
Dipl.-Ing. Wolfgang Raschke, BSc

A new Approach to Security Certification
of Future Smart Card Systems

————————————–

Dissertation

vorgelegt an der

Technischen Universität Graz

zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

(Dr. techn.)

durchgeführt am Institut für Technische Informatik
Technische Universität Graz

Vorstand: Em. Univ.-Prof. Dipl.-Ing. Dr. techn. Reinhold Weiß

Graz, im April 2015

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen / Hilfsmittel nicht benutzt und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .. .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz, the .
(Signature)

Kurzfassung

Smart Cards sind kleine ressourenbeschränkte eingebettete Systeme mit harten Anforde-
rungen an Informationssicherheit. Viele Anwendungsszenarien bedürfen unterschiedlicher
Leistungsprofile, die sich an den unterschiedlichen Marktsegmenten orientieren, wie etwa:
Banking-Anwendungen oder Anwendungen für mobile Kommunikationsgeräte. Jedes die-
ser Anwendungsszenarien hat unterschiedliche Anforderungen bezüglich Speicherbedarf,
Energieeffizienz und Informationssicherheit. Die Smart Card Industrie wendet ihren Fo-
kus mehr und mehr dem Kunden zu: Produkte werden auf die Kundenbedürfnisse maßge-
schneidert. Damit gehen einige Herausforderungen einher. Für Standardprodukte war es
bisher relativ einfach, Requirements, Design, Code und Tests konsistent zu halten. Diese
genannten Entwicklungs-Artefakte sind Evidenz für eine Evaluierung bezüglich Informati-
onssicherheit. Im Gegensatz zu den Standardprodukten haben individualisierte Produkte
Erweiterungen, zusätzliche oder fehlende Features. Für solche Varianten von Standard-
Produkten ist es oft notwendig, eine vollständige Zertifizierung der Informationssicherheit
durchzuführen.
Diese Arbeit ist ein Schritt in Richtung effizienter Zertifizierungen von individualisierten
Produkten bezüglich Informationssicherheit. Das Sekundärziel dieser Arbeit ist es, eine
konsistente Code-Basis zu erreichen und zu managen. Dies ist eine wesentliche Vorbedin-
gung für eine effiziente Zertifizierung. Die Code-Basis kann je nach Hardware-Plattform
Unterschiede haben, da verschiedene Compiler eingesetzt werden. Außerdem kann der Be-
fehlssatz unterschiedlich sein. Diese Arbeit liefert drei Beiträge zu diesem Sekundärziel:
Richtlinien für plattformunabhängiges Codieren in Form sogenannter Patterns, ein Migra-
tionsprozess und ein Defensive Virtual Machine (D-VM) Layer. Jedenfalls ist es unmöglich
einen gemeinsamen Code für alle Produkte zu haben, wenn diese individualisiert werden.
Daher ist ein Variantenmanagement notwendig, welches das Zusammenspiel zwischen ge-
meinsamen und unterschiedlichen Teilen unterstützt. Eine industrielle Fallstudie eines sol-
chen Variantenmanagement-Systems wird beschrieben.
Das Primärziel dieser Arbeit ist es, die Wiederverwendung von Evidenz zu verbessern, die
für eine Zertifizierung der Informationssicherheit benötigt wird. Eine Common Criteria
Zertifizierung evaluiert immer eine spezifische Version und Konfiguration. Wenn sich die
Konfiguration ändert, muss im schlechtesten Fall die gesamte Zertifizierung wiederholt
werden. Jedenfalls existieren formelle und informelle Prozesse, um Evidenz wiederverwen-
den zu können. Diese Arbeit liefert eine Entscheidungshilfe, um den passendsten Prozess
auswählen zu können. Das Hauptaugenmerk liegt auf einem Framework für eine inkremen-
telle Zertifizierung. Dieses ist wichtig, da viele Varianten von Smart Card Produkten mit
geringen Unterschieden herausgegeben werden. Daher ist es sinnvoll, einen Zertifizierungs-
prozess zu wählen, der als Input eine Delta-Version des Inkrementes des Software-Systems
verwendet. In dieser Arbeit wird ein derartiger inkrementeller Zertifizierungsprozess be-
schrieben. Außerdem werden die Konsequenzen diskutiert, sowie die spezifischen Anfor-
derungen für die Unterstützung durch Software-Modelle erläutert. Schlussendlich werden
relevante Veränderungen am Common Criteria Standard vorgeschlagen.

i

Abstract

Smart cards are small resource-constrained embedded systems that have to fulfill rigorous
security requirements. Multiple application scenarios demand diverse product performance
profiles which are targeted to markets such as banking applications and mobile applica-
tions. Each of these application scenarios has different requirements regarding memory
footprint, runtime performance and power consumption and security. The smart card in-
dustry is currently shifting towards a customer-focused viewpoint: products are tailored to
the customer’s needs. This shift comes with several challenges. In a few standard products
it is relatively easy to maintain consistency between requirements, design, implementation
and tests. All these artifacts are evidence for a security evaluation. However, an individu-
alized product sometimes has extensions, additional or missing features. For such variants
of a standard product, it is necessary to perform a separate security certification.
This thesis provides a step towards more efficient security certifications for variants of a
standard product. A minor goal for the reuse of security certification evidence is to achieve
and manage a consistent code base. The code may vary from one hardware platform to
another due to different compilers and a hardware-specific instruction set. This work
provides three contributions to refactoring towards a common code for several hardware
platforms: guidelines for platform independent coding in the form of patterns, a migration
process and a Defensive Virtual Machine (D-VM) layer. However, it is impossible to have
a common code for all products if they are individualized; and thus, a proper variant man-
agement has to support the interplay between common and variable parts. An industrial
case of such a variant management is described.
The major goal is to improve the reuse of security certification evidence. A Common
Criteria certification always evaluates a specific version and configuration of a software
system. If the configuration alters, in the worst case, the whole certification has to be
repeated. However, formal and informal processes for the reuse of certification evidence
do exist. This work provides a decision framework for selecting an appropriate approach.
The focus is on providing a framework for incremental certification. This is important
because many variants of smart card products with few differences are issued. Thus, it
makes sense to select a certification process which takes as input a delta version of the
increment of a software system. In this work such incremental certification processes are
described. Furthermore, the consequences are discussed and the specific requirements for a
support by software models are stated. Finally, changes to the Common Criteria standard
are proposed which would improve the flexibility of security certification processes.

ii

Acknowledgements

This thesis is a research outcome of the DAVID project. This project has been conducted
with the Institute for Technical Informatics and NXP Semiconductors Austria GmbH as
research partners. Both institutions and their employers had a considerable impact on
this thesis. However, unfortunately I am only able to mention a few of the contributors to
this research. First of all, I want to thank Prof. Reinhold Weiß for supervising this thesis.
Especially in the final phase his advice was a great help in composing the big picture of
this thesis. Furthermore, I want to thank Christian Steger for supervising the project
and advice for the scientific publishing process. Moreover, many thanks go to Christian
Kreiner whose ability to ask the right question guided my research in a positive direction.
The industry partner provided lots of hands-on experience and provided input for several
experience reports and research ideas. I want to especially thank Johannes Loinig who
provided scientific guidance in long discussions and Franz Krainer for support in the last
months of this project. I really want to thank my collegues Massimiliano Zilli, Michael
Lackner and Reinhard Berlach for long discussions of ideas, paper reviews and lots of
motivation. My collegues Stefan Orehovec, Erik Gera-Fornwald and Andreas Sinnhofer
deserve special thanks for being valuable co-authors. I would like to thank Jari Rauhamäki
and Christian Beckers for shepherding publications. I want to thank Philip Baumgartner
who contributed a lot during the work on his masters thesis. Moreover, this thesis would
not have been possible without the support of pure::systems and Danilo Beuche. Finally,
I would like to thank my family for their continuing support.

Graz, April 2015 Wolfgang Raschke

iii

Extended Abstract

Smart cards are small resource-constrained embedded systems that have to fulfill rigorous
security requirements. Multiple application scenarios demand diverse product performance
profiles which are targeted to markets such as banking applications and mobile applica-
tions. Each of these application scenarios have different requirements regarding memory
footprint, runtime performance and power consumption. The composition of such a diver-
sified product is challenging since there is no explicit base of domain knowledge available.
Currently, there is a trend in building more complex smart card products with better
security mechanisms, more product features and also a larger memory footprint. Such
complex smart cards are always increasing in memory footprint because they include all
the features and artifacts which are part of a standard solution. So, it is relatively simple
to maintain consistency among requirements, code, tests and documentation. The second
trend is to decrease the complexity in order to have increase cost efficiency and only have
appropriate security. In such smaller product configurations, some artifacts need to be
opted out. The absence of certain artifacts may influence other parts of the software sys-
tem. In order to fully assess the impact of opting artifacts or features out, it is imperative
to trace all artifacts, such as security requirements, security code, countermeasures and
the like. Manual tracing of such software systems means a high manual effort. Also defects
are likely to be introduced due to the manual work required. Therefore, it is imperative
to support the tracing and system configuration automatically with a method and appro-
priate tools.
As the smart card industry currently shifts from a (standard)-product-focused to a customer-
focused view, it is common to apply iterative or so-called agile development processes.
These processes take into account requirements changes from customers during the prod-
uct development. In addition, new security requirements are introduced because attacks
(such as the Heartbleed attack [1]) unveil vulnerabilities of secure systems. These agile
methods have some drawbacks: First, the whole software system changes very quickly
which makes the tracing of all software artifacts and their dependencies difficult. There-
fore, a method for traceability and product configuration must address the evolution of the
whole software system. Second, changing security requirements causes some problems for
a fast and efficient security evaluation which is necessary for secure smart card systems.
Summarizing, in this thesis, the challenges that are a consequence of building individual-
ized smart cards with a smaller and appropriate feature set are addressed.
In Figure 1 the connections between the goals and the contributions are depicted. Basi-
cally it is shown that a consistent code base is a pre-condition for the reuse of certification
evidence. It can be seen that some observations during the migration process have inspired
a hypothesis for a cost model which can be applied to an evolving security certification.
This cost model has revealed the need for several patterns of software modeling.

iv

Goal: HW-Abstraction of Future Smart Cards

Goal: Security Certification of Evolving Systems

PRE-CONDITION

Decision
Framework

Incremental
Certification

Security
Abstraction
Architecture

Patterns
HW-

Abstraction

Migration
Process

Balanced
Certification

Cost
Model

Consequence

SW-
Models

Support

Hypothesis

Suggest

Figure 1: In order to achieve a hardware-abstracted code base, three strategies are applied: an
architecture, guidelines or patterns for coding and a migration process. The abstracted code base
increases the reusability of security certification evidence. The main goal is to support the security
certifications of evolving systems. A decision framework helps to select an appropriate approach
and incremental certification processes are detailed. Finally, the constraints and consequences of
the proposed evaluation approaches are explained.

Minor Goal: Hardware Abstraction for Future Smart Card Architectures

A pre-condition for reuse of certification evidence is a hardware-abstracted code base (see
Figure 1). For example, very small changes in the code base would shift code line numbers
and make references to documentation useless. Therefore, it is important to unify the code
base for several hardware platforms, as far as possible. A consistent hardware-abstracted
code base is supported in this thesis by three contributions: an architectural solution to
encapsulate security mechanisms, patterns for hardware-abstracted coding and a process
for a migration to a hardware-abstracted code base. The architectural solution is to encap-
sulate security countermeasures in a dedicated Defensive-Virtual Machine (D-VM) layer1.
This layer provides a unique interface to the upper virtual machine layer. Thus, exchanging
security countermeasures in the D-VM layer does not impact the other parts of the system.
Platform-specific key-words allow optimization for performance and memory footprint. It
is important to also keep the possibility of optimization in the platform-abstracted code.
Thus, four patterns are described which enable platform-independent coding without los-
ing the possibility of optimization2. These patterns have been mined and applied in the
industrial development of a secure smart card operating system. If this is not considered
at the very beginning, the software is not written in a platform-independent manner. In
this case, a systematic migration process to platform-independent code is necessary. This

1A Defensive Virtual Machine Layer to Counteract Fault Attacks on Java Cards, 7th Workshop on
Information Security Theory and Practice (WISTP’13), Heraklion, Greece, 2013

2Patterns for Hardware-Independent Development for Embedded Systems, 20th European Conference
on Pattern Languages of Programs (EuroPLoP’14), Irsee, Germany, 2014

v

thesis includes a report on the systematic approach of such a refactoring in the devel-
opment of a secure smart card project3. It is described how test cases can be written
platform-independently. The tests can then be used for a test-driven porting of the source
code.
The architectural solution for a hardware-abstracted code base proposes a specific Defen-
sive Virtual Machine (D-VM) layer. This layer provides a unique interface to the upper
virtual machine layer. So the developers of the virtual machine do not have to worry
about whether the security mechanisms are provided in hardware or in software. Thus,
this layer helps to keep the code of the virtual machine consistent.

Major Goal: Certification of Evolving Security Systems

The major goal of this thesis is to improve the reuse of security certification evidence.
Several patterns of security certification processes show that there are possibilities to ap-
ply a more modular certification under certain circumstances4. These patterns also help
to select an appropriate certification process. Furthermore, this thesis focuses on an in-
cremental security certification: generally, a security model can generate documentation
for a Common Criteria security evaluation. It is shown that for agile software projects a
model has to support model-evolution5. A means of supporting such a model evolution is
the Change Detection Analysis (CDA). From this CDA two possible security evaluation
processes can be derived. The two processes are compared. Furthermore, some indicators
for selecting the appropriate approach are provided. Both processes are iterative but ba-
sically the frequency of iterations is different (weeks vs. years).
An incremental certification has the following consequences: first, there is a need for sup-
port from software modeling approaches. Second, a cost model shows how the certification
processes affect the cost and third, future changes to the Common Criteria standard could
improve the flexibility of certification. The software modeling approaches are described in
the form of patterns in more detail6. A pattern is a mapping of a solution to a problem
in a specific context. It is shown that a specific way of modeling software is typical for a
specific context. Moreover, it is described how the patterns of software modeling change
with the size and complexity of the software system. These patterns help to systematically
select an appropriate method dependent on the industrial context.
The cost can be estimated with the help of a metric for software evolution7. Such a metric
can be used as an indicator for selecting a software modeling pattern. For example, a high
rate of software change would suggest the application of the RTE (Round-Trip Engineer-
ing) pattern for the modeling of the software. Moreover, this metric can help to select an
appropriate security evaluation process.

3Test-Driven Migration Towards a Hardware-Abstracted Platform, 5th International Conference on Per-
vasive and Embedded Computing and Communication Systems (PECCS’15), Angers, France, 2015

4Evaluation paradigm selection according to Common Criteria for an incremental product development,
International Workshop on MILS: Architecture and Assurance for Secure Systems (MILS’15), Amsterdam,
Netherlands, 2015

5Supporting evolving security models for an agile security evaluation, In Evolving Security and Privacy
Requirements Engineering (ESPRE’14), Karlskrona, Sweden, 2014

6Patterns of Software Modeling, In Fifth International Workshop on Information Systems in Distributed
Environment (ISDE’14), Amantea, Italy, 2014

7Where does all this waste come from?, In 21st EuroSPI Conference (EuroSPI’14), Luxembourg, 2014

vi

Future changes to the Common Criteria standard are proposed8. More specifically, this
thesis proposes to view a security evaluation as space with the following two dimensions:
functional assurance and process assurance. The proposal is to make the evaluation more
flexible by balancing functional and process security assurance. Several examples make
this approach more clear.

Contributions of this Thesis

Summarizing, this thesis provides contributions to the following fields:

1. Hardware Abstraction for Future Smart Card Architectures: A catalog
of patterns to cope with cross-cutting hardware dependent code fragments is pre-
sented. These patterns discuss the context, the benefits, the drawbacks, and the
consequences of specific solutions. The solutions allow the masking compiler specific
code fragments and the ability to resolve them before compilation. In addition to
these patterns, a test-driven process to migrate to a hardware independent code-base
is described. In this process, after each code change (due to abstraction) all tests are
executed. Thus, defects introduced by the porting activities can be detected, early.
A defensive virtual machine (D-VM) layer abstracts possible hardware or software
implementations of security checks from the virtual machine and provides a unique
interface to it. So, security checks can be optimized for runtime performance or
memory footprint without refactoring the virtual machine.

2. Certification of Evolving Security Systems: A decision framework helps to
select an appropriate security certification process. This is difficult, because many
of these processes are never explicitly stated in any standard. In order to improve
the reuse of security certification evidence, an iterative security certification process
helps to reuse evidence for small changes, such as a new configuration. Two iterative
processes are discussed and their differences, benefits and drawbacks are compared.
In order to better support a better iterative certification, changes to the Common
Criteria standard are proposed. The main proposal is to balance process and product
assurance to increase the flexibility of the certification. Many certification processes
demand a specific modeling technique. These patterns of software modeling are
discussed and a cost model helps to assess the consequences of a security certification
process.

8Balancing Product and Process Assurance for Evolving Security Systems, In International Journal of
Secure Software Engineering (IJSSE), vol. 6, no. 1, pp. 47-75, 2015

vii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Design Complexity Trend . 1
1.2 Design Flow for Low-End Java Card Operating Systems 1

1.2.1 The DAVID Project . 2
1.2.2 Problem Statement . 3
1.2.3 Contributions and Significance . 4
1.2.4 Structure of the Work . 4

2 Related Work 6
2.1 Security Modeling Notation Overview . 6
2.2 Security Modeling with Explicit Support of Evolving Systems 7
2.3 Assurance Paradigms . 8
2.4 Hardware Abstraction . 10
2.5 Summary and Difference to State-of-the-art . 11

3 Method 13
3.1 Overview . 13
3.2 Major Goal: Certification of Evolving Security Systems 15

3.2.1 Certification Processes . 15
3.2.2 Cost Model . 22
3.2.3 Patterns of Software Modeling . 23

3.3 Minor Goal: Hardware Abstraction for Future Smart Card Architectures 24
3.3.1 Patterns for Hardware Abstraction . 24
3.3.2 Test-driven Porting . 25
3.3.3 D-VM Layer . 26
3.3.4 Product Line Migration . 27

4 Results and Evaluation 28
4.1 Hardware Abstraction of the Source Code . 28

4.1.1 Pilot Study . 28
4.1.2 Case Study . 28

4.2 Scenario Analysis of the Security Processes . 29
4.2.1 Case study: CeSeCore Architecture Overview 29
4.2.2 Case 1: Complete Evaluation . 30
4.2.3 Case 2: Re-evaluation with Traceability Impact Analysis 31
4.2.4 Case 3: Re-evaluation with Experiential Impact Analysis 31
4.2.5 Relevance of Certification Processes for the Smart Card Industry 31

viii

5 Conclusion and Future Work 35
5.1 Conclusion . 35
5.2 Directions for Future Work . 36

5.2.1 Security Certification . 36
5.2.2 Security Requirements . 36

6 Publications 38
6.1 A Defensive Virtual Machine Layeer to Counteract Fault Attacks on Java Cards . 40
6.2 Patterns for Hardware-Independent Development for Embedded Systems 56
6.3 Test-Driven Migration Towards a Hardware-Abstracted Platform 64
6.4 Embedding research in the industrial field: a case of a transition to a software

product line . 71
6.5 Evaluation paradigm selection according to Common Criteria for an incremental

product development . 77
6.6 Supporting evolving security models for an agile security evaluation 82
6.7 Patterns of Software Modeling . 88
6.8 Where does all this waste come from? . 98
6.9 Balancing Product and Process Assurance for Evolving Security Systems 107

References 131

ix

List of Figures

1 Overview of the major goal, the minor goal and the corresponding publications. . . v

1.1 The growth of smart card security and the demand for variant management. 2
1.2 Trends in the smart card industry. 3

2.1 The incremental UMLsec approach. 8
2.2 Composition of assurance arguments. 9
2.3 Concept of a HAL. 10

3.1 Overview of the major goal, the minor goal and the corresponding publications. . . 14
3.2 Basic parts of the security model. 15
3.3 Decision framework for Common Criteria security certification processes. 16
3.4 Re-evaluation with Traceability Impact Analysis. 18
3.5 Re-evaluation with Experiential Impact Analysis. 18
3.6 Hard goal model of Common Criteria assurance components. 20
3.7 Soft goal model of Common Criteria assurance components. 21
3.8 Example of a model-based process assurance. 21
3.9 Defensive Virtual Machine layer. 25
3.10 Test-driven migration to a hardware-independent platform. 26
3.11 D-VM layer support for different levels of security. 26

4.1 Phases in a test-driven migration. 29
4.2 Number of certified product families. 33
4.3 Number of product versions vs. size of product family. 34

6.1 Overview of the major goal, the minor goal and the corresponding publications. . . 39

x

List of Tables

2.1 Related security modeling notations and their support for several desired objectives. 7
2.2 Assurance arguments for several certification standards from different domains. . . 9

3.1 Comparison of the processes with Traceability Impact Analysis and Experiential
Impact Analysis. 19

3.2 Mapping of Common Criteria assurance classes to process and product assurance. 19
3.3 Terminology of the cost model. 22
3.4 Mapping of the certification processes to modeling patterns and their relevance. . . 23

4.1 Amount of modules which passed the first three steps of the test-driven migration
process. 29

4.2 Direct impacts between modules of the CeSeCore 30
4.3 Direct and indirect impacts between modules of the CeSeCore 32

xi

List of Abbreviations
AIS Actual Impact Set
ALM Application Lifecycle Management
CAP Composed Assurance Package
CC Common Criteria
CDA Change Detection Analysis
CIS Candidate Impact Set
DIS Discovered Impact Set
D-VM Defensive Virtual Machine
EAL Evaluation Assurance Level
EIA Experiential Impact Analysis
FPIS False Positive Impact Set
HAL Hardware Abstraction Layer
HW Hardware
PC Personal Computer
RTE Round-Trip Engineering
SFR Security Functional Requirement
SIS Starting Impact Set
SYSML Systems Modeling Language
TDD Test-Driven Development
TIA Traceability Impact Analysis
UML Unified Modeling Language
VM Virtual Machine

xii

Glossary

Assurance Class
An assurance class is the top-level entity of the Common Criteria assurance argument.

Assurance Family
An assurance family is a refinement of an assurance class. Several assurance families are part of a
single assurance class.

Assurance Component
An assurance component is part of an assurance family with a certain component leveling. De-
pending on the Evaluation Assurance Level (EAL) assurance components of a certain level must
be fulfilled.

Certification Evidence
The certification evidence is produced by the Common Criteria evaluation facility. It is the result
of the evaluation.

Developer Evidence
Developer evidence is documentation provided by the developers for the evaluation facility.

Evaluation Assurance Level
The Evaluation Assurance Level states the confidence that the security claim is fulfilled.

Security Functional Requirement
A Security Functional Requirement states a specific security function or security service of the
device.

Static Certification
A static certification takes as input developer evidence which does not change anymore because
the product development is already finished. Therefore, there is one iteration in a successful cer-
tification.

Incremental Certification
In an incremental certification there are several rounds of iteration. In each iteration the evaluation
facility gets a delta version of the developer evidence.

Balanced Certification
A balanced certification takes into account process and product assurance. Both assurance argu-
ments can be traded off to a certain degree.

xiii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Design Complexity Trend

Smart cards are secure and small embedded devices which hold a secret. Such a secret
allows the identification of whether a service may be used, such as a mobile phone service,
a pay-tv service or a banking service. It can be seen that smart cards enable the billing
of distributed services and thus it is obvious that they are sold in high numbers. An
indicator for the use of smart cards is the number of mobile subscriptions. In 2014 there
are about 7000 million subscriptions [2]. Since this number considers only one application
scenario, it can be expected that the total number of smart cards exceeds this number:
this also means, that each person uses several smart cards. In order to provide the most
secure smart card products, the industry strives to implement as many security features as
possible. In Figure 1.1 the green line indicates the increasing product security of a smart
card standard product. However, security features consume a portion of memory and thus
the price increases with the memory footprint and the level of security. In contrast, the
red line indicates, that the customer’s demand for security does not increase as fast as the
security of standard products. This has the following implications: First, as long as the red
line is below the green line, increasing the security of standard products is a good strategy
for meeting the customer’s demands. However, when the red line crosses the green line,
standard products provide more security features than the customer requires. At this point
in time the industry shifts from standard products to individualized products (see also [3])
because customers do not want to pay for obsolete security features. Such a tailoring of
products can be accomplished with variant management. However, the individualization
also means, that more products which resemble each other have to be certified for security.
Since such certifications take a considerable amount of time and cost, they are a roadblock
for the individualization of products.

1.2 Design Flow for Low-End Java Card Operating Systems

Since this thesis was written in the course of a research project, this chapter provides an
overview of it. Furthermore, the problem statement and list of all the contributions which
have been published are presented.

1

1. Introduction 2

security

time

Standard Product

Tailored Product

Customer Demands

Figure 1.1: The security of standard smart card systems grows faster than the customer’s de-
mands. Therefore after a certain point in time, a tailoring of products with variant management
becomes more and more important.

1.2.1 The DAVID Project

The DAVID project is a collaboration between the academic Institute for Technical Infor-
matics and NXP Semiconductors Austria as industrial partner. This collaboration strives
to set up a design flow for low-end smart cards. Figure 1.2 shows the two current trends
in smart card operating systems. The DAVID project focuses on the trend of building
smaller Java Card [4] systems with appropriate security mechanisms and runtime perfor-
mance. Such smaller systems with a better price are attractive to several emerging market
segments.
The DAVID project has two main approaches to minimizing the memory footprint of a
Java Card operating system. First, compression methods (see [6][7][8]) strive to minimize
the memory consumption. The so-called byte code compression compresses the code itself
whereas the heap compression minimizes the memory consumption of Java Card objects
and classes. For example, a code compression could summarize a sequence of frequently
occurring bytecodes to a single new bytecode. A heap compression instantiates member
variables of an object on demand and thus avoids memory consumption of never-used
members. Second, leaving out unnecessary code and features is an approach to reduce
the memory footprint of a Java Card operating system. However, leaving out some code
pieces is not as simple, as it seems at a first glance. Each part of code is evidence of
a severe security certification and is linked to higher-abstracted security objectives and
requirements. Thus, the impact of omitting certain pieces of code or - artifacts - has to be
known. Such knowledge is, at the moment, implicit knowledge of a few domain experts.
However, in order to issue lots of individualized products, an explicit modeling of the
knowledge is necessary.

1. Introduction 3

DAVID Research Area

Trend 1:
 more functionality
 more security
 more performance

8/16 Bit Prozessors
<100 MHz

several 100kB Memory

16/32 Bit Prozessors
several 100 MHz

<1MB Memory

32 Bit Prozessors
~ 1 GHz

several MB Memory

32/64 Bit Multi-Core
Prozessors

several 1 GHz
several GB Memory

H
ar

d
w

ar
e-

C
o

m
p

le
xi

ty

JC 2.x

JC 3.x classic

JC 3.x connected

Java ME

Java SE, EE, ...

High-End Smart Cards

Embedded Systems

K
o

m
p

le
xi

tä
t

la
u

t
Sp

ez
if

ik
at

io
n

PC/Server Systems

8/16 Bit Prozessors
<<100 MHz

<100kB Memory Low-End Smart Cards
Minimized Java
for Smart Cards

Trend 2:
 smaller
 adequate security
 minimal power consumption
 limited functionality

Figure 1.2: There are two trends for smart cards: first, there is a trend to increase security and
functionality. The other trend is to decrease the functionality and security in order to minimizing
the cost [5].

1.2.2 Problem Statement

Java Cards are resource-constrained devices with high security demands in very volatile
markets. They have different areas of application, such as banking, mobile phones, pay
tv and the like. There are always new application areas emerging and thus new market
segments. In order to enter a new market segment, it is important to have a competitive
price and the appropriate feature set. Sometimes, it is necessary to downsize the product
and thus, the following challenges exist:

• New smaller hardware platforms.

• Products have to be tailored to the customer’s needs.

• The tailored products have to be certified for security, as quickly as possible.

New smaller hardware platforms enable a competitive price for application areas with
lower security and runtime performance demands. As new hardware platforms are intro-
duced, the software has to be adapted to these new processors. If considered from the
very beginning, a systematic platform-abstraction can save a lot of manual porting effort
and ease the adaption for each new processor. Because of the shift towards a customer-
focused market, standard products no longer sufficiently satisfy the customer’s demands.
A Common Criteria security certification is an integral part of the product development
and release. Since there is now a focus on individualized products, the number of security
certifications also skyrockets. Most of the certified products only differ in some parts.
However, the Common Criteria standard does not provide a good support for an incre-
mental certification. Another problem of the security certification is that it takes several
months to certify a product after it is finished. Such a time lag is a huge drawback because
time-to-market is still a very important success factor in the smart card industry. This

1. Introduction 4

time lag could be reduced, if the certification is carried out in parallel with the prod-
uct certification. Thus, an incremental certification also has to support evolving secure
systems.

1.2.3 Contributions and Significance

Summarizing, this thesis provides contributions to the following fields:

1. Hardware Abstraction for Future Smart Card Architectures: A catalog
of patterns to cope with cross-cutting hardware dependent code fragments is pre-
sented. These patterns discuss the context, the benefits, the drawbacks, and the
consequences of specific solutions. The solutions allow the masking of compiler spe-
cific code fragments and their resolution before compilation. In addition to these
patterns, a test-driven process to migrate to a hardware independent code-base is
described. In this process, after each code change all tests are executed. Thus,
defects introduced by the porting activities can be detected, early. A Defensive Vir-
tual Machine (D-VM) layer abstracts possible hardware or software implementations
of security checks from the virtual machine and provides a unique interface to it.
So, security checks can be optimized for runtime performance or memory footprint
without refactoring of the virtual machine.

2. Certification of Evolving Security Systems: A decision framework helps to
select an appropriate security certification process. This is difficult, because many
of these processes are never explicitly stated in any standard. An iterative secu-
rity certification process helps to reuse evidence for small changes, such as a new
configuration. Two iterative processes are discussed and their differences, benefits
and drawbacks are compared. In order to better support an iterative certification,
changes to the Common Criteria standard are proposed. The main proposal is to
balance process and product assurance to increase the flexibility of the certification.
Many certification processes demand for a specific modeling technique. These mod-
eling techniques are discussed in form of patterns. Furthermore, a cost model helps
to assess the consequences of a security certification process.

1.2.4 Structure of the Work

In chapter 2 the related work regarding the major and the minor goal is provided. First,
an overview of the most important security modeling notations is given. A deeper look
into a modeling notation with explicit support for model evolution is provided. Then,
an overview of security assurance paradigms, such as product and process based assur-
ance is presented. Several important security and safety standards are mapped to one or
both of those paradigms. Thereafter, the related work of hardware abstraction methods
is provided. Finally, this chapter compares the state-of-the-art with the findings of this
thesis. In chapter 3, a method for an incremental security certification is provided. First,
it makes sense to unify the source code as much as possible because this decreases the
need for a re-certification for each hardware platform. In order to do this, patterns for
hardware independent coding and a layered approach for encapsulating security mecha-
nisms are presented. A test-driven migration process supports the transition towards such

1. Introduction 5

a unified code base. Second, several processes for security certification are provided. A
cost model helps the understanding of the consequences of each of these processes. It is
shown which patterns of software modeling are necessary for specific security certification
processes. Finally, an outlook for future enhancements of the Common Criteria standard
is provided. Chapter 4 presents the results of a case study which has been conducted in
collaboration with the academic institute together with the industrial research partner. In
this case study parts of the source code have been refactored to be platform-independent.
Respective results are listed. In addition, an analysis of possible scenarios of security certi-
fication processes and the potential reuse of secure software components is provided. Past
certifications of the smart card industry are categorized to show how relevant the applica-
tion of the proposed methods is. Chapter 5 concludes the work and gives an outlook for
future work. The focus of future work is security certification, which can be improved, as
well as methods and tools for it. In addition, an outlook for future work regarding security
requirements engineering is given. In chapter 6 the papers which have been published in
the course of this thesis are presented.

Chapter 2

Related Work

In this chapter an overview of established security modeling notations is provided. One
notation is described in more detail because it supports most of the demanded require-
ments. Additionally, related work on hardware abstraction is discussed. Finally, difference
to the state-of-the art is provided.

2.1 Security Modeling Notation Overview

An overview of security modeling notations is provided in Table 2.1. For each notation,
information regarding several categories is provided. The approach states whether the
notation is an encompassing modeling framework or which specific artifacts they model.
The category evolution support states whether the framework provides explicit mechanisms
for model evolution. Further, Table 2.1 provides information as to whether the model
describes requirements or architecture. The category process assurance states whether
the notation explicitly supports process assurance, such as code reviews and the like. A
notation is iterative, if requirements drive architecture and the other way round. All these
categories are beneficial in order to support the certification of evolving secure systems.
As can be seen, the approach UMLsec supports most of the required attributes. Hence,
this approach is described in the next section in more detail. However, in this section, a
short overview of all the listed modeling notations is given.

Attack Tree An attack tree is a structured way to model attacks, attack goals, attacker
motivation and attacker talent. An attack tree can be used for a high-level risk
analysis and as a threat database [9][10][11].

Abuse Case An abuse case is a use case where the actor causes harm to the system
by exploiting security vulnerabilities. Abuse cases are a simple and easy way to
understand security analysis [12][13][14][15].

Secure Tropos Secure Tropos is a security system analysis framework which takes into
account assets, actors and a (high-level) architecture. Goal models are used to refine
the high-level goals to lower-level goals and architecture [16][17][18].

UMLsec UMLsec is an extension to UML that enables a model-based security engineer-
ing. UMLsec supports the evolution of models and checks, if the evolution keeps to

6

2. Related Work 7

certain guidelines [19][20][21].

UML4pf UML4pf is an extension to UML with problem frames. A problem frame is a
kind of pattern which describes problem class with its requirements, its context and
its interfaces [22][23][24].

Security Requirements Framework (Haley) This framework consists of a structure
which incorporates security goals, security functional requirements and system ar-
chitecture. In addition to the structure, it describes an iterative process [25][26].

KAOS KAOS is a goal-oriented requirements engineering method. It describes a process
which incorporates requirements, related objectives and a software system model.
The process requires a review of the model and is thus an iterative process [27].

Table 2.1: Related security modeling notations and their support for several desired objectives.

Se
cu

ri
ty

M
od

el
in

g
N
ot

at
io
n

A
pp

ro
ac

h

E
vo

lu
ti
on

Su
pp

or
t

So
ft
w
ar

e
R
eq

ui
re

m
en

ts

So
ft
w
ar

e
A
rc

hi
te

ct
ur

e

P
ro

ce
ss

A
ss

ur
an

ce

It
er

at
iv
e

Attack Tree Fault Model N Y N N N

Abuse Case Fault Model N N Y N N

Secure Tropos Framework N Y Y N Y

UMLsec Framework Y Y Y N Y

UML4pf Framework N Y Y N Y

Security Requirements Framework Framework N Y Y N Y

KAOS Goal Model N Y N N N

2.2 Security Modeling with Explicit Support of Evolving
Systems

The UMLsec tool1 can check whether a UMLsec model conforms to specific security prop-
erties. Such a check is done on a static model. This means that the full model always

1https://www-secse.cs.tu-dortmund.de/jj/umlsectool/index.html

2. Related Work 8

has to be checked against security properties, if it changes. Because such a static check
is very resource consuming, it makes sense to only verify a delta version of all applied
changes [28].

Software System
Model

Evolved System
Model1

Evolved System
Modeln

Still secure?

Security verified

Figure 2.1: The incremental UMLsec approach checks if the delta of a security model is the
outcome of a sequence of correct atomic changes [28].

However, a delta cannot be verified automatically, per se. It consists of a set of so-called
atomic changes. An atomic change is a change that cannot be further divided into smaller
changes. For such atomic changes it is possible to define rules and thus, they can be
checked for correctness. In order to check a delta, it is necessary to check whether an
evolution path of atomic changes can be constructed that fulfills the evolution rules. Since
there can be several different evolution paths, the algorithm has to search for at least one
possible evolution. If there is no possible correct evolution, the delta does not preserve
the corresponding security property in this evolution step.

2.3 Assurance Paradigms

In order to allow a certification, each certification scheme requires arguments for assur-
ance. As can be seen in Figure 2.2, the assurance argument can be composed of several
sub-arguments (see also [29]). The certification standard determines the use of arguments
for assurance. In product-based assurance the product, its related artifacts and docu-
mentation have to deliver arguments for assurance. Usually, the product has to fulfill
functional requirements. The process-based assurance is established with sound develop-
ment processes. If the right activities, such as requirements engineering, design, review
and testing are done appropriately, this can serve as an argument for assurance. As can be
seen in Figure 2.2, the competency of the resources is also part of the process argument,
if further subdivided. In Table 2.2 several certification schemes in different domains are
listed. Even if a certification is not relevant to security, the structure of the assurance
argument can be similar.

2. Related Work 9

Assurance
Argument

Product
Assurance
Argument

Process
Assurance
Argument

Roles
(Resources)

Process
Steps

Figure 2.2: The assurance argument can be constructed from a product assurance and a process
assurance argument. The process assurance argument incorporates roles and process steps.

Therefore, some standards are listed because it is possible to learn from them. In security,
safety and process improvement, there exist standards which rely on a product argument, a
process argument, or both. Moreover, certification standards for competency of resources
are emerging.

Table 2.2: Assurance arguments for several certification standards from different domains.

Certification Purpose Process Product Resource

Common Criteria [30] Security Certification Y Y N

ISO 27001 [31] Security Certification Y N N

ISO 26262 [32] Safety for Road Vehicles Y Y N

IEC 61508 [33] Safety for Electrical Systems Y Y N

DO-178-B [34] Safety of Avionic Software Y N N

SPICE [35] Software Process Improvement Y N N

CMMI [36] Software Process Improvement Y N N

SACM [37] Security focus and generic N N Y

ECQA [38] Safety focus and generic N N Y

In the safety domain, a construction of an assurance argument from a product and a
process argument is called a safety case [39][29]. The construction of arguments is based
on Toulmin’s work on arguments [40]. A product argument lacks confidence, if there is no
process argument. For example a review of the product arguments increases confidence in
it. However, in this example, it is not stated who (which role) conducts the review. This

2. Related Work 10

provides a new perspective on a process-based assurance argument where the competency
is a necessary part of this argument [41]. Since a sound process assurance argument
can only be formed with appropriate competencies, it is necessary to also certify the
competencies. As stated above, such certifications are an emerging topic in safety and
security.

2.4 Hardware Abstraction

Hardware abstraction can be achieved via a layered system (see Figure 2.3). If there is
no HAL (a) and (b), then the interface between processor and application depends on the
hardware. Thus, the application software must be ported, if it is intended to be executed
on a new processor. Since porting software is a costly task, it is better to implement
a Hardware Abstraction Layer (HAL). The HAL has a unique interface to the upper
application layer. Thus the application does not need to be ported.

HAL

Processor BProcessor AProcessor BProcessor A

ApplicationApplication

ApplicationApplication

HAL

(a) (b) (c) (d)

Figure 2.3: The interface of the application needs to be reworked for each hardware platform (see
a and b). If an intermediate HAL exists (see c and d), the application can be reused on different
hardware platforms without refactoring (see also [42]).

There are several refinements to the concept of a HAL. Handziski et al. [43] proposes
a three layered HAL approach. The lowest layer is stateless and is only responsible for
directly interfacing the hardware, such as initialization and register and port access. The
middle layer is the core of the three layer architecture and may have states. It is responsible
for complex resource management which may still be specific to the hardware in order to
best exploit their capabilities, such as communication and memory. The highest layer
provides an interface which is hardware independent.
Grenning [44] describes the challenges of hardware abstraction that come into being when
Test-driven Development is applied to embedded systems. Basically, TDD is a design
paradigm where first tests are written that reflect the specification of the unit under
test [45]. Only after the relevant tests have been written, the corresponding functionality
is implemented. All unit tests are repeated after each change of the unit. In this way,
defects can be detected early. Test-driven development is an established method but it
is rarely used in embedded systems for the following reasons: the build process may take
several hours, the hardware is not (yet) available and the target hardware is expensive.
Grenning introduces the embedded TDD cycle, where software is first written for a host
PC compiler in order to test the functionality. If all tests pass, the next phase is to

2. Related Work 11

switch to an embedded compiler. If the compilation works, the tests can be executed on
an evaluation board and finally on the real target. In order to perform such cycles, the
tests have to be written in a way that abstracts the hardware. For example the access to
hardware units can be hidden behind so-called mock objects, or stubs.

2.5 Summary and Difference to State-of-the-art

This thesis improves the state-of-the art regarding the major and the minor goal:

• A cost model for software evolution of high-quality software is provided. It is shown
that software evolution causes rework of quality activities, if they are accomplished
in parallel. There exist models to quantify software evolution. However, there is no
model which links the evolution to any cost. The hypothesis of our cost model has
been empirically evaluated and thus provides evidence for its usefulness. This cost
model helps to decide whether time-to-market or development and certification cost
is more important.

• In contrast to the related work this thesis does not propose a security meta-model
(a structure of security artifacts). A model-based framework can calculate a delta of
two versions of a model. The contribution is the description of two possible processes
for a Common Criteria certification which take this delta as input. The advantage
of this approach is that the whole product does not have to be re-certified, which
is very expensive. It is discussed under which circumstances the two processes are
applicable.

• The described evaluation processes which are based on a delta are only applicable
under certain constraints. As a contribution it is shown how the Common Criteria
standard can be changed in order to better support reuse and an iterative certifica-
tion. This thesis proposes to enable a balancing of product assurance and process
assurance. Process assurance can be easily built in the model-evolution framework.
For this purpose, for example, the framework has to log reviews of delta versions of
the model.

• Since a model-based approach is proposed to support the security certification pro-
cess, several patterns of software modeling are described. Such patterns allow the
selection of an appropriate modeling approach. These approaches are categorized
based on the information flow between different model entities. As opposed to the
state-of-the-art, the use of a specific modeling framework (e.g. UML, SYSML) for
a specific problem is not proposed. Rather, guidelines for selecting an appropriate
approach are provided.

• There are several processes for Common Criteria certifications. Some of theses pro-
cesses are formal: that means that they are explicitly mentioned in the Common
Criteria standard. Other standards are informal: they are not mentioned in the
standard and can be applied, as long as they do not contradict the standard. Four
of these certification processes are discussed along with under which constraints
they are useful and can be applied. Since these certification processes are hard to
understand, a selection scheme is provided.

