
Dipl.-Ing. Wilfried Huss

Internal aggregation models

DISSERTATION

zur Erlangung des akademischen Grades einer/s Doktorin/Doktors
der technischen Wissenschaften/Naturwissenschaften

Graz University of Technology

Technische Universität Graz

Betreuer/in:
Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Woess

Institut für Mathematische Strukturtheorie

Graz, im Oktober 2010





Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitely marked
all material which has been quotes either literally or by content from the used
sources.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
date

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(signature)





Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preliminaries 5

2.1 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Internal Aggregation Models . . . . . . . . . . . . . . . . . . 7

2.2.1 The Divisible Sandpile Model . . . . . . . . . . . . . . 7

2.2.2 Rotor-Router Aggregation . . . . . . . . . . . . . . . . 9

2.2.3 Internal Diffusion Limited Aggregation . . . . . . . . . 13

3 The Divisible Sandpile Model 17

3.1 The Odometer Function . . . . . . . . . . . . . . . . . . . . . 17

3.2 Convergence of the Odometer . . . . . . . . . . . . . . . . . . 19

3.3 Convergence of the Sandpile . . . . . . . . . . . . . . . . . . . 20

3.4 Abelian Property . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Divisible Sandpile on Combs . . . . . . . . . . . . . . . . . . 23

4 Rotor Router Aggregation 29

4.1 The Abelian property . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Specific Initial Rotor Configuration . . . . . . . . . . . . . . . 31

4.2.1 Rotor-Router on Z . . . . . . . . . . . . . . . . . . . . 33

4.2.2 Odometer on the Comb . . . . . . . . . . . . . . . . . 34

v



vi CONTENTS

4.2.3 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . 35

4.3 Rotor Weights . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Inner Bound for Rotor-Router . . . . . . . . . . . . . . . . . . 47

5 The Harmonic Measure 53

5.1 Singularity Analysis of ODE . . . . . . . . . . . . . . . . . . . 57

5.2 Harmonic Measure of Bm . . . . . . . . . . . . . . . . . . . . 59

6 IDLA on the comb 65

6.1 The function gn . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Proof of the inner bound . . . . . . . . . . . . . . . . . . . . . 71

7 IDLA on Nonamenable Graphs 75

7.1 Random Walks on Nonamenable Graphs . . . . . . . . . . . . 75

7.2 Internal Diffusion Limited Aggregation . . . . . . . . . . . . . 81

7.2.1 The Inner Bound . . . . . . . . . . . . . . . . . . . . . 82

7.2.2 The Outer Bound . . . . . . . . . . . . . . . . . . . . 85

8 Outlook 89

8.1 The Sierpinski Carpet . . . . . . . . . . . . . . . . . . . . . . 90

Acknowledgements 93

Bibliography 97



Chapter 1

Introduction

The purpose of this thesis is the study of several related growth models on
non homogeneous state spaces. The growth models in question are Internal
Diffusion Limited Aggregation (IDLA), Rotor-Router Aggregation and also
the so-called Divisible Sandpile Model. All three models share many prop-
erties even though IDLA is a probabilistic growth model based on random
walks, while the other two are strictly deterministic. In fact the divisible
sandpile model has been introduced by Levine and Peres [LP09] as a tool
to prove shape theorems for IDLA and the Rotor Router model.

In both internal diffusion limited aggregation, which is a special case of a pro-
cess which Diaconis and Fulton introduced in [DF91], and Rotor Router
aggregation particles move on the vertices of a graph, until they reach a site
which is unoccupied. There the particle stops and from now on occupies this
site, and a new particle starts its journey at the origin. The main point of
research in this area is how the set of occupied sites behaves – for example, if
it has a limiting shape, if properly rescaled. The difference between the two
growth models lies in the rule which governs the movement of the particles.
In IDLA each particle performs a random walk, where the law of each parti-
cle is the same and all random walks are independent of each other. In the
rotor-router model, on the other hand, the particles perform deterministic
walks, where each particle follows an arrow (or rotor, hence the name of the
model) which points to one of the neighbours of the current site. But before
the particle moves, the arrow is changed to point to the next of the neigh-
bours, in a previously chosen order. When a particle stops and the next one
starts at the origin, it is crucial that the arrows are not reset, but remain in
the same state. Hence, in contrast to IDLA, in the rotor-router model the
particles are in fact dependent on all the previous particles.

The third growth model, the divisible sandpile, differs in that here not indi-
vidual particles are moving around, but a distribution of mass, where each
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2 Chapter 1. INTRODUCTION

vertex can have an arbitrary amount of mass, which changes in time. At each
timestep one vertex distributes mass to all its neighbours and keeps only a
fixed amount of mass for itself. Since the mass is continuous, the process
never terminates and one needs to consider the limit of the process. One is
mainly interested in the set of vertices where the limit mass distribution is
nonzero.

It turns out that, although all three models look quite different, their be-
haviour is very similar. This was first noticed by Levine and Peres [LP09,
LP10] for the case when the state space is an Euclidean lattice. Computer
simulations suggest that the connection between the three growth models
holds in wide generality, but only partial results are available for other state
spaces.

What makes it possible to prove theoretic results, is the so called Abelian
property, which all three growth models possess. In the case of IDLA and
the rotor-router model this means that, if we let several particles run at the
same time, instead of one after another, it is irrelevant for the end result
in which order the particles make their moves. In the case of the divisible
sandpile model, the Abelian property says that the order in which vertices
distribute their excess mass does not affect the limiting distribution. Because
of this property our growth models also have a close connection with the so
called Abelian sandpile model and the Abelian sandpile group – see [HLM+08]
or [MRZ01] for an introduction. But we will not explore this connection in
detail.

1.1 Overview

Chapter 2 starts with an introduction to Markov chains, especially random
walks on graphs, which allows us to fix the notation we will use in the rest
of this thesis. Next, we will give the definitions of the three growth models
under consideration, and finally the chapter concludes with a brief overview
on the available literature in this area.

In Chapter 3 we will prove the Abelian property and the existence of a limiting
mass distribution for the divisible sandpile, which is associated to a reversible
random walk on an arbitrary graph. Morevover, we give a description of its
limiting shape in terms of a discrete obstacle problem. This an extension of
a result of Levine and Peres [LP09]. We will then apply this result to
the divisible sandpile on the comb, that is, the spanning tree of Z2 which is
constructed by deleting all horizontal edges except the ones on the x-axis.
In Section 3.5 we obtain an explicit description of the limiting shape of the
divisible sandpile in that case.
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In Chapter 4 we will derive a shape theorem for the rotor-router model on
the comb, using the results of Chapter 3, and applying an idea of Holroyd
and Propp [HP10]. They define a weight function on the space of all con-
figurations of the rotor-router model, which is invariant under the movement
of particles. Using this method, we are only able to give a relatively weak
inner bound for the rotor-router model, which holds for all possible initial
states of the rotors, and all rotor sequences. On the other hand, if we fix a
special initial rotor configuration we can give the exact shape of the rotor-
router cluster, using an idea of Kager and Levine [KL]. Section 4.4 gives
a general inner bound for the rotor-router cluster, in terms of the divisible
sandpile cluster of the same graph. This result holds for all regular graphs,
but provides only a relativly weak inner bound.

In Chapter 5 we give an application of the rotor-router model for calculating
the harmonic measure of finite subsets of the comb. This again makes use of
the rotor weights we introduced in Chapter 4. In particulary we will calculate
the harmonic measure of the rotor-router cluster as it will be useful in the
study of IDLA on the comb. Since we will make use of singularity analysis
for linear differential equations, we give a short overview of this theory in
Section 5.1.

Chapter 6 is devoted to Internal Diffusion Limited aggregation on the comb.
We will prove a shape theorem using the results of Chapter 3, for the inner
bound. The proof is based on ideas of Lawler, Bramson and Griffeath
[LBG92] and Levine and Peres [LP09].

In Chapter 7 we examine again IDLA, this time on non-amenable graphs,
that is, graphs where the random walk which governs the particles has a
spectral radius which is strictly smaller than one. We will give a shape
theorem based on level sets of the Green function of the random walks. This
is an extension of a shape theorem of Blachère and Brofferio [BB07]
for IDLA on finitely generated groups with exponential growth. The results
of this chapter have been previously published in [Hus08].

Finally, in Chapter 8 we give an outlook to future work and some open
problems, and conclude with some simulation results for IDLA and rotor-
router aggregation on the graphical Sierpinski carpet, where no theoretical
results are yet available.

Chapters 4, 5 and 6 are based in part on joint work with Ecaterina Sava.





Chapter 2

Preliminaries

In this chapter we first introduce random walks on graphs and some basic
facts and tools related to random walks theory, which will be needed later
on. Then we will give precise definitions of the three growth models, and give
a short overview of the available literature in this area. We conclude each
section with the main theorems, which will be proved in the later chapters.

2.1 Random Walks

Let G = (V,E) be an infinite, locally finite, connected graph with vertex set
V and edge set E. When there is no ambiguity, we write only x ∈ G to
denote that x is in the vertex set of G. For x, y ∈ G we denote by x ∼G y the
neighbourhood relation of G. When no confusion arises, the subscript will
be dropped and only the notation ∼ will be used.

All our graphs will have a special root vertex denoted by o ∈ G. For x, y ∈ G,
let d(x, y) be the graph metric, that is, the length of the shortest path from x
to y. Also, write d(x) for the degree of x in G, i.e., the number of neighbours
of x.

An automorphism ofG is a self-isometry ofG with respect to the graph metric
d, that is, a function ϕ : V → V which satisfies d(x, y) = d

(
ϕ(x), ϕ(y)

)
, for

all x, y ∈ V .

We will need some fundamental notions from basic random walk theory. The
presentation will mostly follow the notation from [Woe00].

Let P =
{
p(x, y)

}
x,y∈G be the transition probabilities of a random walk on

G, which are adapted to the graph structure, i.e., p(x, y) > 0 if and only if x
is a neighbour of y. For t ∈ N we will denote by pt(x, y) the t step transition
probability, that is, the probability that the random walker goes from x to

5



6 Chapter 2. PRELIMINARIES

y in exactly t steps. A random walk is called irreducible, if for all vertices
x, y ∈ G, there exists a t such that pt(x, y) > 0. We say a random walk is
reversible, if there exists a measure m : G→ R, such that

m(x)p(x, y) = m(y)p(y, x) for all x, y ∈ G.

A measurem with this property is called the reversible measure of the random
walk P . Note that if P is the simple random walk on G, that is

p(x, y) =

{
1

d(x) , for all x ∼ y
0, otherwise,

then m(x) = d(x). All random walks under consideration will be irreducible
and also reversible.

We will write Xt for the position of the random walker at time t. Probabilities
will be denoted by P. If we write Px for some x ∈ G, this will mean the
probability of a random walk, which starts at vertex x. For random walks,
which start at the root vertex o, we will often omit the subscript. Similarly
E and Ex will denote expectations using the same convention.

Definition 2.1.1 (Green function).

• For y, z ∈ G the Green function is defined as

G(y, z) = Ey
[ ∞∑
t=0

1{Xt=z}
]
.

G(y, z) is the expected number of visits to z of the random walk Xt

started at y.

• For a subset A ⊂ G, write GA for the Green function of the random
walk stopped upon leaving the set A

GA(y, z) = Ey
[ τ−1∑
t=0

1{Xt=z}
]
,

with τ = min{t ≥ 0 : Xt /∈ A}.

For a function f : G→ R, its Laplace operator 4f is defined as

4f(x) =
∑
y∼x

p(x, y)f(y)− f(x).

Definition 2.1.2. A function f : G → R is called superharmonic on a set
B ⊂ G, if 4f(z) ≤ 0 for all z ∈ B and harmonic, if 4f(z) = 0.

Lemma 2.1.3 (Minimum principle). If f is a superharmonic function on G
and there exists x ∈ G such that f(x) = minG f , then f is constant.
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2.2 Internal Aggregation Models

2.2.1 The Divisible Sandpile Model

The divisible sandpile model has been introduced by Levine and Peres
[LP09] as a tool for studying internal growth models on Zd. It is a continu-
ous analogue of the abelian sandpile model introduced by Bak, Tang and
Wiesenfeld [BTW88].

Let G be a graph, and µ0 a mass distribution on G, i.e., a function µ0 : G→
R+ with finite support, that is

suppµ0 = |{x ∈ G : µ0(x) > 0}| <∞.

The divisible sandpile is a sequence {µk}k≥0 of such mass distributions, which
are created according to the following rule. At each time step k, choose a
vertex x. If µk(x) ≥ 1 the sand at x is unstable and topples, which means that
the vertex x keeps a mass of 1 for itself and the remaining mass µk(x) − 1
is distributed among the neighbours of x according to a given transition
operator p(x, y). If every vertex topples infinitely often, the mass distribution
converges to a limit

lim
k→∞

µk = µ ≤ 1.

The existence of this limit will be shown in Lemma 3.3.2 and in Lemma
3.3.3 for arbitrary locally finite graphs G, which may also have loops, and
reversible transition operators.

Write S for the set of fully occupied sites of the divisible sandpile with start
distribution µ0, that is

S = {x ∈ G : µ(x) = 1}. (2.1)

We will show in Lemma 3.4.2 that S does not depend on the order of the
topplings as long as every vertex topples infinitely often. The set S is called
the divisible sandpile cluster for initial distribution µ0. Lemma 3.4.2 also
gives a method for describing the set S in terms of a discrete obstacle problem.
We will use it to prove a shape theorem for the divisible sandpile on the comb.

The comb, which we will denote by C2, is the spanning tree of the two di-
mensional lattice Z2, which is obtained by removing all horizontal edges of
Z2 except the ones on the x-axis.

Definition 2.2.1. The comb C2 is the graph with vertex set Z2 and neigh-
bourhood relation given by

(x1, y1) ∼ (x2, y2)⇐⇒

{
x1 = x2 ∧ |y1 − y2| = 1,
|x1 − x2| = 1 ∧ y1 = 0 ∧ y2 = 0.
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o

z = (x, y)

Figure 2.1: The two dimensional comb C2.

In other words, the graph C2 can be constructed from a two-sided inifinite
path Z (the ”backbone” of the comb), by attaching copies of Z (the ”teeth”) at
every vertex of the backbone). We use the standard embedding of the comb
into the two dimensional Euclidean lattice Z2, and use Cartesian coordinates
z = (x, y) ∈ C2 to denote vertices of C2. The vertex o = (0, 0) will be the root
vertex, see Figure 2.1. For functions g on the vertex set of C2 we will often
for convenience write g(x, y) instead of g(z), when z = (x, y).

Random walks on C2 have been studied by various authors, the first being
Havlin and Weiss [WH86] and Gerl [Ger86]. While C2 is a very simple
graph, it has some remarkable properties. For example, on the comb the so-
called Einstein relation between the spectral-, walk- and fractal-dimension is
violated, see Bertacchi [Ber06]. Peres and Krishnapur [KP04] showed
that on C2 two independent simple random walks meet only finitely often; this
is called the finite collision property. Further references include Bertacchi
and Zucca [BZ03] and Csáki, Csörgő, Földes and Révész [CCFR09].

Let now G = C2, and p(·, ·) be the transition probabilities of the simple
random walk on C2. As initial mass distribution we choose µ0 = n · δo, i.e.
we start with mass n concentrated at the origin and no mass anywhere else.
Denote by Sn the divisible sandpile cluster for this initial distribution. Using
this setting we will prove the following shape theorem.

Theorem 2.2.2. Let Sn be the set of fully occupied sites for the divisible
sandpile model on C2, with µ0 = n · δo, where o = (0, 0) is the origin of the
comb. Then there exists a constant c ≥ 0, such that, for all n ≥ n0,

Bn−c ⊂ Sn ⊂ Bn+c,
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where

Bn =

{
(x, y) ∈ C2 :

|x|
k

+
(
|y|
l

)1/2

≤ n1/3

}
,

and the constants k and l are given by k =
(

3
2

)2/3 and l = 1
2

(
3
2

)1/3.

2.2.2 Rotor-Router Aggregation

Rotor-router walks are deterministic analogues to random walks, which have
been introduced into the physics literature under the name Eulerian walks
by Priezzhev, D.Dhar et al [PDDK96] as a model of self organized crit-
icality, a concept introduced by Bak, Tang and Wiesenfeld [BTW88].

In a rotor-router walk on a graph G, for each vertex x ∈ G a cyclic ordering
c(x) of its neigbours is chosen, i.e., c(x) =

(
x0, . . . , xd(x)−1

)
, where xi ∼ x

and xi 6= xj . At each vertex we have an arrow (rotor) pointing to one of the
neighbors of the vertex. When a particle is at a vertex x two things happen.
First the rotor is rotated to the next neighbour, defined by the ordering c(x),
and then the particle moves to that neighbour.

The behaviour of rotor-router walks is in some respects remarkably close to
that of random walks. Cooper and Spencer [CS06] showed that rotor-
router walks simulate random walks on Zd with constant error, in the sense
that they put a number of rotor-router particles at (apart from a technicality)
arbitrary vertices and let the system evolve for a certain number of rounds.
Each round every particle makes one step in a rotor-router walk (in arbitrary
order), all sharing the same rotor configuration, and thus influencing the
movement of each other. Cooper and Spencer showed that the difference
between the number of rotor-router particles which are at vertex v after t
rounds and the expected number of random walk particles which started in
the same configuration after t random walk steps is bounded by a constant
c, which is independent of the number of particles, the number of rounds t
and also the vertex v. Doerr and Friedrich [DF06] improved this result
in the case of Z2 and gave tight estimates for the constant c depending on
the selected rotor sequence.

Dimitriu, Tetali and Winkler [DTW03, Theorem 9.2] showed that on
any finite tree T the expected hitting time of random walk from vertex u ∈ T
to vertex v ∈ T

Eu[τv], with τv = inf{t ≥ 0 : Xt = v},

can be computed by a variant of the rotor-router model, in which the neigh-
bour of a vertex x, which is the closest to the target vertex v, is always chosen
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last in the rotor sequence of x. In Chapter 5 we give a result in a similar
spirit, which allows us to compute the harmonic measure of a finite subset
B of a graph G, that is, the probability

h(y) = Po[τB = y], with τB = inf{t ≥ 0 : Xt 6∈ B},

in terms of a rotor-router process. This result is inspired by the methods of
Holroyd and Propp [HP10], where they introduced a class of weight func-
tions on the full configurations of the rotor-router model, that is, the position
of all particles together with the state of all rotors. The weight functions are
defined in such a way that the process of moving one or several particles,
according to the rules of the rotor-router model, does not change the total
weight of the system. Using this tool, they show that several quantities as-
sociated to the rotor-router walk, like hitting times and hitting probabilities,
occupation times, etc., concentrate around their expected values for random
walks. This approximation is also faster than in the case of random walks.
For rotor-router walks the discrepancy after n runs is of order O

(
n−1

)
, while

for random walks it is typically only of order O
(
n−1/2

)
.

In the present work, we are mostly interested in rotor-router aggregation,
which is analogous to internal DLA in the sense that the particles perform
rotor-router walks instead of random walks. Let R1 = {o} and define the
sets Rn recursively, by

Rn+1 = Rn ∪ {zn} for n ≥ 1,

where zn is the first vertex outside of Rn that is visited by a rotor-router
walk, started at o. Note that all rotor-router particles share the same rotor
configuration, which is not reset when a new particle is started. We will call
the set Rn the rotor-router cluster of n particles.

The odometer function u(x) of the rotor-router aggregation is defined as the
total number of times that some particle is sent out from vertex x during the
creation of the rotor-router cluster.

