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Abstract

In this thesis two fundamental problems in computer vision are addressed: robust and scalable
structure from motion and efficient localization from images. These two problems are highly inter-
related tasks with several industrial applications, like mapping, navigation and augmented reality.
The main contribution of this thesis is in building a complete, robust and scalable image based
reconstruction and localization system that is suitable for large scale, real world problems. Within
this work we describe the core components of a structure from motion pipeline that automatically
builds a three-dimensional model of a scene given a set of unordered images. Improvements to
current state-of-the-art reconstruction systems are made for several processing components includ-
ing scalable image matching, geometric verification and robust structure from motion estimation.
In particular we introduce an algorithm for non-monotone reasoning about view triplets which
enables to identify mismatches caused by scene repetitions. The design of our system is based on
algorithms that efficiently utilize modern graphics processing units to speed up several processing
steps. The reconstruction system presented in this thesis is generic and allows photorealistic 3D
modeling of cities from user contributed terrestrial data, dense modeling from large aerial images
and fully automatic reconstruction of scenes from images taken by micro aerial vehicles (MAVs).

Furthermore, we present a new and fast location recognition technique based on structure from
motion point clouds. Our proposed approach leverages the recent progress of 3D scene recon-
struction and image retrieval techniques for efficient and robust view registration to a known 3D
model of a scene. Vocabulary tree-based indexing of features directly returns relevant fragments of
3D models that allows full six degrees of freedom (6DoF) localization from images/videos in real
time. Additionally, we propose a compressed 3D scene representation which improves recognition
rates while simultaneously reducing computation time and memory consumption. Our localization
framework is suitable for efficient registration of community photo collections to known landmark
reconstructions and can be used for visual navigation and outdoor robot localization. A variation
of our localization framework is also capable to run on modest hardware such as smart-phones and
allows hand-held augmented reality.

The employed algorithms are extensively evaluated on a variety of datasets. Our experiments
demonstrate robustness, scalability and high geometric accuracy of the proposed algorithms.
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Kurzfassung

Diese Arbeit beschäftigt sich mit zwei zentralen Problemen in der Bildverarbeitung: zum einen mit
der 3D Rekonstruktion von Szenen aus ungeordneten Bildern und zum anderen mit der effizien-
ten Lokalisierung von Bildern zu einem bestehenden 3D Modell der Szene. Beide Probleme sind
eng miteinander verknüpft und ermöglichen eine Reihe von industriell nutzbaren Anwendungen
wie Kartographie, Navigation und Augmented Reality. Der zentrale Beitrag dieser Arbeit besteht
in der Entwicklung eines skalierbaren, robusten und vollautomatischen System zur effizienten,
bildgestützten 3D Rekonstruktion und Lokalisierung. Hierfür werden die Grundkomponenten
eines “Structure from Motion” Systems beschrieben, das aus ungeordneten Bilddaten automatisch
ein dreidimensionales Modell generiert. Zusätzlich werden verschiedene Lösungen vorgeschla-
gen die konventionelle Methoden erweitern und verbessern. Das Hauptaugenmerk liegt auf der
Skalierbarkeit von Algorithmen zur effizienten Korrespondenzsuche zwischen Bildern, der ge-
ometrischen Verifikation und der robusten und vollautomatischen Orientierungsberechnung. Das
System ist auf die effiziente Nutzung moderner Grafikkarten (GPUs) ausgelegt um rechenintensive
Verarbeitungsschritte zu beschleunigen. Im Speziellen wird ein neuer Algorithmus vorgestellt der
in der Lage ist über Bild-Tripel und fehlenden Korrespondenzen falsche geometrische Relationen
zu detektieren. Das entwickelte Rekonstruktionssystem ist generisch und erlaubt die fotorealis-
tische 3D Modellierung von Städten aus ungeordneten Bildern, dichte Oberflächenrekonstruktion
aus großen Luftbildern und die 3D Rekonstruktion von urbanen Gebieten mittels Bildaufnahme
von unbemannten Luftfahrtsystemen (MAVs).

Darüber hinaus wird ein neues und effizientes Bild-Lokalisierungssystem vorgestellt, welches
mittels “Structure from Motion” Punktwolken arbeitet. Das vorgestellte System kombiniert An-
sätze aus der 3D Rekonstruktion mit Algorithmen zur Bildsuche für die effiziente und robust Reg-
istrierung von Bildern zu einer bekannten 3D Szene. Ein hierarchischer Ansatz über ein Baum-
basiertes Ähnlichkeitsverfahren ermöglicht die direkte Indizierung von 3D Punkt-Fragmenten und
erlaubt die dreidimensionale Echtzeitlokalisierung von Bildern und Videos. Zusätzlich wird eine
Methode vorgestellt welche die Szene komprimiert, dadurch wird die Lokalisierungsrate max-
imiert und gleichzeitig werden Speicher- und Rechenaufwand minimiert. Das Verfahren kann zur
effizienten Registrierung von Internet Fotos zu bekannten 3D Stadtmodellen herangezogen wer-
den und eignet sich für die visuelle Navigation und Lokalisierung von Robotern. Eine modifizierte



Variante erlaubt darüber hinaus die Ausführung auf Mobiltelefonen und ermöglicht Augmented
Reality Anwendungen.

Die verwendeten Algorithmen sind generisch einsetzbar und wurden ausführlich auf ver-
schiedenen Daten getestet. Unsere Experimente bestätigen die Robustheit, Skalierbarkeit und
hohe geometrische Genauigkeit der vorgeschlagenen Algorithmen.



Chapter 1

Introduction

The visual system is the most important sensory system by which humans perceive the world.
Vision enables us to navigate through previously known or unknown environments and allows us
to interpret and build a representation of the surrounding [Marr, 1982]. Humans are well trained
to sense the environment using stereo vision, motion and shape cues to get a three-dimensional
impression and model of the environment with apparent ease. Such information is valuable for
tasks such as localization, navigation and obstacle avoidance. Given that 3D is an integral part
of our visual experience it is no surprise that recovering the 3D scene structure from images or
video is one of the core problems in computer vision. While this process often involves simulta-
neously estimating both 3D scene geometry (structure) and camera pose (motion), this problem
is commonly known as Structure from Motion (SfM). Based on tracked and matched features the
relations between multiple views can be automatically computed [Hartley and Zisserman, 2000].
As shown in Figure 1.1 structure from motion consists of two interrelated tasks, namely triangu-
lation and localization. On one hand, given the exact 3D position and orientation of the cameras,
recovering the 3D structure of a scene can be achieved straight forward by triangulation of image
correspondences. On the other hand, an existing 3D model of the scene allows the determination
of the image pose directly by camera resectioning (localization) using 2D to 3D correspondences.
In this thesis both problems are addressed and robust and efficient solutions are provided to solve
those tasks. First, we present methods and applications for scalable and robust scene reconstruc-
tion from images. In particular we focus on offline batch based reconstruction methods for unor-
ganized image collections that allow simple and flexible image acquisition at low cost. Second,
we introduce a method for efficient and robust localization of new input images based on known
3D scene structure. Application domains range from environment mapping for e-commerce and
real estate, games, film industry and simulation, to change detection, navigation, augmented and
virtual reality. Figure 1.2 gives a summary of potential applications.

1
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Camera
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Camera 
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Camera 
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Figure 1.1: (a) Structure from Motion problem and (b) Triangulation and (c) Localization sub-
problems.

3D Reconstruction Georeferencing Localization 

Visualization 
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Virtual 
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Figure 1.2: Potential application domains of image based 3D reconstruction and localization
techniques.

1.1 Image based 3D Modeling

We observe an ever increasing demand for 3D models of single objects and the world. The main
objective in 3D modeling are photorealism, cost efficiency, scalability and high geometric accu-
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racy. Furthermore, there is a demand for simple and flexible acquisition procedures that can be
rapidly deployed and are easy to perform by end-users. Today, several technologies are available
to determine the 3D shape of an object. Those technologies can be classified into active and pas-
sive methods. While active sensing techniques such as Light detection and ranging (LiDAR) or
time-of-flight cameras directly collect depth information about surfaces within its field of view,
passive image based methods rely on the photogrammetric principle of triangulation. In general
one can regard LiDAR as a more reliable technique for dense depth estimation since it works also
for texture-less scenes and achieves favorable depth precision compared to small baseline stereo.
However, the pixel density of cameras is typically much higher than the LiDAR measurements
and novel automated photogrammetry technologies are capable to produce one or two magni-
tude denser point clouds than LiDAR [Leberl et al., 2010]. Additionally, LiDAR sensors require
external tracking and instrumentation to determine the absolute position and orientation of the
sensor. Such devices generally include a Global Positioning System (GPS) receiver and an Iner-
tial Measurement Unit (IMU). Overall, 3D information computed by multi-view photogrammetry
compares well with direct LiDAR-methods in terms of accuracy and photogrammetric image ac-
quisition is cheaper and more flexible to apply. Furthermore, these techniques provide the advan-
tage that texture (images) and geometry (depth) are produced from the same source of data, thus
photorealism is naturally achieved and no additional calibration effort between camera and depth
sensors is required. Figure 1.3 shows a 3D reconstruction of a highwall computed from multiple
photographs. The combination of exact depth extraction using multiple view geometry combined
with texture information of original images allows photorealistic 3D models of an environment.

(a) (b)

Figure 1.3: Coal mine reconstruction form 72 images taken by a digital consumer cameras. (a)
Orientation result by structure from motion and 1.3(b) oblique view of the respective dense 3D
model represented as texturized mesh.

Multi-view reconstruction has matured during the past decades [Hartley and Zisserman, 2000]
and led to fully automatic reconstruction systems from video and still images. Many reconstruc-
tion systems in computer vision are based on images from a moving video camera. These video
based systems can use uncalibrated [Beardsley et al., 1996, Pollefeys et al., 2004] or calibrated
cameras [Mouragnon et al., 2006,Nistér et al., 2004]. Applications include cultural heritage mod-
eling, odometry, robost localization and city modeling. These methods are particularly appropriate
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to create large sparse reconstructions of continuous movements in real time. Current state-of-the
art video-based 3D reconstruction [Nistér, 2001, Nistér et al., 2004, Pollefeys et al., 2004] allows
detailed real time modeling of the environment into a dense textured polygonal mesh. The fu-
sion of the structure from motion output with data from an Internal Navigation System (INS) and
Global Positioning System (GPS) allows drift free 3D modeling [Pollefeys et al., 2004].

In the robotic literature, video based online structure from motion is also denoted as Simultane-
ous Localization and Mapping (SLAM) [Davison et al., 2007,Eade and Drummond, 2006]. [New-
combe and Davison, 2010] present a method which enables rapid and dense reconstruction of
scenes from a single live camera in real time. The system relies on point-based real-time struc-
ture from motion provided by the Parallel Tracking and Mapping (PTAM) system of [Klein and
Murray, 2007]. Recently, the same authors demonstrated a Dense Tracking and Mapping (DTAM)
approach that performs camera pose tracking directly on the dense 3D model [Newcombe et al.,
2011].

While sequential image acquisition by video enables frame-to-frame feature tracking [Shi
and Tomasi, 1994], 3D reconstruction from unordered still images requires wide baseline im-
age matching techniques [Pritchett and Zisserman, 1998]. Current advances in feature extrac-
tion [Lowe, 2004] and wide baseline matching [Mikolajczyk and Schmid, 2004, Mikolajczyk and
Schmid, 2005] lead to fully automatic 3D reconstruction systems from unorganized images such
as Internet photo collections [Snavely et al., 2008a]. Reconstruction systems based on still images
(e.g. [Brown and Lowe, 2005, Kamberov et al., 2006, Martinec and Pajdla, 2007]) are in gen-
eral designed to operate in batch mode. Photo Tourism [Snavely et al., 2008a] (and the related
PhotoSynth1 web-system) is probably the most-well known application for automatic structure
from motion computation from a large set of unordered images. A collection of supplied im-
ages is analyzed and correspondences are established, from which a relevant subset of views and
the respective 3D structure is determined. As the problem size becomes larger, i.e. hundred
thousands of images, scalability becomes a key problem. Current state of the art uses efficient
image search methods [Nistér and Stewenius, 2006] to battle down the initially quadratic match-
ing complexity to sublinear search. Furthermore, massive parallel computing resources such as
multi-processors [Agarwal et al., 2009] are employed to speed up feature extraction, matching
and geometric estimation. In [Frahm et al., 2010] graphic processing units are used to handle
even millions of images. Recent approaches in large scale structure from motion uses hierar-
chical methods [Strecha et al., 2010] or a combination of discrete and continuous optimization
techniques [Crandall et al., 2011] to tackle the huge optimization problem. [Gherardi et al., 2010]
presents a hierarchical reconstruction scheme based on balanced agglomerative clustering of un-
organized images. In [Snavely et al., 2008b] the problem of efficient structure from motion for
large, unordered, highly redundant, and irregularly sampled photo collections is addressed. The
proposed approach computes a small skeletal subset of images that covers the whole scene and
approximates the accuracy of the full image set. The authors show that this method can improve
efficiency by up to an order of magnitude and more, while little or no loss in accuracy. An analo-

1 http://labs.live.com/photosynth
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gous idea is described in [Havlena et al., 2010], where a fast polynomial algorithm determines an
approximated minimal connected dominating set in the view graph. The algorithm uses a prior-
itized approach which is able to avoid matching of highly redundant images with low change of
reconstruction success.

One core challenge in structure from motion is large scale bundle adjustment [Triggs et al.,
2000,Hartley and Zisserman, 2000]. Many variations of bundle adjustment exist, from algorithms
that exploit the sparse structure of the problem [Lourakis and Argyros, 2009, Konolige, 2010] to
large scale solutions [Agarwal et al., 2010] exploiting out-of-core processing [Ni et al., 2007] and
parallelized multi core CPU/GPU implementations [Wu et al., 2011]. Wu et. al report that the
induced runtime acceleration is up to thirty times fast then current state of the art methods, while
maintaining comparable convergence behavior.

1.1.1 Image Acquisition Techniques

In image based reconstruction the scene can only be recovered up to a scale factor, unless the
baseline of the camera motion or the dimension of at least one element in the scene is known.
Hence metric reconstruction cannot be achieved directly. While this may seem to be a limitation,
it implies that image based reconstruction methods have a wide range of applications, from the
reconstruction of small objects from microscopy images to large satellite images capturing the
whole Earth. Current work on image based modeling is concerned with the reconstruction of
small objects [Hernández, 2004] and office workspace environments [Klein and Murray, 2007]
to the reconstruction of buildings [Pollefeys et al., 2004] and whole cities from community photo
collections [Agarwal et al., 2009,Frahm et al., 2010] and large area modeling from aerial [Zebedin,
2010] and satellite images [Kim and Muller, 2002]. Today an ever increasing amount of image
data becomes available that is used for mapping, inspection and navigation. Worldwide people
are taking a lot of photos1, up from about 50 billion a year in 2007 to about 60 billion in 2011.
Furthermore, more than 100 million photos are uploaded to the web every day2 and this number
shows no signs of slowing down. Table 1.1 gives a summary of the estimated number of images
taken worldwide. The following sections describe different acquisition techniques and image
sources that are available today for image based modeling.

Image source # Images avg. Resolution Memory

Digital Photos taken in 2011 > 60 billion ∼ 1 Megapixel ∼ 180 Petabyte
Number of Photos on Flicker (2010) > 5 billion ∼ 2 Megapixel ∼ 30 Petabyte
Photos per month Facebook (2012) > 3 billion ∼ 0.5 Megapixel ∼ 4.5 Petabyte
Google Street View Images (2012) ∼ 1 billion ∼ 5 Megapixel ∼ 15 Petabyte
Microsoft / DigitalGlobe Clear30 ∼ 150 million ∼ 109 Megapixel ∼ 50 Petabyte

Table 1.1: Estimated number of images taken worldwide.

1 http://www.itfacts.biz/50-bln-digital-photos-taken-in-2007-60-bln-by-2011/8985
2 http://royal.pingdom.com/2011/01/12/internet-2010-in-numbers
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Terrestrial Mapping

In the past ten years we have seen an explosion of consumer digital photography and a large growth
of community photo-sharing websites (e.g. flickr.com). Today, there exist billions of photographs
of sights and cities taken from a variety of cameras, viewing positions and angles. Mobile phones
are equipped with high resolution cameras and provide a continuous growth of images available
of the world. Even though, these photo collections are taken from a variety of different cameras
and illumination conditions, fully automatic structure from motion modeling is feasible as shown
by the authors of [Snavely et al., 2006, Agarwal et al., 2009, Frahm et al., 2010]. On the other
hand, Google and Microsoft aim at large scale terrestrial mapping by systematic image acquisition
using 360◦ camera systems mounted on cars that drive around and photograph each location (see
Figure 1.4). So far, Google has collected tens of millions of street-side panoramic still images
from a substantial part of the populated world, as shown in Figure 1.4(c). Given that the total
length of all public roads in the United Sates is about 6.5 million kilometers, acquiring one shot
every 5 meters results into more than one billion images. To figure out exactly where each image
was taken, panoramic images are combined with signals from several sensors on the car, including
global positioning device and monitors that measure speed and direction. A coarse 3D model of the
scene is then used for navigation and to render smooth transitions between successive panoramas
as shown in Figure 1.4.

Aerial Mapping

Novel digital aerial cameras produce high resolution images at no cost increase of overlaps that are
readily suitable for photogrammetric end products like Digital Surface Models DSM, ortho-photo
creation and 3D city modeling [Zebedin, 2010]. Fully automated image based creation of dense
point clouds with an elevation measurement at each pixel makes the technology competitive with
LiDAR-based surface measurements [Leberl et al., 2010]. It can be argued that the image-based
approach offers many advantages over LiDAR, and that practically all aerial mapping scenarios
will need digital images, even with LiDAR [Leberl and Gruber, 2003]. Current aerial flight mis-
sions are normally based on 80% forward and 60% sideward overlap. Large camera systems can
achieve a Ground Sampling Distance (GSD) of less than 2cm at 12bit radial resolution (e.g. Ul-
traCamXp, Microsoft Vexcel). Due to the the high image overlap, on average a point in the scene
is visible in ten to twenty images which allows to employ fully automatic processing. The point
cloud produced by multi-view dense matching can then be used for city modeling and true ortho-
photo generation, as Figure 1.5 shows. Currently the large scale data acquisition program Clear30
from DigitalGlobe1 and Microsoft Vexcel2 aims at collecting 30-cm aerial imagery of the entire
contiguous United States and Wester Europe for the production of high resolution orthophoto mo-
saics. This translates into several Petabytes of high resolution aerial image data.

1 http://www.digitalglobe.com
2 http://www.vexcel.com
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(a) (b)

(c)

Figure 1.4: (a) Google Street View car with mounted 360◦ camera system for large scale terrestrial
mapping and (b) Street Maps Sphere viewer. (c) Current world wide coverage of street view data
(Januray 2012).

Micro Aerial Vehicles

Aerial photography has been the workhorse of remote sensing. Satellite imagery has augmented
the remote sensing tool box since the launch of Landsat in 1972. Both aerial and satellite imaging
result in very ordered and industrially planned image datasets. Recently, one can see a diversifica-
tion of the image inputs for remote sensing [Eissenbeiss et al., 2009]. Photography from handheld
amateur cameras, from balloons and Micro Aerial Vehicles (MAVs), all are subject to intensive
research into their applicability to tasks previously reserved to industrial solutions.

Fully autonomous, light-weight MAVs have recently become commercially available at rea-
sonable cost for civil applications. Equipped with consumer grade digital cameras, such systems
allow rapid and cost efficient image acquisition from unconventional viewpoints around a scene.
For instance the micro-drone md4-2001 depicted in Figure 1.7 has the ability for vertical take off

1 http://www.microdrones.com
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(a) (b)

(c)

Figure 1.5: (a) The eight-lens UltraCam aerial camera system with an in-flight image storage and
processing unit produces panchromatic image tiles through four lenses linearly arranged along
the flight direction. (b) Oriented image block of 155 UltraCam images with resolution 11500 ×
7500 and ground sampling distance 8cm. (c) From left to right, aerial image with corresponding
depth map and orthophoto generated by warping and stitching multiple images together using the
reference digital surface model.

and landing, provides position hold and autonomous way-point navigation and is equipped with a
standard digital consumer camera that can be tilted (up to 90◦) to capture images from different
angles.

MAVs are suitable to capture medium scale scenes and buildings which are in the range of
some hundred meters at very high geometric resolution [Colomina et al., 2008, Schmid et al.,
2012]. The obtained models provide an accuracy which is in the scale of centimeters, as shown in
Figure 1.6. A MAV is often capable to provide visual information about an object which otherwise
cannot be obtained. Mapping using images taken by MAVs has been addressed by many authors,
e.g. in the context of digital surface model (DSM) extraction [Förstner and Steffen, 2007], archae-
ological preservation [Scaioni et al., 2009] and agricultural survey [Grenzdörffer et al., 2008]. The
temporal (4-dimensional) analysis of local areas, as for instance the monitoring of building recon-
struction sites (see Figure 1.7), becomes affordable because of the reduced cost of the hardware.
Expensive helicopters or airplanes are replaced by ultra-light MAVs. The automated processing
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on the other hand reduces the labor cost substantially and makes such projects feasible.

Figure 1.6: Micro-drone md4-200 with attached PENTAX Optio A40 and reconstruction of the
clocktower of Graz from 420 images.

(a) (b) (c)

(d) (e)

Figure 1.7: Monitoring changes of a reconstruction site using images taken from an autonomously
flying MAV system. (a)-(c) Still images taken over a period of three days and (d),(e) 3D recon-
struction results obtained by multi-view dense matching.
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1.2 Image based Localization

Image based localization has many applications including navigation for robots [Se et al., 2002]
and pedestrians [Robertson and Cipolla, 2004,Zhang and Kosecka, 2006], augmented reality [Arth
et al., 2009, Gordon and Lowe, 2006] or 3D browsing and visualization of photo collections [Sat-
tler et al., 2011, Li et al., 2010]. Unlike to Global Positioning Systems (GPS) that only provide
positioning information, view registration of a camera with respect to a 3D scene delivers full six
degree of freedom (6DOF) pose information and is also capable of working indoors and in urban
canyons. Fast and accurate image alignment to a given scene is especially useful for Augmented
Reality (AR) applications [Azuma et al., 1999] which aims for registration of 3D content to the
live view of the world as captured from a camera. In order to get a realistic photo overlay with-
out offset, pixel accurate pose estimation is required. In addition, if the 3D scene is registered to
the World Geodetic System (WGS84), global geo-registered position and orientation estimation is
possible. Such models can then be used for global localization tasks at the scale of the world. Fur-
thermore, being a passive device, a camera requires low energy and instant, real time localization
is possible through high frame rates. This is in contrast to GPS sensors that usually have a position
update of about 1Hz. Image based localization is non-intrusive and conceptually appealing since
accurate 3D pose and orientation information can be computed from image and video data, only.

A prerequisite of a fast and accurate image based localization system is the availability of an
exact 3D model of the environment. The ideal case would be a precomputed visual map of the
environment that encodes the exact illumination and viewing conditions from any desired view-
point. A fast and flexible method to build such photo-realistic 3D models from an environment is
image based 3D reconstruction as describe in the first part of the thesis (Chapter 2). Figure 1.8
depicts a 6DOF real-time localization result of a handheld video using our proposed image based
localization technique as described in Chatper 5.

(a) (b)

Figure 1.8: Image based localization using a precomputed visual landmark of the environment.
(a) Camera localization and (b) respective 2D to 3D aligned image content.

In the computer vision literature, the problem of location recognition has been addressed in
the past by a variety of approaches [Robertson and Cipolla, 2004, Zhang and Kosecka, 2006, Zhu
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et al., 2008]. The most successful methods rely on wide baseline matching techniques based on
sparse features such as scale invariant interest points and local image descriptors. The basic idea
behind these methods is to compute the position of a query image with respect to a database
of registered reference images [Schindler et al., 2007a], planar surfaces [Robertson and Cipolla,
2004] or 3D models [Najafi et al., 2006]. Assuming a static scene, geometric verification can be
used to determine the actual pose of the camera with respect to the exemplar database. Different
viewpoints or illumination changes are largely handled by robust features like SIFT [Lowe, 2004]
and SURF [Bay et al., 2008] that act as descriptors of local image patches.

[Schindler et al., 2007a] present a city scale location recognition approach based on geo-
tagged video streams and specific trained vocabulary trees using SIFT features. The vocabulary
tree concept and inverted file scoring as described in [Nistér and Stewenius, 2006] allows sub-
linear search of large descriptor databases requiring low storage space. In contrast [Lepetit et al.,
2005] recast matching as a classification problem using a decision tree and trade increased memory
usage for expensive computation of descriptors at runtime. [Skrypnyk and Lowe, 2004a] present
one of the first systems for 3D scene modeling, recognition and tracking with invariant image
features. First, a sparse 3D model from the object of interest is reconstructed using multi-view
vision methods. Second, SIFT descriptors associated with the sparse 3D points are organized
into a kd-tree structure, and a best-bin first search strategy is employed to establish putative 2D-
3D correspondences. A robust pose estimation algorithm is used for geometric verification and
delivers the accurate pose of the query image with respect to the 3D model. Self-localization in
indoor and smaller-scale environments using image or video data is also addressed by the visual
SLAM (simultaneous localization and mapping) literature. [Eade and Drummond, 2008] propose
a vocabulary tree-based approach for real-time loop closing, using a reduced SIFT-like descriptor.

Related work in the augmented reality context includes [Gordon and Lowe, 2006, Reitmayr
and Drummond, 2006, Klein and Murray, 2007]. [Reitmayr and Drummond, 2007] proposed an
accurate localization technique on modeling the GPS error with a Gaussian process for fast outdoor
localization without user intervention. Recently, [Li et al., 2010] presented a location recognition
approach based on prioritized feature matching exploiting stable scene features. Combining bag-
of-features approaches with geometric verification to improve the precision of object recognition
was proposed by [Xiao et al., 2008]. Visibility prediction of known 3D points with respect to a
query camera was investigated in [Alcantarilla et al., 2011].

Based on the same fundamental concepts, in Chapter 5 we present a location recognition
system with full 6DOF localization which runs in real-time for very large scenes. Our approach
achieves competitive registration rates than current state-of-the-art view registration techniques [Sat-
tler et al., 2011] and is more efficient in terms of processing time. Furthermore our proposed
approach is fully scalable and prior pose information can be easily integrated. A precomputed
set of synthetic views provides 3D point fragments that cover the space of admissible viewpoints.
The 3D point fragments are globally indexed with a vocabulary tree data structure that is used
for coarse matching. Real time performance for view registration on a desktop PC is achieved by
utilizing modern graphics processing units for feature extraction and matching.
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1.3 Contribution of the Thesis

This section summarizes the six key contribution of this thesis.

1) Scalable, efficient and flexible structure from motion pipeline This thesis focuses on mak-
ing 3D reconstruction scalable and feasible for real world problems and applications. We extend
current state-of-the-art by combining efficient image search with robust matching and 3D recon-
struction methods. The use of highly parallel general purpose GPU (GPGPU) techniques based
on the CUDA (Compute Unified Device Architecture) framework is a core component of all our
design decisions. This includes a GPU accelerated vocabulary tree implementation, dense fea-
ture matching and geometric estimation. The achieved speedups on the GPU are about 10− 20×
compared to single CPU processing. The development of a robust, scalable and fully automated
structure from motion pipeline that processes unorganized real world images into 3D models is
one of the main contribution of this thesis. In contrast to current state-of-the-art structure from
motion systems that operate in batch mode, our pipeline enables incremental reconstruction. In
our system, the 3D models can evolve over time and are all stored in a global repository. In addi-
tion, we present a calibration method based on coded markers that is very accurate and easy and
fast to employ for end-users.

2) Globally optimal multi-view matching We present a new multi-view matching approach to
generate accurate 2.5D dense depth maps from large aerial images. We use a global optimization
algorithm based on a continuous energy minimization framework that delivers globally optimal
solutions. Furthermore we demonstrate the benefit of using multi-view dense matching compared
to standard stereo in terms of achievable geometric accuracy. From our synthetic experiments on
a typical aerial camera network we conclude that true multi-view matching/triangulation outper-
forms two-view stereo approaches by about one order of magnitude.

3) View selection method We present an approach that leverages prior information from global
positioning systems and inertial measurement units to speedup structure from motion computation.
We propose a view selection strategy that advances vocabulary tree based coarse matching by
also considering the geometric configuration between weakly oriented images. Furthermore, we
introduce a fast and scalable reconstruction approach that relies on global rotation registration
and robust bundle adjustment. The method is scalable and computationally more efficient than
previous approaches.

4) Robust 3D reconstruction by Bayesian reasoning We introduce a novel algorithm that is
able to detect incorrect two view geometries by reasoning about missing correspondences retrieved
from view triplets. Our method allows to detect and disambiguate wrong epipolar geometries
that often occur in scenes with duplicate scene structure. The algorithm can be used to augment
existing 3D reconstruction systems with little computational effort.



1.4. Outline 13

5) Efficient localization framework We introduce a new algorithm and framework to register
a single image and videos to large structure from motion reconstructions. The method performs
real-time tracking by detection, hence it is not prone to drift and can automatically recover from
tracking failures. We demonstrate the first large scale system that is capable to do full 6DOF global
localization at 15fps on large structure from motion point clouds (e.g. 1.5 Million 3D points at a
recognition rate of more than > 90%). Since each frame is individually matched to the whole 3D
database the method is very robust and automatically recovers from registration failures. The core
component of our system is a fast indexing method based on 3D point fragments (structure from
motion points) that allows fast view registration. We introduce the concept of synthetic views for
the registration of images that are beyond the viewpoints of original images. A scene compression
strategy further reduces matching costs and the amount of required memory.

6) Detailed evaluation of potential applications The principal algorithms and methods de-
scribed in this thesis have practical benefits and provide efficient solutions for various problems.
We demonstrate photorealistic 3D modeling of cities from user contributed terrestrial data, dense
modeling from large aerial images and the reconstruction of urban areas using images obtained by
micro aerial vehicles. Our localization framework allows efficient registration of community photo
collections to known landmark reconstructions. Furthermore, it extends to 3D and is suitable for
outdoor robot localization and delivers more robust pose estimates than current state of the art sys-
tems. We demonstrate that our algorithm can be used at modest platforms such as smart-phones
that allows mobile augmented reality applications. Our reconstruction and localization solutions
are generic, extensively evaluated on a variety of datasets and demonstrated scalability, accuracy
and robustness.

1.4 Outline

The thesis is organized in two parts. The first part is concerned with fast end efficient creation of
3D models from our environment using image based 3D reconstruction methods. The second part
deals with efficient localization of images with respect to the reconstructed 3D models.

Chapter 2 gives theoretical background for multi-view geometry and structure from motion.
The individual processing blocks and algorithms of a structure from motion pipeline are described
in detail. We present implementation methods based on graphic processing units to speed up
several processing steps.

Chapter 3 discusses applications and evaluation for 3D scene reconstruction from multiple im-
ages. We present a Wiki-base reconstruction approach that is capable of reconstructing a scene
from an unordered image collection. Furthermore, an algorithm for globally optimal multiview
dense matching for aerial images is presented. We conduct reconstruction experiments using mi-
cro aerial vehicles and give a detailed comparison to a semi automatic structure from motion
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approach based on the PhotoModeler software. Moreover a reconstruction algorithm that effec-
tively takes advantage of GPS/IMU information for matching and view selection is presented. The
proposed algorithm considerably speeds up structure from motion computation.

Chapter 4 presents a robust method to tackle wrong epipolar geometries for 3D reconstruction.
We propose an algorithm for non-monotone reasoning about view triplets which enables to identify
epipolar geometries that are caused by scene repetitions. The method allows the detection and
identification of wrong geometric relations and leads to more robust reconstruction results.

Chapter 5 introduces a novel image based localization approach based on structure from motion
point clouds. Vocabulary tree based indexing of features directly returns relevant fragments of 3D
models instead of documents from the image database. This makes the approach scalable and
allows efficient registration of images with significantly different viewpoints than the original
views used the reconstruction of the 3D model.

Chapter 6 describes three potential applications for image based view registration. We show
the wide applicability of our approach, from the registration of community photo collections to
known 3D landmarks, to robot navigation and localization and camera tracking for augmented
reality applications.

Chapter 7 concludes the thesis with a summary of the outcomes and discusses open issues and
ideas for future work.



Chapter 2

Structure from Motion

Reconstructing a scene from a set of 2D images is one of the core problems in computer vision.
In particular, Structure from Motion (SfM) deals with the problem of estimating the 3D struc-
ture of a scene and camera orientations from 2D image measurements only. This problem has
been extensively studied from a theoretical viewpoint in the past decades [Hartley and Zisserman,
2000,Faugeras and Luong, 2001]. Recently, computer vision methods for 3D scene reconstruction
became robust enough to be used by non-vision experts. Today, there exists fully automated recon-
struction systems that are able to reconstruct a scene from unordered images such as online photo
collections downloaded from the Internet. In this chapter fundamental concepts and notations for
multi-view modeling are introduced and individual processing components of our reconstruction
system are described in detail. In particular, we study the problem of (i) fast and scalable image
matching of unordered images, (ii) how to determine and deal with mismatches (i.e. incorrect
correspondences) and (iii) how to efficiently determine a scene structure from correspondences.
Several data-parallel parts of the pipeline are implemented for the execution on Graphic Process-
ing Units using the Compute Unified Device Architecture (CUDA)1 framework. The algorithms
allow large scale reconstruction of thousands of still images.

2.1 Pinhole Camera Model

The perspective projection from a point in 3-spaceR3 onto an image planeR2 can be represented
by the ideal model of a pinhole camera [Hartley and Zisserman, 2000]. The pinhole camera model
is described by a center of projection C and an image plane Π of distance f , denoted as the focal
length. Let X = [X,Y, Z]> be a point in space, the line joining X and the camera center C is
projected to the point,

x =

(
f
X

Z
, f
Y

Z

)
(2.1)

1 http://developer.nvidia.com/category/zone/cuda-zone
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onto the image plane Π. Introducing homogeneous coordinates, the projection equation can be
written in matrix notation,

x =

xy
z

 =

f 0 0 0

0 f 0 0

0 0 1 0



X

Y

Z

1

 = PX (2.2)

where the point x has the 3-space coordinates [u, v, 1]> with u = x/z and v = y/z. As a result,
a linear equation system is obtained. The assumption up to now was that the camera coordinate
system coincides with the world coordinate system and is totally aligned with the image coordinate
system. However, in general the image coordinate system is defined in pixel and thus the principal
point [0, 0, 1]> in camera coordinates is at location [u0, v0, f ]> in the image. The focal length f
denotes the distance from the projection center to the image plane. Moreover, the metric pixel
size may be different for x and y directions, as a result different scale factors αx = fsx and
αy = fsy for both directions are obtained, where sx and sy are the number of pixels per unit
distance for image columns and rows, respectively. For some very particular imaging situations,
e.g. non-orthogonal pixel or images of images, a fifth parameter sθ exists, referred to as skew
parameter. However, for most cameras sθ = 0 is satisfied. This relations are expressed by the
camera calibration matrix K, which describes the transformation between the image coordinate
system and the camera coordinate system,

K =

αx sθ u0

0 αy v0

0 0 1

 . (2.3)

The calibration matrix K describes the imaging system, together with a rigid body transformation
between the world coordinate system and the camera position, a general 3 × 4 projection matrix
P is described by,

P =

αx sθ u0

0 αy v0

0 0 1

[ R t

0> 1

]
= K[R | t] (2.4)

where R is a 3× 3 rotation matrix and t = [x, y, z]> a translation vector. In total therefore P de-
pends on 11 parameters, five for the intrinsic relations and another six for the external parameters,
denoted as the exterior orientation. The projection matrix can be expressed by the camera center
C,

P = KR[I | −C] (2.5)

with C = −R>t and I is the 3 × 3 identity matrix. The pinhole camera model and the different
coordinate systems involved are shown in Figure 2.1.
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Figure 2.1: Camera geometry. Image coordinate to camera coordinate transformation together
with an euclidean rigid body transformation between the world and camera coordinate frame.

