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wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Unterschrift)

STATUTORY DECLARATION

I declare that I have authored this thesis independently, that I have not used other than
the declared sources / resources and that I have explicitly marked all material which has
been quoted either literally or by content from the used sources.

Graz, the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(Signature)



i

Kurzfassung

Verbindungen mit dem lokalen Netzwerk, oder sogar mit dem Internet, von eingebet-
teten Geräten nehmen ständig zu. Gründe dafür sind zum Beispiel erweiterte Funk-
tionalitäten oder Strategien eines Geräts, wenn es zusätzliche Information von anderen
Geräten erhalten kann, oder aber bequemere Bedienung oder Wartung über einen Remote-
Wartungstunnel. Von einem Security Standpunkt aus betrachtet, stellen diese Verbindun-
gen der Geräte einen möglichen Angriffspunkt dar. Wenn ein Angreifer es schafft zum
Beispiel einen Remote-Wartungstunnel zu übernehmen, dann kann er die Funktionalität
des Geräts beeinträchtigen. Das ist insbesondere gefährlich, wenn das Gerät eine perso-
nensicherheitsrelevante Funktion erfüllt. Dies sind Funktionen, welche eine Gefahr für die
Gesundheit oder das Leben eines oder mehrerer Menschen darstellen. Wenn ein Angrei-
fer ein solches Gerät attackiert, dann ist solch ein Angriff personensicherheitsrelevant.
Dennoch beschäftigen sich Zertifizierungsorganisationen und Standards für personensi-
cherheitsrelevante Geräte nicht mit bösartigen Angriffen und Attacken. Diese Standards
bieten lediglich Richtlinien zur Personensicherheit an. Sie stellen allerdings keine detail-
lierten Herangehensweisen um diese Richtlinien zu erreichen, insbesondere nicht unter
Berücksichtigung von bösartigen Angriffen und Attacken, zur Verfügung.

Diese Arbeit präsentiert eine Herangehensweise zur Entwicklung von personensicher-
heitskritischen Geräten unter Berücksichtigung von Informationssicherheit (bösartige At-
tacken und Angriffe). Die Herangehensweise basiert auf der Verwendung von Design Pat-
terns speziell entwickelt für personensicherheitskritische Systeme. Diese Design Patterns
wurden aus der Literatur gesammelt und aus dem IEC 61508 Personensicherheitsstan-
dard erhalten. Um Nachweise über entwickelte Personensicherheitsmaßnahmen zu geben,
sind die Design Patterns mit Diagrammen ausgestattet, welche die Sicherheitsmaßnahmen
die bei Anwendung des Patterns eingesetzt werden strukturiert präsentieren. Für diese
Diagramme wurde Goal Structuring Notation (GSN) verwendet. Die GSN Diagramme
der Patterns setzen das Personensicherheitsziel des Systems in Verbindung mit konkreten
Maßnahmen zu dessen Implementierung. Diese Maßnahmen beruhen auf Methoden, wel-
che explizit im IEC 61508 Standard vorgeschlagen werden. Die Patterns beinhalten also
eine direkt auf dem IEC 61508 Standard beruhende Argumentation für die Personensi-
cherheit. Aus Sicht der Informationssicherheit sind die Patterns ebenfalls mit einem GSN
Diagramm ausgestattet, welches zeigt warum das System gegen Angriffe sicher ist. Dazu
wurden für die Patterns mögliche Bedrohungen mit der STRIDE Security Analyse fest-
gestellt. Bedrohungen, welche die personensicherheitskritische Funktionalität beeinflussen
können, werden in dem GSN Diagramm dargestellt. Die Design Patterns beinhalten also
Herangehensweisen für die Implementierung von personensicherheitskritischen Systemen
unter Berücksichtigung von Informationssicherheit. Für Personen- und Informationssicher-
heit beinhalten die Design Patterns GSN Diagramme um Argumentationen zu liefern die
diese Sicherheiten belegen.
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Abstract

Embedded devices are becoming more and more interconnected. Such interconnections
(e.g. via the Internet) bring advantages in terms of more manageable control and main-
tenance or in terms of more effective strategies of the devices possible due to additional
information. However, from a security point of view, the interconnections also considerably
increase the attack surface of these devices. For example, if an attacker can manipulate
the maintenance channel of an embedded device, the attacker can usually take control of
the device and affect its functionality. This is especially dangerous if the functionality
is critical. For example, safety-critical systems are systems whose malfunction poses a
threat to human health of even human lives. If an attacker tampers with such a system,
the attack can pose a threat to safety and thus such attacks should be considered as safety-
critical. However, current safety certification organizations and safety standards do not
cover security concerns. The standards usually state requirements simply from a safety
point of view and do not give guidance on how to achieve these requirements, especially
when related to security.

This thesis provides such guidelines in the form of safety design patterns which also
cover security concerns. The safety patterns are gathered from literature or mined from
the IEC 61508 safety standard. To enable safety reasoning, the patterns are equipped with
a Goal Structuring Notation (GSN) diagram to connect the overall goal of applying the
pattern to the actual implemented methods. These methods are based on the IEC 61508
standard. Thus, the design patterns build their overall GSN safety argument on methods
suggested for use by the IEC 61508 safety standard. From a security point of view, the
pattern threats are gathered with a STRIDE security analysis and the resulting threats are
organized in a GSN diagram containing all threats which could affect the safety function-
ality. Thus, the patterns contain safety-related solutions which consider security aspects.
The patterns provide GSN diagrams containing arguments for the overall system’s safety
and security.
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Andrea Höller. They both kept the HIPASE project running by putting a lot of effort into
keeping Andritz Hydro satisfied by providing them concepts and implementations. This
allowed my to not be swamped with projects related work and thus allowed me to focus
on the research part of my thesis. The same holds for all my students who worked on
projects related to the HIPASE project.

I would like to thank Andritz Hydro for making my PhD study possible by cooperating
with the Institute for Technical Informatics and providing me with paid employment
during my PhD study. I also want to thank Andritz Hydro for letting me participate in
the HIPASE project by bringing in new ideas. It was essential for my PhD thesis to get
feedback from Andritz Hydro on how safety development works in practice and on how
the ideas I brought in worked out. In particular, I want to thank Rudolf Neuner from
Andritz Hydro. He was my main contact person at the company and was very open to
my ideas. Furthermore, he allowed me to spend enough time on research related aspects
of my work which made it a lot easier for me to complete my PhD study quite quickly.

During my research activities I got in touch with the pattern community and I would
like to thank all of them for providing me with lots of valuable feedback on my work and
for making the days at the pattern conferences an enjoyable and memorable time.

Graz, June 2014 Christopher Preschern



iv

Extended Abstract

The increasing connectivity of embedded systems leads to new opportunities as well as
challenges. If such systems are connected via the Internet or via a local network, they
can interact with each other and can perhaps better achieve their purpose by taking a
more holistic approach through utilizing information or services from connected devices.
However, a major drawback of interconnected embedded systems is that such connections,
especially when realized via the Internet, open the door for attackers to compromise the
functionality of the embedded system. Such attacks on embedded systems are particularly
problematic if the system has to fulfill critical functionality. For example, if a malfunc-
tion of the system poses a threat to human health or even human life, such a system is
considered as safety-critical and it has to be assured that it is very unlikely that such
a system will malfunction. Malfunctions can be caused by malicious attacks as well as
accidental failures of the system. Such accidental failures can for example be caused by
hardware faults or by faults made during system development. To ensure that accidental
faults are rather unlikely, safety-critical systems are usually certified according to safety
standards. For general embedded systems, the IEC 61508 safety standard is commonly
used in Europe. This standard defines a safety development lifecycle and consists of re-
quirements for different activities within this lifecycle as well as requirements for software
development approaches and for the hardware which is used. However, the standard does
not provide much guidance on how to achieve the given requirements or how to provide
evidence that the requirements have been achieved. Furthermore, the IEC 61508 safety
standard does not address security issues, so malicious attacks as a cause for safety-critical
malfunctioning of the system are not considered. However, particularly with increasingly
connected systems, this source of malfunction poses an increasing threat for the integrity
of safety-critical systems. Also especially when safety- and security-critical aspects are
combined, there is little guidance in the safety standards or other literature on how to
develop such systems.

For guidance on how to design and develop safety- or security-critical systems, patterns
can serve to document and provide expert knowledge. Patterns were first introduced by
Christopher Alexander in his book “A Timeless Way of Building” [Ale79]. Alexander’s
patterns provide commonly applied quality solutions to relevant problems related to ar-
chitecture and construction of buildings and cities. The idea of patterns was adopted to
the software domain, where patterns for constructing and designing good software were
described. Applying these patterns to the development of software became best practice
and from that point on, patterns became more popular and also known to other domains.
For example, patterns exist for safety-critical as well as for security-critical systems. How-
ever, the interaction between safety and security is still an open topic and has not yet
been extensively covered in pattern or other literature.
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To address this matter, this thesis collects safety patterns. The patterns are gathered
from literature and identified from the IEC 61508 safety standard. The patterns are
presented in a uniform notation containing a diagram to describe the connections and
data flows of the software and hardware elements. Based on this diagram, a security
analysis is conducted which results in all relevant threats for the patterns. In particular,
the focus is on the threats which are relevant for an attacker wishing to compromise
the safety functionality of the system. Thus, the collection of patterns addresses safety
problems whilst keeping security aspects in mind.

It is relevant for both safety and security to gather evidence on whether a system
design decision, such as the application of a pattern, achieves or helps the overall safety
or security goal. Such evidence has to be provided for safety if the system has to be safety
certified. During safety certification, an assessor has to be able to follow the presented
evidence and see how the safety goals are addressed by the design and implementation.

Such evidence arguments can be included in the patterns. To provide these evidence
arguments, Goal Structuring Notation (GSN) is used. GSN is a standardized notation used
in the safety domain to structurally connect goals to evidence data confirming or indicating
the goal’s achievement. For the safety patterns, GSN connects an overall safety goal which
should be achieved when applying a pattern to the actual design and implementation
approach that is taken to address the problem. The safety patterns contain GSN skeletons
containing arguments as to why the system is safe when applying the patterns as well as
arguments as to why the system is secure.

• For the safety argument, the patterns provide links to specific safety approaches
explicitly suggested for use by the IEC 61508 standard. These approaches provide
developers with detailed information on how to implement the pattern. On the other
hand the patterns contain a safety argument based on approaches provided by the
safety standard.

• For the security argument, we present the analyzed security threats which could
affect system safety in a security GSN diagram.

Thus, this thesis provides safety patterns which present their strength and weaknesses
in terms of safety and security arguments which can be used as evidence for system cer-
tification. When applying the patterns, a developer has to choose an appropriate safety
pattern. Based on this pattern, the developer gets skeletons for the safety and security
GSN argument. For the specific architecture where the pattern is applied, the developer
has to complete the safety and security GSN diagrams to obtain a complete safety and
security representation of the system. The process of this pattern application is shown in
Figure 1. The three main contributions of this thesis are the following:

1. The thesis presents a collection of safety patterns from literature in a uniform no-
tation and provides the connections between the patterns to structurally build a
safety system. Compared to a simple pattern collection, our pattern system brings
the benefits of providing an overview of the safety patterns and their relationships.
This makes the selection of patterns easier.

2. The thesis analyzes security aspects of the safety patterns. The inclusion of security
threats based on a structured security analysis in the safety patterns enables one to
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Figure 1: Design process for applying the safety patterns. After selecting an appropriate pattern,
the safety and security arguments have to be further developed for the specific architectures to
obtain a complete safety and security argument

consider security at an early stage in the system design. Additionally, the security
threats increase the awareness of security problems in the safety domain even if they
are not yet required by the safety standards.

3. The thesis equips the safety patterns with safety and security arguments in the form
of GSN diagrams. These diagrams link the design decision from a safety point of
view to the IEC 61508 standard and, from a security point of view, they provide a
method for presenting safety-relevant security threats and they provide information
on how to mitigate these security threats.

Including security consideration during early system development by using the safety
patterns with their security GSN arguments brings the advantage of being able to build
more robust systems by realizing security threats early on and by building in security
measures from start. The patterns considering safety and security also allow a system
designer to evaluate trade-offs or synergies between safety and security when making
safety-related architecture decisions.
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Chapter 1

Introduction

1.1 Motivation

For embedded devices which interact with the physical world and could perhaps even cause
physical damage, it is not just important that they simply perform their functionality.
They have to perform their functionality every time, under all circumstances, and in any
imaginable condition. Developing such devices causes several challenges. These include
providing evidence that the device actually performs as intended, particularly if security
concerns have to be considered. This is especially relevant for modern interconnected
embedded devices.

1.1.1 Emerging Security Requirements for Safety-Critical Systems

As of today, several embedded systems are interconnected via local networks or via the
Internet. These connections enable more effective strategies due to additional information
from the Internet or from other embedded devices. Another advantage of this connectivity
is that the operation and maintenance of embedded systems can be made more straight-
forward. As an example, for industrial control systems it is common practice to have a
remote connection to the control devices for maintenance purposes. Usually such a remote
connection is realized with a VPN tunnel. Such a VPN tunnel is, from a theoretical secu-
rity point of view, currently secure; however, practically there are security issues because
of possible faults in the software implementation of the VPN tunnel or because of human
factors such as leaked passwords. When an attacker manages to take control of such a
maintenance tunnel for an embedded device, it is not usually a problem for the attacker
to manipulate the functionality of that device, because commonly the devices were not
built with defense in depth in mind. Thus, when breaking into the system, an attacker can
usually take full control over the device. Figure 1.1 shows that security threats such as
this are an emerging problem. The figure presents the number of reported major security
incidents experienced by industrial automation systems over recent years. Even though
the overall number of incidents is quite low, one can see a trend that the number of inci-
dents is increasing. The low number of overall incidents can be explained due to the fact
that these are just the reported incidents. The number of actual incidents is assumed to
be a lot higher.

The recent example of the Stuxnet attack [Lan11] showed that the security threat

1
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Figure 1.1: Number of reported security incidents on automation systems taken from [MR12].
The increasing number suggests that security is becoming an increasingly important topic.

for embedded systems, even if they are not directly connected to the Internet, is real.
The Stuxnet attack was targeted at Iranian uranium enrichment plants operating with
Siemens industrial control devices. The attack was very sophisticated and introduced
malicious software into the control software even though the control devices were not
directly connected to the Internet. Not directly connecting embedded devices to the
Internet or to the local network has so far been common practice for critical systems,
because this measure is supposed to block out any attacks. While not connecting the
device to the Internet is a very good measure, apparently it is not sufficient to be resistant
to today’s security threats. In particular for systems with safety-critical functionality,
where a malfunctioning system poses a threat to human health or even to human lives,
it is important to be resistant to commonly known security attacks and to be as far as
possible resistant against any other anticipated attacks. This is an important topic for
safety-critical systems, because if an attacker gets access to the system, the attacker can
also most likely influence the safety-related functionality of the system. Therefore, some
security issues have to be considered as safety-critical. Up until now most safety-critical
devices are not connected to public networks where they are exposed to attacks; however,
that trend is changing and thus the attack surface for safety-critical system drastically
increases.

As seen in the Stuxnet incident, simply not connecting the device to the public In-
ternet can be seen as a very good measure to greatly decrease the possibility of attacks,
but it cannot completely prevent attacks. To prevent more sophisticated attacks, a sys-
tem should have further security measures and provide defense-in-depth. For the above
mentioned example of the maintenance tunnel, a system could in addition to the security
measures provided by the VPN tunnel be equipped with, for example, intrusion detection
measures that would enable it to be resistant against attacks to some extent even if a se-
curity measure has been breached [PKK12]. However, several of such additional security
measures require design from the start and cannot be post-engineered. Therefore, it is
important to consider security from the start of the design process and during the whole
development process of safety-critical systems.
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1.1.2 Lack of Security Considerations in Safety Standards

For safety-critical systems there are, depending on the domain of the actual system, several
different standards. It is industrial practice to certify a safety-critical product according
to the relevant standard on the one hand to comply with laws and on the other hand
to show that the product meets certain quality and in particular safety criteria. For
general embedded systems, the IEC 61508 safety standard is commonly used in Europe.
For more specific domains (such as automotive or railway), there are more specific safety
standards available of which some are based on the IEC 61508. The IEC 61508 safety
standard contains requirements for the system’s development process and requirements for
the hardware and for software development. For example, for software it has to be ensured
that the probability of software failures arising due to development faults is sufficiently
low. However, the possibility of software faults arising due to malicious attacks is not
considered by the standard.

This blind spot of current safety standards is considered as a great weakness of safety
systems [Tem11]. There are already proposals for standards which consider both, safety
and security. However, these are just proposals and in industrial practice they are not ap-
plied. This means that for current safety-critical systems, implementing security measures
is not mandatory to achieve safety certification although security attacks could tamper
with safety functionality.

Alternatively, security certification for such safety-critical systems could provide a
countermeasure for cyber-attacks. However, again it is not currently common practice to
undergo security certifications in safety industries. Thus, usually when a safety-critical
product is developed, it is just certified according to safety standards and there is no
regulatory authority which checks the product’s compliance with security demands. This
leaves it open to the developer of the safety-critical system to decide to which extent
security issues will be considered and quite often developers from the safety domain are
not familiar with security issues and methods.

1.2 Applying Safety Patterns for the Development of Crit-
ical Systems

To address the challenges regarding design guidelines for safety and security critical sys-
tems, this thesis proposes a pattern-based development approach which results in safety
arguments related to the IEC 61508 safety standard as well as security arguments. The
safety and security arguments are constructed with Goal Structuring Notation (GSN) di-
agrams. GSN is a structured notation used in the safety domain to build and represent
arguments showing how general goals (e.g. “The system is safe and secure”) are achieved
through different evidence elements. The integration of GSN diagrams into safety pat-
terns, the analysis of security aspects of these patterns, and the approach of applying the
patterns will be described in this thesis in general and with the application to an industrial
case study: The HIPASE project.
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1.2.1 The HIPASE Project

This thesis is conducted as part of the HIPASE project. HIPASE is a product family of
hydro-power plant controllers developed and produced by Andritz Hydro. The HIPASE
devices will control mechanical components (such as turbines) of hydro-electric power
plants. The four main elements of HIPASE devices are shown in Figure 1.2 and they are:

• Turbine control - has to control the speed of the turbines through magnet valves

• Protection - monitors voltages, currents, and mechanical components in the hydro-
power plant and makes sure that devices are switched off before they incur any
damage

• Synchronization - controls and makes sure that the voltage, frequency, and phase is
synchronous to the power grid before connecting to it

• Excitation - controls the current flowing through the generator and monitors the
temperature

Figure 1.2: The four core functionalities of the hydro-electric power plant devices: Turbine
control, Protection, Synchronization, and Excitation (old hardware generations before HIPASE
shown in the picture)

Up until now, four different products of Andritz Hydro were responsible for these
four functionalities. Now, the HIPASE device should cover all four functionalities. The
HIPASE devices will use the same hardware platform, but can be programmed to operate
a different function. Thus, in a hydro-electric power plant there might be more than
one HIPASE device; however, they are programmed differently to operate on different
functions such as protection or excitation.

The HIPASE device is safety-critical, because malfunctions could lead to physical
damage to the equipment (e.g. the turbine) and to people near that equipment. Therefore,
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the HIPASE product will be SIL3 certified according to the IEC 61508 safety standard.
In addition to this safety certification, Andritz Hydro wants to put a strong focus on
security, because the HIPASE devices interact with each other via the local hydro-power
plant network more intensively than the older hardware generation of Andritz Hydro did.
Therefore, for the HIPASE device, Andritz Hydro wants to build security in from the start
of the product design. This decision can be seen as a very positive one, because recent
research shows that the energy sector is a very critical one and subject to more attacks
than other industrial sectors (see Figure 1.3). This indicates that introducing security
measure into hydro-power plants is very reasonable, however, still visionary for the energy
sector.

Figure 1.3: Recent attacks on different industrial automation sectors. Most of the attacks are
targeted at devices in the energy sector. [NWD+12]

A very interesting point for the HIPASE project is to suggest appropriate safety ar-
chitectures, to consider their impact on security, and, if appropriate, to suggest security
measures to protect against possible attacks and to provide defense-in-depth. However, if
possible, these security measures should not interfere too much with safety-critical com-
ponents of the HIPASE system, because if the core-safety functionality can be separated
from additional security features, these features do not have to undergo safety certification
which is highly desirable due to cost reasons.

1.2.2 Problem Statement

The connection of safety-critical systems to other embedded devices or even to the Internet
exposes these systems to attacks and requires special attention with regards to security
aspects. Furthermore, the interplay between introduced security aspects and safety func-
tionality as well as safety certification yields challenges regarding the ability to provide
structured evidence regarding safety- and security-assurance which can be presented for
system certification. The following provides a more detailed overview of the challenges
mentioned:

• Safety standards, in particular the IEC 61508 standard used in the HIPASE project,
state many requirements regarding product design and development. Additionally,
the IEC 61508 standard provides a pool of specific methods (e.g. Software diversity
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(diverse programming), Cross-monitoring of multiple actuators) which are recom-
mended for use, depending on the product’s level of safety criticality. However, the
IEC 61508 standard does not provide guidance on which of these methods should ac-
tually be used to achieve specific safety goals. Therefore, someone new to the safety
standard is confronted with a huge set of requirements and a huge set of unrelated
methods. This results in poor guidance on how to select appropriate methods.

• For the selection of methods from the IEC 61508 standard, it should be traceable why
they were selected and which safety goal they influence. The IEC 61508 standard
does not provide approaches for such structured safety reasoning. However, if a
system has to be safety certified, one has to provide safety evidence to the assessor.
Thus, an appropriate approach for presenting safety arguments for the system which
can be produced for certification is highly desirable.

• Safety standards do not currently cope with security aspects. The most recent ver-
sion of the IEC 61508 standard mentions that security can be an issue and provides
vague recommendations such as: “If security threats have been identified, then a
vulnerability analysis should be undertaken in order to specify security requirements”
[Int10]. However, the standard does not provide specific goals, requirements, or
methods from a security point of view, even though security might also be an issue
for the safety functionality of the system. Still, for the development of a modern
safety-related system, security is highly relevant. However, as security aspects are
left out by safety standards and safety-related products usually do not have to be
security certified, security aspects are rather often not appropriately attended to. At
this point, integrating security aspects into existing or well-known safety measures
to increase the awareness of security problems for safety-critical systems could help
to bring security-thinking into the safety world.

In this thesis, the above mentioned shortcomings regarding the safety standard and
the common practice safety system development have been addressed through security
enhanced safety patterns. A set of safety patterns is collected, organized, and structurally
presented. The patterns are extended to contain links to applicable IEC 61508 methods
and they contain Goal Structuring Notation (GSN) diagrams to structurally present how
the selected IEC 61508 methods achieve a system’s safety goal. From a security point of
view, the patterns are analyzed regarding their security threats and those threats which
are relevant for the system’s safety are represented in a GSN diagram. Thus, in addition
to the benefit of reusing well-proven solutions through the application of patterns, a safety
engineer gets safety and security reasoning methods in the form of GSN diagrams included
in the patterns.

1.2.3 Contributions and Significance

In summary, the thesis provides contributions in the following fields:

1. Safety Pattern System
The thesis collects architectural safety patterns based on pattern literature and based
on the IEC 61508 standard. The patterns are represented in a uniform notation and
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their relationships are presented to provide a good overview on the patterns for
pattern selection.

2. Pattern Connection to the Safety Standard.
The safety patterns are connected to IEC 61508 methods. Each pattern contains
related architectural design decisions (safety tactics) contained in the pattern and
the tactics are linked with specific IEC 61508 methods. Thus, a developer gets
specific information on how to implement the pattern from the safety standard.

3. Safety Argument
The safety patterns are equipped with GSN diagrams containing selected IEC 61508
methods applied by the patterns. The GSN diagrams contain information on how the
methods are used to meet the overall safety goal that should be achieved by applying
a pattern. Thus, the patterns provide the basis for structured safety reasoning.

4. Security Threats
The safety patterns are all presented in a uniform notation containing a diagram
showing the pattern’s hardware and software components and their data flows. Based
on these diagrams, a structural security analysis is conducted to provide security
threats for the patterns.

5. Security Argument
Based on the pattern’s security threats, the ones which could influence the safety
functionality of the system are selected and presented in a GSN diagram. This
diagram provides safety engineers with an overview of highly critical threats for the
system and provides a basis for a structured argument on why security threats are
sufficiently handled in order to protect the system’s safety functionality.

1.2.4 Structure of the Work

The thesis is structured as follows:
Chapter 2 describes related work. The related work covered concerns design patterns

in general and design patterns specific for safety and security as well as pattern-based
development. Furthermore, related work on safety and security reasoning and related
work on safety and security standards is covered.

Chapter 3 explains how the safety patterns are gathered and organized. This chapter
also explains how the safety patterns are related to the IEC 61508 standard and how
security aspects are introduced into the patterns. In addition, the chapter describes how
security and safety aspects are collected in GSN diagrams. The general approach of how
to apply the patterns and how to use the GSN diagrams to build arguments for safety and
security is also described.

In Chapter 4, the patterns are applied to a case study (the HIPASE project). the
chapter explains the basic HIPASE architecture, and shows how the application of a safety
pattern helps to build a resulting architecture including arguments for safety and security.

The patterns themselves as well as the presented pattern-based development approach
are evaluated in Chapter 5 with the help of metrics for the patterns as well as with the
help of qualitative comparison to existing approaches and with the help of feedback from
the HIPASE project.
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Chapter 6 concludes this thesis and provides an outlook on possible future work related
to the safety patterns and related to their security aspects.

Finally, Chapter 7 presents a selection of publications on which this work is based.
The publications give more detailed information about the different steps for building,
applying, and evaluating the presented patterns.



Chapter 2

Related Work

2.1 Security in Safety Standards

This section presents relevant safety standards and discusses to which extent they consider
security aspects which could affect the functionality of safety-critical systems.

2.1.1 Overview of Safety Standards

When developing systems which pose a threat to human health or even to human lives, such
systems are usually safety-certified. Depending on the specific domain, there are several
different safety standards which are relevant. For example, in Europe when developing a
system it is not mandatory to fulfill any safety standard; however, it is mandatory to fulfill
the Machinery Directive 2006/42/EC [Eur06]. Alongside the machinery directive, more
specific safety standards were developed which describe more specific requirements. The
safety standard targeted at electrical, electronic, and electronic programmable systems
in general is the IEC 61508 standard. Based on this standard, other standards for more
specific domains (e.g. automotive, nuclear power plants) were developed. Figure 2.1 shows
safety standards based on the IEC 61508 which will be addressed in the following sections.

Figure 2.1: Selected Safety Standards based on the IEC 61508 Standard [SS04].

The specific safety standards are process oriented and pose several requirements re-
garding the development lifecycle and the development phases of a safety-related system.
To ensure that the goals of different development activities are met, evidence artifacts
have to be produced so that an assessor can understand whether the developed product
meets the requirements of the safety standard [PR13].

9
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By producing such relevant artifacts for an assessor to fulfill the domain specific safety
standard, one meets the machinery directive. Achieving safety certification according
to the domain-specific standard is usually much easier than directly trying to meet the
machinery directive requirements. Therefore, in Europe, it is common practice to look for
the safety standard most applicable for the specific domain (e.g. ISO 26262 for automotive)
and to fulfill the requirements of this standard in order to meet the machinery directive
[SS04].

2.1.2 Security in IEC 61508 and Related Standards

As the work in this thesis is related to the IEC 61508 standard, this section investigates
in particular security-related aspects of the IEC 61508 and its derived standards.

IEC 61508

The first version of the IEC 61508 standard from 1998 does not mention security aspects
of safety systems at all. Version 2 of the standard, which was published in 2010, mentions
security aspects, but does not deal with them. The standard explicitly says that it does not
cover requirements or policies regarding security which might be needed for safety-related
systems. For example, the standard says that a safety manual must include “any security
measures that may have been implemented against listed threats and vulnerabilities” [Int10],
but it does not specify what the measures have to look like and how rigorously they have
to be documented in the safety manual.

Other examples where the IEC 61508 standard mentions security are:

• “If the hazard analysis identifies that malevolent or unauthorised action, constituting
a security threat, as being reasonably foreseeable, then a security threats analysis
should be carried out” [Int10]

• “If security threats have been identified, then a vulnerability analysis should be un-
dertaken in order to specify security requirements” [Int10]

In both the above mentioned text sections, the IEC 61508 standard references to the
IEC 62443 series which covers industrial network and system security. However, the
IEC 62443 series is not yet currently completely available. Parts of the series are completed
and other parts are just available as drafts1. Still, safety certification organizations such
as TÜV Süd or exida promote that they offer safety and security certification according
to IEC 61508 and IEC 62443.

From the combined safety and security certification proposals it can be seen that
there is a demand for considering security when certifying for IEC 61508. This demand
has already been identified by the EWICS TC7 working group. This working group
analyzes state of the art methods and evaluates their appropriateness for industrial use.
The working group provides inputs for standardization committees and has also provided
contributions to the IEC 61508 standard [Nor09]. It appears that through the input of
such working groups, security becomes more relevant, including the IEC 61508 standard,
even if just in the form of references to the IEC 62443 security standard.

1http://isa99.isa.org
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ISO 26262

The ISO 26262 is a safety standard for the automotive industry, is based on the IEC 61508,
and was first fully published in 2012. The standard itself does not cover security re-
quirements, does not mention any security concerns, and does not even provide links to
security-relevant standards. However, future technology trends such as car-to-car com-
munication indicate that security issues will become more important in the automotive
domain [IJ13]. Also [EPSW10] argues why security should be considered and proposes an
integrated development process of safety according to ISO 26262 and security. The process
consists of several joint phases for safety and security such as requirements engineering,
but also some separate phases such as hazard analysis for safety and security risk analysis
for security.

IEC 622xx

The IEC 62278, IEC 62279, IEC 62280, and IEC 62425 are relevant for safety-critical
railway systems. In European countries equivalents to these standards, the EN 501xx
series, exist. The railway standards are not targeted at security issues. For example,
the IEC 62278 standard explicitly says: “This International Standard does not specify
requirements for ensuring system security” [Int02].

However, other parts of the railway safety standard series do actually address security
issues. The IEC 62280 standard addresses communication aspects of railway systems and
considers closed as well as open communication systems which could be subject to security
attacks. The standard focuses on safety and security related communication aspects. For
example, one safety-related aim is to ensure message integrity. An additional security-
related aim is to ensure its authenticity. Thus, the standard describes cryptographic
measures like cryptographic signatures which achieve the aforementioned aims. However,
the standard does not cover security aims less related to safety aims such as confidentiality.
The railway standard series also only addresses security regarding railway communication
systems and not for other parts of railway systems [Int02].

Several research papers report practical examples of systems in the railway domain
being certified which also cover security in a more rigorous way than demanded from the
standard [SL13]. [SSS09] analyzes the railway standards for shortcomings and amongst
other measures suggests the use of an iterative risk reduction approach based on the railway
standard to address safety and security aspects. Furthermore, a report of the MODsafe
FP7 project (Modular Urban Transport Safety and Security Analysis) [Ber10] discusses
security for the railway standards and suggests management approaches to incorporate
security into the railway domain. The report also defines security responsibilities and
liabilities.

IEC 61513

The IEC 61513 standard targets nuclear power plants. It is was developed by the SC45A
subcommittee of IEC and is the top-level document for a series of nuclear power plant stan-
dards. It describes general requirements for systems and equipment used in nuclear power
plants and, also to some extent, covers security activities (for example, the IEC 61513
standard explicitly requires security plans) [Int14b].
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In 2008, the SC45A started to work on a series of documents targeting cybersecurity.
The first and currently only published document of this series is IEC 62645. IEC 62645
addresses the software and system development process and extends, and at some points
refines, security requirements of other nuclear power plant standards like IEC 61513.
IEC 62645 defines three different levels of security and the rigor of the security require-
ments depends on the security level. The document describes a security lifecycle, partly
based on the IEC 27000 series (which covers IT security) and is partly specific for the
nuclear domain. Regarding the interplay between safety and security, a related document,
IEC 62859, has been developed. IEC 62859 targets interactions between safety and secu-
rity and gives recommendations for the coordination of the design and operation in the
nuclear domain with respect to safety and security [PCQH13].

Based on the IEC 61513 and IEC 62645, [SBMS10] presents an overall development
process specifically for the nuclear domain and focuses on security. One major step of the
process is to develop and to verify a security plan covering management, operational, and
technical aspects.

IEC 60601

IEC 60601 is a series of standards addressing medical devices. The current, third, version
of this standard was published in 2010. The IEC 60601-1 standard defines general re-
quirements for medical devices and links to other standards in the series for more specific
details like, e.g. for software-specific requirements. The IEC 60601 series requires the
usage of an ISO 14971 compliant risk analysis. This introduces some level of security as
well, but is not specifically targeted at security [Int14a].

The IEC SC62A working group published the IEC 80001-1 standard in 2010. This
standard describes information security management specifically targeted at IT networks
with integrated medical devices and defines who is responsible for what. This standard
is the most well known security related guidance for medical products, however it mainly
addresses security aspects for medical device communication, and not for the devices
themselves [MME+13].

The IEC 27799 standard covers security requirements for medical devices, but it does
not require or suggest security-relevant processes or lifecycles. Such a lifecycle is proposed
in [RLRP13]. It integrates abuse cases, security requirements, risk analysis, and security
tests into the development lifecycle of medical devices.

IEC 62061

The IEC 62061 targets the safety of manufacturing and machinery with particular focus on
their control systems. The current version (1.1) was published in 2012. The standard itself
does not cover security, because the domain rather targets mechanical and electromechan-
ical parts. However, if interconnection of machinery devices give rise to security threats,
the IEC 62443 standard series for industrial communication network security can be taken
as a security guideline [Int14c].



2.1. Security in Safety Standards 13

IEC 61511

The IEC 61511 series targets the process industry and consists of three parts (IEC 61511-
1, IEC 61511-2, IEC 61511-3). The standards are relevant, for example, for industrial
plants such as chemical production, oil refineries, or power plants (but not nuclear power
plants). The standard series was published in 2003 and the current version does not
address security concerns. However, the second edition of the standard series is currently
under development and it will also target security issues. For example, IEC 61511-2 will
require a risk analysis from a security point of view [Fan13].

Specifically for power plants, the IEC TR 27019 technical report covers physical or
network security issues and gives security guidelines with focus on the energy sector. For
process industry in general, [OPF13] proposes an integrated safety and security hazard
analysis and management approach. The hazards are gathered with a modified HAZOP
analysis which also covers security aspects.

2.1.3 Security in other Safety Standards

This section covers security aspects of widespread safety standards which are not directly
derived from the IEC 61508.

DO-178C

The DO-178C standard is relevant for the avionics domain. In Europe it is known under the
name ED-12C. The standard focuses on topics such as testing or traceability of a system,
however, it does not directly address safety [Bro08]. The recently published version (DO-
178C) replaces the DO-178B standard, which was the relevant avionics standard for about
20 years [RTC12].

DO-178 does not explicitly mention security, however, the US-American SC-216 and
the European WG-72 working groups work on security-related guidelines for avionic sys-
tems. So far, the DO-326/ED-202 guideline is published and describes security process
specifications. Currently the working groups are developing additional security method
and guidance documents.

Apart from the working groups, several researchers suggest combining DO-178 with
Common Criteria (CC) security certification. [BBD+12] suggests an integrated develop-
ment process in accordance with DO-178 and CC. The proposed development process
consists of different process steps and artifacts and links artifacts which share a com-
mon context (e.g. security objectives for CC and system requirements for DO-178). Also
[TAFR02] suggests merging the two certification processes and maps CC requirements to
the DO-178 process in order to show their similarities.

MIL-STD-882

The MIL-STD-882 is a safety standard for military devices and is widely spread in the
USA. The first version of the standard was published in 1996 and the current version
(MIL-STD-882E) was published in 2012. Unlike the IEC standards, the MIL-STD-882
is publicly available for free. The MIL-STD-882 standard does not cover security, but
just mentions that security and privacy requirements have to be included in a system
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specification. However, no further guidance on security is given. The MIL-STD-882
applies to military devices in the US and for such devices the US Department of Defense
provides other guidelines on security; however, no security standard and no integrated
approaches regarding safety and security are provided [US 12].

2.1.4 Standards and Reports on Integrated Safety and Security

There is no internationally accepted standard which fully addresses security as well as
safety. This section presents mature drafts and reports which target this area.

The SeSa Method

The SeSa Method was developed by the Norwegian research organization SINTEF and
targets systems relevant to IEC 61508 and IEC 61511. The SeSa method covers the
problem that many safety-related systems have to provide remote access to be feasibly
maintainable. The aim of the SeSa method is to provide such a secure remote access,
while still not greatly interfering with safety and in particular with safety certification.
For example, one explicit aim is that “no significant impact on the SIL level is revealed by
use of the SeSa method” [GJØO10].

SeSa models the impact of security on the safety system. The SeSa report discusses
the relation between security certification levels and safety certification levels and argues
that, if the security requirements are well specified and analyzed for the safety system,
the safety certification process will be sufficient to ensure the correct functionality of the
security-related parts of the safety system.

Figure 2.2 shows an overview of the SeSa method. Basically the method starts with a
safety system and with a possible approach to access it remotely (e.g. VPN tunnel). Based
on that system, SeSa finds security threats for the safety system with a modified HAZOP
analysis that also considers security aspects. The analysis results in relevant threats. If
the threats could affect the safety system, then countermeasures have to be taken and
the system is analyzed again. SeSa provides guidance on such measures based on other
security-relevant standards and guidelines such as the BSI Baseline Protection Manual or
the NISCC SCADA Good Practice Guide. If, after the second analysis, the safety would
still be affected, then the current approach used to access the system remotely has to be
discarded and another remote access approach has to be investigated.

SafSec Methodology

SafSec (Safety and Security) is a project targeted at supporting combined safety and
security certification, particularly for avionics systems. An aim of SafSec is to provide a
framework that makes modular certification possible. Figure 2.3 shows an overview of the
SafSec methodology which consists of the following main parts:

Combined Safety and Security Risks. One of the core elements of SafSec is a uni-
fied risk modeling process integrating safety hazards and security threats. Based
on the risks, combined mitigation measures can be considered and therefore, more
applicable or efficient solutions can be found.
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Figure 2.2: The SeSa Method. This method is used to analyze the security of remote-accessible
safety-systems. [GJØO10]

Risk Mitigation Design Process. The outcome of the design process should be docu-
mentation containing justification of which risks can be ignored and which measures
are taken to mitigate other risks. The architectural model containing the risk re-
duction measures and the risk model serve as input to define a dependability spec-
ifications for all system components. These specifications are the basis for building
structured dependability arguments which in the case of SafSec are realized as safety
and security GSN diagrams.

Modular Certification. To make modular certification and reuse of certification arti-
facts possible, SafSec groups the GSN arguments which interact with each other into
logically separable dependability arguments. The resulting components including
their GSN arguments are called modules. The standard poses several requirements
regarding these modules like, for example, that each module has to be analyzed
regarding dependencies to other modules and that module boundaries have to be
defined and checked. Based on these modules, a complete system including a com-
plete GSN diagram describing the system’s safety and security can be built.

A draft of the SafSec standard [DL06] was published in 2006. SafSec does not, like
most safety standards, require specific processes to be followed, but it specifies particular
targets and objectives that have to be achieved (e.g. verification that requirements are
met according to a specified assurance level). Additionally, it gives guidance on how to
achieve the targets. SafSec is actually a complete standard for safety and security, but so
far it is not common practice in industry and thus it is not very influential [LCJ05].
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Figure 2.3: The SafSec Methodology. The main aims are to achieve combined safety and security
certification as well as modular certification. [LCJ05]

SQUALE Project

The SQUALE project was conducted as part of a European FP4 program. The aim of
the SQUALE project is to find a harmonized and unified approach to safety and security.
SQUALE analyzes and combines approaches from both domains by first investigating
which methods and processes are currently used in safety and security standards and
then proposing a process which could be applicable for both. SQUALE does not aim to
provide a generic standard of its own, but it describes an approach and criteria to develop
products which can easily be certified to more specific standards, when developed with
the SQUALE approach.

Figure 2.4 shows the overall development process of SQUALE. It is partly based on a
predecessor of the CC security standard as it contains a Dependability Target (CC uses a
similar concept of a Security Target). The Dependability Target describes a product which
has to be certified and includes the necessary documentation that needs to be produced for
an assessment. Complex systems can be split into several dependability targets, to make
the certification process easier. However, in that case, SQALE demands strong arguments
regarding the independence of the quality attributes of different Dependability Targets
when being combined. The following steps are part of the development of a Dependability
Target and have to be documented for assessment:

Dependability Objectives Definition. Based on the results of the hazard analysis,
appropriate objectives (safety, confidentiality, availability, ...) have to be selected.
Additionally, depending on the level of risk, integrity levels for the quality attributes
have to be defined. These levels will define the rigor for the verification, validation,
and quality assurance approaches.

Dependability Policy Definition. Implementation-independent high level measures have



2.1. Security in Safety Standards 17

Figure 2.4: The SQUALE Evalution Framework. The boxes describe activities during this process
and the arrows represent quality assuring activities. [Cor99]

to be described. These measures describe how to cope with the defined objectives.
Examples for such measures are design diversity or partitioning.

Dependability Allocation. This step defines which component of the system is respon-
sible for which dependability objective by applying the above defined policy. The
allocation is not just limited to software or hardware components, but could also
include humans.

Dependability-Related Functions Definition. This step defines more specific func-
tions that have to be implemented by the components to achieve the objectives via
the policies.

Apart from the description of the dependability target, SQUALE requires that evidence
be produced to prove that the safety and security goals are actually achieved. Such
evidence is provided to an assessor in the form of documentation for four different quality
assurance processes (the four arrows in Figure 2.4). These processes target verification,
validation, and quality assurance for the Dependability Target. The rigor required for the
processes depends on the integrity level for the components of the Dependability Target.
For each of the four integrity levels, SQUALE provides process criteria for all quality
assurance processes [Cor99].

The SQUALE draft [SQU99] was published in 1999 and was given to several organiza-
tions who develop standards such as ISO SC27, CENELEC, EWICS. SQUALE received
good feedback and part of it might have influenced the development of current standard
documents. However, SQUALE itself is currently rather outdated and not directly applied
in industry.
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2.1.5 Discussion

Currently, there is a gap between the level of security that a state-of-the-art safety device
should provide, and the level of security that is demanded from such a device by safety
standards. This limited awareness and consideration of security concerns in current safety
standards on the one hand implies that there are no strict security requirements for such
systems, and on the other hand implies that also there is no guidance on how to build safe
and secure systems that are acknowledged by the safety standards. This leaves developers
for safety-critical systems in a situation where on the one hand security is needed, but on
the other hand they have to evaluate for themselves how and how much security to build
in.

However, recent activities such as the IEC 62443 standard, the IEC 27000 series,
or working groups like SC45A or EWICS TC7 which promote cybersecurity, give the
impression that security concerns will be a relevant topic not just for future safety systems,
but also for future safety standards.

2.2 Safety Patterns

This section first gives an introduction to design patterns and related concepts such as ar-
chitectural tactics in general and then focuses on safety patterns. Safety patterns from lit-
erature and pattern-based development methods for safety-critical systems are presented.