The first major contribution in the study of rotor-router aggregation was due
to Levine and Peres [LP08]. They showed that on the lattice Zd the set
Rn, rescaled by n−1/3, converges to the Euclidean unit ball in Rd, in the sense
that the Lebesgue measure of the symmetric difference of the rescaled rotor-
router cluster and the unit ball goes to zero. In [LP09] the same authors
improved on this result.

Theorem 2.2.3 (Levine and Peres). Let Rn be the rotor-router cluster on
Zd with n particles starting at the origin, and let

Br =
{
x ∈ Zd : |x| < r

}
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be the Euclidean lattice ball of radius r. Then there exists constants c1, c2
depending only on d, such that

Br−c1 log r ⊂ Rn ⊂ Br(1+c2r−1/d log r),

where r =
(
n
ωd

)1/d
, and ωd is the volume of the unit ball in Rd.

While the bounds on the radii in Theorem 2.2.3 are much better than the
best known estimates for IDLA on Zd, computer simulations as performed by
Kleber [Kle05] and recently by Friedrich and Levine [FL] indicate that
the errors are in fact much smaller, possibly even bounded independently
of the number of particles n. Friedrich and Levine used an innovative
algorithm which takes an approximation of the rotor-router odometer as its
input. The runtime of the algorithm is then dependent on the accuracy of
the initial guess. Using this technique they managed to compute rotor-router
clusters with up to 224 particles. For this cluster size the difference between
the outer and inner radius is only 1.65.

Another interesting phenomenon is that the rotors arrange themselves into
intricate patterns, whose general structure seems to be independent of the
initial rotor configuration. On the other hand, the choice of the rotor sequence
changes the appearence of the patterns drastically. See Figure 2.2 for two
examples of rotor-router clusters on Z2 with different rotor sequences1. Still
nothing is known about this patterns.

On homogeneous trees, rotor-router aggregation has been studied by Landau
and Levine [LL09]. They showed that, if the initial rotor configuration is
acyclic, that is, the directed subgraph of G that is formed by the rotors
containes no cycle, then the rotor-router cluster is a perfect ball with respect
to the graph metric, whenever it has the right number of particles to form
such a ball. For initial rotor configurations on that are not acyclic a shape
theorem is not proved for homogeneous trees even though the method used
in Chapter 4 of the present thesis should be applicable, but rather tedious.

Another example, where the rotor-router cluster is known explicitly, is the
case of the layered square lattice Ẑ2. This is the multigraph obtained from
Z2 by reflecting all edges on the coordinate axis away from the origin. For
example, if x > 0, the vertex at position (x, 0) has the four neighbours
(x, 1), (x,−1) and two times (x + 1, 0). On this graph Kager and Levine
[KL] showed that the resulting rotor-router cluster has, whenever possible,
exactly the shape of a L1 ball

Dr =
{

(x, y) ∈ Ẑ2 : |x|+ |y| ≤ r
}
.

1http://rotor-router.mpi-inf.mpg.de features high resolution images of rotor-router ag-
gregates with up to 10 billion particles computed by Friedrich and Levine using the
algorithm described in [FL].

http://rotor-router.mpi-inf.mpg.de
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Figure 2.2: Two Rotor-router clusters mit 106 particles on Z2.
The four colors represent the different states of the rotors. The
cluster on the left uses a cyclic rotor sequence {↑,→, ↓,←}, while
on the right an alternating sequence {↑, ↓,→,←} is used.

This result depends on a fixed rotor sequence and also on a fixed initial rotor
configuration.

In this work we will focus on rotor-router aggregation on the comb. First
we will use a similar method as in [KL] to show that, for a fixed initial
rotor configuration, the rotor-router cluster, whenever it consists of the right
number of particles, has exactly the shape

Bm =
{

(x, y) ∈ C2 : |x| ≤ m, |y| ≤ h(m− |x|)
}

for m ∈ N,

with h(x) =
⌊

(x+1)2

3

⌋
. This is the statement of Theorem 4.2.1.

For arbitrary initial rotor configurations and independently of the chosen
rotor sequences, we can still say something, at least about an inner estimate
for the aggregate. Using Theorem 2.2.2, and again with the help of rotor
weights, we can show the following inner bound.

Theorem 2.2.4. Let Rn be the rotor-router cluster of n particles on the
comb. Then there exist constants c1, c2 and c3, such that for n ≥ n0

B̃n ⊂ Rn,

where

B̃n =
{

(x, y) ∈ C2 : |x| ≤ kn1/3 − c1n1/6,

|y| ≤ l
(
n1/3 − x

k

)2
+ c2x− c3n1/3

}
.
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2.2.3 Internal Diffusion Limited Aggregation

Let
{
Xn
t

}
n∈N be a sequence of independent and identically P -distributed

random walks on the graph G, with common starting point Xn
0 = o.

Definition 2.2.5. The Internal Diffusion Limited Aggregation (IDLA) is
a stochastic process of increasing subsets

{
An
}
n∈N of G, which are defined

recursively as A1 = {o} and for n ≥ 2

P
[
An = An−1 ∪ {x}|An−1

]
= Po

[
Xn
σn = x

]
.

Here σn = inf{t ≥ 0 : Xn
t 6∈ An−1} is the stopping time of the first exit of

the random walk Xn
t from the set An−1.

This means that at time n a random walk Xn
t is started at the root o, and

evolves as long as it stays inside the IDLA-cluster An−1. When Xn
t leaves

An−1 for the first time, the random walk stops, and the point outside of the
cluster that is visited by Xn

t is added to the new cluster An.

This growth model was introduced by Diaconis and Fulton [DF91] in
1991. In 1992 Lawler, Bramson and Griffeath [LBG92] showed that
for simple random walks on Zd, with d ≥ 2, the limiting shape of IDLA (when
properly rescaled) almost surely is the Euclidean ball of radius 1. In 1995
Lawler [Law95] refined this result by giving estimates on the fluctuations.
More precisely, define the inner- and outer-fluctuation δI(n) and δO(n), such
that the IDLA-cluster Abωdndc, where ωd is the volume of the unit ball in Rd,
almost surely contains a ball of radius n− δI(n) and is contained in a ball of
radius n+ δO(n). Then the following estimates hold.

Theorem 2.2.6 (Lawler, 1995). For IDLA on Zd with d ≥ 2, with probability
1

lim
n→∞

δI(n)
n1/3 log2 n

= 0 and lim
n→∞

δO(n)
n1/3 log4 n

= 0.

This bounds are not sharp. Computer simulations (see Moore and Machta
[MM00] and Friedrich and Levine [FL]) suggest that the fluctuations are
probably only logarithmic in the radius. Recently several improvements have
been obtained. Asselah and Gaudillière [AG10a] and [AG10b] proved an
upper bound of order log(n) for the inner fluctuation δI and of order log2(n)
for the outer fluctuation δO in all dimensions d ≥ 2. Inpendently, and using
different methods, Jerison, Levine and Sheffield [JLS10] proved that
both δI and δO are of order log(n) for IDLA on Z2.

The case of IDLA on Zd with simple random walk has been fully solved
by Levine and Peres [LP10] (see also Levine [Lev07]), who showed that
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Figure 2.3: Internal DLA cluster on the comb for 100, 500 and
1000 particles.

IDLA, rotor-router aggregation as well as the divisible sandpile model all
have the same scaling limit, when the lattice scaling tends to zero. This
scaling limit can be described as the solution of a free boundary problem of
a certain partial differential equation in Rd.

Internal diffusion limited aggregation has also been studied in other contexts.
Blachère [Bla00] proved a shape theorem for IDLA on Zd for centered
random walks, that is, random walks where the expectation of the increments
E
[
Xt−Xt−1

]
= 0, for all t ≥ 1. Here the limiting shapes are always ellipsoids.

In 2004 Blachère [Bla04] obtained a shape result for the IDLA model with
symmetric random walk on discrete groups of polynomial growth, although
with less precise bounds than in the case of Zd. Kager and Levine [KL10]
proved that the IDLA clusters for a class of random walks on Z2, which they
call layered random walks, have the limiting shape of L1-balls.

Shellef [She10] investigated IDLA on the infinite cluster of supercritical
Bernoulli bond percolation on Zd. Also in this case we have, for all ε > 0
and n big enough,

P
[
Bn(1−ε) ⊂ A|Bn|

]
= 1.
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Finally, in 2007 Blachère and Brofferio [BB07] proved a similar shape
result for IDLA on finitely generated groups with exponential growth.

In all cases where IDLA dynamics has been studied so far, a common be-
haviour for the limiting shape of the clusters emerged. Namely, the limiting
shape can be described as the level set of the Green function, that is, sets of
the form

{x ∈ G : G(o, x) ≥ N},

where N is a positive constant.

This correspondence has been made particularly clear by Blachère and
Brofferio [BB07], with the introduction of the hitting distance (also known
as Green metric), a left invariant metric on finitely generated groups, which
is defined as

dH(x, y) = − ln Px
[
τy <∞

]
,

where τy = inf
{
t ≥ 0 : Xt = y} is the stopping time of the first visit to y.

Further work on the hitting distance and its connections with random walk
entropy and the Martin boundary has been done by Blachère, Häıssinsky
and Mathieu [BHM08].

In this work we present two new results for IDLA. In Chapter 6 we consider
IDLA for the simple random walk on the comb (see Figure 2.3), and we prove
the following shape theorem.

Theorem 2.2.7. Let An be the internal DLA cluster of n particles starting
at the origin o, for the simple random walk on the comb C2. Then, for all
ε > 0, we have with probability 1 that

Bn(1−ε) ⊂ An, for all sufficiently large n (2.2)

where

Bn =

{
(x, y) ∈ C2 :

|x|
k

+
(
|y|
l

)1/2

≤ n1/3

}
, (2.3)

and the constants k and l are given by k =
(

3
2

)2/3 and l = 1
2

(
3
2

)1/3.

Note that the set Bn here is the same as the limit set of the divisible sandpile
model on the comb from Theorem 2.2.2.

The second new result is a shape theorem for IDLA on nonamenable graphs,
where the underlying random walks are strongly reversible and uniformly
irreducible, see Chapter 7 for details. In this case, IDLA behaves similarly
to the case of groups with exponential growth, that was mentioned above.
Also in this case the IDLA-clusters have the shape of level set of the Green
function. For the precise statement see Theorem 7.2.1.





Chapter 3

The Divisible Sandpile Model

In this chapter we define the divisible sandpile model rigorously, and prove
the existence of a limit which is independent of the order of topplings. Section
3.5 is devoted to the divisible sandpile on combs, in particular to the proof
of Theorem 2.2.2.

3.1 The Odometer Function

Let us first define the divisible sandpile process in a rigorous way. For sim-
plicity of notation, define the reversed Laplacian 4′ as

4′f(x) =
∑
y∼x

p(y, x)f(y)− f(x) = m(x)4 f ′(x),

where f ′(x) = f(x)
m(x) and m(x) is the reversible measure of the transition

operator p(x, y).

Given a mass distribution µk and a vertex x ∈ G, the toppling operator is
given as

Txµk = µk + αk(x)4′ δx,

where αk(y) = max{µk(y)− 1, 0}, for y ∈ G. Let now µ0 be the initial mass
distribution, and {xk}k≥0 be a sequence of vertices in G called the toppling
sequence, which contains each vertex of G infinitely often. Then we can define
the mass distribution of the sandpile after k steps as

µk+1(y) = Txkµk(y) = Txk · · ·Tx0µ0(y).

This is the amount of mass present at y after toppling the vertices x1, . . . , xk
in succession. We distinguish several cases:

17
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(a) For y = xk:

µk+1(y) = µk(xk) + αk(xk)4′ δxk(xk)

= µk(xk) + αk(xk)

(∑
z∼xk

p(z, xk)δxk(z)− δxk(xk)

)
= µk(xk) + max{µk(xk)− 1, 0}

(
p(xk, xk)− 1

)
=

{
1 + p(xk, xk)

(
µk(xk)− 1

)
, µk(xk) ≥ 1

µk(xk), µk(xk) < 1.

(b) For y ∼ xk:

µk+1(y) = µk(y) + αk(xk)4′ δxk(y)

= µk(y) + αk(xk)

(∑
z∼y

p(z, y)δxk(z)− δxk(y)

)
= µk(y) + p(xk, y) max{µk(xk)− 1, 0}

=

{
µk(y) + p(xk, y)

(
µk(xk)− 1

)
, µk(xk) ≥ 1

µk(y), µk(xk) < 1.

(c) For y 6= xk and y 6∼ xk:

µk+1(y) = µk(y).

From (a) and (b) we get for y ∼ xk:

µk+1(xk)− µk(xk) =
(
p(xk, xk)− 1

)
αk(xk)

µk+1(y)− µk(y) = p(xk, y)α(xk).
(3.1)

Therefore,∑
y∈G

(
µk+1(y)− µk(y)

)
=
(
p(xk, xk)− 1

)
αk(xk) +

∑
y∼xk
y 6=xk

p(xk, y)αk(xk) = 0,

and the sandpile does not leak mass. We can therefore define

M =
∑
y∈G

µ0(y) =
∑
y∈G

µk(y) (3.2)

as the total amount of mass of our sandpile.

The most important tool that will be used throughout this work in various
incarnations is the so called odometer function, which was introduced by
Levine and Peres [LP09].
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Definition 3.1.1. The odometer function vk is defined as

vk(y) =
∑

j≤k: xj=y
µj(y)− µj+1(y) =

∑
j≤k: xj=y

αj(y),

and represents the total mass emitted from a vertex y ∈ G during the first k
topplings.

It turns out that it is easier to work with the odometer function than directly
with the mass distributions, since it has some nice properties. It will be
especially important in Chapters 4 and 6 where we use the results of this
chapter in order to derive shape theorems for the rotor-router aggregation
and IDLA.

In the following, we will state some results which hold for general reversible
transition operators on arbitrary graphs G. For the case of Zd, the proofs
can be found in Levine and Peres [LP09]. The proof of the general case
is included for completeness.

3.2 Convergence of the Odometer

In order to prove that the sequence of mass distributions µk has a limit, we
first prove that the sequence of odometer functions vk converges.

Lemma 3.2.1. As k →∞, the odometer function vk converges pointwise to
a limit function v.

Proof. Let
B =

{
y ∈ G : d(y, suppµ0) ≤M

}
, (3.3)

where M is the total amount of mass of the sandpile, as defined in (3.2). We
have suppµk ⊆ B for all k ≥ 0. Let now ` : G→ R be such that 4`(x) = 1
for all x ∈ B. Define the weight

Qk =
∑
y∈G

µk(y)`(y) ≤ max
y∈B

`(y)
∑
y∈G

µk(y) = M ·max
y∈B

`(y)

From equation (3.1) we get

Qk+1 −Qk =
∑
y∈G

(µk+1(y)− µk(y)) `(y)

= (p(xk, xk)− 1)αk(xk)`(xk) +
∑
y∼xk
y 6=xk

p(xk, y)αk(xk)`(y)

= αk(xk)4 `(xk) = αk(xk),
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where the last line uses the fact that αk(x) = 0 for x 6∈ B. Summing over k
gives

Qk+1 = Q0 +
k∑
j=0

αj(xj) = Q0 +
∑
y∈G

vk(y) ≤ max
y∈B

`(x) ·M.

Hence, for each x ∈ G the odometer function vk(x) is a bounded function.
Moreover, it is also increasing in k and this implies the pointwise convergence
of vk. Denote by v(x) = limk→∞ vk(x) its pointwise limit.

Note that in the previous proof we restrict the condition 4`(x) = 1 to the
trivial finite upper bound B, to ensure the existence of the function `. For
concrete calculations it is preferable to work with functions ` which satisfy
the condition on all vertices of G, if possible. For example the function
`(x) = ‖x‖2 does this on Zd with simple random walk. Another example
would be Cayley graphs of finitely generated groups where the existence of
an function ` with 4`(x) ≡ 1 on the whole graph is ensured by a theorem of
Ceccherini-Silberstein and Coornaert [CCS09].

3.3 Convergence of the Sandpile

Using the fact that the odometer function vk of the divisible sandpile con-
verges pointwise to a limit function v, we can now prove the convergence of
the mass distribution µk of the sandpile after k topplings. The proof is again
based on the result of Levine and Peres [LP09] for Zd. In the general case
we need our assumption of reversibility of the transition operator p(x, y). It
will be convenient to work with a slightly modified odometer function, which
takes the reversible measure into account.

Definition 3.3.1. The normalized odometer function u : G→ R+ is defined
as

u(x) =
v(x)
m(x)

,

where m(x) is the reversible measure of the underlying random walk on G
with transition matrix P .

From now on we will mostly work with the normalized odometer function u.
We are now able to prove the convergence of the mass distributions.

Lemma 3.3.2. The mass distribution µk of the sandpile converges pointwise
to a limit distribution µ. Moreover

µ(x) = µ0(x) +m(x)4 u(x).
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Proof. During the first k topplings, a vertex y ∈ G emits p(y, x)vk(y) of mass
to a neighbour x ∼ y. Therefore, the total amount of mass that x receives
during the first k steps is equal to∑

y∼x
p(y, x)vk(y).

Since the amount of mass present at x at time k is equal to the amount of
mass at x at the beginning, plus the amount of mass received by x and minus
the amount emmited by x, we have

µk(x) = µ0(x) +
∑
y∼x

p(y, x)vk(y)− vk(x)

= µ0(x) +m(x)

(∑
y∼x

p(x, y)
vk(y)
m(y)

− vk(x)
m(x)

)
= µ0(x) +m(x)4 uk(x),

where uk(x) = vk(x)
m(x) . Using the convergence of vk proved in Lemma 3.2.1, we

conclude that the mass distribution µk also converges, and the limit distri-
bution µ satisfies the relation

µ(x) = lim
k→∞

µk(x) = µ0(x) +m(x)4 u(x).

If G does not have loops, it is trivial that µ is bounded above by the constant
function 1, since for every y ∈ G we have µk ≤ 1 whenever y = xk. Hence
for each vertex y there is a subsequence µkj (y) ≤ 1. If G has loops we have
to be more careful.

Lemma 3.3.3. The limit distribution µ of the sandpile satisfies

µ(x) ≤ 1, for all x ∈ G.

Proof. Let us consider the set

C =
{
x ∈ G : ∃εx > 0 s.t. µk(x) > 1 + εx for infinitely many k

}
.

Since µk(x) = 0 for x 6∈ B, with B defined as in (3.3), C is a subset of the
set B, and C is finite. Assume that C is not empty, which means that there
exists some x ∈ G with µ(x) > 1.

Define the inner boundary ∂IC of C as

∂IC =
{
x ∈ C : ∃y ∼ x, with y 6∈ C

}
,
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and choose vertices x ∈ ∂IC, and y ∼ x with y 6∈ C. Since x ∈ C, the value
of the odometer function µk(x) exeeds 1 + εx infinitely often. This implies
that αk(x) > εx infinitely often.

Because the toppling sequence is choosen such that every vertex topples in-
finitly often, εx · p(x, y) amount of mass is added to each neighbour y ∼ x
infinitely often. Eventually µk(y) will be bigger than 1. Moreover,

µk(y) > 1 +
εx
2
p(x, y)

infinitely often. Hence y ∈ C, which is a contradiction to the finiteness of C.
So µ ≤ 1 on G.

3.4 Abelian Property

Everything we did in the last three sections depends on the chosen toppling
sequence {xk}k≥0. In the next Lemma we give a representation of the nor-
malized odometer function u which is independent of the toppling sequence.
Since the limiting mass distribution depends only on the initial mass distri-
bution and on the odometer function (Lemma 3.3.2), the limit behaviour of
the divisible sandpile is independent of the toppling sequence. This is the
Abelian property, which will be fundamental to our further investigations.

