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Abstract

This Thesis describes novel image template based methods for robust and real-time

capable tracking and visual quality inspection tasks in harsh environments.

The presented tracking methods include three different constitutive approaches.
First, a spline-regularized template tracking method applied for weld seam tracking
in industrial robotic welding environments is presented. Second, a template tracking
method that relies on incremental template blending updates is presented for more dy-
namic scenes, allowing for template tracking in harsh outdoor environments. Finally, a
novel generic tracking fusion framework that allows for combining an arbitrary number
of trackers that report diverse typically not directly combinable outputs is presented. In
this way, advantages of different tracking cues can be combined in order to solve highly
complex tracking problems. The methodological focus of all presented tracking methods
lies on robustness and successful handling of diverse disturbing effects, environmental

influences, and image noise, while remaining real-time capable.

Considering the task of image based quality assessment we present a visual qual-
ity inspection framework for industrial robotic welding tasks, consisting of a semi-
supervised method that incrementally generates panorama images of entire welding
processes, and of an unsupervised classification approach that automatically detects
welding defects in an on-line fashion. Both methods rely on weld seam image templates
provided by an underlying tracking approach. The focus here lies on high panorama
image quality including a consequent suppression of industrial image noise as well as

prevention of typical blending artifacts, and on highly accurate classification results at a
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coincidental minimum amount of training costs or off-line preparatory tasks.

All presented methods are extensively evaluated and compared to state of the art
methods to prove their functionality and their practical applicability. It is shown that the
presented methods for both, tracking and visual quality inspection, clearly outperform
the state of the art, while solving hard computer vision problems in harsh environments

in real-time.

Keywords: computer vision, template tracking, tracking fusion, panorama image gen-

eration, defect detection



Kurzfassung

Diese Dissertation beschreibt sowohl neue Methoden fiir robuste und echtzeitfdhige
Verfolgung von Objekten in Videos, als auch neue Ansitze zur bildgestiitzten Qualitéats-
bestimmung in extremen Umgebungen.

In Bezug auf Objektverfolgung werden drei unterschiedliche Methoden prasentiert.
Die erste Methode basiert auf Spline-regularisierten Korrelationsmessungen, und findet
ihre Anwendung in der Verfolgung von Schweifindhten in industriellen Roboterschweif3-
prozessen. Dabei besteht das Ziel darin, die sich stindig verdndernde Schweifsnaht kor-
rekt zu detektieren und zu verfolgen, um so weitere Analysen zu ermoglichen. Die
zweite Methode ist speziell auf hochdynamische Umgebungen ausgelegt, und basiert
auf inkrementell tiberblendeten Objektbildausschnitten. Dies ermoglicht beispielsweise
die Objektverfolgung im Freien unter sich stindig @ndernden Beleuchtungsbedingun-
gen. SchliefSlich wird eine generische Methode zur Fusion von unterschiedlichsten Ob-
jektverfolgungsalgorithmen préasentiert. Dieser Ansatz ermoglicht es, vollig unterschied-
liche und daher nicht direkt vergleichbare oder kombinierbare Messwerte zu vereinen.
Auf diese Art und Weise konnen die Vorteile der verschiedenen Ansitze so kombiniert
werden, dass die Qualitit und die Genauigkeit der Objektverfolgung sichtbar verbes-
sert werden. Der Fokus bei allen Objektverfolgungsmethoden liegt speziell in Echtzeit-
fahigkeit, Robustheit und in einer erfolgreichen Bewiltigung von unterschiedlichsten
Storeinfliissen, umweltbedingten unvorhersehbaren Verdnderungen und Bildrauschen.

Fiir das Problem der bildgestiitzten Qualitdtsanalyse wird ein Framwork zur Bewer-

tung von industriellen Roboterschweiflungen, welches einerseits aus einem inkremen-
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tellen Panoramabildgenerierungsverfahren, und andererseits aus einem automatischen
Fehlererkennungsverfahren besteht, prasentiert. Beide Ansitze basieren auf Schweifinaht-
Bildausschnitten, welche von einem robusten Objektverfolgungsalgorithmus ermittelt
werden. Bei der bildgestiitzten Qualitdtsanalyse liegt der Fokus auf hochstmoglicher
Panoramabildqualitdt durch konsequente Unterdriickung von Stérungen und Bildarte-
fakten, und auf hochstmoglicher Klassifikationsgenauigkeiten in Bezug auf Schweif3-
fehlererkennung bei gleichzeitig minimaler Anzahl an notwendigen Trainingsdaten zur
Modellgenerierung.

Samtliche Methoden wurden ausfiihrlichst evaluiert, getestet und mit aktuellen Stand-
der-Technik Methoden verglichen, um einerseits die Funktionalitdt, und andererseits
auch die Anwendbarkeit in der Praxis zu zeigen. In dieser Hinsicht wird demonstriert,
dass samtliche Methoden sowohl fiir die Objektverfolgung als auch fiir die bildgesttitzte
Qualitatspriifung von industriellen Roboterschweifsprozessen den jeweiligen Stand der

Technik im Bezug auf Geschwindigkeit, Robustheit und Genauigkeit klar tibertreffen.

Schlagworter: Digitale Bildverarbeitung, Bildausschnitt-basierte Objektverfolgung in
Videos, Fusion von Objektverfolgungsmethoden, Panoramabildgenerierung, Fehler- und

Defekterkennung
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Introduction

In the last decades various image guided sensors from infrared devices up to high dy-
namic range sensors have been developed and applied to solve diverse problems in
the field of computer vision. Examples are video motion analysis, image based object
detection, image based object classification, or highly accurate industrial measurement
tasks. Coincidentally, a continuously increasing number of novel industrial manufactur-
ing techniques claims for adequate and robust quality inspection cues. Due to the recent
progress in imaging sensor design and development towards measurement variability,
robustness, usability and cost-effectiveness (e.g., Microsoft Kinect Sensor!), more and
more industrial quality inspection applications rely on computer vision algorithms for
quality related measurements. Thereby, the formulated measurement problems are two
dimensional signal processing problems like, e.g., pattern recognition, texture or color
analysis, or distance measurements.

In this Thesis we focus on two dimensional measurement problems and correspond-
ing quality inspection methods as well as related practical applications. Assuming a
device under test being located at a fixed position, and with a camera calibration and
camera extrinsic parameters given, robust and highly accurate image based measure-
ments are feasible. However, if a probe or specimen undergoes some kind of motion
while being inspected, robust detection or tracking algorithms are necessary to initially
determine the exact object position in the image before performing further quality as-
sessment. This becomes even more complex if neither a camera calibration nor extrinsic
parameters are given and if both the target object and the camera undergo an unknown

motion coincidentally. The computer vision discipline that explicitly addresses these
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2 Chapter 1. Introduction

problems is image based object tracking, which forms the center theme in this Thesis.

Although, image based tracking is a well studied problem in computer vision. How-
ever, there is still a lack of robust and coincidentally real-time capable tracking ap-
proaches that are able to perform tracking in highly dynamic scenes or harsh and noisy
environments. In this Thesis we present novel image based tracking methods that are
on the one hand significantly robust to large amounts of image noise, that are able to
adopt to highly dynamic environments or significant object appearance changes without
exhaustive parameterization or off-line learning tasks, and that nonetheless remain real-
time capable. Thereby, we rely on the fundamental concept of image templates. This
is mainly due to following reasons: a) Image templates can be used as features or de-
scriptors, thus allowing for an appearance based description of an object to be tracked.
b) Templates can be easily extracted from images without complex parametrization or
computational efforts. ¢) Template based tracking allows for following an object in
videos in real-time. However, there are also several drawbacks of template based ap-
proaches. Examples are the well known drifting problem [89] that template based track-
ing approaches suffer from, or given geometric restrictions as template tracking aims in
mapping objects with typically planar surfaces from one plane to another. Thus, non-
rigid objects or non-linear transformations are problems that template based approaches
typically cannot cope with. Anyhow, we address these quite substantial limitations and
show in this work how existing template based tracking can be improved such that a)
significantly large amounts of noise can be handled in a robust fashion, b) the geomet-
ric restrictions can be relaxed, allowing for a tracking of non-rigid objects in dynamic
environments, and c¢) advantages of other different tracking cues can successfully be
assimilated into template tracking. From an application point of view, we then show
that these novel template tracking methods can be successfully applied in reasonable
real-world applications, allowing, e.g., for robust real-time tracking in harsh industrial
robotic welding environments, or for successful tracking of non-rigid and non-planar
objects in highly dynamic outdoor environments. However, before going into detail
we need to introduce typical tracking complications that various tracking approaches
struggle with, as well as scenes and environments that we here refer to as harsh envi-

ronments.

Tracking complications can roughly be separated into object related and environ-
ment related influences. Object related complications typically include pose changes
of the tracked object which might result in unseen observations or view angles, object

deformations where an object undergoes highly complex non-rigid or even non-linear



transformations, resulting in significant shape changes, or object appearance changes
where an object’s texture or color changes over time. Environment related changes on
the other hand are given by external influences that considerably affect the appearance
of an imaged object. These include partial or even complete occlusions by other objects,
continuous or even rapid illumination changes which are typical for highly dynamic
outdoor scenes, or image noise which can be defined by any combination of several
here mentioned complications. An example for a harsh environment would be an in-
dustrial manufacturing setting. Thereby complicating factors that we would refer to
as industrial noise are given by sparks, spilling, smoke wads, evaporating water, gas
disturbances or even small explosions. These influences could e.g. occlude objects in
images, deform specimen to be analyzed, or significantly change texture or color of
depicted objects. Another example for a harsh environment would be an outdoor envi-
ronment where varying camera poses typically result in significant illumination changes
due to a varying incident angle of sun light, suddenly occurring cast shadows, or oc-
clusions of an object e.g. by animals. Figure 1.1 illustrates an object related example for
tracking complications as the depicted object undergoes deformations, non-rigid pose

changes, and appearance changes due to the closed and re-opened eye. Figure 1.2 on the
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Figure 1.1: Non-Rigid Motion and Appearance Changes: Real-wold objects typically
undergo non-rigid transformations, resulting in unforeseen appearance changes. These
can be even more complex for synthetic videos as illustrated. Solving corresponding
tracking problems requires thus for robustness in terms of non-rigid motion and ap-
pearance variations.

other hand gives an example for environment related disturbances. Although, the poses
of both imaged persons remain nearly constant, rapid illumination changes caused by
lightning and visible image noise caused by rain define some exemplary environmental
influences that also belong form a facet of tracking complications in harsh environments.

To summarize, we define harsh environments in term of image based tracking complica-



4 Chapter 1. Introduction

iy iy -8 i

Figure 1.2: Severe Illumination Changes and Natural Noise: Environmental illumi-
nation changes caused by lightning and visible noise caused by heavy rain represent
examples for environmental influences, thus contributing to our definition of harsh en-
vironments.

tions as the sum of influences, environmental changes, complicating factors, unforeseen
variations, or even combinations of the latter, that severely alter or modify the typical

appearance of imaged objects.

Contributions

The contributions presented in this Thesis considering image based tracking and vi-
sual quality inspection are manifold: a) A novel spline-regularized template tracking
method for weld seam tracking in harsh industrial robotic welding environments is pre-
sented. Thereby a highly robust real-time template tracker that requires for a minimal
number of parameters to be tuned is presented. b) We then present an image blending-
based method for updating tracking templates, thus allowing for adopting to highly
dynamic scenes and harsh environmental conditions while still remaining real-time ca-
pable. Moreover, this allows for relaxing the geometrical constraints of typical template
trackers which normally estimate a mapping from plane to plane, as even non-rigid
objects and more complex transformations can be successfully tracked. ¢) We present
a novel tracking fusion approach that allows for combining an arbitrary number of di-
verse trackers, regardless on their reported outputs. In this way, individual strengths
and advantages can be combined, resulting in the possibility for tracking realistic ob-
jects in highly dynamic real-world scenes while typically undergoing highly complex
non-linear pose or appearance changes. d) Finally, we present two image template and
consequently appearance based weld seam quality inspection approaches that are intent

to be applied for the task of assessing the quality of industrial robotic welding processes.



The first method robustly generates panorama images free of typical industrial noise or
disturbances like smoke wads, sparks or spilling in an incremental fashion. The second
method is an unsupervised welding defect detection approach that relies on a minimum
number of error-free training samples for on-line and real-time recognition of unusual
welding regions.

Extensive experimental evaluations and comparisons with corresponding state of the
art methods proof our presented concepts in terms of feasibility as well as functionality,

and demonstrate the applicability of the methods to reasonable real-world applications.