2. Related Work 12

• Several patterns of hardware abstraction are provided. In the state of the art, hard-
ware abstraction is achieved with a hardware abstraction layer. However, some
cross-cutting issues cannot be encapsulated in a single layer. Such cross-cutting
issues are type definitions, pointer definitions, structure alignments and byte endi-
anness. Best practices regarding these issues are collected. As a contribution, not
only technical solutions are presented. Moreover, an in depth discussion on the con-
text in which a problem occurs is given. Within such a context, several solutions are
possible. The alternative solutions can be traded-off via the so-called forces which
are described in the patterns.

• The state-of-the art discusses Test-driven Development (TDD) in embedded systems.
It is shown, how TDD can be applied to take existing code and refactor it to be
platform independent.

Furthermore, in this thesis the following improvements are provided:

• It is shown how a software process improvement initiative between university and
industry can be conducted via action research. Action research is a research method
which strives to find relevant solutions from the field [46]. Experiences for an industry
and academic collaboration are described and lessons learned which could help in a
similar project are listed.

Chapter 3

Method

This chapter provides an overview of the publications regarding the major and minor
goal. A cost model for assurance activities is a decision factor for selecting an appropriate
software modeling pattern. The selection of the modeling pattern decides whether the
software is certified after the product development or whether there is a certification in
parallel. Further, several processes for security certification are described, as well as the
context in which they can be conducted and a selection scheme for selecting an appropriate
approach. Regarding the minor goal, several patterns for a hardware abstraction and a
test-driven porting process are described. Moreover, experiences and lessons learned from
a transition to an industrial variant management are provided.

3.1 Overview

Common Criteria [30] security evaluations for smart cards are expensive. There are several
drawbacks to standardized security certification processes:

• Bad support for reuse of certification results.

• Bad support for evolution of certification evidence and thus bad support for an
iterative security evaluation.

• Bad support for evolving security requirements.

• A long lag-time for certification after product is finished.

This thesis shows how these issues can be tackled. In publication 5 an overview of four
different certification processes is given. It is described under which circumstances they
can be applied. A selection scheme helps companies to select an appropriate approach.
Therefore, several certification processes are described. It is shown in which context they
can be applied. In publication 6 two processes for an incremental security certification are
described which take as input an increment of a software system. However, the Common
Criteria certification could be improved drastically in order to provide more flexibility
for an evaluation. Thus, improvements of the standard are proposed in publication 7.
Moreover, in publication 7 it is shown, how a specific software modeling pattern supports
the extensions which have been proposed for the Common Criteria standard. Different

13

3. Method 14

patterns of software modeling, which are explained in publication 8 support different
security certification processes. A cost model which is described in publication 9, helps to
trade-off a higher certification cost in a parallel certification versus a longer lag-time in a
certification after the product is finished.

Publication 1: A Defensive Virtual Machine
Layer to Counteract Fault Attacks on Java Cards,
7th Workshop in Information Security Theory
and Practice (WISTP’13), Heraklion, Greece,
2013.

Publication 3: Test-Driven Migration Towards a
Hardware-Abstracted Platform, 5th Interna-
tional Conference on Pervasive and Embedded
Computing and Communication Systems
(PECCS), Angers, France, 2015

Publication 2: Patterns for Hardware-
Independent Development for Embedded
Systems, 20th European Conference on Pattern
Languages of Programs (EuroPLoP’14), Irsee,
Germany, 2014.

Publication 6: Supporting evolving security
models for an agile security evaluation, 2014
Evolving Security and Privacy Requirements
Engineering (ESPRE’14), Karlskrona, Sweden,
2014.

Publication 5: Evaluation paradigm selection
according to Common Criteria for an
incremental product development,International
Workshop on MILS: Architecture and Assurance
for Secure Systems (MILS’15), Amsterdam,
2015.

Publication 9: Where does all this waste come
from?, 21st EuroSPI Conference (EUROSPI’14),
Luxembourg, 2014.

Publication 8: Patterns of Software Modeling,
Fifth International Workshop on Information
Systems in Distributed Environment (ISDE’14),
Amantea, Italy, 2014.

Publication 7: Balancing Product and Process
Assurance for Evolving Security Systems,
International Journal of Secure Software
Engineering (IJCCE’15), 2015.

Publication 4: Embedding research in the
industrial field: a case of a transition to a
software product line (WISE 2014),
International Workshop on Long-term Industrial
Collaboration on Software Engineering,
Sweden, 2014

Goal: HW Abstraction of Future Smart Cards (4)

Goal: Incremental Security Certification

PRE-CONDITION

Decision
Framework

(5)

Incremental
Certification

(6)

Security
Abstraction
Architecture

(1)

Patterns
HW-

Abstraction
(2)

Migration
Process

(3)

Balanced
Certification

(7)

Cost
Model

(9)

Consequence

SW-
Models

(8)

Support

Hypothesis

Suggest

Figure 3.1: In order to achieve a hardware-abstracted code base, three strategies are applied: an
architecture, guidelines or patterns for coding and a migration process. The abstracted code base
increases the reusability of security certification evidence. The main goal is to support the security
certifications of evolving systems. A decision framework helps to select an appropriate approach
and incremental certification processes are detailed. Finally, the constraints and consequences of
the proposed evaluation approaches are explained.

The diversification of smart cards leads to an increasing number of different products.
However, products share commonalities and have differences. The productivity can be
increased with a so-called product line engineering which strives to systematically reuse
software artifacts. A product line approach for smart cards faces the following main
challenges:

• Hardware-dependent code due to hardware-near programming.

• Portability issues due to the hardware dependent code.

• Hardware dependent tests. Also tests need to be ported.

• Many variants due to variations in hardware and optimization objectives.

• Variants in the security requirements of the software and complexity of the depen-
dencies.

• Problems with reuse of security certifications.

3. Method 15

A hardware-independent code can be more easily reused for a security certification than
a hardware-dependent code. For this reason, in publication 1 an architectural solution for
the hardware abstraction of security countermeasures is provided. Patterns for hardware
independent coding are provided in publication 2. Moreover, porting activities for new
hardware platforms are expensive. In publication 3, a systematic test-driven porting pro-
cess shows how the transition to a hardware-independent platform can be kept relatively
cheap. A process for a transition to a variant management is provided in publication 4. An
overview of all publications is provided in Figure 3.1. The publications will be described
in more detail in the following section.

3.2 Major Goal: Certification of Evolving Security Systems

Smart cards are certified for the security standard Common Criteria for a high level of
assurance. For such a high Evaluation Assurance Level (EAL), it is necessary to provide
evidence for assurance in the form of documents. The documents must contain the ele-
ments depicted in Figure 3.2. The security problem definition states the threats and the
context of the secure device. Derived from the security problem definition, the security
objectives are high-level security goals. These goals are refined by the Security Functional
Requirements (SFR) which describe specific security functions. The functional specifica-
tion shows how the SFR are fulfilled by the device. The design represents the security
architecture and the implementation representation is the source code of the secure device.

Developer Evidence

Security Target

Security Problem
Definition

Security Objectives

Security Functional
Requirements

Functional Specification

Design Documentation

Implementation
Representation

Figure 3.2: Basic parts of the security model. The arrows indicate a fulfillment operation. For
example, the functional specification must fulfill the security functional requirements [47].

3.2.1 Certification Processes

This thesis describes several Common Criteria certification processes [48]:

Delta Evaluation The delta evaluation is a Common Criteria evaluation process. The
evaluation facility has to make a delta analysis for each new version. For the delta,
the evaluation facility has to make a change impact analysis, as well. For this
reason, the evaluation facility needs all developer evidence, as well as the result of
the previous certification.

3. Method 16

Informal Modular In the case of a changed module or a new module, the evaluation
facility can make an informal modular certification. An informal modular certifica-
tion is a form of the delta evaluation. For this purpose, the evaluation facility needs
all developer and certification evidence.

Formal Modular A formal modular certification is applied, if modules from different
companies are certified and the evaluation facility does not have all the evidence. In
this case, the composed evaluation or the composite evaluation can be performed.

Composed Evaluation This evaluation takes two certifications and applies the Com-
posed Assurance package. However, this evaluation does not provide EAL (Evalua-
tion Assurance Level) but a CAP level (Composed Assurance Package). Higher-level
security assurance is not possible with this process.

Composite Evaluation This evaluation certifies a platform together with an application
and is thus a layered approach for a certification. For this certification all EAL can
be achieved.

The selection scheme is depicted in Figure 3.3 and takes as input the number of product
developing companies, as well as the number of involved evaluation facilities. These fac-
tors are important because they determine whether developer evidence and certification
evidence can be shared.

Evidence>is>updated
IAR>created

other
Companies

involved

how>many
Certifiers>are
concerned

how>many
Certifiers>are
concerned

All
evidences
are>shared

Formal>if>the>Certifier>
is>changed

214

No1

>>>>>>>>>>>n>>>1

>>>Yes No

Yes>> 1

>>>>>>>>>>>n>>>1

Version
N

Version
N>.>1

Actual>Impact>Set
is>calculated

Informal>Modular
Use>Case>1

Delta>Evaluation
Use>Case>2

Informal>Modular
Use>Case>4

Composed>Evaluation
Use>Case>35bb>55b

Composite>Evaluation
Use>Case>35ab>55a

Layered
development

No

214 214

>>>>>>>>Yes

Figure 3.3: A decision framework helps to select an appropriate Common Criteria certification
process [48].

3. Method 17

The above stated selection scheme is applicable to a broad range of applications. In order
to enable a better evaluation for smart cards, requirements for smart card certification are
listed, below:

• The development process of smart cards is iterative because customers want to
change the requirements during the development. Thus, the security requirements
change in the course of a development.

• Early feedback from the evaluation facility enables an early validation of the secu-
rity concepts. This early validation helps to minimize the risk of a complete late
refactoring of the security architecture. The cost of such a late refactoring is very
high.

• Better support for modular certification because a module can have several variants
of its implementation. Moreover, it should be easy to add modules to the product
without a whole re-evaluation of the system.

It is shown, how an incremental certification can meet these requirements [49]. However, in
this publication the delta evaluation concept is refined and two certification processes are
derived and refined. The context under which these processes can be applied is described
in [47].

• Before the Common Criteria certification is started, the architecture must be close
to completion. This seems to be a contradiction to the agile certification approach
because in an incremental development process the architecture is said to be evolv-
ing. However, an implicit architecture sometimes exists and enables an iterative
certification.

• The software system already exists and is evolving. For example, a new product often
evolves from a base product. In this case there is always an existing architecture.
Thus, an incremental certification is possible.

In this context the following two certification processes can be applied: The Traceability
Impact Analysis (TIA) and the Experiential Impact Analysis (EIA). Both processes fulfill
the Change Impact Analysis which is required for the incremental evaluation.

Traceability Impact Analysis (TIA): In the TIA process (see Figure 3.4), the Change
Detection Analysis (CDA) first detects the delta between versions of the model. The
result is the Starting Impact Set (SIS). This set is input for the TIA which calculates
all artifacts which are possibly impacted. The result is the so-called Candidate
Impact Set (CIS) which is the input for the manual re-evaluation. The outcome
of the manual re-evaluation is three sets: the Discovered Impact Set (DIS), which
contains manually detected impact, the False Positive Impact Set (FPIS), which
contains not impacted artifacts of the CIS and the Actual Impact Set (AIS) which
contains the detected actual impacts after the whole process.

3. Method 18

Change Detection Analysis

Traceability Impact Analysis

Re-Evaluate

Starting
Impact Set

--

++

Version
N

Version
N+1

Candidate
Impact Set

Actual
Impact Set

False Positive
Impact Set

Discovered
Impact Set

Figure 3.4: Re-evaluation process with Traceability Impact Analysis. The Actual Impact Set is
finally the re-evaluated set of software artifacts [47].

Experiential Impact Analysis (EIA): The EIA certification process (see Figure 3.5)
is the similar to the TIA. Only the traceability impact analysis step is omitted.
Thus, the Candidate Impact Set is the outcome of the CDA which detects the delta
between two versions of the model without taking all possible impacts into account.
Thusly, the input for the manual re-evaluation is smaller.

Change Detection Analysis

Re-Evaluate

--

++

Version
N

Version
N+1

Candidate
Impact Set

Actual
Impact Set

False Positive
Impact Set

Discovered
Impact Set

Figure 3.5: Re-evaluation process with Experiential Impact Analysis. The Actual Impact Set is
finally the re-evaluated set of software artifacts [47].

Both approaches are compared in Table 3.1. The TIA process fits better if there is a
long time interval between two iterations: then the presumed experience of the evaluator
regarding the software system is low. If the time interval between two iterations is low,
the EIA process is more appropriate because the presumed experience of the evaluators is
high.
However, the previously described certification processes can only be applied in the pre-
viously described context. If there is no implicit architecture because the product is
developed for an unknown domain, the iterative certification approaches find their limits.
For this purpose it is proposed that the Common Criteria standard certification should be
made more flexible by composing the assurance argument from a product argument and
a process argument [47].

3. Method 19

Table 3.1: Comparison of the processes with Traceability Impact Analysis and Experiential
Impact Analysis.

TIA Process EIA Process

DIS SMALL LARGE

FPIS LARGE SMALL

Presumed Experience LOW HIGH

Iteration Cycle Months/Years Weeks

Product Argument: The product argument provides evidence via features of the prod-
uct, such as the architecture, the source code, the traceability from high-level objec-
tives to evidence in the implementation.

Process Argument: The process argument provides assurance with certain properties
of the development process, such as architecture reviews, testing, source code reviews
and risk analysis.

In the following a short example is provided which illustrates how product assurance and
process assurance can be balanced. The assurance class testing contains the assurance
families ATE FUN, ATE COV and ATE DPT. The Evaluation Assurance Level of the
assurance class depends on the level of assurance of each family. In Table 3.2 a short
description of each assurance family is provided and stated whether it is used as a product
argument or a process argument.

Table 3.2: Mapping of Common Criteria assurance classes to process and product assurance.

CC
Assu

ra
nce

Componen
t

Pro
ce

ss
Assu

ra
nce

Pro
duct

Assu
ra

nce

Desc
rip

tio
n

of Assu
ra

nce
Componen

t

ATE FUN X functional testing

ATE COV X test coverage of functional specification

ATE DPT X test coverage derived from design, architecture, . . .

The current way in which Common Criteria determines whether the assurance class testing
has EAL 3 is outlined in Figure 3.6. It shows a hard goal model [50] which states that for
EAL 3 the following assurance components need to be verified: ATE DPT.1, ATE COV.1
and ATE COV.2.
As can be seen in the current Common Criteria approach, there is no possible trade-off
between process and product argument. Thus, it is proposed that the evaluation should

3. Method 20

AND

AND

ATE_DPT.1 ATE_COV.1

ATE_DPT.2

ATE_FUN.1

ATE_COV.2ATE_FUN.2

Process Assurance Product Assurance

EAL 3

ATE_DPT.3

ATE_DPT.4

ATE_COV.3

Figure 3.6: The current Common Criteria evaluation does not leave much room for flexibility.
The hard goals are only fulfilled, if all (AND) inputs are true [47].

be made more flexible, as indicated in Figure 3.6. In comparison to a hard goal model,
in a soft goal model [50], not all inputs into a goal have to be fulfilled. The inputs are
a contribution to the soft goal and if the sum of all inputs is above a specified level, the
output has a certain value. It can be seen that in this soft goal model, a higher level of
process assurance can compensate for a lover level of product assurance and vice versa.
Moreover, in [47], it is shown how a model-based approach can be leveraged in order to
better support process assurance. Figure 3.8 provides an example: in the local workspace,
the developers may change the software and interfaces. In the repository, there should
be code of high-quality, in this case this means reviewed code. So, if a developer changes
an interface in the local workspace, a commit to repository operation would trigger the
following process: then a model-difference engine would detect the changed interface and
following a security architect has to review the interface change. If the change is ok, the
model-merge engine merges the changes to the model in the repository. This approach
combines a model-based difference analysis with a process argument (review) and a com-
petency argument (security architect). All the review activities can be logged and serve
as evidence for a certification.

3. Method 21

++

+

++++

+

++

+++ +++

++

+
ATE_DPT.1 ATE_COV.1

ATE_DPT.2

ATE_FUN.1

ATE_COV.2ATE_FUN.2

ATE_DPT.3

ATE_DPT.4

ATE_COV.3

Process Assurance Product Assurance

EAL 3

IF SUM(INPUT) > THRESHOLD
OUTPUT = SUM(INPUT)

ELSE
OUTPUT = 0

IF SUM(INPUT) > THRESHOLD
OUTPUT = SUM(INPUT)

ELSE
OUTPUT = 0

IF SUM(INPUT) > THRESHOLD
OUTPUT = SUM(INPUT)

ELSE
OUTPUT = 0

IF SUM(INPUT) > THRESHOLD
OUTPUT = SUM(INPUT)

ELSE
OUTPUT = 0

IF SUM(INPUT) > THRESHOLD
EAL 3 = TRUE

ELSE
EAL 3 = FALSE

IF SUM(INPUT) > THRESHOLD
EAL 3 = TRUE

ELSE
EAL 3 = FALSE

Figure 3.7: A more flexible evaluation of assurance levels can be modeled with soft goals. The
plus signs next to the assurance components indicate the contribution to a soft goal. The output
of the soft goals depends on the sum of its inputs. If this sum is below a specified threshold, the
output is zero or FALSE. It the sum is above this threshold, the output is either the sum of all
inputs or TRUE [47].

WORKSPACE

INTERFACE Version 1

 INTERFACE Version 2

REPOSITORY

Review Protocol
Base Version 1

INTERFACE
Base Version 1

Merge and Review
Changes

DEVELOPERDEVELOPER

ARCHITECTARCHITECT Review Protocol
Base Version 2

INTERFACE
Base Version 2

Modify

Interfa
ce

Figure 3.8: This use case illustrates how model merge and model diff contribute to an assurance
argument. This argument is supported by the appropriate role (architect) who performs a process
(review) [47].

3. Method 22

3.2.2 Cost Model

There is a basic decision regarding the point in time of the certification. Basically, the
certification can be done after the product development is finished or in parallel to it. In
the following, a short description of both variants is provided:

Certification after the development is finished: The certification takes place, when
the product development is finished. The benefit of this variant is that all evidence
necessary for the certification is already in place. Moreover, the evidence does not
alter because the development is finished. The drawback is that the certification
is started late and thus there is a considerable increase in the time-to-market. In
the smart card industry, time-to-market plays an important role, when new market
segments with higher margins are entered.

Certification in parallel to the development: The certification is accomplished in
parallel to the product development. This means that the evidence for certifica-
tion changes when the product itself changes. Therefore, the certification has to be
updated for each increment of changed evidence. Because of this continuous updat-
ing the cost of the certification is higher. The benefit is that the lag time between
finishing the product and certification can be decreased. This can be a considerable
advantage.

In order to quantify the cost of an incremental certification, a cost model for quality
assurance has been developed. As explained above, the main factors for reworking the
certification is the amount of evidence that has been changed. The following hypothesis
is postulated [51]:

W = Q · dA (3.1)

Table 3.3: Terminology of the cost model.

Definition Interpretation Short

Architectural Evolution Change of component interfaces dA

Waste Effort with no additional value W

Quality assurance effort Total effort for quality assurance Q

This hypothesis suggests that unnecessary effort (waste) for quality assurance (security
in this case) emerges when the interfaces of components are changed. In fact, this is
very obvious: Every time the interfaces change, the design documentation, the functional
specification and the implementation representation have to be altered. These parts have
connections to other parts of the evidence, such as security functional requirements and
higher level security goals. However, a detailed test of the hypothesis is provided in the
corresponding publication [51].

3. Method 23

3.2.3 Patterns of Software Modeling

Patterns of software modeling are listed, which will shortly be described, below [52]. Then
it is shown, how they relate to the security evaluation processes.

Backward Engineering: In backwards engineering the software model is reconstructed
from the software.

Forward Engineering: In forward engineering the model generates artifacts of the soft-
ware, such as interfaces and thus the architecture.

Round-Trip Engineering: In round-trip engineering, the model can generate software
artifacts. In addition the model can be updated from software artifacts. More-
over, diff and merge algorithms support information flow between model and code.
Therefore, a model-evolution is supported.

Coordinative ALM: In coordinative ALM, the model-evolution is orchestrated with a
process support. So, each delta-version of a model can trigger a process, such as
a security review. The process steps are logged in order to deliver evidence for a
process-based assurance.

Cooperative ALM: Cooperative ALM integrates knowledge-transfer tools, such as wiki,
trackers, communication tools with model elements. The rationale behind this pat-
tern is to provide better information sharing in the development of distributed soft-
ware systems.

Table 3.4 shows how different modeling patterns are an enabler for different security cer-
tifications. It can be seen that the software modeling pattern can leverage the certifi-
cation. The incremental certification is supported by round-trip engineering. A more
sophisticated modeling pattern, such as coordinative ALM enables a balanced security
certification which is the next logical step for improving security certifications.

Table 3.4: Mapping of the certification processes to modeling patterns and their relevance.

Modeling Static Incremental Balanced

Pattern Certification Certification Certification

Backward Engineering x

Forward Engineering x

Round-Trip Engineering x x

Coordinative ALM x x x

Coordinative ALM

Relevance past - present present - future future

3. Method 24

3.3 Minor Goal: Hardware Abstraction for Future Smart
Card Architectures

The source code has to be provided for a security certification and is called implementation
representation in terms of Common Criteria. If a software module has to be ported
to another processor family, the module has to be re-evaluated, if the implementation
representation changes. Even if only a few lines of code are changed, this has to be
done (a problem here is that all the line numbers change accordingly). However, if the
implementation representation can be abstracted, so that it does not change due to a new
processor or processor family, the certification can be reused. For this reason, a strategy is
provided to deal with processor and processor family variability. Both types are explained
in more detail, below:

Processor family variability: A processor family is a family of processors with the
same architecture and instruction set, such as the 8051 architecture. A processor
family may have several processors as derivates with the same architecture and the
same instruction set. A processor family has a cross-cutting variability regarding the
following issues [42]: endianness, structure alignment, type length and pointer opti-
mizations. Additionally, there is a variability when hardware registers and resources
are addressed: this variability is usually encapsulated within a HAL.

Processor variability: A processor is a derivate of a processor family. A processor
can have additional instructions for security checks. Sometimes, security checks in
hardware are faster and more reliable than software checks. Such additional security
checks have to be addressed above the HAL.

Figure 3.9 shows a Java Card architecture: the lowest layer constitutes the hardware. The
HAL is state-of-the-art and encapsulates register and hardware resource accesses behind
a software interface. The cross-cutting issues, such as pointer optimizations and byte
endianness are covered in publication [42]. A test-driven migration process is described
in publication [53]. Additional instructions for security checks are handled by the D-VM
layer: it is a unique interface for the virtual machine. So, the virtual machine developers
do not need to directly access the hardware security checks. Rather, the D-VM provides
exchangeable implementations of security checks: they can be implemented in hardware
or in software. If runtime performance is an issue, the checks can be implemented in
hardware and are therefore faster. If chip size is an issue, the checks can be implemented
in software and are cheaper but less fast, as a consequence.

3.3.1 Patterns for Hardware Abstraction

Even if there is a defined HAL, some cross-cutting issues regarding hardware abstraction
may remain. Such issues remain mainly because optimization above the HAL is still nec-
essary. Typical optimization can be accomplished via specifying pointer locations (RAM,
ROM, EEPROM). However, also these issues can be abstracted in the source code. Before
the compilation, the hardware specific extensions are then injected. So, both benefits can
be kept: a platform-independent code base and the possibility of some optimizations. The

3. Method 25

Smart Card Hardware

HAL

OS

D-VM Layer

Java Card VM

Applet A Applet CApplet B

Figure 3.9: The proposed Java Card architecture contains a Hardware Abstraction Layer (HAL
and also a Defensive-Virtual Machine Layer (D-VM) which encapsulates security mechanisms (see
also [54]).

four patterns that have been mined in an industrial smart card development project, are
described briefly below.

Pattern - Visible Type Length: This pattern states that the type length (number of
bytes) shall be encoded in the type identifier. This avoids some problems with
different hardware architectures (8-bit, 16-bit and 32-bit architecture).

Pattern - Generic Pointer Types: This pattern describes how hardware-specific op-
timization parameters can be masked for the hardware-independent code base. The
hardware specific parameters are then resolved before compilation.

Pattern - Endianness Abstraction: Different hardware platforms may have a differ-
ent endianness (byte order). When data is transmitted between different hardware
platforms this may lead to errors. A data conversion function on each hardware
platform avoids this problem.

Pattern - Structure Alignment : The memory representation of structures is usually
optimized and not standardized. Thus, there may be problems, when data is trans-
mitted between different hardware platforms. This pattern provides a solution to
this problem.

3.3.2 Test-driven Porting

If a software is not written platform-independently, a transition to a platform-independent
code-base can save much effort in future projects. However, such a transition is a hard
task to tackle. In publication [53], a systematic process for such a refactoring is described
(see Figure 3.10). This process leverages principles from test-driven development. So, first

3. Method 26

the tests are refactored to be platform independent. In the second step, it is assured that
during the refactoring of the test, no defects have been introduced. In a third step, they can
be applied to the refactoring of the code-base. So, after each refactoring of the code base,
the test runs provide feedback, if this operation has introduced a defect. Thus, the TDD
approach can be applied for a low-risk and iterative refactoring to a platform-independent
code base.

Industrial Product Development Platform A
Phase 1

Refactor Tests

Proof of Confidence

Phase 2

Phase 3

Phase 4

Test Driven Migration

Figure 3.10: Test refactoring and proof of confidence are a precondition for a test-driven migra-
tion [53].

3.3.3 D-VM Layer

A Java Card virtual machine accesses security related assets, such as local variables, the
operand stack and the like. These assets can be protected with several security mecha-
nisms. However, the security mechanisms interact with the implementation of the virtual
machine. Due to the dependencies between virtual machine and security mechanisms,
exchanging the latter becomes difficult. Therefore, a novel Defensive Virtual Machine
(D-VM) layer is described [54]. This layer provides a unique interface to the upper virtual
machine implementation (see Figure 3.11).

D-VM Layer

ApplesJava

Applets
Java Card VM

executes

choose D-VM layer implementation

High Security

a
c
tu

a
l
s
e

c
u

ri
ty

 l
e

v
e

l

security checks

Middle Security

Low Security

D-VM Layer
D-VM Layer

Figure 3.11: The D-VM layer provides a unique interface to the virtual machine. Thus, different
levels of security countermeasure do not impede the functionality of the virtual machine (see
also [54]).

Thus, exchanging the implementation of the D-VM layer versus another implementation
becomes straightforward. As can be seen in Figure 3.11 there are implementations of this

3. Method 27

layer in several levels of security. This approach supports the goal of delivering a tailored
or good-enough security. Therefore, the customers only have to pay for the security level
required.

3.3.4 Product Line Migration

The publication 4 is an industrial experience report on the transition of an industrial
software system to a software product line [55]. It is reported, how the transition first
starts with the academic partner who developed a first prototype. In a second iteration,
both partners evaluate and refine the prototype. In the last iteration, the product line
approach is fully integrated with the development process. Several lessons learned which
have been experienced during this transition are listed.

Chapter 4

Results and Evaluation

This chapter first reports on an industrial case study of porting a secure Java Card operat-
ing system to a new processor family. This porting has been carried out with a test-driven
development approach in order to minimize the risk of introducing defects to the indus-
trial development process. Furthermore, a case study provides an impression under which
constraints a beneficial security evaluation process can be selected. Depending on the
evaluation process, certification evidence can be reused.

4.1 Hardware Abstraction of the Source Code

4.1.1 Pilot Study

In order to abstract the source code, a small pilot study has first been performed. The
occurrences of pointer optimizations which are not platform-independent have been de-
termined. In all software layers which are coded in C language, 443 total occurrences of
problematic pointers were found and 416 of them were not commented out. In a first
feasibility study, 27 of these occurrences were refactored successfully. This small success
story was the motivation to start a larger case study of the approach.

4.1.2 Case Study

In this case study six developers were abstracting the code, so that compilers for two
different processor families can compile the code. The code was under development for
the 8051 processor family. The developers were abstracting the code, so that it can
be compiled also for another processor family with a completely different instruction set.
Figure 4.1 illustrates the situation: the industrial project develops source code on platform
A. This development has a high priority and may not be interrupted by problems which
could be introduced by the migration. Therefore, first the tests have been refactored to be
platform-independent. In this first step, the test must compile for platform B. In a second
step, the refactored tests have to pass on platform A, if they have passed before. In a
third step, the unit itself was abstracted. When all tests had passed again on platform A,
the changes have been committed to the repository. This process does not provide a fully
functional porting of the software. However, it ensured that the code at least compiles
on both platforms and that there is one single source code component, instead. Table 4.1

28

4. Results and Evaluation 29

shows for each step, how many modules have passed it. This is a considerable achievement:
only six developers have abstracted about 26 per cent of the modules in three months. It
has to be taken into account that the industrial development team consists of about 100
developers. In addition to the migration many problems with the compiler and the tool
chain for processor platform B have been detected and reported.

Industrial Product Development Platform A
Phase 1

Refactor Tests

Proof of Confidence

Phase 2

Phase 3

Phase 4

Test Driven Migration

Figure 4.1: Test refactoring and proof of confidence are the precondition for a test-driven migra-
tion [53].

Table 4.1: Amount of modules which passed the first three steps of the test-driven migration
process.

Step 1 Step 2 Step 3

Number of modules 13 10 10

Percent of modules 33 26 26

4.2 Scenario Analysis of the Security Processes

Since the major goal of this thesis is to support an incremental security certification, in this
evaluation several security evaluation processes are compared. The three main categories
of a security evaluation are: static, incremental and balanced. Since only static and
incremental certifications can be applied with the current version of the Common Criteria
standard, the balanced certification is not part of this evaluation. A static certification is
a certification of a whole and finished product with all developer evidence provided. An
incremental certification takes two versions and a further change impact analysis of the
differences is accomplished. Scenarios for these processes regarding reuse of certification
evidence are described and evaluated.

4.2.1 Case study: CeSeCore Architecture Overview

In order to provide a case study, it is only possible to take an open source project as the
subject of investigation. The open source project CeSeCore1 is open source and certified
for Common Criteria EAL 4+. All documents needed for a Common Criteria certification
are available [56]. Basically, the CeSeCore is a set of security related functions bundled in
a Java library. This library consists of 8 modules. These modules and their dependencies

1www.cesecore.eu/

4. Results and Evaluation 30

are depicted in Table 4.2. In the first line of Table 4.2 can be seen (indicated by a 1)
that the modules Security Audit, Key Management and Access Control depend on the
module Backup & Recovery. In other words, the latter three modules are impacted by the
module Backup & Recovery. However, this table only models direct impacts. Impacts can
propagate over several modules. The direct and indirect impacts are modeled in Table
4.3.

Table 4.2: This matrix indicates the direct impacts between the modules. For example, a 1 in
the first line indicates that the module Backup & Recovery provides a service to the corresponding
module in the column.

B
ac

ku
p

&
R

ec
ov

er
y

C
er

ti
fi
ca

te
&

P
ro

fi
le

M
an

ag
em

en
t

S
ec

ur
it

y
A

ud
it

K
ey

M
an

ag
em

en
t

A
cc

es
s

C
on

tr
ol

R
ol

es

Id
en

ti
fi
ca

ti
on

&
A

ut
he

n
ti

ca
ti

on

T
ru

st
ed

T
im

e

Backup & Recovery 0 0 1 1 1 0 0 0

Certificate & Profile Management 0 0 1 1 1 0 0 0

Security Audit 0 0 1 1 1 0 0 1

Key Management 0 0 1 0 1 0 0 0

Access Control 0 0 1 0 0 1 1 0

Roles 0 0 1 0 1 0 0 0

Identification & Authentication 0 0 1 0 0 0 0 0

Trusted Time 0 0 0 0 0 0 0 0

4.2.2 Case 1: Complete Evaluation

Context: The product is certified completely new, because none of the certification
evidence can be reused. Several reasons may lead to this case:

• The product architecture is radically modified or completely new.

• Certification evidence is not fully available because the certification facility has been
changed. Certification evidence may belong to the certification facility and is thus
not always transferable to other facilities.

Reuse: 0 of 9 modules.

No reuse because the whole system has to be certified completely new. The certification
can be done in a static or incremental way.

4. Results and Evaluation 31

4.2.3 Case 2: Re-evaluation with Traceability Impact Analysis

Context: A new product version is certified and only one module has changed. Since the
last version has been certified a long time ago, the certifiers are no longer familiar with
the architecture and implementation of the product. For this reason, a full analysis of all
impacts has to be accomplished. The traceability impact analysis calculates all possible
(direct and indirect) impacts of a change. As can be seen in Table 4.3 only two columns
do not contain any 1. This means that they are not impacted by any other modules. The
last row does not contain any 1: this means that the module Trusted Time has no direct
impact on other modules.

Reuse: 1, 2 or 7 of 9 modules.

If only one module is changed, the following modules have to be re-certified, depending on
the changed module. The impacted modules which need to be re-certified are indicated
by a 1 in the row of Table 4.3.

Changed module - Backup & Recovery OR Certificate and Profile Management:
Reuse of evidence for 1 module. One module is not impacted. All other modules
have to be re-certified.

Changed module - Trusted Time: Reuse of evidence for 7 modules. No module is
impacted. So, only the module Trusted Time has to be re-certified.

Changed module - any other module: Reuse of evidence for 2 modules. The mod-
ules Backup & Recovery and Certificate and Profile Management are not impacted.

4.2.4 Case 3: Re-evaluation with Experiential Impact Analysis

Context: A new product version is certified and only one module has changed. The cer-
tifiers are familiar with the product and its architecture because frequently versions of this
product are certified. For this reason, an Experiential Impact Analysis can be performed.
This analysis starts at the changed module and impacts to other modules are evaluated
manually by the certifiers. Only impacted modules are re-evaluated by the certifiers.

Reuse: 1 up to 8 of 9 modules.

At least the changed module has to be re-evaluated. Then it is evaluated whether the
modules with a possible direct impact have to be re-evaluated. This process continues
until no more modules have to be re-evaluated. The reuse factor is dependent on the
impact of the change. However, this is the best case because only the modules that are
actually impacted are evaluated, in the end.

4.2.5 Relevance of Certification Processes for the Smart Card Industry

It might be argued that the reuse approach with an incremental security certification is
not relevant. In the following evaluation it will be shown that many products are incre-
mental variants of other ones. Thus the security certification evidence could be reused, if

4. Results and Evaluation 32

Table 4.3: This matrix indicates the direct and indirect impacts between the modules. For
example, a 1 in the first line indicates that the module Backup & Recovery provides a service
directly or indirectly to the corresponding module in the column.

B
ac

ku
p

&
R

ec
ov

er
y

C
er

ti
fi
ca

te
&

P
ro

fi
le

M
an

ag
em

en
t

S
ec

ur
it

y
A

ud
it

K
ey

M
an

ag
em

en
t

A
cc

es
s

C
on

tr
ol

R
ol

es

Id
en

ti
fi
ca

ti
on

&
A

ut
he

n
ti

ca
ti

on

T
ru

st
ed

T
im

e

Backup & Recovery 0 0 1 1 1 1 1 1

Certificate & Profile Management 0 0 1 1 1 1 1 1

Security Audit 0 0 1 1 1 1 1 1

Key Management 0 0 1 1 1 1 1 1

Access Control 0 0 1 1 1 1 1 1

Roles 0 0 1 1 1 1 1 1

Identification & Authentication 0 0 1 1 1 1 1 1

Trusted Time 0 0 0 0 0 0 0 0

the appropriate process is applied. The protection profiles and the security target of all
certified products are publicly available2. The security target describes the certified prod-
uct and its security services. This information suffices to determine whether two products
are incremental or not. This evaluation seeks to find product families which consist of
incremental products. The number and size of product families allows a quantification of
the reuse potential of the approach. Since the number of certified products is high and the
majority of certifications are smart cards, this study is limited to smart card certifications.
The time window of this evaluation is the year 2014. It is important to limit the scope of
the study to a certain period, because it is a precondition for a reuse of certification evi-
dence that the certifiers are familiar with the system. If this is not the case, the described
reuse approaches cannot be applied.

Assumptions:

In order to assess whether two products are incremental several assumptions have to be
taken because the security target does not contain all developer evidence.

2https://www.commoncriteriaportal.org/pps/

4. Results and Evaluation 33

Assumption 1: Two products are incremental, if their basic functionality and their se-
curity services are similar.

Assumption 2: Two products can only be incremental, if they are based on the same
processor family. The product can be a derivate of the processor family itself, or a
software in combination with such a processor derivate.

Assumption 3: A processor family is a processor platform with the same architecture
and instruction set.

Assumption 4: A processor derivate is an instance of a processor family. It may extend
the basic architecture of the processor family by additional hardware modules for
security and other purposes.

Results:

In Figure 4.2 the number of the product families dependent on their size is shown. It can
be seen that there are 24 product families with a size of 1 which means that there are 24
products with no potential for reuse of certification evidence. The total number of product
families with a size greater than 1 is 22. The number of products in each product family
is shown in Figure 4.3. It can be seen that the overall number of reusable products is
much higher than the number of non-reusable products. The total number of all reusable
products is 69 as opposed to 24 non-reusable ones. It can be seen that in the smart card
industry, reuse of certification evidence is applicable to the majority of all products.

0

5

10

15

20

25

30

Iterations

1 Iteration

2 Iterations

3 Iterations

4 Iterations

5 Iterations

6 Iterations

10 Iterations

Number of
Product Families

Figure 4.2: Number of product families depending on size of the product family (number of
iterations). A product family is a product family and an iteration is a single version of this
product family.

4. Results and Evaluation 34

0

5

10

15

20

25

30

Iterations

1 Iteration

2 Iterations

3 Iterations

4 Iterations

5 Iterations

6 Iterations

10 Iterations

Number of
Product Versions

Figure 4.3: Number of product versions depending on size of the product family (number of
iterations).

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis provides solutions for a major and a minor goal. The minor goal strives to
unify software artifacts in order to reuse them and also to reuse the certification results of
these artifacts. A layered solution and a cross-cutting solution provide a good abstraction
for a secure embedded system. In addition a process for porting the code is described
and evaluated. The major goal concerns the largest cost factor for the individualization
of products: the security certification. The following improvements for Common Criteria
certifications are described:

• Dedicated processes for iterative security evaluation and a corresponding change
impact analysis are described. Moreover, it is shown how the software company
interacts with the evaluation facility. This is actually the first time that a detailed
process for an incremental Common Criteria certification has been published.

• The pre-conditions and the enabling context of each security certification process
are described. A decision framework enables companies to find an appropriate cer-
tification process.

• Certain patterns of software modeling are required to support specific certification
processes. For an iterative certification, a software model must support diff and
merge operations. For a balanced certification the software model shall support a
process integration.

• A cost model for security assurance helps to trade-off certification cost against time-
to-market. It provides an additional guidance for selecting an appropriate certifica-
tion process.

• The iterative security certification is of particularly high value for the reuse of eval-
uation results. Often, a new version of a product differs only in some configuration
parameters. The Common Criteria requires a new certificate for such a new version.

• A detailed proposal for changing the Common Criteria standard in order to make it
more flexible is provided. It is described how a specific pattern of software modeling
is applied to leverage this approach.

35

5. Conclusion and Future Work 36

Furthermore, this thesis shows methods that enable a hardware abstraction of the prod-
uct family. The resulting consistent code base contributes to the reuse of certification
results. A decision framework for selecting an appropriate certification process is of par-
tiular value to companies which do not have much experience of Common Criteria certi-
fications. However, the largest benefit is the described iterative certification: it enables
reuse of certification results to a high degree and is a very common scenario.

5.2 Directions for Future Work

5.2.1 Security Certification

Directions for future work regarding security certification are provided in publication 7.
This publication proposes to change the Common Criteria standard in order to balance
product assurance and process assurance. In a first step, a mapping of Common Criteria
assurance components to process and product assurance can be done. In a second step,
an aggregation function which calculates the contribution of the assurance components
to Evaluation Assurance Levels (EAL) can be designed. In a third step, this evaluation
paradigm shall be evaluated for its appropriateness to properly evaluate the security. De-
tailed experience reports on the application of this method could successfully trigger a
change of the Common Criteria standard.
At present, the security models support round-trip engineering which means advanced
model evolution. It would be interesting to enhance the security models with a process
integration. So, a high-level security model can be formally verified. Then, with the help
of reviews and other process assurance techniques, the conformance of the software with
this high-level model can be ascertained. This approach is not limited to Common Criteria
certifications. It can be applied to many other standards.
The main goal of this thesis is to design a process which takes a product that is already cer-
tified and iterates towards a new product. This is already a great improvement. However,
the approach can be improved, so that a certificate is not only issued for a single prod-
uct but for a family of products or product configurations. This would be a tremendous
improvement but it is still a challenge: the Common Criteria standard does not provide
a certification of a family of products. However, there has been a considerable step in
the right direction: it is now possible to certify a set of protection profiles with a limited
set of configuration parameters. There is still some work to extend this approach to the
certification of the product (which is much more complex than the protection profile).
This thesis provides different patterns of Common Criteria certifications. It would be
interesting to apply this approach to other standards in the safety and security domain.
The different standards can then be compared. The benefits of certain standards could be
input for improving other standards. As an overall parenthesis, a pattern catalog could
provide guidance for searching an appropriate certification pattern.

5.2.2 Security Requirements

Natural language requirements often incorporate ambiguities and are unclear. So, it would
be interesting to investigate standards for the quality of their security requirements. Then,
a semi-formal language, such as EARS [57] or Planguage [58] can help to improve the

5. Conclusion and Future Work 37

quality of these requirements. It can be quantitatively evaluated how many security re-
quirements can be expressed with such an approach. The benefits are clearer requirements
and the possibility of using them for a formal verification. Such a formal verification is
necessary for high-quality assurance of systems.
The security functional requirements of the Common Criteria standard could be expressed
in such a semi-formal language. The next step would be linking the security requirements
with evidence in the source code. A challenge is that it is very difficult to quantify the
evidence which is distributed over the source code. Because it is so difficult to quantify
the evidence, it is also a challenge to assess whether different variants fulfill the security
requirements. Approaches to link requirements with evidence are goal models [50] and goal
structuring notation [59] . Such a model shall also support a better means for a change
impact analysis: for example it could determine the impact of taking another variant of
a specific component. This impact analysis is important for the certification of product
families.

Chapter 6

Publications

This chapter provides a selection of the publications that have been published in the
course of this thesis. Publications 1,2 and 3 are solutions that help to achieve and keep a
hardware-abstracted code base which also supports a reuse of certification evidence. Pub-
lication 4 reports on the introduction of a variant management system in an industrial
project. Such a variant management is necessary to separate and compose common and
variable parts of a software system. A model of a research-industry collaboration and its
results are provided in this publication. Publications 5 and 6 describe security certifica-
tion processes that are possible with the current version of the Common Criteria security
standard. Future security certification processes are proposed in publication 7. The con-
straints of these processes are described in publication 8 and 9, namely as constraints
regarding investment in setting up tools and a cost model for certification.

