfers from main memory to GPUs are fast com-
pared to network transfers. Several visual hull algorithms have been modified in order
to run on several PCs or GPUs in parallel. These algorithms usually involve explicit,
view-independent intermediate results in the form of meshes or voxel grids that can be
computed independently before merging them in a final step. In contrast, IBVH render-
ing does not have such a representation, and is therefore not parallelizable with standard
methods.

In the previous chapter we analyzed the computation times and data flow of an existing
single-GPU IBVH pipeline. From these evaluations we derive which stages are suitable for
parallelization. In this section we suggest three ways of distributing the workload of an
IBVH pipeline over several GPUs. We start with a sort-first approach, which is simple but
has drawbacks. Then, we introduce a sort-last approach by regarding cameras as scene
objects. In addition, we suggest a compact buffer representation that reduces the bus
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Figure 4.1: (a) different configurations of a synchronized multi-GPU IBVH pipeline and a
single-GPU pipeline as a reference. C denotes the number of cameras, P the number of output
pixels, G the number of GPUs. Sort-last configuration (b): a viewing ray intersects silhouette
cones from two GPUs. The intervals are intersected again to compute the result interval.

traffic. The last approach is a multi-frame rate setup that decouples the viewing process
from the image generation to achieve high frame rates even for large resolutions. To
improve visual quality, we suggest a combined forward- and backward warping method.
We evaluated all approaches by measuring and comparing execution times for different
configurations [88, 89].

4.1 Parallelizing the image-based visual hull algorithm

We suggest several multi-GPU configurations of our pipeline. The main difference between
them is the number and placement of synchronization points. At a synchronization point,
the GPUs wait until the current stage of the pipeline has been completed on all GPUs.
Afterwards, data is shared between the GPUs to allow later stages to have access to all
intermediate results. Figure 4.1 (a) shows these synchronization points and the amount
of work that needs to be performed by each stage.

The core part of the pipeline is the IBVH stage that produces a depth map from a set
of angle bins. It requires most of the computation time. All parallelization configurations
therefore focus on how to split and distribute this stage. The segmentation, angle binning
and shading step are the same for all configurations.

4.1.1 Sort-first configuration

The first configuration uses a sort-first arrangement. The IBVH algorithm is defined as a
per-pixel operation, which makes it very similar to raycasting in terms of how independent
the computations are from each other. The workload can be easily split between the GPUs
by dividing the output image into equally sized boxes. The IBVH stage can run in parallel.
After IBVH computation, the synchronization point is reached and data is shared. The
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(a) (b)

Figure 4.2: Sort-first (a) and sort-last (b) configuration intermediate results of four GPUs
rendered with phong shading.

final display stage joins the subimages to form the output image. See Figure 4.2 (a) for
an illustration of the workload distribution.

Sort-first parallelization is easy to implement, but suffers from the memory transfer
that is required to pass the input data to the computing nodes. In our case, this means
that all camera images have to be uploaded on all GPUs. Moreover, to achieve maximum
scalability, the exact location where the screen is split needs to be determined by a robust
load balancing mechanism [160].

4.1.2 Sort-last configuration

Sort-last approaches usually distribute the scene objects (models, or triangles, or bricks
of volumetric data) across the computing nodes. Nodes render their chunk of data in
parallel, and send the result image plus depth information to one or more compositing
nodes. Compositing is more complex than the merging step of sort-first approaches: it
involves testing or sorting all fragments according to their depth.

Visual hull rendering is usually focused on a single scene object: a person in our case.
Even systems that can capture multiple objects in front of their cameras usually can not
distinguish between the objects before actually rendering them. To distribute workload
across multiple nodes, we therefore suggest to assign a subset of the cameras to each node
(=GPU).

For example, when two GPUs are used, each can process five camera images to achieve
a total of ten. Each GPU computes the visual hull of only a subset of all available cameras
(see Figure 4.1 (b)). However, unlike conventional rendering, such a subset is not a stand-
alone rendered image with depth. Instead, it is only an intermediate state in the sequence
of ray-silhouette intersections that make up the IBVH algorithm. This state consists of a
list of intervals along each viewing ray that must not be collapsed to a single depth value
until all subsets are intersected. See Figure 4.2 (b) for an illustration of the intermediate
results.

In our system we have ten cameras, which means that each GPU has to handle a
maximum of five when multi-GPU computing is desired. For the application of rendering
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humans, we found that two intervals along each viewing ray are sufficient to capture the
geometry of up to five cameras. Each interval can be described by two float values that
denote the boundaries of the interval along the viewing ray. This means that each GPU
produces a buffer that has the resolution of the output image and four float values per
pixel.

The suggested method corresponds to a sort-last approach, where cameras are regarded
as scene objects. In contrast to conventional sort-last approaches, the compositing step is
more involved than testing or sorting depth values. The intervals at each pixel need to
be intersected to produce the final visual hull. After intersecting, the first interval that
describes the object surface can be used to produce the output depth value.

Compact interval representation Sort-last approaches can be optimized by only
transferring image parts that contain an object [160]. This is called sparse sort-last and
usually achieved by tight fitting bounding boxes. Unfortunately, for sort-last IBVH all
pixels within the viewing volume produce data. As a result, the data traffic after rendering
is considerable and prevents the algorithm from scaling well with the output resolution
and the number of GPUs.

The interval data that are transfered between the GPUs correspond to depth values
generated from a subset of the cameras. While depth buffer compression techniques are
often tuned for triangle data [86], the interval data for IBVH rendering shows a different
structure, as depicted in Figure 4.2. Nevertheless, more general depth buffer compression
algorithms can also be used for the ray-like depth structure found in the interval data
buffers.

To efficiently compress and uncompress the data without hardware supported com-
pression, we use a method similar to Orenstein et al. as described in [86]. We divide
the interval data into blocks of 8x8 pixels. For each block we pick a representative pixel
and distribute its interval values across the entire block. Every other pixel within the
block computes the difference of its values to the representative values. The differences
are stored with reduced bit length into a global buffer.

To tune the compression ratio, we support different bit lengths per value. To decide
which bit length to use, all pixels in the block publish their required bit length and
the maximum is taken. With lossless compression, data traffic rates can be reduced by
approximately 33% to 45% depending on the resolution. But there is no need for full
precision as long as there is no perceivable difference in the results. Therefore, we drop
the four least significant bits, reducing the bus load by 60% to 70%.

To handle the entire memory transfer with a single transaction, we pack the encoded
data compactly in memory. We use a single atomically modified counter which is increased
by the required amount of memory for each block. In this way, every block retrieves its
individual offset in memory placing blocks with different compression rates next to each
other. The block offset is stored together with information about the used bit length in a
header structure. Blocks are decompressed independently of each other. Each block reads
its offset and bit length from the header. Then, the representative values and differences
are read and the decompressed values can be generated.
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Figure 4.3: Multi-frame rate configuration that uses GPU0 for viewing and the other GPUs
for parallel image-based visual hull rendering.

4.1.3 Multi-frame rate configuration

Multi-frame rate (MFR) rendering decouples viewing from image generation and typically
uses separate computing nodes or GPUs for each of the tasks. Viewing means linear cam-
era or object transformation, as it is common in many applications. The image generation
method can be arbitrary, as long as a depth value can be computed for each pixel. Gen-
erated images are transferred to the viewing node, but the viewing node does not wait for
images to become available. Instead, it uses the last known image for viewing. In general
there is a slight difference in the desired viewing transformation and the one that was used
to generate the last image. This difference can be covered by image-warping. Hardware-
accelerated image-warping and the asynchronous communication behavior guarantees very
high frame rates at the viewing node. The advantage over synchronized parallel render-
ing grows with increasing scene complexity and output resolution. See Figure 4.3 for a
diagram of the architecture.

IBVH rendering is a complex algorithm and therefore benefits from MFR rendering.
However, the visual hull transforms non-rigidly every time a new set of camera images
becomes available. Therefore, the high viewing performance of MFR rendering can only
be exploited between camera image updates. The frame rate of the image generation
node(s) must be higher than the update rate of the cameras. In practice we observed that
this is not a limitation: the camera update rates are usually not as high as the desired
viewing frame rates due to limited bus and network bandwidths and latencies that slow
down camera image transfer. See Section 4.3 for a performance analysis.

Two-pass image-warping For image-warping we use a combination of forward and
backward image-warping. Forward image-warping projects pixels from a source image to
the current view. This is a fast operation, but suffers from holes in the result. Backward
image-warping on the other hand does not produce holes, but involves a search in the
original image to find the correct pixels and is therefore slow [184].
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Figure 4.4: The effect of two-pass image warping: holes after forward image-warping (a, blue)
can be filled by interpolating neighboring warp vectors as in (c) instead of interpolating color
values as in (b). (d) shows the ground truth. The red boxes are magnified below.

Our two pass warping approach combines the advantages of both approaches. First,
a forward warping step is used to project the last frame’s pixel coordinates according to
the current view. The holes in this buffer which arise from forward warping are closed us-
ing linear interpolation on the pixel coordinates (in contrast to color values in traditional
approaches). Now, this buffer forms a lookup table into the last frame with sub-pixel ac-
curacy. In a final step, this lookup is performed to compute the new color values, resulting
in a backward warping approach. Figure 4.4 illustrates the differences between color value
interpolation and our approach. Our approach does not blur the image. Implementation
details are described in Section 4.2.

Combined synchronous and asynchronous rendering Note that large holes that
come from disocclusions can not be filled in such an efficient way. Data that is not present
can not be interpolated. Here we rely on rendering performance: disocclusions are less
likely with a quick image source.

To achieve the required performance, we want to use multi-GPU rendering as the
image source for multi-frame rate rendering. Our system allows to combine multi-GPU
(synchronous) and multi-frame rate (asynchronous) IBVH rendering. For example, the
image source can be a sort-first or sort-last IBVH renderer that uses all but one GPUs.
The one remaining GPU is used for image-warping and display. See Figure 4.3 for an
illustration of such a configuration and Section 4.3 for a performance evaluation.

4.2 Implementation

The whole pipeline is implemented in Nvidia CUDA [90] and uses streams to distribute
command sequences to the GPUs. All memory copies are issued asynchronously, which
makes the system more robust to differing workloads: when a GPU has finished processing
it can already send the result and thus help to avoid later bus collisions. Memory is
transferred between GPUs through host memory.
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Figure 4.5: This performance evaluation of our pipeline shows how the suggested approaches
scale with respect to output resolution. The left figure is a magnification of the first Megapixel
range.

All nodes are provided with the camera images (4 bytes per pixel) that they need, state
information in the form of a projection matrix (4x4 float) and bounding box information
to avoid unnecessary data traffic. Pixels of depth image segments are either compressed
to two bytes of precision (half float), or encoded per block for sparse sort-last with the
compact interval representation (see Section 4.1.2).

In the case of multi-frame rate rendering, the memory transfers are double-buffered
in host memory to facilitate asynchronous communication without stalls [88]. For image-
warping the rendered images have the projection matrix attached that was used to create
them.

The buffer that is used for two-pass image warping is a screen-sized array of unsigned
integers. Screen coordinates are stored in the buffer by packing them with their depth
value into a single unsigned integer. The depth values occupy the ten most significant
bits, the screen coordinates share the rest. We can achieve efficient depth-buffering when
such data packets are written to the buffer by using atomic minimum operations. For
hole filling, the neighboring data packets are decoded, screen coordinates are averaged
and stored at the hole pixel.

4.3 Results

In this section, the configurations suggested above are evaluated for their performance.
The IBVH kernel is responsible for most of the computation time and is therefore the
main focus of our parallelization methods and the corresponding evaluations. As stated in
the beginning, the performance of this stage scales with the number of cameras and their
resolution, the display resolution and the number of GPUs. For our evaluations we assume
a fixed number of cameras of ten. While our system works with any number of cameras,
this specific number proved to work best for the application of rendering users with high
quality. We do, however, evaluate the system for different camera resolutions, display
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Figure 4.6: (a) shows the scaling with camera resolution for a fixed output resolution of
1 Megapixel. (b) illustrates how additional GPUs influence processing times at an output
resolution of 2.3 Megapixels (filled bars) and 7.36 Megapixels (outlined bars).

resolutions and number of GPUs to find out how the suggested methods scale. The used
camera images are read from the hard-disk for repeatability. Note that we excluded the
hard-disk access times from the evaluation because in the live system the camera images
are also not loaded from the disk. We therefore place the images in the host memory and
upload them to the GPUs every frame, just like the live system would.

Scaling with display resolution In the first test series we rendered a representative
IBVH scene (see Figure 4.2) from a viewpoint that is close enough to have the object
fill the screen. We averaged the rendering times of several frames at varying display
resolutions. Figure 4.5 shows performance measurements for four GPUs and a single-
GPU as a reference. The multi-GPU approaches outperform the single-GPU approach
especially for larger output resolutions.

Scaling with camera resolution For this test we rendered three scenes with different
camera resolutions. The scenes consist of the same person standing in similar poses. All
measurements are again averaged over multiple frames. See Figure 4.6(a) for results.
While the resolutions quadruple every step, the execution times maximally double. This
is promising for higher camera resolutions in the future.

Scaling with number of GPUs: strong scaling In this test series we use again a
representative scene (see Figure 4.2) and render with one, two, three and four GPUs at a
resolution of 2.3 and 7.36 Megapixels. Performance measurements are given as speedup
factors. Speedup factors compare the performance of n GPUs to the performance of one
GPU. A factor of n is considered ideal and is illustrated as a red line. All measurements
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Figure 4.7: Multi-frame rate performance for a setup with two and four GPUs. GPU0 is always
used for viewing. Its performance is comparable for both configurations. The quad-GPU setup
uses three GPUs for sort-first parallel IBVH rendering.

are again averaged over multiple frames. Figure 4.6(b) illustrates how the performance
benefit of adding an additional GPU declines with the total number of GPUs.

Multi-frame rate scaling The evaluation data of the multi-frame rate approach is
shown separately in Figure 4.7. We used the scene from above and measured performance
for two and four GPUs. The dual-GPU setup uses a viewing GPU (GPU0) and a single
GPU for IBVH rendering (GPU1). The quad-GPU setup also uses GPU0 for viewing, but
three GPUs for sort-first parallel IBVH rendering.

The GPUs that are responsible for image generation show a similar performance to a
stand alone setup. The performance goal for them is to stay below the camera update
rate in order to avoid missing any image. The camera update rate in our system usually
is 15 Hz. The quad-GPU setup stays well below this mark.

The performance of the viewing GPU outperforms all other approaches easily because
viewing is a less complex task than IBVH rendering by far. In combination with an image-
generation backend that does not miss any camera image, this is a very powerful method
for interactive IBVH rendering.

Interpretation and discussion In terms of performance we observed a behavior that
is common to sort-first and sort-last parallel rendering. Sort-first nodes need to receive
all the input data, whereas sort-last nodes need to send all the output data. Therefore,
when the data transfer to the nodes - in our case the camera images - is dominant, then
sort-last with compression is a good option. Figure 4.5 left shows such a setup. When
traffic is output-heavy due to a relatively high output resolution then sort-first performs
best. Figure 4.5 right illustrates this.
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The performance measurements in Figure 4.6(b) reveal that the scaling of the pipeline
with additional GPUs is far from optimal. To find the reason for this, we analyzed all stages
of the pipeline. The IBVH kernel itself scales almost ideally with an increasing number
of GPUs. However, the memory transfer times between the GPUs increase stronger.
At 2 Megapixels output resolution and four GPUs, the sort-last approach uses 28% of
the time for transferring output fragments, and we even subtracted the transfers that
overlap with execution from this number. Only about 58% of the time was spent with
actual processing. The sort-first approach has better scaling characteristics. For the
same configuration, only 4.5% were fragment transfers and around 68% was processing.
To increase the processing time relative to the overall execution time, we also evaluated
the pipeline at 7.36 Megapixels output resolution. At this very high resolution the sort-
first approach spent around 63% of the time with processing and 5.5% with fragment
transfer. From this data we derive that it is mostly the memory traffic and the overhead
computations (kernel launches, memory initializations) that prevent the presented pipeline
from scaling well beyond two or three GPUs.