Definition 3.4.1. Let g : G → R be a function on G. Define its least
superharmonic majorant on a set B ⊂ G as:

sB
g (z) = inf

{
f(z) : f superharmonic on B, f ≥ g

}
.

Remark that the function sB
g is itself superharmonic on B. From Lemma

3.3.2 and 3.3.3 we get

4u(z) =
1

m(z)
(
µ(z)− µ0(z)

)
≤ 1
m(z)

(
1− µ0(z)

)
.

In particular, if z ∈ S, where S is the set of fully occupied sites defined in
(2.1), we have

4u(z) =
1

m(z)
(
1− µ0(z)

)
. (3.4)

Additionally, by definition, u(z) = 0, if z 6∈ S.

Let us consider a function γ : G→ R, such that

4γ(z) =
1

m(z)
(
1− µ0(z)

)
, for all z ∈ B, (3.5)

where B is a subset of G which contains the set of fully occupied sites S of
the sandpile, i.e. B ⊃ B with B defined as in (3.3).
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Lemma 3.4.2. The normalized odometer function u of the sandpile satisfies

u = (γ + s)1B,

where s = sB
−γ is the least superharmonic majorant of −γ, and

1B(z) =

{
1, if z ∈ B

0, otherwise,

is the indicator function of the set B.

Proof. By the definition of the function γ, in equation (3.5), we know that
4(u− γ)(z) ≤ 0 for z ∈ B. Therefore, u− γ is superharmonic on B. Also u
is nonnegative on B and this implies that u− γ ≥ −γ on B. Therefore u− γ
is a superharmonic majorant of −γ, which implies that u ≥ γ + s on the set
B.

In order to prove that u−γ ≤ s, let us consider the function s+γ−u, which
is superharmonic on S = {z ∈ G : µ(z) = 1}, because, for all z ∈ S, one has

4(s+ γ − u)(z) = 4s(z) ≤ 0.

Outside the sandpile cluster S, u(z) = 0, and because s is a majorant of −γ,
we have s+γ−u ≥ 0. By the minimum principle for superharmonic functions
this inequality extends to the inside of S, hence u ≤ γ+s. Therefore, u = γ+s
on B ⊃ S.

Remark 3.4.3 (Abelian property). The limit of the odometer function u is
independent of the toppling sequence {xk}k≥0, since Lemma 3.4.2 does not
depend on any toppling sequence.

Remark 3.4.4. A consequence of the Abelian property is that u, µ and S
are invariant under all automorphisms of the graph G which fix the start
distribution µ0.

With the help of Lemma 3.4.2, we shall next prove that the sandpile cluster
on the comb has the shape described in Theorem 2.2.2.

3.5 Divisible Sandpile on Combs

We will now study the behavior of the divisible sandpile on C2. We only
consider the case where the initial mass distribution is a point mass at the
origin.
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Remark 3.5.1. Let un be the normalized odometer function on C2 with re-
spect to simple random walk, for the initial mass distribution µ0 = n · δo, and
let Sn be the sandpile cluster in this case. Then by (3.4) the Laplacian of the
odometer function is given by

4un(z) =
1

d(z)
(
1− n · δo(z)

)
, (3.6)

where d(z) is the degree of z in C2.

We can reduce the odometer function un on the comb to the odometer func-
tion of the divisible sandpile on Z, which is easy to compute.

Let ũn be the normalized odometer function of the divisible sandpile on Z,
with initial mass distribution concentrated at 0, that is, µ̃0 = n · δ0. By
Remark 3.4.3 it is clear that the sandpile cluster S̃n on Z in this case is a
symmetric interval around the origin 0. To be precise, we have

S̃n =
[
−n− 1

2
,
n− 1

2

]
∩ Z.

To compute the odometer function ũn, by Lemma 3.4.2 we need to construct
a function γ̃n : Z→ R, such that

4γ̃n(y) =
1
2
(
1− nδ0(y)

)
,

for all y ∈ Z. One possible choice for γ̃n is

γ̃n(y) =
1
2

(
y − n

2

)2
. (3.7)

Since γ̃n is non-negative, the constant function 0 is a superharmonic majorant
of −γ̃n. Hence, by Lemma 3.4.2

ũn ≤ γ̃n,

for all n ≥ 0.

We can now go back to the comb. Consider γn : C2 → R with

γn(x, y) = γ̃nx(y), (3.8)

where nx ∈ R, for all x ∈ Z.

It is clear that this is the right way to define γn, since we can interpret each
number nx as the total amount of mass that ends up in the copy of Z, which
is attached to the vertex x. Each copy of Z in the comb runs its own sandpile,
mostly independent of the others.
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It is easy to check that γn satisfies property (3.4) for all z = (x, y) ∈ C2, if
and only if

nx = n · 1{x=0} + γ̃nx−1(0)− 2γ̃nx(0) + γ̃nx+1(0) (3.9)

holds for all x ∈ Z.

If we now plug (3.7) into (3.9), and use the fact that nx = n−x by symmetry
(see Remark 3.4.3), we get the following explicit nonlinear recursion for the
numbers nx

n0 = n+
1
4
n2

1 −
1
4
n2

0, (3.10)

nx =
1
8
n2
x−1 −

1
4
n2
x +

1
8
n2
x+1, for x > 0. (3.11)

Equation (3.11) has an explicit solution as a quadratic polynomial of the form

nx =
2
3
x2 − t · x+

9t2 + 4
24

, (3.12)

where t is a real parameter. The function nx is positive for all x. If we use
the initial condition (3.10) for nx, we get also an explicit equation for the
parameter t

n =
3
16
t3 +

3
4
t2 +

5
12
t+

1
3
.

This equation has one real root, which is given by

t = T (n) +
28
27
T (n)−1 − 4

3
, (3.13)

with

T (n) =

(
8
√

2187n2 − 2916n+ 629
81
√

3
+

24n− 16
9

) 1
3

.

By a series expansion around n =∞ we get

t = 2
(

2
3

)1/3

n1/3 +O(1). (3.14)

Therefore, the function

γn(x, y) = γ̃nx(y) =
1
2

(
y − nx

2

)2
, (3.15)

with nx defined by (3.12) and (3.13) satisfies

4γn(x, y) =
1

m(x)
(
1− µ0(x, y)

)
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Figure 3.1: Two plots of the function γn for n = 1000. The
graphic on the left is superimposed with contour lines represent-
ing the the sets Bn for various values of n. In the density plot
on the right, dark areas represent small values. By construction,
the finite area which is surrounded by the local minima of γn
coincides with the region Sn covered by the sandpile.

for all (x, y) ∈ C2.

With this in hand, we are now able to find an inner and outer estimate for
Sn. This is the statement of Theorem 2.2.2. But first we need another simple
fact about the odometer function un. For the proof see [LP09, Lemma 3.4].

Lemma 3.5.2. If x ∈ Sn \ {o} and y ∼ x with d(o, y) < d(o, x), then

un(y) ≥ un(x) + 1.

Proof of Theorem 2.2.2.
The upper bound: The mass distributions nx are nonnegative for all x, there-
fore γn is nonnegative, which implies that the constant function 0 is a super-
harmonic majorant of −γn. Hence, it follows by Lemma 3.4.2, that γn is an
upper bound of the odometer function un.

Since un decreases by a fixed amount (Lemma 3.5.2) on the set Sn of fully
occupied sites when we move away from the origin, to get an upper bound of
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Sn, it suffices to calculate the minima of γn along each infinite ray starting
at o. By Remark 3.4.4 it suffices to consider only the first quadrant.

First we consider the two rays which lie entirely on the x-axis, where γn(x, 0) =
1
8n

2
x. The minimum of this function is attained at position xmin = 3

4 t, with t
given as in (3.13). Using the series expansion (3.14) of t we get

xmin = kn1/3 +O(1), with k =
(

3
2

)2/3

, (3.16)

which is also an upper bound of Sn on the x-axis by Lemma 3.5.2, since
γn(bxminc, 0) is bounded by a constant which is independent of n and smaller
than 1/10.

To calculate the extent of the sandpile cluster on the “teeth”, we need to
compute the minima of γn in the y-direction. On each “tooth” of the comb γn
is a quadratic polynomial which has its minimum at ymin(x) = nx

2 . Moreover
γ
(
x, bymin(x)c

)
≤ 1

2 . Using (3.12) and a series expansion around infinity we
get

ymin(x) = l
(
n1/3 − x

k

)2
+

2
3
x− 1

2l
n1/3 − 7l

9k
xn−1/3 +O(1),

where l = 1
2

(
3
2

)1/3. By the estimate in the x-direction we know that (x, y) ∈
Sn only if x ≤ xmin, hence, using the expansion (3.16) for xmin, we obtain

ymin(x) ≤ l
(
n1/3 − x

k

)2
+O(1). (3.17)

So for n ≥ n0, the following two inequalties hold for (x, y) ∈ Sn

|x| ≤ kn1/3 +O(1),

|y| ≤ l
(
n1/3 − x

k

)2
+O(1).

This proves the outer estimate of Theorem 2.2.2, that is, Sn ⊂ Bn+c.

The lower bound: In the previous part of the proof we have seen that on each
infinite ray the minimum of γn(z) is smaller than a non-negative constant a,
which is independent of n.

By the outer estimate we know that un(z) = 0 for all z ∈ ∂Bn+c. Hence
un(z)−γn(z) ≥ −a for all z ∈ ∂Bn+c. Since the function un−γn is superhar-
monic, by the Minimum Principle, it attains its minimum on the boundary
and the inequality

un(z)− γn(z) ≥ −a

holds for all z ∈ Bn+c. Thus γn − a is also a lower bound of the odome-
ter function on Bn+c, which gives the inner estimate Bn−c ⊂ Sn, for some
constant c.
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In the next chapters we will use the odometer function un in order to derive
shape theorems for IDLA and the rotor-router model. For further reference
we formulate the following corrollary.

Corollary 3.5.3. Let un be the normalized odometer function of the divisible
sandpile on the comb C2, with initial mass distribution µ0 = n · δo, and Bn
the subset of C2 as defined in Theorem 2.2.2. Then there exists a constant
0 < a < 2, such that for all n > n0 and all z ∈ C2(

γn(z)− a
)
1Bn ≤ un(z) ≤ γn(z).

Note that the same method could, at least in priciple, be applied to general-
ized combs which are defined as follows, see also [KP04].

Definition 3.5.4. Given two graphs G and H with neighbourhood relations
∼G and ∼H , and a root vertex o ∈ H, define Combv(G,H) to be the graph
with vertex set V (G)× V (H) and neighbourhood relation

(g1, h1) ∼ (g2, h2)⇔
[
g1 = g2 and h1 ∼H h2

]
or
[
g1 ∼G g2 and h1 = h2 = o

]
.

If G and H are both recurrent, also Combv(G,H) is a recurrent graph.
Peres and Krishnapur [KP04] showed that in this case the finite collision
property also holds for these generalized combs.

Assuming we know the odometer function uHn for the divisible sandpile on H
with initial mass distribution µH0 = n · δo, one can analogously to (3.8) define
the odometer on Combv(G,H) as

u(g, h) = uHng(h),

as long as we restrict ourselves to an initial distribution µ0 which is concen-
trated on G. Again ng is the amount of mass that ends up in the copy of H,
which is attached to G at vertex g. Hence ng ≥ 0, and they should satisfy
the equation

4Gū(g) =
1

dG(g)
(
ng − µ0(g, o)

)
, (3.18)

for all g ∈ G, for which the vertex (g, 0) is in the sandpile cluster. Here 4G

is the Laplace operator on G and the function ū : G→ R is defined as

ū(g) = uHng(o).

Equation (3.9) is a special case of (3.18) for the comb C2 = Comb0(Z,Z).
Unfortunately, already in the next easiest case, the iterated 3-dimensional
comb C3 := Comb0(C2,Z), equation (3.18) is quite hard to work with.



Chapter 4

Rotor Router Aggregation

In this chapter we prove two shape theorems for rotor-router aggregation on
the comb C2. The first result, Theorem 4.2.1, gives an exact description of the
rotor-router cluster for a specific initial rotor configuration (see Figure 4.1),
and clockwise rotor sequence for all vertices. The second, Theorem 4.3.4,
gives a weaker inner bound for arbitrary initial rotor configurations. Finally,
in Section 4.4 we prove an inner bound for rotor-router aggregation, that is
valid on all regular graphs.

4.1 The Abelian property

A rotor configuration on G is a function

ρ : G→ G,

with ρ(x) ∼ x, for all x ∈ G. Hence ρ assigns to every vertex one of its
neighbours. A rotor configuration ρ is called acyclic, if the subgraph of G
spanned by the rotors contains no directed cycles. A particle configuration
on G is a function σ : V → Z, with finite support. If σ(x) = m > 0, we say
that there are m particles at vertex x.

The rotor sequence at vertex x will be denoted by c(x) =
(
x0, x1, . . . , xd(x)−1

)
where all xi ∼ x and xi 6= xj for i 6= j.

Definition 4.1.1 (Toppling operator). For a rotor configuration ρ and a
particle configuration σ, we define the toppling operator Fv, which sends one
particle out of vertex v, by

Fv(ρ, σ) = (ρ′, σ′),

where

ρ′(w) =

{
ρ(w)+ if w = v,

ρ(v) otherwise.

29
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Here ρ(w)+ is defined as

ρ(w)+ = w(i+1) mod d(w),

if ρ(w) equals wi in the cyclic ordering c(w) of w, and the new particle con-
figuration is given as

σ′(w) =


σ(w)− 1 if w = v,

σ(w) + 1 if w = ρ′(v),
σ(w) otherwise.

So Fv first changes the rotor configuration by rotating the arrow at v to its
next position, and then it sends a particle along the edge the rotor at v is now
pointing at. The operation Fv of toppling at some vertex v can be successful
even if there is no particle at v. If this is the case, then a “virtual particle”
is sent away from v and a “hole” left there. If there is already a hole at v,
the operator Fv will increase its depth by one. In the normal rotor-router
aggregation no holes are allowed to be created during the whole process. A
sequence of topplings {vk}k ≥ 1 is called legal, if no holes are created when
the vertices vk are toppled in sequence.

Note that the toppling operators commute, i.e., FvFw = FwFv for all v, w ∈
G. This is the usual abelian property for rotor-router walks. While the final
configuration result is always the same, rearranging the order of the topplings
can turn a legal toppling sequence, into one that creates holes and virtual
particles.

Given a function u : G→ N we denote

F u =
∏
v∈G

F u(v)v ,

where product means composition of the operators. Because of the abelian
property, F u is well defined.

The proof of Theorem 4.2.1 is an application of a stronger version of the usual
Abelian property of rotor-router walks, which has been recently introduced
by Kager and Levine [KL]. We state it here for completness. For the
proof see [KL].

Theorem 4.1.2 (Strong Abelian Property). Let ρ be a rotor configuration
and σ a particle configuration on G. Given two functions u1, u2 : G → N,
write

F ui(ρ, σ) = (ρi, σi), i = 1, 2.

If σ1 = σ2 on G, and ρ1 and ρ2 are both acyclic, then u1 = u2.
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By the strong Abelian property we know that each end configuration can
only be achieved by an unique amount of topplings for each vertex, even if
we allow virtual particles to be formed during the process. In the case of
rotor-router aggregation we have σ = n · δo. The desired end configuration is
equal to σ1(x) = 1{x∈Rn}.

Thus, as soon as we find a valid odometer function u1(x) for the end configu-
ration σ1(x), we also know that there exists a legal toppling sequence where
each vertex x topples exactly u1(x) times, and which does not create virtual
particles during the process.

Friedrich and Levine [FL] use this principle to give a exact characteriza-
tion of the odometer function of rotor-router aggregation.

Theorem 4.1.3 (Friedrich, Levine). Let G be a finite or infinite directed
graph, ρ0 a initial rotor configuration on G, and σ0 a particle configuration
on G. Let u be the rotor-router odometer function of σ0.

Fix u? : G → N, and let A? =
{
x ∈ G : u?(x) > 0

}
. Further define ρ? and

σ? by
F u?(ρ0, σ0) = (ρ?, σ?).

Suppose the following properties hold:

• σ? ≤ 1

• A? is finite

• σ?(x) = 1 for all x ∈ A?

• ρ? is acyclic on A?.

Then u? = u.

4.2 Specific Initial Rotor Configuration

The next result gives the exact shape of rotor-router aggregation on the comb,
for a specific initial rotor configuration and fixed rotor sequence.

Theorem 4.2.1. Let Rn be the rotor-router cluster of n particles on the comb
C2, with initial rotor configuration ρ0, defined as in Figure 4.1, and clockwise
rotor sequence for all x ∈ C2. Define

Bm =
{

(x, y) ∈ C2 : |x| ≤ m, |y| ≤ h(m− |x|)
}

for m ∈ N, (4.1)
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o

Figure 4.1: The initial acyclic rotor configuration ρ0.

with h(x) =
⌊

(x+1)2

3

⌋
. Then for nm = |Bm|, the rotor-router cluster satisfies

Rnm = Bm, for all m ≥ 0.

Note that the set Bm coincides with the set Bn from Theorem 2.2.2, with
the exception of two points on the x-axis, whenever m ∈ N and n ∈ R≥0 are
chosen such that m = kn1/3 + 1, with k =

(
3
2

)2/3. As a matter of fact, if
we parameterize Bn by the x-coordinate of its rightmost point on the x-axis
instead by its area, we get the following

Bn = B̃m̃ =
{

(x, y) ∈ C2 : |x| ≤ m̃ and |y| ≤ h̃(m̃− |x|)
}
,

with m̃ = kn1/3 and h̃(x) = x2

3 . Hence, for all m ∈ N,

B̃m+1 = Bm ∪
{

(−m− 1, 0), (m+ 1, 0)
}
.

For the proof of Theorem 4.2.1, an exact expression for the cardinality of the
sets Bm is needed.

Proposition 4.2.2. Let Bm be the set defined in equation (4.1). Then, for
all m ≥ 0 the cardinality of Bm is given by

|Bm| =
1
9
(
4m3 + 12m2 + 24m+ 5 + 2((m+ 2) mod 3)

)
. (4.2)
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Proof. In order to simplify the statement of the proposition, we have to
distinguish three cases, namely for m = 3k + i, with i = 0, 1, 2. The right-
hand side of (4.2) is then equal to

N0(k) = 12k3 + 12k2 + 8k + 1, for m = 3k

N1(k) = 12k3 + 24k2 + 20k + 5, for m = 3k + 1

N2(k) = 12k3 + 36k2 + 40k + 15, for m = 3k + 2.

(4.3)

We prove (4.3) by induction over k. The base case of the induction (m = 0)
is immediate from the definition of Bm. The inductive step follows from

|Bm| = |Bm−1|+ 2
(
h(m) + h(m+ 1) + 1

)
.

We will use Theorem 4.1.3 in order to prove an exact formula for the odometer
function of the rotor-router aggregation defined in Theorem 4.2.1. For this,
we first look at the router-router process on the non-negative integers.

4.2.1 Rotor-Router on the non-negative Integers

For a better understanding of the rotor-router process on C2, we first analyse
it on its “half-teeth”, that is, on the nonnegative integers, where it is very
simple. Consider G = N0, where the vertex 0 is a sink, and the initial rotor
configuration ρ0 is given by

ρ0(y) = y + 1, ∀y ≥ 1.