2.2.1 Introduction to Patterns and Tactics

Patterns

A pattern presents a good and mature solution to a recurring problem. The concept of
presenting solutions as a pattern can be traced back to Christopher Alexander. In his
book The Timeless Way of Building [Ale79] he describes patterns for how to construct
cities and buildings. The idea of writing well-proven solutions in pattern form spread to the
domain of software engineering where it became way more famous than in architecture. In
1994, Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides published the
book Design Patterns - Elements of Reusable Object-Oriented Software [GHJV94]. This
book contains 23 design patterns for object-oriented programming languages. It became
well-known in the software domain and from that time on, the concept of patterns became
more and more applied to software engineering and is today part of best practice. The
following is a definition of patterns tailored to the software domain:

“A pattern for software architecture describes a particular recurring design
problem that arises in specific design contexts, and presents a well-proven
generic scheme for its solution. The solution scheme is specified by describ-
ing its constituent components, their responsibilities and relationships, and the
ways in which they collaborate.” [BMRS96]

Nowadays there are several different definitions of what a pattern is and also there are
over a thousand different patterns for specific domains of software engineering as well as
for other domains.
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Architectural Tactics

Related to design decisions, though somewhat different to patterns is the concept of ar-
chitectural tactics. The term was brought up by the Software Engineering Institute of the
University of Carnegie Mellon in the book Software Architecture in Practice [BCK03] by
Len Bass, Paul Clements, and Rick Kazman. They describe sets of general architectural
design decisions and call them Architectural Tactics. These tactics describe architecture
changes which affect single quality attributes like availability, or security. An example for
a security tactic is Limit Exposure which is described as follows:

“Attacks typically depend on exploiting a single weakness to attack all data
and services on a host. The architect can design the allocation of services to
hosts so that limited services are available on each host.” [BCK03]

This description of the security tactic gives only a vague idea of how to apply the
tactic. It does not give a precise solution within a precise context, such as patterns do.
It rather describes a general concept which can and should be applied in most situations.
There are different opinions and approaches to how to use tactics and on what they are.
Some see tactics as not very well elaborated patterns, whereas others argue that most
patterns can be related to tactic compositions [KP10a]. In any case, tactics are a design
concept which provides quite a comprehensive overview of possibilities to improve specific
quality attributes. For example, in [Har11], architectural tactics are used to improve
quality attributes of architectural patterns.

Related to safety, Weihang Wu from the University of York presents a set of safety
tactics [Wu03]. These safety tactics will be used throughout this thesis to characterize
and organize safety patterns from literature.

2.2.2 Safety Patterns from Literature

The concept of patterns is nowadays widespread. There are thousands of patterns avail-
able, some of them for very specific domains. Not surprisingly, there are also several
patterns described in literature that relate to safety. Table 2.1 gives an overview of cur-
rent relevant literature describing safety-related patterns.

2.2.3 Pattern-Based Safety Development

The method described in this thesis is a pattern-based safety development method. There
are already related methods described in literature. This section only describes these
methods in brief. A detailed introduction and comparison of pattern-based safety develop-
ment methods is given in Publication 5: “Pattern-Based Safety Development Methods:
Overview and Comparison” which can be found in Chapter 7. The following describes
these methods:

Applying Patterns along the IEC 61508 Safety Lifecycle. In [RVK13b], the authors
suggest applying patterns during safety development. The authors analyze different
phases of the IEC 61508 safety development lifecycle and provide links to differ-
ent sets of safety patterns. They provide links to their own work on architectural
safety patterns and also links to other research groups describing IEC 61508 process
patterns.
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Title Description

[DKV97] “The Reliable Hy-
brid Pattern - A General-
ized Software Fault Toler-
ant Design Pattern”

The paper describes a pattern which includes software fault tolerance tech-
niques (e.g. N-version programming, voting, acceptance test). The pattern
itself is presented in the form of a generic architecture. This architecture ex-
plicitly presents alternatives or variation points of the pattern (e.g. the usage
of voting instead of an acceptance test).

[Dou98] “Safety-Critical
Systems Design”

The article covers safety architecture patterns and discusses how they can be
implemented. Most of the patterns are based on redundancy. An example is
a pattern describing duplication of a channel.

[Sar02] “A System of Pat-
terns for Fault Tolerance”

This paper introduces several architectural fault-tolerance patterns such as
patterns for active and passive backup devices. Furthermore, the paper dis-
cusses how to group these patterns.

[Dou02] “Real-Time Design
Patterns: Robust Scalable
Architecture for Real-Time
Systems”

Besides other patterns, this book covers safety-related architecture patterns
and also includes the patterns from [Dou98].

[Gru03] “Transformational
Patterns for the Improve-
ment of Safety Properties
in Architectural Specifica-
tion”

This paper covers safety patterns, some related to the patterns from [Dou02],
as architecture transformations to increase the overall system safety.

[Han07] “Patterns for Fault
Tolerant Software”

The book describes a large set of fault-tolerance patterns and groups them
in a pattern language. The patterns are grouped as error detection, error
processing, error mitigation, fault treatment, and architectural patterns and
within the groups, the relationships between the patterns are described.

[Dou10] “Design Patterns
for Embedded Systems in
C”

The book presents design patterns implemented in C. Part of the book de-
scribes safety-related patterns based on [Dou02].

[Arm10] “Design Patterns
for Safety-critical Embed-
ded Systems”

This PhD thesis collects existing safety patterns for embedded systems from
literature (mostly patterns from [Dou02] and software fault tolerance tech-
niques from [Pul01]). Furthermore, the thesis introduces new safety patterns
and presents all patterns in a consistent notation.

[Ham12] “Survey of Safety
Architectural Patterns”

This survey presents the application of the patterns from [Arm10] within a
company. The survey shows which patterns are applied more commonly and
which are out of the ordinary. Furthermore, some new and rather domain-
specific safety patterns are introduced.

[RVK12] “Architectural
Patterns for Functional
Safety”

The paper presents 4 patterns related to separating the safety functionality
from non-critical system functionality.

[RVK13a] “Patterns for
Safety and Control System
Cooperation”

The paper presents 3 safety patterns that show how to efficiently integrate
safety functionality into control systems.

[RK13] “Patterns for Con-
trolling System Safety”

The paper presents 4 safety patterns related to the control systems domain.

Table 2.1: Overview of literature which introduces safety-related or fault tolerance patterns
(Table based on Publication 2)

Safe Control System Method. The method [HS13] provides safety patterns address-
ing requirement issues, architectural issues, and assurance issues. The patterns pro-
vide defined interfaces (e.g. safety documentation required as input for a pattern)
and the method suggests the use of a graphical notation to visualize the applied
patterns as icons and their dependencies as arrows between them. Thus, one gets
a simple graphical figure showing the information flow starting from requirements
analysis going via architectural measures to safety assurance.

TERESA Project. The TERESA approach is a European FP7 project and provides
a framework enabling model-based engineering for dependable embedded systems.
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Several tools for modeling safety processes, pattern metamodels, and patterns them-
selves, as well as pattern repository tools are provided [HDGJ10].

SIRSEC Project. The aim of the SIRSEC project is to provide a platform for the devel-
opment of safety-critical railway applications. SIRSEC works in collaboration with
the TERESA project and also uses some of its tools. Additionally, SIRSEC provides
an Eclipse/Papyrus tool for pattern integration [RHFP13].

Safety Tactic-Based Approach. The University of York put much work effort into the
development and application of tactics for safety-critical systems. They provide a
set of safety tactics and suggest a development process, which states anti-scenarios
and mitigates them by the application of appropriate safety tactics [Wu07].

Safety Architecture Patterns. The method presents a collection of safety patterns in
a PhD thesis [Arm10]. The patterns cover architecture decisions based mostly on
redundancy (e.g. Triple Modular Redundancy pattern). A tool for selecting
the patterns based on answers to questions like “Is hardware redundancy possible”
is also provided.

Safety Architecture Patterns + UML. Antonio further investigates Armoush’s safety
patterns and captures them in UML representation. For these patterns he provides
a tool which allows to easier integrate the patterns in a UML design [AKA12].

SDL Design Patterns. SDL (Specification and Description Language) is usually used
to describe communicating systems. The authors of [FGG+05] formulate safety-
related patterns (e.g. Watchdog) in UML and also add an SDL diagram to the
patterns. These patterns are supposed to be used for safety-related systems already
modeled in SDL.

REFLECT. The REFLECT (REndering FPGAs - Field-Programmable Gate Arrays - to
MuLti-Core Embedded CompuTing) method presents a design flow of how to imple-
ment FPGAs. REFLECT provides its own safety requirement definition language
and transforms an implemented system according to patterns, which are selected
depending on the safety requirements, into another system which fulfills the safety
requirements. For this, REFLECT uses patterns which contain annotations defining
their interfaces for the transformation [PKCD11].

AltaRica Safety Patterns. The method [KSB+04] describes the formal application of
redundancy-based architectural patterns. The patterns are described with linear
temporal logic using the formal language AltaRica. The patterns can be integrated
into AltaRica models and after the pattern application, attributes of the resulting
architecture can be formally checked.

Safety Timing Templates. The method [Bit07] describes timing-related safety pat-
terns and how to apply them. The patterns are held in a library and a user is asked
questions in order to find appropriate patterns. The patterns formally describe a
timing behavior and when integrated into an architecture, the timing behavior of
the overall system can be formally checked.
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2.2.4 Discussion

There has already been a lot of work done regarding safety patterns and there are numerous
patterns available in literature. It is quite difficult to obtain an overview of current safety
patterns; therefore, one aim of this thesis is to review current safety patterns and to
organize parts of them. A further topic left open by current safety patterns is that most
of them are limited to safety alone and do not consider security aspects.

Regarding security, there are some pattern-based safety development methods which
already consider safety and security; however, none of the methods also structurally model
safety and security aspects in the patterns or provide structured evidence to show that
safety and security goals have been achieved.

2.3 Security Analysis of Patterns

This section covers patterns for which security aspects are investigated. Security patterns
themselves will not be covered as they are not the focus of this thesis.

2.3.1 Security Analysis of Security Patterns

Halkidis et al. provide several papers on how to analyze patterns regarding their security
attributes and on how to find a good match, including from a security point of view, when
selecting a pattern. In [HCS04], they qualitatively analyze 13 security patterns regarding
the security they achieve. The evaluation consists of three different parts:

• Security Principles. Halkidis et al. take security principles from Viega and Mc-
Graw [VM01] and informally discuss which of the principles are achieved or sup-
ported by the pattern. Examples for the security principles are Defense in Depth,
Principle of Least Priviledge, or Simplicity.

• Common Security Error Avoidance. Regarding this aspect, Halklidis et al.
discuss how well the security patterns help to withstand common security holes. The
common security holes are also based on the book of Viega and McGraw [VM01]
and examples are: Buffer Overflows or Weak Access Control.

• STRIDE. The last criteria against which the security patterns are evaluated are
common threats. STRIDE is a threat analysis approach described by Howard and
LeBlanc [HL03] and lists six types of common security threats: Spoofing, Tamper-
ing, Repudiation, Information Disclosure, Denial of Service, Elevation of Priviledge.
Halkidis et al. discuss how well the security patterns counter these threats.

The outcome of the work of Halkidis et al. is a table which maps the security patterns
to the security principles they follow, to the security holes they cover, and to the threats
they counter.

Halkidis et al. present the application of the security patterns to a webstore case study
in [HCS06a]. They analyze the case study for the three security aspects listed above and
then decide which patterns to apply in order to adhere to the most security principles, to
cover the most security holes, and to counter the most security threats.
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Further work of Halkidis et al. shows how security patterns can counter security vul-
nerabilities [HCS06b]. They present an extended version of the webstore case study leaving
several sources for attacks open. For example, in the case study, the initial implementa-
tion contains security holes like sources for SQL injection or sources for cross-size scripting
which an attacker could exploit. They analyzed the security of the initial implementation
by means of static security analysis tools and penetration tools. They also quantified the
security risk of the system by investigating STRIDE threats and elaborating the risk of
the different threats by means of fault trees. To get numeric values for the threat risks,
they use fuzzy variables to describe the likelihood, exposure, and consequences of possible
attacks. Next, they applied appropriate security patterns to counter such attacks. They
chose the patterns according to the STRIDE threats they mitigate based on their previous
work and for the resulting architecture they again analyzed the resulting STRIDE threats.
The resulting analysis showed significantly lower security risk levels.

In [HTCS08], Halkidis et al. extend their work and put further focus on how to
automate the security analysis approach. They implement the security patterns in UML
and use annotations in the UML class names in order to identify specific parts later on.
An example of such an annotation is that every class receiving some input data has to
use the term ‘Input’ somewhere in the class name. Based on the UML diagram, they
automatically make a STRIDE analysis and build a fault tree for the different STRIDE
threats. For example, every ‘Input’ class is subject to the Information Disclosure threat
and therefore information disclosure of this input would be added to the fault tree. With
this fault tree given, the authors manually match security patterns which mitigate the
high risk threats of the system. They show this approach for a case study and iteratively
apply patterns to make the system more secure. After each iteration, the security fault
trees are checked as to whether the threats are mitigated to a sufficient level. Otherwise
more security patterns are manually applied.

2.3.2 Application of Security Analyzed Patterns

Yautsiukhin et al. propose a method of applying a structured security risk analysis based
on the relevant threats for a system and on security patterns applied to a system [YS08].
They apply this method to an online publishing system case study.

• First, they gather general requirements for the system and map high-level security
objectives to the requirements if applicable. For example, one requirement for the
publishing system is that authors should be able to access their past papers. The
corresponding high-level security objective would be availability.

• Next, STRIDE threats are mapped to the high-level objectives and for each STRIDE
threat of the system, a threat tree containing possible attacks is constructed. For the
attacks they evaluate the risk by estimating the damage potential, reproducibility,
exploitability, affected users, and discoverability of attacks related to the STRIDE
threats.

• They provide calculation rules to propagate the risks from the attacks up to the
threats and security objectives. Furthermore, they rank the importance of the re-
quirements in order to obtain a single number that represents the security of the
system.
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• They manually apply security patterns to see how the overall system security changes.
Just as with the approach of Halkidis et al., the patterns contain information about
how well they help to mitigate STRIDE threats. Thus, the overall security risk
reduction for the system can be calculated.

The authors of [SB12] do not cover patterns, but still they provide an automated tool-
based approach to conduct a STRIDE analysis on architecture block diagrams. Such an
approach could also be applied to patterns and the work of Yautsiukhin et al. and Halkidis
et al. described above could benefit from this approach.

2.3.3 Discussion

There are only a view structured security analysis methods available. In particular, there
are scarcely any when it comes down to modeling the security of an early-stage archi-
tecture of a system without already modeling specific attacks and modeling the related
probabilities and risks. As can be seen from literature, when introducing security aspects
to patterns, STRIDE appears to be applicable. Therefore, STRIDE will be used to analyze
security aspects of the safety patterns presented in this thesis.

2.4 Structuring Evidence for Safety Compliance

This section covers methods used to analyze and model safety systems and methods to
produce evidence that such a system is safe. The section particularly focuses on methods
which have also been applied or adapted to the security domain and which would be
applicable when modeling security aspects into safety patterns.

2.4.1 Safety Case

A safety case is a structured argument indicating that a system or part of the system is
safe and according to [NVSB12] is the most commonly used method for safety assurance.
The aim of a safety case is to prove a claim by connecting evidence via arguments. A
safety case can be defined as follows:

“A safety case should communicate a clear, comprehensive and defensible ar-
gument that a system is acceptably safe to operate in a particular context.”
[Mel13]

The general structure of a safety case is first described in [BB98]. The notation is
shown in Figure 2.5 and consists of the following main elements:

• Claim. A claim about the system or a property is made and has to be proven.

• Evidence. Evidence is used to prove the claim. Evidence can be scientific facts, test
reports, documentation, but also assumptions or sub-claims.

• Argument. The argument links the evidence to the claim and consists of interference
rules.
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• Interference. Interference rules build up the argument. For example, if the argu-
ment is related to probabilities of failure, then the interference rules would be the
probabilistic calculations from the evidence to the claim.

Figure 2.5: Claim Argument Evidence Notation. The figure shows how a generic claim is fulfilled
by evidence elements which are connected to the claim via arguments. [BB98]

Safety cases can be made in simple textual representation, recently however graphical
notations of safety cases have become more common. The following are the two most
commonly used graphical safety case notations which are described in the following: Goal
Structuring Notation (GSN) and Claim Argument Evidence (CAE).

Claim Argument Evidence

CAE was developed by the company Adelard which also provides a safety case editor
supporting CAE. The key elements of CAE are shown in Figure 2.6 and they are Claims,
Arguments, and Evidence. There are no reports regarding the usage of CAE for the
security domain, however in the safety domain CAE is used due to its tool support in the
Adelard safety case editor.

Figure 2.6: Claim Argument Evidence Notation. The figure shows the main elements and their
notation for building a CAE diagram.

Security aspects of safety systems are inspected by extending a CAE safety diagram
in [BNS13]. The authors discuss how to bring security into the system and analyze each
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safety claim of an example system. For each claim they thoroughly discuss how security
could affect it and, if necessary, they add additional security sub-claims.

Goal Structuring Notation

The Goal Structuring Notation is widely used in the safety domain and several reports and
scientific papers also report its usage for security systems. GSN is more precisely defined
compared to CAE and since 2011 there is even a standard for the GSN notation available
[GSN11]. The standard gives an introduction to safety cases, defines the structure and
the elements of GSN, and also provides guidance on how to apply GSN. Figure 2.7 shows
the basic elements used in GSN diagrams.

Figure 2.7: Goal Structuring Notation. The figure shows the main elements and their notation
for building a GSN diagram.

GSN Patterns. For GSN there is extended literature available for case studies when it is
applied and there is even literature on GSN patterns like [KM98]. GSN patterns are
more or less GSN diagram templates which can be used quite generically and refined
for a specific safety argument. An example for a GSN pattern is the As-Low-
As-Reasonably-Practicable pattern shown in [KM98]. It consists of a GSN
diagram describing the main idea which is to reduce as many risk factors as feasibly
possible and it contains further descriptions, like the consequences of applying the
GSN pattern.

GSN for Security. The following shows selected work on security modeled with GSN:

• Using GSN for safety and security has already been suggested by the SafSec
standard (see Section 2.1.4). The authors of [CL07] further explain the ap-
proach of SafSec and provide generic GSN templates which can be used to
build safety or security arguments in general. The GSNs contain general goals
like “Identify threats” or “Security mitigations for threats”. Based on those
generic goals, one has to develop a specific GSN. The safety and security GSNs
are separated in this approach.

• Security cases with GSN are covered in [GLW12]. They describe security cases
in general and give guidance on how to construct a security case. For example,
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they show how to build a security case assuring that a system is secure against
buffer overflow attacks. Furthermore, they show how such a security case can
be transformed into a security case pattern in order to be reused.

• The integration of security aspects in safety GSN diagrams is shown in [JY11a]
and [Joh11]. The safety of a satellite system is modeled in GSN and in addition
to the system, security aspects related to ‘insider threats’ are considered and
integrated into the safety GSN. Every safety goal was simply analyzed regarding
the additional threat and if the goal is subject to attacks, the security aspects
were additionally modeled as subgoals. In [JY11b] the security of the same
system is modeled with a different approach: Boolean logic Driven Markov
Processes.

2.4.2 Boolean logic Driven Markov Processes

In [PCB09], Ludovic Piètre-Cambacédès et al. suggest the usage of Boolean logic Driven
Markov Processes (BDMP) instead of regular attack trees for security modeling. BDMP
has in the past only been used in reliability engineering and provides its strength in
the modeling of probabilities and processes. Compared to regular fault trees, BDMP
provide an additional notation called ‘trigger’ which allows the modeling of sequences and
dependencies, thus, events in the tree can be combined. The BDMP provides probabilities
that such a trigger leads to the event the trigger is pointing to.

Figure 2.8 shows an example for a BDMP security model. The model contains triggers
which can be equipped with probabilities. The BDMP notation is quite similar to classical
fault or attack trees and is thus expected to be easily understandable to safety as well
as security experts. Based on the BDMP model containing the probabilities, one can
compute all paths leading to the top-level event. These paths are then ordered regarding
their probability to provide a good overview of the most critical parts of the system from
a safety and a security point of view [PCB10b].

2.4.3 Fault Trees

Fault trees are a well known technique for the analysis of safety-critical systems. Fault
trees contain probabilities of their leaf events and they connect the leaf events via logical
relations (AND, OR, ...). Thus, the leaf probabilities can be propagated to the root of
the tree to obtain an overall probability describing the root which usually represents some
kind of safety goal.

In [NMD09] the authors present fault trees and attack trees with their mathematical
definitions. Attack trees are similar to fault trees, but they usually describe security
objectives as root and break them down to attacks which could break the objective when
exploited. The authors argue that attack trees can easily be integrated into fault trees,
if the root element of an attack tree is the leaf element of a fault tree. They provide
mathematical formulas to propagate the probabilities of an attack tree to the fault tree.

Another security-related approach to fault trees is described in [SLS+13]. The authors
use component fault trees. They are regular fault trees with additional information to
build components out of the fault tree. Such components can then be used as part of
another fault tree. This makes it easier to mange huge fault trees. Every node in the
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Figure 2.8: Boolean logic Driven Markov Processes. Example model for the security of a Remote
Access Server system. The dashed lines represent the triggers. [PCB10a]

component fault tree is analyzed regarding its STRIDE threats. If one or more of the
STRIDE threats are relevant, they are added as a sibling to the node, connected to it
via an OR relation. For the security events, no probabilities are assigned, but simply the
values ‘low’, ‘medium’, or ‘high’ are assigned. Thus, the safety and security aspects are
modeled in the same fault tree, but they are not propagated to a single probability value
representing the safety and security of the system.

2.4.4 Discussion

The above discussed methodologies are the only ones which address safety and security
and which are developed and supported by more than just a single researcher, but by
at least a working group. From these methodologies, GSN will further be used in this
thesis to model safety and security of patterns, because GSN is an approach which looks
promising and is currently widespread in the safety domain. From the above described
methodologies, GSN is the one which, according to research articles, is most commonly
used in research as well as in industry.

2.5 Summary and Difference to the State-of-the-Art

The increasing number of research articles which address security aspects for safety sys-
tems show that there is a reaction to security-related safety incidents such as the Stuxnet
attack. Several research communities promote methods and processes to model and im-
prove the level of security for safety systems. Related to the pattern community, several
pattern-based safety development methods such as the one presented in the TERESA
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project show that here also safety and security aspects as a whole have to be covered.
However, apart from the TERESA project, which actually focuses more on security, there
are no combined safety and security methods available and there are no detailed reports
of industry applying pattern-based safety and security development methods. Thus, in-
troducing security aspects to pattern-based safety development is a relevant and novel
research topic.

Another recent topic for safety-critical systems is how to provide evidence that a system
complies to safety standards. In particular, it is of interest how to provide arguments that
security goals of a safety-critical system have been achieved. Current safety standards do
not yet intensively cover security; however, recent development of safety standards and
reports of several working groups indicate that security will become more important for
safety systems. Thus it is of great interest to find an approach which provides guidance
on how to develop safety and security critical systems and how to provide evidence that
safety and security goals are achieved. It is of particular interest to provide such evidence
which complies to safety standards, because then the evidence can be used as a helpful
argument during safety certification.

To provide such a pattern-based development method considering safety as well as
security, domain-specific patterns have to be provided. In literature there are patterns for
safety systems and there are patterns for security systems; however, there are no patterns
available which address both aspects in detail. Introducing new patterns addressing both
would, on the one hand, be a lot of work and on the other hand would be a questionable
approach, because there are already mature patterns in both domains available. Therefore,
integrating security aspects into existing safety patterns appears to be feasible. There has
been research addressing the topic of analyzing security aspects like threats and attacks
of patterns, but that has not yet been applied to safety patterns.

To summarize, this thesis provides the following improvements to state-of-the-art:

• Safety patterns from literature are gathered, structured, and organized and security
aspects of current safety patterns are analyzed. This results in a collection of high-
level safety architecture patterns containing security aspects.

• Current safety patterns are enhanced with GSN models presenting security and
safety arguments for the patterns. The GSN models contain explicit references to
the IEC 61508 safety standard to provide a structured approach to argue for the
safety of a system based on the actual standard.

• A pattern-based safety and security development method is suggested. In literature
there is no other such method available which considers safety and security and
which also produces evidence elements to be used for safety certification.
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Chapter 3

Safety Patterns with Security
Aspects

This chapter describes how to systematically construct a system of safety patterns includ-
ing their security aspects based on safety patterns from literature.

Figure 3.1 shows an overview of the steps conducted to build such a pattern system.
From a safety point of view, the safety patterns from literature are analyzed regarding the
safety tactics they can be related to and a tree representation of these tactics is constructed.
The tactic tree representations are used to analyze relations between the patterns and to
construct a GSN safety diagram for the patterns. For the GSN safety diagram, additional
safety relevant scenarios for the patterns serve as input. From a security point of view, the
patterns are analyzed regarding their safety-relevant security threats and these threats are
organized in a GSN diagram. The above mentioned steps to build the safety and security
GSN diagrams and to find relations between the patterns are described in detail in this
chapter and in the Publications 2, 3, and 4.

Figure 3.1: Overview of steps described in this chapter to build a safety pattern system with
security aspects from safety patterns in literature (based on Publication 4).
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Throughout this chapter, an example pattern, the Homogenous Duplex Pattern,
will be used to show how this safety pattern from literature is integrated into the safety
pattern system with security aspects. The Homogenous Duplex Pattern basically
describes a system using an active backup channel which it is switched to if a failure in
the primary channel occurs. Figure 3.2 shows the structure of this pattern.

Figure 3.2: Graphical representation of the components from the Homogenous Duplex Pat-
tern. If a primary channel fault is detected by the fault detector, the switch switches to the
output of the backup channel (based on Publication 2).

The approach to develop the Homogenous Duplex Pattern described throughout
in this chapter has been applied to several selected patterns from literature in order to
build up a system of safety patterns with security aspects. The whole pattern system
including all selected and developed safety patterns is presented in Publication 4.

3.1 Selection of Safety Patterns

Literature provides several safety patterns as already presented in Section 2.2.2. This
thesis focuses on architectural safety patterns. These are patterns describing high-level
architecture design decisions such as whether some components should be installed or
developed redundantly or whether there should be a component such as a watchdog. Ar-
moush [Arm10] already gives a comprehensive overview of such patterns from literature.
Therefore, the patterns presented in this thesis are mostly based on the patterns from
Armoush and some additional patterns are extracted from the IEC 61508 safety stan-
dard. The following list gives the names of the safety patterns covered. The full pattern
descriptions can be found in Publication 4.

• Homogenous Duplex Pattern

• Heterogenous Duplex Pattern

• Triple Modular Redundancy Pattern

• M-out-of-N Pattern

• M-out-of-N-D Pattern

• N-Version Programming Pattern

• Acceptance Voting Pattern

• Recovery Block Pattern
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• N-Self Checking Programming Pattern

• Sanity Check Pattern

• Monitor-Actuator Pattern

• Watchdog Pattern

• Safety Executive Pattern

• Protected Single Channel Pattern

• 3-Level Safety Monitoring Pattern

3.2 Selection of a Pattern Form

The pattern form used for the pattern system is based on the pattern form presented
in [Bab07]. This targets architectural patterns with specific focus on presenting the pat-
tern in a way that can aid architectural reasoning or architectural review processes. For
example, the pattern form explicitly covers architectural information of the pattern such
as scenarios and affected quality attributes. The following presents the different sections
of the chosen pattern form.

• Pattern Name. A representative name of the pattern mostly based on the name
suggested in [Arm10]

• Pattern Type. Classification into hardware/software and fail-safe/fail-over

• Also Known As. Other names for the pattern used in literature

• Context. Situation giving rise to a problem

• Problem. The problem the application of the pattern solves

• Forces. Reasons why the problem is hard to solve

• Solution. The proven solution to the problem. The solution contains a graphical
description of the components involved.

• Safety GSN. A GSN skeleton to be used for safety reasoning

• Security GSN. A GSN skeleton to be used for security reasoning

• Consequences. Benefits and liabilities of applying the pattern with focus on the
effect on quality attributes

• General Scenarios. Safety-related scenarios which are used to build the safety
GSN and which can be used for architectural reasoning

• Known Uses. Real application examples of the pattern

• Credits. References to previous work on the pattern

3.3 Safety GSN

The main aim of the activities described in this section is to construct a GSN diagram
which can be used for safety reasoning when applying the pattern. To build the GSN
diagrams, first tactics and scenarios are mined from the patterns and based on these tactics
and scenarios, the GSN diagram is constructed. This section is based on Publication 2.
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3.3.1 Scenario Mining

To aid safety reasoning of the patterns, safety-related scenarios are explicitly stated for the
patterns. To mine the scenarios from existing patterns, an approach presented in [Bab07]
is used. The approach is simply to manually search the problem and solution statements
of a pattern for aims and goals of the pattern and to then describe these aims and goals in
the form of a scenario. For example, part of the problem statement of the Homogenous
Duplex Pattern is:

“Make the system continue operating in presence of a fault in one of the system
components.” [Arm10]

When combining this with the solution of the pattern (which is to have two redundant
channels), the following example scenarios can be stated:

• The system is fully operational even in the case of a single channel failure.

• A single channel random fault does not lead to a system failure.

3.3.2 Analyzing Safety Tactics for the Patterns

Tactics are not directly part of the pattern, however, the safety GSN skeletons are built
based on tactics in the patterns and the patterns are organized according to their tactics
as will be described in the following sections.

Kumar et. al [KP10b] present a structured approach to analyzing object-oriented
design patterns regarding the general design decisions (architectural tactics) these patterns
apply. Kumar et al. manually analyze the textual sections of patterns and look for
keywords in each section which are also present in the description of any architectural
tactic in order to find the tactics used by the pattern. This approach is also applied in this
thesis, but to safety patterns instead of object-oriented patterns. For that, safety-relevant
tactics are required which are initially proposed in [Wu03] and refined in Publication 1.
The whole set of safety tactics is shown in Figure 3.3 and the detailed descriptions of the
tactics can be found in Publication 1.

Figure 3.3: Architectural tactics for safety. The tactics are grouped into principles which avoid
failures, which detect failures, and which contain failures (based on Publication 1).

To find the tactics of the Homogenous Duplex Pattern, its text sections have to
be analyzed. For example, the following text shows part of the abstract section:
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“It is a hardware pattern that is used to increase the safety and reliability of the
system by providing a replication of the same module (Modular redundancy)
to deal with the random faults.” [Arm10]

According to the approach of Kumar et al., the keywords replication and modular
redundancy indicate that Replication Redundancy (which is a safety tactic) is applied by
this pattern. A full analysis of all text sections of the Homogenous Duplex Pattern
shows that the following safety tactics are applied by the pattern (the detailed analysis
can be found in Publication 2):

• Replication Redundancy

• Override

• Condition Monitoring

Kumar et. al [KP10b] further describe how to structure the tactics found in the form
of a diagram. They suggest finding the main goal of the pattern in the problem statement
(which in the case of the Homogenous Duplex Pattern is to “Continue operation even
in case of faults”) and then connect the tactics which fulfill this goal by arrows. Additional
information about what in particular a tactic achieves, or how it achieves it, is given in
textual form next to these arrows. If a tactic gives rise to other goals addressed by another
tactic in the pattern, then these tactics are again connected with arrows. Figure 3.4 shows
the resulting tactic representation of the Homogenous Duplex Pattern.

Figure 3.4: Tactic representation of the Homogenous Duplex Pattern (based on Publica-
tion 2).

3.3.3 Building the Safety GSN based on the Tactics and Scenarios

The safety GSN skeletons should be used to reason about the safety of the system after
applying the pattern; therefore, all safety GSN skeletons start with the main goal that
“The system maintains its safety functionality”. Based on the scenarios of the pattern,
GSN subgoals are added. If the scenarios are independent from one another, they are
simply added as subgoals to the main goal. If scenario A depends on scenario B, then
B is modeled as subgoal of A. The tactics which help to achieve the scenarios are put as
GSN strategy elements below the corresponding subgoals. If contextual information of the
pattern is relevant, it is added as GSN context elements.

Figure 3.5 shows the constructed safety GSN skeleton for the Homogenous Duplex
Pattern. All the mined tactics and scenarios from the pattern are part of the GSN
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diagram as GSN strategies and GSN goals respectively. For the pattern, the scenario “The
system is fully operational even in case of a single channel failure” depends on the scenario
“A single channel random fault does not lead to a system failure” and therefore the later
one is modeled as a subgoal of the first. The tactics (Replication Redundancy, Override,
and Condition Monitoring) are directly modeled below the scenario which they primarily
address. Additional undeveloped subgoals (e.g. “Common cause failures are sufficiently
low”) are added to the diagram to express additional safety-relevant assumptions for the
pattern. These undeveloped goals have to be developed (i.e. an argument for achieving
these goals has to be found) when implementing the pattern.

Figure 3.5: Safety GSN skeleton of the Homogenous Duplex Pattern (based on Publica-
tion 4).

3.4 Security Aspects of Safety Patterns

This section describes how to analyze the safety patterns regarding their safety-relevant
security threats and how to construct GSN diagrams representing these security threats.
The content of this section is based on Publication 3.

3.4.1 Threat Analysis

The safety patterns provide an architecture description on a very general level. Therefore,
the chosen method for investigating security aspects of the safety patterns is a security
threat analysis which is usually conducted during the early phases of security design.
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STRIDE

The chosen threat analysis is the STRIDE threat analysis proposed and used by Microsoft
[HL03]. The reason for choosing STRIDE is that it is the most well known type of threat
analysis and even more importantly, it is well documented. STRIDE requires a data flow
diagram as input. A data flow diagram describes inputs, outputs, and communication
between elements of a system. STRIDE goes through all elements of such a diagram to
list relevant threats. STRIDE describes the following six types of threats:

• Spoofing

• Tampering

• Repudiation

• Information Disclosure

• Denial of Service (DoS)

• Elevation of Priviledge (EoP)

Not all of these threats are relevant for all types of elements in the data flow diagram.
STRIDE provides information about the relevant threats that have to be considered (see
Table 3.1). After going through the data flow diagram and listing relevant threats for the
elements, one gets a list of threats which in later steps during the development lifecycle
have to be rated and mitigated.

DFD element
type

S T R I D E

External entity X X

Data flow X X X

Data store X X X X

Process X X X X X X

Table 3.1: STRIDE threats mapped to the four different types of data flow diagram elements.

STRIDE Adaptation to be used for the Patterns

The STRIDE analysis has to be adapted to be applied to the patterns. The safety pat-
terns contain diagrams quite similar to data flow diagrams. The patterns contain blocks
describing processing elements (in hardware or in software) and they contain connections
between the blocks which show the flow of data. The processing elements are similar to
the Process entity of the STRIDE method and the connections are similar to the Data flow
entity. However, not all STRIDE threats are primarily relevant for safety-critical systems.
For example, Repudiation is not usually important for such systems. Also Information
Disclosure does not directly affect the system in a way that could bring it into a critical
state. Therefore, only a limited set of threats are considered when analyzing the pattern
diagrams regarding the two chosen entities as shown in Table 3.2.
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DFD element type S T R I D E

Data flow X X

Processing element X X

Table 3.2: Considered STRIDE threats for the entities of the graphical diagrams which are part
of the safety pattern descriptions.

Application of the Threat Analysis to a Pattern

Figure 3.2 (page 32) already showed the elements and their data flows of the Homogenous
Duplex Pattern. The figure contains the following four main elements and their data
flows:

• Primary Channel

• Backup Channel

• Fault Detector

• Switch

All these elements are analyzed regarding the relevant threats for Processing elements
and their connections were analyzed regarding the relevant threats for Data flows. This
results in the following list of threats for the pattern:

• Tampering of Single Channel input data

• DoS of Single Channel input data

• Spoofing of Single Channel

• EoP on Single Channel

• Tampering of Single Channel output data

• DoS of Single Channel output data

• Tampering of Fault Detector input data

• DoS of Fault Detector input data

• Spoofing of Fault Detector

• EoP on Fault Detector

• Tampering of Fault Detector output data

• DoS of Fault Detector output data

• Spoofing of Switch

• EoP on Switch

• Tampering of Switch output data

• DoS of Switch output data



3.4. Security Aspects of Safety Patterns 39

This list of threats is not structured and thus it is not easy to see which of the threats
are important and which are less important. For example, the DoS of Fault Detector
output data threat does not affect the functionality of the system as long as the primary
channel works properly. On the other hand, the Tampering of Fault Detector output data
threat directly affects the system and can lead to critical states. Therefore, this threat is
more important.

3.4.2 Building the Security GSN based on the Threats

To visualize which threats are very important and which threats only become important
when combined with others, the threats are displayed in a GSN diagram (Figure 3.6). All
security GSNs start with the main goal that “Safety-critical functions are maintained in
case of attack”. Directly linked to that subgoal are goals related to threats which can
directly lead the system to a critical state when exploited. The subgoals are formulated in
the form “Threat X is prevented” and are represented with undeveloped GSN goals. This
means that a developer has to think about and mitigate these threats when applying the
pattern. From the remaining threats which are not yet included in the GSN diagram, any
combination of threats which could lead the system into a critical state are also added
to the diagram. These combinations are included by using the GSN Option Element
(however, there are no such threats for the pattern in Figure 3.6). Any remaining threats
only affect the non-critical system functionality and are thus not highly relevant for safety.
Therefore, these threats are not included in the GSN diagram.

Figure 3.6: Security GSN skeleton of the Homogenous Duplex Pattern (based on Publica-
tion 3). Not all, just safety-relevant threats are included. They are represented as undeveloped
goals and have to be elaborated by a devleoper.
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3.5 Organizing the Safety Patterns to a Pattern System

To organize the patterns and to find their relations, a structured approach presented in
[KP10a] is used. The approach is to compare tactic representations (as it was already
shown in Figure 3.4 on page 35) of the patterns in order to find their relations. The
approach defines relations between two patterns such as is similar or refines. These rela-
tions are mapped to logical predicates describing attributes of the tactic representations
of the two patterns. If a predicate matches, then the relation holds for the two patterns.
An example would be that if two patterns have the same structure of their tactic rep-
resentation, their relation is is similar. Table 3.3 shows all considered relations and the
corresponding predicates for the patterns and their tactic representation. Every pattern
is checked against all other patterns in the pattern system regarding all relations. The
resulting patterns including their relations are shown in Figure 3.7.

Relation Description Tactic Representation Predicate

is an alter-
native

Patterns A and B solve the same
problem, but propose different
solutions.

SourceNode(A) = SourceNode(B)
AND Graph(A) 6= Graph(B)

uses A sub-problem of pattern A is
similar to the problem addressed
by pattern B.

Graph(A) ⊃ Graph(B)

refines Pattern B provides a more de-
tailed solution than pattern A.

SourceNode(A) = SourceNode(B)
AND Graph(A) ⊂ Graph(B)

specializes The solution of pattern B is a
special case of the solution of pat-
tern A.
Example: Pattern B specializes pattern A

if they have the same graph structure, but

pattern B uses a refined tactic where pat-

tern A uses a more general tactic (e.g. B

uses Replication Redundancy where A uses

Redundancy).

Graph(A) ⊂ generalizedGraph(B)

is similar Patterns A and B provide the
same solution to a similar prob-
lem
Example: Pattern B is similar to pat-

tern A if they have the same graph struc-

ture and they use two related refined tac-

tics. E.g. A uses Replication Redundancy

and B uses Diverse Redundancy

generalizedGraph(A) ≡
generalizedGraph(B)

Table 3.3: Description of pattern relations (slightly modified from [KP10b])
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Figure 3.7: Overview of all patterns of the safety pattern system. The structurally identified
relations are shown by arrows between the patterns.
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Chapter 4

Application of the Patterns to a
Case Study

This section first introduces an industrial case study and then applies the patterns to the
case study and describes how the patterns help to construct a full safety and security
argument in the form of GSN diagrams. Figure 4.1 gives on overview of steps for the
pattern application which are described in detail in this section and in Publication 4.

Figure 4.1: Overview of steps described in this chapter to apply a safety pattern system with
security aspects (based on Publication 4).
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4.1 Case Study Description

The considered system is part of the HIPASE project which was already to some extent
described in Section 1.2.1. The HIPASE project is conducted by the company Andritz
Hydro and targets the development of a domain-specific automation system for hydro-
power plants. This includes the design and development of the embedded device controlling
the actual hardware in the power plant, the design and development of a software which
communicates with this embedded device and which can configure the embedded device,
and the design and development of software for higher-level control stations which can
coordinate different hydro-power plants.

The part of the HIPASE project which is addressed in this thesis is the design of the
embedded device that is installed in the power plants to control the hardware. This device
will hitherto be referred to as the HIPASE-device. The HIPASE-device has to achieve the
following four main functionalities:

• Turbine Control - The device has to sense the current speed of the turbine and has
to control it in order to control the frequency of the generated energy. To control
the turbine speed, the device controls magnetic valves to open and close the water
supply to the turbine.

• Protection - The device has to sense voltages and currents in several components of
the hydro-power plant and has to shut off systems if overvoltages or overcurrents are
detected in order to not negate any mechanical damage to the system.

• Synchronization - When connecting the hydro-power plant to the energy grid, the
generated power must have the same frequency and phase shift as the power grid.
If the hydro-power plant is connected to the grid without adjusting these values,
mechanical damage could result. Thus, the device has to monitor the frequency and
phase values from the grid and only allow the hydro-power plant to connect to the
grid if frequency and phase value differences are sufficiently small.

• Excitation - The device should maximize the produced energy, while still operating
the power plant components in a way that ensures they do not get damaged. The
device controls the current flowing through the generator which creates a magnetic
field. Amongst others, this magnetic field strength determines the amount of energy
produced. However, the field strength can only be increased to a value which does
not damage the generator due to too high temperatures as a result of the flowing
current. The device has to control the value of the magnetic field so that it is
maximized, but the generator still receives no damage.

These four main functionalities are to some extent standardized. This means that
there are to some extent sensor elements available which communicate via a standardized
protocol particularly defined for the energy substation domain. This protocol is defined
in the IEC 61850 standard and uses so-called merging units to collect sensor data and
send them via Ethernet to the HIPASE-device. Apart from these standardized sensors,
other sensors and actuators are directly connected to the HIPASE-device. Also, there
is a network interface to the HIPASE-device, because an operator of the power plant
should be able to interact with the device. Such interactions include parameterizing the
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control functionality of the HIPASE-device, shutting it off manually, or installing firmware
updates. The above stated interfaces result in the minimum interfaces and environment
for the HIPASE-device shown in Figure 4.2.

Figure 4.2: Basic system architecture and interfaces of the HIPASE-device not yet considering
safety

An additional requirement for the HIPASE-device is that it has to be designed with
respect to the IEC 61508 safety standard. The device has safety-critical functionality,
because there are people operating the power plant who could get injured if the device
malfunctions and because a malfunction could result in severe damage to the power plant
hardware leading to considerable financial losses. Thus, an appropriate system architecture
has to be found which improves the safety of the system and which complies with the
IEC 61508 safety standard.