The multi-frame rate setup can utilize a sort-first or sort-last IBVH renderer as its
image source. We found this configuration to be particularly useful because it provides over
100 frames per second on the viewing GPU even for output resolutions of 2 Megapixels.
At the same time, a dual or triple-GPU image source can provide enough computation
power to process every camera image. At these frame rates, the visual quality of image
warping is high because disocclusion artifacts can hardly be observed.

4.4 Summary

In this chapter we introduced three methods to parallelize the image-based visual hull
algorithm on multiple GPUs. First, we analyzed the pipeline for possible parallel execu-
tion. We identified two methods, following the common sorting-classification: sort-first
and a sort-last. For sort-last we suggested to regard the cameras as scene objects, and
introduced how the compositing step needs to be adapted. In addition, we suggested a
block-based packing scheme that reduces memory traffic drastically. Finally, we enhanced
the system by multi-frame rate rendering to achieve even higher frame rates for viewing
applications. We introduced two-pass warping to achieve better hole-filling. We evalu-
ated the performance of all approaches and were able to verify that a triple or quad-GPU
multi-frame rate setup can achieve very high interactivity without sacrificing the visual
quality.

As a result of the suggested parallelization techniques, our interactive free viewpoint
capturing and rendering system can provide higher output resolutions. We achieve interac-
tive frame rates even when computing two million pixels, which is enough to display every
detail that our cameras are able to capture. This improvement in rendering efficiency
supports our image-based rendering hypothesis.
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The Microsoft Kinect device has profoundly changed the possibilities of sensing for
games or virtual reality applications. Previously, depth sensing hardware was expensive,
so computer vision applications were primarily based on affordable digital video cameras.
However, video cameras do not directly provide depth information. Depth can be com-
puted by utilizing two or more cameras and 3D reconstruction methods such as the IBVH
algorithm. These methods are computationally expensive and therefore limited in terms
of reconstruction quality and resolution.

With a Kinect device, direct depth sensing and video capture immediately deliver rich
information on the scene structure at a competitive price without intensive processing.
Not surprisingly, many researchers have taken advantage of this opportunity, and we see
a proliferation of research projects that rely on this technology [108]. During our work
on IBVH rendering, the devices became available and we decided to incorporate the new
technology into our free viewpoint rendering pipeline to increase the reconstruction and
display quality with little performance overhead.

In this chapter, we describe and compare two sensor arrangements that we installed
and used for our experiments. The first is an extension of the multi-camera capturing room
that was described in the previous chapters. It consists of two Microsoft Kinect sensors
in addition to the ten color cameras. The other setup consists of up to seven Microsoft
Kinects and is called OmniKinect. Building a setup with multiple active depth sensors is
not necessarily trivial, as a number of conceptual and technical challenges in the system
design must be overcome. Most importantly, multiple Kinects pointing at the same spot
interfere. We describe solutions for these practical challenges, and also introduce rendering
algorithms for each of the setups that leverage the different sensor configurations.

49



50 Chapter 5. Combining color and depth sensors

(a) (b)

Figure 5.1: The rendering in (a) shows how the multi-camera room was extended by two
Microsoft Kinect devices, see the red-yellow color-coded depth maps. The right image (b)
illustrates how most surface parts do not suffer from overlapping projector patterns. The
bright regions on the shoulder and the head suffer from projector overlap and grazing angles
and are therefore most likely not covered by a depth sensor.

5.1 Improving the visual hull with depth sensors

A single Kinect can deliver enough information to let a user control a character in a video
game with body movements or resolve real time occlusion of video-see through Augmented
Reality (AR) applications. However, a single sensor would limit the range of possible
viewpoints in our application. We therefore need a number of sensors that capture the
user from all sides.

A very common method to visualize the data from one or more depth sensors is point
cloud rendering. It works by transforming every depth map pixel into a 3D point that can
be projected onto the screen. With a sufficiently high depth map resolution this approach
produces smooth rendered surfaces with high performance. However, it is very sensitive
to the depth map quality.

Active depth sensors interfere with each other when the emitted signals are caught
by the wrong device. As a result, the reconstructed depth maps have holes or outliers.
This conceptual disadvantage also applies to Microsoft Kinect devices. These conflicts
can be resolved by time-slicing the signals or shifting the signals to different wave lengths.
However, such solutions are usually only available for very expensive devices. We alleviated
this problem by extending our multi-camera setup with only two depth sensors mounted at
opposite sides of the room. In this arrangement, the projected patterns on the user’s body
hardly overlap because the user is located between the sensors. Figure 5.1(b) illustrates the
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Figure 5.2: This figure illustrates the benefit of combining visual hull and depth map rendering.
The left image shows a point cloud rendering of the two depth maps. The middle image shows
the visual hull. The result on the right side shows the combined rendering.

concept. However, the two reconstructed surfaces are not dense and leave a gap between
them.

Another problem is that active sensors that compute depth values or distances based on
the disparity between a projected pattern and a camera, are subject to occlusion artifacts.
These artifacts occur at depth discontinuities where the projector is blocked. Moreover,
depth maps of Microsoft Kinect devices are often noisy, have holes and suffer from complex
radial distortions. The distortions become apparent when more sensors are fused, see
Figures 5.2 (left) and 5.4 for examples.

The suggested visual hull pipeline, on the other hand, is very robust. It produces
images of a water-tight surface without holes. There is no perceivable distortion due to
the high quality of our cameras and the calibration process. However, it suffers from
artifacts that are inherent to shape-from-silhouette reconstruction, especially at concave
surface regions (see Figure 5.2, middle image). Due to the real time constraint we preferred
to avoid stereo matching to increase the visual quality. With additional depth data from
active sensors, however, such improvements become possible.

5.1.1 Combined visual hull and depth map rendering

The visual hull of an object is a conservative surface estimation: the real surface is con-
tained within the visual hull and touches it at some points. Therefore, only depth map
points that are located inside the visual hull can be valid. We assume that these points are
most likely a better surface estimate than the visual hull and should be preferred. Depth
values outside the visual hull are outliers and can be removed. Holes in the depth map
can be closed by visual hull patches.

The resulting algorithm is an extension to the IBVH rendering pipeline described
above. In an additional stage, the visual hull is carved to fit the depth maps. First,
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Figure 5.3: Plan views (a) and 3D overview (b) of our OmniKinect setup. In (a), possible
mounting points for Microsoft Kinect devices are marked green.

the frontmost and backmost ray-visual hull intersection points are projected to the image
planes of the depth sensors. There, the resulting epipolar lines are traversed to find the
ray-depth map intersection. This point is used for the improved surface. If no such point
is found, the visual hull is used. This way, holes in the sensor’s depth map do not cause
holes in the result, while valid points improve it. Figure 5.2 illustrates the advantage of
the suggested method.

In our second sensor arrangement, the OmniKinect system, we developed the idea
further and changed all the cameras in favor of Microsoft Kinect sensors. The next section
describes how we built the new system.

5.2 The OmniKinect system

The OmniKinect system provides a way to capture, record and stream information using
a multiple Kinect sensors infrastructure. However, multiple Kinect sensors produce over-
lapping infrared light patterns that interfere with each other and thus produce holes in
the depth maps.

This problem has been solved by Maimone et al. [147] and Butler et al. [24] by letting
the sensor vibrate at a relatively high frequency. This motion blurs the light pattern for
other, concurrently capturing sensors. The Kinect device’s own pattern does not blur
because the projector and the sensor are connected rigidly. In OmniKinect, we altered
this approach slightly to gain more flexibility.

Setup overview: Our basic setup consists of an extensible, ceiling mounted alu-
minum frame with rigidly fixed vertical rods at regular distances. We have attached Kinect
for Windows devices to the rods with stiffened foot joints. To reduce interferences between
the Kinects, the rods are equipped with vibrators. In contrast to previous work, we do
not mount the vibrators directly onto the Kinects but on the supporting structure. This
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has various advantages: First, we do not have to disassemble the Kinects and demount
their foots to mount the vibrators at a center position and ensure a stiff mounting. We
have also tried a mounting on top of the Kinect, which revealed to be hard to control and
to mount because of the bent shape of the Kinect and which produces much more image
blurring than in our setup. Second, we can adjust and fine-tune the vibration amplitude
by the position of the Kinect. Since the rods are not mounted on the floor, they vibrate
at a higher amplitude near to their end/bottom, where the vibrator is mounted. The
vibrator frequency can be controlled by an adjustable power supply.

Currently, our setup uses eight vibrating rods. Additional rods can be inserted with
just a few simple steps in less than five minutes. To reduce clutter and to allow defined
lighting conditions, we have surrounded the setup by white curtains. Figure 5.3(a) shows
a schematic illustration of our setup and Figure 5.3(b) shows the current implementation
of this setup.

All vibrators are driven by a parallel circuit at slightly different frequencies, due to
different cable lengths. In the final setup, we operate the vibrators between 7200 and
10200rpm.

Display device: To allow real-time visual feedback for various applications, we use
a large TV LCD screen display, which can be freely positioned within our setup.

Processing: For reading the sensor data and processing it, we use an off-the-shelf PC
similar to the PC used in the multi-camera setup. It is equipped with an NVIDA Quadro
6000 graphics card and four additional VIA USB 3.0 controllers. We also use powered
USB extenders to connect all sensing devices. Note that for the setup of multiple Kinects,
only the number of physical USB controller chips is important and not the number of
USB ports. With this system, we can successfully operate up to seven Kinects if both the
color- and the depth stream are used. This is mainly due to the limited bandwidth of the
mainboard’s south-bridge controller. As driver, we can use either the Microsoft Kinect
SDK Driver, or, as for most of our example applications, the OpenNI ∗ PrimeSense Driver.

Calibration: As intrinsic camera parameters, we use the values given in the Microsoft
Kinect SDK. We obtain the extrinsic camera parameters by using the same calibration
target as in the multi-camera room shown in Figure 3.3. The external calibration is com-
puted from the RGB camera image. The depth image is transformed into the coordinate
system of the RGB image by using the static transformation given by the OpenNI or
Microsoft Kinect SDK.

5.2.1 Combined visual hull and depth map rendering

Capturing and rendering 3D videos is an important component of a variety of applications,
including our virtual try-on system. When rendering from color cameras without depth
information, we use the IBVH algorithm. It produces depth maps of the object with clear
edges, watertight topology, and no noise, even when using cheap cameras. However, it does
not incorporate the depth data that is available in our system: it was designed to work
with standard color cameras. Therefore, it fails to reconstruct some of the concavities.

In contrast to color images, depth maps from Microsoft Kinect sensors are rather noisy
and suffer from occlusions at depth discontinuities. At the same time, they convey more
∗http://www.openni.org, retrieved 2013-01-03

http://www.openni.org
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information about the shape of the scene. To get the advantages from both depth map-
based rendering and image-based visual hull rendering, we combine the strengths of both
approaches as follows.

Silhouette-carved point clouds: A prerequisite for visual hulls are silhouette
images. To obtain silhouette images, the scene needs to be captured without foreground
objects before the visualization starts. We use background subtraction based on color-
and depth values to segment foreground objects. This method is more robust than relying
on color or depth alone.

Our first method to incorporate visual hull information into point-based rendering is to
carve the point clouds on the image planes by only considering depth values that are inside
the silhouettes. Silhouettes are calculated by using binary foreground masks, which can be
generated by using the aforementioned background subtraction. During our experiments
we observed that some of the depth values are outliers even though they are inside their
respective silhouettes.

Visual hull-carved point clouds: The visual hull of an object is a conservative
surface estimate: It contains the whole object plus space that does not belong to the
object. To remove low-quality depth values that caused noise in the silhouette-carved
approach, we restrict the point cloud from all Kinects to the 3D space that is covered by
the visual hull.

To do so, we perform IBVH rendering followed by point splatting to get both surface
estimates. Then, all point splats are culled against the visual hull surface at that pixel.

5.3 Results

To evaluate the quality of the OmniKinect setup, we captured an object of known size: a
table with circular top (see Figures 5.4 and 5.5). We then reconstructed and rendered the
object with a varying number of sensors with two methods: visual hulls and point cloud
rendering.

Figure 5.4 shows the results. For two Kinects, the point cloud that is rendered from
the depth data is already quite good when compared to the visual hull. One, two or even
three silhouette images do not contain enough information to reconstruct such a surface
in a meaningful way.

For a larger number of sensors, the rendering quality of the visual hull improves. It
surpasses the quality of point cloud rendering at the edges of the object. The reason
for this is that the color cameras can be calibrated intrinsically and extrinsically very
accurately, which directly translates to precise visual hull edges. Moreover, the depth
sensor has problems at some edges due to occlusions of the projected pattern.

On the other hand, the visual hull may miss concavities that a depth sensor can
capture. To combine the strengths, we suggest the visual hull carved point cloud rendering
algorithm for the OmniKinect setup. The result can be seen in Figure 5.5: concavities are
reconstructed while sharp and precise edges are preserved.

IBVH rendering avoids explicit data representations and is output-driven: for every
output pixel exactly one surface intersection is computed. Invisible parts or backsides of
the object are not computed, which makes it very efficient. Point splatting is also a very
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Figure 5.4: The top row shows visual hull rendering, the bottom row point cloud rendering
for a varying number of Kinects. The red circle indicates the ground truth diameter of the
reconstructed object.

Figure 5.5: Free-viewpoint rendering of a static round table. From left to right: Point
cloud rendering directly from Kinect depth maps suffers from low-quality edges. Visual hulls,
on the other hand, have sharp edges, but lack concavities. By intersecting the two surface
representations, we are able to achieve a much more desirable result. The red cylinders indicate
the ground truth diameter of the table on the right.

efficient algorithm because modern GPUs are built for fast geometry transformations. The
required scatter operation is also reasonably fast in recent CUDA versions. As a result,
the visual-hull carved point cloud algorithm takes around 40 ms to compute on an Nvidia
Quadro 6000 at a resolution of 1000× 1000 pixels using seven Kinects.

The combined color and depth sensor setup using two Microsoft Kinects computes a
similar surface to the OmniKinect setup, but fills missing depth information with visual
hull patches. Figure 5.2 shows the results. Both approaches rely on the IBVH pipeline
for stability and outlier removal, which results in comparable execution times. Based
on surface quality and performance, we could conclude that the two suggested sensor
arrangements are equally suitable for real-time surface reconstruction and rendering.
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(a) (b)

Figure 5.6: A comparison of the resulting rendering quality of our two sensor arrangements.
(a) shows a result image of the OmniKinect setup, (b) of the combined Kinect and color
camera setup. Both screenshots were taken during user motion.

However, during our experiments the combined color and depth sensor setup achieved
a superior visual quality. When texturing the resulting surface, the bad quality of the
color cameras that are built into the Kinect becomes particularly apparent. Seams be-
tween the textures of different devices are visible due to the automatic exposure settings.
The pictures are dark and have low contrast, which requires additional lighting. Most im-
portantly, the lack of synchronization between the devices causes prominent halo artifacts
during user motions. Figure 5.6 shows a side-by-side comparison of the rendering quality
that can be expected when the user moves.

The results shown above illustrate that our methods succeed in removing artifacts
from a visual hulls. Moreover, concave regions are restored and holes in the depth data
are filled with the visual hull surface. Figure 5.7 shows an example of a removed artifact.
However, due to the noise in the depth maps, the projective texturing can be distorted
from some viewing angles.

5.4 Summary

In this chapter we presented two systems with different sensor arrangements for real-
time 3D reconstruction and free-viewpoint rendering. The first setup uses two Microsoft
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Figure 5.7: A side-by-side comparison of a textured visual hull and a visual hull improved
with a Kinect depth map. It can be observed that by improving the visual hull, artifacts were
removed but texture distortions were introduced.

Kinect active depth sensors and ten color cameras for capturing. Interferences between the
sensors are avoided by mounting them on opposite walls of a room, pointing at the user
from different sides. The resulting point cloud is not dense enough for immediate rendering
due to a gap between the two reconstructed surfaces. To fill this gap and remove outliers
that are caused by noise and occlusions, we suggested to combine IBVH rendering with
depth map data. The resulting algorithm improves the visual hull by carving it with the
depth measurements. At the same time, it retains the robustness of shape-from-silhouette
by falling back to the visual hull surface when no adequate depth value is found.

