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Abstract

Real-world face recognition is a large-scale task. It is large-scale in a sense that image

acquisition devices are omnipresent in our daily life. Thus, more and more images are

taken every day that need to be processed, where often a human face is the object of

interest. As data grows several challenges and opportunities are posed to computational

face recognition algorithms, additional to the recognition challenge. A main criterion for

the applicability of machine learning algorithms is the scalability in terms of learning,

evaluation costs and also the needed effort to obtain labels and annotations. Scanning

web-scale data sets of images containing millions of faces call for sophisticated search

and retrieval strategies, where efficient algorithms are clearly beneficial.

Thus, in this thesis, we introduce novel Mahalanobis metric learning methods for

real-world face recognition. The goal of Mahalanobis metric learning is to exploit prior

information such as labels to learn a similarity measure that is better suited for a partic-

ular task like face recognition. In particular, we propose algorithms that offer scalability

in terms of learning, evaluation and required annotation. Scalability in training is in-

troduced by a formulation that allows for learning a Mahalanobis metric that does not

rely on complex optimization problems requiring computationally expensive iterations.

Our algorithm is flexible enough to learn form pairwise labels and is thus applicable

for a wide range of large-scale problems. To speed up evaluation we first propose a

metric-based hashing strategy and second bridge the gap between metric learning and

prototype learning, enabling efficient retrieval. Further, by combining metric learning

and multi-task learning we account the fact that faces share strong visual similarities,

which can be exploited when learning discriminative models. Moreover, a face recogni-

tion pipeline heavily relies on face detection and landmark extraction as preprocessing

steps, requiring large-scale data for training. Therefore, we introduce a publicly avail-

able database with suitable training data.
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Experimental evaluations on recent face recognition benchmarks demonstrate the

benefits of our methods. In particular, we are able to compare to the state-of-the-art

in Mahalanobis metric learning, however at drastically reduced training and evaluation

costs. Moreover, we benchmark our methods on standard machine learning, person

re-identification and object matching datasets. On two benchmarks we even improve

over the domain specific state-of-the-art.

Keywords: Face recognition •Metric learning •Multi-task learning •Hashing • Proto-

type methods • Face detection • Face verification • Facial landmark database •Machine

learning



Kurzfassung

Gesichtserkennung unter unkontrollierten Bedingungen entwickelt sich zu einer omni-

präsenten Aufgabe, da mehr und mehr Bilder durch Digitalkameras oder Smartphones

aufgenommen werden. In vielen Fällen ist ein menschliches Gesicht der Gegenstand

der Betrachtung. Um diese Unmengen von Bildern interpretieren und analysieren zu

können müssen die Daten automatisch verarbeitet werden. Dies stellt gleichzeitig eine

Herausforderung als auch eine Chance für computergestützte Gesichtserkennungsalgo-

rithmen dar. Die Hauptherausforderung ist die Skalierbarkeit in Bezug auf die benötigte

Trainings- und Testzeit, sowie die notwendige manuelle Annotation der Daten im Trai-

ning. Große Datenmengen wie sie z.B. bei Sozialen Netzwerken auftreten benötigen

intelligente Suchstrategien, die auf effiziente Algorithmen zurückgreifen.

Daher stellen wir in dieser Arbeit neue Mahalanobis Metrik-Lernverfahren vor, ins-

besondere für Gesichtserkennung unter unkontrollierten Bedingungen. Mahalanobis

Metrik-Lernverfahren sind in der Literatur bekannt für ihre guten Ergebnisse, im Spe-

ziellen für Gesichtserkennungsprobleme. Die vorgeschlagenen Algorithmen behandeln

die Thematik des effizienten Trainings, Testens, sowie der benötigten Annotationsmen-

ge. Um das Training effizienter zu gestalten, wird eine Methode vorgestellt, die es

erlaubt eine Mahalanobis Metrik zu lernen ohne dabei aufwändige iterative Optimie-

rungsverfahren zu verwenden. Der Algorithmus ist des Weiteren in der Lage von paar-

weisen Annotationen zu lernen, die üblicherweise einfach erhoben werden können. Da-

her skaliert die Methode auch für große Datenmengen. Um die Evaluierungszeit dras-

tisch zu verkürzen, wird erstens eine metrik-basierte Hashing-Methode vorgestellt, und

zweitens vorgeschlagen Metrik-Lernverfahren mit Prototyp-Lernverfahren zu verbin-

den. Dies bringt deutliche Geschwindigkeitsvorteile. Des Weiteren wird eine Methode

vorgestellt, die Metrik-Lernverfahren mit Multi-Task Lernverfahren kombiniert, um aus-

zunutzen, dass Gesichter sehr starke Ähnlichkeiten aufweisen, auch wenn diskriminati-
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ve Modelle gelernt werden. Darüber hinaus, stellen Gesichtsdetektion und die Extrak-

tion von Gesichtsmerkmalen wichtige Vorverarbeitungsschritte in einem Gesichtserken-

nungsprozess dar, die auch große Datenmengen zum Trainieren benötigen. Für diesen

Zweck stellen wir eine umfangreiche Datenbank zur Verfügung.

Die Evaluierungen und experimentellen Ergebnisse auf öffentlich zugänglichen Eva-

luierungsdatenbanken zeigen die Vorteile der vorgestellten Methoden. Im Besonderen

sind die Methoden kompetitiv zum Stand der Technik im Bereich von Mahalanobis

Metrik-Lernverfahren. Darüber hinaus werden die Trainings- und Evaluierungskosten

drastisch reduziert. Um die Generalisierungsfähigkeit der Methoden zu unterstreichen,

werden sie zusätzlich auch getestet für Standard Machine Learning Probleme, Perso-

nen Wiedererkennung und Objekt-Matching. Auf zwei Evaluierungsdatenbanken wird

sogar der domänenspezifische Stand der Technik überboten.

Schlagwörter: Gesichtserkennung •Metrik-Lernverfahren •Multi-Task Lernverfahren

• Hashing • Prototyp Methoden • Gesichtsdetektion • Gesichtsverifikation • Maschi-

nelles Lernen
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1
Introduction

Face recognition is an intrinsic part of the human visual perception and definitely one

of our core abilities. Imagine looking at a portrait photo of yourself without noticing

that it is you on the picture. Even worse, in your daily life you meet familiar people

and see faces day in, day out absent of the capability to recognize these without other

available cues as voice, hairstyle, gait, clothes or context information. In the human

brain dedicated areas exist that offer us our remarkable face recognition capabilities. If

there is a lesion in these specialized areas the described symptoms can occur, commonly

referred as prosopagnosia or face blindness. Face blindness can occur despite the ab-

sence of low-level visual inabilities or cognitive alterations as loss of memory or mental

confusions [92].

The significance of face recognition for humans is reflected by the variety of applica-

tions of computational face recognition. In the field of computer vision face recognition

is omnipresent since decades and hence can be considered as one of the core tasks. For

instance, it builds the basis for many law enforcement or commercial applications. In

biometrics face recognition is of particular interest as it can be performed non-intrusive,

without the cooperation or even the knowledge of the respective subject. Therefore, it

has a wide range of applications such as access controls or video surveillance related

tasks. Another field of application is the rapid evolving of consumer digital photogra-

phy that leads to loose unlinked personal photo collections. Here face recognition soft-

ware helps to automatically organize the collections and find your loved ones. Another

important application domain is health care as the aid for visually impaired people, i.e.,

humans that suffer from face blindness.

For humans the recognition of a familiar face is straight forward, it has been even ob-

1



2 Chapter 1. Introduction

served that humans are able to reliably match familiar faces solely based on appearance

in a variety of challenging situations [126]. For instance humans are able to recognize

faces from low resolution images where only the overall face structure is apparent and

fine face details are not necessarily preserved. Further, it has been observed that the

human visual system is poor at matching photographs of unfamiliar persons under

degradations. However, for familiar people the human visual system is able to tolerate

severe degradations as variations in pose, lighting or occlusions.

Computational face recognition tries to mimic the remarkable capabilities of the hu-

man brain. The progress in face recognition research was monitored by several large

scale evaluations as Face Recognition Technology (FERET) [112] or Face Recognition

Vendor Test (FRVT) [114]. In the beginning the clear focus was on controlled studio

like conditions. In these early face recognition systems performed already relatively

well. The goal of each evaluation was to drop the error rates to one tenth of the preced-

ing one. Ultimately, in 2006 it was observed for the first time that computational face

recognition is able to beat the human capabilities, at least in some constrained situa-

tions. In particular, it has been shown that for frontal still-face images some algorithms

are able to surpass the human recognition performance under illumination changes

[114]. However, this result is not general and is only valid for controlled studio-alike

high-resolution images. In contrast, in unconstrained real-world situations there is still a

large performance gap [82]. Here imaging conditions as diversity in viewpoint, lighting,

clutter or occlusion severely lower the recognition performance. Therefore, the study of

face recognition under real-world conditions is the way to go. This means recogni-

tion from medium to low-resolution 2D images of potentially uncooperative subjects,

in uncontrolled environments without available context information. For this purpose

several large-scale benchmark databases have been proposed exhibiting large variability

[5, 37, 48, 58, 82]. Despite the criticism that the datasets are still somewhat constrained,

mainly by the way the images have been collected, humans still have by far the best

real-world face recognition rates also on these datasets.

Real-world face recognition is commonly structured as a multi-stage process. Typi-

cally, it involves Face Detection, Alignment and Recognition (DAR). See Figure 1.1 for

illustration. Depending on the particular application these steps are followed or ac-

companied by face tracking, pose estimation, emotion recognition or gaze estimation.

In particular, face detection means to estimate the coarse location of one or multiple

faces present in the image. Face alignment or normalization is the process to detect

facial landmarks such as the corners of the eyes, mouth and nose. These can be used
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(a) Detection (b) Alignment

?
(c) Recognition

Figure 1.1: Real-world face recognition is typically structured as a Detection, Alignment
and Recognition (DAR) process. (a) Face detection means to estimate the coarse location
of faces in images. (b) Face alignment is to align the faces to a canonical pose or to
extract local characteristics. (c) The recognition step performs either face verification or
face identification.

to align the faces or to extract local characteristics, component wise. Furthermore, the

extracted landmarks can be used to project the faces to a canonical pose. Accurate

detection and alignment is very valuable for the final recognition performance. Obvi-

ously, face recognition is practically impossible without prior face detection. Also face

alignment is of critical importance for face recognition as observed by many authors

[6, 59, 133, 152, 164], especially in the context of real-world face recognition. Finally, the

recognition step performs either face verification or face identification. Face verification

or authentication means deciding if two images show the same person or not. This in-

volves assessing the similarity between the two faces explicitly. Face identification deals

with assigning a name or label to a particular query face, e.g., this face shows Jim. Intu-

itively, this requires a set of labeled gallery faces or a watch list. Typically, in real-world

applications these galleries or watch lists are large-scale. Thus, additionally to the face

verification and identification challenge computational face recognition has to deal with

two main issues: Scalability and the ability to benefit from large-scale data in learning

face recognition models.

Real-world face recognition is a large-scale task It is large-scale in a sense that image

acquisition devices are omnipresent in our daily life. More and more photos are taken
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every day that need to be processed. In many cases a human face is the object of interest.

For personal photo collections images containing faces are taken and immediately up-

loaded to social networks. Surveillance cameras take images constantly at nearly every

public hot spot. Millions of people cross borders each year and are pictured thereby

in many countries. As data grows several challenges and opportunities are posed to

computational face recognition algorithms.

Real-world face recognition benefits from sophisticated machine learning For face

recognition we can exploit the available large-scale data for training and apply sophisti-

cated machine learning algorithms that exploit the special characteristics of faces. This

usually leads to better results and lower error rates. However, this is challenged by

the computational burden and the needed effort to obtain labels and annotations. In

some cases labels can be inferred automatically, e.g., from social network context [129],

tracking [93] or with other context knowledge. Other algorithms are able to learn from

pairwise labels which reduces the required level of supervision. Nevertheless, the learn-

ing time remains an issue at least for on-line applications or applications with limited

time budget. Ultimately, for some applications the learning time may be not too critical.

Nevertheless, one important aspect that is often neglected is the computational burden

at test time. Scanning web-scale data sets of images containing millions of faces raises

the demands on efficient search and retrieval times. Also for face detection and align-

ment large-scale training data is very valuable [77]. However, accurately annotated and

labeled real-world data is often not publicly available.

1.1 Contribution

Addressing the above discussed problems we propose in this thesis learning strategies

that enable single-image real-world face recognition on large-scale. In particular, we

focus on scalable algorithms that allow for efficient training and evaluation. Further,

we are also concerned with benefiting from the available large-scale data. The content

of this thesis is mainly based on the work presented in [74, 75, 76, 78, 79]. Overall,

this work is the result of a strong long-lasting collaboration with my colleagues Paul

Wohlhart, Peter Roth, Horst Bischof and others. The main contributions of this thesis

are the following:

• For accurate face detection and facial landmark extraction we propose a novel

large-scale, real-world database termed Annotated Facial Landmarks in the Wild
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(AFLW). Especially for face detection and landmark localization recent works rely

heavily on machine learning algorithms using massive amounts of data, e.g. Huang

et al. [56] require 75,000 faces to train their face detector. Thus, ultimately a key

step for face recognition is also the availability of training data in large-scale. Un-

fortunately in recent developments little attention has been paid to the public avail-

ability of suitable training data. Once having introduced AFLW the intention is to

show that existing detectors are not limited by their models but by the available

training data. In particular, we are able to achieve a drastically increased face de-

tection performance, using a standard algorithm with standard features. We are

even able to outperform sophisticated state-of-the-art methods on the Face Detec-

tion Dataset and Benchmark (FDDB), that also use large training sets. This work

was published in [74]. We present it in Chapter 3.

• To efficiently train face verification and identification models we propose a novel

Mahalanobis metric learning method. Mahalanobis metric learning recently demon-

strated competitive results for a variety of face recognition tasks. In particular we

raise issues on the scalability and the required degree of supervision of existing

Mahalanobis metric learning methods. Typically, learning metrics requires often

to solve complex and thus computationally very expensive optimization problems.

Further, if one considers the constantly growing amount of data it is often infea-

sible to specify fully supervised labels for all data points. Instead, it is easier

to specify labels in form of equivalence constraints Thus, we introduce a simple

though effective strategy to learn a distance metric from equivalence constraints,

based on a statistical inference perspective. In contrast to existing methods the

method does not rely on complex optimization problems requiring computation-

ally expensive iterations. Hence, in training it is orders of magnitudes faster than

comparable Mahalanobis metric learning methods. This work was published in

[75]. We present it in Chapter 4.

• To speed-up the evaluation for Mahalanobis metric learning for face recognition,

we address the problem of efficient k-NN classification. In particular we intro-

duce two methods. First, we propose a metric-based hashing strategy, allowing

for both, efficient learning and evaluation. In fact, if the intrinsic structure of the

data is exploited by the metric in a meaningful way, using hashing we can com-

pact the feature representation still obtaining competitive results. This work was

published in [78]. We present it in Chapter 4. Second, we propose to represent
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the dataset by a fixed number of discriminative prototypes. In particular, we in-

troduce a new method that jointly chooses the positioning of prototypes and also

optimizes the Mahalanobis distance metric with respect to these. We show that

choosing the positioning of the prototypes and learning the metric carefully leads

to a drastically reduced effort while maintaining the discriminative essence of the

original dataset. This work was published in [79]. We present it in Chapter 6.

• To learn better face recognition models, we address the problem, neglected by

most face recognition approaches, that faces share strong visual similarities. This

can can be exploited when learning discriminative models. Hence, we propose to

model face recognition as multi-task learning problem. This enables us to exploit

both, shared common information and also individual characteristics of faces. In

particular, we extend our Mahalanobis metric learning method to multi-task learn-

ing. The resulting algorithm supports label-incompatible learning which allows us

to use the rather large pool of anonymously labeled face pairs to learn a more ro-

bust distance measure. Second, we show how to learn and combine person specific

metrics for face identification improving the classification power. This work was

published in [76]. We present it in Chapter 5.

1.2 Outline

This thesis is organized as follows: First, in Chapter 2 we review the related literature

in real-world face recognition. An interesting aspect of our review is that we analyze

the related works different from previous surveys. In particular we discuss the methods

according to the feature representation, the applied machine learning algorithms and

the face-specific recognition strategies. Second, in Chapter 3 the primary focus is on

our AFLW database tailored to face detection and landmark localization that mitigate

the issue of no publicly available large-scale real-world database for face detection and

landmark localization. Once having introduced the face database the intention is to

show that only having the large-scale data drastically increases face detection perfor-

mance. Third, in Chapter 4 we propose a novel Mahalanobis metric learning algorithm

that circumvents common problems in Mahalanobis metric learning. First, learning met-

rics often requires to solve complex and thus computationally very expensive optimiza-

tion problems. Second, as the evaluation time linearly scales with the size of the data

k-NN search becomes cumbersome for large-scale problems or real-time applications

with limited time budget. Next, in Chapter 5 we address the problem that most face
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recognition approaches neglect that faces share strong visual similarities, which can be

exploited when learning discriminative models. Succeeding, in Chapter 6 we introduce

a new method that jointly chooses the positioning of prototypes and also optimizes the

Mahalanobis distance metric with respect to these. Finally, in Chapter 7 we summarize

and conclude this thesis. Further, we provide an outlook to potential future works.





2
Real-World Face Recognition

Review

In this chapter we briefly review related works in classical and real-world face recog-

nition. While face recognition under controlled conditions is commonly considered as

solved [49, 111] real-world face recognition remains still an unsolved challenge. The

classical grouping of face recognition follows psychological (human) face perception.

In particular, Zhao et al. [164] categorizes into holistic, facial feature based and hybrid

approaches. Holistic methods perceive the face as whole, without considering its parts

differently. Seminal works in this category are eigenfaces [135], based on principal com-

ponent analysis [109], or fisherfaces [4] based on fishers linear discriminant [40]. Facial

feature based methods identify face parts such as eyes, nose, mouth to extract geometry

and/or local appearance information. This is motivated by findings in psychological

neuroscience where it has been observed that particular parts of the face are more im-

portant for recognition than others [126, 164]. Early facial feature based works focus

only on the spatial configuration using a number of geometric measurements [70, 72].

Later approaches, e.g. elastic bunch graph matching (EBGM) [148] capture also local

appearance. Hybrid methods combine the holistic and feature based paradigms. The

modular eigenfaces approach of [110] extracts on holistic level eigenfaces plus the local

pendants called eigenfeatures. Others [18, 84] consider shape parameters, local appear-

ance and shape-normalized global appearance for classification. Hereby, active shape

models (ASM) [17] or active appearance models (AAM) [19, 28, 31] are used to find the

shape parameters. Zhao et al. [164] reason that hybrid approaches promise superior

performance compared to either holistic or feature based methods.

9
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These seminal approaches point up important directions in face recognition research

as part-based representations or face normalization. Further, in various evaluations [112]

these performed reasonable for frontal faces under controlled conditions. However, in

unconstrained real-world situations these are likely to fail as observed in real-world

benchmarks such as Labeled Faces in the Wild (LFW) [58]. Here challenges as a lim-

ited resolution, harsh lighting, facial aging or uncooperative subjects severely lower the

recognition performance. Recent methods focus on appropriate representations and

sophisticated machine learning algorithms that are able to deal with these real-world

challenges. Further, face-specific recognition strategies are applied that use an auxiliary

set of faces for improved matching. Thus, in contrast to the psychological face percep-

tion grouping, we analyze related literature differently. In particular, the representation,

the applied machine learning algorithms and the special recognition strategies. Fur-

ther a brief overview of recent face recognition benchmarks is given that monitor the

performance in real-world face recognition research.

(a) Controlled (b) Real-world

Figure 2.1: Face recognition under controlled conditions (a) versus real-world face
recognition (b). In realworld face recognition factors as expression, viewpoint, light-
ing, clutter or occlusion pose a challenge. The images are taken of FERET [112] and
PubFig [82].

2.1 Representation

This section investigates which representations are favorable for real-world face recog-

nition. First, the group of hand-crafted features are reviewed. Second, also the learned

representations are analyzed which are especially tailored to face recognition.
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2.1.1 Hand-Crafted Features

Several generic feature descriptors known from the computer vision literature are used

for face recognition. These include pure intensity and gradient values, Haar-like fea-

tures [137], Gabor wavelets [26], Local Binary Patterns (LBP) [106] and its extensions,

Locally Adaptive Regression Kernels (LARK) [123], Scale Invariant Feature Transform

(SIFT) [89] and 2D Discrete Cosine Transform (DCT) [45] coefficients. These hand-

crafted descriptors are generic and have not been tailored especially to face recognition.

Thus, it is intended to review the reported performance of the different descriptors on

a standard real-world face recognition benchmark. In particular the face verification

performance is compared on Labeled Faces in the Wild (LFW) [58] as it offers an accu-

rately defined evaluation protocol. Further, LFW offers many recently published results.

Other benchmark datasets are either not challenging enough or are not evaluated dense

enough. To draw fair comparisons the raw descriptor performance is reported before

discriminative learning. To that end this includes results obtained by unsupervised dis-

tance measures as the Euclidean, Hellinger or Chi-Square distance. Still one inherent

drawback is that the published results use a different preprocessing in terms of face

detection, alignment and feature normalization. This results in critical performance dif-

ferences. Thus, we report the performance of all feature types and compare the relative

performance within the respective publications.

Table 2.1 provides an overview of the reported results on LFW for a variety of fea-

tures. It includes Gabors, LARK, the family of LBP and gradient orientation histograms

as SIFT, HOG and HOG-like features. Feature types that have been rarely used on

LFW are omitted such as DCT coefficients or Haar-like features. It is not possible to

compare them objectively to others as in the respective publications no comparisons are

made to other feature types.

Wolf et al. [150, 151] and Taigman et al. [133] report the performance of a variety

of feature types as LBP, SIFT and Gabor and compare to their proposed three-patch

LBP (TPLBP) and four-patch LBP (FPLBP) extensions. Prior to matching, the faces have

been normalized by a facial landmark based alignment using an affine transformation.

The TPLBP and FPLBP extensions are illustrated in Figure 2.2. Interestingly, the different

descriptors show only modest performance differences. Between LBP and SIFT there is

only a slight difference. In [150, 151] the proposed TPLBP reaches the best performance

followed closely by SIFT. TPLBP and SIFT perform best with the Euclidean distance.

In their follow up paper [133] LBP performs slightly better than SIFT, both using the

Hellinger distance. The TPLBP and FPLBP extensions perform worse.
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[150, 151] [133] [124] [50] [74] [100] [11]

Intensity - - - - 61.80% 65.67% -

LBP [106] 68.24% 70.85% 68.53% 68.13% 70.13% 70.27% 72.35%

TPLBP [149] 69.26% 68.93% 68.78% 66.90% - - -

FPLBP [149] 68.65% 68.35% - 67.37% - - -

HOG [24] - - - - 65.68% - 71.25%

HOG-like [39] - - - - 68.43% - -

SIFT [89] 69.12% 70.82% 71.05% 68.50% - - -

Gabor [26] 68.49% - - - - 69.42% 68.53%

LARK [123] - - 70.98% - - - -

Table 2.1: Face verification accuracy on the Labeled Faces in the Wild (LFW) [58] bench-
mark. For simplicity of presentation we report only the best score of the particular
feature type over different standard distance measures as the Euclidean, Hellinger or
Chi-Square distance. Please note that not all distance measures are reported in every
publication. Numbers in bold indicate the best performing feature type of the respective
publication. See text for additional details.