Publication 1:A Defensive Virtual Machine Layeer to Counteract Fault Attacks on Java Cards,
7th Workshop in Information Security Theory and Practice (WISTP’13), Heraklion, Greece, May,
28th – 30th 2013.

Publication 2:Patterns for Hardware-Independent Development for Embedded Systems, 20th Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP’14), Irsee, Germany, July, 9th
– 13th 2014.

Publication 3: Test-Driven Migration Towards a Hardware-Abstracted Platform, 5th Interna-
tional Conference on Pervasive and Embedded Computing and Communication Systems (PECCS),
Angers, France, February, 11th – 13th 2015.

Publication 4: Embedding research in the industrial field: a case of a transition to a software
product line, 2014 International Workshop on Long-term Industrial Collaboration on Software En-
gineering (WISE’14), Vasteras, Sweden, September, 16th 2014.

Publication 5: Evaluation paradigm selection according to Common Criteria for an incremental
product development, International Workshop on MILS: Architecture and Assurance for Secure
Systems (MILS’15), Amsterdam, January, 20th 2015.

Publication 6:Supporting evolving security models for an agile security evaluation, 2014 Evolving
Security and Privacy Requirements Engineering (ESPRE’14), Karlskrona, Sweden, August, 25th
2014.

38

6. Publications 39

Publication 7:Balancing Product and Process Assurance for Evolving Security Systems, Inter-
national Journal of Secure Software Engineering (IJCCE’15), in print.

Publication 8:Patterns of Software Modeling, Fifth International Workshop on Information Sys-
tems in Distributed Environment (ISDE’14), Amantea, Italy, October, 31th 2014.

Publication 9: Where does all this waste come from?, 21st EuroSPI Conference (EUROSPI’14),
Luxembourg, Juni, 25th – 27th 2014.

Publication 1: A Defensive Virtual Machine
Layer to Counteract Fault Attacks on Java Cards,
7th Workshop in Information Security Theory
and Practice (WISTP’13), Heraklion, Greece,
2013.

Publication 3: Test-Driven Migration Towards a
Hardware-Abstracted Platform, 5th Interna-
tional Conference on Pervasive and Embedded
Computing and Communication Systems
(PECCS), Angers, France, 2015

Publication 2: Patterns for Hardware-
Independent Development for Embedded
Systems, 20th European Conference on Pattern
Languages of Programs (EuroPLoP’14), Irsee,
Germany, 2014.

Publication 6: Supporting evolving security
models for an agile security evaluation, 2014
Evolving Security and Privacy Requirements
Engineering (ESPRE’14), Karlskrona, Sweden,
2014.

Publication 5: Evaluation paradigm selection
according to Common Criteria for an
incremental product development,International
Workshop on MILS: Architecture and Assurance
for Secure Systems (MILS’15), Amsterdam,
2015.

Publication 9: Where does all this waste come
from?, 21st EuroSPI Conference (EUROSPI’14),
Luxembourg, 2014.

Publication 8: Patterns of Software Modeling,
Fifth International Workshop on Information
Systems in Distributed Environment (ISDE’14),
Amantea, Italy, 2014.

Publication 7: Balancing Product and Process
Assurance for Evolving Security Systems,
International Journal of Secure Software
Engineering (IJCCE’15), 2015.

Publication 4: Embedding research in the
industrial field: a case of a transition to a
software product line (WISE 2014),
International Workshop on Long-term Industrial
Collaboration on Software Engineering,
Sweden, 2014

Goal: HW Abstraction of Future Smart Cards (4)

Goal: Incremental Security Certification

PRE-CONDITION

Decision
Framework

(5)

Incremental
Certification

(6)

Security
Abstraction
Architecture

(1)

Patterns
HW-

Abstraction
(2)

Migration
Process

(3)

Balanced
Certification

(7)

Cost
Model

(9)

Consequence

SW-
Models

(8)

Support

Hypothesis

Suggest

Figure 6.1: In order to achieve a hardware-abstracted code base, three strategies are applied: an
architecture, guidelines or patterns for coding and a migration process. The abstracted code base
increases the reusability of security certification evidence. The main goal is to support the security
certifications of evolving systems. A decision framework helps to select an appropriate approach
and incremental certification processes are detailed. Finally, the constraints and consequences of
the proposed evaluation approaches are explained.

A Defensive Virtual Machine Layer to
Counteract Fault Attacks on Java Cards

Michael Lackner, Reinhard Berlach, Wolfgang Raschke,
Reinhold Weiss, and Christian Steger

Institute for Technical Informatics,
Graz University of Technology, Graz, Austria

{michael.lackner,reinhard.berlach,wolfgang.raschke,

rweiss,steger}@tugraz.at

Abstract. The objective of Java Cards is to protect security-critical
code and data against a hostile environment. Adversaries perform fault
attacks on these cards to change the control and data flow of the Java
Card Virtual Machine. These attacks confuse the Java type system, jump
to forbidden code or remove run-time security checks. This work intro-
duces a novel security layer for a defensive Java Card Virtual Machine
to counteract fault attacks. The advantages of this layer from the secu-
rity and design perspectives of the virtual machine are demonstrated.
In a case study, we demonstrate three implementations of the abstrac-
tion layer running on a Java Card prototype. Two implementations use
software checks that are optimized for either memory consumption or
execution speed. The third implementation accelerates the run-time ver-
ification process by using the dedicated hardware protection units of the
Java Card.

Keywords: Java Card, Defensive Virtual Machine, Countermeasure,
Fault Attack

1 Introduction

A Java Card enables Java applets to run on a smart card. The primary purpose of
using a Java Card is the write-once, run-everywhere approach and the ability of
post-issuance installation of applets [21]. These cards are used in a wide range of
applications (e.g., digital wallets and transport tickets) to store security-critical
code, data and cryptographic keys. Currently, these cards are still very resource-
constrained devices that include an 8- or 16-bit processor, 4kB of volatile memory
and 128kB of non-volatile memory. To make a Java Card Virtual Machine run
on such a constrained device, a subset of Java is used [19]. Furthermore, special
Java Card security concepts, such as the Java Card firewall [18] and a verification
process for every applet [15], were added. The Java Card firewall is a run-time
security feature that protects an applet against illegal access from other applets.
For every access to a field or method of an object, this check is performed.
Unfortunately, the firewall security mechanism can be circumvented by applets

6. Publications Publication 1 - WISTP’13 40

c© 2013 WISTP. Reprinted, with permission, from Proceedings of 7th Workshop in Information
Security Theory and Practice.

2 A Defensive Virtual Machine Layer

that do not comply with the Java Card specification. Such applets are called
malicious applets.

To counteract malicious applets, a bytecode verification process is performed.
This verification is performed either on-card or off-card for every applet [15].
Note that this bytecode verification is a static process and not performed during
applet execution. The reasons for this static approach are the high resource needs
of the verification process and the hardware constraints of the Java Card. This
behavior is now abused by adversaries. They upload a valid applet onto the card
and perform a fault attack (FA) during applet execution. Adversaries are now
able to create a malicious applet out of a valid one [5].

A favorite time for performing a FA is during the fetching process. At this
time, the virtual machine (VM) reads the next Java bytecode values from the
memory. An adversary that performs an FA at this time can change the readout
values. The VM then decodes the malicious bytecodes and executes them, which
leads to a change in the control and data flow of the applet. A valid applet is
mutated by such an FA to a malicious applet [5, 17, 11] and gains unauthorized
access to secret code and data [16, 2].

To counteract an FA, a VM must perform run-time security checks to de-
termine if the bytecode behaves correctly. In the literature, different counter-
measures, such as control-flow checks [23], double checks [4], integrity checks [8]
and method encryption [20], have been proposed. Barbu [3] proposed a dynamic
attack countermeasure in which the VM executes either standard bytecodes or
bytecodes with additional security checks.

All these works do not concentrate on the question of how these security
mechanisms can be smoothly integrated into a Java Card VM. For this inte-
gration, we propose adding an additional security layer into the VM. This layer
abstracts the access to internal VM resources and performs run-time security
checks to counteract FAs. The primary contributions of this paper are the fol-
lowing:

– Introduction of a novel defensive VM (D-VM) layer to counteract FAs during
run-time. Access to security-critical resources of the VM, such as the operand
stack (OS), local variables (LV) and bytecode area (BA), is handled using
this layer.

– Usage of the D-VM layer as a dynamic countermeasure. Based on the actual
security level of the card, different implementations of the D-VM layer are
used. For a low-security level, the D-VM implementation uses fewer checks
than for a high-security level. The security level depends on the credibility of
the currently executed applet and run-time information received by hardware
or software modules.

– A case study of a defensive VM using three different D-VM layer implemen-
tations. The API of the D-VM layer is used by the Java Card VM to perform
run-time checks on the currently executing bytecode.

– The defensive VMs are executed on a smart card prototype with specific HW
security features to speed up the run-time verification process. The resulting

6. Publications Publication 1 - WISTP’13 41

A Defensive Virtual Machine Layer 3

run-time and main memory consumption of all implemented D-VM layers
are presented.

Section 2 provides an overview of attacks on Java Cards and the current
countermeasures against them. Section 3 describes the novel D-VM layer pre-
sented in this work and its integration into the Java Card design. Furthermore,
the method by which the D-VM layer enables the concept of dynamic counter-
measures is presented. Section 4 presents implementation details regarding how
the three D-VM implementations are inserted into the smart card prototype.
Section 5 analyzes the additional costs for the D-VM implementations based on
the execution and main memory overhead. Finally, the conclusions and future
work are discussed in Section 6.

2 Related Work

In this section, the basics of the Java Card VM and work related to FA on Java
Cards are presented. Then, an analysis of work regarding methods of counteract-
ing FAs and securing the VM are presented. Finally, an FA example is presented
to demonstrate the danger posed by such run-time attacks for the security of
Java Cards.

2.1 Java Card Virtual Machine

A Java Card VM is software that is executed on a microprocessor. The VM
itself can be considered a virtual computer that executes Java applets stored
in the data area of the physical microprocessor. To be able to execute Java
applets, the VM uses internal data structures, such as the OS or the LV, to store
interim results of logical and combinatorial operations. All of these internal data
structures are general objects for adversaries that attack the Java Card [4, 20,
24].

For every method invocation performed by the VM, a new Java frame [19]
is created. This frame is pushed to the Java stack and removed from it when
the method returns. In most VM implementations, this frame internally consists
of three primary parts. These parts have static sizes during the execution of
a method. The first frame part is the OS on which most Java operations are
performed. The OS is the source and destination for most of the Java bytecodes.
The second part is the LV memory region. The LV are used in the same manner
as the registers on a standard CPU. The third part is the frame data, which
holds all additional information needed by the VM and Java Card Runtime
Environment (JCRE) [18]. This additional information includes, for example,
return addresses and pointers to internal VM-related data structures.

2.2 Attacks on Java Cards

Loading an applet that does not conform to the specification defined in [19]
onto a Java Card is a well-known problem called a logical attack (LA). After an

6. Publications Publication 1 - WISTP’13 42

4 A Defensive Virtual Machine Layer

LA, different applets on the card are no longer protected by the so-called Java
sandbox model. Through this sandbox, an applet is protected from illegal write
and read operations of other applets. To perform an LA, an adversary must
know the secret key to install applets. This key is known for development cards,
but it is highly protected for industrial cards and only known by authorized
companies and authorities. In conclusion, LAs are no longer security threats for
current Java Cards.

Side-channel analyses are used to gather information about the currently ex-
ecuting method or instructions by measuring how the card changes environment
parameters (e.g., power consumption and electromagnetic emission) during run-
time. Integrated circuits influence the environment around them but can also
be influenced by the environment. This influence is abused by an FA to change
the normal control and data flow of the integrated circuit. Such FAs include
glitch attacks on the power supply and laser attacks on the cards [2, 24]. By
performing side-channel analyses and FAs in combination, it is possible to break
cryptographic algorithms to receive secret data or keys [16].

In 2010, a new group of attacks called combined attacks (CA) was introduced.
These CAs combine LAs and FAs to enable the execution of ill-formed code
during run-time [5]. An example of a CA is the removal of the checkcast bytecode
to cause type confusion during run-time. Then, an adversary is able to break the
Java sandbox model and obtain access to secret data and code stored on the
card [5, 17]. In this work work, we concentrate on countering FAs during the
execution of an applet using our D-VM layer.

2.3 Countermeasures Against Java Card Attacks

Since approximately 2010, an increasing number of researchers have started con-
centrating on the question of what tasks must be performed to make a VM more
robust against FAs and CAs. Several authors [22, 8] suggest adding an additional
security component to the Java Card applet. In this component, they store check-
sums calculated over basic blocks of bytecodes. These checksums are calculated
off-card in a static process and added to a new component of the applet. During
run-time, the checksum of executed bytecodes is calculated using software and
compared with the stored checksums. If these checksums are not the same, a
security exception is thrown.

Another FA countermeasure is the use of control-flow graph information [23].
To enable this approach, a control-flow graph over basic blocks is calculated off-
card and stored in an additional applet component. During run-time, the current
control-flow graph is calculated and compared with the stored control graph.

In [20], the authors propose storing a countermeasure flag in a new applet
component to indicate whether the method is encrypted. They perform this
encryption using a secret key and the Java program counter for the bytecode
of every method. Through this encryption, they are able to counteract attacks
that change the control-flow of an applet to execute illegal code or data.

Another countermeasure against FAs that target the data stored on the OS
is presented in [4]. In this work, integrity checks are performed when data are

6. Publications Publication 1 - WISTP’13 43

A Defensive Virtual Machine Layer 5

pushed or popped onto the OS. Through this approach, the OS is protected
against FAs that corrupt the OS data.

Another run-time check against FAs is proposed in [10, 14], in which they
create separate OSes for each of the two data types, integralValue and reference.
With this approach of splitting the OS, it is possible to counteract type-confusion
attacks. A drawback is that in both works, the applet must be preprocessed.

In [3], the authors propose a dynamic countermeasure to counteract FAs.
Bytecodes are implemented in different versions inside the VM, a standard ver-
sion and an advanced version that performs additional security checks. The VM
is now able to switch during run-time from the standard to the advanced version.
By using unused Java bytecodes, an applet programmer can explicitly call the
advanced bytecode versions.

The drawbacks of current FA countermeasures are that most of them add an
additional security component to the applet or rely on preprocessing of the ap-
plet. This has different drawbacks, such as increased applet size or compatibility
problems for VMs that do not support these new applet components. In this
work, we propose a D-VM layer that performs checks on the currently executing
bytecode. These checks are performed based on a run-time policy and do not
require an off-card preprocessing step or an additional applet component.

2.4 EMAN4 Attack: Jump Outside the Bytecode Area

In 2011, the run-time attack EMAN4 was found [6]. In this work a laser was
used to manipulate the read out values from the EEPROM to 0x00. By this
laser attack an adversary is able to change the Java bytecode of post-issuance
installed applets during their execution.

The target time of the attack is when the VM fetches the operands of the
goto w bytecode from the EEPROM. Generally the goto w bytecode is used to
perform a jump operation inside a method. The goto w bytecode consists of the
operand byte 0xa8 and two offset bytes for the branch destination [19]. This
branch offset is added to the actual Java program counter to determine the next
executing bytecode. An adversary which changes this offset is able to manipulate
the control flow of the applet.

With the help of the EMAN4 attack it is possible to jump with the Java
program counter outside the applet bytecode area (BA), as illustrated in Fig-
ure 1. This is done by changing the offset parameters of the goto w bytecode
from 0xFF20 to 0x0020 during the fetch process of the VM. The jump destina-
tion address of the EMAN4 attack is a data array outside the bytecode area.
This data array was previously filled with adversary defined data. After the laser
attack the VM executes the values of the data array. This execution of adver-
sary definable data leads to considerably more critical security problems, such
as memory dumps [7]. In this work we counteract the EMAN4 attack by our
control flow policy. This policy only allows to fetch bytecodes which are inside
the bytecode area.

6. Publications Publication 1 - WISTP’13 44

6 A Defensive Virtual Machine Layer

Applet

Data

Applet

Data

Bytecode Area

...goto_w 0xFF20

Jump Outside the Bytecode Area!

Applet A – Static Data Applet A - Objects

Undefined

Data
...

Byte Array

[0] [1] [2]

Execute Malicious Datagoto_w 0x0020

Fig. 1. The EMAN4 run-time attack changes the jump address 0xFF20 to 0x0020,
which leads to the security threat of executing bytecode outside the defined BA of the
current applet [6].

3 Defensive VM Layer

In this work, we propose adding a novel security layer to the Java Card. Through
this layer, access to internal structures (e.g., OS, LV and BA) of the VM is
handled. In reference to its defensive nature and its primary use for enabling a
defensive VM, we name this layer the defensive VM (D-VM) layer. An overview
of the D-VM layer and the D-VM API, which is used by the VM, is depicted in
Figure 2 and is explained in detail below.

Functionalities offered by the D-VM API include, for example, pushing and
popping data onto the OS, writing and reading from the LV and fetching Java
bytecodes. It is possible for the VM to implement all Java bytecodes by using
these API functions. The pseudo-code example in Listing 1.1 shows the process
of fetching a bytecode and the implementation of the sadd bytecode using our
D-VM API approach. The sadd bytecode pops two values of integral data type
from the OS and pops the sum as an integral data type back onto the OS.

Listing 1.1. Pseudo-code of the VM using the API functions of the newly introduced
D-VM layer.

// use the D−VM API to f e t c h the next by tecode from the BA
switch (dvm fetch bytecode ())
{

. . .
case sadd : // implementat ion o f the sadd by tecode .
{

// use the D−VM API to ob ta in the two va l u e s from the OS
r e s u l t = dvm pop integralData () + dvm pop integralData () ;
// use the D−VM API to wr i t e the sum back onto the OS

dvm push integralData (r e s u l t) ;
}
. . .

}

The security mechanisms within the security layer intended to protect the
VM from FAs are hidden from the VM programmer. A security architect, spe-

6. Publications Publication 1 - WISTP’13 45

A Defensive Virtual Machine Layer 7

Operating System Layer

Applet A Applet B Applet C

Java Card Level

Defensive VM (D-VM) API

Smart Card Hardware

Java Card VM

D-VM Layer

Operating System API

Applet Level

Operating System Level

Instruction Set Level

Hardware Level

Defensive VM Level

Fig. 2. The VM executes Java Card applets and uses the newly introduced D-VM layer
to secure the Java Card against FAs.

cialized for VM security, is able to implement and choose the appropriate coun-
termeasures within the D-VM layer. These countermeasures are based on state-
of-the-art knowledge and the hardware constraints of the smart card architec-
ture. Programmers implementing the VM do not need to know these security
techniques in detail but rather just use the D-VM API functions.

If HW features are used, the D-VM layer communicates with these units
and configures them through specific instructions. Through this approach, it is
also very easy to alter the SW implementations by changing the D-VM layer
implementation without changing specific Java bytecode implementations. It is
possible to fulfill the same security policy on different smart card platforms where
specific HW features are available.

On a code size-constrained smart card platform, an implementation that has
a small code size but requires more main memory or execution time is used. The
appropriate implementations of security features within the D-VM API are used
without the need to change the entire VM.

Dynamic Countermeasures: The D-VM layer is also a further step to enable
dynamic fault attack countermeasures such as that proposed by Barbu in [3].
In this work, he proposes a VM that uses different bytecode implementations

6. Publications Publication 1 - WISTP’13 46

8 A Defensive Virtual Machine Layer

depending on the actual security level of the smart card. If an attack or malicious
behavior is detected, the security level is decreased. This decreased security leads
to an exchange of the implemented bytecodes with more secure versions. In these
more secure bytecodes, different additional checks, such as double reads, are
implemented, which leads to decreased run-time performance.

Our D-VM layer further advances this dynamic countermeasure concept. De-
pending on the actual security level, an appropriate D-VM layer implementation
is used. Therefore, the entire bytecode implementation remains unchanged, but
it is possible to dynamically add and change security checks during run-time.
An overview of this dynamic approach is outlined in Figure 3.

D-VM Layer

ApplesJava

Applets
Java Card VM

executes

choose D-VM layer implementation

High Security

a
c
tu

a
l
s
e

c
u

ri
ty

 l
e

v
e

l

security checks

Middle Security

Low Security

D-VM Layer
D-VM Layer

Fig. 3. Based on the current security level of the VM, an appropriate D-VM layer
implementation is chosen.

The actual security level of the card is determined by HW sensors (e.g.,
brightness and supply voltage) and the behavior of the executing applet. For
example, at a high security level, the D-VM layer can perform a read operation
after pushing a value into the OS memory to detect an FA. At a lower security
level, the D-VM layer performs additional bound, type and control-flow checks.

Security Context of an Applet: Another use case for the D-VM layer is the
post-issuance installation of applets on the card. We focus on the user-centric
ownership model (UCOM) [1] in which Java Card users are able to load their own
applets onto the card. For the UCOM approach, each newly installed applet is
assigned a defined security level at installation time. The security level depends

6. Publications Publication 1 - WISTP’13 47

A Defensive Virtual Machine Layer 9

on how trustworthy the applet is. For example, the security level for an applet
signed with a valid key from the service provider is quite high, which results in a
high execution speed. Such an applet should be contrasted with an applet that
has no valid signature and is loaded onto the card by the Java Card owner. This
applet will run at a low security level with many run-time checks but a slower
execution speed. Furthermore, access to internal resources and applets installed
on the card could be restricted by the low security level.

3.1 Security Policy

This chapter introduces the three security policies used in this work. With the
help of these policies, it is possible to counteract the most dangerous threats
that jeopardize security-critical data on the card. The type and bound policies
are taken from [14] and are augmented with a control-flow policy. The fulfillment
of the three policies on every bytecode is checked by three different D-VM layer
implementations using our D-VM API.

Control-Flow Policy: The VM is only allowed to fetch bytecodes that are
within the borders of the currently active method’s BA. Fetching of bytecodes
that are outside of this area is not allowed. The actual valid method BA changes
when a new method is invoked or a return statement is executed. Because of this
policy, it is no longer possible for control-flow changing bytecodes (e.g., goto w
and if scmp w) to jump outside of the reserved bytecode memory area. This
policy counters the EMAN4 attack [6] on the Java Card and all other attacks
that rely on the execution of a data array or code of an-other applet that is not
inside the current BA.

Type Policy: Java bytecodes are strongly typed in the VM specification [19].
This typing means that for every Java bytecode, the type of operand that the
bytecode expects and the type of the result stored in the OS or LV are clearly
defined. An example is the sastore bytecode, which stores a short value in an
element of a short array object. The sastore bytecode uses the top three elements
from the OS as operands. The first element is the address of the array object,
which is of type reference. The second element is the index operand of the array,
which must be of type short. The third element is the value, which is stored
within the array element and is of type short.

Type confusion between values of integral data (boolean, byte or short) and
object references (byte[], short[] or class A, for example) is a serious problem
for Java Cards [24, 17, 13, 25, 6, 11]. To counter these attacks, we divide all data
types into the two main types, integralData and reference. Note that this policy
does not prevent type confusion inside the main type reference between array
and class types.

Bound Policy: Most Java Card bytecodes push and pop data onto the OS or
read and write data into the LV, which can be considered similar to registers. The

6. Publications Publication 1 - WISTP’13 48

10 A Defensive Virtual Machine Layer

OS is the main component for most Java bytecode operations. Similar to buffer
overflow attacks in C programs [9], it is possible to overflow the reserved memory
space for the OS and LV. An adversary is then able to set the return address of
a method to any value. Such an attack was first found in 2011 by Bouffard [6,
7]. An overflow of the OS happens by pushing or popping too many values onto
the OS. An LV overflow happens when an incorrect LV index is accessed. This
index parameter is decoded as an operand for several LV-related bytecodes (e.g.,
sstore, sload and sinc). This operand is therefore stored permanently in the non-
volatile memory. Thus, changing this operand through an FA gives an attacker
access to memory regions outside the reserved LV memory region. These memory
regions are created for every method invoked and are not changed during the
method execution. Therefore in this work, we permit Java bytecodes to operate
only within the reserved OS and LV memory regions.

4 Java Card Prototype Implementation

In this work three implementations of the D-VM layer are proposed to perform
run-time security checks on the currently executing bytecode. Two implementa-
tions perform all checks in SW to ensure our security policies. One implementa-
tion uses dedicated HW protection units to accelerate the run-time verification
process. The implementations of the D-VM layer were added into a Java Card
VM and executed on a smart card prototype. This prototype is a cycle-accurate
SystemC [12] model of an 8051 instruction set-compatible processor. All software
components, such as the D-VM layer and the VM, are written in C and 8051
assembly language.

4.1 D-VM Layer Implementations

This section presents the implementation details for the three implemented
D-VM layers used to create a defensive VM. All three implemented D-VM layers
fulfill our security policy presented in Chapter 3 but differ from each other in
the detailed manner in which the policies are satisfied. The key characteristic of
the two SW D-VM implementations is that they use a different implementation
of the type-storing approach to counteract type confusion. The run-time type
information (integralData or reference) used to perform run-time checks can be
stored either in a type bit-map (memory optimization) or in the actual word size
of the microprocessor (speed optimization). The HW Accelerated D-VM uses a
third approach and stores the type information in an additional bit of the main
memory. Through this approach, the HW can easily store and check the type
information for every OS and LV entry. An overview of how the type-storing
policy is ensured by our D-VM implementations and a memory layout overview
are shown in Figure 4 and explained in detail in the next sections.

Bit Storing D-VM: This D-VM layer implementation stores the type informa-
tion for every element on the OS and LV in a type bitmap. The type information

6. Publications Publication 1 - WISTP’13 49

A Defensive Virtual Machine Layer 11

LV

Frame
Data

OS

LV

Frame
Data

OS

type

entry
entry type

type
bitmap

entry

Word Storing D-VMBit Storing D-VM HW Accelerated D-VM

LV

Frame
Data

OS

Fig. 4. The Bit Storing D-VM stores the type information for every OS and LV entry
in a type bitmap. The Word Storing D-VM stores the type information below the
value in the reserved OS and LV spaces. The HW Accelerated D-VM holds the type
information as an additional type bit, which increases the memory size of a word from
8 bits to 9 bits.

for every entry of the OS and LV is now represented by a one-bit entry. A problem
with this approach is that the run-time overhead is quite high because different
shift and modulo operations must be performed to store and read the type infor-
mation from the type bitmap. These operations (shift and modulo) are, for the
8051 architecture, computationally expensive operations and thus lead to longer
execution times. An advantage of the bit-storing approach is the low memory
overhead required to hold the type information in the type bitmap.

Word Storing D-VM: The run-time performance of the type storing and
reading process is increased by storing the type information using the natural
word size of the processor and data bus on which the memory for the OS and
LV is located. Every element in the OS and LV is extended with a type element
of a word size such that it can be processed very quickly by the architecture. By
choosing this implementation, the memory consumption of the type-storing pro-
cess increases compared with the previously introduced SW Bit Storing D-VM.
Pseudo-codes for writing to the top of the stack of the OS for the bit- and
word-storing approach are shown in Listings 1.2 and 1.3.

Listing 1.2. Operations needed to push an
element on the OS by the Bit Storing D-VM.

dvm push integralData (va lue)
{

//push va lue onto OS and
// inc rea se OS s i z e

OS[s i z e ++] = value ;
// s t o r e type in format ion
// in t o type bitmap ,
//INT−>i n t e g ra lDa ta type

bitmap [s i z e /8] = INT<<(s i z e %8);
}

Listing 1.3. Operations needed to
push an element on the OS by the Word
Storing D-VM.

dvm push integralData (va lue)
{

//push va lue onto OS
// inc rea se OS s i z e

OS[s i z e ++] = value ;
// s t o r e type in format ion
// in t o next memory word ,
//INT−>i n t e g ra lDa ta type

OS[s i z e ++] = INT ;
}

6. Publications Publication 1 - WISTP’13 50

12 A Defensive Virtual Machine Layer

HW Accelerated D-VM: Performing type and bound checks in SW to ful-
fill our security policy consumes a lot of computational power. Types must be
loaded, checked and stored for almost every bytecode. The bounds of the OS
and LV must be checked such that no bytecode performs an overflow. The HW
Accelerated D-VM layer uses specific HW protection units of the smart card
to accelerate these security checks. New protection units (bound protection and
type protection) are able to check if the current memory move (MOV) operation
is operating in the correct memory bounds. The type information for the OS and
LV entries is stored as an additional type bit for every main memory word. The
information is decoded into new assembly instructions to specify which memory
region (OS, LV or BA) and with which data type (integralData or reference) the
MOV operation should write or read data. An overview of the HW Accelerated
D-VM is shown in Figure 5. Depending on the assembly instruction, the HW
protection units perform four security operations:

– Check if the Java opcode is fetched from the current active BA.
– Check if the destination address of the operation is within the memory area

of the OS or LV. If the operation is not within these two bounded areas, a
HW security exception is thrown.

– For every write operation write the type decoded in the CPU instruction
into the accessed memory word.

– For every read operation, check if the stored type is equal to the type decoded
in the CPU instruction. If they are not equal, throw a hardware security
exception.

Bound

Protection

uses

Bound

Policy

Type

Policy

fulfill run-time policy

Type

Protection

c
o

n
tr

o
l
a

c
c
e

s
s

 MOV_OS_reference

Typed Assembly Instructions

 MOV_LV_reference

 MOV_LV_integralData

 MOV_OS_untyped

 MOV_OS_integralData

Local Variables

(LV)

Operand Stack

(OS)

HW Protection Units

Control-Flow

Policy

 MOV_BA

Bytecode Area

(BA)

CPU

Defensive VM API

Java Card VM

Memory

Fig. 5. Overview of the HW Accelerated D-VM implementation using new typed as-
sembly instructions to access VM resources (OS, LV and BA). Malicious Java bytecodes
violating our run-time policy will be detected by new introduced HW protection units.

6. Publications Publication 1 - WISTP’13 51

A Defensive Virtual Machine Layer 13

5 Prototype Results

In this section, we present the overall computational overhead of the three im-
plemented D-VM layers and their main memory consumption. All of them are
compared with a VM implementation without the D-VM layer. The speed com-
parison is performed for different groups of bytecodes by self written micro-
benchmarks where all bytecodes under test are measured. These test programs
first perform an initialization phase where the needed operands for the bytecode
under test are written into the OS or LV. After the execution of the bytecode
under test the effects on the OS or LV are removed. Note that our smart card
platform has no data or instruction cache. Therefore, no caching effects must be
taken into account for all test programs.

5.1 Computational Overhead

Speed comparisons for specific bytecodes are shown in Figure 6. For example, the
Java bytecode sload requires 148% more execution time for the Word Storing
D-VM. For the Bit Storing D-VM, the execution overhead is 212%. The in-
creased overhead is because of the expensive calculations used to store the type
information in a bitmap. For the HW Accelerated D-VM, the execution speed
decreases by only 4% because all type and bound checks are performed using
HW. Additional run-time statistics for groups of bytecodes are listed in Table 1.
As expected, the Bit Storing D-VM consumes the most overall run-time, with
an increase of 208%. The Word Storing D-VM needs 142% more run-time. The
HW Accelerated D-VM has only 6% more overhead.

HW Accelerated D-VM
Word Storing D-VM
Bit Storing D-VM

0%
50%

100%
150%
200%
250%

400%

300%
350%

sload sadd saload bspush ifeq overall

Fig. 6. Speed comparison of individual bytecodes for the different D-VM layer imple-
mentations proposed in this work. The results are compared with a VM without the
D-VM layer.

5.2 Main Memory Consumption

The HW Accelerated D-VM requires one type bit per 8 bits of data to store
the type information during run-time. This results in an overall main memory

6. Publications Publication 1 - WISTP’13 52

14 A Defensive Virtual Machine Layer

Table 1. Speed comparison for different groups of bytecodes compared with a VM
without the D-VM layer.

Bytecode Groups HW Accelerated D-VM Word Storing D-VM Bit Storing D-VM

Arithmetic/Logic +7% +146% +240%
LV Access +5% +185% +243%
OS Manipulation +5% +151% +231%
Control Transfer +7% +113% +173%
Array Access +5% +130% +166%

Overall +6% +142% +208%

increase of 12.5%. The Word Storing D-VM requires in the worst case 33% more
memoy because one type byte holds the type information for two data bytes.
The Bit Storing D-VM requires approximately 6.25% more memory in the case
in which the entire memory is filled with OS and LV data. This is because the
Bit Storing D-VM requires one type bit per 16 bits of data.

6 Conclusions and Future Work

This work presents a novel security layer for the virtual machine (VM) on Java
Cards. Because it is intended to defend against fault attacks (FAs), it is called
the defensive VM (D-VM) layer. This layer provides access to security-critical
resources of the VM, such as the operand stack, local variables and the bytecode
area. Inside this layer, security checks, such as type checking, bound checking
and control-flow checks, are performed to protect the card against FAs. These
FAs are executed during run-time to change the control and data flow of the
currently executing bytecode.

By storing different implementations of the D-VM layer on the card, it is
possible to choose the appropriate security implementation based on the ac-
tual security level of the card. Through this approach, the number of security
checks can be increased during run-time by switching among different D-VM
implementations. Furthermore, it is possible to assign a trustworthy applet a
low security level, which results in high execution performance, and vice versa.
One D-VM layer implementation can be, for example, low security with high
execution speed or high security with low execution speed. Another advantage
is the concentration of the security checks inside the layer.

To demonstrate this novel security concept, we implemented three D-VM
layers on a smart card prototype. All three layers fulfill the same security policy
(control-flow, type and bound) for bytecodes but differ in their implementation
details. Two D-VM layer implementations are fully implemented in software but
differ in the manner in which the type information is stored. The Bit Storing
D-VM has the highest run-time overhead, 208%, but the lowest memory increase,
6.25%. The Word Storing D-VM decreases the run-time overhead to 142% but
consumes approximately 33% more memory. The HW Accelerated D-VM uses
dedicated Java Card HW to accelerate the run-time verification process and has
an execution overhead of only 6% and a memory increase of 12.5%.

6. Publications Publication 1 - WISTP’13 53

A Defensive Virtual Machine Layer 15

In future work, we will focus on the question of which sensor data should
be used to increase the internal security of the Java Card. Another question is
how many security states are required and how much they differ in their security
needs.

Acknowledgments The authors would like to thank the Austrian Federal
Ministry for Transport, Innovation, and Technology, which funded the CoCoon
project under the FIT-IT contract FFG 830601. We would also like to thank our
project partner NXP Semiconductors Austria GmbH.

References

1. Akram, R., Markantonakis, K., Mayes, K.: A Paradigm Shift in Smart Card Own-
ership Model. In: Computational Science and Its Applications (ICCSA), 2010 In-
ternational Conference on. pp. 191 –200 (march 2010)

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. Proceedings of the IEEE 94(2), 370 –382 (2006)

3. Barbu, G., Andouard, P., Giraud, C.: Dynamic Fault Injection Countermeasure.
In: Mangard, S. (ed.) Smart Card Research and Advanced Applications, Lecture
Notes in Computer Science, vol. 7771, pp. 16–30. Springer Berlin Heidelberg (2013)

4. Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack:Fault Attacks, Com-
bined Attacks and Countermeasures. In: Prouff, E. (ed.) Smart Card Research
and Advanced Applications, Lecture Notes in Computer Science, vol. 7079, pp.
297–313. Springer Berlin Heidelberg (2011)

5. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.L., Iguchi-Cartigny, J. (eds.) Smart
Card Research and Advanced Application, Lecture Notes in Computer Science, vol.
6035, pp. 148–163. Springer Berlin Heidelberg (2010)

6. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) Smart Card Research
and Advanced Applications, Lecture Notes in Computer Science, vol. 7079, pp.
283–296. Springer Berlin Heidelberg (2011)

7. Bouffard, G., Lanet, J.L.: The Next Smart Card Nightmare. In: Naccache, D.
(ed.) Cryptography and Security: From Theory to Applications, Lecture Notes in
Computer Science, vol. 6805, pp. 405–424. Springer Berlin / Heidelberg (2012)

8. Bouffard, G., Lanet, J.L., Machemie, J.B., Poichotte, J.Y., Wary, J.P.: Evalua-
tion of the Ability to Transform SIM Applications into Hostile Applications. In:
Prouff, E. (ed.) Smart Card Research and Advanced Applications, Lecture Notes
in Computer Science, vol. 7079, pp. 1–17. Springer Berlin / Heidelberg (2011)

9. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks and
defenses for the vulnerability of the decade. In: Foundations of Intrusion Tolerant
Systems, 2003 [Organically Assured and Survivable Information Systems]. pp. 227
– 237 (2003)

10. Dubreuil, J., Bouffard, G., Lanet, J.L., Cartigny, J.: Type Classification against
Fault Enabled Mutant in Java Based Smart Card. In: Availability, Reliability and
Security (ARES), 2012 Seventh International Conference on. pp. 551 –556 (aug
2012)

6. Publications Publication 1 - WISTP’13 54

16 A Defensive Virtual Machine Layer

11. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,
A., Reygnaud, A.: Subverting Byte Code Linker service to characterize Java Card
API. pp. 122–128. Proceedings of the 7th Conference on Network and Information
Systems Security (SAR-SSI) (2012)

12. IEEE: Open SystemC Language Reference Manual IEEE Std 1666-2005, IEEE
13. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan applets in a smart card.

Journal in Computer Virology 6, 343–351 (2010)
14. Lackner, M., Berlach, R., Loinig, J., Weiss, R., Steger, C.: Towards the Hardware

Accelerated Defensive Virtual Machine - Type and Bound Protection. In: Man-
gard, S. (ed.) Smart Card Research and Advanced Applications, Lecture Notes in
Computer Science, vol. 7771, pp. 1–15. Springer Berlin Heidelberg (2013)

15. Leroy, X.: Bytecode verification on Java smart cards. Software: Practice and Ex-
perience 32(4), 319–340 (2002)

16. Markantonakis, K., Mayes, K., Tunstall, M., Sauveron, D., Piper, F.: Smart card
security. In: Nedjah, N., Abraham, A., Mourelle, L. (eds.) Computational Intel-
ligence in Information Assurance and Security, Studies in Computational Intelli-
gence, vol. 57, pp. 201–233. Springer Berlin Heidelberg (2007), http://dx.doi.
org/10.1007/978-3-540-71078-3_8

17. Mostowski, W., Poll, E.: Malicious Code on Java Card Smartcards: Attacks and
Countermeasures. In: Grimaud, G., Standaert, F.X. (eds.) Smart Card Research
and Advanced Applications, Lecture Notes in Computer Science, vol. 5189, pp.
1–16. Springer Berlin / Heidelberg (2008)

18. Oracle: Runtime Environment Specification. Java Card Platform, Version 3.0.4,
Classic Edition (2011)

19. Oracle: Virtual Machine Specification. Java Card Platform, Version 3.0.4, Classic
Edition (2011)

20. Razafindralambo, T., Bouffard, G., Thampi, B., Lanet, J.L.: A Dynamic Syntax
Interpretation for Java Based Smart Card to Mitigate Logical Attacks. In: Thampi,
S., Zomaya, A., Strufe, T., Alcaraz Calero, J., Thomas, T. (eds.) Recent Trends in
Computer Networks and Distributed Systems Security, Communications in Com-
puter and Information Science, vol. 335, pp. 185–194. Springer Berlin Heidelberg
(2012)

21. Sauveron, D.: Multiapplication smart card: Towards an open smart card? Infor-
mation Security Technical Report 14(2), 70 – 78 (2009), Smart Card Applications
and Security

22. Sere, A., Iguchi-Cartigny, J., Lanet, J.L.: Checking the Paths to Identify Mutant
Application on Embedded Systems. In: Kim, T.h., Lee, Y.h., Kang, B.H., Slezak,
D. (eds.) Future Generation Information Technology, Lecture Notes in Computer
Science, vol. 6485, pp. 459–468. Springer Berlin / Heidelberg (2010)

23. Sere, A., Iguchi-Cartigny, J., Lanet, J.L.: Evaluation of Countermeasures Against
Fault Attacks on Smart Cards. International Journal of Security and Its Applica-
tions, Vol.5 No.2 pp. 49–61 (2011)

24. Vertanen, O.: Java Type Confusion and Fault Attacks. In: Breveglieri, L., Koren, I.,
Naccache, D., Seifert, J.P. (eds.) Fault Diagnosis and Tolerance in Cryptography,
Lecture Notes in Computer Science, vol. 4236, pp. 237–251. Springer Berlin /
Heidelberg (2006)

25. Vetillard, E., Ferrari, A.: Combined Attacks and Countermeasures. In: Gollmann,
D., Lanet, J.L., Iguchi-Cartigny, J. (eds.) Smart Card Research and Advanced
Application, Lecture Notes in Computer Science, vol. 6035, pp. 133–147. Springer
Berlin Heidelberg (2010)

6. Publications Publication 1 - WISTP’13 55

Patterns for Hardware-Independent Development for
Embedded Systems

Wolfgang Raschke
Institute for Technical

Informatics
Graz University of Technology

wolfgang.raschke
@tugraz.at

Massimiliano Zilli
Institute for Technical

Informatics
Graz University of Technology

massimiliano.zilli
@tugraz.at

Stefan Orehovec
Institute for Technical

Informatics
Graz University of Technology

stefan.orehovec
@tugraz.at

Erik Gera-Fornwald
Institute for Technical

Informatics
Graz University of Technology

erik.gera-fornwald
@tugraz.at

Johannes Loinig
NXP Semiconductors Austria

johannes.loinig
@nxp.com

Christian Steger
Institute for Technical

Informatics
Graz University of Technology

steger
@tugraz.at

Christian Kreiner
Institute for Technical

Informatics
Graz University of Technology

christian.kreiner
@tugraz.at

ABSTRACT
In embedded systems, different hardware architectures re-
quire additional effort for writing portable software. Gener-
ally, a Hardware Abstraction Layer (HAL) provides an ab-
straction for portable software. However, a HAL is a layer
and does not support an abstraction of cross-cutting issues,
such as data types. Such cross-cutting issues provide of-
ten some possibility for optimization parameters. In this
paper we provide some patterns which help to mask such
platform-dependent parameters. In this way, there is a de-
fined point, where these platform-dependent parameters are
inserted. The rest of the code is then abstracted and coded
platform-independently. The platform-dependent parame-
ters are then resolved during pre-processing and compila-
tion. The described patterns have been mined and also ap-
plied in a large-scale industrial embedded software project.
They have shown to cover most of the concerns that appear
when platform-dependent optimizations shall be combined
with platform-independent coding.