Let R̃0 = {1}, and define a modified rotor-router aggregation process R̃n
recursively as follows. Start a rotor walk in 1, and stop the particle when it
either reaches the sink 0, or exits the previous cluster R̃n−1. Denote by z̃n the
vertex where the n-th particle stops, and by ρn and ũn the rotor configuration
and odometer function at that time. Then,

R̃n =

{
R̃n−1 ∪ {z̃n}, if z̃n 6= 0
R̃n−1, otherwise.

Obviously R̃n = {1, . . . , hn} for some sequence hn. Since ρ0 is acyclic, all
rotor configurations ρn are acyclic and have the form

ρn(y) =

{
y − 1, 0 ≤ y ≤ rn
y + 1, otherwise,
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Figure 4.2: The first steps of the process R̃n on N0. The dots
mark the vertex, where the current particle stopped.

for some numbers 0 ≤ rn ≤ hn.

The odometer function ũn is given by

ũn(y) = ũ(hn, rn, y) =

{
f(hn − y) + e(rn − y)1{y≤rn}, 1 ≤ y ≤ hn
0, otherwise,

(4.4)
where e(y) = 2y + 1 and f(y) = y(y + 1). That ũn correctly describes the
odometer function of R̃n can be easily verified by induction. See Figure 4.2
for a graphical representation of the process R̃n.

4.2.2 Odometer on the Comb

Since the rotor-router aggregation on the“teeth”of C2 behaves like the process
R̃n from the previous section, it is enough to determine the numbers rn and
hn in (4.4), depending on x, in order to fully specify the odometer function
on C2 for points off the x-axis.

Consider the sequences given by

rx =


0, x ∈ {0, 1}
1
18

(
x2 − 7x+ 10

)
, x ≡ 2 mod 3

1
6

(
x2 − x+ 6), otherwise,

(4.5)

and hx =
⌊

(x+1)2

3

⌋
as in the definition of Bm.

Define um : Bm → N by

um(x, y) = u′(m− |x|, |y|), (4.6)
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Figure 4.3: The first three fully symmetric configurations, con-
sisting of n particles. The numbers are the values of the odometer
function un.

where

u′(x, y) =

{
ũ
(
hx, rx, y

)
, y > 0

2ũ
(
hx, rx, y)− 2− 1{x=2}, y = 0,

with ũ as in (4.4). We claim that um is the odometer function for rotor-router
aggregation of |Bm| particles on the comb.

4.2.3 Proof of Theorem 4.2.1

Definition 4.2.3. Let (ρ, σ) be the final configuration of the rotor-router
aggregation process described in Theorem 4.2.1 for |Bm| particles. The con-
figuration (ρ, σ) is then called the m-th fully symmetric configuration.

Figures 4.3 and 4.4 show examples of fully symmetric configurations.

Next we will show that, if m is big enough, the toppling function um defined
in (4.6) generates exactly the m-th fully symmetric configuration, if |Bm|
particles start at the origin.

Lemma 4.2.4. Let ρ0 be the initial rotor configuration defined in Figure 4.1,
and σ0 = |Bm|δo. Furthermore, define ρm and σm as

(ρm, σm) = F um(ρ0, σ0),

where um is defined as in (4.6). A clockwise rotor sequence is assumed for
all vertices. Then σm = 1Bm, for all m ≥ 2.

Proof. We can use Theorem 4.1.3 to verify that um is indeed the odometer
function of this rotor-router process. For this we need to check the four
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Figure 4.4: The 6th and 7th fully symmetric configurations, con-
sisting of n particles. The numbers are the values of the odometer
function un.
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properties of Theorem 4.1.3, with

A? = Bm \
{
z ∈ Bm : ∃y ∼ z such that y 6∈ Bm

}
.

The set A? is obviously finite. For those vertices z ∈ A? that have neighbours
in Bm \ A?, we have, by (4.4), um(z) ≤ 3, if z is not on the x-axis and
um(z) = 6 otherwise. In both cases exactly one particle is sent to the vertex
outside of A?, hence σm(z) ≤ 1 for all z 6∈ A?.

Next we prove that σm(z) = 1, for all z ∈ A?. Since by definition um is
symmetric, we need to consider only one quadrant. Let z = (x, y) ∈ Bm with
x, y ≥ 0. We need to distinguish several cases.

Case 1. y ≥ 2: This is the case of the rotor-router aggregation on the
nonnegative integers. The number of particles the vertex z receives from
its neighbours should be one more than the number of particles z sends
to its neighbours. From Figure 4.2, and due to the fact that the final rotor
configuration restricted to each “tooth” is acyclic, there are only four possible
situations:

(a) The rotors at the vertices (x, y−1), (x, y) and (x, y+1) all point outwards
(↑). This is the case when rx < y − 1, hence the vertex (x, y) receives
1
2 ũm(y−1) + 1

2 ũm(y+ 1) particles from its right and left neighbours, and
it sends ũm(y) particles. That is,

σm(x, y) =
1
2
[
f(hx − y + 1) + f(hx − y − 1)

]
− f(hx − y) = 1.

(b) The rotors at the vertices (x, y−1), (x, y) and (x, y+1) all point inwards
(↓). Hence rx ≥ y + 1 and, comparing the numbers of incoming and
outgoing particles, we have

σm(x, y) =
1
2
[
f(hx − y + 1) + e

(
rx − y + 1) + f(hx − y − 1)

+ e(rx − y − 1)
]
− f(hx − y)− e(rx − y) = 1.

(c) When the rotors from 1 to y−1 point inwards (↓) and from y to hx point
outwards (↑), then rx = y − 1, and we have

σm(x, y) =
1
2
[
f(hx, rx, y − 1

)
+ e(0)− 1

]
+

1
2
f(hx, rx, y + 1)− f(hx, rx, y) = 1.



38 Chapter 4. ROTOR ROUTER AGGREGATION

(d) The last case which can appear is when all rotors from y to 0 point
inwards (↓), and from y + 1 to hx outwards (↑). Then rx = y and

σm(x, y) =
1
2
[
f(hx, rx, y − 1) + e(1)− 1

]
+

1
2
f(hx, rx, y + 1)− f(hx, rx, y)− 1 = 1.

Therefore, for all (x, y) ∈ Bm, with y ≥ 2, σm(x, y) = 1, which implies that
the points (x, y) are left with one particle after firing um times.

For the rest of the proof we shift the coordinate system such that the point
(−m, 0) lies at the origin, which means that we can work with the function
u′ directly. Since the function u′ does not depend on m, most of what follows
holds independently of m. Only to deal with the center point of the set Bm
(Case 4), we need to take the parameter m into account.

Case 2. y = 1: Consider σm(z) for the vertex z = (x, 1). For x ≥ 9 the
number of inwards pointing arrows rx is always greater than 2. So with
the exception of a finite number of exceptional points (x ∈ {1, 2, 5, 8}), all
relevant rotors on the teeth, are pointing inwards (↓) and the vertex z receives⌈

1
2u
′(x, 2)

⌉
particles from its upper neighbour. For x ≥ 3, the number u′(x, 0)

is divisible by 4, so all neighbours of (x, 0) receive exactly the same amount
of particles. Hence

σm(x, 1) =
1
4
u′(x, 0) +

1
2
(
u′(x, 2) + 1

)
− u′(x, 1),

if z is non-exceptional. Since the values of u′ involved here depend on rx, we
need to check each congruence class x mod 3 separately. In all three cases it
is an easy computation to show that σm(z) = 1.

At the exceptional points z = (x, 1), for x ∈ {1, 2, 5, 8}, the correctness of
the function u′ can be verified directly.

Case 3. x 6= m and y = 0: On the x-axis, the points z = (x, 0) for
x ∈ {0, 1, 2, 3} are again exceptional and need to be checked separately.

For x ≥ 4, the vertex z receives particles from (x − 1, 0), (x + 1, 0), (x, 1),
(x,−1). Here u′(x − 1, 0) and u′(x + 1, 0) are again both divisible by 4. By
symmetry u′(x, 1) = u′(x,−1), and the number of inward pointing arrows
rx ≥ 1 in this case, hence z receives u′(x, 1) + 1 particles from its upper and
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lower neighbours combined. Thus

σm(x, 0) =
1
4
u′(x− 1, 0) +

1
4
u′(x+ 1, 0) + u′(x, 1) + 1− u′(x, 0)

=
1
4
[
2ũ(hx−1, rx−1, 0)− 2

]
+

1
4
[
2ũ(hx+1, rx+1, 0)− 2

]
+ ũ(hx, rx, 1)−

[
2ũ(hx, rx, 0)− 2

]
.

(4.7)

Depending on the congruence class mod 3 of x, we substitute the correspond-
ing branch of the function rx in equation (4.7). In all cases σm(x, 0) = 1
holds.

Case 4. Midpoint x = m, y = 0: Everything until now was independent on
the number of particles |Bm|. Since um is created from u′ by translation and
reflection, the vertex z = (m, 0) after translation corresponds to the origin of
the cluster.

At the start of the process, |Bm| particles are present at z, so σ0(z) = |Bm|.
We assume that m is big enough, so that none of the neighbours of z is an
exceptional point.

By symmetry, z receives 1
2u
′(x− 1, 0) particles from its neighbours on the x

axis, and u′(x, 1) + 1 particles from its neighbours on the teeth. Hence

σm(z) = σ0(z) +
1
2
u′(x− 1, 0) + u′(x, 1) + 1− u′(x, 0).

Substituting the formulas obtained for |Bm| mod 3 in (4.3), into the previous
equation, gives the desired result σm(z) = 1.

Finally, we need to check that the rotor configuration ρm is acyclic. For
m ≤ 2, this follows again directly from Figure 4.3. If m ≥ 3, we again
work with shifted coordinates. It is clear from the previous section that ρm
restricted to each “tooth” is acyclic. Hence it suffices to check that no cycles
are created by rotors on the x-axis. If z = (x, 0), the odometer um(z) is
divisible by 4, except when x = 2. So the rotors at these vertices point in
the same direction as in the start configuration ρ0. The odometer at the
exceptional point w =

(
2, 0
)

is u′(w) = 23 ≡ 3 (mod 4) independent of m.
Hence, these rotors point in the direction of one “tooth”. If the rotor at
position (2, 1) points towards the x-axis, it creates a creates a directed cycle.
By (4.5), we have r2 = 0, which means that all arrows on these “tooth” are
pointing outwards. Hence the rotor at w does not close a cycle. See Figure
4.4 for a visualisation of the rotor configurations under consideration.

Therefore all properties of Theorem 4.1.3 are satisfied which proves the state-
ment.
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Proof of Theorem 4.2.1. In the case m ≤ 2, the statement of the Theorem
follows by direct calculation of the respective aggregation clusters, see Figure
4.3.

For m ≥ 3 it follows from the previous Lemma.

4.3 Rotor Weights

In Theorem 4.2.1 we proved a shape result for the rotor-router model for a
fixed initial rotor configuration. Similar theorems can be proved for different
start configurations, but it would be interesting to prove a shape theorem
which holds for arbitrary initial configuration.

Computer simulations, as well as all that is known for rotor-router aggrega-
tion on Zd and other state spaces, suggest that Rm does not depend on the
initial choice of the rotor configuration up to constant fluctuations. In this
section we give an inner bound for the cluster Rm which holds for arbitrary
initial configuration of the rotors and is independent of the rotor sequence.

The method relies on an idea of Holroyd and Propp [HP10], which they
use to show a variety of inequalities concerning rotor-walks and random walks.

Start with a particle distribution σ0 : G → N and rotor configuration ρ0 :
G→ G such that ρ0(z) = c(z)0 for all z ∈ G, that is, all initial rotors point to
the first element in the rotor sequence. We further assume that σ0 has finite
support, i.e., there are only finitely many particles in the system, so that we
don’t need to deal with questions of convergence. We will route particles in
the system, and this gives rise to a sequence (ρt, σt)t≥0 of particle and rotor
configurations at every time t. To each of the possible states (ρt, σt) of the
system, we will assign a weight.

Fix a function h : G→ R. We define the Particle weights at time t to be

WP(t) =
∑
z∈G

σt(z)h(z). (4.8)

Define the Rotor weights of single points z ∈ G as

w(z, k) =

{
0, for k = 0
w(z, k − 1) + h(z)− h

(
zk mod d(z)

)
, for k > 0,

(4.9)

where zi is the i-th neighbour of z in the rotor sequence c(z). Notice that,
for k ≥ d(z),

w(z, k) = w
(
z, k − d(z)

)
− d(z)4 h(z). (4.10)



4.3. ROTOR WEIGHTS 41

The total Rotor weights are given by

WR(t) =
∑
z∈G

w(z, ut(z)),

where ut(z) is the odometer function of this process, that is, the number of
particles sent out by the vertex z in the first t steps. Note that ρ0 is chosen
in such a way that, if i = ut(z) mod d(z), then zi = ρt(z) for all t ≥ 0 and
z ∈ G.

Lemma 4.3.1. The sum of rotor and particle weights WP(t) + WR(t) is
constant.

Proof. We show that WP(t) + WR(t) = WP(t+ 1) + WR(t+ 1).

Let z ∈ G be the vertex from which the particle is routed away at time t. The
particle moves in the direction of the new rotor at z, that is, to the vertex
ρt+1(z). Therefore, for the particle weights we have

WP(t+ 1) = WP(t)− h(z) + h
(
ut+1(z)

)
.

Since ut(w) = ut+1(w) for all w 6= z, all rotor-weights, except the one at z,
stay the same. By (4.9) we get

WR(t+ 1) = WR(t) + h(z)− h
(
ut+1(z)

)
.

In the case of rotor-router aggregation, the initial particle configuration is
σ0 = n · δo, that is, we start with n particles at the origin and we route a
specific particle only if there is at least one other particle at the same position.
The process terminates when no two particles are at the same position. By
the Abelian property, regardless of the order of particle routings, this process
produces the same result as the rotor-router aggregation process we have
defined in Section 2.2.2. Write (σend, ρend) for the state of the system reached
when the rotor-router cluster Rn has been created. By definition

σend(z) = 1{z∈Rn}.

We use the weight function

h(z) = hy(z) =
Gn(y, z)
d(z)

, (4.11)

where Gn is the Green function stopped upon exiting the set Sn of fully
occupied sites for the divisible sandpile with mass distribution µ0 = n · δo,
defined in Theorem 2.2.2.
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Note that, for y ∈ Sn,

4hy(z) =

{
− 1
d(z) , for y = z

0, otherwise.
(4.12)

The particle weights at time t = 0 are given by

WP(0) = nhy(o), (4.13)

while the rotor weights WR(0) = 0. At the end of the process, i.e., at time
t = end we have

WP(end) =
∑
z∈Rn

hy(z) ≤
∑
z∈Sn

hy(z), (4.14)

since hy is equal to 0 outside of Sn. For the rotor weights we get from (4.10)

WR(end) =
∑
z∈Rn

⌊
uR(z)
d(z)

⌋ (
− d(z)4 hy(z)

)
+
∑
z∈Rn

w(z, kz), (4.15)

where uR is the rotor odometer function and kz = uR(z) mod d(z). Using
(4.12) and (4.9) in the previous equation (4.15) we get

WR(end) =
⌊
uR(y)
d(y)

⌋
+
∑
z∈Rn

kz∑
i=0

(
hy(z)− hy(zi)

)
≤ uR(y)

d(y)
+
∑
z∈Sn

∑
w∼z
|hy(z)− hy(w)|.

(4.16)

Since the total weights are invariant under routing of particles, it follows that

WP(0) + WR(0) = WP(end) + WR(end). (4.17)

From (4.17), together with (4.13), (4.14) and (4.16), we obtain∑
z∈Sn

(
nδ0(z)− 1

)
hy(z) ≤

uR(y)
d(y)

+
∑
z∈Sn

∑
w∼z
|hy(z)− hy(w)|. (4.18)

If we write v(y) for the left hand side of inequality (4.18), that is

v(y) =
∑
z∈Sn

(
nδ0(z)− 1

)
hy(z),

then v(y) = 0 for y 6∈ Sn, and because of the linearity of the Laplacian, we
get

4v(y) =
1

d(y)
(
1− nδ0(z)

)
for y ∈ Sn.
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By (3.4), the normalized odometer function un of the divisible sandpile on G
with initial mass distribution µ0 = n · δo satisfies exactly the same Dirichlet
problem, hence v(y) = un(y) and we get the following result, which compares
the odometer function of rotor-router aggregation with the odometer function
of the divisible sandpile.

Proposition 4.3.2. Let un be the normalized odometer function of the divis-
ible sandpile with initial mass distribution µ0 = n · δo, and uR the odometer
function of rotor-router aggregation with n particles starting at the origin
o ∈ G. Then, for all y ∈ G,

un(y) ≤ uR(y)
d(y)

+ Wrest(y), (4.19)

with

Wrest(y) =
∑
z∈Sn

∑
w∼z

∣∣∣∣Gn(y, z)
d(z)

− Gn(y, w)
d(w)

∣∣∣∣ . (4.20)

Inequality (4.19) has been derived by Levine and Peres [LP09] in the case
of Zd using a different method. In Section 4.4 we use a variant of their
approach to prove an inner bound of the rotor-router cluster, which holds for
arbitrary regular graphs.

For trees, the upper bound of the rotor weights Wrest(y) can be written in
terms of the estimated distance of the starting point of a random walk to the
point where it first exits Sn.

Proposition 4.3.3. If G is a tree and d(·, ·) is the graph distance on G, then

Wrest(x) = 2Ex
[
d(x,XT )

]
− 2,

where T = inf
{
t ≥ 0 : Xt 6∈ Sn

}
, and Xt is the simple random walk on G.

Proof. For y ∼ z let Nyz be the number of transitions from y to z before the
random walk exits Sn. Then

Ex
[
Nyz −Nzy

]
=
Gn(x, y)
d(y)

− Gn(x, z)
d(z)

.

See also [LP, Proposition 2.2] for more details.

Since G is a tree, the net number of crossings of each edge is smaller or equal
to one, i.e., ∣∣Ex[Nyz −Nzy

]∣∣ ≤ 1.
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We consider G as a tree rooted at x, and denote by πx,z the shortest path
from x to z. For y 6= x, write y− for the parent of y, i.e., the unique neighbour
of y that lies on the shortest path πx,y. With this notation we get

∑
y,z∈Sn
y∼z

∣∣∣∣Gn(x, y)
d(y)

− Gn(x, z)
d(z)

∣∣∣∣ =
∑

y,z∈Sn
y∼z

∣∣Ex[Nyz −Nzy

]∣∣
= 2

∑
y∈Sn
y 6=x

Ex
[
Ny−y −Nyy−

]
,

where the last equality is due to the antisymmetry of Nyz −Nzy. Let

Cy =
{
z ∈ Sn : y ∈ πx,z

}
be the cone of y. The random variable Ny−y−Nyy− is either zero or one, the
latter if the random walk exits Sn in the cone Cy, hence

Wrest(x) = 2
∑
y∈Sn
y 6=x

Px
[
XT ∈ Cy

]
= 2

∑
y∈Sn
y 6=x

∑
z∈Cy

Px
[
XT = z

]

For all z ∈ ∂Sn we have #
{
y ∈ Sn \ {x} : z ∈ Cy

}
= d(x, z)− 1, therefore

Wrest(x) = 2
∑
z∈∂Sn

Px
[
XT = z

](
d(x, z)− 1

)
= 2Ex

[
d(x,XT )

]
− 2.

By Proposition 4.3.2 and 4.3.3 and Corollary 3.5.3, one needs an upper bound
for the expected distance to the exit point of a random walk, in order to derive
an inner estimate of the rotor-router cluster.