The second arrangement called OmniKinect uses only Microsoft Kinect devices for
capturing the scene. While conceptually simple, the calibration and fusion of data from
multiple depth sensors requires careful design and deployment of the hardware setup.
The cross sensor interferences were reduced by mounting the devices to vibrating poles.
For 3D video capture and free-viewpoint rendering of moving and deforming objects, we
introduced visual-hull carved point cloud rendering. It combines the advantages of image-
based visual hull and point cloud rendering: precise edges and support for concave objects.

The suggested sensor arrangements deliver a comparable surface reconstruction quality
in similar execution times, but differ in terms of quality when the user moves and the
surface should be textured with camera images. The lack of synchronization between
Microsoft Kinect devices and their inferior color cameras result in a reduced rendering
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quality and even artifacts. This becomes especially apparent in the OmniKinect setup
where both shape and texture are delivered by Kinect sensors. We therefore suggest to
use the combined Kinect and color camera setup for free viewpoint rendering of captured
users. To support our image-based rendering hypothesis, we demonstrated a considerable
improvement of the reconstruction and image quality in this chapter.
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Our multi-camera reconstruction and rendering system utilizes the image-based visual
hull algorithm to compute depth maps from silhouette images of calibrated cameras. While
IBVH rendering was shown to be capable of meeting real time constraints for relatively
small resolutions, our work emphasizes high resolutions with as little latency as possible.
The process of IBVH rendering is complex, especially when output quality is improved by
stereo matching, which prohibits a full computation every frame.

Users in front of a set of cameras usually move smoothly. As a result, the reconstructed
and rendered output image does not change drastically over time. This is usually called
temporal coherence and can be exploited to reduce the computation time of the IBVH
algorithm. We distinguish two forms of temporal coherence: view coherence and frame
coherence.

View coherence relies on the assumption that the viewpoint of the system does not
change very fast in a virtual mirror system. Therefore, many of the output pixels of the
previous frame can be reused, as long as the foreground object has not moved or deformed
at these pixels.

Object or user motion is also usually relatively slow because it requires physical motion
and is often restricted to parts of the user, like the arms or the head. As a consequence, the
camera images also change slowly. We call this redundancy frame coherence. When the
user does not move between two successive video frames there is a maximum of coherence.
In such a situation, only the desired viewpoint may change. Most of the depth data from
the previous frame can be reused by image warping.

59



60 Chapter 6. Temporal coherence of static visual hull patches

An IBVH-setup is very well suited for exploiting these types of coherence because
motion of the foreground object can be detected very efficiently: finding a bounding volume
of changed parts is equivalent to computing a visual hull from differences in the silhouette
images. The proposed solution leverages the coherence of static parts in free-viewpoint
rendering of fully deformable and arbitrarily moving foreground objects. Frame-to-frame
forward image warping is used along with an aging mechanism as an efficient algorithm
for reusing previous rendering results.

6.1 Exploiting view- and frame coherence

While our IBVH rendering module is capable of rendering the video streams at interactive
rates for resolutions up to 1000×1000 pixels, we attempt to scale the algorithm to Full-HD
with as little latency as possible. By exploiting view- and frame coherence, we can speed
up major stages. For this work, we define view coherence and frame coherence as follows:

View coherence relies on the assumption that the viewpoint of the system does not
change very fast in a virtual mirror system. Therefore, many of the output pixels of the
previous frame can be reused, as long as the foreground object has not deformed or moved
at these pixels. We address this type of coherence with forward image warping which
transforms pixels from the previous output frame to the current output frame.

Frame coherence assumes that the input camera images do not change drastically
over time. User motion is usually relatively slow because it requires physical motion and
is often restricted to parts of the user, like the arms or the head. In these cases, only
the regions of the screen which show moving parts have to be redrawn. In addition, our
cameras deliver new images 15 times per second, which means, that when we are able
to render at higher frame rates, not every output image is based on a novel set of input
images. In such cases, only viewpoint motion has to be accounted for.

The stages of the IBVH rendering pipeline (see Figure 3.4) have different input depen-
dencies. First, the segmentation step depends on the color images from the cameras. Edge
extraction and caching just depend on the geometric information which is computed from
the camera images. Ray-silhouette intersection in addition is dependent on the viewing
direction because it needs to reconstruct a depth value for each output pixel. The visibility
maps on the other hand are not view-dependent except for little differences in sampling
quality. Stereo matching again depends on view and geometry, whereas the final output
stage depends on all inputs.

The segmentation step has to be performed every camera frame because it extracts
the geometric information from the color images in the form of a foreground labeling.
When new camera images are available and parts of the foreground object have moved,
all stages after segmentation have to be recomputed, but only in the areas which are
concerned by the change. Areas which have not changed, on the other hand, can stay
completely untouched in steps which do not depend on the current viewpoint. In view-
dependent steps, unchanged areas can be reused from the previous frame by applying
an image warping algorithm which compensates for the relative viewpoint motion. The
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Figure 6.1: Color- and silhouette difference between two consecutive frames of a camera.
Color differences (left) are sensitive to, for example, changes in mimics. Resulting bounding
rectangles are indicated in red.

texture mapping stage of our pipeline needs less than 3% of the overall rendering time,
and therefore does not benefit noticeably from coherence. We therefore perform texture
mapping every frame for the full image, whereas we exploit frame and view coherence
for the underlying geometry. Computing the silhouette-ray intersections, stereo matching
and visibility depend on the foreground object’s shape and position, and therefore have to
be performed in screen regions where the underlying geometry has changed. These stages
are responsible for over 90% of the overall execution time, which makes exploiting frame
coherence particularly rewarding for IBVH rendering.

6.1.1 Identifying moved or deformed regions

An easy way to identify changed camera image regions is to compute the difference between
consecutive images. Figure 6.1 illustrates two types of difference images: color difference
and silhouette difference. The color difference between images is sensitive to all kinds of
changes in the scene, whereas the silhouette difference only shows changes in the projected
geometry of the foreground object. Since we specifically aim at accelerating the geometry
reconstruction stages of our pipeline, we only want to detect changes in geometry. There-
fore, we use the silhouette difference as the detector. It does not contain changes in the
foreground object’s texture. Texture changes are accounted for in the texture mapping
stage which is performed fully every frame.

In addition to building the difference image, this stage simultaneously counts the
changed pixels for a block. When a block exceeds a certain fill rate, it is considered
as being a changed part of the scene rather than noise in the segmentation, which is
similar to a morphological erode operation. We use an axis aligned bounding rectangle
to describe the region of each camera’s image which contains change. By using CUDA’s
built-in atomic minimum and maximum operations, we extend the bounding rectangles
on a per-block basis to obtain its extents BLi, BRi, BTi, BBi. Figure 6.1 illustrates the
result of this stage. We have chosen axis aligned rectangles as the primitive because they
can be fitted easily as described. Moreover, finding intersections with lines can be per-
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formed efficiently using minimum/maximum functions and a low amount of floating point
operations. This is important for the next stage.

6.1.2 Projecting the visual hull of changed regions

The multi-camera setup in combination with the IBVH rendering algorithm is very well
suited for reconstructing geometry from its projections. This is also the idea behind our
redraw volumes. The bounding rectangles from the previous step describe the projected
boundaries of the changed parts of the object on the image planes of the input cameras.
Therefore, the visual hull of the volume containing change can be extracted by applying
the IBVH algorithm. To allow later stages to decide whether to recalculate a viewing ray
or to apply image warping, each viewing ray (which equals a geometry fragment) needs to
be classified as redraw or warp. Since rays can only be recalculated or warped as a whole,
the decision is binary. Therefore, the exact depth interval, where each ray intersects the
redraw volume, does not need to be extracted. This allows for a rough approximation of
equation 3.2:

Rx,y =
(∑
i∈I

hit(starti, endi, BLi, BRi, BTi, BBi)
)
> tredraw (6.1)

The binary redraw map Rx,y which contains true when a geometry fragment needs to
be recomputed is calculated from the sum of intersections of the projected viewing rays
starti - endi with the bounding rectangles BLi, BRi, BTi, BBi. hit returns 1 if the ray
hits the rectangle, and 0 otherwise. This calculation does not correctly reconstruct the
visual hull of the bounding rectangles, but an approximation which is good enough for
estimating its projection. The computation does not require any indexable memory and
only a few branches which makes it particularly fast. Figure 6.2 illustrates the state after
the user moved his arms.

To account for occlusion in the scene, we mark a pixel as having changed, when more
than a certain number tredraw of the input cameras agree. We use a threshold of two
third of the number of cameras, but the exact value may vary for foreground objects other
than persons and different camera setups. To achieve more efficiency at this stage, we
do not sample the redraw volume for every pixel of the output image, but rather for one
representative of a block of 7× 7 pixels.

6.1.3 Forward image warping

For transforming pixels from the previous output frame to the current output frame,
we apply forward image warping as a CUDA kernel [88]. The algorithm computes the
image-space motion between the two consecutive frames for each pixel. It is calculated by
transforming a pixel from the previous frame to the current frame by using its depth value
and the projection matrices of the current and previous frame. The result is called a warp
map and has to be morphologically closed because it does not cover every output pixel
reliably. Finally, the pixels are copied according to the map. Note, that we only warp
fragments of the reconstructed geometry of the foreground object, but not actual color
values because texture-mapping is applied every frame for the reasons mentioned above.



6.1. Exploiting view- and frame coherence 63

(a) (b)

Figure 6.2: This figure shows the redraw map Rx,y which can be used to constrain the
rendering to regions with user motion. The users moved their arms or upper body. Our
motion detector indicates different motion magnitudes which are illustrated in shades of red.
The threshold of Equation 6.1 was not applied in this figure for visualization purposes.

Only parts of the visual hull which have not changed from the previous frame to the
current frame are subject to image warping. This is necessary to prevent false geometry
fragments from being added to the scene. However, our motion detection algorithm,
which triggers the redrawing of geometry fragments, is only a heuristic and may therefore
introduce minor artifacts. For example, when very slow object motion which is is not
detected by our redraw rectangle mechanism is present for several consecutive frames.
Geometry fragments are warped from frame to frame. Therefore, when artifacts occur
in one output frame, these artifacts stay in the output until the defective fragments are
discarded, for example, by falling into a redraw region. Given enough view coherence and
little object movement, fragments can have a life span of several seconds.

To allow image errors to eventually disappear from the output, we introduce an aging
mechanism. Every time a geometry fragment is warped, its age is increased by one and
stored along with the fragment. When the age of a fragment is too high, it gets discarded.
Newly rendered fragments have their age reset. This way, all fragments in the system
eventually get replaced. To prevent the algorithm from replacing too many pixels at once,
newly created fragments have their age set to a small random value instead of 0. Of course,
the age threshold has strong impact on the utility of view coherence. We usually choose
age thresholds lower than the expected frames per second. This way, errors are only visible
for a fraction of a second. At the same time, it allows fragments to be reused many times
before being recomputed which results in a major speed up. Figure 6.3 (a) shows an age
map which consists of color-coded ages for each output pixel. Red areas indicate low age
which means the corresponding geometry fragments have been recomputed recently. Most
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Figure 6.3: Illustration of warp-aging (a). Blue fragments indicate high age, red fragments
indicate low age. The snapshot was taken when the user moved his right arm. (b) shows
artifacts which can occur when a slow motion is not detected. (c) shows inaccuracies which
are introduced by image warping. Warp-aging alleviates the problems of (b) and (c).

of these computations have been triggered by the user’s movement of his right arm. Other
fragments have been redrawn because their age-threshold has been reached (feet, hair).

6.1.4 The complete coherence work flow

Our method allows for viewpoint- and object motion at the same time. In fact, this is a
very common case when a mirror should be simulated. A movement of the user’s head
both changes the foreground object (the shape of the person) and the viewpoint. The
viewpoint is determined by the position of the user’s eyes to achieve the mirror effect.
The eye position obviously changed along with the head position.

The final rendering pipeline which exploits coherence is illustrated in Figure 6.4. When
new input images arrive, the segmentation is performed and silhouette edges are extracted
and cached. Also, the changed parts of the scene are identified to yield redraw regions.
The visual hull of the redraw regions is projected onto the previous and current frame’s
image planes, yielding two redraw maps. The warp map is computed in regions which are
not classified as having changed by the redraw map of the previous frame.

Afterwards the main step is launched. Geometry fragments which are not labeled for
redraw in either of the redraw maps can be warped from the previous frame. For all
other pixels, IBVH depth map extraction is performed. These pixels are missing mostly
because of motion in the scene, but also due to parts which were occluded in the previous
frame. All parts of the user’s body are connected, so it can be assumed that previously
occluded parts only appear close to previously visible parts. This can be used to avoid
IBVH extraction for pixels which have a certain distance to the next valid warp map entry
and are not subject to redraw due to scene change. This distance defines the maximum
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Segmentation

Edge extraction and caching

Ray-silhouette intersection
and depth map  extraction

Visibility map computation

Depth map refinement
by stereo matching

Texture mapping the depth map

Performed for whole frame

Performed where no
warping results available

Compute redraw rectangle
for each camera image

Compute redraw region
for previous+current view

Compute warp map

Figure 6.4: Our method which exploits frame- and view coherence. Red steps are only
performed in regions where the scene changed or a novel view reveals previously unseen parts.
Underlined steps are view-dependent.

allowed projected user motion per frame. We chose a distance of 8 pixels, which was rarely
exceeded. Depending on the amount of background pixels, we observed that this effect
can decrease runtime by up to 15%.

From there, visibility maps can be computed. Depth map refinement by stereo match-
ing is performed only in regions where geometry changed. Other regions can be reused by
utilizing the warp map. Finally, the texture mapping step is launched every frame for the
whole output image, since changes in texture color are not detected by our redraw regions
by design. This way, fine details like mimic and hair movement are updated as often as
possible. Note, that the view-independent steps (Figure 6.4) only need to be performed
when new camera images are available. When the rendering speed exceeds the camera
update rate, many computations can therefore be avoided.

For interactive systems, it is desirable to directly constrain runtime and to maximize
the image quality within the available time-frame. By using our temporal coherence
method, a system implementing this behavior can easily be realized.

6.2 Guaranteed frame rate

The image-based visual hull (IBVH) algorithm estimates images at novel viewpoints di-
rectly from segmented camera images. It is particularly useful in interactive systems that
must produce output images with little delay. In this chapter we showed that without
sacrificing image quality, computing the IBVH can be constrained to those image areas in
which the underlying geometry has changed [90]. After detecting changes in the scene ge-
ometry, only those image areas with a change magnitude above a threshold are recomputed
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and the remaining areas are warped from the previous image. This threshold controls the
output quality directly, but it only indirectly affects the execution time.

By exploiting coherence the rendering frame rate can vary drastically over time, de-
pending on the user’s motion. When immediate response to user motion is desired and
should be guaranteed, a certain amount of rendering time must not be exceeded. Ter-
minating the coherence-enhanced visual hull rendering process after a certain execution
time leads to incomplete output images. Depending on the block scheduling order of the
CUDA runtime, the top half of the image might be empty, for example.

To make most use of a fixed time window, the image regions that change the most
between consecutive frames should be rendered first. We can approximate the change
magnitude of an output pixel or a block of pixels by our change detector, the redraw map
Rx,y that can be seen in Figure 6.2. Image blocks with high motion magnitude should
be subject to full IBVH rendering, while others may be approximated by image warping.
After a certain fraction of the time window is over, all remaining image blocks should be
filled by image warping to avoid holes or missing parts in the output.

However, this process is not possible using standard GPU programming facilities, like
Nvidia’s CUDA framework. We need a custom execution order of image blocks and a way
of deciding when to switch from IBVH rendering to image warping. The Softshell [197]
GPU scheduler adds these functionalities to CUDA.

The custom scheduler is implemented as an infinite loop that keeps all processors
of the GPU busy (a so-called megakernel approach). Coherent blocks of threads query
workpackages from a work queue. When finished, the block queries the next workpackage
until no more work is to be done. The work queue is sorted before and during execution
by a user-defined priority. The elapsed execution time starting when the first workpackage
is issued can be queried to guide kernel execution.

Softshell workpackages are created for the entire image by the CPU. Their priority is
set by our motion detector to the average change magnitude of their associated region,
so that image areas with substantial changes will be processed first. During execution
of each workpackage, the remaining time and remaining number of workpackages are
queried. Based on the known, constant execution time of image warping, the kernel can
decide whether to run the IBVH algorithm or image warping.