4.2 Pattern Selection

The main requirements for architecture selection come from the IEC 61508 safety standard.
The HIPASE-device has to be developed according to IEC 61508 SIL3 which requires high
fault coverage of single components and which practically requires some kind of hardware
redundancy. Another requirement for the HIPASE-deivce is that it has to be resistant
against faults up to some level and should thus also provide high availability. In the
pattern map shown in Figure 3.7 on page 41 the patterns which are appropriate for these
requirements are all patterns falling into the categories “hardware” and “maintain full
functionality in case of faults”, which are:

• Homogenous Duplex Pattern. The pattern suggests having two identical re-
dundant channels. The result of the redundant channels can be voted and a failure
detection unit tells the voter if one of the channels appears to be erroneous to be
excluded from the vote.

• Heterogenous Duplex Pattern. This pattern is the same as the Homogenous
Duplex Pattern, but it uses diverse channels.

• Triple Modular Redundancy Pattern This pattern uses three channels and a
majority voter device for the correct result.
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• M-out-of-N Pattern. This pattern has N identical or diverse channels. A voter
votes for the output provided at least by M of these N channels.

• M-out-of-N-D Pattern. This is the same as the M-out-of-N pattern, but
additionally each channel can be diagnosed by a fault detector unit. The fault
detector unit tells the voter whether certain channels have to be excluded from the
vote.

The development and production cost for the HIPASE-device should be kept as low
as possible. Therefore, just the Homogenous Duplex Pattern is selected, because it
fulfills the safety requirements of redundant hardware, it does not require the development
of redundant channels (no additional development cost), and it only requires two hard-
ware channels. Figure 4.3 shows the core elements of the applied Homogenous Duplex
Pattern.

Figure 4.3: Main elements of the Homogenous Duplex Pattern. Instead of a switch, for this
pattern, a voting element can also be used for whichever requires two correct inputs, or one correct
input and one from the fault detector excluded channel.

4.3 Application of the Pattern

The Homogenous Duplex Pattern is applied to the HIPASE-device. The main com-
ponent of the HIPASE-device which is error prone is the CPU. Therefore, two redundant
CPUs are applied and as suggested by the pattern, both CPUs get their separate input
values. The HIPASE-device also contains a fault detection unit which monitors the op-
eration of these two CPUs. This fault detection unit is realized as a watchdog which
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periodically sends challenges to the two CPUs to find out whether they are still alive.
Instead of the switch component, a voting functionality is realized. The outputs for the
actuators are binary values and, depending on the type of actuator, the voting is realized
with two relays arranged serial or parallel. This kind of voting means that for some ac-
tuators both CPUs have to actuate the output (serial) in order to operate the actuator,
or just one CPU has to actuate the output (parallel) to operate the actuator. The fault
detector components have the possibility to exclude CPUs from the voting procedure by
simply cutting off their power supply or restarting them. Figure 4.4 shows the resulting
HIPASE-device architecture.

Figure 4.4: HIPASE-device architecture after applying the Homogenous Duplex Pattern.
The switch component of the pattern has been replaced by the hardware voting functionality
realized as relays.

4.4 Construction of a Safety Argument

4.4.1 GSN from the Pattern

The safety patterns each provide a GSN diagram to be used as a basic skeleton to construct
a safety argument. Figure 4.5 shows this safety GSN skeleton for the Homogenous
Duplex Pattern.

The GSN diagram shows how the main goal of the system, which is to maintain its
safety functionality, is achieved. The GSN diagram shows the safety tactics in the form
of GSN strategy elements. For the Homogenous Duplex Pattern, these three tactics
are:

• Replication Redundancy. A redundant system is introduced with the aim of detecting
or masking random hardware failures.

• Override. A failure of a subsystem is masked by overwriting its output with a more
reliable or more safe value.



48 4. Application of the Patterns to a Case Study

Figure 4.5: Safety GSN diagram of the Homogenous Duplex Pattern. The GSN contains
the tactics applied by the pattern: Replication Redundancy, Override, and Condition Monitoring

• Condition Monitoring. Deviations of intended system outputs or system states are
monitored and detected.

4.4.2 Choosing appropriate IEC 61508 Methods related to the Tactics

The safety tactics were linked to specific methods suggested to be applied by the IEC 61508
standard in Publication 1. The relevant IEC 61508 methods related to the tactics
Replication Redundancy, Override, and Condition Monitoring are shown in Table 4.1.
This set of IEC 61508 methods serves as a base to select appropriate methods for the
HIPASE-device architecture. The IEC 61508 safety standard overall provides more than
200 such methods to choose from. Thus this tactic-based pre-selection provides a good
basis to chose the first and most important methods. The methods actually applied for the
HIPASE-device architecture were discussed and selected during a set of expert meetings
by the company Andritz Hydro and the approach described in this thesis does not provide
further guidance on this step. The methods which were selected in the first meeting and
which were considered as most important are marked with a checkmark in Table 4.1.
These methods are then used to complete the safety GSN skeleton of the pattern.

4.4.3 Elaborating the Safety GSN Diagram

The next step in obtaining a GSN diagram to allow safety reasoning for the HIPASE-device
architecture is to include the selected IEC 61508 methods into the safety GSN skeleton.
For that, the GSN strategies describing the tactics are simply replaced by GSN strategies
describing the IEC 61508 methods. Figure 4.6 shows the completed GSN diagram for the
HIPASE-device architecture where additionally added elements are shown in orange and
with dashed lines. In addition to including the IEC 61508 methods, the GSN diagram
has to be elaborated so that evidence for the achievement of the goals is included. Such
evidence could be a simple argumentation, could be test results, or could be some kind
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Tactics Related IEC 61508 methods
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A.2.1 Test by redundant hardware X
A.2.5 Monitored redundancy
A.3.5 Reciprocal comparison by software
A.4.5 Block replication
A.6.3 Multi-channel output
A.6.5 Input comparison/Voting X
A.7.3 Complete hardware redundancy X
A.7.5 Transmission redundancy
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e A.1.3 Comparator
A.1.5 Idle current principle X
A.8.1 Overvoltage protection with safety shut-off
A.8.3 Power-down with safety shut-off
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A.1.1 Failure detection by online monitoring X
A.6.4 Monitored output
A.8.2 Voltage control
A.9.1 Watch dog with separate time base without time-window
A.9.2 Watch dog with separate time base and time-window X
A.9.3 Logical monitoring of program sequence X
A.9.4 Temporal and logical program sequence monitoring X
A.9.5 Temporal monitoring with on-line check X
A.12.1 Reference sensor
A.13.1 Monitoring

Table 4.1: Tactics and their related IEC 61508 methods. The column on the right shows a
checkmark for all methods that are selected to be applied by the HIPASE-device architecture
(Table partially based on Publication 1)

of documentation. For example, in Figure 4.6, the “The fault detection operates properly”
goal is ensured by the fact that the watchdog used for the HIPASE-device applied internal
self-tests and these self-tests lead to a high fault coverage of the watchdog itself. The
evidence for that has to be documented (e.g. fault coverage tests for the watchdog) and a
link to this evidence or the argument that there is such evidence is included in the GSN
diagram.

The method for finding this evidence is not part of the method described in this thesis
and for the HIPASE-device architecture, the way of providing evidence was discussed in
expert meetings and then documented later on in the GSN diagram. Now, this complete
GSN diagram relates the actually implemented IEC 61508 methods to the overall goal of
maintaining the safety functionality. Thus, this diagram can be used to argue why the
methods are used and how they achieve the overall system goal.

Of course this diagram just argues for safety of the high-level architecture and the ele-
ments of the HIPASE-device (like for example the CPUs) contain further safety measures.
These elements could again be refined by applying a safety pattern. For example, the soft-
ware running on the CPU could be constructed using a safety pattern to then construct
a safety GSN for the software also. However, in this example, just the application of the
patterns to the high-level architecture is shown.



50 4. Application of the Patterns to a Case Study

Figure 4.6: Elaborated Safety GSN diagram for the HIPASE-device architecture. All the tactics
are replaced by actual IEC 61508 methods and all goals are connected to evidence elements.

4.5 Construction of a Security GSN Diagram

4.5.1 GSN from the Pattern

The patterns each provide a GSN diagram representing all security threats which could
bring the system into a safety-critical state. Figure 4.7 shows the security GSN diagram of
the Homogenous Duplex Pattern. The GSN diagram has the main goal of maintaining
the safety of a system even in case of attacks. The subgoals address the prevention of
exploits related to security threats. All the subgoals are modeled as undeveloped GSN
goals. This means that all these subgoals have to be developed in order to obtain a
complete argument for the security of the system.

4.5.2 Elaborating the Security GSN Diagram

To elaborate the security GSN diagram, all threats of the diagram have to be considered
and either an argument has to be found and documented as to why the threat is irrelevant
for the system or the threat has to be mitigated. Figure 4.8 shows the completed security
GSN diagram with all added elements marked blue and with dashed lines.

Switch component. The threats to the Switch component are not relevant for the
HIPASE-device architecture, because instead of a switch component, there is ac-
tual hardware in the form of relays and the actuators are directly wired to these
relays. Thus, under the assumption that an attacker has no physical access to the
hardware, the attacker cannot spoof the relay component, cannot mount a denial
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Figure 4.7: Security GSN skeleton of the Homogenous Duplex Pattern. The GSN diagram
contains security threats which could influence the safety functionality.

of service attack on the relay output, and cannot tamper with the output value.
Elevation of privilege on the system is also not possible, because the relays form a
very simple construct. Thus, because of this simple design, it can be assumed that
an attacker cannot elevate his privileges to modify the systems behavior.

Single Channel. Most of the threats for a Single Channel are not relevant for the
HIPASE-device. The denial of service and tampering threats related to channel
output data as well as the spoofing threat are not relevant, because the channel
outputs are hardwired to the relays. However, the threats related to the channel
input data are relevant. Input data comes from directly wired sensors and from the
merging unit. Under the assumption that an attacker has no physical access to the
hardware, the threats related to directly wired sensors are not relevant. However,
the sensor data obtained from a merging unit is sent via Ethernet. If an attacker
can manipulate or block the Ethernet traffic, the sensor data transmission can be
influenced. Thus, for the HIPASE-device architecture, the merging unit is connected
via a separate Ethernet to the HIPASE-device. This Ethernet connection is not con-
nected to any other network elements in the hydro power-plant and thus an attacker
cannot tamper with the data sent from the merging unit or with the merging unit
itself.

Elevation of Privilege on Single Channel. The most severe threat for the HIPASE-
device is Elevation of Privilege on a Channel. The HIPASE-device CPUs are directly
connected to the local power plant network, because firmware updates have to be
possible and because the HIPASE-device has to provide status information from the
power plant to the power plant operator who uses a computer in the local power plant
network to visualize the power plant status. The measure taken for the HIPASE-
device is to reduce the attack surface by including an additional CPU (hitherto called
communication-CPU) which handles all external communication to the local power
plant network. This communication-CPU provides an additional line of defense
meaning that an attacker first has to successfully mount an attack on this CPU
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in order to go on attacking the actual safety-relevant CPUs of the HIPASE-device.
The only data which can still directly affect the safety CPUs of the HIPASE device
are the firmware updates. In the case of a tampered firmware update for the safety
CPUs, an attacker could elevate his privileges on this CPU. To mitigate this threat,
the HIPASE-device only allows signed firmware updates in order to guarantee the
authenticity of installed updates. The communication CPU checks the signature of
the firmware updates and only sends them to the safety CPUs, if the signature check
succeeds.

Figure 4.8: Completed Security GSN argument for the HIPASE-device. No more GSN goals are
undeveloped and all goals are linked to evidence elements.

4.5.3 Influence on the Safety Functionality

For security reasons, an additional element was added to the HIPASE-device architecture.
A communication CPU was placed between the local power plant network and the safety
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CPUs. This communication CPU could have an effect on the safety functionality of the
system and if that is the case, the communication CPU also has to be considered in the
safety GSN argument.

The IEC 61508 safety standard requires any interaction between a system which is
connected to a safety-related system to be analyzed in order to find out whether the
safety functionality really does not depend on the other system. For the HIPASE-device
this means that the safety CPUs have to be able to operate without the communication
CPU and that the communication CPU cannot bring the safety CPUs into a critical
state. Therefore, the HIPASE-device is designed in a way that the communication CPU
only indicates upon request if a new firmware for the safety CPUs is available and the
safety CPUs decide themselves if they want to apply the update. This means that the
communication CPU cannot trigger the update. This is important, because otherwise,
the communication CPU could interrupt the safety CPU during important safety-related
operations. The firmware updates sent from the communication CPU to the safety CPUs
are protected with a CRC field so that the data integrity can be checked locally by the
safety CPUs. Other communication between the power plant network and the safety CPUs
is related to the visualization data sent from the safety CPUs to the network. Thus, for
this communication the communication CPU has to make sure that data is just sent form
the safety CPU to the network and not in the other direction.

By these simple measures, the safety CPUs are made independent from the communi-
cation CPU and thus the communication CPU does not have to be included in the safety
GSN argument. For more complicated cases, advice on more finding out whether a safety
component is independent from another or not can be found in Publication 9.
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Chapter 5

Evaluation of the Patterns and the
Pattern-Based Development
Method

This section evaluates the proposed security enhanced safety patterns and their method
of application. First, the benefits and liabilities of applying the method and the pat-
terns to the HIPASE-device are discussed based on feedback from Andritz Hydro. Next,
the method is compared to other pattern-based safety development methods to show in
which aspects the proposed method and patterns are better compared to existing methods.
Finally, the safety and security aspects of the patterns are quantified and measured.

5.1 Discussion and Benefits for the HIPASE Project

The proposed method of applying safety patterns to find an appropriate safety archi-
tecture and of constructing GSN diagrams for safety and security was applied for the
HIPASE-device and the developers were informally questioned regarding the benefits and
shortcomings of the method. Some of the feedback has already been used to enhance the
method to the current version as it is now. The following main points were gathered from
the feedback:

Safety Patterns. All architects agreed that it is important and interesting to have a col-
lection of possible safety architectures. However, the senior architects who are safety
experts, did not gain fundamental additional knowledge from the problem/solution
section of the patterns. Still, for more junior architects the patterns provided a
valuable overview of safety architectures and the textual pattern sections such as
the forces or consequences brought additional insights.

Pattern Selection. Finding an appropriate pattern for the HIPASE-device was quickly
done. The categories hardware/software and failover/fail-safe helped to quickly re-
duce the patterns to a suitably small set.

GSN. The Goal Structuring Notation was new to the system architects at Andritz Hydro
and they were interested in learning a new way to structurally present their safety
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measures in a system to the safety certification organization. The system architects
quickly understood the main concepts of GSN.

Safety GSN Diagram. The safety GSNs contain safety tactics which are linked to
IEC 61508 methods. This link was considered by some developers as useful, while
others considered them as not necessary. More specifically, for employees which
were new to the topic of safety, the IEC 61508 method suggestions by the patterns
were considered as beneficial. For safety reasoning, the safety GSN based on the
safety skeleton of the pattern was first accepted by Andritz Hydro and considered as
very useful, because up to that time there was no other structured method used to
present safety evidence for the whole system. However, during the development of
the project, the safety GSN was not updated by Andritz Hydro and ran out of sync
with the project. From that point on, the safety GSN was still used to argue why
some of the IEC 61508 methods were chosen to realize the architecture, but it was
not used anymore to present a complete safety argument for the HIPASE-device.
Instead, a list of textual safety requirements was maintained, because it was less ef-
fort. The disadvantage of that is that it is not easy to see what the purpose of some
of the safety requirements are and how they are related. However, for the HIPASE
project, that was not considered as important, because the senior safety architects
of the project had already constructed several similar systems and thus could base
the HIPASE requirements on requirements from previous projects and they could
also use existing (textual) safety arguments from previous projects.

Security GSN Diagram. At first, Andritz Hydro did not plan to extensively consider
security aspects for the HIPASE-device. However, that changed during the beginning
of the architecture design. The pattern-based safety development method brought
their attention to security issues. It was a great benefit to have the security GSN
as a starting point to see which security threats are relevant for the safety function-
ality of the system. A big advantage was that the security threats were conveyed
in a way that was at that point already familiar to the system architects: in GSN.
This was especially important, because the architects were not security experts and
thus it would at that point have been an additional problem to introduce new se-
curity methods or notations (as it would be the case for regular STRIDE analysis
including threat trees). At Andritz Hydro, security considerations increased steadily
during the development of the HIPASE-device. Currently, the company maintains
lists of security threats based on the threats of the security GSN skeleton of the
pattern. Andritz Hydro broke the specific threats further down to a level of security
requirements and thus have a complete security argument about how specific secu-
rity requirements fulfill the overall aim that attackers cannot influence the safety
functionality of the system.
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5.2 Comparison to other Pattern-Based Safety Development
Methods

This section compares the proposed method of applying the safety patterns and con-
structing GSN diagrams with the help of these patterns to other pattern-based safety
development methods from literature. Such a comparison regarding safety aspects is al-
ready described in Publication 5. In addition, this section also compares security aspects
of the pattern-based safety development methods.

For the comparison the following pattern-based safety development methods, which
are described in more detail in Section 2.2.3 and Publication 5, are considered:

• Applying Patterns along the IEC 61508 Safety Lifecycle [RVK13b]

• Safe Control System Method [HS13]

• TERESA Project [HDGJ10]

• SIRSEC Project [RHFP13]

• Safety Tactic-Based Approach [Wu07]

• Safety Architecture Patterns [Arm10]

• Safety Architecture Patterns + UML [AKA12]

• SDL Design Patterns [FGG+05]

• REFLECT [PKCD11]

• AltaRica Safety Patterns [KSB+04]

• Safety Timing Templates [Bit07]

The methods are compared regarding general pattern-related criteria like, for example,
the type of patterns they use. Other pattern-related criteria address the application of
the patterns like for example, the support of the method for pattern search, selection,
and integration or the tool support of the method in general. Regarding safety, the
methods are compared regarding the safety domain they address and their conformance
to safety standards, and regarding their support for safety reasoning. Security aspects
and the support regarding security issues is discussed for the different methods and the
maturity of the method is assessed in terms of their applicability to larger systems or
existing evaluations of the methods. Table 5.1 shows an overview of the comparison.
More detailed discussions about the presented pattern-based development methods and
about the content of the table is provided in Publication 5.
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Pattern Pattern Application Safety-Process Aspects Security Method Maturity

Type Pattern-
Search/Sel.

Pattern Integra-
tion

Tool Support Standards,
Dev.-Process

Safety Rea-
soning /
Traceability

Security Applied
to

Evaluation

Patterns
- Safety
Lifecycle

process and
architecture
patterns

development-
phase dependent
pattern links

- - development
process based
on IEC 61508

some patterns
cover verifica-
tion activities

- - -

Safe Con-
trol System
Method

safety pro-
cess and
safety ar-
chitecture
patterns

shows appli-
cable safety
patterns along
the development
process

UML component
and sequence
diagrams with
defined interfaces
for some patterns

- - GSN patterns;
pattern inter-
faces provide
link to require-
ments

- made-up
system

informal
general dis-
cussion

TERESA
project

model-based
security and
dependabil-
ity patterns

text- or
category-based
pattern search
tool

common pattern
meta-model with
defined interfaces;
pattern instantia-
tion with help of
tools

pattern search/ se-
lection/repository
tool; pattern edi-
tor; property and
constraint editor;
process editor

meta-model
for safety-
process; mod-
els present for
railway-safety
and IEC 61508

the process
meta-model
supports check-
points to define
requirement
check activities

the main focus
is on security
patterns, but not
combined with
safety

industrial
system

discussion;
risk esti-
mations
with/without
TERESA

SIRSEC
Project

safety
architecture
patterns

developer
chooses from
pattern cate-
gories

patterns have
defined interfaces;
integration with
tool support

Eclipse/Papyrus
tool for pattern
selection and
instantiation

- patterns con-
tain links to
requirements

- made-up
system

-

Safety
Tactic-
Based
Approach

safety tactics tactics pro-
vided to counter
elements of neg-
ative scenarios

- - tactic applica-
tion along the
safety-process
discussed

GSN patterns
used to build
safety cases

- industrial
system

discussion on
application to
case studies

Safety Ar-
chitecture
Patterns

safety
architecture
patterns

tool asks ques-
tions to find
an appropriate
pattern

- tool to guide
pattern selection
and to calculate
reliability and risk
reduction

pattern recom-
mendation for
appropriate
IEC 61508 SIL

- - small
proof-of-
concept
system

-

Safety Ar-
chitecture
Patterns +
UML

safety
architecture
patterns

- patterns with
defined UML
interfaces are inte-
grated in existing
architecture model

Enterprise Archi-
tect extension to
manage, view, and
retrieve patterns
(UML)

- - - - -

SDL
Design
Patterns

SDL pat-
terns

- interfaces and
descriptions of
how to adapt SDL
diagrams

- - verification of
timing behavior

- industrial
system

-

REFLECT safety
architecture
patterns

automatic
pattern selection
according to
requirements

code transfor-
mation based on
annotated input
source

code transforma-
tion tool using
patterns to fulfill
safety requirements

- requirements
linked to imple-
mentation

- made-up
system

-

AltaRica
Safety
Patterns

safety
architecture
patterns

- mapping of pattern
input/output
interfaces

architecture mod-
eling and model
checking tools

- requirements
linked to imple-
mentation

- industrial
system

discussion on
application to
case studies

Safety
Timing
Templates

temporal
safety tem-
plates

question/answer-
based guidance

mapping of pattern
input/output
interfaces

architecture mod-
eling and model
checking tools

- requirements
linked to imple-
mentation

- industrial
system

discussion on
application to
case studies

Method
described
in this
Thesis

safety
architecture
patterns and
safety tactics

graphical rep-
resentation of
pattern relation-
ships

- - patterns
linked to
IEC 61508
methods

GSN diagrams
for patterns

threat analysis of
safety patterns
and GSN dia-
gram for security
reasoning

industrial
system

metrics

Table 5.1: Comparison of pattern-based safety methods with focus on their safety and security aspects (based on Publication 5)
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Most of the methods are either related to a safety standard, or provide some general
support for safety such as safety reasoning by constructing safety cases or traceability
support to link safety implementations to safety requirements. It is not surprising that
such things are part of the methods, because all of the methods are actually intended to
be used for safety-critical system development.

The main benefits and differences of the proposed pattern-based safety development
method compared to the other methods covered in literature are below:

Security. There are just two methods in Table 5.1 which cover security aspects. These
are the method described in this thesis and the TERESA approach. The TERESA
approach actually mainly focuses on security and only also addresses safety issues to
some extent. Most of the provided patterns by TERESA actually address security
problems and only a few of them address safety issues. The TERESA approach pro-
vides tools and a concept for designing, managing, integrating, and reasoning about
these patterns independent from whether they address security or safety. However,
TERESA does not cover security and safety issues together for the presented pat-
terns. This is the main benefit of the method and the patterns presented in this
thesis, because the method from this thesis takes safety patterns and considers se-
curity aspects for these patterns. Thus, from the pattern-based safety development
methods shown in Table 5.1, this method is the only one which introduces security
aspects into pattern-based safety development.

Collection of Safety Patterns. Many of the methods from Table 5.1 describe the ap-
proach of how to apply safety patterns and how to reason about safety. However,
most of the methods just describe a few actual safety patterns. Several methods do
provide links to a larger set of patterns which could be integrated into the tools or
pattern form in order to be used by the method; however, that requires additional
effort and might not always be a straight forward task. The method described in this
thesis mainly focuses on redundancy-based architecture patterns and fully describes
15 such patterns including their GSN diagrams which help to reason for safety and
security. These 15 patterns are collected from literature on patterns and pattern
collections of high-level safety architectures.

Evaluation. It is difficult to evaluate development methods. It would be ideal to have
two identical systems and let these systems be developed once with and once without
the development method. However, such an evaluation is quite complicated and it
is difficult to develop identical systems twice in a similar environment. This might
be the reason that just few of the methods in Table 5.1 actually provide an evalu-
ation. Some of them provide no evaluation at all and some discuss the application
of the method to an example system and use the feedback on that application as
an evaluation. The TERESA approach additionally provides a risk estimation for
a project with and without applying the TERESA approach. This thesis uses for
evaluation the feedback gathered from the application of the method to an industrial
system, and the method additionally uses metrics related to safety and security (see
the following sections) to quantitatively evaluate the patterns. Furthermore this
comparison to other pattern-based safety development methods is used to show the
benefits of the method and of the patterns described in this thesis.
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5.3 Evaluation of the Safety Patterns

The main ideas of the safety patterns have been documented in literature for quite some
time. Several of the patterns covered have already been mentioned in pattern form in 1998
[Dou98] and have been modified and re-published several times. Reports such as [Ham12]
show that these patterns are actually applied in industry and that the main ideas of these
pattern do provide benefits.

In this section, the additionally introduced safety-related parts of the patterns will be
discussed:

• The Safety GSN Diagrams

• The Link to IEC 61508 Methods

5.3.1 The Safety GSN Diagrams

The safety GSN diagrams from the patterns are structurally developed from the pattern
descriptions in literature. The GSN diagrams contain the safety tactics applied by the
patterns and they contain scenarios which have to be fulfilled after applying the pattern.

Solely based on the tactics found for the patterns, the relations between these patterns
were mined (see Figure 3.7 on page 41). The connections between the patterns appear to
be reasonable. For example, according to the figure, the Homogenous Duplex Pattern
is similar to the Heterogenous Duplex Pattern and both are specializations of the
M-out-of-N-D Pattern. This appears quite sound, because the duplex patterns are
actually some kind of 1-out-of-2 system with failure diagnosis. Also for the other patterns,
the relations appear natural and sound. Thus, the selection of tactics included in the
safety GSN diagrams of the patterns seems to be appropriate.

Apart from the safety tactics, the GSN diagrams contain safety-related scenarios rel-
evant for the pattern. These scenarios were structurally mined from the pattern descrip-
tions as suggested in [Bab07]. However, the fact that the scenarios were gathered with a
structured method does not mean that these scenarios are complete. As it is always the
case with patterns, this part is work in progress and during future development using the
patterns, the patterns and their relevant scenarios might have to be updated. However,
the general approach to build the GSN diagrams by considering all relevant scenarios as
subgoals is an approach commonly applied for safety-critical systems [Wu07] and thus it
appears that reasonably complete safety GSN diagrams were developed for the patterns.

5.3.2 Link to the IEC 61508 Standard

The tactics contained in the GSN diagrams contain links to methods suggested to be
applied by the IEC 61508 safety standard. The standard provides more than 200 meth-
ods such as, for example, “Monitored Redundancy” or “Code Protection”. The proposed
method in this thesis helps to select appropriate methods from this pool in order to imple-
ment a safety architecture based on a pattern. To evaluate whether the method suggestion
based on the tactics is appropriate, Precision and Recall metrics are calculated for indus-
trial projects applying one of the safety architectures described by the patterns. The
metrics then indicate whether the suggestion of the methods from the patterns would
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have been complete for that architecture and how many other methods not suggested
by the pattern were additionally required. The metrics are calculated with the following
equations:

Precision =
Number of methods suggested by the pattern and applied

Number of methods suggested by the pattern
(5.1)

Recall =
Number of methods suggested by the pattern and applied

Number of methods applied by the architecture
(5.2)

As industrial projects, in addition to the HIPASE-device, one other system has been
found in literature which provides detailed information about the applied IEC 61508 meth-
ods. The system describes the architecture of a frequency converter and also applies the
Homogenous Duplex architecture. Details about the actually applied IEC 61508 meth-
ods of that architecture can be found in Publication 6. Table 5.2 shows the resulting
precision and recall values for the frequency converter and for the HIPASE-device.

Precision Recall

HIPASE-device 17
22

= 77.2% 17
23

= 73.9%

Frequencey converter system 15
22

= 68.2% 17
23

= 68.2%

Table 5.2: Precision and recall values for the IEC 61508 method suggestion of the Homogenous
Duplex Pattern

The resulting precision and recall values for the method suggestion are around 70%.
This means that about two thirds of the methods suggested by the patterns are actually
applied and about one third of the applied methods has to be additonally searched for in
the IEC 61508 standard. This shows that the methods suggested by the patterns are by
no means sufficient to construct a safety architecture; however, it also shows that quite a
lot of the methods suggested are actually implemented. In particular, for people who are
new to the safety domain and to the safety standard, this brings benefits in terms of good
advice for which methods from the IEC 61508 standard to look at first.

5.4 Evaluation of the Security Aspects

The safety patterns contain a security GSN diagram representing security threats relevant
to the safety functionality of the system. The security threats were analyzed using the
STRIDE threat analysis approach. This approach is most commonly used for finding
high-level security threats in a system. Thus, it can be argued that the considered threats
for the patterns are likely to be complete, because a well-known approach is structurally
applied to find relevant threats.

To evaluate the security improvement when applying one of the patterns, security risk
estimation can be done. There has been a lot of work in literature on quantifying security
aspects of a system and on calculating security metrics for systems [MFMP10]. Most of
these quantitative methods are based somewhere on the estimation of the likelihood and
impact of security attacks. This section outlines how such a security risk estimation can
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be applied to the safety patterns in order to evaluate the improvement or the impairment
of using one of the patterns from a security point of view.

The security GSN diagram of the patterns consists of subgoals which represent threats.
If the risk values for these threats are known, then the risk values can be propagated up in
the GSN diagram and the overall security risk can be calculated. The GSN diagram itself
actually already contains part of the risk information. The GSN diagram contains the
information about which threats are directly safety-critical if exploited and which threats
have to be combined in order to be safety-critical. Thus, in order to obtain a security risk
value, simply the likelihood of an exploit has to be evaluated and not also the impact.
When these likelihoods are propagated up the GSN diagram, one gets one single value
representing the security risk for a system after applying the safety pattern.

Publication 8 shows the detailed security estimation for the initial HIPASE-device
architecture before and after the theoretical application of safety patterns. Table 5.3 shows
the resulting security risk improvement values of applying the safety patterns. The values
are specific for the HIPASE-device and depend on the likelihood estimation for the security
threats which are described in Publication 8. The absolute values in the table do not
provide much detailed insight for the security of the system; however, it is interesting to
see that the application of some of the patterns actually leads to a decrease in security.
That is, because for these systems, additional redundant hardware is introduced and that
increases the attack surface of the overall system. The values in Table 5.3 were used to
argue for the application of a Heterogenous Duplex system for the HIPASE-device,
because of its benefits for security. However, the Homogenous Duplex system was
chosen by Andritz Hydro because of development cost reasons. Still, the security risk
numbers can be used to indicate whether a safety architecture is good or bad for security
and in case of the HIPASE-architecture the numbers contributed to the decision to have
a separate communication CPU in order to shield the safety CPUs by reducing the attack
surface of the overall system and by introducing an additional line of defense.

Security Risk
Improvement

Homogenous Duplex 0.99
Heterogenous Duplex 1.11
Triple Modular Redundancy 0.99

Table 5.3: Security risk improvement values for the HIPASE-device architecture when applying
three initially considered safety patterns

The quantified security values evaluate the benefits of the safety patterns from a secu-
rity point of view and they can be used to more easily argue about security considerations
when deciding on a safety architecture.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presented a collection of safety patterns and showed with an industrial example
system, how they can be applied. The safety patterns were partly collected from literature
and partly mined from the IEC 61508 safety standard. The patterns were analyzed with
a structured threat analysis from a security point of view. To enable security as well as
safety reasoning, the patterns were equipped with a Goal Structuring Notation diagram.

From a patterns’ point of view, the thesis provides a structured collection of safety
patterns which is not yet present in literature. The patterns from literature were extended
with regards to the following elements:

• Quality attribute consequences. The safety patterns from literature did not contain
explicitly stated effects of the pattern application on quality attributes such as, for
example, cost or performance. The pattern consequences were extended regarding
these effects.

• Security aspects. The patterns describe the relevant security threats which could
compromise the safety functionality of the system.

• GSN diagrams. The security aspects as well as the safety aspects of the patterns
are organized in GSN diagrams to allow reasoning and the structured presentation
of arguments as to why an implementation of the pattern is secure or safe.

• Known uses. The patterns were extended to include three brief descriptions with
references to applications of the pattern.

• Pattern relations. A structured method for finding the relationships between the
safety patterns is applied. The method has yet only been applied in literature to
Gang of Four design patterns. Thus, the presented safety pattern system shows the
broader applicability of this method.

From a safety point of view, the thesis provides a method to guide the development
of safety systems and to link the high-level design of the system to specific methods
proposed by the IEC 61508 safety standard. This link is present in Goal Structuring
Notation diagrams which contain safety tactics linked to the IEC 61508 standard. The
link provides the following benefits:
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• System development. The development of a system can be guided by the patterns and
the link to IEC 61508 methods provides further information on how to implement
a specific pattern, because the IEC 61508 methods are described in the IEC 61508
standard which also provides references to further information regarding the im-
plementation of the methods. The application of methods suggested by the safety
standard provides advantages during safety certification, because the certification
authorities have already approved of these methods.

• Safety reasoning. The link from the patterns to the IEC 61508 methods can be used
for safety reasoning. The link shows how the high-level aim of meeting the safety
requirements of a system is achieved via specific methods and measures suggested by
the safety standard. Thus, the link can be used during safety certification to argue
why a selected method has been chosen.

From a security point of view, the thesis brings the big advantage that the patterns
introduce security to the safety domain. Security is not yet thoroughly integrated into
safety engineering and is a rather new field for companies who in the past have just worked
on safety-critical systems which were not exposed to many security threats, because, for
example, these systems might not have been connected to the Internet. However, this
field changes as more and more devices become interconnected and thus the need for the
consideration of security for such systems rises. The patterns provide a connection between
safety best practice in the form of architectural safety solutions and security best practice
in the form of threat analysis and elaboration of countermeasures for these threats. Thus
the patterns help on the one hand to point out that there are security threats for safety
critical systems and on the other hand to provide guidance on how to find and apply
countermeasures to mitigate these threats.

6.2 Directions for Future Work

6.2.1 Extend Pattern Catalog

The current collection of safety patterns includes 15 high-level safety-related architectures
for hardware or software systems which have so far been described in literature several
times and which appear to be mature and also applied in practice. However, the cur-
rent collection mostly describes redundancy-based architectures and could be extended
to also include other safety patterns. For example, [RVK12] describe architectural safety
patterns. Two examples for the described patterns are Separated Safety and Safety
Overrides. Separated Safety describes keeping the safety-critical part of a system
to a minimum, which corresponds to the safety tactic Simplicity. Safety Overrides
explains that a safety system should be able to override values of less reliable systems to
make sure that the output value is always safe. This pattern relates to the safety tactic
Override. Such patterns are more specific aspects of the high-level architectures described
in this thesis as patterns and could also be integrated into the pattern collection to give
further guidance on how actual measures such as overrides or interlocks should be imple-
mented. Other patterns which could also be used to extend the current pattern collection
are presented in [RVK13a] and [RK13].
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6.2.2 Towards a Pattern Language

The current collection presents the patterns in a uniform notation and also shows some
connections between the patterns. However, these connections describe the topology of
the pattern system which means that the connections describe how the structure of the
different patterns is related. Usually, in pattern languages, the relations between the
pattern give information about which patterns can or should be applied after another.
However, the safety patterns described in this thesis are rather alternatives to one another
and do not completely describe how to develop safety systems from beginning to end. Thus,
there clearly is a lot of possible future work to include other safety patterns which describe
solutions on a different level of abstraction (such as [RVK12], [RVK13a], or [RK13]) and
to then find other pattern relations to these patterns such as “can be applied next” or “is
a prerequisite to applying the current pattern”. Having such relations and having more
safety patterns which also address safety issues on a different level of abstraction would
make it possible to profit from the major benefit of the concept of patterns which is to
present a good solution space for a specific domain (in this case for safety-critical systems)
and to cover most occurring problems for that domain by providing sequences of pattern
which can be applied to tackle a problem.

6.2.3 Security Certification

The collection of safety patterns focuses on safety systems and on how to reason on safety
with respect to the IEC 61508 safety standard. From a security point of view, the patterns
include relevant security threats. There is also potential to further investigate how the
concept of linking the patterns to a standard can be utilized for the security domain. For
example, as part of this thesis, the connection between security tactics and the Common
Criteria security standard has been investigated (see Publication 7). This connection
could be used to link security measures applied to mitigate security threats for a system
to the Common Criteria standard and thus to also describe how the security goals of
the system can be achieved by using methods from the security standard. However, that
approach has not yet been fully integrated in the pattern-based development method
described in this thesis and is thus left open for future work.

6.2.4 Evaluation

The thesis evaluates the patterns and their application by discussing their benefits during
their use in an industrial project, by evaluating the appropriateness of the suggestions of
IEC 61508 safety methods, by evaluating the impact of the patterns on security, and by
qualitatively comparing the method to other pattern-based safety development methods.
It would be interesting to also apply the patterns to other projects and to conduct an
extended evaluation. Such an evaluation could include questionnaires regarding the ap-
plication. In particular, feedback on the usefulness of the links between the IEC 61508
safety standard and the patterns would be interesting. This information could not be
completely gathered with the industrial project described in this thesis, because the safety
certification of the project was delayed and not completed at the point of writing this
thesis.
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A thorough evaluation of the pattern-based development method would describe the
development of two identical systems with an identical development environment; one
developed with and one without the method. In such an evaluation, the benefits of the
method could be seen directly and perhaps measured. However, it is impossible to develop
a system twice in completely identical environments and even making an approximation
to such an identical setup (e.g. by having two teams develop the same system - one team
with and one team without the method) would result in a huge financial overhead. That
is the reason why such an extensive evaluation was not conducted as part of this thesis,
even though it would be very important and would provide extremely interesting insights
regarding the benefits and liabilities of the patterns and their application.

6.2.5 Tool Support

Development using the patterns could be made easier with the provision of appropriate
tools. For example, a tool could store the patterns in a repository, let the user select
an appropriate pattern, and then provide the information about the pattern including
the safety and security GSN skeletons. The tool could provide the potential to modify
and complete the GSN skeletons. Regarding safety, the tool could provide the IEC 61508
measures which are applicable for specific tactics applied in a pattern and the tool could
provide logic regarding the STRIDE security analysis. This would be beneficial if addi-
tional elements have to be added to the pattern, which then also have to be considered
from a security point of view.

Another example of a useful tool would be a tool which automatically generates the
relations between the patterns as described in this thesis. The approach can be fully
automated, but has been applied by hand to find the relations between the patterns. The
reason for doing this was that with 15 patterns it was still manageable and implementing a
tool would have been more time consuming. However, if more patterns were to be included
into the pattern system, the usage of a tool would be very beneficial.



Chapter 7

Publications

This chapter provides publications by the author of this thesis. Figure 7.1 shows an
overview of the publications and shows how the publications are related to address the
overall topic of this thesis to build and apply safety patterns with security aspects also
with respect to system certification. The publications in the upper part of the figure
target specific parts of the methodology to build safety patterns with security aspects as
presented in Chapter 3. The publications in the lower part of the thesis describe how to
apply the patterns and how to evaluate the patterns and the pattern-based development
process which is covered in Chapter 4 and Chapter 5.

The following first shows a list of the publications and the remainder of this chapter
contains the full publications.

Publication 1: Preschern et al., Catalog of Safety Tactics in the light of the IEC 61508 Safety
Lifecycle, Nordic Conference on Pattern Language of Programs (VikingPLoP), Ikaalinen, Finland,
March 21st – 24th, 2013.
Publication 2: Preschern et al., Building a Safety Architecture Pattern System, 18thEuropean
Conference on Pattern Language of Programs (EuroPLoP), Irsee, Germany, July, 10th – 14th 2013.
Publication 3: Preschern et al., Security Analysis of Safety Patterns, 20thConference on Pattern
Language of Programs (PLoP), Monticello, USA, October, 23rd – 26th 2013.
Publication 4: Preschern et al., Safety Architecture Pattern System with Security Aspects, sub-
mitted to Transactions on Pattern Language of Programs, currently under review.
Publication 5: Preschern et al., Pattern-Based Safety Development Methods: Overview and Com-
parison, 19thEuropean Conference on Pattern Language of Programs (EuroPLoP), Irsee, Germany,
July, 9th – 13th 2014.
Publication 6: Preschern et al., Applying and Evaluating Architectural IEC 61508 Safety Pat-
terns, 5thInternational Conference on Software Technology and Engineering (ICSTE), Bandar Seri
Begawan, Brunei Darussalam, September, 28th – 29th 2013.
Publication 7: Preschern et al., Catalog of Security Tactics linked to Common Criteria Require-
ments, 19thConference on Pattern Language of Programs (PLoP), Tucson, USA, October, 19th –
21th 2012.
Publication 8: Preschern et al., Quantitative Security Estimation based on Safety Architecture
Design Patterns, 3rdInternational Conference on Software and Information Engineering (ICSIE),
Singapore, Singapore, May, 1st – 2nd 2014.
Publication 9: Preschern et al., Structuring Modular Safety Software Certification by Using
Common Criteria Concepts, 38thEuromicro Conference on Software Engineering and Advanced
Applications (SEAA), Cesme, Turkey, September, 5th – 8th 2012.
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Figure 7.1: Overview of the process describing the development, application, and evaluation of
the safety patterns with security aspects. The figure includes relevant publications of the author
of this thesis and shows which part of the process the publications address.
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Abstract. Safety tactics describe general architectural design decisions
and their effect on the overall system safety. Currently these safety tactics
do not directly address the consequences of design decisions on safety
certification.
To establish this connection, we refine safety tactics by extracting in-
formation concerning architectural design decisions from the IEC 61508
safety standard. We generalize this information in order to describe the
effect of safety tactic usage on different development phases of safety-
critical systems. We provide the whole revised catalog of safety tactics
and we show its application by analyzing the Triple Modular Redun-
dancy design pattern regarding its safety tactic usage to evaluate the
effect of the pattern on safety certification.

Keywords: safety tactics, IEC 61508

1 Introduction

Safety standards contain information about requirements which have to be ful-
filled to achieve functional safety certification. Often some methods and archi-
tectures for fulfilling the safety requirements are suggested in the standard and
in practice just these, sometimes outdated, methods and architectures are used.
The introduction of new methods and architectures requires proof of their va-
lidity regarding functional safety which can be a tedious task and can increase
certification costs significantly. There is no general evaluation of methods and ar-
chitectures which allows to evaluate them regarding safety certification in order
to aid the certification of novel concepts.

Safety patterns address this problem in a way that they describe the conse-
quences of applying a specific architecture; however, they cover a rather specific
and implementation focused view of this problem. To cope with the problem
on a more general level, we evaluate the consequences of safety-related architec-
tural design decisions (safety tactics) on safety certification. We examine existing
safety tactics and discuss their suitability for the IEC 61508 safety standard. We
mine architectures and methods suggested in the IEC 61508 standard regarding
the tactics they use and regarding their effect on different phases of the safety
lifecycle. Based on our analysis of used tactics in the IEC 61508 standard, we
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re-organize and re-structure existing safety tactics to be more intuitive. Fur-
thermore, we refine the safety tactics by describing their influence on different
safety lifecycle phases in general and more specific by relating IEC 61508 meth-
ods to the tactics. We present the refined catalog of safety tactics and we apply
it to an example where we analyze the consequences of the Triple Modular
Redundancy (TMR) pattern [1] on safety certification.

This paper is organized as follows. Section 2 gives an introduction to the
IEC 61508 safety lifecycle and focuses on its realization phase which is later on
analyzed for the tactics. Section 3 introduces the idea of tactics and Section 4
gives an overview of current tactics in the safety domain. Furthermore, in this
Section we discuss why and how existing safety tactics should be modified. In
Section 5 we present the tactic catalog with focus on the tactic influence on
safety certification. Section 6 analyzes the TMR safety pattern by using the
refined safety tactics. Section 7 gives an extended overview of related work on
architectural tactics with focus on safety tactics. Section 8 concludes this work
and gives an outlook on the future potential of this work.