Outline

This Thesis is organized as follows: Chapter 2 then presents the common notation used
throughout the Thesis, as well as the theoretical background of image templates and
template related methods, including linear transformations and their robust estimation
in the two dimensional projective space. In Chapter 3 related work and the state of the
art considering the computer vision disciplines of image based tracking and visual qual-
ity inspection are presented and discussed. Our central theme of image based template
tracking is then presented in terms of three novel tracking approaches and of corre-
sponding applications in Chapters 4, 5, and 6. In detail, a robust spline-regularized
template tracking method, an image blending-based template tracking method, and a
segmentation-based method allowing for fusing different trackers are presented. Chap-
ter 7 then introduces a visual quality inspection framework for industrial robotic weld-
ing processes, which relies on weld seam image templates. In detail, an incremental
welding process panorama image generation method and an unsupervised automatic
welding defect detection method are presented. Chapter 8 finally presents our conclu-
sions and an outlook on future work, followed by Appendix A presenting basic mathe-
matical concepts and formulations utilized in methods and algorithms throughout the
Thesis, a listing of acronyms and symbols in Appendix B, by an official list of peer

reviewed publications in Appendix C, and by the Bibliography.






Templates in Computer Vision

In this Chapter we introduce the general concept of image templates and how they can
be utilized in computer vision in high level methods and algorithms, presented later on
in this Thesis. Typical examples for methods where image template find their appliance
are visual pattern recognition, object detection, video tracking, matching, or object de-
scription. A detailed description of all these topics would definitely go beyond the scope
of this Thesis. As the center themes that we address are given by robust template based
tracking and image template based quality assessment, we present the basic concepts of
image templates, an overview on different template matching strategies, different lin-
ear transformations in the two dimensional projective space, corresponding estimation
algorithms, as well as a robust method that allows for coping with a large amount of
mismatches and outliers in the following. However, first of all we need to introduce the

common notation utilized throughout the remainder of this Thesis.

2.1 Common Notation

Throughout this Thesis, we use the here presented common notation within equations,
definitions and for variables. Scalars are depict in italic font, e.g., 2 or x. Vectors and
matrices that consist of several scalar elements are depict in bold font, e.g., A or X.
Vector spaces and numeric ranges like, e.g., the two dimensional projective or the three
dimensional Euclidean spaces are depict in bold double-lined upper case letters, e.g., IP?
and R3. Finally, mapping functions that describe a mapping or a transformation from
an arbitrary vector space to another one are depict by calligraphic symbols like, e.g.,

or H. A summary on this common notation including examples is given in Table 2.1.

7
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Entity Descriptions Examples
scalar values abxy
T
vectors x=(x y 2
a e Am
matrices A=
an1 - Anm
vector spaces R! R? R® P! P2
F:R® = R!

mapping functions P2 2
: —

Table 2.1: Common Notation: A summary of the common notation used in equations,
definitions and for variables.

2.2 Image Templates for Object Description

Image templates are generally given by image sub-regions, depicting e.g. some patterns
of interest, an object to be tracked, or specific structures that could be used e.g. for object
description. Figure 2.1 illustrate on the one hand how templates can be extracted from
an image, and on the other hand how these could be utilized in this special case for de-
scribing an animated mouse. Either a single template can be used to describe the object,
or multiple templates each describing a specific pattern or structure can be combined
in a bag-of-words (BoW) model fashion for e.g. object description or categorization.
Image templates define a very simple concept for object descriptors in computer vision.
Thereby the descriptor is computed from the n x m pixels located inside the rectangu-
lar image sub-region, defining the template. Although, a single vector that contains all
template pixel values could be used to describe the depicted structures, pixel neighbor-
hoods are more interesting for describing an object as such additional relations are more
discriminative. Thus, many high level methods in computer vision, such as e.g. object
categorization, image retrieval, or template matching typically utilize image templates
in terms of n x m pixel sub-regions for their individual purposes. As the center theme
of this Thesis is given by template based tracking and quality inspection, we will focus

on template matching and linear transformation estimation in the following.
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Figure 2.1: Image Templates: Image templates are generally given by sub-regions, de-
picting structures or patterns of interest. These can be used to describe an object using
a single template (red), or multiple templates (green) each depicting a specific object
pattern are used for object description e.g. in a bag of visual words fashion.

2.3 Template Matching

Template matching defines a basic strategy in computer vision for locating or identifying
an object or a pattern in an image. The simplest approach in this course is given by a
sliding window matching function to find a given template in an image. Thereby the
aim is to exactly locate the object, described by the template as well as its pose, where
any similarity measure could be used for intermediate matching computations. Figure
2.2 illustrates the simplest and basic template matching approach, where an object is

assumed to exhibit similar scale and pose than the given template.

A more accurate approach is given by the full search algorithm (FSA) which addi-
tionally considers 360° rotations by rotating a given template, and arbitrary scales using
a pyramid approach, while searching for the best match in a search area. Obviously
this is extremely time-consuming, requires for large computational costs and also for
large memory consumption. Thus, there is a need for fast reliable and robust template
matching methods that do not rely on such exhaustive search approaches while though
performing at similar accuracies. In the following we will discuss different matching
functions for direct template matching, followed by an overview on different techniques
to improve runtime performances and matching accuracy while avoiding exhaustive

search.
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image

template

X

Figure 2.2: Sliding Window Template Matching: A given template is searched in an
image via sliding the template window over the entire image, and by computing simi-
larities for all possible image locations.

2.3.1 Similarity Measures and Image Correlation

For evaluating the similarity between an image region and a given template two different
methods are commonly used in computer vision. In cases where a template is described
by an array or vector of pixel values, the matching criterion is typically given by a
distance metric or by the norm of vector differences, where a measure of match defines
the degree of similarity. A typical example for a distance metric of vectors is given by

the squared error defined by
Aoz = Z (xij - y:’j)z . (2.1)
Vij

The most common distance measure though is given by the Euclidean distance or
L2-norm between two vectors x and y, which determines the distance between two n

dimensional vectors in the corresponding vector space. It is defined according to

de = [Ix —yll2 = 22)

However, the sum of pixel differences or the sum of absolute pixel differences are
also commonly used. A distance measure that additionally incorporates the variance

along each coordinate axis into the distance measure is given by the Mahalanobis dis-
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tance between two vectors x and y, which is defined by

ds =[x —ylls =/ (x—y)" 21 (x—y), 2.3)

where ¥ denotes the covariance matrix of the vector (x —y), which is generally defined

for a vector x as

1 — 1 &
Z‘nmi‘hbfx = E inxz‘T — My mz , My = E in . (2.4)
i=1 i=1

The measure of match M for a given distance function d can then be computed by

evaluating the degree of similarity of the two arrays or images x and y according to

1

My=+—"7——,
T I+d(xy)

(2.5)

where a perfect match results in M = 1 and for increasing mismatch M =— 0.

However, as mentioned above most high level computer vision methods rely on im-
age templates in terms of n x m sub-regions. Thus, the second method for evaluating
image or template similarities that additionally considers pixel neighborhoods in an im-
age is given by different correlation functions. This allows for more robust and accurate
matching. If image sub-regions or patches are used to define a template, the template
matching or correlation task is mainly given by comparing image regions and by com-
puting similarities or by evaluating correlation functions in between. A commonly used
correlation measure which determines the similarity between two images I and J and
which is invariant to illumination changes is the normalized cross correlation or N'CC

[79]. It is generally defined by

> (L(x,y) — ) (T (%) — my)

Nee 1)) = —2 . = (2.6)
XZ; (I(x,y) — ) % J(xy) —m)

where 1 and pj are the mean intensity values of the corresponding images I and J. The
obtained correlation value is given in the range of [—1, 1], where positive values indicate
higher similarities. A second correlation or image distance measure is given by the root

mean square distance (RMS) which denotes a common measure of mismatch between
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two digital images and which is given by

RMS (L)) = J %Z (I(x,y) =T (x,y))*. 2.7)

X,y

The normalized sum of squared differences is another correlation measure that is
robust to intensity differences between two images I and J, but that requires less com-
putations than the RMS. The NSSD is given by

> (L(xy) =T (x,y))
NSSD (1)) = 2

. -, 2.8)
%I (x,y) %I (%, )

which defines a typical measure of mismatch between two images. The sum of absolute

differences NSAD in contrast considers a linear penalizing of non-similar pixels, and

is given by
2 y) =T (xy)|
NSAD (1)) = 2 . = (2.9)
XZ;I(x,y) %J(w)

Yet another example for a correlation function that defines the relation between two

ranked variables is given by the Pearson correlation coefficient PCC given by

pec = =L (2.10)
010y

where ¥ again denotes the covariance matrix, and ¢ defines the variances of the images
I and ], respectively. Thus the Pearson correlation describes the linear dependence of

two images in terms of a correlation measure.

Finally, the structural similarity or SSZM presented by Wang [128] defines an image
similarity measure that is designed to additionally quantify errors between two signals
x and y. It is composed of a luminance component that considers the mean intensities
given by

2
(xy) = At T

_ Ay Te 211
ui+ Uy + e @11

a contrast component that considers the corresponding standard deviations defined as

200y + €c

—_ 2.12
U,%"‘U'ﬁ‘i‘ec ( )

c(xy) =
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and a structural comparison component that is based on the correlation between the two

unit vectors (x — yix) /0y and (y — py) /0y given by

o
s(x,y) = wy+ e

= (2.13)
Uny + 65

Thereby, €], €, and € are constants that ensure stability of the individual compo-
nents. The structural similarity index between to signals x and y is then given by a

linear combination of above introduced components.
SSIM (x,y) =1(xy)" c(xy)’ s(xy)", (2.14)

where «, f and 7y are power terms that control the impact or importance of each compo-
nent. In oder to obtain a single similarity measure between to images I and J, structural
similarities are calculated in a sliding window approach. The final similarity measure is
given by the mean SSZM as

N
1
MSSIML]) = Z SSIM (x;,yi) , (2.15)
I
where N denotes the number of considered local windows, and x; and y; denote the

corresponding image contents of the i*" local window.

2.3.1.1 Matching and Matched Filtering

By applying above presented correlation measures to a search region that is typically
larger than a given template for exhaustive template matching, a match surface m (x,y)
is generated. This generation can also be formulated as a convolution of a matching

filter 1 (x,y) with a given search area s (x,y) according to
m(x,y) =s(x,y) @h(x,y) . (2.16)

Thereby matching filters are designed and derived to confirm some match fidelity
criterion. A typical example is the signal to noise ratio (SA'R) given by the ratio of the
filter response peal to the filter response for additive noise. Thereby the filter response

m (x,y) is defined as a the sum of image data m; (x,y) and additive noise m, (x,y),
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resulting in the SA/R measure of a peak response at (xo, o) given according to

SN'R = 10log™ 0 0) (2.17)
(%

A
Matched filters in turn are optimal for detecting a signal in the presence of white
noise, where the matched filter response at (x,y) is equivalent to the cross-correlation
of template t (x, y) and search region s (x,y) at the corresponding coordinates. The least
mean square filter gives yet another variation of a matched filter that is optimal in the
presences of globally stationary noise, generally given by a zero-mean matched filter

and thus equivalent to performing a zero-mean cross correlation.

2.3.2 Fast Matching Strategies

Although, the above presented correlation functions and similarity measures allow for
robust appearance based matching under consideration of different aspects like illu-
mination variations, image noise, or clutter, a common method for further improving
template matching is to perform some preprocessing steps or to transform the template
and the image to vector spaces that are more suitable for specific matching tasks. Ex-
amples would be usage of integral images, image binarizations, or pruning strategies,
as well as utilizing the advantages of the frequency domain instead of matching in the
spatial image domain.

Sibiryakov [112] proposed to densely transform template and image in binary code
form by projecting and quantizing histograms of oriented gradients (HoG) [32]. They
rely on HoG features as they exhibit an invariance to local object and appearance
changes, as the distributions of intensity gradients do not significantly change in such
cases. With the template and the image given in binary form, extremely fast matching
can be performed based on Hamming distances denoted by H.AM, which are typically
used in information theory. For two given strings, vectors, or images the Hamming

distance equals the number of positions where the corresponding symbols are different:

HAM (L)) =Y 1(xy) #J (x,y) (2.18)

Vx,y

Sibiryakov empirically showed that this derivative of template matching outperforms
other correlation measures like N'CC in terms of runtime and accuracy.
Shin et al. [111] proposed to use index tables which store image coordinates of pixels

exhibiting similar gray values in terms of hash tables. For matching of a given template
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a penalty based matching approach that considers small pixel errors allows for fast and
robust matching in the presence of up to 30% Gaussian noise. Another approach for
speeding up template matching is given by using integral images instead of the original
image data. Jung et al. [66] demonstrated how integral images can be to boost the naive
full search template matching scheme by using an integral image as search area instead
of a block sum pyramid, resulting in reasonable speedups, less memory consumption,
and an optional extension to non-square template matching.

Nguyen et al. [93] proposed a pruning scheme to remove image regions that are
not matchable with only few simple computational operations beforehand, resulting in
significantly increased runtime performances compared to standard template matching.
The presented approach uses Haar-like features as weak features for identifying poten-
tial matching candidates, which are then compared to the given template using the N'CC
measure. In this way, runtime is reduced by ten times compared to standard methods
e.g. based on the Fast Fourier Transformation.