6.3 Quality discussion

The proposed image-based rendering architecture contains components which directly op-
erate on camera images and therefore inherit several computer vision issues. Moreover,
the redraw heuristics have an effect on the output quality. In this section, robustness and
influence on quality of critical components are discussed.

The first step in the pipeline performs a foreground segmentation. We assume a rather
controlled real environment which means in practice, the segmentation step is sufficiently
robust. We experimented with garments of different colors and even with green stripes,
but output quality remained stable. However, changes in the background scene produce
intolerable visual artifacts.
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We also observed the effect of morphological closing. This algorithm fills holes and
cracks in the segmentation which usually results in a more correct segmentation and thus in
improved visual quality. However, the operation may wrongly fill concavities, for example,
face details. In practice, these artifacts are hardly noticeable in the output image because
the stereo matching step shifts depth values to improve color consistency, and color outliers
are also suppressed while texturing.

After the segmentation of all camera images, the redraw rectangles are computed by
silhouette differences between the current and the previous image. While this step is robust
to illumination because it operates on silhouettes instead of colors, the resulting bounding
boxes are subject to segmentation noise. As described, we counter most noise by filtering,
but bounding boxes may occasionally be too large. This results in more pixels which are
reconstructed by IBVH, and less pixels which are warped form the previous frame. The
visual quality therefore does not suffer from this, but rendering performance does. In our
evaluation system, this was rarely a problem, but in less controlled environments, using
more than just one bounding box per image may be more stable in this respect.

The computation of the redraw maps follows a heuristic. It contains a threshold which
can be tuned in favor of performance or quality. By choosing a high threshold, minor
motions of the user stay undetected and result in slight artifacts in the output image.
To deemphasize this tradeoff, we introduced the concept of warp aging: all fragments
are recomputed eventually. By carefully choosing the maximum warp age, artifacts are
not visible long enough for users to notice, while still maintaining a frame rate which
is considerably higher than the conventional IBVH approach produces. Finally, image
warping itself adds a low amount of blur to the output which is mostly due to inaccuracies
of repeated warping (see Figure 6.3).

The standard implementation sets a desired visual quality and lets the execution time
vary freely. The guaranteed frame rate implementation follows the same quality/speed
tradeoff, but the desired maximum execution time can be fixed while the quality varies.
With a decreasing execution time limit, the quality degrades gracefully, as the rather static
visual hull patches are approximated by image warping first. Obviously, setting the time
limit too small leads to visible artifacts as moving visual hull patches do not receive full
IBVH reconstruction.

6.4 Results

We use a recorded scene consisting of 10 uncompressed AVI videos with 640×480 resolution
and 15 Hz. A frame of these videos is shown in Figure 6.2. The output resolution is set
to 1600× 900, with about 1550× 750 effectively covered by rendered pixels.

Evaluating frame- and view coherence effects is not trivial because it strongly depends
on the user’s behavior in terms of physical movement and viewpoint movement. There-
fore, for evaluating the rendering of a frame by exploiting frame coherence, we use three
exemplary test scenarios. The first consists of a relatively strong user motion which in-
volves the whole body. The second scenario only consists of the movement of an arm as
shown in Figure 6.2. The third does not show any motion, and therefore leverages full
frame coherence. For all scenarios, we moved the viewpoint slightly and averaged the
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Figure 6.5: Comparative evaluation of kernel times in milliseconds: without using any coher-
ence, weak coherence (test 1), medium coherence (test 2) and strong coherence (test 3).

recorded results. Together, these situations illustrate the range of possible performance
improvements.

Figure 6.5 compares average kernel times of our IBVH rendering pipeline with and
without exploiting frame- and view coherence. Test scenario one, which contained full
motion of the user’s body, resulted in an average rendering time of 124 ms. This is about
as fast as without exploiting coherence. While the additional stages of the pipeline need
time, the disadvantage is less than we expected: even with full user motion, the redraw
volume still helps to speed up the detection of empty pixels. Scenario two already offers a
substantially increased performance: the runtime is only 64% of the conventional pipeline.
As we expected, test scenario three is fastest with a rendering time of only 33% of the
original.

The benefit of exploiting frame- and view coherence with our algorithm improves with
increasing output resolution (Figure 6.6) which makes it suitable for future high quality
augmented reality systems. Moreover, we configured our system to the video conference
setting of a recent CUDA-based IBVH implementation [221], where a performance of 25
frames per second for a 768 × 576 resolution using 9 cameras was reported. Our system
delivered 52 to 63 frames per second in such a scenario. While we used a more recent GPU,
our system additionally performed stereo matching, visibility tests and a more elaborate
texture mapping.

The guaranteed frame rate implementation follows the same quality/speed tradeoff as
the quality-driven execution scheme. The most important feature is therefore its ability to
obey the given execution time limit. In the evaluation shown in Figure 6.7 we set the limit
to 67 milliseconds, which equals the camera frame rate. We compare the execution times
for both the guaranteed frame rate approach and the quality-driven implementation. It
can be observed that the limit is exceeded rarely and only for a short time. The remaining
variance in the execution times comes from the GPU-internal scheduler that is not fully
controllable by our program.
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Figure 6.6: Execution times in relation to output resolution for scenario two. The benefit of
exploiting coherence increases with increasing output resolution.
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Figure 6.7: Guaranteed frame rate IBVH rendering with a target time-constraint of 67ms to
match the camera frame rate. A fixed quality threshold determined prior to a kernel-launch
leads to unpredictable execution times (red dots). The Softshell implementation controls the
quality/speed tradeoff dynamically, based on the time remaining for the current frame. Work
of higher-priority is scheduled first, generating the highest possible quality in the specified time
(blue dots).



70 Chapter 6. Temporal coherence of static visual hull patches

6.5 Summary

In this chapter we have shown how the performance of image-based visual hull rendering
can be improved by leveraging frame- and viewing coherence. An effective and efficient
motion detector was introduced that exploits the IBVH algorithm itself. It identifies
pixels that can be reused by image warping. Image warping is a quick way to transfer
surface points from the previous frame to the current frame, thus reducing the number
of operations that are necessary to generate an output image. It does not restrict the
flexibility, but improves performance considerably. Moreover, we demonstrated how to
use such a combined IBVH and image warping system to guarantee frame rates. As
a result, augmented reality applications which build upon our method can deliver high
resolution output images with very low latency. The evaluation results verify our temporal
coherence hypothesis. We evaluated the relative performance improvements for a range
of output resolutions and use cases with differing amounts of coherence. The suggested
coherence algorithm scales well with resolution, which makes it particularly useful for
future interactive rendering setups. Performance improvements could be measured even for
scenes with full body motions because the algorithm facilitates early background detection.
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Exploiting the temporal coherence in the video streams during IBVH rendering can
reduce the number of required calculations that are necessary for image generation. This
is challenging because the user is reconstructed every frame and can move and deform
arbitrarily. In the previous chapter we showed how to detect static visual hull patches
that can be reused over time. Exploiting the coherence also for moving surface patches is
challenging and requires modifications to the original IBVH algorithm.

The contribution described in this chapter is a method to utilize previous computation
results to improve the performance of the IBVH algorithm even during user motion. To
achieve this task, we first analyzed the IBVH algorithm to find intermediate computation
results that are coherent over time and verified their persistence by measurements. We
found that visual hull points have an association to silhouette edges that persists over
several frames. This association is therefore more stable than the surface point locations
themselves. This knowledge can be used to save computations in regions with stable
camera associations (see Section 7.2).

Moreover, users usually do not move quickly in relation to the camera update rates
which can be exploited. We analyzed the camera associations of ray-silhouette intersection
intervals in the light of an assumed maximal user motion speed. Based on this constraint,
we introduce methods to determine irrelevant and stable ray-silhouette intersections to
reduce the amount of calculations over time (see Section 7.3).
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Figure 7.1: The black boxes describe the process of image-based visual hull (IBVH) rendering
for a single viewing ray. The red boxes indicate where extensions are required to exploit
temporal coherence.

7.1 Temporal coherence in IBVH rendering

The work presented in the previous chapter was limited to static surface patches. Exploit-
ing coherence for surface patches that move or deform over time is more difficult. Due to
the unpredictable deformation, previous depth maps can not be reused reliably. Figure 7.2
shows that a big fraction of visual hull surface points (computed from the depth maps)
can become invalid between two consecutive frames. The IBVH algorithm computes the
depth map directly from the silhouette images, which means that without modifications
to the original approach there are no intermediate results that reliably stay valid over two
consecutive frames.

We found such information and methods for determining its reliability. Figure 7.1
indicates how the conventional IBVH algorithm can be extended to exploit temporal co-
herence. First, the information that is persistent over consecutive frames is fetched. It
helps to decide which cameras should be processed by the IBVH algorithm. Finally, the
persistent data for the next frame needs to be extracted and stored.

The following sections measure the stability of intermediate computation results over
time and derive strategies for exploiting coherence from the measurements. First, we
describe how surface points of a visual hull are associated with the cameras and show that
this association is more stable than the surface points themselves. This knowledge can be
used to save computations in regions with stable camera associations.
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Figure 7.2: Coherence analysis: the fraction of camera associations and surface point coor-
dinates that stay valid between two consecutive frames are compared. Camera associations
show more coherence.

7.2 Camera association coherence

One important property of visual hulls is that every surface point projects to a silhouette
edge in at least one of the camera images. Most surface points do not lie on visual
hull ridges or junctions and therefore project to a silhouette edge in exactly one camera
(Figure 7.3(a)). Therefore, most surface points can be computed by finding ray-silhouette
intersections in only one instead of all camera images.

The association of a surface point with a single camera is not static over time. How-
ever, we found it to vary smoothly. To determine the amount of coherence, we therefore
measured the percentage of surface points (equivalent to pixels for the IBVH algorithm)
that do not change their association between frames over a whole sequence of user body
motions.

Figure 7.2 shows the fraction of surface points that keep their camera association
over a recorded sequence. It can be observed that most associations stay valid between
consecutive frames. In contrast, the surface points’ locations do not provide as much
coherence. To account for numerical instability, we assumed that a surface point stays
valid if it moves less than one millimeter between frames.

To quickly compute a surface point from a coherent camera association it is enough to
execute a subset of the original IBVH algorithm: the ray-silhouette intersection. It returns
a list of intervals that describe where the viewing ray runs through the reconstructed
object. The frontmost interval is not necessarily the correct one. In complex cases where
some of the intersection intervals would be carved by other cameras, it is necessary to know
which of the intervals is correct. This means that the temporally persistent information of
this method is a camera ID and an interval ID. In addition, we store a stability measure.

We therefore extended the conventional image generation algorithm by three stages
(Figure 7.1). First, the two ID numbers and the stability value are fetched from a buffer
for each pixel. The IDs can be used directly to decide which camera is processed. When
a pixel is flagged as unstable, the conventional IBVH algorithm is executed by processing
all cameras. After the surface point is computed, the associated IDs are stored as the new
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(a) (b)

Figure 7.3: (a) shows how silhouette edges generate surface points. (b) illustrates the stability
estimation used in our method: blocks with inhomogeneous camera associations are marked
as unstable (red).

persistent information. Finally, the expected stability needs to be computed for the next
frame. The stability computation is subject to a tradeoff.

7.2.1 Quality/speed tradeoff

While many surface points keep their camera and intersection association between frames,
not all of them do. Especially at the borders between different camera associations, surface
points change their sides frequently. To avoid artifacts in these regions it is therefore
important to identify and mark them as unstable, meaning that they require a full IBVH
computation that considers all cameras. Figure 7.3(b) shows an IBVH rendered image
with augmented stability information. The width of the unstable area around patches
with inhomogeneous camera associations determines the execution time and the result
quality. Increasing the width causes more full IBVH computations and therefore increases
quality at the cost of performance. The result of setting a too small width can be seen in
Figure 7.4(a).
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(a) (b)

Figure 7.4: This visualization shows the impact of a too small instability width for camera as-
sociation coherence (a), and a too small maximally expected motion for user motion coherence
(b).

7.3 User motion coherence

Our application mainly focuses on reconstructing and rendering of people. In this case,
we can safely assume a certain maximum velocity the user moves his body (parts). Most
likely the hands will move the fastest. We currently assume a maximum velocity of 135
centimeters per second, which was sufficient during our experiments.

The method described above assumes that camera associations vary slowly over time.
This proved to be true for large surface junks like the upper body of people. However, body
parts like hands and legs can move much faster and are relatively thin. When considering
a maximal motion of 135 centimeters per second around each surface point it becomes
obvious that the association to a single camera can change quickly, especially for arms
and legs of the user.

The camera association method covers these changes by a stability predictor that marks
border regions in the association buffer as unstable. If we set the three dimensional extent
of these border regions to the maximum motion distance that we expect in our system
then most of the surface would be identified as being unstable. As a result, the method can
be configured to favor speed or quality, but does not achieve an optimal tradeoff between
these two goals. The situation is better for a rather low number of cameras, but for quality
reasons we want to use as many cameras as possible.

The solution is to associate every surface point with a list of cameras that contribute
important ray-object intersection intervals. This is the temporally persistent information
of this method. A list containing all cameras is maximally stable because it allows to
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compute the visual hull conventionally even without any temporal coherence. With an
assumed maximum user motion, cameras can be removed from the list to reduce the
processing time.

Again, we extended the conventional image generation algorithm by three stages (Fig-
ure 7.1). First, for every pixel the camera list is fetched in a certain neighborhood because
camera associations should be distributed to all surface points inside the maximal motion
range. When the new image is generated, only these cameras need to be processed. All
other cameras can safely be skipped. During camera processing, we keep track of all cam-
eras which generate intervals that lie within the maximal motion range around the surface
point. After the surface point is computed, the new camera list is stored. As long as the
expected range is sufficient, the resulting algorithm computes the exact same result as the
conventional algorithm, but faster.

Compared to the single camera association method, we get less benefit per surface
patch because the processing is reduced to a number of cameras instead of just one.
However, more surface patches receive a reduced work load.

7.3.1 Quality/speed tradeoff

The maximum motion that we expect from the user has a strong impact on both the
visual hull quality and the execution time. Usually it is estimated conservatively, which
guarantees that the result will be the same as with conventional IBVH rendering. However,
the maximum motion limit can be lowered to reduce execution times when certain errors
in the resulting visual hull are tolerable during fast user motions. Figure 7.4(b) illustrates
how such artifacts look like. In the evaluation section we provide measurements for a
range of motion limits to illustrate the behavior of the algorithm.

Usually, different body parts and thus image regions are subject to different maximum
velocities. For example, it is hard to move the head as quickly as the hands. Moreover, the
motion velocity can vary over time as the user performs different actions. Therefore, the
performance of exploiting temporal coherence can often be improved by applying different
motion limits across space and time. To do so it is necessary to estimate the user’s motion
magnitude before reconstructing and rendering his body.

We achieved this with the motion detector (Chapter 6, Figure 6.2) which was used to
identify surface patches suitable for image warping. It computes an approximate probabil-
ity that a surface patch has moved between two consecutive camera image sets. Patches
that move quickly are more likely to be detected and achieve higher scores, which allows
us to estimate the velocity from this score. In our temporal coherence algorithm we adapt
the maximally expected user motion according to it.

7.4 Implementation

The IBVH pipeline is implemented as CUDA kernels. It starts by uploading the camera
images to the GPU, performs background segmentation and compensates for radial distor-
tion. Then, an angular cache [90] is built that improves the performance of the subsequent
IBVH step. This chapter focuses on the IBVH step, which we extended by three stages
(see Figure 7.1): fetching the persistent information, deciding how to compute the pixel
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and storing the results. In addition, background pixels that are outside the scene bounding
box or too far from previous surface points are excluded from further processing.

All coherence methods use the CUDA warp voting functionality to find decisions that
avoid diverging branches. Therefore, all decisions are made conservatively: if one thread
in a warp requires full reconstruction then all receive full reconstruction. Shared memory
is used when data needs to be available to all threads in a block for decision making.

7.4.1 Camera association coherence

The persistent information in this approach is a camera ID and an interval ID that are
associated to the surface point at each pixel. The stability buffer only stores one value
per block of 8 × 8 pixels to facilitate divergence free execution. Rendering with camera
association coherence is a three-fold process. First, the modified IBVH rendering algorithm
checks the stability buffer at each pixel. To compensate for viewpoint changes between
two consecutive frames, the read location is transformed by image warping.