2 IEC 61508 Safety Lifecycle

The safety lifecycle according to IEC 61508 provides a process framework which
allows to achieve functional safety for a product by following the methods and
requirements posed by the standard for each phase of the lifecycle. An overview
of the lifecycle is shown in Figure 1.

The planning phases addressing the overall product safety include definition
of concept and scope, a hazard and risk analysis resulting in safety requirements,
and the allocation of Safety Integrity Levels (SILs) to components. During the
planning phases, plans for the operation, maintenance, installation, and safety
validation have to be defined. An important phase of the safety lifecycle is the
product realization phase, which distinguishes between hardware and software
implementation and can be divided into the following sub-phases:

– Requirements specification - Full specification of safety-related functions for
the product, allocation of SILs to these functions, and specification of risk
reduction measures for these functions.

– Validation planning - Preparation of a plan how to validate the system
against the specified safety requirements.

– Design and development - Design and implementation of the safety-critical
software/hardware according to the safety requirements.

– Integration - Integration/Assembly of developed software/hardware subsys-
tems to form the complete safety-related product.

– Operation and maintenance - Activities to ensure the proper operation of the
developed software/hardware product (does not cover system modifications).

In the phases after the realization of the system, the plans on operation, main-
tenance, installation, and safety validation have to be carried out. Additionally,
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Fig. 1. IEC 61508 safety lifecycle (incl. realization phase) [2]

other phases of the lifecycle address product modifications, decommissioning,
and disposal.

In this paper we focus on the effects of architectural safety tactics on the
product realization phase and the following phases like safety validation and
product modification. We do not describe the effect of architectural safety tac-
tics on all of the phases mentioned above, because when analyzing the safety
standard, we did not find relationships of the tactics to all of the safety lifecycle
phases, especially not to the early phases.

3 Introducing Tactics

Tactics are architectural design decisions which influence and manipulate quality
attributes [3]. Compared to design patterns, they describe general concepts or
principles and do not describe solutions for a problem in a given context. For
example, the Voting tactic describes how to achieve failure containment by
choosing an appropriate system output from redundant system components.
Compared to patterns, the tactic is more general and does not describe a specific
solution but rather provides the underlying idea for possible solutions. In this
case, a possible solution could be the TMR pattern which uses the Voting
tactic to choose for the majority of three redundant subsystem outputs. Usually,
a tactic can be found in several architectures or patterns and can even be seen
as building blocks for design patterns [4].
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It is difficult to keep tactics and patterns apart as there is no clear boarder
between the two. However, Ryoo et al. [5] specify some criteria to identify tactics.
For a design decision on order to be a tactic, it has to be atomic. This means that
it cannot be divided into other multiple tactics, however it can be refined. For
example, the Redundancy tactic is refined by the Replication Redundancy
tactic and the Diverse Redundancy tactic, but it is not composed of them.
Furthermore, Ryoo et al. say that tactics focus on a single quality attribute (e.g.
safety) and patterns usually affect several quality attributes.

4 Safety Tactic Catalog

A collection of safety tactics presented by Wu [6] is shown in Figure 2. These
tactics were mined from safety architectures described in literature and address
failure avoidance, failure detection, and failure containment.

Fig. 2. Safety tactics proposed by Wu [6] (arrows show tactic refinements)

We analyzed methods and architectures used in the IEC 61508 standard and
related them to Wu’s safety tactics. Part 7 of the IEC 61508 standard explains
several safety-related methods and architectures and describes their aims. We
linked them to Wu’s safety tactics by manually searching for similarities between
the method or architecture aims and the tactic aims.

For some tactics we could not find any relationship to the standard at all and
some methods and architectures had very similar relationships to the same set of
tactics indicating that these tactics are rather similar. Furthermore, some of the
tactics describe rather specific safety-related solutions (e.g. Timestamp), while
others describe general concepts (e.g. Voting). This motivated us to revisit the
safety tactics, to make the safety tactic catalog more intuitive. We add tactics
we found rather often in the IEC 61508 standard to the catalog and we skip

72 7. Publications



5

Fig. 3. Re-organized safety tactics (arrows show tactic refinements)

tactics which we did not find in the standard or which were very implementation-
specific.

The detailed description of each tactic we use in the following section and
the detailed process how we manually analyzed the IEC 61508 standard will be
given later on in Section 5.

4.1 Re-organized Safety Tactics

Figure 3 shows our re-organized safety tactics catalog. We keep Wu’s general
categorization of safety tactics in failure avoidance, failure detection, and failure
containment tactics. We do not modify the failure avoidance tactics, because
methods regarding failure avoidance in the IEC 61508 standard could perfectly
well be mapped to Wu’s tactics. However, we change parts of the failure detection
and failure containment tactics as explained in the following.

Wu’s safety tactics Sanity Check and Condition Monitoring check a
system state or value against additionally introduced redundant information.
The difference is, that Sanity Check introduces this information in the speci-
fication, while Condition Monitoring introduces the information in the im-
plementation phase. Due to the similarities of the two tactics, we generalize them
in a Checking tactic. A similar tactic was already suggested in [7] where Wu’s
safety tactics were also slightly adapted.

We recognized that just very few IEC 61508 methods used the Timestamp or
Timeout tactic. This lead to the idea that they might be rather specific tactics
and not very general. The Timeout tactic detects excessive time-resource usage.
This is a simple check of the time condition compared to a specified limit and can
be considered as a Sanity Check. The Timestamp tactic checks the validity
of an entity by checking a timestamp attached to it, which also is a Sanity
Check of a beforehand specified time condition. We therefore see the Timeout
and Timestamp tactics as refinements of Sanity Check; however, we do not
include them in our tactic collection because we want to focus on more general
tactics. We are not the first to eliminate Timestamp and Timeout from the
safety tactics collection; also in [7] these tactics are omitted.

Wu distinguishes between three types of redundancy: replication (redundant
identical hardware), functional (redundant implementation), and analytical (re-
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dundant specification). The methods from the safety standard which we linked
to functional and analytical redundancy are very similar. Therefore, we combine
these two types of redundancy and call it Diverse Redundancy.

No methods of the IEC 61508 standard were mapped to Wu’s Rollback
or Reconfiguration tactics, because they rather address availability concerns
which are covered by availability tactics [8]. However, several parts of the stan-
dard suggest recovery from errors by Repair and Degradation which we in-
clude in our tactic catalog.

We added the Override tactic to Masking, because the safety standard
often describes fail-safe mechanisms, which differ from the Voting tactic. These
mechanisms are based on output decisions of redundant channels where a specific
output state (safe state) is preferred to other states.

The Interlock and Firewall tactic are very implementation-specific and
similar mechanisms are described in literature as patterns (Output Interlock
pattern [9], Firewall pattern [10]). Therefore, we omit these tactics.

5 Refined Tactics Catalog

In this section we present the catalog of safety tactics and discuss their con-
sequences on different phases of the safety lifecycle. We structure each tactic
into the sections Aim, Description, Influence on the Safety-Lifecycle, and
Related IEC 61508 Methods. We refine Wu’s safety tactics mostly with in-
formation from the seven parts of the IEC 61508 standard [2]. We studied the
standard to find links between parts of the standard and the safety tactics. We
started with part 7 of the standard which contains a collection of techniques
which are often applied in the safety domain. We mapped these techniques to
the safety tactics by finding similarities between the technique aims and the tac-
tic aims. The techniques serve as the main source for the Related IEC 61508
Methods section of the tactics. We also generalized information about the de-
scription and the aim of the techniques to refine the Description and Aim
sections of Wu’s tactics.

The techniques of part 7 are often referenced in other parts of the standard,
especially often in parts 2 and 3. We analyzed the context of these references
to find out further information about the tactics and their effects on different
parts of the safety lifecycle. From the safety lifecycle described in Section 2, we
just present the phases directly influenced by the safety tactics, which are: Spec-
ification, Design and Development, Integration, Operation and Maintenance,
Modification, Verification, and Safety Validation. The effect of tactics on these
parts of the safety lifecycle is given in the Influence on the Safety-Lifecycle
section of the tactics and is mainly based on the parts 2 and 3 of the safety
standard.

Additionally to the above mentioned approach to mine the IEC 61508 stan-
dard for safety tactics, we also went through the parts 1-6 of the standard again
from the beginning to the end to find any connections to the safety tactics. This
yielded a very similar result to the above mentioned approach. It only differed
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in a few additional connections between the standard and the tactics mostly
coming from part 6.

Now we present the refined safety tactic catalog.

5.1 Failure Avoidance

Simplicity and Substitution are failure avoidance tactics. If applicable, they
are often preferred to failure detection and failure containment tactics [11], be-
cause they are rather independent from other tactics and do not create overhead
for other safety lifecycle phases.

Simplicity

Aim - Avoid failures through keeping the system as simple as possible.
Description - Simplicity reduces the system complexity. It includes struc-

turing methods or cutting unnecessary functionality and organizes system
elements or reduces them to their core safety functionality, thus, eliminat-
ing hazards. An example for the application of the Simplicity tactic is an
emergency stop switch system which is usually kept as simple as possible.

Influence on the Safety-Lifecycle - The tactic reduces effort for every phase
in the safety lifecycle due to reduced system complexity or even reduced sys-
tem functionality. However, most other safety tactics contradict Simplic-
ity, because they require additional system components (e.g. a voter) which
are not absolutely necessary for the core system functionality. In particular
for early phases Simplicity enables significant complexity reduction. When
applied during the specification phase, it increases understandability and
predictability of the system behavior (IEC 61508-3 Annex F). For the De-
sign&Development phase, it enables easier system development which is re-
quired in IEC 61508-3 7.4.2.2, 7.4.3.6, 7.4.2.6 and 7.6.2.2. However, the tactic
might also put constraints on system development. For example, IEC 61508-
3 7.4.4.13 requires to limit the programming language command set to the
usage of safe, well-proven commands.

Related IEC 61508 Methods - IEC 61508-7: B.2.1 structured specification,
B.3.2 structured design, C.2.7 structured programming, E.3 structured de-
scription method, C.4.2 programming language subset, C.4.2 limit asyn-
chronous constructs, E.5.13 software complexity controller

Substitution

Aim - Avoid failures though usage of more reliable components.
Description - Components or methods are replaced by other components or

methods one has higher confidence in. For hardware and software this can
mean usage of existing components which are well-proven in the safety do-
main.

Influence on the Safety-Lifecycle - Changing software or hardware compo-
nents can require re-doing the safety hazard analysis [6]. However, software
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components can also be exchanged with previously developed components
or third-party components to reduce the certification effort by re-using certi-
fication knowledge or documents for these components. Substitution can
increase hardware or third-party component costs if safer components are
used. For example, buying a SIL3 component usually is more expensive than
buying a SIL2 component.

Related IEC 61508 Methods - IEC 61508-7: B.3.3 usage of well-proven com-
ponents, B.5.4 field experience, C.2.10 usage of well-proven/verified software
elements, E.20 application of validated soft-cores, E.35 application of vali-
dated hard-cores, E.41 usage of well-tried circuits, C.4.3 certified tools and
compilers, C.4.4 well-proven tools and compilers, E.4 well-proven tools, E.42
well-proven production process, E.28 application of well-proven synthesis
tools, E.29 application of well-proven libraries

5.2 Failure Detection

Every failure detection method requires some kind of redundancy and testing
of the redundant information. The Checking tactics introduce diverse infor-
mation to check a system and the Comparing tactic compares fully redundant
information or systems.

Checking - Sanity Check

Aim - Detection of implausible system outputs or states.
Description - The Sanity Check tactic checks whether a system state or

value remains within a valid range which can be defined in the system specifi-
cation or which is based on knowledge about the internal structure or nature
of the system. An example for a Sanity Check is a stuck-at fault RAM-test
which checks the proper functionality of the memory during system runtime.
The test is based on the understanding of the memory behavior (if we write
data to the memory, we should later on be able to read the same data).
Faults are detected if the memory behaves differently.

Influence on the Safety-Lifecycle - Plausible system outputs and states
have to be specified (e.g. IEC 61508-3 C.2 3a where preconditions limit
the system input range). This value range limitation can help during the
system verification, because just the defined value range has to be tested
(IEC 61508-3 C.2). For safety validation it can be argued that the Sanity
Check introduces a diverse implementation for checking the safety func-
tionality and therefore detects random as well as systematic implementation
or design faults to some extent (IEC 61508-6 D.1.4).

Related IEC 61508 Methods - IEC 61508-7: A.1.2 monitoring relay con-
tacts, A.2.7 analog signal monitoring, A.3.1-A.3.3 self-tests, A.4.1-A.4.4 check-
sums, A.5.1-A.5.5 RAM-Tests, A.6.1 test pattern, A.7.1 one-bit hardware
redundancy, A.7.2 multi-bit hardware redundancy, A.7.4 inspection using
test patterns, A.9 temporal and logical program monitoring, C.3.3 assertion
programming, C.5.3 interface checking, C.4.1 strong typed programming lan-
guage
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Checking - Condition Monitoring

Aim - Detect deviations from the intended system outputs or states.
Description - Condition Monitoring checks whether a system value re-

mains within a reasonable range compared to a more reliable, but usually
less accurate, reference value. The reference value is computed at runtime
by a redundant part in the implementation which can be based on system
input values and is not pre-known from the specification (like it would be
the case for Sanity Check). An example for Condition Monitoring is a
system which has to be time-synchronized via the Internet and which checks
if the synchronized time is feasible by comparing it to an internal clock.

Influence on the Safety-Lifecycle - An additional element providing the
reference value has to be implemented. In general, the Condition Mon-
itoring tactic implies more development overhead than Sanity Check.
Condition Monitoring primarily protects from random faults. However,
if it uses a diverse implementation for monitoring the safety functionality,
also systematic implementation or design faults can be detected (IEC 61508-
6 D.1.4).

Related IEC 61508 Methods - IEC 61508-7: A.1.1 failure detection by on-
line monitoring, A.6.4 monitored outputs, A.8.2 voltage control, A.9 tempo-
ral and logical program monitoring, A.12.1 reference sensor, A.13.1 monitor

Comparison

Aim - Detection of discrepancies of redundant system outputs.
Description - Comparison tests if the outputs of fully redundant subsystems

are equal in order to detect failures. The Comparison tactic usually implies
the usage of a redundancy tactic. An example for the application of the
Comparison tactic is a dual-core processor running in lock-step mode. The
processor runs the same software on both cores and compares their outputs
after each cycle.

Influence on the Safety-Lifecycle - An additional element which requires
resources at runtime to compare the subsystems has to be implemented.

Related IEC 61508 Methods - IEC 61508-7: A.1.3 comparator, A.6.5 input
comparison/voting

5.3 Failure Containment

Failure containment describes ways how to handle failures which are recognized
by failure detection. The Masking and Barrier tactics prevent failures from
affecting other parts of the system and the Recovery tactics deals with cor-
recting failures. The Redundancy tactics provide multiple systems which are
necessary for some other tactics.

Redundancy - Diverse Redundancy

Aim - Introduction of a redundant system which allows detection or masking
of failures in the specification or implementation as well as random hardware
failures.

Publication 1 - VikingPLoP 2013 77



10

Description -Diverse Redundancy can be applied to the specification or to
the implementation level. In a system using Diverse Redundancy on the
implementation level, redundant components use different implementations
which were developed independently from the same specification. Diverse
Redundancy on a specification level goes one step further and additionally
requires that even the requirement specifications for the redundant compo-
nents have to be set up by individual teams.

Influence on the Safety-Lifecycle - Diverse Redundancy highly contra-
dicts the Simplicity tactic, because the additionally introduced redundant
systems require a lot of effort (multiple effort for specification, implementa-
tion, verification, modification, ...) which does not add to the system func-
tionality. If redundant systems are used, then it has to be shown for safety
validation that the systems are independent from each other which can be
achieved by application of the Barrier tactic (IEC 61508-1 7.6.2.7). Redun-
dant hardware systems can more easily be validated for safety, because for
a system with no hardware fault tolerance, diagnostic tests have to be run
each time before computing a safety-critical function. This requirement is not
so strict for hardware redundant systems (IEC 61508-2 7.4.4.1.4, 7.4.4.1.5,
7.4.4.2.1, 7.4.5.3).

Related IEC 61508 Methods - IEC 61508-7: A.7.6 information redundancy,
A.13.2 cross-monitoring of multiple actuators, B.1.4 diverse hardware, C.4.4
diverse programming

Redundancy - Replication Redundancy

Aim - Introduction of a redundant systems which allows detection or masking
of random hardware failures (not systematic failures).

Description - Replication Redundancy means introduction of a redun-
dant system of the same implementation. The redundant systems maintain
the same functionality, use identical hardware, and run the same software
implementation. An example for Replication Redundancy is the RAID1
data storage technology.

Influence on the Safety-Lifecycle - Replication Redundancy requires
multiple effort for hardware installation and modification. If redundant sys-
tems are used, then it has to be shown for safety validation that the systems
are independent from each other which can be achieved by application of
the Barrier tactic (IEC 61508-1 7.6.2.7). Redundant hardware systems can
more easily be validated for safety, because for a system with no hardware
fault tolerance, diagnostic tests have to be run each time before comput-
ing a safety-critical function. This requirement is not so strict for hardware
redundant systems (IEC 61508-2 7.4.4.1.4, 7.4.4.1.5, 7.4.4.2.1, 7.4.5.3).

Related IEC 61508 Methods - IEC 61508-7: A.2.1 tests by redundant hard-
ware, A.2.5 monitored redundancy, A.3.5 reciprocal comparison by software,
A.4.5 block replication, A.6.3 multi-channel output, A.7.3 complete hard-
ware redundancy, A.7.5 transmission redundancy
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Recovery - Repair

Aim - Bring a failed system back to a state of full functionality.
Description - The full system functionality is manually or automatically re-

stored if a system failure occurs.
Influence on the Safety-Lifecycle - A Repair or Degradation tactic is

necessary for all non-redundant hardware elements which maintain a safety
functionality (IEC 61508-2 7.4.8.2). However, complex recovering systems
like self-reconfiguring systems are not recommended by the standard (IEC 61508-
3 A.2) and make validation more complicated.

Related IEC 61508 Methods - IEC 61508-7: C.3.9 error correction, C.3.10
dynamic reconfiguration

Recovery - Degradation

Aim - Degradation brings a system with an error into a state with reduced
functionality in which the system still maintains the core safety functions.

Description - Degradation systems define a core safety functionality. The
systems maintain this safety functionality and additional non-critical func-
tions. In case of an error, the system falls back into a degraded mode in
which it just maintains the core safety functionality. An example where the
Degradation tactic is often applied are automation systems. These sys-
tems control safety-critical processes and often visualize these processes in a
GUI. If the system has too few resources (e.g. processing time), the system
stops the GUI service and just focuses on its core functionality to control
the safety-critical processes.

Influence on the Safety-Lifecycle - Degradation mechanisms for the sys-
tem have to be specified (IEC 61508-2 7.2.3.2) and a Repair or Degra-
dation tactic is necessary for all non-redundant hardware elements which
maintain a safety functionality (IEC 61508-2 7.4.8.2). Degradation can
decrease the safety validation effort, because just the degradation mecha-
nism and the core safety functionality have to be validated. Additionally,
the tactic fulfills the requirement of the standard to describe a well defined
behavior in case of errors (IEC 61508-2 7.2.3.2, IEC 61508-3 7.2.3.2).

Related IEC 61508 Methods - IEC 61508-7: A.8 voltage supply error han-
dling, C.3.8 degraded functions

Masking - Voting

Aim - Mask the failure of a subsystem so that the failure does not propagate
to other systems.

Description - Voting makes a failure transparent. The tactic does not try to
repair the failure, but it hides the failure through choosing a correct result
from redundant subsystems. It decides for the majority of the output values.

Influence on the Safety-Lifecycle - In order to apply Voting, a redun-
dancy tactic has to be used and a voter element has to be implemented.
Subsystems of a voting system can be repaired while in operation, because
the overall system can still operate if a subsystem is under repair (IEC 61508-
6 B.3.1). However, voting systems are not as safe as systems which just
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compare their results and ensure a safe state if any of the results differs
(IEC 61508-6 B.3).

Related IEC 61508 Methods - IEC 61508-7: A.1.4 voter, A.6.5 input com-
parison/voting

Masking - Override
Aim - Mask the failure of a subsystem so that the failure does not propagate

to other systems.
Description - The Override tactic forces the system output to a safe state.

For example, if we have a system which is in a safe state when shut off,
we can apply the Override tactic to shut off the system if we have doubt
about the system output (e.g. if an output validity check fails). In this sce-
nario overriding the system output with a safe output value decreases the
availability of the system. Another form of the Override tactic, which does
not decrease the availability and is closely related to the Voting tactic,
chooses the output of redundant subsystems by preferring one subsystem or
one output state over another.

Influence on the Safety-Lifecycle - A preferred system output state has to
be defined and an override mechanism has to be implemented. Override
systems are easier to validate, because they follow the fail-safe principle (IEC
61508-1 7.10.2.6).

Related IEC 61508 Methods - IEC 61508-7: A.1.3 comparator, A.1.5 idle
current principle, A.6.5 input comparison/voting, A.8.1 overvoltage protec-
tion with safety shut-off, A.8.3 power-down with safety shut-off

Barrier
Aim - Protect a subsystem from influences or influencing other subsystems.
Description - The Barrier tactic provides a mechanism to protect from un-

intentional influences between subsystems. To apply Barrier, the interfaces
between subsystems have to be analyzed and specified. These interfaces are
controlled at runtime by a trustworthy component (the Barrier) which of-
ten is an already existing reliable mechanism. An example for a Barrier is
a memory protection unit which controls and restricts the communication
between different tasks.

Influence on the Safety-Lifecycle - The interfaces between subsystems
have to be specified. According to IEC 61508-3 8.3.1, non-safety related
functions should be separated from safety-related functions, which can be
achieved by the Barrier tactic. It can also aid the Simplicity tactic by
structuring the system (IEC 61508-2 7.2.2.1). Barrier enables modular
safety certification and modification and can reduce the validation effort if
it is proven that the subsystems cannot unintentionally influence each other
which has to be shown by an effect analysis (IEC 61508-3 C.8, Annex F).

Related IEC 61508 Methods - IEC 61508-7: A.11 separation of energy lines
from information lines, B.1.3 separation of safety functions from non-safety
functions, B.3.4 modularization, C.2.8 information hiding/ encapsulation,
C.2.9 modular approach, E.12 modularization, C.3.11 time-triggered archi-
tecture
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Fig. 4. Safety tactics and their effect on different phases of the safety lifecycle

5.4 Overview and Discussion of the Safety Tactics

Figure 4 gives an overview of our re-organized safety tactics and their influence
on the safety lifecycle and presents relationships between the tactics. The in-
formation is mostly based on the Influence on the Safety-Lifecycle parts of the
tactics described in the previous section.

The revised version of the safety tactics provides more consistency compared
to Wu’s tactics. The problem with Wu’s Timestamp and Timeout tactic as
special case of Sanity Check is resolved.

Just few methods and architectures from the IEC 61508 standard address
failure containment tactics. We think that the reason why just few failure con-
tainment tactics were found in the safety standard is that some of the tactics,
such as Masking for example, are more concerned with availability than with
safety. Therefore the standard does not focus on these tactics.

6 Refining the TMR Pattern by Reasoning with Tactics

In this section we use our refined safety tactics to discuss the safety-related
effects of applying the TMR architectural pattern.
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The TMR architecture shown in Figure 5 uses three channels and compares
the outputs of the channels. A voter decides for the output value which is given
by at least two of the channels. The architecture therefore allows one channel
to be erroneous while still maintaining full system functionality. In our example
we assume simple hardware replication with identical software running on the
channels.

Fig. 5. Homogeneous TMR architecture

The TMR architecture described above uses two general safety tactics: Re-
dundancy and Masking. More specific, Replication Redundancy is used,
because there are identical redundant channels and Voting is used to mask
errors of a single channel. If we have a look at Figure 4, we can see that the
Replication Redundancy tactic requires the Barrier tactic during the Ver-
ification&Validation phase of the safety lifecycle. This means that to design a
TMR system in the safety domain, also the Barrier tactic has to be consid-
ered right at the beginning of the architecture design in order to assure that
the three subsystems do not influence each other in terms of common cause fail-
ures. This information might be obvious to a safety domain expert, however, for
unexperienced system architects such information can be crucial.

Table I: Safety tactics for the homogeneous TMR architecture

We end up with three tactics which are used by the TMR system: Replica-
tion Redundancy, Voting, and Barrier. Table I shows the TMR relevant
tactics taken from Figure 4. We can see that our TMR architecture influences the
Operation&Maintenance phase in a way that multiple hardware is required and
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has to be installed. This implies multiple hardware maintenance effort. However,
the three hardware channels can be maintained independently and they can even
be maintained during operation due to the Barrier and Voting tactics. For
safety validation, random hardware channel failures are independent and sys-
tematic failures are not detected. The Voting tactic requires validation of the
correct functionality in case of an error and is therefore more difficult to validate
than simple systems which shut down or go to a safe state in case of errors.
Just like with maintenance, hardware modifications for single channels can be
done during operation. Multiple effort is required if the modification affects the
redundant channels. The effort for system specification and development is not
increased due to the simple usage of replication.

If we look at the detailed tactic descriptions from Section 5, we can get
further information for the TMR pattern in terms of a quick reference to the
IEC 61508 standard. As one example, the Replication Redundancy tactic is
connected to IEC 61508-2 7.4.4.1.4 which says that self-tests for a single channel
do not have to be executed each time before the execution of a safety function
if redundant channels are present. It is sufficient to execute the self-tests once
a day. Such quick references provide us with very detailed IEC 61508 related
information.

The evaluation of the TMR pattern through the usage of our refined set
of safety tactics leads to much more detailed information regarding safety, in
particular safety certification, than existing safety pattern catalogs such as [12]
offer.

7 Related Work on Safety Tactics

In this section we present related work on architectural tactics with focus on
safety tactics. We also present patterns which are related to the IEC 61508
standard.

Bachmann et al. introduce the idea of architectural tactics and describe their
relation to system quality attributes [3]. They present a collection of tactics for
availability, security, testability, usability, modifiability, and performance. Wu
and Kelly extended this collection by adding a set of tactics for the safety quality
attribute [6] [13]. They further develop an approach how to apply safety tactics
by stating anti-requirements which can be handled by the application of safety
tactics [14]. This approach is explained in more detail in [15], where a whole
architectural safety-reasoning framework is presented.

Another approach of how to reason about the usage of safety tactics is pre-
sented in [16] and [11], where safety attributes of a system are evaluated by
risk-based qualitative reasoning. This reasoning is done before and after the ap-
plication of a safety tactic in order to evaluate the applicability of the tactic. The
application of safety tactics in order to build a safe architecture is also described
in [17] and [7] with focus on the integration of the tactics into the V-model which
is commonly used for IEC 61508 system development.
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To the best of our knowledge there is no work directly relating safety tactics to
a safety standard so far, however, Armoush [12] constructs an extensive catalog
of safety patterns and evaluates them regarding IEC 61508 safety certification
by presenting the applicability of a pattern according to recommendations in
the safety standard. Compared to our work he does not discuss the influence on
the safety system over the whole safety lifecycle and does not give much detail
regarding the influence on safety certification. [18] covers organizational pat-
terns for IEC 61508 software development. They focus on patterns for software
development and not on the relation of IEC 61508 to architectural patterns.

8 Conclusion

In this paper we provide a revised catalog of safety tactics and relate these tactics
to the IEC 61508 safety standard. This allows us to evaluate generic architectures
like safety patterns regarding their effect on safety certification during different
phases of the safety lifecycle. With the connection between safety tactics and
the IEC 61508 standard it is now easier to provide a system architect with
information about the safety related consequences of choosing a specific tactic
or pattern. Here, an advantage of the safety tactics is that compared to the safety
standard, they provide system architects with a view of the safety domain, which
is more familiar to them. The tactic catalog therefore provides a good source of
information for early architectural decisions for systems which have to be safety
certified.

The re-organized set of safety tactics can serve as a basis for future work on
refining patterns in the safety domain. Future work could also include refining
our tactics or evaluating them with respect to a different safety standard. We
believe that our re-organized version of safety tactics builds a mature set of
safety tactics and that system developers can use them to argue for the safety
of their system during safety certification.
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Safety architecture patterns provide knowledge about large scale design decisions for safety-critical systems. They provide good ways to
avoid, detect, and handle faults in software or hardware. In this paper we revise existing architectural safety patterns and organize them to
build up a pattern system. We add Goal Structuring Notation diagrams to the patterns to provide a structured overview of their architectural
decisions. Based on these diagrams we analyze and present relationships between the patterns. The diagrams can also be used to argue
about a systems’s safety, which we show with an example.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architecture—Patterns; K.4.1 [Public Policy Issues] Human
Safety; K.6.5 [Management of computing and information systems] Security and Protection

ACM Reference Format:

Preschern, C. 2013. Architectural Pattern System for Functional Safety jn 0, 0, Article 0 ( 0000), 28 pages.

1. INTRODUCTION

Safety-critical systems can directly harm humans or machinery if they malfunction. To ensure that these systems
operate properly, they often have to be certified and developed according to safety standards. Safety standards
usually provide a big pool of requirements and techniques to achieve system safety. For system architects which
are new to the safety domain, it is often difficult to chose which of the provided techniques or which overall system
architecture should be used to achieve a safety goal.

To provide safety architects with knowledge about good solutions, we construct a system of architectural safety
patterns1. We present a structured way how we build up this pattern system from existing safety patterns found in
literature. Additionally, we extend these patterns with Goal Structuring Notation (GSN) diagrams, which present
the main architectural decisions of the patterns. These diagrams provide a safety architect with a structured
approach to argue for the overall system safety. We show with an example how the GSN diagrams can even be
used to relate architectural design decisions in the patterns to requirements and techniques of the IEC 61508
safety standard. This approach can as well aid safety architects for arguing for the system safety in particular in
the context of safety certification.

This paper is structured as follows: Section 2 gives an overview of existing safety patterns and approaches
to build safety pattern systems/languages. Section 3 presents the pattern format we use for our pattern system
and Section 4 shows how we bring the patterns into this format by the example of the TRIPLE MODULAR REDUN-

1A “pattern system” is similar to a “pattern language”, but compared to a pattern language it does not claim to be complete [Buschmann et al.,
1996]. Precise definitions about the difference between pattern collections/systems/languages can be found in [Schumacher, 2003]
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DANCY pattern. Section 5 presents how our patterns are connected to a pattern system and Section 6 shows
the application of the patterns to highlight the benefits of the introduced GSN diagrams. Section 7 concludes this
work. In Appendix A, all the patterns of the pattern system are presented, Appendix B shows a collection of safety
tactics, and Appendix C shows how we analyzed our patterns to obtain the tactics they use.

2. RELATED WORK

In this section we give an overview of related work that introduces safety patterns (see Table I) and we present
related work that collects and structures existing safety patterns.

Table I. Literature which introduces safety-related patterns
Title Description

[Daniels et al., 1997] “The Reliable Hy-
brid Pattern - A Generalized Software
Fault Tolerant Design Pattern”

A pattern which includes software fault tolerance techniques (e.g. N-version programming, vot-
ing, acceptance test) is presented. The pattern is presented as a generic architecture which
explicitly states alternatives in the pattern (e.g. use voting instead of an acceptance test).

[Douglass, 1998] “Safety-Critical Sys-
tems Design”

The article covers safety architecture patterns and discusses how they can be implemented.

[Saridakis, 2002] “A System of Patterns
for Fault Tolerance”

This paper introduces several architectural fault-tolerance patterns and discusses how to group
them.

[Douglass, 2002] “Real-Time Design
Patterns: Robust Scalable Architecture
for Real-Time Systems”

Besides other patterns, this book covers safety-related architecture patterns and also includes
the patterns from [Douglass, 1998].

[Grunske, 2003] “Transformational Pat-
terns for the Improvement of Safety
Properties in Architectural Specifica-
tion”

This paper presents patterns for architecture transformations to increase the overall system
safety. Some of the patterns are related to the patterns from [Douglass, 2002].

[Hanmer, 2007] “Patterns for Fault Tol-
erant Software”

The book provides a pattern language of fault-tolerance patterns grouped as error detection,
error processing, error mitigation, fault treatment, and architectural patterns.

[Douglass, 2010] “Design Patterns for
Embedded Systems in C”

The book presents design patterns implemented in C. Some of the presented safety-related
patterns come from [Douglass, 2002].

[Armoush, 2010] “Design Patterns for
Safety-critical Embedded Systems”

This PhD thesis introduces new safety patterns and provides and collects existing safety pat-
terns for embedded systems (mostly [Douglass, 2002] for hardware patterns and software fault
tolerance techniques from [Pullum, 2001] brought into pattern notation for software patterns).

[Hampton, 2012] “Survey of Safety Ar-
chitectural Patterns”

This survey presents the application of the patterns from [Armoush, 2010] within a company.
Furthermore, some new and rather domain-specific safety patterns are introduced.

[Rauhamäki et al., 2012] “Architectural
Patterns for Functional Safety”

The paper presents 4 patterns related to separating the safety functionality from non-critical
functionality.

[Rauhamäki et al., 2013] “Patterns for
Safety and Control System Coopera-
tion”

The paper presents 3 safety patterns related to the control systems domain.

[Rauhamäki and Kuikka, 2013] “Pat-
terns for Controlling System Safety”

The paper presents 4 safety patterns related to the control systems domain.

[Saridakis, 2002] presents several fault-tolerance patterns in detail and discusses how they can be related to
each other. The patterns are classified according to several criteria: pattern complexity, space requirements, time
requirements, failure types which are handled by the pattern, and the pattern aim (error detection, recovery, or
masking). [Hanmer, 2007] also describes fault-tolerance patterns and presents the patterns and their relation-
ships as a pattern language.

[Armoush, 2010] provides in his PhD thesis a comprehensive collection of safety architecture patterns for
embedded systems. Most of the patterns are taken from literature and all are presented in a common pattern
format. However, the relationships between the patterns are not described in detail. Armoush provides a tool
which lists the patterns and provides detailed information about them (e.g. reliability calculations) when selected.

Building a Safety Architecture Pattern System — Page 2
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To bridge the gap between the high-level safety pattern descriptions and their actual implementation, [Gawand
et al., 2011] represent safety patterns in UML notation. This is also done by [Sarma et al., 2013] with the pattern
catalog of [Armoush, 2010]. This idea was taken further by [Antonino et al., 2012] who introduce a safety-related
UML profile to capture architectural safety pattern elements (e.g. voter) and to define rules for them. Based on
this idea [Olivera, 2012] implements a repository for safety patterns in UML notation.

The TERESA project applies a model-based approach coupled with a repository of safety/security patterns for
embedded systems engineering. A generic metamodel for safety/security patterns is defined which can be used
to model domain-specific patterns in the repository [Desnos et al., 2012]. The pattern repository can be accessed
with an Eclipse plugin as described on the TERESA project homepage (www.teresa-project.org).

3. APPLIED PATTERN FORMAT

We use the pattern format presented by [Babar, 2007] for all our safety architecture patterns. The pattern format of
Babar explicitly provides architectural information with the aim to aid architecture design and evaluation processes.
Table II shows which sections this pattern format contains and where we got the information for these sections
from. Most of our patterns are based on [Armoush, 2010] and are further elaborated by using other literature
on similar safety patterns. For example, Armoush describes the WATCHDOG pattern, which is also described by
[Grunske, 2003]. We take Armoush’s Watchdog pattern as a starting point and enhance it with information from
Grunske. In particular, in this case, we add Grunske’s forces, because they are better elaborated.

Table II. Pattern format for our safety architecture patterns
Section What it contains and where the contents comes from

Pattern Name The pattern name is taken from the existing pattern - most of which come from [Armoush, 2010].
Pattern Type Classification into hardware/software and fail-safe/fail-over. This classification comes from the pattern types which

we classify during the process of building up the pattern language.
Also Known As Other names for the pattern used in literature.
Context The contents of this section comes from existing patterns and was structurally adapted to fit our pattern system.
Problem The contents of this section comes from existing patterns and was structurally adapted to fit our pattern system.
Forces The contents of this section comes from existing patterns (mostly from [Grunske, 2003]) and was structurally

adapted to fit our pattern system.
Solution The solution is shortly described in a few sentences and the structure of the safety architecture is shown in a

diagram. Most of the diagrams are based on [Armoush, 2010] and [Douglass, 2002].
GSN Diagram This section contains a Goal Structuring Notation (GSN) diagram which relates the main aim of the pattern to the

architectural design decisions which were taken to achieve this aim. GSN is a graphical notation which is often used
in the safety domain to describe how a certain goal is achieved. The advantage of using this notation is that it is
familiar to safety experts and the resulting pattern GSN diagram can be used to structurally argue about a system’s
safety. Figure 1 shows the basic elements of GSN and explains them.
The GSN diagram is based on information about the usage of basic architectural design decisions (architectural
tactics) which are applied in the pattern. We obtain these tactics from pattern descriptions according to a method
presented by [Kumar and Prabhakar, 2010b] which we will cover in more detail in the next section.

Consequences The consequences are split into a part containing general consequences and a part explicitly covering quality-
attribute related consequences (e.g. consequences on safety or availability). The information about the conse-
quences mostly comes from the safety patterns from [Armoush, 2010] and [Grunske, 2003].

General
Scenarios

This section contains scenarios of the system which can, for example, be used during architecture evaluations. The
scenarios are mined from patterns as suggested in [Babar, 2007] by manually searching the problem and solution
statements for scenarios for relevant quality attributes (in our case focused on safety).
Scenarios are included in the patterns because there are existing safety reasoning frameworks which are based on
scenarios ([Wu, 2007]) and the information of the scenarios is also needed to build up our GSN diagrams.

Known
Uses

This section presents known uses for the patterns. We added this information by searching for literature which
applies the pattern. We just included patterns for which we could find at least three known uses.

Credits References to previous work on the pattern.
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Fig. 1. Explanation of the basic GSN elements

4. SPECIFYING A PATTERN IN THE PROPOSED PATTERN FORMAT

In this section we show how we specify a pattern for our pattern system with the example of the TRIPLE MODULAR

REDUNDANCY (TMR) pattern. We focus on how the GSN Diagram is built and also describe how we obtain the
General Scenarios for a pattern.

4.1 Mining Tactics from the Pattern Descriptions

The TMR pattern is mentioned in literature by [Douglass, 2002] and [Armoush, 2010]. We studied both TMR
patterns to find text passages which indicate the usage of general safety-related architectural design decisions
(safety tactics). We do this as proposed by [Kumar and Prabhakar, 2010a], where architectural tactics are mined
from GoF and POSA patterns to find relationships between patterns which use similar tactics. We apply the same
method in order to find relationships between safety architecture patterns.

As proposed by [Kumar and Prabhakar, 2010a], we construct a table which includes text passages of the
pattern and we give the corresponding tactic that this text passage relates to. For example, the TMR pattern
in [Armoush, 2010] says: “The voter plays a main role in this pattern by applying the voting policy to take the
majority from the results which represents the correct actual result.” This indicates that the pattern applies the
Voting safety tactic2.

Table III shows which tactics were mined for the TMR pattern.

4.2 Building the Tactic Topology Model

With the gathered tactics we construct a Tactic Topology Model with is also part of the method described by
[Kumar and Prabhakar, 2010a]. First, one has to think about the main goal of the pattern (usually found in the
patterns’ Intent section). According to [Kumar and Prabhakar, 2010a], the main tactics which achieve this goal
are usually related to the Intent or the Problem section of the pattern. In the Tactic Topology Model, these
main tactics are connected to the patterns’ goal with arrows. Further explanation about this connection is given
in textual form next to the arrow. The tactics can bring up new goals which have to be achieved by additional
tactics - these are also added with arrows and a textual description. In that way, a structured graph containing the
patterns’ tactics is constructed.

Figure 2 shows the Tactic Topology Model for the TMR pattern. We use the Tactic Topology Models to struc-
turally establish relationships in our pattern system (this is explained in Section 5). Apart from that, the Tactic
Topology Models are just intermediate results used to build GSN diagrams and are not included in the patterns.

2A list of all safety tactics is available in Appendix B
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Table III. Determining the tactics used by the TMR patterns described in [Douglass, 2002] and [Armoush, 2010]
Abstract Section

Core Intent Tactic
This pattern consists of three identical modules operating in parallel to produce three results that are
compared using a voting system to produce a common result

Voting
Replication Redundancy

Problem Section
Problem Elaboration of Problem (Scenario) Achieved through Tactic
How to deal with random faults and single-point of
failure in order to increase the safety and reliability
of the system without losing the input data in the
presence of faults.

The system is fully operational even in case of a
single channel failure.
A single channel random fault does not lead to a
system failure.

Voting

Solution Section
Solution Description Tactic
The system contains three identical modules or channels operating in parallel.
Test by redundant hardware

Replication Redundancy

The voter plays a main role in this pattern by applying the voting policy to take the majority from the
results which represents the correct actual result.
Fault detection and diagnosis (Voting)

Voting

Consequences Section
Consequence Description Tactic
This pattern has a high recurring cost due to the using of three parallel modules. So, the recurring cost
is 300% comparing to the basic system.

Replication Redundancy

The cost of voter which is normally a simple hardware circuit that depends on the type of the output
control signal and the implementation method.

Voting

Implementation Section
Implementation Description Tactic
To implement this pattern, the designer should replicate the channel which includes the replication of
the hardware as well as software.

Replication Redundancy

Fig. 2. Tactic Topology Model for the TMR pattern

4.3 Building the Goal Structuring Notation Diagram

Based on the Tactic Topology Model, we construct the GSN diagrams for the patterns. The GSN diagrams contain
the tactics from the Tactic Topology Model and they additionally contain general scenarios which are mined from
the pattern descriptions. This scenario mining is done as proposed in [Babar, 2007] by searching the problem and
solution statements for safety-related scenarios. The scenarios found for the TMR pattern are shown in Table III
under Problem Section. All our GSNs start with the main goal to maintain system safety. This main goal is split
up into subgoals with the scenarios which we obtained from the patterns. If the scenarios are independent from
each other, then they are put on the same level in the GSN. If a scenario depends on another scenario (as it is the
case for the TMR pattern), then it is modeled as a subgoal of the scenario it depends on. The tactics which are
necessary to achieve a GSN goal are put below this (sub-)goal as a GSN strategy which has the title of the tactic
and which contains additional information (taken from the textual description of the Tactic Topology Model arrow
connections) as GSN strategy description. GSN context elements are added to the GSN diagram if information
of the pattern’s context section is relevant for the GSN goals.
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Figure 3 shows the GSN diagram of the TMR pattern. We can see that it consists of the tactics of the TMR
pattern Tactic Topology Model from Figure 2 and of the scenarios of the TMR pattern from Table III. The complete
TMR pattern including the here constructed GSN diagram is shown in Appendix A on page 12.