2.1.1 Radial Distortion

The pinhole camera model assumes a linear model of the imaging process, thus world point, image
point and optical center are collinear. For real (non-pinhole) lenses this assumption is normally
not valid since non-linear deviations exists. There can be found two types of distortions, radial
distortion and tangential distortion. However, only radial distortion has a significant influence
on the image geometry and can be seen as a deficiency in straight lines transmission [Devernay
and Faugeras, 2001]. Tangential distortion is usually insignificant and is not considered in the
camera model. The effect of radial distortion is that straight lines are bended as general curves
and points are moved in the radial direction from their correct position. Especially when working
with non-metric digital cameras, the radial distortion reaches significant values and a correction
of this distortion should be the first step in image processing. Normally, the radial lens distortion
is modeled as, (

x̂

ŷ

)
=

(
xc
yc

)
+ L(r)

(
x− xc
y − yc

)
(2.6)

where (x, y) are the the measured coordinates, (x̂, ŷ) are the corrected coordinates and (xc, yc) is
the center of radial distortion, with r2 = (x− xc)2 + (y − yc)2.

The function L(r) is usually approximated by a Taylor series expansion,

L(r) = 1 + k1 r + k2 r
2 + k3 r

3 + . . . (2.7)

where the coefficients for radial correction {k1, k2, k3, . . . , xc, yc} are considered part of the in-
terior calibration of the camera. This correction together with the camera calibration parameters
specifies the mapping from an image point to a ray in the camera coordinate system. Figure 2.2
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depicts the distortion map of a wide angle lens. Note, the distortion at the fringe of the image is
considerable and the projection substantially deviates from the ideal linear pinhole camera model.

(a)

(b) (c)

Figure 2.2: (a) Radial distortion map of a wide angle lense. The non-linear distortion is signif-
icant, the deviation from a linear-pinhole camera model is about 20% at the fringe of the image.
(b) Raw image and (c) undistorted result after applying the inverse distortion function and bilinear
interpolation.

2.2 Epipolar Geometry

The geometric relation between two images, taken from different viewpoints is based on the well
established epipolar geometry [Faugeras and Luong, 2001,Ma et al., 2003,Hartley and Zisserman,
2000]. A 3D point X captured from two different camera positions is projected to image location
x in the first and to x′ in the second image. The intrinsic relation of the point correspondence
x ↔ x′ is known as the epipolar constraint, a point visible in one image is restricted to lie on a
line in the second image. The epipolar geometry can be expressed by the rotation and translation
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of the first camera P to the second camera P ′, with known intrinsic K,

x′>(K ′−1)>S(t)R(K)−1x = 0 (2.8)

where R is a 3× 3 rotation matrix and S(t) is a translation matrix of the form,

S(t) = [t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0

 . (2.9)

The epipolar constraint (2.8) is described by the essential matrix E and encodes the relative pose
between the two cameras,

E = S(t)R . (2.10)

Analogous for the uncalibrated case (i.e. unknown camera intrinsics), the epipolar constraint is
based on the fundamental matrix,

x′>Fx = 0 (2.11)

and thus E can be rewritten as,
E = K ′>FK . (2.12)

As illustrated in Figure 2.3, the camera centers C and C′, the 3-space point X, and its images x
and x′ lie in a common plane π also denoted as epipolar plane. The camera centers are connected
by the baseline, which virtually intersects the image planes at the epipols e and e′. The intersection
of an epipolar plane with the image plane is called epipolar line. Each point x in the left image
corresponds to the epipolar line l′ = Fx in the right image and vice versa. The epipolar line in
one image is a projection of the straight-ray from the 3-space point X to the other camera center
C and C′, respectively.

The fundamental matrix F and essential matrixE can be determined solely from sets of match-
ing features that satisfy the epipolar constraint [Hartley and Zisserman, 2000]. For calibrated cam-
eras (i.e. known intrinsics K), the essential matrix can be determined from a minimal set of five
point correspondences using the five-point algorithm [Nistér, 2004]. If the intrinsics are unknown,
the eight-point algorithm [Hartley, 1997] offers the computationally most simple and efficient so-
lution to determine the fundamental matrix. However, since F is a rank 2 homogeneous matrix
with 7 degrees of freedom, seven correspondences are already sufficient [Hartley and Zisserman,
2000] to compute F .

2.2.1 Five-Point Algorithm

The essential matrix encodes the epipolar constraint for calibrated point correspondences x̂ = Kx

and x̂′ = K ′x′ and is composed by a rotation matrix R and a translation vector t, both with three
degrees of freedom,

E = [t]×R = R[R>t]× . (2.13)
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Figure 2.3: Epipolar geometry. The camera baseline intersects each image plane at the epipols e
and e′. A point x in the first image lies on an epipolar line l′ in the second image, which is the
image of the ray from point X to the first camera center C.

In [Huang and Faugeras, 1989] the prove is given that beside the singularity property,

detE = 0 (2.14)

an additional algorithmic constraint,

trace2(EE>) = 2 trace((EE>)2) (2.15)

is satisfied, which means that two non-null singular values of E are equal. This implies two
independent algebraic constraints [Faugeras and Luong, 2001]. Hence together with the up-to-
scale definition and the singularity constraint, the essential matrix has in total only five degrees
of freedom. The five-point problem was firstly investigated in [Kruppa, 1913], showing that up
to eleven solutions exist. However, requiring that the scene points are in front of the cameras
(twisted pair ambiguity), the solutions can be constricted to ten [Nistér, 2004]. Analogous to the
eight-point algorithm [Hartley, 1997] a linear equation system is solved,

(u′u, u′v, u′, v′u, v′v, v′, u, v, 1)e = 0 (2.16)

for a minimal set of five point correspondences [u, v, 1]↔ [u′, v′, 1]. The four vectors X,Y,Z,W,
which span the right nullspace of E, may be computed by singular value decomposition or QR-
factorisation. Finally the essential matrix E can be expressed by a linear combination of the four
vectors, now in matrix notation X,Y, Z,W ,

E = xX + yY + zZ + wW (2.17)
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where x, y, z, w are scalar factors. Since E is defined up to a common scale factor, w = 1 is
assumed. By inserting E in the trace-constraint (2.15) together with the rank constraint (2.14)
gives ten third order polynomials. The solutions may be obtained algebraically performing Gauss-
Jordan elimination with partial pivoting. An efficient solution to compute E is given in [Nistér,
2004] and [Li and Hartley, 2006].

2.3 Processing Pipeline

In this chapter we focus on computing structure from motion from calibrated cameras that cor-
respond to an ideal pinhole camera model. Hence we assume that the internal parameters of the
cameras are known and images are unwarped according to the radial lens distortion (see Sec-
tion 2.1.1). Unlike to auto-calibration approaches [Pollefeys et al., 2004] that do a projective
reconstruction first and than upgrade to Euclidean by solving for the internal camera parameters,
calibrated cameras allow direct metric reconstruction. For wide angle lenses, the radial distortion
on the fringe of the image can be significant and largely affect the linear pinhole camera model as
shown in Figure 2.2. The radial distortion implies that image projections of straight lines in 3D
are not straight any more, thus thresholds on linearity may well be erroneously exceeded in the
original images. Furthermore, structure from motion using calibrated cameras can be considered
as more reliable and robust since the likelihood of degenerate scene configurations (e.g. planar
vs. non-planar scenes) is lower [Hartley and Zisserman, 2000]. Such configurations often occur in
man-made environments and projective reconstruction fails when features common to three con-
secutive views are all located on a plane [Pollefeys et al., 2002]. Furthermore, for a calibrated
approach, model selection [Torr et al., 1998, Frahm and Pollefeys, 2006] is not necessary in order
to distinguish between scenes with and without dominant planar structure. Overall, also an in-
creased processing speed is achieved due to the lower dimensionality of the problem (i.e. 7 DOF
for the fundamental matrix computation vs. 5 DOF for the essential matrix). This is especially true
for robust estimation algorithms such as RANSAC [Fischler and Bolles, 1981], since a minimal
parametrization can handle more outliers with less RANSAC-iterations [Hartley and Zisserman,
2000].

In general a structure from motion pipeline for unordered sets of images consists of the five
processing steps: feature extraction, coarse matching, detailed matching, geometric verification
and geometric estimation.

1. Feature Extraction: The first processing step is in extracting distinctive feature points
that act as local image descriptors. These features are necessary to establish corresponding
locations in different images and are used to compute the camera pose.

2. Coarse Matching: Based on features, an epipolar graph is computed from pairwise image
matching. Matching all potential image pairs is computationally very expensive, hence a
multi-stage matching approach is normally employed. First, a coarse image similarity is
computed using fast image retrieval techniques to efficiently determine image pairs that
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are expected to share common scene elements. Additionally, prior information such as
knowledge of sequential image acquisition or external pose information from GPS/INS can
be used to limit potential matching pairs.

3. Detailed Matching: The next component deals with establishing correspondences between
pairs of images. For video sequences local search techniques such as correlation or least
squares can be used to track features between individual frames. When a large amount of
motion or appearance change between images is expected (e.g. unordered still images), fea-
tures are detected independently in all images and matched based on their local appearance.
This operation is normally very time consuming, hence parallelization methods are often
used to speed up processing.

4. Geometric Verifcation: Feature matching delivers a set of potential correspondences that
are used to compute the relative orientation between cameras. As no exact matching pro-
ducer exist, geometric verification on the epipolar geometry effectively reduces outliers that
arise from mismatches.

5. Geometric Estimation: Finally, pairwise correspondences are linked into point-tracks and
structure from motion is solved by the geometric estimation module.

In Figure 2.4 an overview of a general structure from motion pipeline is depicted. The fol-
lowing sections give algorithmic details of our reconstruction system that combines and extends
current state-of-the-art approaches and is designed to leverage the massive parallel processing
power of current Graphics Processing Units.

2.4 Feature Extraction

One of the very first processing steps in a structure from motion pipeline is the determination of
correspondences between (all) or a subset of images. This involves the detection of stable and
invariant image locations (interest point extraction) and the local description of the appearance
that surrounds the points. Over the past decades a variety of feature detectors and descriptors
have been proposed. Early work on interest point detectors is based on corner detectors [Moravec,
1980, Förstner and Gülch, 1987, Harris and Stephens, 1988] and respective image patches that
describe the local surrounding of the keypoints, denoted as descriptors. These detectors are based
on the local autocorrelation matrix [Shi and Tomasi, 1994] around each pixel and show strong
invariance to rotation and illumination changes. Scale invariance can be achieved by performing
the same operations at multiple resolutions in a pyramid. However, it turns out that it is more
efficient to extract features that are stable in both location and scale [Mikolajczyk and Schmid,
2004]. Extensive evaluation on interest point detectors and local descriptors [Mikolajczyk and
Schmid, 2005] has shown that the Scale Invariant Feature Transform (SIFT) [Lowe, 2004] and the
Speeded Up Robust Features (SURF) operator [Bay et al., 2008] are among the top performing
features in terms of accuracy and repeatability. These features are invariant to scale and rotation
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Figure 2.4: (a) Unordered set of input images and corresponding structure from motion result of
the Graben street (Vienna) using correspondence information only. (b) A flowchart of individual
processing steps of an automated structure from motion pipeline.

and robust against illumination changes and geometric distortion, hence they are well suited for
wide baseline matching. Furthermore, these interest points can be efficiently determined and fast
GPU implementations [Wu, 2007] are available. Moreover, these detectors are sub-pixel accurate
and feature extraction normally delivers enough repeatable and matchable keypoints for structure
from motion computation. Figure 2.5 depicts matching results between challenging image pairs
such as wide baseline, drastic illumination and very large scale changes.

While SIFT and SURF are very repeatable and stable features, the computational complexity
is often too high for real time applications. This is especially true for mobile devices with limited
computational resources. The ever growing resolution of images and the increasing number of
vision applications requires computationally efficient algorithms to handle the large amount of
data. This is especially true for new applications like hand-held augmented reality, targeted to
run on mobile devices with limited computational resources. Examples are the FAST [Rosten
and Drummond, 2006] and AGAST [Mair et al., 2010] detectors which are many times faster



24 Chapter 2. Structure from Motion

than other existing corner detectors while providing high levels of repeatability under large aspect
changes at the same time. FAST interest points combined with the recently proposed and very
efficient and robust binary descriptor BRIEF [Calonder et al., 2010] is an efficient toolbox for
key-point detection and matching. Furthermore, BRIEF is highly discriminative even when using
relatively few bits and can be computed using simple intensity difference tests. Furthermore, the
descriptor similarity can be evaluated using the Hamming distance, which is very fast to compute
using the latest SSE4 instruction set. Recent state-of-the-art includes BRISK [Leutenegger et al.,
2011] and ORB [Rublee et al., 2011], these feature achieve matching performance comparable to
SIFT and SURF but are about two orders of magnitude faster to compute.

In our pipeline, any one of the previously mentioned scale invariant feature detectors and
descriptors can be selected to establish correspondences. We primary focus on SiftGPU [Wu,
2007], because this approach currently offers the best trade-off between matching performance
and computation time on GPU supported desktop PCs.

(a) (b) (c)

Figure 2.5: Natural feature matching results based on the Scale Invariant Feature Transform
(SIFT) for challenging image pairs, (a) large scale and viewpoint changes, (b) illumination changes
(e.g. day, night) and (c) large scene variations (e.g. summer-winter scene). Lines indicate cor-
responding points that satisfy the epipolar geometry. Even though the distortion of the images
is significant a large number of correct correspondences is obtained. This would not be possible
using conventional feature detectors like Harris corners and local intensity patches.

2.5 Coarse Matching

Unlike feature point tracking in video sequences, where correspondence search can be restricted
to local regions, matching of unordered still images essentially requires exhaustive search between
all image pairs and all features seen therein. Hence, the matching costs are quadratic in the total
number of extracted features from the image database. Note the number of SIFT features from a
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medium sized image (e.g. 4000 × 3000 pixel) normally exceeds a value of 10000. For a small
image database consisting of 1000 images, more than 10 million SIFT keys are detected. This
translates into 100 billion descriptor comparisons that are necessary for exhaustive nearest neigh-
bor search. This is a considerable amount of computation, which turns out to be a prohibitively
expensive operation executed on a single CPU. Dependent on the scene structure, matching all(
n
2

)
≈ O(n2) pairs of images is actually not necessary since many pairs do not overlap. To make

the correspondence search more tractable, we divide the matching procedure into two submod-
ules. We build upon work on efficient image retrieval [Nistér and Stewenius, 2006] and use a
vocabulary tree to determine an image-to-image similarity score. Recent work on efficient image
similarity computation includes [Chum et al., 2009,Chum et al., 2011]. Such an approach assumes
that each image is represented as a bag of words and the occurrence of similar words between im-
ages determines a similarity score. This concept is borrowed from state-of-the-art text retrieval
and document search [Brin and Page, 1998]. Consequently, only images with a sufficiently high
similarity score are considered for detailed pair-wise image matching. Our proposed approach
described in [Irschara et al., 2007] is nowadays a standard component in large scale reconstruction
pipelines [Agarwal et al., 2009]. This strategy allows to substantially reduce the matching effort
since for large image databases an image usually only matches with a small fraction the database
due to missing overlap and occlusions.

2.5.1 Vocabulary Tree based Image Similarity

The bag-of-words image representation [Sivic and Zisserman, 2003] based on SIFT features [Lowe,
2004] are at the core of state-of-the-art large scale image retrieval systems. This representation
describes an image based on a histogram of quantized feature occurrences with respect to a code-
book of pre-defined visual words. The corpus is hence organized as an inverted file structure that
compactly represents the whole image database. An efficient approach for approximated nearest
neighbor search on the codebook can be done using hierarchical quantization of descriptor vectors,
also denoted as a vocabulary tree [Nistér and Stewenius, 2006]. The tree is determined up to some
maximum number of levels L and each node is divided into K children. Each SIFT-key is then
propagated down the tree by comparing the descriptor vector to the K children and choosing the
closest cluster center.

The vocabulary tree concept relies on the following basic assumption: if the similarity between
two features sim(fi, fj) is high, then there is a relatively high probability that the two features are
assigned to the same visual word w(fi) ≡ w(fj), i.e. the features reach the same leaf node in the
vocabulary tree. Based on the quantized features from a query image Q and each database image
D a scoring of relevance is derived. Typical scoring functions are based on a vector model, as for
instance the tf-idf (term frequency, inverse document frequency), which delivers a relative docu-
ment ranking according to the degree of similarity between query and database images. Figure 2.6
shows query images and corresponding top-ranked database images according to a vocabulary tree
based image retrieval system.
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(a) (b)

(c) (d)

Figure 2.6: (a),(c) Sample query images from the Vienna dataset (consisting of 2640 street side
images) and (b),(d) corresponding top ranked images from a bag of words vocabulary search using
td− idf scoring.

2.5.2 Inverted Files

Each image is represented as a set of visual words (VW). For each visual word an inverted file is
attached that stores the respective identifier of each image and the frequency of the visual word
(i.e. number of occurrences). Image query is performed using a weighted voting scheme on the
global inverted file table, a concept borrowed from text retrieval [Brin and Page, 1998]. The mem-
ory footprint to represent the occurrence of a visual word in an inverted file is as little as 6 byte,
assuming that the image ID is stored as an integer and the term frequency as short integer. Hence,
SIFT keys requiring 128 byte can be compressed into 6 byte corresponding to 4.6% of the raw
keypoint size. If multiple instances of the same visual word in an image occur, the compression
is even larger and leads to 0.046/n, where n is the number of similar visual words. Since all
documents are indexed by the terms they contain, the process of generating and storing document
representations is called indexing [Singhal, 2001]. The inverted file data structure allows to ef-
ficiently store and index a global image database with low memory requirements. For instance
the raw 12 Million extracted SIFT keys from the ukbench1 database (12000 images) require about
1.5GB of memory. Instead, the respective inverted file structure of a L = 3,K = 50 vocabulary
tree quantization requires 15MB to store the visual words (hierarchical vocabulary) and 68MB

for the inverted file table, only.

2.5.3 Building the Visual Vocabulary

Creating a visual vocabulary from a large set of feature descriptors is a challenging task. In order to
build a vocabulary tree ofM leave nodes, N >> M data points are required. We choose typically
N > 10M , which means that on average ten data samples are associated to each cluster center.
The large amount of required data (e.g. 10 Million SIFT key for a vocabulary with 1 Million
leave nodes) makes the usage of complex and memory intensive clustering algorithms like mean-

1 http://www.vis.uky.edu/ stewe/ukbench/
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shift [Comaniciu and Meer, 2002], spectral and agglomerative clustering virtually impossible.
However, k-means clustering is feasible since it only requires linear memory O(k + N) in the
number of cluster k and datapoints N .

GPU k-means Clustering

The k-means problem can be defined as follows: given a set of data points xi ∈ Rd, i = 1, . . . , N ,
where each observation is a d-dimensional real vector, k-means aims to partition the N observa-
tions into k clusters k ∈ N+ < n. The goal is to find an assignment of data points to clusters
as well as the centroids cj ∈ Rd such that the sum of squares of the distances of each data point
to its closest vector cj , is a minimum. Thus, the optimal set C of k centroids can be found by
minimizing,

φ =
N∑
i=1

k∑
j=1

rij ||xi − cj ||2 (2.18)

where rij ∈ {0, 1} is a set of binary variables describing which of the k clusters the data point xi
is assigned to. This problem has been proven to be NP-hard [Drineas et al., 2004] but approximate
(non optimal) solutions exist, e.g. the well known Lloyd [Lloyd, 1982] algorithm.

For high-dimensional data such as the SIFT-descriptors x = (x1, . . . , x128) the vectors direc-
tion is more important than the magnitude. Hence a unit vector representation (||x|| = 1) that
additionally accounts for gradient variations is used. The unit vector representation makes the
descriptor more robust to illumination changes, hence normalized cluster centers ||c|| = 1 are
required. The additional constraint is accounted by a spherical k-means algorithm (i.e. k-means
on a unit hypersphere) that aims to maximize the average cosine similarity objective. The main
difference to the standard k-means algorithm is that the re-estimated mean vectors are normalized
to unit-length, which implies that the underlying probabilistic models are not Gaussian any more.
However, given the fact that cluster centers are compact, only a small error is induced by this
approximation and convergence is guaranteed. Since x and y are both unit vectors, the cosine
similarity is equivalent to the Euclidean distance,

||x− y||2 = ||x||2 + ||y||2 − 2x>y = 2− 2x>y (2.19)

which can be efficiently computed by matrix multiplication. With increased number of descriptors,
even the k-means clustering algorithm slows down for clustering large descriptor sets. Most of
the computational time is spend in calculating the exact nearest neighbors between data points
and cluster centers. Cluster center assignment can be sped up using an approximated k-means
algorithm as proposed in [Chum et al., 2007], thus reducing the computational complexity for
each iteration from O(NK) to O(N log(K)). While approximated k-means is computational
efficient, the approximation error in high-dimensional spaces (like the SIFT descriptors lives) can
be arbitrary large. Therefore, we rely on linear search but take advantage of the computational
power of modern graphic processing units to speedup cluster assignment. In particular, we employ
a CUDA based [Zechner and Granitzer, 2009] k-means implementation. To this end descriptors are
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partitioned into blocks of threads and the data point to cluster distances are computed in parallel
(see Equation 2.19). The induced speed up of the GPU for hierarchical clustering 4 × 106 SIFT
descriptors in a tree with branch factor K = 512 and L = 2 levels is more than one order of
magnitude.

2.5.4 Vocabulary Tree Traversal

A hierarchical vocabulary tree structure enables an efficient quantization of feature descriptors. In
practice, a high-dimensional descriptor (e.g. SIFT) that requires 128 bytes can be compressed into
a unique integer comprising 4 bytes which gives a large reduction in memory. Furthermore, the hi-
erarchical tree structure allows an extremely fast quantization through a Best Bin First (BBF) [Beis
and Lowe, 1997] search strategy. For instance, feature quantization for a vocabulary tree with
branch factor K and L levels requires O(KL) dot products, only. Figure 2.7(b) shows the compu-
tational efficiency of different vocabulary trees with respect to the number of required dot products.
The speedup is considerable. While exhaustive nearest neighbor search of 10K descriptors on a
260K vocabulary requires 114s, hierarchical quantization on a K = 4, L = 9 vocabulary can be
done in 40ms (Intel Pentium D 3.2Ghz).

Table 2.1 shows an evaluation of the vocabulary tree quantization performance with respect
to different branch factors and tree levels. A training set of 4M SIFT descriptors extracted from
images of the uk-benchmark1 dataset was used to build vocabulary trees of different shapes (i.e.
differentK,L), but with (approximate) constant number of leaf nodes. Next, a training set of 100K

SIFT-keys was used to asses the quantization performance induced by best bin first search with
respect to the different vocabularies. We write wvt(f) to denote the visual world corresponding
to feature f determined trough a vocabulary tree traversal and wbf (f) are respective visual words
according to exhaustive nearest neighbor search on respective leaf nodes. Performance p is defined
as the percentage of visual words that satisfy wvt(fi) == wbf (fi),

p =

∑
|wvt(fi) == wbf (fi)|

|F|
. (2.20)

with fi ∈ F . We observe that a broader tree yields superior quantization performance since more
descriptors are considered. This is in accordance to the gained quantization performance of a
greedy N-Best paths search as presented in [Schindler et al., 2007a]. Figure 2.7(a) shows the
number of descriptor comparisons for different trees with (approximate) equal number of leave
nodes. Table 2.1 gives timings for clustering and tree traversal on the CPU (single threaded) and
the parallelized GPU implementation. The speedup induced by the GPU is about ten two twenty.
Furthermore, Figure 2.7(a) shows the number of descriptor comparisons for different trees with
equal number of leave nodes.

A qualitative evaluation of the quantization performance of a vocabulary tree is shown in Fig-
ure 2.8. Image patches that are associated to respective SIFT-keys end up in the same leave node
during vocabulary tree training. Note that the patches are visually very similar which confirms the
repeatability of SIFT and the effectiveness of the vocabulary tree quantization.

1 http://www.vis.uky.edu/ stewe/ukbench/
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K L #leaves #nodes TkC [h] TkG [h] TEC [s] TEG [s] |wvt(fi)==wbf (fi)|
|F|

512 2 262144 262656 15.7 1.4 0.63 0.035 0.687
64 3 262144 266304 3.7 0.62 0.12 0.0093 0.554
22 4 234265 245410 1.8 0.51 0.058 0.0053 0.494
12 5 248832 271452 1.36 0.55 0.041 0.0046 0.439
8 6 262144 299592 1.07 0.56 0.034 0.0042 0.402
6 7 279936 335922 0.88 0.58 0.031 0.0041 0.382
4 9 262144 349524 0.71 0.57 0.027 0.0039 0.361
2 18 262144 524286 0.61 0.69 0.027 0.0027 0.316

Table 2.1: Vocabulary tree quantization error dependent on branch factor K and number of vo-
cabulary tree levels L, wbf (f) denotes the exhaustive nearest neighbor assignment and wvt(f)

vocabulary tree based assignment to the respective leave node. TkC and TEC time for clustering
4M SIFT SIFT keys on the CPU (Intel Pentium D 3.2Ghz) and GPU (Nvidia GeForce GTX280),
respectively. TEC and TEG, vocabulary tree traversal time for 5000 SIFT features on the CPU and
GPU.
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Figure 2.7: (a) True positive quantization performance measure of features that are assigned to
the nearest neighbor leaf node by the Best Bin First search. (b) Number of comparisons (i.e. K ·L
dot products) during vocabulary tree traversal using BBF reflecting the amount of quantization
computation for different trees.

Implementation Details

In our implementation the vocabulary tree is stored as linear float array of length 128×
∑L

i=0K
i

corresponding to a breath first traversal of the tree. This allows fast pointer arithmetic to access
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(a)

(b)

(c)

(d)

Figure 2.8: (a)-(d) four different vocabulary tree leave nodes with respective image patches that
are assigned to the corresponding cluster center.

individual quantized features. A vocabulary feature at depth L and position k is indexed by,

n = k +

L−1∑
i=0

Ki (2.21)

Figure 2.9 shows a binary vocabulary tree of branch factor K = 2 and L = 4 levels. Since
query features are handled independently, the tree traversal can be performed in parallel for each
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descriptor. We employ a CUDA-based approach executed on the GPU for faster determination of
the respective visual words. The speed-up induced by the GPU is about twenty (Nvidia GeForce
GTX280 vs. Intel Pentium D 3.2Ghz) and allows to incorporate more descriptor comparisons,
i.e. a deeper tree with a smaller branching factor can be replaced by a shallower tree with a sig-
nificantly higher number of branches. The intuition is that a broader tree yields a more uniform
(hence representative) sampling of the high-dimensional descriptor space [Schindler et al., 2007a].

Figure 2.9: Vocabulary tree with branch factor K = 2 and L = 4 levels.

2.5.5 Scoring Functions

Efficient image search based on vocabulary trees is inspired by large scale text retrieval approaches
used for web search engines [Brin and Page, 1998]. Images are first parsed into visual words
w(f) according to a precomputed vocabulary. The quantization can be done linear [Sivic and
Zisserman, 2003] or hierarchical through a vocabulary tree structure, which has been shown to
be more efficient [Nistér and Stewenius, 2006]. Due to the quantization, the query and all the
documents in the image database is represented as a sparse vector of visual word occurrences.
The similarity of the query and document vector can be computed using different metrics, denoted
as scoring functions.

Jaccard Scoring

The Jaccard similiarity coefficient is a statistic for comparing the similarity and diversity of sample
sets. In particular this metric is defined as the size of the intersection divided by the size of the
union of sample sets,

J(A,B) =
|A ∩B|
|A ∪B|

(2.22)

where A and B are binary occurrences of visual words in image i and j, respectively.
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TD-IDF Scoring

A common scoring function is based on the tf-idf (term frequency-inverse document frequency) [Sivic
and Zisserman, 2003, Nistér and Stewenius, 2006] weighting and computed as follows. Let V be
a vocabulary of visual words then each document is represented by a vector,

vd = (t1, . . . , ti, . . . , t|V|) (2.23)

of tf-idf weighted word frequencies with components,

ti =
nid
nd

log
N

ni
(2.24)

where nid is the number of occurrences of word i in document d, nd is the total number of words in
the document d, ni is the number of documents containing term i andN the number of documents
in the whole database. Given two tf-idf vectors v1 and v2, the cosine similarity is used to compare
documents,

cos(φ) =
v1v2

||v1|| ||v2||
. (2.25)

At the retrieval stage the query vector vq is compared with the document vectors vd in the databse
and the documents are ranked according to the similiarity measure. A similarity yielding a value
of 1 means that the documents are exactly the same, 0 independent and −1 exactly opposite.

Probabilistic scoring

Given a query image Q, let R be the set of relevant images (i.e. images that have an overlap to
the query) and R̄ be the set of non-relevant images (i.e. images that do not share similar visual
content). Furthermore, let P (R|Dj) be the probability that the image Dj is relevant to the query,
and P (R̄|Dj) be the probability that Dj is non-relevant to Q. The similarity between a document
image Dj and a query image Q is then defined as the ratio,

sim(Dj ,Q) =
P (R|Dj)
P (R̄|Dj)

(2.26)

We determine the posterior probability by Bayes’ rule, i.e.

sim(Dj ,Q) =
P (Dj |R)P (R)

P (Dj |R̄)P (R̄)
(2.27)

where P (Dj |R) stands for the probability of randomly selecting the image Dj from the set R of
relevant images. P (R) stands for the probability that an image randomly selected from the entire
collection is relevant. Since P (R) and P (R̄) are the same for all images, eq. (2.27) simplifies to,

sim(Dj ,Q) ∼ P (Dj |R)

P (Dj |R̄)
(2.28)
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Under the assumption of independence among features fk and respective visual words vi = w(fk)

we can write,

sim(Dj ,Q) ∼
(
∏
gi(Dj)=1 P (vi|R))× (

∏
gi(Dj)=0 P (v̄i|R))

(
∏
gi(Dj)=1 P (vi|R̄))× (

∏
gi(Dj)=0 P (v̄i|R̄))

(2.29)

where P (vi|R) is the probability that the visual word vi is present in an image randomly
selected from the set R of relevant images. On the other hand, P (v̄i|R) stands for the probability
that the visual word vi is not present in an image with a potential overlap to the query. The
probability P (vi|R) depends on the vocabulary quantization error, the image content overlap,
occlusions and the feature repeatability. We simply accumulate these effects into one universal
value p1,

p1 = pquant. × poverlap × prep. (2.30)

where pquant. accounts for the probability of exact quantization P (w(fi) ≡ w(fj)|sim(fi, fj) >

θ), i.e. the probability that two similar features in descriptor space get quantized into the same
visual word, poverlap determines the average degree of expected image overlap and occlusion, and
prep. accounts for the repeatability of feature point detection.

Assuming that features vote for unrelated images uniformly (i.e. by pure coincidence), the
probability P (vi|R̄) can be estimated as

P (vi|R̄) :=
#Dj

#leaves
=

#Dj
BL

, (2.31)

where #Dj denotes the number of leaves in which database image Dj is appearing in the respec-
tive inverted files.

2.6 Detailed Matching

Detailed feature matching deals with establishing putative correspondences between two images.
Again, we rely on SIFT as interest point operator and descriptor. A variety of approaches have
been proposed to speed up nearest neighbor matching in high-dimensional spaces like the 128-
dimensional SIFT descriptor space. Among the most promising methods are randomized kd-
trees [Anan and Hartley, 2008] with priority search, and hierarchical k-means trees [Fukunaga and
Narendra, 1975]. These algorithms are in general designed to run on a single CPU and are known
to provide speedups of about one or two orders of magnitude over linear search, but the speedup
comes with the cost of a potential loss in accuracy [Muja and Lowe, 2009]. Given feature vectors
of unit length, the Euclidean distance between feature vectors can be derived from the cosine
similarity (see Equation 2.19). Let f and f̂ be two feature vectors of unit length, the Euclidean
distance between them writes as,

||f − f̂ ||22 = 2− 2

K∑
i=1

fi · f̂i (2.32)
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Hence, matching can be implemented as a dense matrix multiplication,



f1 d1,1 .. d1,K
... .. .. ..
... .. .. ..
... .. .. ..
... .. .. ..
... .. .. ..
... .. .. ..

fN dN,1 .. d1,K




f̂1 · · · · · · · · · f̂M

d1,1 .. .. .. d1,M

.. .. .. .. ..

dK,1 .. .. .. dK,M

 =



c1,1 .. .. .. c1,M

.. .. .. .. ..

.. .. .. .. ..

.. .. .. .. ..

.. .. .. .. ..

.. .. .. .. ..

.. .. .. .. ..

cN,1 .. .. .. cN,M


(2.33)

Efficient linear algebra implementation on the CPU (BLAS) and GPU (CUBLAS) exist. Dense
matching implemented as a dense matrix multiplication on the GPU currently achieves timings
that can be performed faster or on a par with approximate nearest neighbor search, but delivers the
exact solution. Table 2.2 gives detailed timings for different matching algorithms depending on
the number of features.

#features GPU (CUBLAS) BLAS (ATLAS) Kd-tree bbf
(K=128) Nivdia GTX 280 Pentium 3.2 GHz Pentium 3.2 GHz

1000× 1000 0.0082 0.0486 0.041
5000× 5000 0.044 1.1 0.22

10000× 10000 0.23 4.5 0.48

Table 2.2: Timing comparisons of different feature matching algorithms depending on the number
of features to match.

One approach to determine correspondences between a feature f ∈ F of the first image and
the features f̂ ∈ F̂ of the second image is to determine the nearest neighbor in descriptor space,

fnn = argmin
f̂∈F̂

||f − f̂ ||22 (2.34)

Using the nearest neighbor assignment in general leads to a large number of incorrect correspon-
dences since in general only a fraction of features in each image can be successfully re-detected
and matched between images. As reported in [Turcot and Lowe, 2009], on average only about
5−20% of extracted features between two visually related images are repeatable. Note, this value
varies with baseline, occlusion and depends on the scene structure and texture. As pointed out
in [Lowe, 2004], using a global threshold on the Euclidean distance between features does not
perform well, as some descriptors are more discriminative than others. A more efficient measure
is obtained by considering the distance ratio of the closest neighbor d(f, f1st) to the second closest
neighbor d(f, f2nd),

d(f, f1st)

d(f, f2nd)
< τr (2.35)
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where τr is a fixed threshold. A reasonable value for τr is in the range of [0.6 . . . 0.9], Lowe
suggest to use τ = 0.8. This measure ensures that the closest neighbor is significantly closer than
all other matching candidates, hence the probability of wrong matches is substantially decreased,
especially due to repetitions.