Categories and Subject Descriptors
B.1.4 [Microprogram Design Aids]: Firmware engineer-
ing; D.2.11 [Software Architectures]: Patterns; D.2.13

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EuroPLoP’14 , July 09 - 13, 2014, Irsee, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3416-7/14/07. . . $15.00
http://dx.doi.org/10.1145/2721956.2721959 .

[Reusable Software]: Reuse models

General Terms
Design, Languages

1. INTRODUCTION
The development of software for embedded systems is fun-
damentally different from that of classical PC systems. The
development of such an embedded system has a strong con-
nection between software (SW) and hardware (HW): em-
bedded systems are designed usually with performance is-
sues in mind. Thus, the software exploits the features which
the hardware provides to speed up performance or to opti-
mize for power and the like. Such hardware features can be
for example: efficient memory handling (DMA controller),
asynchronous communication (UART) and so on. Perfor-
mance is important in embedded systems and thus, compil-
ers optimize memory representation of data (e.g. structure
alignment). The memory representation is also an issue for
standard types, such as: int, long, and double. When data is
exchanged between hardware platforms, also the byte order
comes into play (big endian, little endian). Moreover, com-
pilers often allow to specify the location of a pointer, and
it’s pointed object. All these issues are cross-cutting: they
may occur in each layer of an embedded system’s software,
even above a Hardware Abstraction Layer (HAL). In this pa-
per, we will further examine these cross-cutting issues and
present patterns which show how to cope with them. The
target audience are experienced embedded system develop-
ers who want to achieve portability and also optimize the
code for performance. Beginners are not the audience be-
cause many of the described patterns are not relevant if they

6. Publications Publication 2 - EUROPLOP’14 56

c© 2014 EUROPLOP. Reprinted, with permission, from Proceedings of 20th European Conference on
Pattern Languages of Programs.

do not have a focus on optimization issues. Because the pat-
terns can be used for programming close to hardware, we
assume a profound knowledge of the C programming lan-
guage.

2. HARDWARE ABSTRACTION
Hardware abstractions are sets of routines in software that
abstract details of a specific hardware platform. A hardware
platform is defined as follows1: ”Each hardware platform, or
CPU family, has a unique machine language. All software
presented to the computer for execution must be in the bi-
nary coded machine language of that CPU”. Typical hard-
ware abstractions are file operations: they are hardware-
independent functions to access a file. These hardware-
independent file operations need to be glued to the hard-
ware which may be a flash memory or an EEPROM mem-
ory. The HAL is this intermediate glue logic. Other exam-
ples for HAL (Hardware Abstraction Layer) functions are
timer/clock handling, communication and I/O handling. To
control these hardware units, often specific hardware control
registers need to be manipulated. These registers (and their
location) differ from one platform to another. The HAL is
an intermediate software layer between the software appli-
cation and the hardware platform. The idea behind a HAL
is to provide a standardized interface to the upper software
application (see Figure 1c and Figure 1d). This avoids a
major rework of the software application for each processor
as indicated in Figure 1a and Figure 1b. Nevertheless, the
HAL has to be designed individually for each processor.

Figure 1: The interface of the application needs to
be reworked for each hardware platform (see a and
b). If an intermediate HAL-layer exists (see c and
d), the application can be reused on different hard-
ware platforms without refactoring.

The Hardware Abstraction Layer (HAL) provides the fol-
lowing benefits:

• Facilitating portability because the HAL always pro-
vides the same interface to the application.

• Allowing application developers to extract performance
out of the hardware devices: the HAL gives options for
different modes of operation. For example, depending
on the application, symmetric or asymmetric commu-
nication mechanisms have a better performance.

• Enabling application development independently of the
hardware architecture.

To ensure portability, the application software should be
written in a high-level language, without using CPU-specific

1http://www.pcmag.com/encyclopedia/term/44113/hardware-
platforms

instructions. A high-level language can be compiled to dif-
ferent CPU’s, which does apparently not work with CPU-
specific assembler code. Thus, HAL-functions should be
used. This is an important part of the abstraction to make
an application platform-independent. The lower layers (Pro-
cessor A and B) have unique interfaces. The HAL is an
abstraction which provides a unified interface to the up-
per layer. However, there remain some cross-cutting issues
which cannot be resolved by the HAL layer alone. Partly,
these issues remain because some optimizations are also nec-
essary and desirable above the HAL layer. These opti-
mizations are usually concerned with runtime performance.
Thus, they are indispensable in embedded systems. Also,
some of the mentioned issues are due to the different prop-
erties of a hardware architecture: byte order and structure
alignment. When data are transmitted from one device to
another, it is necessary to consider the memory representa-
tion. This paper is not about the HAL itself. It deals with
these cross-cutting issues. The cross-cutting issues, which
we discuss in this paper are:

• Different datatype sizes

• Different pointer sizes and locations

• Endianness

• Struct Alignment

In this paper, we address these issues with appropriate pat-
terns which we will explain in the following sections.

3. PATTERN MAP
In Figure 2, the patterns and their relationships are shown.
The Visible Type Length pattern is appropriate to abstract
simple types, such as int, short int and long int. The Generic
Pointer Type pattern helps to pass optimization parameters
to pointers in a platform-independent way. For complex
types the Structure Alignment pattern helps to deal with
different byte orders and different memory representation of
complex types. The Endianness Abstraction pattern helps
to deal with communication between systems with different
byte endianness.

Figure 2: Pattern map - relation between the intro-
duced patterns.

6. Publications Publication 2 - EUROPLOP’14 57

4. PATTERNS

4.1 Pattern Name: Visible Type Length
Context: You are developing software to be deployed on
platforms of different architecture. Historically, different
platforms have used different sizes of integer. It was (and
still is) general practice to define the native size as the size
of an int type. So, on an 8-bit architecture, the int type
has 8 bit. On a 16-bit architecture, the int has a size of 16
bit. So, the definition of an int is always relative and not
absolute. This pattern is applicable to the following types
(and their extensions): int, float and double (see [3]).

Problem: I want to use the appropriate data type on each
platform without worrying about native data type defini-
tions.

Forces: On the one hand, using the encoded type name
comes with some additional overhead: the type has to be de-
fined in a header file for each hardware platform. Moreover,
the application of encoded type names makes only sense, if
there is some means of control, that the alternative types
are not used. Confusion would be the result. On the other
hand, using native type definitions (not the encoded types)
limits the portability of the source code. A dangerous source
for defects is introduced: native types may still be compiling
on another platform, but the type length can be different.

Solution: The size of the type name shall be encoded in
the type name. When the size of type name is appropriate,
the definition of the relevant types should be given in a sep-
arate file (see Figure 3). This file maps all native types to
the platform-independent types. In the source code then,
the appropriate definition file is inserted depending on the
hardware platform.

Figure 3: Definition and usage of platform-
independent types. The appropriate type definition
file types.h has to be inserted dependent on the hard-
ware platform.

Consequences:

Pro:

• Reuse of type definitions within the source code on
several hardware platforms.

• The size of the type is clearly communicated.

• If considered from the beginning, the overhead is only
the definition of the type definition files.

Con:

• Works only if the type length is supported by the com-
piler. If a type of a certain length cannot be defined
by a combination of a type and its qualifiers (e.g. long
long long int), the pattern does not work for this type.

• Int, char and other integral types may still be used.

• Encoding meta-information into the type identifier.

Examples: As example we show a naming scheme which
is used very often in the C programming language. The
type definitions are usually defined in a file called stdint.h
(see [2]). Figure 4 shows a state machine which allows the
generation of type names for signed and unsigned integers
with a different size.

Figure 4: The state machine allows the generation
of signed and unsigned integer types with a different
number of bits.

Table 1 lists some of the platform-independent types and
their corresponding native types. It can be seen that the
native types have a different size on different hardware plat-
forms.

Table 1: Platform-independent types and their na-
tive counterparts on two different hardware plat-
forms.

ARM Cortex M3 (32-bit) unsigned char

uint8 t unsigned char unsiged char
uint16 t unsigned short unsigned int
uint32 t unsigned int unsigned long

4.2 Pattern Name: Generic Pointer Types
Context: Compilers for embedded systems provide the pos-
sibility to add information to pointer types which allows
optimization. This additional information can indicate the
location of the pointer and the pointed object.

Problem: Compiler-specific key-words for optimizing the
pointer location thwart portability of the source code. The
application of type qualifiers allows many different combi-
nations of optimization parameters. The high number of
different combinations confuses programmers.

Forces:

• Optimization parameters for variables which are di-
rectly encoded within the source code are a problem
for reuse on several hardware platforms.

6. Publications Publication 2 - EUROPLOP’14 58

• Programmers in a huge software project tend to define
their own types. Thus, a static source code analysis
shall control the usage and conformance of the types.
The resulting smaller set of types increases the main-
tainability of the source code.

• Actually, if we assume 3 possible different locations
in an embedded system (RAM/ ROM/ FLASH) this
results in many possible combinations of pointer and
pointed object locations. The problem here is that too
many possible types will definitely confuse the pro-
grammers (see also previous force). It makes sense to
reduce the number of possible types to a pre-defined
selection.

Solution: Mask compiler-specific optimization parameters
(qualifiers) by platform-independent key-words. Define a
new pointer type and include the necessary information in
this definition. The newly defined type shall follow a nam-
ing convention that indicates the optimization parameters.
The naming convention described in the following. Figure 5
shows a state machine which indicates the construction of
a type name. The leading p indicates that the type is a
pointer. Then follows: the name of the pointed object type
and after this the pointed object alias. The pointed ob-
ject alias (see also Table 2 and 3) indicates the location of
the pointer independently of the hardware platform: small,
medium or large.

Figure 5: The state machine allows the generation
of type names with one optimization parameter.

In the following we will show some possible combinations of
pointer parameters. We will select one of these combinations
and explain why this is an appropriate choice.

Fixed pointer location: Figure 6 shows addresses and
values of the different memory locations of a 8051 proces-
sor. The DATA memory section is located in the internal
RAM and consists of 256 bytes. Thus, the pointer is only 1
byte long. The XDATA is located in the external RAM and
consists of 64K memory. The pointer size is here 2 bytes.
The FAR pointer type can access extended memory and can
address 3 byte addresses. The example in Figure 6 shows
the definition of a pointer type where the pointer is located
in the FAR memory section. The location of the pointer is
indicated by the FAR key-word after the asterisk. As men-
tioned before, the pointed object is not specified here and in
principle can be located in any of the 3 memory sections. In
the example, the FAR pointer has a size of 3 bytes and thus,
it can address data in all memory locations. The pointer in
the DATA section is only 1 byte long and can address 256
bytes of data. Thus, it can only reference memory in the
DATA section.

Figure 6: The pointer location is fixed here and lo-
cated in the FAR memory region. The location of
the pointed object is not specified in the pointer
type definition.

Fixed pointed object location: In Figure 7 a pointer
type definition is shown, where the pointed object location is
specified as DATA. The pointed object location is indicated
by the DATA key-word before the asterisk. As can be seen,
just the pointed object location (address 0x0001) is fixed.
The pointer can be either in the DATA, XDATA or FAR
memory region.

Figure 7: The pointed object location is fixed here
and located in the data memory region. The loca-
tion of the pointer is not specified in the pointer
type definition.

Figure 8: The location of the pointer and the
pointed object are specified in the pointer type def-
inition. Both are located in the DATA memory re-
gion.

Fixed pointer location and fixed pointed object lo-
cation: Figure 8 shows a pointer type definition where the
pointer location and the pointed object location are speci-
fied. The pointer location is specified by the DATA keyword
after the asterisk. The pointed object’s location is specified
by the DATA key-word before the asterisk.

Information encoded in the type:

1. Pointer type: it is the result of (2), (3) and (4)

2. Pointed object type

3. Pointed object location

4. Pointer location

The optimization parameters are:

• Pointed object location

• Pointer location

6. Publications Publication 2 - EUROPLOP’14 59

As a rule of thumb the following guideline makes
sense:

• Let the programmer decide the pointed object loca-
tion. An analysis for optimizing the pointed object
location is too difficult for a compiler.

• Let the compiler decide pointer location. The opti-
mization analysis of the compiler here is sufficient.

Thus, as a manually selectable optimization parameter re-
mains the location of the pointed object. Mask this op-
timization parameter in order to be platform-independent.
Masking the pointed object location: the above stated pointed
object locations (DATA/ XDATA/ FAR) are compiler spe-
cific: only the keil compiler [1] can understand them. Thus,
it is necessary to mask these key-words with a type defi-
nition. Part of this type definition is the so-called pointed
object alias: it is part of the type name and indicates the
pointed object location in a platform independent way. Ta-
ble 2 shows a possible mapping between the pointed object
alias and the keil-compiler key-words indicating a memory
location.

Table 2: Summary of all lessons learned.
POINTED OBJECT POINTED OBJECT

ALIAS LOCATION ON KEIL

small DATA
medium XDATA

large FAR

Consequences:
Pro:

• Optimization still possible, because a masked param-
eter can be passed to the compiler.

• Without this pattern, there are so many combinations
of pointed object locations and pointer locations to
consider. This is confusing for developers, who are
not very experienced in embedded systems. The pre-
defined standard types tell the programmers which
types shall be used.

• Types can be reused on several hardware platforms

Con:

• The number of possible optimization parameters needs
to be limited

• The usage of correct types has to be controlled some-
how or no one will keep to them

• Developers need to keep to this types

• Effort to formulate the header files. The definition of
a common set of defined types is not straightforward
and will be the point of several discussions. It is not
easy to achieve an agreement upon types in a large
software project.

Examples: In the following paragraph, we show how the
pointer types listed in Table 3 can be defined in the C lan-
guage. The compiler-specific key-words are used only once
in a separate header file for each platform. The resulting

type name does not contain any compiler specific key-words
and is then used in the source code. Thus, for migration to
another platform, only the header file has to be changed.

// pointed ob j e c t i s in DATA (SMALL)
// po in t e r anywhere
typede f u i n t 8 t data ∗ p u i n t 8 s m a l l t ;
typede f u in t16 t data ∗ pu in t16 sma l l t ;
typede f u in t32 t data ∗ pu in t32 sma l l t ;

// pointed ob j e c t i s in XDATA (MEDIUM)
// po in t e r anywhere
typede f u i n t 8 t xdata ∗ puint8 medium t ;
typede f u in t16 t xdata ∗ puint16 medium t ;
typede f u in t32 t xdata ∗ puint32 medium t ;

Table 3 indicates some possible constructions for a pointer
type which is consistent with the naming convention shown
in Figure 5.

4.3 Pattern Name: Endianness Abstraction
Context: You are writing software which communicates via
a network. You don’t know on which hardware platforms my
software will be deployed. A typical example for this type
of software is an embedded communication protocol stack.
The different communicating platforms are likely to have
different data presentation in terms of endianness, which
defines the order of data in memory. Data is typically stored
in bytes. The order of data is then called endianness. There
are two basic types: little endianness and big endianness
(see Figure 9). In addition to the basic types there

exist also some arbitrary types. The pattern can be ap-
plied to all types of endianness.

Problem: A problem is communication with other systems.
In this case, the byte order matters because the bytes leave
the closed system and interact with the outside world where
the byte order may be different.

Problem Example: Figure 9 shows an integer value and
its memory representations. In a system with little endian-
ness, the first byte has the value 0x78. With big endianness,
the first byte has the value 0x12. Apparently, this is a prob-
lem for a platform-independent source code. Usually, one
would expect the same value for the same expression.

Forces:

• Conversion is not necessary, if the network endianness
and all the hardware architectures have the same byte
order. In this case, the conversion function adds run-
time overhead because it is encapsulated in a function
call.

• If the conversion is omitted, the result is a decreased
portability of the source code.

• Location of single bits may inherit information, such
as error flags of packed signals within 1 communication
frame.

Solution: For data which is used also outside of the hard-
ware platform, use standard functions for the conversion of
the byte order. Figure 10 shows the communication between
two hardware platforms with different byte endianness. The
network endianness is per definition big endian. When data

6. Publications Publication 2 - EUROPLOP’14 60

Table 3: Sample type definitions with different oiinted object locations for the Keil compiler (see [1]).
Pointer Type Pointed Object Type Pointer Locaton Pointed Object Alias Pointed Object Location

puint8 small t uint8 t undefined small DATA
puint16 small t uint16 t undefined small DATA
puint32 small t uint32 t undefined small DATA

puint8 medium t uint8 t undefined medium XDATA
puint16 medium t uint16 t undefined medium XDATA
puint32 medium t uint32 t undefined medium XDATA

Figure 9: A value can have different memory repre-
sentations: little endian and big endian.

is sent from Platform A to the Network, the endianness does
not change. Thus, the conversion function hton (host to
network) simply pipes through the data (see example). The
situation is different, when the data arrives at Platform B
which has a different endianness than the network. Here the
conversion function ntoh (network to host) changes the byte
endianness of the data from big endian to little endian.

Figure 10: The exchange of data between platforms
with different endianness requires the utilization of
conversion functions.

Consequences:
Pro:

• This pattern makes communication between platforms
with different endianness possible.

• Standard names of the conversion functions can be re-
membered easily.

Con:

• Runtime overhead because the conversion is encapsu-
lated within a function call (see example).

• Endianness of all included participants needs to be
known.

• Conversion needs to be done for each data type.

Examples: In the following we show a source code example
which converts the endianness from the host to the network.
If the byte order is big endian, the function simply returns
the data. If the byte order is little endian, the order of the
four bytes is reversed and the returned.

001 u in t32 t hton l (x)
002 {
003 #i f BYTE ORDER == BIG ENDIAN
004 return x ;
005 #e l i f BYTE ORDER == LITTLE ENDIAN
006 return = (0 x000F & x) << 24 |
007 (0 x00F0 & x) << 16 |
008 (0 x0F00 & x) >> 16 |
009 (0 xF000 & x) >> 24 ;
010 #e n d i f
011 }
Known Uses: In Table 4 some standard conversion func-
tions are listed2. The implementation of these functions is
similar to the above listed example conversion function.

Table 4: Conversion functions for different data
sizes.

Conversion function Conversion direction Data size

htonl host to network 32 bit
htons host to network 16 bit
ntohl network to host 32 bit
ntohs network to host 16 bit

4.4 Pattern Name: Structure Alignment
Context: More and more embedded devices are intercon-
nected and data are exchanged between the devices. The
problem example we give below shows a struct for a measure-
ment system. Such a system typically incorporates many
different interconnected devices with different hardware ar-
chitectures. Regarding the memory representation of data
there are two main points: byte endianness (see also Endi-
anness Abstraction Pattern) and structure alignment. The
memory representation of structures is not standardized.

2http://lwip.wikia.com/wiki/IPv4

6. Publications Publication 2 - EUROPLOP’14 61

Thus, the compilers strive to optimize the memory represen-
tation for runtime performance. Depending on the hardware
architecture (8-bit, 16-bit or 32-bit), the members of a struct
are aligned to addresses with the power of two (16-bit) or
the power of four (32-bit). Most compilers allow the defi-
nition of packed structures. Such a structure stores all its
members one after another without inserting padding bytes.
Unfortunately, the syntax for packing structures is not stan-
dardized and is different for each compiler. The application
of this pattern can be omitted, if only one specific hardware
architecture with equal alignment and byte order is part of
the communication network.

Problem: The memory representation of complex types
(e.g. structs) depends on the hardware platform. Issues
arise when corresponding data is exchanged between plat-
forms with different memory representations of structures.

Problem Example: The following code listing shows how
a struct for sensor data could look like: the type indicates
the kind of measured value, the id ensures an appropriate
chronological order. The num bytes define the size of the
sensor data.

001 s t r u c t header
002 {
003 u i n t 8 t type ;
004 u in t32 t id ;
005 u i n t 8 t num bytes ;
006 }
The memory representation of the struct may look like shown
in Figure 11 on different processors3.

Figure 11: Memory representation of the struct
sample header. A packed representation is shown
in (a). Padding bytes are inserted in (b).

As can be seen in Figure 11, a struct can have a different
memory representation on different hardware. In Figure 11
(a) the memory representation is packed: the members of
the struct are stored one after another in the memory. In
Figure 11 (b) alignment is used: this means that uint16 t
types are aligned at addresses with the power of two (0x02,
0x04, . . .). The type uint32 t is aligned at addresses with
the power of four (0x04, 0x08, . . .). This alignment is used
for optimization purposes.

Forces: If different hardware architectures are involved in
communication, the de-facto solution is to pack the structs
in order to ensure a consistent data exchange. Unfortu-
nately, the packing of structs comes with a price: the run-
time optimization performed by the compiler is lost. The
3http://software.intel.com/en-us/articles/coding-for-
performance-data-alignment-and-structures

packing has a benefit which may outweigh the lost run-
time optimization: the memory footprint is lower because
no meaningless padding bytes are inserted. A solution may
be feasible without packing but we did not find a related
known usage. Thus, such a solution without packing is out
of the scope of this pattern.

Solution: Force the compiler to pack (see [1]) the structs
which are involved in communication. Convert the endian-
ness of each struct member when the struct is transmitted
over the network. Most compilers provide an option to pack
a struct. This means that no padding bytes are inserted in
the memory representation. The syntax of the pack option is
compiler-dependent. Thus, the structure definition shall be
done in a hardware-specific header file (see Figure 12). Con-
vert each member with the appropriate conversion function
(hton or ntoh).

Figure 12: The compiler-dependent structs shall be
defined in a platform-specific header file.

Example: This code listing demonstrates the appropriate
application of this pattern. The function transmit header
transmits the sample data (see problem example). In line 5
no conversion of the member type is performed, because it
has only one byte length. Principally, this line does nothing.
It is in this example for a better understandability. In line 8
the member id is converted and stored again. Here the con-
version is necessary because this member has a size of four
bytes. In line 11 the statement is also just for a better read-
ability of the example. In line 13, the sample is transmitted.
It has now network endianness and no padding bytes.

01 void t ransmit header (header sample)
02 {
03 //no conver s i on nece s sa ry
04 // because only 1 byte
05 sample . type = sample . type ;
06
07 // conver s i on nece s sa ry
08 sample . id = htonl (sample . id) ;
09
10 //no conver s i on nece s sa ry
11 sample . num bytes = sample . num bytes ;
12
13 transmit (&sample , s i z e o f (header)) ;
14 }

6. Publications Publication 2 - EUROPLOP’14 62

Consequences:
Pro:

• Smaller memory consumption of the stored struct.

• The transmit function is platform-independent.

Con:

• Works only, if the compiler supports packing of structs.

• The compiler-specific (runtime) optimization of structs
is lost.

• The conversion functions ntoh and hton have a runtime
overhead.

• The transmit function must be coded for each struc-
ture, separately.

• The pattern demands the application of compiler spe-
cific key-words for struct packing. However, these specifics
are located in a single header file which can be substi-
tuted by another, easily.

Known uses: IP-stack implementations in C. See for ex-
ample: Lightweight TCP/IP stack4.

5. CONCLUSIONS
In this paper we describe four patterns for hardware abstrac-
tion. We mined these patterns in a real industrial

4http://git.savannah.gnu.org/cgit/lwip.git

software project. We found that the application of these
four patterns is sufficient for a proper hardware abstraction.
These patterns are tailored for embedded systems and thus,
we present examples in the C programming language. Since
this language is used in a majority of embedded systems,
this focus helps the respective professionals to understand
rapidly the application of the patterns. If applied conse-
quently, these patterns support a reuse of software on several
hardware platforms.

6. ACKNOWLEDGMENTS
First, I want to thank my shepherd Jari Rauhamäki, who
did a great job in all his reviews. Thanks go also to all
participants of my writers workshop group. They all did a
great job. Project partners are NXP Semiconductors Aus-
tria GmbH and TU Graz. The project is funded by the
Austrian Federal Ministry for Transport, Innovation, and
Technology under the FIT-IT contract FFG 832171. The
authors would like to thank pure::systems GmbH for sup-
port.

7. REFERENCES
[1] ARM. Cx51 user’s guide.

[2] S. Loosemore. The gnu c library reference manual.

[3] T. Rothwell. The gnu c reference manual.

6. Publications Publication 2 - EUROPLOP’14 63

Test-Driven Migration Towards a Hardware-Abstracted Platform

Wolfgang Raschke1, Massimiliano Zilli1, Johannes Loinig2, Reinhold Weiss1, Christian Steger1, and
Christian Kreiner

1Institute for Technical Informatics, Graz University of Technology, Inffeldgasse 16/I, Graz, Austria
2Business Unit Identification, NXP Semiconductors Austria GmbH, Gratkorn, Austria

{wolfgang.raschke, massimiliano.zilli, rweiss, steger, christian.kreiner}@tugraz.at, johannes.loinig@npx.com

Keywords: Software Reusability, Test-Driven Development

Abstract: Platform-based development is one of the most successful paradigms in software engineering. In embedded
systems, the reuse of software on several processor families is often abandoned due to the multitude of compil-
ers, processor architectures and instruction sets. In practice, we experienced that a lack of hardware abstraction
leads to non-reusable test cases. We will demonstrate a re-engineering process that follows test-driven devel-
opment practices which fits perfectly for migration activities. Moreover, we will introduce a process that
provides trust for the test cases on a new hardware.

1 INTRODUCTION

Engineering in the field of Smart Card development
faces several challenges, such as the demand for a
high level of security (Mostowski and Poll, 2008),
low memory footprint, power consumption and run-
time performance (Rankl and Effing, 2003). All these
requirements are interrelated and in fact, the multi-
tude of dependencies hinders Smart Card suppliers
and issuers from deploying a great deal of diversified
customizable products. Rather, there are only a few
standard products available on the market. These do
not meet the needs of today’s customers who are in-
creasingly demanding tailor-made products.
Principles of platform-based development and Soft-
ware Product Line Engineering (SPLE) (Pohl et al.,
2005)(Clements and Northrop, 2002) are a success-
ful paradigm in software engineering. SPLE aims at
systematic reuse where possible and provides a con-
ceptual framework for the diversification of products.
In the domain engineering process the purpose is not
to develop single products but to develop a base of
related systems in respect to the product family. Ded-
icated rules of composition are defined. In the appli-
cation engineering process, the engineers assemble a
product out of the product familythat corresponds to
these rules of composition.
Products are based on several processor families (PF)
which have different implications regarding compil-
ers, byte endianness and architecture. Test cases are
not platform-independent per se, even if they are writ-

ten in Junit1, a Java based unit test framework.
The migration to a product line has to be accom-
plished during operation: a Smart Card system is un-
der construction on PF A. The plan to transition to-
wards a hardware-abstracted software is to track the
development of the Smart Card system on a second
PF B as a proof of concept. The way of working
is as follows: first, take existing test cases and ab-
stract them from PF A. Second, build confidence for
platform-abstracted test cases. Third, use test cases
on PF B in order to port the software in a test-driven
development process.

2 Requirements

2.1 Requirements in the Industrial
Context

It is intended to port as many software components
as possible to several PF. Initially, it was deemed
appropriate to elicit a set of coding guidelines in
order to keep the source code platform-abstracted.
Once a pilot project had been conducted to validate
our approach, it became apparent that the tests, in
particular, create a bottleneck. Porting the source
code has worked without much refactoring of the
code. Unfortunately, it turned out that most of the

1http://junit.org/

6. Publications Publication 3 - PECCS’15 64

c© 2015 Scitepress. Reprinted, with permission, from Proceedings of 5th International Conference on
Pervasive and Embedded Computing and Communication Systems.

test cases needed to be refactored manually. This was
not acceptable for the following reasons: first, the
Software Product Line is intended to run on several
PF. Industrial embedded systems are usually tested
by several thousands of test cases. So, porting test
cases manually is not economically feasible in the
long run.
Second, manual porting activities are a source of
possible defects. The test cases inhibit a high amount
of memory dumps. Manually processing this data
is error-prone to some degree. Thus, the test cases
introduce an additional risk for each migration to a
new hardware.
Third, in order to achieve platform-abstraction, we
decided to allow no code change for different PF,
neither in source code nor in test code. A code
change for a specific PF would significantly decrease
the reusability of the code.

2.2 Requirements Due to Variability
Drivers

The Java Card (Oracle, 2011b)(Oracle, 2011a) oper-
ating system under analysis is basically built up as
depicted in Figure 1. At the bottom of the system, the
variability stems from the utilization of the different
PF A or B. Both of them introduce several facets of
variability: first, each PF enforces the utilization of a
separate tool chain which usually includes compiler,
linker and simulator. This facet of variability propa-
gates to the hardware abstraction layer. A consider-
able portion of it has to be written in assembler and
code which is not ANSI-C compliant.
Second, each PF may have a different byte endian-
ness and pointer size. For instance, a 32 bit pointer on
processor A corresponds to a 16 bit pointer on proces-
sor B. We experienced these factors as the major im-
pediments for test case reuse over several PF. These
drivers affect the process in all layers except for the
Java Card application layer.

2.3 Platform Lifecycle: Product 1 -
Reengineering - Platform, Product 2

The major constraint of the refactoring process is that
the industrial product development for PF A may not
be disturbed. The continuing industrial development
is shown as phase 1 in Figure 2. The pilot study is
intended to demonstrate and prove the feasibility of a
platform-abstracted SPL. If the study is a success we
will transform the development to a platform. In or-
der to fullfill the dedicated requirements, the process
is structured as follows:

Figure 1: Variability Drivers for Test Cases

Phase 1 is the ongoing industrial product develop-
ment process which may not be disturbed.
Phase 2 is intended to refactor the tests to be
hardware-abstracted.
Phase 3 is a dedicated phase where confidence of the
tests on all PF must be demonstrated.
Phase 4 uses the abstracted tests to refactor the code
base. Daily test runs keep the feedback cycle accu-
rate for early detection of defects. This will help to
mitigate the influence of the hardware abstraction ac-
tivities on the industrial product development process.

Figure 2: Test Refactoring and Proof of Confidence are the
Precondition for Test-Driven Migration

3 Technical Background

The existing test infrastructure is basically split
up into two parts: off-card and on-card. Off-card,
Junit is used as a test framework.
Junit launches a test case which then has the respon-
sibility to serialize the test data within a transmit
buffer. This buffer is then transmitted via packets to
the on-card side.

On-card, the In System Test Framework (ISTF)
stores the test data within a receive buffer. The dis-
patcher then analyzes the address which denotes the
intended caller stub. Then, the caller stub is launched.
It has access to the receive buffer. The test data has to
be de-serialized, which means that it is retrieved from

6. Publications Publication 3 - PECCS’15 65

Figure 3: The Test System is Contains Two Parts: The Junit
Test Bench and the In System Test Framework (ISTF)

the buffer and stored in variables. These variables are
used as parameters for calling functions of the Mod-
ule Under Test (MUT). The response is collected by
the stub module and propagated to the ISTF and then
to the Junit test bench. At that point, the test response
is evaluated and a corresponding test report is gener-
ated. The callee stub is not connected directly to the
Junit test bench. It substitutes the other modules the
MUT usually calls but which are not present in unit
testing. This stub has to provide the MUT with the
appropriate responses.

4 Method

The method of handling hardware dependencies
within tests is similar to that of Model-Based Testing
(MBT) (Pretschner and Philipps, 2005). The latter
methodology aims to abstract the system to a model
in order to generate abstract tests and test specifica-
tions. Nevertheless, the goal of MBT is different to
Test-Driven Development (TDD). In TDD, tests basi-
cally represent pure functional requirements.
A reasonable synthesis between MBT and TDD is
to raise the level of functional test cases to an ab-
straction where the following conditions are fullfilled:
first, developers are easily able to formulate the test
cases without the need of a formal model. Second,
the tests need to abstract all hardware specifics that
impede portability.

4.1 Abstraction Method

Abstract test cases need to abstract two issues: first,
the endianness of the target PF has to be abstracted.
This is accomplished by defining big endianness as a
rule for implementing abstract test cases. Fortunately,
the Java byte endianness is big endian, by definition.
Second, the data (usually a memory dump) has to be

abstracted in order to be reusable for several PF. Com-
plementing the data with data types is a reasonable
abstraction of a binary representation and meets the
previously stated requirements.
The basic methodology of test case abstraction is
shown in Figure 4. The methodology constitutes of
4 states and 3 transitions.

Figure 4: The Method of Handling Tests on Different Pro-
cessors Contains 4 States and 3 Transitions

The process starts at State 1, where the data is
bound to types. These types are Java classes. When
they are instantiated by objects they are initialized
with the test data. In order to send these objects to the
Java Card, they have to be serialized which is shown
in Figure 4 as a transition. Afterwards, the data is
stored without any type information in a Java Byte
Array in State 2. The serialized data is organized in
the buffer with big endianness. In the next transition
the data is transmitted from the Junit framework to the
Java Card. Thereafter, in State 3 the data is available
in a buffer. Here, the byte order is still big endian,
regardless of the processor. In the following transi-
tion the data has to be de-serialized. Finally, in State
4 the endianness is resolved and the data is stored in
variables. These variables are usually parameters for
calling the MUT. The test case is now determined and
executable.

4.2 Traditional TDD Process

The traditional red-green-refactor process (Beck,
2002) for TDD is shown in Figure 5. Basically, a
test is first written which covers a certain functional
feature. In the red step, this test is executed without
the implementation of this feature. This then results
in the test failing, which shall be demonstrated in this
step. If the test does not fail, it indicates that there is
something wrong. Then follows the green step where
code is written in order to allow the test to pass. If
this is achieved, the next phase is refactoring. Here

6. Publications Publication 3 - PECCS’15 66

the code is rewritten until it also meets the defined
non-functional requirements, such as maintainability,
reliability and the like.

Figure 5: Red-Green-Refactor Process of Test-Driven De-
velopment (Beck, 2002)

4.3 Inverted U Process

Due to the high number of test cases, it is not eco-
nomically feasible to review each and every test case.
Thus, we developed a dedicated process (Figure 6) for
providing confidence in the abstracted test cases.

Figure 6: Inverted U Process to Provide Confidence for Ab-
stract Test Cases on PF A and B

The inverted U process is used to port the tests and
provide confidence in them. Because this process em-
braces two processors, it has a right and a left branch.
The process has a dedicated starting point on the left
hand side. A green (passed) test case on processor A
is the starting condition. If it has passed once, it can
be abstracted, as described previously. After the ab-
straction, the test case needs to pass again to show that
no flaws have been introduced. There is now evidence
that the test case is correct on processor A. Still there
needs to be assurance that it also works on processor
B. Thus, the next step is a review, where the abstracted
test case is investigated for potential pitfalls, such as
the utilization of pointers.
In the white step the test case passes on processor A
and there is some confidence for it on processor B.
Nevertheless, the level of confidence here is not high
enough, so the process continues on the right hand
side.

Here, the test first enters the red phase. Until the test
passes, there remains uncertainty about its correct-
ness. So, in the green step, the code is ported to run on
processor B. If the test did not go green before, con-
sideration is given to investigating and rewriting the
test. After the test has turned green for the first time,
there is confidence that the test makes sense on pro-
cessor B. Nevertheless, it should always be checked
that the test is compatible with other hardware plat-
forms.
From now on, on the right branch the process is in the
traditional TDD refactoring loop, as described previ-
ously.

5 Implementation

In the following, we will explain the implemen-
tation of our method with a sample test case at hand.
This test case sets the Java Card program counter pc to
a certain value. For the explanantion, we will follow
the abstraction reference process which we defined in
Section 4.1 and in Figure 4.

5.1 Implementation of the Test Case
and the Test Stub

The previously mentioned reference process starts in
the Junit test case implementation which is shown
in Figure 7 and continues in the C test stub (see
Figure 8). The states and transitions of the reference
process are indicated within the comments. In the
following, we will describe the implementation of the
states and transitions.

State 1: In State 1 (see line 3-8 in Figure 7) first, a
new object of the type pointer is created. In line 5 the
pointer address is set to this object. In the next step,
the buffer is allocated with the correct length (see line
7).

Transition - Serialize: In line 10-11 the object is
serialized and stored within the buffer. Each class
which can be serialized has to implement its own
serialize function.

State 2: After the serialization, the objects data is
now stored within the buffer in big endianness. This
state is indicated by comments in line 13-15.

Transition - Transmit: In line 18 the send function
transmits the buffer to the Java Card.

6. Publications Publication 3 - PECCS’15 67

01 public void setPC(address addr)
02 {
03 //State 1
04 pointer pc = new pointer();
05 pc.setAddress(addr);
07 ByteBuffer txBuffer = ByteBuffer
08 .allocate(pc.getLength());
09
10 //Transition: Serialize
11 txBuffer.put(pc.serialize());
12
13 //State 2
14 //serialized data are now stored
15 //off-card in the buffer
16
17 //Transition: Transmit
18 send(txBuffer.array());
19 ...
20 }

Figure 7: Junit Test Case: It Sets the Java Card Program
Counter (pc) to a Value

State 3: In State 3 (see line 3-5 in Figure 8), the
In System Test Framework has already stored the
transmitted data in a buffer, which is located on-card.

Transition - De-Serialize: In line 8 a de-serializion
macro is used to retrieve the pointer and store it
in a variable. The de-serialization method will be
explained in more detail in Section 5.2.

State 4: In State 4, the buffer index idx is incremented
by the pointer size (line 16). Finally the function
of the MUT is called with the currently calculated
pointer. The MUT returns a value which can be used
to evaluate the test response.

5.2 Implementation of the
De-serialization Macro

The de-serialization macro is called in line 8 in Fig-
ure 8. For each PF, there is a separate implementation
of it. Figure 9 is a variant for an architecture with
3 byte integer pointers and big endianness. First, in
line 0, the constant PRT INT LEN is set to 3 accord-
ing to the pointer size. The pointer is reconstructed
by shifting and concatenating the bytes with an or in
the appropriate order. It can be seen that the first byte
is not shifted. So, the first byte is the smallest which
is the case for little endian byte order. The following
bytes are then shifted by increments of 8. Finally, the
resulting value has to be casted to the relevant pointer.

00 static ErrorCode StubJvmSetPc(void)
01 {
02 ...
03 //State 3
04 //serialized data are now stored
05 //on-card in the buffer
06
07 //Transition: De-Serialize
08 pc = GET_INT_PTR
09
10 //State 4
11 //Data are now stored
12 // in the variable pc
13
14 //increment buffer index
15 // by pointer length
16 idx += PTR_INT_LEN;
17
18 // call module function
19 returnCode = setJvmPC(pc);
20 ...
21 }

Figure 8: C Test Stub: It Sets the Java Card Program
Counter (pc) to a Value

00 #define PTR_INT_LEN 3
01
02 //Get Little Endian Pointer
03 #define GET_INT_PTR (uint8_t *)(
04 (uint32_t)(rxBuffer[0 + idx]) |
05 (uint32_t)(rxBuffer[1 + idx]) << 8 |
06 (uint32_t)(rxBuffer[2 + idx]) << 16);

Figure 9: De-Serialization Macro for Resolving 3 Byte
Pointers From the Buffer

In Figure 10 the same principle is applied for a
processor with 4 byte integer pointers and big endian-
ness. The principle is the same but in contrast, in line
0 the PRT INT LEN is set to 4. Regarding the recon-
struction of the pointer, the lowest byte is shifted by
24 bits. Thus, the first byte is the highest which is true
for big endian byte order. The next bytes are shifted
by increments of -8.

00 #define PTR_INT_LEN 4
01
02 //Get Big Endian Pointer
03 #define GET_INT_PTR (uint8_t *)(
04 (uint32_t)(rxBuffer[0 + idx]) << 24 |
05 (uint32_t)(rxBuffer[1 + idx]) << 16 |
06 (uint32_t)(rxBuffer[2 + idx]) << 8 |
07 (uint32_t)(rxBuffer[3 + idx]));

Figure 10: De-Serialization Macro for Resolving 4 Byte
Pointers From the Buffer

6. Publications Publication 3 - PECCS’15 68

6 Results

6.1 Identification of Variability Within
Junit Tests

When we started the porting of the software, we were
not aware that Junit tests incorporate that high a de-
gree of variability. Most of the tests have not been
written with portability in mind which, in the begin-
ning, made our approach difficult.

6.2 Initiative Came From a
Programmer

The initiative for changing the legacy testing system
came from a programmer who was involved in the
porting of the software. For those who were involved
in these activities it was initially almost impossible to
keep up with the porting of the test cases. The guide-
lines for writing test cases which we developed helped
a lot.

6.3 There is a Need for Training

We experienced that the appropriate coding of test
cases requires the training of programmers. Other-
wise they are not aware of the problems and do not
create platform-independent tests. We created a set
of guidelines and provided training to the program-
mers. The resulting awareness mitigated many prob-
lems during the porting.

6.4 Low Overhead

The overhead of the methodology is low, if it is ad-
justed at the start of a project. The overhead is then
limited to training programmers and keeping to the
coding guidelines. If the methodology is introduced
at a later stage, the additional work is higher because
all tests have to be refactored and it usually takes some
time for people to become familiar with it.

6.5 High Benefit

If the embedded software is used on more than one
hardware platform, the benefit of the methodology is
high. In embedded systems, there are usually several
hundred or thousand tests that could be reused. With
the number of supported PF the benefit also increases
with comparably little overhead.

7 Related Work

Software Product Line Engineering (Pohl et al.,
2005)(Clements and Northrop, 2002) aims at system-
atically reusing software. For this purpose, a base
of reusable software components, the product family
is maintained. Rules of aggregation are explicitly
defined for code and tests.
Platform-based methodologies for embedded systems
are given in (Sangiovanni-Vincentelli and Martin,
2001). The authors discuss the specific reuqirements
of a reuse strategy for embedded systems, including
hardware and software. They provide a vision and a
conceptual framework for platform-based software
which starts with a high-level system description.
This description is then refined incrementally.
TDD is part of agile development practices (Cock-
burn, 2006) which are lightweight processes
that make use of feedback methodologies.
Greene (Greene, 2004) gives insight to the ap-
plication and requirements of agile practices on
embedded systems development. He discusses
several facets of XP and Scrum and their adoption of
embedded systems design. He concludes that there is
a positive effect of most of the applied practices.
Grenning (Grenning, 2007) describes special chal-
lenges of TDD in embedded systems. These
challenges are addressed with the embedded TDD
cycle that embraces several stages of testing which
are applied with different frequency. The five stages
range from testing on a workstation to manual testing
in the target. This approach has the benefit that the
most simple testing approaches are applied most fre-
quently. Finally, Greening discusses issues regarding
compiler compatibility and hardware dependencies
and possible solutions regarding TDD.
Karlesky et al. (Karlesky et al., 2007) present the
so-called Model-Conductor-Hardware design pattern
in order to facilitate testing in hardware-dependent
software. This design pattern is adopted from the
Model-View-Presenter (MVP) and the Model-View-
Controller (MVC) patterns. Both patterns address
issues regarding the development and interaction
with Graphical User Interfaces (GUI). A GUI has
similar challenges for programming and testing as
hardware (event-handling, asynchronous communi-
cation and accessibility). Furthermore, a four-tier
testing strategy is presented which deals with issues
in automation, hardware and communication testing.
In (Bohnet and Meszaros, 2005) a case study of
porting software using TDD is presented. The legacy
application is a business software which was ported
to adapt to a new database system. In order to port
the system, the test cases served as a template and

6. Publications Publication 3 - PECCS’15 69

specification for the required functionality. It turned
out that the application of TDD resulted in less code
on the target platform because unused code was not
ported. Moreover, the authors showed that defect
test cases are a severe problem because the process
suggests searching for problems within the code and
not within the tests.