Fig. 3. GSN diagram of the TMR pattern

5. ORGANIZING SAFETY PATTERNS TO A PATTERN SYSTEM

To obtain the relationships between the patterns, we use the approach presented by [Kumar and Prabhakar,
2010b]. They compare Tactic Topology Models of patterns and define a mapping between Tactic Topology Model
predicates and pattern relationships. For example, if the Tactic Topology Models of two different patterns are
equal, then Kumar and Prabhakar say that these patterns are similar. Table IV shows all kinds of relationships
defined by Kumar and Prabhakar. To find all relationships in a pattern system, every patterns’ Tactic Topology
Model has to be compared to the Tactic Topology Models of all other patterns and every such Tactic Topology
Model pair has to be checked for all the predicates described in Table IV.

Table IV. Description of pattern relationships (slightly modified from [Kumar and Prabhakar, 2010a])
Relationship Description Tactic Topology Model predicate
is an alternative Patterns A and B solve the same problem, but

propose different solutions.
SourceNode(A) = SourceNode(B)

AND Graph(A) 6= Graph(B)

uses A sub-problem of pattern A is similar to the
problem addressed by pattern B.

Graph(A) ⊃ Graph(B)

refines Pattern B provides a more detailed solution
than pattern A.

SourceNode(A) = SourceNode(B)

AND Graph(A) ⊂ Graph(B)

specializes The solution of pattern B is a special case of
the solution of pattern A.
Example: Pattern B specializes pattern A if they have

the same graph structure, but pattern B uses a refined

tactic where pattern A uses a more general tactic (e.g.

B uses Replication Redundancy where A uses Redun-

dancy).

Graph(A) ⊂ generalizedGraph(B)

is similar Patterns A and B provide the same solution to
a similar problem
Example: Pattern B is similar to pattern A if they have

the same graph structure and they use two related

refined tactics. E.g. A uses Replication Redundancy

and B uses Diverse Redundancy

generalizedGraph(A) ≡
generalizedGraph(B)
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We applied this approach to our safety patterns to structurally build the relationships in our pattern system.
We built the Tactic Topology Models as described in Section 4 for all our patterns. Then we compared each
Tactic Topology Model with one another and checked for the predicates defined in Table IV. This delivers us the
relationships between all the patterns for our pattern system.

Figure 4 shows our safety patterns and their relationships which we obtained with the described approach. We
can see that the approach to find pattern relationships worked out pretty well for our safety patterns. All the rela-
tionships between the patterns seem to be comprehensible. For example, according to the relationships obtained
through the Tactic Topology Model comparison, the TRIPLE MODULAR REDUNDANCY pattern is a specialization
of the M-OUT-OF-N pattern and is similar to the N-VERSION PROGRAMMING pattern which is both reasonable.

Fig. 4. Safety Architecture Pattern System

To not overload the the pattern-relationship representation, we did not explicitly annotate the is alternative
relationships, but instead grouped patterns which are alternatives to one another into the group of patterns trying
to maintain a safe-state in case of faults and the group of patterns providing full system functionality in case
of faults. Additionally, we divided the patterns into software and hardware patterns as already suggested by
[Armoush, 2010]. However, the classification of software and hardware patterns is not very strict. Some of the
patterns are intended for either software or hardware, but could also be implemented for the other. For example,
the WATCHDOG pattern is a hardware pattern, but could also be realized in software by a timer which watches
the execution of another program.

The patterns in our safety pattern system are mostly taken from [Armoush, 2010], because these patterns
already provide a good collection of other patterns in literature and they focus on rather large-scale architectural
design decisions which is the main focus of our pattern system. We included all but one of Armoush’s patterns.
We excluded one pattern (RECOVERY BLOCK WITH BACKUP VOTING), because we could not find any known uses
for it. Additionally to Armoush’s patterns we included the M-OUT-OF-N and the M-OUT-OF-N-D pattern, which are
based on architectures described in the IEC 61508 safety standard. For each of the patterns from Figure 4,
we present the full pattern in Appendix A. Additionally, we provide the tables which show how we related the
architectural tactics to the safety patterns as well as the Tactic Topology Models in Appendix C.
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6. APPLYING THE TMR PATTERN TO AN EXAMPLE

In this section we show how one of the safety patterns can be applied to an example system. We describe a
system found in literature and show which additional benefits could be gained if the architect used our patterns.

The system described in [Alvarez et al., 2005] is a Programmable Logic Device (PLD) safety architecture to be
used in control system applications. The basic system (which does not yet fulfill the system safety requirements)
consists of a component to handle sensor values (Safe Input), a processing unit which computes output values
(CPU), and an interface element for actuators (Safe Output). The basic system is shown in Figure 5.

Fig. 5. Basic PLD control system architecture

The proposed safety architecture described in [Alvarez et al., 2005] applies (but not explicitly mentions) the
M-OUT-OF-N-D PATTERN (the full pattern is presented in Appendix A - page 12). The architecture uses three
identical redundant versions of the basic system architecture and the correct output of these three channels
is decided by a majority voter. The three channels are diagnosed with self-tests and if the diagnosis fails, the
corresponding channel informs the voter that it does not function properly. The voter then excludes this channel
from the vote. The overall safety architecture is shown in Figure 6.

Fig. 6. Safe PLD control system architecture [Alvarez et al., 2005]

In the GSN diagram of the M-OUT-OF-N-D PATTERN, for an architecture several decisions have to be made.
For example, we can see that the pattern ether uses the Replication Redundancy or the Diverse Redundancy
tactic. The presented architecture uses Replication Redundancy (identical hardware channels), therefore we just
consider this redundancy tactic and omit Diverse Redundancy from the GSN. This already shows how the GSN
diagrams can flexibly be used to describe alternatives for a pattern. Furthermore, the architecture uses Condition
Monitoring (checks if CPU outputs relate to a reference value) and Voting (majority voting). Both of these tactics
were also chosen from the set of tactic options presented in the patterns’ GSN diagram. Table V lists all the tactics
that the architecture uses and presents the IEC 61508 methods which are related to these tactics (taken from
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Appendix B). With this table, a safety architect gets a quick overview of methods presented in the safety standard
which are relevant for the specific system architecture.

Table V. IEC 61508 methods suitable for the M-OUT-OF-N-D PATTERN

Tactic IEC 61508 method
Replication
Redundancy

A.2.1 Tests by redundant hardware
A.2.5 Monitored redundancy
A.3.5 Reciprocal comparison by software
A.4.5 Block replication
A.6.3 Multi-channel output
A.6.5 Input comparison/voting
A.7.3 Complete hardware redundancy
A.7.5 Transmission redundancy

Condition
Monitoring

A.1.1 Failure detection by online monitoring
A.6.4 Monitored outputs
A.9 Temporal and logical program monitoring
A.13.1 Monitoring

Voting A.1.4 Majority voter

From the list of IEC 61508 methods, a safety architect can now choose methods which are appropriate for the
specific system. For the the specific design decisions taken in [Alvarez et al., 2005], the IEC 61508 methods that
are eligible and are actually used are the following:

—A.1.1 Failure detection by online monitoring

—A.1.4 Majority voter

—A.2.1 Tests by redundant hardware

—A.6.4 Monitored output

—A.13.1 Monitoring

In the GSN diagram of the M-OUT-OF-N-D PATTERN, the tactics can now be replaced with the methods that
are actually used in the architecture. Figure 7 shows the resulting GSN diagram which can be used by safety
architects to reason about the overall system safety by structurally referring to methods suggested by the safety
standard. This gives a structured connection between the goal to maintain the overall system safety down to the
actually applied methods. Such a connection can be used during the system certification to argue how the safety
goals are achieved by a specific system architecture.

Reasoning about the safety of a system by constructing GSN diagrams based on scenarios was already sug-
gested in [Wu, 2007], where the argument is made that a system which covers all its goals mentioned in relevant
scenarios is reasonably safe.

The safety standard describes in detail how to implement the methods which are now present in the GSN.
Table VI shows additional information about the applied safety methods taken from the IEC 61508 safety standard.
With this information the system architect gets guidance of how to realize the safety methods. Now, the safety
architect just has to think about the remaining undeveloped goals (G2, G5, G6 in Figure 7 of the GSN diagram to
obtain a complete safety argumentation for the architecture.

We saw, that when applying the suggested safety patterns, additionally to the solution description and the
described consequences, a safety architect gets:

—A GSN diagram for the architecture which can be taken as a starting point to develop a structured argument
about the system’s safety.
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Fig. 7. GSN for the safe PLD control system architecture

Table VI. Safety methods used for the PLD control system architecture (taken form IEC 61508)
Method Aim Description
Failure detection
by online moni-
toring

To detect failures by monitoring the behaviour of
the E/E/PE safety-related system in response to
the normal (on-line) operation of the equipment
under control (EUC).

Under certain conditions, failures can be detected using in-
formation about (for example) the time behaviour of the EUC.
For example, if a switch, which is part of the E/E/PE safety-
related system, is normally actuated by the EUC, then if the
switch does not change state at the expected time, a failure
will have been detected. It is not usually possible to localise
the failure.

Majority Voter To detect and mask failures in one of at least
three hardware channels.

A voting unit using the majority principle (2 out of 3, 3 out
of 3, or m out of n) is used to detect and mask failures. The
voter may itself be externally tested, or it may use selfmoni-
toring technology.

Tests by redun-
dant hardware

To detect failures using hardware redundancy, i.e.
using additional hardware not required to imple-
ment the process functions.

Redundant hardware can be used to test at an appropriate
frequency the specified safety functions.

Monitored output To detect individual failures, failures caused by
external influences, timing failures, addressing
failures, drift failures (for analogue signals) and
transient failures

This is a dataflow-dependent comparison of outputs with in-
dependent inputs to ensure compliance with a defined toler-
ance range (time, value). A detected failure cannot always
be related to the defective output. This measure is only ef-
fective if the dataflow changes during the diagnostic test in-
terval.

Monitoring To detect the incorrect operation of an actuator. The operation of the actuator is monitored. The redundancy
introduced by this monitoring can be used to trigger emer-
gency action.
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—A list of IEC 61508 methods which are related to the overall architecture. A safety architect gets a pool of
methods which could be relevant for the chosen architecture. Furthermore, the standard provides additional
information about how to implement the methods.

—A connection between the safety goals of the overall architecture and IEC 61508 methods which fulfill these
goals. This allows a safety architect to structurally present a safety certification authority how the applied
methods which are suggested by the standard are combined to achieve a safe system.

7. CONCLUSION

We presented a system of safety patterns and described their relationships to each other. The patterns include a
GSN diagram for safety reasoning.

This pattern system allows safety engineers to easily get an overview of commonly used system architectures
and their safety-related consequences. Additionally, when using a pattern, the safety engineer can construct a
GSN diagram for his architecture based on the GSN diagrams in the patterns. The GSN representation for the
patterns is very suitable, because many of the patterns have alternatives which just differ in changing a single
design decision. For example, each of the patterns addressing random faults by using Replication Redundancy
can easily be used to handle systematic faults as well if Diverse Redundancy is used instead. With the GSN
representation such alternatives can easily be modeled by simply exchanging a tactic of the pattern (see the
M-OUT-OF-N-D PATTERN for example). Similarly, variants of a pattern can be modeled by refining the pattern by
an additional tactic. The systematic GSN notation allows to easily integrate additional safety patterns into our
pattern system and it allows to reason about safety-specific consequences of these patterns by having a look at
the consequences of the added tactic.

We think that the presented system for architectural safety patterns provides safety engineers a good overview
of safety architectures and it allows to connect IEC 61508 methods to high level architectures. This is particularly
important during safety certification and offers safety engineers a new way to argue about how their architecture
achieves safety goals.
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A. SAFETY ARCHITECTURE PATTERNS

This publication has been shortened and this section has been skipped,
because it contains the same information as present in Appendix A in
Publication 4: “Safety Architecture Pattern System with Security As-
pects”. The full publication of the current paper includingthis section
is available at the ACM Digital Library.

B. SAFETY TACTICS

This publication has been shortened and this section has been skipped,
because it contains the same information as present in Appendix B in
Publication 4: “Safety Architecture Pattern System with Security As-
pects”. The full publication of the current paper includingthis section
is available at the ACM Digital Library.
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C. RETRIEVING TACTICS FROM SAFETY PATTERNS

In this section we present the tactic mining process as proposed in Section 4 and its results. We analyzed the safety
patterns regarding the tactics they use as described by [Kumar and Prabhakar, 2010] where all pattern sections are
analyzed and compared to tactic descriptions. If a part of a pattern section is similar to a safety tactic, then this tactic
is used in the pattern. An overview of the considered safety tactics is given in Appendix B.

In the left column of the following tables we give the original statements from the context, problem, solution,
consequences, and implementation sections of the patterns. In the right column we give the tactic which is addressed
by the description on the left. Additionally we elaborate the problem section as described by [Babar, 2007] to gather
general scenarios for the patterns. For tactic mining we put special focus on the solution section as suggested by [Zhu
et al., 2004].

With the gathered tactics we construct a Tactic Topology Model which was introduced by [Kumar and Prabhakar,
2010]. The model takes the main tactic to handle the pattern problem as root node. If the application of this tactic
introduces new goals, then additional tactics to handle them are added as child nodes. The edges of the model give
further explanation of the tactic application.

HOMOGENOUS DUPLEX PATTERN
Abstract Section

Core Intent Tactic
It is a hardware pattern that is used to increase the safety and reliability of the system by providing a
replication of the same module (Modular redundancy) to deal with the random faults.

Replication Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
Make the system continue operating in the pres-
ence of a fault

The system is fully operational even in case of a
single channel failure.
A single channel random fault does not lead to a
system failure.
The system can detect a fault in a single channel.

Replication Redundancy
Override

Solution Section
Solution Description Tactic
The system consists of two identical modules; a primary (active) module and secondary (standby)
Test by redundant hardware

Replication Redundancy

There is a fault detection unit that monitors the primary module and switches to the secondary module
when a fault appears in the primary. Fault detection and diagnosis (Comparator and Acceptance Test)

Override

This method performs a check on the two channels by checking for input valid data within a given range
and by checking the output signals from the two modules whether they are valid or not.

Condition Monitoring

Consequences Section
Consequence Description Tactic
When a fault is detected in the primary channel, the switch circuit switches over to the secondary channel Override

Implementation Section
Implementation Description Tactic
To implement this pattern, the computational channel should be duplicated Replication Redundancy

Tactic Topology Model
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HETEROGENOUS DUPLEX PATTERN
Abstract Section

Core Intent Tactic
Solution for embedded system with no fail-safe-state in a situation that includes high random failure
and high systematic failure rate.

Diverse Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to deal with systematic faults as well as ran-
dom faults in order to increase the safety and relia-
bility of the system.
How to make the system continue operating in the
presence of a fault in one of the system compo-
nents

The system is fully operational even in case of a
single channel failure.
A single channel random/systematic fault does not
lead to a system failure.
The system can detect a fault in a single channel.

Diverse Redundancy
Override

Solution Section
Solution Description Tactic
The system consists of two modules (channels) with the same functionality; a primary (active) module
and secondary (standby).
Test by redundant hardware

Redundancy

There is a fault detection unit that monitors the primary module and switches to the secondary module
when a fault appears in the primary.
Fault detection and diagnosis (Comparator and Acceptance Test)

Condition Monitoring

The two modules have independent designs or implementation methods, which gives this pattern the
ability to handle systematic faults as well as random faults.
Diverse Hardware

Diverse Redundancy

When there is a fault in the primary channel, the comparator has to detect and to identify the faulty
channel, then it generates an instruction to the switch circuit to switch to the secondary channel

Condition Monitoring
Override

This method performs a check on the two channels by checking for input valid data within a given range
and by checking the output signals from the two modules whether they are valid or not.

Condition Monitoring

Consequences Section
Consequence Description Tactic
This pattern includes two independent and diverse modules Diverse Redundancy
When a fault is detected, the switch circuit switches over to the secondary channel Redundancy

Override
Implementation Section

Implementation Description Tactic
To implement this pattern, the computational channel should be duplicated Redundancy
The duplicated modules should be implemented using independent designs or independent methods
to avoid common systematic faults.
It is more preferable to use different software versions that are designed by different teams and using
different algorithms, when it is possible.

Diverse Redundancy

Tactic Topology Model
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TRIPLE MODULAR REDUNDANCY PATTERN
Abstract Section

Core Intent Tactic
This pattern consists of three identical modules operating in parallel to produce three results that are
compared using a voting system to produce a common result

Voting
Replication Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to deal with random faults and single-point of
failure in order to increase the safety and reliability
of the system without losing the input data in the
presence of faults.

The system is fully operational even in case of a
single channel failure.
A single channel random fault does not lead to a
system failure.

Voting

Solution Section
Solution Description Tactic
The system contains three identical modules or channels operating in parallel.
Test by redundant hardware

Replication Redundancy

The voter plays a main role in this pattern by applying the voting policy to take the majority from the
results which represents the correct actual result.
Fault detection and diagnosis (Voting)

Voting

Consequences Section
Consequence Description Tactic
This pattern has a high recurring cost due to the using of three parallel modules. So, the recurring cost
is 300% comparing to the basic system.

Replication Redundancy

The cost of voter which is normally a simple hardware circuit that depends on the type of the output
control signal and the implementation method.

Voting

Implementation Section
Implementation Description Tactic
To implement this pattern, the designer should replicate the channel which includes the replication of
the hardware as well as software.

Replication Redundancy

Tactic Topology Model
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M-OUT-OF-N PATTERN
Abstract Section

Core Intent Tactic
The M-oo-N redundancy requires that at least M components succeed out of the total N parallel mod-
ules for the system to succeed.

Voting
Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to deal with random or systematic faults in or-
der to increase the safety and reliability of the sys-
tem without losing the input data.

The system is fully operational even in case of a
single channel failure.
A single channel random/systematic fault does not
lead to a system failure.

Voting

Solution Section
Solution Description Tactic
The pattern structure contains N identical modules or channels Test by redundant hardware Redundancy
The voting element plays the main role in this pattern since it is used to find the possible correct result
by performing the M-oo-N voting strategy Fault detection and diagnosis (Voting)

Voting

Consequences Section
Consequence Description Tactic
This pattern has little influence on the executing time, since the N modules are running separately. Redundancy

Implementation Section
Implementation Description Tactic
For homogeneous implementation of this pattern, the designer should use the same hardware as well
as the software for all the channels.

Replication Redundancy

If the hardware diversity concept is used in the implementation to solve the problem of systematic
faults, then the possible deviation in value or time between the correct outputs should be taken into
consideration in the design of the voting system

Diverse Redundancy

Tactic Topology Model
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M-OUT-OF-N-D PATTERN
Papers about the MooND Architecture
Citation Tactic

In addition, if the diagnostic tests in either channel detect a fault then the output voting is adapted so
that the overall output state then follows that given by the other channel [International Electrotechnical
Commission, 2010]

Checking
Override
Voting

MooND means M out of N channel architecture with diagnostic [H. Yang and X. Yang, 2010] Replication Redundancy
Diverse Redundancy
Voting
Checking

The architecture consists of equipment with inputs and outputs wired in parallel [Goble, 1998] Redundancy
Faulty sensors and actuators can also be detected and isolated from the function with proper diagnos-
tics. This method is designated with an abbreviation MooND, where ’D’ stands for diagnostics. [Varjo-
ranta, 2012]

Checking

Tactic Topology Model

Building a Safety Architecture Pattern System — Page 17

Publication 2 - EuroPLoP 2013 103



N-VERSION PROGRAMMING PATTERN
Abstract Section

Core Intent Tactic
independent generation of N>=2 functionally equivalent software modules called ’versions’ from the
same initial specification

Diverse Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
Overcome software faults, which may remain after
the software development.

The system is fully operational even in case of a
failure of a software version.
A software fault in a single version does not lead to
a system failure

Diverse Redundancy
Voting

Solution Section
Solution Description Tactic
The N-Version Programming Pattern is based on the concept of independent generation of functionally
equivalent N versions from the same initial specification.
Diverse programming

Diverse Redundancy

The outputs of these versions are sent to the voter which executes a voting strategy to determine the
best correct output. Fault detection with voting

Voting

Consequences Section
Consequence Description Tactic
The main drawbacks of the NVP Pattern are the complexity of developing independent N-versions Diverse Redundancy

Implementation Section
Implementation Description Tactic
The success of the NVP Pattern depends on the independent development of the required N versions
and the level of diversity in these versions to avoid the common failures

Diverse Redundancy

There are several voting techniques that can be used in this pattern to implement the voter component Voting
Tactic Topology Model

Building a Safety Architecture Pattern System — Page 18

104 7. Publications



ACCEPTANCE VOTING PATTERN
Abstract Section

Core Intent Tactic
Acceptance Voting Pattern is based on the independent generation of N>=2 functionally equivalent
software modules called ŞversionsŤ from the same initial specification

Diverse Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to overcome the software faults, which may re-
main after the software development, in order to im-
prove the software reliability and safety

The system is fully operational even in case of a
failure of a software version.
A software fault in a single version does not lead to
a system failure.
A fault in a single software version is detected.

Diverse Redundancy
Voting

Solution Section
Solution Description Tactic
It includes N independent and functionally equivalent versions that are typically executed in parallel to
perform the required task.
Diverse programming

Diverse Redundancy

The output of each version is tested for correctness using an acceptance test. Sanity Check
Those results that pass the acceptance test are then used by the voting algorithm to generate the final
result.

Voting

Fault detection and diagnosis (Voting and Acceptance Test) Sanity Check
Voting

Consequences Section
Consequence Description Tactic
The voter has to wait for the outputs of all versions to be checked by the acceptance test before applying
the voting algorithm

Voting
Sanity Check

The development cost include the development of independent and functionally equivalent N versions. Diverse Redundancy
- -

Implementation Section
Implementation Description Tactic
The quality of the acceptance. Thus, it should be carefully designed to detected most of the possible
software faults.

Sanity Check

The independent development of the required N versions and the level of diversity in these versions to
avoid the common failures

Diverse Redundancy

The use of a suitable voting technique Voting
Tactic Topology Model

Building a Safety Architecture Pattern System — Page 19

Publication 2 - EuroPLoP 2013 105



RECOVERY BLOCK PATTERN
Abstract Section

Core Intent Tactic
It includes N diverse, independent, and functionally equivalent software modules called ’versions’ Diverse Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to overcome the software faults, which may re-
main after the software development, in order to im-
prove the software reliability and safety

The system is fully operational even in case of a
failure of a software version.
A software fault in a single version does not lead to
a system failure.
A fault in a single software version is detected.

Diverse Redundancy
Override

Solution Section
Solution Description Tactic
After the execution of the primary version, the acceptance test is executed to check if the outcome is
reasonable and to detect any possible erroneous result.
Fault detection and diagnosis

Sanity Check

The system state should be restored to its original state and an alternate version will be invoked to
repeat the same computations.
Recovery block

Rollback

An overall system failure is reported to execute the available safety action such as switching the system
into its fail-safe sate, or to shutdown the system.

Override

Diverse programming Diverse Redundancy
The primary alternate is the one which is intended to be used normally to perform the desired operation Override

Consequences Section
Consequence Description Tactic
The normal recovery block runs the independent ver- sions serially on a single hardware unit. Diverse Redundancy
The main drawbacks of the RB are the high dependency on the quality of the acceptance test. Sanity Check

Implementation Section
Implementation Description Tactic
The acceptance test should be carefully designed to detected most of the possible software faults Sanity Check
The independent development of the required N versions and the level of diversity in these versions to
avoid the common failures.

Diverse Redundancy

Tactic Topology Model
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N-SELF CHECKING PROGRAMMING PATTERN
Abstract Section

Core Intent Tactic
This pattern includes an independent generation of N>=4 functionally equivalent software modules
called ’versions’ from the same initial specification

Diverse Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to overcome the software faults, which may re-
main after the software development, in order to im-
prove the software reliability and safety

The system is fully operational even in case of a
failure of a software version.
A software fault in a single version does not lead to
a system failure.

Diverse Redundancy
Voting

Solution Section
Solution Description Tactic
NSCP uses software design diversity and error detection by self-checking programming diverse pro-
gramming.
Diverse programming

Diverse Redundancy

each component includes two independent and functionally equivalent versions that run in parallel and
are self checked using a comparison algorithm.
Fault detection and diagnosis with a comparator

Diverse Redundancy
Voting

When the running component fails due to different results from its versions, a spare component is
invoked to start delivering the required functionality

Diverse Redundancy

If there is no agreement between the two versions, then this component is discarded and a signal is
generated to indicate a fault in this component and the selector switches to the next spare component.

Comparison

Consequences Section
Consequence Description Tactic
Development of independent and functionally equivalent N versions Diverse Redundancy
developing the comparator and selector unit Voting

Comparison
Implementation Section

Implementation Description Tactic
The comparator and selector component should be carefully designed to provide an efficient compari-
son and fast switching.

Voting
Comparison

The success of the NSCP Pattern depends on the independent development of the required N versions Diverse Redundancy
- -

Tactic Topology Model
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SANITY CHECK PATTERN
Abstract Section

Core Intent Tactic
The sanity channel, which provides a monitoring to the actuation channel to ensure that the actuation
output is approximately correct and within some fixed range.

Override

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
Improve the safety of an embedded system in the
presence of single point of failure in a system that
includes a fail-safe state and low availability require-
ment.

A fail-safe state is entered if a primary channel fault
is detected.
Known hazards in the primary channel can be de-
tected.

Override

Solution Section
Solution Description Tactic
A safety monitoring method switches the system into its fail-safe state in the presence of failure. Override
In the case of great difference between the set point and the measured value, the sanity channel forces
the actuation channel entering the fail-safe state

Sanity Check

the monitor generates a shutdown signal to the actuation channel Override
In the case of great difference between the set point and the measured value, the sanity channel forces
the actuation channel entering the fail-safe state

Sanity Check
Override

Consequences Section
Consequence Description Tactic
If the result of the comparison shows that the output is totally incorrect and may affect the safety of the
system, the monitor generates a shutdown signal to the actuation channel

Override

Implementation Section
Implementation Description Tactic
The implementation of the monitor component is very simple since it is a very simple unit that includes
a simple algorithm to perform the required broad range comparison.

Sanity Check

Tactic Topology Model
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MONITOR-ACTUATOR PATTERN
Abstract Section

Core Intent Tactic
A monitoring channel monitors the actuation channel in order to detect and to identify the possible
faults

Override

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
Improve the safety of a system that includes a fail-
safe state and low availability requirements at rea-
sonable cost.

A fail-safe state is entered if a primary channel fail-
ure is detected.
Hazards in the primary channel can be detected.

Override

Solution Section
Solution Description Tactic
The Monitoring Channel monitors the actuation channel to check its proper operation.
It takes the information from the set point source and the actuator sensors to detect possible faults in
the actuation channel.

Condition Monitoring

In the case of improper operation, it forces the actuation channel to enter the fail-safe state. Override
The monitor takes the information about the outputs of the actuators, which is collected by the actuator
sensors and processed by the monitoring acquisition system, and compares it with the provided set
points.

Condition Monitoring

If the result of the comparison shows improper operation in the actuation channel, the monitor gener-
ates a shutdown signal to the actuation channel.

Override

Consequences Section
Consequence Description Tactic
generate the shutdown signal to force the actuation channel entering its fail-safe state Override

Implementation Section
Implementation Description Tactic
it is a good idea for the monitoring channel to store some historical information about the monitored
value which could be helpful to determine whether the detected value represents a transient or persis-
tent fault.

Condition Monitoring

Tactic Topology Model
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WATCHDOG PATTERN
Abstract Section

Core Intent Tactic
The pattern widely used in the embedded systems to make sure that the time-dependent computational
processing is proceeding properly as expected in a predefined order

Override

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to make sure that the internal computational
processing of the actuation channel is proceeding
properly and timely.

A fail-safe state is entered if a primary channel fail-
ure is detected.
A timing fault in the primary channel can be de-
tected.

Override

Solution Section
Solution Description Tactic
The watchdog receives liveness messages (Strokes) from the actuation channel on a periodic or in a
predefined-sequence base.
Program sequence monitoring

Heartbeat

The watchdog must be stroked within a specified period of time or it will initiate a corrective action such
as a shutdown signal

Override

The Watchdog Pattern checks that the time-dependent computational processing is proceeding prop-
erly as expected in a predefined order

Sanity Check

Built In Test (BIT) verifies all or a portion of the internal functionality of the actuation channel. Sanity Check
Consequently, it issues a shutdown or reset signal to the actuation channel or initiates a corrective
action through sending a command signal

Override

Consequences Section
Consequence Description Tactic
execution of the built in tests that may be initiated by the watchdog. Sanity Check

Implementation Section
Implementation Description Tactic
To increase the fault coverage, it is common to invoke a BIT, CRC, or stack overflow check when the
watchdog is stroked to ensure that the computational processing of the actuation channel is proceeding
properly.

Sanity Check

Tactic Topology Model
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SAFETY EXECUTIVE PATTERN
Abstract Section

Core Intent Tactic
The safety executive component is responsible for the shutdown of the system as soon as the watchdog
sends a shutdown signal

Degradation

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to provide a centralized and consistent method
for monitoring and controlling the execution of a
complex safety measure in case of failures.

A fail-safe state is entered if a primary channel fail-
ure is detected.
A timing fault in the primary channel can be de-
tected.

Degradation

Solution Section
Solution Description Tactic
A centralized safety executive component coordinates all safety-measures required to shut down the
system or to switch over to the fail-safe processing channel.
Graceful degradation

Override
Degradation

It is an optional component, which is invoked by the watchdog to run a periodic Built In Test (BIT) to
verify all or a portion of the internal functionality of the actuation channel.
Program sequence monitoring

Sanity Check

The watchdog receives liveness messages (strokes) from the components of the actuation channel in
a predefined time frame.

Heartbeat

The Safety Executive tracks and coordinates all safety monitoring to ensure the execution of safety
actions.

Degradation

Consequently, it issues a shutdown signal to the safety executive component or initiates a corrective
action.

Override

Consequences Section
Consequence Description Tactic
Execution of the periodic built in tests Sanity Check

Implementation Section
Implementation Description Tactic
Graceful degradation Degradation
The designer should determine whether the new components need to send stroke messages to the
watchdog or not

Heartbeat

Tactic Topology Model
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PROTECTED SINGLE CHANNEL PATTERN
Abstract Section

Core Intent Tactic
It should be integrated with another safety technique in the presence of immediate fail-safe state to be
used for light safety-critical applications.

Override

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to deal with the transient faults to provide
some level of safety and reliability to the embedded
system in an inexpensive manner

A fail-safe state is entered if a primary channel fault
is detected.
Hazards in the primary channel can be detected.

Override

Solution Section
Solution Description Tactic
input data validation and one for actuation monitoring.
Failure detection by online monitoring

Sanity Check
Condition Monitoring

The actuator sensors are used to get feed back signals from the output of the actuators to be used for
the actuation monitoring

Condition Monitoring

checks on the input data and the system itself Sanity Check
Actuator Monitoring: It provides a monitoring to the output of the channel, such as checking the output
commands for validity before delivering this command to the actuators. It can also check the output
actuators using separate sensors by getting feedback values from the actuators and comparing these
values with the previously generated control signals.

Sanity Check
Condition Monitoring

Consequently, it can use this information to reconfigure the output processing component to overcome
the transient faults when it is possible.

Override

Consequences Section
Consequence Description Tactic
If the validation checks are performed by hardware, then the extra components are working in parallel
with the basic channel which does not affect the basic system in the normal execution

Sanity Check

Implementation Section
Implementation Description Tactic
In this pattern, there are two versions to be implemented: either (open loop) with only data integrity
checking unit, or (close loop) that includes additional actuation monitoring unit.

Sanity Check
Condition Monitoring

The existence of a fail-safe state gives the data integrity and the actuator monitoring components the
capability to switch the system into the fail-safe state in the presence of persistent fault.

Override

Tactic Topology Model
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3-LEVEL SAFETY MONITORING PATTERN
Abstract Section

Core Intent Tactic
The monitoring level monitors the first level, and the control level controls the monitoring level and the
entire hardware channel.

Condition Monitoring

Problem Section
Problem Elaboration of Problem (scenario) Achieved through Tactic
How to continue providing the required safety level
and to ensure that the system does no injure or
harm, when there is any deviation in the output of
the actuators from the commanded set point.

A fail-safe state is entered if a primary channel fail-
ure is detected.
Hazards in the primary channel can be detected
A timing fault in the primary/monitor channel can be
detected

Condition Monitoring
Override

Solution Section
Solution Description Tactic
The Monitoring Module monitors the actuation module through a comparison of the processing results,
input data and the data from the actuatorŠs sensors.

Condition Monitoring

In the case of great difference between the desired value and the measured value, this module forces
the actuation channel to switch into its fail-safe state.

Override

If the result of the comparison shows that the output of actuation channel is totally incorrect and may
affect the system safety, the monitor will generate a correction command or shutdown signal

Override

Data Validation (Data Integrity Check): It provides a check on the input data during the executing of the
desired algorithm to ensure that the input data is valid and in the safe boundaries.
Fault detection and diagnoses

Sanity Check

A Watchdog is used to provide a sequence control to the monitoring level and to the entire actuation
channel.
Program sequence monitoring

Sanity Check
Heartbeat
Override

Consequences Section
Consequence Description Tactic
generate the shutdown or reset signal to force the actuation channel entering the fail- safe state Override

Implementation Section
Implementation Description Tactic
If low-sensitive sensors are used for the monitoring level, then a simple algorithm should be used to
perform the required broad range comparison.

Condition Monitoring

Tactic Topology Model

Building a Safety Architecture Pattern System — Page 27

Publication 2 - EuroPLoP 2013 113



APPENDIX REFERENCES

BABAR, M.A. (2007). Improving the Reuse of Pattern-Based Knowledge in Software Architecting. In: EuroPLoP. Lero, Ireland, 7–11.
GOBLE, William M (1998). The Use and Development of Quantitative Reliability and Safety Analysis in New Product Design. PhD thesis.

Technical University of Eindhoven.
INTERNATIONAL ELECTROTECHNICAL COMMISSION (2010). IEC 61508, Functional Safety of Electrical/ Electronic/ Programmable Electronic

Safety Related Systems.
KUMAR, Kiran and T.V. PRABHAKAR (2010). Design Decision Topology Model for Pattern Relationship Analysis. In: 1st Asian Conference on

Pattern Languages of Programs (AsianPLoP 2010).
VARJORANTA, Velu (2012). Software safety issues in machine control system design process. PhD thesis. Tampere University of Technology.
YANG, Hao and Xianhui YANG (Aug. 2010). Automatic Generation of Markov Models in Safety Instrumented Systems with Non-identical

Channels. In: 2010 International Conference of Information Science and Management Engineering. IEEE, 287–290.
ZHU, Liming, Muhammad Ali BABAR, and Ross JEFFERY (2004). Mining Patterns to Support Software Architecture Evaluation. In: 4th Working

IEEE / IFIP Conference on Software Architecture (WICSA). IEEE.

Copyright 2013 is held by the author(s). Copyright granted to Hillside Europe for use at/with the EuroPLoP 2013 conference.

Building a Safety Architecture Pattern System — Page 28

114 7. Publications



Security Analysis of Safety Patterns
CHRISTOPHER PRESCHERN, Institute for Technical Informatics, Graz University of Technology
NERMIN KAJTAZOVIC, Institute for Technical Informatics, Graz University of Technology
CHRISTIAN KREINER, Institute for Technical Informatics, Graz University of Technology

Architectural safety patterns provide knowledge about large scale design decisions for safety-critical systems. Safety-critical systems are
nowadays increasingly subject to attacks due to their increased connectivity to the Internet. Therefore, we extend existing architectural safety
patterns to include security considerations. We apply a STRIDE approach on the safety patterns to obtain relevant threats for each pattern
and we structure these threats in a Goal Structuring Notation diagram. We present a catalog of security enhanced safety patterns and we
apply one of the patterns to a case study to show how the security-enhanced safety patterns can help for security reasoning.
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1. INTRODUCTION

Security concerns are still not sufficiently considered when designing safety-critical systems although they become
more relevant due to increasingly interconnected systems. To provide safety engineers with guidelines how to
design good systems, safety patterns can be used which describe the safety-related consequences of taking a
specific design decision. However, none of the safety patterns in literature extensively cope with the effects of the
pattern application on system security.

In this paper we evaluate existing safety patterns regarding their effect on the overall system security. We
structurally analyze safety patterns by using the STRIDE approach which is well known in the security domain.
This gives us a list of threats for the design patterns which we divide in categories depending on how critical they
are for the system’s safety. We then present highly critical threats for each pattern in a Goal Structuring Notation
diagram, which allows one to easily see which parts of the system are important to protect against attacks. The
resulting security enhanced patterns provide a basis for safety engineers to analyze and enhance the security of
their systems. We show the application of a pattern and its Goal Structuring Notation diagram in a case study from
the substation automation domain.

This paper is structured as follows: Section 2 gives some basic background on the STRIDE approach and on
Goal Structuring Notation. Both are used in Section 3 which describes how the security effects of safety patterns
are evaluated. Section 4 shows how to apply the security enhanced safety patterns for reasoning about the security
of a case study. Section 5 gives related work on security evaluation for design patterns and Section 6 concludes
this work. In the Appendix we present our catalog of the security enhanced safety patterns.
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2. BACKGROUND

This section gives a basic introduction to the STRIDE threat modeling approach and to Goal Structuring Notation.

2.1 STRIDE Threat Modeling Approach

In order to build a secure system, it is necessary to first find the relevant threats to the system before finding
solutions how to mitigate them. The STRIDE approach is a structured way to find these threats. The STRIDE
approach was proposed by Microsoft [Howard and LeBlanc 2003] and is nowadays often used as part of security
analysis. STRIDE is an acronym, where the letters stand for the six threat categories which are analyzed (Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service (DoS), Elevation of Priviledge (EoP)).

For threat modeling with STRIDE, first a data flow diagram (DFD) has to be constructed. A DFD shows the
interaction between system elements and external elements (e.g. users of the system) by graphically presenting
all the data flows (inputs/outputs of elements). All relevant STRIDE threats for each element in the diagram are
then listed. The relevant threats for different DFD element types are given in Table I.

Table I. STRIDE mapping to DFD element types
DFD element type S T R I D E

External entity X X
Data flow X X X
Data store X X X X
Process X X X X X X

The resulting list of threats can further be elaborated by excluding threats which are not relevant for the specific
system and by implementing countermeasures for relevant threats. When all threats are covered, one has a
structured argument for system security. We use Goal Structuring Notation to present such a structured argument.

2.2 Goal Structuring Notation

The Goal Structuring Notation (GSN) was developed by [Kelly and Weaver 2004] and is often used in the safety
domain for providing a structured argument for the achievement of specific goals. Recently, a standard for the
GSN was published which contains definitions of the notation and which presents approaches how to use GSN to
elaborate a specific goal [GSN Working Group 2011]. GSN can also be used to argue for system security like in
[Cockram and Lautieri 2007]. Figure 1 explains the GSN concepts which are later on used in this paper.

Fig. 1. GSN concepts used in this paper taken from [GSN Working Group 2011]
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To show how a GSN goal is achieved, it is linked to an argument (GSN strategies, GSN subgoals) which ends
up in the evidence (GSN solution) supporting the claim that the goal is achieved. Figure 2 shows an example for
the application of GSN. The main goal in the example is that an attacker cannot obtain some confidential data. In
the next step, context elements are added which say that the data is locally stored on a computer and transmitted
to another computer. The main goal is split up into the subgoals to protect the stored data and the transmitted
data. Protecting transmitted data is achieved by just transmitting the data over a protected TLS channel (GSN
strategy). For this TLS channel, we need evidence that it works properly. This evidence (GSN solution element) is
that the used implementation is security certified. Protecting stored data is an undeveloped goal which means that
the security argument for this subgoal is not yet complete and further arguments have to be included here in order
to obtain a complete argument that the overall goal (protecting the confidential data) is achieved. In the example,
GSN provides a structured way to show how the rather unspecific goal to protect confidential data is (partially)
achieved by specific measures (the TLS channel).

Fig. 2. GSN example showing a security argument

2.3 Alternative Methods for Threat Elaboration

STRIDE is a very generic security analysis and can be used as a starting point to develop security requirements
and security countermeasures. In this work we build a GSN diagram to argue for STRIDE threat mitigation;
however, instead of GSN several alternatives could be used:

- The Secure Tropos project [Mouratidis and Giorgini 2007] provides a tool to model a system and to analyze its
threats with the STRIDE method [Rojas and Mahdy 2011]. Threat mitigation mechanisms can be added to the
system model and security reports can be printed with the tool. The reason for using GSN diagrams instead to
the Secure Tropos model representation including tooling support is that the GSN notation is well known in the
safety domain.
- Microsoft’s security development lifecycle suggests to build threat trees for each STRIDE threat and to mitigate
each element of such a threat tree. The reason for using GSN diagrams instead of threat trees is that GSN
diagrams easily allow to integrate security countermeasures into the notation and to further analyze STRIDE
threats for these countermeasures. With the threat tree notation that would be cumbersome.
- Fault Trees can also be used to integrate security threats [Nai-Fovino et al. 2009]. However, The reason for
choosing GSN above fault trees is that GSN is already known and applied in the safety and security domain
whereas fault trees are usually just used in the safety domain.
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3. ENHANCING PATTERNS WITH SECURITY REASONING

In this section we present and apply the approach how to use the STRIDE analysis for safety patterns in order to
obtain a GSN argument for the patterns which helps to identify threats and to argue for the security of a system
which applies a pattern.

3.1 Getting the Data Flow Diagram

The catalog of safety architecture patterns presented in [Preschern et al. 2013] shows several safety patterns
with a consistent notation. Each of the patterns describes how a Basic System consisting of hardware or software
elements can be modified (e.g. through adding a watchdog, or through replication) in order to increase its safety.
Each of the patterns provides a diagram which shows the hardware and software elements of the pattern and their
interaction. For the patterns, this diagram contains all the necessary information for the STRIDE analysis and will
be used instead of a data flow diagram.

Figure 3 shows such a diagram for the Basic System (to which the patterns from [Preschern et al. 2013] can be
applied) The Basic System gets input data, processes that input data in the primary channel, and produces output
data for a safety-critical process.

Fig. 3. Basic system which is the starting point for the safety patterns

3.2 Getting the Threats

By using an adapted STRIDE approach, we analyze the pattern diagrams to list the security threats for each of the
patterns.

We just consider two element types for the STRIDE analysis: Data flows and Processing elements. For both
types, we omit the threats Repudiation and Information Disclosure, because they do not directly influence the
safety functionality of a system. Furthermore, for the Processing elements, we omit the Tampering and Denial
of Service threats, because an attacker usually has no access to processing elements which perform safety-
critical functionality. Therefore, he needs to elevate his privileges before starting a tampering or DoS attack on a
processing element. Our resulting relevant threats for the pattern diagram element types are shown in Table II.

Table II. STRIDE mapping to safety pattern element types
DFD element type S T R I D E

Data flow X X
Processing element X X

With this mapping of relevant threats, we go through each element of the pattern diagram to obtain a list of
relevant threats for the pattern. For the Basic System we get the following list of threats:

- Tampering of Primary Channel input
- DoS against Primary Channel input
- Spoofing of the Primary Channel
- EoP on the Primary Channel
- Tampering of Primary Channel output
- DoS against the Primary Channel output

Security Analysis of Safety Patterns — Page 4
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3.3 Categorizing the Threats

For each pattern we divide the obtained threats into criticality categories which make it easier to quickly see which
threats are especially relevant for the pattern. The threats are categorized as:

- Threats to the safety-critical functionality of the system

- Threats which can bring the system into a safe state (e.g. shut it off)

- Threats which do not directly influence the system functionality and leave the system fully functional

To determine which category a threat belongs to, we analyze what would happen if a successful attack related to the
threat was applied. If the attack could arbitrarily modify the system’s output data, then the threat is safety-critical.
If the attack could shut the system off, then the threat is classified as one which leads to a safe state. If the
attack does not influence the system’s output, the threat is classified as one where the system remains fully
functional.