2.7 Geometric Verification

In a structure from motion system, image correspondences are usually determined by automatic
feature matching approaches, as described in Section 2.6. Such methods rely on local, repeatable
interest points f and associated descriptors that are determined from a local image patch. The
intuition is that descriptors of homologous feature points are likely to be nearest neighbors in
descriptor space under some norm (e.g. Euclidean distance). While this condition is often true for
a large fraction of true correspondences (inliers), mismatches (outliers) still occur since no exact
matching procedure exists [Horn and Schunck, 1981]. Fortunately, spurious matches (outliers)
can be determined and eliminated using the epipolar constraint x′>Fx = 0 (see Section 2.2) and
robust estimation methods. We employ a RANSAC [Fischler and Bolles, 1981] based approach
for robust geometric verification using the Five-Point algorithm (see Section 2.2.1). Since the
epipolar constraint is only valid for perfect measurements, in practice the following cost function
is used,

d2
⊥ =

(x′>Fx)2

(Fx)2
1 + (Fx)2

2 + (F>x′)2
1 + (F>x′)2

2

[
pixel2

]
(2.36)

where (Fx)2
j is the square of the j-th entry of vector (Fx). This simplified cost function, also

denoted as Sampson Distance, is the first order approximation of the reprojection error [Hartley
and Zisserman, 2000]. The minimization of the Sampson Distance only involves the optimization
of the seven parameters of the fundamental matrix, without reconstructing the 3-space points.
Although the Sampson approximation is not optimal, in general it gives extremely good results
and is therefore a widely used objective function [Ma et al., 2003].

2.7.1 Random Sample Consensus

Random Sample Consensus (RANSAC) [Fischler and Bolles, 1981] offers and effective method
for robust model fitting to noisy data. RANSAC acts as a hypothesize and verification framework.
The model (hypothesis) is computed from a (minimal) number of data points and the support
of all matches in agreement is scored. Hence, RANSAC is able to automatically determine the
model and the corresponding set of inliers Si and outliers So from the total set of observations
S = Si∪So. Figure 2.10 depicts a geometric verification example produced by RANSAC and the
Five-Point algorithm. The RANSAC scheme is summarized in Algorithm 1.

RANSAC Timings

The run-time of RANSAC can be written as as a sum of the time to generate a single hypothesis
th and tv the time to verify a hypothesis against the full data set. More precisely, the RANSAC
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Algorithm 1: Random Sample Consensus (RANSAC)

1. Randomly select a minimal subset of s data points from the whole set S of observations and
compute the model from the subset only.

2. Determine the set of data points Si ⊆ S which are within a distance threshold t of the model. The
consensus set Si defines the inliers of S.

3. If Si contains more inliers than some threshold T , re-estimate the model using all the points in Si

and terminate.

4. If the size of Si is less than T , select a new subset and repeat steps 1,2,3.

5. After a maximal number of N trials with N = f(|Si|), the largest consensus set Si is selected and
the model is re-estimated using all the points in the subset Si.

(a)

(b)

Figure 2.10: (a) Image pair showing correspondences from SIFT-key matching. (b) Inlier set
determined by RANSAC (N = 500, t = 2) that satisfies the epipolar constraint.

run-time can be formulated as,

tRANSAC =

N∑
i=1

(th + tv) (2.37)
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where N is the number of iterations the hypothesize-and-verify step is performed. The number of
required RANSAC iterations N is computed by,

N =
log(1− p)

log(1− (1− ε)s)
(2.38)

where, p is the confidence that at least one sample has no outliers for a given size of s samples
and an outlier proportion of ε. Figure 2.11 shows that the complexity is exponentially in the num-
ber of parameters s. In general the outlier proportion is not known a priori, but can be estimated
simultaneously during the RANSAC iteration. The adaptive RANSAC concept allows an early
termination. There exist a large body of work targeting at the improvement of RANSAC run-time.
A thorough survey of recent RANSAC algorithms can be found in [Raguram et al., 2008]. Meth-
ods like [Chum et al., 2003] optimize the hypothesis sampling strategy to minimize the number
of iterations N , others aim to optimize the process of model evaluation [Nistér, 2005, Raguram
et al., 2009]. While the time for hypothesis generation is constant in the number of observations,
model evaluation linearly depends on the number of measurements. For instance, evaluation of the
Sampson Distance requiresM×13ns, whereM is the number of data points, while the optimized
Five-Point algorithm requires 40µs on average (Intel Pentium D 3.2Ghz). With a growing number
of data points (M > 3000), the RANSAC runtime is governed by the verification process. This is
especially true if multi-matches are used for geometric verification as they significantly increase
the number of correspondences to be verified. However, model evaluation can be easily paral-
lelized for the execution on graphic processing units. We employ a CUDA based Sampson Dis-
tance computation which achieves a speedup of 20× on a current GPU (Nvidia GeForce GTX280)
compared to a single core CPU implementation (Intel Pentium D 3.2Ghz). Since the number of
matching candidates for high resolution images dominates the hybrid CPU/GPU implementation
considerably speeds up geometric verification. For instance, the single core CPU implementation
requires 0.15s for N = 500 and M = 20000 data-points, while the hybrid approach runs in less
than 0.03s.

2.7.2 Confidence of Epipolar Geometry

RANSAC delivers a set of correspondences that are geometrically consistent (inliers) and the
relative orientation between image pairs. Furthermore, the inlier fraction w = |Si|

|Si∪So| and the
number of used RANSAC iterations determines a confidence level p,

p = 1− (1− ws)N (2.39)

that at least one sample has no outliers for a given size of samples s. Normally an epipolar
geometry is accepted for p = 0.99. However, as pointed out in [Tordoff and Murray, 2002] the
RANSAC stopping criterion is often optimistic and for image pairs with many correspondences
the probability of determining a sufficiently large inlier set just by coincidence is high. This is
especially true for image pairs where repeating structures occur. Therefore, rather than relying on
the raw number of inliers m = |Si| between view i and j we determine an effective number of
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Figure 2.11: The number of N samples required to ensure with a probability p = 0.99, that at
least one sample has no outliers for a given size of sample, s, and proportion of outliers, ε.

inliers,
m∗ = mmin(ci, cj), (2.40)

where ci and cj is a measure of feature coverage,

c∗(Si) =

{
0 |Si| < α
A(Si,r)
A�

otherwise
(2.41)

where α is a minimal number of required inliers (e.g. α = 10 in our experiments), A� denotes the
total image area and A(Fij , r) is the resulting area that the feature points Fij cover after applying

a dilation operation with a circular structuring element of radius r =
√

A�
|Fij | . In addition to the

raw number of inliers that determines the confidence of the relative orientation result, the coverage
criterion further takes the spatial distribution of correspondences into account. As a consequence,
convergent views that have well distributed correspondences produce a higher score than epipolar
pairs with the same number of correspondences but with random point distribution. The idea of
point coverage is depicted in Figure 2.12. While the number of features is equal in (a) and (b), the
uniform spatial distribution of point features in (a) can be regarded as more reliable than the one
shown in (b). Hence the effective inlier fraction writes as,

w∗ =
m∗

m∗ + |So|
(2.42)

with w∗ ≤ w. Taken this measure in RANSAC normally results in more iterations but largely
reduces the fraction of wrong epipolar relations.
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(a) (b)

Figure 2.12: Coverage of (a) uniformly and (b) non-uniformly distributed image measurements.

2.7.3 Epipolar Graph

The output of the automatic matching procedure is a graph structure denoted as epipolar graph G,
that consists of the set of vertices V = {V1 . . . VN} corresponding to the images and a set of edges
E = {eij |i, j ∈ V} that are pairwise reconstructions, i.e. relative orientations between view i and
j, eij =< Pi, Pj >,

Pi = Ki[I, 0] and Pj = Kj [R, t] (2.43)

and a set of triangulated points with respective image measurements. Next a linear triangulation
method [Hartley and Zisserman, 2000] is used estimate the 3D point location. This procedure
is followed by a pruning step that discards points at infinity and points that do not satisfy the
cheirality criterion. Figure 2.13 shows a typical epipolar graph and samples of pairwise epipolar
geometries. Based on the epipolar graph, connected components are extracted and point tracks
over multiple views are generated. The tracks are used later for structure initialization.

2.7.4 Track Generation

The epipolar graph G stores a set of relative orientations and feature correspondences between
view pairs < Vi, Vj >. Every image Vi is matched to a number of neighboring images and
the matching information is stored locally in every node. Note, G is a directed graph, a match
Vi → Vj does not necessarily imply Vj ← Vi. Next, for each image node Vi of the graph, point
measurements are aggregated to tracks m = (< xi1, y

i
1 >,< xj2, y

j
2 > . . . , < xkn, y

k
n >), where

f =< xi, yi > represent feature locations of image Ii. Since point tracks are generated for each
image and stored locally, at first instance, the set of point tracks m ∈ M̃ is redundant, i.e. a
feature point f from image Vi can take part in different tracks. The point tracks are later used for
global optimization in bundle adjustment. From a practical viewpoint, redundant measurements
are not desired since it involves more parameters in the optimization framework, hence we are
interested in a minimal representation. To this end we determine a subset of tracksM ⊆ M̃ that
covers every matched feature correspondence of the epipolar graph only once. This is an instance
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Figure 2.13: (a) Seven sample images of an outdoor scene and (b) corresponding epipolar graph
by matching all 30 images. Nodes represent images, vertices are valid epipolar geometries. (c)
Relative orientations results (i.e. epipolar geometries) with respect to image 20.
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of the set cover problem [Karp, 1972a], one of the earliest problems known to be NP-complete.
We us a greedy approach [Johnson, 1974] to efficiently determine a minimal set of tracks that are
subsequently used to initialize the sparse 3D structure.

2.8 Geometric Estimation

The epipolar graph G encodes relative orientations and pairwise reconstructions. Chaining all
relative orientations together should result in a global consistent 3D structure. In [Nister et al.,
2007] the proof is given that such a problem is in general NP-hard when missing data is allowed.
Here, missing data refers to that 3D points are not always observed in all views which is inherent
in large scale multiple view geometry due to occlusion and the limited repeatability of feature
detectors. Furthermore, relative rotations are sometimes prone to errors due to mismatches and
local errors accumulate and cause drift. This makes global optimization of camera orientations
and 3D structure a challenging problem. Current state of the art reconstruction methods normally
follow a greedy, incremental reconstruction approach [Nistér, 2000,Pollefeys et al., 2004,Snavely
et al., 2006, Agarwal et al., 2009, Frahm et al., 2010, Gherardi et al., 2010]. These methods run
iteratively, starting with a small set of views and repeatably add images and refine 3D points
and camera poses. Structure and camera pose refinement is done using nonlinear optimization,
also known as bundle adjustment. Such an algorithm is highly sensitive to initialization, time
consuming and loop closure is hard to handle.

Closed form batch reconstruction can be done for orthographic cameras by using factorization
methods [Tomasi and Kanade, 1992]. However, such methods are difficult to apply to perspec-
tive cameras with significant outliers and missing data. Other methods rely on the max-norm
cost function [Kahl, 2005, Hartley and Schaffalitzky, 2004] that allows global optimization. Ge-
ometric estimation is often solved using a two step approach [Sinha et al., 2010, Dalalyan and
Keriven, 2009,Zach and Pollefeys, 2010]. First global camera rotations are estimated considering
all pairs [Govindu, 2004,Martinec and Pajdla, 2007]. Second, translations are determined. Global
camera rotations can be estimated linearly in a least squares in a manner alike [Govindu, 2001].
Given the known camera rotations, the camera translations and the 3D points can be recovered in
a globally optimal manner using quasi convex optimization [Kahl, 2005]. However, this method
may completely fail due to a single mismatch while minimizing the maximum reprojection error.
To overcome this problem in [Martinec and Pajdla, 2007] a robust approach based on Second or-
der Cone programming is presented. In contrast to that, [Dalalyan and Keriven, 2009] address the
problem of translation estimation using a Bayesian framework. The fidelity of the data is mea-
sured by the L∞-norm while the regularization is done by the L1-norm. Outlier removal is done
by solving a linear program (LP) where the number and proportion of outliers is automatically
determined. Recently [Crandall et al., 2011] presented a hybrid discrete-continuous optimization
method for coarse global image alignment. The method is able to naturally incorporate prior pose
evidence from geo-tags and vanishing points.
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2.8.1 Global Rotation Registration

Given the epipolar graph G, the initial camera positions and orientations remains to be determined.
First, relative rotations Rij between view pairs i and j are upgraded into a consistent set of rota-
tions Ri by solving the (overdetermined) system of equations,

RijRi = Rj (2.44)

subject to the constraint that Ri are orthonormal. As described in [Martinec and Pajdla, 2007],
the solution can be obtained by solving the system initially for approximate rotation matrices R̂i
(without satisfying the orthonormality constraint) and subsequently projecting the approximate
rotation R̂i to the closest rotation in the Frobenius norm. This is done by using the singular
value decomposition (SVD). Equation (2.44) is normally overdetermined since the epipolar graph
consists of a redundant set of relative orientations that contribute to the global structure. Not all
epipolar geometries are equally important. In general, relative rotations that are determined by
many correspondences can be rated as more confident than orientations that are only supported by
a small number of measurements. As suggested in [Martinec and Pajdla, 2007], we consider the
number of inliers and reweight each row of equation (2.44) according to a quality criterion that
determines the accuracy of an epipolar geometry eij . Rather than using the raw number of inliers
Fij as suggested in [Martinec and Pajdla, 2007], we compute the weights ωij as follows,

ωij =
√
N min(ci, cj) (2.45)

where N = |Fij | is the number of inliers between view i and j and ci, cj is a measure of fea-
ture coverage (see Equation (2.41) Section 2.7.2). In addition to the raw number of inliers that
determines the confidence of the relative orientation result, the coverage criterion further takes
the spatial distribution of correspondences into account. As a consequence, convergent views that
have well distributed correspondences produce a higher score than epipolar pairs with the same
number of correspondences but with random point distribution. The re-weighted system (2.44)
then reads,

ωij(Rijr
k
i − rkj ) = 03×1 (2.46)

for k = 1, 2, 3, where rki are columns of Ri. The system can be efficiently solved by a sparse least
squares solver (e.g. using the ARPACK library). The concept is depicted in Figure 2.14.

Given the known rotations, camera centers can be determined by external sensors such as
Global Positioning Systems (GPS) [Irschara et al., 2011] or in a globally optimal manner using
quasi convex optimization [Kahl, 2005].

2.8.2 Greedy Incremental SfM

In this section we describe a 3D reconstruction approach that incrementally builds and updates
structure and cameras from a suitable start configuration. The method is closely related to [Snavely
et al., 2006] with some modifications. To reconstruct a consistent 3D model, a robust and reliable
start configuration is required. When the initial structure is prone to errors, a subsequent iterative
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(a) (b)

Figure 2.14: (a) Pairwise relative orientations and (b) globally consistent rotation registration
result.

optimization procedure will eventually end up in a wrong local minimum, hence good initializa-
tion is critical. As proposed in [Klopschitz et al., 2010] we initialize the geometry in the most
connected parts of the graph, therefore the view V ∗ with highest degree, i.e. the node having
the largest number of edges, is determined. Next, all point-tracks corresponding to view V ∗ are
used to compute a global scale factor of the initial structure R∗ =< P∗,X ∗ > with P∗ ⊂ P ,
X ∗ ⊂ X . Then, bundle adjustment [Triggs et al., 2000, Lourakis and Argyros, 2004] is used to
optimize camera orientations Pi and 3D points Xj by minimizing the reprojection error. The im-
plementation details are described in Section 2.9. Given the initial, optimized structure R∗, each
3D point is back-projected and searched for in every image. We utilize a 2D kd-tree for efficient
search and restrict the search radius to a constant factor rt. Again, given the new measurements,
bundle adjustment is used to optimize 3D points and camera parameters. This method ensures
strong connections within the current reconstruction.

Next, for every image V that is not reconstructed (V /∈ R∗) and has a potential overlap
to the current 3D scene (estimated from the epiploar graph G), 2D–to–3D correspondences are
established. A three-point pose algorithm [Haralick et al., 1991] inside a RANSAC loop (see
Section 2.7.1) is used to insert the position of a new camera P † with respect to R∗. When a pose
can be determined (i.e. a sufficient inlier confidence is achieved), R∗ is updated with P † and
all measurements visible therein. A subsequent procedure expands the current 3D structure by
triangulation of new correspondences that are visible in P †. We follow the approach of Snavely
et al. [Snavely et al., 2006] and use a priority queue Q to guide the insertion order. Our insertion
order is based on a saliency measure that favors early insertion of images that have a strong overlap
with the given 3D structure. Rather than using the raw number of potential 2D–to–3D matches, we
compute an effective matching score, as described in Section 2.7.2, that further takes the spatial
match distribution of correspondences into account. Whenever a number of N images is added
(we use N = 10), bundle adjustment is used to simultaneously optimize structure and camera
parameters. The iterative view insertion procedure is repeated until Q is empty. Figure 2.15
depicts intermediate reconstruction results of an incremental reconstruction of the Notre Dame
scene after adding 84, 177 and 277 view, respectively.
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(a) 84 images (b) 177 images (c) 277 images

Figure 2.15: Incremental 3D reconstruction result of the Notre-Dame Cathedral after adding (a)
84,(b) 177 and (c) 277 images, respectively.

2.9 Bundle Adjustment

Given initial parameters for camera poses and the 3D structure, the goal of bundle adjustment [Triggs
et al., 2000, Hartley and Zisserman, 2000, Lourakis and Argyros, 2009] is to find jointly 3D point
positions and camera parameters that minimize the error between observed feature locations (cor-
respondences) and projections (predicted image measurements of 3D points). Given a set of mea-
sured image feature locations and correspondences, bundle adjustment optimizes camera orienta-
tions and structure by minimizing the reprojection error,

C(Pi,Xj) =
∑
i

∑
j

vijd(PiXj ,xij)
2 (2.47)

where the 2D point measurements xij are the observations of unknown 3D points Xj in the un-
known cameras Pi and vij is a binary variable that is 1 if the point Xj is visible in image Pi and 0

otherwise. Thus, bundle adjustment involves adjusting the bundle of rays between each 3D point
and the set of camera centers by minimizing the reprojection error, which is usually expressed as
the sum of squares of a large number of nonlinear, real-valued constraints. The minimization of
bundle adjustment can be achieved using nonlinear least-squares algorithms. Bundle adjustment
is tolerant to missing data (i.e. not every 3D point must be visible in each camera) and is a large
sparse geometric parameter estimation problem. Since each camera has six degrees of freedom and
each 3-space point three degrees of freedom, a reconstruction involving n point and m cameras
requires minimization of 3n + 6m parameters. Under the assumption that measurements are in-
dependent and Gaussian measurement noise, bundle adjustment provides a Maximum Likelihood
parameter estimate. Let f(ε) be the probability distribution of an error ε in the measurements,
then the probability of a set of measurement with error εi is given by p(ε1, . . . , εn) =

∏n
i f(εi).

In log-space the function reads − log(p(ε1, . . . , εn)) = −
∑n

i=1 f(εi) and is suitable for a cost
function. However, since there exists no closed-form solution to a non-linear least squares prob-
lem, bundle adjustment is a local minimizer and it requires a good initialization to be provided.
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For small optimization problems, dense nonlinear least-squares is sufficient but is computationally
very demanding when employed to minimize functions depending on a large number of param-
eters. Hence, an efficient implementation is necessary to handle large problems. The following
section gives implementation details for large scale efficient bundle adjustment [Lourakis and Ar-
gyros, 2009, Engels et al., 2006] based on the Levenberg Marquardt algorithm.

2.9.1 Levenberg Marquardt

The Levenberg Marquardt (LM) optimization is among the most efficient optimization schemes
for non-linear least squares problems. Normally, LM significantly outperforms gradient descent
and conjugate gradient methods for medium sized problems [Madsen et al., 2004].

LM tries to minimize a cost function c(x) iteratively by approximating the cost function locally
around the current position x with a quadric Taylor expansion

c(x+ δx) ≈ c(x) +∇c(x)>δx+
1

2
δxHc(x)δx (2.48)

where∇c(x) is the gradient,

∇c(x) =
[
δc
δx1

(x) · · · δc
δxM

(x)
]

(2.49)

of c at x and Hc(x) is the Hessian,

Hc(x) =


δ2c

δx1δx1
(x) · · · δ2c

δx1δxM
(x)

...
. . .

...
δ2c

δxN δx1
(x) · · · δ2c

δxN δxM
(x)

 (2.50)

of c at x. If we solve for the minimum x by setting the left hand side of Equation 2.48 to zero and
take the derivative, we obtain

∇c(x)> +Hc(x)δx = 0 (2.51)

Hc(x)δx = −∇c(x), (2.52)

which is a linear equation in the update vector δx. Finding the solution is known as Newton’s
method. One can show that quadratic convergence is achieved if the Hessian at the solution is
positive definite [Frandsen et al., 1999]. Hence, Newton’s method is normally very good in the
final stage for the iterations, where x is close to the local minimum x∗. However, there is no guar-
antee that the quadratic approximation will lead to an update δx that improves the cost function.
One method to avoid this behavior is the hybrid LM algorithm based on Newton’s method and
steepest descent. When improvement in Newton’s method fails, steepest descent takes over which
guarantees convergence. In the LM algorithm this is achieved by adding some scalar λ to all the
diagonal elements of Hc(x). When improvement succeeds, λ is decreased towards zero, taking
full advantage of the quadratic approximation which leads to fast convergence near the minimum.
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On the other hand, when Newton’s method fails, λ is increased, which makes the update tend
towards,

δx = − 1

λ
∇c(x), (2.53)

which guarantees that improvement will be found for a sufficiently large λ. Under the assump-
tion of Gaussian noise, the squared sum is the optimal metric of all the dimensions of the (N-
dimensional) error vector function f(x),

c(x) = f(x)>f(x). (2.54)

However, the squared error cost function is normally not suitable for structure from motion since
outliers in the measurement vector are ineluctable. Bundle adjustment allows the replacement
of the error vector f(x) by a robust cost function that accounts for outliers as described later
in Section 2.9.2. One problem of Newton’s method is the implementation of Hc(x), which is
complicated. Instead it is very common to use the Gauss-Newton approximation of the Hessian
H∗c (x) = 2Jf (x)>Jf (x) where Jf (x) is the Jacobian. This modification is known as the Quasi-
Newton method. Here the vector function f(x) is approximated around x with the first order
Taylor expansion,

f(x+ δx) ≈ f(x) + Jf (x)δx, (2.55)

with,

Jf (x) =


δf1
δx1

(x) · · · δf1
δxM

(x)
...

. . .
...

δfN
δx1

(x) · · · δfN
δxM

(x)

 . (2.56)

Inserting Equation 2.55 into 2.54, we get

c(x+ δx) ≈ f(x)>f(x) + 2f(x)>Jf (x)δx+ δx>Jf (x)>Jf (x)δx. (2.57)

Solving the minimum leads to the following update equation, also know as normal equation [Golub
and van Loan, 1996]:

Jf (x)>Jf (x)δx = −Jf (x)>f(x). (2.58)

Since 2Jf (x)>f(x) is the gradient of c(x) = f(x)>f(x) it follows from Equation (2.51),

H∗c (x) = 2Jf (x)>Jf (x). (2.59)

Using the Quasi-Newton Method has two advantages over Newton’s method. First, computation
of the second derivative is not necessary, which is often hard to perform for complex problems.
Second, H∗c (x) and its inverse is normally positive definite,

δx>Jf (x)>Jf (x)δx > 0 ∀δx 6= 0. (2.60)

This allows to multiply the diagonal of Jf (x)>Jf (x) by the scalar (1 + λ), which leads to the
Levenberg-Marquardt algorithm.
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Primary Structure

The parameters involved in bundle adjustment (BA) consist of cameras and 3D scene points. More
formally, we assume that each camera j is parameterized by a vector aj and each 3D point i by
a vector bi. The core feature of bundle adjustment is to take advantage of the primary sparsity.
This pattern arises because the parameters of scene points bi and cameras aj combine to predicted
measurements xij in the images, while 3D point parameters do not combine directly and camera
parameters do not combine directly. Therefore the Jacobian has the structure,

Jf =
[
Jb Ja

]
(2.61)

where Jb is the Jacobian of the error vector f with respect to the 3D point parameters and Ja is the
Jacobian of the error vector f with respect to the camera parameters. Therefore, the approximated
Hessian reads as,

H∗c (x) =

[
J>b Jb J>b Ja
J>a Jb J>a Ja

]
. (2.62)

Inserting it into the linear equation system 2.51 leads to,[
Hbb Hba

H>ba Haa

][
δb

δa

]
=

[
cb
ca

]
, (2.63)

where Hxx are abbreviations for the elements of H∗c (x) and cb = −J>b f and ca = −J>a f . Hbb

andHaa are block diagonal, where the blocks correspond to points and cameras, respectively. One
can use block-wise Gaussian elimination by multiplying Equation 2.63 from the left with the block
lower triangular matrix, [

H−1
bb 0

0 I

]
(2.64)

which results in, [
I H−1

bb Hba

H>ba Haa

][
δb

δa

]
=

[
H−1
bb cb
ca

]
. (2.65)

The lower left block can be eliminated by subtracting H>ba times the first row from the second row.
This can be done by multiplying the matrix,[

I 0

−H>ba I

]
(2.66)

from the left on both sides, hence one obtains a smaller equation system,

(Haa −H>baH−1
bb Hba)δa = ca −H>baH−1

bb cb (2.67)

H∗r δa = c∗a (2.68)

for the camera parameter update δa. This Gaussian elimination step is known as the Schur com-
plement method. The point parameter update cb can be computed by back-substitution,

δb = H−1
bb cb −H

−1
bb Hbaδa. (2.69)
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Second Order Sparsity

Note that for very large systems, H∗r is still sparse due to the fact that not all scene features ap-
pear in all sensor views. This is especially true for large scale reconstructions with occlusions and
loops. An efficient method to solve Equation (2.68) is thus to use the Cholesky factorization with
some appropriate on-the-fly variable ordering or preconditioned conjugate gradient. This can be
achieved by the CHOLMOD package [Davis, 2006], which provides a highly-optimized Cholesky
decomposition solver for sparse linear systems. In general the complexity of the decomposition
of Equation (2.68) will be O(n3) in the number of variables. However, for sparse matrices, the
density will only depend on the density of the Cholesky factor, which depends on the structure of
H∗r . As pointed out in [Mahon et al., 2008], the factor density can range from O(n) to O(n3). Ta-
ble 2.3 depicts examples of dense and sparse second oder camera configurations. While for small
and strongly connected cameras networks,H∗r offers a dense structure, for large camera configura-
tion such as aerial networks, H∗r is sparse and the number of non-zero elements dominates. Note,
for the large aerial camera network M3 consisting of 2962 images, the sparse implementation
brings a memory saving of more than two orders of magnitude.

2.9.2 Cost function

An important decision to make in nonlinear least squares is the precise form of cost function. If
we assume Gaussian measurement noise, minimizing the the least-squares cost function is equal
a Maximum Likelihood estimate. However, when outliers are present in the data least-squares is
normally not appropriate since this cost function is not robust (i.e. a single wrong measurement
can distort the model by the quadratic influence of the error). In the structure from motion problem,
outliers often occur due to errors in feature extraction and matching. Outliers are often handled by
robust estimation like the RANSAC algorithm [Fischler and Bolles, 1981] based on the epipolar
geometry or the 2D-3D absolute pose problem. A very large fraction of outliers can be handled
by those methods, but outliers often still occur and thus the least squares cost function in bundle
adjustment is not appropriate. Bundle adjustment allows to easily incorporate robust cost functions
that are able to handle outliers. In its basic implementation Levenberg-Marquardt minimizes a
squared vector norm,

c(x) = f(x)>f(x) =
∑
i

||ε||2 (2.70)

with ε = ||xi − x̂i||. A robust cost function can be implemented by re-weighting the error vector
ε′i = wiεi such that,

||ε′i||2 = w2
i ||εi|| = C(||εi||). (2.71)

Therefore it follows
∑

iC(||εi||) =
∑

i ||εi||2 as desired where,

wi =

√
C(||εi||)
||εi||

. (2.72)

The weighting wi is often called attenuation factor since it seeks to attenuate the cost of the out-
liers. Typical cost functions for bundle adjustment include,
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M1 M2 M3

#images: 109 #images: 397 #images: 2962
#points: 6933 #points: 128743 #points: 3775128

#measurements: 227594 #measurements: 827859 #measurements: 12690926

connectivity: 44% connectivity: 8.5% connectivity: 0.35%

H∗r size: 654× 654 H∗r size: 2382× 2382 H∗r size: 17772× 17772

#non zeros: 402084 #non zeros: 1315980 #non zeros: 2242902
H∗r density: 94% H∗r density: 23% H∗r density: 0.71%

Table 2.3: M1-M3: 3D reconstruction of different scenes. (M1) small scale 3D reconstruction
of one building facade, (M2) medium size terrestrial building reconstruction, (M3) large aerial
camera network. While the camera network M1 leads to a dense reduced normal equation, H∗r is
sparse for M2 and M3 due to the fact that not all scene features appear in all cameras.

• Squared error

C(ε) = ε2 (2.73)
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• Huber

C(ε) =

{
ε2 for |ε| < b

2b|ε| − b2 otherwise
(2.74)

• Blake-Zisserman

C(ε) =

{
ε2 for |ε| < b

b2 otherwise
(2.75)

• Sigma

C(ε) =


ε2 for |ε| < b

2b|ε| − b2 for b < |ε| < σb

b2(2σ − 1) otherwise

(2.76)

• Cauchy
C(ε) = b2 log(1 + ε2/b2) (2.77)

Graphs corresponding to the individual cost functions are depicted in Figure 2.16(c). All but
the Squared error cost function seek to deemphasize the cost of outliers once the error exceeds
a certain threshold. Note, Blake-Zisserman, Sigma and Cauchy are non convex and hence many
local minima may exist. One important role has the Huber cost function that takes the form of a
quadric for small values of the error and is linear for values of ε beyond a given threshold. This
cost function has the very desirable property of being convex while retaining the outlier stability
of the L1 cost function.

2.9.3 Evaluation of Cost Functions

In this section we asses the quality of different cost functions for bundle adjustment. The exper-
iments investigate the influence of outliers and Gaussian noise for different ground truth camera
networks and respective 3D points from typical SfM datasets. Furthermore we perform real world
experiments on data acquired with a micro aerial vehicle where GPS/INS pose information is used
to initialize camera parameters for bundle adjustment.

Synthetic Experiments

Camera network configurations and sparse points are taken from existing structure from motion
models corresponding to realistic scenes listed in Table 2.4. The provided image measurements are
corrected to reflect a noise free ground truth, i.e. each measurement x̂ is replaced by its projection
x = PX. First, image measurements are perturbed by Gaussian noise N (0, σ2) with zero mean
and standard deviation σ. Second, outliers are added, to a fraction of measurements. Outliers are
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Figure 2.16: Comparison of different cost functions C(ε) dependent on the measurement error ε.
(a) cost functions C(ε), and corresponding PDFs (b) and (c) attenuation factor.

assumed to follow a uniform distribution across the image plane xoutlier = 〈U(0, w),U(0, h)〉.
Furthermore, the exterior camera parameters R = (α, β, γ), t = (tx, ty, tz) are perturbed by addi-
tive Gaussian Noise. For the rotation components σ = 5◦ is used and the translational components
are corrupted by σ = 0.05di where di is the mean depth of all scene points visible in camera i.
Next, linear triangulation is used to get an initial estimate of 3D point locations. Table 2.5 shows
the reprojection error and the deviation of the ground truth after bundle adjustment for the differ-
ent cost functions. It turns out that Cauchy and Blake-Zisserman perform best. The squared cost
function constantly fails to improve the reprojection error for model M1 −M5 and gives only
a slight improvement for model M6. In a second experiment cost functions are compared and
evaluated with respect to increasing outlier fractions. The results are summarized in Figure 2.17.
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Figure 2.17: Comparison of different cost functions with respect to the fraction of uniformly
distributed outliers for test reconstruction T6. Camera rotations and translations are perturbed by
Gaussian Noise with standard deviation σr = 3◦ and σt = 0.05di, respectively. Furthermore a
fraction of fp = 0.05 points is triangulated using perturbed cameras which leads to erroneous 3D
point locations.

Real World Experiment

We perform real world experiments to test and evaluate different cost functions in bundle adjust-
ment. Bundle adjustment requires an initial estimate of the camera parameter and triangulated
points. We use a Micro Aerial Vehicle (MAV) equipped with a custom GPS/INS sensor to acquire
geo-referenced images in a 3D World Geodetic System (WGS84). The matching graph is created
where relative rotation Rij between view pairs i and j are upgraded into a consistent set of ro-
tations Ri as described in Section 2.8.1. Next, pairwise features are linked into feature tracks as
described (see Section 2.7.4). The camera centers are initialized with the rough GPS datum and
bundle adjustment is executed to minimize the reprojection error. Different cost functions are eval-
uated with respect to the final reprojection error. The results are summarized in Table 2.6. While
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(a) (b)

(c) (d)

Figure 2.18: (a) Sample image of the scene and (b) initial camera orientation and 3D structure be-
fore bundle adjustment. Reconstruction result after bundle adjustment using the robust Cauchy (c)
and non-robust Squared Error (d) cost function. Note, while in (c) a true geometric configuration
is found, the Squared Error cost function leads to a wrong geometric configuration (d).

robust cost functions (e.g. Huber, Blake-Zisserman, Sigma, Cauchy) achieve comparable perfor-
mance in terms of average and median reprojection error, the Squared Error cost function leads
to a wrong reconstruction, i.e. bundle adjustment does not converge to a reasonable geometric
solution. This can be seen from Figure 2.18(d).