Using the the trivial upper estimate

Ez
[
d(z,XT )

]
≤ max

{
d(z, w) : w ∈ ∂Sn

}
= |x|+ |y|+ ln2/3,

(4.21)

with z = (x, y) and l = 1
2

(
3
2

)1/3 as in Theorem 2.2.2, we can show the
following weak inner bound.



4.3. ROTOR WEIGHTS 45

Theorem 4.3.4. Let Rn be the rotor-router cluster of n particles on the
comb. Then, for n ≥ n0 and independently of the initial rotor configuration
and the choice of rotor sequence, we have the following inner bound

B̃n ⊂ Rn,

where

B̃n =
{

(x, y) ∈ C2 : |x| ≤ kn1/3 − c1n1/6,

|y| ≤ l
(
n1/3 − x

k

)2
+ c2x− c3n1/3

}
,

k =
(

3
2

)2/3 and l = 1
2

(
3
2

)1/3 and c1, c2 and c3 are constants.

Proof. By definition of the odometer function uR{
z ∈ C2 : uR(z) > 0

}
⊂ Rn,

and by Proposition 4.3.2 together with Proposition 4.3.3, we have for vertices
z = (x, y)

uR(z)
d(z)

≥ un(z)− 2Ez
[
d(z,XT )

]
+ 2

≥ un(z)− 2
(
|x|+ |y|+ ln2/3

)
+ 2,

where the last inequality is due to (4.21). By Corollary 3.5.3, we have a lower
bound of the sandpile odometer un for z ∈ Sn

γn(z)− a ≤ un(z),

where a is a positive constant smaller than 2, and γn is the function defined
in (3.15).

Thus, to derive an inner bound, it suffices to check for which z = (x, y) ∈ Sn
the inequality

γn(x, y)− 2
(
|x|+ |y|+ ln2/3

)
> 0 (4.22)

holds. By symmetry it is enough to consider x, y ≥ 0.

We first check inequality (4.22) on a “tooth” of the comb, that is, for a fixed
x. The function γn is given as

γn(x, y) =
1
2

(
y − nx

2

)2
,

where nx is the amount of mass that ends up in the x-“tooth” of the sandpile.
Since x is fixed, we can treat nx as a constant. Hence the right hand side of
(4.22) is a quadradic polynomial in y with smallest root

yx = 2 +
nx
2
−
√

4 +
k

l
n2/3 + 2nx + 4x.
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Figure 4.5: Picture of the inner estimate of Rn in comparison to
sandpile cluster Sn, for n = 1000. The white area is the area
where the inequality (4.22) is valid, and corresponds to the set
B̃n of Theorem 4.3.4. The coloring is based on the value of the
right-hand side of (4.22).

Substituting nx as calculated in (3.12), and expansion around n =∞ gives

yx = ln2/3 − 1
2l
n1/3x+

x2

3
+

2 +
√

6
3

x+ c1n
1/3 − c2

x4

n
.

Since (x, y) ∈ Sn, we have the bound x ≤ kn1/3, hence

yx = l
(
n1/3 − x

k

)2
+

2 +
√

6
3

x− cn1/3, (4.23)

for n ≥ n0, and a positive constant c.

To get a bound on the x-axis, we calculate for which x > 0 the inequality
yx > 0 is satisfied. Since yx is a polynomial of degree 2 in x this is easy to
do, and again by series expansion around n =∞ we obtain

x ≤ k · n1/3 − c3n1/3, (4.24)
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for n ≥ n0. The inner bound for Rn now follows from (4.24) together with
(4.23).

Figure 4.5 shows the inner estimate of the rotor-router cluster that was proved
in Theorem 4.3.4. The estimate could be improved if one had a substantially
better upper bound for Ez[d(z,XT )]. For this a good understanding of the
harmonic measure of the set Bn, that is, the probability Pz

[
Xz = y

]
, will

probably be essential. We will be investigate the harmonic measure in Chap-
ter 5.

4.4 A Universal Inner Bound for Rotor-Router Ag-
gregation

In this Section a universal inner estimate for rotor-router aggregation is
proved, which relates the rotor-router cluster to a divisible sandpile cluster
with a smaller mass.

Like before, let G be a locally finite directed graph, and p(x, y) the transition
probabilities of the simple random walk on G. Let Xt be the trajectory of
the random walk. The neighbourhood relation on G is denoted by x ∼ y.
We will think of each edge as a pair of directed edges x→ y and y → x.

For a function f : G→ R and x ∼ y, define

∇f(x, y) = f(y)− f(x).

If s is a function on the directed edges of G, that is, s : G × G → R, the
divergence of s is defined as

div s(x) =
∑
y∼x

p(x, y)s(x, y).

Finally the Laplace operator can be written as

4f(x) = div(∇f)(x) =
∑
y∼x

p(x, y)f(y)− f(x). (4.25)

As in Section 4.3, let uR(x) be the odometer function of rotor-router ag-
gregation with n particles starting at a chosen root vertex o. Recall that
uR(x) is the total number of particles that are sent out from vertex x dur-
ing the whole aggregation process. For ease of notation we will also use the
normalized odometer function denoted by u′R(x) = uR(x)

d(x) .

Let N(x, y) be the number of particles routed along the edge x → y, and
N(x, y) = 0 if y is not a neighbour of x. Additionally let

K(x, y) = N(x, y)−N(y, x).
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The number of edge crossings N(x, y) can be bounded by the odometer func-
tion at x. If y is a neighbour of x, then

uR(x)− d(x) + 1
d(x)

≤ N(x, y) ≤ uR(x) + d(x)− 1
d(x)

,

which can be written as

u′R(x)− 1 +
1

d(x)
≤ N(x, y) ≤ u′R(x) + 1− 1

d(x)
. (4.26)

Substracting inequalities (4.26) for a pair of edges x→ y and y → x gives

−2 +
1

d(x)
+

1
d(y)

≤ ∇u′R(x, y) +K(x, y) ≤ 2− 1
d(x)

− 1
d(y)

.

Thus, for some antisymmetric function R(x, y), with

|R(x, y)| ≤ 2− 1
d(x)

− 1
d(y)

, (4.27)

we have
∇u′R(x, y) = −K(x, y) +R(x, y). (4.28)

Using (4.25), the Laplacian of the normalized odometer function u′R can be
written in terms of K and R

4u′R(x) = div(∇u′R)(x) =
∑
y∼x

p(x, y)∇u′R(x, y)

=
1

d(x)

∑
y∼x

(
−K(x, y) +R(x, y)

)
,

(4.29)

where the last equality is due to (4.28).

Note that, for each x 6= o, the number of particles that arrive at x is at most
one more than the number of particles that are sent out from x, hence∑

y∼x
K(x, y) ≥ −1.

If x = o, one has to take into account that all n particles start at o, which
gives ∑

y∼0

K(0, y) = n− 1.

This together with (4.29) implies the following upper bound for the Laplacian
of the odometer function in terms of R

4u′R(x) ≤ 1
d(x)

(
1− n1{x=0}

)
+ divR(x). (4.30)
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Now let B be a subset of the vertex set of G which contains the root o, and

T = inf
{
t ≥ 0 : Xt 6∈ B

}
be the stopping time of the first exit of B.

By telescoping we have

u′R(x)− Ex
[
u′R(XT )

]
=
∑
k≥0

Ex
[
u′R(Xk∧T )− u′R(X(k+1)∧T )

]
=
∑
k≥0

Ex
[
−4u′R(Xk)1{k<T}

]
,

which, by (4.30), is bigger than

≥
∑
k≥0

Ex
[(

n

d(Xk)
1{Xk=0} −

1
d(Xk)

− divR(Xk)
)

1{k<T}

]

= nGB(x, 0)− Ex

[
T−1∑
k=0

1
d(Xk)

]
−
∑
k≥0

Ex
[
divR(Xk)1{k<T}

]
.

Recall that GB(x, y) = Ex
[∑T−1

k=0 1{Xk=y}
]

is the Green function stopped at
the first exit of B. If we define the function f(x) as

f(x) = Ex
[
u′R(XT )

]
+ nGB(x, 0)− Ex

[
T−1∑
k=0

1
d(Xk)

]
,

we get the inequality

u′R(x)− f(x) ≥ −
∑
k≥0

Ex
[
divR(Xk)1{k<T}

]
. (4.31)

An equivalent relation to (4.31) has been derived by Levine and Peres in
[LP09] in the case of Zd. If one makes use of the antisymmetry of R(x, y),
from (4.31) one can derive inequality (4.19), of Section 4.3, with an additional
small error term.

We can further rewrite the right hand side of (4.31) as:

∑
k≥0

Ex
[
divR(Xk)1{k<T}

]
=
∑
k≥0

Ex

∑
z∼Xk

1
d(Xk)

R(Xk, z)1{k<T}


=
∑
k≥0

Ex

∑
y∈B

1{k<T}1{Xk=y}
1

d(y)

∑
z∼y

R(y, z)


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Since XT 6∈ B, we can write the event [k < T ] ∩ [Xk = y] as [Xk∧T = y].
Evaluation of the expectation now gives

=
∑
k≥0

∑
y∈B

Px
[
Xk∧T = y

] 1
d(y)

∑
z∼y

R(y, z)

≤
∑
y∈B

GB(x, y)
1

d(y)

∑
z∼y

(
2− 1

d(y)
− 1
d(z)

)
,

where in the last inequaltity we changed the order of summation and applied
the upper bound (4.27) for |R(x, y)|. Hence

∑
k≥0

Ex
[
divR(Xk)1{k<T}

]
≤
∑
y∈B

GB(x, y)

[
2− 1

d(y)
− 1
d(y)

∑
z∼y

1
d(z)

]

= 2Ex[T ]− Ex

[
T−1∑
k=0

1
d(Xk)

]
−
∑
y∈B

GB(x, y)
d(y)

∑
z∼y

1
d(z)

.

If we plug this into (4.31) we get some cancellation, and obtain the following
lower bound for the normalized rotor odometer function

uR(x) ≥ f̃(x), (4.32)

where the function f̃(x) is defined as

f̃(x) = Ex
[
u′R(XT )

]
+ nGB(x, 0) + 2Ex[T ]−

∑
y∈B

GB(x, y)
d(y)

∑
z∼y

1
d(z)

= Ex
[
u′R(XT )

]
+
∑
y∈B

(
n · 1{y=0} − 2d(y) +

∑
z∼y

1
d(z)

)
GB(x, y)
d(y)

.

The function Ex
[
u′R(XT )

]
is harmonic for x ∈ B and, if we set gy(x) =

GB(x,y)
d(y) , we obtain

4gy(x) =

{
− 1
d(x) , if y = x

0, otherwise,

for x ∈ B. Hence, the Laplacian of f̃(x) for x ∈ B is equal to

4f̃(x) =
1

d(x)

(
2d(x)−

∑
z∼x

1
d(z)

− n · 1{x=0}

)
. (4.33)

Additionally f̃(x) ≥ 0 for x ∈ ∂B. If we compare this with (3.4), it follows
by the Minimum Principle for superharmonic functions, that f̃(x) is bigger
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than the odometer function of a divisible sandpile starting with mass n at
the origin, where the depth h(x) of the holes depends on the site and is given
by

h(x) = 2d(x)−
∑
z∼x

1
d(z)

,

where the set B is chosen as the sandpile cluster of this process. It then
follows from (4.32) that B is a subset of the rotor-router cluster R(n).

In the special case when G is a regular graph with degree d, we have

h(x) = 2d− 1,

and (4.33) simplifies to

4f̃(x) =
2d− 1
d

(
1− n

2d− 1
· 1{x=0}

)
,

which implies the following.

Proposition 4.4.1. Let G be a regular graph with degree d and root vertex
o, and let R(n) be the rotor-router cluster of n particles starting on the root
o. Further, let S(n) be the divisible sandpile cluster for the mass distribution
µ0(x) = n · δo(x). Then

S
(

n
2d−1

)
⊂ R(n).





Chapter 5

The Harmonic Measure

In this chapter we give an application of rotor-router walks in the calculation
of harmonic measures of random walks, that is, the hitting distribution of a
finite set. While in priciple this approach allows to obtain exact results, as
we will show for a few examples, it is difficult to apply in concrete cases as it
requires exact knowledge of the odometer function of the rotor-router walk,
and at least some insight in the structure of the Abelian sandpile group of the
set under consideration. The connection of the Abelian sandpile group to the
rotor router model has been established in the physics literature; see [PPS98,
PDDK96]. One can define a group based on the action of a particle which
performs a rotor-walk on the rotor configuration. This rotor-router group is
Abelian and isomorphic to the Abelian sandpile group. This isomporphism
has been proven formally in [LL09]. For a self-contained introduction see the
overview paper of Holroyd, Levine, et.al. [HLM+08].

As before, let G be a locally finite, connected graph, and B be a finite subset
of vertices G. Write

∂IB =
{
x ∈ B : ∃y 6∈ B with x ∼ y

}
for the inner boundary of B, and we will write B◦ = B \ ∂IB. The vertices
of ∂IB will also be called the sink.

Similarly to Definition 4.1.1 of Chapter 4, we define the particle addition
operator Ev, for each vertex v ∈ B◦. For a rotor configuration ρ, let

Ev(ρ) = ρ′,

where ρ′ is the rotor configuration obtained from ρ by adding a new particle at
vertex v, and letting it perform a rotor-router walk until the particle reaches
a sink vertex in ∂IB for the first time.

By the abelian property of rotor-router walks the operators Ev commute, and
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they can be used to a define an abelian group, see [HLM+08] for details and
[HLM+08, Lemma 3.10] for the proof of the following statement.

Lemma 5.0.2. The particle addition operator Ev is a permutation on the
set of acyclic rotor configurations on B◦.

The rotor-router group of B◦ is defined as the subgroup of permutations of
oriented spanning trees rooted at the sink (that is, acyclic rotor configura-
tions) generated by

{
Ev : v ∈ B◦

}
. For every finite graph B◦ the rotor-router

group is a finite abelian group, which is isomorphic to the abelian sandpile
group. See again [HLM+08] for details.

Now, consider again the stopping time

T = inf
{
t ≥ 0 : Xt ∈ ∂IB

}
.

Let νx(z) = Px[XT = z] be the harmonic measure of B, with starting point
x. If the starting point is the origin o, we will drop the subscript and write
ν(z) = νo(z).

The harmonic measure ν(z) is important for the outer estimate for both
IDLA and rotor router aggregation. We can use rotor weights as in Section
4.3 to calculate the harmonic measure for subsets of the comb, if we use the
harmonic measure itself as the weight function h(x), which is used in (4.8)
and (4.9) to define the particle weights WP(t) and rotor weights WR(t). Fix
a vertex z ∈ ∂IB and define the weight function as

h(x) = hz(x) = νx(z).

Consider the following process. Start with n particles at the origin o, and an
arbitrary acyclic rotor configuration ρ0. We let the particles perform rotor
walks until they reach a vertex in ∂IB for the first time, where they stop.
For each w ∈ ∂IB, denote by e(w) the number of particles that are in w at
the end of this procedure. For all w ∈ B, denote by u(w) the normalized
rotor odometer function of this process

u(w) =
Number of particles sent out by z

d(w)
.

Using the invariance of the sum of rotor- and particle-weights under rotor-
router walks, as in (4.17), we get

nh(o) =
∑

w∈∂IB
e(w)h(w) + WR(end),

which reduces to
nh(o) = e(z) + WR(end), (5.1)
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since h(w) = νw(z) = δw(z), if w ∈ ∂IB.

Since the initial rotor configuration ρ0 is chosen to be acyclic, there exists a
number n such that, after all n particles performed their walks, all rotors in
B◦ made only full turns, i.e. ρ0 = ρend. Hence, n is the order of Eo in the
rotor-router group.

Since h is harmonic on B \ ∂IB, using a n with the above property gives
WR(end) = 0. This together with (5.1) leads to the following equation

n · νo(z) = e(z). (5.2)

Hence, the harmonic measure νo is proportional to the number of rotor-router
particles at the vertices of the boundary.

While a number n with the right property is difficult to calculate, we can still
use equation (5.2) in order to derive asymptotics of the harmonic measure of
subsets of the comb, and in some cases even to calculate it explicitly.

For this, we consider sets Bm of the type defined in Theorem 4.2.1. For some
positive function r : N0 → N0, define

Bm =
{

(x, y) ∈ C2 : |x| ≤ m, |y| ≤ r(m− |x|)
}

for m ∈ N. (5.3)

By symmetry of the set Bm, it is clear that also e(w) and ν(w) are symmetric.
More precisely, if w = (wx, wy) and w′ = (|wx|, |wy|) then

e(w) = e(w′) and ν(w) = ν(w′).

Since e and ν are only defined at the boundary ∂IBm we will, for simplicity
of notation, write e(x) = e(x, r(x)) and ν(x) = ν(x, r(x)). Additionally, like
in the previous section, we will shift the coordinate system by (m, 0) such
that the leftmost point of the set Bm has the coordinate (0, 0).

Since all rotors make only full turns, the odometer function u(w) is harmonic
outside the origin

4u(w) =

{
0, w ∈ B \

(
∂IB ∪ {o}

)
−n, w = o,

(5.4)

and u(w) = 0, for w ∈ ∂IB. Solving the Dirichlet problem (5.4) on the teeth
of the comb, gives for w = (x, y) ∈ Bm,

u(w) = u(x, y) = e(x) ·
(
r(x)− y

)
. (5.5)

On the x-axis, for x 6= o, the harmonicity gives

u(x+ 1, 0) + u(x− 1, 0) + 2u(x, 1) = 4u(x, 0),

which together with (5.5) leads to the following recursion for e(x)

e(x+ 1)r(x+ 1) + e(x− 1)r(x− 1)− 2e(x)
(
r(x) + 1

)
= 0. (5.6)
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Example 5.0.3. As a first example where one can calculate the harmonic
measure explicitly, consider the function r(x) = x2, and its associated set Bm
as defined in (5.3). From (5.6) we get the recursion

e(x+ 1)(x+ 1)2 + e(x− 1)(x− 1)2 − 2e(x)(x2 + 1) = 0,

for m > x > 0. Using the special structure of the set Bm, it is easy to get
initial values for the sequence e(x). Since r(0) = 0 and r(1) = 1, the vertex
w = (1, 0) has three of its neighbours, namely (0, 0), (1, 1) and (1,−1) on
the boundary of Bm. By construction, the rotor at w makes a number of full
turns, hence all of these three points receive an equal number of particles from
w. This means that e(0) = e(1).

By induction, it is easy to see that the sequence e(x) is constant. Assuming
e(x− 1) = e(x), the above recursion reduces to

e(x+ 1)(x+ 1)2 − e(x)(x+ 1)2 = 0.

Since (x+ 1)2 > 0 for all positive x, this implies that e(x+ 1) = e(x).

As e(x) is by construction proportional to the harmonic measure, we get the
following.

Lemma 5.0.4. Let r(x) = x2 and Bm ⊂ C2 with

Bm =
{

(x, y) ∈ C2 : |x| ≤ m, |y| ≤ r(m− x)
}

for m ∈ N.

Then, for all m ≥ 0, the harmonic measure ν0 is the uniform measure on
∂IBm.

Example 5.0.5. A second example where the harmonic measure can be de-
duced explicitly is the case of a box with

r(x) =

{
r, x > 0
0, x = 0.

Since the vertex (0, 0) receives all its particles from vertex (1, 0), the number
of stopped particles in (0, 0) is the normalized odometer function in (1, 0)

e(0) = u(1, 0) = e(1) · r(1).