Seo and Milanfar [124] propose to use the LARK representation for face recogni-

tion. LARK encodes the gradient self-similarity in a local neighborhood. Therefore, the

geodesic distance is measured between a center and its surrounding pixels. An illus-

tration of the LARK descriptor is given in Figure 2.3. The evaluation shows that the

performance of LARK is similar to SIFT. The authors claim that LARK improve even

over SIFT if the face images are mirrored and also considered for matching. In par-

ticular the similarity score is the max over the similarity obtained with non-mirrored

and mirrored images. For the normal (non-mirrored) images SIFT performs slightly

better than LARK, while LBP perform modestly worse. The best results for all descrip-

tors are obtained using the Hellinger distance. Also Guillaumin et al. [50] notices that

SIFT performs slightly better than LBP. The relative results for the Euclidean, Hellinger

and Chi-Square distance are the same. Also the absolute numbers are very similar. The

best results are obtained with the Chi-Square distance both for SIFT and LBP.

Nguyen and Bai [100] and Köstinger et al. [74] report considerably worse perfor-

mance for intensity values compared to other feature types as LBP, HOG or Gabor

wavelets. In both works LBP perform best. The other feature types such as Gabors,

HOG or HOG-like features perform between LBP and the intensity values. Unfortu-
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(a) Three-Patch LBP (TPLBP) (b) Four-Patch LBP (FPLBP)

Figure 2.2: Three-Patch LBP (TPLBP) and Four-Patch LBP (FPLBP). For each pixel or
location a binary code is computed. (a) The computation of a bit value for TPLBP in-
volves three patches. A bit value is assigned according to which of the two outer patches
(C1,C3) is more similar to the central patch Cp. The patches are compared holistic. (b)
The computation of a bit value for FPLBP involves four patches. In particular two pairs
of patches are compared between an inner and outer ring with different radii (r1,r2). The
bit value is assigned according to which of the two pairs is more similar to each other.
Figure adapted from [151].

nately no comparison to SIFT is made. In [74] the LBP are matched with the Chi-square

distance and [100] obtains the best results for the Gabors using Hellinger distance. Ga-

bor and HOG features obtain the best results using the Euclidean distance. Also, Cao

et al. [11] reports the performance for HOG features. Compared to LBP and Gabors

they perform better than Gabor wavelets and modestly worse than LBP. In this work all

descriptors are solely compared using the Euclidean distance.

If one recapitulates the different reported results it is obvious that there is only a

modest difference in face verification accuracy for the different descriptor types. Also

the different generic distance measures as Euclidean, Hellinger or Chi-Square have

only a minor influence on the performance. Face representations based on LBP and

SIFT seem to perform best. In 3 of 4 cases better results are reported for SIFT compared

to LBP although there is only a slight difference. Thus, it is not clear which of the two

should be favored. Further, the results reveal that LBP perform better than Gabors. This

finding suggests that also SIFT should be favored over Gabors, although there is only

one direct comparison. Further the results show that LBP and suggest that SIFT are

superior to HOG and HOG-like features. The advantage of SIFT over HOG may be
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Figure 2.3: Locally Adaptive Regression Kernels (LARK) [123, 124]. A LARK descrip-
tor encodes the gradient self-similarity between a center pixel and its neighborhood.
For each surrounding pixel l the geodesic distance ds2

l = ∆x>l Cl∆xl is computed. (b)-(c)
Whereby ∆xl is the according spatial offset and Cl is the local gradient covariance matrix
computed from a local analysis window centered at l. (e) The distance is transformed
into a similarity via an exponential function. Finally, the LARK descriptor is a concate-
nation of the similarity values between the center pixel and its neighborhood. Figure
adapted from [124].

accounted to the fact that SIFTs are extracted locally at facial landmarks, which allows

to compensate holistic misalignments. Finally, intensity values perform worse than all

other feature types.

2.1.2 Feature Learning

The goal of feature learning is to obtain a representation that is better suited for face

recognition compared to generic descriptors. Among others the methods involve code-

book based approaches, methods that perform a large-scale feature search or that learn

human-interpretable attributes. Some of these methods are unsupervised and need only

the face images for training. Others are supervised and require additionally labels in
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form of equivalence constraints or even in form of class labels.

The unsupervised codebook method of Sanderson and Lovell [121] describes faces

by multi-region probabilistic histograms of visual words. A face is therefore divided

into several regions which are further subdivided into small blocks. In these blocks 2D-

DCT coefficients are extracted as low-level features. These are used to train a Gaussian

mixture model by expectation maximization as visual codebook. For a face region the

final coding is obtained by forming a histogram of the encoded block features by soft

assignment. The face description is a concatenation of the region histograms.

Also Li et al. [85] learn an unsupervised visual codebook by Gaussian Mixture Model

(GMM) for their elastic matching method. In particular, the elasticity is introduced by

augmenting the appearance descriptors with the relative location inside the face. Then,

the GMM with a fixed number of components is trained to maximize the likelihood

of the location and appearance information. Li et al. [85] call this GMM Universal

Background Model (UBM-GMM). For matching they propose two different strategies

namely Probabilistic Elastic Matching (PEM) and Adaptive Probabilistic Elastic Match-

ing (APEM). In the PEM matching for each GMM component the maximum likely fea-

ture in the face is assigned. To match a face pair the difference vector is computed.

Finally, the difference vector is classified by SVM with RBF kernel. In contrast, the

APEM matching requires to train a further GMM model at test time, termed Adaptive-

GMM (A-GMM). In particular, the A-GMM is trained to maximize the likelihood of the

features of the face pair under consideration. Further, the A-GMM components have to

be likely under the UBM-GMM. See Figure 2.4 for illustration.

(a) Face Detection (b) Patches

x

y

(c) Augmenting Location

(x,y)T

(d) Description

Figure 2.4: Visual codebook based on Gaussian Mixture Models (GMM) for elastic
matching [85]. Elasticity is introduced by augmenting the appearance descriptors with
the relative location inside the face.

Cao et al. [11] address the problem that hand crafted-encodings based on generic

descriptors as LBP or HOG have no uniform distributed code histogram. Therefore, the
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resulting encodings are not compact and less discriminative. Thus, the authors propose

to learn a more uniform codebook with a random projection tree [41]. The uniformity

criterion is implemented in the inner split nodes of the tree. In particular, they encode

normalized DoG filter responses extracted in ring based patterns around each pixel. The

encodings form a code histogram which is later used to measure the region based face

similarity. The dimensionality of the code histogram is further reduced by PCA. Prior

the code histogram is normalized to unit length. The authors show that in this case the

PCA compression is even able to improve the face recognition performance. For match-

ing the face regions are aligned separately based on two landmarks. Therefore nine

facial landmarks are extracted. Further a pose-adaptive matching strategy is applied

which involves to automatically determine the coarse face pose, in facing left, frontal

or right. The pose classifier is trained on an auxiliary set of faces. For each of the nine

possible combinations of face poses a specific classifier is trained, e.g. one that compares

a left facings face to frontal. Similarly Hussain et al. [61] propose to learn an unsuper-

vised codebook by k-means quantizing their high-dimensional Local Quantized Patterns

(LQP) descriptors. LQP is a LBP extension that uses a larger neighborhood and more

quantization steps, thus the dimensionality is drastically higher compared to standard

LBPs. Hence, in practice the features are simply too high-dimensional. The encodings

form a code histogram which is latter used to measure the region based face similarity.

The dimensionality of the code histogram is further reduced by PCA. After dimension-

ality reduction the features are sphered and matched with the cosine distance.

Nowak and Jurie [105] learn a discriminative visual dictionary for faces. The key

idea is that the discriminative information helps to optimize the encoding in a way that

different images of the same person have a very alike code histogram. Therefore, the

authors propose to train an extremely randomized clustering forest [97] based on face

pairs labeled same or different. Therefore a local face representation is considered. Intu-

itively, face patches labeled same should impact in the same leaf nodes while dissimilar

patches should impact in different leaf nodes. The authors propose appearance based

split nodes based on SIFT features and additionally geometry based split conditions that

monitor position and scale of the corresponding patches. Local patch correspondences

between a pair of faces are established by normalized cross correlation (NCC). Finally,

to decide if a face pair matches the global cluster membership histogram is used as dis-

tance measure. The distance is small if many face patch pairs impact in same leaves. A

weighting factor balances the contribution of each leaf, trained by a linear SVM.

Nair and Hinton [99] propose an unsupervised, generative feature extraction model
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based on Restricted Boltzmann machines (RBM) [53, 128]. RBMs are a special form of

neural networks that aim to reconstruct the input data based on one layer of hidden

units. The architecture of RBMs is restricted to enable fast training. In particular, no

connections between hidden units and also between the inputs are allowed, so the ar-

chitecture forms a bipartite graph. The higher order correlations between the inputs

and the hidden units are captured by symmetrically weighted connections. In training

the weights for the connections are learned iteratively. Therefore first the inputs trigger

the activation for the hidden units over the weighted connections. Then, the activated

hidden units trigger a reconstruction of the inputs. The correlation between the pair-

wise activations drive the weight updates. In testing the input image simply triggers the

activations which are taken as feature responses. The feature vectors are compared by

cosine distance.

Cox and Pinto [20] perform a brute-force feature search to determine better features

for face recognition. Therefore, a vast number of feature proposals is randomly gener-

ated and screened on a validation set. The screened feature types incorporate single and

multi-stage stacked architectures. The single stage features referred as V1-like should

resemble the first order description of the human primary visual cortex V1. In particular

these are normalized Gabor wavelets over various orientations and spatial frequencies.

The multi-stage features build on a feed-forward architecture each including a cascade

of linear and nonlinear operations. Intuitively, the input for the next stage is the output

of the previous stage. Each stage performs the succeeding steps filtering, activation, spa-

tial pooling and normalization. In these steps all parameters are randomly drawn from

a range of meaningful parameters. First, the linear filtering step applies a bank of filters

and generates a stack of feature maps. The filter shapes and numbers of filters is chosen

randomly. Second, in the activation stage the output values are clipped to be within a

defined interval. Third, in the pooling step the activations within a randomly chosen

neighborhood are spatially combined. Finally, the output of the pooling step is normal-

ized. The final output size of the different feature proposals ranges from 256 to 73,984

dimensions depending on the generated parameters. For recognition different element-

wise comparison functions as the absolute difference, squared difference, square root of

absolute difference and element-wise product are combined and weighted by SVM. Fur-

ther, it is suggested to produce a blended classifier and combine a number of different

feature proposals.

Kumar et al. [82] describe faces by human-interpretable visual attributes and so

called "similes" that describe face similarity in relation to a set of reference people. The
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main idea is that the responses of the attribute and "simile" classifiers agree better across

pose, illumination and expression compared to generic descriptors. Hereby, the attribute

classifiers recognize the presence of 65 face traits such as hair color, gender, race, and

age. The classifiers are trained on a gallery set requiring manual labellings for the

binary attributes (present/absent) and the corresponding relevant face regions. Thus,

a tremendous amount of hand annotated labels is needed for training. As low-level

features histograms of normalized pixel values, image gradient orientations and edge

magnitudes are extracted. For a specific binary attribute the classification whether the

attribute is present or absent is done by a linear SVM. The simile classifiers relate a face

or face regions to a set of reference people, e.g. this nose is similar to that of Brad Pitt.

Therefore the classifiers are trained to distinguish a person from the general population.

As low-level features the same description as for the attributes is chosen. Also the

classifier is a linear SVM. One advantage of the similes compared to the attributes is

that these require only the names labeled not each individual attribute. Finally, the

high-level face representation obtained with the attributes and similes is used for face

recognition. In particular for face verification a SVM with RBF kernel is trained on

feature differences.

Berg and Belhumeur [6] pick up the idea of "similes" and learn a large set of identity

classifiers to describe faces. In particular, the identity classifiers are trained to distin-

guish two people which the authors refer to as as Tom-vs-Pete classifiers. To train the

classifiers this requires a reference set of faces disjoint by identity from the test set. De-

pending on the size of the reference set plenty one-vs-one classifier combinations are

possible. Nevertheless, evaluating all classifiers is computationally very expensive and

furthermore many of those classifiers are not complementary. Thus, the authors propose

to select a reasonable sized set of Tom-vs-Pete classifiers by AdaBoost. For a single bi-

nary Tom-vs-Pete classifier SIFTs are used as low-level features followed by a linear SVM

as classifier. The SIFTs are extracted at reference points using multiple scales. Further,

the one-vs-one SVM classification is trained on pairwise feature differences. In partic-

ular on absolute differences and element-wise products between the faces. The output

of the Tom-vs-Pete classifiers is concatenated as face description. The final classification

whether two faces match or not is done by SVM with RBF kernel. An important step in

the Tom-vs-Pete pipeline is accurate face alignment. In particular the authors propose a

method referred as identity preserving alignment. It is argued that a direct normaliza-

tion of the detected facial landmarks to a neutral configuration is too strict and hence

discards discriminative features. Therefore, the alignment procedure takes advantage of
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the reference set by finding most similar facial landmark configurations. Thus, each face

in the reference set (20,639 images) is annotated with 95 facial landmarks, 55 inner and

40 outer points. The inner points are used to find the similar landmark configurations.

The outer points show the face contour but are not as accurately defined. Thus, these

are augmented of the reference dataset. Once, the similar configurations are found the

mean configuration is used for aligning the face to a neutral pose.

Analyzing the published feature learning results in the face recognition literature it

is obvious that the authors largely agree that feature learning is beneficial for real-world

face recognition. Thus, there is a consensus that a proper description plays a key role in

obtaining good performance. Nevertheless, it has been observed that a single learned

representation is not enough to obtain state-of-the-art performance. Therefore, in many

cases the learned representations are further augmented with other complementary also

generic feature types to obtain state-of-the-art performance.

2.2 Machine Learning

This section investigates recent advances in real-world face recognition with focus on

successfully applied machine learning algorithms. Ideally the algorithms are able to

exploit the obtained face representation for robust face verification or identification.

Hereby, main objectives are to determine which face regions are more important for

recognition than others, the selection of complementary classifiers, learning distance

measures that are especially tailored to compare faces and combining multiple different

representations and classifiers by blending strategies.

Jones and Viola [67] learn a local face similarity measure by boosting. The boost-

ing process determines which face parts are meaningful for similarity computation. The

authors argue that certain regions such as eye brows, nose or lips contain more discrimi-

native information than others. In particular AdaBoost is applied to select local features

which compare regions between face pairs. Therefore, the features measure absolute

differences between Haar-alike filter responses. The filters are extracted over a range of

locations, scales and orientations. Ideally for a matching face pair the filter responses

agree, while they disagree for a non-matching face pair. An associated threshold mon-

itors which intrapersonal variations are acceptable and which are unacceptable. The

filter response plus threshold composes a weak-classifier for the boosting process. Once

a weak-classifier is chosen a weight is assigned for a positive and negative response.

The finally obtained classifier sums up the respective weights based on the individual
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region based filter response.

Berg and Belhumeur [6] select a meaningful and reasonbable sized combination of

their Tom-vs-Pete classifiers by AdaBoost. The Tom-vs-Pete classifiers are used to de-

scribe a face relative to a reference set of faces. In particular, each Tom-vs-Pete classifier

describes if a specific face region is more similar to one of two faces of different people

of the reference set. Therefore, plenty one-vs-one combinations are possible. The au-

thors argue that many of those are not complementary and evaluating all would simply

take to long. Therefore, first for each pair of people in the reference set a short list of

favorable Tom-vs-Pete is generated by AdaBoost. Then, the short lists are combined

by a heuristic to an overall list of Tom-vs-Pete classifiers. To obtain the short list the

pre-trained. Tom-vs-Pete classifiers are evaluated if these are able to separate the two

classes. As positive class the one is chosen that obtains better classifier scores in me-

dian. The threshold is fixed at at equal error rate. Next, AdaBoost is run to select the

Tom-vs-Pete classifiers iteratively for each pair of people. Once this procedure has been

repeated for all or a number of pairs of persons the overall list is generated by taking

the best ranked elements of the individual short lists. Finally, the list of Tom-vs-Pete

classifiers is condensed by taking only unique elements and also pruned if desired.

Another popular machine learning technique widely used for real-world face recog-

nition is Mahalanobis metric learning, which aims at improving k-NN classification by

exploiting the local structure of the data. Compared to other classification models Ma-

halanobis Metric Learning provides with k-NN search not only reasonable results but is

also inherently multi-class and directly interpretable, based on the assigned neighbors.

Compared to linear SVMs on difference vectors the learned metric is able to exploit a

more general metric structure and account for different scalings and correlations of the

feature space.

Taigman et al. [133] applies Information-Theoretic Metric Learning (ITML) [27] for

optimizing distances between face pairs for face verification. ITML enforces that sim-

ilar pairs are below a certain distance while dissimilar pairs exceed a certain distance.

To avoid over-fitting ITML exploits the relationship between multivariate Gaussian dis-

tributions and the set of Mahalanobis distances. The idea is to search for a solution

that trades off the satisfaction of the distance constraints while being close to a distance

metric prior, e.g., the Euclidean distance.

Guillaumin et al. [50] proposes Logistic Discriminant-based Metric Learning (LDML),

which offers a probabilistic view on learning a Mahalanobis distance metric. The a pos-

teriori class probabilities are treated as similarity measures, whether a pair of faces
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depicts the same person or not. Thus, the a posteriori probability is modeled as shifted

sigmoid function over the distance function. The shift accounts that at this specific dis-

tance threshold the probability for a pair of faces is equal for being similar or dissimilar.

Nguyen and Bai [100] propose Cosine Similarity Metric Learning (CSML) for face

verification. This is especially interesting as in the real-world face recognition literature

many authors propose to match their normalized face representations by cosine similar-

ity. Intuitively, the idea is to optimize the metric such that the cosine similarity between

same pairs should be high while the similarity between dissimilar pairs should be as

low as possible. Further, a regularization term monitors the deviation of a prior metric.

As prior the authors propose to use the whitening matrix of the truncated PCA space.

In particular the whitening matrix is a diagonal form composed of the eigenvalues of

the covariance matrix. Further, the cosine similarity has the appealing property that it is

bounded between -1 and 1.

Köstinger et al. [75] introduces Keep It Simple and Straightforward Metric (KISSME)

learning with applications to face recognition. In particular the authors address the

problem that traditional metric learning approaches require complex iterative, compu-

tationally expensive optimization schemes, making them often infeasible for large-scale

problems which are also common in face recognition. Instead, KISSME overcomes these

limitations by introducing an efficient statistical motivated formulation that allows to

learn just from equivalence constraints. Analog to the KISS principle (keep it simple

and straightforward!) the method is conceptually simple and efficient per design. The

main idea is to assume a Gaussian structure of the difference space as distance functions

basically operate on differences between pairs of samples. For observed commonalities

of face pairs showing the same or different persons the method considers two indepen-

dent generation processes. The dissimilarity is defined by the plausibility of belonging

either to one or the other. By log-likelihood ratio test the method interpolates between

the hypotheses if a pair of faces is considered more similar or dissimilar. The resulting

distance metric reflects these properties.

Similarly Ying and Li [157] focus on speed issues in training a Mahalanobis metric.

The authors propose an efficient eigenvalue optimization framework for learning a met-

ric with applications to face recognition. The method termed Distance Metric Learning

with Eigenvalue Optimization (DML-eig) focuses on maximizing the minimum distance

between the dissimilar pairs and keeping the similar pairs below a fixed distance thresh-

old. The solution requires in each iteration to compute only the eigenvector associated

with the largest eigenvalue. This can be done very efficiently, e.g., by power iteration.
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Wang and Guibas [139] extend traditional Earth Mover’s Distance (EMD) for metric

learning with applications to face recognition. EMD in general is a distance metric for

comparing two histograms or probability distributions. It provides a distance value as

well as a flow-network indicating how the probability mass is optimally transported

between the bins. In particular, the authors extend EMD to overcome the limitations

of the traditional EMD that the ground distance between the bins is pre-defined. The

authors argue that the learned ground distance better reflects the cross-bin relationships

and yields superior results.

Another successful machine learning technique that is often applied for face recogni-

tion is feature blending. It yields reasonable performance boosts by combining comple-

mentary representations into a single classifier. This can range from different element-

wise comparison functions on feature level to different face crops or face descriptions.

One of the simplest methods is to learn weights on the distances obtained by the dif-

ferent representations, simply by a linear SVM, e.g., [20, 100, 124, 133, 156, 157]. A

more sophisticated approach to learn a feature combination and weighting is by mul-

tiple kernel learning (MKL). Pinto et al. [115] propose to jointly learn weights for the

convex Kernel combination and the associated SVM weights for the kernel outputs. For

face recognition the kernels are features differences using different element-wise com-

parison functions and feature types. In particular, rather simple features as normalized

pixel values, color histograms and V1-like features are extracted. In total 36 different

kernels based on pixel values are extracted and 48 different kernels based on the V1-like

features. The authors show that the combination yields reasonable results but if too

many kernels are combined the results get saturated.

Recapitulating the different published results and methods it turns out that machine

learning is an important ingredient for real-world face recognition. In particular, dis-

tance metric learning and feature blending is widely applied to reach state-of-the-art per-

formance. For feature blending some concerns exist if more sophisticated MKL strate-

gies are necessary as some authors observed no performance difference compared to

simple linear SVM blending [85]. Other authors raise concerns that too elaborate ma-

chine learning exploits low-level regularities of the respective benchmarks. Neverthe-

less, many methods incorporate regularization strategies to reduce over-fitting.
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2.3 Domain Specific Recognition Strategies

Inspired by the human brain that devotes specialized mechanisms for face recognition

and perception [126] algorithms have been developed that focus on face specific domain

knowledge to boost face recognition performance. In particular, that involves methods

that take advantage of an auxiliary set of faces at test time. This set with sequestered

subjects can be used for sophisticated face alignment, pose-specific matching or trans-

ferring the appearance of a particular face to another setting. Hereby, the classification

problem mainly concerns pairs of faces as no stand-alone models can be learned, with-

out requiring the auxiliary set.

Cao et al. [11] propose a pose-adaptive matching scheme to handle large pose vari-

ations. In particular, the faces are classified in one of three poses, facing left, frontal

or right. This is done by measuring the face similarity between the probe faces and an

auxiliary set with known pose labels. In particular, the pose label of the most alike face

is assigned. For each pose combination a linear SVM trained on this specific subset of

the data as pose-specific classifier.

The method of Berg and Belhumeur [6] aligns faces such that features indicating

identity are preserved. Their identity-preserving alignment turns faces to frontal pose

with neutral expression. In particular, the authors propose to detect fifty-five inner face

parts and retrieve of an auxiliary set a number of faces with a similar part configuration.

These faces with known part positions feature 40 additional outer part positions. First,

the mean of the retrieved configurations is computed and used to from a generic tem-

plate. Second, the template is used to align the face parts by a piecewise affine warp to

the canonical part positions. Using Delaunay triangulation each triangle is mapped to

its canonical pendant, using an affine transformation established by the three vertices.

The authors argue that direct warping of the detected landmarks looses features that

indicate identity and thus the face images would be anonymized.

Sanderson and Lovell [121] propose a normalization strategy for distances between

face pairs by an auxiliary set of faces. Hereby, the distance between faces is normalized

in relation to the average distance to the auxiliary set. The main idea of the normaliza-

tion is that it cancels the effects of changing image conditions such as a different face

pose or lighting artifacts. Intuitively, for the subjects in the auxiliary set there is no

overlap in identity to the test set.

Similarly, Wolf et al. [149] exploit an auxiliary set of faces to improve matching.

Therefore, an image dependent similarity measure termed One-Shot Similarity (OSS)
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score is proposed. For that reason a classifier is trained to discriminate a single positive

example from the an auxiliary negative set. Later, the classifier is used to determine

whether other images are more likely to the probe image or to the auxiliary set. Thus,

to compare two faces the procedure has to be carried out twice as it is asymmetric.