2.10 Conclusion and Discussion

In this chapter the core components of current state-of-the-art 3D reconstruction pipelines for un-
ordered images were described and discussed in detail. Determining structure from motion from
unordered image collections is computationally demanding and requires fast and scalable algo-
rithms. We provide efficient and robust algorithms for matching and geometric estimation. In
particular we introduce the concept of effective inliers that considers the distribution of measure-
ments. Several components of our proposed reconstruction pipeline utilize the massive processing
power of current graphic processing units. The induced speed up of the GPU is about 10 − 20×
compared to single core CPU implementations. The employed bundle adjustment takes advantage
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of the second order sparsity which saves memory and considerably speeds up processing time.
This allows global bundle adjustment for large aerial camera networks which otherwise would be
impossible to achieve due to memory restrictions. We empirically compared the performance of
different cost functions for bundle adjustment. From our study we conclude that bundle adjust-
ment is still able to converge from weakly initialized camera orientations and 3D points and robust
cost functions are able to handle a quite large amount of outliers.
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ID Model Connectivity Statistics

M1

# cams 386
# points 114609
# measurements 591596
avg. # points/img 1532
avg. # rays/point 5.16
connectivity 0.33

M2

# cams 397
# points 128743
# measurements 827859
avg. # points/img 2085
avg. # rays/point 6.4
connectivity 0.19

M3

# cams 310
# points 71330
# measurements 338582
avg. # points/img 1092
avg. # rays/point 4.74
connectivity 0.33

M4

# cams 2962
# points 3775128
# measurements 12690926
avg. # points/img 4284
avg. # rays/point 3.36
connectivity 0.008

M5

# cams 92
# points 25776
# measurements 177147
avg. # points/img 1925
avg. # rays/point 6.87
connectivity 0.24

M6

# cams 33
# points 8167
# measurements 45223
avg. # points/img 1370
avg. # rays/point 5.54
connectivity 0.99

Table 2.4: Sparse reconstructions of different scenes and corresponding properties. Connectiv-
ity represents the adjacency matrix of the epipolar graph, dark pixels represent valid two view
relations.
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Model Cost function εrot [
◦] εtrans [%] εrep [pixel] εinlier [pixel] true inlier [%]

M1

Before BA 3.98176 1.61899 448.215 340.553 0.000261
Squared fail fail fail fail fail

Blake-Ziss. 0.22731 0.113114 141.573 14.0155 0.9594
Huber 1.02767 0.520316 142.919 28.5056 0.475454
Sigma 0.309049 0.200757 138.349 10.3251 0.967733
Cauchy 0.341035 0.209335 137.365 9.34907 0.968433

M2

Before BA 3.97133 1.75533 627.391 439.453 0.0001195
Squared fail fail fail fail fail

Blake-Ziss. 0.358019 0.726515 235.025 14.9726 0.924114
Huber fail fail fail fail fail
Sigma 0.398808 0.470354 228.939 9.27123 0.94713
Cauchy 0.576728 0.794316 228.715 9.99543 0.930977

M3

Before BA 3.98675 1.66345 565.324 375.56 0.000265
Squared fail fail fail fail fail

Blake-Ziss. 0.0307046 0.322131 217.68 9.17144 0.988474
Huber 0.432659 1.06562 215.559 26.3731 0.533253
Sigma 0.0368807 0.512585 218.083 9.69955 0.987504
Cauchy 0.0121001 0.492083 216.688 8.41596 0.989199

M4

Before BA 3.98408 1.69158 439.354 346.248 0.000357
Squared fail fail fail fail fail

Blake-Ziss. 3.98408 0.169158 439.354 346.248 0.000357
Huber fail fail fail fail fail
Sigma fail fail fail fail fail
Cauchy 0.833278 0.477546 118.458 6.83417 0.871176

M5

Before BA 3.92908 2.22885 637.331 442.443 0.000131
Squared fail fail fail fail fail

Blake-Ziss. 0.0010081 0.135687 232.413 6.21016 0.992054
Huber 0.900162 0.460379 237.036 23.7131 0.46551
Sigma 0.00119874 0.347321 232.77 6.45154 0.992299
Cauchy 0.00139413 0.231444 232.094 5.95546 0.991521

M6

Before BA 3.88078 1.54324 591.781 418.601 0.000147
Squared 3.46416 1.99431 313.891 183.68 0.008461

Blake-Ziss. 0.00123388 0.0654017 202.734 3.55311 0.993329
Huber 0.227291 0.206478 199.784 15.3892 0.739754
Sigma 0.00112362 0.0407556 202.621 3.50726 0.993476
Cauchy 0.00110252 0.0771208 202.57 3.49085 0.992421

Table 2.5: Evaluation of different cost functions for bundle adjustment. Camera rotations are
perturbed by Gaussian Noise with standard deviation σr = 5◦ and the relative translations with
a σt = 0.05di where di the mean depth of all scene points visible in camera i. Furthermore,
a fraction fm = 0.1 of image measurements is replaced by uniformly distributed outliers and a
fraction fp = 0.1 points is re-triangulated using the perturbed cameras.
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Cost function εavg. εmedian inliers [%]
Before bundle 403.56 312.67 0.13
Squared error 11.46 4.72 71.89

Huber 4.015 0.724 98.24
Blake-Zisserman 4.56 0.66 98.20

Sigma 4.51 0.677 98.52
Cauchy 4.592 0.662 98.46

Table 2.6: Evaluation of bundle adjustment with respect to different cost functions for a fixed
number of 150 iterations. While robust cost functions (Huber, Blake-Zisserman, Sigma, Cauchy)
achieve comparable results in terms of average (εavg.) and median (εmedian) reprojection errors and
detect a comparable fraction of inliers (we denote a measurement as inlier if the reprojection error
is below 3 pixel), the squared error cost function does not properly converge and the minimization
fails as shown in Figure 2.18(d).
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Chapter 3

3D Reconstruction Applications and
Evaluation

Image based 3D reconstruction has a large range of application. In this chapter we present different
applications that utilize structure from motion for model reconstruction from terrestrial and aerial
data and images acquired using Micro Aerial Vehicles (MAVs). Furthermore, our proposed work-
flow is evaluated on a large range of datasets and a detailed evaluation of the employed methods
is given.

3.1 Dense City Reconstruction from User-Contributed Photos

In this section we focus on the uncoordinated generation of digital copies of urban habitats from
community supplied terrestrial images. Our proposed approach is designed to work on unorga-
nized but pre-calibrated image datasets. Taking advantage of recent progress in image matching
and structure from motion (SfM) we present an end-to-end workflow for image based scene recon-
struction. Our idea is to apply the famous and effective Wiki-principle, well known from textual
knowledge databases (e.g. Wikipedia), to the objective of creating photorealistic 3D city models.
As input we rely on images from low cost digital consumer cameras taken by multiple users. Being
integrated in most of todays mobile phones, digital cameras are nowadays available at any time
and everywhere. Furthermore, photogrammetric evaluations [Gruen and Akca, 2007] have also
shown that mobile phone cameras provide a sufficiently high accuracy for many photogrammetric
tasks. We expect that these kind of devices can be used for detailed and accurate city modeling.
Recent advances in wide baseline image matching and structure from motion made it possible to
even reconstruct a scene from diverse and uncontrolled photo collections taken by different peo-
ple under varying weather and illumination conditions. Such a system was presented in [Snavely
et al., 2006], demonstrating fully automatic 3D reconstruction from community photo collections
downloaded from photo-sharing websites (e.g. www.flickr.com). Goesele et al. [Goesele et al.,
2007] further demonstrated the applicability of Multi-view stereo (MVS) techniques on such in-
homogeneous and diverse datasets. Community photo collections normally comprise millions of

59
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(a) (b) (c)

Figure 3.1: Notre Dame reconstruction result from Internet photo collections (a) Snavely et
al. [Snavely et al., 2006] and (b) Li et al. [Li et al., 2008]. (c) 3D model obtained by a struc-
tured, Wiki-based image acquisition strategy.

images of famous and important landmarks. However, it turns out that humans have a tendency
towards capturing a landmark from just a few prominent viewpoints. These locations comprise a
huge image density, whereas photos from ordinary streets or even whole cities might be entirely
missing. Therefore the resulting models are incomplete, as only popular viewpoints of landmarks
are well-represented. In contrast, a Wiki-based reconstruction approach implies a more structured
image acquisition strategy, since photos are intentionally captured for the purpose of 3D model-
ing. Therefore, larger and more complete 3D models are obtained. Figure 3.1(a) and 3.1(b) shows
reconstructions of Notre Dame Cathedral computed from community photo collections using the
methods of [Snavely et al., 2006] and [Li et al., 2008], respectively. Even though there exists
thousands of images from Notre Dame on the web, from those images only the front facade of the
landmark can be reconstructed [Raguram et al., 2011] (due to the lack of images from other per-
spectives). In contrast, a Wiki-based, structured image acquisition strategy leads to more complete
reconstruction results as depicted in Figure 3.1(c).

We expect that a user contributed system will result in a rapid creation of virtual copies of
urban environments. In the first instance, we aim on textured dense models in quality similar to
the results presented in [Pollefeys et al., 2004]. These raw models need to be post-processed in
subsequent steps to allow an efficient visualization. By adding more and more images, the recon-
structed models can be incrementally maintained and refined gradually. The final city models can
then be used for many applications ranging from tourism and cultural heritage over city planning
to emergency support.

Reconstruction systems based on still images (e.g. [Brown and Lowe, 2005, Kamberov et al.,
2006,Martinec and Pajdla, 2007]) are generally designed to operate in batch mode. Photo Tourism
[Snavely et al., 2008a] and the related PhotoSynth Web-interface1) is probably the most-well
known application for automatic structure from motion computation from a large set of unordered
images. A collection of supplied images is analyzed and correspondences are established, from
which a relevant subset of views and the respective 3D structure are determined. Photo Tourism

1 http://labs.live.com/photosynth
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does not explicitly incorporate calibrated cameras, but relies partially on the focal length specifi-
cation found in the image meta-data to obtain the initial metric structure. Images with incorrect or
missing meta-data can be registered by pose estimation.

The majority of 3D modeling approaches is intended for a decentralized use on personal com-
puters. [Vergauwen and Van Gool, 2006] presented the first Web-based interface1 to their 3D
modeling engine, working with uncalibrated cameras [Pollefeys et al., 2004]. Autodesk provide
the recently announced 123D Catch web-service2 that used cloud computing and allows to auto-
matically create dense 3D models of a scene from unordered images. Registered users can upload
their images and subsequently receive the resulting textured mesh models. Their proposed system
is targeted at reconstructing individual sites from a limited number of images, but is not aimed on
building and maintaining a global image and 3D model database like in our approach.

One of the main difference which distinguishes our reconstruction pipeline from current state-
of-the-art systems is the incremental reconstruction approach. In our system, the 3D models can
evolve over time and are all stored in a global repository. Instead of using publicly available photo
collections as done in [Snavely et al., 2006, Li et al., 2008] and [Goesele et al., 2007, Frahm et al.,
2010], we rely on calibrated images submitted by interested users. In general it is not necessary to
use calibrated images to get a metric (up to scale) reconstruction, since self-calibration methods
(e.g. [Triggs, 1998]) exist. However, our own experience with these techniques indicates that the
accuracy and stability of structure-from-motion computation is higher in a pre-calibrated setup.

To ease the calibration effort for the end-user, we employ a procedure aiming for the accuracy
of target calibration techniques without the need for a precise calibration pattern. The approach is
based on simple printed markers imaged in several views. The use of specific markers enables to
establish robust and correct correspondences between the views.

3.1.1 Processing Pipeline

Our structure from motion pipeline follows an incremental 3D reconstruction approach as de-
scribed in Section 2.8.2. Each input image is resampled according to the lens distortion obtained
from the calibration procedure. Since the internal camera parameters are known, an Euclidean SfM
algorithm is employed to compute the camera orientations and the sparse point reconstruction of
individual scenes. Overall, our SfM algorithm consists of three major processing steps. Firstly,
salient features are extracted in each frame. We rely on SIFT features [Lowe, 2004] because of
their success reported in the vision community. Secondly, we compute feature correspondences
for all images. Since exhaustive pair-wise image matching on large databases is prohibitively
expensive, we use a vocabulary tree data structure and inverted files for coarse matching. Each
image is taken as query and for the first fraction of reported candidate images a more discrimina-
tive pair-wise image matching is performed. In addition, a geometric consistency check is used
to remove mismatches. Finally, an incremental reconstruction algorithm computes the position of
each camera and the 3D points associated to the extracted feature points. After camera orientations

1 http://www.arc3d.be/
2 http://www.123dapp.com/catch
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Figure 3.2: Overview of our proposed reconstruction system. From left to right and top to bot-
tom: Unordered image collection, image retrieval by a generic vocabulary tree, discriminative
image matching with geometric verification, sparse reconstruction obtained by structure and mo-
tion computation and final dense reconstructed scene.

and sparse 3D structure is recovered, batch-processing is used for multi-view dense matching that
delivers photo-consistent 3D city models. An overview of our proposed reconstruction pipeline is
depicted in Figure 3.2, individual processing steps are summarized in Algorithm 2.

3.1.2 Fast and Flexible Camera Calibration

A variety of approaches exist for accurate camera calibration that are either based on 3D tar-
gets [Tsai, 1986, Heikkilä, 2000] or on planar patterns [Triggs, 1998]. In [Zhang, 2000] a robust
and flexible camera calibration technique that only requires the camera to observe a planar pattern
shown at a few (at least two) different orientations is proposed. Either the camera or the planar
pattern can be freely moved, whereas the motion need not to be known. This method has been
proven to be very flexible to apply, robust and accurate. One prerequisite of Zahng’s approach is
that the entire calibration target is visible in each image and the target is in focus. These conditions
are often hard to achieve, especially since 3D reconstruction of outdoor environments generally
requires an infinite focus due to the usually large distances to the pictured object. The calibration
pattern thus needs to be sufficiently large.

We propose a new calibration technique that overcomes these problems and further eases the
calibration effort for users. Our calibration method is based on simple printed markers that are
pictured from several views. The use of specific markers enables to establish robust and correct
correspondences between the views. Marker patterns are printed on several sheets of paper and are
typically arranged on the floor (see Figure 3.3). These print-outs can be laid out arbitrarily, hence
the well-known calibration method of Zhang [Zhang, 2000] is therefore not applicable. Note, in
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contrast to calibration methods that rely on traditional planar checkerboard patterns, our approach
does not necessarily require visibility of markers in every captured image.

Marker Detection

The first step in the calibration procedure is the detection of the circular markers in the images and
the extraction of the unique marker ID (see Figure 3.3(a)). Ellipses are extracted via the Canny
edge detection and a subsequent grouping comprises the set of putative markers. The ellipses
are further checked for the occurrence of a valid binary circular pattern (after rectification of the
local image patch using the ellipse parameters). The centers of the extracted ellipses are only
approximations of the true marker centers, hence we utilize an additional central checkerboard
pattern for accurate marker localization. The 2D marker position is refined using a nonlinear
optimization procedure to align a synthetic checkerboard pattern to the rectified image patch.
Matching feature points across multiple views is trivial, since unique and easily extractable IDs
are available. Of course, the uniqueness of extracted markers in every image needs to be checked
to avoid incorrect detections in case of blurred or otherwise low-quality images.

Solving Camera Calibration

Since the marker images are laid out on a planar surface, corresponding feature points are related
by a homography. Hence, the first estimation of lens distortion parameters attempts to minimize
the reprojection error between extracted feature points with free homography and lens distortion
parameters [Pajdla et al., 1997]. More formally, if xki denotes the position of marker k in the i-th
image, the initial distortion estimation determines

arg min
Hij ,θ

∑
i,j

|D̃(xkj , θ)− D̃(Hijx
k
i , θ)|2, (3.1)

where Hij denotes the image homography from view i to j and D̃(x, θ) is the inverse distortion
function with coefficients θ. The distortion model is

D̃(x, θ) = (x− (ũ0, ṽ0)T ) · (1 + k1r
2 + k2r

4), (3.2)

with r = ‖x−(ũ0, ṽ0)>‖. θ is the vector (ũ0, ṽ0, k1, k2) consisting of the distortion center (ũ0, ṽ0)

and the coefficients k1 and k2, as described in Section 2.1.1.
The center of radial distortion (ũ0, ṽ0)> is independent from the optical principal point (u0, v0),

thus essentially removing the need for decentering distortion parameters [Tsai, 1987]. The initial
homographies are set to the gold standard results [Hartley and Zisserman, 2000] and the distortion
parameters are initialized with the image center, and 0 for the coefficients k1 and k2, respectively.
The non-linear minimization is performed with a (sparse) Levenberg-Marquardt method. Imple-
mentation details are described in Section 2.9.1. Note that the homographies are not independent:
a consistent set of inter-image homographies should satisfy Hij = Hlj Hil for all l. In our im-
plementation this is enforced by using a minimal parameterization solely based on homographies
between adjacent views, Hi,i+1, and representing Hij =

∏
j>l≥iHl,l+1.
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(a)

(b)

Figure 3.3: (a) Six calibration markers with central checkboard pattern. Each marker encodes an
unique ID. (b) Two typical calibration images showing 96 calibration markers arbitrarily arranged
in a 4× 4 grid on the floor.

After determining the initial estimate for the lens distortion, the focal length of the camera
is estimated from the set of homographies. Both [Triggs, 1998] and [Malis and Cipolla, 2002]
employ a non-linear minimization technique for the intrinsic parameter estimation and an initial
estimate is required. We utilize a much simpler search technique to quickly determine the camera
intrinsics: First, we assume that the principal point is at the image center and that the aspect ratio
and skew are one and zero, respectively. Hence, we search for a constant, but unknown focal
length f determining the calibration matrix K. If the correct intrinsic matrix K is known, the
image-based homographies Hij can be upgraded to homographies between metric image planes,
H̃ij = K−1HijK. For a particular view i assumed with canonical pose, H̃ij can be decomposed
as H̃ij = Rij − tijn>i /di (via singular value decomposition [Faugeras and Lustman, 1988,Zhang
and Hanson, 1996]), where (Rij , tij) depicts the relative pose and ni and di denote the plane
normal and distance (according to the coordinate frame of view i), respectively. Note that each
H̃ij provides its own estimate of ni = ni(H̃ij).
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For the true calibration matrixK, the extracted normals ni(H̃ij) should coincide into one com-
mon estimate of the plane normal. Hence, a low variance of the set {ni} indicates approximately
correct calibration parameters. A slight complication is induced by the fact that decomposing
H̃ij results in two possible relative poses and plane parameters (denoted with n+

i and n−i ). Let
(n+

0 , n
−
0 ) be the most separated pair of normals from all pairs (n+

i (H̃ij), n
−
i (H̃ij)). We use n+

0

and n−0 as the estimates for the mean of the set {ni}. Now, the score for K is the minimum of∑
i,j

min
(
∠(n+

i (H̃ij), n
+
0 ),∠(n−i (H̃ij), n

+
0 )
)

(3.3)

and ∑
i,j

min
(
∠(n+

i (H̃ij), n
−
0 ),∠(n−i (H̃ij), n

−
0 )
)
. (3.4)

This score is evaluated for potential choices of f , e.g. f ∈ [0.3, 3] in terms of normalized pixel
coordinates. Figure 3.4 depicts the exhaustive evaluated error function (i.e. Equation (3.3),(3.4))
over a range of focal lengths for four different cameras. The objective function comprises many
local minima, however a robust global minimum can be found. The value of f with the lowest
score is used as initial estimate for the focal length. This procedure is both simple and very fast,
and yields sufficiently accurate focal lengths in our experiments.
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Figure 3.4: Error function with respect to focal length evaluated over the range of f = [0.3 :

0.0025 : 3] for the different cameras. Note, the error function is peaked but smooth near the global
minimum.

With the (approximate) knowledge of the focal length, an initial metric reconstruction based
on two appropriate views is generated. The remaining views are added by estimating their ab-
solute poses [Haralick et al., 1991]. A final bundle adjustment [Triggs et al., 2000] procedure
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optimizes the parameters of the forward distortion function, hence the inverse of the originally
obtained distortion parameters is required. Since the employed polynomial distortion model is not
closed under function inversion, the initial forward distortion parameters are determined by a least
squares approach. The final bundle adjustment procedure is applied to refine the camera intrinsics
and distortion parameters and to improve the only approximately planar 3D structure and camera
poses.

3.1.3 Upgrading the View Network

Our reconstruction system is designed to run online and incrementally. Each time a new image
is added to the view network, correspondences to related database images are computed and the
structure from motion algorithm is triggered. Since images may be taken from different locations,
we do not expect to obtain a single coherent reconstruction, but a forest of multiple reconstructions.
We require that a reconstruction consists of at least three images (view triple) and twenty common
triangulated points. In general, four different cases can occur if a new image is processed:

1. Pose Resectioning: The view can be robustly registered with exactly one given reconstruc-
tion. The position of the current view can be computed immediately by robust absolute
pose estimation [Fischler and Bolles, 1981, Haralick et al., 1991], since 2D to 3D point
correspondences are known. Thereafter, the camera parameters are optimized by iterative
refinement and new correspondences are triangulated.

2. Model Merging: The image can be aligned with multiple reconstructions. If current im-
age takes part of two or more different reconstructions, the reconstructions are progressively
merged. We use RANSAC (Section 2.7.1) to compute a robust 3D to 3D similarity transform
for the registration of the corresponding 3D points. According to the computed transforma-
tion we insert the smaller reconstruction into the coordinate system of the larger one. The
registration is then followed by an Euclidean bundle adjustment as described in Section 2.9.
Performing bundle adjustment frequently helps to remove the dependency of the output
model on the exact order of the provided images. Of course, since the processing pipeline
is incremental, complete order-independency can not be achieved.

3. Triple Initialization: The current view cannot be (robustly) aligned with an existing recon-
struction, but forms a good view triple with two other views. In this scenario, the neighbors
of the current image are estimated from the epipolar graph (Section 2.7.3) and a new recon-
struction is initialized from a well-conditioned view triple. The view triple should provide
a good triangulation angle and at the same time have many correspondences. Therefore, in
the first step we identify the view pair which minimizes,

1

N

N∑
i

1

sin2(αi)
. (3.5)

Here, N is the number of triangulated points and αi the angle between the two camera rays
which intersect at the 3D point Xi. Thereafter, a third view which minimizes the value
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in Equation 3.5 with respect to this first configuration is estimated. Note, that 1/sin(αi)

approximates the uncertainty (deviation) ofXi in the depth direction. In [Beder and Steffen,
2006] the view pair with maximal mean roundness (essentially the same as 1/N

∑
sin(αi))

is taken. Such an approach does not consider the number of correspondences between two
views. In this work, we assume that the precision of further (least-squares) computations
depending on the initial structure scales with 1/

√
N . Consequently, Equation 3.5 estimates

the mean variance of the initial structure for a given view pair.

The relative pose between the first two views is computed by the Five-Point algorithm and
the third camera is inserted by the Three-Point [Haralick et al., 1991] algorithm with respect
to the triangulated 3D points. Thereafter, bundle adjustment is used to globally optimize
the exterior camera orientations and the initial structure. A view triplet is considered as
a valid reconstruction if at least twenty 3D points are shared between all views that have
a triangulation angle larger than 5◦. This criterion is sufficient to determine robust view
triplets for structure initialization.

4. Postpone Registration: The geometric relation of this image with any of the known views
cannot be established, and structure from motion determination is postponed until a new
suitable view is inserted.

Whenever a number of M (15 in our case) views is added to a reconstruction, all cameras
and 3D points are optimized by bundle adjustment. Thereafter, for each image measurement the
reprojection error is computed, 3D points with an average reprojection error larger than 1.3 pixel
and a triangulation angle less than 2◦ are removed. Our experiments suggest that this strategy
improves both, accuracy and robustness of the reconstruction algorithm.

3.1.4 Sparse Reconstruction Results and Evaluation

To test our reconstruction approach at large scale, we acquired several thousands photographs
from urban environments over a period of three month. Some scenes are fully connected, others
are widely separated and cannot be visually linked. In particular, we have a database Vienna
consisting of 2640 images, and a larger database of 7181 street-side images from Graz. In total,
four different compact digital cameras were used to generate the databases. The images were
captured at different days and under varying illumination conditions. Since the image acquisition
was done for the purpose of 3D reconstruction, most of the images have a relative high overlap
of about 80%. Some images are sequentially ordered, but the ordering is not considered in the
reconstruction pipeline at any time. Overall, the size of the source images varies from two to
seven Megapixels. To remove potential compression artifacts, the supplied images are Gaussian
filtered and resampled to half resolution for further processing.

Cameras are calibrated with the method described in Section 3.1.2, the obtained intrinsic pa-
rameters are summarized in Table 3.1. The calibration precision (i.e. the final mean reprojection
error) ranges from 1/20 to 1/5 pixel. To test the stability of the camera intrinsics over time, we
repeated the calibration procedure after several month for a camera of type Panasonic TZ3 and
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Algorithm 2: Incremental 3D Reconstruction
Input: Expanding set of images I ∈ I and associate calibration information K ∈ K

generic vocabulary tree V with empty inverted files F = ∅
Output: Set of 3D ReconstructionsR

Epiploar Graph G

foreach I ∈ I do
1. Remove Radial Distortion (see Section 3.1.2)

2. Extract SIFT features (see Section 2.5)

3. Update inverted files and global vocabulary tree structure F = I ∪ F

4. Determine potential matching candidates D ∈ D from vocabulary tree scoring

5. foreach D ∈ D do

(a) Detailed Feature Matching (see Section 2.6)

(b) RANSAC Five-Point (see Section 2.7)

(c) Determine inlier set and effective number of inliers m∗ (see Section 2.7.2)
if m∗ > t then
G = G ∪ eij
insert neighbors of j to D

end

end

6. Upgrade View NetworkR (see Section 3.1.3)

end

Nikon E4200. The cameras were extensively used during that period, but the calibration parame-
ters remain almost constant. For both cameras the deviation of the focal length and the principal
point is within 2% (see Table 3.1 Panasonic TZ3 (1) and (2) and Nikon E4200 (1) and (2)). The
variations are small in comparison to the uncertainty of the SfM algorithm and can therefore be
neglected in practice.

The image retrieval performance for different database sizes (fractions of the Graz database)
are depicted in Figure 3.5. On average an image in the Graz database has an overlap with about
eight other images. We observe that even for the full database size, the first ranked image by the
vocabulary tree satisfies the epipolar geometry with a confidence of more than 90%. The results
indicate that the vocabulary tree approach generalizes for much larger databases.

In Figure 3.7 the seven largest reconstructions incrementally computed from the Vienna database
are shown. The images were taken by two users on different days with a Panasonic TZ3 and a
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Camera type # images resolution f (u0, v0) k1 k2 err

Panasonic TZ3 (1) 20 3072× 2304 2564.81 (1547.2, 1163.7) -6.13e-09 1.07e-15 0.124
Panasonic TZ3 (2) 19 3072× 2304 2564.45 (1539.4, 1178.8) -5.32e-09 7.75e-16 0.148
Nikon E4200 (1) 16 2272× 1704 2515.98 (1111.8, 838.2) -3.05e-08 1.22e-15 0.083
Nikon E4200 (2) 19 2272× 1704 2525.49 (1112.3, 836.6) -3.06e-08 1.34e-15 0.136
Fujfilm F30 25 2848× 2136 3113.2 (1385, 7 926.8) -6.06e-09 3.27e-16 0.23
Olympus E-500 12 3200× 2400 2593.48 (1595.7, 1171.3) -1.99e-08 1.98e-15 0.05

Table 3.1: Typical calibration parameters of four different cameras. # images denotes the number
of used calibration images, f the focal length, (u0, v0) the principal point and k1, k2 the first and
second radial distortion parameters. The last column shows the calibration precision in terms of
the final mean reprojection error (err). All values are given in pixels.

Nikon E4200 camera. Each reconstruction comprises more than 100 images. The largest recon-
struction shows the Graben street with the St. Stephen’s Cathedral with 1330 registered images
(see Figure 3.7(h)).

Adding an image to the view network (of size 1000) takes on average 21s on the CPU and
about 3.5s on the GPU. Most of the time is spend on pair-wise image matching and bundle ad-
justment. Table 3.2 gives typical processing times of the modules involved in our system and
compares timings of a single CPU execution with timings achieved with GPU support. Regarding
feature extraction and matching, the speedup induced by the GPU is about one order of magnitude.

CPU [s] GPU [s]

SIFT (4000× 3000 pixel) 10 0.4

Coarse Matching 0.5 0.05

Matching (5000× 5000) k × 1.1 k × 0.044

RANSAC-H (5-pt, N=2000) k × 0.1 -
RANSAC-V (|C|=5000, N=2000) k × 0.12 k × 0.02

Structure from Motion [h] 1 -
Total Time [h] (615 views, k = 84) 21 3.5

Table 3.2: Comparison of processing timings between execution on a single core CPU (Intel Pen-
tium D 3.2Ghz) vs. a GPU accelerated implementation (Nvidia GeForce GTX280). RANSAC-H
stands for the hypotheses generation step based on the Five Point algorithm, RANSAC-V for the
evaluation module. N is the maximal number of hypothesis, |C| the number of putative cor-
respondences used for evaluation, and k reflects the number of considered images for detailed
feature matching and geometric verification.

The mean reprojection error of the sparse reconstructions is typically between 0.3 and 0.5
pixels. For the Graben reconstruction we estimated the covariances of the 3D points analyti-
cally [Beder and Steffen, 2006] and by a Monte Carlo simulation for the purpose of visualization
(see Figure 3.6(a) and (b)).
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Figure 3.5: (a) Vocabulary tree performance for image retrieval depending on the database size
(fractions of the Graz database). The y-axis shows the probability to find an epipolar neighbor in
the first k-ranked images reported by the vocabulary tree scoring. (b) Probability density function
of the number of verified epipolar neighbors for a query image in the Graz database consisting of
7181 street-side images. On average a query images has an overlap with about eight images in the
database.

We assume that image measurements are perturbed by Gaussian noise with zero mean and
standard deviation one. The uncertainty of the camera projection matrices is neglected. In order
to determine a metric scale, the distance between two widely separated image positions ( 400m)
enables us to estimate the absolute scale of the reconstruction. In Figure 3.6(c),(d), the probability
density function (pdf) of the first two principal covariance components of the reconstructed 3D
points is depicted. The first component can be interpreted as the uncertainty in depth, the second
and third as the uncertainty for measurements along the image plane. Note, the uncertainty in
depth is within 25cm for half of the points and within 4cm for in-plane measurements (both with
confidence interval 95.4%).
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Figure 3.6: Metric uncertainty analysis of the sparse Graben reconstruction (see Figure 3.7(h)).
Top view (a) and side view (b) of 3D point covariances obtained from a Monte Carlo simulation.
We assume that image measurements are affected by Gaussian noise with zero mean and standard
deviation one. (c) Distribution of the 3D point uncertainty in depth (saturated by 3.5m) and (d)
for in-plane measurements (both with confidence interval 95.4%).
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(a)

(b) (c)

(d) (e)

(f) (g)

(h)

Figure 3.7: (a) 100 sample images out of 2640, taken in the first district of Vienna. (b)-(h) The
seven largest reconstructions obtained by the incremental structure-from-motion algorithm, com-
prising more than 90% of the database images. (h) Sparse reconstruction of the Graben street with
the famous St. Stephen’s Cathedral consisting of 1330 registered images and 138410 triangulated
3D points.
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3.1.5 Dense Multi-View Stereo

Obtaining the initial 3D structure and camera locations is an essential aspect of image-based mod-
eling, but dense geometry is required for a faithful virtual representation of the captured scene.
Since we face a large number of images with potentially associated depth maps, we focus on
simple but fast dense depth estimation procedures.

Plane-sweep approaches to dense stereo [Yang and Pollefeys, 2003, Cornelis and Van Gool,
2005] enable an efficient, GPU-accelerated procedure to create the depth maps. To obtain reason-
able depth values in homogeneous regions, we employ GPU-based scanline optimization in our
framework [Zach et al., 2006b]. Note that dense geometry generation is currently performed in an
offline fashion for individual large and connected view networks.

For general view networks, a suitable selection of the two matching views for each key view
used for depth estimation is necessary. We use the following simple, but effective heuristic to
select appropriate matching images, which is based on an estimate for image overlap and viewing
directions: for a particular key view and a potential matching view, we determine the correspon-
dences between these views and compute the convex hull of the respective 2D measurements in
the key view. The area of this convex hull AH in relation to the total key image area A gives
an estimate of the relevant image overlap. Note that A does not necessarily denote the whole
key image size, since insignificant image portions like sky regions can be excluded. Matching
view candidates with an overlap AH/A smaller than a given threshold (typically set to 0.3) are
discarded. The image overlap is only a partial guideline for view selection. The angle between
corresponding camera rays is another suitable criterion. Very small angles give rise to large depth
uncertainties, whereas larger angles are susceptible to image distortion and occlusions. From a
practical point of view, triangulation angles of about α0 = 6◦ are favorable for dense stereo [Oku-
tomi and Kanade, 1993] (meaning a distance to baseline ratio of about 10:1). Consequently, view
pairs with a large overlap and appropriate triangulation angles are preferable. Hence, we rank the
views with sufficient overlap according to the following score:

AH
A

median(ψ(αi)), (3.6)

where αi is the angle between corresponding rays and ψ(·) is a unimodal weighting function with
its maximum at α0. We choose ψ as

ψ(α) = α2 e−2α/α0 . (3.7)

The two views with highest scores are taken as matching views.
Dense depth estimation depends heavily on the quality of the provided epipolar geometry. In

order to increase the performance, multi-view stereo is applied on downsampled images (512×384

pixels for 4 : 3 format digital images). Matching cost computation and scanline optimization for
view triples (one key view and two matching views) takes less than 1s on a GeForce 8800GTX.
The set of depth maps provides 2.5D geometry for each view. These depth maps are subsequently
fused into a common 3D model using a robust depth image integration approach, which is based on
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[Zach et al., 2007]. Fusion of range images using volumetric approaches naturally handles surfaces
with arbitrary genus, and typically generates watertight meshes [Curless and Levoy, 1996,Wheeler
et al., 1998, Kazhdan et al., 2006, Hornung and Kobbelt, 2006]. The input of these volumetric
methods consists of (optionally signed) approximations of 3D distance functions induced by the
range images, either generated explicitly (e.g. [Curless and Levoy, 1996]) or implicitly using point
splatting [Kazhdan et al., 2006, Hornung and Kobbelt, 2006].

(a) (b)

(c)

(d)

Figure 3.8: (a) Depth map computed using a plane-sweep approach on image triplets and GPU-
based scanline optimization [Zach et al., 2006b] and respective colorized point cloud (b). (c) Un-
textured 3D model using the robust depth image integration approach [Zach et al., 2007] and
(d) detailed reconstruction result with texture.
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3.1.6 Dense Reconstruction Results

In Figure 3.9, several dense reconstruction results from different scenes are shown. The mod-
els are represented by a dense mesh augmented with per-vertex coloring. Post-processing steps
are needed to generate textured models which are suitable for efficient visualization. Table 3.3
shows large scale structure from motion results and respective semi-dense models obtained by the
Patch-based Multi-view Stereo (PMVS) software [Furukawa and Ponce, 2009]. PMVS is able to
reconstruct a scene from camera projection matrices and images by patch based multi-view trian-
gulation. Multi-view reconstruction is implemented as a match, expand and filter procedure that
outputs a dense set of patches covering the surface of an object or a scene observed by multiple
calibrated photographs. Sparse feature points are extracted and matched across multiple images
and from an initial set of 3D patches a procedure expands the current surface. Global visibility
constraints are used to filter away erroneous matches. Since our structure from motion pipeline is
able to deliver sub-pixel accurate reconstruction results, PMVS can be run at full image resolution.

3.1.7 Conclusion and Discussion

We presented an incremental reconstruction approach for city modeling from user contributed
data. We introduced a new and accurate self-calibration method based on coded markers that is
both, fast and simple, and can therefore be directly employed by end users. Sub-pixel accurate
intrinsic calibration is achieved, on average the reprojection error varies between 0.1− 0.25 pixel
for standard consumer digital cameras. The reprojection error of the obtained structure from mo-
tion models is about 0.5 pixel. In a city environment the average uncertainty in depth is about
25cm, whereas in-plane measurements have an uncertainty of about 4cm, respectively. Unlike
previous systems that rely on community photo collections downloaded from the web, we employ
the Wiki-principle for city modeling. Since photos are intentionally captured for the purpose of
3D modeling, such image collections provide a more complete covering of scene surfaces. This is
also observed in the PhotoCity project [Tuite et al., 2011], an online game that trains its players to
become experts at taking photos at targeted locations and in great density, for the purposes of cre-
ating 3D building models. We conclude that a Wiki-based approach for city modeling has several
advantages over 3D reconstruction from Internet photo collections. First of all, a regular and struc-
tured image acquisition strategy in general leads to a broader coverage of a landmark. Secondly,
a Wiki-based system provides feedback to the user which can decide what images are needed for
better scene coverage. Finally, a regular, Wiki-based image acquisition policy enables direct dense
modeling techniques, thus view selection optimization [Goesele et al., 2007] for multi view stereo
is not necessarily required. Our incremental structure from motion algorithm runs online, hence
there is no requirement to see all images in advance. We demonstrate dense 3D reconstruction
based on variational methods and using the PMVS software.