Another traditional approach that allows for identifying image regions similar to a
given template is the Fast Fourier Transform (FF7) introduced by Cooley and Tukey
[29] and typically defined by the Radix-2 Decimation-in-Time (DZT) form according to

Iz
L
Nz

—1
2mi

Xp= Y xome” HOWE LN gy e REHUE e [0, N~ 1], (2.19)
m=0 m=0
where the Discrete Fourier Transform (DF7T) of length N is described by two DFTs
of length iy given by the sum of DFTs of even-indexed inputs E; and of odd-indexed
inputs Oy in terms of the general divide and conquer technique. Thus the FFT is
finally given as
Ex + e FkOy if k <

; (2.20)
2

k:

Nz
Nz Nz

In terms of template matching, an image and a template are both first transformed
to the Fourier space where complex convolution operations can be performed by simple
matrix multiplications, using the Fast Fourier Transform. Aboutajdine and Essannouni
[1] recently presented fast block matching algorithms that allow for performing SSD,
SAD and sum fourth order moment (SFOM) correlation operations in the Fourier
space, where computational costs are significantly reduced while obtaining similar re-

sults than with standard correlation functions.

Uenohara and Kanade [121] presented a fast pattern matching algorithm based on
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the Fourier transform and the Karhunen-Loeve transform [92]. Thereby the eigenvectors
derived by the Karhunen-Loeve transform are considered as patterns to be recognized.
The presented approach addresses the task of pattern or template matching for objects
with unknown distortions within a short period, where an object is given by multi-
ple intensity patterns with different distortions generated using the Karhunen-Loeve
eigenvectors. Transformation to the frequency domain using the Fourier transform, and
subsequent normalized correlation between object patterns and the input image define
the presented template matching approach, giving a significant speedup to standard
spatial domain approaches.

A survey on different strategies on how to determine matches in the frequency do-
main at optimized reduced runtime performances can be found in the work of Fredriks-
son et al. [42].

For a review on even more advanced methods like Matched Spatial Filters, Synthetic
Discriminant Functions, or low dimensionality representations for matching, including
Principal Component Analysis (PCA), Independent Component Analysis (ICA), or Lin-
ear Discriminant Analysis (LDA), we would refer to the work of Brunelli and Poggio
[18], which sets a special application focus on locating eyes in face images, to the re-
port of Cox [30], and to the book of Brunelli [17] which extensively reviews template

matching techniques in computer vision.

2.4 Template Matching in Video Tracking

A typical example for a high level computer vision method where template matching
defines a basic and crucial component is video tracking. Thereby, an image template that
depicts an object to be tracked is followed in an image sequence or video. Although,
the simple sliding window approach and the different template matching methods de-
scribed above might be useful in some tracking applications, the intuitive assumptions of
object rigidness or of a simple translation as motion model between consecutive frames
typically do not hold for real world situations. Options to cope with changes in size,
rotations or even pattern distortions would be e.g. to transform the image to a standard
size and orientation. However, this works only if there is no size or orientation variation
given in the image. Another option would be to spatially scale and rotate the tem-
plate in terms of the full search algorithm allowing for selecting the best matching scale

and rotation. However, this results in high computational costs for large numbers of
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scales and rotations. Thus, different more realistic object transformations that consider
translations, rotations, scaling, shear, affine and projective transformations are required.
Such transformations are typically computed from a set of corresponding image points,
identified in consecutive or overlapping images. Thereby, the correspondence problem
is solved by matching feature point descriptors like e.g. SIFT [81], SURF [6], or BRIEF
[21], image templates, or interest points such as e.g. Harris corners [50] or FAST corners
[102]. Taylor et al. [117, 118] rely on features based on histograms of pixel intensities,
which together with a smart indexing scheme and a novel bit mask representation allow
for feature matching of one or multiple targets in few microseconds.

In the following, we introduce a set of linear transformations in the two dimensional
projective space IP?, and corresponding Gold Standard estimation methods. These trans-
formations allow for template tracking in more realistic real world situations, consider-

ing template distortions that range from rigid transforms to projective homographies.
ing template distortions that range f igid transf to projective homographi

2.4.1 Projective Geometry in 2D

In this Section, basic geometric relations and the algebraic formulation of two dimen-
sional projective transformations are discussed, based on the formulations in the book
of Hartley and Zisserman [51]. For further in-depth concepts and methods we would
refer to the introductory chapters of [37], [51] and [85]. In general, the projective geom-
etry represents an elegant way to model the perspective imaging concept, and provides
appropriate mathematical representations in form of, e.g., linear matrix equations. The
motivation for projective geometry and projective transformations of planes is given
by the fact that the general imaging process by a camera is nothing else than the pro-
jection of three dimensional world points onto a two dimensional image plane under
consideration of a specific projection model. Starting with a definition of the geometric
primitives and the basic concept of homogeneous representations, different classes of
transformations in the two dimensional projective space IP? are presented and discussed

in subsequent Sections.

2.4.1.1 Geometric Primitives

The geometric primitives of projective geometry are given by linear entities in IP?, such
as points, lines and conics, and by linear entities in P2, namely points, lines, planes and
quadrics. However, we focus on projective geometry in IP?, as later on presented high

level image processing methods and applications mainly rely on projective geometry in
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the image plane. Geometric primitives in IP? are given by elementary entities like points,
lines, or conics. These can be algebraically written as vectors or matrices in the projective
space. Projective geometry is consequently defined by the geometric primitives as well
as by geometric relations in between. A point in the two dimensional Euclidean space
IR? is given by a coordinate pair (x,v), if R? is considered as a vector space. A line in the

plane is given by a homogeneous 3-vector (a, b, ¢)’, and is inhomogeneously defined by
ax +by+c=0, (2.21)

where different values for (a,b,c) result in different lines. A point x = (x,y)T lies on
aline 1 = (a,b,¢)" if and only if ax + by + ¢ = 0. Considering vectors, this may be
written as an inner product, where an additional 1 is added as third coordinate to the
point (x, y)T in IR?. In this way, points are represented as homogeneous vectors, similar
to the homogeneous vectors of lines. The arbitrary formulation of a homogeneous point
x in the projective space IP? is thus given by (x1,xy, X3)T, representing the Euclidean
point (x1/x3,x2/ x3)" in R2. As mentioned above, a homogeneous point x lies on a line
1 if and only if x'1 = 0. In a similar way the intersection of two lines 1 and 1’ can be
represented as a homogeneous point x = 1 x ', where x defines the vector or cross
product. At last, a line 1 connecting two homogeneous points x and X’ is given by the
cross product 1 = x x x'. Finally, the special cases of ideal points or points at infinity and
of lines at infinity need to be defined. Finite points in R? are defined by homogeneous
points, where x3 # 0. However, the projective space IP? also contains points where
x3 = 0. These points are known as ideal points or points at infinity denoted by x.. These
points lie on a single common line 1, = (0,0, 1)T, called the line at infinity. With this
additional entities given, in IP? intersections of parallel lines are also defined in contrast
to the standard Euclidean geometry of IR?, where parallel lines form a special case and

cannot be intersected. Table 2.2 summarizes the geometric primitives and entities in IP2.

2.4.1.2 Projective Transformations and Mappings

Per definition, a projective transformation in IP? denoted by F : P> — P? is an invertible
mapping from points in P? to corresponding points in IP? that maps lines to lines.
Hence, if points xj, x> and x3 lie on the same line, then the transformed points x}, X}
and xj} also lie on a common line. In literature [51] such a transformation is referred to

as projectivity, projective transformation, or homography. An algebraic definition of a
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Entity Descriptions Algebraic Formulation
homogeneous point x = (x1,x2,x3)"
homogeneous line 1= (I, 13)T
Euclidean point xe = (x1/x3,%2/%3)"
intersection of two lines x=1x1

line connecting two points I =x1 Xx

line normal n=(,)"
point at infinity Xeo = (X1, X2, O)T
line at infinity 1. = (0,0, 1)T

Table 2.2: Geometric Primitives in IP?: Basic geometric entities and their algebraic rela-
tions in the two dimensional projective space.

projective transformation in IP? is given by a 3 x 3 matrix H that transforms any point

in IP? that is represented by a 3-vector x according to
x' = Hx, (2.22)

where the projective transformation of a line 1 under the defined homogeneous point

transformation is consequently given by
I'=HT1. (2.23)

Due to the homogeneous character of projective transformations only the ratio of
the matrix elements is significant. As a projective transformation consists of nine matrix
elements, eight independent matrix element ratios result in eight degrees of freedom
(DOFEF). In the following different classes of two dimensional transformations exhibiting
different geometric invariants are described. Thereby, we focus on the specific scalar
invariants of the geometric configurations, where an invariant denotes a function of
the configuration whose value is preserved by the specific transformation. Examples for
such invariants would be, translations, rotations, or angles between lines. Depending on
the number of unknown matrix entries and geometric configurations, different degrees

of freedom (DOF) and hence different invariants are obtained for different classes of
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transformations.

Isometry Transformations

Transformations of a plane in R? that preserve Euclidean distances and that are called

isometries or rigid body transformations are defined according to

x' e€cosd —sin® ty| [x
vy | = |esind cosb t,| [y |, with e==1. (2.24)
1 0 0 1 1

Depending on the sign of € the transformation remains either orientation preserving
(41), or reverses the orientation (—1). In general, isometries are given by a composition
of a translation t and a rotation R. Thus it exhibits three degrees of freedom (DOF), one

for the rotation angle, and two for the translation in R2.

R t
ol 1

/

(2.25)

The corresponding invariants obtained by a planar isometry transformation are the
distance between two points, the angle between two lines, and the area spanned by at

least three circular connected points.

Similarity Transformations

An isometry that is additionally composed of an isotropic scaling s is called similarity

transformation. In matrix representation a similarity transform is given as

x' scos® —ssinf t,| [x
y' | = |ssind scos® t,| [y |- (2.26)
1 0 0 1 1

Planar similarity transforms exhibit four degrees of freedom (DOF). Similar to isom-
etry transformations one for the rotation angle, two for the translation vector in IR?,
and an additional fourth degree for the scaling. The matrix block form of a similarity

transformation is given according to

sR t
oT 1

/

x, with RTR=1I. (2.27)
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The invariants of similarity transformations are given by the ration of lengths, the
ratio of areas, the angles between lines, and by parallel lines that remain parallel. Thus,

a similarity transformation is shape preserving.

Affine Transformations

An affine transformation is defined by the composition of a non-singular linear transfor-
mation with an additional translation. The matrix representation of an affinity is given

according to

x/ a1 aipp  ty X
v |=lax an ty| |y (2.28)
1 0 0 1 1

where the number of degrees of freedom (DOF) is six according to the six unknown

matrix elements. The block form of an affine transformation is given as

! At (2.29)
X = X, .
ol 1

where A can be decomposed into three component matrices using standard Singular

Value Decomposition (SVD):

A=UzV" = (UVT) (VEVT) =Ry (R 4ZRy) , with T=

A O
! (2.30)
0 A

Compared to a similarity transformation, the two additional degrees of freedom
(DOF) are obtained from the ratio of the two scaling parameters A; : A», and from the
additional rotation angle ¢, specifying the scaling direction. The invariants of an affine
transformation are parallel lines that remain parallel as a point at infinity is mapped onto
another point at infinity under an affine transformation. Second, the ratio of parallel
lengths or of parallel line segments remains also invariant as the scaling along a specific
axis remains the same for all lines with the same direction. Finally, the ratio of areas
remains invariant as the area of any shape is scaled according to AA;, which results in

the area being canceled out as an invariant.
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Homography Transformations

A projective homography transformation can also be seen as a generalization of an
affine transformation. It is generally defined as a non-singular linear transformation of

homogeneous 3-vectors, represented in matrix form as

x] hi1 hip hiz| [x
xé = h21 hzz ]’123 X2 . (2.31)
A h31 hz hss| \x3

In contrast to an affinity, a projective homography does not distinguish between
orientation preserving and orientation reversing projectivities in IP2. The matrix block
form of a homography is give according to

At
x = x, with v= (01,02)T . (2.32)
vl v

The number of degrees of freedom (DOF) for a homography sums up to eight, which
results from two degrees for scaling, two for rotation, two for translation, and two for
the line at infinity. Thus, a homography can be computed from four non-collinear point
correspondences. The only resulting invariant is given by the cross-ratio or ratio of ratio

of four points on a line or of lengths.

Figure 2.3 and Table 2.3 again summarize the introduced planar transformation types
in IP2. The distortions, the degrees of freedom (DOF) that rely on the number of un-
known matrix elements, the number of required point correspondences, and transfor-

mation related properties that remain invariant under the specific mappings are depict

and listed.
/—m Q projective
translation

s 4

-
Euclidean Aﬁ >

X

Figure 2.3: Linear Projective Transformations in 2D: Different distortions of planar
transformations in IP2. [115]
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Transformation Matrix DOF Points Invariants

€cosd —sinf t,

Isometry esinf  cost t, 3 2 length, area
0 0 1
scosf —ssinf ty
Similarity ssinf scost t, 4 2 ratio of lengths, angle
0 0 1
a1 A tx
Affinity a1 ax ty 6 3 parallelism, ratio of areas
0 0 1
hir hia his
Homography hor hy  hos 8 4 cross-ratio (ratio of ratio)
h31 hzy  hss

Table 2.3: Linear Projective Transformations in IP?: A summary of planar projective
transformations in IP2. The specific transformation matrices exhibit different degrees of
freedom (DOF), depending on the number of unknown matrix elements. Consequently
different numbers of point correspondences are required for their estimation. Transfor-
mation related invariants under the specific mappings are also specified.