The two prediction scores are averaged. For speed reasons the authors propose to use

LDA as classifier as the data term for the auxiliary set can be precalculated. A simple

modification of the OSS score is proposed in [150], termed Two-Shot Similarity (TSS)

score. Basically the only difference to OSS is that a pair of images is used as positive

examples to be discriminated from the auxiliary set. Taigman et al. [133] proposes a

further extension to the OSS score. In particular, the auxiliary set of faces is split into

different subsets by factors as identity, pose or lightning. These sets are used to train

multiple OSS scores which are blended together by a linear SVM.

Appearance 
Prediction

Likelihood 
Prediction

+

NegativesPositives

Auxiliary Set

Figure 2.5: Associate predict. First, associate a given face to the auxiliary identity set.
Second, predict the appearance of one face under the settings of the other face. Figure
adapted from [156].

Yin et al. [156] propose for similarity estimation to transfer a pair of faces under

dissimilar (e.g. pose or lightning) settings to similar settings. The main idea is to pre-

dict the appearance of one face under the settings of the other face. In particular, the

authors propose two different prediction variants, namely appearance-prediction and

likelihood-prediction. Therefore a probe face is first associated to one or different vi-

sually similar subjects of an auxiliary set. The auxiliary set contains for each subject
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various images under different settings. In the appearance-prediction model first for

each face the approximate face pose and lightning parameters are estimated. Second,

the probe face is compared to the auxiliary set and a subject with similar appearance

under the estimated parameters is selected. Then, an image of this subject is selected

featuring the most similar parameters of the other image of the face pair. These two

images are considered for matching. The likelihood prediction model selects for a given

face the most similar identities. A classifier is trained to discriminate these from the

rest of the auxiliary set. Finally, the learned classifier is used for similarity estimation

between the face pair. See Figure 2.5 for illustration.

All algorithms described in this section exploit an auxiliary set of faces for improved

matching. The authors argue that this additional information helps to hallucinate face

appearance under different settings or to perform accurate face alignment that pre-

serves features that indicate identity. Nevertheless, the auxiliary set of faces needs to be

sequestered by identity from the test set, thus increasing the label effort. Further, the al-

gorithms require more effort at test time and trade-off improved accuracy for increased

computational effort.

2.4 Real-World Face Recognition Benchmarks

In the following, we give an brief overview over publicly available face recognition

datasets and benchmarks. This list presents the databases which were recently of high

scientific interest for real-world face recognition. On these datasets the study of face

recognition is divided into two objectives: face identification (naming a face) and face

verification (deciding if two face images are of the same individual). The nature of

the face identification task requires a number of annotated faces per individual, not

always complying with these real-world databases In contrast, face verification needs

less annotations and can be evaluated more seriously also on a large scale.

2.4.1 Labeled Faces in the Wild

The Labeled Faces in the Wild (LFW) dataset [58] contains 13,233 unconstrained face

images of 5,749 individuals and can be considered as the current state-of-the-art face

recognition benchmark as it offerers many recently published results. For only a subset

of 1,680 people there exist two or more images, for the remaining 4,069 just one. Thus,

the focus lies on the face verification task. The database is considered as very challenging

as it exhibits huge variations in pose, lighting, facial expression, age, gender, ethnicity
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and general imaging and environmental conditions. Some illustrative examples are

given in Figure 2.6. An important aspect of LFW is that per design the subjects are

mutually exclusive in any split of the database. Thus, for the face verification task

testing is done on individuals that have not been seen in training.

=

(a) Face pairs showing the same person

=

(b) Face pairs showing different persons

Figure 2.6: Labeled Faces in the Wild (LFW) contains 13,233 faces of 5,749 individuals.
For a subset of 1,680 people there exist two or more images.

The images have been gathered by harvesting faces from the web with the Viola

and Jones [137] face detector. Further the images have been rescaled and cropped to

a size of 250× 250 pixels. False detections and images of unidentifiable persons have

been eliminated manually. Further LFW offers two views on the data. The first view

is designed for algorithmic development and tuning whereas the second view is used

for performance reporting. In particular, in the second view the data is organized in

stratified 10 fold cross-validation. Each fold consists of 300 same and 300 not same

pairs. As performance metrics the creators of LFW suggest to use mean accuracy and

the standard error of the mean. In the restricted protocol it is only allowed to consider

the equivalence constraints given by the same / not same pairs. No inference on the

identity of the subject, e.g., to sample more training data, is allowed. In contrast the

unrestricted setting allows also to use the class labels of the samples. Intuitively the

unsupervised protocol provides no labels at all.

2.4.2 Public Figures Face Database

The Public Figures Face Database (PubFig) dataset [82] is very similar to LFW. It is also

an extremely challenging large-scale, real-world database, consisting of 58,797 images

of 200 individuals. The images were gathered from Google images and FlickR. The face

verification benchmark is a stratified 10 cross-validation folds with 1,000 intra and 1,000

extra-personal pairs each. Per fold the pairs are sampled of 14 individuals. Similar

to the LFW benchmark individuals that appear in testing have not been seen before
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in training. One drawback is that the authors do not provide the images but only the

download links. Thus, up to date many of the links are expired and the images are

unavailable.

Nevertheless, an interesting aspect of the database is that "high-level" features [82]

are provided that describe the presence or absence of visual face traits. The appearance

is automatically encoded in either nameable attributes such as gender, race, age, hair

etc. or "similes" that relate the similarity of face regions to specific reference people.

This indirect description yields nice properties such as a certain robustness to image

variations compared to low-level features.

Figure 2.7: Public Figures Face Database (PubFig) samples. The evaluation set contains
42,461 images of 140 individuals. The numbers in parentheses denote the total amount
of images per individual. The range is from 63 (Dave Chappelle) to 1536 (Lindsay
Lohan).

2.4.3 Face Recognition Grand Challenge

The Face Recognition Grand Challenge (FRGC) [113] was an attempt of NIST for a stan-

dardized face recognition performance evaluation. The official evaluation is closed but

the FRGC data is still available for research purposes. The FRGC data set contains 50,000

recordings divided into different subject sessions. Each session contains four controlled,

two uncontrolled and one 3D still image of a person. The controlled images show full

frontal faces either with smiling or neutral expression under two different lighting set-

tings. The uncontrolled images are captured under real-world conditions in hallways,

atria, or outside. The 3D images are taken indoors under controlled illumination condi-

tions. One subset of FRGC is intended for validation purposes.

The 6 in the evaluation protocol defined experiments also focus on recognition be-

tween the different modalities. In particular between a controlled gallery and uncon-

trolled probe images and comparing two-dimensional images to a three dimensional
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gallery. As performance metrics for the different experiments Receiver Operating Char-

acteristics (ROCs) have to be reported. The FRGC distribution contains additionally

to the raw recordings a performance evaluation framework and also a set of baseline

algorithms.

2.5 Summary and Discussion

In this chapter an overview of recent works in the field of real-world face recogni-

tion was presented. Several methods were categorized and analyzed according to their

applied feature extraction, machine learning and domain specific recognition mech-

anisms. Thereby the focus was on methods performing face recognition from two-

dimensional still images. The advantages and disadvantages of the respective methods

were discussed. Analyzing the current state-of-the-art revealed important directions for

face recognition research. In particular, there is a consensus that a proper description

plays a key role in obtaining good performance. Among the generic feature descriptors

SIFT and LBP perform best for face recognition. Moreover, it has been observed that fea-

ture learning is beneficial for real-world face recognition. Nevertheless, a single generic

or learned representation is not enough to obtain state-of-the-art performance. Hence, it

has been proposed to blend multiple complementary representations and combine them

into a single classifier. For feature blending concerns exist if more sophisticated MKL

strategies improve over simple linear SVM blending. Another popular machine learning

technique to boost face recognition accuracy is distance metric learning. In many cases

considerable improvements have been observed. Some authors developed domain spe-

cific recognition strategies for faces. These algorithms exploit an auxiliary set of faces to

improve matching. The respective authors argue that this additional information helps

to hallucinate face appearance under different settings or to perform accurate face align-

ment that preserves features that indicate identity. Nevertheless the auxiliary set of faces

needs to be sequestered by identity from the test set and thus increases label effort. Fur-

ther, the algorithms require more effort at test time and trade-off improved accuracy for

increased computational effort. Finally, in recent years real-world benchmarks showed

that considerable progress has been made. Nevertheless current state-of-the-art algo-

rithms are still far from the capabilities of the human visual system. Hence, robust face

recognition is still challenging and also the obtained results are only valid for frontal

faces.
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Face Detection and Landmark

Extraction

Face detection and landmark extraction are crucial preprocessing steps that heavily in-

fluence the performance of a face recognition pipeline. Facial landmarks are standard

reference points, e.g. as the inner and outer corner of the eye fissure where the eyelids

meet. The task of automatically localizing facial landmarks is beneficial for various rea-

sons. For instance, an efficient estimate of the head pose can be obtained [98]. Moreover,

facial landmarks can be used to align faces to each other, which is valuable in a detection,

alignment and recognition pipeline; better aligned faces give better recognition results.

Further, properties that have a local nature such as face attributes (e.g. bushy eyebrows,

skin color, mustache) [82] or local descriptors [32] can be extracted. Nevertheless, facial

landmark localization in unconstrained real-world scenarios is still a challenging task.

Both face detection and landmark extraction are rather data intensive and require

elaborate annotations to train classifiers that perform well on real-world data. For in-

stance Huang et al. [56] require 75,000 faces to train their detector. Including 30,000

frontal faces, 25,000 half profile faces and 20,000 full profile faces. Zhu and Ramanan [166]

require for their face and landmark detector 68 annotated landmarks for frontal faces

and 35 for profile faces. Thus, ultimately a key step for face recognition is also the

availability of training data in large-scale.

Unfortunately in recent developments little attention has been paid about the public

availability of suitable training data. Thus, in this chapter we introduce a large-scale face

database tailored to real-world face detection and landmark localization that mitigates

these issues. Further, we show the impact of better training data on the face detection

29
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performance. In particular, we are even able to outperform sophisticated state-of-the-

art methods on the Face Detection Dataset and Benchmark (FDDB), using a standard

algorithm and standard features.

3.1 Annotated Facial Landmarks in the Wild: A Large-scale,

Real-world Database for Facial Landmark Localization

Face detection and alignment is a crucial step for real-world face recognition. Espe-

cially, landmark localization for geometric face normalization or local feature extraction

has shown to be very effective, clearly improving recognition results. However, no ad-

equate datasets exist that provide a sufficient number of annotated facial landmarks.

The datasets are either limited to frontal views, provide only a small number of anno-

tated images or have been acquired under controlled conditions. Hence, we introduced

a dataset overcoming these limitations: Annotated Facial Landmarks in the Wild (AFLW)

[74]. AFLW provides a large-scale collection of images gathered from Flickr, exhibiting a

large variety in face appearance (e.g., pose, expression, ethnicity, age, gender) as well as

general imaging and environmental conditions. In total 24,385 faces in 21,342 real-world

images are annotated with up to 21 landmarks per image. Due to the comprehensive

set of annotations AFLW is well suited to train and test algorithms for multi-view face

detection, facial landmark localization and face pose estimation.

3.1.1 Motivation

The accuracy of face recognition systems is drastically reduced in unconstrained real-

world situations where imaging conditions as diversity in viewpoint, lighting, clutter or

occlusion severely have to be handled. Many authors [6, 11, 105, 117, 127] observed that

especially in real-world situations an accurate face detection and landmark localization

step is very valuable. It is assumed that better aligned faces give better recognition

results. One reason is that the description has not to cope with geometric invariance,

thus enabling a more powerful description.

This, is also confirmed by experiments on the face verification benchmark of the La-

beled Faces in the Wild (LFW) [58] dataset. The corresponding results for different feature

types are illustrated in Table 3.1, where it can be seen that even a holistic face alignment

step improves the recognition results. Nevertheless, many face alignment methods re-

quire rather elaborate annotations. Only some of the available face datasets provide
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Raw HOG [24] Felz. [39] LBP [1]

not aligned 60,85% 63,22% 65,53% 66,13%

aligned 61,80% 65,68% 68,43% 70,13%

+ 0,95% 2,47% 2,90% 4,00%

Table 3.1: Importance of face alignment: Face recognition accuracy on Labeled Faces
in the Wild [58] for different feature types – a face alignment step clearly improves the
recognition results, where the facial landmarks are automatically extracted by a Pictorial
Structures [32] model.

these. However, in most cases these databases lack in several ways: First, they provide

only a little number of annotated images or only sparse facial landmarks. Second, the

databases focus on frontal views of faces. Finally, the images are often captured under

controlled conditions (uniform background, controlled lightning etc.) and therefore do

not capture real-world problems.

Hence, the main motivation for the Annotated Facial Landmarks in the Wild (AFLW)

database [74] is the need for a multi-view, real-world face dataset for face detection and

landmark localization. The images AFLW of were collected on Flickr1 exhibiting a large

variety in pose, expression, ethnicity and general imaging and environmental condi-

tions. Further, the dataset offers uncontrolled backgrounds and many other parame-

ters. A wide range of images related to face relevant tags were gathered and manually

scanned for faces. Therefore, the collection is not restricted to frontal faces, as illustrated

in Figure 3.5.

The remainder of this section is structured as follows. First, an overview of related

datasets is provided and main shared features as well as the main differences are dis-

cussed in Section 3.1.2. Succeeding, in Section 3.1.3 the AFLW dataset is introduced and

finally in Section 3.1.4 the intended usage scenarios are specified.

3.1.2 Related Datasets

The huge interest in automatic face analysis can also be seen from the numerous face

datasets available publicly. However, only a subset of these datasets provides additional

annotations such as facial landmarks, as summarized in Table 3.2. This number is even

further reduced if multi-view faces or real-world imaging conditions are required. For

instance the popular benchmark dataset LFW [58] provides a huge set of real-world im-

1http://www.flickr.com/
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Dataset # imgs. # points # ids img. size img. color Ref.

Caltech 10,000 Web
Faces

10,524 4 - - color [2]

CMU / VASC Frontal 734 6 - - grayscale [120]

CMU / VASC Profile 590 6 to 9 - - grayscale [122]

IMM 240 58 40 648×480 mixed [103]

MUG 401 80 26 896×896 color [102]

AR Purdue 508 22 116 768×576 color [91]

BioID 1,521 20 23 384×286 grayscale [66]

XM2VTS 2,360 68 295 720×576 color [94]

BUHMAP-DB 2,880 52 4 640×480 color [3]

MUCT 3,755 76 276 480×640 color [96]

PUT 9,971 30 100 2048×1536 color [71]

LFW 13,233 10 5,749 250×250 color [25, 58]

AFLW 24,385 21 - - color

Table 3.2: Face databases with annotated facial landmarks.

ages that is gathered from news articles. Nevertheless, the faces are restricted to frontal

poses. Other large-scale datasets such as Caltech 10,000 Web Faces [2], CAS-PEAL Face

Database [43] or the CMU / VASC [122] datasets provide only a limited number of

annotated landmarks. Databases with more annotated landmarks such as IMM [103]

(58 landmarks, 240 images), MUG Facial Expression Database [102] (80 landmarks for a

subset of 401 images) or AR Purdue [91] (22 point markup for 513 images, 130 for 897

images) provide only some hundreds of images.

In the following, datasets are discussed in more detail that are closely related to the

proposed AFLW:

The BioID Face Database [66] consists of 1521 gray level images with a resolution

of 384× 286 pixels. The images show frontal views of 23 subjects with slightly varying

poses, expressions and some ad hoc modifications, e.g., with and without glasses. The

pictures were taken in an office environment with realistic background, although it stays

constant for each subject. The initial eye position based markup scheme was extended

by a 20 point markup scheme denoted in Figure 3.1 (a).
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The XM2VTS data set [94] is intended to study the problem of multi-modal personal

verification based on non-intrusive and user-friendly techniques such as speech recog-

nition and face identification. The frontal image set, a subset of the audio-visual corpus,

contains 2,360 color images at a resolution of 720× 576 pixels. The images show frontal

views of 295 individuals taken in 4 recording sessions. The markup scheme consists of

68 landmarks (Figure 3.1 (b)). The images were acquired with uniform background un-

der constant imaging conditions. Subjects are not occluded and are mainly of Caucasian

ethnicity.

Boǧaziçi University Head Motion Analysis Project Database (BUHMAP-DB) [3].

The dataset is intended to study Turkish Sign Language (TSL) and associated head/body

motion and facial expressions. It involves 11 different subjects (6 female, 5 male) per-

forming 5 repetitions of 8 different signs. In total the dataset consists of 440 videos with

a resolution of 640× 480. For a subset of 48 videos the dataset contains annotations of

a 52 point markup (Figure 3.1 (c)). Roughly 2,880 frames are annotated. The videos

are taken under controlled conditions in a darkened room with constant, uniform back-

ground. Further, no subjects are occluded, have beards, mustaches or eyeglasses. The

number of subjects is limited and also the ethnicity is restricted.

Milborrow / University of Cape Town (MUCT) Face Database [96]. The MUCT

dataset provides 3,755 frontal faces with neutral expression or a smile at a resolution of

640× 480 pixels. The markup consists of 76 landmarks (Figure 3.1 (d)). One design goal

was to provide more diversity of lighting, age and ethnicity compared to other datasets.

In the image acquisition process controlled variation of lightning was introduced, up to

three lightning sets per person. Further, the dataset contains a roughly equal number of

males and females, with variation in age and ethnicity. Despite the introduced variation

the dataset provides uniform background and no occlusions. The ethnic variation is

predominately Caucasian and African.

Poznań University of Technology (PUT) Face Database [71]. The dataset contains

9,971 images of 100 subjects acquired at a resolution of 2048× 1536 pixels. The intended

use of the dataset is the performance evaluation of face detection, facial landmark extrac-

tion and face recognition algorithms for the development of face verification methods.

The authors argue that face pose is the main factor altering the face appearance in a ver-

ification system. Thus, the images were taken under controlled imaging conditions with

uniform background showing various unconstrained face poses. The comprehensive set

of annotations includes rectangles covering the face and also face parts. Further a set of

30 landmark points for all images (Figure 3.1 (e)). For a subset of 2,193 near-frontal faces
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194 control points are annotated. Despite the large-scale nature of the dataset and the

comprehensive set of provided annotations, as a drawback, the images were acquired

under controlled conditions with uniform background.

If the characteristics and properties of the described datasets are recapitulated it is

obvious that each collection serves several interesting properties. Nevertheless, there is

no large-scale, multi-view collection of face images in the wild, annotated with facial

landmarks.

(a) BioID [66] (b) XM2VTS [94] (c) BUHMAP-DB [3]

(d) MUCT [96] (e) PUT [71] (f) AFLW

Figure 3.1: Comparison of different databases and their landmark positions. AFLW
provides less landmarks per image than other databases, however, it is the only database
taken under real-world conditions.

3.1.3 Dataset Description

The motivation for the AFLW dataset2 is the need for a large-scale, multi-view, real-

world face database with annotated facial features. The images are gathered on Flickr

using a wide range of face relevant tags (e.g., face, mugshot, profile face) to collect the

images. Further, the initial set of downloaded images was manually scanned for faces.

2http://lrs.icg.tugraz.at/research/aflw/

http://lrs.icg.tugraz.at/research/aflw/
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Thus, the collection, which is illustrated in Figure 3.5, captures typical real-world sce-

narios. The key data and most important properties of the dataset are:

• The dataset contains 24,385 faces in 21,342 real-world images, with realistic back-

ground. Of these faces 59% are tagged as female, 41% are tagged as male; some

images contain multiple faces. No rescaling or cropping has been performed. Most

of the images are color although some of them gray-scale.

• In total AFLW contains 386,689 manually annotated facial landmarks of a 21 point

markup. The facial landmarks are annotated upon visibility. So no annotation is

present if a facial landmark, e.g., left ear lobe, is not visible.

• A wide range of natural face poses is captured The dataset is not limited to frontal

or near frontal faces. To the best of our knowledge the ratio of non-frontal faces is

higher than in any other dataset.

• Additional to the annotated landmarks the dataset provides face rectangles and

ellipses. Further, the face ellipses support the FDDB [64] evaluation protocol.

• A rich set of tools to work with the annotations is provided, e.g., an SQL database

backend that enables to import other face collections and annotation types. For

popular datasets such as BioID [66], CMU / VASC profile [122] the importers are

already included.

To recapitulate, AFLW contains more diversity and variation than any other face

dataset with annotated facial landmarks. Further, due the comprehensive annotation it

is well suited to train and test algorithms for

• facial landmark localization

• multi-view face detection

• coarse head pose estimation.

3.1.4 Intended Uses

The intended uses of AFLW are threefold. First, multi-view face detection under real-

world conditions. Second, facial feature localization to support face recognition, face

alignment or to train local detectors or descriptors. Third, face pose estimation to sup-

port, e.g., face tracking. An important difference to many other datasets is that AFLW is

not only suited for testing and evaluation, but also for training.



36 Chapter 3. Face Detection and Landmark Extraction

3.1.4.1 Facial Landmark Localization

Facial landmarks are standard reference points, such as the inner and outer corner of

the eye fissure where the eyelids meet. In many cases the landmarks used in compu-

tational face analysis are very similar to the anatomical soft-tissue landmarks used by

physicians. The task of automatically localizing these landmarks is beneficial for vari-

ous reasons. For instance, an efficient estimate of the head pose can be obtained [98]

with only some landmarks. Moreover, facial landmarks can be used to align faces to

each other, which is valuable in a detection, alignment and recognition pipeline; better

aligned faces give better recognition results. Further, properties that have a local nature

such as face attributes (e.g. bushy eyebrows, skin color, mustache) [82] or local descrip-

tors [32] can be extracted. Nevertheless, facial landmark localization in unconstrained

real-world scenarios is still a challenging task.

(a) Side View (b) Frontal Face

Figure 3.2: The AFLW markup scheme. It defines 21 facial landmarks that are located
between eyebrows and chin. (b) shows the landmarks in a frontal view whereas (a) in a
side view.

The landmark positions of AFLW are defined on a rigid 3D face model denoted in

Figure 3.2. We use a markup of 21 reference landmarks mainly located in the area

between eyebrows and chin. Starting at the forehead three landmarks are located at

each eyebrow, on the leftmost, rightmost and medial point. Each eye area is covered by

further three landmarks. The inner and outer corner of the eye fissure where the eyelids

meet (endocanthion, exocanthion) and the pupil. On the external nose the left and right

point of attachment of the nose cavity with the face (nasal alar crest) and the tip of the
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nose (pronasale) are specified. On the external ear the lowest point of attachment to the

head (otobasion inferius) is marked. On the mouth and lips the landmarks are placed on

the left and right intersection point of the lips (cheilion) and the mouth center as medial

point. Finally, on the chin the lowest point on the lower border (gnathion) is selected.

In the annotation process landmarks are marked upon visibility. So if a landmark is not

visible it is simply not annotated. In total 386,689 landmarks have been annotated so

far. For individual landmarks the number of annotations ranges from 9,892 (left ear) to

24,378 (nose center). Table 3.3 contains detailed statistics.

3.1.4.2 Face Pose Estimation

Head pose estimation in images captured under uncontrolled conditions in natural en-

vironments is still a challenging task. Thus, AFLW comes with approximate pose infor-

mation for each face, derived from the annotated facial landmarks. To this end, a mean

3D model [130] of the frontal part of a head (shown in Figure 3.2) is fitted to the anno-

tated points in the image. The pose parameters are adjusted, to minimize the distance

between the projections of the corresponding points on the 3D model and the actual

landmark locations in the image in a least squares manner by POSIT [29]. The resulting

pose is stored in terms of roll, pitch and yaw angles as depicted in Figure 3.3.