Equation (5.6) with x = 1 gives

e(2) = 2e(1)
r + 1
r

, (5.7)

and, for x > 1, we get as the general solution of the linear recursion

e(x) =
(
r + 1−

√
2r + 1

r

)x
· c1 +

(
r + 1 +

√
2r + 1

r

)x
· c2.
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From equation (5.7) we deduce c2 = −c1. This gives for the harmonic mea-
sure

ν(x) =

{[(
r+1+

√
2r+1

r

)x
−
(
r+1−

√
2r+1

r

)x]
c, for 0 < x ≤ m

2
√

2r + 1c, for x = 0,

where c is a positive constant depending on the width m and height r of the
box.

Much more interesting is in our context the harmonic measure of the fully
symmetric rotor router clusters of Theorem 4.2.1. Since r(x) =

⌊
(x+1)2

3

⌋
in

that case, we have to solve a linear recurrence with non-polynomial coeffi-
cients. While an explicit answer is not feasible, we can derive asymptotics of
the solution, by converting the recurrence into an equvialent system of linear
differential equations. The next section gives a short overview of singularity
analysis for linear differential equations, which can be used to compute such
asympotics.

5.1 Singularity Analysis of Linear Differential Equa-
tions

In this section we are interested in the asympotics of the coefficients of an-
alytic solutions of ordinary linear differential equations. The presentation
follows the book of Flajolet and Sedgewick [FS09].

Let f(z) =
∑

n≥0 fnz
n be a formal power series, then we denote by [zn] the

coefficient extraction operator, with definition

[zn]f(z) = fn.

Consider a ordinary linear differential equation of the form

c0(z)
∂r

∂zr
f(z) + c1(z)

∂r−1

∂zr−1
f(z) + · · ·+ cr(z)f(z) = 0, (5.8)

where all coefficients cj(z) are analytic in a simply connected domain Ω. By
classical theory, singularities of the solutions of this ODE can only occur at
roots ξ of the leading coefficient c0.

From now on we will work with normalized differential equations

∂r

∂zr
f(z) + d1(z)

∂r−1

∂zr−1
f(z) + · · ·+ dr(z)f(z) = 0, (5.9)

with dj(z) = cj(z)
c0(z) . The dj(z) are meromorphic functions in the domain Ω,

and we define ωξ(j) to be the order of the pole of dj at the point ξ.
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Definition 5.1.1.

• The differential equation (5.9) has a singular point at ξ, if there exists
an index 1 ≤ i ≤ r with

ωξ(i) > 0.

• A singularity ξ is called regular, if

ωξ(1) ≤ 1, ωξ(2) ≤ 2, . . . , ωξ(r) ≤ r.

Definition 5.1.2. For an ODE of the form (5.9) and a regular singularity
ξ, the indicial polynomial Iξ(θ) is defined as

Iξ(θ) = θr + δ1θ
r−1 + · · ·+ δr,

where δj = limz→ξ(z − ξ)jdj(z) and θl = θ(θ − 1) · · · (θ − l + 1) denotes the
lower factorial.

We have now collected all preliminaries to be able to state the theorem. For
more details see once more Flajolet and Sedgewick [FS09, Theorem
VII.10].

Theorem 5.1.3 (Coefficient asympototics for linear ODE). Let f(z) be an-
alytic at 0 and satisfy an ODE of the form (5.9), where the coefficients dj(z)
are analytic in 0 < |z| < ρ1, except for a pole at some ξ with 0 < |ξ| < ρ1. If ξ
is a regular singular point and no two roots of the indicial equation Iξ(θ) = 0
differ by an integer, then there exist constants λ1, . . . , λr ∈ C2 such that, for
all ρ0 with |ξ| < ρ0 < ρ1, we have

[zn]f(z) =
r∑
j=1

δj∆j(n) +O(ρ−n0 ).

The ∆j(n) are of the asymptotic form

∆j(n) ∼ n−θj−1

Γ(−θj)
ξ−n

[
1 +

∞∑
k=1

si,j
ni

]
,

where θj are the roots of the indicial equation Iξ(θ) = 0.

Note that the dj(z) can have a singularity of any kind at 0, (see Note VII.47
in [FS09]).



5.2. HARMONIC MEASURE OF BM 59

Remark 5.1.4. We will not be able to apply Theorem 5.1.3 directly in the
case which is of interest for us, because the requirement that the indicial
equation has no two roots that differ by an integer will not be satisfied. In
this case one gets additional logarithmic terms and the ∆j(n) are asymptotic
of the form

ξ−nnβ logl n, (5.10)

where ξ is a regular singular point, β is a algebraic number satisfying

Iξ(−β − 1) = 0,

and l is an integer. For more details see [FS09, page 521].

5.2 Harmonic Measure of Bm

We can now state the result about the harmonic measure of the set Bm
from Theorem 4.2.1. Using the notation introduced at the beginning of this
Chapter, we have the following.

Lemma 5.2.1. Let r(x) =
⌊

(x+1)2

3

⌋
and Bm ⊂ C2 with

Bm =
{

(x, y) ∈ C2 : |x| ≤ m, |y| ≤ r(m− x)
}

for m ∈ N.

Then for, all m ≥ 0, the harmonic measure νo(x) of the set Bm is proportional
to e(|x|), where e(x) ∼ c · x for a constant c, with 0 < c < 1

2 .

Proof. To prove that e(x) grows at most linearly, we use the substitution
ẽ(x) = e(x)

x for x > 0, which transforms the recursion (5.6) into

ẽ(x−1)(x−1)r(x−1)+ ẽ(x+1)(x+1)r(x+1)−2ẽ(x)x
(
r(x)+1

)
= 0. (5.11)

The sequence ẽ(x) converges if and only if e(x) grows at most linearly. Since
e(x) is positive by construction, it suffices to prove that ẽ(x) is decreasing.

Consider the function r′(x) = (x+1)2

3 − 1
3 . We have three cases

r(x) =


r′(x), x ≡ 0 mod 3
r′(x), x ≡ 1 mod 3
r′(x) + 1

3 , x ≡ 2 mod 3

We prove the monotonicity of ẽ(x) by induction. Assuming ẽ(x) < ẽ(x − 1)
for x ≡ 0 mod 3 we show that ẽ(x + 3) < ẽ(x + 2) < ẽ(x + 1) < ẽ(x).
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The basis of the induction follows by calculating the first few elements of the
sequence.

Case (i): Assume x ≡ 0 mod 3 and ẽ(x) < ẽ(x − 1). In this case the
recursion (5.11) can be written as

ẽ(x+ 1)(x+ 1)r′(x+ 1) = 2ẽ(x)x
(
r′(x) + 1

)
− ẽ(x− 1)(x− 1)

(
r′(x− 1) + 1

3

)
Using the induction hypothesis we get

ẽ(x+ 1) < f̃0(x) · ẽ(x), (5.12)

with

f̃0(x) =
2x
(
r′(x) + 1

)
− (x− 1)

(
r′(x− 1) + 1

3

)
(x+ 1)r′(x+ 1)

.

Using the definition of r′(x), this simplifies to

f̃0(x) =
x2 + 2x

x2 + 2x+ 1
< 1,

which proves ẽ(x+ 1) < ẽ(x).

Case (ii): Assume x ≡ 1 mod 3 and case (i) for x − 1. Similarly to the
previous case rewrite (5.11) as

ẽ(x+ 1)(x+ 1)
(
r′(x+ 1) + 1

3

)
= 2ẽ(x)x

(
r′(x) + 1

)
− ẽ(x− 1)(x− 1)r′(x− 1),

which, by (5.12) gives

ẽ(x+ 1) < f̃1(x) · ẽ(x), (5.13)

for

f̃1(x) =
2x
(
r′(x) + 1

)
− f̃0(x− 1)−1(x− 1)r′(x− 1)

(x+ 1)
(
r′(x+ 1) + 1

3

)
=

x2 + 3x
x2 + 3x+ 2

< 1.

Case (iii): Finally, assuming x ≡ 2 mod 3 and case (ii) for x− 1, we get the
recursion

ẽ(x+ 1)(x+ 1)r′(x+ 1) = 2ẽ(x)x
(
r′(x) + 4

3

)
− ẽ(x− 1)(x− 1)r′(x− 1).

Applying (5.13), gives the inequality

ẽ(x+ 1) < f̃2(x) · ẽ(x), (5.14)
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for the function

f̃2(x) =
2x
(
r′(x) + 4

3

)
− f̃1(x− 1)−1(x− 1)r′(x− 1)
(x+ 1)r′(x+ 1)

=
x4 + 7x3 + 17x2 + 17x

x4 + 7x3 + 17x2 + 17x+ 6
< 1.

This shows that ẽ(x) is decreasing and therefore convergent, which also means
that e(x), the number of particles that stop at vertex (x, r(x)) of the boundary
of Bm, is asymptotically at most ∼ c · x. That c < 1

2 follows since ẽ(x) < 1
2

for all x ≥ 20.

To show that c > 0, that is, e(x) is at least growing linearly, we can use
singularity analysis of linear differential equations. For this we split the e(x)
into three sequences modulo 3, i.e., for k ∈ N write

e0(k) = e(3k)
e1(k) = e(3k + 1)
e2(k) = e(3k + 2).

As in the previous part of the proof, we can rewrite (5.11) for each congruence
class of x mod 3 in terms of k. This leads to a system of linear recursions
with polynomial coefficients for the sequences ei(k)

(3k2 + 2k)e0(k) + (3k2 − 2k)e1(k − 1)− (6k2 + 2)e2(k − 1) = 0

(6k2 + 4k + 2)e0(k)− (3k2 + 4k + 1)e1(k)− 3k2e2(k − 1) = 0

(3k2 + 2k)e0(k)− (6k2 + 8k + 4)e1(k) + (3k2 + 6k + 3)e2(k) = 0.

This can be written in matrix form as

Ak · ~e(k − 1) = Bk · ~e(k). (5.15)

Here ~e(k) denotes the vector
(
e0(k), e1(k), e2(k)

)t, and the matrices Ak and
Bk are given as

Ak =

0 3k2 − 2k −6k2 − 2
0 0 3k2

0 0 0


and

Bk =

 −3k2 − 2k 0 0
6k2 + 4k + 2 −3k2 − 4k − 1 0

3k2 + 2k −6k2 − 8k − 4 3k2 + 6k + 3

 .

The initial values are given by ~e(0) =
(
1, 1, 4

3

)t.
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Denote by Ei(z) =
∑

k≥0 ei(k)zk the generating function of ei(k). The recur-
sion (5.15) can be transformed into a system of linear differential equations
for the generating functions Ei(k), using the identities

∑
k≥0

kei(k)zk = z
∂

∂z
Ei(z),

∑
k≥0

k2ei(k)zk = z2 ∂
2

∂z2
Ei(z) + z

∂

∂z
Ei(z).

This leads to the following differential equation

C · ~E(z) = b, (5.16)

where ~E(z) =
(
E0(z), E1(z), E2(z)

)t, and C is a matrix of linear differential
operators given as

C =


5
∂

∂z
+ 3z

∂2

∂z2
1 + 7z

∂

∂z
+ 3z2

∂2

∂z2
−8− 18z

∂

∂z
− 6z2

∂2

∂z2

−2− 10z
∂

∂z
− 6z2

∂2

∂z2
1 + 7z

∂

∂z
+ 3z2

∂2

∂z2
3z + 9z2

∂

∂z
+ 3z3

∂2

∂z2

5z
∂

∂z
+ 3z2

∂2

∂z2
−4− 14z

∂

∂z
− 6z2

∂2

∂z2
3 + 9z

∂

∂z
+ 3z2

∂2

∂z2

 .

The righthand side vector b is equal to

b =

 0
e1(0)− 2e0(0)

0

 .

To solve (5.16) asymptotically, we consider C as a matrix with entries in the
Weyl algebra, that is, the noncommutative ring of linear differential opera-
tors with polynomial coefficients, see [Lam91]. We can perform a division-free
Gauss elimination over this ring to transform C into row echelon form, which
gives a single differential equation only involving E2(z). The actual com-
putations were performed using the computer algebra system FriCAS1. The

1http://fricas.sourceforge.net

http://fricas.sourceforge.net
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result is a differential equation of order 7 for E2(z).

81

8
(z + 2)(z − 1)5z6

∂7

∂z7

+
1269

4
(z − 1)4z5

„
z2 + z −

76

47

«
∂6

∂z6

+
27531

8
(z − 1)3z4

„
z3 −

24

437
z2 −

7149

3059
z +

3826

3059

«
∂5

∂z5

+
127725

8
· (z − 1)2 · z3 ·

„
z4 −

50039

42575
z3 −

82401

42575
z2 +

132307

42575
z −

38554

42575

«
∂4

∂z4

+31785(z − 1)z2
„
z5 −

100697

42380
z4 −

1164

10595
z3 +

36215

8476
z2 −

5651

1630
z +

6234

10595

«
∂3

∂z3

+23970z ·
„
z6 −

117579

31960
z5 +

114057

31960
z4 +

15053

6392
z3 −

208329

31960
z2 +

59229

15980
z −

1243

3995

«
∂2

∂z2

+4935

„
z6 −

1354

329
z5 +

1843

329
z4 −

4479

3290
z3 −

12209

3290
z2 +

1466

329
z −

32

329

«
∂

∂z

+105

„
z5 −

494

105
z4 +

881

105
z3 −

201

70
z2 +

4411

210
z +

1006

105

«
= 0

(5.17)

Using singularity analysis for linear differential equations, as described in the
previous Section, we can derive asympotics of e2(k). The coefficient of ∂7

∂z7
is

given by
81
8

(z + 2)(z − 1)5z6,

hence the dominant non-zero singularity ξ is equal to 1. Since all coefficients
in (5.17) are given in factorized from, it is immediate that ξ is a regular
singularity. Calculating the indicial polynomial for the singularity ξ gives

Iξ(θ) = θ7 − 17θ6 + 99θ5 − 187θ4 − 220θ3 + 1044θ2 − 720θ.

The roots of Iξ(θ) are −2, 0, 1, 3, 4, 5 and 6, hence by Remark 5.1.4 we might
have logarithmic terms in the asympotics. By (5.10) the asymptotics of e2(k)
is given by

e2(k) ∼ c · ξ−kkβ logl k,

where l is an integer and b is a biggest solution of the equation I(−β−1) = 0.
In our case β = 1, and we have

e2(k) ∼ c · k logl k.

While it is not known how to calculate the constant l in the general case,
from the first part of the proof we already know that e2(k) grows at most
linearly, hence l = 0.





Chapter 6

Internal Diffusion Limited
Aggregation on the Comb

This chapter is devoted to the proof of Theorem 2.2.7. The proof uses ideas of
Lawler, Bramson and Griffeath [LBG92] and of Levine and Peres
[LP10].

For each n ≥ 0, denote by Bn the subset of the comb given by

Bn =

{
(x, y) ∈ C2 :

|x|
k

+
(
|y|
l

)1/2

≤ n1/3

}
,

where the constants k and l are given by k =
(

3
2

)2/3 and l = 1
2

(
3
2

)1/3.

Let {Xi
t}i∈N be a sequence of independent simple random walks on the comb,

with common starting point Xi
0 = o, and An be the IDLA-cluster of n parti-

cles, as defined in Definition 2.2.5. Following [LBG92], let us introduce some
stopping times and random variables. Define

σi = min{t ≥ 0 : Xi
t /∈ Ai−1},

which represents the time it takes the i-th particle to leave the occupied
cluster Ai−1, and, for z ∈ Bn,

τ iz = min{t ≥ 0 : Xi
t = z}

denotes the time of the first visit of the i-th walk to vertex z. The first exit
time of the set Bn is given by

τ in = min{t ≥ 0 : Xi
t /∈ Bn}.

We want to find an upper bound for the probability that a vertex z ∈ Bn
does not belong to the IDLA cluster An, which can be written in terms of
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the stopping times defined above as

P[z /∈ An] = P

⋂
i≤n

σi < τ iz

 .
By the Borel-Cantelli Lemma∑

n≥n0

∑
z∈Bn(1−ε)

P[z /∈ An] <∞, (6.1)

is a sufficient condition for proving Theorem 2.2.7. Now fix n and z ∈ Bn
and consider the random variables

N =
n∑
i=1

1{τ iz<σi} and M =
n∑
i=1

1{τ iz<τ in},

where N represents the number of particles that visit z before leaving the
cluster, and M counts the number of particles that visit z before leaving Bn.
Let

L =
n∑
i=1

1{σi≤τ iz<τ in}

be the number of particles that visit z after leaving the cluster Ai, but before
leaving Bn.

Remark that if L < M , then z belongs to the occupied cluster An. Moreover
N ≥M − L. Therefore, in order to estimate the probability that z does not
belong to the cluster An, we just need to bound the probability that M = L.
For any fixed number a

P[z /∈ An] = P[N = 0] ≤ P[M − L = 0]
≤ P[M ≤ a or L ≥ a] ≤ P[M ≤ a] + P[L ≥ a].

(6.2)

We will show that for a suitable choice of a, the probabilities P[M ≤ a] and
P[L ≥ a] can be made small enough such that the series in (6.1) converges,
which implies the inner bound of An in Theorem 2.2.7.

The derivation of a suitable value of a needs to be done in a different way,
not as in the case of Euclidean lattices, studied by Lawler, Bramson and
Griffeath in [LBG92], or Levine and Peres [LP10]. They used classical
Green kernel asymptotics available on Zd, for d ≥ 3 (see Lawler [Law91]),
and asympotics for the recurrent potential kernel (see Spitzer [Spi76]) in
the case of d = 2. Such estimates are not available on C2, but one can use
the odometer function for the divisible sandpile which we derived in Chapter
3 in order to get enough information about the simple random walk on the
comb, and to give good approximations for the Green function stopped at
Bn, at least for some special cases.
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Recall that Gn(y, z) = GBn(y, z) is the Green function stopped on the set
Bn. The random variable M is a sum of i.i.d. indicator variables, with

E[M ] = nPo[τz < τn] = n
Gn(o, z)
Gn(z, z)

. (6.3)

The random variable L is not as easy to estimate directly because it is a sum
of indicator random variables which are neither independent nor indentically
distributed. Following, [LBG92], we can bound L by a sum of independent
indicator random variables as follows. Only those indices i with Xi

σi
∈ Bn

contribute to L and, for each y ∈ Bn, there is at most one index i with
Xi
σi

= y. The corresponding post-τy random walks are independent. In
order to avoid dependencies in L, enlarge the index set to all of Bn and
define

L̃ =
∑
y∈Bn

1y{τz<τn},

where the indicators 1y correspond to independent post τy random walks
starting at y. Then L ≤ L̃, and the expectation of L̃ is given by

E[L̃] =
∑
y∈Bn

Py[τz < τn] =
1

Gn(z, z)

∑
y∈Bn

Gn(y, z). (6.4)

Now (6.2) can be rewritten as

P[z /∈ An] ≤ P[M ≤ a] + P[L̃ ≥ a]. (6.5)

Next we relate the random variables L̃ and M with the odometer function of
the divisible sandpile. Consider the function fn : Bn → R, given as

fn(z) =
Gn(z, z)
d(z)

E[M − L̃]. (6.6)

Using (6.3) and (6.4), we have

fn(z) =
Gn(z, z)
d(z)

(
nP[τz < τn]−

∑
y∈Bn

Py[τz < τn]
)

=
1

d(z)

∑
y∈Bn

(
n · δo(y)− 1

)
Gn(y, z),

where o = (0, 0) is the origin of C2. By reversibility of the simple random
walk on C2, we have that

Gn(x, y)
d(y)

=
Gn(y, x)
d(x)
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and the Laplacian of the function hx(y) = Gn(x,y)
d(y) , for a fixed x, is given by

4hx(y) = 4Gn(x, y)
d(y)

=

−
1

d(x)
, if x = y

0, if x 6= y
.