We display the categorized threats in a table which lists them according to their STRIDE type and criticality
category. All the threats for the Basic System are underlines and printed in green color. All other threats (threats
for a safety pattern apart from the Basic System threats), are printed in black color. This has the advantage that for
the safety patterns in the Appendix, one can easily see to which criticality category the Basic System’s threats are
shifted when applying the pattern or whether the Basic System’s threats are then even relevant anymore.

For the Basic System, after applying the described threat categorization, we obtain the threat table shown in
Table III. We can see that all threats are categorized as safety-critical. For example, the “Tampering of Primary
Channel input” threat is safety-critical, because if someone can maliciously modify the Primary Channel input
data, then, in general, it is also possible to modify the system’s output data, because the output data calculation of
the primary channel depends on the input data. We can also see that all threats underlined and printed in green.
This is, because per definition, we print all Basic System threats underlined and in green. When looking at the
patterns in the Appendix, also threats printed in black are present and the advantage of using different colors in
the table can be seen, because one can easily see which basic threats (underlined, green) are shifted into other
columns. This gives a quick overview of how the pattern affects the existing threats.

Table III. STRIDE threats relevant for the Basic System
safety-critical leads to a safe state system remains fully functional

S Spoofing of the Primary Channel - -
T Tampering of Primary Channel input

Tampering of Primary Channel output
- -

R - - -
I - - -

D DoS against Primary Channel input
DoS against Primary Channel output

- -

E EoP on Primary Channel - -

To highlight the safety-critical threats, we color all components in the pattern’s diagram which are related to
safety-critical threats in red. For the Basic System, this was already done in Figure 3. For the patterns presented
in the Appendix, this makes it very easy to get a first impression of which components especially have to be
protected. All the patterns in the Appendix contain a table with their categorized threats.

Security Analysis of Safety Patterns — Page 5

Publication 3 - PLoP 2013 119



3.4 Constructing the Security GSN

In some cases, threats which are not classified as safety-critical can become part of an attack affecting system
safety if they are combined. To also capture thi s information we construct a GSN diagram for each pattern. The
top-level GSN goal is to maintain the safety functionality even in case of an attack. The subgoals are the prevention
of attacks leading to the analyzed safety-critical threats or the prevention of attack combinations1.

Using GSN diagrams to represent attacks is not the original approach presented by [Howard and LeBlanc 2003]
for the STRIDE method. The original approach is to gather attacks and use a tree-like notation (called attack trees)
to display how these attacks can be combined to form STRIDE threats. However, attack trees just capture the
information how to relate attacks and do not contain information about the countermeasures against these attacks.
With GSN it is possible to relate countermeasures (GSN strategies) to the attack which they mitigate (GSN goals).
Thus, compared to attack trees, GSN diagrams bring the advantage of establishing a link between the security
goals (protect against system threats) and the implemented countermeasures. A similar approach was already
suggested by [Moleyar and Miller 2007].

Figure 4 shows the security GSN diagram for the Basic System which is rather straightforward, because all
its threats are safety-critical. However, if we would construct a GSN for a system similar to the Basic System but
which additionally has a safe state when it is shut off, we would obtain a slightly different GSN diagram. If the
system had a safe state when shut off, the DoS threats would not be safety critical, but they would belong to the
second column (“leads to a safe state”) in Table III. For the GSN diagram this would mean that the DoS threats
would not be part of it, because they cannot lead the system to a critical state (also not if both DoS threats would
be combined).

All of the patterns in the Appendix contain a security GSN diagram. These diagrams are more complex than
the diagram in Figure 4 and yield additional information regarding the possible threat combinations which are
safety-critical. Such a GSN diagram can then be used as a basis for security reasoning for a specific architecture
which applies one of the safety patterns. The GSNs of the patterns contain undeveloped goals, because the
implementation details for a specific architecture applying one of the patterns are not yet known. These undeveloped
goals have to be developed (by adding architecture-specific claims and proves that support the goal) to obtain a
complete security argumentation.

Fig. 4. Security GSN diagram for the basic system

1To model a combination of attacks, the subgoals would be related with a GSN option element to the main goal - the HETEROGENOUS DUPLEX

PATTERN is an example which contains a combined attack and therefore makes use of the GSN option element
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4. APPLYING THE SECURITY ENHANCED SAFETY PATTERNS TO A CASE STUDY

In this section we apply one of the safety patterns from the Appendix to a case study. With the security analysis of
the safety pattern, we construct a complete security argument for the system architecture.

4.1 System description

In our case study we apply the HETEROGENOUS DUPLEX PATTERN to an electrical substation automation device.
Substations handle functions like voltage protection and conversion between different voltage distribution networks.
The substation automation device in our case study is a safety-critical component which handles over-voltage
protection. Based on measured current and voltage input values, the device has to decide if a power distribution
network should be cut off in order to protect other devices from over-voltage. The over-voltage protection device
obtains its sensor inputs from an IEC61850 merging unit, which is a sensor unit distributing sensor values via
Ethernet. Based on this sensor data, the system has to control actuators which are hardwired to the device. The
system is connected to the local substation Ethernet network to enable firmware updates.

Figure 5 gives an overview of the system architecture after applying the HETEROGENOUS DUPLEX PATTERN

(more details about the pattern are given in the Appendix on page 11). The substation automation device has two
CPUs where each CPU input is supplied with its own set of sensor data. To compute the actuator output value, the
CPUs run diverse software versions. This means the software versions have the same functionality, but different
implementations. Each CPU runs a diagnostic test and periodically sends the results of the test to an FPGA which
checks the diagnostic results and switches the actuator output to the backup CPU output if the diagnostic test of
the primary CPU fails. An external connection to both CPUs can be established via the local Ethernet to install
firmware updates on the CPUs.

Fig. 5. Substation automation device architecture

The architecture is very similar to the basic HETEROGENOUS DUPLEX PATTERN which is described in the
Appendix. The only differences are that the architecture has an additional connection to the CPUs for firmware
updates and that the fault detector and the output switch are realized on a single hardware component.

4.2 Adapting the security GSN from the pattern

The HETEROGENOUS DUPLEX PATTERN includes a security GSN diagram which captures the aim to mitigate
safety-relevant threats for this pattern as subgoals. These subgoals are undeveloped GSN goals (because the
GSN diagram of the pattern does not yet include information how these subgoals are achieved). We now want to
develop the subgoals in order to obtain a complete security argument for our architecture. We go through every
undeveloped goal and check whether the threat is actually a threat for the specific architecture. If it is not, we add
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the information why it is not a relevant threat to the GSN notation. If it is a relevant threat, we suggest mitigation
strategies. Figure 6 shows the resulting security GSN diagram for the substation automation device architecture.
Black elements with solid lines are taken from the GSN diagram of the HETEROGENOUS DUPLEX PATTERN and
green, dashed elements are added for the specific architecture.

The completed GSN diagram in Figure 6 shows us that some of the threats to the system (e.g. the “DoS of Fault
Detector is prevented” GSN goal element) are irrelevant. However, we do not eliminate these elements from the
diagram, but add GSN elements which argue why these threats are sufficiently handled by the architecture itself
(e.g. “An attacker has no physical access to the Fault Detector” GSN context element and “The Fault Detector is
hardwired to the CPU diagnosis output” GSN solution element).

Some other threats are not irrelevant but require countermeasures. For example, to mitigate the EoP threats
to the switch, to the fault detector, and to the CPUs, the countermeasure to thoroughly test these units (GSN
strategy elements) and to provide the test results (GSN solution elements) is applied. Additionally, for the CPUs,
the countermeasure to check the integrity of firmware updates is applied to handle the threat of achieving EoP on
the CPU by using a malicious firmware update. Another set of threats which have to be mitigated with appropriate
countermeasures, are threats to the merging unit. These threats are countered by putting the merging unit into a
separate Ethernet network to which an attacker does not have access.

4.3 Benefits of the Security GSN diagram

The main benefit of the GSN diagram is that with the application of a safety architecture pattern, we get a structured
representation of relevant security threats. This allows us on the one hand to argue for the overall system security
and on the other hand points to weaknesses of the architecture. By not deleting irrelevant threats but adding
information to the GSN diagram why these threats are irrelevant, we obtain a security argument for the architecture
which is complete regarding its safety-relevant STRIDE threats.

5. RELATED WORK

This section covers related work on the security evaluation of safety-critical systems and on the security evaluation
of design patterns.

[Hansen 2009] presents a security analysis of a safety-critical automation device which highlights attacks
compromising the system safety. [Johnson and Yepez 2011a] and [Johnson and Yepez 2011b] presents a
combined security and safety risk assessment methodology where security and safety arguments are shown in a
GSN diagram. Security threats are analyzed for a case study and the threats are included in an existing safety
GSN to obtain a unified assurance case for safety and security. [Nai-Fovino et al. 2009] present a method to
integrate security reasoning into fault trees. They discuss how to analyze the risk of security aspects in order to
integrate their probabilities consistently into the fault tree notation. A similar apprach is taken by [Ugljesa and
Wacker 2011] to integrate security considerations into the error probability calculation of a 2oo4 architecture2.
[Yampolskiy et al. 2012] present an extension of data flow diagrams which allows analyzing an architecture for
STRIDE attacks as well as for safety.

[Yautsiukhin and Scandariato 2008] conduct a STRIDE analysis for a case study and discuss how well several
patterns can counter the threats. They use a risk assessment method to rate the threat severity and they assign a
value to each pattern describing how well the pattern copes with different threats. With this method the security of
different patterns for a system can be quantitatively compared. A similar approach is taken in [Halkidis et al. 2006b],
[Halkidis et al. 2006a], and [Halkidis et al. 2008]. They evaluate the effectiveness of web security patterns against
STRIDE attacks by experiments. With these results they suggest patterns for a web system by first conducting a
STRIDE analysis for the concrete system and then suggesting the patterns which mitigate the STRIDE attacks
best. This work is also done for security patterns in general in [Halkidis et al. 2004], where a mapping between

2The 2oo4 architecture is a special version of the M-OUT-OF-N PATTERN which is explained on page 11.
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several security patterns and their effectiveness for STRIDE attacks is presented. In [Schaad and Borozdin 2012]
and [Schaad and Garaga 2012] a tool is presented which reports threats for an architecture by automatically
applying the STRIDE analysis to an architecture model. As in our approach, the STRIDE analysis is adapted
to just include the threats relevant for the specific architecture element types. [Hamid et al. 2010] take another
approach with the TERESA project, by applying a model-based approach to integrate design patterns in order to
argue about the safety and security of a system. The tool-based process of how to apply the design patterns is
described in [Hamid et al. 2013].

6. CONCLUSION

In this paper we added a GSN diagram describing security threats to safety architecture patterns and we discussed
the application of these security enhanced safety patterns to a case study.

The safety patterns described in the Appendix all provide a data flow diagram. Therefore, it is easy to analyze
the security of the safety patterns by using the STRIDE approach. All of the described safety patterns enhance the
same basic system which makes it possible to compare the security attributes of the different patterns.

The main benefits of the security GSN diagram are that it provides a structured argument for the security of a
safety system and that it indicates security flaws of the design. Another important benefit of the security enhanced
patterns is that safety experts who use these patterns are confronted with the STRIDE approach. This increases
the awareness of security threats in the safety domain which is in our opinion not sufficiently addressed so far.
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A. SECURITY ENHANCED SAFETY PATTERNS
This publication has been shortened and this section has been skipped,
because it contains the same information as present in Appendix A in
Publication 4: “Safety Architecture Pattern System with Security As-
pects”. The full publication of the current paper including this section
is available at the ACM Digital Library.
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Abstract. This article builds a structured pattern system with safety
patterns from literature and presents the safety patterns. The patterns
are analyzed regarding their basic safety-related design decisions (safety
tactics) and relationships between the patterns are structurally devel-
oped based on these safety tactics. To analyze security aspects, the
STRIDE security analysis is used to list relevant threats for the patterns.
The threats and the safety tactics are represented in Goal Structuring
Notation diagrams as part of the patterns to enable security and safety
reasoning.

Keywords: architecture patterns, safety, security, goal structuring no-
tation, STRIDE analysis

1 Introduction

Increasing connectivity of embedded systems makes the influence of security
aspects even for safety-critical systems more and more relevant. However, rather
often safety experts are not familiar with the field of security.

To provide safety architects with a starting point how to bring security into
their system and to provide them with good solutions for safety architectures, we
build a safety architecture pattern system1 including a security analysis for the
patterns. We analyze safety patterns for basic design decisions (safety tactics)
which are applied in the patterns. Based on the applied safety tactics we find
relationships between the patterns. For example, all patterns applying the Voting
tactic, are likely to be related. Additionally we use the tactics to build a Goal
Structuring Notation (GSN) diagram which presents how a pattern achieves its
safety goal by applying these tactics. Furthermore, we relate the safety tactics to
the IEC 61508 safety certification standard to build a GSN diagram which allows
to reason how the overall architecture is related to safety methods described in
the standard.

1 A “pattern system” is similar to a “pattern language”, but compared to a pattern
language it does not claim to be complete (Buschmann et al., 1996). Precise defi-
nitions about the difference between pattern collections/systems/languages can be
found in (Schumacher, 2003)
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2

From a security point of view, we analyze all safety patterns with the STRIDE
security method. STRIDE results in a list of relevant threats for the pattern
which we structurally present in a GSN diagram.

Section 2 of this article provides related work on safety patterns, on how to
organize safety patterns, and on security analysis of safety systems and patterns
in particular. Section 3 provides basics on safety tactics, GSN, and the STRIDE
analysis. These basics are required to understand Section 4 which integrates an
example pattern into our pattern system. Section 5 applies a safety pattern to
a case study and Section 6 concludes this work. Appendix A presents all the
patterns of the safety pattern system and Appendix B presents safety tactics.

2 Related Work

2.1 Safety Patterns

Table 1 gives an overview of literature presenting safety patterns.

Title Description

(Daniels et al., 1997)
“The Reliable Hybrid Pattern - A
Generalized Software Fault Toler-
ant Design Pattern”

A pattern which includes software fault tolerance techniques
(e.g. N-version programming, voting, acceptance test) is pre-
sented. The pattern is presented as a generic architecture which
explicitly states decision alternatives in the pattern.

(Douglass, 1998)
“Safety-Critical System Design”

The article covers safety architecture patterns and discusses
how they can be implemented.

(Saridakis, 2002)
“A System of Patterns for Fault
Tolerance”

This paper introduces several architectural fault-tolerance pat-
terns and discusses how to group them.

(Douglass, 2002)
“Real-Time Design Patterns:
Robust Scalable Architecture for
Real-Time Systems”

Besides other patterns, this book covers safety-related archi-
tecture patterns and also includes the patterns from (Douglass,
1998).

(Grunske, 2003)
“Transformational Patterns for
the Improvement of Safety Proper-
ties in Architectural Specification”

This paper presents patterns for architecture transformations
to increase the overall system safety. Some of the patterns are
related to the patterns from (Douglass, 2002).

(Hanmer, 2007)
“Patterns for Fault Tolerant Soft-
ware”

The book provides a pattern language of fault-tolerance pat-
terns grouped as error detection, error processing, error mitiga-
tion, fault treatment, and architectural patterns.

(Douglass, 2010)
“Design Patterns for Embedded
Systems in C”

The book presents design patterns implemented in C. Some
safety-related patterns come from (Douglass, 2002).

(Armoush, 2010)
“Design Patterns for Safety-
critical Embedded Systems”

This PhD thesis introduces new and collects existing safety pat-
terns for embedded systems (mostly based on (Douglass, 2002)
for hardware and (Pullum, 2001) for software patterns).

(Hampton, 2012)
“Survey of Safety Architectural
Patterns”

This survey presents the application of the patterns from (Ar-
moush, 2010) within a company. Furthermore, some new and
rather domain-specific safety patterns are introduced.

(Rauhamäki et al., 2012)
“Architectural Patterns for Func-
tional Safety”

The paper presents 4 patterns related to separating the safety
functionality from non-critical functionality.

(Rauhamäki et al., 2013)
“Patterns for Safety and Control
System Cooperation”

The paper presents 3 safety patterns for control systems.

(Rauhamäki and Kuikka, 2013)
“Patterns for Controlling System
Safety”

The paper presents 4 safety patterns for control systems.

(Powel, 2013)
“Software Design Architecture
Patterns for Embedded Systems”

The book chapter discusses some patterns introduced in (Dou-
glass, 1998).

Table 1: Literature which introduces safety-related patterns
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2.2 Organizing Safety Patterns

(Saridakis, 2002) presents several fault-tolerance patterns in detail and discusses
how they can be related to each other. The patterns are classified according to
several criteria: pattern complexity, space requirements, time requirements, fail-
ure types which are handled by the pattern, and the pattern aim (error detection,
recovery, or masking). (Hanmer, 2007) also describes fault-tolerance patterns and
presents the patterns and their relationships as a pattern language.

(Armoush, 2010) provides in his PhD thesis a comprehensive collection of
safety architecture patterns for embedded systems. Most of the patterns are
taken from literature and all are presented in a common pattern format. However,
the relationships between the patterns are not described in detail. Armoush
provides a tool which lists the patterns and provides detailed information about
them (e.g. reliability calculations) when selected.

To bridge the gap between the high-level safety pattern descriptions and their
actual implementation, (Gawand et al., 2011) represent safety patterns in UML
notation. This is also done by (Sarma et al., 2013) with the pattern catalog of
(Armoush, 2010). This idea was taken further by (Antonino et al., 2012) who
introduce a safety-related UML profile to capture architectural safety pattern
elements (e.g. voter) and to define rules for them. Based on this idea (Olivera,
2012) implements a repository for safety patterns including their UML notation.

2.3 Security Analysis of Design Patterns and Safety Systems

(Yautsiukhin and Scandariato, 2008) conduct a STRIDE analysis for a case study
and discuss how well several patterns can counter the threats. They use a risk
assessment method to rate the threat severity and they assign a value to each
pattern describing how well the pattern copes with different threats. With this
method the security of different patterns for a system can be quantitatively com-
pared. A similar approach is taken in (Halkidis et al., 2006a), (Halkidis et al.,
2006b), and (Halkidis, Tsantalis, et al., 2008). They evaluate the effectiveness
of web security patterns against STRIDE attacks by experiments. With these
results they suggest patterns for a web system by first conducting a STRIDE
analysis for the concrete system and then suggesting the patterns which mitigate
the STRIDE attacks best. This work is also done for security patterns in general
in (Halkidis et al., 2004), where a mapping between several security patterns and
their effectiveness for STRIDE attacks is presented. In (Schaad and Borozdin,
2012) and (Schaad and Garaga, 2012), a tool is presented which reports threats
for an architecture by automatically applying the STRIDE analysis to an ar-
chitecture model. As in our approach, the STRIDE analysis is adapted to just
include the threats relevant for the specific architecture element types. (Hamid,
Desnos, et al., 2010) take another approach with the TERESA project, by apply-
ing a model-based approach to integrate design patterns in order to argue about
the safety and security of a system. The tool-based process of how to apply the
design patterns is described in (Hamid, Geisel, et al., 2013).
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Unrelated to design patterns, but related to security evaluation of safety
systems in general, (Hansen, 2009) analyzes a safety-critical automation device
and highlights attacks compromising system safety. (Johnson and Yepez, 2011a)
and (Johnson and Yepez, 2011b) present a combined security and safety risk
assessment methodology where security and safety arguments are shown in a
GSN diagram. Security threats are analyzed for a case study and the threats
are included in an existing safety GSN to obtain a unified assurance case for
safety and security. (Nai-Fovino et al., 2009) present a method to integrate secu-
rity reasoning into fault trees. They discuss how to analyze the risk of security
aspects in order to integrate their probabilities consistently into the fault tree no-
tation. This idea is further elaborated in (Steiner and Liggesmeyer, 2013) where
a safety and security analysis is performed based on component fault trees. A
similar approach is taken by (Ugljesa and Wacker, 2011) to integrate security
considerations into the error probability calculation of a 2oo4 architecture2. A
detailed security analysis with security enhancements for the 1oo2 architecture
is shown in (Preschern et al., 2012a). (Yampolskiy et al., 2012) present an exten-
sion of data flow diagrams which allows analyzing an architecture for STRIDE
attacks as well as for safety.

3 Basics

3.1 Architectural Tactics

Tactics are architectural design decisions which influence and manipulate quality
attributes (Bachmann et al., 2003). Compared to design patterns, they describe
general concepts or principles and do not describe solutions for a problem in a
given context. For example, the Voting safety tactic describes the idea how to
achieve failure containment by choosing an appropriate output from redundant
components. The concrete application of this idea would, for example, be the
Triple Modular Redundancy pattern which uses the Voting tactic to choose
for the majority of three redundant subsystem outputs.

It is difficult to keep tactics and patterns apart as there is no clear boarder
between the two. For example, (Saridakis, 2002) describes different forms of
degradation as fault tolerances patterns, whereas (Wu, 2003) considers Degra-
dation as a safety tactic. (Ryoo et al., 2010) specify some criteria to identify
tactics. For a design decision on order to be a tactic, it has to be atomic. This
means that it cannot be divided into other multiple tactics, however it can be
refined. For example, the Redundancy tactic is refined by the Replication Re-
dundancy tactic and the Diverse Redundancy tactic, but it is not composed of
them. Furthermore, (Ryoo et al., 2010) say that tactics focus on a single quality
attribute (e.g. safety) and patterns usually affect several quality attributes.

There are also different opinions whether tactics are basic building blocks
for design patterns (as in (Kumar and Prabhakar, 2010a)) or whether tactics

2 The 2oo4 architecture is a special version of the M-out-of-N Pattern which is
explained on page 28.
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are used as additional design enhancements for certain design patterns (as in
(Harrison and Avgeriou, 2008)).

In this article we take the list of safety tactics from (Preschern et al., 2013c)
and we consider safety tactics as building blocks for safety architecture patterns.
The full list of safety tactics is given in Appendix B and shows the tactic names,
a short description of the tactics, and the methods of the IEC 61508 safety
standard which can be related to these tactics.

3.2 Goal Structuring Notation

The Goal Structuring Notation (GSN) was developed by (Kelly and Weaver,
2004) and is often used in the safety domain to provide a structured argument
for the achievement of specific goals. Recently, a standard for GSN was published
which contains definitions of the notation and which presents approaches how
to use GSN to elaborate a specific goal (Spriggs, 2012). GSN can also be used
to argue for system security like, for example, in (Cockram and Lautieri, 2007).
We will use GSN to argue for safety and for security of the presented patterns
and we will use the GSN concepts from Figure 1.

Fig. 1. GSN concepts used in this article, based on (GSN Working Group, 2011)

To show how a GSN goal is achieved, it is linked to an argument (GSN strate-
gies, GSN subgoals) which ends up in the evidence (GSN solutions) supporting
the claim that the goal is achieved. Figure 2 shows an example for the application
of GSN. The main goal in the example is that an attacker cannot obtain some
confidential data. In the next step, context elements are added which say that
the data is locally stored on a computer and transmitted to another computer.
The main goal is split up into the subgoals to protect the stored data and the
transmitted data. Protecting transmitted data is achieved by transmitting data
over a protected TLS channel (GSN strategy). For this TLS channel, we need
evidence that it is reliable. This evidence (GSN solution element) is that the
used implementation is robust and proven in use. Protecting stored data is an
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undeveloped goal which means that the security argument for this subgoal is not
yet complete and further arguments have to be included here in order to obtain
a complete argument that the overall goal to protect data is achieved. In this
example, GSN provides a structured way to show how the rather unspecific goal
to protect confidential data is (partially) achieved by specific measures (the TLS
channel).

Fig. 2. GSN example showing a security argument

3.3 STRIDE Analysis

In order to build a secure system, it is necessary to first find the relevant threats
to the system before finding solutions how to mitigate them. The STRIDE ap-
proach is a structured way to find these threats. The STRIDE approach was
proposed by Microsoft (Howard and LeBlanc, 2003) and is nowadays often used
for security engineering. STRIDE is an acronym, where the letters stand for the
six threat categories which are analyzed (Spoofing, Tampering, Repudiation,
Information Disclosure, Denial of Service (DoS), Elevation of Priviledge (EoP)).

For threat modeling with STRIDE, first a data flow diagram has to be con-
structed. A data flow diagram shows the interaction between system elements
and external elements (e.g. users of the system) by graphically presenting all the
data flows (inputs/outputs of elements). All relevant STRIDE threats for each
element in the diagram are then listed. The relevant threats for different data
flow diagram elements types are given in Table 2.

The resulting list of threats can further be elaborated by excluding threats
which are not relevant for the specific system and by implementing countermea-
sures for relevant threats. When all threats are covered, one has a structured
argument for system security. We use Goal Structuring Notation to present such
a structured argument.
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data flow diagram
element type

S T R I D E

External entity X X

Data flow X X X

Data store X X X X

Process X X X X X X
Table 2. STRIDE mapping to data flow diagram element types

4 Safety Pattern System

This section explains with an example (the Homogenous Duplex Pattern)
how to include a safety architecture pattern into our pattern system. We explain
the applied pattern format and we describe how to bring a safety pattern into
this format (which includes building GSN diagrams for safety and security).
Furthermore, we describe how to find the relationships to other patterns. An
overview of this described approach is shown in Figure 3. This approach was
applied for all the safety patterns presented in Appendix A.

Fig. 3. Applied approach to build the pattern system

4.1 Pattern Format

We use the pattern format presented by (Babar, 2007) for all our safety architec-
ture patterns. The pattern format explicitly provides architectural information
like relevant scenarios with the aim to aid architecture design and evaluation
processes. Table 3 shows which sections the pattern format contains and where
we got the information for these sections from.
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Section What it contains and where the contents comes from

Pattern
Name

The pattern name is taken from the existing pattern - most of which come from (Ar-
moush, 2010).

Pattern
Type

Classification into hardware/software and fail-safe/fail-over. We classify these pattern
types during the process of building up the pattern language.

Also Known
As

Other names for the pattern used in literature.

Context The contents of this section comes from existing patterns and was structurally adapted
to fit our pattern system.

Problem The contents of this section comes from existing patterns and was structurally adapted
to fit our pattern system.

Forces The contents of this section comes from existing patterns (mostly from (Grunske,
2003)) and was structurally adapted to fit our pattern system.

Solution The solution is shortly described in a few sentences and the structure of the safety
architecture is shown in a diagram. Most of the diagrams are based on (Armoush,
2010) and (Douglass, 2002).

Safety
GSN

This section contains a Goal Structuring Notation (GSN) diagram which relates the
main safety aim of the pattern to the architectural design decisions which were taken
to achieve this aim. The GSN diagram is based on information about the usage of
basic architectural design decisions (safety tactics) which are applied in the pattern.

Security
GSN

This section contains a Goal Structuring Notation (GSN) diagram with the main goal
to maintain safety also in case of attacks. The STRIDE method is used to identify
threats for the pattern and the GSN diagram structurally presents relevant threats.

Conse-
quences

The consequences are split into a part containing general consequences and a part
explicitly covering quality-attribute related consequences (e.g. consequences on safety
or security). Information about consequences mostly comes from the safety patterns
from (Armoush, 2010) and (Grunske, 2003).

General
Scenarios

This section contains scenarios of the system which can, for example, be used during
architecture evaluations. The information of the scenarios is also needed to build the
safety GSN diagrams.

Known
Uses

This section presents known uses for the patterns. We added this information by search-
ing for literature which applies the pattern. We just included patterns for which we
could find at least three known uses.

Credits References to previous work on the pattern.
Table 3: Applied pattern format

4.2 Elaborating Pattern Sections

The following pattern sections of the presented safety patterns are based on
safety patterns from literature: Pattern Name, Also Known As, Context,
Problem, Forces, Solution,Consequences. Most of the information is mainly
based on (Armoush, 2010) and is further elaborated by using other literature on
similar safety patterns. This means we consider several patterns from literature,
gather all information, and bring it into our format to be consistent.

For example, (Armoush, 2010) describes the Homogenous Redundancy
Pattern, which is also described by (Douglass, 2002) and (Grunske, 2003). We
take the pattern from (Armoush, 2010) as a starting point and include more
detailed information about the Solution from (Douglass, 2002) and about the
Forces from (Grunske, 2003).

We added the Known Uses section to the safety patterns by searching for
examples in literature which apply the patterns. We just included safety patterns
for which we could at least find three known uses. We also added the Credits
section to state where we obtained the pattern information from.

Section 4.3 described how we constructed the Safety GSN section and how
we obtained General Scenarios for the patterns. Section 4.5 shows how we
construct the Security GSN.
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4.3 Developing the Safety GSN

In this section we construct the safety GSN diagram for the Homogenous
Duplex Pattern based on safety tactics applied by this pattern.

Mining Patterns for Safety Tactics
The Homogenous Duplex Pattern is mentioned in literature by (Douglass,
2002), (Grunske, 2003), and (Armoush, 2010). We studied all three descriptions
of the pattern to find text passages which indicate the usage of general safety-
related architectural design decisions (safety tactics). We do this as proposed by
(Kumar and Prabhakar, 2010a), where tactics are mined from GoF and POSA
patterns to find relationships between patterns which use similar tactics. We ap-
ply the same method to find relationships between safety architecture patterns.

As proposed by (Kumar and Prabhakar, 2010a), we construct a table of
pattern text passages and corresponding tactics that this text passage relates
to. For example, the Homogenous Duplex Pattern pattern in (Armoush,
2010) says: “The system consists of two identical modules” This indicates that
the pattern applies the Replication Redundancy safety tactic3.

Table 4 shows the table with the pattern text passages and also shows the
tactics which we found in the Homogenous Duplex Pattern. The tactics
are: Replication Redundancy, Override, and Condition Monitoring.

Abstract Section
Core Intent Tactic
It is a hardware pattern that is used to increase the safety and reliability of the system
by providing a replication of the same module (Modular redundancy).

Replication
Redundancy

Problem Section
Problem Elaboration of Problem (scenario) Tactic
Make the system continue oper-
ating in the presence of a fault

The system is fully operational even in case of a
single channel failure.
A single channel random fault does not lead to a
system failure.
The system can detect a fault in a single channel.

Replication
Redundancy

Override

Solution Section
Solution Description Tactic
The system consists of two identical modules; a primary (active) module and sec-
ondary (standby). Test by redundant hardware

Replication
Redundancy

There is a fault detection unit that monitors the primary module and switches to the
secondary module when a fault appears in the primary. Fault detection and diagnosis
(Comparator and Acceptance Test)

Override

This method performs a check on the two channels by checking for input valid data
within a given range and by checking the output signals from the two modules.

Condition
Monitoring

Consequences Section
Consequence Description Tactic
When a fault is detected in the primary channel, the switch circuit switches over to
the secondary channel

Override

Implementation Section
Implementation Description Tactic
To implement this pattern, the computational channel should be duplicated Replication

Redundancy

Table 4. Mining Tactics of the Homogenous Duplex Pattern

3 A list of all safety tactics is available in Appendix B
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Building a Structured Tactic Representation
With the gathered tactics we construct a Tactic Topology Model with is also part
of the method described by (Kumar and Prabhakar, 2010a). First, one has to
think about the main goal of the pattern. According to (Kumar and Prabhakar,
2010a), the main tactics which achieve this goal are usually related to the Intent
or theProblem section of the pattern. In the Tactic Topology Model, these main
tactics are connected to the patterns’ goal with arrows. Further explanation
about this connection is given in textual form next to the arrow. The tactics
can bring up new goals which have to be achieved by additional tactics - these
are also added with arrows and a textual description. In that way, a structured
graph containing the patterns’ tactics is constructed.

Figure 4 shows the Tactic Topology Model for the Homogenous Redun-
dancy Pattern. The main goal in the Tactic Topology Model for the pattern
is identified as “Continue operation even in case of faults”. The two tactics di-
rectly connected to this goal are Replication Redundancy and Override, because
they are mentioned in the Core Intent or Problem section of the pattern
(see Table 4). An additional goal that has to be fulfilled is to detect when the
Override tactic should switch to the backup channel. Therefore, the Condition
Monitoring tactic is connected to the Override tactic.

Fig. 4. Tactic Topology Model for the Homogenous Duplex Pattern

We use the Tactic Topology Models to structurally establish relationships in
our pattern system (this is explained in Section 4.4). Apart from that, the Tactic
Topology Models are just intermediate results used to build GSN diagrams and
are not included in the patterns. All Tactic Topology Models for the presented
safety patterns can be found in (Preschern et al., 2013b).

Constructing the Safety GSN
Based on the Tactic Topology Model, we construct the safety GSN diagram.
The GSN diagram contains the tactics from the Tactic Topology Model and they
additionally contain general scenarios which are mined from the pattern descrip-
tions. This scenario mining is done as proposed in (Babar, 2007) by searching
the Problem and Solution statements for safety-related scenarios. The scenar-
ios found for the Homogenous Duplex Pattern are shown in Table 4 under
“Problem Section”.
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All our safety GSNs start with the main goal to maintain system safety. This
main goal is split up into subgoals based on the scenarios which we obtained
from the patterns. If the scenarios are independent from each other, then they
are put on the same level in the GSN. If a scenario depends on another scenario
(as it is the case for the Homogenous Duplex Pattern), then it is modeled
as a subgoal of the scenario it depends on. The tactics which are necessary to
achieve a GSN goal are put below this (sub-)goal as a GSN strategy which has
the title of the tactic and which contains additional information (taken from
the textual description of the Tactic Topology Model arrow connections). GSN
context elements are added if information of the pattern’s context section is
relevant for the GSN goals.

Figure 5 shows the GSN diagram of the Homogenous Duplex Pattern
pattern. We can see that it consists of all the tactics of the Tactic Topology Model
from Figure 4 and of the scenarios of the Homogenous Duplex Pattern from
Table 4.

Fig. 5. GSN diagram of the Homogenous Duplex Pattern

4.4 Finding Pattern Relationships

To obtain the relationships between the patterns, we use the approach presented
by (Kumar and Prabhakar, 2010b). They compare Tactic Topology Models of
patterns and define a mapping between Tactic Topology Model predicates and
pattern relationships. For example, if the Tactic Topology Models of two different
patterns are equal, then (Kumar and Prabhakar, 2010b) say that these patterns
are similar. Table 4.4 shows all kinds of considered pattern relationships. To find
all relationships in a pattern system, every patterns’ Tactic Topology Model
has to be compared to the Tactic Topology Models of all other patterns and
every such Tactic Topology Model pair has to be checked for all the predicates
described in Table 4.4.
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Relation-
ship

Description Tactic Topology Model
predicate

is an al-
ternative

Patterns A and B solve the same problem, but
propose different solutions.

SourceNode(A) = SourceNode(B)
AND Graph(A) 6= Graph(B)

uses A sub-problem of pattern A is similar to the prob-
lem addressed by pattern B.

Graph(A) ⊃ Graph(B)

refines Pattern B provides a more detailed solution than
pattern A.

SourceNode(A) = SourceNode(B)
AND Graph(A) ⊂ Graph(B)

specializes The solution of pattern B is a special case of the
solution of pattern A.
Example: Pattern B specializes pattern A if they
have the same graph structure, but pattern B
uses a refined tactic where pattern A uses a
more general tactic (e.g. B uses Replication Re-
dundancy where A uses Redundancy).

Graph(A) ⊂ generalizedGraph(B)

is similar Patterns A and B provide the same solution to a
similar problem
Example: Pattern B is similar to pattern A if
they have the same graph structure and use two
related refined tactics. E.g. A uses Replication
Redundancy and B uses Diverse Redundancy

generalizedGraph(A) ≡
generalizedGraph(B)

Table 5. Description of pattern relationships (slightly modified from (Kumar and
Prabhakar, 2010b))

We applied this approach to our safety patterns to structurally build the
relationships in our pattern system. We built the Tactic Topology Models as
described in Section 4.3 for all our patterns. Then we compared each Tactic
Topology Models with one another and checked for the predicates defined in
Table 4.4. This delivers us the pattern relationships for our pattern system.

Figure 6 shows our safety patterns and their relationships which we obtained
with the described approach. We can see that the approach to find pattern
relationships worked out quite well. All the relationships between the patterns
seem to be comprehensible. For example, according to the relationships obtained
through the Tactic Topology Model comparison, the Homogenous Duplex
Pattern is a specialization of the M-out-of-N-D Pattern and is similar to
the Heterogenous Duplex Pattern which is both reasonable.

To not overload the the pattern-relationship representation, we did not ex-
plicitly annotate the is alternative relationships, but instead grouped patterns
which are alternatives to one another into the group of patterns trying to main-
tain a safe-state in case of faults and the group of patterns providing full system
functionality in case of faults. Additionally, we divided the patterns into soft-
ware and hardware patterns as already suggested by (Armoush, 2010). However,
the classification of software and hardware patterns is not very strict. Some of
the patterns are intended for either software or hardware, but could also be im-
plemented for the other. For example, the Watchdog pattern is a hardware
pattern, but could also be realized in software by a timer which watches the
execution of another program. The group a pattern belongs to is stated in the
Pattern Type section. All patterns from Figure 6 are presented in Appendix A.
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Fig. 6. Safety Architecture Pattern System

4.5 Developing the Security GSN

In this section we apply the STRIDE analysis to the Homogenous Duplex
Pattern to obtain a GSN security representation. More detailed information
about this approach can be found in (Preschern et al., 2013d).

Getting the Data Flow Diagram
The covered safety architecture patterns each provide a diagram which shows
the hardware and software elements of the pattern and their interaction. This
diagram can be used as a data flow diagram in the STRIDE analysis.

Figure 7 shows such a diagram for theHomogenous Duplex Pattern. The
system gets input data and processes that input data with redundant channels
which provide output data. A fault-detector and a switch component decide
which of the channel outputs is used.

Fig. 7. Homogenous Duplex Pattern architecture
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Applying the STRIDE Analysis
By using an adapted STRIDE approach, we analyze the pattern diagrams to list
the security threats for each of the patterns.

We just consider two element types for the STRIDE analysis: Data Flows
and Processing Elements. For both types, we omit the threats Repudiation and
Information Disclosure, because they do not directly influence the safety func-
tionality of a system. Furthermore, for the Processing Elements, we omit the
Tampering and Denial of Service threats, because an attacker usually has no
access to processing elements which perform safety-critical functionality. There-
fore, he needs to elevate his privileges before starting a tampering or DoS attack
on a processing element. Our resulting relevant threats for the pattern diagram
element types are shown in Table 6.

DFD element type Symbol S T R I D E

Data Flow X X

Processing Element X X

Table 6. STRIDE mapping to safety pattern element types

With this mapping of relevant threats, we go through each element of the
Homogenous Duplex Pattern to obtain a list of security threats. We did
not consider the identical Primary Channel and Secondary Channel separately,
but we just cover a Single Channel which can be either of them. For the Ho-
mogenous Duplex Pattern we get the following list of threats:

– Tampering of Single Channel input data
– DoS of Single Channel input data
– Spoofing of Single Channel
– EoP on Single Channel
– Tampering of Single Channel output data
– DoS of Single Channel output data
– Tampering of Fault Detector input data
– DoS of Fault Detector input data
– Spoofing of Fault Detector
– EoP on Fault Detector
– Tampering of Fault Detector output data
– DoS of Fault Detector output data
– Spoofing of Switch
– EoP on Switch
– Tampering of Switch output data
– DoS of Switch output data

From this list of threats it is not very easy to grasp important threats, because
some of the listed threats do not even pose a direct threat to system safety.
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For example, the DoS of Fault Detector output data threat itself cannot bring
the system into a safety-critical state, because as long as both channels work
properly, it does not matter which channel output is selected. Therefore, this
threat is not as relevant as for example the DoS of Switch output data threat
which can bring the system into a safety-critical state in any case.

Constructing the Security GSN
Based on the list of threats for a pattern, we develop a GSN diagram to argue
that attacks cannot affect system safety. The security GSN diagram for the
Homogenous Duplex Pattern is shown in Figure 8.

Fig. 8. Homogenous Duplex Pattern Security GSN

Each security GSN starts with the main aim that “Safety-critical functions
are maintained in case of attacks”. Next, all threats are added which can bring
the system into a safety-critical state. Threats are represented as undeveloped
GSN goals in form of: “Threat X is prevented”. If the pattern is applied, these
undeveloped goals have to be further developed to obtain a complete security
argument (evidence that the goals are achieved has to be provided).

An example for a threat in the GSN diagram of the Homogenous Duplex
Pattern is “Tampering of Switch output data”. If someone mounts an attack
related to this threat, the attacker can produce arbitrary system output data
which violates system safety. Therefore, the threat is safety-critical and is directly
added to the GSN diagram as “Tampering of Switch output data is prevented”
GSN goal4.

4 Actually the threat is added after the “Switch works properly” GSN goal. This goal
is just introduced to make the GSN diagram easier to read and it changes nothing
about the semantics of the diagram
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After all safety-critical threats are included in the GSN diagram, all the
remaining threats (which by themselves cannot bring the system into a safety-
critical state) are considered. Any combination of these threats is also added
to the GSN diagram if it can affect system safety (combinations are notated in
the diagram with the GSN Option Element, however none are present for the
Homogenous Duplex Pattern).

The remaining threats are not directly relevant for the safety functionality
of the system and are therefore not included in the GSN diagram. For example,
in the Homogenous Duplex Pattern there are threats related to the Fault
Detector unit. None of the threats related to the Fault Detector are included in
the GSN diagram, because if an attacker has full control of the Fault Detector,
he can just influence which of the two channels is actually used for the system
output. However, if both channels work properly this is not safety-critical. Still,
with an attack on the Fault Detector, an attacker can disable the systems’ safety
functionality, because switching to the redundant channel in case of failure would
not work anymore. Still, we do not consider such threats, because they are much
less critical than the ones included in the GSN.

5 Pattern Application - Case Study

In this section we describe the application of the Homogenous Duplex Pat-
tern in an industrial case study. We apply the pattern and use the safety and
security GSN diagrams to argue for system safety and security. An overview of
this process is shown in Figure 9.

Fig. 9. Building a safety/security argument based on a pattern
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5.1 System Description

A controller for a hydro-power plant is developed. The controller unit has to
maintain safety-critical functions such as controlling the turbine speed and shut-
ting down the system if an overvoltage is detected. Failing to maintain these
functions can result in damage of the equipment and even human injuries. Sen-
sors are connected to an IEC 61850 merging unit which is a separate controller
collecting sensor data and transmitting this data to the hydro-power plant con-
troller via Ethernet. Based on the sensor input, the hydro-power plant controller
has to control actuators which are hardwired to the controller. The controller is
connected to the local hydro-power plant network to be able to receive firmware
updates. However, this is a different Ethernet interface than the one used by the
merging unit.

For this system, the Homogenous Duplex Pattern (see Appendix A on
page 24) is applied to protect from hardware failures. Figure 10 shows the re-
sulting architecture. The system consists of two main CPUs which are supplied
with their own set of sensor data from different merging units. Both CPUs run
the same software to compute outputs for the actuators. A separate switch com-
ponent determines which output is actually used for the actuators. The switch
usually takes CPU1, however, if the watchdog component which periodically
sends challenges to both CPUs detects that one CPU does not work, it instructs
the switch to take the output of the other CPU.