Figure 3.3: Head pose. It is described in form of the three rotation angles yaw, pitch
and roll.

Further, the extracted pose estimate can be used to retrieve images from a limited

range of poses only. This can be used to train sets of individual, pose dependent face

detectors. Another possible application is the analysis of person independent relations

between a given image representation and controlled variations in the pose.
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ID Landmark Description Count

1 Left Brow Left Corner 15,346

2 Left Brow Center 19,310

3 Left Brow Right Corner 20,350

4 Right Brow Left Corner 20,583

5 Right Brow Center 19,493

6 Right Brow Right Corner 15,606

7 Left Eye Left Corner 18,152

8 Left Eye Center 19,984

9 Left Eye Right Corner 17,018

10 Right Eye Left Corner 16,689

11 Right Eye Center 20,460

12 Right Eye Right Corner 18,343

13 Left Ear 9,892

14 Nose Left 16,923

15 Nose Center 24,378

16 Nose Right 17,559

17 Right Ear 10,601

18 Mouth Left Corner 19,169

19 Mouth Center 23,802

20 Mouth Right Corner 19,882

21 Chin Center 23,149

386,689

Table 3.3: Overview of landmark annotations in AFLW. The number of individual
annotations ranges from 9,892 (left ear) to 24,378 (nose center).

3.1.4.3 Multi-View Face Detection

While frontal face detection is commonly considered as solved multi-view face detection

in uncontrolled environments remains still an unsolved challenge. A main reason is

that multi-view face detection requires a large number of annotated faces in training.
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In particular, pose-specific detectors need to capture the full range of face poses. For

instance the tree-structured detector of Huang et al. [56] partitions the face pose with

a coarse-to-fine strategy. The detector is composed of 204 pose split nodes in 16 layers

and trained with roughly 75,000 faces. However, the training dataset is not publicly

available. Thus, AFLW features a large number of annotated faces covering the full

range of face poses and additionally provides an estimate of the face pose.

To test multi-view face detection algorithms AFLW provides face ellipses consistent

with the Face Detection Dataset and Benchmark (FDDB) [64] evaluation protocol. All

faces are annotated by an ellipse outlining the 3D ellipsoid capturing the front of the

head. This gives a closer boundary of the region of interest compared to face rectangles

and in-plane rotation information. The ellipse annotations are automatically generated

from the facial landmark annotations by fitting the mean 3D face model. The result of

this process is demonstrated in Figure 3.4.

Figure 3.4: Face ellipses automatically created from the annotated facial landmarks,
following the specification in the FDDB [64] evaluation framework.

3.2 The Impact of better Training Data for Face Detection

In this section we investigate the impact of suitable large-scale training data on the

real-world face detection performance. Especially in unconstrained situations where

variations in face pose or bad imaging conditions have to be handled face detection

remains challenging. These problems are covered by recent benchmarks such as Face

Detection Dataset and Benchmark (FDDB) [64], which reveals that established methods,

e.g., Viola and Jones [137] suffer a distinct drop in performance compared to previous
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Figure 3.5: Impressions of the Annotated Facial Landmarks in the Wild (AFLW)
database. AFLW provides variation in pose, ethnicity, realistic background and natu-
ral uncontrolled imaging conditions.
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evaluations. More effective approaches exist, but are closed source and not publicly

available. Also the reimplementation is practically impossible as these algorithms heav-

ily rely on statistical machine learning using massive amounts of data, typically unavail-

able to the public [56, 57, 132]. In that context the question arises if the performance gain

is attributed to the improved algorithms or proprietary datasets. In particular, we inves-

tigate if a better face detection performance can be obtained by simply increasing the

amount of data, with a standard algorithm and standard features. Moreover, we want

to know how close we can get to state-of-the-art methods.

3.2.1 Experiments and Implementation

To show the impact of suitable large-scale training data on the real-world face detec-

tion performance, we propose to use an off-the-shelf implementation of the Viola and

Jones [137] detector using multi-scale block LBPs [87]. Preliminary experiments showed

that these provide a similar performance compared to Haar features. However these are

more efficient in training.

In particular, we want to show that by using only better training data allows us to

reach or even improve over methods that have a higher model complexity and higher

runtime requirements. Further these methods require in most cases also large amounts

of data in training. We gather the face crops of the AFLW dataset. As AFLW includes

the coarse face pose we are able to retrieve up to 28k frontal faces by limiting the yaw

angle between ±π
6 and mirroring them. For each face we crop a square region between

forehead and chin. The non-face patches are obtained by randomly sampling at multiple

scales of the PASCAL VOC 2007 dataset [33], excluding the persons subset. Testing

several patch size revealed that a standard patch size of 24 × 24 delivers the best results.

As first benchmark we evaluate our face detector on FDDB. We intend to compare it

to state-of-the-art approaches and also investigate the influence of the amount of train-

ing data on the face detection performance. FDDB is designed for face detection in

real-world scenarios. It features 2,845 images with a total of 5,171 faces captured under

a wide range of imaging and environmental conditions including occlusions, non-frontal

face poses, and low resolution and out-of-focus faces. Groundtruth is specified in form

of face regions as ellipses. The authors argue that the ellipses capture better the shape

of the human head compared to rectangles, also for profile views. As evaluation met-

rics two scores are proposed. For the discrete score it is proposed to use the PASCAL

VOC overlap criterion between detected faces and groundtruth. In particular, for a true

positive the overlap of intersected areas to joined areas has to be more than 50%. Then,
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(a) (b)

(c) (d)

Figure 3.6: Face Detection Dataset and Benchmark (FDDB): The benchmark comprises
faces captured under a wide range of imaging and environmental conditions includ-
ing occlusions, non-frontal face poses, and low resolution and out-of-focus faces. The
ground truth annotation is denoted by the red ellipses.

for a detection the detector score is reported. The overlap criterion is a rather strict

measure. The continuous score reports directly the overlap as score. Further, the cumu-

lative performance is reported as the average ROC curve over a 10-fold cross-validation.

Samples of the FDDB benchmark with according groundtruth ellipses are shown in Fig-

ure 3.6. The quality of the annotation can be considered as good, however in some

images annotations are missing.

For our detector a perfect match to a ground truth ellipse is not possible as it outputs

upright square candidate rectangles. For that reason we focus on the discrete score and

scale the candidate rectangles by a fixed factor to match the elongated shape of the face

ellipses.

In Figure 3.7 we report the performance of our final detector on the challenging
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Figure 3.7: Face detection results on the FDDB benchmark. In (a) we report ROC
curves for [65, 68, 86, 95, 131, 137, 166] and our method. In (b) we provide an illustrative
detection example. The red ellipses denote the FDDB ground truth, whereas the green
rectangles are the output of our detector.

25 50 100 200 500

Proposed method 68.36% 71.84% 73.70% 75.36% 77.22%

Zhu and Ramanan [166] 68.27% 71.61% 72.89% 74.65% 75.90%

Li et al. [86] 58.29% 65.33% 69.97% 73.74% 75.27%

Kalal et al. [69] 50.18% 59.74% 64.63% 68.81% 71.82%

Viola and Jones [137] 36.20% 43.40% 49.89% 56.20% 64.44%

Köstinger et al. [77] 35.47% 47.22% 56.80% 62.95% 69.70%

Liao et al. [87] 29.76% 37.16% 45.29% 50.73% 60.66%

Jain and Learned-Miller [65] 23.57% 38.84% 51.46% 59.31% 65.98%

Table 3.4: Face detection results on the FDDB benchmark. For the respective methods
we compare the true positive rate versus the total false positives.

FDDB benchmark and compare it to state-of-the-art approaches. Despite the simplic-

ity of our detector it is able to improve considerably over several other approaches. It

improves clearly over the standard boosted classifier cascade of Viola and Jones [137],

implemented in OpenCV, both for Haar and LBP features. Further the method out-

performs the recent work of Jain and Learned-Miller [65], which adapts at test time a
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pre-trained boosted classifier-cascade. The main idea of this work is to reclassifying

hard examples near the decision boundary by considering other in the image present

detections. Also the work of Kalal et al. [68] is outperformed which shows that in itera-

tive classifier training bootstrapping has a significant impact on the final face detection

performance. In particular they focus on sampling strategies for mining meaningful

negative samples on large-scale image collections. We also improve over the work of Li

et al. [86] which uses a boosted classifier cascade and SURF features for face detection.

Finally we are comparable to the deformable part-based multi-view model of Zhu and

Ramanan [166] which uses as shared pool of parts to detect up to 68 facial landmarks.

The authors argue that the flexible local parts enable to effectively capture the elastic

deformation of faces. Table 3.4 shows a detailed numerical comparison of the discussed

methods with focus on the performance with a low number of false positives.
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Figure 3.8: Face Detection Dataset and Benchmark (FDDB): (a) Influence of varying
the amount of training data for our LBP based face detector. The legend displays the
number of samples used for training. (b) Different detectors illustrated trained with 500
to 25,000 samples.

In Figure 3.8 (a) we compare the face detection performance on FDDB in relation to

the size of the training database. Therefore we trained several detectors using the same

parameters and varied the amount of training data. We started with only 50 samples

and increased the amount of samples until we exhausted the training database. Starting

from 1,000 samples the face detector starts to obtain a reasonable performance. At 2,000

samples a comparable performance to the OpenCV / Viola and Jones face detector is
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reached. Starting from 15,000 samples the performance begins to saturate. Only minor

improvements are obtained afterwards. Figure 3.8 (b) shows an illustrative example

how the detector evolves by increasing the amount of training data. The in (b) inpainted

numbers show the size of the training set. Initially, many false positives are randomly

distributed over the images. As data grows the detector improves and a preference for

faces is clearly visible. In the two bottom images it can be seen that in an intermediate

stage the false positives are eliminated. However also one true positive is discarded.

The true positive is recovered as data grows further.
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Figure 3.9: Face detection results on the Annotated Faces in the Wild (AFW) dataset
[166]. In (a) we report Precision / Recall curves for [38, 68, 137, 166], two commercial
systems and our method. In (b) we provide an exemplary detection example missing
one profile face detection.

Further, we evaluate our proposed method on the Annotated Faces in the Wild (AFW)

dataset [166]. AFW offers 205 high-resolution images collected on FlickR containing in

total 468 faces. Similar to FDDB the images show faces with large variations in ap-

pearance, viewpoint and also difficult backgrounds. The dataset contains also a large

portion of non-frontal faces. The ground truth is given in form of rectangles that out-

line the facial landmarks as used in [166]. As evaluation metric it is proposed to plot

Precision-Recall curves based on the PASCAL VOC overlap criterion requiring 50% over-

lap.

In Figure 3.9 (a) we compare the face detection performance of our method with

related works judged by Precision-Recall curves. The Precision-Recall curves for the

related works are provided by the authors of [166]. The number in parentheses de-

note the average precision as defined in the VOC protocol. Therefore, a version of the
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Precision-Recall curve of the respective method is calculated with the precision mono-

tonically decreasing. Therefore, at a certain recall value the precision is set to the max-

imum precision of the same or any higher recall values. Then, the average precision is

the area under the curve by numerical integration over all unique recall values.

Interestingly, the proposed frontal face detector is able to outperform some of the

related works, also on this dataset with strong focus on multi-view face detection. This is

despite the fact that our detector, in contrast to the other detectors, is, a rigid single-view

detector. The curves reported for the approaches of Viola and Jones [138] (OpenCV),

Kalal et al. [68] and the multi-view HOG detector integrate at least two-views. Of course

models trained for multi-view face detection as the deformable part model (DPM) of

[38] or the approach of Zhu and Ramanan offer a better performance on this dataset.

Nevertheless, our detector is over many levels of recall comparable to these approaches.

If we recapitulate the main results on FDDB and AFW it is obvious that suitable

large-scale training data has a significant impact on the face detection performance. Our

rigid single-view face detector is comparable on FDDB to state-of-the-art approaches

using more complex models or more sophisticated training algorithms. Thus, we hy-

pothesize that at least for face detection existing detectors are not limited by the model

complexity but by the available training data. Further, at least for frontal face detection

using flexible models with higher runtime requirements compared to rigid detectors is

questionable.

3.3 Conclusion

In this chapter we focused on large-scale training data for face detection and landmark

extraction. Face detection and landmark extraction are crucial preprocessing steps that

heavily influence the final face recognition performance. Obviously without detected

faces recognition becomes impractical or even impossible. Detected landmarks enable

to align faces to a canonical pose or to extract local features. Both face detection and

landmark extraction are rather data intensive and require elaborate annotations to train

classifiers that perform well on real-world data. Therefore, we introduced the Annotated

Facial Landmarks in the Wild (AFLW) database. AFLW provides a large-scale, real-world

collection of face images, gathered from FlickR. Compared to other datasets AFLW is

the only one that is publicly available and well suited to train and test algorithms for

multi-view face detection, facial landmark localization and face pose estimation. Once

having introduced AFLW we investigated the impact of suitable large-scale training data
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on the real-world face detection performance. Especially in unconstrained situations

where variations in face pose or bad imaging conditions have to be handled face de-

tection remains challenging. If we recapitulate the main results gained on two publicly

available benchmarks it becomes obvious that suitable large-scale training data has a sig-

nificant impact on the face detection performance. For frontal face detection our rigid

single-view face detector is comparable to state-of-the-art approaches that use more

complex models or more sophisticated training algorithms. Thus, we hypothesize that

at least for face detection existing detectors are not limited by the model complexity but

by the available training data. Further, at least for frontal face detection using flexible

models with higher runtime requirements compared to rigid detectors is questionable.





4
Efficient Large Scale Metric

Learning and Retrieval for Face

Recognition

The review in Chapter 2 showed that especially Mahalanobis metric learning methods

recently demonstrated competitive results for real-world face recognition. However, as

data grows several new challenges are posed to existing algorithms in terms of scala-

bility and the and the required degree of supervision. These algorithms have two main

drawbacks. First, learning metrics requires often to solve complex and thus computa-

tionally very expensive optimization problems. Second, as the evaluation time linearly

scales with the size of the data k-NN search becomes cumbersome for large-scale prob-

lems or real-time applications with limited time budget. Further, considering the con-

stantly growing amount of data it is often infeasible to specify fully supervised labels

for all data points. Instead, it is easier to specify labels in form of pairwise equivalence

constraints. Therefore, in this chapter we introduce a simple though effective strategy

to learn a distance metric from equivalence constraints, based on a statistical inference

perspective. In contrast to existing methods the method does not rely on complex opti-

mization problems requiring computationally expensive iterations. Further, we propose

a metric-based hashing strategy to speed k-NN search for large-scale problems.

49
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Figure 4.1: Face verification on LFW [58]: The challenging task shows the benefit of
metric learning. The proposed method significantly increases the TPR at EER from
67.4% (a) to 80.5% (b). Training takes only 0.05 seconds and is thus orders of magnitudes
faster than related methods.

4.1 Introduction

Learning distance or similarity metrics is an emerging field in machine learning, with

various applications in computer vision, not limited to face recognition. It can signifi-

cantly improve results for tracking [158], image retrieval [55], clustering [155], alignment

[101] or person re-identification [30]. The goal of metric learning algorithms is to take

advantage of prior information in form of labels over simpler though more general sim-

ilarity measures. For instance, Figure 4.1 illustrates the benefit of metric learning for

face verification. The True Positive Rate (TPR) at Equal Error Rate (EER) is significantly

increased.

A particular class of distance functions that exhibits good generalization perfor-

mance for many machine learning problems is Mahalanobis metric learning. The goal is

to find a global, linear transformation of the feature space such that relevant dimensions
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are emphasized while irrelevant ones are discarded. As there exists a bijection between

the set of Mahalanobis metrics and the set of multivariate Gaussians one can think of it

in terms of the corresponding covariance matrix.

Machine learning algorithms that learn a Mahalanobis metric have recently attracted

a lot of interest in computer vision. These include Large Margin Nearest Neighbor

Learning (LMNN) [143, 145], Information Theoretic Metric Learning (ITML) [27] and Lo-

gistic Discriminant Metric Learning (LDML) [50], which can be considered as state-of-the-art.

LMNN [143, 145] aims at improving k-nn classification. It establishes for each training

sample a local perimeter. The perimeter surrounds the k-NNs with similar label (target

neighbors), plus a safety margin. To reduce the amount of instances with dissimilar

labels that invade the perimeter (impostors) the metric is iteratively adapted. This is

done by strengthening the correlation to target neighbors while weakening it to impos-

tors. Conceptually sound, LMNN is sometimes prone to over-fitting due to the lack

of regularization. Davis et al. [27] avoid over-fitting by explicitly integrating a regu-

larization step. Their formulation trades off between satisfying the given constraints

on the distance function while minimizing the differential entropy to the initial prior

distance metric distribution. Guillaumin et al. [50] introduce a probabilistic view on

learning a Mahalanobis metric where the a posteriori class probabilities are treated as

(dis)similarity measures. Thus, they propose to iteratively adapt the Mahalanobis metric

to maximize the log-likelihood. The a posteriori probability is modeled by a sigmoid

function that reflects that samples share labels if their distance is below a certain thresh-

old. In principle, these methods generalize well to unseen data. They focus on robust

loss functions and regularize solutions to avoid over-fitting.

Considering the ever growing amount of data, learning a Mahalanobis metric on a

large scale dataset raises further issues on scalability and the required degree of super-

vision. Often it is infeasible to specify fully supervised labels for all data points. Instead,

it is easier to specify labels pairwise in form of equivalence constraints. In particular if

a pair of samples shares the same class label or not. In some cases it is even possible to

obtain this form of weak supervision automatically, e.g., by tracking an object. Hence,

to capitalize on large scale applications as real-world face recognition one faces the ad-

ditional challenges of scalability and the ability to deal with equivalence constraints.

One further important aspect that is often neglected is the computational burden

at test time as k-NN search in high-dimensional spaces is cumbersome. For real-time

applications with limited time budget this is even more critical; especially on larger

datasets with tens of thousands of samples that have to be explored.
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To speed up nearest neighbor search a successful approach is to focus on sparsity in

the variables and perform an efficient low dimensional embedding. For instance, one

can accelerate nearest neighbor search by performing a binary Hamming embedding.

This can be done by applying hashing functions directly [63] or on kernelized data [81].

In particular, hyperplanes or hyperspheres are used to partition the space. Data inde-

pendent variants as [15, 44] ignore the structure of the data. Data dependent methods

[51, 146] consider the structure of the data, however, these mostly build on an isotropic

cluster assumption and thus do not exploit the general structure of the data.

To meet these requirements, it is proposed to learn an effective metric just based

on equivalence constraints. Equivalence constraints are considered as natural inputs to

distance metric learning algorithms as similarity functions basically establish a relation

between pairs of points. The method is motivated by a statistical inference perspective

based on a likelihood-ratio test. Results show that the resulting metric is not prone

to over-fitting and very efficient to obtain. Compared to other approaches it does not

rely on a tedious iterative optimization procedure. Therefore, the method is scalable to

large datasets, as it just involves computation of two covariance matrices. As analog to

the KISS principle (keep it simple and straightforward!) the method is easy and efficient

per design therefore it is termed KISS metric. To speed up evaluation it is adapted for

two different hashing strategies. The proposed method enables to drastically reduce the

computational effort during training and evaluation while maintaining accuracy. The

method is evaluated on various different benchmarks with focus on face recognition

where it matches or even outperforms state-of-the-art Mahalanobis metric learning ap-

proaches, while being orders of magnitudes faster in training. In particular, results are

provided for the unconstrained face recognition benchmarks LFW [58] and PubFig [82].

Further, we study the task of person re-identification across spatially disjoint cameras

(VIPeR [47]) and the comparison of before never seen object instances on ToyCars [105].

On VIPeR and the ToyCars dataset the method even improves over the domain specific

state-of-the-art. Further, for LFW it obtains the best reported results for standard SIFT

features.

The rest of this chapter is organized as follows. Next in Section 4.2 we discuss the

related work on Mahalanobis metric learning that motivates our approach. Succeeding,

in Section 4.3 we introduce KISS metric learning. To speed up evaluation we introduce

introduce our metric-based hashing strategy in Section 4.4. Extensive experiments and

evaluations on performance and scalability are conducted in Section 4.5. Finally, Section

4.6 summarizes and provides concluding remarks.
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4.2 Mahalanobis Metric Learning

Learning a distance or similarity metric based on the class of Mahalanobis distance

functions has gained considerable interest in computer vision. The classical Mahalanobis

distance [90] measures the squared distance between two data points xi, xj ∈ Rd in a

multivariate Gaussian distribution:

d2
M(xi, xj) = (xi − xj)

TΣ−1(xi − xj) (4.1)

where

Σ =
∑
∀(i,j)

(xi − µ)(xj − µ)T (4.2)

is a d × d covariance matrix formed of all sample tuples (i, j) and µ is the mean vec-

tor of the data. If the covariance matrix Σ matches the identity the Mahalanobis dis-

tance reduces to the isotropic Euclidean distance. In this case all feature dimensions are

weighted equally. If the covariance matrix is a diagonal matrix the distance accounts

for different scaled dimensions of the feature space and thus is a weighted Euclidean

distance. A general form of the covariance matrix measures different scalings and corre-

lations of the feature space. One can think of it by means of decomposing the covariance

matrix Σ in terms of its eigenvectors and eigenvalues. The projection on the eigenvectors

rotates the feature space and scales with the associated eigenvalues.

In contrast to the classical Mahalanobis distance, the goal of Mahalanobis metric

learning is to exploit prior information such as labels to learn a similarity measure that

is better suited for a particular task such as k-NN classification, clustering or image

retrieval. In particular, the Mahalanobis distance is parameterized by a d× d matrix M

that measures the squared distance between two data points xi and xj as:

d2
M
(
xi, xj

)
=
(
xi − xj

)>M
(
xi − xj

)
, (4.3)

where M � 0 is positive semidefinite and xi,xj ∈ Rd is a pair of samples (i, j). The

positive semi definiteness is required that M induces a valid pseudo metric. Otherwise,

negative eigenvalues could result in negative distances. Ideally, the matrix M allows for

modeling task-specific important scalings and correlations of the feature space.

For the following discussion let yij be a similarity label with the property yij = 1 for

similar pairs, i.e., if the samples share the same class label (yi = yj) and yij = 0 otherwise.
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To motivate the proposed method, in the following an overview of the state-of-the-art

in learning a Mahalanobis metric is given. In particular, we examine LMNN [143, 145],

ITML [27] and LDML [50] as these have recently shown good results and therefore

attracted a lot of interest in the computer vision community.

4.2.1 Large Margin Nearest Neighbor Metric

The approach of Weinberger et al. [143, 145] aims at improving k-NN classification by

exploiting the local structure of the data. For each sample a local perimeter surrounding

the k nearest neighbors sharing the same label (target neighbors) is established. Samples

having a different label that invade this perimeter (impostors) are penalized. This is

realized via the following objective function:

ε (M) =
∑
j i

[
d2

M
(
xi, xj

)
+ µ

∑
l

(1− yil) ξijl (M)

]
. (4.4)

The first term minimizes the distance between target neighbors xi,xj, indicated by j i.

The second term denotes the amount by which impostors invade the perimeter of i and

j. An impostor l is a differently labeled input (yil = 0) that has a positive slack variable:

ξijl (M) = 1 + d2
M
(
xi, xj

)
− d2

M (xi, xl) . (4.5)

To estimate M, gradient descent is performed along the gradient defined by the triplets

(i, j, l) having positive slack:

∂ε
(
Mt)

∂Mt =
∑
j i

Cij + µ
∑
(i,j,l)

(
Cij − Cil

)
, (4.6)

where Cij =
(
xi − xj

) (
xi − xj

)> denotes the outer product of pairwise differences. Con-

ceptually, for active triplets this formulation strengthens the correlation to target neigh-

bors while weakening it to impostors. Further, LMNN it is not directly applicable to

learn from equivalence constraints as it requires class labels to sample labeled triplets.