Therefore, by linearity, the Laplacian of fn is equal to

4fn(z) =
1

d(z)
(
1− n · δo(z)

)
, for z ∈ Bn.

Thus fn solves the following Dirichlet problem4fn(z) =
1

d(z)
(
1− n · δo(z)

)
, for z ∈ Bn

fn(z) = 0, for z ∈ ∂Bn

with ∂Bn =
{
x ∈ G : ∃y ∼ x and y ∈ Bn

}
.

Recall that the divisible sandpile odometer function un with initial mass
distribution µ0 = n · δo solves the same Dirichlet problem on the set Sn of
fully occupied sites (see page 22), which is described in Theorem 2.2.2. Since
the solution of a Dirichlet problem is unique, it follows that fn = un on the
set Bn, and un is approximated (up to an additive constant) by the function
γn defined in (3.15). Since un > 0, it follows that fn(z) > 0, for all z ∈ Bn
and E[M − L̃] > 0, that is, E[M ] > E[L̃].

We will use the following large deviations estimate for sums of independent
indicators. For a proof, see Spencer [AS92, Cor. A.14].

Lemma 6.0.2. If N is a sum of finitely many independent indicator random
variables, then for all λ > 0,

P
[
|N − E[N ]| > λE[N ]

]
< 2e−cλE[N ],

where cλ is a constant depending only on λ.

In order to find an upper bound for the right-hand side of (6.5) we use the
previous Lemma and choose λ > 0 such that

(1 + λ)E[L̃] ≤ a ≤ (1− λ)E[M ], (6.7)

for some a. Such a λ has to satisfy the relation

0 < λ ≤ E[M − L̃]
E[M + L̃]

. (6.8)
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Define a function gn as

gn(z) =
Gn(z, z)
d(z)

E[M + L̃], (6.9)

then from (6.6) and (6.9) we have

fn(z)
gn(z)

=
E[M − L̃]
E[M + L̃]

. (6.10)

Since we need a λ which satisfies (6.8), it suffices to find the maximal subset
of Bn on which the quotient fn(z)/gn(z) is bounded away from 0. For this,
we prove that the function gn solves a Dirichlet problem, and we determine
explicitely the unique solution.

6.1 The function gn

In this section we compute the function gn. By (6.3) and (6.4) the discrete
Laplacian of gn is equal to

4gn(z) =
1

d(z)
(
− 1− n · δo(z)

)
, for z ∈ Bn, (6.11)

and gn(z) = 0 for all z ∈ ∂Bn. Therefore, gn is the unique solution of the
Dirichlet problem (6.11).

For simplicity, we first shift the set Bn defined in (2.3) by kn1/3 on the x-
coordinate. This shifted set will be denoted by Btn, which is the set of all
(x, y) ∈ C2 which satisfy the following three relations

0 ≤ x ≤ 2kn1/3

and

y ≤ x2

3
, for 0 ≤ x ≤ kn1/3,

y ≤ (2kn1/3 − x)2

3
, for kn1/3 < x ≤ 2kn1/3.

By this translation, we move the center (0, 0) of the set Bn to (kn1/3, 0) and
the left and right corners of Btn are (0, 0) and (2kn1/3, 0), respectively.

With the shifted set Btn we can associate the function gtn : Btn → R, by

gtn(x, y) = gn(x+ kn1/3, y), (6.12)
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which solves the same Dirichlet problem (6.11) on the set Btn with the origin
o moved to the point (kn1/3, 0). By symmetry of gn it is enough to compute
gtn(z) for z = (x, y) ∈ Btn, with 0 ≤ x ≤ kn1/3 and y ≥ 0.

For z = (x, y) ∈ Btn, with y 6= 0, the Laplacian 4gtn(z) is equal to −1/2,
hence on each “tooth” of the comb, gtn satisfies the linear recursion

2gtn(x, y) = gtn(x+ 1, y) + gtn(x, y − 1) + 1,

which has the general solution

gtn(x, y) =
1
2

(y − y2) + c1(x) + yc2(x), (6.13)

where c1(x) and c2(x) are functions of x, which will be determined in the
following. For points (x, 0), (x, 1) ∈ C2, we have

gtn(x, 0) = c1(x) and gtn(x, 1) = c1(x) + c2(x). (6.14)

From (6.11) we get the following boundary conditions

gtn(0, 0) = 0,

gtn(2kn1/3, 0) = 0

and for 0 ≤ x ≤ kn1/3

gtn(x, x2/3) = 0.

On the other hand, from equation (6.13), we get

gtn(x, x2/3) =
x2

6

(
1− x2

3

)
+ c1(x) +

x2

3
c2(x) = 0,

which implies that the function c2(x) can be written as

c2(x) =
1
2

(x2

3
− 1
)
− 3
x2
c1(x). (6.15)

Moreover, on the x-axes the Laplace operator of gtn satisfies

4gtn(x, 0) =
1
4
(
gtn(x− 1, 0) + gtn(x+ 1, 0) + 2gtn(x, 1)

)
− gtn(x, 0)

=

{
−1

4 , if x 6= kn1/3

−1
4(n+ 1), if x = kn1/3.

(6.16)

For x 6= kn1/3, that is, in case that the vertex (x, 0) is not the center point
of the set Btn, we have

gtn(x+ 1, 0) = 4gtn(x, 0)− gtn(x− 1, 0)− 2gtn(x, 1)− 1
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and using (6.14) we obtain the first relation between the functions c1(x) and
c2(x), namely

c1(x+ 1) = 2c1(x)− c1(x− 1)− 2c2(x)− 1

Plugging c2(x), as obtained in (6.15), into the previous relation we obtain a
new recursion for the function c1,

c1(x+ 1) =
(

2 +
6
x2

)
c1(x)− c1(x− 1)− x2

3
,

which can be explicitely solved and the solution is a polynomial of degree 4,
given by

c1(x) = − 1
18
x4 + bx3 − 1

36
x2, (6.17)

where b is a free parameter which can be computed using the other boundary
conditions for gtn. Since 4gtn(kn1/3, 0) = −1

4(n + 1), using equations (6.14),
(6.15), (6.16), and (6.17), we obtain

b =
5K + 27n

18(1 + 3K2)
,

where K = kn1/3, and the constant k =
(

3
2

)2/3 is the same as in Theorem
2.2.7. Since we are interested in the form of gtn, for n sufficiently large, we
use the expansion for b around n =∞

b(n) =
1
6l
n1/3 +O(n−1/3),

and we get the following expression for gtn(z),

gtn(x, y) =
( 1

6l
n1/3 +O(n−1/3)

)
(x3 − 3xy)

+
1
36

(3y − 18y2 − 2x4 − x2 + 12x2y).

Finally, we need to shift the coordinate system back, which gives

gn(x, y) = gtn
(
kn1/3 − |x|, |y|

)
.

6.2 Proof of the inner bound

Recall that for n big enough, we search for subsets of Bn on which the in-
equality

0 < λ ≤ E[M − L̃]
E[M + L̃]

is satisfied, where λ is a constant that is independent of the number of par-
ticles n.
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Figure 6.1: Plot of gn for n = 1000, with superimposed Bn con-
tour lines.

Lemma 6.2.1. For all ε > 0 there exists an nε such that, for all n ≥ nε and
all z ∈ Bn(1−ε),

ε

4
≤ E[M − L̃]

E[M + L̃]
.

Proof. By (6.10) one needs to study the function λn(x, y) = fn(x,y)
gn(x,y) . We have

λn(x, y) =

(
y − nx

2

)2
2c1(x) +

(
2c2(x) + 1

)
y − y2

,

where c1(x), c2(x) and nx are defined in (6.17), (6.15) and (3.12). For every
fixed x ∈ Bn, the function λn(x, y) is decreasing if 0 ≤ y ≤ nx

2 .

From the proof of Theorem 2.2.2 (see (3.17)) we already know that

nx
2

= l
(
n1/3 − x

k

)2
+O(1). (6.18)

For 0 < ε < 1 consider the set

Bn,ε =
{

(x, y) ∈ C2 : |x| ≤ (1− ε)kn1/3 and

|y| ≤ (1− ε)l
(
n1/3 − |x|

k

)2}
.
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Obviously Bn,ε ⊂ Bn for all ε, hence fn
gn

is well defined on this set. Further-

more by (6.18), fn
gn

is also decreasing on Bn,ε as a function of y, for all ε > 0

and n big enough. This means that it is enough to study fn
gn

at the inner
boundary of Bn,ε.

Let z = (x, y) ∈ Bn,ε with |y| = (1 − ε)l
(
n1/3 − |x|k

)2
be such a boundary

point. Then one can calculate the limit

lim
n→∞

fn(z)
gn(z)

=
ε

4− ε
>
ε

4
.

The lemma follows from the fact that for each ε > 0 one can find an ε′ > 0
such that Bn(1−ε) ⊂ Bn,ε′

With this in hand, we are now ready to prove Theorem 2.2.7.

Proof. Recall that we need to show the convergence of the series (6.1). We
already established in (6.5) that

P[z /∈ An] ≤ P[M ≤ a] + P[L̃ ≥ a],

where a has the property (6.7). By Lemma 6.2.1, set λ = ε
4 > 0, then by

(6.7) we can choose

a = (1 + λ)E[L̃] =
(

1 +
ε

4

)
E[L̃].

For this choice of the constant a apply Lemma 6.0.2 to M and L̃. Recall also
that E[M ] > E[L̃]. Then

P[M ≤ a] + P[L̃ ≥ a] = P
[
M ≤

(
1 +

ε

4

)
E[L̃]

]
+ P

[
L̃ ≥

(
1 +

ε

4

)
E[L̃]

]
< 2 exp

{
−cλE[L̃]

}
+ 2 exp

{
−cλE[L̃]

}
= 4 exp

{
−cλd(z)

gn(z)− fn(z)
2Gn(z, z)

}
≤ 4 exp

{
−cλ

gn(z)− fn(z)
Gn(z, z)

}
,

where cλ is a constant only depending on λ. Hence, for all n ≥ nε, we have∑
n≥nε

∑
z∈Bn(1−ε)

P[z /∈ An] ≤ 4
∑
n≥nε

∑
z∈Bn(1−ε)

exp
{
−cλ

gn(z)− fn(z)
Gn(z, z)

}
, (6.19)

and we have to prove that the series on the right hand-side converges. In
order to find an upper bound for the stopped Green function Gn(z, z) upon
exiting Bn, with z = (x, y), note that

|y| ≤ bn(x) := l
(
n1/3 − |x|

k

)2
.
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An upper bound forGn(z, z) is two times the stopped Green functionGA(y, y)
for the simple random walk on the integer line upon leaving the finite sym-
metric interval A =

[
− bn(x), bn(x)

]
. Using Proposition 1.6.3 and Theorem

1.6.4 from Lawler [Law91], this can be estimated from above by

GA(y, y) ≤
l2
(
n1/3 − |x|k

)4 − y2

l
(
n1/3 − |x|k

)2 ≤ l
(
n1/3 − |x|

k

)2
. (6.20)

For every ε > 0, the function gn(z)− fn(z) is again decreasing on every non-
crossing path which starts at o and which is restricted to Bn(1−ε). Hence, it
attains its minium on the inner boundary of Bn(1−ε). Taking limits, we get
for every sequence zn = (x, yn) with x fixed and zn ∈ ∂IBn(1−ε)

lim
n→∞

gn(zn)− fn(zn)
n4/3

=
k

4
(2− ε)ε,

and for the sequence z′n = (xn, 0) with xn = kn1/3(1− ε)1/3

lim
n→∞

gn(z′n)− fn(z′n)
n4/3

=
k

4
(
3− 2ε− (ε− 3)(1− ε)1/3

)
.

Hence for all ε > 0 and n big enough

min
z∈Bn(1−ε)

(
gn(z)− fn(z)

)
≥ Cε · n4/3,

for a constant Cε which depends only on ε. Since, by (6.20) the stopped
Green function GA(z, z) is of order O(n2/3), this implies

min
z∈Bn(1−ε)

gn(z)− fn(z)
Gn(z, z)

≥ C ′ε · n2/3.

Hence with (6.19) we get∑
n≥nε

∑
z∈Bn(1−ε)

P[z /∈ An] ≤ 4
∑
n≥nε

∑
z∈Bn(1−ε)

exp
{
−cλ min

z∈Bn(1−ε)

gn(z)− fn(z)
Gn(z, z)

}
≤ 4

∑
n≥nε

n exp{−cλC ′εn2/3} <∞,

which proves the inner bound

P
[
Bn(1−ε) ⊂ An, for all n ≥ nε

]
= 1.



Chapter 7

IDLA on Nonamenable
Graphs

In this chapter we are again interested in the shape of IDLA-clusters. We will
show that, if the underlying random walk is highly transient and if it satisfies
some additional regularity conditions, the limiting shape of the IDLA-clusters
does not depent on the local geometry of the graph G, but only on the
structure of the Green function. This is an extension of a result of Blachère
and Brofferio [BB07].

7.1 Random Walks on Nonamenable Graphs

First, we will define what we understand by a random walk on a nonamenable
graph. For this we need some new terminology in addition to the notions al-
ready introduced in Section 2.1. We follow again the book of Woess [Woe00].

The spectral radius is defined as

ρ(P ) = lim sup
t→∞

p(t)(x, y)

and is independent of x, y ∈ G, because of irreducibility. It is known that

p(t)(x, x) ≤ ρ(P )t, for all x ∈ G. (7.1)

For a random walk Xt, let τy be the first hitting time of the point y:

τy = inf {t ≥ 0 : Xt = y} ,

with the convention τy = ∞, if the random walk never visits y. The hitting
probability of y, for a random walk starting in x, is denoted by

F (x, y) = Px [τy <∞] . (7.2)

75
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A simple calculation shows

G(x, y) = F (x, y)G(y, y).

Definition 7.1.1. A random walk is called uniformly irreducible, if there are
constants ε0 > 0 and T <∞, such that

x ∼ y implies p(t)(x, y) ≥ ε0, for some t ≤ T.

Definition 7.1.2. A Markov chain (G,P ) is called reversible, if there exists
a measure m : G→ (0,∞), such that

m(x)p(x, y) = m(y)p(y, x), for all x, y ∈ G.

If m is bounded, i.e., there exists a C ∈ (0,∞), such that

C−1 ≤ m(x) ≤ C, for all x ∈ X, (7.3)

then the Markov chain is called strongly reversible.

Remark 7.1.3. The simple random walk is strongly reversible if and only if
the vertex degree of G is bounded. In that case it is also uniformly irreducible.

The following inequality from [Woe00, Lemma 8.1] gives us a generalization
of (7.1) for arbitrary t-step transition probabilities in the case of strongly
reversible Markov chains.

Lemma 7.1.4. If (G,P ) is strongly reversible then p(t)(x, y) ≤ Cρ(P )t, with
C as in Definition 7.1.2.

The next two propositions give a characterization of uniformly irreducible
random walks in terms of the the hitting probability F , defined in (7.2).

Proposition 7.1.5. If (G,P ) is uniformly irreducible, then there exists ε0 >
0 such that, for all neighbours x ∼ y

F (x, y) ≥ ε0.

Proof. Recall from Definition 7.1.1, that there exist ε0 > 0 and t ≤ T such
that

ε0 ≤ p(t)(x, y) = Px [Xt = y] ≤ Px [τy <∞] = F (x, y).
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The converse is not true in general and it is easy to construct counterexam-
ples. Using some additional assumptions we can show the following result.

Proposition 7.1.6. Let (G,P ) be a strongly reversible random walk with
ρ(P ) < 1, and such that there exists a constant ε0 > 0, such that F (x, y) ≥ ε0,
for all neighbours x ∼ y ∈ G. Then the random walk is uniformly irreducible.

Proof. Suppose that the random walk is not uniformly irreducible. This
means that for all δ > 0 and for all T ∈ N, there exist neighbouring points
xδ,T ∼ yδ,T such that, for all t ≤ T : p(t)(xδ,T , yδ,T ) < δ.

So for every T ∈ N, we can construct two sequences {xi,T }i∈N and {yi,T }i∈N,
with xi,T ∼ yi,T and

p(t)(xi,T , yi,T ) <
1
i
, for all t ≤ T. (7.4)

For t = 0 this implies xi,T 6= yi,T .

Lemma 7.1.4 gives a second bound for the t-step transition probabilities

p(t)(xi,T , yi,T ) ≤ Cρ(P )t. (7.5)

Define Ti =
⌊
− ln(i·C)

ln ρ(P )

⌋
and two sequences {xi}i∈N and {yi}i∈N by

xi = xi,Ti and yi = yi,Ti .

Using (7.4) and (7.5) we have the following upper bound of the transition
probabilities

p(t)(xi, yi) ≤

{
1
i , for t ≤ Ti
Cρ(P )t, for t > Ti.

(7.6)

Now we look at the Green function

G(xi, yi) = F (xi, yi)G(yi, yi) ≥ F (xi, yi) ≥ ε0. (7.7)

But, on the other hand, using (7.6)

G(xi, yi) =
∞∑
t=1

p(t)(xi, yi) ≤
Ti∑
t=1

1
i

+ C

∞∑
t=Ti+1

ρ(P )t

≤ − ln(i · C)
i · ln ρ(P )

+
C

1− ρ(P )
ρ(P )Ti+1.

This goes to 0 for i → ∞, because Ti goes to infinity and ρ(P ) < 1, and
gives a contradiction to the lower bound of the Green function in equation
(7.7).
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For a subset K ⊂ X set ∂E(X) = {(x, y) ∈ G2 : x ∼ y, x ∈ K, y 6∈ K}. The
edge-isoperimetric constant of G is defined as

ιE(X) = inf
{
|∂EK|
|K|

: K ⊂ G finite, K 6= ∅
}
.

A Graph G is called amenable if ιE(x) = 0 and non-amenable if ιE(x) > 0.
The following relation between amenability and the spectral radius of simple
random walk is well known [Dod84, DK86]. See [Woe00, Theorem 10.3] for
the proof of a more general version of this theorem.

Theorem 7.1.7. Let P be the transition operator of the simple random walk
on G. Then G is non-amenable if and only if ρ(P ) < 1.

The following theorem (see [Woe00, Theorem 10.3]) will be needed later. For
a reversible Markov chain we define the real Hilbert space `2(G,m) with inner
product

〈f, g〉 =
∑
x∈G

f(x)g(x)m(x).

Theorem 7.1.8. The following statements are equivalent for reversible Markov
chains (G,P ).

(a) The spectral radius ρ(P ) is strictly smaller than 1.

(b) The Green function defines a bounded linear operator G on `2(G,m) by

Gf(x) =
∑
y∈G

G(x, y)f(y).

From now on we only consider Markov chains (G,P ) that are uniformly
irreducible, strongly reversible and have ρ(P ) < 1. See Nagnibeda and
Woess [NW02] for a class of graphs which have these properties. In this
setting we can follow [BB07] and define the“hitting distance”. For all x, y ∈ G
let

dH(x, y) = − lnF (x, y).

If G is the Cayley graph of a finitely generated group, and P a symmetric
left invariant random walk on G then dH is a left invariant metric on G, see
[BB07]. For arbitrary graphs this does not hold anymore, but we can still use
dH to define balls of radius Kn, where K = − ln ε0 (with ε0 as in Definition
7.1.1)

Bn(x) = {z ∈ G : dH(x, z) ≤ Kn} ,
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and its boundaries as

∂Bn(x) = {y 6∈ Bn(x) : ∃z ∼ y ∧ z ∈ Bn(x)} .