Second, the algorithm decides whether a patch of pixels should be reconstructed fully
using the conventional IBVH algorithm or if it is safe to reuse information from the last
frame. In the latter case, the ray-surface intersection is computed by only looking up the
camera that each surface point is associated to. Otherwise the conventional algorithm is
run. The new surface point location and its camera association are written to the result
buffers.

Third, the persistent camera association buffer is checked for surface patches contain-
ing visual hull ridges, i.e. inhomogeneous blocks. These blocks are marked as unstable
for future coherence decisions. Nearby blocks are also marked unstable. The object space
range of this distribution is fixed before runtime. When transformed to image space,
the range depends on the resolution and zoom level. It can be used to control the qual-
ity/speed ratio of the algorithm (see Section 7.5). In addition to inhomogeneous blocks,
the background is also marked as being unstable to allow the visual hull to move into
previously unoccupied space.

7.4.2 User motion coherence

This method also modifies the conventional IBVH algorithm at three points. First, the
persistent information in the form of a camera list is fetched per pixel. The list describes
which cameras should be traversed. We store the cameras’s active/discarded status in a
bit array per 8 × 8 pixel thread block. This ensures coherent warp decisions in the next
frame. The bit mask also covers background regions and therefore helps to skip empty
blocks quickly. To compensate for viewpoint changes between two consecutive frames,
the read location is transformed by image warping. The camera IDs are aggregated by
a logical or operation in an image space neighborhood that corresponds to the maximal
expected user motion distance. This distance is defined in object space and therefore needs
to be transformed to image space to account for varying zoom levels and resolutions.

The current implementation utilizes the ai angle described in Section 3.4.4 to sort the
cameras before processing. For pixels that showed relatively thick parts of the visual hull
and that are not close to the background we assume that they will contain foreground in
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the next frame too. There we sort the cameras with low a’s first. This way, the resulting
surface is found quicker and the remaining cameras can be analyzed for being necessary in
the future. For pixels that are likely to show background, we sort the cameras with high
a’s first. This helps to discard such pixels quicker.

During IBVH processing the cameras in the list are traversed in the specified order.
The algorithm keeps track of the ray-silhouette intersection intervals and their camera
associations. Cameras that are not necessary to find the surface intersection along a
viewing ray are discarded for the next frame. Reasons why a camera may be unnecessary
for a ray are: the intervals do not cover and are far away from the surface. For example, a
camera is unnecessary if it only carves space that is more than the maximal motion distance
in front or behind the visual hull. Other reasons are that the ray does not intersect the
viewing volume or the ray misses the object in this camera’s silhouette image.

Finally, the new camera list is aggregated per block of pixels by an atomic or operation
and stored in the buffer. Before the user enters the scene, all lists are empty. Therefore,
when the user enters the scene, the algorithm would not notice. To bootstrap the process,
we activate random camera IDs in random blocks every other frame.

7.5 Results

We evaluated our methods by measuring execution times and relating them to conven-
tional IBVH rendering and voxel-based visual hull reconstruction. We measured how our
methods scale with different resolutions and how their result quality degrades with differ-
ent parameter settings. The test system is equipped with an Nvidia Quadro 6000 GPU
and executes all tests on previously recorded video streams instead of life camera data to
generate reproducible results.

7.5.1 IBVH rendering vs. voxel carving

As a first test, we compare IBVH rendering to voxel carving. Voxel carving is a popular
method for shape-from-silhouette reconstruction. It consists of two stages: first, each voxel
is projected into all camera images and labeled as outside if it projects to the background
in any of the images. Second, the voxel grid needs to be rendered. We use raycasting in
our tests because extracting a mesh from a frequently updated voxel grid is less efficient
on our evaluation system.

For the tests we selected three different image and voxel resolutions. To allow for a
fair comparison, the voxel resolutions are selected such that the visible voxels project to
an equal number of pixels. This way, the voxel and the image-based methods compute
geometries of comparable quality. Figure 7.5 shows how voxel carving and rendering
compares to the IBVH approach: the voxel carving method is only competitive for small
resolutions. Voxel resolutions were 700× 350× 1400, 450× 225× 900 and 250× 125× 500
for the three test runs.

Voxel carving can be improved by exploiting temporal coherence. This approach is
known as incremental visual hull reconstruction [11]. It works by casting rays through the
volume at silhouette pixel locations that have changed between two consecutive frames.
If a pixel becomes activated, the voxel grid along the according viewing ray is updated.
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Figure 7.5: This evaluation data plot compares IBVH rendering with (incremental) voxel
carving at three different image and voxel resolutions.

When a pixel gets removed, the voxel grid along the viewing ray gets carved. It is possible
to subsample the silhouette images prior to carving to gain performance. We implemented
it on our CUDA-based platform and compared our methods to it. Figure 7.5 illustrates
that voxel carving, even when executed incrementally and subsampled to a quarter of the
original resolution, does not match the IBVH rendering performance. We even observed
that incremental updating can have a severe performance impact. The suggested subsam-
pling scheme alleviates the problem but degrades the result quality. We assume that the
reason for this is the scattered writing pattern in the voxel grid that is not efficient on the
CUDA platform. This becomes particularly apparent at higher resolutions.

7.5.2 Loss-less methods

In our second test we compare execution times to the conventional IBVH algorithm. We
use a method that does not degrade the visual hull quality: the user motion coherence
approach with a sufficient maximal motion range. Figure 7.6(a) shows the results for a
recorded sequence of various user motions. Averages are built over the whole sequence,
over rather static frames with strong coherence and over dynamic frames with much user
motion. The improved camera sorting by angle ai reduces execution times by around
7%. Considering the maximally expected user motion (135 cm/s in this case), the run
times can be decreased by another 20%. When estimating the maximum motion distance
by utilizing our motion detector, we could decrease run times by up to another 5%. For
frames with much user motion, however, the performance gains do not cover the additional
computation time of the motion detector.
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Figure 7.6: Evaluation of the suggested methods. (a) shows the performance of the loss-less
methods. (b) shows performance measurements for an increasing resolution.
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Figure 7.7: Quality versus execution time evaluation of the suggested methods. (a) shows
a sequence with various user motions. (b) shows subsets of frames with weak coherence and
strong coherence. Quality is measured in millimeters deviation from the ground truth (IBVH
Conventional). The lower left corner therefore means better.

7.5.3 Scaling with resolution

The execution times of the IBVH algorithm and our temporal coherence extensions scale
strongly with the output resolution [87] because for every pixel a surface point is computed.
To draw conclusions from our evaluation runs it is therefore important to check whether the
relative performance gains are representative for a larger resolution range. Figure 7.6(b)
shows the execution time of all our temporal coherence methods for a wide resolution
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Figure 7.8: This figure shows output images with relatively bad quality, augmented with
the difference to the reference image in red. It contains our previous approach for static
visual hull patches (left) and the new temporal coherence methods. The relative performance
improvement over conventional IBVH rendering is shown and error measurements are given.

range. Execution times scale sub linear with the number of pixels and maintain their
relative order. It can be observed that the relative performance gains from the coherence
methods and our previous approach (Only Static Patches) increase until around 700×700
surface points and then stays constant until it slightly decreases at roughly one million
surface points resolution.

7.5.4 Quality/speed tradeoff

To evaluate temporal coherence methods it is not enough to measure execution times alone.
It is also important to see how an algorithm performs when the coherence assumptions
are broken. This is important when either the user’s motion speed was underestimated or
the parameters were set to intentionally favor speed over full quality.

We therefore decided to measure the execution times of the suggested methods and
relate them to the output quality. To do so, we render the same video frame with and
without exploiting coherence and measure the differences. We do this by finding pairs of
closest surface points between ground truth and temporal coherence output and compute
the average distance in millimeters. By using this metric error measure it is easier to
interpret the evaluation data and it is possible to define a maximum deviation that is
tolerable.

Figure 7.7 shows quality and speed measurements taken during an evaluation sequence
of various user motions. The frames were grouped into all frames in Figure 7.7(a) and
mostly dynamic frames and mostly static frames in Figure 7.7(b). In the dynamic frames,
users entered the scene or moved their whole bodies. The static frames usually show
users standing still and performing no intended motions. In this quality vs. speed scatter
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plot, measurements in the lower left region have a good quality/speed tradeoff. The
conventional IBVH algorithm is used as the ground truth and therefore has 0 mm error.
The temporal coherence methods in this plot use the improved camera order and are
executed for a wide range of quality/speed settings. It can be observed that the suggested
methods outperform the conventional IBVH algorithm easily without quality loss (also see
Figure 7.6(a)) and perform better than the previously used coherence method that only
works on static surface patches. Figure 7.8 shows output images with a relatively high
error level to illustrate the error metric. It can be observed that the camera association
method is more prone to artifacts on the surface, while the user motion coherence method
begins to fail when, for example, limbs move too quickly.

7.6 Summary

This chapter described a method to exploit temporal coherence in fully dynamic image-
based visual hull rendering. We successfully showed that the surface point camera associ-
ation has a relatively high stability over time and can be used to improve the performance
of the original algorithm. We described how to set an upper limit to the expected user’s
body motions and how such a limit can be used to reduce the number of processed silhou-
ette images. By using our motion detector, the motion limit can even be estimated before
rendering.

We evaluated all suggested methods in terms of the achievable speed-up and illus-
trated the quality/speed tradeoff for a wide range of parameters. Our methods reduce
the execution time by up to 50% when sub millimeter deviations in the visual hull are
tolerable, which is usually the case for rendering applications. As a result, the achieved
latency in our interactive free viewpoint rendering system can be lowered, especially for
high resolutions. These results verify our temporal coherence hypothesis and extend our
work on the temporal coherence of static visual hull patches.
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With the free viewpoint rendering methods described in this thesis, we achieved a
high quality image synthesis of humans moving in our multi-camera room at interactive
frame rates. To create a virtual try-on application, the rendered images of users must be
augmented with garments.

Obtaining the garment models is a key aspect. In computer graphics, these models are
usually created manually by an artist and a 3D modeling tool. We wanted to avoid this
labor intensive process and at the same time achieve a rendering quality that allows the
garments to blend with the user seamlessly. We decided to tackle the problem by capturing
garments worn by users in the multi-camera room that is also used for augmentation.

The goal of our image-based pipeline is interactive augmentation. Augmenting the
visual hull of a user with virtual garments can not be achieved by conventional texture
mapping. For example, a dress can be wider than the current clothes and therefore cover
space that is not part of the original geometry. Moreover, a rigid assignment of texture
coordinates is not enough because clothes can move relative to the user’s body depending
on the body pose. Finally, a garment’s shape should adapt to the current user. Therefore,
garment pixels should be allowed to move while satisfying a target objective that enforces
fit and preserves the rough shape. This chapter describes an image-based augmentation
pipeline that achieves these goals.

83
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8.1 Virtual try-on through image-based rendering

Virtual try-on applications have become popular in recent years because they allow users
to see themselves wearing different clothes without the effort of changing them physically.
This helps users to quickly judge whether they like a garment or not, which in turn allows
retail shops to sell more in less time. Web shops employ virtual try-on applications to
enable users to better determine the size and fit of a garment [41, 75, 119]. Moreover,
digital entertainment applications and games also aim at creating an image or a video of
a user wearing different clothes. Digital content creation has become a major challenge in
recent years as virtual worlds increase in size and complexity.

In our system, users standing inside a room equipped with cameras can see themselves
on a large TV screen which shows them wearing different clothes. Users are allowed to
move freely inside the room and can see themselves from arbitrary viewpoints. The system
therefore needs to capture and render the user at interactive rates while augmenting his
or her body with garments.

Some previous solutions are very simplistic: they display garment pictures as static
overlays or retexture 2D surfaces. These approaches are clearly not capable of producing
arbitrary viewing angles, which requires 3D information. Moreover, garments do not adapt
their size and shape to the user due to their static nature. Other solutions address these
issues by reconstructing 3D clothes models. These approaches can produce the desired
output, but require motion capture to track the user’s position over time. Motion capture
is still a challenging task, and is likely to fail when limbs are not visible or in unusual
positions.

We propose an approach where a user can be displayed wearing previously recorded
garments. We achieve this by creating a garment database that stores the appearance of a
worn garment over time. These recordings are not required to be from the same user and
are performed using the same multi-camera device that is used for augmentation. The
database can be queried by silhouette images. At runtime, the best fitting frame is picked
for rendering. The image-based visual hull (IBVH) algorithm is used to render users and
clothes from arbitrary viewing angles. To fit the transferred clothes to the user and adapt
the garment’s shape to its new body, rigid and non-rigid registration is performed. Both
registration tasks are formulated as optimization problems.

Our approach is suitable for a wide range of clothing, and multiple garments can be
combined. By using images of real garments instead of virtual models, a realistic rendering
quality can be achieved. The complex appearance of clothes that comes from anisotropic
materials and non-rigid deformations is already captured by the images and can therefore
be reproduced with high performance. It does not require any physics simulation because
the effect of gravity and cloth stretch is also present in the images. Due to image-based
rendering, our method does not need an explicit 3D reconstruction of the garments or the
user to produce views from all sides. For the same reason, it does not require manual 3D
modeling by digital artists and it avoids motion capture. The whole process does not need
manual interaction other than an initial garment segmentation.

To realize our approach, we introduce a garment augmentation pipeline [92, 94]. In this
chapter we describe efficient methods for GPU-based silhouette matching by line-based and
area-based silhouette sampling and evaluate their performance. Moreover, a novel method
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Figure 8.1: Overview of our pipeline. In the offline phase, garment image sequences are
recorded and processed to create a database. At runtime, the database can be queried for a
record that matches the current user’s pose. The recorded images are used to augment the
user with a garment.

to extend the pose space by combining multiple matches is introduced. We introduce an
extended non-rigid registration formulation that adapts the garment shape by silhouette
and depth data terms. The problem domain of the registration process is analyzed to derive
an efficient non-linear conjugate gradient solver with proper initialization that exploits
frame-to-frame coherence to improve quality and performance. Coherent visual quality
over time is also enforced by a weighted infinite response filter that is capable of suppressing
artifacts inherent to a discrete pose space. We evaluated all improvements for their impact
on the visual quality by comparing them to ground truth images.

8.2 The augmentation process

Similar to previous work [201], our clothes augmentation process has an offline phase for
recording garments and an online phase where users can be augmented. The stages of the
recording process (see Figure 8.1) are:

1. A user wears a garment which should be used for future augmentations. He or she
enters the dressing room and performs a short series of different poses while being
recorded.

2. Garments are segmented and features are extracted from the recorded video streams.
Results are stored in a garment database.

This phase can be controlled: it is possible to recapture the scene when incomplete, or
switch segmentation strategies. From now on, users who enter the dressing room can be
augmented with previously recorded garments. We call this the runtime phase:

3. Users can move freely inside the room while being captured.

4. Features from the captured images are extracted.

5. The best fitting pose from the garment database is selected by comparing the ex-
tracted features.
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6. The selected pose of the desired garment and the captured user are rendered from
the same viewpoint using image-based rendering.

7. Small pose mismatches are compensated for by rigid and non-rigid registration.

This process results in a composite mirror image, showing the user wearing a different
item or items of clothing. A pipeline that enables such an approach has several key stages:
first, the garment database needs to be created such that it can be accessed very efficiently
at runtime (Section 8.3). Second, at runtime the garment and the user need to be aligned
roughly before rendering (Section 8.4.1). Third, quick image-based rendering is required
(Section 8.4.2). Finally, remaining mismatches between garment and user need to be
resolved on a per-pixel level (Section 8.4.3).

8.3 Offline: garment database construction

A user puts on one or multiple garments which should be transferred to other users. The
other clothing should be selected to allow for easy segmentation. We call this user the
model-user to emphasize the difference to an end-user. We assume that the model-user
can be instructed to perform all the desired motions, whereas the end-user just consumes
the product as he or she wishes.

The model-user enters the dressing room and performs a series of different poses while
being recorded. Recordings consist of synchronized videos from the ten cameras. Each
garment database contains a single recorded sequence and therefore a single piece of cloth-
ing. When multiple garments or different sizes should be provided, each item needs its
own recording and database.