8 Conclusion and Future Work

We challenged the problem of porting a legacy
system to a new hardware platform. In order to do this
economically, a high number of tests had to be rewrit-
ten to be platform-independent. We experienced that
this is possible with a relatively low overhead. A ma-
jor problem of the proposed test-driven migration pro-
cess is that the correctness of the tests on the new
hardware needs to be shown. A dedicated process
helps to establish the necesary confidence. The chal-
lenges can only be addressed successfully, if the tech-
nical realization of the porting parallels the proposed
process. Additional training and guidelines for pro-
grammers are neccessary.
For further work, it would be interesting to add type-
specific information to the serialized data which can
be reused during the de-serialization. Going further, a
domain-specific language for testing would allow the
generation of both, the Junit tests and the C test stubs
from one description of a test case.

ACKNOWLEDGEMENTS

Project partners are NXP Semiconductors Austria
GmbH and TU Graz. The project is funded by
the Austrian Federal Ministry for Transport, Innova-
tion, and Technology under the FIT-IT contract FFG
832171. The authors would like to thank pure systems
GmbH for support.

REFERENCES

Beck, K. (2002). Test-driven Development. Addison-
Wesley Professional.

Bohnet, R. and Meszaros, G. (2005). Test-Driven
Porting. In AGILE, pages 259–266. IEEE Com-
puter Society.

Clements, P. C. and Northrop, L. (2002). Software
Product Lines: Practices and Patterns. SEI Se-
ries in Software Engineering. Addison-Wesley.

Cockburn, A. (2006). Agile Software Development.
Pearson Education.

Greene, B. (2004). Agile methods applied to embed-
ded firmware development. In Agile Develop-
ment Conference, pages 71–77.

Grenning, J. (2007). Applying test driven develop-
ment to embedded software. Instrumentation &
Measurement Magazine, IEEE, 10(6):20–25.

Karlesky, M., Williams, G., Bereza, W., and Fletcher,
M. (2007). Mocking the embedded world: Test-
driven development, continuous integration, and
design patterns. In Proc. Emb. Systems Conf, CA,
USA.

Mostowski, W. and Poll, E. (2008). Malicious Code
on Java Card Smartcards: Attacks and Counter-
measures. pages 1–16. Springer.

Oracle (2011a). Runtime Environment Specification.
Java Card Platform, Version 3.0.4, Classic Edi-
tion.

Oracle (2011b). Virtual Machine Specification. Java
Card Platform, Version 3.0.4, Classic Edition.

Pohl, K., Böckle, G., and van der Linden, F. J. (2005).
Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer.

Pretschner, A. and Philipps, J. (2005). 10 Method-
ological Issues in Model-Based Testing. In
Model-Based Testing of Reactive Systems, pages
281–291. Springer.

Rankl, W. and Effing, W. (2003). Smart Card Hand-
book. John Wiley & Sons, Inc., 3 edition.

Sangiovanni-Vincentelli, A. and Martin, G. (2001).
Platform-based design and software design
methodology for embedded systems. Design
Test of Computers, IEEE, 18(6):23–33.

6. Publications Publication 3 - PECCS’15 70

Embedding Research in the Industrial Field: A Case of a
Transition to a Software Product Line

Wolfgang Raschke
Institute for Technical

Informatics
Graz University of Technology

Graz, Austria
wolfgang.raschke@

tugraz.at

Massimiliano Zilli
Institute for Technical

Informatics
Graz University of Technology

Graz, Austria
massimiliano.zilli@

tugraz.at

Johannes Loinig
NXP Semiconductors Austria

GmbH
Gratkorn, Austria

johannes.loinig@
nxp.com

Reinhold Weiss
Institute for Technical

Informatics
Graz University of Technology

Graz, Austria
rweiss@
tugraz.at

Christian Steger
Institute for Technical

Informatics
Graz University of Technology

Graz, Austria
steger@
tugraz.at

Christian Kreiner
Institute for Technical

Informatics
Graz University of Technology

Graz, Austria
christian.kreiner@

tugraz.at

ABSTRACT
Java Cards [4][5] are small resource-constrained embedded
systems that have to fulfill rigorous security requirements.
Multiple application scenarios demand diverse product per-
formance profiles which are targeted towards markets such
as banking applications and mobile applications. In order to
tailor the products to the customer’s needs we implemented
a Software Product Line (SPL). This paper reports on the
industrial case of an adoption to a SPL during the develop-
ment of a highly-secure software system. In order to provide
a scientific method which allows the description of research
in the field, we apply Action Research (AR). The rationale
of AR is to foster the transition of knowledge from a mature
research field to practical problems encountered in the daily
routine. Thus, AR is capable of providing insights which
might be overlooked in a traditional research approach. In
this paper we follow the iterative AR process, and report on
the successful transfer of knowledge from a research project
to a real industrial application.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.13 [Reusable Software]: Domain Engineering; K.6.1
[Project and People Management]: Systems analysis
and design; K.6.1 [Project and People Management]:
Systems development

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WISE’14, September 16, 2014, Vasteras, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3045-9/14/09 ...$15.00.
http://dx.doi.org/10.1145/2647648.2647649 .

Keywords
Knowledge Transfer, Action Research, Software Reuse

1. INTRODUCTION
As the field of Software Product Line Engineering [3][6]

is now maturing, it is of growing importance to provide in-
dustrial cases. In the industrial context, many challenges
exist in the establishment of a SPL which are not obvious to
academia. Nevertheless, it is important to provide such an
experience to an audience who is interested in establishing
a SPL but has no prior real-life experience. For such an au-
dience, it is beneficial to draw on a catalog of documented
experiences. In this paper we strive to provide such a cata-
log.
In a matured research field, when the scientific results are
about to be transfered to real applications, it is important to
leave the proverbial research lab and apply research in the
field. The classical scientific model requests to first state
a problem, solve it, then evaluate the solution. In an in-
dustrial context, the evaluation of a process improvement is
often not bound to a single and consistent problem. Rather,
an evaluation is more oriented towards improving an existing
solution. Action Research (AR) is an established research
method which can be applied in such a context [2][7]. In
order to assess the improvement a specific action has to a
solution, this research method is cyclic and iterative. At
the end of each iteration, the outcome and experiences are
digested into lessons learned. In addition we describe how
AR helps to elicit field experience in a knowledge transfer
project. We show that the applied method can provide dif-
ferent insights to the traditional research approach.

2. RESEARCH METHOD
The more a science field grows and matures, the more it

loses relevance for practitioners. This difficulty has been ob-

6. Publications Publication 4 - WISE’14 71

c© 2014 ACM. Reprinted, with permission, from Proceedings of 2014 International Workshop on
Long-term Industrial Collaboration on Software Engineering (WISE’14).

served for different fields [7]. Action research is an approach
that bridges a highly developed research field and industrial
practice. Thusly, as action researchers we are interested in
the way a working system was established and how prob-
lems have been resolved. The research is accomplished en
route [7]:

”objectives, the problem, and the method of the
research must be generated from the process it-
self, and that the consequences of selected actions
cannot be fully known ahead of time”.

We are interested in the process of the transition itself, and
thus the iterative AR process is beneficial.

2.1 The Process of Action Research
As can be seen in Fig. 1, the AR process is iterative. Each

iteration incorporates the following process steps [7]: diag-
nosing, action planning, action taking, evaluating and spec-
ifying learning.

Diagnosing

Action
Planning

Action
Taking

Evaluating

Specifying
Learning

Start

Figure 1: The Action Research process [7] is itera-
tive and encompasses the following steps: Diagnos-
ing, Action Planning, Action Taking, Evaluating and
Specifying Learning. Each iteration starts with the
Diagnosing process step.

• Diagnosing: An iteration starts with a problem. The
problem is further elaborated and described. It states
the requirements (research question) for the current
iteration.

• Action Planning: In this phase the possible solu-
tions for the diagnosed problem are investigated. If
there are alternative solutions, they need to be com-
pared with each other. In the end, a specific action
has to be selected.

• Action Taking: Action needs to be taken. In the
scope of this report this an increment of a prototype
towards a running solution.

• Evaluation: The actions are evaluated against the
diagnosed problems.

• Specifying Learning: Comparing the actions and
the evaluation leads to lessons learned (LL). Moreover,
reflecting on the lessons learned leads to newly diag-
nosed industrial problems and research questions.

3. FIRST ITERATION: DESIGN
The first iteration was accomplished mainly by the re-

search partner. The industrial partner was inolved via in-
terviews. In this phase we strived to create an initial big
picture of a Software Product Line approach applied to the
existing software system.

3.1 Diagnosing
In the first iteration the diagnosing step is a general elic-

itation of requirements for a Software Product Line. The
initial adoption of a SPL is expensive because appropriate
tools are needed. Moreover, there is a large amount of effort
required for refactoring. Thusly, a decision needs to be taken
whether the SPL shall be implemented on an industrial scale
or not. For this reason, we started with a research project
with the intention of gradually increasing the industrial par-
ticipation. We can then also regard each iteration of the AR
cycle as an evaluation if the transition to a SPL shall be con-
tinued. Basically, the problem set by the first iteration is:
The SPL approach is usually not known to everyone who is
involved in the software development. Before starting a big
implementation (which is expensive) the responsible people
need to be convinced that the approach works. Moreover,
there is no way to alter the software system to the needs of
an SPL. It has to be minimally invasive in the sense that
the existing software system shall continue working as it is
without much refactoring.

3.2 Action Planning
For an initial action plan we listed the most problematic

pain points in the design and configuration process:

• Requirements consistency: There are many inter-
relations between requirements (product features and
security features). Requirements may demand the in-
clusion or exclusion of other requirements. Due to
the high number of requirements and corresponding
dependencies, it is hard to maintain the consistency
across the selected requirements of a certain product.

• Mapping features to source code: Features and
source code are two distinct worlds with different roles
involved: product managers, security engineers, test
engineers and developers. It is important to bridge
these two worlds with a mapping between the high-
level features to existing source code and tests.

• Build configuration: The build configuration shall
be consistent with the selected product and security
features. This is only possible, if there is an automatic
derivation of build information from the features men-
tioned.

• Test selection: The test selection shall be consistent
with the product and security features. Again, the
test selection shall be derived automatically from the
high-level information.

For providing a feasibility study, we sought to rapidly cre-
ate a first prototype. The design of this prototype is given in
Fig. 2. The design states that the inputs for a configuration
are the product and security features. Based on their selec-
tion, the appropriate set of components is calculated. Since
unit tests and integration tests are bound to components,
the component set also determines the set of these tests.

6. Publications Publication 4 - WISE’14 72

Source Code

TestProduct Build

Variant Management

Settings
Component

Make
Link

Make

Test

Component
Model

Product
Feature
Model

Security
Feature
Model

Requirements
Management

Security
 Features

Product Features

Test Test Model

Test Config
Junit

Build

GENERATE

IMPORT

REQUIRES

Implementation

Figure 2: Variability models are imported from a re-
quirements management system and from the source
code. The user selects a set of product and security
features. The resulting configuration is calculated.
As a result, a test and a product build configuration
is generated.

3.3 Action Taking
As a proof of concept, we implemented a first prototype

of the design. The first prototype is not an appropriate
implementation of the industrial problem. The industrial
implementation would take lots of expert knowledge for the
exact mapping of: features to components, and features to
system tests (which has been omitted in the prototype).

3.4 Evaluation
We have modeled four main artifacts: product features,

security features [1], components and tests. Thus, it is nec-
essary to demonstrate the approach involving all of them.
Moreover, all pain points shall be covered by the evalua-
tion. We designed a use case for this purpose: First, select
a specific feature and generate the build and test configura-
tion. Demonstrate that the test passes in this case. Second,
deselect a specific feature and generate build and test con-
figuration. Demonstrate that the test is not executed. All
the other previously executed tests should deliver the same
results as before. Although the use case seems trivial at a
first glance, it is in fact a real improvement in an industrial
setting and has made considerable impression.

3.5 Specifying Learning
LL1: Don’t start with a big implementation. It is not fea-

sible to start with a big implementation for several reasons:
First, the SPL approach is usually not commonly known
within a company. Before starting a big implementation
(which is expensive) the responsible people need to be con-
vinced of the feasibility of the approach. This is one of the
most important issues, because a transition of real-world
source code is extremely expensive. Moreover, a first pro-
totype can be demonstrated and encourages reflection pro-
cesses within and in-between individuals and influences the
requirements for the SPL. In the following, we provide a

short example: Variant management in an industrial con-
text is usually associated with source code configuration.
People are not aware that more artifacts come into play,
such as documentation and tests. After the demonstration
of the prototype, people regarded the test selection and con-
figuration as the most valuable asset of such an SPL.

LL2: It is not apparent where the product features come
from. The first apparent source of features are high-level re-
quirements in requirements management systems and tables
from product management. Nevertheless, the number of fea-
tures from such sources are in the range of several hundred.
A consistent mapping of so many features to source code ar-
tifacts would require too much effort from domain experts.
It is hard to justify so much effort for building a prototype
solution. Although, it makes sense to address these points
later in the transition, there needs to be a smaller feature
set.

LL3: We learned also, that the mining of component de-
pendencies is not facile. For the first prototype, we retrieved
these dependencies from include statements. However, this
approach is just an approximation: includes may mask other
inclusions of dependencies. Such nested ifdef constructs oc-
curred frequently but could be avoided with adhere coding
guidelines and appropriate refactoring.

LL4: One of the most surprising lessons learned was that
the complexity of the Software Product Line was underesti-
mated. We, as research partners did underestimate the size
of the software, the complexity of the configuration and the
dynamics of an industrial project. Moreover, the complexity
of the problems that come with a SPL were underestimated.
This is due to the reason that some mechanisms for variant
management were still implemented in the software project.
These mechanisms worked fine but with the rising number
of configuration switches they grew too complex.

4. SECOND ITERATION: BUILD
The second iteration was accomplished by the research

partner and the industrial partner. As a research partner we
participated in the daily routine of the industrial software
project. Together, we sought to create an applicable solution
for a sophisticated build management.

4.1 Diagnosing
The purpose of the second iteration was the improvement

of the existing build system for variant management. At the
time of diagnosing, variant management was still accom-
plished to a certain degree. The problems with the existing
approach were the following: First, nested ifdef constructs
were becoming increasingly unreadable. There were no con-
cise coding guidelines for such constructs. Second, the gran-
ularity was not consistently defined: sometimes makefiles
were split into more files and sometimes not. There was
no evident splitting criterion. Third, configuration switches
were spread over the code: they exist in makefiles, scripts,
xml files, source code and the like.

4.2 Action Planning
The rationale of this iteration is to show that a consid-

erable number of features can be managed systematically.
However, the outcome of this iteration shall not only be a
feasibility study, but also the development of appropriate
tools, guidelines and practices. It is not possible to evaluate
these improvements in an active project because the risk of

6. Publications Publication 4 - WISE’14 73

interruption and the resulting cost is too high. Thus, we
decided to implement the build iteration in a small team.

4.3 Action Taking
We started with refactoring the existing makefiles and

writing a proposal for the respective makefile coding guide-
lines. The refactoring of the makefiles was only possible to
a very limited degree: each change of a makefile had to be
tested for several product configurations. This diligent test-
ing was necessary, because the refactoring was considered
risky for the product development. Before the refactored
makefile was tested fully, the makefile had been changed by
the industrial team and needed adjustments again. Summa-
rizing, a makefile refactoring is only feasible, if the entire
team focuses on this objective.
The definition of a common vocabulary was a major issue.
A variant management existed beforehand with different vo-
cabulary to that used in academia. This was the source of
several misconceptions. Another issue was the development
of a naming scheme for compiler flags and constant defini-
tions.
It was important to discuss the configuration of the high-
level switches (features). The existing set of several hundred
product features was considered as too complex to be linked
to source code artifacts. This is not a technical limitation.
It is a limitation of complexity. In an industrial context it is
nearly impossible to map several hundred features to source
code, because the required domain expertise is rare. Thusly,
we decided to limit the number of product features to 30.
Nevertheless, handling such a number of high-level switches
in a complex industrial project is a challenge and deemed
appropriate as a starting point.
In order to connect the existing makefiles with the soft-
ware product line tooling, it was necessary to find the exist-
ing switches within makefiles and source code files. During
this examination we found that there are several high-level
switches available in the makefiles.We planned to use them
for the first product feature set because their number did not
exceed the mentioned 30. With these rare existing product
features it was feasible to build another increment of the
variant management prototype and to demonstrate the fea-
sibility of our approach.

4.4 Evaluation
The most relevant achievement was the agreement on the

concept of mapping features, makefiles and compiler flags.
We decided to start with up to 30 features in order to keep
complexity low. In fact, controlling up to 30 features in an
industrial environment is a challenge: the knowledge of the
mapping between features and source code artifacts is not
apparent. It is spread over many developers and domain
experts whose time is limited. For this purpose we first
mined this knowledge from the source code and makefiles.
We have shown the feasibility of the approach when the
number of features is up to 30. We managed to agree on a
makefile concept that satisfies all parties such as developers,
configuration managers and the like. We could elicit a set of
coding guidelines for makefiles. Unfortunately, the makefiles
could not be refactored in the active project, because of the
frequently altering dependencies.
We agreed on a concept of storing all features in a string.
This string is then parsed in the makefiles and conditions
are evaluated according to the feature set in the string. The

makefiles are then responsible for further configuration of
the source code.

4.5 Specifying Learning
LL5: Configuration switches were scattered across many

different locations. A goal of this transition is to centralize
the logic of the configuration. As a rule of thumb, avoiding
nested ifdefs is a good coding practice because this is an in-
dicator of there being no hidden configuration knowledge.

LL6: Regarding the number of product features there is
a difference between technical feasibility and the actual fea-
sibilty (which is limited by complexity and effort). At the
beginning of a SPL establishment it is necessary to demon-
strate the feasibility with a reduced feature set.

LL7: The sources of product features are often not so
apparent. Initially, we mined them in tables from prod-
uct management and in Requirement Management Systems
(RMS). Later we found, that makefiles and source code are
a better starting point for retrieving features.

LL8: Building up a common vocabulary is difficult. Be-
cause there were many involved parties (industry, tool ven-
dor, academia), many different phrases were used to denote
the same meaning. Since this vocabulary was not consistent,
it lead to many misunderstandings. It took a long time and
many discussions to build up a vocabulary that was conse-
quently used by all involved parties.

5. THIRD ITERATION: INDUSTRIAL DE-
VELOPMENT

Before the start of the third iteration much knowledge was
transfered to the industrial partner who was then excellently
prepared for establishing a SPL. Moreover, a tool vendor was
involved in order to tailor the existing tool to the specific
needs.

5.1 Diagnosing
The main issues are: build and test configuration on an

industrial scale. The approach must be minimally invasive:
the tooling must create configuration artifacts which can be
used without the tool. This is due to the fact that many
software developers work on the project: First, not every-
one shall be able to change the variability model. We agreed
that it is better to a few well trained developers working on
the model and generating configuration artifacts with the
tool. These configuration artifacts are then submitted to
the version management system. Second, the transition to
a product line with dedicated tooling is costly in terms of
software licenses and resources. Thus, a possible termina-
tion of the transition shall not result in a system which no
longer works.
As mentioned above, the makefiles will be controlled by con-
figuration artifacts. As an addition, it is necessary to refac-
tor the makefiles. Such a refactoring has failed in the previ-
ous iteration. Therefore, co-ordination needs to be planned
more effectively.
Again,we want to address the problem of test configuration.
There are actually two dimensions of test case selection:
First, tests are selected regarding their functionality, which
means that the tests shall cover the functionality defined by
the product feature set. The respective tests are unit tests,
integration tests and system tests. Second, the tests are also

6. Publications Publication 4 - WISE’14 74

selected regarding the degree of coverage: smoke tests are
very few tests which shall detect possible errors. The full
test set strives to cover each line of code. Moreover, the
test selection also depends on the test platform: simulator,
emulator, real hardware.
Currently, we utilize a test selection mechanism, based on
JUnit1 pre-conditions. However, these pre-conditions shall
be removed and deployed to the variant model.
At present, there is no single point of test selection. In the
underlying industrial context, this is the major argument for
the introduction of a variant management tool.

5.2 Action Planning
Initially, there was a phase of requirements engineering

and many interactions between the industrial partner and
the tool vendor. This phase was intended to gather infor-
mation and demands regarding the SPL project.
We decided to first start with the build configuration and
proceed with the configuration of unit and integration tests.
Afterwards, we intend to manage the selection of system
tests. For each of these objectives, we defined three different
phases: a development phase, a pilot phase and a transfer
phase. In the development phase, the software and the tool
are developed in order to meet the requirements. It is not
used in the active software project. In the pilot phase, the
finished solution is evaluated in order to find its flaws and
possible corrections. If the solution is regarded as mature
enough, it passes to the transfer phase. In the transfer phase
the solution is used in the industrial project and developers
are trained to apply it.

5.3 Action Taking
The new variant model is similar to the model of the first

iteration (see Fig. 2). It contains product features, compo-
nents and tests. It has been taken over by the industrial
partner, for the bigger part. Also, the mapping of unit tests
and integration tests to components is similar to the first
prototype.
System tests cause the test selection to be problematic: sev-
eral thousand of them cannot be mapped to components.
Thus, they need to be mapped to features. This can only be
done by experienced domain experts whose time is limited.
Thus, we still strive to find the dependencies in a different
way.

5.4 Evaluation
The industrial project was successful, so far. With the lim-

ited feature set, the mapping between features and source
code is feasible. At the moment, the pilot phase of the solu-
tion seems to work as desired. What is missing is experience
from the broad transfer of the solution to the daily routine.
academic partner’s previous work could be reused in the in-
dustrial setup. So, it can be concluded that the knowledge
transfer was successful to a considerable degree.

5.5 Specifying Learning
LL9: What we especially learned is that such a transition

to a SPL can only be successful, if there is one insider re-
sponsible for it. It is usually much easier for such an insider
to get information and support. This is especially the case,
when an academic project starts to become industrial.

1http://junit.org/

LL10: A very important point is the following: such a
project must deliver some early successes to get enough sup-
port. For this reason and to minimize risk, the industrial
partner fostered a staged transition to a SPL. After each
stage the solution is evaluated with the possibility of the
project being canceled.

6. CONCLUSION
In Table 1 the lessons learned are summarized. As can

be seen we gathered 10 lessons learned in 3 iterations. In
the third iteration we could only identify 2 lessons learned:
this is due to the fact that this iteration is not yet fully
completed. We rated the experience of each lesson learned
regarding the degree of technical and field experience. The
more the experience is field-related the less it can be re-
produced in a traditional research lab setting. Field-related
experience may have a technical facet but usually involves
more aspects. The relation between pure technical experi-
ence and field experience shows to which degree action re-
search can enhance traditional research methods. We rated
each dimension on a scale between zero and three plus: No
related experience results in a zero rating. A rating of three
plus denotes a highly related experience.

0

1

2

3

4

5

6

7

8

1 2 3

technical

field

iteration

rating

Figure 3: The rated technical and field experience
of the lessons learned for all three iterations.

Fig. 3 shows the evolution of the learning experience over
the three iterations. In the first iteration, the focus of the
SPL transition was on the research partner. Following the
rated experience is lower than in the second iteration. There,
the research partner and the industrial partner were closely
working together on a solution. In the third iteration the
rated experience is lower than in the previous iterations.
That is because this iteration is not yet fully completed. It
is interesting to see that the field experience is always rated
higher than the technical experience. This is due to the fact
that we were participating in a large and dynamic software
project. In such a setting, the research conditions are differ-
ent to an isolated research project. However, the research
method also helps to gather insights which are not possible
to elicit with a traditional research method. Such a method
would only reveal the same technical experience, in the best
case.

6. Publications Publication 4 - WISE’14 75

Table 1: Summary of all lessons learned.
Lesson
Learned

Description Iteration Technical Experience Field Experience

LL 1 don’t start big 1 +++
LL 2 unclear source of features 1 + +
LL 3 mining component dependencies 1 ++ +
LL 4 underestimated complexity 1 ++
LL 5 avoid nested ifdefs 2 ++ +
LL 6 limit number of features 2 +++
LL 7 retrieve features from source 2 ++ +
LL 8 build up a common vocabulary 2 +++
LL 9 insider responsibility 3 +++
LL 10 early successes 3 +++

In this paper we reported on a successful knowledge trans-
fer from academia to industry. We described this transfer
with an established research method which fosters the trans-
fer of science to real and practical applications. This re-
search method has enabled the extraction of several lessons
learned which are likely to appear in a similar setting. The
lessons learned have demonstrated that the action research
approach is capable of providing more insight to field expe-
riences than the traditional research method which focuses
solely on problem solving.

7. ACKNOWLEDGMENTS
Project partners are NXP Semiconductors Austria GmbH
and TU Graz. The project is funded by the Austrian Federal
Ministry for Transport, Innovation, and Technology under
the FIT-IT contract FFG 832171. The authors would like
to thank pure systems GmbH for support.

8. REFERENCES
[1] Common Criteria. Java Card Protection Profile - Open

Configuration. Version 3.0 (May 2012).

[2] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen.
Action research. Communications of the ACM,
42(1):94–97.

[3] P. C. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley, 2002.

[4] Oracle. Runtime Environment Specification. Java Card
Platform, Version 3.0.4, Classic Edition, 2011.

[5] Oracle. Virtual Machine Specification. Java Card
Platform, Version 3.0.4, Classic Edition, 2011.

[6] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, 2005.

[7] G. Susman and R. Evered. An assessment of the
scientific merits of action research. Administrative
science quarterly, Jan. 1978.

6. Publications Publication 4 - WISE’14 76

Evaluation paradigm selection according to Common
Criteria for an incremental product development

Andreas Daniel Sinnhofer
Institute for Technical

Informatics
Graz University of Technology,

Austria
a.sinnhofer@tugraz.at

Wolfgang Raschke
Institute for Technical

Informatics
Graz University of Technology,

Austria
wolfgang.raschke@tugraz.at

Christian Steger
Institute for Technical

Informatics
Graz University of Technology,

Austria
steger@tugraz.at

Christian Kreiner
Institute for Technical

Informatics
Graz University of Technology,

Austria
christian.kreiner@tugraz.at

ABSTRACT
Today, agile product development techniques are widely used
providing a rapidly and steadily progression of incremental
product improvements. Traditionally, a product certifica-
tion is issued in a late stage of the development process, al-
though some Common Criteria evaluation paradigm would
exists to support an agile or modular development process.
The usage of such a paradigm would result in a beneficial
certification process, since the evaluator gains experience
through the maturing product. To provide a systematic way
to integrate the evaluation process into the development pro-
cess — and thus saving money and time — we have identified
use case scenarios with the according evaluation paradigm,
providing a selection scheme for the right paradigm.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Re-
use models

General Terms
Design, Security

Keywords
Common Criteria, Security Evaluation

1. INTRODUCTION
Today, agile product development techniques are widely used
providing a rapidly and steadily progression of incremental
product improvements, based on common parts and a mod-
ular product architecture [7]. This leads principally to a

faster time to market and enables the ability to survive and
compete in a competitive market. A problem with this flex-
ible and adaptive development paradigm comes up when a
certification of the product should be issued, since — tradi-
tionally — agile methods are already not used for the devel-
opment and evaluation process of secure products.
At present, a common approach is to start the certification
process of a product in a very late phase of the development,
which can result in huge costs when the evaluation facility
gives a negative attestation, because a redesigned must be
issued. As identified by Boehm [9], the later changes are
introduced in the development process, the higher the costs
are.
Another problem with such an approach is the long period of
time an evaluation process can take, even when the certifica-
tion of the product is positive. E.g. the certification process
of Microsoft Windows 7 took one year and eight months1.
This can lead to a delayed release if a certificate is a con-
dition for the disposal of a product (e.g. the CE certificate
for resale within the EU) or a big gap between the date of
release and the date a certificate is issued. Either way, both
situations can potentially result in a loss of customers when
a competitor is already selling a certified product.
To overcome these drawbacks, Raschke et al. [14] introduced
two processes capable for a modular or agile product devel-
opment, where the certification process is started in parallel.
Furthermore he provides a method to automatically detect
the actual impact set, so that only those modules are re-
evaluated which have an effect to the security assurance of
the product. This approach has the key benefit that the
evaluator is integrated since the early stages of the process.
In fact, the evaluator is gaining experience with the matur-
ing system. Moreover, the feedback of the evaluator can
be directly integrated in the next iteration step leading to
lower redesign costs [8] [6]. The Common Criteria certifica-
tion process itself is not further specified, which means that
any possible paradigm can be chosen, such as the assurance

1see the 14th International Common Criteria Confer-
ence (ICCC) https://www.commoncriteriaportal.org/
iccc/ICCC_arc/presentations/T2_D2_2_30pm_Grimm_
Evaluating_Windows.pdf

6. Publications Publication 5 - MILS’15 77

c© 2014 ACM. Reprinted, with permission, from Proceedings of International Workshop on MILS:
Architecture and Assurance for Secure Systems (MILS’15).

continuity, a compositional evaluation or a delta evaluation,
depending on the current development environment regard-
ing the number of involved developing companies and the
number of involved certification facilities.
The contribution of our paper is the identification of the
appropriate evaluation scheme for a Common Criteria certi-
fication for an agile or modular product development which
is applicable in combination with the processes from Raschke
et al. [14]. The proposed selection scheme is also applicable
for products which are based on previously certified prod-
ucts or modules (e.g. for bug-fix releases).
Section 2 gives a short introduction into the evaluation pa-
radigms according to Common Criteria and the processes
identified by Raschke et al. [14]. Section 3 gives an overview
over the use case scenarios, providing further information
on the according evaluation paradigm and Section 4 sum-
marizes the findings from the use case scenarios in the pro-
posed selection scheme. Finally the results of this paper are
summarized and related work is presented.

2. BACKGROUND
2.1 Assurance Continuity
As proposed in Common Criteria Assurance Continuity [1],
an evaluation paradigm for the maintenance and re - evalu-
ation of already Common Criteria certified products exists.
The flow chart of this approach is illustrated in Fig. 1. It
can be seen that based on an impact analysis report (IAR)
a decision is made whether the changes to the target of eval-
uation (TOE) is minor (does not affect the assurance base-
line) or major. In the case of minor changes, the previously
issued certificate is updated with a maintenance addendum
and a maintenance report. The Common Criteria Assurance
Continuity [1] states, that ”Maintenance may, in general,
continue for up to two years beyond the certification date”.
Due to the fact, that we only consider major changes, the
maintenance process is not further contemplated.

In case of major changes, a re-evaluation needs to be per-
formed regarding all affected parts and a new certificate is
issued. This can be achieved using an informal modular eval-
uation scheme (i.e. Delta-Evaluation) through re-evaluation
of only the changed and affected modules as stated in the
Common Criteria Information Statement on the reuse of
evaluation results (see Section 2.2).
The drawback of the assurance continuity approach is, that
it is only applicable in those situations, where the evaluation
facility is not changed and where a certificate was already
issued. Therefore, this approach is intended to be used for
bug-fix releases/revisions of old products.

2.2 Delta Evaluation
As stated in the ”Common Criteria Information Statement
on the reuse of evaluation results” [2] the following evidences
must be shared to reuse previously created evidences:

• Product and supporting documentation

• New security target(s)

• Original security target(s)

• Original evaluation technical report(s)

Changelislmade
tolthelTOE

Evidencelislupdated
IARlcreatedlandl

submittedltolscheme

Security
impactl

oflchange

AssurancelContinuity:
Maintenance

AssurancelContinuity:
Re-Evaluation

(InformallModular)

minor major

Figure 1: Common Criteria Assurance Continuity
flow chart

• Original certification/validation report(s)

• Original Common Criteria certificate(s)

• Original evaluation work packages (if available)

It is specified that

”... the evaluation facility conducting the current
evaluation should not have to repeat analysis pre-
viously conducted where requirements have not
changed nor been impacted by changes in other
requirements ...”

where such changes are identified through a so called delta
analysis:

”... The evaluation facility would be required to
perform a delta analysis between the new secu-
rity target and the original security target(s) to
determine the impact of changes on the analysis
and evidence from the original evaluation(s) ...”

which is similar to an impact analysis.
As a result, a product re-evaluation can be performed by an
analysis of the impacts of changes and through evaluation of
only the changed and affected modules. Unaffected modules
need not be reconsidered for the overall evaluation process.
Drawback of this approach is that the evaluation techni-
cal report is typically generated by the evaluation facility
and thus, in some cases, is considered as proprietary to that
facility, which makes the interchange of evidences between
different certification facilities difficult.

2.3 Composite evaluation
As stated in the Common Criteria Mandatory Technical
Document on the composite product evaluation for smart
cards and similar devices [3] a composite evaluation can be
performed for all kind of products where

6. Publications Publication 5 - MILS’15 78

”... an independently evaluated product is part of
a final composite product to be evaluated ...”

and hence is not limited to smart cards only, but with the
limitation that

”... The composite product is a product consist-
ing of at least two different parts, whereby one of
them represents a single product having already
been evaluated and certified ... The underlying
platform is the part of the composite product hav-
ing already been evaluated ...”

Thus it is applicable for example for an embedded system
whereas an application runs on a certified OS, respectively
the OS is running on a certified hardware. I. e. a layers
pattern is used for the product, whereby trust is established
through each layer. The lowest EAL of all components is
the limiting factor of the composite product.

2.4 Composed evaluation
As stated in the Common Criteria part 3 (see [4]), the com-
posed evaluation is intended for situations, where indepen-
dently certified (or going through an independent certifi-
cation process) products/modules are assembled to a new
product which should be certified. It is applicable, where a
composite evaluation is not suitable and a delta evaluation
cannot be performed due to missing evidences (proprietary
documents are not shared). At present, a composed eval-
uation for higher assurance levels (higher than CAP-C2 is
not supported through the composed scheme and hence a
re-evaluation of the whole product is necessary. Due to this,
composed evaluations have been performed much less suc-
cessful than composite evaluations.

2.5 Informal: Identification of the impact set
Due to the fact that it is not necessary to perform unaf-
fected evidences twice, it is meaningful to use change de-
tection analysis to determine the actual affected modules
so that only these modules need to be reconsidered in the
evaluation. It is important to understand, that modules can
interact with each other and hence not only the directly
changed module but all other interacting modules need to
be reconsidered. This can be achieved through the use of the
change impact analysis process proposed by Bohner [10] or
the refined processes by Raschke et al. [14]. Our work only
mentions the processes proposed by Raschke et al. since
he also describes a tool for an automatic change detection
analysis, which is well-suited for an partially automatic gen-
eration of the Impact Analysis Report (respectively delta
analysis), but every other approach is also applicable.
The change detection analysis is based on the so-called Secu-
rity Model, which describes the properties and relationships
of the developer evidences, based on the security target, the
design documentation, the implementation and the tests (see
Figure 2 explanatory graphical representation). Therefore it
is applicable to trace and detect all dependencies between
each module.

2Attack potential ”Enhanced Basic”; approximately compa-
rable with EAL-4 (see[4] pages 38 and 47)

Security Target

Security Functional
Requirements

Tests

Implementation Representation

Design Documentation

Security Objectives

Security Problem Definition

SPD-1 SPD-2 SPD-3

SO-1 SO-2 SO-3

SFR-1 SFR-2 SFR-3

DD-1 DD-2 DD-3

IMP-1 IMP-2 IMP-3

T-1 T-2 T-3

Figure 2: Explanatory Security Model, showing
some exemplary artefacts and traces

3. PROPOSED USE CASES AND ACCORD-
ING EVALUATION PARADIGM

Overall situation: Aforementioned, we consider an agile
or modular product development process, where the (final)
certified product is assembled using a number of modules.
In each development iteration new modules can be added or
old modules can be changed or removed. Various companies
can be involved in the development process of the product
and any number of evaluation facilities can be integrated in
the certification process.
The selection scheme is applicable for the following scenar-
ios:

• Use case 1: One company develops a number of mod-
ules which are all evaluated at the same evaluation fa-
cility. Since the evaluation facility has full access to all
modules and all related evidences, an evaluation can
be achieved by a simple informal modular evaluation.
If during the development process the evaluation facil-
ity is changed, a formal modular paradigm would need
to be chosen.

• Use case 2: One company develops a number of mod-
ules, whereas a number of evaluation facilities (n > 1)
are involved in the certification process, interchanging
all kind of evidences. Therefore, a delta evaluation can
be issued.

• Use case 3: One company develops a number of mod-
ules, whereas a number of evaluation facilities (n > 1)
are involved in the certification process, but unfortu-
nately they do not interchange evidences. Depending
on the architecture of the developed product a com-
posite (Use case 3.a) evaluation or an composed (Use
case 3.b) evaluation can be issued.

• Use case 4: Several companies are involved in the
development process of the product, but one central
evaluation facility is used. In this scenario an informal
modular evaluation can be used since the certification
facility has direct access to every contribution of every

6. Publications Publication 5 - MILS’15 79

Evidence>is>updated
IAR>created

other
Companies

involved

how>many
Certifiers>are
concerned

how>many
Certifiers>are
concerned

All
evidences
are>shared

Formal>if>the>Certifier>
is>changed

214

No1

>>>>>>>>>>>n>>>1

>>>Yes No

Yes>> 1

>>>>>>>>>>>n>>>1

Version
N

Version
N>.>1

Actual>Impact>Set
is>calculated

Informal>Modular
Use>Case>1

Delta>Evaluation
Use>Case>2

Informal>Modular
Use>Case>4

Composed>Evaluation
Use>Case>35bb>55b

Composite>Evaluation
Use>Case>35ab>55a

Layered
development

No

214 214

>>>>>>>>Yes

Figure 3: Proposed paradigm selection scheme

company. If during the development process the cer-
tification facility is changed, a formal modular scheme
would need to be chosen.

• Use case 5: Several companies are involved in the de-
velopment process of the product and any number of
evaluation facilities (n > 1) are included into the cer-
tification process (e.g. each company consults a differ-
ent evaluation facility). A delta evaluation is possible
if the different evaluation facilities interchange all kind
of evidences, which can be a problem since the eval-
uation facilities would need to provide information on
their evaluation process and their used methods. In
practice, a composite (Use case 5.a) or composed (Use
case 5.b) evaluation scheme is used, depending on the
used architecture.

4. PARADIGM SELECTION SCHEME
Based on the activities during the assurance continuity pro-
cess [1], a selection scheme for the presented use cases was
created. The first steps towards the reuse of any evidence is
the analysis of the impacts on the assurance of the current
Target of Evaluation which is intended to be done by one of
the processes proposed by Raschke et al. [14]. The selection
scheme is split-up into two main leafs, where one is applica-
ble if a product is developed from a single company and the
other one for a product which is developed from many com-
panies. As identified in the use cases, another factor which
must be considered is the number of certification facilities
and the fact if these certification facilities do interchange all
needed evidences so that the evaluation results can be reused
efficiently. Another criterion which needs to be reconsidered
is derived from the composed evaluation scheme, whereby

the developed product is structured in a layered approach.
The lowest layer must be already certified.
Generally spoken an informal approach can be used if certi-
fication facilities do interchange evidences or a single certi-
fication facility is issuing the product evaluation and formal
approaches must be chosen in all other cases which are usu-
ally more time and money intensive.
The next enumeration provides a short description of the
according paradigms:

• Informal Modular: The certification facility has full
access to all modules and evidences, therefore only the
affected modules are re-evaluated (Delta Evaluation).

• Formal Modular: The certification facility was changed
and hence, all modules need to be reconsidered in the
evaluation process. Previously created evidences (e.g.
certified modules) can be reused, if all needed infor-
mation is available.

• Composed Evaluation: This evaluation is based on the
Composed Assurance Package (CAP) of the Common
Criteria part 3 (see Section 2.4). Drawback is that
the highest achievable CAP level is CAP-C, which is
comparable to EAL-4. Higher levels of assurance are
only possible through a complete re-evaluation of the
assembled product.

• Composite Evaluation: This evaluation paradigm is
based on a layered product development, where trust
is gained through the combination of all layers. In
difference to the composed evaluation, the composite
product is the final product for which an EAL level

6. Publications Publication 5 - MILS’15 80

certification is issued. This allows a direct comparison
with similar products certified after a single evaluation.
[3]

• Delta Evaluation: This is the delta evaluation as de-
scribed in Section 2.2. A concrete process for the certi-
fication is not provided through the Common Criteria
standard and thus the according certification facility
needs to be consulted.

5. RELATED WORK
Klohs [12] provides observations and thoughts on the mod-
ularisation concepts for the development of a smart card
operating system according to Common Criteria. He points
out that the JIL document [5] on the security architecture
requirements for smart cards and similar devices, establishes
a first starting point for the reuse of software components,
based on a description of the security interface and the im-
plemented security mechanism which is implemented from
the component independent of a concrete security target.
The Assert4SOA3 project focuses on the development of
methods for the certification of service oriented architectures
(SOAs), reusing existing certification processes to overcome
the challenging tasks for an evolving software ecosystem.
The project itself does not focus on the Common Criteria
scheme, but provides a guidance to integrate the Common
Criteria certification scheme into a service oriented architec-
ture in [13].
The Euro-MILS4 project focuses on providing a framework
for trustworthiness by design and high assurance based on
Multiple Independent Levels of Security (MILS) [11]. In fact,
assurance of the whole product is gained through the com-
position of assurance arguments of its components and the
system’s security architecture. The developed framework is
based on the Common Criteria evaluation schemes.

6. CONCLUSION
Today’s industry is embossed through fast changing require-
ments regarding functional and security needs. These cir-
cumstances are tried to be solved through the usage of agile
or incremental manufacturing techniques. We have identi-
fied a scheme for the selection of the appropriate evaluation
paradigm to support an agile or modular development pro-
cesses regarding the security certification to reduce the time
shift between the successful certification and the time the
product development finished. Furthermore the costs for re-
evaluating the developed product/modules can be kept as
low as possible since the most suitable paradigm is chosen,
maximizing the reuse of already evaluated modules and pro-
viding a direct integration of the evaluation facility in the
process so that the feedback is directly integrated into the
next development iteration.

7. ACKNOWLEDGEMENT
Project partners are NXP Semiconductor Austria GmbH
and the Technical University of Graz. The project is funded
by the Austrian Research Promotion Agency (FFG).