We assume that global positioning information will be required in order to generate coherent
reconstructions at city scale. Loop detection and closing strategies as well as efficient large scale
bundle adjustment are also necessary. Furthermore, the reconstruction of narrow alleys is chal-
lenging due to the limited field of view and probably requires special wide angle camera setups.
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(a)

(b)

(c)

(d)

Figure 3.9: From left to right: some sample images, sparse reconstructions and final dense models
of different scenes. (a) Alte Galerie at Landhausmuseum Joanneum (Graz) computed from 49
views. (b) Michaeler square (Vienna), 110 images. (c) Mariahilfer church (Graz), more than
400 registered photographs in the sparse model, dense reconstruction from a subset of 30 images.
(d) Building facades from 54 processed images.
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Scene SfM PMVS

Table 3.3: Sparse reconstruction results (SfM) of different scenes and semi-dense point cloud
(PMVS) computed by the approach of [Furukawa and Ponce, 2009].
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3.2 Aerial Images: Redundancy and Dense Reconstruction

Typical airborne photogrammetric surveys are flown using high resolution digital cameras acquir-
ing images with at least 80% forward overlap and 60% side-lap. This image acquisition strategy
provides a high degree of redundancy and allows to automatically create detailed maps of the
environment [Zebedin, 2010]. Aerial images produced by state of the art large format camera
systems such as the products from Vexcel Imaging1 currently comprise up to 200 megapixels at a
high radiometric resolution (e.g. Figure 3.10). The richness of image content information cannot
be matched by any other data acquisition device. Today, passive photogrammetry outperforms
current LiDAR systems [Baltsavias, 1999] by means of Ground Sampling Distance (GSD) and
reduced flight costs [Leberl et al., 2010]. This fact directly leads to significant economic benefits.
Aerial flight missions are normally performed using GPS-Aided Inertial Navigation that allows di-
rect georeferencing [Hutton and Mostafa, 2005]. Photogrammetric workflows often use GPS/IMU
for the avoidance of Aerial Triangulation (AT) and ground control measurements. However, GPS-
Aided Inertial Navigation has several requirements that makes such systems costly and hard to
apply in real world [Hutton and Mostafa, 2005]. First of all, the IMU must be rigidly attached to
the camera and any misalignment of IMU/camera needs to be calibrated. Second, exact relative
timing of image exposure and GPS/INS pose must be provided. Third, the camera interior ge-
ometry (focal length, principal point) must be well calibrated and stable. Even if the calibration
is done accurately, total reliance on GPS/IMU does compromise the accuracy of resulting stereo
matches [Leberl et al., 2010]. Hence, a sub-pixel accurate image alignment is essential for reliable
dense matching which can be achieved by automatic extraction and matching of tie points across
images and large scale bundle adjustment (see Section 2.9).

In this section we provide a fully automatic framework for aerial triangulation (AT), image
overlap estimation and dense depth matching using global optimization techniques. Our algo-
rithms are designed to run on current graphics processing units (GPUs) that makes large scale
processing feasible at low cost. To handle large aerial images we introduce is Section 3.2.2 a
memory efficient and parallelized SIFT implementation which is a key processing step for fully
automated aerial triangulation. Furthermore, in Section 3.2.3 we investigate on the benefits of
multi-view image matching compared to pairwise stereo for aerial image networks. Finally, in
Section 3.2.4 we present an algorithm for multi view dense matching that is able to produce high-
quality depth extraction for phogogrammetric end products like digital surface models DSM and
orthophotos. While most of current photogrammetric systems require a manual or semi-automatic
selection of point measurements in overlapping images to determine the unknown parameters of
the camera, our structure from motion pipeline is fully automated and requires no user intervention
at all.

1 http://www.vexcel.com/
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Figure 3.10: High resolution aerial image comprising 11500× 7500 pixels at a ground sampling
distance (GSD) of 8cm/pixel.

3.2.1 Aerial Triangulation

We employ a fully automated processing pipeline that computes the scene structure and camera
orientations from aerial input images, only. First, several thousand Points of Interest (POIs) are ex-
tracted from each image using the Scale Invariant Feature Transform (SIFT) [Lowe, 2004]. Next,
features between pairs of adjacent images along the flight path are matched. Given the image
sequence I with n images, I = {It|t = 1, . . . , n} the features of each view It are matched with a
number of adjacent views It+i with i = {−r, . . . ,+r} and i 6= 0 where r determines the match-
ing interval. We use r = 5 to match aerial images with a forward overlap of 80%. This method
achieves tracks along the flight paths but might miss correspondences between flight lines. To
establish correspondences between flight lines, an image retrieval approach based on a vocabulary
tree search (Section 2.5) is performed. Such an approach assumes that each image is represented
as a bag of words [Sivic and Zisserman, 2003] and the employed method efficiently determines
a similarity score of all image pairs. In general, overlapping images achieve a higher score than
unrelated images, hence this approach is able to detected potential matching candidates across
flight lines. We use exhaustive SIFT descriptor matching between pairs of frames as described
in Section 2.6. Next, the Five Point relative pose algorithm [Nistér, 2004] inside a RANSAC
loop [Fischler and Bolles, 1981] is used to robustly compute pairwise camera orientations (see
Section 2.7). The output of the automatic matching procedure is a graph structure denoted as
epipolar graph G, that consists of the set of vertices V = {V1 . . . VN} corresponding to the images
and a set of edges E = {eij |i, j ∈ V} that are pairwise reconstructions (see Section 2.7.3). The
epipolar graph G encodes relative orientations and pairwise reconstructions. Chaining all rela-
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tive orientations together should result in a global consistent 3D structure. We follow a greedy,
incremental reconstruction approach as described in Section 2.8.2 to iteratively reconstruct the
scene from an initial image pair. Structure and camera pose refinement is done using robust bun-
dle adjustment (Section 2.9). Figure 3.11 illustrates an orientation result of 3000 aerial images
reconstructed with our fully automated aerial triangulation framework.

Figure 3.11: Aerial Triangulation (AT) result from 3000 aerial images covering an area of ap-
proximately 150km2 of Graz and surrounding.

3.2.2 SIFT Implementation for Large Images

The large resolution of aerial images imposes special requirements to image processing algo-
rithms. One drawback of a standard SIFT implementation [Lowe, 2004] is the high memory
requirement and the expensive processing time. This is especially true for large aerial images,
e.g. UltraCamXP images comprising 17, 310 × 11, 310 pixel. Due to data dependencies in the
difference of Gaussian cascade filtering, SIFT requires a multiple of memory with respect to the
raw pixel input. Let s be the number of scales per octave, SIFT requires s+ 1 gradient images and
s + 2 Difference of Gaussian (DoG) images for each octave. The standard SIFT implementation
suggests s = 3, therefore requiring 9×w × h memory, where w,h is the image width and height,
respectively. Furthermore, Lowe suggests to double the size of the input images prior to build
the first level of the pyramid which allows the detection of features at highest spatial frequency.
This further increases memory by a factor of 4. Hence, SIFT requires 36 times the memory of an
original input image.

We propose a tiled SIFT implementation which relaxes memory requirements and takes ad-
vantage of multi-core processors at the same time. In our approach, the base image of each octave
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Figure 3.12: Tiled parallelized SIFT extraction. In each octave the base image is subdivided into
overlapping tiles. The DoG detection and descriptor computation is performed separately on each
data block and in parallel on multi-core processors. The overlap guarantees that no boundary
effects occur.

is subdivided into tiles of several rows and feature detection is employed subsequently or parallel
on the individual data blocks. An overlap between the individual tiles guarantees that no artifacts
in DoG detection and descriptor computation occurs. As a consequence we set the size of the
overlapping region to b = rkey + rfilter, where rkey is the maximal descriptor radius and rfilter
the radius of the largest discrete Gaussian kernel used in the cascade filtering. In our standard
settings the maximal descriptor radius within an octave is 2 × 1.5 × 8 pixels and the maximal
filter radius is 10 pixels, respectively. The detection scheme is depicted in Figure 3.12. On a dual
core processor we achieve a speed up of about 1.5 and can process high resolution images with
minimal memory requirements at the same time.

3.2.3 Camera Network and Redundancy

In this section we analyze how a multi-view dense matching approach compares to standard stereo
matching in terms of achievable depth accuracy for aerial photogrammetry. As shown in [Gallup
et al., 2008], the depth uncertainty of a rectified stereo pair can be directly determined from the
disparity error,

εz =
bf

d
− bf

d+ εd
≈ z2

bf
· εd (3.8)

where z is the point depth, f the focal length and b the image baseline. Hence, the depth precision
is mainly a function of the ray intersection angle. In contrast, for multi-view image matching and
triangulation the redundancy not only implies more measurements but additionally constrains the
3D point location through multiple ray intersections. These entities are not independent but are
coupled, since they rely on the network geometric configuration that determines image overlap
(i.e. redundancy) and baseline, simultaneously. Note, the uncertainty reduces with the square root
of the number of intersecting rays while the uncertainty grows quadratically with depth. Given a
photogrammetric network of cameras and correspondences with known error distribution, the pre-
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cision of triangulated points can be determined from the 3D confidence ellipsoid (i.e. covariance
matrix CX), as shown in [Beder and Steffen, 2006]. An empirical estimate of the covariance ellip-
soid corresponding to multi-view triangulation can be computed by statistical simulation. For the
moment we assume that camera orientations and 3D structure are fixed and known. The cameras
are distributed along a 2D grid (corresponding to the flight paths) in order to achieve a 80% for-
ward overlap and 60% side-lap (see Figure 3.11). According to a large format digital aerial camera
(e.g. UltraCamD) the image resolution is set to 7500× 11500 pixel with a field of view α = 54◦.
Furthermore, 3D points are evenly distributed on a 2D plane that corresponds to the bold earth
surface, observed from a flying height of 900m. Therefore, an average Ground Sampling Distance
(GSD) of 8cm/pixel is achieved.

Given the cameras Pi ∈ P (i.e. calibration and poses) and 3D points Xj ∈ X , respective
ground truth projections are produced xij = PiXj . Therefore, for every 3D point a set of point-
tracks (i.e. 2D measurements) is generated m = (< x1, y1 >,< x2, y2 > . . . , < xk, yk >). Next,
2D projections are perturbed by zero mean Gaussian isotropic noise x̂ = x+N (0,Σ),

Σ =

(
σ2
x 0

0 σ2
y

)
(3.9)

with standard deviation σx = σy = 1 pixel (i.e. ∼ 8cm GSD). Given the set of perturbed point
tracks m̂ = (< x̂1, ŷ1 >,< x̂2, ŷ2 > . . . , < x̂k, ŷk >) and ground truth projection matrices
Pi ∈ P , the 3D position of the respective point in space is determined. This process requires the
intersection of at least two known rays in space. Hence, we use a linear triangulation method [Hart-
ley and Zisserman, 2000] to determine the 3D position of point tracks. This method generalizes
easily to the intersection of multiple rays providing a least-squares solution. Optionally, a non-
linear optimizer based on the Levenberg-Marquardt algorithm (see Section2.9.1) is used to refine
the 3D point by minimizing the reprojection error. Through Monte Carlo Simulation on the per-
turbed measurement vectors m̂, we obtain a set of 3D points Xi around a mean position X̂ . From
the Law of Large Numbers it follows that for a large number N of simulations, one can approxi-
mate the mean 3D position by,

EN [Xi] =
1

N

N∑
i=1

Xi (3.10)

and its respective covariance matrix by,

CX = EN [(Xi − EN [Xi])(Xi − EN [Xi])
>] (3.11)

Using the singular value decomposition the covariance matrix can then be decomposed,

CX = U

σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

V > (3.12)

where U represents the main diagonals of the covariance ellipsoid and σi are the respective stan-
dard deviations. The decomposition of the covariance matrix (Equation 3.12) into its main di-
agonals directly relates to the uncertainty in x − y and z direction. Under the assumption of
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fronto-parallel image acquisition the largest singular value σ1 corresponds to the uncertainty in
depth and σ2 and σ3 to the uncertainty in x− y direction, respectively.

We compare the multi-view triangulation result with those of fused pairwise triangulated stereo
pairs which can be regarded as the standard approach in aerial photogrammetry (see Figure 3.13).
Stereo pairs (< P1, P2 >,< P2, P3 > . . . , < Pk−1, Pk >) are selected from consecutive views
< Pi, Pi+1 > for i = 1 . . . k − 1 along the flight path. Each pair is used for triangulation of
k − 1 3D points X<i,i+1> that belong to one and the same point-track m. The mean of this set is
determined representing the fused depth estimate. The covariance ellipsoids corresponding to the
uncertainty of one exemplary 3D point fused from a varying number of stereo pairs is depicted in
Figure 3.13(d). Note, by using more stereo pairs, the uncertainty in depth decreases but overall the
fused stereo result cannot compete with multi-view triangulation/matching (Figure 3.13(c)). For
instance, while the uncertainty of 16 fused stereo pairs gives a depth error σz ≈ 25cm, the multi-
view-triangulation leads to a σz ≈ 5cm. For multi-view triangulation we make two observations.
On the one hand the overall accuracy along each axis clearly decreases with increasing number
of measurements. On the other hand, the roundness r =

σ2
3

σ2
1

increases by adding more views.
While for stereo matching the minimal uncertainty is σz = 12cm in depth and σx,y = 5cm within
the plane, multi-view matching of the aerial dataset leads to a σz = 5cm and σx,y = 1.8cm,
respectively.

3.2.4 Globally Optimal Multi-View Dense Matching

For photogrammetric end-products like ortho-image creation or Digital Surface Model (DSM)
extraction, dense 3D geometry is required. Our solution to dense depth estimation is based on
a multi-view plane sweep approach [Zach et al., 2006a] with global optimization on a 3D voxel
space [Pock et al., 2008].

Plane sweep techniques in computer vision are simple and elegant approaches for image based
reconstruction with multiple views, since image rectification is not required. The 3D space is it-
eratively traversed by parallel planes which are usually aligned with a particular key view (Fig-
ure 3.16). The plane at a certain depth d from the key view induces homographies for all other
views, thus the sensor images are warped to the current plane π = (n>, d). Here, n is the plane
normal and d the current depth hypothesis. The key view is assumed in canonical coordinates
P = K[I | 0] according to the appropriate homography,

H = K ′(R− tn>/d)K−1, (3.13)

which transfers coordinates x from the sensor view to image positions x′ of the key view x′ = Hx.
Here, K is the intrinsic matrix of the key view and R, t is the relative pose of the sensor view
P ′ = K ′[R | t] with respect to the key view. Given two projection matrices P1 = K1[R1 | t1] and
P2 = K2[R2 | t2] the relative pose between P1 and P2 is computed from,

R = R2R
>
1 (3.14)

t = t2 −R2R
>
1 t1 (3.15)
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Figure 3.13: (a) True multi-view triangulation and corresponding covariance ellipsoid (b) for
one 3D point depending on the number of image measurements. Pairwise triangulation (c) and
(d) covariance ellipsoid of pairwise 2.5D stereo fusion.

and the normal vector of the plane n = [0, 0,−1]. If the plane at a certain depth passes exactly
through the surface of the object, the color values from the key view and from the mapped sensor
views should coincide at appropriate positions. By sweeping the plane through the 3D space, a
cost volume is filled with image correlation values that corresponds to the disparity space image
(DSI) in traditional stereo [Seitz et al., 2006].

Initialization

Image-space algorithms usually constrain the maximum disparity range or interval, in which depth
values can occur. Respectively, the extent of scene geometry is determined to lie between a near
and far plane from the camera center of a key view as depicted in Figure 3.14. Minimal and
maximal depth range [znear, zfar] can either be estimated from the sparse scene reconstruction
from SfM or explicitly set to a global value if prior knowledge about the minimum and maximum
scene depth is available, e.g. from a coarse digital surface model. Such a model may be already
available through previous aerial mapping surveys, or alternatively, can be generated by combining
multiple public domain geographic information sources.

The Shuttle Radar Topography Mission (SRTM) [Farr et al., 2007] provides a digital elevation
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Figure 3.14: Volumentric multi-view dense matching. A near and far plane parallel to the image
plane of the reference camera define the bounding volume.

model (DEM) of the Earth at near-global scale, covering about 80% of the Earth’s total landmass.
The dataset is available to the public in 2.5D raster format at 1 arc-sec resolution (SRTM-1, ap-
proximately 30 meters) over the United States and its territories and at 3 arc-seconds resolution
(SRTM-3, approximately 90 meters) for the rest of the world. We combine the DEM with infor-
mation for buildings from freely available 2D vector map data from the OpenStreetMap1 (OSM)
project, which is is a rich source for geographic information. Besides street networks and manifold
points of interest (POIs), the OSM project provides outlines of buildings for many cities around
the world.

Geometry of the initial DSM is represented as a triangulated irregular network (TIN) [Peucker
et al., 1978] of 3D points. Buildings are modeled as polyhedral objects by extruding building
footprints to predefined height values for the maximum expected building height (Figure 3.15).
This may also allow dense reconstruction algorithms to take advantage of already known scene
geometry for applications such as visibility checks and occlusion handling.

In addition to the scene volume extent, a depth sampling ∆d and the number of depth steps
in the volume is chosen such that sub-pixel accurate matching is achieved. The depth step ∆d is
adaptively computed such that the Nyquist criterion [Shannon, 1949] fs > 2 pixel is satisfied for
at least half of all sensor views. This means that for 50% of potential sensor views i, the following
condition must be satisfied,

median (||p(Pi, X(d))− p(Pi, X(d+ ∆d))||) < 0.5 pixel, (3.16)

where X(d) is the point passing trough the center of every tile at depth d, Pi is the projection

1 http://www.openstreetmap.org
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(a)

(b)

(c)

Figure 3.15: Tiling and depth range estimation for one specific key view of the Graz dataset from
sparse points (a),(b) and by DSM approximation from public domain geographic data sources (c).

matrix of view i and p the projection operator. This ensures that sampling artifacts are avoided for
at least 50% of all sensor views.
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Image Correlation

We use normalized cross correlation (NCC) as photo consistency measure for plane sweep cost
computation. The correlation between two signals (cross-correlation) is a robust approach for
dense matching. One advantage of normalized cross correlation (NCC) compared to simpler
methods like the sum of absolute differences (SAD) and sum of squared differences (SSD) is
the invariance to linear intensity changes which often occur in aerial images. Given two intensity
vectors I1 ∈ Rn and I2 ∈ Rn, the normalized cross-correlation is computed by,

ρ =

∑n
k=1(I1(k)− Ī1)(I2(k)− Ī2)√∑n

k=1(I1(k)− Ī1)2
∑n

k=1(I2(k)− Ī2)2
(3.17)

where Ī1, Ī2 are the mean intensities and n is the length of the intensity vector. Note that if
two image patches match perfectly, the normalized cross-correlation value is 1. We use an efficient
implementation proposed by [Nistér et al., 2004],

A =

n∑
i=1

I (3.18)

B =

n∑
i=1

I2 (3.19)

C =
1√

nB −A2
(3.20)

D = < I1, I2 > (3.21)

ρ = (nD −A1A2)C1C2 (3.22)

where the values A,B,C can be precomputed, therefore matching requires only 2n+ 5 multipli-
cations instead of 3n.

Cost Aggregation and Implicit Occlusion Handling

In order to handle occlusion that often occur in a multi-view setup, we use truncated correlation
measures between the key view and the N sensor views,

C(x, d) =
1

N

N∑
i=1

min(dW (I(x), Ii(x, d)), t) (3.23)

where x is the pixel position in the key view I , d the current depth and Ii the respective sensor
view. The image similarity function dW is evaluated in a k × k neighborhood and t is a constant
threshold that accounts for occlusions and outliers.

Since NCC delivers correlation values ρ between [−1 . . . 1], the image similarity score (i.e.
matching costs) is computed using,

dW (I(x), Ii(x, d)) =
1− ρ

2
, (3.24)
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where a perfect correlation value implies zero costs, i.e. dW (I(x), Ii(x, d)) = 0.

Depth Map Extraction

From the 3D cost volume, dense depth maps can be extracted using global optimization methods.
Given a graph with node set V , edges E and a label set L ⊂ Z , an optimal labeling l ∈ LV for the
energy of the form,

min
l

∑
(u,v)∈E

P (l(u)− l(v)) +
∑
v∈V

D(l(v)) (3.25)

where P (l(u)− l(v)) are pairwise potentials and D(l(v)) is the unary term, respectively. Solving
this problem corresponds to a minimal cut on a graph in higher dimensions where labels are
ordered. In [Ishikawa, 2003] a minimum cut algorithm is presented that exactly solves this class
of Markov Random Field (MRF) problem. This problem perfectly fits to dense depth estimation,
where l(v) ∈ L are depth labels, v ∈ V pixels and E describes the connection of pixels. Such
a labeling combines a certain pairwise regularity term P (·) with an arbitrary data term D(·).
In [Pock et al., 2008] a continuous formulation to the discrete multi-label problem of Ishikawa is
given. The corresponding variational problem to Equation (3.25) is,

min
u
{
∫

Ω
|∇u|+

∫
Ω
C(x, u(x))dx}, (3.26)

where u : Ω → Γ is the unknown function and Ω ⊆ R2 is the image domain. Γ = [γmin, γmax]

is the range of u. The left term |∇u| is the total variation (TV) term that allows for sharp discon-
tinuities in the solution while still being a convex function. This is a desired property for dense
matching where edges should be preserved in the solution. The right term of (3.26) is the data term
measuring the matching quality for a given u between the key view and sensor views. The spa-
tial continuous formulation comes along with several advantages over the discrete approach. On
the one hand continuous optimization can be implemented using simple and efficient primal-dual
optimization techniques which can be easily accelerated on parallel architectures such as graph-
ics processing units (GPUs). On the other hand these methods require considerably less memory
which makes the method applicable for large practical problems [Pock et al., 2010].

3.2.5 Dense Matching Results

We perform dense matching for a sub-block of the aerial dataset Graz as shown in Figure 3.11.
For each key view the set of overlapping sensor views is determined. The overlap is computed
from sparse correspondences obtained by the aerial triangulation (see Section 3.2.1). Only images
with an overlap of more than 10% are considered, which means that each key view has about ten
overlapping sensor views. Our dense matching algorithm requires a cost volume of sizeW×H×D
which depends on the image width W and height H of each image and the number of depth
labels D. Since a global cost volume would be too large to fit into GPU memory, the area of
interest has to be divided into tiles (e.g. 512×512). Each tile is processed independently, but with
a sufficient overlap in order to suppress boundary effects. Figure 3.15 shows a 512× 512 tiling of
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Figure 3.16: Volumentric multi-view dense matching. A near and far plane parallel to the image
plane of the reference camera define the bounding volume.

one specific key view. For each tile a minimal and maximal depth range [znear, zfar] based on the
sparse point cloud is estimated.

For our experiments we set the NCC matching window radius to r = 1 pixel and t = 0.5

for the outlier and occlusion threshold in the cost accumulation step. The regularization param-
eter λ = 20 is used in the continuous optimization method. This parameter balances between
data and regularity term and determines the degree of smoothness of the extracted depth maps.
Processing of a cost volume of size 512 × 512 × 128 requires about 1.5 minutes on a Nvidia
GeForce GTX280. Performance metrics and detailed processing timings for dense matching are
summarized in Table 3.4.

Figure 3.17 shows depth maps computed by a local winner takes all (WTA) approach and
the global multi-label optimization. While the WTA approach leads to noisy depth maps due to
matching ambiguities, the global method produces clean results while still preserving sharp edges
at discontinuities. This can be seen from Figure 3.18 that depicts an oblique view of the textured
depth map.

image resolution [pixel] 7500× 11500

tile size [pixel] 512× 512

number of tiles 384
max number of depths [s] 160
matching time per tile [s] 0.076
global optimization time [s] 74
total time per tile [s] ∼ 90

Table 3.4: Performance metrics and timings for processing one high resolution image on a singe
GPU (Nvidia GeForce GTX280) into a dense depth map.
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3.2.6 Conclusion and Discussion

We presented an approach for fully automated triangulation and dense matching from large aerial
images. The method relies on image data only and does not require any external orientation sensor
such as GPS/INS. Hence, the proposed method is very flexible to apply. We present an algorithm
for efficient and fully automated aerial dense matching using a multi-view approach based on
plane-sweep. A global optimization algorithm based on a continuous energy minimization frame-
work delivers globally optimal solutions. We successfully demonstrated that using multi-view
matching techniques highly accurate reconstruction results can be obtained. An aerial survey us-
ing the UltraCamD at flying height 900m with 80% forward overlap and 60% sidelap achieves a
reconstruction accuracy of about 5−20cm in depth and about 2−8cm for in-plane measurements.
From our experiments we conclude that true multi-view matching and triangulation outperforms
two-view stereo approaches by about one order of magnitude in terms of achievable geometric
accuracy.
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(a)

(b)

(c)

Figure 3.17: (a) Key image and depth maps produced by multi-view dense matching using winner
takes all (b) and continuous multi-label optimization (c).
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(a) Jakomini (b) Herrengasse

(c) Opera (d) Friendly Alien

(e) Railway station

Figure 3.18: Oblique point of view of texturized depth maps from landmarks of Graz taken at a
GSD of 10cm.
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3.3 Micro Aerial Vehicles for 3D Reconstruction

In the last few years, advances in material science and control engineering have turned micro
aerial vehicles into cost efficient, flexible and rapidly deployable geodata acquisition platforms.
For instance the micro-drone md4-2001 depicted in Figure 3.19 has the ability for vertical take
off and landing, provides position hold and autonomous way-point navigation and is equipped
with a standard digital consumer camera that can be tilted (up to 90◦) to capture images from
different angles. Due to the low operation altitude a very high resolution in terms of ground
sampling distance can be achieved. At a distance of 10m to the object, MAVs allow a ground
sampling distance that is < 2cm and thus can compete with traditional surveying techniques like
total stations and Differential Global Positioning Systems (DGPS) for the task of land survey
and cadastral map generation. According to [Colomina et al., 2008], MAVs are a new paradigm
for high-resolution low-cost photogrammetry and remote sensing, especially given the fact that
consumer grade digital cameras provide a sufficiently high accuracy for many photogrammetric
tasks [Gruen and Akca, 2008]. The presence of on board navigation, Global Positioning System
(GPS) and Inertial Measurement Units (IMUs) allows MAVs to act as autonomous systems that
fly in the air and sense the environment. The MAV can fly in altitudes of several hundred meters
as well as in short distance to the object of interest. Hence, images can be obtained with much
higher resolution in terms of ground sampling distance than possible by classical airborne large
format digital camera system (e.g. UltraCamXp2) as shown in Figure 3.20.

(a) (b)

Figure 3.19: (a) Micro-drone md4-200 with attached PENTAX Optio A40 (b).

The main advantage of a MAV system acting as a photogrammetric sensor platform over more
traditional manned airborne or terrestrial surveys is the high flexibility that allows image acquisi-
tion from unconventional viewpoints. Consider Figure 3.21: While the camera network in standard
airborne and terrestrial surveys is normally restricted to flight lines or street paths, a MAV system
enables more flexible, e.g. turntable like network configurations, which maximize scene coverage
and allow superior accuracy in terms of triangulation angles. Furthermore, the photogrammetric
network planning task [Chen et al., 2008] can be optimized and adapted to the scene since nearly
any desired viewpoint can be reached.

1 http://www.microdrones.com
2 http://www.microsoft.com/ultracam
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(a) (b)

(c) (d)

Figure 3.20: Comparison of images taken by a large format airborne camera (UltracmXp) with
GSD 15cm at flying height 1000m to images taken by a MAV with a standard digital camera
(Pentax Option A40) with GSD 1cm at flying height 10m.

3.3.1 GPS/INS Supported Matching

Micro Aerial Vehicles (MAVs) equipped with global positioning system and inertial sensors allow
instant geo-referencing of acquired images. In contrast to aerial photogrammetry (see Section 3.2)
where the external pose information can often be directly used for dense matching, the accuracy of
light weight and low cost GPS/IMU sensors on MAVs normally does not reach the required level
of precision for pixel accurate image alignment. However, it delivers a rough estimate of the cam-
era poses and orientations. In this section we present an approach that leverages such imprecise
prior information to speedup structure from motion computation in terms of feature matching and
geometric estimation. We propose a view selection strategy that advances vocabulary tree based
coarse matching by also considering the geometric configuration between weakly oriented images.
Real world experiments are performed using data acquired by a micro aerial vehicle attached with
GPS/INS sensors. Furthermore, in Section 3.3.3 we compare our method to a semi-automatic
orientation approach based on the commercial PhotoModeler1 software and demonstrate superior
performance in terms of automation, accuracy and processing time.

1 http://www.photomodeler.com
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(a)

(b)

(c)

Figure 3.21: Typical camera networks and respective images from aerial (a), terrestrial (b) and (c)
(MAV) survey. MAVs allows flexible image acquisition from unconventional viewpoints that en-
ables a regular sampling of the visual hull of the scene of interest.

Feature Matching

Feature matching of unordered images is often the most time consuming part of a SfM algorithm.
A typical solution to restrict the number of images for detailed feature matching is to use a coarse
matching strategy (Section 2.5) to determine a reduced set of potentially matching image pairs.
However, due to repetitive structure, the result of coarse matching techniques can often be arbi-
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trarily wrong. Images that achieve a high similarity score do not necessarily show the same part
of an environment (e.g. the images shown in Figure 3.22 are visually similar but are taken from
two different buildings). Using global pose information as provided by a GPS/IMU unit, such
ambiguous images can be filtered which further reduces the matching effort. Given the set of im-
ages I = {I1, . . . , In}, associated with approximate knowledge of external pose measurements
G = {G1, . . . , Gn}, we select a subset Vi of potentially matching view pairs.

(a) (b)

Figure 3.22: Visual similar facade images from two different buildings, (a) Museum of Art His-
tory and (b) Museum of Natural History, both located in Vienna.

External Pose Information

The external pose Gi = [ R | t ] is achieved by GPS and IMU, where R is a 3 × 3 rotation
matrix and t a 3-space vector representing camera orientation and translation, respectively. Global
position information is delivered by a standard GPS receiver in the WGS84 coordinate system
which describes a position on earth as longitude, latitude and height. For further processing, the
GPS datum is transformed in the Earth Centered, Earth Fixed (ECEF) coordinate system, which is
a Cartesian system capable of representing reconstructions in global scale. The camera orientation
is described by three angles yaw, pitch, and roll, where the yaw angle is aligned to magnetic north
and the camera down vector points to the earth center. Thus, the external poseGi is composed of a
GPS datum transformed to the ECEF coordinate system and three rotation angles. In conjunction
with the known intrinsic parameter K of the camera, we obtain the full projection matrix P̂i for
each image Ii,

P̂i = KGi = K[ R | t ]. (3.27)

The retrieved projection matrices give a rough estimate of the camera position and orientation that
is used for further processing.
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Figure 3.23: View overlap estimation. In front of camera P̂i, a plane πi is defined with distance
t · S. Ri and Rj are the visible areas of πi in P̂i and P̂j respectively.

View Selection

To identify images that potentially share corresponding points, we select for each image Ii a
set Ti = {T1 . . . Tk} images that achieve a sufficient high probabilistic similarity score (Sec-
tion 2.5.5). Next, images in Ti are filtered according to their GPS/IMU information using a coarse
overlap criterion. If a detailed 3D model of the environment is available, the image overlap can
be easily obtained by projecting and back-projecting the view frustum of view Ii into view Ij .
In case that no model of the environment is present, we can only make weak assumptions on the
maximum scene depth Si that restrict the area observed by an image Ii. For instance, given a
rough Digital Surface Model (DSM) the height above ground can be estimated which limits the
maximal depth range for cameras looking towards the earth-surface (e.g. aerial image surveys).
The Shuttle Radar Topography Mission (SRTM) [Farr et al., 2007] provides a DSM of the Earth
at near-global scale, covering about 80% of the Earth’s total landmass. For terrestrial data (i.e.
horizontal looking cameras) the Si can be fixed to a user defined threshold that is based on the
maximal expected scene size. Furthermore, the maximum scene depth Sij that can be recovered
by an image pair < Ii, Ij > depends on their baseline. We define,

Sij = t · d(Gi, Gj), (3.28)

where d(·, ·) denotes the Euclidean distance and t is factor that determines the required recon-
struction accuracy. Given these constraints, we estimate the maximum scene depth S that can be
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reconstructed by an image pair < Ii, Ij >,

S = min(Sij , Si, Sj). (3.29)

Furthermore, the images must have an overlap. To calculate a coarse overlap criterion Oij , we
define a plane πi that is parallel to image Ii and whose distance to the camera center Gi is S.
Ri and Rj denote the image extend of view Ii and Ij on the plane πi. The image overlap Oij is
computed by,

Oij =
a(Ri ∩Rj)
a(Ri ∪Rj)

, (3.30)

where a(·) returns the area of the projected rectangle. Figure 3.24 illustrates this concept.
Since feature descriptors like SIFT may tolerate only a maximum view angle change of approx.

30◦, we require that the view vector of P̂j and the normal of πi enclose a maximum angle α.
OtherwiseOij is set to zero. An illustration of the overlap calculation is shown in Figure 3.23. For
every image pair < Ii, Ij > with Ij ∈ Ti we compute the overlap Oij . If the overlap is above a
fixed threshold, Ij is inserted into the set Vi which are later used for detailed feature matching.
The first eight images of the set Ti and the set Vi for a sample image are depicted in Figure 3.25.
The corresponding GPS positions are shown in Figure 3.26.

(a) (b)

(c)

Figure 3.24: Computation of image overlap with known scene depth according to Equation (3.30)

3.3.2 View Selection Experiments

We evaluate our view selection approach on real world data acquired by a micro aerial vehicle1

with integrated GPS/IMU sensors. The attached camera system delivers images of resolution
1 AscTec Falcon 8 http://www.asctec.de



3.3. Micro Aerial Vehicles for 3D Reconstruction 99

(a) (b)

(d)

Figure 3.25: Vocabulary tree vs. overlap criterion. The first row shows the first eight images
returned by the vocabulary tree given the query image (a). The second row shows the first eight
images of the filtered vocabulary tree result sorted by their overlap value. The red box depicts
which part of the rectangle Ri is visible in the current image.

Figure 3.26: View selection of a trajectory containing 196 images. Absolute pose information
Gi is provided by a GPS and IMU (colored pyramids indicate camera positions and orientations).
Given a query image Ii (green) results in a set T (blue + red) of images with similar appearance
delivered by the vocabulary tree. Images with an overlap value Oij of at least 50% are depicted in
red.

3968 × 2232, the accuracy of the GPS receiver is about 2m and the relative position precision
approximately 0.5m. We assume that the camera origin and GPS/IMU sensor shares the same 3D
position in space. This is a valid approximation if the distance to the scene is much larger than the
offsets between the individual sensors. Images are acquired at an interval of 3s and a GPS/IMU tag
is stored for each image, the synchronization accuracy between image and GPS/IMU datum is less
than 0.5 seconds. During one flight mission of 10-15 minutes, about 200 images are acquired. For
each input image we use a maximal number of d neighbors from the GPS view selection strategy
(as described in Section 3.3.1) and compute the epipolar graph (we use d = 20). Our view selec-
tion approach reduces the matching effort from O(n2) to O(nd). Compared to exhaustive image
matching that considers ∼ 40000 view pairs, only 4000 matching operations are performed which
gives a ten-fold speedup. Figure 3.27 shows potential matching candidates from a vocabulary tree
approach and matching pairs computed by our proposed geometric view selection criterion.

We use the method described in Section 2.8.1 to initialize camera orientations and 3D points.
Given pairwise relative rotations, this algorithm computes global camera orientations and refines
the orientation of the raw IMU initialized projection matrices P̂i. Next, bundle adjustment is
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(a) (b) (c)

Figure 3.27: (a) Adjacency matrix showing potential matching candidates (dark pixel) between
view i,j from a vocabulary tree scoring and (b) potentially matching image pairs as computed by
our geometric view selection strategy. (c) Epipolar geometries determined by exhaustive image
matching representing the ground truth.

executed to minimize the reprojection error. While the Root Mean Squared Error (RMSE) between
global registered rotation matrices and the final optimized bundle adjustment result is about 0.1◦,
the initial IMU orientation deviates on average more than 10◦. Figure 3.28 shows GPS/INS camera
positions (blue) and respective optimized cameras (red) using image based measurements and
bundle adjustment.

We compare the reconstruction results of our proposed approach to the one obtained by an
incremental structure from motion pipeline. After aligning both results with a robust similarity
transform in a metric coordinate system, the mean as well as the median residual error between
camera centers is about 0.023m. On average, the deviation between the view vectors of the recon-
structed camera positions is 0.03◦, only. Hence our approach is competitive to incremental SfM in
terms of accuracy. Moreover, our proposed approach is computationally more efficient. Table 3.5
gives detailed timings of the algorithm.