8.3.1 Preprocessing

This stage takes the camera videos as input. Videos are recorded at 15 Hz, so usually the
user’s relative motions between two successive frames are small. Similar looking frames
are of limited use for the later stages because minor pose offsets are compensated for by
registration. To reduce the database size, many frames can therefore be skipped. Cur-
rently, we only pick every second frame to be included in the garment database. Moreover,
before insertion every new frame is checked for silhouette pixel overlap against the frames
in the database to skip frames that are too similar.

Next, each camera image that is not skipped is segmented separately. First, a previ-
ously recorded static background image is subtracted to remove the background. Then,
the garment is segmented: we use color keying and a graph cut tool. Defining the color
key or a graph-cut seed is the only manual interaction that is needed to create the gar-
ment database from an image sequence. At runtime after the registration process, the
segmented pixels are culled to remove the unwanted parts from the output.

8.3.2 Extracting features

At runtime, the frame which contains the model-user’s pose that is most similar to the
current user’s pose has to be found. This can be achieved by matching colors, silhouettes



8.3. Offline: garment database construction 87

(a) (b) (c)

Figure 8.2: Silhouette features comparison. (a) the distance between center of mass and
silhouette edge at regularly spaced angles may provide insufficient sampling of the arms. (b)
axis aligned sampling of the bounding box alleviates the problem. (c) area-based sampling
computes fill-rates of grid cells and therefore also represents the silhouette’s interior.

or higher level features like motion capture positions. We did not find color information
to be particularly useful because garments of the model-user and the current user are
likely to be entirely different. Motion capture may fail for cases where limbs are close
to the body or form loops. We therefore focus on silhouettes, which are well defined as
long as the user stays inside the viewing frustums of the cameras. To find the best fitting
pose based on silhouettes, a metric to calculate silhouette similarity is required. When
silhouette similarity or difference can be measured, standard algorithms can be used to
search the resulting space.

Our approach extends the work of Ehara et al. [43]. We work on more than one
silhouette image. This additional input data is required to obtain a descriptive feature
vector even when main features of the user, like his or her arms and legs, are located
in front of the body and thus not visible in one or more silhouette images. During our
evaluation we found that four cameras spaced around the user were usually sufficient to
see the user’s limbs for all body orientations. Figure 8.3 shows the spatial arrangement of
the four cameras in our setup.

Required invariances

It is beneficial for a matching algorithm to be invariant to at least the scale and translation
of the user’s pose. For example, it is very likely that the model-user has a different body
size than the end-user. Moreover, it is common that users do not stand on exactly the
same spot in the room. Rotational invariance is not desired for our system because we use
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a non-uniform distribution of cameras in the cabin. We therefore do not want to match
poses that are oriented differently to avoid undersampling of important body parts.

To extract features, we compared three different silhouette sampling approaches. The
first approach uses a radial pattern.

Radial line sampling

To extract features, the center of mass of each silhouette image is computed [92]. From
the center of mass, 360 regularly spaced directions are sampled to find the closest and
second closest silhouette exit edges (see Figure 8.2(a)). The closest edges usually describe
the central body shape. The second closest edges describe the location of arms and legs.
The distance between center of mass and edge is stored. When there is no second closest
edge its distance is set to the distance of the closest edge. All distances are normalized
per image to be independent of scale. Invariance to translation is given by relating all
distances to the center of mass.

Axis-aligned line sampling

The second approach uses an axis-aligned sampling pattern. We chose this sampling
pattern over a radial pattern because silhouettes of humans frequently have the property
that arms and legs are aligned parallel to the radial sampling lines. Figure 8.2(a) illustrates
this problem. Such an alignment causes an underrepresentation of arms and legs in the
feature space, which makes it hard to match these body parts correctly.

First, the minimum bounding rectangle of each silhouette image is computed. Along
the x and y intervals of the rectangle, regularly spaced lines are sampled (see Figure 8.2(b)).
Along each line, the minimum distances from the ends of the line to the silhouette are
stored as a vector. The concatenated description vectors of all four silhouette images form
the silhouette matching space. Similar to previous approaches [201], all distances are nor-
malized to unit length to allow matching across different scales. Invariance to translation
is given because all measurements are taken at positions relative to the bounding box.

Area-based sampling

The third approach samples the silhouettes densely. The minimum bounding rectangle
of each silhouette is split into grid cells, which are sampled to obtain the fill rate of
each cell (see Figure 8.2(c)). By aligning the sampling grid with the bounding box, this
method is invariant to translation and scale. This method is more robust against a noisy
segmentation than line sampling because fill rates vary rather smoothly at silhouette
edges and also the interior of the silhouette is explicitly contained in the feature vector.
However because the feature vector’s components only contain overlap information instead
of location information, the feature vectors are less descriptive than their line sampled
counterparts. As a consequence, the search space can not be reduced as effectively as with
line sampling methods (Figure 8.10(b)).

Section 8.6 evaluates all three sampling strategies with the result that area-based
and axis-aligned sampling performed better than radial in terms of matching precision.
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Figure 8.3: The pose space is split at the X coordinate of the projected center of mass in each
silhouette image. This approximates a 3D splitting plane that would be slower to compute.

However, area-based sampling requires more memory access operations and a larger search
space.

8.3.3 Reducing the dimensionality

Depending on the sampling resolution and pattern, the resulting feature space can have
several thousand dimensions, which describe the pose of the model-user at one moment in
time. All frames of the recorded videos are processed in that manner, resulting in a large
data matrix of pose descriptions. Using principle component analysis (PCA), we were
able to reduce this to around 50 dimensions for line sampling, or 200 dimensions for area
sampling without losing descriptiveness. Both vector spaces are small enough to query
the database at runtime by a simple search. Other silhouette matching approaches [201]
create data structures to improve search performance. In our system, however, exhaustive
searching is sufficiently fast and only of minor importance to the overall performance (see
Figure 8.15).

8.3.4 Extending the pose space

The garment database may not always contain a satisfying pose. This is the case when
the model-user forgets to cover certain poses, or when the temporal resolution of the
recording is not sufficient. To alleviate this problem, it is possible to extend the pose
space at runtime by combining several poses into a single output. See Figures 8.3 and 8.4
for an illustration of the process.

To achieve this, we propose the following procedure. First, the best fitting pose is
queried as described above. Then the matching error is examined. If it does not exceed
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Figure 8.4: Extending the pose space by combining two poses into a new pose. (a) shows the
current user’s pose. (b) and (c) show the best fitting poses for each image half. The result is
a rendered image of the two halves without (d) and with non-rigid registration (e).

a certain threshold then the match is considered good enough and only a single output is
generated. However, if the threshold is exceeded, we split the silhouette images that are
used for matching vertically at the X screen coordinate of the center of the user. Each half
is then transformed to its PCA subspace and matched against the database separately.
Therefore, during the offline phase the principle components of the garment database
need to be computed for each half separately too. This method is an approximation of
splitting the space in 3D, which to compute precisely would require more computations, in
particular the creation of depth maps for each silhouette image. Images can also be split
horizontally to allow for different poses in the upper/lower body half. This approximation
assumes that the body segments are clearly distinguishable in the camera images that are
used for matching. In practice this means that cameras mounted at the sides or straight
above the user can not be used for pose matching.

Split segments are joined when they contain the same best match in order to decrease
rendering time when possible. Finally, a blending kernel is launched that stitches the
segments and employs a linear blending filter to cross-fade between them. To allow for free
viewpoint motion, the blending operation can not be performed in image space because
when viewing from the sides the occlusion needs to be resolved correctly. Instead, the
visual hull points of all split segments are clipped against the axis-aligned planes that
are assumed by the matching. Figure 8.4 shows an extended pose space rendering result.
This method can improve the output quality considerably, which can be measured. See
Section 8.6 for evaluation data.
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The output of this stage is the garment database. Each entry consists of features
extracted for later matching, background-subtracted color images and segmentation infor-
mation.

8.4 At runtime: clothes augmentation

Once one or more garment databases have been created, users can enter the dressing room
and watch themselves wearing different clothes on the display in front of them.

First, the same features as in the offline phase are extracted from the current camera
images. These features are transformed to PCA space by applying the precomputed
transformation matrix from the offline stage. The result is used to find the garment
database entry where the model-user’s pose is closest to the pose of the current user.
We use a simple Euclidean distance measure to find the closest feature vector during
the search. The camera images associated with this entry show the best match for the
desired garment. Most likely the found images show the model-user standing in a slightly
different position than the current user. To compensate for this offset, a rigid registration
is performed.

8.4.1 Rigid registration

The goal of this stage is to find a translation vector and a scale factor that align the
rendering output of the user and the garment model. At this stage no rendering is per-
formed yet, which means that no 3D data is available to determine the transformation
by standard methods. Instead, we approximate the translation and scale by utilizing the
silhouette images and the projection matrices of the corresponding cameras.

To achieve this, we need two or more cameras that see the user entirely. While our
system utilizes 10 cameras in total, four of them are mounted in the upper corners of the
cabin (see Figure 8.5). Due to their distance to the user, the frustums of these cameras is
sufficiently large to see the whole user and can be used for registration.

First, the 2D center of mass is extracted from each of the silhouette images of the
cameras. By transforming these points with their corresponding inverted projection ma-
trices we obtain a 3D ray for each camera. Such a ray emanates from a camera center and
runs through the 2D center of mass on the corresponding image plane. These rays do not
necessarily intersect, so we compute the point with the least squared distance to the rays.
The result is an approximation of the 3D center of mass, which otherwise would require a
3D reconstruction to determine. To compute the translation, we subtract the 3D center
of mass points of the garment model and the current user’s model.

The 3D center of mass does not necessarily lie on the rays that are cast through the
2D center of masses due to the perspective projection of the cameras. However, garment
and user are subject to a similar error and as a result the rigid registration offsets were
satisfying during our experiments.

A very similar operation is performed with the topmost 2D point of each silhouette
image. We assume that the 3D intersection of the corresponding rays is a good approx-
imation of the top of the head of the user. The Z-coordinate of this 3D point describes
the height above the floor. To determine scale, we simply compare the body heights of
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Figure 8.5: This illustration shows how the 3D center of mass point C is estimated. The 2D
centers of mass from the silhouette images are extruded and a 3D intersection is approximated.

the user and the model-user. This of course only compensates for different body heights.
We leave the other dimensions to be compensated by the non-rigid registration, which can
also handle different body shapes more precisely.

During evaluation, these approximations proved to be sufficiently stable. With the
computed translation and scale factors, the current viewing matrix is updated. This way,
the subsequent garment rendering pass produces its output at the desired location in 3D
space.

We do not compensate for rotation because the matching phase is only invariant to
translation and scale. This means that the matching phase already found a correctly
rotated pose at this stage. This behavior is particularly useful because it is hard to
determine the rotational registration from silhouette images alone.

8.4.2 Image-based rendering

In this phase, the matched garment dataset and the current user are rendered. Both
rendering tasks need to quickly generate an output image from a set of camera images
with silhouette information.

We suggest the IBVH algorithm (Chapter 3) to compute depth maps of novel view-
points directly from the segmented camera images. It bypasses the computation of an
explicit representation, such as a voxel grid or a mesh. Extracting such a representation
and rendering it are two separate tasks which contain some redundancy. Therefore, it is
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(a) (b)

Figure 8.6: (a) illustrates how the non-rigid registration adapts the garment to the user’s
shape and pose. (b) shows the influence of the depth data term on the non-rigid registration:
the garment adapts to the user’s hand.

beneficial to the overall performance to directly derive an output image from the camera
images.

After the depth map is extracted, it has to be textured using the camera images. We
use a view-dependent texture mapping [39] scheme that utilizes the viewing direction of
the cameras and surface normals to find suitable color samples for every output pixel.

The garment and the user are rendered to different buffers from the same viewpoint.
These intermediate buffers differ from the desired final output: parts of the model-user
are still visible. For example, the head, hands and all items of clothing that should not be
augmented. To remove these parts later on, the segmentation labels that were determined
in the offline phase are used during rendering to write the alpha channel. After non-rigid
registration the alpha values are used to remove any remaining parts of the model-user
from the output.

8.4.3 Non-rigid registration of the output images

The last remaining difference to the desired output image is usually a small pose and
shape inconsistency. Large offsets and differences in scale have already been compensated
by the rigid registration. But the garment database does not cover all possible poses at an
infinitely dense resolution: it only contains discrete samples of the pose space. Moreover,
the body shapes of the current user and the model-user do not necessarily match. The
non-rigid registration is used to compensate for this minor lack of overlap. See Figure 8.6
for an illustration.

We identified two main methods to achieve a better overlap: by interpolating adjacent
poses, or by moving the pixels of one adjacent pose. Interpolating is rather difficult because
silhouette-based pose spaces are high-dimensional and therefore many adjacent datasets
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have to be found and interpolated. Additionally, a high quality interpolation requires
corresponding features in color or silhouette space.

We therefore apply an optimization procedure that translates the pixels of the rendered
garment to account for small deviations of pose. In addition to reducing pose inconsis-
tencies, the optimization allows the garment shape to adapt to the current user’s body
shape.

The domain of the problem can be formulated as an energy function that should
be minimized. We use pixel locations as the data elements to allow the silhouette to
shrink or grow and to retain the spatial arrangement of pixels. Previous approaches
align garment models in 3D [128], which is accurate but slow due to the larger problem
domain. For producing a correct appearance, however, it is sufficient to align the rendered
images in 2D. This reduces the dimensionality of the optimization problem considerably.
Non-rigid deformations are often formulated as sets of linear equations [14]. However,
linear approaches require corresponding features to guide the deformation. For aligning a
garment with the user, however, it may be hard to find such correspondences because both
shape and appearance can be different. We therefore formulate the problem as a non-linear
energy function, which allows us to directly specify the desired objective: overlap between
garment and user.

The energy function Etotal that is minimized is the sum of all per-pixel energies E(x, y).
Every pixel (xij , yij) of the garment silhouette is a particle and can move freely.

Etotal =
∑
i

∑
j

E(xij , yij) (8.1)

The optimization procedure is initialized with the garment pixel’s locations:(
xij
yij

)
=
(
i
j

)
(8.2)

Energies consist of a data term and a neighbor-term for regularization.

E(xij , yij) = D(xij , yij) + α ·N(xij , yij) (8.3)

D(xij , yij) = (Igarment(i, j)− Iuser(xij , yij))2+
γ · (Mgarment(i, j)−Muser(xij , yij))2 (8.4)

Igarment(i, j) =
{

1, if (i, j) belongs to garment
0, otherwise

(8.5)

Iuser(x, y) =
{

1, if (x, y) belongs to user
0, otherwise

(8.6)

The data term D of Equation 8.3 describes the overlap between garment and user
by computing the L2-norm between silhouette and depth value differences. The I-terms
are 1 for foreground pixels and 0 for background and thus describe a silhouette. For
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performance reasons the buffers holding these terms are convolved with a Gauss kernel
before optimization. The M -terms denote the depth maps of the garment and the rendered
user. During rendering the depth map values are normed to unit range according to the
near- and far clipping planes. These plane settings should be equal when rendering the
user and the garment to avoid unwanted distortions.

During optimization, the I-terms push garment pixels towards the user’s body and thus
align the shape outlines. In addition, the M -terms move pixels within the shapes to align
regions with similar depth patterns. For example, misplaced sleeves are moved towards
the user’s arms even when the user holds his arms in front of his body (see Figure 8.6 for
an illustration).

The regularization term N of Equation 8.3 tries to retain the spatial arrangement of
the cloth. We use the direct neighbors of each garment pixel as well as neighbors that are
further away, but using a smaller weight. One such neighbor is Nuv.

Nuv(xij , yij) = δ · Cuv(xij , yij) + ·Suv(xij , yij) (8.7)

Cuv(xij , yij) = (min(
√

(xij − xuv)2 + (yij − yuv)2, d)− d)2 (8.8)

with d =
√

(u− i)2 + (v − j)2

Suv(xij , yij) = (u′ − xuv)2 + (v′ − yuv)2 (8.9)

with u′ = xij + (u− i) and v′ = yij + (v − j)

xuv and yuv are the new x and y coordinates of the neighbor, and u′ and v′ are its
initial coordinates relative to xij and yij . The compression term Cuv tries to keep the
neighbor at least at its initial distance d, while the stretch term Suv tries to keep it at its
relative position. This regularization is important to retain features of the garment, like
stripes and printed logos.