4.2.2 Information Theoretic Metric Learning

Davis et al. [27] exploit the relationship between multivariate Gaussian distributions

and the set of Mahalanobis distances. The idea is to search for a solution that trades off

the satisfaction of constraints while being close to a distance metric prior M0, e.g., the
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identity matrix for the Euclidean distance. The closeness of the solution to the prior is

measured by the Kullback-Leibler divergence of the corresponding distributions. The

prior can be considered as a regularization term to avoid over-fitting. The constraints

enforce that similar pairs are below a certain distance d2
M
(
xi, xj

)
≤ u while dissimilar

pairs exceed a certain distance d2
M
(
xi, xj

)
≥ l. The optimization builds on Bregman

projections [9], which project the current solution onto a single constraint via the update

rule:

Mt+1 = Mt + βMtCijMt . (4.7)

The parameter β involves the label of the pair of samples and the step size. It is positive

for similar pairs and negative for dissimilar pairs. Thus, for similar pairs the optimiza-

tion is performed in direction of Cij while for dissimilar pairs in the negative direction.

4.2.3 Linear Discriminant Metric Learning

Guillaumin et al. [50] offer a probabilistic view on learning a Mahalanobis distance met-

ric. The a posteriori class probabilities are treated as (dis)similarity measures, whether a

pair of images depicts the same object. For a given pair (i, j) the a posteriori probability

is modeled as

pij = p
(
yij = 1|xi, xj; M, b

)
= σ

(
b− d2

M
(
xi, xj

))
, (4.8)

where σ (z) = (1 + exp (−z))−1 is a sigmoid function and b is a bias term. Thus, to es-

timate M, the Mahalanobis metric is iteratively adapted to maximize the log-likelihood:

L (M) =
∑

ij

yij ln
(

pij
)
+
(
1− yij

)
ln
(
1− pij

)
. (4.9)

The maximization by gradient ascent is obtained in direction of Cij for similar pairs and

in the negative direction for dissimilar pairs:

∂L (M)

∂M
=
∑

ij

(
yij − pij

)
Cij . (4.10)

The contribution of each pair on the gradient is controlled over the probability.

If we recapitulate the properties and characteristics of the described metric learning

approaches two common features are observed. First, all methods rely on an iterative

optimization scheme which can be computationally expensive for large scale datasets
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common in face recognition. Second, if the update rules of the different methods are

compared, given in Eqs. (4.6), (4.7) and (4.10), it can be seen that the optimization

schemes operate in the space of pairwise differences. In particular, the optimization

is performed in direction of Cij for similar pairs and in the negative direction of Cij

for dissimilar pairs. In the following, a non-iterative formulation is introduced, which

builds on a statistical inference perspective of the space of pairwise differences. This

allows for facing the challenges of scalability and the ability to learn from equivalence

constraints. The parameter-free approach is very efficient in training, enabling to exploit

the constantly growing amount of data also for learning.

4.3 KISS Metric Learning

For the following discussion let xi,xj ∈ Rd be a pair of samples and yi, yj ∈ {1, 2, . . . , c}
the according labels. Further let S =

{
(i, j) |yi = yj

}
be a a set of similar pairs and

D =
{
(i, j) |yi 6= yj

}
a set of dissimilar pairs. The goal is to decide whether a pair (i, j) is

similar or not. The proposed method considers two independent generation processes

for observed commonalities of similar and dissimilar pairs. The similarity is defined by

the plausibility of belonging either to one or the other. From a statistical inference point

of view the optimal statistical decision whether a pair (i, j) is dissimilar or not can be

obtained by a log-likelihood ratio test. Thus, we test the hypothesis H0 that a pair is

dissimilar versus the alternative H1:

δ
(
xi, xj

)
= log

(
p
(
xi, xj|H0

)
p
(
xi, xj|H1

)) . (4.11)

A high value of δ(xi, xj) means that hypothesis H0 is validated and the pair of samples

is considered as dissimilar. In contrast, a low value means that H0 is rejected and the

pair of samples is considered as similar.

Next, the metric learning problem is casted into the space of pairwise differences (xij =

xi − xj). As the pairwise differences xij are symmetric this space has zero mean and is

invariant to the actual locality of the samples in the feature space. This allows to re-write

Eq. (4.11) to

δ
(
xij
)
= log

(
p
(
xij|H0

)
p
(
xij|H1

)) = log

(
f
(
xij|θ0

)
f
(
xij|θ1

)) , (4.12)

where f
(
xij|θ1

)
is a pdf with parameters θ1 for hypothesis H1 that a pair is similar
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(i, j) ∈ S . Vice-versa f
(
xij|θ0

)
is a pdf with parameters θ0 for hypothesis H0 for a

pair being dissimilar (i, j) ∈ D. Assuming a Gaussian structure of the difference space

Eq. (4.12) can be re-written to

δ
(
xij
)
= log

 1√
2π|ΣS |

exp
(
− 1

2 x>ij Σ−1
S xij

)
1√

2π|ΣD |
exp

(
− 1

2 x>ij Σ−1
D xij

)
 , (4.13)

where ΣS and ΣD are the covariance matrices of S and D, respectively. Let

Cij = (xi − xj)(xi − xj)
> (4.14)

be the outer product of the pairwise differences of xi and xj, then the covariance matrices

can be written as

ΣS =
1
|S|

∑
(i,j)∈S

Cij , (4.15)

ΣD =
1
|D|

∑
(i,j)∈D

Cij . (4.16)

The maximum likelihood estimate of the Gaussian is equivalent to minimize the dis-

tances from the mean in a least squares manner. This allows for finding respective

relevant directions for the set of similar pairs S and the set of dissimilar pairs D. By

taking the log, the likelihood-ratio test can be written as

δ(xij) = x>ij Σ−1
S xij + log (|ΣS |)− x>ij Σ−1

D xij − log (|ΣD |) . (4.17)

Further, the constant terms can be discarded, simplifying Eq. (4.12) to

δ
(
xij
)
= x>ij Σ−1

S xij − x>ij Σ−1
D xij = x>ij

(
Σ−1
S − Σ−1

D

)
xij. (4.18)

Finally, the learned Mahalanobis distance metric parameterized by the d× d matrix M

d2
M
(
xi, xj

)
=
(
xi − xj

)>M
(
xi − xj

)
(4.19)
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is obtained by

M =
[
Σ−1
S − Σ−1

D

]
∗

. (4.20)

To guarantee that M is p.s.d. and induces a valid pseudo-metric we define
[
M̂
]
∗ = M

as a projection operator similar to [52] that allows for finding the nearest positive semi

definite matrix. In particular, the operator re-projects M̂ =
(

Σ−1
S − Σ−1

D

)
onto the cone

of positive semidefinite matrices by

[
M̂
]
∗ = M (4.21)

M̂ = X>ΛX (4.22)

M = X>Λ′X (4.23)

Λ′ = diag(max(0, λ1), . . . , max(0, λn)) (4.24)

clipping the negative spectrum of M̂ by eigen-decomposition. Alternatively, it is also

possible to shift the spectrum of M̂. Further, if no vectorial representation of the data is

desired this step can be omitted. The resulting metric (Eq. (4.20)) reflects the properties

of the log-likelihood ratio test. Thus, ideally, dissimilar pairs score high values and

similar pairs score low values.

Further, KISSME is in in training orders of magnitudes faster than comparable Ma-

halanobis metric learning methods as it does not require iterative optimization. Also

the matrix inversion is not a too costly step for two reasons: First, the inverse has to be

calculated only twice; Second, since we have symmetric matrices more efficient solvers

can be used. However, at evaluation the computational burden remains as k-NN search

in high-dimensional spaces is cumbersome. Thus, succeeding we propose our metric

based hashing scheme which mitigates some of these issues.

4.4 KISS HASH

In the following, we introduce our metric-based hashing scheme taking advantage of

both, efficient learning and evaluation. The main idea is to efficiently learn a Maha-

lanobis metric by KISSME, which captures the intrinsic structure of the feature space,

and to approximate it using hashing techniques, enabling a significant speed-up at test

time.
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The main goal of hashing is to reduce the classification effort by using more compact

representation. In particular, by mapping the features from a d dimensional original

space to a lower m dimensional space, where m � d. A widely used approach is to

apply a Hamming embedding, where the data is represented in form of binary strings.

This allows to compare the data via XOR operations, which can be efficiently computed

by special purpose instructions on modern computer hardware. Given a sample x, its

binary hash-code h (m× 1) can be obtained via

h (x) = sign (Px + t) , (4.25)

where P is a hashing matrix (m× d) and t (m× 1) is a threshold vector.

As minimization of the distances in Hamming space is related to the minimization

of the distances in original space, in the following two embedding strategies are derived,

exploiting the information captured by a Mahalanobis distance. The only requirement

for this relation is that the hashing function sustains the locality sensitive hashing (LSH)

requirement [15, 44] that the probability of a collision in the hash table is related to the

similarity in the original space. In the following, the two different metric-based hashing

strategies are described: (a) Via random hyperplane hashing (Section 4.4.1) and (b) via

eigen-hashing (Section 4.4.2). In addition, in Section 4.4.3 a simple re-ranking scheme

for hashing is introduced.

4.4.1 Hashing by random hyperplanes

As the metric matrix M obtained in Section 4.3 Eq. (4.20) is positive semi-definite (p.s.d.)

it can be decomposed as M = L>L by Cholesky factorization. The matrix L can be seen

as linear transformation that scales and rotates the feature space according to M. After

applying the linear transformation one can perform standard locality sensitive hashing

techniques as random hyperplane hashing similar to [15, 63].

Thus, to obtain the hash value for a single bit hi the feature vector x is first trans-

formed by L and then projected onto a random vector ri that is drawn from a Gaussian

distribution with zero mean and unit variance:

hi (x) =


1 if r>i Lx ≥ ti

−1 otherwise .
(4.26)

For the threshold ti we propose to set it unsupervised case either to zero or to balance
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the split. In the supervised case the threshold can be selected by line search to minimize,

e.g., the false positive and false negative rate. Further, let

Rm = [r1 . . . rm] (4.27)

be a matrix composed of m random vectors ri, where m is the desired dimensionality

of the binary Hamming string. Thus, a m-dimensional hash code h(x) over all feature

dimensions can be estimated as follows:

h (x) = sign
(

R>mLx + t
)

. (4.28)

4.4.2 Hashing by eigen-decomposition

The second proposed hashing method is by eigen-decomposition. Since M is p.s.d. it

can be decomposed as M = VDV>. This allows for hashing with the eigenvectors vi as

follows:

hi (x) =


1 if v>i xi ≥ ti

−1 otherwise .
(4.29)

Again, let

Vm = [v1 . . . vm] (4.30)

be the matrix containing the eigenvectors associated with the largest eigenvalues, the

m-dimensional hash code for the the feature vector x can be estimated by

h (x) = sign
(

V>mx + t
)

. (4.31)

Similar to the random hyperplane hashing we propose to set the thresholds to bal-

ance the split in the unsupervised case or to select them by line search to minimize e.g.

the false positive and false negative rate in the supervised case.

4.4.3 Retrieval of hashed Examples

The Hamming embedding enables a very efficient search based on the compact binary

representation. Further, on modern CPUs special purpose instructions exist that are
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even able to calculate the Hamming distance in a few clock-cycles. For instance Intel in-

troduced together with SSE 4.2 the application-targeted accelerator instruction POPCNT.

It allows to efficiently count the number of bits set after performing an logical XOR. Also

approximate search strategies exist that are tailored to the search in Hamming space

(e.g., [15] or [104]).

For the proposed method the focus is on short binary codes that can be efficiently

matched followed by a re-ranking step. In particular, a short list of samples is generated

by searching in Hamming space, which is then used for exact k-NN search with the

learned metric. To ensure efficiency, compact codes are used in the first step and only a

rather small subset of samples is re-ranked. In particular, the aim is to re-rank O(N
1

1+ε )

samples, where N is the number of training samples in the respective dataset. For

instance, if ε = 1 only O(
√

N) samples have to be checked. Thus, for higher values of ε

less samples have to be re-ranked.

4.5 Experiments

In this section we aim at experimentally validating the proposed efficient metric learn-

ing and hashing method. On the one hand, KISSME enables very efficient training and

on the other hand by hashing a significant speed-up at test time can be obtained due

to the approximate nearest neighbor search. Both methods are quite general and can

be applied to a variety of applications. Thus, additionally to face recognition the meth-

ods are also evaluated on standard machine learning and object matching benchmarks.

The tasks include handwritten digit recognition, person re-identification and matching

previously unseen object instances.

4.5.1 Efficient Large Scale Metric Learning

To show the broad applicability of KISSME, the goals of the experiments are twofold.

The first objective is to show that KISSME is able to generalize to unseen data as well

as or even better than state-of-the-art metric learning approaches, especially for face

recognition. The second objective is to prove that the training is orders of magnitudes

faster. This is clearly beneficial for large scale or online applications.

For the comparison to other metric learning approaches the numbers are generated

with original code and same input data. The code is kindly provided by the respective

authors. Further, KISSME is compared to related domain specific approaches. These al-

gorithms use of course a different extraction, pre-, postprocessing and machine learning
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pipeline. For these the numbers are taken from the corresponding publications. For all

plots the numbers in parentheses denote the Equal Error Rate (EER) of the respective

method.

4.5.1.1 Face Verification

In the following, the performance of KISSME is demonstrated on two challenging face

recognition datasets, namely on Labeled Faces in the Wild (LFW) [58] and Public Figures

Face Database (PubFig) [82]. Hereby, the study of face recognition is divided into two

different objectives: Face identification (naming a face) and face verification (deciding

if two face images show the same individual). The nature of the face identification

task requires a number of annotated faces per individual. Not all real-world databases

comply with this requirement. In contrast, face verification needs cheaper annotations

and therefore can be evaluated more seriously also on a large scale. In this section we

focus on the face verification task.

Labeled Faces in the Wild The dataset is organized in 10 folds for cross-validation.

Each fold consists of 300 similar and 300 dissimilar pairs. The result scores are averaged

over the 10 folds. In the restricted protocol it is only allowed to consider the equivalence

constraints given by the similar / dissimilar pairs. No inference on the identity of the

subject, e.g., to sample more training data, is allowed.

For the experiments the face representation proposed by Guillaumin et al. [50] is

used. Basically, it extracts SIFT descriptors [89] at 9 automatically detected facial land-

marks (corners of the mouth, eyes and nose), over three scales. The resulting descriptor

is a 3,456 dimensional vector. To make the calculation more tractable for the distance

metric learning algorithms we perform a dimensionality reduction by PCA to a 100

dimensional subspace.

To evaluate the different metric learning methods and to enable a fair comparison the

methods are trained with exactly the same features and PCA dimensions. Preliminary

experiments showed that the influence of the PCA dimensionality is not too critical.

Using different dimensionalities for all tested methods reveals that there is no significant

change in the final face verification accuracy.

For the SVM baseline we represent a face pair by different element-wise comparisons

of the two feature vectors. In particular, by obtaining the absolute value of the feature

difference and also the element-wise product. This allows to reformulate the verification

task as a standard two class classification problem. Further, the linear SVM baseline is
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trained directly on the full features without dimensionality reduction as this delivers

the best results.

S

(80.5%)
(79.6%)
(78.9%)
(78.5%)
(75.5%)

(74.7%)

(67.4%)

(a) ROC/SIFT

S

(84.6%)
(83.4%)
(84.0%)
(83.1%)
(85.3%)

(81.8%)

(78.2%)

(b) ROC/Attributes

Figure 4.2: Face verification results on the LFW dataset: ROC curves for different
feature types and learners: In (a) we report the performance for the SIFT features of [50]
and in (b) for the "high-level" description of visual face traits [82]. For the SIFT features
our method outperforms several metric learning approaches slightly. For the attributes
it matches with the SVM based approach proposed by [82].

In Figure 4.2 (a) Receiver Operator Characteristic (ROC) curves are provided for

LDML [50], ITML [27], LMNN [145], SVM [35], KISSME, the Mahalanobis distance

of the similar pairs MS and the Euclidean distance as baseline. Please note that for

LMNN more supervision in form of the actual class labels has to be provided (not

just equivalence constraints) as the algorithm needs to sample labeled triplets. Thus,

LMNN is slightly favored over the other methods.

The Mahalanobis distance of the similar pairs MS performs already quite well in

comparison to the Euclidean distance. It increases the performance by about 7%. Inter-

estingly, LMNN is not really able to capitalize on the additional information over the

other learned metrics as ITML or LDML. Nevertheless, KISSME outperforms the other

metrics slightly. It reaches with an Equal Error Rate of 80.5% the best reported results

up to now for this feature type. Of course recent state-of-the-art on LFW provides bet-

ter results but also requires considerably more domain knowledge, i.e., pose specific

classifiers or an auxialiary identity set.

When analyzing the training times given in Table 4.1 the main advantage of KISSME is
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Method LFW [58] PubFig [82] VIPeR [47] ToyCars [105]

KISSME 0.05s 0.07s 0.01s 0.04s

SVM [35] 12.78s 0.84s 0.10s 0.60s

ITML [27] 24.81s 20.82s 8.60s 14.05s

LDML [50] 307.23s 2868.91s 0.72s 1.21s

LMNN [145] 1198.69s 783.66s 27.56s 0.79s

Table 4.1: Average training times. LDML, LMNN make use of multi-threading. Evalu-
ated on a 3.06 GHz Xeon with 24 cores and 96 GB ram.

obvious. In fact, compared to LMNN, ITML and LDML the method is computationally

much more efficient, however, still yielding competitive results.

Public Figures Face Database The face verification benchmark of PubFig consists of

10 cross-validation folds with 1,000 intra and 1,000 extra-personal pairs each. Per fold

the pairs are sampled of 14 individuals. Similar to the LFW benchmark individuals that

appear in testing have not been seen before in training.

An interesting aspect of the database is that "high-level" features are provided that

describe the presence or absence of visual face traits. The appearance is automatically

encoded in either nameable attributes such as gender, race, age, hair etc. or "similes" that

relate the similarity of face regions to specific reference people. This indirect description

yields nice properties such as a certain robustness to image variations compared to

low-level features. Further, it offers us a complementary feature type to evaluate the

performance of the distance metric learning algorithms.

In Figure 4.3 ROC curves are provided for LDML [50], ITML [27], LMNN [145],

SVM [14], KISSME and two baselines. It can be seen that KISSME outperforms ITML,

LMNN and matches the state-of-the-art performance of the SVM based method pro-

posed by Kumar et al. [82]. LDML delivers similar results to our algorithm while being

orders of magnitudes slower in training (see Table 4.1). This makes the algorithm im-

practicable for online or large-scale use. Interestingly, the performance of ITML drops

even below the Euclidean distance. In Figure 4.2 (a) the performance of the attribute

features are also reported on LFW.
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Figure 4.3: Face verification results on the PubFig dataset. For all methods we use the
"high-level" description of visual face traits [82]. Our method (KISSME) matches the
performance of LDML and the state-of-the-art [82] while being orders of magnitudes
faster in training.

4.5.1.2 Face Identification

In the following, KISSME is compared to the related metric learning approaches for face

identification on the challenging Public Figures Face Database (PubFig) [82]. PubFig of-

fers compared to LFW more images per person. In total the database contains in the

evaluation set 140 people with in average roughly 300 images per person. Therefore,

it is also possible to evaluate face identification. For the intended face identification

benchmark we organize the dataset according to the existing verification protocol in 10

folds for cross-validation. Therefore, the images of each person are split into 10 disjoint

sets.

In Figure 4.4 (a)-(b) we benchmark KISSME to recent Mahalanobis metric learning

methods and a standard linear SVM [35]. Please note that the face identification perfor-

mance is reported in a refusal to predict style. In that sense, recall means the percentage

of samples which have a higher classifier score than the current threshold. Precision

means the ratio of correctly labeled samples. For instance a recall of 10% means that the

classifier is requested to label the 10% most confident samples, the remaining 90% are
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Figure 4.4: Comparison of 1-NN classification accuracy (%) on Public Figures Face
Database (PubFig). (a) recall / precision by ranking and thresholding classifier scores.
(b) Precision at full recall over various k-NN values. (c) Relative improvement per sub-
ject between KISSME and the Euclidean distance. (d) Influence of the parameter k in
classification and sampling of the pairs for KISSME.

not taken into consideration. Then the precision referes to the ratio of samples, in this

specific 10% subset, which are correctly labeled.

To train KISSME the pairwise labels are generated from the class labels. In particular,

for each sample the k-NN sharing the class label are picked to form matching pairs with

the sample. To form non-matching pairs the samples are chosen that have a different

class label and invade the k-NN perimeter, similar to [145]. Further, for the metric

learning methods k-NN is applied as classifier. Testing several values of k revealed that

1-NN classification delivers the best results for all methods on this dataset. Nevertheless,

the relative results are comparable for all values of k, as can be seen in Figure 4.4 (b).
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Additionally, we evaluate for KISSME the influence of the size of the k-NN perimeter

in sampling of the similar / dissimilar pairs. In illustration in Figure 4.4 (d) it can

be observed that more sampled pairs deliver a better performance. Note that for 1-

NN classification using a k-NN perimeter of 15 even increases the accuracy to 62.8%,

compared to 61.5% using a k-NN perimeter of 1 sample. In the following discussion we

focus on the 1-NN experiment, using 1-NN sampling for KISSME, illustrated in Figure

4.4 (a).

In particular in Figure 4.4 (a) it can be seen that KISSME generalizes better than

LMNN [145], ITML [27] or LDML [50], which require more computational effort in

training. Until a recall of 20% all the metric learning methods deliver a similar per-

formance close to 100%. In comparison the performance of the linear SVM decreases

right from the beginning. Finally, at full recall the performance difference comparing

KISSME to ITML is 6.5%, to LDML 4.2% and to LMNN 4.1%. The linear SVM is with

58.2% at full recall comparable to the other metric learning methods. Nevertheless, the

performance difference to KISSME is 4.3%. Thus, KISSME is able to reduce the required

training effort and to deliver a better performance compared to the other metric learning

methods and the baselines.

4.5.1.3 Additional Benchmarks

Succeeding, KISSME is also studied for the problem of person re-identification across

spatially disjoint cameras and used to compare before unseen object instances on the

INRIA ToyCars dataset. The main intuition is to experimentally validate that KISSME is

general and thus not limited to face recognition.

Person Re-Identification The VIPeR dataset [47] consists of 632 intra-personal image

pairs of two different camera views, captured outdoors. The low-resolution images (48×
128 px) exhibit significant variations in pose, viewpoint and also considerable changes in

illumination, like highlights or shadows. Most of the example pairs contain a perspective

change of about 90 degrees, making person re-identification very challenging. Some

examples are given in Figure 4.5 (a). To compare KISSME to other approaches, the

evaluation protocol defined in [36, 46] is used. Therefore, the set of 632 image pairs is

randomly split into two sets of 316 image pairs each, one for training and one for testing,

and compute the average over several runs. There is no predefined set or procedure

how to sample dissimilar pairs. Hence, dissimilar pairs are generated by randomly

combining images of different persons.
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(a) Example Pairs

S

(b) CMC

Figure 4.5: Person re-identification results on the VIPeR dataset. Example image pairs
are shown in (a). In (b) average Cumulative Matching Characteristic (CMC) curves over
100 runs are plotted. The proposed method (KISSME) slightly outperforms the other
metrics. In light-gray all 100 runs of KISSME are indicated.