While an incremental structure from motion pipeline (e.g. the bundler software1) requires
a repeated call of a bundle adjustment optimizer (with time complexity O(n3), where n is the
number of frames), our proposed algorithm only requires rotation an track initialization and one
single bundle adjustment call.

3.3.3 Accuracy Comparison to PhotoModeler

We performed two test-flights to acquire images for 3D reconstruction of buildings with the micro-
drone md4-200 and an attached PENTAX Optio A40 camera (Figure 3.19). The camera was
precalibrated and the zoom was fixed to a wide angle. The survey was performed by manual
remote control, 615 still images with a resolution of 4000 × 3000 square pixels were captured
from different viewpoints. The acquired images are unordered, since sequential image acquisition

1 http://phototour.cs.washington.edu/bundler/
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Operation time [s]

SIFT (3968× 2232 pixel) 0.4

Coarse Matching 0.05

Matching (5000× 5000) d× 0.044

RANSAC (5-pt, N=2000) d× 0.12

Incremental SfM (200 views) 1800

Our approach (200 views) 190

Table 3.5: Timings for individual processing steps (per image) and comparison to an incremental
structure from motion approach. Note, d reflects the number of considered images for detailed
feature matching and geometric verification.

could not be guaranteed due to flight path restrictions. To determine the quality of the image
based 3D reconstruction from MAV images, eight ground control points were determined using a
total station (with an accuracy of ε ± 1cm, see Figure 3.29). This data is considered as ground
truth and is later used to asses the object space error of the automatic computed structure from
motion results. Images were processed by the reconstruction pipeline described in Chapter 2.
Figure 3.30 shows the epipolar graph and respective reconstruction results from 615 acquired still
images (Figure 3.31).

We compare our fully automatic structure from motion approach to the semi-automatic Pho-
toModeler software (version 6) for the task of exterior image orientation. Since it turns out that
processing hundreds of images is impracticable for a semi-automatic system, we restrict our eval-
uation to a subset of 23 manually selected images from one building facade (corresponding to
reconstruction R1, see Figure 3.32). The processing steps of the PhotoModeler approach include
the semi-automatic measurement of tie and control points, bundle adjustment and fine tuning.
Four different orientation methods were conducted: selfcalibration with constant/variable intrin-
sics and with/without reference point constraints by using fifteen 3D control points, respectively.
All methods give consistent results, on average a reprojection error of 0.5 pixel is reported. A
detailed, quantitative comparison of the PhotoModeler orientation output with results from our
structure from motion pipeline is summarized in Table 3.6. The PhotoModeler software provides
a semi-automatic, incremental approach for structure from motion computation. Image correspon-
dences are established manually, the epipolar geometry guides the correspondence search. Even
though an experienced user performed the PhotoModeler reconstructions, the orientation of a sub-
set of 23 images still requires about eight man hours (and is troublesome and strenuous work).
On the other hand, with our fully automated system, the full set of 615 images can be processed
at once and within a timeframe of 3.5 hours on a standard PC and a single GPU. We achieve
identical results in terms of reprojection error, but with a higher confidence in the solution, since
many more tie points are utilized. Furthermore, the automatic approach is scalable and allows
registration of many more images much faster. For instance, in our pipeline processing one image
takes about 20s, whereas orientation with the PhotoModeler software requires more than 20min
man workload.
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(a)

(b)

(c) (d)

Figure 3.28: (a) Side view and (b) top view of GPS/IMU camera orientations (blue) and adjusted
camera orientations (red) obtained by our global structure from motion approach. (c) Offset of
GPS/INS oriented image (blue lines) to ground truth 3D model (red lines) and (d) photoconsistent
camera orientation by structure from motion.

3.3.4 Object Space Error

The reprojection error is a suitable measure to assess the precision of camera orientations in image
space, but for a practical application, the error in object space is of interest. Therefore, we rely on
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Figure 3.29: Orthographic projection of a building facade with the eight ground truth control
points (red circles) used in our evaluation.

PhotoModeler sfm-approach

# processed views 23 615
# registered views (R1) 23 239

# 3D points 237 58791

avg. # points/image 99 3160
avg. # rays/3D point 10 13

avg. triangulation angle 10◦ 6.7◦

avg. reprojection error 0.458 0.460

processing time [h] 8 3.5

processing time/image [s] 1252 20

Table 3.6: Comparison of the semi-automatic PhotoModeler orientation to our proposed fully-
automatic structure from motion system (sfm-approach), the values correspond to reconstruction
result R1 (see Figure 3.32).

control points measured by a total station to estimate an absolute error measure. The landmarks
are determined at well localized structures, like building corners and junctions (see Figure 3.29).
Thus, image measurements with respect to the corresponding landmark are easy to establish. We
restrict our evaluation to one building facade and eight well localized control points. For each
image we estimate the 2D coordinates belonging to the 3D control point (manually by visual
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Figure 3.30: Epipolar connectivity graph of the whole dataset, clusters in the graph represent a
high degree of geometric connectivity. Three connected components corresponding to disjoint 3D
models are obtained.

inspection) and link the measurements into point tracks. In practice, we only use a subset of
images to measure observations, but ensure that for each control point at least three measurements
are provided and the triangulation angle is sufficiently high (ᾱ > 20◦). Next, we use a linear
triangulation method [Hartley and Zisserman, 2000] followed by bundle-adjustment to triangulate
the measurements into 3D space. To measure the object space error, we computed the 3D similarity
transform between 3D control points and respective triangulated tie points. The alignment can
be computed with a minimal number of three point correspondences, but using more than three
points in a least squares manner will result in a closer alignment. Hence, we use the leave-one-out
cross-validation [Kohavi, 1995] technique to assess the accuracy of our orientation results. We
take seven correspondences to compute the parameters for the similarity transform and use the
remaining point to estimate the object space error ε between observation X and ground truth point
X̂ ,

ε =

√
(Xx − X̂x)2 + (Xy − X̂y)2 + (Xz − X̂z)2. (3.31)

Table 3.7 summarizes our evaluation, the error varies between 0.4 to 5.4cm, overall a RMSE
of 3.2cm is achieved. Note, the reprojection error of the triangulated tie points varies between
1.1 − 2.5 pixel, this is in accordance to the expected uncertainty induced by the manual tie point
extraction. A subpixel accurate measurement of tie points (e.g. 0.5 pixel) would lead to a RMSE
of about 1.5cm which is close to the precision of the total station.
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(a)

(b)

(c)

Figure 3.31: Sample images corresponding to connected component extracted from the epipolar
graph shown in Figure 3.30

.

Point ID 7000 7006 7010 7012 7021 7017 7025 7029
# measurements (images) 3 6 3 3 10 3 10 6
avg. triangulation angle [◦] 107.2 21.9 23.2 23.2 33.4 54.7 69.5 84.6
avg. reprojection error [pixel] 1.18 1.67 2.24 1.63 1.58 1.16 2.44 0.85
object space error [cm] 4.2 0.4 2.5 4.5 0.6 2.8 1.7 5.4

Table 3.7: Reprojection error and object space error determined by leave-one-out cross-validation
for eight ground truth control points.

3.3.5 Conclusion and Discussion

Micro aerial vehicles equipped with digital cameras are flexible platforms for capturing images
for 3D reconstruction. A MAV can fly at altitudes of several hundred meters as well as close to
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(a) (b)

Figure 3.32: Orientation reconstruction R1: (a) perspective view of camera orientations (239) and
respective 3D points (58791) obtained by our automatic structure from motion system. (b) Orien-
tation result obtained by semi-automatic processing using the PhotoModeler software, a subset of
23 manually selected images is used.

the ground. This enables the reconstruction of large areas at a high accuracy in terms of Ground
Sampling Distance (GSD). These platforms are often equipped with global positioning systems
and inertial measurement units that allow rough geo-referencing of respective images. In this sec-
tion we presented a structure from motion algorithm that effectively takes advantage of GPS/IMU
information for matching, view selection and geometric estimation. The main contributions of the
proposed method are (i) a view selection strategy based on global position/orientation information
that limits the matching effort and (ii) a fast and scalable reconstruction approach that relies on
global rotation registration and robust bundle adjustment. We tested our approach on real world
scenarios using data acquired by a MAV. From our experiments we conclude that our approach is
robust, scalable and computationally more efficient than previous methods. The quality of cam-
era orientations and 3D structure is on a par with state-of-the-art SfM approaches. We compared
the orientation results of our fully automatic structure from motion pipeline to a standard, semi-
automatic approach based on the PhotoModeler software. Our system achieves the same accuracy
in terms of reprojection error, but at a higher confidence, since many more tie points are utilized
than in the semi-automatic approach. Furthermore, our method is scalable to larger datasets and
allows much faster image orientation. In our experiments we achieved a speedup of about 60×
over semi-automatic processing with the PhotoModeler software. The achieved accuracy the re-
construction results from our experiments is in the range of the accuracy of current total station
measurements and DGPS.



Chapter 4

Robust Reconstruction by Bayesian
Reasoning

Most existing structure from motion approaches for unordered image collections have problems
if duplicate structures/objects appear in the scene. Examples of such cases are symmetric and re-
peating facades in city environments or multiple instances of (man made) objects. When matching
image pairs containing visually similar but different instances of an object, wrong epipolar ge-
ometries may arise. Conventional structure from motion algorithms [Snavely et al., 2006, Irschara
et al., 2007, Martinec and Pajdla, 2007, Frahm et al., 2010] perform only monotone reasoning on
the epipolar geometry which often leads to catastrophic failures in the reconstruction [Snavely,
2008,Zach et al., 2010,Roberts et al., 2011]. This is especially true when large structures of a cap-
tured scene have similar appearance. For instance, conventional incremental structure from motion
algorithms fail on the castle scene as depicted in Figure 4.1 due to the large repetitions of similar
structure. The algorithm delivers folded ghost structures caused by the wrong data association (see
Figure 4.2(b),(c)) .

In this Chapter we describe an algorithm for non monotone reasoning about view triplets
which enables to identify epipolar geometries that are caused by scene repetitions. After detec-
tion and exclusion of wrong geometric relations, a consistent 3D model can be obtained (see
Figure 4.2(d)(e)).

Figure 4.1: Belvedere Castle showing symmetric scene structure.

107
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(a)

(b) (c)

(d) (e)

Figure 4.2: (a) Sample images from the Belvedere dataset. The identical structures in the scene
result in a folded reconstruction (b) (c). The red structure is mistakenly reconstructed due to
the duplicate scene structure. (d) (e) Geometrically consistent model obtained by our proposed
approach.

Let us consider the somewhat artificial, but nevertheless illustrative example depicted in Fig-
ure 4.3(a): there is a substantial number of correspondences between the two views established
on the common object appearing in both scenes, but the overall scenery is clearly different and
the hypothesized epipolar geometry (EG) between these two views is obviously wrong. Note, that
from a geometric viewpoint we do not know the depth of the background, and the obtained EG
indicated by the correspondences might be indeed right. Rejecting the EG solely on the basis
of two views can be done by incorporating a prior assumption on the depths found in the scene.
Such assumption limits the epipolar search from an infinite corresponding line to a bounded line
segment. Alternatively, a higher understanding of the captured scene e.g. by estimating depths
from monocular cues [Torralba and Oliva, 2002, Saxena et al., 2005] will allow reasoning about
the validity of the hypothesized EG.
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(a) V1 ↔ V3 (b) V2 ↔ V3 (c) V1 ↔ V2

Figure 4.3: Correspondences found for a view triplet (V1, V2, V3).

We follow an approach that takes a different route not requiring scene understanding or strong
assumptions on the scene depths. Imagine, there is a third image available, which has a correct
EG with one of the originally provided views. As indicated in Figure 4.3(b) and (c), there is
again significant evidence for EGs between all three images. Nevertheless, the first and the sec-
ond view share more and spatially better distributed correspondences. Under the assumption of
correct EGs between all view pairs (and the correctness of the relative poses between the views)
there is a substantial amount of correspondences found between the first and the second view not
appearing in the predicted position in the third view. These “missing correspondences” provide
a strong evidence, that there is something wrong with the EG between the first and the second
view. Note, that the underlying reasoning is only performed on geometric relationships between
multiple views. Figure 4.4 shows camera poses and respective 3D models of incorrectly merged
views and the correctly separated models using our proposed approach.

This kind of reasoning about correct and false image relationships from additionally provided
images is useful, if the target application is to obtain 3D models by a vision based structure from
motion approach. Our goal is to augment a 3D reconstruction pipeline with the ability to detect and
to recover previously incorrectly established EGs between images. Hence we propose a method
to detect incorrect EGs that arise due ambiguous objects. The proposed approach enables the
seamless integration of non-monotone reasoning into structure from motion computation. Therein
it is different from almost all visual modeling approaches proposed so far.

This chapter is organized as follows: Section 4.1 outlines relevant earlier work. Section 4.2
describes our approach to detect implausible two view geometries. The remaining two view re-
lations are collected to constitute consistent reconstructions as described in Section 4.3. The 3D
structure and motion computation for individual reconstruction is briefly sketched in Section 4.4,
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(a) Incorrectly merged model

(b) Individual model #1 (c) Individual model #2

Figure 4.4: Generated 3D models by found correspondences only (a), and correctly separated
models obtained by our proposed method (b) and (c).

and Section 4.5 depicts experimental validations. Finally, Section 4.6 summarizes this work and
indicates future research directions.

4.1 Related Work

In [Martinec and Pajdla, 2006] a system to upgrade relative poses computed for image pairs to a
full 3D reconstruction is proposed. The authors introduced the notions of importance and relia-
bility of epipolar geometries between two images. The importance of an EG estimates the impact
of the particular EG on the overall 3D geometry, whereas the reliability indicates the certainty
about the EG. In their subsequent work [Martinec and Pajdla, 2007] the separation of rotation reg-
istration and translation registration is made more explicit, and their approach was substantially
accelerated by considering only appropriately selected 3D points. Identification and removal of
non-existent epipolar geometries is explicitly considered, but only by detecting image pairs with
large error residua. We suppose that incorrect EG as depicted in Figure 4.3 still remain unnoticed.
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The approach presented in [Steele and Egbert, 2006] shares several features with our proposed
one: utilization of camera adjancency graphs and minimum spanning trees (MST), and the explicit
validation step for camera poses. The camera adjacency graph is initially created by estimating
the image similarities using a histogram measure. During MST construction the induced camera
poses are verified by comparing dense depth maps. This is in contrast to our approach, where we
first verify epipolar geometries using potential view triplets, and perform the MST construction
step afterwards.

Schindler et al. [Schindler et al., 2007b] employ reasoning about missing (respectively invis-
ible) feature matches to infer the temporal ordering of an unordered collection of images. Valid
orderings of the images are those not violating a continuity constraint on the observed features.
Thus, the main task is to solve a constraint satisfaction problem (CSP) in order to infer a suit-
able temporal ordering. The intractability of global CSP approaches is addressed by a greedy and
local algorithm. Note that this approach is currently not fully automated: feature detection and
matching is performed by a human operator.

Predicting correspondences in order to refine matches in a wide-baseline multiple view frame-
work is part of the approach described in [Ferrari et al., 2003]. The aimed transitivity of matching
relations guides the matching procedure, thus increasing the number of correspondences found in
multiple views.

Using view triplets for structure and motion computation is well established, e.g. by utiliz-
ing the trifocal tensor [Hartley, 1995]. In [Beardsley et al., 1996] triplets are used to determine
structure and motion for image sequences using a robust approach for trifocal tensor computa-
tion. In [Fitzgibbon and Zisserman, 1998], this idea is extended further to merge overlapping and
consecutive image triplets into longer subsequences using a hierarchical approach. The implicit
assumption, that three consecutive views are good candidates for trifocal tensor estimation, was
relaxed in [Nistér, 2000], where “wide tensors” spanning between appropriate keyframes are em-
ployed. Since we assume calibrated cameras, and in order to avoid special handling of dominant
planar scenes we utilize the five-point method [Nistér, 2004] in conjuction with robust rotation and
translation registration.

Explicit Bayesian reasoning for 3D reconstruction is typically encountered in two very differ-
ent topics: most prominently, dense stereo computation incorporating a smooth shape prior has
its roots in the Bayesian formulation of the dense stereo problem [Geiger et al., 1995, Belhumeur,
1996, Sun et al., 2003], where it naturally leads to Markov random field approaches. Moreover,
probabilistic methods are employed for least-squared model estimation and selection in multiple
view geometry [Torr, 2002, Pollefeys et al., 2002].

Enforcing consistency of geometric relations by chaining transformations over cycles along a
loop in a graph of epipolar geometries is described in [Zach et al., 2010]. Large deviations between
chained and actually observed transformations indicate conflicting edges among the involved re-
lations. The proposed method uses a Bayesian network to infer the most likely set of incorrect
transformations in the graph. Recently, [Roberts et al., 2011] proposed an approach that includes
temporal inference to remove erroneous match pairs which can occur when different structure in-
stances are matched based on visual similarity. This concept is related to the work of [Schindler
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and Dellaert, 2010] where temporal inference on structure from motion reconstructions is per-
formed.

4.2 Reasoning About View Triplets

Recent work in 3D reconstruction has shown that structure from motion based on reasoning about
view triplets [Fitzgibbon and Zisserman, 1998, Havlena et al., 2009] in general is more robust
against false feature matches than monotone reasoning on pairwise epipolar relations. In [Klop-
schitz et al., 2010] we have demonstrated that implicit loop closing using correspondence infor-
mation from locally matched image triplets is more robust than reliance on the global structure.
Given a set of pairwise correspondences for input images, considering correspondences merged
into image triplets reduces the number of outliers considerably. However, previous approaches do
not directly address the data association problem. We propose to resolve these ambiguities using
features that are matched between two images but not detected in a third image. Consider an image
triplet (Vi, Vj , Vk), under the assumption that the geometric relations between two views is con-
sistent, a large fraction of image features matched between two images (Vi, Vj) must be regained
in a third view Vk. On the other hand, if features between (Vi, Vj) are not observed in a third one,
it is likely that the third image observes a different instance. The concept is depicted in Figure 4.5.
We formulate the problem as a probabilistic graphical model which enables us to detect incorrect
two view geometries by reasoning about missing correspondences retrieved from image triplets.

4.2.1 Basic Formulation

Let V be a set of views V = {V1, . . . Vn}. We denote the event that two particular views Vi and Vj
are related by a visually observable epipolar geometry by Vi ∧ Vj . We will denote Vi ∧ Vj = 1,
if there is a true epipolar relationship between these views, and Vi ∧ Vj = 0 otherwise. Establish-
ing or rejecting this hypothesis is based on image observations and correspondence search. Let
C+
ij denote the set of robustly determined inliers of the potential image correspondences between

Vi and Vj , e.g. by using a RANSAC [Fischler and Bolles, 1981] approach. We do not aim on
predicting the exact positions of the inliers, hence we rather focus on the number of observed cor-
respondences, N+

ij := |C+
ij |. Assume, we can estimate the prior probability P (N+

ij |Vi ∧ Vj) that
we observe those correspondences under the assumption of Vi ∧ Vj (either 0 or 1). Now, let us
look at view triplets (Vi, Vj , Vk): First, we use the abbreviation Vi ∧ Vj ∧ Vk = 1 for Vi ∧ Vj = 1,
Vi ∧ Vk = 1 and Vj ∧ Vk = 1, and Vi ∧ Vj ∧ Vk = 0 if any EG in this triplet is wrong. Under the
premise of Vi ∧ Vj ∧ Vk = 1 (i.e. (Vi, Vj , Vk) forms a visually well-founded view triplet), we can
take correspondences between e.g. Vi and Vj , and we expect to find the respective features again
in Vk (since Vi ∧ Vj ∧ Vk is assumed to be true). Examining regained features in Vk would only
strengthen the belief in Vi ∧ Vj ∧ Vk = 1. More interesting are those correspondences between Vi
and Vj which are not found in Vk. Observing many of these missing features consequently reduces
the belief in Vi ∧ Vj ∧ Vk = 1. Denote the correspondences between Vi and Vj not detected in Vk
by C−ij→k. Again, we assume that the prior probability P (N−ij→k|Vi ∧ Vj ∧ Vk) can be estimated
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(b) Consistent Triplet

Figure 4.5: (a) Consistent epipolar relations between views (V1, V2), (V2, V3), (V1, V3) but sub-
stantial amount of missing correspondences within the triplet. Our algorithm is able to detect such
configurations and to reject inconsistent epipolar geometries. (b) Example of a plausible/consis-
tent triplet configuration according to our quality criterion.

(where N−ij→k = |C−ij→k|). For simplicity, and because the third view Vk truly adds information
to the view pair (Vi, Vj), we assume that the observable events N+

ij for all i and j, and N−ij→k are
pairwise independent. Of course, N+

ij depends on the hidden variable Vi ∧ Vj , but not on the truth
of epipolar geometries between other views. Likewise, N−ij→k only depends on the three latent
variables Vi ∧ Vj , Vi ∧ Vk and Vj ∧ Vk constituting this view triplet.

These assumptions on the statistical independence result in a directed graphical model as de-
picted in Figure 4.6. Of course, the belief network can be extended to cover all view triplets. We
do not examine this approach further for the following reasons:

• Firstly, the undirected belief network after normalization results in a loopy graph, hence
exact inference is expensive. The mutually recursive dependence of the latent variables
Vi ∧ Vj on the other variables Vi ∧ Vk and Vj ∧ Vk in the same triplet is apparent, since e.g.
the belief in Vi ∧ Vk depends and influences the belief in Vi ∧ Vj .

• Secondly, we aim for a primarily incremental 3D reconstruction pipeline. Performing a full
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N−jk→iN−ik→jN−ij→k

Vi ∧ Vj Vi ∧ Vk Vj ∧ Vk

N+
ij N+

ik N+
jk

Figure 4.6: The Bayesian network for view triplet reasoning.

global reasoning after insertion of a new image would undo the advantages of an incremental
approach.

Since we have only three binary hidden variables for a view triplet, we can perform the probabilis-
tic inference efficiently by explicit calculation of the posterior probabilities. Given the observation
of the actual number of epipolar correspondences N+

ij and the missing features N−ij→k for all per-
mutations of i, j and k, we phrase the joint probability density pdf according to the belief network
in Figure 4.6:

pdf({Vi ∧ Vj}, {N+}, {N−}) =∏
(i,j)∈{(1,2)(1,3)(2,3)}

P (Vi ∧ Vj)

∏
(i,j)∈{(1,2)(1,3)(2,3)}

P
(
N+
ij |Vi ∧ Vj

)
(4.1)

∏
(i,j)∈{(1,2)(1,3)(2,3)}

P
(
N−ij→k|Vi ∧ Vj ∧ Vk

)
.

The posterior probabilities P ({Vi ∧ Vj}|{N+}, {N−}) can be directly computed from the
joint density pdf .

The posterior distribution provides additional information on the confidence of the most likely
hypothesis. If all EGs in a view triplet are accepted (i.e. Vi ∧ Vj ∧ Vk = 1), then the ratio

P (Vi ∧ Vj ∧ Vk = 1|{N+}, {N−})
maxP (Vi ∧ Vj = 0, Vi ∧ Vk, Vj ∧ Vk|{N+}, {N−})

, (4.2)

assesses the confidence in that decision with respect to a particular EG Vi ∧ Vj . We use the loga-
rithm of that ratio as the actual confidence value for Vi ∧ Vj with respect to the triplet (Vi, Vj , Vk).
The overall confidence of an EG participating in several view triplets is the minimum of those
confidences. These values are later used as edge weights of the camera adjacency graph during
the generation of the individual reconstructions (see Section 4.3).
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4.2.2 Choice of Prior Probabilities

Basically, each of the latent variables Vi ∧ Vj , Vi ∧ Vk and Vj ∧ Vk can take either 0 or 1, resulting
in 8 possible configurations. It turns out, that only four of those configurations are plausible: the
case, that all epipolar geometries are discarded can be excluded, since it needs a likely EG between
two views to verify the third one using the proposed reasoning. Likewise, the case that exactly one
EG is rejected, is not plausible either, since such configuration would require very specific camera
poses and image content. Consequently, these undesirable configuration can be easily excluded by
setting the prior probability of those cases to zero. We consider the remaining four configurations
as equally likely.

Positive Support from Pairwise Correspondences

This section describes the utilized choice for the prior probabilities. We employ point features to
establish correspondences between images. In particular, DoG points with associated SIFT feature
vectors [Lowe, 2004] are extracted from the supplied images. LetNi andNj denote the number of
feature points detected in view Vi and Vj , respectively. If we presume, that (Vi, Vj) forms a visu-
ally related image pair (in terms of epipolar geometry), one can expect to recover a certain fraction
of the features in Vi and Vj as correspondences. In order to obtain a symmetric model, we merge
the features from Vi and Vj yieldingNi+Nj items. The expected number of correspondencesN+

ij

is now “close” to (Ni + Nj)/2 (since one correspondence represents two detected features). Of
course, it is unlikely to find correspondences for all feature points. The repeatability of the feature
point detector, image content overlap, occlusions due to the scene structure, perspective distortion
etc. influences the number of recovered correspondences. We simply accumulate these effects into
one probability p1, which is the likelihood of regaining a feature extracted in one view in the other
view under the assumption Vi ∧ Vj = 1. Hence, recovering N+

ij correspondences from Ni + Nj

features points is modeled by a binomial distribution with parameters Nij := (Ni + Nj)/2 and
p1:

N+
ij ∼ B(Nij , p1) if Vi ∧ Vj = 1.

If the two images Vi and Vj are visually unrelated (i.e. Vi∧Vj = 0), finding correspondences is just
coincidental. We denote the probability of finding an incidental correspondence by p0. Again, the
observed number of correspondences in this case can be approximately modeled using a binomial
distribution, but now with a much lower success probability p0 � p1:

N+
ij ∼ B(Nij , p0) if Vi ∧ Vj = 0.

Figure 4.7 shows the binomial probability density function Nij ∼ B(Nij , p1) with parameters
Nij = {100, 200, 300, 400, 500, 600} and p1 = 0.1.

Negative Belief from Missing Correspondences

This section addresses the estimation of P (C−ij→k|Vi ∧ Vj). Note, that the role of the single
views in a triplet is not symmetric: P (C−ij→k|Vi ∧ Vj) is different from P (C−ik→j |Vi ∧ Vk) and
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Figure 4.7: Binomial probability density function Nij ∼ B(Nij , p1) with parameters Nij =

{100, 200, 300, 400, 500, 600} and p1 = 0.1.

P (C−jk→i|Vj ∧ Vk).

Let C+
ij denote the correspondences between view i and j, and let Nij be the number of

triangulated points from C+
ij lying inside the view frustum of Vk (i.e. actually visible in view Vk).

Furthermore, Nijk is the number of inlier correspondences across the whole triplet. As in the
pairwise case, we expectNijk not to be much smaller thanNij , if Vi∧Vj∧Vk = 1. One might use
a binomial distribution again as described in the previous section for view pairs. But note that the
considered view triplets already has some support from the correspondences over all three views,
i.e. some image content is common in all three views. Hence, the binomial distribution parameters
q1 (in the case Vi∧Vj∧Vk = 1) and q0 (if Vi∧Vj∧Vk = 0) are less distinct than the values p1 and
p0 used for the pair prior, and the appropriate choice is rather critical. Therefore, we approximate
the distribution of N−ij→k by a Poisson distribution:

N−ij→k ∼ Pois(λ1) if Vi ∧ Vj ∧ Vk = 1 (4.3)

N−ij→k ∼ Pois(λ0) if Vi ∧ Vj ∧ Vk = 0, (4.4)

with λ1 � λ0.

(or alternativelyNijk ∼ B(Nij , 1−q1)). On the other hand, if any of the assumptions Vi∧Vj ,
Vi ∧ Vk or Vj ∧ Vk is not satisfied, finding any correspondences between Vi and Vj in the third
view Vk is purely incidental, hence

Nij −Nijk ∼ B(Nij , q0) if Vi ∧ Vj ∧ Vk = 0, (4.5)

for q0 close to one.
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4.2.3 Practical Considerations

In the discussion above we considered only the number of found or missing correspondences. The
distribution of point features (or missing ones) in a particular image gives an additional cue about
the prior probabilities. Consider two view pairs as depicted in Figure 4.8. The first image pair
in Figure 4.8(a) (having a true underlying epipolar relation) not only has more correspondences,
but these are better distributed over the image. Figure 4.8(b) shows the correspondences for a
false epipolar view pair, where the correspondences are spatially concentrated on the “repetitive”
scene content. A low number of found correspondences may indicate a false epipolar geometry or
may be the result of little image structure. In order to partially disambiguate these possibilities, we
replace the raw number of features by an effective quantity computed as described in Section 2.7.2.

(a) Good distribution (b) Concentrated distribution

Figure 4.8: Two correspondence distribution. In (a) the detected correspondences are better dis-
tributed over the image than in (b).

In practical experiments it turned out, that the relatively strong assumption on the detector
repeatability yields to wrong rejections of true EGs. Particularly, the repeatability of the employed
DoG points is low if there are substantial scale changes between the images. These incorrectly de-
tected missing correspondences can be identified, since they are typically interspersed with found
correspondences. Hence, missing correspondences are suppressed, if a found correspondence is
spatially close.

4.3 Grouping of EGs

In the last section we described, how pairwise epipolar geometries are verified using a third view. It
is not sufficient to collect those triplets containing only accepted pairs directly, since false epipolar
geometries may still be included through undetected false epipolar pairs. Epipolar geometries are
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typically rejected only if there is a sufficiently strong indication for rejection. Hence, rejecting
EGs is not a transitive operation.

The procedure to combine correct EGs is based on view triplets and performs several steps.
First, all view triplets containing a rejected view pair are discarded. Afterwards, view triplets
sharing a common view pair are collected to constitute individual reconstructions as shown in
Figure 4.9(a). Next a graph GT is constructed having view triplets as nodes. From this graph,
connected components [Hopcroft and Tarjan, 1973] are extracted, each connected component will
result in a 3D reconstruction. The concept is visualized in Figure 4.9(a).

Edges between nodes are present in this graph, if the respective view triplets have a view
pair in common. Each of these resulting reconstructions can be easily registered into a common
coordinate frame (see Section 4.4), but these reconstructions may still connect unrelated views.
By adding a new image several new view triplets may be generated and the following procedure
(and the steps outlined in Section 4.4) needs to be applied on the affected components.
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Figure 4.9: (a)Triplet enumeration. This example shows how a MST is used to enumerate image
triplets. The MST consists of 6 cameras C1...C6 and 5 triplet candidates. (b) Triplet Graph. Each
node in this graph represents a reconstructed image triplet. Common views of the reconstructed
image triplets are used to determine the connectivity in this trifocal graph GT .

A reconstruction containing the views V1, . . . , Vn naturally induces an undirected camera ad-
jacency graph with the edges being the verified two-view geometries (e.g. [Steele and Egbert,
2006]). We designate such a graph as consistent, if there is no path from Vi to Vj for any rejected
EG between Vi and Vj , i.e. Vi ∧ Vj = 0 implies that Vi and Vj are in different components. This
definition of consistency is quite conservative, since views with incorrect EGs might be correctly
part of the same reconstruction. In the current framework this definition of consistency potentially
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results in too many small individual reconstructions, but none of these will include a rejected EG.
Splitting an inconsistent graph into several consistent subgraphs is performed using a modified

version of Kruskal’s algorithm for minimum spanning tree computation. Essentially, we extent the
test for cycle prevention with additional checks for consistency. Two disjoint sets (i.e. individual
reconstructions) are not merged, if this would yield an inconsistent tree (see Algorithm 3). The
employed edge weights are just the EG confidence values calculated from the posterior probabili-
ties (recall Section 4.2), thus highly reliable view pairs are merged first. Of course, our algorithm
delivers a forest instead of a spanning tree.

Algorithm 3: Modified Kruskal’s method
Procedure F = Modified MST
Input: A potentially inconsistent weighted graph G = (V,E)

F := ∅; ∀i : MAKE-SET(DS, i)

for each edge (i, j) ∈ E in order of nonincreasing weight do
ri ←FIND-SET(DS, i); rj ←FIND-SET(DS, j)

if ri 6= rj and
∀k ∈ SET(DS, i), ∀l ∈ SET(DS, j): Vk ∧ Vl = 1 then
UNION-SET(DS, i, j)

F ← F ∪ (i, j)

end if
end for

4.4 3D Structure Extraction

After the verified pairwise epipolar geometries are collected into a set of consistent reconstruc-
tions, the initial structure and motion remains to be determined. Currently, we follow an approach
inspired by [Martinec and Pajdla, 2007] to obtain the extrinsic camera parameters, which relies
only on the robustly estimated relative poses. If a newly added image does not change the topol-
ogy of the EGs (i.e. two or more reconstructions are not merged and no additional EG is rejected),
an initial estimate of its pose and respective 3D points can be immediately determined (e.g. by
perspective pose computation). In all other cases the structure and motion parameters of affected
individual reconstructions are determined as follows:

First, the given relative rotations {Rij} between two views are upgraded into a consistent set of
rotations {Ri} by solving the overdetermined system of equations, Rj = Rij Ri [Govindu, 2004].
As described in [Martinec and Pajdla, 2007] we solve the system initially for approximate rota-
tion matrices and subsequently enforce the orthonormality of Ri using the SVD. Implementation
details are discussed in Section 2.8.1. The registered translations are computed using a two-step
procedure in order to always obtain physically meaningful results. At first, the global scales are
determined using a linear approach. Separating scale and translation estimation has the advantage,
that positive scales can be easily enforced.
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With the knowledge of the registered rotations and scales, the coordinate frames of view
triplets differ only by translational offsets, which are determined linearly as well. Algebraic least
squares solutions for the offsets and the camera centers are obtained using the respective normal
equation. The initial 3D structure is created by linear triangulation of the inlier correspondences.
Finally, a metric bundle adjustment is applied (see Section 2.9).

At first, the scales of all triplets are linearly determined: if two view triplets k and l with
common views i and j are given, the global scales sk and sl fulfill,

sk‖Cki − Ckj ‖ − sl‖C li − C lj‖ = 0, (4.6)

where C(·)
(·) are the camera centers in the coordinate frame of the respective view triplet. The

resulting equation system for the s(·) is large, but sparse and can be solved by the SVD.
With the knowledge of the registered rotations and scales, the coordinate frames of view

triplets differ only by an translational offset (denoted by T k for view triplet k). Hence, the regis-
tered camera centers C(·) and the translational offsets must satisfy,

Ci = Cki + T k for all cameras i and triplets k. (4.7)

Algebraic least squares solutions for C(·) and T (·) are obtained using the respective normal equa-
tion. Since the x, y and z-components are independent, the size of the equation system can be
substantially reduced by solving for each component separately.

4.5 Experimental Results

This section provides additional real-world examples, where incorporating the proposed approach
employing missing correspondences results in substantially enhanced reconstructions. In these
experiments the basic probability parameters (p0, p1, λ0, λ1) are set to (0.001, 0.1, 0.95, 0.2), re-
spectively. Figures 4.11(a) and (b) depict example views of highly similar, but nevertheless differ-
ent facades. Without the incorporation of our proposed method all views are incorrectly combined
into one common reconstruction. Enabling the rejection of two view geometries results in splitted
3D models as illustrated in Figure 4.11(c) and (d). The second example is an indoor environment
with two very similar fire extinguishers appearing in the images (Figure 4.12(a)–(c)). This com-
mon object acts as an “visual anchor” linking all views into a common frame (Figure 4.12(d)).
Separation of individual reconstructions is not perfect in this case, since a few images actually be-
longing to scenery depicted in Figure 4.12(c) are attached to the middle one. This example shows,
that a sufficient number of absent features is required for perfect reasoning.

Note that the purpose of these examples is to provide evidence, that incorrect EGs can be
detected and handled even with very limited and visually misleading image data.