The factor α weighs the regularization versus the data term. It therefore can be seen
as the stiffness of the garment. Moreover, it indirectly controls the convergence speed of
the optimization: stiffer garments converge faster because the influence of the data terms
propagate quicker. However, when the stiffness is set too high, the performance decreases
again. For such cases it is more desirable to use a larger neighborhood for regularization.

γ weighs the depth data- against the silhouette term. To achieve a registration effect
within the silhouette like in Figure 8.6(b), the depth term needs to be emphasized.

δ scales the compression- against the stretch penalty. Both are good for regularization,
but there are slight differences that justify using both at the same time. The compression
term is particularly useful for reducing pixel collisions when the optimization result is
converted back to discrete pixel locations. The maximum penalty for compression is
bounded, so we weighed it higher than the stretch term. The stretch term on the other
hand is more suitable for retaining the spatial arrangement of a neighborhood because it
also penalizes rotations.
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Figure 8.7: Plot of the energy function Etotal. For illustration purposes, the problem is
reduced to two particles that can move along a single dimension in space. The shallow valley
that is marked with red arrows indicates a quick path to the minimum that a conjugate gradient
method can take.

The solver

We assume that the pose differences between garment and user are small, which makes
the structure of the problem not prone to local minima. The energy function is minimized
hierarchically, but not in a globally optimal way. We use the nonlinear conjugate gradient
(NCG) method for optimization. We observed that the proposed energy function contains
many narrow valleys formed by opposing gradients of the data term and the regularization
term. Figure 8.7 illustrates the error function in a space with reduced dimensionality:
only two particles are considered, and the image space is reduced to a single dimension.
The path to the minimum is formed by a diagonal ridge that is caused by the Cuv(x, y)
term, the quadratic slopes (red) caused by the Suv(x, y) term and the data term that
decreases in positive x-direction. For such problems, NCG converges faster than gradient
descent because it can follow the valleys. Our solver computes the β factor according
to Polak−Ribière and uses an automatic reset mechanism β = max(0, βPR) [171]. The
output of Figure 8.6, for example, can be computed by 50 iterations of gradient descent, or
15 iterations of the nonlinear conjugate gradient method with the same fixed step length.
Just like gradient descent, it is well parallelizable and has a low memory footprint. The
additional cost of computing the β factor every iteration is negligible compared to this
speed up. We assume the derivative of the min-function in Equation 8.8 to be 0 where it
is not differentiable.

The registration starts by converting the IBVH-rendered color image of the current
user to a binary image that only shows the user’s silhouette. Then, low resolution copies
of the silhouette and the IBVH-rendered depth map are computed and both are smoothed
by convolution with a Gauss kernel. The low resolution level usually has only 1

16th of the
output resolution. For both the low- and the high resolution levels, the x and y gradients
are precomputed because these terms are static during the optimization. The optimization
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procedure itself consists of a repeated execution of three steps: computing the derivatives
at each garment pixel location in x and y direction, computing βPR and the conjugate
gradient and finally updating the pixel locations. We use a fixed step length instead of a
line search, which we found empirically to reduce execution time. First, 70 iterations are
executed on the low resolution buffers. Then, the optimization state is magnified to full
resolution by linear interpolation. Now it is possible to compute several iterations at the
full resolution, but we observed that the difference is usually not perceivable.

The vector between the new, optimized pixel locations and their initial positions yields
an offset buffer that describes how garment pixels need to move in order to maximize
overlap with the user. This buffer is morphologically closed and smoothed by a 20x20
box filter to suppress noise. Finally, the garment pixels are moved according to the offset
buffer. All of these steps are implemented as CUDA kernels, which allows such a high
number of operations to be performed for every frame. Section 8.6 evaluates the positive
impact on the output quality of the non-rigid registration.

Initialization and temporal coherence

The described registration process is very sensitive to the current user’s output shape,
especially when rather large step lengths are chosen for fast convergence. This can lead to
a perceivable swinging and jumping of the garment image over time even when the same
database frame is used. To remove this behavior, temporal coherence can be enforced for
successive output images that are computed from the same database frame. An effective
way to achieve this goal is to initialize the optimization procedure with the last frame’s
state.

This way, only the user’s relative motion between the last frame and the current frame
needs to be compensated for by the registration. As a result, pixels of body parts that
have not moved are already in a converged state and therefore stay at a coherent location
over time. Moreover, the last frame’s state is usually closer to the desired result than a
newly initialized state and therefore the optimization converges faster.

However, the last frame’s state can not be reused by simply copying because between
the frames the viewpoint might have changed. Therefore, the state needs to be transformed
between the different coordinate systems. This is called image warping [184]. To reuse
the last frame’s state, the initial state defined in Equation 8.2 is now translated:(

xij
yij

)
=
(
i+ di
j + dj

)
(8.10)

The translation offsets di, dj are transferred from the last frame t− 1:
(
di
dj

)
=
(
xi′t−1j

′
t−1
− i′t−1

yi′t−1j
′
t−1
− j′t−1

)
(8.11)

with i′t−1 = it−1/ht−1 and j′t−1 = jt−1/ht−1

The location in the last frame from which the offsets are computed is:
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Figure 8.8: This figure illustrates the weight map that is used for cross-fading previous outputs
while arms and legs of the user moved. Red indicates motion.


it−1
jt−1
.

ht−1

 = MV P−1
t ·MV Pt−1 ·


i
j

Mgarment(i, j)
1

 (8.12)

with MV P−1
t being the inverse of the current modelview- and projection (MVP) ma-

trix, and MV Pt−1 being the last frame’s MVP matrix.
As a result, the garment does not swing or jump between successive frames as long

as the same database frame is used. Moreover, it allows the non-rigid registration to
compensate for larger pose mismatches with the same number of iterations, or, to require
less iterations for the same distance because the optimization converges across frames.

Cross-fading during frame transitions

For the other case, where two successive output images are created from different garment
database frames, there may be a perceivable jump between the frames. This is mostly
due to garment deformations that are too small for the registration algorithms to capture.
To alleviate this problem, we cross-fade the output image with the previous output, thus
creating an infinite impulse response (IIR) filter. The lack of coherence is particularly
visible in image regions that should stay static from one image to the next. Such regions
usually show body parts of the user that do not move. Other image regions that show
moving body parts can not be cross-faded without producing ghosting artifacts. Therefore,
the IIR filter needs to be weighted by a map that describes the user’s relative motion
between two successive output frames. We compute each pixel’s value of this weight map
as the normed average length of the previous and current non-rigid registration offsets (see
Figure 8.8). This effectively suppresses the filter response at image regions that are subject
to strong user motion. To reuse the previous frame’s output color and registration offsets
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correctly even during viewpoint motion, image warping needs to be applied as shown in
Equation 8.12. As a result, garment frame transitions triggered by user motion are less
obvious.

Detecting convergence

The process as described above uses a fixed number of iterations. However, a satisfying
state may be reached earlier. Usually convergence is detected by checking the gradient
length or evaluating the error function every n-th iteration. However, in our scenario
the error function is rather noisy and flat due to the strong neighbor terms. Therefore,
detecting convergence is more robust by only evaluating the data term. The algorithm
stops iterating when the summed data term values do not improve for a certain number
of iterations.

Detecting convergence is particularly useful in combination with reusing the last
frame’s state for initialization: on top of frame coherence, the system’s performance
automatically increases when pose mismatches are small while still maintaining the
ability to cover larger mismatches when necessary. In combination with the coherent
initialization, we observed that the execution time of the optimization process can drop
to 60% when the previous garment frame is reused.

Loose clothing

Loosely fitting garments break the assumption of silhouette similarity between the gar-
ment worn by the model-user and the current user. The non-rigid registration may have
problems with loose clothing: the algorithm tries to move clothes pixels towards the target
silhouette. We addressed this issue by increasing the stiffness term of the energy function.
This effectively preserves the cloth structure even for dresses or coats, see Chapter 9 for
examples. However, the increased stiffness causes unstable optimization results for larger
step lengths, so these need to be reduced. As a consequence, to cover the same amount
of pose mismatch, the number of iterations needs to be increased. This approach is not a
physically correct simulation of clothes, but succeeds for most cases.

The garment database lookup also assumes silhouette similarity between garment and
user. For example, a long skirt results in large silhouette-matching errors in the leg
regions. During our experiments with a long dress and a lab coat this did not break the
matching algorithm because all frames of the database suffered from the same error. Thus,
the relative matching order between frames stayed valid. However, we can not generally
guarantee that silhouette-based matching works for all existing garments.

8.4.4 Composing and display

Parts of the model-user are still visible in the garment buffer, but with alpha values
that indicate which pixels have to be removed. These regions were required as a good
optimization target during the non-rigid registration procedure. After optimization the
unwanted pixels are removed.

In a final step, the garment buffer and the current user’s buffer are composed. Depth
buffering can resolve the overlap. However, this can lead to unwanted effects when the
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Figure 8.9: A screenshot that shows how multiple overlapping garments can be combined.

user’s body shape is wider than the garment. In such cases, the user’s body is visible
where it should not be. We allow for clothes to float on top of the user to avoid such
wrong or noisy occlusions. As a result, the virtual garment is visible except in regions
where the model user was removed. In these regions, the current user’s body replaces the
model user. This occlusion effect is correct because the model-user occluded the same
regions.

When multiple garments are augmented, the items are consecutively composed with
the previous result. Figure 8.9 illustrates how a shirt and an open jacket can be combined
despite the overlap. In this case, the composing starts by merging the user and the shirt.
The result is used as the new image of the user and is composed with the jacket. The
graphics API is used to display the result and enables a combination with conventionally
rendered objects.

8.5 Hardware and implementation

The image-based augmentation pipeline uses the free viewpoint rendering hardware de-
scribed in the chapters above.

All stages are wrapped into Coin3D scene graph nodes that allow the components to
be easily combined. The runtime stages are implemented as Nvidia CUDA kernels, which
allows us to formulate the computations without any graphics pipeline overhead. Results
are written to an OpenGL frame buffer, which allows our results to be augmented by
conventionally rendered objects and finally be displayed on the screen.
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Storage of the garment database

For every database entry, all ten camera images are written to the hard disk using the
PNG format with alpha channel for segmentation. The extracted features are also stored
on the hard disk. Before the runtime phase starts, the images are copied onto a RAM-
Disk, which maps a file handle to chunks of main memory. This method speeds up the file
access and therefore allows us to efficiently access the garment database every frame in a
convenient way. Moreover, our system is capable of caching parts of the garment database
on the GPU for further speedup.

8.6 Results

We evaluated our methods both in terms of visual quality and performance. First, the
silhouette matching algorithm’s precision is tested to find the best sampling pattern. Next,
the visual output of a garment transfer is compared to recorded ground truth. This test
compares silhouette matching to its strongest competitor: motion capture. Moreover, it
shows the relative quality improvement of the non-rigid registration. Finally, performance
data is shown. The output resolution was fixed to 1000 × 800 pixels for all tests and
the viewpoint set such that the rendered user is maximized on the screen. The chosen
resolution is higher than the camera resolutions because some cameras are closer to the
user than the virtual viewpoint.

8.6.1 Sampling patterns for silhouette matching

In our first test, we evaluated different silhouette features in terms of the resulting matching
quality. Features are extracted using radial, axis-aligned and area-based sampling. For a
recorded sweater sequence, we measured the pixel overlap between the current user and
the garment in each output image from a frontal viewpoint. The pixel overlap factor is
computed as the fraction of user pixels that are covered with garment pixels. Figure 8.10(a)
shows the results. Area-based sampling provides a 0.8% better average overlap than radial
sampling. This rather small percentage corresponds to an approximate average of 900
pixels per frame, which is a clearly visible difference. However, while quality is better
with area-based sampling, the feature vectors are less descriptive.

The dimensionality reducing effect of the PCA is therefore less effective for area-based
sampling, which requires the subspace in which silhouettes are matched to have more di-
mensions than with the line sampling (radial or axis-aligned) approaches. Figure 8.10(b)
shows that area-based sampling requires 100 search dimensions to become equally descrip-
tive. During our experiments, we found that the number of dimensions that are used for
searching must account for almost all (at least 99.9%) of the variance in the data to achieve
a satisfying matching quality. To guarantee this we use 50 dimensions for the two line
sampling approaches and 200 dimensions for area sampling. Due to its lower requirements,
we favor the axis-aligned line sampling approach. It performs almost as well as area-based
sampling (less than 0.1% average difference in this evaluation) at lower computational cost
and therefore is a noticable improvement.
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(a) (b)

Figure 8.10: Different feature sampling schemes for silhouette-based matching. In (a) quality
is evaluated as the factor of overlapping pixels in the output images of a recorded sequence.
(b) compares line- and area-based sampling strategies in terms of how much variance in the
data can be explained with a certain number of dimensions.

Figure 8.11: This figure shows the positive effect of extending the pose space on the pixel
overlap factor for the dataset of Figure 8.4.

8.6.2 Pose space extension

To evaluate the usefulness of extending the pose space by splitting the silhouette image
domains, we applied the same overlap factor metric as in the first test. For recorded
garment data that has a sufficient collection of poses, this method of course does not
improve the result. However, for the dataset of Figure 8.4, where poses are missing, we
measured an average overlap improvement of 8.25%. This corresponds to an approximate
average of 9000 pixels per frame, which is a considerable improvement. Figure 8.11 shows
the overlap factor for the whole sequence. This proves the viability of the pose space
extension method. However, there is an impact on the performance that amounts to an
additional garment (see Figure 8.15).
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(a) (b)

Figure 8.12: Quality evaluation of our approach for two users. A set of frames created by
our image-based augmentation pipeline are compared to ground truth by means of average
absolute pixel differences (AAPD). Small values are better.

(a) (b)

Figure 8.13: Same quality evaluation as in Figure 8.12 but using the HDR-VDP2 quality
metric. Small values are better.
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Figure 8.14: This figure shows a frame from the evaluation data set of user 1 of Figure 8.12,
where skeleton- and silhouette-based matching strongly differ.

8.6.3 Overall quality and non-rigid registration

To assess the quality of the overall clothes augmentation system, we first created two
ground truth datasets. We recorded two users with different body sizes: one male, 1.86
meters tall (user 1), and one female, 1.62 meters tall (user 2). Both performed the same
body poses, once with and once without the garment (a striped sweater) that is later
subject to image-based clothes transfer. We manually labeled a set of frames from these
videos, where body poses match exactly. By using these correspondences, we have refer-
ence images for a set of frames, which are used during the evaluation. We also recorded the
model-user who was 1.80 meters tall and wore the same sweater to generate the garment
database.

Figures 8.12 and 8.13 show the result of the evaluation for both users. We compared
the rendered garment frames to the corresponding ground truth frames for two viewpoints:
a frontal view and a side view. Two quality metrics are used: the average absolute pixel
difference and the HDR-VDP2 quality predictor [149] that also accounts for the human
visual system and perception. We first compared silhouette-based matching to its major
alternative: motion capture. For motion capture, we used the OpenNI skeleton tracking
API, which can be used to track poses from depth sensors. To make the approaches com-
parable, we compute suitable depth maps from the visual hull. The motion capture results
in the form of joint positions were normalized and matched using Euclidean distances just
like the silhouette feature vectors. Results differ depending on the user’s body pose: when
arms and legs can be identified easily, the motion capture delivers similar results as the
silhouette matching. However, for poses with arms fully touching the body, the tracking
fails. See Figure 8.14 for an example. This proves the suitability of our approach. In
addition, the plots show how the non-rigid registration improves the output quality. By
adding the depth data term, we were able to improve it further.
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Figure 8.15: Performance of the runtime processes. The execution times for generating a
typical augmented output image is given in milliseconds.

8.6.4 Performance

We measured the execution times of the runtime processes. One garment (a sweater) is
transferred from one user to another. The garment database contains 275 frames, which
in turn consist of 10 camera images. The evaluation system was equipped with a GeForce
GTX 480 from Nvidia. Other PC components only have minor impact on the performance.
The timings in Figure 8.15 are picked from a representative frame that required a reload of
all camera images of the current user, and a reload of a frame from the garment database.
The garment database was fully cached in GPU memory. Our implementation is not
perfectly optimized, but runs at interactive rates for a single garment. We assume that
the next hardware generation will be suitable for handling more than one item of clothing
interactively.