To represent the images a rather simple descriptor is compiled. First, the images

are divided into overlapping blocks of size 8× 16. Second, color and texture cues are

extracted. For the color cues the HSV and Lab quantized block mean is extracted per

channel with a stride of 4 × 4. Texture information is captured by LBPs [106]. The

LBP blocks are extracted with a stride of 8× 8. Finally, for the distance metric learn-

ing approaches the concatenated 20,480 dimensional descriptors are projected in a 34

dimensional PCA subspace, although the influence of the PCA dimensionality is not too

critical. Using different dimensionalities for all tested methods reveals that there is no

significant change in performance.

To indicate the performance of the various algorithms Cumulative Matching Char-

acteristic (CMC) curves [141] are reported. These represent the expectation of the true

match being found within the first n ranks. To obtain a reasonable statistical significance

the results are averaged over 100 runs.

In Figure 4.5 (b) the CMC curves are reported for the various metric learning algo-

rithms. Moreover, in Table 4.2 (b) the performance of KISSME is compared in the range

of the first 50 ranks to state-of-the-art person re-identification methods [30, 36, 54, 165].

As can be seen, competitive results are obtained across all ranks. KISSME outperforms

the other methods [36, 46, 118] even though in contrast to them it does not require a

foreground-background segmentation. Further, KISSME is computationally more effi-
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RANK 1 10 25 50

KISSME 19.6% 62.2% 80.7% 91.8%

LMNN [145] 19.0% 58.1% 76.9% 89.6%

ITML [27] 15.2% 53.3% 74.7% 88.8%

LDML [50] 10.4% 31.3% 44.6% 60.4%

MS 16.8% 50.9% 68.7% 82.0%

L2 10.6% 31.8% 44.9% 60,8%

(a)

RANK 1 10 25 50

KISSME 20% 62% 81% 92%

SDALF [36] 20% 50% 70% 85%

DDC [54] 19% 52% 69% 80%

PRDC [165] 16% 54% 76% 87%

KISSME* 22% 68% 85% 93%

LMNN-R* [30] 20% 68% 84% 93%

(b)

Table 4.2: Person re-identification matching rates on the VIPeR dataset. Table (a)
shows the metric learning approaches (average of 100 runs) whereas (b) gives an
overview of the state-of-the-art. To be comparable to LMNN-R we also report the best
run (*).

cient as can be seen in Table 4.1.

ToyCars The LEAR ToyCars [105] dataset consists of 256 image crops of 14 different

toy cars and trucks. The dataset exhibits changes in pose, lighting and cluttered back-

ground. The intention of the database is to compare before unseen object instances of

the known class cars (see Figure 4.6 (a) for illustration). Thus, in testing the task is to

classify if a pair of images shows the same object or not. The training set contains 7

object instances with associated 1,185 similar and 7,330 dissimilar image pairs. The re-

maining 7 object instances are in the test set. The images differ in horizontal resolution.

Thus, these are zero-padded to obtain a canonical image size.
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Figure 4.6: ROC curves on LEAR ToyCars dataset. (a) The task is to decide if two before
unseen object instances of the known class cars are similar or not. (b) KISSME is able to
drop error rates significantly compared to the previous work of Nowak and Jurie [105].

A similar image representation as in the person re-identification experiment is ex-

tracted. Therefore, the images are divided into 30× 30 non-overlapping blocks. Color

cues are captured by HSV and Lab means while texture is described by LBPs [106]. The

global image descriptor is a concatenation of the local ones. Using PCA the descriptor

is projected onto a 50 dimensional subspace.

The experiments on this dataset compare KISSME to the approach of Nowak and

Jurie [105], which builds on an ensemble of extremely randomized trees. The ensemble

quantizes corresponding patch pair differences by enforcing that corresponding patches

of matching pairs yield similar responses. Corresponding patches are located in a local

neighborhood by Normalized Cross Correlation (NCC). In testing the similarity between

an image pair is the weighted sum of corresponding patches that end up in the same

leaf node. The weights are learned by a linear SVM.

In Figure 4.6 ROC curves are plotted which compare KISSME to the work of Nowak

and Jurie [105] and the related metric learning approaches. Further, a standard baseline

is provided with a off-the-shelf linear SVM [35]. Using SVM yields an EER of 81%,

already a reasonable performance. Interestingly, some of the metric learning approaches

are not able to improve over the Euclidean distance. Only LMNN performs similar to

the SVM. The Mahalanobis distance learned of the positive pairs already outperforms
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the approach of Nowak and Jurie [105] and reaches an EER of 89.8%. KISSME boosts

the performance further up to 93.5% at a computation time of 0.04 seconds. Considering

the computation time of [105] with 17 hours (P4-3.4GHz) KISSME once more shows its

benefits in terms of efficiency and effectiveness.

4.5.2 Efficient Retrieval for Large Scale Metric Learning

In this section the aim is to experimentally validate the proposed metric-based hashing

strategy. In particular the focus is to show that by approximate nearest neighbor search

KISSHASH leads to a drastically reduced evaluation effort at virtually no loss in accu-

racy for k-NN classification. In fact, if the intrinsic structure of the data is exploited

by KISSME using hashing the feature representation can be compacted still obtaining

competitive results. First, KISSHASH is evaluated for face verification and identifica-

tion. Please note that for face verification the re-ranking step is not applicable as only

two descriptors are compared. Thus, performance drops are observed in this case. Nev-

ertheless, the experiments are provided for a direct comparison to KISSME. Second,

KISSHASH is additionally evaluated on standard machine learning benchmarks to en-

able a comparison to the related work of locality sensitive hashing methods.

4.5.2.1 Face Verification

In the following, the performance of KISSHASH is demonstrated for face verification

comparing to KISSME on LFW [58] and PubFig [82].

Labeled Faces in the Wild To compare KISSHASH to KISSME once more the restricted

protocol is used. The restricted protocol only allows to consider the equivalence con-

straints given by the similar / dissimilar pairs. No inference on the identity of the sub-

jects, e.g., to sample more training data, is allowed. The result scores are averaged over

a stratified 10 fold cross-validation. Each fold consists of 300 similar and 300 dissimilar

face pairs.

Figure 4.7 shows the results comparing KISSHASH to KISSME for the SIFT based

face representation proposed by Guillaumin et al. [50] and the visual attribute features

of Kumar et al. [82]. In Figure 4.7 (a) KISSHASH using 64 bit codes is compared to

KISSME for SIFT features. The numbers in parentheses denote the mean accuracy at

EER and the standard deviation of the 10 data-folds. The ROC curves clearly show that

the two proposed hashing variants are only an approximation of the original distance
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Figure 4.7: Face verification results comparing KISSHASH to KISSME on the
LFW dataset: In (a)-(b) we report the performance for SIFT features [50] and in (c)-(d)
for the attribute features of [82]. (a),(c) show ROC curves whereas (b),(d) plot the veri-
fication accuracy at EER versus code length. Error bars indicate the standard deviation
of the LFW folds.

metric. Nevertheless, hashing by random hyperplanes (KISSHASH-RH) reaches with

67.75% EER a performance compareable to the Euclidean distance using drastically less

effort for matching. Note that the results of KISSHASH-RH have been averaged over

10 runs as the hashing involves randomization, illustrated in light gray. The standard

deviation over the 10 runs is 1.23%. The hashing by eigen-decomposition of the metric

matrix (KISSHASH-EV) improves considerably over the ranomized hyperplane hashing

and reaches an EER of 78.50%. Further KISSHASH-EV also improves 3.73% over the

Mahalanobis distance of the similar pairs MS and is comparable to LMNN and ITML.
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See Figure 4.2 (a) for further details. Moreover, Figure 4.7 (b) shows the effects of varying

the code length on the verification accuracy at EER. For each method the numbers in

parentheses show the best obtained accuracy at EER and the standard deviation over

the 10 cross-validation folds of the LFW restricted protocol. It can be seen that also very

short codes allow for obtaining reasonable results. In general longer codes deliver better

results although some minor deviations are possible, as for instance for very short codes

for KISSHASH-RH.

Figure 4.7 (c) shows the ROC curves for the attribute based face representation. For

KISSHASH-RH and KISSHASH-EV a compact code length of 16 bits is used. Com-

pared to the code length applied for the SIFT features the codes are shorter since the

attribute features are much lower dimensional. Nevertheless, KISSHASH-RH reaches

the performance of the Euclidean distance whereas KISSHASH-EV is able to match the

performance of the Mahalanobis distance of the similar pairs MS. However, at much

lower computational costs in evaluation. Figure 4.7 (d) also compares the accuracy at

EER versus the code length. For each method the numbers in parentheses show the

best obtained accuracy at EER and the standard deviation over the 10 cross-validation

folds of the LFW restricted protocol. It can be seen that also very short codes allow for

obtaining reasonable results.

Public Figures Face Database To compare KISSHASH to the KISSME baseline the

standard benchmark consisting of a stratified 10 fold cross-validation is used. Each fold

contains 1,000 intra and 1,000 extra-personal pairs. Per fold the pairs are sampled of

14 individuals. Similar to the LFW benchmark individuals that appear in testing have

not been seen before in training. As underlying feature representation once more the

description of visual face traits is used [82].

In Figure 4.8 (a) ROC curves are provided for KISSHASH-RH, KISSHASH-EV and

the baseline methods. The hashing methods use a code length of 16 bits. The re-

sults of KISSHASH-RH are averaged over 10 runs, which are illustrated in light gray.

KISSHASH-RH improves with 74.56% slightly over the Euclidean distance and Maha-

lanobis distance of the similar pairs MS. The performance difference compared to the

Euclidean distance is 2.05%, compared to MS 2.65%. The standard devidation of the

different runs is 1.36%. Interestingly, KISSHASH-EV shows once more better results

for the face verification task. KISSHASH-EV reaches an accuracy of 77.03% at EER.

KISSME reaches with 77.62% the best perfromance, although the performance gap to

KISSHASH-EV is moderate. In Figure 4.8 (b) the face verification accuracy at EER is



74 Chapter 4. Efficient Large Scale Metric Learning and Retrieval for Face Recognition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e(
P

os
iti

ve
(R

at
e

False(Positive(Rate

KISSME((77.62H(±(2.84H)
M

S
(71.91H(±(2.87H)

L2((72.51H(±(2.57H)
KISSHASH−EV((77.03H(±(1.88H)
KISSHASH−RH((74.56H(±(2.88H)

(a) ROC/Attributes

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CodeILength
V

er
ifi

ca
tio

nI
A

cc
ur

ac
y

KISSHASH−EVIR82.50%I±I1.83%M
KISSHASH−RHIR75.00%I±I2.15%M
KISSMEIR77.62%I±I2.84%M

(b) Codelength/Accuracy

Figure 4.8: Face verification results comparing the proposed hashing methods to
KISSME on the PubFig dataset. For all methods the visual attribute features of [82]
are used. (a) For the hashing methods a code length of 16 bits is applied. In (b) the
influence of the code length on the accuracy is studied. Error bars indicate the standard
deviation of the dataset folds.
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Figure 4.9: KISSHASH-RH with short list re-ranking. Comparison of 1-NN classifi-
cation accuracy (%) on Public Figures Face Database (PubFig). (a) recall / precision by
ranking and thresholding classifier scores. Code length of 64 bits, ε = 1. (b) Precision at
full recall vs code length. Error bars indicate the standard deviation of the dataset folds.

compared to the code length.
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Figure 4.10: KISSHASH-EV with short list re-ranking. Comparison of 1-NN classifi-
cation accuracy (%) on Public Figures Face Database (PubFig). (a) recall / precision by
ranking and thresholding classifier scores. Code length of 64 bits, ε = 1. (b) Precision at
full recall vs code length. Error bars indicate the standard deviation of the dataset folds.

4.5.2.2 Face Identification

In the following, results are demonstrated comparing the metric learning with the hash-

ing methods for face identification on the Public Figures Face Database (PubFig) [82].

For the face identification benchmark the data is organized similar to the existing verifi-

cation protocol in 10 folds for cross-validation. Therefore, the images of each person are

split into 10 disjoint sets. The face identification performance is reported in a refusal to

predict style. In that sense, recall means the percentage of samples which have a higher

classifier score than the current threshold. Precision means the ratio of correctly labeled

samples. To train KISSME and the hashes, the needed pairwise labels are generated

from the class labels. In particular, for each sample the k-NNs sharing the class label are

picked to form matching pairs with the sample. Similar to form non-matching pairs the

samples are chosen that have a different class label and invade the k-NN perimeter. Fur-

ther, for all metric learning methods k-NN is applied as classifier. Testing several values

of k revealed that 1-NN classification usually delivers the best results for all methods.

In Figure 4.9 (a) the random hyperplane hashing (KISSHASH-RH-Re) with short

list re-ranking is benchmarked to recent Mahalanobis metric learning methods using

1-NN classification. The number in parentheses denote the precision at full recall and

the standard deviation of the database folds. A code length of 64 bits is used and ε

is fixed to one. The influence of ε on the performance is not too critical. A value of
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one provides a good trade off between accuracy and runtime performance. Thus,
√

N

samples are re-ranked with the original distance after approximate nearest neighbor

search in Hamming space. In this case only 195 of 37,647 training samples have to be

re-ranked. Thus, the method is still efficient. Further, the proposed method generalizes

better than LMNN [145], ITML [27] or LDML [50], which require more computational

effort in evaluation. At full recall the performance difference to LMNN is 3.3%, to LDML

3.4% and to ITML even 6.5%. Further, the method also improves clearly over the linear

SVM over all levels of revall. Comparing KISSHASH-RH to KISSME only a rather little

performance difference of 0.8% remains.

In Figure 4.9 (b) the influence of the code length on the precision at full recall is

studied. For the respective method the numbers in parentheses denote the best obtained

precision at full recall and the standard deviation of the database folds. In particular, the

performance of the hashing with and without short list re-ranking is compared using

code lengths between 8 and 128 bits with ε fixed to one. Intuitively, for both methods

the performance gets better if the code length is increased. Using 16 bit codes the

performance gap between KISSHASH-RH-Re and KISSHASH-RH is about 40%. Also

at a code length of 128 bit a performance gap of more than 10% remains. This clearly

indicates the importance of the short list re-ranking step. The best performance of the

plain hashing (49.15%) is obtained using a code length of 128. In contrast the best

performance of hashing with short list re-ranking (61.29%) is obtained at a bit length

of 80. Even using shorter codes KISSHASH-RH-Re reaches compareable performance

to KISSME. Thus, using the re-ranking step enables to use shorter codes in Hamming

space. This alleviates some of the increased effort induced by the additional matching.

Finally this leads to a better overall performance.

In Figure 4.10 (a) hashing by eigen-decomposition of the metric matrix with short list

re-ranking (KISSHASH-EV-Re) is benchmarked to recent Mahalanobis metric learning

methods using 1-NN classification. Also for the face identification task KISSHASH-

EV reaches slightly better results compared to KISSHASH-RH. In Figure 4.10 (a) it can

be seen that KISSHASH-EV even slightly improves (0.1%) over KISSME, although this

is clearly no systematic improvement as the hashing is an approximation. In Figure

4.10 (b) the influence of the code length on the precision at full recall is illustrated. The

best performance of KISSHASH-EV-Re is reached with 61.78% at a code length of 80

bits. In contrast, KISSHASH-EV reaches at a code lenght of 80 bits a performance of

48.44%.
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4.5.2.3 Machine Learning Databases

In the following, our metric based hashing method is benchmarked on MNIST [62],

USPS [60], LETTER [62] and CHARS74k [10]. The focus is to compare KISSHASH-RH

and KISSHASH-EV to the related state-of-the-art hashing approaches. First, we give a

brief overview of the databases. Second, we compare the performance related to the

evaluation complexity between our method and other hashing approaches.

The MNIST database [62] of hand written digits contains in total 70,000 images in one

train-test split. 60,000 samples are used for training and 10,000 for testing. The images

have a resolution of 28× 28 pixels and are in grayscale. In contrast, the LETTER [62]

database contains a large number of synthesized images showing one of the 26 capital

letters of the English alphabet. The images are represented as 16-dimensional feature

vectors which describe statistical moments and edge counts. Chars74K [10] contains

a large mixed set of natural and synthesized characters. The images comprise one of

the 26 capital or lowercase letters and digits, respectively. Thus, the dataset contains 62

classes. 7,705 characters are cropped of natural images, 3,410 are hand drawn and 62,992

are synthesized. Similar to [163] a color space conversion to grayscale is applied and

each image is resized to 8× 8 pixels. Further, the database is split into one train/test

set where 7400 samples are organized for testing and the rest for training. For MNIST

a dimensionality reduction of the raw features by PCA to a 164 dimensional subspace

is performed. For all other databases the raw data without calculating any complex

features is used, in order to get a fair comparison.

In Figure 4.11 the random hyperplane hashing method is compared to its baseline

on MNIST, LETTER, USPS, and CHARS74k. Therefore, the 1-NN classification error in

relation to the code length is plotted, where the maximum code length is restricted to

64 bits. In particular, the following results are reported: (a) Standard KISSME without

hashing, (b) nearest neighbor search in Hamming space, and (c) nearest neighbor search

in Hamming space with short list re-ranking. For for the re-ranking step ε is fixed to 1,

retrieving O(
√

N) samples, which is around 1% of samples in these cases.

The following discussion focuses on the respective results on MNIST of the random

hyperplane based hashing method, visualized in Figure 4.11 (a). Nevertheless, the rela-

tive results are comparable on the different datasets. The direct nearest neighbor search

in the Hamming space performs initially significantly worse than short list re-ranking.

By increasing the number of codes the performance gap gets smaller. However, ulti-

mately for MNIST a performance gap of 7.58% remains with a code length of 64 bits.

This once more confirms the importance of the re-ranking step. If the short list is kept
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(a) MNIST [62]
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(c) USPS [60]
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Figure 4.11: Comparison of 1-NN classification accuracy (%) on (a) MNIST, (b) LET-
TER, (c) USPS and (d) CHARS74k for KISSHASH-RH. Numbers in parentheses denote
the classification accuracy using a code length of 64 bits.

reasonable sized the computational effort is manageable. Comparing KISSHASH-RH

with re-ranking to KISSME reveals that even with short codes comparable performance

can be obtained. Starting from 16 bits nearly the same performance (−1.55%) is reached

at a much lower computational cost.

In Figure 4.12 the eigenvector hashing method is compared to the KISSME baseline

on MNIST, LETTER, USPS, and CHARS74k. The results on the different databases

are similar to the random hyperplane hashing. The direct nearest neighbor search in

the Hamming space performs initially significantly worse than the short list re-ranking

method. By increasing the number of codes the performance gap gets smaller. However,

ultimately for MNIST a performance gap of 5.38% remains with a code length of 64

bits. In contrast the performance difference between KISSHASH-EV with re-ranking
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(c) USPS [60]
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Figure 4.12: Comparison of 1-NN classification accuracy (%) on (a) MNIST, (b) LET-
TER, (c) USPS and (d) CHARS74k for KISSHASH-EV. Numbers in parentheses denote
the classification accuracy with 64 bits.

and KISSME is only 0,11%.

Next, in Table 4.3 the methods are benchmarked to various state-of-the-art approaches.

In particular, a closer look on different well-established Mahalanobis metric learning

methods and hashing schemes is provided. Comparing KISSME to other metric learn-

ing methods, i.e., ITML, LDMLand LMNN reveals that it is competitive in most cases,

though requiring drastically less training time. Further, the random hyperplane hashing

method as well as the eigenvector hashing have a comparable performance to KISSME,

though drastically reducing the evaluation time. Next, the classification error between

the proposed methods and others is compared and related to their evaluation complex-

ity. For the kernelized hashing approach of [81] the evaluation scales linearly with the
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Methods MNIST USPS LETTER Chars74K

Nearest Neighbors

Nearest Neighbor (1-NN, 3-NN) 2.92 - 3.09 4.88 - 5.08 4.30 - 4.35 17.97 - 19.99

LMNN 3-NN [143, 145] 1.70 4.78 3.54 22.89

ITML 1-NN [27] 2.17 5.23 4.75 17.00

ITML 3-NN [27] 2.02 5.03 4.68 18.54

LDML 1-NN [50] 4.04 9.12 11.25 18.62

LDML 3-NN [50] 3.59 8.27 10.35 20.32

KISSME 1-NN [75] 2.66 6.43 2.83 15.77

KISSME 3-NN [75] 2.36 6.38 2.73 18.64

Locality-sensitive hashing

KISS-HASH-RH 1-NN (64 bit, ε = 1) 2.78 6.28 2.85 16.05

KISS-HASH-EV 1-NN (64 bit, ε = 1) 2.77 6.53 3.25 15.68

KLSH [80, 81] (10,000 kernel samples) 6.15 7.46 7.38 88.76

Image Search f. Learn. Metrics [63] (ε = 0.6) 5.51 - 8.55 -

Spectral Hashing [146] 4.25 - 7.42 26.03

Multidimensional Spectral Hashing [147] 5.27 - 33.67 -

Spherical Hashing [51] (256 bit) 3.19 - 31.4 18.59

Table 4.3: Comparison of classification error rates (%) on MNIST, LETTER and
Chars74k. In particular we provide a closer look on different well-established Maha-
lanobis metric learning methods and further provide additional results for different
locality-sensitive hashing methods.

number of kernel samples S times the kernel complexity Kc: O(SKc). In most cases the

kernel complexity is similar to a distance evaluation, thus comparable to the evalua-

tion of a distance metric. KLSH requires many kernel samples to obtain similar results.

In particular, RBF and learned kernels (ITML) have been tested. The locality-sensitive

hashing approach of [63] scales with O(MD), where M is the length of the short list

of samples generated by approximate search in Hamming space [15]. Even at a lower

value of ε a performance gap remains. A lower value of ε means to retrieve more sam-

ples. Spherical hashing [51] scales with O(AD) where A is the number of anchor points

(matches the code length) where the hyper spheres reside. However, the method does

not match the performance of the proposed methods using a comparable number of

anchor points.
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Recapitulating the different results and relating them to the evaluation complexity of

related works reveals that competitive are obtained results requiring less effort. More-

over, it is clearly beneficial to integrate a metric learning in hashing and to be able to

model different scalings and correlations of the feature space.

4.6 Conclusion

This chapter investigated two main drawbacks of existing Mahalanobis metric learn-

ing methods: High computational effort during (a) training and (b) evaluation. To

overcome these problems an efficient metric learning method (KISSME) and metric-

based hashing scheme (KISSHASH) has been introduced. KISSME allows for learning

a distance metric from simple equivalence constraints. In training based on a statistical

inference perspective a very efficient solution is obtained which is also effective in in

terms of generalization performance. Analog to the KISS principle it is conceptually

simple and valuable in practice. Further, with KISSHASH a hashing scheme based on

KISSME has been introduced. KISSHASH allows for exploiting the learned metric struc-

ture by hashing. This leads to a drastically reduced evaluation effort while maintaining

the discriminative essence of the data. Competitive classification results are obtained,

however, on a significantly reduced computational effort. To show the merits of the

methods several experiments on various challenging large-scale benchmarks have been

conducted, including the real-world face benchmarks LFW and PubFig. On all bench-

marks KISSME is able to match or slightly outperform state-of-the-art metric learning

approaches, while being orders of magnitudes faster in training. On two additional

datasets (VIPeR, ToyCars) the method even outperforms approaches especially tailored

to these tasks. For KISSHASH the experiments showed that in most cases the perfor-

mance of the KISSME baseline is reached while being more efficient at test time. In

addition, comparable or slightly better results than state-of-the-art hashing approaches

are obtained. On PubFig metric learning approaches using by far more data are even

outperformed.