4.6 Conclusion and Discussion

In this chapter we proposed an approach for structure from motion computation that is able to
detect incorrect two view geometries by reasoning about missing correspondences retrieved from



4.6. Conclusion and Discussion 121

(a) (b) (c)

Figure 4.10: (a) Epipolar Graph with respect to the Opera image collections. Red edges are
rejected epipolar geometries from Bayesian Reasoning. (b), (c) extracted connected components
from the triplet graph GT .

view triplets. Such wrong two view epipolar geometries often occur in scenes with duplicate
structure instances, such as man made objects and buildings. Traditional reconstruction pipelines
that only perform monotone reasoning on the epipolar geometry are often not able to handle/detect
such cases and lead to wrong reconstructions like folded/duplicate structures. Our algorithm is able
to infer and remove such erroneous match pairs. The method can be used to augment existing 3D
reconstruction systems with little additional costs. Furthermore, our proposed approach naturally
fits into incremental systems for online 3D reconstruction. Recent work in structure from motion
for duplicate scenes [Zach et al., 2010,Roberts et al., 2011] demonstrate that for scenes with large
duplicate structures pure geometric reasoning alone is often not sufficient to disambiguate between
multiple hypotheses. In [Roberts et al., 2011] the missing correspondence cue is combined with an
image timestamp cue. While the first cue performs geometric reasoning, the second cue relies on
causality. If a single photographer captures a scene, approximate sequence information is provided
which means that pairwise matches relatively close in time are less likely to be erroneous than
those far in time.
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(a) (b)

(c)

(d) (e)

Figure 4.11: (a)–(b) Source images showing symmetric facades representing opposite sides of
the building (23 in total). Small panoramas are used to capture the full height. (c) The 3D re-
construction obtained without EG verification incorrectly merges all views. (d)–(e) Two separate
reconstructions obtained by our proposed approach.
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(a) (b) (c)

(d)

(e) (f) (g)

Figure 4.12: (a)–(c) Source images showing the same kind of fire extinguisher at different places
(out of 24). (d) Incorrectly fused result of structure and motion without EG verification. (e)–(g)
The three individual components obtained by our method. The separation between (f) and (g) is
not perfect due to insufficient background structure.
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Chapter 5

Image based Localization

Despite tremendous progress in image retrieval [Nistér and Stewenius, 2006, Chum et al., 2009]
and matching [Sivic and Zisserman, 2003], the demand for image based location recognition has
not been satisfied. Our proposed approach to this problem leverages the recent progress of 3D
scene reconstruction from images/videos [Pollefeys et al., 2008, Snavely et al., 2006, Li et al.,
2008, Agarwal et al., 2009, Frahm et al., 2010] for building a superior location recognition sys-
tem. Both research areas have independently made enormous progress in the last decade. Our
proposed approach employs the fact that the obtained 3D models allow to impose stronger geo-
metric constraints on possible scene views than traditional image based methods. These geometric
constraints are mostly orthogonal to the image based constraints and deliver the pose for the query
image directly. Accordingly, we can also utilize the significant progress in image based recognition
that occurred over the past decade leading to near real-time image retrieval [Nistér and Stewenius,
2006] from huge databases containing millions of images. Our proposed approach combines these
two disciplines and uses their state-of-the-art techniques to advance location recognition. The core
component of our system is a compressed scene representation that consists of a representative set
of 3D point fragments that cover a 3D scene from arbitrary view points. Additionally, we build
upon recent advances in image retrieval and use a vocabulary tree data structure as described in
Section 2.5.1 for fast feature indexing. A subsequent matching approach and geometric verifi-
cation directly delivers the pose of the current query image with respect to the reconstructed 3D
models. Our proposed workflow for efficient view registration is shown in Figure 5.1.

Previous approaches for view registration where either based on matching an input image to
a small 3D point cloud [Skrypnyk and Lowe, 2004b] or to a large set of geo-registered reference
images [Schindler et al., 2007a]. However, matching a query image to a large set of millions of
3D features is not feasible because of computation time (see Table 2.2) and the high background
noise that leads to many ambiguous matches. On the other hand, location recognition approaches
using image retrieval techniques are fast and efficient but require that database images are suffi-
ciently similar to the query view [Sivic and Zisserman, 2003]. While localization of images that
are sufficiently close to the original ones work well, matching of images from viewpoints that are
beyond original camera positions is more challenging. To overcome this limitation, we introduce

125
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Figure 5.1: Registration of video frames with respect to a sparse 3D scene, reconstructed by
structure from motion techniques. Each input image is individually matched and registered to a
global database of multiple 3D models.

the concept of synthetic views that additionally partition the 3D model into small fragments of 3D
points as described in Section 5.1.2. This strategy allows efficient registration of images of signif-
icantly different viewpoints than the original views used for model reconstruction. Additionally,
we propose a compressed 3D scene representation [Simon et al., 2007] which improves recogni-
tion rates while simultaneously reducing the computation time and the memory consumption. The
design of our method is based on algorithms that efficiently utilize modern graphics processing
units to deliver real-time performance for view registration. Our algorithm is scalable and runs at
15 fps on current GPU accelerated desktop computers. In Chapter 6 three different applications of
the proposed approach are presented.

5.1 3D Scene Representation

This section describes the compact representation of a 3D model (or a set of models) that we use
to register new query images. Naturally, the underlying 3D models are created from images using
multiple-view vision methods as described in the previous chapters. A set of images registered to
the 3D model is always required in order to retrieve the necessary image features and associated
descriptors for the 3D points of the model. Since we employ point features in the query image,
only a sparse point cloud with associated 3D descriptors is required. Hence, we can omit the costly
dense geometry generation for our purpose.
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5.1.1 Visual Landmark

In order to generate a 3D visual landmark with associated feature descriptors, any robust multi
view reconstruction method can be used. In addition to texture information from the images,
structure from motion techniques provide sparse 3D geometry that is used to determine an exact
6DOF pose from 2D-to-3D point correspondences. We utilize the very effective SIFT keypoint
detector and descriptor [Lowe, 2004] as the primary tool to represent point features. Note, our ap-
proach is not restricted to SIFT, any other robust scale invariant feature detector/descriptor would
also be suitable. Every 3D point X in the resulting sparse model has a set of associated image
features d ∈ D. In addition every reconstructed 3D point has an associated scale S induced by
the keypoint detector. Under the fronto-parallel surface assumption, the scale s found in the image
can be extrapolated to a global 3D scale,

S =
sd

f
(5.1)

where f is the focal length of the camera and d the point depth. In practice an average scale over
all projections is used to describe the size of a 3D point. Furthermore, each descriptors has a
directional component v, that corresponds to the view vector of the respective camera. A 3D point
therefore is represented by,

X = {< x, y, z >, S, {< d1,v1 > ... < dn,vn >}} (5.2)

where < x, y, z > is the 3D location of the feature point, S the scale and {< d1,v1 > ... <

dn,vn >} the set of view dependent descriptors. An illustrative example of a 3D feature point is
shown in Figure 5.2. The list of descriptors can be very long for highly stable 3D points, i.e. points
visible and matchable in many source images. Figure 5.3 depicts image patches (corresponding
to SIFT descriptors) that belong to the same triangulated 3D point. Typically, the descriptor list
D for such points shows high redundancy and can be compressed to a small codebook P ⊂ D
without loss in registration performance. The objective here is to vector quantize the descriptors
into a reduced set of clusters that represent the scene. Therefore, lowering the memory footprint
of the 3D representation. Furthermore, the reduced number of descriptors makes feature match-
ing more efficient. In particular we apply mean-shift clustering [Comaniciu and Meer, 2002] to
quantize SIFT descriptors belonging to each 3D point, though other methods (K-medoids, his-
togram binning, etc) are certainly possible, too. Figure 5.3 depicts image patches (corresponding
to SIFT descriptors) that belong to the same triangulated 3D point and the respective clustering
result produced by the Mean-shift algorithm. Mean-shift clustering enables to set a global thresh-
old h (bandwidth) on the maximally allowed inter-cluster dissimilarity 2h. Hence, if two feature
descriptors have a distance d before mean-shift clustering, the distance of the cluster centers is at
most d+ 2h. Figure 5.3 shows image patches of respective SIFT descriptor and the grouping after
mean-shift clustering.
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Figure 5.2: 3D point reconstructed from multiple views. Each measurement corresponds to an
image patch associated to the region where the feature point was extracted from. Under the as-
sumption of fronto-parallel surfaces, the 2D feature scales are extrapolated to a mean 3D scale.

(a)

(b) (c)

Figure 5.3: (a)-(c) The first row of each figure shows image patches belonging to the same trian-
gulated 3D point (track). The second row depicts the grouping result after mean-shift clustering
(bandwidth h = 0.22). For track (a) 26 SIFT descriptors are reduced to 4 clusters (26/4), in (b)
13/2 and (c) 11/2.

5.1.2 Synthetic Views

As described in the previous section, the reconstructed model is represented as a 3D point cloud
providing associated scale values and feature descriptors. In addition, the set of images used
to build the model with known orientation is available. The views used for 3D reconstruction
already provide a natural partition of the 3D model into compact 3D point fragments. While this
information allows registration of views that are close to original ones (in terms of orientation,
resolution and field of view) it is not suitable for matching images with considerable viewpoint
change. For instance, consider the two illustrative examples shown in Figure 5.4. In (a) several
3D features of original structure from motion images (black) have to be combined in order to
determine the pose of the blue camera. This is in contrast to the example shown in (b), where only
a subset of 3D points is required for registration.

To overcome this limitations, we introduce “synthetic” views located at positions not covered
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(a) (b)

Figure 5.4: The 3D model representation obtained by the original views (black) may not cover
sufficiently the field-of-view of new inserted cameras (blue). (a) View registration requiring a
combination of features from multiple original views (views from model reconstruction). (b) Reg-
istration can be done by utilizing only a subset of features extracted from original views.

by the original images that provide an additional partitioning of the 3D scene points into manage-
able descriptor sets that are suitable for matching. Furthermore, the synthetic views are chosen in
order to match the resolution and field of view of the target camera. For instance a full panoramic
camera offering 360◦ field of view at location X would observe a different set of features than a
standard digital camera at the same position with 60◦ field of view. On the other hand, the image
resolution determines the minimal and maximal scale of potentially visible features. For the mo-
ment we assume that we have a camera with fixed field of view and resolution. An image taken
at distance d to a given 3D scene will capture different features than an image taken at distance
2d. This concept is illustrated in Figure 5.5, e.g. due to the limited resolution, the blue camera can
only detect 3D points at a given minimal scale. An example of synthetic views and respective 3D
point fragments of a real world scene is shown in Figure 5.6.

Our application is targeted towards localization in urban environments. Hence we can restrict
the placement of synthetic cameras to the “eye-level” plane induced by the original views to sim-
plify the problem. Generally, our approach is not limited to terrestrial camera positions. A more
powerful descriptor like the VIP features [Wu et al., 2008] might prove beneficial for registering
images captured from significantly different viewpoints (e.g. aerial views).

For terrestrial localization, it is sufficient to place synthetic cameras uniformly on this plane
and at this point we do not consider any optimal placement strategy (like proposed in [Chen and
Li, 2004]). Depending on the application, the grid size can be adapted to meet the desired target
accuracy. At each grid position view directions are sampled on the unit sphere. We use 12 direc-
tions for the camera rotations. This corresponds to a 30◦ rotation between the cameras. The 30◦

are approximately the off image plane rotation that the SIFT descriptor is robust against [Miko-
lajczyk et al., 2005]. Figure 5.7 depicts the placement of synthetic views into a structure from
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Figure 5.5: Synthetic view concept. Varying camera positions capture different sets of 3D points
with respect to scale and orientation.

motion reconstruction of a square. In-plane camera rotations are largely handled by the rotational
invariance of the SIFT descriptor. The intrinsic parameters for the synthetic views are empirically
set to a field of view α andm×n pixel resolution. Not all generated synthetic views are really use-
ful. Given the 3D position and the respective scale of each triangulated point in the sparse model,
one can estimate the projected feature size in the synthetic images and therefore infer the visibility
of each 3D point given the set of visible features. More precisely, a 3D point is potentially visible
in a synthetic view, if the following criteria is satisfied:

1) Visibility: The projected feature must be in front of the camera and lie within the viewing
frustum.

2) Scale: The scale of the projected 3D feature must be larger or equal to one pixel in terms of
the respective DoG scale space extrema to ensure detectability;

3) Viewing Angle: One of the associated descriptors is extracted from an original image with a
sufficiently similar viewing direction due to the limited repeatability of the SIFT descriptor
under perspective distortion [Mikolajczyk et al., 2005].

For the viewing angle criterion we set the angle threshold to 30◦, which again corresponds to
the stability region of the SIFT descriptor. This criterion acts as a “face culling” test by removing
3D points oriented away from the synthetic camera. As can be seen in Figure 5.6, there is a one-
to-one correspondence between synthetically generated views and the 3D points visible therein.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.6: (a) Sparse reconstruction of the church scene and (b) shows a subset of 8 out of 500
3D documents (synthetic views).(c)-(j) Feature sets of respective 3D point fragments visible in
each synthetic view.

The set of 3D points (potentially) visible in a particular synthetic view represents the document
later retrieved through the vocabulary tree search which is used in the subsequent 2D-3D point
correspondence estimation. Analogously, the 3D points triangulated in the original images form
“3D documents” with respect to the original views. In general the created synthetic views will
have a high degree of redundancy especially given the fact that the original views additionally
sample the scene. In the next section we will discuss a technique to perform a compression of
these views into a representative subset of views covering the scene.
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Figure 5.7: Structure from motion point cloud and the raw views/documents (blue camera glyphs
for real images and red ones for the full set of synthetic views).

5.1.3 Compressed Scene Representation

The aim of our compression procedure is to build a compact as well as efficient 3D document
database. A reduced set of documents has two major advantages over utilizing the full set of real
and synthetic views:

(i) the signal-to-noise ratio for vocabulary tree queries (see Section 5.2.1) is increased, since
it is expected that a reduced document set is more discriminative for their respective scene
content;

(ii) the smaller database size has a positive impact on the run-time efficiency in general.

We take a different approach than [Schindler et al., 2007a], where visual words voting for a par-
ticular document in the vocabulary tree also support documents associated with spatially close
views. The overall goal of our proposed compression strategy is to keep a minimal number of
documents while still ensuring a high probability for successful registration of new images. Thus,
the key question in evaluating a document summarization is, whether a particular set of documents
is sufficient to determine the pose of admissible images. In order to reduce the computational com-
plexity of determining a representative document set, we only consider views which are subsets
of real and synthetic views. Thus, we do not create new 3D documents during the compression
process. In the following we state these objectives more precisely.

Let V be an admissible view. The sparse 3D model projects into this view as a set of puta-
tively visible 2D point features with associated descriptors. Under the assumptions for the image
resolution (see Section 5.1.2), only a fraction of 3D points is estimated to be visible due to the



5.1. 3D Scene Representation 133

corresponding scale of the features. 3D points with a too small scale in their projection will be
discarded besides the features that are not within the field of view of the camera. We choose not
to perform additional visibility reasoning, since small occluded points are already removed and
for prominent occluded features our method does not provide the required precision of occlusion
prediction. Accordingly we still associate them with the generated view. We assume that a view
V can be successfully registered by a set of 3D points P , if a certain number of 3D points from P
is visible in V and has a good spatial distribution in the image.

We weight the raw number of features (or correspondences) by an estimate for the covered
image fraction yielding an effective feature/correspondences count. This weighting is utilized for
determining the effective number of correspondences for view registration (Section 5.2), too. In
other words, the effective number of projected features must be larger than a specified threshold.
For the document reduction procedure we require n effective 3D points from P to be visible in
V (according to the above-mentioned assumptions on feature repeatability). Currently we use a
rather conservative value of n = 150 for this threshold. For given sets of 3D documents and views
a binary matrix can be constructed, which has an entry equal to one, if the respective document
covers the particular view, and zero otherwise. Since in our setting the 3D documents correspond
to combined (real and synthetic) views, this matrix is square. In order to have every view covered
by at least one document, a document covers its corresponding view by default. This situation
can arise if a particular real image has only a few extracted features and thus only a few triangu-
lated 3D points are visible at all. The objective is now to determine a subset of the documents,
such that every view is still covered by at least one 3D document. This is an instance of the set
cover problem, one of the earliest problems known to be NP-complete [Karp, 1972b]. We use a
straightforward greedy approach [Johnson, 1974] to determine a reduced but representative subset
of documents with low time complexity. Algorithm 4 illustrates the greedy algorithm for a given
binary view cover matrix A. The actual implementation employs a sparse, set-based represen-
tation for A. Figure 5.7 depicts synthetic camera positions and the respective compressed scene
representation after applying our proposed approach is shown in Figure 5.8.

Algorithm 4: Greedy Set Cover
Input: Binary matrix A ∈ {0, 1}n×n

Output: S ⊆ {1, . . . ,M}

S ← ∅
while A 6= 0 do

i∗ ← arg maxi
∑

j Ai,j
S ← S

⋃
{i∗}

Ai,: ← max(0, Ai,: −Ai∗,j) for all i
end

Algorithm 4 delivers a representative subset of views needed to cover the 3D scene. This
subset can now be deployed for an efficient recognition of the scene context. The next section will
describe our search method.
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Figure 5.8: Compressed view/document set of Figure 5.7 with the color coding indicating the
associated 3D points.

5.2 View Registration

Geometric registration of an incoming query imageQ to the existing 3D database involves finding
potentially matching relevant documents, for which we employ a vocabulary tree (Section 2.5)
with a subsequent geometric verification (Section 2.7). This verification step simultaneously val-
idates the putative matches and determines the pose of the query image with respect to the 3D
model. If maximal run-time performance is targeted, 3D document retrieval needs to be very
precise in order to avoid costly geometric verification of irrelevant documents. Thus, we use the
probabilistic scoring function as described in Section 2.5.5 to rank documents according to the raw
votes obtained by the vocabulary tree, and we utilize the computational power of modern graphics
processing units to accelerate several highly data-parallel steps in the view registration procedure.

5.2.1 Vocabulary Tree and Document Scoring

A critical step in the overall approach is to determine relevant documents that are tested for geo-
metric plausibility later on. We employ a vocabulary tree approach [Nistér and Stewenius, 2006]
to obtain potential matches between query image features and the keypoint descriptors associated
with the 3D documents in an efficient manner. The utilized tree is a complete tree with D = 3

levels andK = 50 children for every internal node. The leaves of the tree correspond to quantized
feature descriptors (visual words) obtained by a hierarchical K-means clustering procedure. The
tree structure allows the efficient determination of the approximately closest visual word by K ·D
descriptor comparisons. We employ a CUDA-based approach executed on the GPU for faster de-
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termination of the respective visual words. The speed-up induced by the GPU (about 15 - 20 on
a GeForce GTX280 vs. Intel Pentium D 3.2Ghz) approach allows to incorporate more descriptor
comparisons, i.e. a deeper tree with a smaller branching factor can be replaced by a shallower
tree with a significantly higher number of branches. The implementation details are described in
Section 2.5.1.

5.2.2 Feature Matching and Pose Verification

After the score of 3D documents with respect to a new query image is determined, the geometric
relationship between the top-ranked documents and the query image needs to be established. First,
the extracted features in the query image are exhaustively compared with the descriptors associated
with the 3D points in the tested document. Our approach to feature matching consists of a call to
the dense matrix multiplication in the CUBLAS library with subsequent instructions to apply the
distance ratio test and to report the established correspondences. The implementation details are
described in Section 2.6.

If enough putative feature matches are obtained, the actual pose for the query image needs
to be determined (if such pose exists at all with respect to the currently considered document).
We assume that the intrinsic parameters of the camera are known, hence we can rely on the fast
Three-Point algorithm and RANSAC (e.g. [Raguram et al., 2008]) to determine the absolute pose
from three point correspondences [Fischler and Bolles, 1981, Haralick et al., 1991].

5.3 Experimental Evaluation

In order to evaluate our view registration method we create a 3D model database representing
different locations of a city. For model reconstruction a pre-calibrated digital consumer camera is
used. Images are of resolution 3072 × 2304 and taken at wide angle (65.4◦ FOV). The models
are reconstructed using the algorithm described in Section 3.1. In addition, we acquired several
video sequences of resolution 848 × 480 pixel from the same scene. The videos are taken by a
freely moving hand held camera. Due to the unconstrained camera motion, individual frames do
not necessarily have a visual overlap to the 3D landmark, i.e. the camera may sometimes point to
directions where no 3D information is available (e.g. ground, sky etc.).

Some typical video frames showing the challenging view conditions are depicted in Fig-
ure 5.12(a)(b), 5.10(a) and 5.11(a). The acquired video sequences contain large position changes,
vibrations and blur caused by fast hand-held camera movements. Additionally, the images in-
clude strong changes in appearance due to motion, object occlusion and texture and illumination
changes. The videos are later used for evaluation. For 3D model reconstruction 1093 images are
processed and 450.000 points triangulated from 1.600.000 SIFT descriptors. Sparse point clouds
and camera orientations of the respective models are shown in Figure 5.9. Table 5.1 summarizes
our 3D model dataset. After applying mean-shift clustering, the number of descriptors reduces
on average to 40% of the original size. These value varies between the seven 3D models with
respect to the scene complexity and the number of redundant views used in the reconstruction pro-
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3D Model #f #d #d̃ # real views # syn. views # comp. scene

M1 (Street1) 76197 243403 126653 207 1548 432
M2 (Church) 80355 326873 117258 128 1026 196
M3 (Square1) 75258 312753 134153 190 1802 538
M4 (Street2) 69157 232980 134159 284 2008 776
M5 (Street3) 31707 119555 51899 59 476 91
M6 (Square2) 61223 215635 98133 137 843 258
M7 (Square3) 56681 185922 86534 88 3987 712
Total 450578 1637121 748789 1093 11690 3003

Table 5.1: List and properties of a sparse 3D model database. Each row lists: #f , the number
of features in the 3D model; #d, the number of raw descriptors, #d̃, the number of descriptors
after mean-shift clustering; # real views the number of original structure from motion views; #

syn. views the number of synthetic views; # compressed views, the number of views used for the
compressed scene representation.

cess. Note, the reduction in memory consumption is significant, e.g. 1.600.000 SIFT descriptors
(∼ 800MB) are compressed to less than 750.000 descriptors (350MB). For each 3D model we
estimate an average ground plane and evenly place synthetic views with a distance of equivalently
2m in between. At each grid position we insert 12 synthetic views with field-of-view α = 65◦ and
resolution 1024× 1024 pixel (to model portrait and landscape mode images simultaneously). The
heading between cameras is 30◦, therefore a full panoramic view at the given position is covered.
Since 3D structure is only expected above the ground plane, the cameras are tilted 10◦ towards the
positive horizon. The full set of synthetic and real views contains 12700 documents, which are
subsequently reduced to 25% of the original size by our compression procedure.

5.3.1 Registration Performance

We evaluate the view registration performance by measuring the percentage of video frames for
which a valid pose is found after considering the k-th top ranked 3D document from the vocabulary
tree scoring. A pose returned by the RANSAC procedure is only considered as reliable, if ten
effective inliers are found. The effective number of inliers is determined in terms of coverage
times the raw number of inliers as described in Section 2.7.2. This is a more robust measure than
the standard raw inlier count, since also the spatial distribution of points is taken into account.
Of course, the effective inlier number does not reflect a ground truth, but at least in our large
scale experiments (registering thousands of views) we did not find false positives among the set of
registered frames.

A detailed quantitative evaluation of our proposed compressed scene representation with re-
spect to a pure image based approach is shown in Figure 5.10 and 5.11. Experimental results
confirm that our compressed scene representation based on synthetic views delivers superior reg-
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(a) M1

(b) M2 (c) M3

(d) M4 (e) M5

(f) M6 (g) M7

Figure 5.9: Structure from Motion reconstructions of seven scenes used through our hand-held
camera tracking experiments.

istration performance than approaches that are only based on original images. This is especially
true for the localization result shown in Figure 5.11. While the compressed scene representation
achieves a recognition rate of 100% by only testing the first ranked synthetic view, the approach
based on original views only achieves 90% after testing up to 30 original images.
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(a)

(b)

(c) (d)

Figure 5.10: (a) Some sample frames from a hand-held video used for evaluation. (b) Registration
result of a 2000 frame video with respect to model M3. (c) Location recognition performance
with respect to compressed scene representation (red) and real/original images (green) used for
structure from motion computation. (d) Sparse point cloud and registered camera locations.

Figures 5.12(c) and 5.12(d) show registration performance for two hand-held video sequences
(V1,V2) with respect to different 3D document strategies. Our evaluation includes also a com-
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(a)

(b) (c)

(d) (e)

Figure 5.11: (a) Video frames used for evaluation. (b) Location recognition performanc. A
recognition rate of 100% is achieved by using our synthetic view approach with the compressed
3D document set. (c) Sparse point cloud and registered camera locations. (d),(e) Registration
results showing inliers (yellow) and 3D scene points.

parison to a pure image based method, with the Five-Point algorithm [Nistér, 2004] used for
pose verification (relevant parameters are adjusted to get comparable timings to the Three-Point
method). Note, V1 was taken close to the camera positions which were used for model reconstruc-
tion, but at different resolution. Overall for sequence V1 a higher recognition rate is achieved than
for the more challenging sequence V2, that follows a different path approaching the facades. For
both cases, the reduced document set based on synthetic and real views gives the best registration
performance.
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(a)

(b)

(c) (d)

(e)

Figure 5.12: (a),(b) Some sample frames of two video streams V1, V2 acquired with a hand-
held camera. V1 was taken close to original camera position of real views (images from model
reconstruction), whereas V2 follows a different path. (c) and (d) show registration performance
measured in terms of percentage of registered views after considering the k-top ranked images
from the vocabulary tree scoring for V1 and V2, respectively. Each graph shows: REAL, set
of 3D documents formed by views from model reconstruction; SYNTHETIC, synthetic views;
SUMMARY, reduced set of 3D documents computed by scene compression; RELATIVE POSE,
image based retrieval with Five-Point relative pose verification. (e) Side view showing registered
views from video stream V1(red) and V2(blue), respectively.

5.3.2 Timings

Critical thresholds in terms of timings are the maximal number of RANSAC iterations Nmax and
the number of extracted features |Q| in the input image and 3D document |D|. We setNmax = 500
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(corresponding to a maximal outlier fraction of ε ≈ 0.8 at a 95% confidence level), |Q| = 1600

and |D| = 2500, which results in execution times of 25ms to test a single 3D document on
average. By using the publicly available SiftGPU1 software and only testing the first-ranked 3D
document from the vocabulary tree scoring, view registration can be done in real time. Average
timings are listed in Table 5.2.

Operation time [ms]

SiftGPU 848× 480 33
Vocabulary Tree Traversal K=50 D=3 4
Inverted File Scoring 15
Matching 1600× 2500 SIFT key’s 10× k
RANSAC Three-Point (up to 500 samples) 15× k

Table 5.2: Average timings of our system on an Intel Pentium D 3.2Ghz and a GeForce GTX 280.
k is the number of top-ranked documents geometric verification is applied on.

5.4 Limitations of Natural Features for Localization

The evaluation framework of [Mikolajczyk and Schmid, 2005] includes rotation, scale change,
viewpoint variation, image blur, JPEG compression and light changes to test the repeatability of
image features. While current state-of-the-art feature detector and descriptors can widely handle
correspondence computation of these images, matching images from real world scenes is often
more challenging. This is mainly based on two reasons. First, large viewpoint changes often
introduce large distortions on the geometry. Second, illumination variations and shadows oc-
cur that introduce large variations on the scene texture. The combination of those two effects
makes unconstrained view registration based on local descriptors a challenging problem. For in-
stances, correspondence computation between images taken at sunshine conditions (comprising
many shadows and light spots) and images acquired during cloudy days (i.e. ambient light) is a
challenging task. Changing weather/season conditions strongly effect the appearance of a scene
and extracted number/locations of features and descriptors. We perform matching experiments on
two datasets. The first experiments considers scene variations that are due to illumination changes
within one day. The second experiments considers seasonal variations.

5.4.1 Day Variations

In our first experiment we captured 83 frames from one and the same viewpoint over a time period
of approximately ten hours (see Figure 5.13(a)). SIFT keys are extracted from each image and
exhaustively matched between all possible image pairs. We use the Lowe distance ratio test [Lowe,
2004] with r = 0.8 to decide weather two features match. Quantitative matching results are shown

1 http://cs.unc.edu/˜ccwu/siftgpu
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in Figure 5.13. On average 1500 features are extracted from each image, however only a small
fraction of about 10% can be successfully matched over time. This number will further be reduced
by about 50% for moderate view point changes.
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Figure 5.13: (a) Sample images captured during a time period of ten hours and extracted SIFT
keys (visualized as circles, only a subset of features at a coarse scale are shown). (b) Matching
matrix showing the fraction of successfully matched features between all image pairs. (c) Average
number of successfully matched SIFT keys between view i and the set of views I\i.

5.4.2 Seasonal Variations

In our second experiment we study how the SIFT key detection and matching performs with
respect to seasonal changes. Our experiments are based on an image sequence acquired by a web-
cam over a long time period of a whole year. Images are taken every first day of each month from
January to December. During one day eleven images were captured on a hourly basis between
7 a.m. to 5 p.m.. Hence, the image database is very diverse in terms of illumination (weather
conditions) and seasonal appearance (snow, vegetation changes, occlusion). Again exhaustive
nearest neighbor matching is used to estimate matching performance of SIFT features with respect
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to all possible image pairs. The outcome of our experiments are summarized in Figure 5.14.
Whereas, matching of image pairs taken within one day is quite stable (consider Figure 5.13(b)
e.g. February, Mai, September, December), only a small fraction of features can be matched
between images acquired at different seasons (e.g. summer / winter). From our experiments we
conclude that a typical outdoor scene might undergo large variations during a day/season that
cannot be robustly handled by a single SIFT representation. For instance, shadows and vegetation
changes introduce new structures and occlusions which result into different keypoints and distorted
descriptors. Even though, SIFT is basically designed to cope with some variations in illumination
and scene appearance, a monolithic representation does not always suffice for location recognition
in real world scenes.

5.5 Conclusion and Discussion

We introduced a novel method for image based real-time view registration and localization in large
out and indoor environments. The main contributions of the proposed method are,

(i) the introduction of synthetic views to allow better registration of images taken from novel
viewpoints,

(ii) an effective document compression procedure for provided real imagery and the synthetic
ones in order to reduce the database size, and

(iii) a novel scoring function to rank the documents returned by vocabulary tree queries.

Video-based inside-out tracking for large outdoor environments can be achieved with real-
time performance. We demonstrated localization results on large structure from motion point
clouds comprising more than 1.5 Million 3D points. View registration of video data can be done
at 15 fps with a recognition rate of more than 90%. The algorithm was tested on a variety of
data and showed superior results compared to existing methods. Furthermore, we studied basic
limitations of our approach with respect to changing illumination and appearance conditions of a
scene. We conclude that a monolithic 3D representation based on SIFT features in general may
not be sufficient for image based localization, since a typical scene undergoes variations that are
beyond the variations SIFT is robust against. A simple solution to address this problem would be
to enrich the 3D representation with more images, which could be naturally incorporated into our
system. However, being a feature based approach there will still exist scenes where our approach
fails due to missing texture information.
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Figure 5.14: (a) Images taken by a web-cam over a time period of one year. Each image is
captured at 12 p.m. on every first day of the month from January (top left) to December (bottom
right). (b) shows ten images taken hourly on June 1th between 7 a.m. an 4 p.m., respectively.
(c) Matching matrix depicting the fraction of successfully matched features between each image
pair. (d) Average number of successfully matched SIFT keys between view i and the set of views
I\i.



Chapter 6

Localization Applications

In this chapter three different applications and variants of our proposed localization framework are
presented. The first application is the registration of community photo collections with respect to
sparse city models reconstructed by structure from motion techniques as described in Section 3.1.
In Section 6.2 we apply our view registration framework for localizing a Micro Aerial Vehicle
(MAV) in GPS-denied outdoor environments. Our approach significantly outperforms current state
of the art Simultaneous Localization and Mapping (SLAM) approaches. Finally, in Section 6.3
we demonstrate a localization framework that runs on mobile phones. The restricted processing
power and limited memory of the target platform requires several algorithmic modifications.

6.1 Registration of Community Photo Collections

Today, there exist an ever increasing amount of photographs from places of interest on earth.
For instance, solely on flicker.com there are more than one million of photographs related to “Vi-
enna“. Popular sites of a city like historic buildings, facades, fountains, sculpture and paintings
are captured from hundreds or thousands of viewpoints and under varying illumination conditions.
Current advances in structure from motion for unordered image sets [Snavely et al., 2006, Agar-
wal et al., 2009,Frahm et al., 2010] have demonstrated that large scale 3D reconstruction based on
huge Internet photo collections is feasible. While reconstruction systems solve for camera orien-
tations and 3D geometry simultaneously, computing structure from motion on the whole dataset
is not always necessary. It has been shown by Snavely et al. [Snavely et al., 2008b] that a skeletal
subset of images from redundant community photo collections is often sufficient for 3D model
reconstruction. Once a skeletal set of images is reconstructed, new images can be inserted by view
registration (localization) as described in this section.

6.1.1 Registration Algorithm

In order to apply the localization approach described in Chapter 5 to images from the web, some
algorithmic modifications are necessary. First of all, the resolution and field of view of synthetic
cameras has to be chosen in order to optimize registration performance. Second, images from

145



146 Chapter 6. Localization Applications

community photo collections leak intrinsic calibration, hence the efficient Three-Point method
cannot be directly applied. We address the first issue by analysing image statistics of Internet
photo collections. In particular we download a set of images related to Vienna from the panoramio
homepage (see Figure 6.2(a)). The dataset comprises 17282 images, where a subset of 4833
images have EXIF information associated. For images with EXIF we can extract an approximate
value for the focal length, which we use as a prior to determine a mean field of view. Figure 6.1
shows statistics about the distribution of the field of view (FOV) and the image resolution. We
estimate a mean focal length and field of view of synthetic cameras θ̃ = 50◦ and an average image
resolution of one megapixel. The estimated values are used to determine a suitable focal length
and image resolution for respective synthetic views. In practice we use a focal length of θ = 60◦

(the slightly increased field of view accounts for boundary effects), and set the image resolution to
1024× 1024 pixel to simultaneously account for portrait and landscape image formats. Synthetic
images are depicted in Figure 6.3. In order to determine the pose of the current camera, we cannot
directly apply the Three-Point method because accurate intrinsic calibration of Internet photos
is normally not available. Without knowledge of camera parameters, the direct linear transform
(DLT) algorithm [Hartley and Zisserman, 2000] can be used to solve for the camera projection
matrix from a minimal number of six 2D to 3D point correspondences. The projection matrix
P = [p1, p2, p3, p4] can then be decomposed into external and internal orientation from,

P = [M | −MC] = K[R| −RC] (6.1)

using the RQ-Decomposition M = KR, where C is the camera center C = −K−1R>p4. While
the 6-point DLT approach works well for scenes without dominant planar structure and low outlier
fractions, it fails in situations where mismatches dominate. We therefore take a different approach
as proposed in [Li et al., 2010] and use the Three-Point pose method on weakly calibrated images.
We assume that the principal point is at the image center and the focal length is taken from the
EXIF 1 tags of an image. If EXIF information is not available, we discretize a reasonable range
for the focal length and apply the Three-Point algorithm for a set of potential focal length values.
The pose/focal length pair with the highest number of inliers is reported.