8.7 Limitations and discussion

The suggested clothes augmentation pipeline transfers the appearance of garments from
one user to another. It uses captured images for rendering, which inherently contain
features like realistic light-cloth interaction and wrinkles. It is suitable for a wide range
of garments, like shirts, sweaters, trousers, dresses and accessories like scarfs, sunglasses
etc. Chapter 9 shows examples. Moreover, recording the garment data is quick and
cheap compared to manual 3D modeling. However, the proposed pipeline stages also have
limitations that can reduce the visual quality that the system achieves. In this section we
want to discuss these limitations and their impact on the result.
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Figure 8.16: This figure shows the visual impact of a missing pose in the garment database:
the current user’s left arm can not be covered by the transferred sweater.

We propose IBVH rendering for image synthesis from silhouette images. It is an
approximative surface reconstruction method that can not capture all concavities and
requires a relatively high number of cameras to produce a satisfying output quality. As
a result, artifacts might appear, especially when the user’s arms cover other body parts.
At the same time, IBVH rendering is a very quick method even at high geometry/camera
resolutions, which makes it particularly suitable for interactive reconstruction systems.
Moreover, the visual hull is a good geometric proxy for projective texturing because it
consists of large, smooth surface patches that can be textured with little distortions.

Both IBVH rendering and garment augmentation rely on image segmentation methods.
Errors in the segmentation process lead to missing image regions or artifacts. However,
due to the controlled background in our setup and control over what the model-user wears,
this was not a problem during our experiments.

Matching algorithms that are based on silhouette shapes assume a certain shape sim-
ilarity between images of the model- and the end user. This is not always given. For
example, when the desired garment is a dress and the current user is wearing trousers,
then the shapes are not similar in the leg region. While silhouette matching is quite
reliable for small dissimilarities, it loses precision with, for example, longer dresses. In
practice, we achieved good matching results even for dresses and coats (see Figure 9.2(a)),
but we can not generally guarantee that it works for arbitrary garment and user shapes.

Visual artifacts can originate from missing poses in the garment database, see Fig-
ure 8.16 for an example. However, such problems are alleviated by our method for extend-
ing the pose space, and can be further reduced by carefully instructing the model-user. In
practice it takes only a few minutes to create a sufficient pose space record.

The suggested composing method allows the garment to float on top, while the current
user is only visible in image regions where the model-user was removed. It is not robust to
bad matching or registration quality. In such cases, parts of the user might be covered by
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garment where they should not be. In future work, a more robust method for composing
could be used. For example, a graph-cut method could consider segmentation, color
and depth information to find smooth borders between garment and user. However, the
execution time of such algorithms may be too high for interactive systems.

The scene lighting in the virtual try-on room should be constant to allow the recorded
garments’ appearances to fit to the current user. But even under static lighting, there
might be subtle coherence issues. Figure 8.16 shows an example: the rendered sweater
looks rather masculine, which is due to the fact that the model-user was male. The
non-rigid registration morphs the shape to match the user, but does not modify the col-
ors. Shape information that is conveyed through shading is therefore still present in the
augmentation. Future work should preprocess the garment database with a deshading
algorithm, and perform shading computations during augmentation to suppress unwanted
shape cues. In addition, such an extension would alleviate the limitation to a constant
scene lighting.

The suggested image-based approach is not suitable for simulating physical effects of
user motion. For example, dresses can not swing realistically. On the other hand we do
not require any physical simulation to produce nicely fitting clothes with realistic wrinkles
and lighting, and avoid potentially unstable computations.

8.8 Summary

In this chapter we suggested a pipeline that allows users to see themselves wearing different
clothes from arbitrary viewpoints while being able to move freely. The process is interac-
tive and can be used for a virtual dressing room application. As a result, the suggested
approach reduces most of the shortcomings of previous approaches. We contributed effi-
cient methods for silhouette matching, rigid- and non-rigid registration. We proposed to
extend the pose space by combining several garment frames to improve the output quality.
Moreover, loose clothing and virtual garments can be handled. An efficient solver for the
optimization problem of non-rigid registration was described and evaluated.

In contrast to prior work, we use low-level image processing algorithms. This allows us
to circumvent critical parts, such as motion capture and 3D reconstruction. Our approach
is suitable for a wide range of clothing and even combinations of garments. Moreover, our
system inherently offers realism by using image-based rendering, which makes it a good
alternative to manually modeled garments. Manual interaction is only required once per
garment to define its segmentation mask, which is a particularly fast task given modern
segmentation algorithms. Recording garments is also faster and cheaper than modeling,
which makes us confident that in the future such a system can be deployed in a retail
environment. The augmentation quality and speed of the implemented system support
our image-based augmentation hypothesis.
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9.1 Free viewpoint mirror

Image-based visual hull rendering in combination with view-dependent texture mapping
allows for a free viewpoint mirror application. As shown in Figure 9.1, users can see
themselves from all sides. Marker-less motion capture [153, 200] is used to track the user’s
body pose. First, a low resolution voxel grid is carved from the silhouette images. Then, a
skeletal graph is extracted from the voxel grid to detect gestures of the user. Stretching out
one arm triggers a viewpoint motion in the according direction. Stretching out both arms
resets the viewpoint to a frontal view. Rendering is performed by the IBVH algorithm to
allow for a high image resolution.

This virtual mirror system was demonstrated at the Lange Nacht der Forschung (long
night of research) event in 2012. The green room was open at one side to allow for
spectators. The viewpoint was configured to slowly rotate around the center of the room
to demonstrate the smooth transitions between camera images. We observed that the
rendering quality was satisfying for up to three simultaneous users when standing closely
together. See Figure 9.1(c) for a picture. This mirror system is a prerequisite for our
mixed reality virtual try-on application.

9.2 Virtual try-on

Virtual try-on applications allow users to watch themselves wearing different clothes with-
out the effort of changing them. They help users to save time and make quick buying
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(a) (b)

(c)

Figure 9.1: A virtual mirror application using our image-based rendering architecture during
usage. The viewpoint can be rotated seamlessly. A small number of users can be displayed
when standing closely. Figure (c): Copyright - TU Graz / Lunghammer

decisions. In web shops virtual try-on components can be used to aid the user with se-
lecting garments and determining the fit. As a consequence, retailers are able to improve
the sales efficiency of their shop or web shop [41].

Previous solutions usually involve motion capture, 3D reconstruction or modeling,
which are time consuming and error-prone. Our method avoids these steps by combining
image-based renderings of the user and previously recorded garments [92, 94]. It transfers
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(a) (b)

(c) (d)

Figure 9.2: Results of our image-based augmentation method: a user is dressed with the
clothing of a previously recorded user. Image of the user and the garment before augmentation
are shown for illustration.

the appearance of a garment recorded from one user to another by matching input and
recorded frames, image-based visual hull rendering and online registration methods. Using
images of real garments enables a realistic rendering quality with high performance. It is
suitable for a wide range of clothes and complex appearances and allows arbitrary viewing
angles. Figure 9.2 shows some results of our virtual try-on application. The process
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requires only little manual input: when creating the garment database, the user needs
to specify the segmentation mask in form of a color key or seed region to identify the
desired garment. Our system is particularly useful for virtual try-on applications as well
as interactive games.

9.3 Mixed reality systems

The image-based rendering methods described in this thesis operate in 3D. Therefore, the
results can be embedded into a conventionally rendered visualization with correct overlap.
To allow our rendering and augmentation components to be easily combined with an
extensible graphics framework, all rendering stages are wrapped into Coin3D scene graph
nodes. The current viewing and transformation matrix from the scene graph framework
are queried and used by our algorithms. As a result, meshes and animations can be added
quickly. User interface components like draggers and buttons can be used to place virtual
objects relative to the image-based augmentations and trigger events. The runtime stages
are implemented as Nvidia CUDA kernels, which allows us to formulate the computations
without any graphics pipeline overhead. Results are written to the OpenGL frame buffer
to integrate with the scene graph rendering process.

Figure 9.3 shows such a mixed reality scenario, where a user can watch himself in a
virtual environment. This can help interactive entertainment applications, like games, to
increase the sense of immersion. Moreover, remote collaboration systems become possible
where multiple users interact with shared virtual objects or view and design products
together.

9.4 Teleconferencing and telepresence

Modern teleconferencing or telepresence systems allow remote users to communicate and
collaborate in an intuitive way [12]. Users are not required to switch between reading data
on a screen and keeping eye contact while talking with each other. Instead, users, virtual
objects and data share a synthesized space [75]. Other applications use 3D viewing for
shopping with remote sales clerks and digitized products [119].

Our free viewpoint rendering methods create an output image directly from a set of
camera images. When these images are transmitted over a network or internet connection,
a three-dimensional remote viewing system can be realized. Such a system can be used
by a telepresence or teleconferencing application with free viewpoint rendering and stereo
viewing. Figure 9.4 illustrates a possible setup. It can provide an improved sense of
immersion and presence to the participants.
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(a)

(b)

Figure 9.3: Mixed reality demonstration applications: a user is augmented with a dress and
rendered on a virtual bridge (a). Another user is displayed next to a virtual couch (b).
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Figure 9.4: An illustration of a teleconferencing application with 3D rendering of a remote
participant.
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In this thesis we have shown how image-based rendering methods can be used for the
interactive free viewpoint rendering of humans captured by a multi-camera setup. We
started with a state-of-the-art GPU implementation of the IBVH algorithm and analyzed
its performance with respect to different resolutions. From this evaluation, we derived a
range of novel algorithms that improve the execution performance and robustness of the
rendering process.

We introduced a novel angular caching formulation that is free of singularities. We
parallelized the algorithm across multiple GPUs by using different workload distribution
schemes. We integrated depth sensors into our IBVH rendering pipeline to achieve higher
rendering quality for complex objects or multiple simultaneous users, leading to the Om-
niKinect capturing room.

The suggested image-based rendering and augmentation pipeline can produce inter-
active frame rates for a resolution of up to one megapixel. To improve performance at
higher resolutions on current GPU computing hardware, we introduced methods to exploit
the frame-to-frame coherence. This temporal coherence is present in most multi-camera
systems that capture humans because they typically move smoothly and slowly compared
to the camera’s frame rate. Therefore, new output images do not need to be computed
from scratch every time.

Reusing previously computed data is a challenging problem in a free viewpoint system
that renders arbitrarily moving and deforming surfaces. We achieved this task by detecting
visual hull surface patches that remain static between consecutive frames. These static
patches can be reprojected from the previous frame, and only the remaining image parts
need to be rendered by the IBVH algorithm. Depending on the amount of coherence, this
method reduces the execution time considerably. We showed how the motion detector
that is used to detect static visual hull patches can also be used to guarantee a desired
frame rate.
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For scenes with weak coherence, such as when the user moves his or her entire body
by walking, we had to find intermediate computation results that remain valid between
consecutive frames even when the output depth map changes. We found that the camera
association of a surface patch is more stable over time than the surface itself. Moreover,
the user’s body motions can be constrained by assuming a maximum motion distance.
We showed how these insights can be exploited to increase performance. Furthermore, we
showed how a dynamic camera order can help the IBVH algorithm to terminate quicker.

The suggested image-based methods can be used to render both humans and clothes.
We used this idea to build an image-based augmentation pipeline, which uses previously
captured sequences to augment users with new clothes or accessories. This virtual try-on
application works with many types of garments. Capturing garments requires relatively
little manual work: the garment must be worn while performing various motions, and
after it is captured, the garment must be segmented by specifying a color key or region in
the first set of camera images. The process is finished within minutes, while the manual
modeling of garments in a CAD program is very labor intensive and requires a skilled
artist.

The main focus of our work was to provide methods that allow for immediate 3D image
synthesis from camera images with as little latency as possible. We developed image-
based rendering and augmentation methods that are light-weight and provide a desirable
rendering quality and resolution. The results that we achieved in terms of performance
and visual quality allowed us to verify our hypotheses and enable a number of applications,
including magic mirrors, virtual try-on systems, mixed reality (entertainment) applications
and teleconferencing systems.

10.1 Lessons learned

Realizing a long image-based rendering and augmentation pipeline was a challenging task,
particularly in terms of the achieved output quality. Many stages employ computer vision
methods, such as camera calibration, visual hull reconstruction, segmentation and image
registration. These methods are not entirely precise and suffer from noise, ambiguous
data, poor illumination conditions, among other issues. In the field of computer vision,
some of these problems can be alleviated or even solved with robust algorithms, such
as optimization procedures, outlier removal methods or machine learning. However, our
system is focused on immediate rendering, and thus, many of these advanced algorithms
can not be used for performance reasons.

In addition to these conceptual difficulties, we came across many practical issues that
needed to be considered for interactive image-based rendering of humans.

The room size that is used to host the cameras and the user requires special attention.
The cameras must be a certain distance from the user to capture the entire body or at
least significant parts of it. Deploying more cameras to capture a larger volume is not
a good solution because it requires more processing power. Making the room too large
moves the cameras too far away from the user and thus decreases the resolution of the
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reconstructed surface. We observed that these principles are true for both color cameras
and active depth sensors.

The number, type and arrangement of sensors are equally important. There is a
practical limit to the number of active depth sensors depending on the method for coping
with the interference between sensors. The number of color cameras is also limited but
not as strictly. More color cameras cause more bus traffic and computation time, but they
do not suffer from crosstalk. We experimented with different combinations of Microsoft
Kinect devices and color cameras and suggest observing the quality of the reconstructed
geometry and texturing separately. A good surface can be achieved by a relatively low
number of active depth sensors, while good texturing requires a relatively high number
of color cameras. We found that two active depth sensors along with a higher number
of color cameras, at least eight, yield good results for both reconstruction and texturing.
Moreover, this arrangement allows for interactive frame rates when GPUs are used for
processing.

GPUs are very useful devices for image-based rendering and image processing tasks, par-
ticularly when programmed without using a standard graphics pipeline, such as OpenGL
or DirectX. They allow for an execution throughput that is far beyond current CPUs as
long as simple and independent operations are performed. The availability of these devices
influenced our design decisions towards algorithms that facilitate a parallel execution.

10.2 Directions for future work

While the achieved quality and performance of our interactive IBR system are satisfying,
there is still room for future improvements. For deploying the combined hard- and software
setup at a client, in particular, the output quality must be improved. The first step towards
an improved system would be to use higher camera resolutions and new bus types that
provide sufficient bandwidth. We believe that future USB 3.0 or Ethernet cameras can
achieve this bandwidth requirement. Future graphics processing units are likely to consist
of even more parallel processing cores. Some of the additional computing power will be
consumed by the higher camera resolutions, but we believe that sufficient resources will
be available to improve other components. For example, surface reconstruction methods
based on optimization between surface smoothness and data fit could help to reduce visual
hull artifacts. Advanced texturing methods that align the textures of different cameras
by a non-rigid deformation could help to decrease ghosting artifacts and increase the
sharpness of the output image.

Given the promising results of this thesis and the improvements that future sensing and
computing hardware will bring, we are confident that virtual try-on systems will be more
common in fashion stores and that other interactive mixed reality systems will become
marketable products.
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[64] B. Goldlücke. Multi-Camera Reconstruction and Rendering for Free-Viewpoint
Video. Ph.D. thesis, Max-Planck-Institut für Informatik, 2006. Cited on page 17.

http://dx.doi.org/10.1109/3DPVT.2006.148
http://dx.doi.org/DOI: 10.1016/S0097-8493(02)00245-5
http://dx.doi.org/DOI: 10.1016/S0097-8493(02)00245-5
http://dx.doi.org/10.1007/s11263-008-0134-8
http://dx.doi.org/10.1109/TPAMI.2009.161
http://dx.doi.org/10.1109/ISMAR.2007.4538853
http://dx.doi.org/10.1109/ISMAR.2007.4538853
http://dx.doi.org/10.1111/j.1467-8659.2009.01628.x
http://dx.doi.org/http://dx.doi.org/10.1016/j.imavis.2006.07.023
http://dx.doi.org/http://dx.doi.org/10.1016/j.imavis.2006.07.023


BIBLIOGRAPHY 125
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