Fig. 10. Hydro-power plant controller architecture

5.2 Safety Argument

From the Homogenous Duplex Pattern we obtain the basis for the safety
GSN diagram which was already shown in Figure 5 on page 11. From this dia-
gram we can see that the pattern applies the Replication Redundancy, the Over-
ride, and the Condition Monitoring tactics. Table 7 shows the related IEC 61508
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methods for these tactics (taken from Appendix B). Thus, when applying a pat-
tern, one gets a list of relevant IEC 61508 conform methods for the specific
architecture. From this list, a safety architect now has to choose which of the
suggested IEC 61508 methods are appropriate for the specific system.

Tactics Related IEC 61508 methods
R
e
p
li
ca

ti
o
n

R
ed

u
n
d
a
n
c
y

A.2.1 Test by redundant hardware X
A.2.5 Monitored redundancy
A.3.5 Reciprocal comparison by software
A.4.5 Block replication
A.6.3 Multi-channel output
A.6.5 Input comparison/Voting
A.7.3 Complete hardware redundancy X
A.7.5 Transmission redundancy

O
v
e
r
r
id
e A.1.3 Comparator X

A.1.5 Idle current principle
A.8.1 Overvoltage protection with safety shut-off
A.8.3 Power-down with safety shut-off

C
o
n
d
it
io
n

M
o
n
it
o
r
in

g

A.1.1 Failure detection by online monitoring X
A.6.4 Monitored output
A.8.2 Voltage control
A.9.1 Watch dog with separate time base without time-window
A.9.2 Watch dog with separate time base and time-window
A.9.3 Logical monitoring of program sequence
A.9.4 Temporal and logical program sequence monitoring
A.9.5 Temporal monitoring with on-line check X
A.12.1 Reference sensor
A.13.1 Monitoring

Table 7. Tactics and IEC 61508 methods used by the Homogenous Duplex Pattern

In our case study, the methods from Table 7 which are marked with a tick
were chosen. These methods are then included in the GSN diagram instead of the
general tactics. Furthermore, additional information can be added to the GSN
diagram if the safety argument is not complete. For example, all undeveloped
goals have to be developed which means that they have to be linked to evidence
which suggests that the goal is fulfilled. Figure 11 shows the resulting GSN
diagram (additionally added elements are presented in orange, dashed lines).
The GSN shows how the high level safety goal can be achieved by the actually
applies methods suggested by the IEC 61508 safety standard.

5.3 Security Argument

To develop a security argument, we start with the security GSN diagram pro-
vided by the pattern and complete all the undeveloped goals. For all the un-
developed goals we either argue why the goal is not relevant or what measures
are applied to handle the threat. An example for not relevant threats are any
threats to the switch element, because the switch element for the hydro-power
plant architecture is hardwired to the other elements and not accessible for an
attacker. An example for measures against a threat is related to the “EoP on
Single Channel is prevented” goal. Do detect some attacks related to this threat,
a runtime-integrity-checker is used to detect malware on the CPUs. Figure 12
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Fig. 11. Hydro-power plant controller safety GSN diagram

shows the complete security GSN diagram for the hydro-power plant architec-
ture. Additionally added elements in the GSN are marked with blue, dashed
lines. This GSN shows how the high level goal that the safety functionality can-
not be influenced by attacks is achieved by specific measures and arguments.

Fig. 12. Hydro-power plant controller security GSN diagram
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5.4 Discussion

With the application of the safety pattern we get a blueprint for a safety and
for a security GSN diagram.

– For safety, system architects get the benefit, that they are provided with
suggestions for IEC 61508 methods. Additionally the safety GSN provides
a way to argue how the main goal to keep the system safe can be achieved
by implementing the IEC 61508 methods. (Preschern et al., 2013a) evalu-
ates the quality of IEC 61508 method suggestion by comparing the pattern
suggestions to real-life safety projects.

– For security, system architects get the benefit that on the one hand they are
introduced to a security analysis technique and on the other hand that they
are already provided with a security GSN diagram for the pattern which
they can use and extend to argue for system security. To implement security
methods in order to mitigate the threats in the GSN diagram, (Preschern
et al., 2012b) provides a list of general methods in form of security tactics.

For both, the safety and security GSN, it is always difficult to say whether
the arguments provided are enough to argue that the main goal is achieved.

– For the safety GSN we use relevant scenarios from the patterns. (Wu, 2007)
argues that if a GSN contains all relevant scenarios for the main goal, the
argument is sufficiently complete.

– For the security GSN we use STRIDE to include all relevant threats in the
GSN.

However, to make sure that the constructed GSNs include all safety and
security aspects of an architecture, other relevant scenarios could be included
into the safety GSN and additional elements of the architecture which are not
included in the patterns have to be analyzed with STRIDE for the security GSN.
Thus, the provided GSNs can be used as a basis for safety and security reasoning,
but they have to be adapted or extended for specific architectures, especially, if
compared to the pattern additional elements are present.

6 Conclusion

This article presented a system of safety architecture patterns which contain a
security analysis. A detailed explanation how these patterns can be constructed
was given and a case study applying one of the patterns was shown.

The provided patterns can be used by system architects to develop safety-
critical architectures and to additionally see how to apply security analysis meth-
ods. This has the benefit that the patterns provide a starting point how to an-
alyze and argue for system security. From a safety point of view the patterns
bring the advantage that they provide a way to reason about system safety. They
additionally provide suggestion for IEC 61508 methods as a starting point for
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safety architects to see which methods of the safety standard are relevant for the
chosen architecture.

For future work, further patterns could be included to the pattern system.
It would be interesting to see if the approach to find pattern relationships with
Tactic Topology Models also works for other safety patterns. As well it would
be interesting to see if the approach to find pattern relationships can also be
applied to other domains such as security patterns. Furthermore, it would be
interesting to see the safety patterns including the safety and security GSNs
applied in other real-life projects to be able to better discuss the benefits and
shortcomings of the patterns.

With the presented patterns we want to give safety architects guidance for
efficiently constructing well-proven architectures and we hope to increase the
security awareness in the safety domain.
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A Security Enhanced Safety Pattern System

The patterns in our safety pattern system are mostly taken from (Armoush,
2010), because these patterns already provide a comprehensive collection of other
patterns in literature and they focus on rather large-scale architectural design
decisions which is the main focus of our pattern system. We included all but
one of Armoush’s patterns. We excluded one pattern (Recovery Block With
Backup Voting), because we could not find any known uses for it. Additionally
to Armoush’s patterns we included the M-out-of-N and the M-out-of-N-D
pattern, which are based on architectures described in the IEC 61508 safety
standard. For each of the patterns from Figure 6 (page 13), we present the full
pattern.

Pattern Name Homogenous Duplex Pattern Pattern Type hardware, failover
AlsoKnownAs Homogeneous Redundancy Pattern, Standby-Spare Pattern, Dynamic Redundancy

Pattern, Two-Channel Redundancy Pattern, 1oo2D Pattern
Context A safety-critical application without a fail-safe state has a high random error rate

and a low systematic error rate.
Problem How to design a system which continues operating even in the presence of a fault

in one of the system components
Forces - the system cannot shut down because it has no safe state

- development costs should not increase
- safety standard requires high fault coverage for single-point of failure components
- high availability requires hardware platforms to be maintained at the runtime

Solution The system consists of a Primary Channel (active) and a Secondary Channel
(backup) which are two identical hardware modules. A Fault detector monitors
the channels and controls a Switch to select the Backup Channel in case of a
Primary Channel failure.

Safety GSN
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Security GSN

Consequences Systematic and random faults in a single channel are detected and masked.
System reliability strongly depends on the fault coverage of the fault detection
unit and on the proper functionality of the switch.

Affected Attributes
Positively Negatively

Safety: Random Errors in a single chan-
nel are handled
Availability: The full system function-
ality is still available in case of a single
random fault
Maintenance: Hardware channels can
be maintained at runtime

Double hardware costs for system repli-
cation

General SC1 The system is fully operational even in case of a single channel failure.
Scenarios SC2 A single channel random fault does not lead to a system failure.

SC3 The system can detect a fault in a single channel.
Known
Uses

- TOYOPUC-PCS PLC (Miyawaki, 2008)
- Navigation system safety (Ljosland, 2006)
- Gebhardt GA DUPLEX-S 1oo2D PLC - http://www.gebhardt-automation.com

Credits (Douglass, 2002) introduces the pattern. (Grunske, 2003) presents a more gen-
eral version of this pattern and (Armoush, 2010) adds detailed information about
quality attribute related consequences.

Pattern Name Heterogenous Duplex Pattern Pattern Type hardware, failover
AlsoKnownAs Heterogenous Redundancy Pattern, Diverse Redundancy Pattern, 1oo2D Pattern
Context A safety-critical application without a fail-safe state has a high random and sys-

tematic error rate.
Problem How to design a system which continues operating even in the presence of a fault

in one of the system components
Forces - the system cannot shut down because it has no safe state

- high safety certification levels require handling of systematic faults
- safety standard requires high fault coverage for single-point of failure components
- high availability requires hardware platforms to be maintained at the runtime

Solution The system consists of a Primary Channel (active) and a Secondary Channel
(backup) which are two diverse hardware modules. A Fault detector monitors the
channels and controls a Switch to select the Backup Channel in case of a Primary
Channel failure.
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Safety GSN

Security GSN

Consequences Systematic and random faults in a single channel are detected and masked.
System reliability strongly depends on the fault coverage of the fault detection
unit, on the proper functionality of the switch, and on the level of diversity
between the two channels

Affected Attributes
Positively Negatively

Safety: Random and systematic faults
in a single channel are detected and
handled
Availability: The full system function-
ality is still available in case of a single
random or systematic fault
Maintenance: Hardware channels can
be maintained at runtime

Double hardware costs for system repli-
cation,
Double development costs due to di-
verse channels,
Modifying the functionality of a chan-
nel requires double effort

General SC1 The system is fully operational even in case of a single channel failure.
Scenarios SC2 A single channel random fault does not lead to a system failure.

SC3 A single channel systematic fault does not lead to a system failure.
SC4 The system can detect a fault in a single channel.

Known
Uses

- Turbine control system (Kohanawa et al., 2010)
- Motor control software (Mutlu, 2004)
- YOKOGAWA ProSafe PLCs - http://www.yokogawa.com

Credits (Douglass, 2002) introduces the pattern. (Grunske, 2003) presents a more gen-
eral version of this pattern and (Armoush, 2010) adds detailed information about
quality attribute related consequences.
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Pattern Name Triple Modular Redundancy Pattern Pattern Type hardware, failover

AlsoKnownAs 2oo3 Pattern, Homogeneous Triplex Pattern
Context A safety-critical application without a fail-safe state, a high random error and a

low systematic error rate.
Problem How to design a system which continues operating even in the presence of a fault

in one of the system components.
Forces - the system cannot shut down because it has no safe state

- safety standard requires high fault coverage for single-point of failure components
- high availability requires hardware platforms to be maintained at the runtime

Solution Three identical hardware channels operate in parallel. If a single fault occurs in one
channel then the other two channels still produce the correct output. A majority
voter decides for the correct result.

Safety GSN

Security GSN

Consequences This pattern does not identify the type or the reason of the fault; it just deter-
mines the module that contains a fault without correcting the fault itself. The
voter has to be very reliable.

Affected Attributes
Positively Negatively

Safety: Random faults in a single chan-
nel are masked
Availability: The full system function-
ality is still available in case of a single
random fault
Maintenance: Hardware channels can
be maintained at runtime

Triple hardware costs for system repli-
cation

General SC1 The system is fully operational even in case of a single channel failure.
Scenarios SC2 A single channel random fault does not lead to a system failure.
Known
Uses

- Turbine control sensor input (Kohanawa et al., 2010)
- SRAM applying TMR (Kyriakoulakos and Pnevmatikatos, 2009)
- TMS-1000R Gas Turbine - http://www.turbinetech.com

Credits (Douglass, 2002) formulates this well-known architecture as a pattern. (Armoush,
2010) adds detailed information about quality attribute related consequences.
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Pattern Name M-out-of-N Pattern Pattern Type hard/software, failover
AlsoKnownAs M/N Parallel Redundancy Pattern, MooN Pattern
Context A safety-critical application without a fail-safe state has a high random error rate

and a low or high systematic error rate.
Problem How to design a system which continues operating even in the presence of a fault

in one of the system components.
Forces - the system cannot shut down because it has no safe state

- high safety certification levels require handling of systematic faults
- safety standard requires high fault coverage for single-point of failure components
- high availability requires hardware platforms to be maintained at the runtime

Solution N identical or diverse channels (software or hardware) operate in parallel. If a fault
occurs in one channel then the other channels still produce the correct output. A
voter decides for the result given by at least M channels.

Safety GSN

Security GSN
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Consequences This pattern does not identify the type or the reason of the fault; it just deter-
mines the module that contains a fault without correcting the fault itself. To
achieve high reliability, the voter has to be very reliable.

Affected Attributes
Positively Negatively

Safety: Single-channel random or sys-
tematic faults are masked
Availability: The full system function-
ality is still available in case of a single
fault
Maintenance: Hardware channels can
be maintained at runtime

Multiple hardware costs for system
replication and multiple development
costs if diverse channels are used

General SC1 The system is fully operational even in case of a single channel failure.
Scenarios SC2 A single channel random fault does not lead to a system failure.

SC3 A single channel systematic fault does not lead to a system failure.
Known
Uses

- 1oo2 Architecture for LHC detectors (Vergara-Fernandez and Denz, 2002)
- Steering system controller (Börcsök et al., 2011)
- Netherlocks safety lock - http://halmapr.com/news/netherlocks/tag/3oo4/

Credits (Grunske, 2003) describes this pattern and calls it Multi-Channel-Redundancy
with Voting. (Armoush, 2010) adds detailed information about quality attribute
related consequences.

Pattern Name M-out-of-N-D Pattern Pattern Type hard/software, failover
AlsoKnownAs MooN-D Pattern
Context A safety-critical application without a fail-safe state has a high random error rate

and a low or high systematic error rate.
Problem How to design a system which continues operating even in the presence of a fault

in one of the system components.
Forces - the system cannot shut down because it has no safe state

- high safety certification levels require handling of systematic faults
- safety standard requires high fault coverage for single-point of failure components
- due to these high availability requirements the hardware platforms must be main-
tained at the runtime of the system

Solution N identical or diverse channels operate in parallel. If a single fault occurs in one
channel then the other channels still produce the correct output. A Voter decides
for the result given by at least M channels. The Voter can be influenced by a
diagnostic check implemented within the channels. For example, a channel could
be excluded from the vote if its diagnostic check fails.
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Safety GSN

Security GSN

Consequences This pattern can identify the type or the reason of a fault. System reliability
strongly depends on the voter unit, the diagnostic test, and the level of diversity
between the two channels.

Affected Attributes
Positively Negatively

Safety: Random or systematic faults in
a single channel are masked
Availability: The full system function-
ality is still available in case of a single
fault
Maintenance: Hardware channels can
be maintained at runtime

Multiple hardware costs for system
replication and multiple development
costs if diverse channels are used

General SC1 The system is fully operational even in case of a single channel failure.
Scenarios SC2 A single channel random fault does not lead to a system failure.

SC3 A single channel systematic fault does not lead to a system failure.
SC4 The system can detect a fault in a single channel.

Known
Uses

- HIMA HiQuad 2oo4D architecture (Skambraks, 2006)
- 2oo3D architecture for PLC (Alvarez et al., 2005)
- Process heater controller - http://rtpcorp.com/documents/ProcessHeaters3000.pdf

Credits The MooN-D architecture is described by the IEC 61508 standard.
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Pattern Name N-Version Programming Pattern Pattern Type software, failover
AlsoKnownAs -
Context A safety-critical software without a fail-safe state which probably contains software

faults.
Problem How to design a system which continues operating even in the presence of software

faults.
Forces - software often contains faults

- high safety certification levels require handling of systematic faults
- safety standard requires high fault coverage for single-point of failure components

Solution N software versions are developed independently from the same specification. The
outputs of these versions are sent to the Voter which determines the best output.

Safety GSN

Security GSN

Consequences This pattern can handle systematic faults in the software. A drawback is that
the high dependency on the initial specification may lead to a propagation of
dependent faults to all versions. The voter has to be highly reliable.

Affected Attributes
Positively Negatively

Safety: Software faults are handled but
not detected
Availability: The full system function-
ality is still available in case of faults

Costs: Multiple development costs,
multiple hardware costs if the software
versions run on separate hardware
Modifications: Multiple effort for soft-
ware modifications

General SC1 The system is fully operational even in case of a failure of a software version.
Scenarios SC2 A software fault in a single version does not lead to a system failure.
Known
Uses

- Analysis of N-version programming (Brilliant et al., 1990)
- Train Control (Carr et al., 2005)
- Railway Interlocking System (Durmuù et al., 2011)

Credits (Armoush, 2010) presents this pattern with detailed information about quality
attribute related consequences.
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Pattern Name Acceptance Voting Pattern Pattern Type software, failover
AlsoKnownAs -
Context A safety-critical software without a fail-safe state which probably contains software

faults.
Problem How to design a system which continues operating even in the presence of software

faults.
Forces - software often contains faults

- high safety certification levels require handling of systematic faults
- safety standard requires high fault coverage for single-point of failure components

Solution N software versions are developed independently from the same initial specifica-
tion. The outputs of these versions are checked by an Acceptance Test and valid
outputs are sent to a Voter which determines the best output.

Safety GSN

Security GSN

Consequences This pattern can handle systematic faults in the software. A drawback is that
the high dependency on the initial specification may lead to a propagation of
dependent faults to all versions.

Affected Attributes
Positively Negatively

Safety: Software faults are handled and
probably detected
Availability: The full system function-
ality is still available in case of faults

Costs: Multiple development costs,
multiple hardware costs if the software
versions run on separate hardware
Modifications: Multiple effort for soft-
ware modifications

158 7. Publications



33

General SC1 The system is fully operational even in case of a failure of a software version.
Scenarios SC2 A software fault in a single version does not lead to a system failure.

SC3 A fault in a single software version is detected.
Known
Uses

- Dependable web services (Nourani and Azgomi, 2009)
- Protected C++ Dispatcher (Borchert et al., 2012)
- Fault-tolerant middleware (Kim, 1998)

Credits (Armoush, 2010) presents this pattern with detailed information about quality
attribute related consequences.

Pattern Name Recovery Block Pattern Pattern Type software, failover
AlsoKnownAs -
Context A safety-critical software without a fail-safe state which probably contains software

faults.
Problem How to design a system which continues operating even in the presence of software

faults.
Forces - software often contains faults

- high safety certification levels require handling of systematic faults
- safety standard requires high fault coverage for single-point of failure components
- no additional processing hardware or processing time is available

Solution N software versions are developed independently from the same initial specifica-
tion. Only a single version is executed at a time. After the execution of Version
1, an Acceptance Test is executed to check if the software output is reasonable. If
the Acceptance Test is passed, then the outcome is considered as correct. Other-
wise, the system state is restored to its original state and an alternate version is
invoked.

Safety GSN
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Security GSN

Consequences This pattern can handle systematic faults in the software. A drawback is that
the high dependency on the initial specification may lead to a propagation
of dependent faults to all versions. Also the reliability highly depends on the
quality of the acceptance test.

Affected Attributes
Positively Negatively

Safety: Software faults are handled and
probably detected
Availability: The full system function-
ality is still available in case of faults

Costs: Multiple development costs
Modifications: Multiple effort for soft-
ware modifications

General SC1 The system is fully operational even in case of a failure of a software version.
Scenarios SC2 A software fault in a single version does not lead to a system failure.

SC3 A fault in a single software version is detected.
Known
Uses

- Mission-Critical Intrusion-Tolerant Architecture (Wang et al., 2001)
- Fault-Tolerant WSN Framework (Beder et al., 2011)
- Recovery Block pattern evaluation in software projects (Anderson et al., 1985)

Credits (Armoush, 2010) presents this pattern with detailed information about quality
attribute related consequences.
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Pattern Name N-Self Checking Programming Pat-
tern

Pattern Type software, failover

AlsoKnownAs -
Context A safety-critical software without a fail-safe state which probably contains software

faults.
Problem How to design a system which continues operating even in the presence of software

faults.
Forces - software often contains faults

- high safety certification levels require handling of systematic faults
- safety standard requires high fault coverage for single-point of failure components

Solution N¿=4 software versions are developed independently from the same initial specifi-
cation. The versions are arranged in pairs of two as components. Within a compo-
nent, the results of the two versions are compared to detect errors. If a component
fails due to different results from its versions, the next component is invoked to
start delivering the required functionality.

Safety GSN
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Security GSN

Consequences This pattern can handle systematic faults in the software. A drawback is that
the high dependency on the initial specification may lead to a propagation of
dependent faults to all versions.

Affected Attributes
Positively Negatively

Safety: Software faults are handled and
probably detected at component level
Availability: The full system function-
ality is still available in case of faults

Costs: Multiple development costs
Modifications: Multiple effort for soft-
ware modifications

General SC1 The system is fully operational even in case of a failure of a software version.
Scenarios SC2 A software fault in a single version does not lead to a system failure.
Known
Uses

- High Available Web services (Parchas and Lemos, 2004)
- Airbus uses N-self checking programming (Sghairi et al., 2008)
- N-self Checking Programming in the avionics domain (Laprie et al., 1995)

Credits (Armoush, 2010) presents this pattern with detailed information about quality
attribute related consequences.

Pattern Name Safety Executive Pattern Pattern Type hardware, fail-safe
AlsoKnownAs Safety Kernel Pattern, Shadow-Pattern, Simplex-Pattern
Context A system with a complex fail-safe state should maintain its safety functionality

even in case of faults.
Problem How to check if a fail-safe state should be entered and how to maintain it.
Forces - Full redundancy solutions are expensive

- An unavailable component cannot tell that it is unavailable
- Complex fail-safe state

Solution The Primary Channel performs all the required functionality. An optional Fail-
Safe Channel executes just the safety-critical functionality. A centralized Safety
Executive component coordinates all safety-measures required to shut down the
system or to switch over to the Fail-Safe processing channel.
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Safety GSN

Security GSN

Consequences The fail-safe processing channel is diverse from the primary channel which
allows limited systematic fault detection.

Affected Attributes
Positively Negatively

Safety: A safe-state is entered if a fault
occurs

Availability: Decreased if the system
goes into its safe state

General SC1 A fail-safe state is entered if a primary channel failure is detected.
Scenarios SC2 A timing fault in the primary channel can be detected.
Known
Uses

- Safety Kernel for Weapon System (Michael et al., 2006)
- Cardiac Pacemaker (Bak et al., 2009)
- Train Control System (Ghosh et al., 1995)

Credits (Douglass, 2002) introduces the pattern and (Armoush, 2010) adds detailed infor-
mation about quality attribute related consequences.
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Pattern Name Sanity Check Pattern Pattern Type hardware, fail-safe
AlsoKnownAs -
Context A safety-critical system with a fail-safe state and low availability requirements.
Problem Find an appropriate mechanism to detect failures or errors that can lead to known

hazards.
Forces - The set of relevant hazards is often known for a specific application domain

- Full redundancy solutions are expensive
Solution A separate Sanity Channel monitors the correct operation of the Primary Chan-

nel. If the Primary Channel output deviates to much from the expected result,
then the Sanity Channel shuts the system down.

Safety GSN

Security GSN

Consequences The sanity channel is diverse from the primary channel which allows limited
systematic fault as well as random fault detection.

Affected Attributes
Positively Negatively

Safety: Known hazards can be handled Availability: Decreased if the system
goes into its safe state

General SC1 A fail-safe state is entered if a primary channel fault is detected.
Scenarios SC2 Known hazards in the primary channel can be detected.
Known
Uses

- Oxygen level software Sanity Channel - PISCAS (Preschern, 2011)
- Automotive Distance Sensor (Zimmer, 2009)
- Sanity Check in Semiconductor Devices (Tong, 2007)

Credits (Douglass, 2002) introduces the pattern. (Grunske, 2003) presents a more gen-
eral version of this pattern and (Armoush, 2010) adds detailed information about
quality attribute related consequences.
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Pattern Name Monitor-Actuator Pattern Pattern Type hardware, fail-safe
AlsoKnownAs -
Context A safety-critical system with a fail-safe state and with low availability require-

ments.
Problem Find an appropriate mechanism to detect failures or errors
Forces - Full redundancy solutions are expensive
Solution A separate Monitor Channel monitors the correct operation of the primary chan-

nel. The Monitor Channel computes reference values from the inputs and com-
pares them to the Primary Channel output. If the value deviates to much from
the expected result, then the Monitor Channel shuts the system down.

Safety GSN

Security GSN

Consequences The monitor channel is diverse from the primary channel which allows limited
systematic fault as well as random fault detection.

Affected Attributes
Positively Negatively

Safety: Hazardous situations can be de-
tected and handled

Availability: Decreased if the system
goes into its safe state

General SC1 A fail-safe state is entered if a primary channel failure is detected.
Scenarios SC2 Hazards in the primary channel can be detected.
Known
Uses

- Fly-by-Wire System (Jacazio et al., 2008)
- Vehicle Simulator (Chao et al., 2004)
- WSN Testbed (Bapat et al., 2007)

Credits (Douglass, 2002) introduces the pattern. (Grunske, 2003) presents a more gen-
eral version of this pattern and (Armoush, 2010) adds detailed information about
quality attribute related consequences.
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Pattern Name Watchdog Pattern Pattern Type hardware, fail-safe
AlsoKnownAs Watchdog Timer, Watchdog Processor, Hardware Watchdog Pattern
Context A system provides a timing-critical safety functionality.
Problem How to make sure that the internal computational processing is proceeding prop-

erly and timely.
Forces - Full redundancy solutions are expensive

- An unavailable component cannot tell that it is unavailable
Solution A separate Watchdog hardware component receives liveness messages from the

Primary Channel. If the Watchdog does not receive the expected messages, it
will initiate a corrective action such as a shutdown signal.

Safety GSN

Security GSN

Consequences The watchdog can detect failures of the primary channel if the failure affects
the liveness messages. The watchdog is diverse from the primary channel which
allows limited systematic fault detection.

Affected Attributes
Positively Negatively

Safety: Timing faults are handled Availability: Decreased if the system
shuts down

General SC1 A fail-safe state is entered if a primary channel failure is detected.
Scenarios SC2 A timing fault in the primary channel can be detected.
Known
Uses

- Medical Robot (Guiochet and Vilchis, 2002)
- Traffic Management System (Stögerer and Kastner, 2010)
- Software implemented watchdog pattern (Chen et al., 2007)

Credits (Douglass, 2002) introduces the pattern. (Grunske, 2003) and (Hanmer, 2007) also
present this pattern and (Armoush, 2010) adds detailed information about quality
attribute related consequences.
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Pattern Name Protected Single Channel Pattern Type hard/software, fail-safe
AlsoKnownAs Safety Kernel Pattern, Shadow-Pattern, Simplex-Pattern
Context A system with a fail-safe state and with low availability requirements.
Problem Find an appropriate mechanism to handle failures or errors that can lead to known

hazards.
Forces - Full redundancy solutions are expensive

- Components are so complex that we cannot assume them to be error free
- Not any additional hardware components can be introduced

Solution The input and/or output data of the Primary Channel is monitored and checked
regarding its validity or compared to reference data or expected data.

Safety GSN

Security GSN

Consequences The checks are diverse from the primary channel functionality which allows
limited systematic fault detection.

Affected Attributes
Positively Negatively

Safety: Known hazards can be handled Availability: Decreased if the system
goes into its safe state

General SC1 A fail-safe state is entered if a primary channel fault is detected.
Scenarios SC2 Hazards in the primary channel can be detected.
Known
Uses

- Robot hand (Kumar et al., 2011)
- Protected Single Channel implementation in C (Douglass, 2010)
- Real-time autonomic system architecture (Solomon et al., 2007)

Credits (Douglass, 2002) introduces the pattern. (Grunske, 2003) also presents this pattern
and (Armoush, 2010) adds detailed information about quality attribute related
consequences.
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Pattern Name 3-Level Safety Monitoring Pattern Type hard/software, fail-safe
AlsoKnownAs Safety Kernel Pattern, Shadow-Pattern, Simplex-Pattern
Context A system with a fail-safe state and with low availability requirements
Problem Find an appropriate mechanism to handle failures or errors that can lead to known

hazards.
Forces - Full redundancy solutions are expensive

- Components are so complex that we cannot assume them to be error free
Solution Divide the system into 3 layers:

- The Actuation Layer performs the system functionality
- The Monitoring Layer monitors the Actuation Layer and forces a fail-safe state
if values deviate too much from references
- The Control Layer checks the system hardware and sends messages to a Watch-
dog component which can shut the system down

Safety GSN

Security GSN
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Consequences The pattern is not applicable for systems with high availability requirements.
The checks are diverse from the primary channel which allows limited system-
atic fault detection.

Affected Attributes
Positively Negatively

Safety: Known hazards can be handled Availability: Decreased if the system
goes into its safe state

General SC1 A fail-safe state is entered if a primary channel failure is detected.
Scenarios SC2 Hazards in the primary channel can be detected.

SC3 A timing fault in the primary/monitor channel can be detected.
Known
Uses

- E-Gas unit to control motor vehicle drive power (Bederna and Zeller, 1999)
- Standardized E-Gas concept (EGAS, Arbeitskreis, 2006)
- Yokogawa ProSafe-RS PLC (Emori and Kawakami, 2005)

Credits (Armoush, 2010) presents this pattern with detailed information about quality
attribute related consequences.
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B Safety Tactics

This section presents the full list of safety tactics from (Preschern et al., 2013) (where a more detailed
explanation about safety tactics can be found).

Tactic Aim Description IEC 61508 methods

Simplicity Avoid failures
through keep-
ing the sys-
tem as simple
as possible.

Simplicity reduces the system complexity. It
includes structuring methods or cutting un-
necessary functionality and organizes system
elements or reduces them to their core safety
functionality, thus, eliminating hazards. An
example for the application of the Simplic-
ity tactic is an emergency stop switch system
which is usually kept as simple as possible.

IEC 61508-7: B.2.1 struc-
tured specification, B.3.2
structured design, C.2.7
structured programming,
E.3 structured description
method, C.4.2 program-
ming language subset,
C.4.2 limit asynchronous
constructs, E.5.13 software
complexity controller

Substitu-
tion

Avoid failures
though usage
of more re-
liable compo-
nents.

Components or methods are replaced by
other components or methods one has higher
confidence in. For hardware and software
this can mean usage of existing components
which are well-proven in the safety domain.

IEC 61508-7: B.3.3
usage of well-proven
components, B.5.4 field
experience, C.2.10 usage
of well-proven/verified
software elements, E.20
application of validated
soft-cores, E.35 application
of validated hard-cores,
E.41 usage of well-tried
circuits, C.4.3 certified
tools and compilers, C.4.4
well-proven tools and
compilers, E.4 well-proven
tools, E.42 well-proven
production process, E.28
application of well-proven
synthesis tools, E.29
application of well-proven
libraries

Sanity
Check
(Checking)

Detection
of implausi-
ble system
outputs or
states.

The Sanity Check tactic checks whether a
system state or value remains within a valid
range which can be defined in the system
specification or which is based on knowledge
about the internal structure or nature of the
system. An example for a Sanity Check is
a stuck-at fault RAM-test which checks the
proper functionality of the memory during
system runtime. The test is based on the un-
derstanding of the memory behavior (if we
write data to the memory, we should later
on be able to read the same data). Faults are
detected if the memory behaves differently.

A.1.2 monitoring relay
contacts, A.2.7 ana-
log signal monitoring,
A.3.1-A.3.3 self-tests,
A.4.1-A.4.4 checksums,
A.5.1-A.5.5 RAM-Tests,
A.6.1 test pattern, A.7.1
one-bit hardware redun-
dancy, A.7.2 multi-bit
hardware redundancy,
A.7.4 inspection using
test patterns, A.9 tempo-
ral and logical program
monitoring, C.3.3 asser-
tion programming, C.5.3
interface checking, C.4.1
strong typed programming
language
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Tactic Aim Description IEC 61508 methods

Condition
Monitoring
(Checking)

Detect devia-
tions from the
intended sys-
tem outputs
or states.

Condition Monitoring checks whether a sys-
tem value remains within a reasonable range
compared to a more reliable, but usually
less accurate, reference value. The reference
value is computed at runtime by a redundant
part in the implementation which can be
based on system input values and is not pre-
known from the specification (like it would
be the case for Sanity Check). An example
for Condition Monitoring is a system which
has to be time-synchronized via the Internet
and which checks if the synchronized time is
feasible by comparing it to an internal clock.

IEC 61508-7: A.1.1 failure
detection by online mon-
itoring, A.6.4 monitored
outputs, A.8.2 voltage con-
trol, A.9 temporal and
logical program monitor-
ing, A.12.1 reference sen-
sor, A.13.1 monitoring

Compari-
son

Detection of
discrepancies
of redun-
dant system
outputs.

Comparison tests if the outputs of fully re-
dundant subsystems are equal in order to de-
tect failures. The Comparison tactic usually
implies the usage of a redundancy tactic. An
example for the application of the Compar-
ison tactic is a dual-core processor running
in lock-step mode. The processor runs the
same software on both cores and compares
their outputs after each cycle.

IEC 61508-7: A.1.3 com-
parator, A.6.5 input com-
parison/voting

Diverse Re-
dundancy
(Redun-
dancy)

Introduction
of a redun-
dant system
which allows
detection or
masking of
failures in the
specification
or implemen-
tation as well
as random
hardware
failures.

Diverse Redundancy can be applied to
the specification or to the implementation
level. In a system using Diverse Redun-
dancy on the implementation level, redun-
dant components use different implementa-
tions which were developed independently
from the same specification. Diverse Redun-
dancy on a specification level goes one step
further and additionally requires that even
the requirement specifications for the redun-
dant components have to be set up by indi-
vidual teams.

IEC 61508-7: A.7.6 infor-
mation redundancy, A.13.2
cross-monitoring of mul-
tiple actuators, B.1.4 di-
verse hardware, C.4.4 di-
verse programming

Replication
Redun-
dancy
(Redun-
dancy)

Introduction
of a redun-
dant systems
which allows
detection
or masking
of random
hardware
failures (not
systematic
failures).

Replication Redundancy means introduc-
tion of a redundant system of the same im-
plementation. The redundant systems main-
tain the same functionality, use identical
hardware, and run the same software imple-
mentation. An example for Replication Re-
dundancy is the RAID1 data storage tech-
nology.

IEC 61508-7: A.2.1 tests by
redundant hardware, A.2.5
monitored redundancy,
A.3.5 reciprocal compar-
ison by software, A.4.5
block replication, A.6.3
multi-channel output,
A.7.3 complete hard-
ware redundancy, A.7.5
transmission redundancy

Repair
(Recovery)

Bring a
failed system
back to a
state of full
functionality.

The full system functionality is manually or
automatically restored if a system failure oc-
curs.

IEC 61508-7: C.3.9 error
correction, C.3.10 dynamic
reconfiguration
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Tactic Aim Description IEC 61508 methods

Degrada-
tion
(Recovery)

Degradation
brings a
system with
an error
into a state
with reduced
functionality
in which the
system still
maintains the
core safety
functions.

Degradation systems define a core safety
functionality. The systems maintain this
safety functionality and additional non-
critical functions. In case of an error, the sys-
tem falls back into a degraded mode in which
it just maintains the core safety function-
ality. An example where the Degradation
tactic is often applied are automation sys-
tems. These systems control safety-critical
processes and often visualize these processes
in a GUI. If the system has too few resources
(e.g. processing time), then the system stops
the GUI service and just focuses on its core
functionality to control the safety-critical
processes.

IEC 61508-7: A.8 volt-
age supply error handling,
C.3.8 degraded function
limitation

Voting
(Masking)

Mask the
failure of a
subsystem
so that the
failure does
not propa-
gate to other
systems.

Voting makes a failure transparent. The tac-
tic does not try to repair the failure, but it
hides the failure through choosing a correct
result from redundant subsystems. It decides
for the majority of the output values.

IEC 61508-7: A.1.4 voter,
A.6.5 input compari-
son/voting

Override
(Masking)

Mask the
failure of a
subsystem
so that the
failure does
not propa-
gate to other
systems.

The Override tactic forces the system out-
put to a safe state. For example, if we have a
system which is in a safe state when shut off,
we can apply the Override tactic to shut off
the system if we have doubt about the sys-
tem output (e.g. if an output validity check
fails). In this scenario overriding the system
output with a safe output value decreases
the availability of the system. Another form
of the Override tactic, which does not de-
crease the availability and is closely related
to the Voting tactic, chooses the output of
redundant subsystems by preferring one sub-
system or one output state over another.

IEC 61508: Fail-Safe Prin-
ciple, A.1.3 comparator

Barrier Protect a
subsystem
from in-
fluences or
influenc-
ing other
subsystems.

The Barrier tactic provides a mechanism
to protect from unintentional influences be-
tween subsystems. To apply Barrier, the in-
terfaces between subsystems have to be ana-
lyzed and specified. These interfaces are con-
trolled at runtime by a trustworthy compo-
nent (the Barrier) which often is an already
existing reliable mechanism. An example for
a Barrier is a memory protection unit which
controls and restricts the communication be-
tween different tasks.

IEC 61508-7: A.11 sep-
aration of energy lines
from information lines,
B.1.3 separation of safety
functions from non-safety
functions, B.3.4 modular-
ization, C.2.8 information
hiding/ encapsulation,
C.2.9 modular approach,
E.12 modularization,
C.3.11 time-triggered
architecture
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Design patterns provide good solutions to re-occurring problems and several patterns and methods how to apply them have been documented
for safety-critical systems. However, due to the large amount of safety-related patterns and methods, it is difficult to get an overview of their
capabilities and shortcomings as there currently is no survey on safety patterns and their application methods available in literature.
To give an overview of existing pattern-based safety development methods, this paper presents existing methods from literature and discusses
and compares several aspects of these methods such as the patterns and tools they use, their integration into a safety development process,
or their maturity.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems] Real-Time and Embedded Systems; D.2.11
[Software Engineering]: Software Architecture—Patterns; K.6.3 [Management of Computing and Information Systems]: Software Man-
agement—Software process

ACM Reference Format:

Preschern, C. et al. 2014. Pattern-Based Safety Development Methods: Overview and Comparison. EuroPLoP 2014, 20 pages.

1. INTRODUCTION

The application of design patterns becomes increasingly attractive to specific domains as more and more domain-
specific patterns and domain-specific methods of how to apply patterns come up. In particular, for safety-critical
systems, which are systems whose malfunction poses a threat to human health or even human lives, the application
of design patterns is very promising. That is, because the concept of applying well-proven solutions to safety
problems goes well with one of the underlying ideas for constructing safety-critical systems which is to rely on
approaches which proved to be successful in previous applications.

There is much literature available on safety patterns (an overview of them given in [1]) and there is much
literature available on methods how to apply them like [2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12]. This makes it rather difficult
on the one hand to get an overview of available safety pattern application or development methods, and on the
other hand to see which of the methods described in literature are actually applicable for a specific domain, which
provide appropriate tool support, or which were sufficiently applied in practice and are sufficiently mature.

This paper provides an overview of pattern-based safety development methods in literature. The presented
methods were gathered with a structured literature review. The selected methods are briefly described and are
then analyzed regarding several attributes such as their application domain, the type of safety patterns they apply,
or regarding other attributes related to the application of the patterns or related to safety. This paper is targeted to

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A preliminary version
of this paper was presented in a writersŠ workshop at the 19th European Conference on Pattern Languages of Programs (EuroPLoP).
EuroPLoP’14, July 9-13, Irsee, Germany. Copyright 2014 is held by the author(s). Copyright granted to Hillside Europe for use at/with the
EuroPLoP 2014 conference.
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academics as well as to practitioners who want to get an overview of pattern-based safety development methods
or who want to chose an appropriate method.

This paper is structured as follows. Section 2 presents the organization of the literature review on pattern-based
safety development methods. The section describes inclusion criteria for methods found in literature and describes
the questions or aspects to be discussed for the methods. These aspects are covered for the 12 selected pattern-
based safety development methods in Section 3 and a tabular overview of the methods and the discussed aspects
is shown in Section 4. Finally, Section 5 concludes this work.

2. ORGANIZATION OF THE LITERATURE REVIEW

2.1 Selection of Pattern-Based Safety Development Methods

We were looking for papers which present a structured method to develop or modify a system architecture by
applying safety patterns (e.g. methods describing how to search/retrieve/integrate safety patterns from repositories)
or which perhaps even describe a whole development process based on safety patterns (e.g. methods describing
how to apply safety patterns in the V-model development process). We will refer to both of the before mentioned
as pattern-based safety development methods.

The presented methods were selected by doing a structured literature search with Google Scholar and based
on the publications of any Pattern Languages of Programs (PLoP) conferences. From the Google Scholar search,
the phrases Pattern Based Safety Development, Safety Patterns, Design Patterns Safety Development, and Safety
Pattern Application were searched and the first 100 papers were considered. From the different PLoP conferences,
all published papers were considered. Based on the considered papers, the selection of actually included papers
was made by first reading the title and excluding any papers not containing the keyword “safety” or “pattern”. From
the remaining papers, we read the abstracts and then decided whether to include the paper or not by subjectively
judging whether the paper actually covers a pattern-based safety development method.

2.2 Questions to be answered for the Methods

The following questions will be discussed for different pattern-based safety development methods from literature to
provide a good overview of these methods. The “Pattern Application” questions in this section are based on [13]
and [14] which both survey methods and tools for pattern search and selection. The other questions are based on
attributes explicitly promoted in some of the pattern-based safety development method papers.

Domain and Type of the Patterns
Which domain does the method primarily target?

If a method particularly says that it is targeted for a specific domain or if all publications on that method target a
particular domain, then the answer to this question is that domain (e.g. “Automotive”, or “Railway”). Otherwise
the answer is “Safety-critical systems in general”

Which type of pattern is used by the approach?
Most safety patterns applied in different methods are quite similar and can be categorized. The answer to this
question is determined if a publication explicitly states to apply some type of patterns or if all patterns applied
and listed in the publications of the method are related to specific pattern types. Such pattern types could, for
example, be “Architectural Patterns” or “Process Patterns”.

Pattern Application
How are the patterns searched and selected?

Several methods describe guidelines which aid pattern search and selection. This question is either explicitly
answered by the publications of the method or the answer is extracted from the in a publication described
application of safety patterns to an example system.

How does the method support pattern integration?
Some methods provide defined pattern interfaces, descriptions, or models which help integrating and combining

Pattern-Based Safety Development Methods: Overview and Comparison — Page 2
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patterns into an existing design. The answer to this question is either explicitly stated by a publication or it is
extracted from the pattern form or from the pattern application to an example system.

Which tools does the method provide?
Several methods provide tools for pattern search, instantiation, or management. Such tools are listed and
described here.

Safety-Process Related Aspects
Which safety-relevant development processes or standards does the method follow?

Some of the methods themselves or the patterns are developed based on a safety standard or based on
safety-related development processes. If that is the case, these standards and processes are mentioned.

Which means for safety reasoning or ensuring traceability does the method provide?
In safety, it is important to ensure that the actually implemented system meets its safety goals. Some of the
methods support that by explicitly providing evidence to be used to argue for safety or by providing a structured
way to link the implementation to the safety goals (traceability).