The constant K is needed in the definition of the balls to ensure that the
balls with radius n and n+ 1 are properly nested, i.e.,

∂Bn(x) ⊆ Bn+1(x). (7.8)

Indeed, let y ∈ ∂Bn(x) and z ∈ Bn(x) such that y ∼ z. Then

dH(x, y) = − lnF (x, y) ≤ − lnF (x, z)F (z, y) = d(x, z)− lnF (z, y)
≤ Kn− ln ε0 = K(n+ 1).

This implies that y ∈ Bn+1(x).

Proposition 7.1.9. The balls Bn(x) are finite.

Proof. It suffices to show that

lim
n→∞

F (x, yn) = 0.

for all sequences {yn}n∈N which only contain distinct elements. The functions
{ex}x∈G with ex(z) = δx(z)m(x)−1/2 form an orthonormal basis of `2(G,m).
By Theorem 7.1.8 the Green function defines a bounded linear operator G,
hence its adjoint G∗ is also a bounded linear operator. By Bessel’s inequality∑

n≥0

|〈eyn ,G∗ex〉|2 ≤ ‖G∗ex‖2,

for all x ∈ G. Therefore 〈Geyn , ex〉 = 〈eyn ,G∗ex〉 → 0, for n → ∞. Because
of

〈Geyn , ex〉 = G(x, yn)

√
m(x)
m(yn)

,

and by strong reversibility

C−1 ≤

√
m(x)
m(yn)

≤ C,

this is equivalent to G(x, yn)→ 0. Since

F (x, yn) =
G(x, yn)
G(yn, yn)

≤ G(x, yn),

the finiteness of Bn(x) follows.
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To simplify the notation we write Bn = Bn(o) and ∂Bn = ∂Bn(o). Denote by
V (n) the size of the ball of radius n

V (n) = |Bn|.

Proposition 7.1.10. For all finite subsets A ⊂ G the following estimates
hold ∑

x∈A
F (x, y) ≤ J · c−1

ρ ln|A|, (7.9)∑
y∈A

F (x, y) ≤ J · c−1
ρ ln|A|, (7.10)

with cρ = − ln ρ(P ) and some constant J > 0, which does not depend on A.

Proof. We have

F (x, y) =
G(x, y)
G(y, y)

≤ G(x, y).

Therefore, using the estimate of Lemma 7.1.4 we can write

∑
x∈A

F (x, y) ≤
∑
x∈A

∞∑
t=0

p(t)(x, y) =
∞∑
t=0

∑
x∈A

p(t)(x, y)

≤
∑

t≤c−1
ρ ln|A|

∑
x∈A

m(y)
m(x)

p(t)(y, x) +
∑

t>c−1
ρ ln|A|

∑
x∈A

C · ρ(P )t.

For M = sup
{
m(x)
m(y) : x, y ∈ X

}
we get

∑
x∈A

F (x, y) ≤M · c−1
ρ ln|A|+ C|A|

∫ ∞
c−1
ρ ln|A|

e−cρtdt

= M · c−1
ρ ln|A|+ C · c−1

ρ

≤ J · c−1
ρ ln|A|.

The second estimate can be derived in the same way, but without the need
to apply reversibility.

The next proposition gives some estimates of the size of the balls.

Proposition 7.1.11. There exist constants Cl, Cu > 0, such that

CleKn ≤ V (n) ≤ CuneKn, for all n ≥ n0.
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Proof. Since for x 6∈ Bn−1 the distance dH(o, x) > K(n− 1), it follows that∑
x∈∂Bn−1

F (o, x) ≤ |∂Bn−1| · e−K(n−1). (7.11)

Every random walk that leaves the ball Bn−1 has to hit at least one point
of ∂Bn−1(n). Because the balls are finite, the random walk leaves Bn−1 with
probability 1, hence ∑

x∈∂Bn−1

F (o, x) ≥ 1.

Then (7.11) and (7.8) imply

eK(n−1) ≤ |∂Bn−1| ≤ |Bn| = V (n).

Choosing Cl = e−K , gives the lower bound of the proposition.

To prove the upper bound, consider the following inequality

|Bn| · e−Kn ≤
∑
x∈Bn

F (o, x) ≤ J · c−1
ρ · ln|Bn|, (7.12)

which follows from the definition of the balls Bn and Proposition 7.1.10.
The finiteness of the balls (Proposition 7.1.9) implies that |Bn| = O(eK

′n).
Further, (7.12) gives for some constants C̃ and Cu

|Bn| ≤ J · c−1
ρ eKn ln|Bn|

≤ J · c−1
ρ eKn ln

(
C̃eK

′n
)

≤ J · c−1
ρ eKn

(
K ′n+ ln C̃

)
≤ CuneKn.

7.2 Internal Diffusion Limited Aggregation

We can now formulate our main result of this chapter, which connects the
shape of the IDLA clusters to the balls with respect to the hitting distance.

Theorem 7.2.1. Let the sequence of random subsets {An}n ∈ N be the
IDLA process on a strongly reversible, uniformly irreducible Markov chain
with spectral radius strictly smaller than 1. Then for any ε > 0 and all
constants CI ≥ 1+ε

K (where K is the constant used in the definition of the
balls Bn) and CO >

√
3,

P
[
∃nε s.t. ∀n ≥ nε : Bn−CI lnn ⊆ AV (n) ⊆ Bn+CO

√
n

]
= 1.
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The proof of Theorem 7.2.1 is very similar to the proof of the equivalent shape
theorem for IDLA on groups with exponential growth [BB07, Theorem 3.1].

Recall that Xj
t represents the jth random walk of the IDLA process. The

main tools of the proof are two types of stopping times. As in Chapter 6,
denote by σj the first time at which the jth random walk adds to the cluster

σj = inf
{
t ≥ 0 : Xj

t 6∈ Aj−1

}
, (7.13)

and by τ jz the time at which the jth random walk first hits a point z

τ jz = inf
{
t ≥ 0 : Xj

t = z
}
. (7.14)

7.2.1 The Inner Bound

To prove the inner bound, we first estimate the probability that a point
z ∈ Bn is part of the IDLA-cluster which contains V (n) particles.

To do this we, define a few random variables

N j(z) = 1{τ jz≤σj}, (7.15)

M j(z) = 1{τ jz<∞}, (7.16)

Lj(z) = 1{σj<τ jz<∞}. (7.17)

It is easy to see that the relation N j(z) = M j(z)− Lj(z) holds. Since z will
be fixed, we will just write N j = N j(z), and so on, to simplify the notation.

Note that a point z is not part of the IDLA-cluster at a time T , if and only
if N j = 0, for all j ≤ T . So, for all λ ≥ 0

P
[
z 6∈ AV (n)

]
= P

V (n)∑
j=1

N j = 0


≤
∑
k≥0

P

V (n)∑
j=1

N j = k

 · e−λk = E
[
e−λ

PV (n)
j=1 Nj

]

= E
[
e−λ

PV (n)
j=1 Mj−Lj

]
= E

[
e−λ

PV (n)
j=1 Mj

· eλ
PV (n)
j=1 Lj

]
≤ E

[
e−2λ

PV (n)
j=1 Mj

] 1
2

· E
[
e2λ

PV (n)
j=1 Lj

] 1
2

.

(7.18)
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The random variables M j are all identically distributed and independent,
therefore

E
[
e−2λ

PV (n)
j=1 Mj

]
=

V (n)∏
j=1

E
[
e−2λMj

]

=
V (n)∏
j=1

(
P
[
M j = 0

]
+ P

[
M j = 1

]
· e−2λ

)

=
V (n)∏
j=1

(
(1− F (z)) + F (z)e−2λ

)
=
(

1− (1− e−2λ)F (z)
)V (n)

.

Applying the inequality (1− x)y ≤ e−xy (which holds for x < 1) implies:

E
[
e−2λ

PV (n)
j=1 Mj

]
≤ exp

(
−(1− e−2λ)F (z)V (n)

)
.

To estimate the second part of the right hand side of (7.18), we bound Lj

from above by random variables that are independent when conditioned with
respect to a suitable σ-algebra. Let

τ̃ jz = inf
{
t ≥ σj : Xj

t = z
}
,

then
Lj ≤ L̃j = 1{τ̃ jz<∞}.

We define a sequence of σ-algebras:

Gn = σ
(
Xj
t∧σj

)
, for all j ≤ V (n) and t ∈ N. (7.19)

Gn encodes all information about the random walks Xj
t before they add to

the IDLA-cluster AV (n).

The random variables L̃j are independent when conditioned with respect to
Gn. Hence

E
[
e2λ

PV (n)
j=1 Lj

]
≤ E

[
e2λ

PV (n)
j=1 L̃j

]
= E

[
E
[
e2λ

PV (n)
j=1 L̃j | Gn

]]

= E

V (n)∏
j=1

E
[
e2λL̃

j | Gn
] .
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Since the L̃j are indicator random variables, this is further

= E

V (n)∏
j=1

(
1 + (e2λ − 1)E

[
L̃j | Gn

])
≤ E

exp

(e2λ − 1)
V (n)∑
j=1

E
[
L̃j | Gn

] .
Finally, we need an estimate of the conditional expectation of L̃j . With
Proposition 7.1.10 we get

V (n)∑
j=1

E
[
L̃j | Gn

]
=

V (n)∑
j=1

E
[
1{τ̃ jz<∞} | Gn

]
=

V (n)∑
j=1

P
Xj

σj

[
τ̃ jz <∞

]
=

∑
y∈AV (n)

F (y, z) ≤ J · c−1
ρ lnV (n).

Denote by E the event
[
z 6∈ AV (n)

]
. Putting the pieces together, we get the

estimate

P[E ] ≤ exp
(
−(1− e−2λ)F (z)V (n)

) 1
2 · exp

(
(e2λ − 1)J c−1

ρ lnV (n)
) 1

2

= exp
(

1
2

(
−(1− e−2λ)F (z)V (n) + (e2λ − 1)J c−1

ρ lnV (n)
))

.

Using the bounds for V (n) from Proposition 7.1.11, we arrive at

P[E ] ≤ exp
(

1
2

(
−(1− e−2λ)F (z)CleKn + (e2λ − 1)J c−1

ρ ln(CuneKn)
))

≤ exp
(
−CλF (z)eKn + C′λKn

)
,

for some constants Cλ, C′λ > 0, depending on λ.

We choose z ∈ Bn−CI lnn for a positive constant CI . This means by definition
that

F (z) ≥ eKCI lnn−Kn = nCIK · e−Kn.

So, for all ε > 0, CI ≥ 1+ε
K and n ≥ nε:

P
[
z 6∈ AV (n)

]
≤ exp

(
−CλnCIK + C′λKn

)
≤ exp

(
−Cλn1+ε

)
.

Using the upper bound of Proposition 7.1.11 again, we get∑
z∈Bn−CI lnn

P
[
z 6∈ AV (n)

]
≤ V (n− CI lnn) exp

(
−Cλn1+ε

)
≤ Cu(n− CI lnn) · n−KCI · eKn · e−Cλn1+ε

,
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which is summable. Applying the Lemma of Borel-Cantelli, gives the inner
part of Theorem 7.2.1: For all constants ε > 0 and CI ≥ 1+ε

K

P
[
∃nε : ∀n ≥ nε, Bn−CI lnn ⊂ AV (n)

]
= 1.

7.2.2 The Outer Bound

For the estimate of the outer error of Theorem 7.2.1, the upper bound in
Proposition 7.1.11 is tighter than the analogous statement in [BB07, Propo-
sition 2.3] because of non-amenability (see also [BB07, Remark 2.4]), which
in turn leads to a smaller constant CO.

In this part of the proof we rely very much on the “onion structure” of the
balls that was established in (7.8). We define random variables that count
how many points of the IDLA-cluster lie in each layer of this ”onion”. For a
fixed n let

Zp(j) = |Aj ∩ ∂Bn+p| =
j∑
i=1

1{Xi
σi
∈∂Bn+p},

for p ≥ 1, and
νp(j) = E[Zp(j)].

Now, if Xi
t adds to the cluster in a point of ∂Bn+p+1, we know that it has

always stayed in the cluster before that. Additionally, to arrive at a point in
∂Bn+p+1, the random walk has to visit a point of ∂Bn+p first.

This means [
Xi
σi ∈ ∂Bn+p+1

]
⊂
[
∃x ∈ ∂Bn+p ∩Ai−1 : τ ix <∞

]
,

which leads to

νp+1(j) =
j∑
i=1

P
[
Xi
σi ∈ ∂Bn+p+1

]
≤

j∑
i=1

P
[
∃x ∈ ∂Bn+p ∩Ai−1 : τ ix <∞

]
≤

j∑
i=1

∑
x∈∂Bn+p∩Ai−1

P
[
τ ix <∞

]
=

j∑
i=1

E

 ∑
x∈∂Bn+p∩Ai−1

1{τ ix<∞}


≤

j∑
i=1

E
[
Zp(i− 1) · max

x∈∂Bn+p

P
[
τ ix <∞

]]
.

All random walks are independent, therefore Xj
t is also independent of Aj−1,
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and so

νp+1(j) ≤
j∑
i=1

νp(i− 1) · max
x∈∂Bn+p

P[τ ix <∞]

=
j∑
i=1

νp(i− 1) · max
x∈∂Bn+p

F (0, x).

If x ∈ ∂Bn+p this implies that x 6∈ Bn+p, hence, by the definition of the balls
Bn, we have F (0, x) < e−K(n+p). Therefore

νp+1(j) ≤ e−K(n+p)
j∑
i=1

νp(i− 1). (7.20)

Applying the inequality
j∑
i=1

(i− 1)p ≤ jp+1

p+ 1

and the trivial bound ν1(j) ≤ j recursively to (7.20) gives

νp(j) ≤ exp (−Kn(p− 1)) exp
(
−Kp(p− 1)

2

)
jp

p!
.

Now we apply p! ≥ ppe−p and arrive at the final estimate

νp(j) ≤ exp (−Kn(p− 1)) exp
(
−Kp(p− 1)

2

)
epp−pjp. (7.21)

The upper estimate of Proposition 7.1.11 gives, for j = V (n)

νp(V (n)) ≤ exp(Kn) exp
(
−Kp(p− 1)

2

)
epp−pCpunp

= exp
(
−K

(
p2

2
− n

)
+K

p

2
+ p

)
np
(
Cu
p

)p
.

For p ≥ max
{
Cu, 6K−1 + 3

}
this leads to

νp(V (n)) ≤ np exp
(
−K

(
p2

3
− n

))
.

For CO >
√

3, p ≥ CO
√
n and some positive constant c,

P[AV (n) 6⊆ Bn+CO
√
n] ≤ P[ZCO

√
n(V (n)) ≥ 1]

≤ νCO√n(V (n))

≤ c exp
(
−K

(
C2
O

3
− 1
)
n

)
,
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for n ≥ n0. Therefore

∞∑
n≥n0

P[AV (n) 6⊆ Bn+CO
√
n] <∞,

and by the Lemma of Borel-Cantelli

P
[
∃n0 : ∀n ≥ n0 : AV (n) ⊆ Bn+CO

√
n

]
= 1.





Chapter 8

Outlook

There are still several unsolved problems regarding internal growth models
on the comb. The standard techniques to prove an outer bound, which where
introduced by Lawler, Bramson and Griffeath [LBG92], and are also
the basis for the proof in Section 7.2.2, do not work particularly well in the
case of the comb. The method makes the assumption of uniform growth of
the clusters, which on the comb is of course violated, since the cluster grows
with rate n1/3 in the direction of the x-axis, and with rate n2/3 in the direction
of the y-axis. Because of these problems, when we apply this method to the
comb, using the harmonic measure of the sets Bn we obtained in Lemma
5.2.1, only a relatively weak upper bound of the form An ⊂ Bn(1+εn2/3) can
be obtained.

More promising in this context is probably the method Lawler used in his
estimate of the fluctuations of the outer bound of IDLA on Zd in [Law95].
There, in addition to some information on the harmonic measure of the sets
Bn, the quantities

nGn(0, z) and
∑
y∈Bn

Gn(y, z)

are mainly used, where Gn is again the Green function stopped at the first
exit of Bn. While the stopped Green function is not directly available on C2,
in these special cases one can use the functions gn and fn, as defined in (6.9)
and (6.6), and the identities

nGn(0, z) =
d(z)

2
(
gn(z) + fn(z)

)
,

and ∑
y∈Bn

Gn(y, z) =
d(z)

2
(
gn(z)− fn(z)

)
.
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Even though we obtained precise and explicit expressions for both gn and fn
in Chapters 3 and 6, there remain several technical problems.

8.1 Internal growth models on the Sierpinski Car-
pet

In this section we describe a few simulation results for internal growth models
on the graphical Sierpinski carpet in dimension 2. The graphical Sierpinski
carpet is an infinite graph which is derived from the well know Sierpinski
carpet, that is, the fractal which is created from the unit square in R2 by
dividing it into 9 equal squares of which the one in the center is deleted. The
same procedure is then repeated recursively to the remaining 8 squares.

The graphical Sierpinski carpet S of dimension d is defined as follows – see
also Barlow and Bass [BB99].

Definition 8.1.1. Let S0 = Zd+. Every vertex v of S0 can be written as v =(
v1, v2, . . . , vd

)
with all coordinates vi ≥ 0. We assume that every coordinate

vi is written as an infinite ternary expansion, that is,

vi =
∞∑
j=0

vij3j ,

where vij ∈ {0, 1, 2} and vi,j 6= 0 only for finitely many indices j. For each
k ≥ 1 set

Jk =
{(
v1, v2, . . . , vd

)
∈ S0 : vik = 1 for all 1 ≤ i ≤ d

}
,

Figure 8.1: A finite piece of the graphical Sierpinski carpet in
dimension 2.
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so that each Jk is the union of disjoint cubes of side length 3k. Now define

Sn = H0 −
n⋃
k=1

Jk and S =
∞⋂
n=0

Sn.

Then S is the vertex set of the graphical Sierpinsky carpet, and the neigh-
bourhood relation is inherited from Zd+, that is, for u, v ∈ S we have u ∼ v if
and only if |u− v| = 1.

Figure 8.1 shows a finite piece of the graphical Sierpinski carpet for d = 2.

n = 275 n = 2175 n = 17500 n = 140000

n = 200 n = 1500 n = 12500 n = 98000

Figure 8.2: Evolution of the scaling limit of rotor-router clusters
Rn over 4 iterations of Sierpinski carpet. The scaling of each
picture is 1

3 of the picture to its left. The clusters in each row
converge to two different scaling limits. The colouring represents
the final states of the rotors.



92 Chapter 8. OUTLOOK

Figure 8.3: IDLA clusters on the Sierpinski carpet for 10000 up
to 150000 particles.
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Computer simulations of rotor-router aggregation and IDLA, with particles
starting at the origin, exhibit an interesting behaviour. While, as expected,
both growth models show similar behaviour, with IDLA having slightly bigger
fluctuations, there does not seem to exist an unique scaling limit for the
clusters. The simulations suggest that there is a whole family of scaling
limits, dependending on how far the cluster has flown around the biggest
hole in graph that is touched by the cluster. These scaling limits also seem
to have a fractal boundary. Figure 8.2 shows two sequences of rotor-router
clusters, which seem to converge to two different limiting sets. Figure 8.3
shows IDLA clusters on the Sierpinski carpet.
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