5
Synergy-based Learning of Facial

Identity

In this chapter we address the problem that most face recognition approaches neglect

that faces share strong visual similarities, which can be exploited when learning dis-

criminative models. Hence, we propose to model face recognition as multi-task learning

problem. This enables us to exploit both, shared common information and also individ-

ual characteristics of faces. In particular, we build on our KISS metric learning method,

which has in the previous chapter shown good performance for many computer vision

problems. Our main contribution is twofold. First, we extend KISSME to multi-task

learning. The resulting algorithm supports label-incompatible learning which allows

us to tap the rather large pool of anonymously labeled face pairs also for face identi-

fication. Second, we show how to learn and combine person specific metrics for face

identification improving the classification power.

5.1 Introduction

Between learning in the human visual system and machine learning are essential differ-

ences. Typically, when machine learning techniques learn a specific visual model they

focus on individual characteristics and neglect general concepts or visual commonali-

ties of similar objects. In contrast, the human visual system learns in a more synergistic

way that benefits from commonalities and takes into account prior knowledge. Hence,

for computational face recognition systems it would be beneficial also to exploit such

information.

83
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One popular concept that addresses this demand is transfer learning, which aims

at improving the performance of a target learning task by also exploiting collected

knowledge of different sources [107]. Two related aspects are domain adaptation and

multi-task learning. Domain adaptation tries to bridge the gap between a source domain

with sufficient labeled data to a specific target domain with little or no labels [107]. In

contrast, multi-task learning (MTL) [12] approaches a cluster of similar tasks in paral-

lel. Each task describes a target learning problem and contributes labeled data. The

knowledge transfer between the tasks is then established through a shared intermediate

representation. The basic assumption is that it is easier to learn several hard tasks si-

multaneously than to learn those isolated. In this way underrepresented tasks that have

only a limited number of labeled samples can be handled. Prominent approaches rely

on neural nets [13, 16] (sharing layers) or support vector machines [34] (sharing weight

vectors).

In this chapter, we adapt multi-task learning for real-world, large-scale face recogni-

tion. In order to cope with the real-world challenges we want to incorporate as much

relevant information as possible. In particular, given by similar/dissimilar labeled face

pairs, where we have no access to the actual class labels. These labeled pairs are mainly

used for face verification (deciding if two faces match) and are rather easy to obtain also

on a large scale. For face identification it is not immediately obvious how to make use

of this anonymous information. But these additional face pairs allow us to learn a more

robust measure of face similarity. Multi-task learning then spreads this knowledge be-

tween the tasks. Hereby, to enable meaningful transfer of knowledge, multi-task learn-

ing faces the problem of different label sets. On the one hand side for face identification

the label set consists of class labels while on the other hand side we have only equiv-

alence labels. Thus, one important aspect of multi-task learning is label-incompatible

learning, the support of different label sets for different learning tasks. Particularly, the

successful multi-task adaptation of support vector machines [34] lacks this feature.

Mahalanobis metric learning methods usually operate on the space of pairwise dif-

ferences, thus enabling label-incompatible learning. The method of Parameswaran and

Weinberger [108] extends Mahalanobis metric learning to the multi-task paradigm. Nev-

ertheless, due to the particular optimization it requires class labels and can thus not

benefit from data just labeled with equivalence constraints. Further, it requires compu-

tationally expensive iterations making it impractical for large-scale applications. Hence,

to capitalize on multi-task learning for face recognition, one faces the additional chal-

lenges of scalability and the ability to deal just with equivalence labels.
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To meet these requirements, we extend our KISS learning algorithm presentend in

Chapter 4 to the multi-task paradigm. The resulting algorithm enables label-incompatible

learning as it only relies on pairwise equivalence labels. These are considered as natural

inputs to distance metric learning algorithms as similarity functions basically establish

a relation between pairs of points. In particular, we want to learn specific Mahalanobis

distance metrics for each person. This is inspired by the recent finding of Weinberger

and Saul [143] that especially for large-scale applications better results can be obtained

by learning multiple distance metrics. Also many other learning algorithms cast a com-

plex multi-class problem in series of simpler, often two class, problems, followed by a

voting rule to form the final decision [119]. Thus, inspired by the successful strategy

applied for multi-class support vector machines we intend to learn individual distance

metrics. To demonstrate the merits of our method we compare it to recent multi-task and

metric learning approaches on the challenging PubFig [82] face recognition benchmark.

5.2 Multi-Task Metric Learning for Face Recognition

In the following, we introduce our new multi-task metric learning approach for face

recognition. In particular, we extend the metric learning algorithm (KISSME) presented

in Chapter 4 to the multi-task domain. Compared to other metric learning algorithms

it is well suited to learn multiple distance metrics due to its efficiency in training. We

introduce also a voting scheme that allows for classification using multiple distance

metrics. The overall goal is to combine several person specific metrics to a multi-class

decision which should lead to lower error rates.

5.2.0.4 Multi-Task Metric Learning

The general idea of multi-task learning is to consider T different, but related learning

tasks in parallel. In our case a task is to learn a face verification model for a specific per-

son, and the relation is intuitively given via the shared visual properties of faces. There

are different concepts to realize such a setting. In particular, we adopt the formulation

of Parameswaran and Weinberger [108]. We model the individual metric for each task

t ∈ {1, 2, . . . , T} as combination of a shared metric M0 and a task-specific metric Mt:

d2
t (xi, xj) = (xi − xj)

>(M0 + Mt)(xi − xj) . (5.1)
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Each task defines a subset of task specific samples given by the index set It. Hence,

to adopt the formulation Eq. (5.1) for KISS metric, we have to define a task-specific

subset of similar and dissimilar sample pairs: St =
{
(i, j) ∈ It|yi = yj

}
and Dt ={

(i, j) ∈ It|yi 6= yj
}

. In cases where St and Dt is not given, these sets can be sampled

randomly of the actual class labels. Hence, according to Eq. (4.20) we can estimate task

specific metrics by

Mt =

 1
|St|

∑
(i,j)∈St

Cij

−1

−

 1
|Dt|

∑
(i,j)∈Dt

Cij

−1

. (5.2)

Similarly, by estimating the weighted sum over the individual task specific characteristic

we get the shared or common metric

M0 =

 1
T

T∑
t=1

1
|St|

∑
(i,j)∈St

Cij

−1

−

 1
T

T∑
t=1

1
|Dt|

∑
(i,j)∈Dt

Cij

−1

. (5.3)

Then, the final individual Mahalanobis distance metric is given by

M̂t = M0 + µ Mt . (5.4)

Intuitively, M0 picks up general trends across all tasks and thus models commonalities.

In contrast, Mt models task-specific characteristics. As only free parameter we retain

a balancing factor µ between the task specific metric Mt and the shared metric M0.

Intuitively, the more samples a task contributes the more focus lies on its specific metric.

5.2.0.5 Multi-Task Voting

To fully exploit the power of our multi-task metric learning method for face recognition,

we combine multiple, person specific, metrics into a multi-class decision. However, the

outputs of the different metrics are not necessarily compatible and cannot be compared

directly. A prominent strategy to reconcile classifier outputs is to calibrate them by

fitting a sigmoid curve to a held-out set [116]. Nevertheless, since such an approach

requires a large amount of labeled data, it is inapplicable for our purpose. Another

successful strategy is to assign the class that wins most pairwise comparisons [42], also

referred as max-wins rule.

To adapt this strategy for multi-task metric learning, we assume that the positive
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samples for task t coincidence with the class label xi : yi = t. Then the combination rule

arg max
t

(xi) =

arg max
t

∑
u 6=t

[
I

(
min

j∈It∧yj=t
d2

t (xi, xj) ≤ min
k∈Iu∧yk=u

d2
t (xi, xk)

)

+ I

(
min

j∈It∧yj=t
d2

u(xi, xj) ≤ min
k∈Iu∧yk=u

d2
u(xi, xk)

)] (5.5)

checks if the minimum distance of a given test sample xi to class t is smaller than to

class u. The indicator function

I(x) =


1 if x is true

0 otherwise
(5.6)

scores for class t if this is true. This comparison is done with the individual distance

metric of task t. Further, we also compare the distances under the complementary

distance metric of task u. The basic idea is that if class t scores even under that metric

it is an indicator for class t. Intuitively, the final decision is for the class that wins most

pairwise comparisons.

5.3 Experiments and Evaluations

In the following, we demonstrate the performance of our method on the Public Figures

Face Database (PubFig) [82]. For the intended face identification benchmark we organize

the data similar to the existing verification protocol in 10 folds for cross-validation.

Therefore, we split the images of each individual into 10 disjoint sets. The goals of

our experiments are twofold. First, in Section 5.3.1 we show that multi-task learning

allows us to successfully exploit additional data with anonymous pairwise labels for

face identification. Next, in Section 5.3.2 we show that multi-task learning of person

specific metrics boosts the performance for face identification. In particular, we show

that the power lies in the combination of multi-task learning and the person specific

metrics, as it is not sufficient to learn them off-the-shelf. Further, we compare our

results to standard metric learning and related multi-task learning approaches.
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5.3.1 Inducing Knowledge from Anonymous Face Pairs to Face Identification

First, we show that multi-task learning allows us to transfer general knowledge about

face similarity from anonymous face pairs to face identification. In order to enable a

meaningful transfer of knowledge hereby multi-task learning faces the problem of dif-

ferent label sets. We test a multi-task learning scenario with two learning tasks, one with

pairwise equivalence labels for the face pairs and one with class labels for face identi-

fication. The goal is to show that the additional anonymous face pairs help to improve

the face identification performance. We sample the pairs randomly of the predefined

development split of the dataset, containing 60 people. For the identification task we

use the evaluation set, containing 140 people. Thus, we ensure that the subjects for the

tasks are mutually exclusive. For a given test sample we perform k-NN classification

using a single metric to the 140 classes. Using different values for k revealed that there is

no significant performance change, although simple nearest neighbor assignment leads

to the best performance. Thus, we stick to a simple nearest neighbor assignment.

(a) (b)

Figure 5.1: Benefiting from additional pairwise labels for face identification on the
PubFig dataset: (a) k-NN classification accuracy of KISSME multi-task vs. standard
single-task learning in relation to the amount of training data; (b) relative performance
change per person from single-task to multi-task learning after using one fold for train-
ing. Green indicates positive induction while red indicates a negative induction.

In Figure 5.1 (a) we plot the face identification performance in relation to amount of

data used to train the metric. Testing is done on a held-out set via 10 fold cross-validation.

In each step we increase the number of folds used to train the identification task by one.

As expected, the distance metric trained via multi-task learning (1-MT-KISSME) yields

reasonable results right from the beginning. Obviously, it is able to reuse knowledge of
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the anonymous face pairs. In contrast, the distance metric trained without the additional

pairwise labels (1-KISSME) needs by far more data to reach the same performance. In

Figure 5.1 (b), we compare the relative performance change per person from standard

single-task learning to multi-task learning, after one training fold. In most cases an

improvement can be obtained.

5.3.2 Person specific Metric Learning

Second, we demonstrate the performance of our MTL method to learn person specific

distance metrics. To show the merit of our method we compare it to recent MTL methods

[34, 108] and also benchmark to multi-class support vector machines [14, 21]. We report

the face identification performance in a refusal to predict style. Therefore, we rank and

threshold the classifier scores. In that sense, recall means the percentage of samples

which have a higher score than the current threshold and thus are labeled. Precision

means the ratio of correctly labeled samples.

In Figure 5.2 (a) we compare, as a sanity check, the performance of estimating person

specific metrics via multi-task vs. single-task learning. The MTL method outperforms

the single-task learning over most levels of recall. At full recall the performance differ-

ence is about 4.5%. The main advantage of our MTL method is revealed if we compare

the recognition accuracy per person. With multi-task learning we reach a person ac-

curacy of 63.10% while single-task reaches only 54.08%. Thus, it is favorable to learn

person specific metrics multi-task. In Figure 5.2 (b) we compare the relative performance

change per person. Only for a small number of classes the performance drops slightly

while for the vast number the performance increases.

Next, in Figure 5.2 (c) we benchmark to recent MTL methods, MT-LMNN [108] and

MT-SVM [34]. Both methods are not really able to capitalize on the synergies of the

face identification task. Both methods are outperformed by MT-KISSME over all lev-

els of recall. At full recall the respective performance gain compared to MT-LMNN is

12.4%, compared to MT-SVM 8%. In Figure 5.2 (d) we plot the relative performance

change on person level compared to MT-SVM. Hence, our method is able also to com-

pete with two recent MTL approaches. Compared to the MT-SVM one advantage may

be that MT-KISSME operates in the space of pairwise differences, which eases mean-

ingful transfer of knowledge between the learning tasks. Further, compared to both

competing MTL methods MT-KISSME is able to gain information from pairwise labels.

Finally, in Figure 5.2 (e) we benchmark our method to multi-class support vector ma-

chines. Particularly, the method of Crammer and Singer [21] has shown recent success
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: PubFig face identification benchmark. Comparison of the proposed method
(MT-KISSME) to (a) single-task learning, (c) to other MTL methods, and (e) to SVMs.
Numbers in parentheses denote the precision of the respective method at full recall.
Right row, (b),(d),(f), compares the accuracy per person of the best performing compet-
ing method of the left plot to MT-KISSME.
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also compared to metric learning methods [145]. The standard multi-class one-vs-all

SVM reaches with 58.4% at full recall about the same performance as the MT-SVM.

The method of Crammer and Singer [21] beats this by 3.7%. This may be accounted to

the fact that it attempts to solve a single multi-class optimization problem that is better

suited for unbalanced datasets. Nevertheless, MT-KISSME outperforms the one-vs-all

method by 8.5% and the method of Crammer and Singer by 4.5%.

5.4 Conclusion

In this chapter we presented a synergistic approach to exploit shared common as well

as person specific information for face recognition. By extending Keep It Simple and

Straightforward Metric learning (KISSME) we developed a multi-task learning method

that is able to learn from just equivalence constraints, thus, enabling label-incompatible

learning. Overall, we get a conceptually simple but very effective model, which is scal-

able to large datasets. Further, we showed that learning person specific metrics boosts

the performance for face identification. In particular, we revealed that the power lies in

the combination of multi-task learning and person specific metrics, as it is not sufficient

to learn the metrics decoupled. To show the merits of our method we conducted two ex-

periments on the challenging large-scale PubFig face benchmark. We are able to match

or slightly outperform recent multi-task learning methods and also multi-class support

vector machines.





6
Discriminative Metric and

Prototype Learning for Face

Recognition

In this Chapter, we revisit the topic of evaluation complexity in Mahalanobis metric

learning. The complexity scales linearly with the size of the dataset. This is especially

cumbersome on large scale or for real-time applications with limited time budget. To

alleviate this problem in this chapter we propose to represent the dataset by a fixed

number of discriminative prototypes. In particular, we introduce a new method that

jointly chooses the positioning of prototypes and also optimizes the Mahalanobis dis-

tance metric with respect to these. We show that choosing the positioning of the proto-

types and learning the metric in parallel leads to a drastically reduced evaluation effort

while maintaining the discriminative essence of the original dataset. Moreover, for most

problems our method performing k-nearest prototype (k-NP) classification on the con-

densed dataset leads to even better generalization compared to k-NN classification using

all data.

6.1 Introduction

The large-scale nature of computer vision applications poses several challenges and op-

portunities to the class of Mahalanobis metric learning algorithms. For instance one can

take the chance and learn a sophisticated distance metric that captures the structure of

the dataset, or learn multiple local metrics that better adapt to the intrinsic characteris-

93
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tics of the feature space. On larger datasets this usually leads to lower error rates [143].

In contrast, this is challenged by the computational burden in training and the needed

label effort. To reduce the required level of supervision, algorithms such as [27, 75] have

been introduced that are able to learn from pairwise labels. Others tackle the problem

of time complexity in learning by special optimization techniques [27, 143]. Ultimately,

for many applications the time complexity in learning is not too critical. Nevertheless,

one important aspect that is often neglected is the computational burden at test time.

One inherent drawback of Mahalanobis metric learning based methods is that the

k-NN search in high-dimensional spaces is time-consuming, even on moderate sized

datasets. For real-time applications with limited time budget this is even more critical.

To alleviate this problem, different solutions have been proposed that focus on low di-

mensional embeddings. The resulting space should enable efficient retrieval and reflect

the characteristics of the learned metric. For instance, one can accelerate nearest neigh-

bor search by performing a low dimensional Hamming embedding. This can be done

by applying locality sensitive hash functions directly [63] or on kernelized data [81].

Another strategy is to learn a low-rank Mahalanobis distance metric [143] that performs

dimensionality reduction. Nevertheless, a too coarse approximation diminishes at least

some of the benefits of learning a metric. Further, special data structures as metric ball

trees have been introduced to speed up nearest neighbor search. Unfortunately, there is

no significant time gain for high dimensional spaces.

Another technique is to reduce the number of training samples and introduce spar-

sity in the samples. Ideally, one maintains only a relatively small set of representative

prototypes which capture the discriminative essence of the dataset. This condensation

can be either seen as drawback, as it’s likely to loose classification power, or taken as op-

portunity. In fact, the theoretical findings of Crammer et al. [22] provide even evidence

that prototype-based methods can be more accurate than nearest neighbor classification.

One reason might be that the condensation reduces overfitting. Choosing the position-

ing of the prototypes wisely can lead to a drastically reduced effort while maintaining

the discriminative power of the original dataset.

Addressing challenges and opportunities of larger data sets and applications with

limited time budget, we propose to bridge the gap between Mahalanobis metric learning

and discriminative prototype learning as illustrated in Figure 6.1. In particular, we are

interested in joint optimization of the distance metric with respect to the discriminative

prototypes and also of the positioning of the prototypes. This combination enables us

to drastically reduce the computational effort while maintaining accuracy. Furthermore,
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we provide evidence that in most cases the proposed Discriminative Metric and Pro-

totype Learning (DMPL) method generalizes even better to unseen data compared to

recent Mahalanobis metric k-NN classifiers.

(a) Euclidean (b) Metric

(c) Prototypes (d) Classification

Figure 6.1: Condensating a dataset by discriminative prototypes: Learning the distance
metric (b) and the positioning of the prototypes (c) in parallel allows to drastically re-
duce the evaluation effort while maintaining full discriminative power. With our method
k-nearest prototype classification results improve even over k-NN classification for most
problems (d).

The rest of this chapter is structured as follows: In Section 6.2 we give a brief

overview of related work in the field of Mahalanobis metric and prototype learning.

Succeeding, in Section 6.3 we describe our Discriminative Metric and Prototype Learn-

ing (DMPL) method as an alternating optimization problem. Detailed experiments on

standard machine learning datasets and on the challenging PubFig [82] face recognition

benchmark are provided in Section 6.4.
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6.2 Related Work

Compared to other classification models Mahalanobis Metric Learning provides with

k-NN search not only reasonable results but is also inherently multi-class and directly

interpretable, based on the assigned neighbors. Several different methods (e.g., [145],

[27], or [50]) have been proposed that show good results for many real world problems.

An overview is given in Chapter 4.

A particular successful instance of this class of algorithms is the approach of Wein-

berger et al. [143, 145], which aims at improving k-NN classification by exploiting the

local structure of the data. It mimics the non-continuous and non-differentiable classi-

fication error of the k-NN scheme by a convex loss function. The main idea bases on

two simple intuitions. First, the k-NNs of each sample that share the class label (tar-

get neighbors) should move close to each other. Second, no differently labeled sample

should invade this local k-NN perimeter plus a safety margin. This safety margin al-

lows for focusing on samples near the local k-NN decision boundary and ensures that

the model is robust to small amounts of noise.

Prototype methods such as learning vector quantization (LVQ) share some of the

favorable characteristics of Mahalanobis metric learning. They deliver intuitive, inter-

pretable classifiers based on the representation of classes by prototypes. The seminal

work of Kohonen [73] updates prototypes iteratively based on a clever heuristic. A data

point attracts the closest prototype in its direction if it matches the class label. Vice-

versa it is repelled if it shows a different class label. Various extensions have been pro-

posed that modify the original update heuristic. For instance, updating both the closest

matching and non-matching prototype or restricting the updates close to the decision

boundary. Otherwise LVQ can show divergent behavior.

Seo and Obermayer [125] explicitly avoid the divergent behavior by an underlying

optimization problem. The main idea is to treat the prototypes as unit size, isotropic

Gaussians and maximize the likelihood ratio of the probability of correct assignment ver-

sus the total probability in the Gaussian mixture model. The resulting robust learning

scheme updates only prototypes close to the decision boundary by incorrectly classified

samples. Also, the work of Crammer et al. [22] derives a loss-based algorithm for proto-

type positioning based on the maximal margin principle. LVQ arises as special case of

this algorithm. Remarkably, the authors provide evidence that prototype methods fol-

low max-margin principles. However, for this class of algorithms classification is solely

based on a predefined metric.
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Therefore, to alleviate this issue variants have been proposed that learn some pa-

rameters of the distance function. For instance, Parametric Nearest Neighbor (P-NN)

and its ensemble extension (EP-NN) [163] learn weights on the Euclidean distance func-

tion. Bonilla and Robles-Kelly [7] propose a probabilistic discriminative generalization

of vector quantization. They jointly learn discriminative weights on soft-assignments to

prototypes and further the prototype positions. Nevertheless, as these approaches learn

only restricted parameters of the distance function these may miss different scalings or

correlations of the features.

In contrast to these previous works we want to exploit a more general metric struc-

ture. In particular, we are interested in improving runtime and classification power by

combining the favorable characteristics of Mahalanobis metric learning and prototype

methods. Our method integrates a large margin formulation with focus on samples

close to the decision boundary. Further, it naturally integrates with k-NN, which may

be in some situations the favorable choice over nearest neighbor assignment.

6.3 Discriminative Mahalanobis Metric and Prototype Learning

In the following, we derive a new formulation that jointly chooses the positioning of

prototypes and also optimizes the distance metric with respect to these. This allows

us to exploit the global structure of the data (via metric) and to drastically reduce the

computational effort during evaluation (via prototypes). Finally, this reduces evaluation

time and improves k-NP classification.

6.3.1 Problem Formulation

For the following discussion let us introduce a training set X = {(x1, y1) , . . . , (xN , yN)},
with N samples xi ∈ RD and corresponding labels yi ∈ {1, 2, . . . , C}. Let Z = {(z1, y1) , . . . , (zK, yK)}
correspond to a set of K prototypes. Then, the squared Mahalanobis distance between a

data sample xi and a prototype zk is defined as

d2
M(xi, zk) = (xi − zk)

>M(xi − zk), (6.1)

where M � 0 is a symmetric positive semidefinite matrix. Our goal is to estimate the

metric matrix M and the prototypes {zk}K
1 in parallel. The idea to fuse metric and pro-

totype learning is general and can be adapted to various Mahalanobis metric learning

methods. In particular, we adopt ideas of LMNN [145] and locally establish a perimeter
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surrounding each data sample. Prototypes with different class label should not invade

this perimeter plus a safety margin. This behavior can be realized by minimizing the

following energy:

εi(M, {zk}K
k=1) = (1− µ)

∑
j i

d2
M(xi, zj) (6.2)

+µ
∑
j i

∑
l

(1− yil)ξijl(M),

where j  i indicates that zj is a target prototype of sample xi and µ ∈ [0, 1] is a

weighting factor. The first term attracts target prototypes zj while the second term

emits a repelling force on differently labeled prototypes zl that invade the perimeter.

We refer to these invaders as impostor prototypes. Note that the pairwise label yil is

zero if yi 6= yl and one otherwise.