3www.assert4soa.eu
4http://www.euromils.eu

8. REFERENCES
[1] Common Criteria. Assurance Continuity CCRA

Requirements. Version 2.1 (June 2012).

[2] Common Criteria Information Statement. Reuse of
Evaluation Results and Evidence. (October 2002).

[3] Common Criteria Supporting Document Mandatory
Technical Document - Composite product evaluation
for Smart Cards and similar devices. Version 1.2
(April 2012).

[4] Common Criteria for Information Technology Security
Evaluation. Part 3 Security assurance compnents.
Version 3.1 Revision 4 (September 2012).

[5] Common Criteria Supporting Document Guidance -
Security Architecture requirements (ADV ARC) for
smart cards and similar devices. Version 2.0 (April
2012).

[6] S. Ambler. The Object Primer: Agile Model-Driven
Development with UML 2.0 - Third Edition.
Cambridge University Press, 2004.

[7] D. Anderson. Agile Product Development for Mass
Customization: How to Develop and Deliver Products
for Mass Customization, Niche Markets, Jit,
Build-To-Order and Flexible Manufacturing. Irwin
Professional Pub., 1997.

[8] K. Beck and C. Andres. Extreme Programming
Explained: Embrace Change (2Nd Edition).
Addison-Wesley Professional, 2004.

[9] B. W. Boehm. Software Engineering Economics.
Prentice Hall, Englewood Cliffs, NJ, 1981.

[10] S. A. Bohner. Extending software change impact
analysis into cots components. In Proceedings of the
27th Annual NASA Goddard Software Engineering
Workshop (SEW-27’02), SEW ’02, pages 175–,
Washington, DC, USA, 2002. IEEE Computer Society.

[11] H. Blasum, S. Tverdyshev, B. Langenstein, J. Maebe,
B. De Sutter, B. Leconte, B. Triquet, K. Müller, M.
Paulitsch, A. Söding- Freiherr von Blomberg, A.
Tillequin. Secure European Virtualisation for
Trustworthy Applications in Critical Domains - MILS
Architecture, 2014.

[12] D. K. Klohs. Software modularisation and the
common criteria - a smartcard developer’s perspective.

[13] M. B. Samuel Paul Kaluvuri and Y. Roudier. Bringing
common criteria certification to web services.

[14] W. Raschke, M. Zilli, P. Baumgartner, J. Loinig, C.
Steger and C. Kreiner. Supporting evolving security
models for an agile security evaluation, 2014.

6. Publications Publication 5 - MILS’15 81

Supporting Evolving Security Models for an Agile
Security Evaluation

Wolfgang Raschke∗, Massimiliano Zilli∗, Philip Baumgartner†

Johannes Loinig†

Christian Steger∗, and Christian Kreiner∗

∗Institute for Technical Informatics, Graz University of Technology, Graz, Austria
{wolfgang.raschke, massimiliano.zilli, steger, christian.kreiner}@tugraz.com

†NXP Semiconductors Austria GmhH, Gratkorn, Austria
{philip.baumgartner, johannes.loinig}@nxp.com

Abstract—At present, security-related engineering usually re-
quires a big up-front design (BUFD) regarding security require-
ments and security design. In addition to the BUFD, at the
end of the development, a security evaluation process can take
up to several months. In today’s volatile markets customers
want to influence the software design during the development
process. Agile processes have proven to support these demands.
Nevertheless, there is a clash with traditional security design
and evaluation processes. In this paper, we propose an agile
security evaluation method for the Common Criteria standard.
This method is complemented by an implementation of a change
detection analysis for model-based security requirements. This
system facilitates the agile security evaluation process to a high
degree.

I. INTRODUCTION

Traditional security engineering requires a big up-front
design (BUFD) which includes the following engineering
tasks: threat analysis, security requirements elicitation, secu-
rity design and (security) architecture. Reviews ensure the
consistency of these artifacts. In highly secure systems, the
consistency of the security requirements and the security
architecture is formally verified. Altogether, this constitutes
a huge effort, before the implementation is even started upon.
After the security design, the system is implemented according
to requirements and design. Thereafter, evidence for security
has to be provided in the form of documentation. This doc-
umentation is then delivered to the evaluation facility. The
evaluation may take several months. If the feedback from the
evaluator is negative, the system has to be re-designed. If this
is the case, then a large amount of time and effort would
be required. Moreover, the pressure to deliver the product
to market is high. Summarizing, the challenges for security
engineering are: early validation and time-to-market.
The software industry came up with the trend of agile devel-
opment practices (see [2]), such as XP, Scrum, and Test-driven
development. Agile methods focus on customer interaction and
incremental software development. Feedback loops, such as
customer on-site, pair programming and refactoring tend to
minimize errors. Generally, agile processes react flexibly to
changing customer requirements. In contrast, traditional pro-

cesses tend to fulfill contractually specified requirements and
are inflexible, by nature. Agile processes have demonstrated a
high success rate in several software projects [3].
Unfortunately, agile methods are not well studied for high-
level security engineering and evaluation. Case studies and
success stories are lacking, especially for the Common Criteria
standard [1]. Despite the fact that traditional security engineer-
ing seems to counter agile practices (see [4]), we think that a
synthesis of both is not contradictory, if well considered.
Our contribution is the analysis of two processes which
are possibly suitable for an agile security evaluation. Both
processes are compared and one of them is then proposed for
an agile security evaluation. In an agile evaluation process,
all security properties of the system are kept in a model
which is capable of creating documentation for an evaluation
round. In the agile evaluation process only the increment of
the model has to be reviewed. This has several benefits: the
entire system does not have to be reviewed in each iteration.
The evaluator starts with a small system and gains experience
with the maturing of the system. Early feedback enables an
early and thus more inexpensive correction of the system.
With elaborated algorithms we are able to create a difference
model for all changes during an increment. Additionally,
we demonstrate the feasibility of automation by customizing
existing open source software.

II. BACKGROUND

A. Requirements for the Security-Relevant Agile Development
Process

We developed this method mainly in order to gain
improvements regarding time-to-market and early validation.
In addition we strive to improve the semi-automation of the
document creation with the model-based approach.

1) Time-to-Market: is one of the key success factors
in the high-security business. In a traditional certification,
the evaluation is accomplished after the implementation is
finished. The time-to-market can significantly be reduced, if
the evaluation parallels the development.

6. Publications Publication 6 - IEEE ESPRE 2014 82

c© 2014 IEEE. Reprinted, with permission, from Proceedings of 2014 Evolving Security and Privacy
Requirements Engineering (ESPRE’14).

2) Early Validation: In the traditional certification
approach, the evaluation starts late, when the product is
already finished. If there is a negative evaluation result, the
refactoring is expensive and seriously delays the completion
of the product.

3) Semi Automation: The agile way of working states that
communication shall be over documentation. Frequent inter-
action with the customer and building and adapting quickly
a running system is imperative. Regarding the mentioned
issues of a quick and flexible development, a documentation
effort is counterproductive. In principle, the documentation
could start right after the implementation: one would not have
to care about documentation during the agile development
but the benefit of time-to-market is lost. In this case the
documentation and certification may last several months. In
a highly competitive business this is a considerable delay.
Moreover, also the advantage of early validation is lost.
It can be seen that the described security-relevant agile
development process is a trade-off. However, much of the
documentation effort can be automated: the model can be
synchronized with the source code, the tests, and other relevant
artifacts. A considerable degree of the documentation can then
be created by a code-generator from the model.

B. Change Detection Analysis

A Change Detection Analysis (CDA) computes all changes
between two versions. The CDA is more commonly known
under the name diff analyis: diff1 is a software that compares
two versions of a text and marks the differences between them.
It is a standard tool for software versioning and configuration
management. The CDA for models is similar but does not
make a line-based comparison of the text. Such a line-based
comparison between two models is not sufficient because it
does not take into account the structure of a model. In contrast,
the CDA recognizes the type of the changed artifact. For
example, the CDA recognizes, if and interface has changed
in the source code. In this case, more related artifacts need
to be reviewed: the regarding design, the tests and the like. If
a change is not part of an interface, much less artifacts need
to be taken into account. Textual diff tools do not have these
capabilities. Basically, the CDA detects three different kinds
of changes [5]:

• Add: Add a model element. A model element is a node
in a model. It may have parent and child nodes.

• Delete: Delete an element.
• Update: Change of an element property. A property

(attribute) belongs to an element.

C. Traceability Impact Analysis

The Traceability Impact Analysis (TIA) is an extension of
the CDA. It takes all changed elements and finds all elements
which are possibly affected by them. For this purpose, the
TIA has to follow all dependencies (traces) of the changed

1http://www.gnu.org/software/diffutils/

elements. Thus, an element can be directly affected (by
a changed element) or indirectly via several intermediate
dependencies.

Fig. 1. Sample dependency graph. E4 is impacted directly by E2 and
intermediatly by E1 (via E2).

1) Dependency Matrix: In order to perform a TIA, the
dependency matrix has to be constructed. In (1) the matrix
D represents the dependency graph shown in Fig. 1. In the
matrix, each line lists the depending elements of a certain
element. So, line 1 states that element E2 depends on element
E1.

D =

Element E1 E2 E3 E4 E5

E1 1 1 0 0 0
E2 0 1 1 1 0
E3 0 0 1 0 1
E4 0 0 0 1 0
E5 0 0 0 0 1

(1)

2) Reachability Matrix: The reachability matrix (2) can be
computed from the dependency matrix. It states all direct and
indirect dependencies between two elements. The reachability
matrix can be used to calculate all impacts of a changed
element.

R =

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 0 1

(2)

For example, in (3), the reachability matrix is multiplied
with a vector that indicates that element E2 has changed (the
1 in the second row). The outcome of the multiplication is the
vector IS that lists all impacted elements. So, if element E2
changes, element E3, E4 and E5 are impacted.

IS =

0
1
1
1
1

=

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 1 0 1

0
1
0
0
0

(3)

6. Publications Publication 6 - IEEE ESPRE 2014 83

D. Delta Evaluation

The Common Criteria information statement on Reuse of
Evaluation Results and Evidence [6] requires for a reuse of
evaluation results the following evidence:

• Product and supporting documentation
• New Security Target
• Original Security Target
• Original Evaluation Technical Report
• Original Common Criteria Certificate
• Original Evaluation Work Packages

The document states:
”The evaluation facility would be required to per-
form a delta analysis between the new security target
and the original security target to determine the
impact of changes on the analysis and evidence from
the original evaluations.”

and:
”However, the evaluation facility conducting the
current evaluation should not have to repeat analysis
previously conducted where requirements have not
changed nor been impacted by changes in other
requirements.”

Summarizing, this approach states the necessary documen-
tation and the need for a Change Impact Analysis. A more
detailed process for this evaluation is not given and has to be
defined together with the evaluation facility.

E. Security Model

The security model describes the properties and relations
of the developer evidence. Basically, the developer evidence
contains the Security Target (ST), the design documentation,
the implementation representation and tests. Such a model for
a Common Criteria evaluation is very complex due to the very
hierarchical composition of the Common Criteria artifacts.
Therefore, we describe only the basic properties of such a
model which are necessary for understanding the proposed
evaluation approach (see Fig. 2).

The Security Target is the security claim and describes the
operating context and how the TOE establishes its security.
The ST is published and thus contains no detailed description
of the design and implementation. The model of the ST
contains the following main parts:

• The Security Problem Definition describes the environ-
ment of the TOE: threats, assumptions about its operation
and its security relevant assets.

• The Security Objectives are high-level security goals
which are then refined by the Security Functional Re-
quirements.

• The Security Functional Requirements are a set of well
understood requirements in a security domain and have
to be fulfilled by the TOE.

The remaining developer evidence basically contains the
design documentation, the implementation representation and

Fig. 2. Artifacts of the security model and traces between these artifacts.

tests. The evaluation has to prove that the TOE fulfills the
security claim of the ST. For this reason, mainly the following
developer evidence is necessary:

• The Design Documentation contains the functional spec-
ification and the design specification.

• The Implementation Representation is the source code of
the implementation.

• Tests: This part contains of the source code of the tests
and also a corresponding test documentation.

III. PROCESS DESIGN

In this section we will explain and compare two possible
processes for a security evaluation. The first one is more
formal and suits a delta certification approach. The second
is more informal and more appropriate for an agile security
evaluation. What is the major difference between a delta and an
agile evaluation process? The main difference is the frequency
of the evaluation: the delta evaluation is based on a previous
evaluation result which has been ascertained some time ago.
Basically two product versions are compared. In the agile
approach the evaluator becomes update documentation in each
agile iteration (which lasts several weeks). Nevertheless, the
certificate is only ascertained once, at the end of the product
development lifecycle. The following processes are based on
the change impact analysis process described by Bohner [7].

A. Process with Traceability Impact Analysis

In the following, we will describe the TIA process with an
example. The resulting sets are listed in Table I. The graph in
Fig. 1 shows the structure of the two versions N and N+1. The
structure of the model does not alter during this increment. For
the example, we assume, that the content of the node E1 has
changed. The CDA detects all model differences between both
versions. The output is the Starting Impact Set (SIA). In this
case the SIA is the changed element E1: SIA = {E1}.

The TIA resolves then all traces and dependencies of the
SIA and computes the so-called Candidate Impact Set (CIS).
The CIS is the set of all possibly impacted artifacts. In this

6. Publications Publication 6 - IEEE ESPRE 2014 84

Fig. 3. Re-evaluation process with Traceability Impact Analysis. The Actual
Impact Set is finally the re-evaluated set of software artifacts.

case, the CIS is: CIS = {E1,E2,E3,E4,E5}. Nevertheless, the
CIS has to be manually re-evaluated:
(a) If the candidate has a possible impact, the corresponding
evaluation artifacts need to be updated. The set of all re-
evaluated artifacts form the Actual Impact Set (AIS). The
Actual Impact Set in this example is: AIS ={E1,E2}.
(b) During the re-evaluation, new dependencies may be found:
the Discovered Impact Set. Also the newly discovered impacts
(DIS) have to be re-evaluated, again. In this example, the DIS
is empty.
(c) If the candidate has no impact, it is part of the False
Positive Impact Set (FPIS). In this case, a further security
evaluation of the corresponding artifacts can be omitted. The
FPIS in this example is: FPIS = {E3,E4,E5}.
Basically, the TIA predicts the AIS. This prediction is of
course partly wrong, because new impacts are discovered
(DIS) and some predicted impacts actually have no impact
(FPIS). In (4) the relationships between the mentioned sets
are stated:

AIS = CIS +DIS − FPIS (4)

TABLE I
SAMPLE SETS FOR THE PROCESS WITH TRACEABILITY IMPACT ANALYSIS.

THE CORRESPONDING EXAMPLE IS DESCRIBED IN SECTION III-A.

Set Output Of

Starting Impact Set {E1} CDA

Candidate Impact Set {E1,E2,E3,E4,E5} TIA

Discovered Impact Set {} re-evaluation

False Positive Impact Set {E3,E4,E5} re-evaluation

Actual Impact Set {E1,E2} re-evaluation

B. Process with Experiential Impact Analysis

We will describe the EIA process with an example. The
resulting sets are listed in Table II. The graph in Fig. 1 shows
the structure of the two versions N and N+1. As shown in
Fig. 4, the process with Experiential Impact Analysis (EIA)
takes as input two versions (N, N+1) of a model.

Fig. 4. Re-evaluation process with Experiential Impact Analysis. The Actual
Impact Set is finally the re-evaluated set of software artifacts.

The CDA detects all model differences between both ver-
sions. In the example, the structure of the model between both
version remained unchanged. Only the the content of node E1
has changed. The resulting Candidate Impact Set (CIS) is then:
CIS = {E1}. As can be seen, in this process the TIA is omitted:
the re-evaluation is accomplished directly after the CDA. This
leads to two consequences: first, the number of false positives
is much lower (compare Table I and Table II), because the
CIS is smaller without a TIA, which also takes into account
intermediate dependencies. Second, the DIS is larger because
more impacts need to be detected during the re-evaluation
(compare Table I and Table II). In this example, the manually
detected impacts are: DIS = {E1,E2}. This evaluation relies on
Experiential Impact Analysis (EIA) which has been described
by Kilpinen [8]. The EIA is based on expert design knowledge
and review techniques: code inspections and walkthroughs.
In any case, these techniques have to be performed during
a security evaluation [1].

TABLE II
SAMPLE SETS FOR THE PROCESS WITH EXPERIENTIAL IMPACT ANALYSIS.

THE CORRESPONDING EXAMPLE IS DESCRIBED IN SECTION III-B.

Set Output Of

Candidate Impact Set {E1} CDA

Discovered Impact Set {E2} re-evaluation

False Positive Impact Set {} re-evaluation

Actual Impact Set {E1,E2} re-evaluation

It can be argued that the effort for EIA is expensive because
it has to be conducted manually. Thus, a major issue in this
process is to keep the cost of detecting the DIS low. This
cost can be kept low, if the evaluators are involved early and

6. Publications Publication 6 - IEEE ESPRE 2014 85

regularly. Thus, they can build up knowledge of the possible
impact between software artifacts. This ensures that the EIA
can be accomplished efficiently if each evaluator works on the
same but narrow set of software modules.

C. Comparison of the Processes

It is an important observation here that the DIS and the
FPIS are both discovered manually, whereas the CIS can be
detected automatically with tools. As shown in (5) the total
effort of both processes calculates:

Efforttotal = Effort(DIS) + Effort(FPIS) (5)

As can be seen, the number of DIS and FPIS are a major
factor for selecting an appropriate process. Nevertheless, there
are more parameters which influence such a selection. The
most important factors are listed in Table III.

TABLE III
COMPARISON OF THE PROCESSES WITH TRACEABILITY IMPACT

ANALYSIS AND EXPERIENTIAL IMPACT ANALYSIS.

TIA Process EIA Process

DIS SMALL LARGE

FPIS LARGE SMALL

Presumed Experience LOW HIGH

Iteration Cycle Months/Years Weeks

The process with Traceability Impact Analysis (TIA) cal-
culates a large Candidate Impact Set because the number of
traces and dependencies is usually high (see Table I). Thus,
the number of direct plus indirect possible impacts soars. On
the one hand, a large CIS reduces the likelihood of manually
detected impacts because all direct and indirect traces have still
been resolved by the TIA (see Table I). On the other hand,
a large CIS will contain many false positives (see Table I
and also [7]) which need to be detected manually. For human
beings it is easier to falsify a visible impact than to detect
an invisible impact, if no experience exists. For long time
intervals between two iterations, usually no experience of the
software under evaluation can be presumed. Thus, a process
which detects many candidate impacts is more appropriate in
this case.
The process with EIA detects more impacts via the re-
evaluation process (DIS, see Table II). Fewer false positives
are detected, because the number of candidate impacts is
smaller without a TIA (see Table II). This process fits better
for an iterative evaluation with short intervals between the
re-evaluation activities. Its strength is to build up knowledge
of the discovered impact set which makes the re-evaluation
efficient. Although there are several iterations of re-evaluation,
only one certificate is issued, in the end. In the following we
will show a tooling that can assist a process with EIA.

IV. TOOL SUPPORT FOR AUTOMATION OF THE CHANGE
DETECTION ANALYSIS

In order to support an agile evaluation process with tooling
we implemented a Change Detection Analysis. The CDA for
the security model takes as input two versions and delivers a
list of all differences. For example, the CDA lists all changed
source code and test entities. This has the benefit that the
unchanged parts do not have to be taken into account for a
re-evaluation. Basically, such a CDA for models is not new.
Our contribution here is to show how such a tool can be
built with existing open source software. Moreover, we faced
some issues because we work with large models. These issues
suggest a careful design of the model structure: each node
within a model shall be tagged with a unique identifier.

A. Basic Requirements for the Tooling
First of all, the diff engine shall work as a standalone

and independently of other proprietary tools. Unfortunately,
many modeling tools do not support sophisticated model-diff
engines, at present. Such a diff engine shall accept a standard
format as input. The produced a diff report shall be in a format
which can be easily read by humans and software. Second, we
must handle large models with several thousands of artifacts.
Comparing them with an inefficient algorithm is not feasible.
Thus, we strive to utilize a generic diff engine which can be
extended by customizable algorithms. Third, the diff engine
shall be able to deal with different meta-models without much
refactoring of the algorithms.

Fig. 5. Process and tooling for a Change Detection Analysis.

B. Basic Tool and Format Overview
The technical process for the CDA is shown in Fig. 5. First

(1), the XSD schema2 is imported to the EMF3 framework
and is then an EMF ecore meta-model. Such a meta-model
describes the structure and properties of an EMF model.
Then (2 and 3) the XML models are imported to the EMF
framework and are then represented as EMF models. The EMF
compare engine takes the two models as input and computes
(4) a comparison model. The comparison model can be used to
generate a customized diff report. This diff report is then stored
in a file and contains all add, delete and update operations and
the unique identifiers of the changed elements. The diff report
can be accessed from other tools and GUI’s.

2http://www.w3.org/XML/Schema.html
3http://www.eclipse.org/modeling/emf/

6. Publications Publication 6 - IEEE ESPRE 2014 86

C. EMF Compare Customization

We identified EMF compare4 as a highly customizable and
extensible tool. It is open souce and can be embedded in java
applications. EMF compare can be used without Eclipse in
a standalone fashion. For this purpose only the appropriate
EMF compare and EMF ecore libraries need to be included
to a java application. Actually, we experienced some runtime
issues because we were differencing large models with many
differences. This is due to the standard match algorithm of
EMF compare. A match engine is part of the difference
engine and determines which elements of the old and new
model correspond to each other. Basically, for this purpose, a
similarity metric is computed for each pair of elements. The
pair with the highest similarity metric is then a matched pair.
Apparently, this algorithm performs poorly for models with a
high number of elements. Although some optimizations of the
pairwise comparison have been implemented (see [9][10]) they
perform well under the assumption that not many differences
exist between two versions of a model.
This assumption is not true in our case because we compare
large models at a time interval of several weeks (an agile itera-
tion). Thus, we decided to implement a match algorithm based
on a comparison of unique identifiers which is much faster
because no pairwise comparison is needed. EMF compare
provides the possibility to utilize such a matching algorithm.

V. RELATED WORK

The Assert4SOA5 project is concerned with the issue of
certifying software which is composed of several services.
It is difficult to ascertain trust in heterogeneous software in
a software ecosystem. The traditional certifying approaches
do not take into account such heterogeneous systems. This
project deals mainly with the issue of composing evidence for
security for such systems. An approach for Common Criteria
Certification of such systems is taken into account.
The EURO-MILS6 project strives to exploit virtualization tech-
niques in order to enable a separation between different levels
of security for networked embedded systems. If an appropriate
separation between highly secure software and low security
software is possible, only the highly secure software needs to
be certified which makes the approach more cost effective. In
addition to the virtualization also the communication between
the separated software entities needs to be taken into account.
The SecureChange7 project deals with supporting security
evaluation during the evolution of the software system at all
levels of the software development process. A focus of this
project is to focus on the delta between software releases in
order to concentrate only on the changed software artifacts.
Tools and processes have been developed in order to meet the
mentioned objectives.
Jürjens [11] extends the UMLSec (UML) profile with annota-
tions, so that model evolutions can be registered in the model.

4http://www.eclipse.org/emf/compare/
5http://www.assert4soa.eu/
6http://www.euromils.eu/
7http://www.securechange.eu/

The original UMLSec extension can verify the model for
specific security properties. The UMLSecCh can use change
annotated models and compute a difference model from it.
The verification is then applied to the difference model. It has
been shown that such an incremental verification of security
properties is much more efficient (in terms of calculation time)
than a full model verification.

VI. CONCLUSION

Today’s software systems are developed with changing
requirements regarding functionality and security. Moreover,
fast delivery is an important issue which is impacted by the
duration of development and security evaluation. We deduced
a conceptual background for an agile security evaluation which
allows the management of changing requirements and fast
time-to-market constraints. Moreover, this evaluation approach
provides early feedback regarding the security concept of
a product and thus avoids late and costly refactoring. We
described a process which utilizes Change Detection Analysis
and Experiential Change Impact analysis to improve such an
iterative approach. In addition, we described an implementa-
tion of a change detection analysis for model-based security
requirements and design.

ACKNOWLEDGMENT

Project partners are NXP Semiconductors Austria GmbH and
TU Graz. The project is funded by the Austrian Federal
Ministry for Transport, Innovation, and Technology under the
FIT-IT contract FFG 832171. The authors would like to thank
pure systems GmbH for support.

REFERENCES

[1] Common Criteria. Common Criteria for Information Technology Secu-
rity Evaluation - Part 1-3. Version 3.1 Revision 3 Final (July 2009).

[2] A. Cockburn, Agile Software Development. Pearson Education, Oct.
2006.

[3] M. Cohn, Succeeding with Agile. Pearson Education, Oct. 2009.
[4] K. Beznosov and P. Kruchten, “Towards agile security assurance,” in

NSPW, 2004, pp. 47–54.
[5] K. Altmanninger, P. Brosch, G. Kappel, P. Langer, M. Seidl, K. Wieland,

and M. Wimmer, “Why model versioning research is needed!? an expe-
rience report,” in Proceedings of the MoDSE-MCCM 2009 Workshop@
MoDELS, 2009.

[6] Common Criteria. Reuse of Evaluation Results and Evidenc (October
2002).

[7] S. A. Bohner, “Extending software change impact analysis into COTS
components,” in Software Engineering Workshop, 2002. Proceedings.
27th Annual NASA Goddard/IEEE, 2002, pp. 175–182.

[8] M. S. Kilpinen, C. M. Eckert, and P. J. Clarkson, “The emergence of
change at the interface of system and embedded software design,” in
Conference on Systems Engineering Research, Hoboeken, NJ, 2007.

[9] S. Wenzel, “Unique identification of elements in evolving software
models,” Software & Systems Modeling, vol. 13, no. 2, pp. 679–711,
2014.

[10] C. Brun and A. Pierantonio, “Model differences in the eclipse modeling
framework,” UPGRADE, The European Journal for the Informatics
Professional, vol. 9, no. 2, pp. 29–34, 2008.

[11] J. Jürjens, L. Marchal, M. Ochoa, and H. Schmidt, “Incremental security
verification for evolving UMLsec models,” Modelling Foundations and,
pp. 1–17, Jan. 2011.

6. Publications Publication 6 - IEEE ESPRE 2014 87

Patterns of Software Modeling

Wolfgang Raschke1, Massimiliano Zilli1, Johannes Loinig2, Reinhold Weiss1,
Christian Steger1, and Christian Kreiner1

1 Institute for Technical Informatics
Graz University of Technology, Graz, Austria

{wolfgang.raschke,massimiliano.zilli,rweiss,steger,christian.kreiner}@tugraz.at
2 NXP Semiconductors Austria GmbH, Gratkorn, Austria

johannes.loinig@nxp.com

Abstract. Software systems start small and grow in complexity and
size. The larger a software system is, the more it is distributed over or-
ganizational and geographical confines. Thus, the modeling of software
systems is necessary at a certain level of complexity because it can be
used for communication, documentation, configuration and certification
purposes. We came to the conclusion that several patterns of software
modeling exist. The existence of such patterns is dependent on the his-
tory and the evolution of the system under consideration. We will show
that a software system in its lifecycle has to face several crises. Such a
crisis is a watershed in the application of new patterns. We provide an
evolutionary view of software systems and models which helps under-
standing of current problems and prospective solutions.

Keywords: Model-Based Software Development, Collaborative Software
Development, Application Lifecycle Management, Software Process Im-
provement.

1 Introduction

Typically, software systems are always increasing in complexity. This impacts de-
velopment teams, inter-organizational software development, and geographical
distribution. The distribution of the development process complicates commu-
nication and sharing of knowledge. Software modeling is a successful approach
to mitigate these issues. However, there are currently a plethora of different
approaches with regards to the modeling of software, requirements and spec-
ifications, such as requirements engineering, domain-specific modeling (DSM),
software product lines (SPL), agile requirements engineering and application life-
cycle management (ALM). It is hard to select an appropriate approach, because
the success of it heavily depends on the context of the organizational situation.
Thus, we provide a conceptual framework that helps to characterize the different
approaches. This framework aims to facilitate the selection of a suitable software
modeling method. We define several modeling patterns which we name and ex-
plain. Such a pattern is an abstraction and is kept simple in order to make a
clear difference between the basic characteristics of today’s software modeling

6. Publications Publication 7 - ISDE’14 88

c© 2014 Springer. Reprinted, with permission, from Proceedings of Fifth International Workshop on
Information Systems in Distributed Environment (ISDE’14).

approaches. We outline the observation that during the lifecycle of software, the
dynamics cause a change in its context. Within the new context, solutions often
turn into problems. This effect results in a time of change and turmoil, a so-
called revolution phase. We introduce the concept of Greiner [1] which regards
the learning and development of systems as a sequence of evolutions which are
interrupted by revolutions. Regarding this viewpoint, we derive an explanation
and categorization of software modeling patterns. We show that the emergence
of software modeling trends follow a generic pattern.

2 Conceptual Background

Usually, we apply known solutions to problems. If a solution has succeeded many
times in the past, we are tempted to see this as a universal solution. Unfortu-
nately, this attitude overlooks the fact that solutions always work in a specific
situation, the so-called context. Fig. 1 shows the concept of a pattern: the prob-
lem is located in the context-free problem space. The solution is part of the
solution space and it is constrained by the context. In the traditional view of a
design pattern, the context is fixed and does not alter [2, 3].

Problem Solu*on

Solu*on,Space

ΔC
on

te
xt
'=
'0Problem,Space

Fig. 1. Problem and solution in a fixed context

Dynamics arise when the context changes. Fig. 2 demonstrates that solutions
turn into problems within the new context. The new problem has to be solved
again in a constrained environment. This process may perpetuate for several
iterations. These kinds of dynamics can be observed very often [4]. We use it as
a reference for the development of modeling archetypes. For example, regarding
transportation the dynamics are as follows: The petrol powered vehicle has been
the solution to the problem of transportation over long distances. This solution
has changed its environment because of pollution and the decreasing amount of
petrol ultimately available. These new problems may one day be addressed by
the electrical vehicle. This new solution will then itself cause new problems.

Greiner [1] describes a model where evolutionary development is interrupted
by revolutions. These revolutions are caused by the changing context of size
and time. The solutions no longer work within the altered context. Moreover,

6. Publications Publication 7 - ISDE’14 89

Problem(1

Problem(Space

ΔC
on

te
xt
'!=

'0

Problem(2

Solu0on(1

Solu0on(Space

Fig. 2. The dynamics of problems and solutions in a changing context

they are then the cause of the new issues. He describes five phases of organiza-
tional development, their crises and the ensuing solutions. Although the phases
of Greiner’s model are different to the archetypes we state here, they have served
as inspiration.

3 Software Modeling Patterns

We gathered experiences from the development of two industrial RMS. More-
over, in order to build up a catalog of patterns we interviewed experts from the
following domains: automotive software, logistics software, secure software and
financial software. Each of the patterns occurred in at least one of the software
projects that was studied. The sample is broad and representative enough to
formulate basic patterns within a changing context.
In Fig. 3 the continuous lines represent evolutionary phases with no change of
the modeling pattern. These evolutionary phases are disrupted by revolutionary
phases which are indicated by the dashed lines. Such a phase denotes the change
from one pattern to the next and always involves a learning phase. This learning
phase includes recognizing the problems and searching for new solutions. It takes
some time to pass through this phase and proceed further.

In Fig. 3 it can be seen that the two influencing factors (the context) here
are complexity and time. Complexity increases with size and mainly influences
the style of modeling. The second factor is time: it is needed to adapt to new
circumstances. Thus, it is mainly an influencing factor during a time of crisis.
Then, neither size nor complexity grow rapidly. In the following we describe the
patterns in more detail.
The patterns are structured as follows: The first patterns begins with a starting
point which describes the situation at the beginning of a small software system.
The problem section is part of each pattern: it depicts the established working
practices. After the solution, we provide the context section. The context de-
scribes the environment and the situation. The solution must work within the
context. If the context changes, the solution turns into a problem, as a conse-

6. Publications Publication 7 - ISDE’14 90

Backward
Engineering

Coordina/ve
ALM

complexity

/me

Forward
Engineering

Round=Trip
Engineering

Evolu/on

Revolu/on

Coopera/ve
ALM

Fig. 3. The development of software modeling patterns within the context of complex-
ity and time

quence. The consequences of a pattern characterize the problem of the following
pattern.

3.1 Backward Engineering (BE)

Starting Point Initially, the software is small and only a few developers work
on it. There is no clear division of functionality between people, so each devel-
oper works on the whole system. Thus, it can be assumed, that everyone has
knowledge of the complete system. Hence, there is no need for explicit modeling
of the software.

Solution The first pattern is outlined in Fig. 4. The sub-types code-alone, code-
parallels-model and code-to-model are similar. We do not see a major difference
in the three depicted types regarding the effect on the development process.
Thus, they are collected within one single pattern. In code-alone, code is writ-
ten and compiled to a finished product. This is the simplest model that can
exist. Very soon, a mental model emerges which parallels the code development
(code-parallels-model). This model can be written documentation or a domain
vocabulary. The main point is that it is not explicitly derived from the code.
It emerges on an ad hoc basis. The next step is code-to-model : to derive the

6. Publications Publication 7 - ISDE’14 91

model from the source code. Such a model may be documentation. It can be
generated automatically via document generators. This method can be refined
to a certain degree. It is simple and can applied without a high overhead, even
in small software projects.

Code

Product

Code

Product

Model

Code

Product

Model

Fig. 4. The three sub-types of backward engineering are: code-alone, code-parallels-
model and code-to-model [5]

Context Change and Consequences Successful software systems tend to
grow in complexity and size. Thus, the number of software developers also grows.
At a certain point, the whole system can no longer be understood by each devel-
oper. Communication becomes more difficult because of the increasing number
of developers.

3.2 Forward Engineering (FE)

Solution Forward engineering is a top-down approach. In Fig. 5, Model A is
created and maintained manually. It is used to generate certain artifacts, such
as parts of the documentation, configuration and source code. The generation
of redundant code is efficient and works well with an explicit model. Moreover,
documentation artifacts are generated which go beyond the functionality of a
general-purpose document generator. The architecture is crafted in the model
and the source code artifacts (header files, class skeletons) are generated. So,
the generated architecture is consistent with the model. UML3 is a prominent
example for such an approach. However, there is still a very high manual effort
in maintaining these models.
In Fig. 5 it can also be seen that Model B is created from the source code. This
is not a contradiction to the concept of FE because each arrow only points in
one direction. Thus, no synchronization is provided.

3 www.uml.org/

6. Publications Publication 7 - ISDE’14 92

Code

Product

Model,A Model,B

Fig. 5. In forward engineering the information flow is either from model to code or
from code to model

Context Change and Consequences The forward engineering principle works
adequately for software of small and middle complexity with a relatively low sys-
tem dynamic. In this context, this method works perfectly. Such a model grows
with the complexity and the size of the software. It requires increasingly more
effort to maintain this model and at one point there are several thousand chang-
ing information items. It is then hard to keep the model consistent with the fast
changing software. There are no synchronization methods available. Thus, con-
current work on the models is virtually impossible. All these ingredients form a
bottleneck, so that the model is not able to follow the source code. At this point
it is likely that maintenance of the model is stopped.

3.3 Round-Trip-Engineering (RTE)

Solution Round-trip engineering incorporates forward engineering, backward
engineering and the synchronization of both. Fig. 6 shows that the information
flow between model and code goes in both directions. So, the high amount of
manual work required for synchronization can be leveraged by recovering the
model from the code. Changes in the code can be synchronized with the model.
Moreover, it can be seen in Fig. 6 that synchronization between models is also
possible. Hence, these approaches need advanced synchronization mechanisms,
such as model-to-model, text-to-model and model-to-text transformations. For the
synchronization of different versions of such a model, two techniques are needed:
merge and diff. If all these algorithms are supported, most of the artifacts can
be synchronized automatically. Still, such a synchronization has to be controlled
by responsible roles.

Context Change and Consequences Round-trip engineering is still, at the
moment, a high-end solution and expensive to establish. Thus, it can be ex-

6. Publications Publication 7 - ISDE’14 93

Code

Product

Model,A Model,B

Fig. 6. Round-trip engineering enables synchronization between models and between
model and code

pected that it is present only in medium and large software. The bottleneck of
the previous pattern is now resolved. In any case, the level of information flow
escalates. There are now several versions of the software and the model. It be-
comes increasingly difficult to coordinate these different versions. Anyone can
integrate results with the model. As a consequence, the introduction of flaws is
more likely. Moreover, there are no clear responsibilities and access rights.
First, the size of the software leads to the effect that the domain experts (who
are rare) are more involved in the specification of the system. Programming ac-
tivities can be outsourced more easily. As a consequence the software may be
constructed by several software suppliers. Such a software ecosystem [6, 7] ex-
ists for example in the automotive industry. There, tier 1 and tier 2 suppliers
work together with the car manufacturer. However, such a software ecosystem
comes with many risks and uncertainties because the software development can
no longer be controlled as a whole [8].
As we can see, the crisis stems from two reasons: first, the increased information
flow that is caused by the high number of different versions (synchronization).
Second, the uncertainty and risks within a software ecosystem remains a prob-
lem. Both issues are addressed in the following patterns: Coordinative Applica-
tion Lifecycle Management and Cooperative Application Lifecycle Management.

3.4 Coordinative Application Lifecycle Management

Solution Until now, the evolution of model-based systems only incorporated
structural models. Fig. 7 shows a workflow engine controlling information flow as
an addition to RTE. The next logical step is such a workflow (process) integra-
tion with models. This means, that all steps within a process shall be controlled,
documented and delegated to the appropriate roles. Thus, artifacts within a

6. Publications Publication 7 - ISDE’14 94

model have states (started, analyzed, finished) and roles (accountability, respon-
sibility, access rights). Examples for such workflow management systems are:
support of reviews, project plans, allocation of roles to tasks and the like. For
certification issues, all these processes have to be documented. We expect tool
chains with a tight integration of test results, bug reports, bug resolving, reviews,
project plans and so on. Thus, a seamless documentation to provide evidence
for process maturity (e.g. SPICE [9], CMMI [10] and dependability (e.g. secu-
rity [11], safety [12]) is possible from such a model. This phase puts emphasis
on coordination which is, generally speaking, the formal performing of actions.

Code

Product

Model,A Model,B

W
or
kfl

ow

Fig. 7. In coordinative ALM the information flow is coordinated by an integrated
workflow management

Context and Consequences It is very difficult to ascertain a higher level of
process maturity. There is a high cost overhead for establishing these processes.
This high cost overhead makes it difficult for smaller companies to exist within
such a supply chain. This issue can be mitigated through highly integrated tool
chains and outsourcing of process knowledge. So, developers can concentrate
on domain expertise. We expect a high degree of dependency of these firms in
the supply chain on external consulting and tool providers. At the moment, the
software industry comes up with so-called ALM tools. They extend traditional
requirements engineering with a process integration.

3.5 Cooperative Application Lifecycle Management

Solution In Cooperative ALM, communication needs to be bound to artifacts
within a software model. Such artifacts can be: activity-based (tasks, change
requests) or structural (architecture, requirements). Moreover, synchronous and

6. Publications Publication 7 - ISDE’14 95

asynchronous communication mechanisms need to be implemented. Respective
tools enable a notification based on the state of the artifacts. For instance, the
completion of a task is an event which triggers a notification message. High-end
RMS integrate these mechanisms. Prominent examples are: Attlassian JIRA4

and CollabNet TeamForge5.

Context and Consequences Cooperative ALM seems to parallel the Coor-
dinative ALM. The objective of Coordinative ALM is to provide evidence for
trust through formal processes. Whereas, the goal of Cooperative ALM is to
foster and enable the sharing of information. Unfortunately, this cannot be done
efficiently via formal channels. So, the principle is based on collaboration instead
of coordination. A corresponding trend in software engineering is agile working.
Information interchange has become more difficult because the development sites
are scattered over distinct places throughout the world. Sophisticated tools fa-
cilitate and foster the sharing of information.

4 Conclusion

We listed a catalog of the most important issues regarding software modeling.
We complemented the catalog with issues that we collected during industrial
software projects. Moreover, we strove to present these issues in relation to each
other. Additionally, we sought to investigate their relationship with the respec-
tive situation. Thus, we stated five patterns of software modeling which exist in
today’s industrial software development. In addition, we stated the typical con-
text of each pattern. We examined the sequential development from one pattern
to the next. It is important to understand the dynamics of this development: long
periods of steady development are disrupted by crises which are a watershed in
the application of a new modeling pattern. In order to make our developmental
model as generic as possible, we omitted unnecessary details and abstracted it
to only five basic patterns. Certainly in a real software project, the development
will never exactly follow our model. Nevertheless, some issues are still symp-
tomatic. Knowledge of these symptomatic issues helps to characterize the actual
problems and design new solutions with the contextual setting in mind.

Acknowledgment

Project partners are NXP Semiconductors Austria GmbH and TU Graz. The
project is funded by the Austrian Federal Ministry for Transport, Innovation,
and Technology under the FIT-IT contract FFG 832171. The authors would like
to thank pure systems GmbH for support.

4 www.atlassian.com/JIRA
5 http://www.collab.net/products/teamforge

6. Publications Publication 7 - ISDE’14 96

References

1. Greiner, L.: Evolution and revolution as organizations grow. 1972. Harvard Busi-
ness Review (January 1997)

2. Alexander, C., Ishikawa, S., Jacobsen, M., Fiksdahl-King, I., Angel, S.: A Pattern
Language: Towns, Buildings, Construction. Oxford University Press (August 1977)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Pearson Edu-
cation (October 1994)

4. Watzlawick, P., Weakl, J.H., Weakland, J.H., Fisch, R.: Change; Principles of
Problem Formation and Problem Resolution. W. W. Norton (1973)

5. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley (2008)

6. Messerschmitt, D.G., Szyperski, C.: Software Ecosystem. MIT Press (2002)
7. Manikas, K., Hansen, K.M.: Software ecosystems – A systematic literature review.

Journal of Systems and Software 86(5) (May 2013) 1294–1306
8. McGregor, J.D.: A method for analyzing software product line ecosystems. In:

Proceedings of the Fourth European Conference on Software Architecture. (2010)
73–80

9. Messnarz, R., Ross, H.L., Habel, S., König, F., Koundoussi, A., Unterrreitmayer,
J., Ekert, D.: Integrated Automotive SPICE and safety assessments. Software
Process: Improvement and Practice 14(5) (September 2009) 279–288

10. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI Guidlines for Process Integration
and Product Improvement. Addison-Wesley Longman Publishing Co., Inc. (2003)

11. : Common Criteria. Common Criteria for Information Technology Security Eval-
uation - Part 1-3. Version 3.1 Revision 3 Final (July 2009)

12. Standardization, I.I.O.f.: ISO 26262 Road vehicles Functional Safety Part 1-10.
(2011)

6. Publications Publication 7 - ISDE’14 97

EuroSPI 2014 3.1

Abstract

Agile development processes are more flexible than conventional ones. They emphasize itera-
tive development and learning over feedback loops. Nevertheless, we experienced some pit-
falls in the application of agile processes in dependable software systems. We present here
the experiences we gathered in the construction of high-quality industrial software. Moreover,
we will digest our experiences into a conceptual model of waste creation. This model will be
refined to a case study where we take appropriate measurements in order to provide empirical
evidence for it. Finally, we discuss the implications of the developed model, which helps to es-
timate the trade-off between agile and traditional software processes.