2.4.2 Transformation Estimation

Transformation estimation methods generally describe how to establish a particular ge-
ometric model that maps shapes or geometric primitives from one image or plane to
another. For tracking algorithms, which form a the central theme in this Thesis, planar
transformation models are essential as they describe the way in which an object has
been transformed from one frame to another. Depending on the number of model pa-
rameters, different Gold Standard methods exist. Isometries and similarities are typically
computed by the Procrustes Alignment algorithm [46], which estimates a rigid motion
in the image plane. Affinities and homographies on the other hand are computed by
the Direct Linear Transformation (DLT) [51], which relies on algebraic relations between
corresponding image points. As measurement errors in point correspondences typi-
cally do not follow a Gaussian distribution, the Gold Standard method for affinities and
homographies further considers the robust Random Sample Consensus (RANSAC) [40]
estimator. In this way mismatches and outliers are identified and not considered for the

transformation estimation.
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2.4.2.1 Rigid Motion Estimation

A rigid motion in image plane generally consists of a translation vector t and a rotation
matrix R. The generalized Procrustes analysis is a standard rigid motion estimation
algorithm which can be dated back to the work of Gower [46]. In general, the Pro-
crustes problem describes the task of estimating a rigid body transformation between N
corresponding points x; and x! by minimizing the mean squared distance
1N
d:NZ|in+t—x§]2, (2.33)
i=1
where x; and x; define corresponding image point matrices, containing one coordinate
per row and one point per column respectively. The overall Procrustes Alignment con-
sists of three consecutive steps. First, both point sets are normalized to their centers of

gravity:

N
o — . _ 1
Xi=x;—X, with x= N ]Z; X; (2.34)

Second, the rotation matrix R is determined by Singular Value Decomposition (SVD)
of A=Y xx!T =UZVT:

det (VUT 0
R—=vDU", with D= |%(VU) (2.35)
0 det (VUT)
Finally, the remaining translation vector t is computed:
t=x—Rx (2.36)

The resulting Euclidean transformation mapping that consists of a rotation matrix R

and a translation vector t can then be rewritten as a single transformation matrix H:

R t
ol 1

(2.37)

2.4.2.2 Direct Linear Transformation

The Direct Linear Transformation (DLT) algorithm is a simple algorithm for determining
a planar transformation given by x/Hx; from n > 4 image point correspondences x; <> x..

. . . . iT .
Considering the j-th row of matrix H as h/' and a point x} = (x/,y/,w}), the planar
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transformation to be determined can be written as

y/h3 x; — wh? x;
X; x Hx; = w;thxi — x;h3rxi . (238)
xl{hZTX,‘ — ygthxi
According to h'x; = x!'h for j =1---3, a system of equations in the entries of H of

the form A; h = 0 can be formulated for each point correspondence.

o —wix] x| (n
wxi 07 —xIx]| [h*]| =0 (2.39)
—yxxpd o R

Although, there are three equations included in the system of equations above, only
two of them are linearly independent. The third row is obtained up to scale from the
sum of x/ times the first row and y/ times the second row. This results in two equations in
the entries of H for each point correspondence. Thus in literature [51] the third equation

is usually omitted, giving

hl
OT —w’,xT (x.T
A= U2, (2.40)
wiX; 0 —X;X; W

where A; is a 2 x 9 matrix, the system A;h = 0 is an equation linear in the unknown h,
and where the matrix elements of A; are quadratic in the known point coordinates. In
general, this system of equations holds for any homogeneous coordinate representation
(x, ., wg)T of a point x/, where (x/,y;) are measured image coordinates if w; = 1.

The desired homography transformation H is then computed with an over-determined
system of equations given as Ah = 0, where A is built up from the matrix rows A; con-
tributed from each point correspondence, and where h is a 9-vector that is made up of

the entries of the desired transformation matrix H.

h! hi hy hs
h=|hn2|, H= |h, hs hg (241)
h3 hy hg he

The result of this general DLT formulation for 2D homographies depends on the

coordinate frame in which points are expressed, and is not invariant to similarity trans-
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formations of an image. Hence, there exist coordinate systems that are better suited for
these type of estimation methods. Hartley [52] proposed to apply a normalization con-
sisting of a translation and a scaling of image coordinates to the data before applying
the DLT algorithm, followed by an appropriate correction of the DLT result afterwards.
In this way, they obtain the correct transformation matrix H with respect to the original
coordinate frame.

For the normalization, first the coordinate systems of each image is translated, in
order to bring the centroids of each point set to the origin. Then, the x and y coordinates
of each point x = (x,y, w)T are equally scaled by an isotropic scaling factor, such that
the average distance of a point x from the origin is equal to /2. The normalized Direct

Linear Transformation is summarized in Algorithm 1.

Algorithm 1 Normalized Direct Linear Transformation (DLT):

Input: n > 4 2D to 2D point correspondences x; < X
Output: 2D homography transformation matrix H such that x; = Hx;

(a) Normalization of x by estimation of similarity transformation T, consisting of a
translation and scaling, that takes points x; to a new set of points X; such that the

centroid of the points ¥; is the origin, and their average distance from the origin is V2.

(b) Normalization of x’ by estimation of similarity transformation T’ for the points in
the second image, transforming points x; to X.

(c) Compute matrix A; according to Equation 2.40 for all correspondences x; < x!.
(d) Assemble the n 2 x 9 matrices A; into a single 2n X 9 matrix A.

(e) Obtain the SVD of A, where the unit singular vector corresponding to the smallest
singular value (last column of V if A = UDVT) is the solution h.

(f) Determine matrix H from h according to Equation 2.41.

(g) Denormalization according to H = T'~'HT.

2.4.2.3 Random Sample Consensus (RANSAC)

For typical real-world problems it cannot be assumed that a set of point correspon-
dences used to estimate an arbitrary model only exhibits measurement errors that follow

a Gaussian distribution. In fact, there is a high probability that the measurements in-
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Algorithm 2 Random Sample Consensus (RANSAC):

Input: data set S that contains outliers, distance threshold (, inliers threshold A
Output: robust fit of model M

(a) Randomly select a subset s from S and estimate M from s.
(b) Determine the input data elements S; that lie within the distance threshold ¢ of
the model, which coincidentally define the consensus set of the sample and the inliers

of S.

(c) If the size of S; is greater than the inliers threshold A, re-estimate M using S; and
terminate.

(d) If the size of S; is less than A, select a new subset s and repeat the above.

(e) After N trials the largest consensus set S; is selected to re-estimate the final robust
fit M.

clude mismatches that are outliers to the Gaussian error distribution, and that severely
disturb the estimated model. Hence, robust estimation methods that are able to identify
highly suitable inliers, and that are tolerant to outliers or measurements that follow a
different error distribution, are required.

The Random Sample Consensus (RANSAC) [40] algorithm is a general and very suc-
cessful robust estimator that can cope with a large proportion of outliers. The algorithm
first selects a random sample from the given input data which is sufficient to estimate
the desired model. This sample is then used to fit a first estimate of the model. Next,
the corresponding support is evaluated by the number of input data elements that lie
within a specific distance threshold. This random selection is repeated a defined num-
ber of times, and the model that gives the highest support is finally chosen as the robust
fit, where input data elements that lie within the distance threshold define the final set
of inliers. This robust estimator is designed opposite to conventional smoothing tech-
niques, because it aims to find the smallest feasible initial sample, which is subsequently

enlarged with consistent data if possible. Algorithm 2 summarizes the procedure.

2.5 Conclusion

In this Chapter we have presented the basic fundamental concept of image templates in

computer vision as well as a short review on different template matching strategies. We
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have shown how templates can be utilized in high level computer vision methods for
object description, and image based tracking. As the center theme of this Thesis is given
by robust template based tracking as well as image template based quality assessment
in harsh environments, we have presented linear transformations, corresponding esti-
mation methods, and a robust algorithm that allows for coping with large amounts of
outliers or noise. To summarize, the tracking methods presented in Chapters 4, 5, and 6
and the quality inspection methods presented in Chapter 7 are based on a common set
of image template related theoretical foundations and backgrounds, which have been

presented in this Chapter in a common notation.



Related Work on Tracking and

Visual Quality Inspection

The topics and concepts that are presented in subsequent Chapters generally deal with
the computer vision disciplines of video object tracking and visual quality inspection,
whereas the latter especially focuses on industrial robotic welding. Up to now we have
presented the basics and fundamental concepts of image templates which form the cen-
ter theme in this Thesis.

However, this Chapter provides an overview of related work and state of the art
methods for the computer vision disciplines of a) image based tracking, including
specific properties, advantages and weaknesses of diverse tracking methods and ap-
proaches, as well as of different tracking fusion concepts, and for the specific task of
b) visual quality inspection in industrial environments, especially for industrial robotic
welding, including an overview of diverse existing measurement cues, and an overview

on related unusual event detection methods.

3.1 Image-based Tracking

In the last decades visual object tracking has been a vital field of research in the com-
puter vision community. Several applications such as surveillance, augmented reality or
assistance systems which benefit from the progress made in this area, as well as different
novel tracking methods, concepts and strategies haven been proposed. As the field of
tracking is very broad and diverse, we classify related approaches into several groups

and consider them separately here, followed by a discussion of existing relevant fusion

29
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techniques. Similar to the central theme considering tracking in this Thesis we start
with an overview of template tracking methods, followed by learning based approaches
and trackers that allow for successful tracking of non-rigid objects, and conclude with

different concepts for fusing trackers to obtain more accurate tracking results.

Template-based Tracking

Template tracking represents the simplest tracking approach where image templates or
sub-regions represent the target object. The fundamental idea can be dated back to the
method of Lucas and Kanade presented in [83]. In template based approaches the track-
ing task is typically solved by detecting and matching or by correlating salient image
features in consecutive frames, followed by an estimation of a suitable transformation
matrix. Difficulties that arise are thereby partial or even complete occlusions, rapid or
constant illumination changes, and object appearance or pose changes. Furthermore,
tracking over long sequences typically suffers from the well known drifting problem,
which is discussed in detail by Matthews et al. [89]. In order to successfully handle
these problems and complications, the tracking template needs to be updated in some
way. The naive update approach is to directly assign the new location of the tracked
object to the template within each frame. As discussed in [89], this will result in a drift
away from the object over time due to, e.g., object appearance changes, environmental
changes or tracking failures.

Black and Jepson [10] presented a template or view based tracking approach that
relies on Eigenspace techniques. They reformulated the Eigenspace reconstruction prob-
lem to a robust estimation formulation and incorporated a subspace constancy assump-
tion which allowed for coincidental computation of an affine transformation between
the image and the Eigenspace and of the view reconstruction. By using a robust formu-
lation for subspace matching they showed that they can extend Eigenspace methods the
tracking problems including occlusions, background clutter and noise. However, in their
experiments they applied their method for the application of hand gesture recognition
as well as for tracking of very simple objects like, e.g., coke cans. Although, few samples
on above described complications are illustrated, extensive performance evaluations are
not given. Moreover, the approach can only be applied for tracking of previously view
objects and according to the authors the approach is far from real time as it requires
several seconds for the reconstruction approximation.

Benhimane and Malis [8] introduced a homography based approach to image based

visual tracking and servoing. They proposed to use an efficient second order minimiza-
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tion method (ESM) in order to estimate a homography between consecutive images
without using computationally expensive Hessian matrices. Their approach relies on
an iterative minimization technique based on a Lie Algebra parameterization. Further,
they utilized the estimated homography transformation matrix to derive and control a
visual servoing control law. The authors demonstrate that their method provides a high
convergence rate, with the specific advantage of avoidance of getting stuck into local
minima. However, the presented approach lacks in robustness as it is quite sensitive to
illumination changes as well as partial occlusions. Moreover, the approach is especially
designed to track planar surfaces or planar objects which is typically not the case in
real world scenarios where objects normally undergo some non-rigid transformations

or deformations.

Hinterstoisser et al. [55] introduced two template tracking related methods that are
based on template or patch rectification. In their approach a random fern based clas-
sifier [96] is applied for keypoint transformation estimation, followed by a perspective
rectification using linear predictors [67]. The first presented method favors run-time
and performance, and hence relies on grouping of keypoint transformations into several
classes. Evaluation of four angles using further random fern classifiers then identifies
the most suitable pose. The second presented method favors real-time learning and
robustness, and consequently relies on a nearest neighbor classification of so called
mean patches that cover small local pose variations, respectively. A fast computation of
mean patches followed by an incremental learning step thereby result in robust tracking
methods. However, the limitations of the presented approach are the underlying fea-
ture point detection as well as computationally expensive off-line preparatory learning
tasks. Further, the authors state in their experimental evaluations that the methods are

not applicable for long term tracking.