6.1.2 Experimental Evaluation

We apply our view registration technique to images downloaded from the web. A calibrated cam-
era was used to reconstruct three landmarks of Vienna (Graben street, Michaeler square and Josef
square) from 117, 128 and 622 images, respectively. Then synthetic views are placed in the scene
as depicted in Figure 6.3. For these particular landmarks we gathered a set of images from the
Panoramio webpage, geographically associated with these places of interest (see Figure 6.2(a)).

We select a relevant subset of 266 images that have a potential visual overlap with the recon-
structed scenes. Some challenging sample images are shown in Figure 6.2. The photos are taken at
different illuminations conditions, under large view point changes and partial occlusion. In order

1 http://www.exif.org/
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Figure 6.1: (a) Distribution of the angle of view θ (field of view) and (b) distribution of the image
resolution for community photos from Vienna downloaded from the Panoramio website.

to determine the camera pose, we use the calibrated Three-Point method and exhaustively test ten
focal lengths with respect to a field-of-view range [30◦..90◦]. By using our approach we are able to
efficiently register 165 out of 266 images by considering up to ten top ranked 3D fragments, only.
Qualitative registration results are shown in Figure 6.4. Our algorithm achieves a registration rate
of 62% and requires less than 0.27 seconds to register or reject an image. Table 6.1 shows registra-
tion performance and runtimes on the Vienna dataset for different localization approaches. Current
state-of-the-art view registration methods represented by [Li et al., 2010] and [Sattler et al., 2011]
achieve slightly higher registration rates but our proposed algorithm is scalable and more efficient
in terms of timing.

Approach # images registered reg. percentage time [s]
registered rejected

Ours (GPU) 164 64% ≤ 0.27 ≤ 0.27

P2F [Li et al., 2010] 204 76% 0.55 1.96
2D-3D [Sattler et al., 2011] 211 79% 1.83 9.95

Table 6.1: Registration performance for the Vienna dataset compared to current state-of-the-art
approaches represented by [Li et al., 2010] and [Sattler et al., 2011].

6.1.3 Conclusion and Discussion

We have presented an efficient view registration method for Internet photo collections based on
large scale 3D models of urban scenes. Our approach achieves competitive registration rates than
current state-of-the art but is much faster. Furthermore the proposed approach is fully scalable and
prior pose information can be easily integrated.
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(a)

(b)

(c)

(d)

Figure 6.2: (a) Geo-tagged community photo-collections (from www.panoramio.com) overlaid on
a map of Vienna (maps.google.com). (b)-(d) Challenging images from community photo collec-
tions containing different illuminations, large view point changes, occlusion and non discrimina-
tive objects.
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(a)

(b)

(c)

Figure 6.3: Reconstruction of three different landmarks from Vienna, (a) Graben street,
(b) Michaeler square, (c) Josef square. Blue cameras are original views used for structure from
motion, red cameras represent synthetic views.
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(a) Graben registered (b) Graben rejected

(c) Michaeler registered (d) Michaeler rejected

(e) Josef registered (f) Josef rejected

(g) Graben Localization

(h) Michaeler Localization (i) Josef Localization

Figure 6.4: (a)(c)(e) Examples of successfully registered views and (b)(d)(f) and respective im-
ages that could not be registered (after testing up to 10 top ranked 3D point fragments) in the
database. (g)(h)(i) Registered images with respect to the landmark reconstructions.
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6.2 Natrual-Landmark based MAV Localization

Highly accurate localization of a Micro Aerial Vehicle (MAV) with respect to a scene is important
for several applications including surveillance and inspection. For indoor navigation and trajectory
planning [Mellinger et al., 2010] current state of the art MAV pose estimation is based on the
commercial Vicon Motion Systems1. Such a system allows highly accurate outside in tracking
with an achievable precision of sub-centimeters but is restricted to small workspaces of maybe
10× 10m and can only be used indoors. In outdoor environments conventional methods based on
Global Positioning Systems (GPS) and Inertial Measurements Units (IMU) achieve accuracies in
the range of meters, but the precision is often not sufficient for target applications like navigation
in urban environments. Image based computer vision methods offer a natural way to address the
localization problem. A camera beeing a passive device is cost efficient, non intrusive and the
accuracy of the pose estimate automatically adapts to the depth of the scene.

Vision based localization systems in robotics are often based on markers [Rudol et al., 2010]
or rely on simultaneous Localization and Mapping (SLAM) techniques [Nistér et al., 2004, Davi-
son et al., 2007]. Recently, [Bloesch et al., 2010] demonstrated vision based MAV navigation in
unknown and unstructured environments using the Parallel Tracking and Mapping (PTAM) soft-
ware [Klein and Murray, 2007]. Here map building and localization is done simultaneously. We
follow a different approach and decouple mapping from localization. First, a highly accurate vi-
sual map of the environment is recorded using structure from motion techniques. Second, the
pose of the MAV is determined with respect to the landmark reconstruction. Such a method has
several key advantages over SLAM. First, given a geo-registered visual 3D model of the environ-
ment [Wendel et al., 2011], localization can be done in a global metric scale. This would not be
possible for a monocular SLAM approach without considering additional input modalities. More-
over, once a detailed visual model of an environment is available, the localization approach is fully
scalable and allows direct data fusion with other sensors such as GPS or IMU.

6.2.1 Hardware Setup

The MAV used in our experiments is a “Pelican” quad-rotor from Ascending Technologies2, de-
picted in Figure 6.5. The MAV is equipped with a single, rigidly mounted consumer camera
(Panasonic TZ3) that acquires video sequences at a resolution of 848 × 480 pixels at wide angle
(65◦ field of view). The images required to reconstruct the scene were captured from eye-level
above ground using a Canon EOS 5D. The SLR camera has a resolution of 5616 × 3744 pixels
with a fixed 20mm wide angle lens. This camera is also used to acquire a ground video with a
resolution of 1920× 1028 pixels from an observers point of view. These image sequences depict
the MAV as well as the surrounding scene, therefore we can use them to evaluate our localiza-
tion performance. For both camera setups, we use the accurate and flexible calibration method
described in Section 3.1.2 to simultaneously estimate the focal length, principal point, and radial

1 http://www.vicon.com
2 http://www.asctec.de
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(a) (b)

Figure 6.5: (a) Pelican quad-rotor MAV from Ascending Technologies equipped with a single,
wide angle camera used for localization. (b) Localization result of our proposed algorithm with
respect to the reconstructed scene.

distortion parameters.

6.2.2 Visual Landmark

We employ structure from motion to reconstruct the Atrium scene depicted in Figure 6.6 from
high resolution still images taken at ground level. The scene shows a modern building with hardly
textured walls and many repetitive structures such as windows and vegetation. For 3D reconstruc-
tion of the atrium, a set of 157 images has been processed and 28.890 points were triangulated
from 117.340 SIFT descriptors (an average of 747 points per image). The MAV equipped with a
consumer grade video camera has been used to acquire an in–flight video stream for localization.
It contains 4946 frames, recorded at a resolution of 848 × 480 pixels and 15 fps (frames per sec-
ond), resulting in a total length of 5 : 30 minutes. Images were taken at different altitudes, close
to buildings and further away. Due to the real–world image capturing, images may be slightly
blurred, have different illumination conditions, or show reflections in windows. Additionally, we
have acquired a video stream showing the flight from an observer’s point of view. This stream
has been recorded with a resolution of 1920× 1028 pixels, 25 fps, and is used as ground truth for
evaluating our localization performance (see Section 6.2.5).

Overall the algorithmic processing steps are similar to the algorithm described in Chapter 5
with some modifications,

• the concept of virtual views is extended to 3D space, accounting for the 6DOF movement
of a MAV,

• we impose prior knowledge about possible neighboring views, taking into account the causal
movement of the MAV, and

• we perform fully 3D geometric validation of the localization results using an observer’s
view.
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(a) (b) (c)

Figure 6.6: Atrium scene reconstruction from 157 views. (a) Original view of the scene.
(b) Sparse model and source cameras obtained by structure from motion reconstruction. (c) Semi-
Dense point model obtained by refining the sparse model with the PMVS software [Furukawa and
Ponce, 2009].

(a) (b)

Figure 6.7: Placement of virtual cameras. Virtual cameras of a grid G = {7, 4, 4} and γ = 30◦

marked in blue. (b) A detailed view of the same grid.

Given the point cloud PC of the atrium, we sample camera centers on a regular grid G, and
camera vectors in uniform angular steps of γ on a unit sphere. The placement of virtual cameras
is visualized in Figure 6.7.

6.2.3 Localization Algorithm

For localization, we select k = 10 top–scoring views using a vocabulary tree in a neighborhood of
Tmax = 1.0m and Rmax = 45◦ with respect to the previously established pose (see Figure 6.8).
Finally, the top three poses with at least |I|min = 10 inliers are stored and used in the experimen-
tal evaluation. On an Intel Core2 Quad CPU with 2.83GHz and a GeForce GTX 280 we achieve
an average localization speed of 4 fps. Figure 6.10 gives quantitative numbers of the registration
results. With our proposed approach we are able to register 2868 out of 4946 frames (57%) of the
in–flight video. The resulting flight path from take–off to landing is shown in Figure 6.9(a). Miss-
ing localizations mainly occurs due to the fact that the visual landmark is not complete, close–up
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and high–altitude views tend to fail more often. Another common source of error are frames dis-
torted by motion blur and joggle, because only a subset of features can be detected. Nevertheless,
our proposed approach is able to handle such local failures since the algorithm performs track-
ing by detection and hence automatically recovers with the next successful pose estimate. While
in such a challenging scene 100% registration performance is hardly achievable, a benefit of our
approach is that it never lost track for more than 60 frames, corresponding to a timespan of 4
seconds.

Figure 6.8: Due to the restricted and smooth motion of the MAV, after initialization, feature search
can be restricted to neighboring 3D point fragments of the actual pose.

6.2.4 Comparison to PTAM

We compare our localization approach to a state-of-the-art Simultaneous Localization and Map-
ping software PTAM [Klein and Murray, 2007], which has recently been proposed for MAV nav-
igation by Bloesch et al. [Bloesch et al., 2010]. Experiments show that the camera positions
obtained by running the original PTAM code, which is publicly available1, vary considerably
according to the stereo initialization. Therefore, we use the recorded stream of images (with ra-
dial distortion corrected) and selected the initialization which shows best results for comparison.
As the global coordinate system and the scale are not defined and differ in every execution, we
align the camera centers of PTAM to those retrieved by our proposed algorithm in a least–squares
sense. Figure 6.9(b) depicts the reconstructed flight path from take–off to landing. While PTAM
can compete with our approach locally, i.e. in the environment it was initialized, it only works
for 1828 out of 4946 frames (36%). In a direct comparison to our approach (Figure 6.9(a)), it is
clearly visible that PTAM misses large parts of the flight. Another problem is the repetitiveness of
the scene, which causes misleading model updates and inhibits successful relocalization within a
larger space. Scene reconstruction and localization results of the PTAM framework in our scene
can be seen in Figure 6.11. Even PTAMM [Castle et al., 2008], an extension of PTAM which is
able to handle multiple maps, was not able to overcome this problem. As soon as the track is lost,

1 http://www.robots.ox.ac.uk/∼gk/PTAM/
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(a) (b)

(c)

Figure 6.9: Visual localization results. (a) Flight path of our natural landmark–based approach
with an error of less than 0.5m in 92% of all frames. (b) In comparison, a state–of–the–art visual
SLAM approach (PTAM [Klein and Murray, 2007]) is not suitable for such a large–scale outdoor
environment, and achieves this accuracy only in 22% of all frames. (c) The overlay of both paths
shows that PTAM has lost track of its initial map at some point during the flight.

the relative pose cannot be established anymore and the localization fails.

6.2.5 Comparison to Ground Truth

We take the video stream showing the quad–rotor’s flight from a ground observer’s viewpoint as
visual ground truth. It shares the virtual cameras, so we can localize the video within our scene
using our localization method as described in Chapter 5. Under the premise of synchronized video
streams and a correct current pose estimate from the quad–rotor’s flight and ground observing
video, the backprojection of the MAV camera center must coincide with the quad–rotor position
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Figure 6.10: (a) Registration performance showing the fraction of successful pose estimates after
selecting k top–scoring views using the vocabulary tree. (b) Histogram over the number of effec-
tive inliers. (c) Distribution of the mean reprojection error after robust absolute pose estimation.

(a) (b) (c)

Figure 6.11: Results for scene reconstruction and localization using PTAM [Klein and Murray,
2007]. (a) This approach works well within a locally constrained environment such as at the
beginning of our sequence. (b) However, when the track is lost wrong measurements are added to
the map and hinder proper re–localization. (c) In the resulting model, the correct part can be seen
to the lower right of the point cloud.

in the observer’s view. This is a concept borrowed from augmented reality, that we use for the
purpose of fully 3D geometric validation. Figure 6.12(a) shows the tracked 3D quad–rotor and
the respective ground video frame. In particular, we use the widespread PASCAL criterion [Ever-
ingham et al., 2007] and consider the backprojected quad–rotor bounding box BQ as successfully
registered if the criterion,

BQ
⋂
BG

BQ
⋃
BG

> 0.5 (6.2)

is satisfied. BG denotes the bounding box of the quad–rotor in the ground truth view. To this
end we take every tenth frame of the registered ground video and evaluate Equation 6.2 by visual
inspection. For our localization approach the 50% bounding box overlap criterion is satisfied for
92% of the frames, whereas PTAM achieves 22%, only. A subset of frames used for evaluation is
shown in Figure 6.13. While the errors of 3D modeling, MAV localization, and ground truth video
localization accumulate, the qualitative evaluation of the localization shows accurate localization
results. Given the size of the bounding box with 1.0m × 1.0m, our localization approach has an
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error of less than 0.5m in 92% of all frames and can be considered more accurate than consumer
grade GPS. Under the premise of exact convergence of the absolute pose algorithm, the achievable
heading precision εα of the MAVs attitude can be estimated from the image width w, field of view
αFOV and the mean reprojection error εrep.,

εα =
αFOV
w

εrep. . (6.3)

This translates into a precision of ∼ 0.1◦ for a camera of resolution 848× 480 with αFOV = 64◦

and an average reprojection error of εrep. = 1.7 pixel. Figure 6.12 depict sample frames showing
the augmented MAV position determined by the two approaches.

(a) (b)

Figure 6.12: Visual comparison of the localization results via registered ground truth video
stream. (a) Oblique view of registered ground truth showing the current camera frame and MAV
positions (path and bounding box) estimated by our localization approach (red) and the aligned
PTAM result (blue). (b) Back–projected bounding box from the observer’s point of view.

Figure 6.13: Ground truth evaluation of the MAVs pose using the PASCAL criterion.
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6.2.6 Conclusion and Discussion

We introduced a novel algorithm for monocular visual localization for MAVs. Our work is based
on the concept of virtual views in 3D space and it exploits the knowledge about possible neigh-
boring views resulting from the sequence of images, which improves robustness and scalability.
Under the assumption that significant parts of the scene do not alter their geometry and serve as
natural landmarks, our approach outperforms conventional GPS systems in an outdoor environ-
ment. Within the atrium scene used in our experiments, we achieve an error of less than 0.5m in
92% of all frames. We significantly outperform the PTAM approach used for comparison because
our localization method directly allows global registration and is neither prone to drift nor bias.
This makes it well suited for long–term visual outdoor navigation. Future work should tackle the
problem of close–up and high–attitude views by refining the rough model with dynamic visual
data. This would also allow to generate models which are robust to weather or even seasonal
changes. Additionally, it would be important to experiment with descriptors which require less
computational power than SIFT, so that an implementation of the algorithm on–board an MAV
becomes feasible.
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6.3 Wide Area Localization on Mobile Phones

Full 6DOF pose estimation of a mobile phone with respect to a 3D model is useful and desired
for location based applications in Augmented Reality [Greene, 2006]. In general the accuracy
of Global Positioning Systems (GPS) and Inertial Measurement Units (IMU) is limited and does
often not satisfy the accuracy needed for visual tracking [Schall et al., 2009]. Therefore, robust
and accurate image registration methods are needed for a visually convincing integration of the
3D content and images of the real world. In [Arth et al., 2009] we demonstrate a modified version
of the synthetic view localization approach (see Chatper 5) which is suitable to run on a mobile
phone. Given a 3D reconstruction of the scene, the pose of the mobile phones camera is deter-
mined from 2D-3D feature correspondences. This information can be used to initialize a real-time
pose tracker suitable for augmented reality. Figure 6.14 shows such a localization result that runs
on a mobile phone in an office environment. While the 3D reconstruction is done offline using
high resolution images from a SLR camera and a desktop workstation, the view registration al-
gorithm runs fully on the mobile device. The limited computational power and memory size of
a mobile device compared to a desktop computing systems requires some substantial algorithmic
modifications. The core component of the system is a new and efficient feature detector/descriptor
inspired by SURF [Bay et al., 2008] that runs at 380ms for images of resolution 640× 480 on the
Meizu M81 (800MHz ARMII CPU with FPI). Tests done with the framework of [Mikolajczyk and
Schmid, 2005] show that it performs as well as SIFT and SURF in terms of keypoint repeatability
and sometimes outperforms both. Second, a Potentially Visible Set (PVS) [Airey et al., 1990]
approach is used to split the database into compact chunks that can be loaded independently into
the main memory.

(a) (b)

Figure 6.14: Camera pose tracking using the Meizu M8 smart-phone in an indoor environment.
Yellow lines depict inlier of 3D-2D point correspondences.

1 http://meizu.com
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6.3.1 Potentially Visible Sets

In order to discretize the environment into manageable subsets of 3D points, we borrow a concept
from computer graphics known as Potentially Visible Sets (PVS), that is often used for occlusion
culling. The basic idea is to partition the environment into view cells and precompute the cell-to-
cell visibility. In densely occluded environments, such as hilly regions, urban areas or building
interiors, the potentially visible sets significantly reduce the amount of data that has to be pro-
cessed for rendering. Indoors, the natural structure of cells (rooms) and portals (doorways) can
be exploited [Teller and Séquin, 1991]. This concept is closely related to the method described
Takacs et al. [Takacs et al., 2008] that suggest to partition the database into a 2D regular grid, each
node holds the features sets of the closest 3x3 cells in memory. In contrast, we split the database
by visibility, using a PVS structure. Every potentially visible set consists of a number of cells.
Figure 6.15(a) shows a cell partitioning for an indoor reconstruction and depicts the respective
precomputed cell-to-cell visibility as a graph representation.

For localization, only the features of the current PVS have to be in memory, hence the amount
of memory is considerably smaller than the amount needed for the entire area. Furthermore, as
can be seen from Table 6.15(c) some PVS are redundant (e.g. PVS 2 and PVS 3) and several cells
are shared between adjacent PVS. Hence, only a fraction of cells has to be loaded from memory
if a transition from one location to the next occurs. A custom memory management loads and
discards feature blocks associated to the current PVS structure. Feature blocks (corresponding to
cells) are loaded on demand when a PVS requests them. On the other hand, when a cell is no
longer required by any PVS, the memory manager discards it to free. This concept significantly
reduces the memory footprint that is necessary for localization. In our experiments a feature block
typically has a memory footprint of 1-2MB and a PVS is build from 2-5 cells. This translates into
an overall memory footprint of about 5MB, which is small enough to fit into a mobile phone’s
application memory.

6.3.2 Localization

Localizing a mobile users position involves the following steps: feature and descriptor extraction,
feature matching, outlier removal, and finally pose estimation and refinement. Feature extraction
uses a scale space search to find keypoints in the 2D image, including a size estimation. For each
keypoint, we estimate a single dominant orientation and create one descriptor. The scale space
search step dominates the resource requirements, taking about 80% of the computation time and
requires roughly 12 bytes per camera image pixel. The memory overhead for creating descrip-
tors is relatively low with about 0.3 bytes per camera image pixel and ∼80 bytes per feature. We
implemented two alternative methods for feature matching: in matching-friendly scenarios, we
directly match all camera image features against all features in the current PVS. Alternatively, we
use a vocabulary tree voting scheme: We first define subsets by finding those images from the
reconstruction step that contain enough features that match the current camera image. We then
match against the top ranked subsets separately. For each subset we then try to estimate a pose.
The advantage of this two step approach is that we largely reduce the number of features to match
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loc name cells

A PVS 1 {A,B,C,D}
B PVS 2 {A,B,C,E}
C PVS 3 {A,B,C,E}
D PVS 4 {A,D,E}
E PVS 5 {B,D,E,H}
F PVS 6 {F,G,H, I}
G PVS 7 {F,G,H, I}
H PVS 8 {E,F,G,H, I, J}
I PVS 9 {F,G,H, I}
J PVS 10 {H,J,K,L}
K PVS 11 {H,J,K,L}
L PVS 12 {J,K,L}

(c)

Figure 6.15: (a) Representation of a corridor reconstruction as 12 separate PVS cells. The as-
signment of features to cells is color coded.(b) Potentially Visible Set representation of the scene,
dependent on the current location loc.

against, which makes the matching itself more robust. However, it has higher computational re-
quirements. In both cases, matching the camera image against the dataset gives a set of 2D-3D
correspondences that still includes outliers. A robust pose estimation procedure is therefore re-
quired to deal with these outliers. We therefore apply a RANSAC scheme with a Three-Point
pose [Haralick et al., 1991] as hypothesis and use a subset of up to 50 correspondences for vali-
dation. The Three-Point pose estimation is based on a fixed-point implementation of the method
in [Fischler and Bolles, 1981]. The hypothesis with the largest number of inliers is selected as a
starting point for a non-linear refinement. Based on the inlier set of the best hypothesis, we apply
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an M-estimator in a Gauss-Newton iteration to refine the pose and find more inliers. This step is
repeated until the inlier set does not grow anymore. In theory, four points are enough to calculate
a 6DOF pose from known 2D-3D correspondences. However, given a large enough number of
outliers, it is likely to find an invalid pose from a small number of correspondences only. We
therefore treat a pose only as valid if at least 20 inliers were found.

6.3.3 Experiments

Our experimental setup consists of a corridor reconstruction from high resolution SLR images.
We use the Meizu M8 smartphone for localization. The mobile phones internal camera delivers
still images with a maximal resolution of 1920 × 1440 pixels. The camera is calibrated and the
lens distortion is adjusted to meet a pinhole camera model. Operating on full resolution images
provides the most accurate localization results but is computationally demanding. For augmented
reality on mobile phones meeting the target resolution of the display is sufficient for pixel accurate
alignment. Hence, we can operate on downsampled images (i.e.720 × 480). Figure 6.16 shows
sample images from our test scene and respective localization results. A quantitative evaluation
of the reprojection error is depicted in Figure 6.17. One can observe that almost 80% of all inliers
used for calculating the pose have a reprojection error smaller than 4 pixel.

6.3.4 Conclusion and Discussion

We presented an approach for wide-area 6DOF pose estimation that runs on a current smartphone
at about 2-3Hz. It relies on a previously acquired 3D feature model, which can be generated
from image collections, and can therefore tap into the rapidly increasing amount of real world
imagery acquired for digital globe projects and similar ventures. To make the approach scalable,
a representation inspired by potentially visible set techniques was adopted together with a feature
representation that is suitable to work in real time on a mobile phone.
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(a)

(b)

Figure 6.16: (a) Sample images from the test set and (b) respective localization results. The
yellow lines show the view rays of inlier used for localization.
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Figure 6.17: Reprojection error for inliers with respect to a distance threshold of 10 pixels.
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Chapter 7

Conclusions

In this thesis two main problems in computer vision have been addressed: robust and scalable
structure from motion and efficient localization from images. The main contribution of this thesis
is in building a reconstruction and localization system that can be applied to large scale real world
problems. Different algorithms and methods were presented that allow fully automatic scene
reconstruction from unordered image collections. Contributions were made to several system
components including image matching, geometric verification, structure from motion estimation
and dense matching. We introduced an algorithm for non-monotone reasoning about view triplets
which enables to identify wrong epipolar geometries from the matching graph. Our algorithm
is able to infer and remove such erroneous view pairs. Furthermore, our method can be easily
integrated into existing incremental structure from motion pipelines and is able to handle duplicate
scene structures up to some degree.

In our reconstruction system we successfully leverage the highly parallel computing power of
current graphic processing units to sped up various processing steps. This includes GPU based
vocabulary tree traversal, feature matching and geometric verification. Most of the methods are
generic and can be used for different application domains. In particular we presented a Wiki-based
approach for user contributed dense city modeling. A novel calibration method based on planar
markers allows accurate camera calibration and is easy to apply for end-users. Furthermore, we
introduced a guided view selection approach based on external pose priors. Our system advances
vocabulary tree based coarse matching by imposing additional constraints on the geometry. This
approach is especially useful for 3D modeling from images taken by micro aerial vehicles that
provide GPS/IMU support. In addition an end-to-end workflow for aerial dense matching was
presented. Instead of pairwise stereo fusion, our method is based on multi-view plane sweep with
global optimization on a 3D voxel-space. The algorithm delivers globally optimal solutions with
respect to the minimized energy but is computationally very intensive.

Given a sparse 3D reconstruction of a scene, we introduced a novel method for image based
real-time scene recognition. Our proposed approach is able to efficiently register images/videos
to large 3D point clouds as computed by structure from motion techniques. The method performs
real-time tracking by detection. Since every frame is individually matched and compared to a
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global 3D model database, the system is able to automatically recover from tracking failures. The
core component of our system is a fast indexing method based on a compressed set of synthetic
views. These synthetic views correspond to sampled 3D point fragments that are globally indexed
through a vocabulary tree and inverted file structure. Our framework achieves excellent registration
rates and is currently among the most efficient approaches for 6DOF location recognition. We
introduced a framework for fast registration of community photo collections to known landmark
reconstructions. The algorithm is suitable for outdoor robot localization, outperforming state of
the art SLAM approaches. Furthermore, a variation of our localization framework is capable
to run on modest hardware such as smart-phones that allows hand-held augmented reality. The
employed algorithms are generic and extensively evaluated on a variety of different datasets. Our
experiments demonstrated robustness, scalability and high geometric accuracy of the proposed
algorithms.

7.1 Directions for Future Work

In this thesis various algorithms and methods for efficient and scalable image based 3D recon-
struction have been presented. The ultimate goal would be a system that is able to determine the
exact 3D location in space of each captured pixel in each image/video and the orientation of ev-
ery image taken on Earth. Such a system would require fusing all available image data into one
detailed and consistent global 3D model of the human habitat in three-dimensions and in time. Of
course, this can only be achieved if a certain degree of texture information about the scene and
some prior information about the position of each image is available. Despite these prerequisites,
there are still unresolved problems in image based 3D modeling and localization.

Scalability True scalability of image based 3D reconstruction and localization methods is still
not achievable. Although, we observe an ever increasing amount of computing power due to the
emerge of multi-core CPUs and graphic processing units (GPUs), real-time performance for the
task of unordered structure from motion and dense matching of large aerial images is currently
out of reach. The minimization of the reprojection error of all images taken at the scale of the
whole world is practically impossible. Additional external orientation information is necessary to
partition the data into manageable subsets. While this problem can be solved outdoors by using
GPS sensors, we are not aware of any adequate indoor localization approach that can be easily
deployed. This is also true for large scale image based localization systems.

Robustness Beside scalability, the robustness of image based 3D reconstruction and localization
is another challenge. Even though current structure from motion algorithms work reasonably well
on a large variety of input data, there are still some scenes or special camera configurations where
these algorithms fail. In Chapter 4 we have presented an algorithm that is able to detect inconsis-
tent geometric relations between pairs of images. The employed prior probabilities on the number
of detected correspondences is based on a rather simplistic model and wrong 3D reconstructions
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can still occur. Some assumption made in the proposed framework are strong and future work
should address relaxing some of these. Furthermore, computing image correspondences between
views that are widely separated in time and space is an ill-posed problem. Current feature detec-
tors and descriptors are only invariant to a certain degree of view point change and illumination
variations. We are not aware of any robust algorithm for matching aerial and terrestrial images
with a view point difference close to 90◦. In general the reconstruction problem (with missing
data and outliers) itself is NP-hard [Nister et al., 2007]. The reconstruction of poorly textured
scenes or scenes including repetitive structures is another open research problem.

Sensor Fusion The fusion of image based data with other sensory information like global posi-
tioning systems (GPS), Inertial Measurement Units (IMU), Light Detection and Ranging (LiDAR),
odometry and sonar data is an important aspect for global 3D modeling. Using different sensors
forms the basis for an optimal geo-spatial data fusion since different properties of objects are
recorded, based on different physical principles of the sensors, bringing together complementary
and often redundant information. The fusion of this heterogeneous data implies new challenges
of calibration, accuracy, precision and data representation. Today, a large amount of geographic
information is already freely available and can be accessed from the web. Especially collaborative
online community projects such as OpenStreetMap1 (OSM) provide detailed 2D vector data of
street networks and building outlines. The massive amount of shared geo-referenced data can be
exploited for world scale reconstruction and localization tasks.

Camera Network Design In order to achieve a certain accuracy in the 3D reconstructions, pho-
togrammetric network planning is important for image based modeling. While this is a well known
task in aerial photogrammetry, only recently this problem gained attention for terrestrial and close
range reconstruction [Schmid et al., 2012]. In manned aerial image acquisition, the network de-
sign is normally restricted to a 2D camera grid. In Section 3.2.3 we observed that the flight height
and the forward and side-ward image overlap mainly determine the accuracy measured in terms of
ground sampling distance. This strategy is suitable for reconstructing the bold earth’s surface, but
for more complex structures like urban buildings, more sophisticated methods are necessary. In
particular, camera network design becomes more and more important due to new sensor platforms
like micro aerial vehicles (see Chapter 3.3). These systems are able to fly close to the object of in-
terest and deliver high resolution images which allow high quality reconstructions. Nevertheless,
this views must be planned carefully to adhere constraints like sufficient image overlap and max-
imum angle between images to facilitate vision based similarity computations. Furthermore, the
image overlap graph should be fully connected, otherwise disjoint reconstructions are obtained.
This includes minimizing a multi objective function. Finding an optimal viewpoint plan is an NP-
complete problem and therefore hard to optimize. The design and optimization of such a problem
is a challenging task.

1 www.openstreetmap.org
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Handling Time Reconstruction approaches from images normally assume a rigid scene that
does not change during the acquisition process. However, this assumption is often violated in
real world scenarios since the appearance of our environment undergoes a permanent change. For
instance seasonal vegetation changes, wind and weather effects or the successive reduction of
glaciers over decades leads to significant appearance changes of the environment. This is espe-
cially true for urban scenes with movable objects or the reconstruction and renovation of buildings.
Dealing with such kind of time dependent data and monitoring changes in existing 3D models is
an interesting field of future research.

Semantic Interpretation Image based reconstruction methods result in camera orientations and
dense or semi dense point clouds. For visualization aspects, a point cloud might be a sufficient
representation but often semantic information is necessary in order to extract interpretable infor-
mation for humans. For instance, automatically deriving a floor plan from a 3D point cloud of
a building is still a hard problem. Holistic scene understanding is one of the major problems in
computer vision and photogrammetry and has recently got a lot of attention [Ladicky et al., 2010].
This includes two fundamental tasks: 3D scene reconstruction and semantic interpretation of the
imaged content. The tight interaction between semantic classification and 3D reconstruction is
often ignored by current reconstruction and localization systems. However, these tasks are mutu-
ally informative and should be solved jointly. Semantic information from images can be used to
guide reconstruction methods and the 3D information on the other hand can help to improve the
semantic interpretation.
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Publications

The publications crated during the course of this thesis are grouped by topic and roughly sorted
by date.

A.1 Structure from Motion

• Large Scale, Dense City Reconstruction from User-Contributed Photos. Arnold Irschara,
Christopher Zach, Manfred Klopschitz, and Horst Bischof. Journal Computer Vision and
Image Understanding (CVIU), 2011.

• Efficient Structure from Motion with Weak Position and Orientation Priors. Arnold Irschara,
Christoph Hoppe, Horst Bischof, and Stefan Kluckner. Proc. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Workshop on Aerial Video Processing, 2011.

• Automatic Alignment of 3D Reconstructions using a Digital Surface Model. Andreas Wen-
del, Arnold Irschara, and Horst Bischof. Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Workshop on Aerial Video Processing, 2011.

• 3D Vision Applications for MAVs: Localization and Reconstruction. Andreas Wendel,
Michael Maurer, Arnold Irschara, and Horst Bischof. Proceedings of the International Sym-
posium on 3D Data Processing, Visualization and Transmission (3DPVT), 2011.

• Towards Fully Automatic Photogrammetric Reconstruction Using Digital Images Taken
From UAVs. Arnold Irschara, Viktor Kaufmann, Manfred Klopschitz, Horst Bischof, and
Franz Leberl. Proceedings of the International Society for Photogrammetry and Remote
Sensing Symposium, 100 Years ISPRS - Advancing Remote Sensing Science, 2010.

• Robust Incremental Structure from Motion. Manfred Klopschitz, Arnold Irschara, Gerhard
Reitmayr, and Dieter Schmalstieg. Proceedings of the International Symposium on 3D Data
Processing, Visualization and Transmission (3DPVT), 2010.
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• Kollaborative 3D Rekonstruktion von urbanen Gebieten. Arnold Irschara, Christopher Zach,
Horst Bischof und Franz Leberl. 15. Internationale geodätische Woche Obergurgl, 2009.

• What Can Missing Correspondences Tell Us About 3D Structure and Motion? Christopher
Zach, Arnold Irschara and Horst Bischof. Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

• Generalized Detection and Merging of Loop Closures for Video Sequences. Manfred Klop-
schitz, Christopher Zach, Arnold Irschara and Dieter Schmalstieg. Proceedings of the In-
ternational Symposium on 3D Data Processing, Visualization and Transmission (3DPVT),
2008.

• Towards Wiki-based Dense City Modeling. Arnold Irschara, Christopher Zach and Horst
Bischof. In Proceedings of the IEEE International Conference on Computer Vision, Work-
shop on Virtual Representations and Modeling of Large-scale environments (VRML), 2007.

A.2 Photogrammetry

• Photogrammetric Camera Network Design for Micro Aerial Vehicles. Christof Hoppe, An-
dreas Wendel, Stefanie Zollmann, Katrin Pirker, Arnold Irschara, Horst Bischof and Stefan
Kluckner. In Proceedings of the 17th Computer Vision Winter Workshop (CVWW), 2012.

• Rapid 3D City Model Approximation from Publicly Available Geographic Data Sources
and Georeferenced Aerial Images. Markus Rumpler, Arnold Irschara, Andreas Wendel and
Horst Bischof. In Proceedings of the 17th Computer Vision Winter Workshop (CVWW),
2012.

• Multi-View Stereo: Redundancy Benefits for 3D Reconstruction. Markus Rumpler, Arnold
Irschara, and Horst Bischof. Proceedings of the 35th Workshop of the Austrian Association
for Pattern Recognition (AAPR/OAGM), 2011.

• Aerial Computer Vision for a 3D Virtual Habitat. Franz Leberl, Horst Bischof, Thomas
Pock, Arnold Irschara, and Stefan Kluckner. IEEE Computer Society, 2010.

• Point Clouds: Lidar versus 3D Vision. Franz Leberl, Arnold Irschara, Thomas Pock, Philipp
Meixner, M. Gruber, S. Scholz and A. Wiechert. Photogrammetric Engineering and Remote
Sensing, 2010.

A.3 Image Based Localization

• Natural Landmark-based Monocular Localization for MAVs. Andreas Wendel, Arnold
Irschara, and Horst Bischof. International Conference on Robotics and Automation (ICRA),
2011.
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• Wide Area Localization on Mobile Phones. Clemens Arth, Daniel Wagner, Manfred Klop-
schitz, Arnold Irschara, and Dieter Schmalstieg. IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), 2009.

• From Structure-from-Motion Point Clouds to Fast Location Recognition. Arnold Irschara,
Christopher Zach, Jan-Michael Frahm, Horst Bischof. Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.
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