If a prototype invades the local perimeter plus margin is monitored by

ξijl(M) =
[
1 + d2

M(xi, zj)− d2
M(xi, zl)

]
+

, (6.3)

where [a]+ = max(a, 0) is the hinge loss. It activates only if the prototype is closer to the

sample xi than the target prototype zj plus margin. Finally, the overall energy function

is a sum of the local contributions:

ε(M, {zk}K
k=1) =

N∑
i=1

εi(M, {zk}K
k=1). (6.4)

In order to minimize the energy function we use an alternating optimization based

on gradient descent w.r.t. the prototype positions {zk}K
k=1 and the distance metric M.

At each iteration we take a sufficiently small gradient step and monitor boundary con-

ditions as M � 0. In the following, we derive alternating update rules in terms of

prototypes and the metric matrix.

6.3.2 Learning Prototypes

First, we derive the update rules w.r.t. to the prototype locations. As the particular

role of an individual prototype as target or impostor is ambiguous on global scope we

express the gradient
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∂ε(M, {zk}K
k=1)

∂zk
=

N∑
i=1

∂εi(M, {zk}K
k=1)

∂zk
(6.5)

as sum over the (unambiguous) gradient contribution of each data sample xi on the

respective prototype zk. A prototype can be a target neighbor (k = j), an impostor (k =

l), or simply irrelevant as too far away. Therefore, we specify the gradient contribution

of a sample on a prototype as follows:

∂εi(M, {zk}K
k=1)

∂zk
=



∂εi(M,{zk}K
k=1)

∂zj
if k=j

∂εi(M,{zk}K
k=1)

∂zl
if k=l

0 otherwise.

(6.6)

Taking into account that

∂d2
M(xi, zk)

∂zk
= −2(xi − zk)

>M (6.7)

we can re-write the gradients defined in Eq. (6.6). Substituting Eq. (6.7) into Eq. (6.6) for

a target prototype (k = j, attraction force) we get

∂εi(M, {zk}K
k=1)

∂zj
= (1− µ)

∑
j i

−2(xi − zj)
>M (6.8)

+ µ
∑

l s.t. (i,j,l)∈I
−2(xi − zj)

>M,

where I =
{
(i, j, l)|ξijl > 0

}
is the set of active sample-impostor triplets. Similarly, we

get

∂εi(M, {zk}K
k=1)

∂zl
= − µ

∑
l s.t. (i,j,l)∈I

−2(xi − zl)
>M (6.9)
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for an impostor prototype (k = l, repelling force). Finally, we can specify the iterative

update rule at iteration t for the prototypes as

z(t+1)
k = z(t)k − η

∂ε

(
M(t),

{
z(t)k

}K

k=1

)
∂z(t)k

, (6.10)

where η denotes the learning rate. Reasonable choices for the initial prototypes are all

variants of clustering algorithms such as k-means or using training samples as initial-

ization. We emphasize that compared to the update rules of LVQ or P-NN [163] our

formulation is more general and natively integrates in k-NP classification. Further, it

accounts for different scalings and correlations of the feature space.

6.3.3 Distance Metric Learning

Next, we derive the update rule w.r.t. the distance metric in terms of the local con-

tribution of each sample to its neighboring prototypes. Hence, the derivative can be

expressed as

∂ε(M, {zk}K
k=1)

∂M
=

N∑
i=1

∂εi(M, {zk}K
k=1)

∂M
. (6.11)

To estimate M, gradient descent is performed along the gradient defined by the set

of active sample-impostor triplets I . We can write the gradient as

∂εi
(

M, {zk}K
k=1

)
∂M

= (1− µ)
∑
j i

Cij (6.12)

+ µ
∑

(j,l) s.t. (i,j,l)∈I

(
Cij − Cil

)
,

where Cik denotes the outer product of pairwise differences. This is the gradient of the

distance function d2
M:

Cik = (xi − zk)(xi − zk)
> =

∂d2
M(xi, zk)

∂M
. (6.13)

Eq. (6.12) conceptually tries to strengthen the correlation between the sample and
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target prototypes while weakening it between the sample and impostor prototypes. Fi-

nally, we can specify the iterative update rule at iteration t as

M(t+1) = M(t) − η

∂ε

(
M(t),

{
z(t)k

}K

k=1

)
∂M(t)

. (6.14)

Initially, we start with the Euclidean distance (M = I). Note that after each iteration

we check if M induces a valid pseudo-metric. To satisfy metric conditions we use a

projection operator similar to [52] by back-projecting the current solution on the cone of

positive semidefinite (p.s.d.) matrices.

6.4 Experiments

To show the broad applicability of our method we conduct experiments on various

standard benchmarks with rather diverse characteristics. Further, we study the problem

of large-scale face recognition in unconstrained environments on the Public Figures Face

Database [82]. The goals of our experiments are twofold. First, we want to show that

with a drastically reduced prototype set we get comparable or even better results than

related work. Second, we want to prove that we are more efficient in evaluation. This is

clearly beneficial for large scale or real-time applications.

6.4.1 Machine Learning Databases

In the following, we benchmark our proposed method on MNIST [62], USPS [60], LET-

TER [62] and CHARS74k [10]. First, we give a brief overview of the databases. Second,

we compare our method Discriminative Metric and Prototype Learning (DMPL) to sev-

eral baselines such as learning only the prototypes or the distance metric. Finally, we

compare the performance related to the evaluation complexity between our method and

state-of-the-art approaches.

The MNIST database [62] of hand written digits contains in total 70,000 images in

one train-test split. 60,000 samples are used for training and 10,000 for testing. The

images have a resolution of 28 × 28 pixels and are in grayscale. Similarly USPS [60]

contain grayscale images of hand written digits with a resolution of 16× 16 pixels. 7,291

images are organized for training and 2007 images for testing.

In contrast, the LETTER [62] database contains a large number of synthesized images

showing one of the 26 capital letters of the English alphabet. The images are represented
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as 16 dimensional feature vector which describes statistical moments and edge counts.

Chars74K [10] contains a large mixed set of natural and synthesized characters. The

images comprise either one of the 26 capital or lowercase letters and digits. Thus, the

dataset features 62 classes. 7,705 characters are cropped of natural images, 3,410 are

hand drawn and 62,992 are synthesized. Similar to [163] we apply a color space conver-

sion to grayscale and resizes each image to 8× 8 pixels. Further, the database is split into

one train-test set where 7400 samples are organized for testing and the rest for training.

For MNIST we perform a dimensionality reduction of the raw features by PCA to a

164 dimensional subspace, to make the learning more tractable. For all other databases

we use the raw data without calculating any complex features, in order to get a fair

comparison.

In Figure 6.2 we compare our method (DMPL) to baseline approaches on the respec-

tive benchmarks. Therefore, we plot the classification error in relation to the number of

prototypes. In particular, we report the following results: The direct assignment of the

k-means cluster label, thus ignoring discriminative information in learning at all. Sec-

ond, we compare to training standard LMNN on the prototypes. Here, the main goal

is to stress the difference between optimizing for k-NP classification or k-NN classifica-

tion. Third, we compare to only tuning the positioning of the prototypes, referred as

k-Nearest Prototype Learning (kNPL). Finally, we optimize only the distance metric as-

suming fixed prototypes, referred as Large Margin Nearest Prototype (LMNP) learning.

For the following discussion we focus on the respective results on MNIST visu-

alized in Figure 6.2 (a), although the relative results are comparable on the different

datasets. As expected LMNN and k-means perform initially worse than the prototype

based methods. In case of LMNN the performance gap is rather big. By increasing

the number of prototypes the gap gets smaller as the k-means centroids behave more

similar to the actual data samples. However, ultimately for MNIST a performance gap

of about 4.5% remains. Comparing LMNN to LMNP reveals that it is beneficial to opti-

mize the distance metric in respect to the prototypes. The drop in terms of classification

error is about 4% with 100 prototypes. Interestingly, k-means is more competitive com-

pared to LMNN right from the beginning. Nevertheless, it is outperformed by both,

kNPL and also LMNP. Comparing the baselines to our discriminative metric and proto-

type learning (DMPL) method reveals that the power lies in the combination of distance

metric learning and prototype methods. DMPL outperforms LMNN by roughly 4.5%

and k-means by 1.3%. As MNIST is a rather competitive dataset this is a reasonable

performance gain.
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Methods MNIST USPS LETTER Chars74K

Protoype Methods
DMPL 1-NP (40 prototypes) 2.13 5.68 3.13 19.81
DMPL 1-NP (100 prototypes) 1.83 4.93 2.48 13.99
DMPL 3-NP (200 prototypes) 1.66 4.83 2.50 14.05
Parametric NN (40 prototypes) [163] 3.13 7.87 6.95 29.46
Ensemble of P-NN (800 prototypes) [163] 1.65 4.88 2.90 19.53

Nearest Neighbors
Nearest Neighbor (1-NN, 3-NN) 2.92 - 3.09 4.88 - 5.08 4.30 - 4.35 17.97 - 19.99
LMNN 1-NN [143, 145] 2.09 4.73 2.93 17.07
LMNN 3-NN [143, 145] 1.70 4.78 3.54 19.08
ITML 1-NN [27] 2.17 5.23 4.75 17.00
ITML 3-NN [27] 2.02 5.03 4.68 18.54
LDML 1-NN [50] 4.04 9.12 11.25 18.62
LDML 3-NN [50] 3.59 8.27 10.35 20.32
KISSME 1-NN [75] 2.66 6.43 2.83 15.77
KISSME 3-NN [75] 2.36 6.38 2.73 18.64

Support Vector Machines
Linear [35] 8.18 8.32 23.63 35.08
Linear + EFM (Intersection kernel) [136] 9.11 8.12 8.22 29.08
Kernel [14, 21, 134] 1.36 - 1.44 4.24 - 4.58 2.12 - 2.42 16.86
SVM-KNN [161] 1.66 4.29 - -
LA-RANK [8] 1.41 4.25 2.80 -

Locally linear classifiers
Lin. SVM + LCC (4,096 anchor p.) [140, 159, 160] 1.64 - 2.28 4.38 4.12 20.88
Lin. SVM + DCN (L1 = 64,L2 = 512) [88] 1.51 - - -
Local Linear SVM (100 anchor p.) [83] 1.85 5.78 5.32 25.11
LIB-LLSVM + OCC [162] 1.61 3.94 6.85 18.72
ALH [154] 2.15 4.19 2.95 16.26

Locality-sensitive hashing
KLSH (10,000 kernel samples) [80, 81] 6.15 5.68 7.38 88.76
Fast Image Search for Learned Metrics (ε = 0.6) [63] 5.51 5.53 8.55 -
WTA [153] 4.59 9.92 8.03 15.64
Spectral Hashing [146] 4.25 8.72 7.42 26.03
Multidimensional Spectral Hashing [147] 5.27 13.35 33.67 -
Spherical Hashing [51] 2.22 5.13 19.00 16.65
LSH [44] 2.92 5.63 5.03 20.01

Others
BPM+MRG [142] - 6.10 10.50 -

Table 6.1: Comparison of classification error rates on MNIST, USPS, LETTER and
Chars74k. Our method (denoted DMPL) outperforms several state-of-the-art ap-
proaches while being more efficient. With 200 prototypes we improve even over
LMNN which requires the full dataset for classification. The top performing method
of each category is highlighted. K-NP refers to the number of prototypes used for clas-
sification.
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(d) CHARS74k [10]

Figure 6.2: Benchmark of our proposed method (DMPL) to baseline approaches on
MNIST, USPS, LETTER and Chars74k: Compared to the main paper the figure shows
also the results for USPS and LETTER. The baselines are K-Nearest Prototype Learning
(kNPL, Eq. 10), Large Margin Nearest Prototype (LMNP, Eq. 14) learning, k-means and
plain LMNN [144]. We compare the 1-NP classification error in relation to the number
of prototypes per class. The numbers in parenthesis denote the classification error with
100 prototypes per class.

DMPL vs . . . LMNN [145] SVM [35] LLC [140, 159, 160] LL-SVM [83] P-NN [163] EP-NN [163] FSLM [63]

10
0 Rel. Compl. 60 1

100 40 1 1
2.5 8 1.94

Rel. Error + 0.13% - 6.35% - 0.45% to + 0.19% - 0.02% - 1.30% + 0.18% - 3.68%

20
0 Rel. Compl. 30 1

200 20 1
2

1
5 4 0.97

Rel. Error - 0.05% - 6.52% - 0.62% to + 0.02% - 0.19% - 1.47% + 0.01% - 3.86%

Table 6.2: Relative comparison of the evaluation complexity and the difference of
classification errors using MNIST [62]. We compare DMPL 1-NP with 100 and DMPL 3-
NP with 200 prototypes vs related state-of-the-art. For instance, comparing DMPL 3-NP
to LMNN with 200 prototypes DMPL is 30 times faster and has a 0.05 percentage points
lower classification error.



6.4. Experiments 105

Next, in Table 6.1 we benchmark our method to various state-of-the-art approaches.

These include recent local linear methods, support vector machines, nearest neighbor

and prototype based methods. Further, Table 6.2 gives a relative comparison of the

evaluation complexity of selected methods and their classification error on MNIST. The

performance comparison between local linear methods as LL-SVM [83] and prototype

methods is especially interesting as a nearest prototype classifier is essentially a local lin-

ear classifier. The decision boundaries are perpendicular to the connection lines between

the prototypes.

The first important finding is that DMPL outperforms methods that either use a

predefined or learned metric even though being more efficient. Compared to vanilla

k-NN search with plain Euclidean distance the main advantage is the ability to model

different scalings and correlations of the feature space. Further, using less prototypes

DMPL improves over a recent prototype based method [163] that learns only a rele-

vance weighting of the features. One advantage is that DMPL is able to account for

different correlations of the feature space. Compared to LMNN the flexibility remains

to discriminatively adapt the positioning of the prototypes.

Second, like DMPL locality sensitive hashing based approaches focus on efficient

retrieval. Nevertheless compared to our method they trade off classification power for

efficiency. The results show that kernelized hashing needs a large number of kernel sam-

ples to obtain comparable results. Standard LSH approaches need to consider a large

number of samples for exact search, diminishing at least some of the speed advantages.

Finally, compared to kernel SVMs our method is outperformed only slightly while

being able to perform classification with a fixed time budget. For kernel SVMs it is

known that the number of support vectors scale linearly with the size of the dataset.

Local linear methods such as LL-SVM [83] bypass this issue. Interestingly, they share

our computational costs. On MNIST LL-SVM matches our performance, however on

USPS and LETTER we are able to improve over LL-SVM. Only local linear methods

using a much larger number of anchor points are able to improve over our method.

Recapitulating the different results and relating them to the evaluation complexity

of related works it reveals that we get competitive results and are more efficient.

6.4.2 Public Figures Face Database

In the following, we demonstrate our method for face identification on the Public Fig-

ures Face Database (PubFig) [82]. To represent the faces we use the description of visual

face traits [82]. They describe the presence or absence of 73 visual attributes, such as
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Figure 6.3: Face identification benchmark on the PubFig database [82]: The data is or-
ganized in 10 non-overlapping folds for cross-validation. (a) Precision / Recall curves by
ranking and thresholding classifier scores. Numbers in parenthesis denote the precision
and std. dev. at full recall. (b) Difference of precision per person between DMPL and
LMNN.

gender, race, hair color etc. Further, we apply a homogeneous χ2 feature mapping [136].

For the face identification benchmark we organize the data similar to the existing veri-

fication protocol in 10 folds for cross-validation. Therefore, we split the images of each

individual into 10 disjoint sets.

In Figure 6.3 (a) we benchmark our method using 100 prototypes per class to recent

Mahalanobis metric learning methods. We report the face identification performance in
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a refusal to predict style. In that sense, recall means the percentage of samples which

have a higher classifier score than the current threshold. Precision means the ratio of

correctly labeled samples.

In particular, we show that DMPL generalizes better than LMNN [145], ITML [27]

or LDML [50] which require on the full training set for classification. At full recall

the performance difference to LMNN is 6.00%. Further, comparing the results to the

baseline approaches kNPL and LMNP reveals once more that the power lies in the

combination of metric learning and prototype learning. In Figure 6.3 (b) we compare the

relative change in classification accuracy per person between our method and LMNN.

Only for a small number of classes the performance drops slightly while for the vast

number the performance increases. Thus, there is no bias in terms of overrepresented

classes. Intuitively, one interpretation is that the fixed number of prototypes helps to

compensate for overfitting.

6.5 Conclusion

In this chapter we presented a novel method to condense a dataset to a fixed number of

discriminative prototypes with application to face recognition. In particular, we jointly

choose the positioning of prototypes and also optimize the Mahalanobis distance met-

ric with respect to these. This leads to a drastically reduced effort at test time while

maintaining the discriminative essence of the original dataset. Our method performing

k-nearest prototype classification on the condensed dataset leads to even better general-

ization compared to k-NN classification. To show the merit of our method we conducted

several experiments on various challenging large-scale benchmarks. On all benchmarks

we are able to compare to or slightly outperform state-of-the-art approaches, while be-

ing more efficient at test time. On the Public Figures Face Database we even outperform

metric learning approaches using by far more data.
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Conclusion

In this thesis we addressed limitations of traditional learning strategies for real-world

face recognition. In real-world situations imaging conditions as diversity in viewpoint,

lighting, clutter or occlusion severely lower the recognition performance. A promising

class of machine learning algorithms is Mahalanobis metric learning, which has recently

demonstrated competitive results for a variety of face recognition tasks. Real-world face

recognition more and more becomes a large-scale task, in a sense that image acquisition

devices are omnipresent in our daily life. Thus, more and more photos are taken every

day that need to be processed, where often a human face is the object of interest. As data

grows several challenges and opportunities are posed to computational face recognition

algorithms despite the recognition challenge. First, a main criterion for the applicability

of machine learning algorithms is the scalability in terms of learning, evaluation costs

and also the needed effort to obtain labels and annotations. Scanning web-scale data sets

of images containing millions of faces call for efficient search and retrieval strategies,

where efficient algorithms are clearly beneficial. Second, to benefit from the available

data in learning face recognition models there is the need for sophisticated machine

learning methods that exploit the special characteristics of faces.

7.1 Discussion

Addressing the limitations of traditional Mahalanobis metric learning approaches in

this thesis we developed tools that enable single-image real-world face recognition on

large-scale. In particular, we focused on scalable algorithms that allow for efficient

training, evaluation and require less labeling effort.

To efficiently train face verification and identification models we introduced in Chap-

109
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ter 4 our Keep It Simple and Straightforward Metric (KISSME) learning method. Typ-

ically, learning Mahalanobis metrics requires often to solve complex and thus compu-

tationally very expensive optimization problems. Further, for many scenarios it is in-

feasible or simply too laborious to specify fully supervised labels. Instead, it is easier

to specify labels in form of equivalence constraints. Our proposed algorithm, KISSME,

is a simple though effective strategy to learn a distance metric from equivalence con-

straints, based on a statistical inference perspective. In contrast to existing methods

KISSME does not rely on complex optimization problems requiring computationally ex-

pensive iterations. We showed in extensive experiments and evaluations that KISSME is

able to compete with the state-of-the-art in Mahalanobis metric learning for various

tasks. However, as main benefit, it is orders of magnitudes faster in training than com-

parable methods. Of course for face recognition the recent state-of-the-art on LFW [58]

provides better results but also requires considerably more domain knowledge, e.g.,

pose specific classifiers or an auxiliary identity set of faces.

To speed-up the evaluation for Mahalanobis metric learning for face recognition, we

addressed the problem of efficient k-NN classification. In particular, we introduced two

methods. First, in Chapter 4 we proposed a metric-based hashing strategy, allowing for

both, efficient learning and evaluation. In fact, we showed that if the intrinsic structure

of the data is exploited by the metric in a meaningful way, using hashing we can compact

the feature representation still obtaining competitive results. Second, in Chapter 6 we

proposed to represent the dataset by a fixed number of discriminative prototypes. In

particular, we introduced a new method termed Discriminative Metric and Prototype

Learning (DMPL) that jointly chooses the positioning of prototypes and also optimizes

the Mahalanobis distance metric with respect to these. We showed that choosing the

positioning of the prototypes and learning the metric leads to a drastically reduced

effort while maintaining the discriminative essence of the original data. To show the

merit of DMPL we conducted several experiments on various challenging benchmarks.

We were able to compete with state-of-the-art local linear and prototype methods while

being more efficient in evaluation. For face identification we even outperform metric

learning approaches requiring the full training set for classification.

In Chapter 5, we addressed the problem, neglected by most face recognition ap-

proaches, that faces share strong visual similarities. This can be exploited when learn-

ing discriminative models. Hence, we proposed to model face recognition as multi-task

learning problem, which enables us to exploit both, shared common information and

also individual characteristics of faces. In particular, we extended KISSME to multi-task
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learning. The resulting algorithm supports label-incompatible learning which allows us

to use the rather large pool of anonymously labeled face pairs to learn a more robust

distance measure. Second, we showed how to learn and combine person specific metrics

for face identification improving the classification power.

In a face recognition pipeline face detection and landmark extraction are crucial

preprocessing steps that heavily influence the final face recognition performance. Espe-

cially for face detection and landmark localization recent works rely heavily on machine

learning algorithms using massive amounts of data. Thus, ultimately a key step for face

detection is also the availability of training data in large-scale. Therefore, we proposed

in Chapter 3 our large-scale, real-world database termed Annotated Facial Landmarks in

the Wild (AFLW). Once having introduced AFLW we showed that existing face detectors

are not always limited by their models but by the available training data. In particular,

we were able to achieve a drastically increased face detection performance, using a stan-

dard algorithm [138] with standard features [87]. Moreover, we outperformed sophis-

ticated state-of-the-art methods on the Face Detection Dataset and Benchmark (FDDB)

[64].

Further, in Chapter 2 we briefly reviewed related works in classical and real-world

face recognition. In particular, we discussed recent methods that focus on appropri-

ate representations and sophisticated machine learning algorithms that are able to deal

real-world challenges. Further, face-specific recognition strategies have been discussed

that use an auxiliary set of faces for improved matching or sophisticated alignment

strategies.

7.2 Future Work

If we recapitulate our contributions and put them into context it is obvious that some

issues remain open that offer interesting perspectives for future research. Revisiting the

real-world face recognition review in Chapter 2 it becomes obvious that also our meth-

ods would benefit of an auxiliary set of faces similar to [156]. In particular, the auxiliary

set of faces could be used to predict the appearance of one face under different pose or

illumination settings. This could allow for better handling of face pose or illumination

changes. The metric for associating one face to a similar face of the gallery set could be

learned. Another interesting aspect would be to use different learned-metrics for dif-

ferent face regions, similar to [23]. In our current work we artificially limited ourselves

to a single feature type for representing faces. Clearly, it would be beneficial to ex-
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tract and blend together multiple complementary feature types, e.g., [115]. Concerning

our work on Mahalanobis metric learning it would be beneficial to derive a version of

KISSME allowing for kernelization of the metric learning problem. This could be favor-

able in situations where dimensionality reduction would result in a loss of information.

Further, extending KISSME for multiple-instance and / or semi-supervised learning

should be fairly straight forward and would offer many new fields of application. For

Discriminative Metric and Prototype Learning we have to fix a priori the number of pro-

totypes. This number might not be optimal for all classes in a setting where the number

of samples is not balanced. Therefore, future work should investigate the possibility

of a dynamic number of prototypes. Concerning the promising face detection results

presented in Chapter 3 future work should deal with training a multi-view detector tree

similar to [56]. Our Annotated Facial Landmarks in the Wild database contains enough

non-frontal face samples for this task.

Addressing all contributions and limitations of this thesis real-world face recognition

remains still challenging. However, this thesis provides promising results in terms of

scalability of Mahalanobis metric learning algorithms allowing for efficient training and

evaluation of face recognition models.
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