A recent template or patch based tracking method presented by Bolme et al. [12] is
based on adaptive correlation filters. The authors propose to use a so called Minimum
Output Sum of Squared Error (MOSSE) filter for image correlation in order to obtain sta-
ble and compact response peaks, representing target positions. The tracking algorithm
is initialized from a single image, and correlation is performed in the Fourier domain
for run-time advantages. Failure detection is done by evaluation of the Peak to Side-lobe
Ratio (PSR). The authors demonstrated the functionality and real-time capability of their
method on several standard video sequences used in relevant literature. However, most
real-world objects are inherently non-rigid or perform complex deformations, e.g., due

to viewpoint changes or out-of-plane rotations which are hard to cope with using tem-
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plate based tracking approaches. Although, the authors state that the approach could
be extended to estimate scale and rotation changes, this has not been done or evaluated,
leaving room for improvement.

Another recent tracking approach that addresses direct visual tracking, thus find-
ing the best match to a given image under consideration of all image pixel intensities
in another image, is presented by Scandaroli et al. [107]. The proposed solution relies
on the normalized cross correlation (NCC) as similarity measure. They explicitly ad-
dress local illumination changes, specular reflections and partial occlusions, and derive
a novel solution for the gradient transformation parameter estimation problem using
inverse and forward compositional approaches. Experimental evaluations show that the
improvements can handle partial occlusions even under severe illumination changes.
However, the presented experimental results are obtained from tracking planar objects
that undergo some linear transformations which is not a realistic scenario. Moreover,
the approach cannot robustly handle large rotations or scale changes as can be seen from
sample tracking images presented in the paper.

Most of the above presented approaches are highly applicable to the task of image
template based tracking. However, the consideration of more complex objects that do
not exhibit mainly planar surfaces, of non-rigid object transformations, and of typical
real world tracking complications like occlusions, noise, dynamic scenes, or clutter is

entirely missing.

Learning-based Tracking

Another branch of tracking approaches is based on on-line learning of different object
representations, thus allowing for adoptions to, e.g., appearance changes over time.
The patch-based representation of the above mentioned tracking methods presented
by Hinterstoisser in [55] can thereby be seen as a hybrid approach between template
tracking and learning based tracking.

Another method that is based on both, template tracking and on-line learning is
the linear predictors approach presented by Jurie and Dhome in [67]. The approach is
based on linear motion predictors and low order parametric models for image template
motion. The approach relies on a hyperplane approximation instead of computationally
expensive Jacobian approximations which is precomputed and further used dynami-
cally, resulting in increased runtime performances. In the experimental evaluations the
authors evaluate different linear transformations on few synthetic and real world sce-

narios and demonstrate that the hyperplane based approach outperforms the original
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Jacobian approximation. However, the evaluations also showed that the approach is not
robust to large rotations or large baseline motion. Moreover, only planar objects and
surfaces which are rotated around the corresponding object center for the synthetic case
are evaluated. More realistic scenarios including non-rigid objects, more complex trans-

formations or any kind of tracking complications are neither considered nor evaluated.

A more recent on-line learning based template tracking approach is presented by
Holzer et al. [59]. In their work they present a novel reformulation of the above dis-
cussed linear predictor approach presented by Jurie and Dhome in [67], allowing for
on-line learning of linear predictors. They reduce the computational complexity of the
original inverse-compositional tracker and additionally incorporate a multi-predictor
approach that considers different parameter changes, respectively. The presented exper-
iments show that the approach can be used for template tracking with varying template
size, thus allowing the tracked template to grow over time. However, this can also be a
disadvantage if objects with similar appearance are tracked. The authors also state that
the approach is not robust against occlusions, which gives room for further improve-

ments.

Javed et al. [63] and Avidan [3] were the first that used on-line learning for ob-
ject detection and tracking. While Javed et al. [63] used on-line AdaBoost and holistic
PCA based features, Avidan [3] already performed pixel-wise classification and used
Mean-Shift to find the current object position. Additionally, to overcome the bounding
box limitation, he incorporated a rejection scheme for pixels that cannot be classified.
However, experiments and evaluations have been conducted on rather simple and short
sequences giving a proof of concept but not demonstrating robustness and applicability

to real world scenarios including noise, distortions or other complicating factors.

Based on the fundamental concept of Viola and Jones [124], Grabner et al. [47] used
on-line AdaBoost to learn the object’s appearance during runtime. They represented
the object as a rectangular bounding box with a fixed aspect ratio and randomly placed
Haar-like features. However, the bounding box limitation also introduces a large amount
of noise as the objects typically do not cover the entire box. Moreover, Ada-Boost is very
prone to noise, which increases the impact of errors during training and consequently
also the possibility of tracking failures.

Leistner et al. [76] used different loss functions to improve the robustness of the
Boosting algorithm. This concept has been further extended to semi-supervised learning
by Grabner et al. [48], and to multiple-instance learning by Babenko et al. [4]. However,

the bounding box limitation is still given in all these approaches.
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Saffari et al. [105] used on-line Random Forests instead of Boosting, as they are
known to be more robust to noisy training data. While this issue increased the robust-
ness of the learning algorithm, the tree-growing scheme anneals the structure of the
trees over time which makes adoptions to the current scene harder in long sequences.
Godec et al. [88] further showed that even simpler structures than random forests or
ferns could be used, yielding similar performances. They relied on a random naive
Bayes classifier and adapted it for on-line learning using on-line random feature selec-
tion and histograms as weak learners in order to establish a robust and fast classifier.
They empirically showed that this concept is applicable both, for incremental learning
and tracking by detection. Nevertheless, tracking complications and noise, or dynamic
environments are not considered, leaving room for further improvement, as it is not
clear if the presented methods can cope with e.g. significantly large amounts of image
noise.

Jiang et al. [64] recently presented a visual tracking method that addresses a solu-
tion to the structural order determination problem in metric learning based on sparsity
regularization for metric learning. The aim of metric learning is to adaptively adjust a
matching metric, which in this case is used for visual tracking, by projecting the actual
features from their specific feature space to a new metric space, where the discrimination
between target and candidate is maximized. Thereby the determination of the optimal
order for the best metric adjustment meaning the ideal dimensionality of the new met-
ric space defines the crucial factor. Jiang et al. proposed to use sparsity regularization
for this task and showed that for visual tracking this leads to improved performances
compared to other metric learning based tracking approaches [119, 130].

Although, the all presented approaches achieve impressive tracking accuracies, the
bounding boxes that are utilized by most trackers introduce large amounts of noise and
background during on-line learning. More accurate object descriptions given by, e.g., ob-
ject contours, silhouettes, or segmentations would definitely improve the performances.
Moreover, most approaches require some kind of off-line learning or preparatory tasks,

which might not be suitable for many real-world applications.

Tracking of Non-Rigid Objects

Although, recently presented template trackers are already partially able to track objects
changing their appearance or even highly dynamic objects, they only deliver a rough
description of the object in form of a rectangular bounding box. Therefore, there is a

recent trend to learn part-based object models to better cope with the corresponding
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tracking complications.

Park et al. [97] recently presented a robust visual tracking approach based on autore-
gressive Hidden Markov Models (HMM). In their work they analyzed the probabilistic
dependencies between consecutive object appearances within a learning phase, where
target samples are clustered based on visual similarities. For on-line tracking, multiple
appearance models are learning in terms of cluster specific classifiers. The best suit-
able appearance model is then determined by inferring the most probable model under
consideration of model dependencies in the past. The approach is evaluated on several
challenging scenarios. However, the proposed tracker is not real-time capable as the
on-line learning stage requires on average several seconds per frame.

By using small blocks of appearance and shape descriptions Nejhum et al. [109] pro-
posed a flexible part-based tracking model. They optimized the placement of the blocks
during tracking but do not update their appearance. Thus, their approach is quite sen-
sitive to appearance changes of the object over time. Utilization of object segmentations
and therein located appearance blocks for tracking updates would definitely increase
the overall performance.

However, approaches that directly use segmentation for tracking either require prior
knowledge [31], which may not be available for the target objects, or perform some kind
of off-line processing [49, 120] hampering, e.g., the tracking of unknown objects. More-
over, real-time capability is an issue that most segmentation or energy minimization
approaches struggle with.

Another strategy for tracking of non-rigid objects is to utilize active contours ap-
proaches like e.g. level sets or snakes. An example would be the dynamic geodesic
snakes approach by Niethammer and Tannenbaum [94]. They proposed a natural level
set based approach for dynamic curve evolution which is based on an energy minimiza-
tion functional that allows for integrating dynamics into the geodesic active contour
framework. The method incorporates tracking state information in terms of normal ve-
locity for every particle on a given contour, allowing for estimating velocity and position.
Although, partial occlusions are considered as tracking complication in their formula-
tions, only two very simple tracking scenarios are evaluated. Moreover, it is not clear if
the approach is real time capable as information on runtime performance is not given.

Roth et al. [104] presented yet another energy minimization based tracking approach,
based on learning of Gibbs distributions in a Bayesian tracking framework. They show
how Gibbs energies can be effectively utilized as image likelihood, allowing for particle

filter based tracking of humans. The approach relies on learning of a large training
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dataset, which in turn allows for building a likelihood model that does not over-fit the
distributions. In their experiments the authors show that the approach can be applied for
tracking even in the presence of camera noise, while achieving better results than stan-
dard particle filtering based trackers. However, more extensive experiments in terms
of non-rigid object tracking or handling of different tracking complications should be
made as it is not clear how well the approach can be applied to tracking problems, other
than human tracking. Moreover, no information considering runtime performance nei-
ther for the off-line training nor for on-line tracking is given, inducing that the approach

is not real-time capable.

Bibby and Reid [9] overcome the runtime performance problem within a probabilistic
framework. To handle the complexity of their theoretic framework and to allow for real-
time tracking they separated the tracking of non-rigid objects into registration, level-set
based segmentation, and on-line appearance learning. However, their appearance model

is very simple and may not cope with complex objects and transformations.

To retrieve a more fine grained result, Godec et al. [45] used a subsequent segmen-
tation step. They combined a large number of small parts in a voting style manner and
used points with stable geometric relations to initialize a segmentation process. Besides
the more appealing visualization of the result, the segmentation also improves the up-
date process by decreasing the number of false positives. However, the segmentation is
only used as a post processing step and does not respect a temporal smoothness of the

object deformation, which may cause large over- or under-segmentations.

A similar approach has been proposed by Fan et al. [35], which used image matting
to generate a more fine-grained object description. They combined salient image points,
discriminative colors, and bag-of-patches to include short-term, mid-term, and long-
term object appearance in their model, respectively. However, the model is based on
heuristics to update the individual representation cues, which might result in overall

tracking failures even if a single part of the model fails.

Another recent approach denoted as local orderless tracking (LOT) is presented by
Oron et al. [95]. The proposed algorithm estimates the amount of local order in the
object, allowing for tracking both, rigid and deformable objects in an on-line fashion.
The underlying local orderless matching measures the similarity between two images
based on the Earth Mover’s Distance (EMD), attempting to explain a set of pixels or
features as a noisy replica of another reference set. In a tracking context the local order-
less matching is applied in a Bayesian tracking formulation using particle filtering for

finding the unknown noise parameters. As solving the EMD problem is computation-
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ally expensive, the approach further relies on super-pixels. The presented experimental
results are comparable to other state of the art approaches, but the method again only
considers bounding boxes instead of more accurate object descriptions.

Although, the presented approaches can successfully handle very challenging track-
ing scenarios and complex object transformations due to quite smart on-line learning
techniques or the capability to adopt for appearance changes, still a significantly large
amount of noise is introduced during on-line updates as the common object description
is given by bounding boxes which are typically not entirely filled by the tracked ob-
ject. Moreover, tedious off-line learning or preparatory tasks are necessary to reach high
tracking accuracies presented in the discussed approaches. This might not be feasible
for many real world applications or scenarios where, e.g., the object to be tracked might

not be known a priori.

Fusion Concepts

To overcome the shortcomings of existing individual tracking methods, recently more
complex scenarios and non-rigid object transformations are handled by a combination
of several heterogeneous trackers. In fact, multiple observations or measurements can
significantly improve the overall tracking performance. Usually, such a fusion of obser-
vations is either handcrafted and based on heuristics [68, 106], or is based on simple
combinations of a large number of similar trackers [72, 83, 109]. Fusion of multiple dif-
ferent observations, cues or classifiers has a long tradition also in other disciplines. The
research can be coarsely divided into two groups: (a) Classification fusion, where dif-
ferent cues are evaluated separately and the obtained decisions are fused (late fusion),
and (b) Feature fusion, where different cues are combined and only relevant features
are selected (early fusion). For a detailed survey we would refer to Mangai et al. [123].

Kwon and Lee [74] used a dynamic number of templates to describe the individual
object parts. During tracking, they model the geometric relation of the parts and apply
Basin Hopping Monte Carlo (BHMC) sampling to reduce the computational complexity.
However, the overall performance of the approach is not satisfactory as it is far from
real time. Moreover, the minimum size of the object is limited which can also be a
disadvantage.