Keywords

Software Process Improvement, Innovation, Agile Processes

1 Introduction

Today’s dependable systems face the challenge of being built as safe, secure and reliable systems.
The construction of such systems utilizes quality assurance methodologies such as code reviews,
testing and static code analysis. Industry-relevant frameworks for process-based quality assurance
exist for process maturity (SPICE [1]) and security (Common Criteria [2]). A higher capability level in
such a framework implies more processes accomplished at a higher level of maturity. Generally, a
higher level of assurance comes with a higher development effort.

We investigated the development process of a highly secure software system. This project is devel-
oped with agile methodologies: Test-Driven Development [3], Continuous Integration [4] and Scrum
[5]. These agile processes have considerable benefits in the industrial software project. Nevertheless,
we observed some inconsistencies with regards to waste. Waste is an agile terminology, which de-
notes unnecessary work, which does not add to customer value [6]. We believe that it can be traced
back to the agile way of working in the context of dependable systems.

In order to build a suitable model for software development in dependable systems, we discuss a pat-
tern of evolution, which has been observed in diverse industries. First, we apply this pattern to a gen-
eral model for dependable systems. Second, we refine the dependable systems pattern in order to

Where does all this waste come from?

Wolfgang Raschke1, Massimiliano Zilli1, Johannes Loinig2,

Christian Steger1 and Christian Kreiner1

1 Institute for Technical Informatics, Graz University of Technology, Austria

{wolfgang.raschke, massimiliano.zilli, steger, christian.kreiner}@tugraz.at
2 NXP Semiconductors Austria GmbH, Gratkorn, Austria

johannes.loinig@nxp.com

6. Publications Publication 8 - EUROSPI’14 98

c© 2014. Reprinted, with permission, from Proceedings of 21st EuroSPI Conference (EUROSPI’14).

Session III: Improvement Strategy

3.2 EuroSPI 2014

create a case study, which will give us the opportunity to provide evidence.

We will discuss the implications which our model has on various levels of granularity and explain them
regarding the agile development model and the V-model. Moreover, we show how our model can be
used as framework of considering software development processes on a high level of abstraction.
Finally, we conclude our findings and provide guidelines for scoping agile versus traditional processes.

2 Experience From an Industrial Project

We gained experience from an industrial software project during the development of a highly secure
system. It is imperative that evidence be provided for the purposes of security via certification. The so-
called Common Criteria [2] is a documentation-based approach. To guarantee high levels of assur-
ance, this evidence is the result of carefully designed and accomplished processes. A great amount of
effort has been put into composing the appropriate documentation for these processes.

We investigated the development process through interviews with software architects and developers.
As a reference model, we utilized the V-model. Within the reengineered V-model, we identified two
agile iterative cycles. Our observations are outlined in Figure 1.

Figure 1: Iterative cycles in architecture and on component level.

The inner cycle is an iterative loop that represents the agile development process that mainly focuses
on the design and implementation of user stories. Since we are applying Test-Driven Development
(TDD), writing tests belongs to the code-and-test phase. Conversely, the execution of the tests is part
of the unit test phase. The design comprises of the specification of the component and its interface at
component level. It is allowed to change interfaces and connections between components in this inner
cycle. It pushes the outer architectural cycle. This is usually regarded as a bottom-up design method-
ology.

The outer cycle represents the development of system requirements, architecture, integration tests
and system verification (certification) in the V-model. As mentioned above, the outer cycle is driven by
the inner cycle, which means that the architecture is first established incrementally at code and design
level and then explicitly defined in the architecture phase. The system requirements do not evolve
directly out of the inner circle but the linkages between them and the architecture have to be perma-
nently maintained.

We found that there is a friction between both cycles, namely in the form of synchronizing implementa-
tion level artifacts (code and design) with architectural artifacts. Such a friction occurs in several mani-
festations which we describe in the following.

First, changing interfaces affects testing. Thus, unit tests and integration tests have to be adopted
according to the new interfaces. We will show this effect later in more detail.

Second, changing interfaces have an impact on security evaluation because interface descriptions are
part of the respective documentation.

Third, some interfaces have to be known to link the components together because different program-
ming languages are utilized. Hence, interfaces have to be reworked in the product integration, as well.

Finally, we conclude that changing an interface causes rework in at least three obvious cases. The
real cost cannot be measured reliably.

6. Publications Publication 8 - EUROSPI’14 99

Session III: Improvement Strategy

EuroSPI 2014 3.3

3 Model of Change Impact

In order to investigate potential causes for waste, we introduce a conceptual model of an innovation
lifecycle. We apply the pattern described in [7] because it is simple and allows mapping to diverse
circumstances.

3.1 Product Innovation vs. Process Innovation

Abernathy [7] describes a lifecycle, where at the beginning of a new development, product innovation
is accomplished at a high pace and process innovation on a relatively low one. Gradually, product
innovation decreases its rate whereas process innovation increases. There is a lag between product
innovation and process innovation. It is important to understand the meaning of product and process
innovation, which we will clarify in the following.

3.2 Product Innovation

Product innovation is the way a product is altered. Generally, product innovation is the change of what
we build. Henderson [8] defines a model of innovation, where the rate of changing links between com-
ponents is an important indicator. The change of links can be seen as the change of interfaces. In the
following, we will use the term architectural evolution to label the change of interfaces

3.3 Process Innovation

Process innovation defines how we build products. This how usually includes all processes that em-
brace quality engineering, such as reviews, tests and static code analysis. It is likely that a change in
an interface causes rework in the quality processes. A common practice is to increase the rate of pro-
cess improvement when the interfaces are more or less stable [7].

3.4 Mapping to Software Terminology

In order to facilitate the construction of a hypothesis, which can be evaluated empirically in a software
project, we map the previously outlined terminology to software engineering methodologies.

Product innovation is the sum of all activities that immediately affect a product. In a typical software
project, these activities are: architecture, design and coding.

We assume architectural evolution as a quantifiable indicator for product innovation. We define archi-
tectural evolution here as the rate of interface changes between at least two components. For exam-
ple, in the architecture phase of the V-model, the rate of interface changes is high. In design and cod-
ing, this rate is, in comparison, low.

Process Innovation is the aggregate of all activities that indirectly affect a product. In a software pro-
ject these activities are usually: unit testing, integration testing, system testing, code review and static
code analysis. In order to facilitate the interpretation we assume that process innovation is equal to all
quality activities in a software project. The measurable quantity is the amount of quality activities at a
certain point in time.

6. Publications Publication 8 - EUROSPI’14 100

Session III: Improvement Strategy

3.4 EuroSPI 2014

3.5 Definition of Waste

Ikonen [6] defines waste as “basically everything that does not add to the customer value of a prod-
uct”. This viewpoint regards everything except coding as waste, because it does not directly add value
to the customer. This expectation is too narrow in our opinion, because testing and quality assurance
add value indirectly. So, we regard waste as activities that neither directly nor indirectly add value.

3.6 Relation between Waste, Product and Process Artifacts

Our observations in the industrial case study suggest that waste is proportional to the evolution of the
architecture in terms of changed interfaces dA. The definitions of the terms are given in Table 1. The
following formula states the generic model of waste creation:

Table 1: Terminology of the generic model of waste creation.

4 Evaluation With Empirical Data

The empirical evaluation has been conducted in cooperation with the company NXP Semiconductors.
We evaluated a software project which is dedicated to the implementation of a highly-secure embed-
ded system. About 100 developers participate at the project. The project includes several develop-
ment teams, a testing team and a dedicated security team. The number of tests is typical for a high-
quality embedded system of medium size: approximately 80 modules are tested by several thousand
tests (unit tests, integration tests and acceptance tests).

In order to apply the previously mentioned model to real data, we refine it in the following. We meas-
ured the number of failing test cases W. In addition, we recorded the number of changed interfaces dA
on a daily basis. We provide the explanation of the terms in Table 2. Finally, we can construct a hy-
pothesis, which can be evaluated with empirical data:

Table 2: Terminology of the refined model which is evaluated empirically.

Definition Interpretation Short

Architectural evolution Change of component interfaces dA

Waste Effort with no additional value W

Quality processes effort Total effort for all quality activities Q

Constant Coupling factor no. i ci

Definition Interpretation Short

Architectural evolution Change of component interfaces dA

Waste Number of failing test cases W

Constant Coupling factor ct

dAQdAcW
i

i

dAcW tt

6. Publications Publication 8 - EUROSPI’14 101

Session III: Improvement Strategy

EuroSPI 2014 3.5

Change of component interfaces: this is the accumulated number of changes in interfaces per day.
This number has been measured on a daily basis, seven days a week. This information was retrieved
from the source code repository.

Number of failing test cases: the number of failing test cases has been measured on a daily basis,
seven days a week. The tests have been automatically executed each day on a continuous integration
server. All test results have been logged.

We apply pre-processing to the data, which describes the changing of interfaces for the following rea-
sons: First, there are remarkably few changing of interfaces on Saturdays and Sundays. Hence, there
is a fundamental oscillation on a weekly basis. Second, the time span between altering an interface to
the effect on the number of failing tests is not constant. This variation of time from cause to effect ex-
ists, because each and every interface is not immediately integrated into the tested product.

In order to mitigate the mentioned effects, we apply a staged pre-processing to the recorded data,
which is described in the following:

Step 0: Raw Data

For the raw data, the Cross-Correlation Coefficient (CCC) equals 0.16.

Step 1: Constant Moving Average Filter

In order to smooth the vector dA, we apply a simple moving average with a length of N=7:

)(
1

)(1
0 jndA

N
ndA N

javg

The CCC equals 0.51 and thus is remarkably higher, as before. We explain this by the filtering out of
peaks that occur on weekends.

Step 2: Vector Norm

Both vectors W and dA have considerably different scales. In order to apply vector normalization, we
divide both vectors by their length and obtain the respective unit vectors.

avg

avg
norm

dA

dA
dA ,

t

t
norm

W

W
W

The normalization does not affect the Cross-Correlation Coefficient. The normalized signals are shown
in Figure 2.

Figure 2: Wnorm and dAnorm after the Normalization.

6. Publications Publication 8 - EUROSPI’14 102

Session III: Improvement Strategy

3.6 EuroSPI 2014

Step 3: Dynamic Time Warping

In order to cope with the time variation, we apply dynamic time warping [9, 10], a non-linear signal
processing algorithm. Dynamic time warping compares two signals and locally stretches and com-
presses the time axis in order to find an optimal alignment between both. A good alignment is charac-
terized by a high similarity of both data series. The warping path p is a timely mapping between dAavg
and Wnorm which is computed by the dynamic time warping algorithm:

),(normavg WdAdtwp

The time mapping p allows the reconstruction of the signal dArec:

))(()(tpdAtdA normrec

The CCC equals 0.87 and shows that there is a high correlation between the pre-processed data. The
reconstructed signal dArec and the reference signal Wnorm now show a remarkable visual similarity,
as can be seen in Figure 3. Thus, we can assume a proportional relation between both signals.

Figure 3: After data processing step 3, the signals Wnorm and dArec are obviously similar.

5 Implications

In the presented study, there is correlation between the evolution of the architecture and failing test
cases. This undermines the general hypothesis that the evolution of the architecture causes rework in
quality processes. The implications can be applied to the V-model and agile development processes.

5.1 Implications for the V-Model

The V-model reflects Abernathy’s pattern of innovation [7] where in a cycle of experimentation, learn-
ing and refinement, an architecture is defined. In this architecture phase, there are a high amount of
changing interfaces (see dotted line in Figure 4 a) but quality processes are not unfolded to full maturi-
ty (see continuous line in Figure 4 a). So, the product of both curves is in the middle range (see Figure
4 b).

Certainly, there occurs a point in time, where architectural activities slow down. In the V-model this is
usually the phase of implementation, which is the pivotal element of the V and thus has connections to
architectural activities and to quality processes. In this phase, architecture and quality processes are
assumed to operate at a medium velocity. The product of both is high in this phase. In the third phase,
the interfaces are mostly stable and quality assurance is at its highest level of the whole lifecycle. The
product of both curves is in the middle range.

For a better illustration of the curves in Figure 4, we apply sample values in Table 3. The sum of a
column represents the architectural evolution (dA), effort for quality processes (Q) and the resulting
total waste (W) of the model.

6. Publications Publication 8 - EUROSPI’14 103

Session III: Improvement Strategy

EuroSPI 2014 3.7

Figure 4: Coherence between waste W, changing interfaces dA and total effort for quality pro-
cesses Q in the V-model.

5.2 Implications for the Agile Model

In agile processes, the sequence of process steps is abandoned. Rather, the activities are accom-
plished concurrently in iterative cycles. In such an iterative cycle, each activity (architecting, coding,
testing and verification) has to be performed. We assume for architectural evolution (see dotted line in
Figure 5 a) and for quality activities (see continuous line in Figure 5 a) a constant and medium veloci-
ty. As can be seen in Figure 5 b, the product of both is constantly very high. Therefore, the interface
changes create huge effort because all quality activities in the current iteration are immediately affect-
ed.

Figure 5: Coherence between waste W, changing interfaces dA and total effort for quality pro-

cesses Q in the V-model.

For a better illustration of the curves in Figure 5, we apply sample values in Table 3. The sum of a
column represents the agile evolution (dA), the agile effort for quality processes (Q) and the resulting
total waste (W) of the model.

6 Conclusion

In Table 3, the effort for architecture and processes is equal (Sum = 10). This allows a comparison of
the resulting waste: for agile working practices, the model predicts a higher resulting waste compared
to the V-model. Of course, the presented model of waste creation is an abstraction. In reality there is
some amount of approximation in the application of such a model. Nevertheless, the theoretical model
is suitable for deliberation. Such deliberation suggests the following conclusion: agile methods are
more appropriate for software projects with low demand for quality and possibly only acceptance tests.
Traditional processes, like the V-model process is more appropriate in software projects with a high
demand for quality and respective activities.

6. Publications Publication 8 - EUROSPI’14 104

Session III: Improvement Strategy

3.8 EuroSPI 2014

Table 3: Sample data for the model of waste creation for the V-model and agile processes.

7 Acknowledgment

Project partners are NXP Semiconductors Austria GmbH and TU Graz. The project is funded by the
Austrian Federal Ministry for Transport, Innovation, and Technology under the FIT-IT contract FFG
832171. The authors would like to thank pure::systems GmbH for support.

8 Literature

1. Messnarz R., et al. Integrated Automotive SPICE and safety assessments. Software Process: Im-provement

and Practice, 14(5):279–288, 2009.

2. Common Criteria. Common Criteria for Information Technology Security Evaluation - Part 1-3. Version 3.1

Revision 3 Final, 2009

3. Janzen D., Saiedian H. Test-driven development: Concepts, taxonomy, and future direction. Computer Science

and Software Engineering, 2005.

4. Duvall P., Matyas S., Glover A. Continuous integration: improving software quality and reducing risk. Pearson

Education, 2007.

5. Cohn M. Succeeding with Agile. Pearson Education, 2009.

6. Ikonen M., Kettunen P., Oza N. Exploring the sources of waste in Kanban software development pro-jects.

Conference on Software Engineering and Advanced Applications, SEAA 2010.

7. Abernathy W. J., Utterback J. M. Patterns of Industrial Innovation. Technology review, 64: 254-28, 1978.

8. Henderson R., Clark K. Architectural innovation: the reconfiguration of existing product technologies and the

failure of established firms. Administrative science quarterly, 9-30, 1990.

9. Giorgino T. Computing and visualizing dynamic time warping alignments in R: the dtw package. Journal of

statistical Software, 31(7):1-24 , 2009.

10. Müller M. Dynamic Time Warping. Information retrieval for music and motion, 69–84, Springer, 2007

Time V-model
dA

V-model
Q

V-model
W

Agile
dA

Agile
Q

Agile
W

0 3 1 3 2 2 4

1 3 1 3 2 2 4

2 2 2 4 2 2 4

3 1 3 3 2 2 4

4 1 3 3 2 2 4

Sum 10 10 16 10 10 20

6. Publications Publication 8 - EUROSPI’14 105

Session III: Improvement Strategy

EuroSPI 2014 3.9

9 Author CVs

Wolfgang Raschke

He completed his studies in telematics in 2012. Since February 2012 he works as a PhD stu-
dent at the Graz University of Technology. His current research interests are: software product
lines for secure systems, innovation and evolution of software and software models.

Massimiliano Zilli

He received his Master’s degree in Electronic Engineering at the University of Udine in 2007.
From 2008 to 2012 he worked as a software developer for embedded systems. Since Febru-
ary 2012 he works as a PhD-Student at the Graz University of Technology. His research fo-
cuses on optimization techniques for embedded systems.

Johannes Loinig

received the Dr.techn. degree (PhD) in electrical engineering with focus on Secure Embedded
Systems from Graz University of Technology in 2012. Currently he works as software and se-
curity architect in several projects at NXP Semiconductors Austria and is in the lead of several
research projects with focus on HW/SW codesign and information security.

Christian Steger

received the Dipl.-Ing. degree (M.Sc.) 1990 and the Dr.techn. degree (PhD) in electrical engi-
neering from Graz, University of Technology, Austria, in 1995, respectively. He is key re-
searcher at the Virtual Vehicle Competence Center (VIF, COMET K2) in Graz, Austria. From
1989 to 1991 he was software trainer and consultant at SPC Computer Training GmbH, Vien-
na. Since 1992, he has been Assistant Professor at the Institute for Technical Informatics,
Graz University of Technology. He heads the HW/SW codesign group at the Institude for
Technical Informatics. His research interests include embedded systems, HW/SW codesign,
HW/SW coverification, SOC, power awareness, smart cards UHF RFID systems, multi-DSPs.

Christian Kreiner

graduated and received a PhD degree in Electrical Engineering from Graz University of Tech-
nology in 1991 and 1999, respectively. From 1999 to 2007 he served as the head of the R&D
department at Salomon Automation, Austria, focusing on software architecture, technologies,
and processes for logistics software systems. He was in charge to establish a company-wide
software product line development process and headed the product development team. Dur-
ing that time, he lead and coordinated a long-term research programme together with the Insti-
tute for Technical Informatics of Graz University of Technology. There, he currently leads the
Industrial Informatics and Model-based Architectures group. His research interests include
systems and and software engineering, software technology, and process improvement.

6. Publications Publication 8 - EUROSPI’14 106

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 37

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
At present, security-related engineering usually requires a big up-front design (BUFD) regarding security
requirements and security design. In addition to the BUFD, at the end of the development, a security evalua-
tion process can take up to several months. In today’s volatile markets customers want to be able to inluence
the software design during the development process. Agile processes have proven to support these demands.
Nevertheless, there is a clash between traditional security design and evaluation processes. In this paper,
the authors propose an agile security evaluation method for the Common Criteria standard. This method is
complemented by an implementation of a change detection analysis for model-based security requirements.
This system facilitates the agile security evaluation process to a high degree. However, the application of
the proposed evaluation method is limited by several constraints. The authors discuss these constraints and
show how traditional certiication schemes could be extended to better support modern industrial software
development processes.

Balancing Product and
Process Assurance for

Evolving Security Systems
Wolfgang Raschke, Institute for Technical Informatics, Graz University of Technology, Graz,

Austria

Massimiliano Zilli, Institute for Technical Informatics, Graz University of Technology, Graz,
Austria

Philip Baumgartner, NXP Semiconductors Austria GmbH, Gratkorn, Austria

Johannes Loinig, NXP Semiconductors Austria GmbH, Gratkorn, Austria

Christian Steger, Institute for Technical Informatics, Graz University of Technology, Graz,
Austria

Christian Kreiner, Institute for Technical Informatics, Graz University of Technology, Graz,
Austria

Keywords: Agile Development, Common Criteria, Model-Based Software Development, Model Evolution,
Security, Traceability

DOI: 10.4018/ijsse.2015010103

6. Publications Publication 9 - IGI-Global IJSSE 2015 107

c© 2015 IGI-Global. Reprinted, with permission, from Proceedings of International Journal of Secure
Software Engineering (IJSSE).

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

1. INTRODUCTION

Traditional security engineering requires a big
up-front design (BUFD) which includes the
following engineering tasks: threat analysis, se-
curity requirements elicitation, security design
and (security) architecture. Reviews ensure the
consistency of these artifacts. In highly secure
systems, the consistency of the security require-
ments and the security architecture is formally
verified. Altogether, this constitutes a huge ef-
fort, before the implementation is even started
upon. After the security design, the system is
implemented according to requirements and
design. Thereafter, evidence of security has to
be provided in the form of documentation. This
documentation is then delivered to the evalu-
ation body. The evaluation may take several
months. If the feedback from the evaluator is
negative, the system has to be re-designed. If
this is the case, then a large amount of time
and effort would be required. Moreover, the
pressure to deliver the product to market is
high. Summarizing, the challenges involved in
security engineering are: early validation and
time-to-market. The software industry came up
with the trend of agile development practices
(Cockburn, 2006), such as XP, Scrum, and Test-
driven development. Agile methods focus on
customer interaction and incremental software
development. Feedback loops, such as customer
on-site, pair programming and refactoring tend
to minimize errors. Generally, agile processes
react flexibly to changing customer require-
ments. In contrast, traditional processes tend
to fulfill contractually specified requirements
and are inflexible, by nature. Agile processes
have demonstrated a high success rate in several
software projects (Cohn, 2010). Unfortunately,
agile methods have not been well studied for
high-level security engineering and evaluation.
Case studies and success stories are lacking,
especially for the Common Criteria standard
(Common Criteria, 2012). Despite the fact that
traditional security engineering seems to counter
agile practices (Beznosov, 2004), we think that
a synthesis of both is not contradictory, if well
considered.

In the background section we provide mate-
rial, we think helps to understand the following
sections. As we do not claim a contribution in
this section, we want to keep this section as
simple as possible.

Our contribution is the analysis of two
evaluation approaches, which are possibly
suitable for an agile security evaluation. Both
evaluation approaches are compared and one
of them is then proposed for an agile security
evaluation. In an agile security evaluation, all
security properties of the system are kept in a
model, which is capable of creating documen-
tation for an evaluation round. In the agile
evaluation approach only the increment of the
model has to be reviewed. This has several
benefits: the entire system does not have to be
reviewed in each iteration. The evaluator starts
with a small system and gains experience as
the system matures. Early feedback enables
an early, and thus more inexpensive, correc-
tion of the system. With elaborated algorithms
we are able to create a difference model for
all changes during an increment. Additionally,
we demonstrate the feasibility of automation
by customizing existing open source software.

The presented agile security evaluation ap-
proach is applicable under certain constraints.
We discuss those constraints, which are fulfilled
in a large portion of today’s industrial software
projects. However, the existing certification
scheme could be enhanced in order to better
support agile development processes. As a con-
tribution, we propose to view security assurance
under two perspectives: structural product as-
surance and behavioral process assurance. Both
of the mentioned assurance paradigms are well
established in other domains, such as automotive
safety engineering (Habli, 2006; Habli, 2007;
Hawkins, 2010). These paradigms span a two
dimensional assurance space. The concept of
such an assurance space could provide a more
flexible certification scheme that could support
traditional and agile development processes.

Despite the fact that there are few Common
Criteria certifications (139 in 2014)1 we consider
improving the certification process important.
First of all, many companies do not have the

6. Publications Publication 9 - IGI-Global IJSSE 2015 108

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 39

choice to certify their products for another stan-
dard (e.g. ISO 27001). This is especially true
for the smart card industry, which certified 57
products in 2014 up to now1 which is a portion
of 41 per cent. In the past the smart card industry
focused on mass production of standardized
product and thus the number of certifications
was relatively low. However, there is currently
a shift in this industry: an increasing number
of customers demand a tailored functionality
and also a tailored security of those products.
Currently, the expensive and inflexible certifica-
tion hinders the individualization of products.

In the discussion with practitioners, we
found that evaluation processes for Common
Criteria, such as delta and compositional certi-
fication are hardly relevant in practice because
they are considered as too complex. In order
to start supporting security evaluations with
the model-based approach, we strived to start
with the least complex challenge. In practice,
this challenge is the following: the iterative
certification is already accepted by certifica-
tion bodies and industry but this approach is
informal at the moment and thus less structured.

For exchanging increments of documents,
currently text based diff-tools2 are used. How-
ever, this approach is work-intensive and error-
prone in complex software projects. We strive
to improve the situation by taking advanced
model-evolution techniques into account.
Our work proposes to change the certification
standard. Thus, we do not directly address the
certification body here. We address the orga-
nizations which are responsible for issuing
the standard. We show here the concerns and
possible improvements from the viewpoint of
smart card development. As mentioned above,
in 2014, 42 per cent of certified products are
smart cards and smart card operating systems1.
Regarding this high number, considering an
adaptation would make sense in order to bet-
ter support the majority of Common Criteria
certifications.

An improvement of the certification could
not only support the smart card industry but also
other industries. As a result, we expect a fast

growing number of Common Criteria certifica-
tions due to the individualization of products.

2. BACKGROUND

2.1. Requirements for the
Security-Relevant Agile
Development Process

We developed this method mainly to gain im-
provements regarding time-to-market and early
validation. In addition, we strive to improve the
semi-automation of the document creation with
the model-based approach.

2.1.1. Time-to-Market

Time-to-market is one of the key success factors
in the high-security business. In a traditional
certification, the evaluation is accomplished
after the implementation is finished. The time-
to-market can significantly be reduced, if the
evaluation starts in parallel with the develop-
ment. Some documents can only be created
after the development is finished completely.
However, the time span from the finished prod-
uct to the certificate can be reduced.

2.1.2. Early Validation

In the traditional certification approach, the
evaluation starts late, when the product is al-
ready finished. If there is a negative evaluation
result, the refactoring is expensive and seri-
ously delays the completion of the product. In
order to avoid these issues, several companies
employ consultants to support them in creating
and managing the certification process. These
consultants are in contact with the evaluation
body during the development phases. With our
proposed method, we want to raise the level of
maturity, so that the certification processes are
repeatable. Repeatable means that a certifica-
tion process that has been established with the
help of consultants, can be repeated for new
project without external support.

6. Publications Publication 9 - IGI-Global IJSSE 2015 109

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

2.2. Change Detection Analysis

A Change Detection Analysis (CDA) computes
all changes between two versions. The CDA is
more commonly known under the name diff
analysis: diff2 is a software that compares two
versions of a text and marks the differences
between them. It is a standard tool for software
versioning and configuration management. The
CDA for models is similar but does not make a
line-based comparison of the text. Such a line-
based comparison between two models is not
sufficient because it does not take into account
the structure of a model. In contrast, the CDA
recognizes the type of the changed artifact. For
example, the CDA recognizes, if an interface
has changed in the source code. In this case,
more related artifacts need to be reviewed: the
design, the tests and the like. If an interface is
not affected by a change, much fewer artifacts
need to be taken into account. Textual diff tools
do not have these capabilities. Basically, the
CDA detects three different kinds of changes
(Altmanninger, 2009):

1. Add: Add a model element. A model ele-
ment is a node in a model. It may have
parent and child nodes.

2. Delete: Delete an element.

3. Update: Change of an element property. A
property (attribute) belongs to an element.

2.3. Traceability Impact Analysis

The Traceability Impact Analysis (TIA) is an
extension of the CDA. It takes all changed ele-
ments and finds all elements which are possibly
affected by them. For this purpose, the TIA has to
follow all dependencies (traces) of the changed
elements. Thus, an element can be directly af-
fected (by a changed element) or indirectly via
several intermediate dependencies.

2.3.1. Dependency Matrix:

In order to perform a TIA, the dependency
matrix has to be constructed. In Figure 2 the
matrix D represents the dependency graph
shown in Figure 1. In the matrix, each line lists
the depending elements of a certain element.
So, line 1 states that element E2 depends on
element E1.

2.3.2. Reachability Matrix

The reachability matrix (see Figure 3) can be
computed from the dependency matrix. It states
all direct and indirect dependencies between two

Figure 1. Sample dependency graph. E4 is impacted directly by E2 and intermediately by E1
(via E2).

6. Publications Publication 9 - IGI-Global IJSSE 2015 110

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 41

elements. The reachability matrix can be used
to calculate all impacts of a changed element.

For example, in Figure 4, the reachability
matrix is multiplied with a vector that indicates
that element E2 has changed (the 1 in the second
row). The outcome of the multiplication is the
vector IS that lists all impacted elements. So,
if element E2 changes, element E3, E4 and E5
are impacted.

2.4. Delta Evaluation

The Common Criteria information statement
on Reuse of Evaluation Results and Evidence
(Common Criteria, 2002) requires the follow-
ing evidence for a reuse of evaluation results:

1. Product and supporting documentation
2. New Security Target
3. Original Security Target
4. Original Evaluation Technical Report

Figure 2. Dependency matrix

Figure 3..Reachability matrix

6. Publications Publication 9 - IGI-Global IJSSE 2015 111

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

5. Original Common Criteria Certificate
6. Original Evaluation Work Packages

The document states: ”The evaluation
facility would be required to perform a delta
analysis between the new security target and the
original security target to determine the impact
of changes on the analysis and evidence from
the original evaluations” (p. 2) and: ”However,
the evaluation facility conducting the current
evaluation should not have to repeat analysis
previously conducted where requirements have
not changed nor been impacted by changes in
other requirements” (p. 2).

Summarizing, this approach states the
necessary documentation and the need for a
Change Impact Analysis. A more detailed pro-
cess for this evaluation is not given and has to
be defined together with the evaluation facility.

2.5. Security Model

The security model describes the properties and
relations of the developer evidence. Basically,
the developer evidence contains the Security
Target (ST), the design documentation and the
implementation representation. Such a model
for a Common Criteria evaluation is very com-
plex due to the very hierarchical composition
of the Common Criteria artifacts. Therefore,
we only describe the basic properties of such
a model which are necessary for understanding
the proposed evaluation approach (see Figure
5). The Security Target is the security claim and
describes the operating context and how the TOE

establishes its security. The ST is published and
thus does not contain a detailed description of
the design and implementation. The model of
the ST contains the following main parts:

1. The Security Problem Definition describes
the environment of the TOE: threats,
assumptions about its operation and its
security relevant assets.

2. The Security Objectives are high-level
security goals which are then refined by
the Security Functional Requirements.

3. The Security Functional Requirements are
a set of well understood requirements in
a security domain and have to be fulfilled
by the TOE.

The remaining developer evidence basi-
cally contains the functional specification,
design documentation and the implementation
representation. The evaluation has to prove that
the TOE fulfills the security claim of the ST.
For this reason, mainly the following developer
evidence is necessary:

1. The Functional Specification describes
the interfaces through which security
functionality can be invoked. In addition to
the interface description, it has to provide a
specification on how the security functional
requirements are fulfilled.

2. The Design Documentation contains the
functional specification and the design
specification.

Figure 4. Calculation of impacted elements

6. Publications Publication 9 - IGI-Global IJSSE 2015 112

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 43

3. The Implementation Representation is the
source code of the implementation.

3. IMPACT ANALYSIS FOR
SECURITY EVALUATION

In this section we will explain and compare
two possible approaches incorporating an
impact analysis for a security evaluation.
The first approach is more formal and suits a
delta certification approach. The second one
is more informal and more appropriate for an
agile security evaluation. The main difference
between a delta and an agile evaluation is the
frequency of the evaluation: the delta evalua-
tion is based on a previous evaluation result
which has been ascertained some time ago.
Basically two product versions are compared.
In the agile approach the evaluator receives
updated documentation in each agile iteration

(which lasts several weeks). Nevertheless,
the certificate is only ascertained once, at the
end of the product development lifecycle. The
following approaches are based on the change
impact analysis described by Bohner (2002).

3.1. Security Evaluation with
Traceability Impact Analysis

In the following, we will describe the security
evaluation with TIA with an example. The
resulting sets are listed in Table 1. The graph
in Figure 1 shows the structure of the two ver-
sions N and N+1.

The structure of the model does not alter
during this increment. For the example, we
assume, that the content of the node E1 has
changed. Figure 6 indicates that the CDA detects
all model differences between both versions.
The output is the Starting Impact Set (SIS). In
this case the SIS is the changed element E1:

Figure 5. Basic parts of the security model. The arrows indicate a fulfillment operation. For
example, the functional specification must fulfil the security functional requirements.

6. Publications Publication 9 - IGI-Global IJSSE 2015 113

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

SIS = {E1}. The TIA then resolves all traces
and dependencies of the SIS and computes the
so-called Candidate Impact Set (CIS). The CIS
is the set of all possibly impacted artifacts. In
this case, the CIS is: CIS = {E1,E2,E3,E4,E5}.
Nevertheless, the CIS has to be manually re-
evaluated:

1. If the candidate has a possible impact, the
corresponding evaluation artifacts need
to be updated. The set of all re-evaluated
artifacts form the Actual Impact Set (AIS).
The Actual Impact Set in this example is:
AIS ={E1,E2}.

2. During the re-evaluation, new dependen-
cies may be found: the Discovered Impact
Set. Also the newly discovered impacts
(DIS) have to be re-evaluated, again. In
this example, the DIS is empty.

3. If the candidate has no impact, it is part
of the False Positive Impact Set (FPIS).
In this case, a further security evaluation
of the corresponding artifacts can be omit-
ted. The FPIS in this example is: FPIS =
{E3,E4,E5}. Basically, the TIA predicts
the AIS. This prediction is of course partly
wrong, because new impacts are discovered
(DIS) and some predicted impacts actu-
ally have no impact (FPIS). In the below

Table 1. Sample sets for the process with traceability impact analysis. The corresponding example
is described in section 3.1.

Set Output Of

Starting Impact Set {E1} CDA

Candidate Impact Set {E1,E2,E3,E4,E5} TIA

Discovered Impact Set {} re-evaluation

False Positive Impact Set {E3,E4,E5} re-evaluation

Actual Impact Set {E1,E2} re-evaluation

Figure 6. Re-evaluation process with Traceability Impact Analysis. The Actual Impact Set is
finally the re-evaluated set of software artifacts.

6. Publications Publication 9 - IGI-Global IJSSE 2015 114

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 45

equation, the relationships between the
mentioned sets are stated:

AIS CIS DIS FPIS= + −

3.2. Security Evaluation with
Experiential Impact Analysis

We will describe the security evaluation with
EIA with an example. The resulting sets are
listed in Table 2. The graph in Figure 1 shows
the structure of the two versions N and N+1.
As shown in Figure 7, the process with Expe-
riential Impact Analysis (EIA) takes as input
two versions (N, N+1) of a model.

The CDA detects all model differences
between both versions. In the example, the
structure of the model between both versions
remained unchanged. Only the content of node

E1 has changed. The resulting Candidate Im-
pact Set (CIS) is then: CIS = {E1}. As can be
seen, the TIA is omitted: the re-evaluation is
accomplished directly after the CDA. This leads
to two consequences: first, the number of false
positives is much lower (compare Table 1 and
Table 2), because the CIS is smaller without a
TIA, which also takes into account intermediate
dependencies. Second, the DIS is larger because
more impacts need to be detected during the
re-evaluation (compare Table 1 and Table 2).
In this example, the manually detected impacts
are: DIS = {E1,E2}. This evaluation relies on
Experiential Impact Analysis (EIA) which has
been described by Kilpinen (2007). The EIA is
based on expert design knowledge and review
techniques: code inspections and walkthroughs.
In any case, these techniques have to be per-
formed during a security evaluation (Common
Criteria, 2012).

Table 2. Sample sets for the process with experiential impact analysis. The corresponding ex-
ample is described in section 3.2.

Set Output Of

Candidate Impact Set {E1} CDA

Discovered Impact Set {E2} re-evaluation

False Positive Impact Set {} re-evaluation

Actual Impact Set {E1,E2} re-evaluation

Figure 7. Re-evaluation process with Experiential Impact Analysis. The Actual Impact Set is
finally the re-evaluated set of software artifacts.

6. Publications Publication 9 - IGI-Global IJSSE 2015 115

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

It can be argued that the effort for EIA
is expensive because it has to be conducted
manually. Thus, a major issue in this process
is keeping the cost of detecting the DIS low.
This cost can be kept low, if the evaluators are
involved early and regularly. Thus, they can
build up knowledge of the possible impact
between software artifacts. This ensures that
the EIA can be accomplished efficiently if each
evaluator works on the same but narrow set of
software modules.

3.3. Comparing the Cost
of the Approaches

It is an important observation here that the DIS
and the FPIS are both discovered manually,
whereas the CIS can be detected automatically
with tools. The below equation indicates that
the total effort can be estimated by summing up
the effort for manually discovering new impacts
finding false positives:

Effort Effort DIS Effort FPIStotal = +() ()

This equation is a rough estimate of the
total effort. However, it indicates, that the
number of DIS and FPIS are a major factor for
selecting an appropriate evaluation approach.
Nevertheless, there are more parameters which
influence such a selection. The most important
factors are listed in Table 3. The evaluation with
Traceability Impact Analysis (TIA) calculates a
large Candidate Impact Set because the number
of traces and dependencies is usually high (see
Table 1). Thus, the number of direct plus indirect

possible impacts soars. On the one hand, a large
CIS reduces the likelihood of manually detected
impacts (DIS) because all direct and indirect
traces have still been resolved by the TIA (see
Table 1). On the other hand, a large CIS will
contain many false positives (see Table 1 and
also Bohner, 2007) which need to be detected
manually. For human beings it is easier to fal-
sify a visible impact than to detect an invisible
impact, if no experience exists. When there are
long time intervals between two iterations, it can
usually be presumed that there is no experience
of the software under evaluation. Thus, an ap-
proach which detects many candidate impacts
is more appropriate in this case.

The evaluation with Traceability Impact
Analysis (TIA) calculates a large Candidate
Impact Set because the number of traces and
dependencies is usually high (see Table 1).
Thus, the number of direct plus indirect possible
impacts soars (see Table 1). On the one hand,
a large CIS reduces the likelihood of manually
detected impacts (DIS) because all direct and
indirect traces have still been resolved by the
TIA (see Table 1). On the other hand, a large
CIS will contain many false positives (see
Table 1 and also Bohner, 2002) which need to
be detected manually. For human beings it is
easier to falsify a visible impact than to detect
an invisible impact, if no experience exists.
For long time intervals between two iterations,
usually no experience of the software under
evaluation can be presumed. Thus, an approach
which detects many candidate impacts is more
appropriate in this case. The process with EIA
detects more impacts via the re-evaluation (DIS,
see Table 2). Fewer false positives are detected,

Table 3. Comparison of the processes with traceability impact analysis and experiential impact
analysis

TIA Process EIA Process

DIS SMALL LARGE

FPIS LARGE SMALL

Presumed Experience LOW HIGH

Iteration Cycle Months/Years Weeks

6. Publications Publication 9 - IGI-Global IJSSE 2015 116

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 47

because the number of candidate impacts is
smaller without a TIA (see Table 2). This ap-
proach fits better for an iterative evaluation
with short intervals between the re-evaluation
activities. Its strength is to build up knowledge
of the discovered impact set which makes the
re-evaluation efficient. Although there are
several iterations of re-evaluation, only one
certificate is issued, in the end. In the follow-
ing we will show a toolchain that can assist a
process with EIA.

3.4. Mapping the Security
Evaluation Approaches to
Assurance Paradigms

In this section we describe two orthogonal as-
surance paradigms. As can be seen in Figure 8
they span an assurance space whose dimensions
are: structural product assurance and behavioral
process assurance. Both assurance paradigms
are well established in other domains and evalu-
ation standards, such as ISO 26262:

A safety argument that argues safety through
direct appeal to features of the implemented
item (e.g. the behavior of a timing watchdog)
is often termed a product argument. A safety
argument that argues safety through appeal

Figure 8. Assurance tactics are located in different places in the assurance space. It is indicated
that the level of assurance is an aggregate of both dimensions.

6. Publications Publication 9 - IGI-Global IJSSE 2015 117

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

48 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

to features of the development and assessment
process (e.g. the design notation adopted) is
often termed a process argument. (ISO, 2011)

Standards in other domains are only rel-
evant for this article to show that the idea of
process and product assurance is established and
not completely new. Therefore, we dared to cite
here a standard which is not related to the rest of
this work. For traditional product assurance only
one iteration is necessary. Contrarily, process
assurance can only be obtained with recurring
activities. In the following, we will elaborate
more on the two assurance paradigms.

1. Product Assurance: The product is evalu-
ated against the claimed properties. Tradi-
tionally, the input of such an evaluation is
a final product, which is not altered any
more. The evaluation usually comprises
verification and validation on all levels:
requirements, architecture, design, source
code and tests. This approach takes into
account the static structure of a product
in order to gain assurance. Examples of
standards which focus on product assur-
ance are the Common Criteria (Common
Criteria, 2012) standard. The IEC 61508
(Bell, 2006) and ISO 26262 (ISO, 2011)
standards incorporate functional safety
requirements and thus ascertain assurance
partly product-based.

2. Process Assurance: In addition to the
product itself, a sound and appropriate
development process is also assurance for
the evaluated system properties. Thusly,

continuous review, security design and
testing are arguments for assurance. These
activities are especially of value, if they
are accomplished continuously. Process
assurance takes into account the activities
and the involved roles and their compe-
tencies. An example for process-based
software assurance is the DO-178-B (Do,
1992) standard. The standards IEC 61508
(Bell, 2006) and ISO 26262 (ISO, 2011)
demand process assurance in addition to
the functional safety requirements. Several
frameworks for describing job roles and
relevant competencies have been described
(Hilburn, 2013; Kreiner, 2013; Reiner,
2014). Process assurance is a behavioral
strategy to ascertain quality.

Figure 8 shows the position of some assur-
ance tactics in the assurance space. It can be seen
that most of these tactics have corresponding
counterparts in the other dimension. Figure 8
indicates that the level of assurance is an ag-
gregate of process assurance and product assur-
ance. In Table 4 we match these counterparts
of both dimensions to corresponding pairs. In
the following, we will dive into the details of
those matched pairs.

• Review: An external review is traditionally
accomplished only once at the end of prod-
uct development because of the high cost
of evaluation. In contrast, internal reviews
are conducted often and can contribute to
the product quality from the beginning.
The involved roles, their competencies, the

Table 4. Matched pairs of security evaluation tactics. A matched pair contains an assurance
tactic from the process and also the product dimension.