Cehovin et al. [24] split the tracking problem into two layers, consisting of global
and local object models. The local model is given by a set of patches that adapt to the
objects geometric deformation while the global model adapts to the overall appearance

and adds or removes local patches. The overall tracking result is then given by the
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convex hull of the local parts, which may not correspond to the actual object. Thus, an
incorporation of only few local parts that are wrongly transformed might quite rapidly
result in global tracking failures.

In [106] Santner et al. address the stability plasticity dilemma by combining three
trackers having different adaptivity characteristics. Although, the basic concept of com-
bining different trackers to cope with diverse facets of the tracking problem is good, the
fusion of the trackers and of their individual outputs is based on a heuristic cascade and
thus cannot be generalized to other tracking approaches. Moreover, it is not clear how
the tracker can be extended to cope with, e.g., non-rigid motion or large significant pose
variations.

Stenger et al. [113] recently investigated different combinations of tracking meth-
ods, where they try to learn which tracking approaches are useful for a given tracking
scenario, and share how these trackers can be successfully combined. Again the basic
fusion concept is elaborate, but the approach is based on an off-line training of possible
combinations, which is sometimes not feasible in real-world applications.

Similar concepts haven been addressed in [5, 60, 91, 98, 129]. In contrast to [106]
these approaches rely on parallel evaluation of different observers, followed by a com-
bination of the individual outputs in terms of a late fusion. Thereby, [5] relies on an
output combination concept that simply switches between different reported measures,
depending on the individual performances. On the other hand, the approaches pre-
sented in [60, 91, 98, 129] combine individual outputs based on probabilistic concepts.
The approaches assume that the trackers report a probability density function (PDF) or
that a transformation of the outputs to a PDF is given. Thus, the most challenging task
is here to obtain good confidence measures or probabilities for each contributing cue.
However, different metrics are not considered.

Another related concept is the combination of a large number of similar measures
or cues like, e.g., [24, 74, 109] discussed above, which are based on small patch-based
trackers. Kalal et al. [68] proposed the combination of an adaptive Lukas Kanade tracker
[83] for short-term tracking with a conservatively updated Random Forest for long-term
re-detection. The final detector is thus based on a bounding box and is not well suited
for non-rigid objects as a large amount of noise and background is still present within
the reported bounding boxes.

Kwon and Lee [73] recently presented an extension of the general particle filter
framework. In their visual tracking decomposition approach they utilize motion and

observation models to explicitly cope with significant appearance changes caused by
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pose, scale, or illumination variations as well as partial occlusions. However, the pre-
sented method does not perform an object segmentation or a labeling which results
in considerable amounts of noise and background clutter that are incorporated during

on-line model updates.

In contrast to that Wang et al. [127] presented a tracking method that relies on mid-
level vision cues in terms of discriminative appearance models based on super-pixels.
They initially train a discriminative model in order to distinguish between object fore-
ground and cluttered background image regions. During on-line tracking they compute
a confidence map based on a maximum a posteriori estimator, giving the actual most
likely target location. The appearance model is then updated from obtained super-pixel
segments around the target location, allowing for robust tracking in the presence of
large appearance changes, shape deformations, occlusions and drift. Although, the ap-
proach reduces the amount of noise that gets incorporated during the on-line updates.
However, the super-pixel segments are not accurate enough to completely eliminate the

noise and background regions.

Markovic and Gelautz [87] presented a fusion-based approach for image segmen-
tation, which in turn could further be utilized for robust segmentation-based object
tracking. They combine image edges from intensity images with the locations of discon-
tinuities in stereo-derived depth maps, and perform an active contour model based seg-
mentation. In their experimental evaluations they showed that the fusion of the different

features results in improved segmentation results in different real-world scenarios.

Another approach that is related to fusing different cues for tracking is given by the
concept of modeling an object as a flock of features, presented by Hoey [57]. The author
proposed a particle filter based on flocks of features for tracking objects under occlusions
and distractions. Thereby, a flock is given by a loose collection of features which are
moving independently, while still maintaining a consistent motion. The authors used
so called color specks as underlying features, but denote that any other kind of feature
could be used. Although, experiments including occlusions and object deformations are
presented, hand tracking in hand washing sequences is not a convincing application.
Further investigations on non-rigid object tracking in highly dynamic scenes or on how
large amounts of noise could be successfully handled are entirely missing. Moreover the
present approach lacks in comparison with other state of the art tracking approaches,
and it is not clear if flock of features could be used for real-time tracking if more complex

features are used.

A more recent approach presented by Matas and Vojir [125] aims in robustifying
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the flock of trackers concept presented by Kalal et al. [69], which relies on different
predictors used as trackers in a flock of trackers fashion. In their work Matas and
Vojir introduced a so called cell flock of trackers that allows local trackers to drift to
points that are good to track, as well as different tracking failure predictors relying
on neighborhood consistency and past performance of individual trackers. Although,
a real-time capability of the presented approach is demonstrated, it is not clear if the
method is able to cope with tracking complications like large occlusions, significant
amounts of image noise, or non-rigid object deformations, which are more realistic in
terms of real-world object tracking.

Although the general concept of fusing different observations to obtain higher track-
ing accuracies is good, state of the art methods are not satisfactory, because the trackers
are either coupled too tightly (e.g., by a cascade [106, 140]) or all trackers are run inde-
pendently and only a late fusion is applied. Thus, the individual trackers do not benefit
from each other. Obviously, it is reasonable to combine different tracking cues as the
goal is to combine advantages of diverse approaches while compensating for individ-
ual weaknesses. However, this is not a trivial task due to diverse typically not directly

combinable outputs.

3.2 Visual Quality Inspection

Within this Section we provide an overview of quality inspection methods for industrial
robotic welding tasks as well as on unusual event detection approaches in computer

vision.

Robotic Welding Quality Assessment

Industrial robotic welding is an important and widespread process in industrial produc-
tion and especially in the automotive industry, which forms a core field of application
for methods and algorithms presented in this Thesis. With a continuously increasing de-
gree of automation in such a process, the aim is also to automatically evaluate the overall
welding quality and to classify weldings, welding processes, or specific weld seam re-
gions into either defective or error-free, if the simplest binary one-class-classification
approach is considered. Thereby, an on-line classification during the welding task itself
represents the ideal solution as defective weld seam regions could be, e.g., automat-
ically repaired or the concerned specimen could be automatically sorted out without

additional costly manual handling or inspection tasks afterwards.
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Previous work in the field of weld seam quality analysis mainly relies on non-
visual information like voltage, current, welding arc sound or brightness fluctuations
[110, 126, 136]. The few works on visual inspection approaches primarily track the seam
in front of the welding torch in order to correct the welding arc position. However, the
final product, namely the welded seam itself, is not considered for additional quality as-
surance. In the following we present the few image based quality inspection approaches

that we could find in relevant literature.

Ma et al. [84] introduced a seam tracking system based on a single camera, which
is rigidly connected to the welding robot. In their approach the seam in front of the
welding torch is tracked in order to continuously correct the welding arc position and
to realign the robot to the seam center in case of deviations. The presented tracking
approach thereby solely relies on image based edge detection and some geometric con-
straints for the alignment step. Evaluations are performed on a single straight weld
seam by measuring the normal offset or gap between welding torch and tracked seam
center as the crucial factor. However, the approach does not consider an inspection of
the welded seam behind the welding torch. Furthermore, the conducted experiments
do not consider typical image distortions like smoke wads, sparks or gas disturbances
that usually occur in industrial welding environments and that make tracking in such a

context really challenging.

Another approach also related to the above presented seam tracking concept is pre-
sented by Yan and Xu in [134]. The authors also introduced a system for automatic
positioning of the welding torch during the welding process. The system consists of
a camera that is rigidly connected to the welding robot and that observes the seam in
front of the welding torch. The presented algorithm relies on extraction of image edges
as well as of straight lines, in order to accurately detect the seam in a small sub-image in
front of the welding torch. The conducted evaluations include deviation measurements
of a straight welding process in order to proof their concept. Although, the approach
seems to work for straight weldings, the geometric restrictions in terms of the additional
straight line detection constraint significantly limit the applicability of the presented ap-

proach.

Xu et al. proposed a vision based sensor for seam finding and subsequent seam
tracking in [133]. The presented sensor consists of a camera, a laser diode with a rotating
lens for circular beam generation, and a narrow band interference filter that is used as
scanning lens. The lens filters ambient light emitted from the welding arc as it provides

a narrow bandpass of 0.99nm centered at an experimentally determined wavelength of
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one arc light summit. The camera is rigidly connected to a welding robot and observes
the seam in front of the torch. Here, the circular laser beam is projected through the
scanning lens, followed by an image based analysis of the segmented laser lines in
order to provide information on the actual seam position as well as on it’s 3D shape.
The method has been evaluated on two different weld seams representing two different
seam shapes. However, the approach is again suited only for automatic welding and not

for weld seam quality inspection as the welded seam is again not analyzed.

Schreiber et al. [108] presented a vision based weld seam quality inspection ap-
proach. They introduced a monocular tracking system with a camera that is rigidly
connected to a welding robot. Other than in the previously presented approaches the
camera observes the welding torch and newly welded seam directly behind the welding
torch. The tracking approach is based on an estimation of affine transformation param-
eters between matched feature points in consecutive image frames. Considering weld
seam quality analysis they compare local light distribution measurements around the
welding torch, the weld seam width, and the weld seam position to manually annotated
ground truth data as crucial factors. Their evaluations include measurements on two
curved welding datasets, consisting of about 400 image frames each. Although the gen-
eral concept of combining different measurement cues for welding quality assessment is
good, the evaluations on solely two weldings is not sufficient as the variety of different

weldings, welding processes and welding defects is not covered at all.

Another recent work that focuses on on-line monitoring and industrial quality in-
spection is presented by Fecker et al. [38]. The authors present a Bayesian adaption
algorithm for creating an imperfection model for imbalanced training data sets. In their
experiments on laser brazing images they show that the algorithm reaches performances
comparable to the results that would be obtained in case of balanced training data. Thus,
the underlying semi-supervised problem formulation is successfully transformed to a

supervised one in terms of performance for the presented application.

Fennander et al. [39] introduced an optical system that automatically analyzes the
regularity of the electric arc frequency and filler metal droplets in hybrid welding pro-
cesses. Thereby, irregularities in the electric arc frequency are detected by fuzzy c-means
clustering on image histograms. The filler metal droplet localization is performed us-
ing support vector machines (SVM) for a classification in combination with the principal
component analysis (PCA). Droplet tracking is done with a Kalman filter [131]. The com-
plete system has been trained on a subset of image sequences that exhibit similar image

quality and droplet appearance. Hence, the system works as long as sequences without
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large deviations or abnormalities are analyzed, resulting in necessary time-consuming
training steps for individual welding processes.

In general limitations of state of the art industrial welding quality assessment ap-
proaches are still given by missing weld seam quality inspection during the welding
in an on-line fashion. Most of the above introduced approaches are applied in an off-
line manner or are not real-time capable. Thus, the quality inspection is performed in
a separate and consequently time consuming costly task after the welding is finished.
Moreover, experimental evaluations were mostly conducted on very few in most cases
straight weldings. However, the most crucial shortcoming is given by the missing con-
sideration of industrial noise, distortions, or environmental influences that are typical
for industrial environments. Hence, from this point of view there is still a lot of room

for improvements given.

Unusual Event Detection

Another topic in the field of computer vision that is also somehow related to the task of
weld seam quality inspection is unusual event or outlier detection. Considering an al-
gorithm that allows for continuously extracting images of newly welded seam, compar-
isons with an ideal model or with error-free welding images can be seen as an unusual
event detection approach for industrial welding tasks. Unusual event detection, outlier
detection or anomaly detection refers to the problem of detecting images, image regions,
or patterns in a given data set that do not match to typical appearance or behavior. The
techniques suitable and applied to this problem include image based classification, clus-
tering methods, nearest neighbor approaches, information theoretical methods, or even
spectral analysis. Typical unusual event detection methods thereby use large amounts
of training data and in the majority of cases apply on-line learning techniques in order
to adopt to new observations or unseen object poses. For a detailed survey on differ-
ent outlier detection methodologies, techniques and applications we would refer to the
works of Hodge and Austin [56] and of Chandola et al. [25].

Within the following overview on related work considering outlier detection we es-
pecially focus on one-class classification (OCC) as the aim of later on presented methods
for welding quality assessment aims at separating unseen test images into defective or
erroneous, and into error-free, thus defining a binary classification problem. Unusual
event detection or one-class classification (OCC) aims at classification of input data into
usual and unusual events. Thereby, we can roughly distinguish two approaches to this

problem, namely (a) methods that are based on constant and previously trained models
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of normality (e.g., [62, 65, 86, 139]), and (b) methods which try to adapt to new observed
scenes in an on-line fashion or in real-time (e.g., [15, 99]).

In [15] Breitenstein et al. proposed to learn a model of normality by observing a scene
with a static camera. New observations are then classified either as statistical outliers
or as normal events, resulting in further adoptions to the existing model. The method
was developed for natural scenes, where the normal activities exhibit a large variability.
In contrast to this assumption industrial manufacturing tasks like robotic welding are
highly repeatable. Hence, regular deviations are rather small in the error-free case,
allowing to detect potential outliers at a more fine-grained level.

Unusual event detection without adaption during run-time is applied to a welding
quality inspection task in [62] by Jager et al. The method utilizes Hidden Markov Mod-
els (HMM) to account for the problem of weakly labeled training data sets. The authors
apply the presented method in laser welding sequences in order to detect possible ir-
regularities, where a camera monitors the emitted laser welding radiation. The quality
inspection computations are then applied in an off-line manner, i.e., after the welding
process has been finished, and has been evaluated on roughly 1000 welding image se-
quences, providing a good quantitative evaluation considering the variability of laser
weldings.

Kenner [70] introduced a generic defect and outlier detection system for industrial
applications in a more general context. The system is based on one-class classification
and outlier detection. One-class training data is thereby learned and further adopted
on-line with the well known AdaBoost [43] algorithm. In this way, a strong classifier
is obtained from several weak classifiers for the outlier and defect detection task. Al-
though, the system is designed in a very general context, robotic welding tasks and the
visual inspection of weld seams could also be a field of application for the presented
system.

Another even tracking related approach to unusual event detection has been pre-
sented by Ivanov et al. [61]. In their approach the authors rely on velocity and accel-
eration which are measured in terms of trajectories obtained from a segmentation and
tracking algorithm presented by Cavallaro et al. [23]. The trajectories are then used to
train a SVM classifier, as well as for further testing on more than a hundred trajectories
obtained from different real-life scenes. Preliminary results showed that the proposed
system is able to detect unusual trajectories from videos while keeping false alarm rates

low.



Template Tracking in Harsh

Industrial Environments

In this Chapter we present an appearance based tracking approach that is especially
designed for tracking newly welded seam in harsh industrial robotic welding environ-
ments. Thereby, we assume large amounts of visible noise caused by, e.g., smoke wads,
evaporating water, gas disturbances, or sparks and spilling. In our considerations we
especially focus on high robustness, on a minimum of required parameterization or
off-line preparatory tasks, and on a maximum runtime performance. Although, there
exist various tracking techniques in literature, we rely on image templates for tracking
as methods based on, e.g., probabilistic models [73], discriminative approaches [45], or
kernel based tracking methods [28] are either prone to fail due to an undesired sensibil-
ity to the present image noise, or they do not conform with the mentioned real-time and
parameterization requirements. Thus, we propose a prediction correction based tem-
plate tracking approach for solving this tracking problem, as appearance based tracking
is robust to image noise up to a certain degree, while the number of parameters is
manageable and while remaining real-time capable. Figure 4.1 illustrates some tracking
results obtained with mentioned state of the art tracking approaches for the task of weld

seam tracking, demonstrating the discussed problems.

4.1 Robust Template Tracking in Robotic Welding

Robotic welding is an important and wide spread process in industrial production and

automotive industry. It is fast, cheap, and accurate. Although, the degree of automa-
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Figure 4.1: Tracking in Harsh Industrial Robotic Welding Environments: Discrimina-
tive Hough-based tracking [45] (upper two rows) either looses the target or results in
undesirable over-segmentations due to similar foreground and background structures.
Mean-Shift tracking [28] (third row) and Visual Tracking Decomposition [73] (bottom
row) both cannot cope with the large amounts of image noise, resulting in a drift away
from the specimen.

tion in such a process is high, quality assessment of welded seams is still mostly done
manually by experts due to insufficient robustness of existing inspection methods. We
present a robust weld seam tracking application that follows newly welded seam direct
behind the welding torch, allowing for extracting axis aligned weld seam image patches
for further quality assessment tasks. The challenges for robust weld seam tracking are
thereby given by an unknown welding robot motion as well as by unknown welding
trajectories, by typically large amounts of image noise including bright sparks, heavy

smoke or evaporating water, and by appearance changes of the newly welded seam that
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slightly morphs while cooling down. Figure 4.2 shows weld seam image patches from

diverse welding processes to give an idea on the noisy and harsh environments that

need to be coped with.

[ s - P}

Figure 4.2: Challenging Weld Seam Image Patches: Diverse welding process configura-
tions result in challenging welding scenarios that the tracking application needs to cope
with, including smoke wads, bright sparks, specular reflections, evaporating water, or
unforeseen welding defects.

4.1.1 Image Acquisition Setup

The Q-Eye image acquisition system by Fronius Ltd!. is a novel industrial imaging sys-
tem developed for an on-line observation of newly welded seam during welding pro-
cesses. The system enables new possibilities in process observation especially for capped
manufacturing cells as they are used with laser hybrid systems. Of course it can also
be used in any other arc welding application, where e.g. a welding engineer is endan-
gered by the robot or high temperatures. The system consists of a camera unit, a robot
proof hose-pack and a power supply unit, which realizes a high-voltage supply of a
stroboscope assisted illumination unit. This allows for eliminating the emitted arc radi-
ation, while coincidentally illuminating newly welded seam behind the welding torch.
The system is rigidly mounted directly on the welding robot, and located next to the
welding torch. This enables a good view of the newly welded seam while remaining pro-
tected against spatter and arc radiation. As welding is typically accompanied by high
temperatures and as the high-power flash light unit also requires cooling, the system
also includes a cooling circulation, where the generated cooling air flow is additionally

utilized to protect the safety glasses of the flash light and camera units, respectively.

Thttp:/ /www.fronius.com
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The monochrome camera unit captures 752 x 480px gray scale images, where the stro-
boscope gets simultaneously triggered every time an image is recorded. This results in
the region behind the gas nozzle showing the weld pool and newly welded seam being
highlighted. The system allows for recording images at up to 20fps at typical welding
speeds of 50 — 100cm per minute. Figure 4.3 depicts the rigidly mounted acquisition

system and a corresponding view.

Figure 4.3: Q-Eye Acquisition System: The Q-Eye camera unit is rigidly mounted next
to the welding torch, enabling a good view of newly welded seam. An exemplary view
is shown on the right.

Considering the geometric relations of the setup, the working distance w between
the camera unit and the observed weld seam amounts to 250mm. The camera’s focal
length f is given by 12mm and the baseline between two consecutive frames amounts to
approximately 8mm for an acquisition frame rate of 20fps. Figure 4.4 illustrates these

geometric relations between two consecutive camera views.

4.1.2 Weld Seam Tracking

The overall aim of our proposed weld seam tracking algorithm is to localize newly
welded seam behind the torch in a sequence of images. Our proposed algorithm that
solves this problem consists of four consecutive steps, applied at each incoming im-
age. These are robust template matching, spline-based regularization, prediction of new
weld seam points along an interpolated spline curve, and an appearance based cor-
rection. Although, the template matching could be easily replaced e.g. by any feature
based registration approach, template matching exhibits essential runtime advantages.
Moreover, image templates allow for a more detailed description of an object than e.g.

local image features, as each pixel and its arrangement within the template can be seen
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Figure 4.4: Geometric Welding Image Relations: Weld seam image patches are ex-
tracted at an approximately perpendicular view angle from consecutive camera views
P; and P,. This allows for neglecting an additional camera calibration or the considera-
tion of computationally expensive image undistortion.

as specific feature. Local feature based approaches are prone to fail, especially in the
presence of significant amounts of noise. Reasons could be too few or even missing de-
tector responses or too many matching outliers resulting in wrong registration results.
Figure 4.5 illustrates the proposed tracking method, its specific steps, and the data that

is extracted from each image.

To estimate the relative scene motion between two images, image templates depicting
the weld seam in the previous image I;_; are matched with the actual image I;. The

template matching results in a set of n support points at time ¢
St ={x1,---,xy} with x;= (x,y)T , 4.1)

which exhibit high probabilities for lying on the tracked weld seam each. Within a sub-
sequent regularization step a smoothing spline is fitted to the point set S;, as a spline
best represents typical weld seam geometries, including curves or bending. Moreover,
the spline is constrained to pass through the welding point x,,, which exhibits a fixed
position in the image due to the rigid connection between camera and welding robot.
In order to overcome the well known drifting problem in template based tracking ap-
proaches [89], the spline gets corrected point-wise towards the center of the weld seam
using a weld seam appearance model. Finally, we predict weld seam regions for the
next image I, by extrapolating support points at specific positions on the corrected

spline.
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Figure 4.5: Weld Seam Tracking Approach: The proposed tracking approach is based
on robust template matching of weld seam image patches, a spline-based regulariza-
tion, prediction of weld seam points along an interpolated spline curve, and a final
appearance based correction step.

Template Matching

We apply a robust template matching method in order to re-locate weld seam points
S¢_1 from a preceding image I;_; in an actual image I;. Thereby, challenges like unfore-
seen inter-frame illumination changes, sparks, smoke, or local shape and appearance
changes caused by cooling of the weld seam need to be considered. We define a weld
seam templates as image patches located around weld seam points, respectively. They
are chosen in a way such that the weld seam covers approximately 40% of the template,
whereas the remaining area depicts background structures. For template matching any
similarity metric S : R? x R> — R that allows a pairwise comparison of images might
be used. For our specific task, the two dimensional normalized cross-correlation N'CC
[79], which is commonly used in computer vision and which is simple, fast, and more
robust to lighting changes than the normalized sum of squared differences N SSD, the
normalized sum of absolute differences N'S.AD, or the normalized mutual information

N MZT metric, performed best. Although, the N'CC similarity measure is robust to illu-
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mination changes, it is not invariant to rotations or scale changes. To account for image
rotations we correlate the actual image I; with rotated versions of each template, where
the rotations are given by a discretized angular interval. The best correlation results
are finally chosen as correct matches. A multi-scale approach based on e.g. scale space
template pyramids could be used to additionally account for scale changes. However,
due to the rigid connection between camera and welding torch and for runtime per-
formance reasons we assume the tracked object to be depict in an image sequence at

approximately equal scale.

Spline-based Regularization

In order to avoid the tracked templates moving in adverse directions, thus resulting in
tracking failures, the naive template matching further needs to be regularized. Template
matching results in a sparse representation of the tracked weld seam, given by a set of
image center points located on the tracked seam. In order to regularize these sparse
results, we fit a cubic smoothing spline through the point set, allowing for modeling a
large space of possible object shape deformations without making any assumptions on
the underlying geometry, material, or deformability. Due to welding limitations in curve
angles and because the weld seam is typically not supposed to run in unforeseen zig
zag course, a cubic spline function is sufficient for these purposes. The cubic smoothing

spline function F (t) is given via minimization of

" 2 2
min{p Zw ‘y — f(x)’ +(1-p) /A(t)’]—"(t) dt}, (4.2)
j=1
where the term w denotes specific spline node weights. Nodes in our course are the
elements of the given point set S;, weighted by their individual correlation results. A
defines the applied weighting function, and p is a smoothing parameter, determining
the relative weighting of the spline bending energy and the nodes. Obviously, a large
set of supporting points S; would allow a more exact reconstruction of the tracked weld
seam. However, due to visibility constraints and because of limited processing power,
a reasonable number for the size of elements in S; has to be found, thus enjoining a
trade-off between accuracy and runtime performance on the tracking approach. Figure
4.6 shows exemplary welding images with corresponding spline curves and supporting

points used for their interpolation.



52 Chapter 4. Template Tracking in Harsh Industrial Environments

Figure 4.6: Weld Seam Tracking Splines: Exemplary welding images with correspond-
ing splines and supporting points used for their interpolation. Depending on the visi-
bility of the weld seam different numbers of support points are used.

Template Prediction

Due to the continuous but unknown robot motion weld seam regions will definitely
leave the image sooner or later. Thus, we extrapolate new weld seam points located
on the spline at given distances away from the fixed welding point x,, allowing for
compensating the underlying robot motion. Figure 4.7 illustrates this compensation
step. Template predictions are then obtained by extracting spline-aligned image regions

around the new weld seam points.

Figure 4.7: Robot Motion Compensation: A new set of weld seam points is computed
within each tracking iteration by extrapolating spline points at fixed distances from the
welding point x,,, allowing for compensating the underlying robot motion.

Appearance-based Correction

As explained in detail by Matthews et al. in [89], adaptive visual tracking is subject to
error propagation, which results in a drift away from the object of interest. This is es-
pecially true for generative or template based tracking approaches. In our specific case,
the smoothing spline model might not accurately fit to the weld seam center due to a
finite number of supporting points used for the interpolation. Consequently, this re-
sults in slightly inaccurate predictions, where an error would accumulates over time. To

compensate for the drifting, we apply an appearance based correction of the predicted
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templates, allowing for a repositioning of each template back to the weld seam center,
based on similarity computations with a weld seam appearance model. Therefore, we
perform a sliding window search in horizontal spline normal direction, using the NCC
similarity measure. In a final step, new tracking templates are extracted around cor-
rected weld seam center points. Algorithm 3 summarizes the presented robust weld

seam template tracking algorithm.