Matched Pair Process Assurance Product Assurance

Review Review Often (internally) Review Once (externally)

Moment of Validation Early Validation Late Validation

Validation Relevance Doing the Right Things Validation Reports

Validation Depth Doing Things Right Formal Verification

Coverage Behavioral Coverage Structural Coverage

6. Publications Publication 9 - IGI-Global IJSSE 2015 118

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 49

rigor and the frequency of review activities
can be used as arguments for assurance.

• Moment of Validation: Early validation
starts early in the product development
and helps to mitigate risks regarding de-
fects in architecture and design. The early
validation comes along with additional
effort for creating respective documenta-
tion. This additional effort may thwart an
agile way of working to a certain degree.
Late validation is accomplished when the
product development is finished to show
that it complies with certain standards. Late
feedback from external evaluation can only
be integrated with a high amount of effort.

• Validation Relevance: What is actually
required for a certain level of assurance:
tests, review documents or design docu-
ments? For product assurance the relevant
documentation needs to be delivered. For
example the Common Criteria (Common
Criteria, 2012) standard does not require
documentation for ATE_TDS (design
description of the TOE) to achieve EAL
1. In order to get a certificate for a higher
assurance level (EAL2 – EAL7) a docu-
mentation for ATE_TDS is imperative.
For process assurance, it is important to
accomplish the relevant tasks to achieve a
relevant level of assurance. For example,
the Common Criteria (Common Criteria,
2012) standard requires for EAL2 to EAL
7 evidence for ATE_FUN (functional test-
ing). In this case, providing documents
does not suffice. Relevant test have to be
performed according to a test plan.

• Validation Depth: This matched pair
indicates the depth and rigor of the assur-
ance argumentation. Regarding process
assurance this depth can be achieved by
involving the appropriate roles. In addition,
the validation depth can be increased by
keeping to validation guidelines such as
moderation of reviews and checking against
lists. Validation depth in product assurance
can be increased by formal verification in
addition to informal verification.

• Coverage: Behavioral coverage denotes
the frequency of assurance activities.
In contrast, the coverage is structural in
product assurance and takes into account
requirements coverage, test coverage and
the like.

In Table 5 we show how the matched pairs
relate to the previously described security
evaluation approaches (EIA and TIA). For each
matched pair we show if the evaluation approach
relates to process assurance or product assur-
ance. In Table 6 we sum up the occurrences of
process assurance and product assurance for
the EIA and TIA evaluation approaches (see
Table 5). It can be seen that the TIA perfectly
matches the product assurance dimension. The
iterative EIA evaluation approach refers to pro-
cess assurance and also to product assurance.
It can be seen that for the iterative approach
(EIA) another dimension of assurance can be
taken into consideration. Ideally, an additional
dimension can provide more flexibility for
certification. We discuss this issue in the next
section in more detail.

3.5. Trade-Off in the
Security Evaluation

In this section, we motivate the demand to
make the security evaluation process of Com-
mon Criteria more flexible. First, we list some
of the current problems of a Common Criteria
evaluation when agile development processes
are applied. Then, we propose a more flexible
security certification approach, which would
facilitate tremendously the development of
secure systems in an agile way. The problems
are located in the following area of tension:

1. The Architecture must be nearly completed
before the Common Criteria Evaluation is
started because otherwise the evaluators
cannot compile evaluation reports. This
seems to be a contradiction to the previ-
ously described agile security evaluation.
However, the agile security evaluation
is feasible if an implicit architecture still

6. Publications Publication 9 - IGI-Global IJSSE 2015 119

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

50 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

exists. Frequently, such implicit architec-
tures exist in the form of a domain model.
Such a model is usually well understood,
if it focuses on a narrow domain. In such
a narrow domain, the products resemble
each other to a high degree and thus so
does the architecture. Nevertheless, if a
new product is developed in a completely
new domain, the agile security evaluation
may find its limits.

2. Security is often a system-wide property
that cannot be isolated to specific compo-
nents or parts of the system. Security is also
a non-composable property (Mantel, 2002;
Santen, 2002) in the following sense: if two
or more components are secure that does

not necessarily mean that the aggregation
of those components is secure. Therefore,
for any kind of security evaluation, all
components and their connections (ar-
chitecture) must be in place. However, in
practice often a base software system ex-
ists and a custom-specific product release
evolves out of this base system. In this case
the agile security evaluation can provide a
system-wide model at any iteration.

3. The agile way of working states that com-
munication shall be over documentation.
Frequent interaction with the customer and
quickly building and adapting a running
system is imperative. Regarding the quick
and flexible development, development

Table 5. For each matched pair we describe how it relates to the EIA and the TIA evaluation
approaches. A matched pair can relate to process assurance, product assurance or both of them.

Matched Pair EIA TIA

Review:
Process Assurance
Product Assurance

Often but Informal Once and Formal

X

X

Moment of Validation:
Process Assurance
Product Assurance

Early Late

X

X

Validation Relevance:
Process Assurance
Product Assurance

Validation Reports Validation Reports

X X

Validation Depth:
Process Assurance
Product Assurance

Doing things right Formal Verification

X

X

Coverage:
Process Assurance
Product Assurance

Behavioral and Structural Coverage Structural Coverage

X

X X

Table 6. Affinity between evaluation approaches (EIA and TIA) and assurance dimensions

Affinity EIA TIA

Process Assurance XXX

Product Assurance XX XXXXX

6. Publications Publication 9 - IGI-Global IJSSE 2015 120

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 51

and documentation in parallel seems to be
counterproductive.

This area of tension was also discussed pre-
viously in (Raschke, 2014a) where the authors
empirically evaluated the impact of agile devel-
opment practices on effort for quality assurance.
Their cost model basically shows that evolving
software architecture causes continuous rework
of the documentation for quality assurance, if
it is done in parallel.

However, the additional effort for docu-
mentation in parallel does not necessarily in-
crease time-to-market. This additional effort can
be compensated with additional resources, such
as a dedicated security team. Anyway, much
of the documentation effort can be automated:
the model can be synchronized with the source
code, the tests, and other relevant artifacts. A
considerable degree of the documentation can
be generated from the model.

Summarizing, it can be seen that there are
problems of agile security evaluation in general,
but in many practical cases it is still applicable.
In the case of an evolving architecture in a new
domain the agile security evaluation has some
limitations. In this case, we propose a solu-
tion in the following with the assurance class
ATE (tests) as example. In order to simplify
the example, we omit the assurance family
ATE_IND (independent testing). First, we will
map the assurance families of the assurance class
ATE to assurance tactics. The assurance tactic
helps to identify, whether an assurance family
contributes to process or product assurance.
Then, we will build up a goal model which
represents the currently applied and inflexible

way of certification. Finally, we will build a
goal model, which represents the proposed and
more flexible way of certification.

The assurance component ATE_FUN is
described (Common Criteria, 2012) as follows:
“Functional testing performed by the developer
provides assurance that the tests in the test
documentation are performed and documented
correctly” (Part 3, p. 161). As we can see the
phrase “performed [...] correctly” relates to the
assurance tactic doing things right. As can be
seen in Table7, this assurance tactic provides
process assurance.

The “ATE_COV addresses the rigour with
which the functional specification is tested”
(Common Criteria, 2012, Part 3, p. 153). The
applied assurance tactic here is structural cov-
erage which contributes to product assurance.

The ATE_DPT assurance family is de-
scribed as follows: “The components in this
family deal with the level of detail to which
the TSF is tested by the developer. Testing
of the TSF is based upon increasing depth of
information derived from additional design
representations and descriptions (TOE design,
implementation representation, and security
architecture description)” (Common Criteria,
2012, Part 3, p. 157).

Also this assurance family is an analysis of
structural coverage: it analyses the testing depth
with additional representations and descriptions.
Table 7 summarizes the assurance families,
the applied assurance tactics and whether the
assurance family provides process or product
assurance.

The hard goal model in Figure 9 describes
the currently applied aggregation of assurance

Table 7. Mapping between assurance families, assurance tactics, process assurance and product
assurance

ATE_FUN ATE_COV ATE_DPT

Assurance
Tactic

doing things
right

structural
coverage

structural coverage

Process Assurance X

Product Assurance X X

6. Publications Publication 9 - IGI-Global IJSSE 2015 121

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

52 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

components. In order to achieve EAL 3 for
the ATE class (without the omitted ATE_IND
family), the following assurance components
need to be fulfilled: ATE_FUN.1, ATE_DPT.1,
ATE_COV.1 and ATE_COV.2 (Common Cri-
teria, 2012, part 3, p. 31). All these required
components are connected to the hard goals
process assurance or product assurance. As-
surance components which are not required
for EAL 3, are not connected to any hard goal.

The soft goal model shown in Figure 10
indicates how the aggregation of assurance
components can be made more flexible. Each
assurance component contributes to a soft goal,
which is indicated by the plus signs. If the sum
of all inputs is above a defined threshold, the
output is either the sum of all inputs (process
assurance or product assurance) or TRUE
(EAL 3). If the sum of all inputs is below this
threshold, the output is either zero of FALSE.
In the proposed way, a higher process assurance
can compensate for a lower product assurance
and vice versa.

3.6. How Model-Merge and Model-
Diff Support Process Assurance

In Figure 11, we provide a use case which
demonstrates, how model-merge and model-diff
support process assurance. This use case shall
provide an impression of how these algorithms
can leverage argumentation for process assur-
ance. In Figure 11 the workspace represents
the local development space of the software
developer. The repository denotes the common
basis for the whole software project. The devel-
oper is allowed to change an interface locally in
the workspace. The changed interface does not
affect the common basis until it is checked into
the repository, which shall contain code of high
quality. If the developer commits the changed
interface to the repository, she triggers the merge
and review sub-process. In this sub-process, the
security architect obtains a list of all interface
changes. The architect reviews the changes
and accepts or rejects them. A review protocol
is added to the repository. The described sub-
process can be refined in order to improve the
associated assurance argument: the review could
be done by more than one security architect. In

Figure 9. The current Common Criteria evaluation does not leave much room for flexibility. The
hard goals are only fulfilled, if all (AND) inputs are true.

6. Publications Publication 9 - IGI-Global IJSSE 2015 122

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 53

addition, a dedicated moderator and a formal
review procedure can improve the assurance
argument. The review could also follow a formal
procedure. All this information is then stored in
the review protocol. The accepted changes are
then merged automatically to the base version
of the interface. This approach supports agile
development methods, because the architecture
can be developed in a bottom-up process: the
developer simply changes the interface and
subsequent review activities are triggered by
this change. Contrarily, in a traditional waterfall
development process the architecture would be
planned before the implementation is started
upon. If tools and methods which support ar-
chitecture evolution are missing, late changes
are expensive.

4. TOOL SUPPORT FOR
AUTOMATION OF THE CHANGE
DETECTION ANALYSIS

In order to support an agile evaluation process
with tooling, we implemented a Change Detec-
tion Analysis. The CDA for the security model
takes as input two versions and delivers a list
of all differences. For example, the CDA lists
all changed source code and test entities. This
has the benefit that the unchanged parts do not
have to be taken into account for re-evaluation.
Basically, such a CDA for models is not new.
Our contribution here is to show how such a tool
can be built with existing open source software.
Moreover, we faced some issues because we
work with large models. These issues suggest
a careful design of the model structure: each
node within a model shall be tagged with a
unique identifier.

Figure 10. A more flexible evaluation of assurance levels can be modelled with soft goals. The
plus signs next to the assurance components indicate the contribution to a soft goal. The output
of the soft goals depends on the sum of its inputs. If this sum is below a specified threshold, the
output is zero or FALSE. It the sum is above this threshold, the output is either the sum of all
inputs or TRUE.

6. Publications Publication 9 - IGI-Global IJSSE 2015 123

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

54 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

4.1. Basic Requirements
for the Tooling

First of all, the diff engine shall work as a stand-
alone and independently of other proprietary
tools. Unfortunately, many modeling tools do
not support sophisticated model-diff engines,
at present. Such a diff engine shall accept a
standard format as input. The produced diff
report shall be in a format which can be easily
read by humans and software. Second, we must
handle large models with several thousands of
artifacts. Comparing them with an inefficient
algorithm is not feasible. Thus, we strive to
utilize a generic diff engine which can be ex-
tended by customizable algorithms. Third, the
diff engine shall be able to deal with different
meta-models without much refactoring of the
algorithms.

4.2. Basic Tool and
Format Overview

The technical process for the CDA is shown
in Figure 12. First (1), the XSD schema3 is
imported to the EMF4 framework and is then
an EMF ecore meta-model. Such a meta-model
describes the structure and properties of an
EMF model. Then (2 and 3) the XML models
are imported to the EMF framework and are
then represented as EMF models. The EMF
compare engine takes the two models as input
and computes (4) a comparison model. The
comparison model can be used to generate a
customized diff report. This diff report is then
stored in a file and contains all add, delete and
update operations and the unique identifiers of
the changed elements. The diff report can be
accessed from other tools and GUI’s.

Figure 11.This use case illustrates how model merge and model diff contribute to an assur-
ance argument. This argument is supported by the appropriate role (architect) who performs a
process (review).

6. Publications Publication 9 - IGI-Global IJSSE 2015 124

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 55

4.3. EMF Compare Customization

We identified EMF compare5 as a highly cus-
tomizable and extensible tool. It is open source
and can be embedded in java applications.
EMF compare can be used without Eclipse
in a standalone fashion. For this purpose
only the appropriate EMF compare and EMF
ecore libraries need to be included to a java
application. Actually, we experienced some
runtime issues because we were differencing
large models with many differences. This is
due to the standard match algorithm of EMF
compare. A match engine is part of the differ-
ence engine and determines which elements
of the old and new model correspond to each
other. Basically, for this purpose, a similarity
metric is computed for each pair of elements.
The pair with the highest similarity metric is
then a matched pair. Apparently, this algorithm
performs poorly for models with a high number
of elements. Although some optimizations of the
pairwise comparison have been implemented
(Brun, 2008; Wenzel, 2014) they perform well
under the assumption that not many differences
exist between two versions of a model. This
assumption is not true in our case because we
compare large models at a time interval of
several weeks (an agile iteration). Thus, we
decided to implement a match algorithm based
on a comparison of unique identifiers which is

much faster because no pairwise comparison is
needed. EMF compare provides the possibility
to utilize such a matching algorithm.

5. RELATED WORK

The Assert4SOA6 project is concerned with
the issue of certifying software which is
composed of several services. It is difficult to
ascertain trust in heterogeneous software in a
software ecosystem. The traditional certify-
ing approaches do not take into account such
heterogeneous systems. This project deals
mainly with the issue of composing evidence
for security for such systems. An approach for
Common Criteria Certification of such systems
is taken into account.

The EURO-MILS7 project strives to exploit
virtualization techniques in order to enable a
separation between different levels of security
for networked embedded systems. If an ap-
propriate separation between highly secure
software and low security software is possible,
only the highly secure software needs to be
certified which makes the approach more cost
effective. In addition to the virtualization, the
communication between the separated software
entities also needs to be taken into account. The
SecureChange8 project deals with supporting
security evaluation during the evolution of the

Figure 12. Process and tooling for a change detection analysis

6. Publications Publication 9 - IGI-Global IJSSE 2015 125

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

56 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

software system at all levels of the software
development process. A key aim of this proj-
ect is to focus on the delta between software
releases in order to concentrate only on the
software artifacts that have changed. Tools and
processes have been developed in order to meet
the mentioned objectives.

Hayley (Haley, 2008) describes a frame-
work for security requirements engineering.
This framework consists of a meta-model which
mainly contains goals, requirements and traces
to architecture. Additionally, the framework
describes a process for the elicitation of security
requirements in several iterations. Additionally,
he provides a notation of security requirement
satisfaction arguments. The framework is ap-
plied in an industrial case study. An iterative
approach for security requirements engineering
is described in this paper. However, the authors
do not investigate the issues that emerge in
large-scale and complex software systems. The
authors mention the application of a graphical
model for the security assurance arguments. In
a complex industrial software project, many en-
gineers would need to work on the same model,
concurrently. This would imply that changing
dependencies and resulting change impacts
happen more frequently than in pre-defined
iteration cycles. In this paper, we address these
problems with model-evolution approaches. In
addition, we show that those model-evolution
techniques can be exploited to construct a pro-
cess argument for security assurance.

Jürjens (2011) extends the UMLSec (UML)
profile with annotations, so that model evolu-
tions can be registered in the model. The original
UMLSec extension can verify the model for
specific security properties. The UMLSec can
use change annotated models and compute a
difference model from it. The verification is
then applied to the difference model. It has been
shown that such an incremental verification of
security properties is much more efficient (in
terms of calculation time) than a full model
verification.

The combination of product and process
argument for a safety assurance argument
(safety case) has been described by (Habli,

2006; Habli, 2007). The authors state that even
the best product argument lacks assurance when
a process argument is omitted. They show how
both arguments can be combined to achieve a
better argumentation with applying the so-called
Goal Structuring Notation. Hawkins (2010)
describes a structured approach for provid-
ing safety evidence. He emphasizes the need
to determine the capabilities of the resources
which are involved in the processes. Only ap-
propriate processes which involve resources
with appropriate capabilities form a sound
assurance argument.

Frameworks for assessing software process
improvement have been well established in the
past (Team, 2002; Messnarz, 2009). It is inter-
esting to see that recently there is an emerging
trend for the certification of competencies in
addition to processes. This trend stems from the
need to apply process improvement for software
assurance purposes. The Software Engineering
Institute9, which issued the CMMI standard
(Team, 2002), recently released a Software
Assurance Competency Model (Hilburn, 2013).
This competency model strives to support com-
panies in building software of high quality and
security. The European Qualification Frame-
work10 (Reiner, 2014) was established to certify
training courses, the corresponding job roles and
examinations. The AQUA11 project (Kreiner,
2013) is an initiative of car manufacturers and
universities to establish a set of training courses
and job roles which are ECQA certified. The
rationale behind the AQUA project is to provide
an assessment framework for the competencies
of developers involved in a safety assurance
process (ISO, 2011; Messnarz, 2009).

6. CONCLUSION

Today’s software systems are developed with
changing requirements regarding functional-
ity and security. Moreover, fast delivery is
an important issue which is impacted by the
duration of development and security evalu-
ation. We deduced a conceptual background
for an agile security evaluation which allows

6. Publications Publication 9 - IGI-Global IJSSE 2015 126

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 57

the management of changing requirements and
fast time-to-market constraints. Moreover, this
evaluation approach provides early feedback
regarding the security concept of a product
and thus avoids late and costly refactoring.
We described a process which utilizes Change
Detection Analysis and Experiential Change
Impact analysis to improve such an iterative
approach. In addition, we described an imple-
mentation of a change detection analysis for
model-based security requirements and design.

Regarding the Common Criteria evalu-
ation, we found some mismatches with agile
development paradigms. In order to enable a
better support for agile software development
we propose to extend the product-focused
evaluation philosophy of Common Criteria by
a process assurance dimension. This second di-
mension would allow the trade-off of assurance
components in a more modular way in order
to tailor the security evaluation to the applied
development processes.

We discussed that there are matched pairs
of assurance tactics. Future work could focus
on finding such matched pairs. It would be
important to evaluate their correspondence.
Further, it would be necessary to find rules of
aggregation for assurance components. Such
rules of aggregation need to be evaluated with
the following respect: do different clusters of
assurance components provide the same assur-
ance of aggregation? If yes, the aggregation
rules and matched pairs are appropriate. If no,
they have to be adjusted to deliver the same
level of assurance for different compositions.

ACKNOWLEDGEMENT

Project partners are NXP Semiconductors Aus-
tria GmbH and TU Graz. The project is funded
by the Austrian Federal Ministry for Transport,
Innovation, and Technology under the FIT-IT
contract FFG 832171. The authors would like
to thank pure::systems GmbH for support.

6. Publications Publication 9 - IGI-Global IJSSE 2015 127

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

58 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

REFERENCES

Altmanninger, K., Brosch, P., Kappel, G., Langer,
P., Seidl, M., Wieland, K., & Wimmer, M. (2009,
October). Why model versioning research is needed!?
an experience report. In Proceedings of the MoDSE-
MCCM 2009 Workshop@ MoDELS (Vol. 9).

Bell, R. (2006, April). Introduction to IEC 61508.
In Proceedings of the 10th Australian workshop on
Safety critical systems and software-Volume 55 (pp.
3-12). Australian Computer Society, Inc.

Beznosov, K., & Kruchten, P. (2004, September).
Towards agile security assurance. In Proceedings
of the 2004 workshop on New security paradigms
(pp. 47-54). ACM.

Bohner, S. A. (2002, December). Extending software
change impact analysis into cots components. In
Software Engineering Workshop, 2002. Proceedings.
27th Annual NASA Goddard/IEEE (pp. 175-182).
IEEE.

Brun, C., & Pierantonio, A. (2008). Model differences
in the eclipse modeling framework. UPGRADE. The
European Journal for the Informatics Professional,
9(2), 29–34.

Cockburn, A. (2006). Agile software development:
the cooperative game. Pearson Education.

Cohn, M. (2010). Succeeding with agile: software
development using Scrum. Pearson Education.

Common Criteria. (2002). Reuse of evaluation results
and evidence.

Common Criteria. (2012). Common criteria for
information technology security evaluation (Part
1-3, Version 3.1., Revision 4).

Do, R. T. C. A. (1992). 178B: Software considerations
in airborne systems and equipment certification.

Habli, I., & Kelly, T. (2006). Process and prod-
uct certification arguments: Getting the bal-
ance right. ACM SIGBED Review, 3(4), 1–8.
doi:10.1145/1183088.1183090

Habli, I., & Kelly, T. (2007). Achieving integrated
process and product safety arguments. In The
Safety of Systems (pp. 55–68). Springer London.
doi:10.1007/978-1-84628-806-7_4

Haley, C. B., Laney, R., Moffett, J. D., & Nuseibeh,
B. (2008). Security requirements engineering: A
framework for representation and analysis. Software
Engineering. IEEE Transactions on, 34(1), 133–153.

Hawkins, R., & Kelly, T. (2010, October). A struc-
tured approach to selecting and justifying software
safety evidence. In System Safety 2010, 5th IET
International Conference on (pp. 1-6). IET.

Hilburn, T. B., Ardis, M., Johnson, G., Kornecki,
A. J., & Mead, N. (2013). Software assurance
competency model.

ISO, C. (2011). 26262, road vehicles–Functional
safety. ISO Standard.

Jürjens, J., Marchal, L., Ochoa, M., & Schmidt, H.
(2011). Incremental security verification for evolving
UMLsec models. In Modelling Foundations and Ap-
plications (pp. 52–68). Springer Berlin Heidelberg.
doi:10.1007/978-3-642-21470-7_5

Kilpinen, M. S., Eckert, C. M., & Clarkson, P. J.
(2007, March). The emergence of change at the
interface of system and embedded software design.
In Conference on Systems Engineering Research,
Hoboeken, NJ.

Kreiner, C., Messnarz, R., Riel, A., Ekert, D.,
Langgner, M., Theisens, D., & Reiner, M. (2013).
Automotive Knowledge Alliance AQUA–Integrat-
ing Automotive SPICE, Six Sigma, and Functional
Safety. In Systems, Software and Services Process
Improvement (pp. 333–344). Springer Berlin Heidel-
berg. doi:10.1007/978-3-642-39179-8_30

Mantel, H. (2002). On the composition of secure
systems. In Security and Privacy, 2002. Proceed-
ings. 2002 IEEE Symposium on (pp. 88-101). IEEE.

Messnarz, R., Ross, H. L., Habel, S., König, F.,
Koundoussi, A., Unterrreitmayer, J., & Ekert, D.
(2009). Integrated Automotive SPICE and safety
assessments. Software Process Improvement and
Practice, 14(5), 279–288. doi:10.1002/spip.429

Raschke, W., Zilli, M., Baumgartner, P., Loinig, J.,
Steger, C., & Kreiner, C. (2014b). Supporting evolv-
ing security models for an agile security evaluation.
In Evolving Security and Privacy Requirements En-
gineering (ESPRE), 2014 IEEE 1st Workshop on (pp.
31-36). IEEE. doi:10.1109/ESPRE.2014.6890525

Raschke, W., Zilli, M., Loinig, J., Weiss, R., Steger,
C., & Kreiner, C. (2014a). Where does all this waste
come from. In Industrial Proceedings of the 18th Eu-
roSPI Conference (pp. 3.1-3.10). DELTA, Denmark.

Reiner, M., Sauberer, G., & Messnarz, R. (2014).
European Certification and Qualification Associa-
tion – Developments in Europe and World Wide. In
Industrial Proceedings of the 18th EuroSPI Confer-
ence (pp. 3.1-3.10). DELTA, Denmark.

6. Publications Publication 9 - IGI-Global IJSSE 2015 128

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015 59

Santen, T., Heisel, M., & Pfitzmann, A. (2002). Con-
fidentiality-preserving refinement is composition-
al—sometimes. In Computer Security—ESORICS
2002 (pp. 194–211). Springer Berlin Heidelberg.
doi:10.1007/3-540-45853-0_12

Team, C. P. (2002). Capability maturity model®
integration (CMMI SM), version 1.1. Software
Engineering Institute, Carnegie Mellon University,
Pittsburg, PA, Tech. Rep. SEI-2002-TR-012.

Wenzel, S. (2014). Unique identification of ele-
ments in evolving software models. Software &
Systems Modeling, 13(2), 679–711. doi:10.1007/
s10270-012-0311-7

Wiegers, K. E. (2002). Peer reviews in software: A
practical guide. Boston: Addison-Wesley.

ENDNOTES
1. http://www.commoncriteriaportal.org/prod-

ucts/, visited in November 2014
2. http://www.gnu.org/software/diffutils/
3. http://www.w3.org/XML/Schema.html
4. http://www.eclipse.org/modeling/emf/
5. http://www.eclipse.org/emf/compare/
6. http://www.assert4soa.eu/
7. http://www.euromils.eu/
8. http://www.securechange.eu/
9. http://www.sei.cmu.edu
10. http://www.ecqa.org
11. http://automotive-knowledge-alliance.eu

6. Publications Publication 9 - IGI-Global IJSSE 2015 129

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

60 International Journal of Secure Software Engineering, 6(1), 37-60, January-March 2015

Wolfgang Raschke completed his studies in telematics in 2012. Since February 2012 he works as a PhD
student at the Graz University of Technology. His current research interests are: software product lines for
secure systems, innovation and evolution of software and software models.

Massimiliano Zilli received his Master’s degree in Electronic Engineering at the University of Udine in
2007. From 2008 to 2012 he worked as a software developer for embedded systems. Since February 2012
he works as a PhD-Student at the Graz University of Technology. His research focuses on optimization
techniques for embedded systems.

Philip Baumgartner completed his studies in telematics in 2014. Currently, he works as security engineer
at NXP Semiconductors Austria. His current research interests are: software product lines, requirements
engineering and secure systems.

Johannes Loinig received the Dr.techn. degree (PhD) in electrical engineering with focus on Secure Em-
bedded Systems from Graz University of Technology in 2012. Currently he works as software and security
architect in several projects at NXP Semiconductors Austria and is in the lead of several research projects
with focus on HW/SW codesign and information security.

Christian Steger received the Dipl.-Ing. degree (M.Sc.) 1990 and the Dr.techn. degree (PhD) in electrical
engineering from Graz, University of Technology, Austria, in 1995, respectively. He is key researcher at the
Virtual Vehicle Competence Center (VIF, COMET K2) in Graz, Austria. From 1989 to 1991 he was software
trainer and consultant at SPC Computer Training GmbH, Vienna. Since 1992, he has been Assistant Professor
at the Institute for Technical Informatics, Graz University of Technology. He heads the HW/SW codesign
group at the Institute for Technical Informatics. His research interests include embedded systems, HW/SW
codesign, HW/SW coverification, SOC, power awareness, smart cards UHF RFID systems, multi-DSPs.

Christian Kreinergraduated and received a PhD degree in Electrical Engineering from Graz University of
Technology in 1991 and 1999, respectively. From 1999 to 2007 he served as the head of the R&D depart-
ment at Salomon Automation, Austria, focusing on software architecture, technologies, and processes for
logistics software systems. He was in charge to establish a company-wide software product line development
process and headed the product development team. During that time, he lead and coordinated a long-term
research programme together with the Institute for Technical Informatics of Graz University of Technology.
There, he currently leads the Industrial Informatics and Model-based Architectures group. His research
interests include systems and and software engineering, software technology, and process improvement.

6. Publications Publication 9 - IGI-Global IJSSE 2015 130

Bibliography

[1] J. A. Kupsch and B. P. Miller, “Why Do Software Assurance Tools Have Prob-
lems Finding Bugs Like Heartbleed?,” Continuous Software Assurance Marketplace,
vol. 22, 2014.

[2] Ericsson, Ericsson Mobility Report. November 2013.

[3] C. Christensen and M. Raynor, The innovator’s solution: Creating and sustaining
successful growth. Harvard Business Review Press, 2013.

[4] Virtual Machine Specification. Java Card Platform, Version 3.0.1, Classic Edition,
2009. Sun Microsystems.

[5] C. Steger and J. Loinig, “DAVID - Design-Flow für Java Betriebssysteme auf Low-
End Smart Cards,” tech. rep., February 2012. Internal.

[6] M. Zilli, W. Raschke, J. Loinig, R. Weiss, and C. Steger, “On the dictionary compres-
sion for Java card environment,” in Proceedings of the 16th International Workshop
on Software and Compilers for Embedded Systems, pp. 68–76, ACM, 2013.

[7] M. Zilli, W. Raschke, R. Weiss, C. Steger, and J. Loinig, “A light-weight compression
method for Java card technology,” SIGBED Review, vol. 11, no. 4, pp. 13–18, 2014.

[8] M. Zilli, W. Raschke, R. Weiss, J. Loinig, and C. Steger, “Instruction Folding Com-
pression for Java Card Runtime Environment,” in Proceedings of the 17th Euromicro
Conference on Digital System Design (DSD’14), pp. 228–235, IEEE, 2014.

[9] B. Schneier, “Attack trees,” Dr. Dobb’s Journal, vol. 24, no. 12, pp. 21–29, 1999.

[10] S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Information Security
and Cryptology (ICISC’05), pp. 186–198, Springer, 2006.

[11] T. Tidwell, R. Larson, K. Fitch, and J. Hale, “Modeling internet attacks,” in Pro-
ceedings of the 2001 IEEE Workshop on Information Assurance and Security, vol. 59,
2001.

[12] J. McDermott and C. Fox, “Using abuse case models for security requirements anal-
ysis,” in Proceedings of the 15th Annual Computer Security Applications Conference
(ACSAC’99), pp. 55–64, IEEE, 1999.

[13] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse cases,”
Requirements Engineering, vol. 10, no. 1, pp. 34–44, 2005.

131

Bibliography 132

[14] J. McDermott, “Abuse-case-based assurance arguments,” in Proceedings of the 17th
Annual Computer Security Applications Conference (ACSAC’01), pp. 366–374, IEEE,
2001.

[15] P. Hope, G. McGraw, and A. I. Antón, “Misuse and abuse cases: Getting past the
positive,” Security & Privacy, IEEE, vol. 2, no. 3, pp. 90–92, 2004.

[16] H. Mouratidis and P. Giorgini, “Secure tropos: a security-oriented extension of the
tropos methodology,” International Journal of Software Engineering and Knowledge
Engineering, vol. 17, no. 02, pp. 285–309, 2007.

[17] P. Giorgini, H. Mouratidis, and N. Zannone, “Modelling security and trust with secure
tropos,” Integrating Security and Software Engineering: Advances and Future Vision,
pp. 160–189, 2006.

[18] F. Massacci, J. Mylopoulos, and N. Zannone, “Computer-aided support for secure
tropos,” Automated Software Engineering, vol. 14, no. 3, pp. 341–364, 2007.

[19] J. Jürjens, “UMLsec: Extending uml for secure systems development,” in UML
2002—The Unified Modeling Language, pp. 412–425, Springer, 2002.

[20] J. Jürjens, “Towards development of secure systems using UMLsec,” in Fundamental
Approaches to Software Engineering, pp. 187–200, Springer, 2001.

[21] B. Best, J. Jurjens, and B. Nuseibeh, “Model-based security engineering of distributed
information systems using UMLsec,” in Proceedings of the 29th International Con-
ference on Software Engineering (ICSE’07), pp. 581–590, IEEE, 2007.

[22] I. Côté, M. Heisel, H. Schmidt, and D. Hatebur, “UML4PF-a tool for problem-
oriented requirements analysis.,” in Proceedings of the 19th IEEE International Re-
quirements Engineering Conference (RE’11), pp. 349–350, 2011.

[23] K. Beckers, S. Faßbender, D. Hatebur, M. Heisel, and I. Côté, “Common Criteria
compliant software development (CC-CASD),” in Proceedings of the 28th Annual
ACM Symposium on Applied Computing, pp. 1298–1304, ACM, 2013.

[24] F. Moyano, C. Fernández-Gago, K. Beckers, and M. Heisel, “Enhancing Problem
Frames with Trust and Reputation for Analyzing Smart Grid Security Requirements,”
in Smart Grid Security, pp. 166–180, Springer, 2014.

[25] C. B. Haley, J. D. Moffett, R. Laney, and B. Nuseibeh, “A framework for security
requirements engineering,” in Proceedings of the 2006 International Workshop on
Software Engineering for Secure Systems, pp. 35–42, ACM, 2006.

[26] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, “Security requirements engi-
neering: A framework for representation and analysis,” IEEE Transactions on Soft-
ware Engineering, vol. 34, no. 1, pp. 133–153, 2008.

[27] A. Van Lamsweerde, “Elaborating security requirements by construction of inten-
tional anti-models,” in Proceedings of the 26th International Conference on Software
Engineering, pp. 148–157, IEEE Computer Society, 2004.

Bibliography 133

[28] J. Jürjens, L. Marchal, M. Ochoa, and H. Schmidt, “Incremental security verification
for evolving UMLsec models,” in Modelling Foundations and Applications, pp. 52–68,
Springer, 2011.

[29] I. Habli and T. Kelly, “Process and product certification arguments: getting the
balance right,” ACM SIGBED Review, vol. 3, no. 4, pp. 1–8, 2006.

[30] Common Criteria. Common Criteria for Information Technology Security Evaluation
- Part 1-3. Version 3.1 Revision 3 Final (July 2009).

[31] ISO, C. (2013). 27001, Information technology –Security techniques – Information
security management systems – Requirements. ISO Standard.

[32] ISO, C. (2011). 26262, Road vehicles–Functional safety. ISO Standard.

[33] R. Bell, “Introduction to IEC 61508,” in Proceedings of the 10th Australian workshop
on Safety Critical Systems and Software. Volume 55, pp. 3–12, Australian Computer
Society, Inc., 2006.

[34] L. A. Johnson, “DO-178B, Software considerations in airborne systems and equipment
certification,” Crosstalk, October, 1998.

[35] R. Messnarz, H.-L. Ross, S. Habel, F. König, A. Koundoussi, J. Unterrreitmayer, and
D. Ekert, “Integrated Automotive SPICE and Safety Assessments,” Software Process:
Improvement and Practice, vol. 14, no. 5, pp. 279–288, 2009.

[36] C. P. Team, “Capability Maturity Model R© Integration (CMMI SM), Version 1.1,”
tech. rep., 2002.

[37] T. B. Hilburn, M. Ardis, G. Johnson, A. J. Kornecki, and N. Mead, “Software As-
surance Competency Model,” tech. rep., 2013.

[38] M. Reiner, G. Sauberer, and I. Richard Messnarz, “European Certification and Qual-
ification Association-Developments in Europe and World Wide,” tech. rep., 2014.

[39] I. Habli and T. Kelly, “Achieving integrated process and product safety arguments,”
in The Safety of Systems, pp. 55–68, Springer, 2007.

[40] S. E. Toulmin, The uses of argument. Cambridge University Press, 2003.

[41] R. Hawkins and T. Kelly, “A structured approach to selecting and justifying software
safety evidence,” in Proceedings of the 5th IET International Conference on System
Safety, pp. 1–6, IET, 2010.

[42] W. Raschke, M. Zilli, J. Loinig, R. Weiss, C. Steger, and C. Kreiner, “Patterns for
Hardware-Independent Development for Embedded Systems,” in Proceedings of the
20th European Conference on Pattern Languages of Programs, ACM, 2015. in print.

[43] V. Handziski, J. Polastre, J. Hauer, C. Sharp, A. Wolisz, and D. Culler, “Flexi-
ble hardware abstraction for wireless sensor networks,” in Proceedings of the Second
European Workshop onWireless Sensor Networks, pp. 145–157, IEEE.

Bibliography 134

[44] J. Grenning, “Applying test driven development to embedded software,” Instrumen-
tation & Measurement Magazine, IEEE, vol. 10, no. 6, pp. 20–25, 2007.

[45] K. Beck, Test-driven development: by example. Addison-Wesley Professional, 2003.

[46] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen, “Action research,” Commu-
nications of the ACM, vol. 42, no. 1, pp. 94–97.

[47] W. Raschke, M. Zilli, P. Baumgartner, J. Loinig, C. Steger, and C. Kreiner, “Bal-
ancing Product and Process Assurance for Evolving Security Systems,” International
Journal of Secure Software Engineering (IJSSE), vol. 6, no. 1, pp. 47–75, 2015.

[48] A. D. Sinnhofer, W. Raschke, C. Steger, and C. Kreiner, “Evaluation paradigm se-
lection according to Common Criteria for an incremental product development,” in
International Workshop on MILS: Architecture and Assurance for Secure Systems,
2015. http://mils-workshop.euromils.eu/ [Online; accessed 24-March-2015].

[49] W. Raschke, M. Zilli, P. Baumgartner, J. Loinig, C. Steger, and C. Kreiner, “Support-
ing evolving security models for an agile security evaluation,” in Proceedigns of the 1st
Workshop on Evolving Security and Privacy Requirements Engineering (ESPRE’14),
pp. 31–36, IEEE, 2014.

[50] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided tour,” in
Proceedings of the 5th IEEE International Symposium on Requirements Engineering.,
pp. 249–262, IEEE, 2001.

[51] W. Raschke, M. Zilli, , J. Loinig, R. Weiss, C. Steger, and C. Kreiner, “Where does
all this waste come from?,” in Industrial Proceedings of the 21st EuroSPI Conference,
pp. 3.1–3.10, DELTA, Denmark, 2014.

[52] W. Raschke, M. Zilli, J. Loinig, R. Weiss, C. Steger, and C. Kreiner, “Patterns of
Software Modeling,” in On the Move to Meaningful Internet Systems: OTM 2014
Workshops, pp. 428–437, Springer, 2014.

[53] W. Raschke, M. Zilli, J. Loinig, R. Weiss, C. Steger, and C. Kreiner, “Test-Driven
Migration Towards a Hardware-Abstracted Platform,” in Proceedings of the 2014
International Conference on Pervasive and Embedded Computing and Communicaton
Systems, PECCS 2015, 2015.

[54] M. Lackner, R. Berlach, W. Raschke, R. Weiss, and C. Steger, “A defensive virtual
machine layer to counteract fault attacks on java cards,” in Information Security The-
ory and Practice. Security of Mobile and Cyber-Physical Systems, pp. 82–97, Springer,
2013.

[55] W. Raschke, M. Zilli, J. Loinig, R. Weiss, C. Steger, and C. Kreiner, “Embedding
research in the industrial field: a case of a transition to a software product line,” in
Proceedings of the 2014 International Workshop on Long-Term Industrial Collabora-
tion on Software Engineering, pp. 3–8, ACM, 2014.

[56] CESeCore TOE Design (ADV TDS) - Version 1.1.2 . https://www.cesecore.eu/

[Online; accessed 24-March-2015].

http://mils-workshop.euromils.eu/
https://www.cesecore.eu/

Bibliography 135

[57] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach to requirements
syntax (ears),” in Requirements Engineering Conference, 2009. RE’09. 17th IEEE
International, pp. 317–322, IEEE, 2009.

[58] T. Gilb, Competitive engineering: a handbook for systems engineering, requirements
engineering, and software engineering using Planguage. Butterworth-Heinemann,
2005.

[59] T. Kelly and R. Weaver, “The goal structuring notation–a safety argument notation,”
in Proceedings of the dependable systems and networks 2004 workshop on assurance
cases, Citeseer, 2004.

	Title
	Statutory Declaration
	Kurzfassung
	Abstract
	Acknowledgements
	Extended Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Glossary
	1 Introduction
	1.1 Motivation
	1.1.1 Design Complexity Trend

	1.2 Design Flow for Low-End Java Card Operating Systems
	1.2.1 The DAVID Project
	1.2.2 Problem Statement
	1.2.3 Contributions and Significance
	1.2.4 Structure of the Work

	2 Related Work
	2.1 Security Modeling Notation Overview
	2.2 Security Modeling with Explicit Support of Evolving Systems
	2.3 Assurance Paradigms
	2.4 Hardware Abstraction
	2.5 Summary and Difference to State-of-the-art

	3 Method
	3.1 Overview
	3.2 Major Goal: Certification of Evolving Security Systems
	3.2.1 Certification Processes
	3.2.2 Cost Model
	3.2.3 Patterns of Software Modeling

	3.3 Minor Goal: Hardware Abstraction for Future Smart Card Architectures
	3.3.1 Patterns for Hardware Abstraction
	3.3.2 Test-driven Porting
	3.3.3 D-VM Layer
	3.3.4 Product Line Migration

	4 Results and Evaluation
	4.1 Hardware Abstraction of the Source Code
	4.1.1 Pilot Study
	4.1.2 Case Study

	4.2 Scenario Analysis of the Security Processes
	4.2.1 Case study: CeSeCore Architecture Overview
	4.2.2 Case 1: Complete Evaluation
	4.2.3 Case 2: Re-evaluation with Traceability Impact Analysis
	4.2.4 Case 3: Re-evaluation with Experiential Impact Analysis
	4.2.5 Relevance of Certification Processes for the Smart Card Industry

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Directions for Future Work
	5.2.1 Security Certification
	5.2.2 Security Requirements

	6 Publications
	6.1 A Defensive Virtual Machine Layeer to Counteract Fault Attacks on Java Cards
	6.2 Patterns for Hardware-Independent Development for Embedded Systems
	6.3 Test-Driven Migration Towards a Hardware-Abstracted Platform
	6.4 Embedding research in the industrial field: a case of a transition to a software product line
	6.5 Evaluation paradigm selection according to Common Criteria for an incremental product development
	6.6 Supporting evolving security models for an agile security evaluation
	6.7 Patterns of Software Modeling
	6.8 Where does all this waste come from?
	6.9 Balancing Product and Process Assurance for Evolving Security Systems

	References