Algorithm 3 Robust Weld Seam Tracking:

Input: actual image I, previous templates T,;4, spline template distances d, correction
model M, welding point x,

Output: actual templates Ty, tracked weld seam points x{

(a) Relocate templates T,;; in I by correlation-based template matching, giving
tracked template center points x;

(b) Interpolate cubic smoothing spline through x; and x,, using correlation scores as
spline node weights

(c) Compensate for the unknown robot motion by extrapolating a new point set x; at
given spline distances d

(d) Correct x! back to the center of the weld seam by matching with correction model
M, giving a corrected point set x{

(e) Extract new templates T, from x{ in spline normal direction, giving the actual
track

4.1.3 Tracking Evaluations

In order to evaluate the robustness of the proposed template tracking method and its
applicability to industrial robotic welding tasks, a qualitative evaluation on several thou-
sand images from 674 different robotic welding tasks has been accomplished. Consid-
ering the evaluated data we first need to introduce the utilized wording. A welding
process designates the material, welding parameters, and hardware depending process,
accomplished by an industrial welding robot. A welding sequence designates the welding
of a complete specific object, from the start to the end of the seam. Correct weld seam
tracking consequently results in a set of axis aligned weld seam image patches extracted
from the sequential images, depicting newly welded seam behind the welding torch, re-

spectively. In factory automation, an industrial welding robot continuously repeats the
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same process, e.g., in baseplate assembly welding in an automotive industry welding
process. The data acquired from such repeated weldings is referred to as welding process
dataset, where the collection of several welding process datasets is referred to as welding

test series.

Under consideration of the introduced wording, the provided data can be separated
into 3 welding test series and 25 welding process datasets. These datasets in turn consist
of 674 welding sequences, and overall more than 176.700 welding images. The welding
test series are denoted as test series &, § and <y. Test series a contains 21 welding
process datasets, each consisting of 11 error-free and 10 consciously defective welding
sequences. The welding processes represent a large variety of welding configurations,
geometric welding trajectories and environmental conditions. Test series § and <y consist
of industrial welding process datasets acquired in the automotive industry. Thereby, test
series B includes 2 welding process datasets consisting of 73 and 99 welding sequences,
respectively. The corresponding images reflect typical industrial welding situations. Test
series 7 represents a second welding test series acquired in the automotive industry. It
consists of 2 welding process datasets, each including 21 welding sequences. Compared
to the other test series, test series 7y includes welding sequences that are on average twice

as long and that include images from free-form surface weldings.

The crucial and performance effecting parameters of the template tracking approach
are given by the size of the tracking templates, by the weighting of the spline points, and
by the amount of template matching angles. For the template size, it turned out that it
mainly depends on the resolution of the weld seam in the image. Best tracking perfor-
mances have been achieved with templates that include both, the weld seam and few
background structures on both sides. The distance between a template and the weld-
ing torch plays another major role as larger distances implicit already solid weld seam
structures whereas short distances implicit hot and in many cases even still fluid weld
seam regions as well as significantly more visible noise. Typical template sizes used in
our experiments are thus given in the range of 100 x 200px. The spline weighting pa-
rameter strongly depends on the amount of visible noise present in processed welding
images. The weighting generally implies how accurate the intermediate tracking result
can be assumed, and thus how strong the tracked points influence the spline approxima-
tion. For welding processes that exhibit large amounts of noise like, e.g., severe smoke
generation or significantly large amounts of sparks and spilling the weighting should
be chosen small, implying weak tracking accuracies. On the other hand, for welding

processes with fewer noise the parameter should be chosen higher. A typical value for
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the later case is 0.9, whereas weightings in the range of 0.2 — 0.6 should be chosen in
case of large amounts of noise. The number of matching rotation angles evaluated for
each tracking template mainly affects the overall runtime performance. The parameter
is mainly constraint by the largest rotation that might occur between consecutive im-
age frames, where large matching angle ranges imply lower frame rates and vice versa.
In our experiments it turned out that for welding speeds of 50 — 100cm per minute at
10 — 20f ps matching angles in the range of +15° should be used if welding trajectories
include narrow curves, whereas angles in the range of £2° are adequate for straight or

slightly curved weldings.

For the welding test series there is no ground truth in terms of tracking data or robot
trajectories available. Thus, our evaluations considering achieved tracking accuracies
rely on visual inspections. Tracking sequences are classified as correctly tracked if no
drift away from the visible weld seam center occurred. Momentary outliers caused by,
e.g., welding defects or noise are not considered as tracking error if the algorithm recov-
ers within few frames. Figure 4.8 shows tracking images from three welding sequences,

emphasizing the terms correctly tracked, momentary outliers, and tracking drift.

Figure 4.8: Weld Seam Tracking Classification: Weld seam tracking results from three
welding sequences. The upper row shows a correctly tracked welding sequence. The
middle row depicts images including momentary outliers caused by a welding defect.
The bottom row shows a typical drifting example resulting in an overall tracking failure.
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Series Set #Seq Img/Seq OK Performance

o 01 20 252 19 95 %
o 02 20 254 19 95 %
w 03 20 254 20 100 %
Py 04 20 259 19 95 %
o 05 20 259 20 100 %
w 06 20 281 13 65 %
P 07 20 289 19 95 %
w 12 20 286 20 100 %
P 13 20 275 19 95 %
w 14 20 274 20 100 %
P 15 20 282 19 95 %
w 16 20 275 19 95 %
w 17 20 273 19 95 %
w 18 20 297 18 90 %
w 19 20 289 18 90 %
w 20 20 267 20 100 %
w 21 20 277 20 100 %
P 2 20 134 16 80 %
w 23 20 135 20 100 %
Py 24 20 137 19 95 %
w 25 20 292 20 100 %

94 %
B 01 73 225 63 86 %
B 02 99 236 97 98 %

92 %
v 01 21 573 19 90 %
¥ 02 21 325 21 100 %

95 %

Table 4.1: Qualitative Weld Seam Tracking Results: Evaluations on 25 datasets from 3
different welding test series including of 674 welding sequences. The number of welding
sequences per dataset, images per sequence, successfully tracked sequences, and the
corresponding tracking performances are presented.

Table 4.1 presents qualitative results in terms of successfully tracked welding se-
quences and achieved average tracking performances, respectively. Although, the weld-
ing test series include several challenging scenarios tracking performances of 94% on
test series &, 92% on test series B, and 95% on test series v have been achieved, giving an
overall performance of 93.7%. For a quantitative evaluation of our tracking approach we

measured the repeatability in terms of tracking trajectory scatter for 4 welding process
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Series Set Seam Width [px] std [px] mean [px] error [%]

b 13 53.50 8.48 4.05 7.57
« 14 50.50 591 2.58 5.11
o 20 53.50 13.38 5.85 10.93
« 21 50.50 18.97 7.12 14.10

Table 4.2: Weld Seam Tracking Repeatability: Welding trajectory deviations for 21 re-
peated welding sequences of 4 welding process datasets, respectively. The repeatability
is measured in terms of trajectory standard- and mean deviations , whereas the error
gives the ratio between the weld seam width and the average deviation.

datasets from test series x. An average weld seam width given in pixels thereby allows
for indicating a percentage error rate between weld seam width and mean trajectory
deviations. Table 4.2 presents the numerical results for the repeatability experiment.
A maximum repeatability error of 14.1% in terms of tracking drift has been achieved.
Although, this value is quite high, the overall performance is adequate as the corre-

sponding tracking was correct according to visual inspection.

4.2 Conclusion

In this Chapter we have presented a template tracking algorithm that relies on a spline-
regularized prediction correction concept, and that has been designed for being applied
in harsh industrial environments. Thereby, we especially focused on robustness to di-
verse kinds of typical industrial noise, on real-time capability of the tracking approach,
and on a minimum of necessary parameterization or time consuming off-line prepara-
tory work. We have then presented robust weld seam tracking as a suitable industrial
application for our template tracking method. The experimental results on several hun-
dred welding datasets clearly showed that template tracking is robust enough to be ap-
plied in harsh industrial robotic welding environments, as an overall qualitative tracking
performance of more than 93% has been achieved where other state of the art tracking
approaches like [28, 45, 73] either fail due to noise sensitivity and do not comply with
the given requirements. However, tracking drift experiments in terms of repeatability
evaluations have shown that although correctly tracking the welded seam a quite large
drifting occurs. Although, this is not a problem for the presented weld seam tracking
application, for tracking problems in more dynamic scenes including e.g. highly dy-
namic illumination conditions, significant object appearance changes, or other tracking

complications, the here presented template tracking method might not be sufficient and
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robust enough. Thus more sophisticated methods for the template update are required,
allowing for adopting to such dynamic scenes.

This issue is addressed in the subsequent Chapter, where we present a more ad-
vanced template tracking approach that additionally considers dynamic and adaptive

updates of the underlying tracking template.



Template Tracking in Harsh

Outdoor Environments

In the previous Chapter we have shown that templates are suitable for robust tracking
in harsh environments. However, for tracking in more dynamic scenes simple template
updates become insufficient due to inaccuracies and drifting. Assuming dynamic envi-
ronments with, e.g., changing illumination conditions or significant object appearance
changes, the underlying tracking template needs to be dynamically adopted to these
changes. In this Chapter we present an appearance based tracking method that relies
on image template blending and that is designed for robust tracking in highly dynamic
scenes like outdoor environments, where moreover significantly large amounts of visi-
ble image noise might occur. Image templates and consequently object appearance are
chosen as tracking cue as they can successfully cope with large amounts of visible image
noise and clutter, where other state of the art tracking approaches like, e.g., the visual
tracking decomposition approach by Kwon and Lee [73] or the Hough-based tracking
approach by Godec et al. [45] are prone to fail. Especially for applications where signifi-
cant amounts of image noise or tracking complications are assumed, local feature based
approaches are not a good choice as the amount of outliers or mismatches increases,
resulting in worse tracking accuracy or even in tracking failures. The usage of object
appearance in terms of tracking templates allows for successful handling of image noise
as each pixel in the underlying template can be seen as a separate feature. With given
object appearances or templates from one or even several preceding views noisy regions
can be easily identified and considered in particular during tracking, while the over-

all run-time is not affected, e.g., by additional and time consuming feature extraction or
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matching computations. Figure 5.1 illustrates a sample comparison of appearance based
template tracking to the above mentioned approaches on an exemplary agricultural out-
door tracking sequence, where image noise is given by rapidly changing illumination
conditions or by greenery that is flying through the camera’s field of view, resulting
in partial occlusions and thus significant appearance changes. In order to demonstrate
the applicability of the proposed image blending-based template tracking method, we
present a specific application that is based on this appearance-based approach, namely

agricultural tracking in harsh outdoor environments.

Figure 5.1: Tracking in Harsh Outdoor Environments: Appearance based template
tracking (upper row) outperforms visual tracking decomposition [73] (middle row) and
a Hough-based tracking approach [45] (bottom row) which are state of the art tracking
methods. Both approaches are prone to fail as they cannot cope with the significantly
large amounts of visible noise.

5.1 Image Blending-based Template Tracking

The motivation for image blending-based template tracking is to successfully follow an
initially marked object especially in harsh outdoor environments. Thereby, accuracy and

the degree of robustness should be maximized, the number of necessary parameters to
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be tuned should be minimal, and the runtime performance should allow for real-time
tracking on standard PCs. Thus, we propose an appearance based tracking approach
that relies on image templates of the tracked object. More precisely, the fundamental
concepts are robust homography estimation and adaptive image blending for template
updates. In order to initialize the tracking template, an object is marked in an initial
image. This can be done by either manually marking object corner points, or by, e.g.,
applying any kind of detection algorithm that gives the location of the desired object in
the image. The tracking template is then obtained by warping the marked image region
from the image coordinate frame 7 to a predefined rectified template coordinate frame
T by applying a projective transformation H, as exemplary illustrated for an agricultural
tractor hanger image in Figure 5.2. The size of the template in 7 is thereby fixed and

mainly depends on the approximate size of the tracked object in Z in pixels.

y

z

Figure 5.2: Tracking Template Extraction: An initially marked or detected image region
that depicts an object to be tracked gets warped to a fixed template coordinate frame 7,
giving the desired tracking template.

Template Tracking

Our addressed problem is robust object motion estimation between consecutive image
frames in the presence of significant amounts of visible image noise. This is solved by
robust image feature based homography estimation in the rectified template coordinate
frame 7. The computed homography then allows for mapping image points from the
preceding template coordinate frame to the actual one. Due to the assumed image noise
we compute a projective transformation matrix H, in a robust fashion using RANSAC
[40] from established image feature correspondences. We chose small image patches

extracted from the template as image features. However, also other robust approaches
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for features or descriptors like, e.g., image corner points, SIFT [81], or SURF [6] could
be used. Our choice of image patches as feature cue mainly results from the above
mentioned real-time capability requirement. Many state of the art image feature and
descriptor approaches do not guarantee real-time performance. Moreover, additional
parameterizations which in turn must be adopted in case of changing environmental
conditions might be necessary. As our objective is a robust real-time capable tracking
approach that requires fewest parameter tuning steps, image patches are our choice for
the underlying features.