Method Maturity
How large is the research community?

Some methods are developed by a single student while others are developed by large research groups. The
size of the research community to some extend reflects the effort put into an approach and its maturity. The
research community size is measured by the number of publications and the number of different participating
institutions. The research community is considered as small if all relevant publications come from a single
researcher. It is considered as medium if more researchers are involved, and it is considered as big if several
institutions as well as industrial partners are involved.

To which kind/size of systems has the method been applied to?
Some methods have been applied to industrial projects while others are just applied to small theoretic example
systems. The answer to this question is given in all the covered methods in form of (part of) a publication
describing an example for the method application.

How has the method been evaluated?
Some methods are evaluated with questionnaires, metrics, or extensive case studies. If present, the answer to
this question is found in most papers at the end of the method application to an example system.
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3. PATTERN-BASED SAFETY DEVELOPMENT METHODS

In this section we describe 12 pattern-based safety development methods from literature. For each method, a
short description is given, the above listed questions are discussed, and one or more patterns or part of patterns
are presented in a Table to give the reader a feeling what the patterns are about.

3.1 Patterns along the Safety Lifecycle

The IEC 61508 safety standard provides requirements and problems which have to be handled by safety-related
systems. However, the standard does not cover many solutions for these problems. This method suggests to use
patterns to connect these problems to appropriate solutions. Such patterns can, especially for newcomers, be
important tools to tackle the requirements of the safety standard.

Domain and Type of the Patterns
The method itself does not provide any patterns, but provides links to other pattern collections and languages:

- [15] and [16] describes process patterns for software development
- [17], [18], [19], and [20] provide safety-related patterns to be used for system design and realization

Table 3.1 shows some examples from these pattern collections.

Table I. Example Patterns of the SaCS Method
SOFTWARE VALIDA-
TION PLANNING [15]

The pattern contains a classical textual pattern description (including context, problem, forces, solution,
consequences sections). The solution part describes the software development and validation process
described in the IEC 61508 standard and provides a diagram of the activities.

FAILURE ANALYSIS

[15]
Also this pattern contains a classical textual pattern description. The pattern suggests to use a systematic
analysis technique for the design phase like fault tree analysis or cause consequence analysis. A diagram
presenting these techniques and their relations is provided.

SEPARATED SAFETY

[17]
Also this pattern contains a classical textual pattern description. The pattern suggests to separate
complex controlling requirements from the safety requirements of a system and to implement the two
tyes of requirements in separate systems in order to keep the part which is safety critical minimal.

Pattern Application
For the selection of appropriate patterns, the usage of the above mentioned different sets of patterns for
different steps of a safety development process is suggested. The method provides references to these safety
pattern collections/languages which can be looked up to be applied during different development steps. For
example, during the hazard and risk analysis phase, the method suggests to look for an appropriate patterns in
[15] and [16]. The referenced pattern collections/languages then provide their own pattern selection methods in
order to find a specific pattern.

Safety-Process Related Aspects
The method covers the application of patterns for safety-critical systems in the context of the IEC 61508 safety
standard and suggested which patterns to apply along the IEC 61508 safety development process. Some of
the referenced patterns are based on or mined from the IEC 61508 standard.

Method Maturity
The method to apply safety patterns along the safety lifecycle is suggested in a single publication [3]. However,
the process and architecture patterns based on the IEC 61508 standard which are recommended to be used
along the safety lifecycle are developed by several different researchers or research groups.
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3.2 Safe Control System Method

The Safe Control System Method (SaCS) [2] provides guidance on accepted safety engineering practices to
support the conceptual design of safety systems by suggesting safety engineering practices documented as
patterns during the safety development lifecycle.

Domain and Type of the Patterns
SaCS describes requirements, safety process, safety architecture, and safety assurance patterns. Some
example patterns are shown in Table 3.2. Examples for safety processes described as patterns are the Fault
Tree Analysis (FTA) or safety case arguments with Goal Structuring Notation (GSN). Examples for safety
architecture patterns are solutions describing redundant architectures. The patterns each have a graphical icon
representing them and contain detailed information about their inputs and outputs (such in-/outputs could, for
example, also be documents or specifications). The patterns themselves consist of a textual description and of
diagrams (depending on the kind of pattern: UML diagrams, problem frames, or safety cases). SaCS presents
more than 20 (potential) patterns, but just provides detailed descriptions for 3 of them in the publications.

Table II. Example Patterns of the SaCS Method
STATE SPACE SUB-
SET

This is a requirement pattern. It contains textual descriptions of requirements and a graphic problem
diagram. The pattern suggests to form the requirements in a way that the system realizations can be
split into subsystems with overlapping and redundant functionality.

TRUSTED BACKUP This design pattern consists of textual descriptions and a UML diagram describing its structure. The
pattern suggests redundant controllers. The primary controller is accurate and effective, but not rigorously
developed according to safety standards, whereas the other controller rigorously conforms to safety
standards and overrides decisions from the primary controller if they don’t meet safety requirements.

ADAPTING WITHIN A

CONSTRAINED STATE

SPACE

This safety case pattern provides a textual description and a GSN diagram which provides an argumen-
tation for the system’s safety. This argumentation is tailored for systems applying the TRUSTED BACKUP

pattern.

Pattern Application
SaCS provides guidance along different safety development phases and suggests appropriate sets of patterns
to be applied for each specific development step. For example, during the development phase in which a safety
concept has to be established, SaCS suggests to apply the FAULT TREE ANALYSIS or FAILURE MODE AND

EFFECTS ANALYSIS patterns. The pattern then provide diagrams (depending on the type of pattern: UML,
problem frames, GSN, ...) to provide a starting point for applying and integrating the pattern. Besides, SaCS
provides a meta-model for the patterns to define their interfaces and interactions. Thus, SaCS allows the
combination of several patterns and even explicitly allows the definition of pattern compositions.

Safety-Process Related Aspects
The explicit interfaces between the patterns reaching from requirements analysis via implementation to safety
assurance, enable the SaCS method to support traceability in terms of showing the connection between the
requirements and their implementation. SaCS suggests using icons for all patterns. This allows one to represent
the applied safety patterns in a single picture which can be seen as a kind of traceability model.

Method Maturity
There is one PhD student primarily working on the SaCS method and there are 3 publication available. [2]
provide a collection of SaCS patterns and describe their meta-model, [21] apply the SaCS approach to a
nuclear power plant example system, and [22] present 4 SaCS patterns and apply the method to a railway
domain example. For SaCS evaluation, the publications discuss how it helps to produce a consistent, complete,
correct, and reusable, conceptual design. Apart from SaCS, the overall method of representing the patterns
with icons, defining their interfaces and possible compositions, and suggesting appropriate patterns during
system development, is also used by the Norwegian research organization SINTEF for the security domain.
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3.3 TERESA Project

TERESA (Trusted Computing Engineering for Resource Constrained Embedded Systems Applications) is a
European research project which proposes an engineering method for embedded systems with focus on security
and dependability (which includes safety). TERESA applies model-based techniques to build up a pool of re-usable
high-quality components in form of patterns.

Domain and Type of the Patterns
Most of the patterns used in examples in the TERESA project target security; however, there are also patterns
from the safety domain. There is not one fixed pool of patterns, but the TERESA approach aims to develop
and document patterns during system development and perhaps also just use this pattern knowledge inside a
company. All patterns follow a meta-model which ensures, for example, that the patterns have well-defined
interfaces and can be combined. The pattern structure can further be defined through a specification language.
The patterns consist of a domain-independent and a domain-specific model, which allows to decouple domain
complexity from the core ideas of the patterns. The domain-specific patterns can contain formal annotations
which can be used to validate the patterns in order to obtain trustworthy pattern.
The TERESA approach can be applied to any design pattern and focuses on the verification of the pattern
purpose. For example, Table3.3 shows how the MEDIATOR pattern is formulated conforming to the TERESA
pattern metamodel.

Table III. SECURE CHANNEL pattern formulated with the TERESA metamodel
SECURE CHANNEL The pattern consists of textual descriptions (e.g. problem, solution section). The SECURE CHANNEL

pattern suggests to set up an encrypted communication for sensitive data and to use unencrypted
communication channels for regular data. The pattern contains a UML diagram showing its structure.
Constraints for this UML diagram can be formulated with OCL and the TERESA approach supports
verification of these formulations.

Pattern Application
TERESA provides several tools to define, manage, and apply patterns. The patterns are stored in a repository
and there is an Eclipse-Plug-In to access the patterns from the repository during system development. The
tool provides pattern search functionality and allows to integrate patterns (depending on the domain e.g. their
UML diagrams) into the system. Other TERESA tools allow a developer to model constraints for the patterns, to
manage and set up the pattern repository, and to model the overall development process.

Safety-Process Related Aspects
TERESA provides a general development process which instantiates patterns from the repository during
different development steps. This development process can be modified to be aligned with the development
process of e.g. a safety standard. For example, TERESA provides the modeled development process for the
IEC 61508 or the railway safety standard. Additionally, the development process can be equipped with explicit
checkpoints which require checking whether the currently developed system meets its requirements.

Method Maturity
There are 26 scientific publications and 19 project deliverable documents available at the [23]. Several of
these publications and deliverables describe the TERESA development process and the patterns, other
publications such as [4] and [24] describe how to align the development processes with safety standards, and
some publications like [25] present the application of the TERESA approach to case studies. One deliverable
evaluates the TERESA approach by defining relevant criteria such as reusability or tool support and by
discussing these criteria for the application of TERESA to industrial projects. Additionally, risk estimations for
these projects with and without applying the TERESA approach are compared.
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3.4 SIRSEC Project

The SIRSEC project aims to provide a platform for safety railway development and works in collaboration with the
TERESA project. The focus in SIRSEC is mainly on providing a middleware, but also on using patterns during the
safety development process.

Domain and Type of the Patterns
The patterns are described with the TERESA pattern meta-model. The domain-specific part of the pattern is
modeled with a UML-MARTE profile to capture non-functional requirements (see Table 3.4 for an example).
Each pattern contains bindings which define the interfaces of the pattern and which provide a description of
how to connect them to an architecture model. The patterns also contain an informal description of the safety
requirements that are addressed by a pattern.

Table IV. MOON pattern formulated with SIRSEC
MOON The MooN M-OUT-OF-N pattern replicates a system to N systems and votes for a

consistent output of at least M systems work correctly. The pattern contains tex-
tual descriptions and a UML notation which is shown in the following figure from [5]:

The UML notation shows that the pattern consists of several sub-patterns (REPLICATION, VOTE, and
COMMUNICATION PROTECTION).Furthermore, the pattern contains of constraints and roles which have
to be bound to an architecture during integration.

Pattern Application
Safety patterns are developed, selected, and instantiated with several TERESA tools and with an Eclipse/Papyrus
tool. This Eclipse/Papyrus tool presents the patterns in different categories which a developer can choose from.
When selecting a pattern, the developer chooses to which elements of an existing UML-MARTE architecture,
the pattern interfaces are connected. Validation rules for the patterns then help to ensure whether the pattern
was correctly instantiated and connected to the architecture model. For example, for a TRIPLE MODULAR

REDUNDANCY pattern, rules can check if it is instantiated on a sufficiently high number of hardware elements.
Safety-Process Related Aspects

The patterns contain descriptions of the general safety requirements they can achieve. This provides some
means of traceability.

Method Maturity
There is one major publications on the SIRSEC approach: [5] describe the application of this approach to a
communication-based train control system. However, many other publication such as [4] or [26] are made in
collaboration with the TERESA project.
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3.5 Safety Tactic-Based Approach

The approach proposes a development process which uses tactics to build an appropriate architecture and which
uses GSN to reason about the safety of the architecture.

Domain and Type of the Patterns
The approach does not actually apply patterns, but tactics. Tactics are quite similar to patterns and there is
no clear definition of how to distinguish the two. Usually tactics compared to patterns are more general and
abstract and cover a concept which might be part of a pattern (examples for safety tactics are given in Table 3.5).
The approach presents 17 such safety tactics which are textually described.

Table V. Some examples for safety tactics
Simplicity “Simplicity reduces the system complexity. It includes structuring methods or cutting unnecessary

functionality and organizes system elements or reduces them to their core safety functionality, thus,
eliminating hazards. An example for the application of the Simplicity tactic is an emergency stop switch
system which is usually kept as simple as possible.” [27]

Sanity Check “The Sanity Check tactic checks whether a system state or value remains within a valid range which
can be defined in the system specification or which is based on knowledge about the internal structure
or nature of the system. An example for a Sanity Check is a stuck-at fault RAM-test which checks the
proper functionality of the memory during system runtime. The test is based on the understanding of the
memory behavior (if we write data to the memory, we should later on be able to read the same data).
Faults are detected if the memory behaves differently.” [27]

Pattern Application
The development process starts with a basic architecture not yet considering safety and it engineers safety into
this architecture by applying safety tactics. The process and the tactics are just textually described and there is
no tools support available. The process contains the following steps which are iteratively applied:

- Check each architectural element with a set of guidewords to find negative scenarios.
- Evaluate likelihood and impact of negative scenarios, rank them, and just consider the most important

ones.
- Identify the architectural design space. The scenarios each contain the elements Source, Stimulus,

Environment, and End Effect. For each element, a set of tactics is provided to build safety into the system.
- Choose an architectural option (safety tactic).
- Formulate a positive quality scenario which should now be fulfilled.
- Update the architecture description.

Safety-Process Related Aspects
The approach covers the integration of the above described development process into the V-model which
is commonly used to development safety-critical systems. The above described development process uses
scenarios and anti-scenarios. Their goals are formulated with GSN and in some cases even with GSN patterns.
This provides means for safety reasoning.

Method Maturity
The Department of Computer Science at the University of York works on engineering of high integrity systems.
They have several theses and other scientific publications on safety reasoning with GSN and on safety tactics
and their application to case studies. For example, [28] presents the 17 safety tactics and [6] proposes the
above described development process. Other safety-related development methods based on safety tactics are
presented by [29], who focuses on COTS products, and by [30], who suggests an alternative process which
breaks down system hazards and mitigates them by applying safety tactics. For evaluation, the feedback from
stakeholders regarding the application of the method to a case study is informally discussed. Additionally a
questionnaire for evaluating the method is formulated, but was not applied.
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3.6 Safety Architecture Patterns

This method presents a collection of architectural safety patterns based on existing patterns from literature. The
main contribution of this work is to be the first comprehensive and structured collection of these redundancy-based
architecture patterns. The method primarily focuses on collecting and improving the patterns and not on discussing
in detail how the patterns can be applied.

Domain and Type of the Patterns
The 15 covered patterns are (mostly redundancy-based) high-level architectural safety patterns like, for example,
the N-VERSION PROGRAMMING pattern or the the TRIPLE MODULAR REDUNDANCY pattern which is shown in
Table 3.6. The method presents the patterns in a uniform pattern form, provides block diagrams for the patterns,
and includes safety-related metrics like reliability probabilities for the patterns. The covered patterns do not
focus on a particular domain and are mostly based on patterns or techniques described in [31] and [32].

Table VI. TRIPLE MODULAR REDUNDANCY Safety Architecture Pattern
TRIPLE MODULAR

REDUNDANCY

The pattern describes a system with three redundant channels. The output of the system is produced
by a majority voter of the three channel outputs. Additionally to classical textual sections (e.g. problem,
solution sections), the pattern also contains safety-related metrics. A metric example, is the calculation
of the system reliability where the pattern contains the following formula:
RTMR = RV OTER ∗ (3 ∗RCHANNEL

3 − 2 ∗R2
CHANNEL)

Regarding safety, the pattern contains recommendations for which Safety Integrity Level (SIL) the
pattern should be applied. For that, the concepts which are part of the pattern and which are described
in the IEC 61508 standard are listed with the pattern. The following shows these recommendations for
the TRIPLE MODULAR REDUNDANCY pattern:

Pattern Application
The method provides a tool to access the catalog of safety patterns. The tools contains a simulation environment,
which calculates and compares reliability and risk reduction values of the patterns over time depending on the
hardware component failure rate. For pattern selection, the tool provides a wizard which asks questions like “Is
hardware redundancy possible?” According to the given answers, the tool suggests one ore more patterns
which are applicable. The selected pattern can then be retrieved from the tool in form of PDF document.

Safety-Process Related Aspects
The used pattern form contains information about how well the pattern solution is suited for a specific SIL level
according to the IEC 61508 standard. The pattern takes this SIL level from techniques mentioned in the standard
(e.g. Hardware Redundancy) which are applied in a specific pattern. The techniques in the standard contain
recommendation for which SIL level they should be applied. The method integrates these recommendations
into the patterns. Additionally, the pattern form contains reliability and risk reduction calculations which can be
used during safety analysis.

Method Maturity
The main work was carried out by a single PhD student and is published in his PhD thesis [7]. The student
published 6 papers on safety patterns related to the PhD thesis. Additionally, the tool for the patterns was
developed as a master’s thesis by [33]. There is no report of an application to an industrial project, but a very
simple comparison of different applicable patterns for an example architecture is presented in [7].
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3.7 Safety Architecture Patterns + UML

The safety patterns from [7] are enhanced by including UML models and providing a structured method and tool
support for UML model transformations when integrating the patterns into an existing architecture.

Domain and Type of the Patterns
The covered patterns are the 15 safety patterns from [7] (domain-independent, high-level safety architecture
patterns). The patterns are extended to contain a UML diagram (as shown in Table 3.7). Architectural elements
of the pattern (e.g. single channel, voter) are modeled as UML stereotypes in a UML profile. The patterns
contain descriptive rules which in a general manor describe model transformations to be applied if the pattern
is instantiated.

Table VII. TRIPLE MODULAR REDUNDANCY pattern including UML notation
TRIPLE MODULAR

REDUNDANCY

The pattern is extended to also include the following UML notation (modified from [8]):

The elements of these notations are tagged and for each tag, constraints and requirements can be de-
fined). For example, the pattern contains a requirement that all the input channels have to be connected
when being instantiated. Such requirements are formally specified and can be checked after pattern
instantiation.

Pattern Application
The above mentioned model transformation rules are used to integrate a pattern into an existing architecture
UML model. The rules allocate pattern elements to hardware execution channels and define the flow and
connection of output data between pattern elements or between the pattern and the architecture model. [34]
implements a web-based repository to store and manage safety patterns. The patterns from this repository can
be instantiated with a tool in form of an extension of the Sparx Systems Enterprise Architect software. This
tool allows retrieving the UML class diagram of a pattern and applying the pattern’s transformation rules to the
existing design.

Safety-Process Related Aspects
There is no particular focus on safety standards, processes, or safety reasoning/traceability.

Method Maturity
The approach to describe the safety patterns in UML notation is described in a single publication ([8]) and
there has been no other related publications by the author. The tool implementation is carried out as part of a
master’s thesis ([34]). There is no report of an application to an industrial project.

Pattern-Based Safety Development Methods: Overview and Comparison — Page 10

184 7. Publications



3.8 Safety Architecture Patterns + GSN

Preschern et al. extend the safety patterns from [7] to contain means for safety reasoning based on safety
standards and they analyze the safety patterns for their security aspects. Furthermore, they present how to apply
the patterns during safety development.

Domain and Type of the Patterns
The 15 covered patterns are based on the safety patterns from [7] (domain-independent, high-level safety
architecture patterns). The patterns are presented in a uniform pattern form which additionally contains GSN
diagrams for safety and security. The security GSN diagrams contain security threats which affect the system’s
safety and the safety GSN diagrams contain safety tactics and safety-relevant scenarios describing why the
system is safe. An example pattern is shown in Table 3.8.

Table VIII. TRIPLE MODULAR REDUNDANCY pattern including GSN diagram
TRIPLE MODULAR

REDUNDANCY

The pattern notation describes safety tactics of the pattern (which in case of the TRIPLE MODULAR

REDUNDANCY pattern are Redundancy and Voting). Additionally, the pattern describes general scenarios
relevant for the pattern. For the The TRIPLE MODULAR REDUNDANCY they are:

The system is fully operational even in case of a single channel failure.
A single channel random fault does not lead to a system failure.

Based on the tactics and scenarios, the pattern contains the following safety GSN diagram [1]:

Pattern Application
Preschern et al. provide a systematic analysis and presentation of the connections between the safety patterns
to guide the selection of a pattern. However, there is no tool support available and the integration or composition
of patterns is not discussed.

Safety-Process Related Aspects
The patterns come with GSN diagram templates which have to be developed when applying the pattern in order
to provide means for safety and security reasoning. The safety GSN diagrams contain safety tactics which are
applied by the pattern. These safety tactics are linked to safety methods suggested by the IEC 61508 standard.
Thus, via the GSN diagrams and tactics, the patterns provide a link between the overall pattern’s safety goal to
actually implemented methods which are suggested by the safety standard. These methods from the standards
give information on how to implement them and thus give guidance of how to implement the patterns.

Method Maturity
The main work was carried out by a single PhD student (Preschern). There are 7 publications concerning
different aspects of the patterns or their application available. The main publications describing how to build the
patternare are [1] and [35]. Other publications describe how the patterns are applied for the development of an
industrial hydro-power plant controller ([9], [36]). To evaluate the method, security metrics for the pattern are
formulated and security risk metrics before and after applying the patterns are compared.
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3.9 SDL Design Patterns

The method presents the application of design patterns for safety-critical distributed systems which are modeled
with the Specification and Description Language (SDL) which is used to describe the communication between
distributed systems and can, for example, be used to specify communication protocols.

Domain and Type of the Patterns
The presented patterns target safety-related real-time aspects of systems. Only two actual patterns are covered:
The HEARTBEAT and WATCHDOG pattern (presented in Table 3.9). The patterns contain diagrams describing
their structure based on an extended UML profile and they contain SDL diagrams and real-time-temporal logic
models to describe their timing behavior.

Table IX. The WATCHDOG SDL pattern
WATCHDOG The pattern contains some textual descriptions, a UML diagram describing the struc-

ture, and an SDL diagram, which is the core part of the pattern. The follow-
ing figure shows the SDL diagram for the WATCHDOG pattern (taken from [10]).

Pattern Application
The patterns are supposed to be applied to systems which are already modeled with SDL. The patterns contain
information of how the pattern-SDL diagram has to be modified and to which elements it has to be connected
when instantiating the pattern. Thus, the patterns contain structured information about pattern integration and
composition; however, there is no tool support described.

Safety-Process Related Aspects
There is no particular focus on safety standards, processes. However, the patterns provide means for verifi-
cation of the systems behavior. The real-time-temporal logic models of the patterns allow checking of timing
requirements.

Method Maturity
[10] presents the two covered patterns and their application to a distributed airship flight control system. There
are other publications focusing on the timing aspects of the approach like [37], but no other publications focus
on safety aspects.
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3.10 REFLECT

REFLECT (REndering FPGAs - Field-Programmable Gate Arrays - to MuLti-Core Embedded CompuTing) is a
pattern-based design flow to construct FPGA systems with special focus on safety.

The Patterns
The patterns target aviation systems are are thus redundancy-based architecture patterns. The only patterns
presented are the TRIPLE MODULAR REDUNDANCY and the DEFECT TOLERANCE THROUGH LOCAL SPARING

patterns. The patterns contain formal transformation rules for its inputs, internal components, and outputs. Part
of such a description is also shown in Table 3.10.

Table X. The TRIPLE MODULAR REDUNDANCY REFLECT pattern
TRIPLE MODULAR

REDUNDANCY

The pattern contains a diagram describing its inputs, outputs, and interfaces [11]:

The core element of the pattern, is a formal description which defines which code transformations have
to take place if the pattern is applied. The following figure shows this description for the single channel
elements of the TRIPLE MODLUAR REDUNDANCY pattern [11]:

Pattern Application
REFLECT uses an aspect-oriented programming language to precisely define safety requirements of a specific
system (e.g. the requirement of a maximum error probability). Additionally to the safety requirements, REFLECT
assumes that a functional system is already implemented with a special notation to identify, for example, critical
code sections. REFLECT provides a tool to automatically searches for the best match from a pool of safety
patterns and makes automatic code transformations to integrate this pattern. For example, if a triple modular
redundancy system has to be realized, REFLECT copies the critical code (which is annotated) two more
times and connects the code output (which is annotated as well) to a voter component which is taken from
a component library. The output of the REFLECT design flow is a new system specification which meets the
safety constraints and a corresponding hardware-description-language implementation.

Safety-Process Related Aspects
The method support traceability of the specified safety requirements to their actual implementation through the
patterns and through the component library.

Method Maturity
REFLECT has been brought up in [11], where is applied to a 3D path planning system for avionics systems.
Two further publications ([38], [39]) describe the avionics example system and describe the design flow in more
detail. There are further publications on the REFLECT design flow; however, these publications do not focus on
the safety and design pattern aspects.
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3.11 AltaRica Safety Patterns

The method is described as part of a research program of the company AIRBUS and formally applied redundancy-
based architecture patterns to avionics systems.

Domain and Type of the Patterns
Part of the patterns are described with linear temporal logic using a formal language called AltaRica. The
AltaRica pattern description is divided into several classical informal, textual pattern sections such as a
problem or solution section. Furthermore, the patterns contain formal parts which describe their inputs,
outputs, environment assumptions conditions, and constraints with AltaRica. In the publications just one single
redundancy-based pattern (shown in Table 3.11 is fully described.

Table XI. The COLD STANDBY AltaRica pattern
COLD STANDBY The cold standby pattern consists of two redundant channels of which one is active and the other one

passive. In case of a failure in the active channel, the passive channel takes over. The pattern contains a
graphical diagram showing its elements including the variables which will be used in the formal notation.
The following shows this notation for the COLD STANDBY pattern [12]:

Pattern Application
Before implementing a pattern, an architecture has to be modeled with AltaRica and the method provides a tool
for such modeling. The tool provides patterns in form of libraries. To implement a specific pattern, a developer
has to map the input and output variables of a pattern to the architecture. After that mapping is done, attributes
of the whole architecture can be checked with a model checker. The method provides a model checker for the
AltaRica language. As the patterns and the architecture provide explicit interfaces, pattern composition is easily
possible.

Safety-Process Related Aspects
The method suggests to also formulate the safety requirements in the formal language. If that is the case, the
requirements can be traced to the actual elements and variables to which realize the requirements.

Method Maturity
There are 2 publications available on the pattern-based development with AltaRica [40], [12]. The publications
are part of an Airbus research study to provide tools assisting modeling and assessment of safety architectures
and also describe the application of the method to an Airbus A320 electrical system case study. As evaluation,
the advantages, difficulties, and limitations of applying the method to the case study are discussed. There are
many other publications on the AltaRica language, but they are not related to pattern-based approaches.
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3.12 Safety Timing Templates

The method describes how to develop and verify the time behavior of safety-critical system by using a library of
safety patterns which are simple formal timing-related expressions.

Domain and Type of the Patterns
The method describes timing expressions in pattern form. An example for such an expression would be that
event B has to occur during event A, but not after event A. Such expressions are formulated many different
notations as part of the patterns. The expressions are formulated in natural language, in a norm language
(which is natural language with defined vocabulary), in linear temporal language, in computation tree logic,
and in a graphical notation. However, the patterns do not contain problem or solution statements; therefore, it
is debatable whether they should be considered as patterns. The method discusses that 454 such relevant
logical expressions can be formulated as pattern; however, just one such expression is published in form of a
full pattern (see Table 3.12).

Table XII. A safety timing template
DS-MIZ-NG-84 The patterns (or templates) do not really have names, but they have IDs containing meaningful abbrevi-

ations. For example, the MIZ part of the name means “mit impliziten Zeitangaben” which is German
and means “with implicit timing specification”. The presented pattern contains the following formal
specification [41]:

which is also presented in a graphical notation [41]:

Apart from these notations, the pattern contains information about the solution in natural language and
it contains an example.

Pattern Application
A tool provides a repository for the patterns in form of a databases. The tool further helps to search and
integrate the patterns into an existing formal design or into an existing set of formal requirements. The tool
asks the developer questions like “Does the Safety function contain specific timing requirements"" and shows
the developer a set of patterns based on the answers. When selecting a patter, the developer has to map the
inputs and outputs of the pattern to the system architecture or to the requirements.

Safety-Process Related Aspects
The method constructs a formal model regarding the timing behavior of the system. This model can be verified
with a model checker and the model explicitly shows the connections from the requirements to their actual
implementation.

Method Maturity
The main effort of this method was done by a single PhD student. Published work includes one PhD thesis
[41], several reports from undergraduate students, and 1 scientific publication [42]. The PhD thesis describes
the application of the method to an extensive example in the railway domain and discusses explicitly stated
requirements for the method (formally verifyable, easy to learn and apply, ...) for the application example.
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4. COMPARISON AND DISCUSSION

4.1 Pattern-Based Safety Development Methods

Table XIII shows a qualitative comparison of the presented pattern-based safety development approaches. The
table shows summaries to the questions for the pattern-based safety development methods as stated in Section 2.
The results in this table are also visualized in Figure 1.

Fig. 1. Comparison of pattern-based safety-development methods

From the table we can see that some of the methods mainly focus on providing the developer with knowledge
through the patterns and do not cover pattern integration aspects or safety-related aspects such as safety reasoning
or traceability, while others (mainly model-based approaches) put more focus on integration and safety aspects
and also provide more tool support. Related to safety aspects, some of the methods describe connections to safety
standards as part of the method itself or as part of the patterns. The safety standard most commonly addressed
by the methods is IEC 61508. To provide means of verification or safety reasoning, some methods produce safety
evidence in form of GSN diagrams while other methods (in particular the ones focusing on timing aspects) use
formal verification to prove the achievement of safety requirements.

The figure shows that most of the methods provide support regarding pattern search and integration and that
most methods provide tools. Besides, most methods support safety reasoning in form of safety case or traceability
support. Regarding the method maturity it is interesting to see that most methods are actually applied to industrial
systems. However, most methods lack a thorough evaluation. The most common form of evaluation is to simply
discuss the results of applying a method with feedback from an application example.

4.2 The used Patterns

An overview of the patterns used by the different methods is shown in Table 4.2. The table does not show all
patterns mentioned by the methods, but just patterns whose full description is either published and publicly
available. Some of the patterns, like for example the 52 process patterns from [15] and [16], were grouped
and thus not all of the patterns are explicitly listed. From the table we can see that most of the methods apply
redundancy-based architecture patterns which describe, for example, the duplication of systems in hardware or
software. An example for a pattern described by most methods is the TRIPLE MODULAR REDUNDANCY system.
One reason for focusing on such patterns could be that they provide well-defined descriptions in diagram form
and well-defined interfaces. Thus, they can easily be integrated into existing design diagrams even with help of
automated tools.
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Table XIII. Comparison of Pattern-Based Safety Methods
Domain/Type of Patterns Pattern Application Safety-Process Aspects Method Maturity
Domain Pattern Type Pattern-

Search/Selection
Pattern Integration Tool Support Standards,

Dev.-Process
Safety Reason-
ing / Traceability

Research
Community

Applied to Evaluation

Patterns
along the
Safety
Lifecycle

control
systems

safety process
and safety
architecture
patterns

development-
phase dependent
references to
pattern languages

- - development
process based
on IEC 61508

some of the ref-
erenced patterns
cover verification
activities

small - -

Safe
Control
System
Method

control
systems

safety process
and safety
architecture
patterns

shows applicable
safety patterns
along the develop-
ment process

UML component
and sequence dia-
grams with defined
interfaces for some
patterns

- - some patterns
cover GSN; de-
fined pattern inter-
faces provide link
to requirements

medium made-up
system

informal
general
discussion

TERESA
project

general
safety-
systems

model-based
security and
dependability
patterns

text- or category-
based pattern
search tool

common pattern
meta-model with
defined interfaces;
pattern instantiation
with help of tools

pattern search/ se-
lection/repository
tool; pattern edi-
tor; property and
constraint editor;
process editor

meta-model to
model safety-
process; mod-
els present for
railway-safety
and IEC 61508

the process meta-
model supports
checkpoints to de-
fine requirement
check activities

big industrial
system

discussion;
risk esti-
mations
with/without
TERESA

SIRSEC
Project

railway
safety-
systems

safety
architecture
patterns

developer
chooses from
pattern categories

patterns have de-
fined interfaces;
integration with tool
support

Eclipse/Papyrus tool
for pattern selection
and instantiation

- patterns contain
links to require-
ments

medium made-up
system

-

Safety
Tactic-
Based
Approach

general
safety-
systems

safety tactics tactics provided
to counter ele-
ments of negative
scenarios

- - tactic applica-
tion along the
safety-process
discussed

GSN patterns
used to build
safety cases

big industrial
system

discussion
on applica-
tion to case
studies

Safety Ar-
chitecture
Patterns

general
safety-
systems

safety
architecture
patterns

tool asks ques-
tions to find an
appropriate pat-
tern

- tool to guide pattern
selection and to
calculate reliability
and risk reduction

recommendation
of the patterns
for appropriate
IEC 61508 SIL

- small small proof-
of-concept
system

-

Safety Ar-
chitecture
Patterns +
UML

general
safety-
systems

safety
architecture
patterns

- patterns with defined
UML interfaces are
integrated in existing
architecture model

Enterprise Architect
extension to manage,
view, and retrieve
patterns (UML)

- - small - -

Safety Ar-
chitecture
Patterns +
GSN

general
safety-
systems

safety
architecture
patterns and
safety tactics

graphical rep-
resentation of
pattern relation-
ships

- - patterns linked
to IEC 61508
methods

GSN diagrams for
patterns

small industrial
system

metrics

SDL
Design
Patterns

distributed
safety-
systems

SDL patterns - patterns provide
defined interfaces
and description of
how to adapt SDL
diagrams

- - verification of
timing behavior

small industrial
system

-

REFLECT safety-
related
FPGAs

safety
architecture
patterns

automatic pattern
selection ac-
cording to safety
requirements

code transformation
based on annotated
input source

code transformation
tool using patterns to
fulfill safety require-
ments

- requirements
linked to imple-
mentation

medium made-up
system

-

AltaRica
Safety
Patterns

avionics safety
architecture
patterns

- mapping of pattern
input/output inter-
faces

architecture mod-
eling and model
checking tools

- requirements
linked to imple-
mentation

medium industrial
system

discussion
on applica-
tion to case
studies

Safety
Timing
Templates

railway temporal
safety tem-
plates

question/answer-
based guidance

mapping of pattern
input/output inter-
faces

architecture mod-
eling and model
checking tools

- requirements
linked to imple-
mentation

small industrial
system

discussion
on applica-
tion to case
studies

P
attern-B

ased
S

afety
D

evelopm
entM

ethods:O
verview

and
C

om
parison

—
P

age
17
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Table XIV. Patterns fully described or referenced by the pattern-based safety development methods
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TRIPLE MODULAR REDUNDANCY X X X X X
M-OUT-OF-N X X X X
HOMOGENOUS DUPLEX X X X
HETEROGENOUS DUPLEX X X X X
MONITOR-ACTUATOR X X X
SANITY CHECK X X X
SAFETY EXECUTIVE X X X
N-VERSION PROGRAMMING X X X
RECOVERY BLOCK X X X
ACCEPTANCE VOTING X X X
N-SELF CHECKING PROGRAMMING X X X
REC. BLOCK & ACCEPTANCE VOTING X X
PROTECTED SINGLE CHANNEL X X X
3-LEVEL SAFETY MONITORING X X X
M-OUT-OF-N-D X
MAJORITY VOTER X
DATA AGREEMENT X
SAFE COMMUNICATION LAYER X
HYPERVISOR X
RECIPROCAL MONITORING X
LOCAL SPARING X
TRUSTED BACKUP X
Overall 14 architectural patterns described
in [17], [18], [19], and [20]. Examples:

- SEPARATED SAFETY
- SHARED SAFETY ACTUATOR
- INDIRECT RESPONSE CHECK

X

S
af

et
y

Ta
ct

ic
s

Overall 17 safety principles (safety tactics)
described in [28] and [27]. Examples:

- SIMPLICITY
- CONDITION MONITORING
- FUNCTIONAL REDUNDANCY
- VOTING

X X
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m
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g-

R
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at
ed WATCHDOG X X X X X

HEARTBEAT X
DS-MIZ-NG-84 X

P
ro
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-
R
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ed

Overall 52 process patterns described in
[15], [16]. Examples:

- SOFTWARE VALIDATION PLANNING
- FAILURE ANALYSIS

X

ADAPTING IN CONSTR. STATE SPACE X
STATE SPACE SUBSET X
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5. CONCLUSION

This paper gave an overview of pattern-based safety development methods from literature and compared these
methods regarding their patterns they use, their approach to apply the patterns, regarding safety-related aspects,
and regarding their maturity. An interesting conclusion is that most of the methods apply architectural patterns and
rather few methods focus on safety-related processes. Another conclusion targets the maturity of the methods.
Most of them are not thoroughly evaluated and thus it is very difficult to assess their actual benefit when applying
them. The reason why the methods are not thoroughly evaluated appears to be that such an evaluation requires a
lot of effort and cannot easily be done in a real-life industrial project.

The presented overview and comparison on the one hand helps to see which kind of methods are available
in literature, which patterns they apply, which of the methods appears to be mature, and where to get further
information about the methods. On the other hand the overview and comparison shows differences between the
methods and indicates their blind spots, and their capabilities. In particular, for newcomers this provides insights
about which pattern-based safety development methods are available and what their benefits and drawbacks are.
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 

Abstract—An important step for developing a safety-critical 

system is the design of its architecture. The IEC 61508 standard 

provides a set of architectures (1oo2, 2oo3, ...) on a high level. It 

is left up to the system architect to refine these architectures 

and to come up with a set of methods which achieve the safety 

goals of the system. A pool of these methods is listed in part 7 of 

the IEC 61508 standard. However, especially for novel safety 

architects choosing appropriate methods and arguing for 

system safety through the application of these methods is rather 

difficult. 

In this paper we present the application of safety patterns in 

order to address this problem. Our safety patterns connect IEC 

61508 methods to the high level architecture to provide a way to 

reason about a system’s safety. We apply a safety pattern to two 

real case studies and we evaluate the pattern by comparing the 

IEC 61508 methods suggested by the pattern to the IEC 61508 

methods actually chosen by the real system architectures. 

 

Index Terms—Design patterns, functional safety, IEC 61508. 

 

I. INTRODUCTION 

The IEC 61508 safety standard provides a set of 

techniques and measures which are approved and can be used 

to implement safety-critical systems. They are described in 

the part 7 of the standard and describe approaches how to 

control random and systematic failures. However, for system 

architects who are not very familiar with the standard, it is 

rather complicated to choose appropriate techniques and 

measures from the huge pool given in the standard. 

To overcome this problem, we provide architectural safety 

patterns in [1]. These patterns can be linked to IEC 61508 

techniques and measures (as we present in one of our 

previous works [2]) to provide an initial suggestion of which 

IEC 61508 techniques and measures are appropriate for a 

given architecture. In this paper we want to evaluate the 

approach of using architectural safety patterns by comparing 

the IEC 61508 techniques and measures suggested by the 

pattern with real safety-critical system architectures which 

apply them. We present two case studies including the 

information about the IEC 61508 techniques and measures 

they apply. Furthermore, we discuss how well the techniques 

and measures suggested by our safety patterns would have 

fitted for the two case study architectures. 
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II. IEC 61508 SAFETY DESIGN PROCESS 

This section presents an introduction of how systems 

conforming the IEC 61508 standard are developed. 

Furthermore, related work on that topic is covered. 

A. Development According to the IEC 61508 Standard 

During the design phase of a safety-critical product, an 

architect first has to decide which high-level architecture is 

appropriate for the safety system. Part 6 of the IEC 61508 

standard suggests some well-known safety architectures such 

as the triple modular redundancy system or other 

architectures with redundant hardware. With the safety 

pattern system in [1] we refine some of these architectures 

and we add some new architectures to choose from. 

After choosing an appropriate architecture, a safety 

architect has to select safety-relevant methods to achieve the 

safety goals of the system. Part 7 of the IEC 61508 standards 

provides a pool of more than 200 techniques and measures 

(e.g. monitor outputs, hardware redundancy, ...) and also 

gives recommendations for some techniques and measures to 

which Safety Integrity Level (SIL) they are appropriate. The 

process for choosing suitable techniques and measures for an 

architecture is described in [3] in a pattern notation. To 

further guide the selection of techniques and measures for the 

architect, we provide a link in [2] to relate our safety design 

patterns witch IEC 61508 techniques and measures. 

According to [4] this so far missing link between safety 

methods and safety goals is a major shortcoming of current 

safety approaches. 

B. Related Work 

This section presents related work on software 

development processes which explicitly the IEC 61508 

standard. 

In [5], safety-related design patterns are connected to the 

IEC 61508 standard by giving suggestions for which patterns 

to use depending on the required SIL. These 

recommendations are based on the IEC 61508 techniques and 

measures which are used by the pattern. Compared to this 

paper, we provide a richer set of IEC 61508 techniques and 

measures which can be more flexibly connected to the 

patterns. 

IEC 61508 techniques and measures are tailored to be 

more applicable for model-based design in the automotive 

domain in [6]. The techniques and measures are extended by 

additional information about tools and processes for 

model-based design. This provides a different view on the 

IEC 61508 techniques and measures for the automotive 

domain. This view is tailored to be easier understandable for 

automotive domain experts. 
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[7] maps SPICE software development processes to 

functional safety artifacts defined in the safety standard. The 

selection and verification of IEC 61508 techniques and 

measures is integrated in the overall SPICE safety system 

development process. The application of this approach is 

shown on several examples from the automotive domain in 

[8]. 

III. ARCHITECTURAL SAFETY PATTERNS 

In this section we introduce safety patterns and present one 

of our patterns from [1] in detail. Furthermore, we show how 

we want to evaluate the pattern with case studies. 

 

 
Fig. 1. Excerpt of the homogenous duplex pattern [1]. 

 

The concept of design patterns is well known in software 

development. Patterns are good solutions for re-occurring 

problems and they discuss consequences of these solutions. 

Design patterns for safety-critical hardware systems are 

introduced in [9], [10]. Some additional safety patterns are 

presented in [11] where also software-implemented safety 

patterns are handled. In [12] hardware as well as software 

patterns are collected and presented as a catalog. The catalog 

focuses on the consequences of the pattern application on 

quality attributes such as reliability, safety, cost, 

modifiability, and execution time. In [1], we reviewed and 

structured this catalog. Additionally, we linked the patterns to 
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basic architectural design decisions, called safety tactics. 

Safety tactics are generic principles which can be applied to 

architectures in order to increase their safety. Safety tactics 

can be related to IEC 61508 techniques and measures as 

shown in [2], where we linked each safety tactic to a set of 

IEC 61508 techniques and measures by analyzing the IEC 

61508 standard in a structured way. 

In this paper we now combine the work of our last two 

papers (on a safety pattern system [1] and on connecting 

safety tactics to the IEC 61508 standard [2]) to obtain and 

evaluate safety patterns which are linked to IEC 61508 

techniques and measures. These patterns can be used to 

structurally argue about the safety of the overall system 

architecture which is then linked to techniques and measures 

actually described by the IEC 61508 safety standard. 

A. Homogenous Duplex Pattern 

In this section we present one of the patterns from [1], the 

Homogenous Duplex Pattern. An excerpt of this pattern is 

shown the Fig. 1. We can see from the “GSN Diagram” 

section of the pattern, that it uses three safety tactics: 

 Replication Redundancy 

 Override 

 Condition Monitoring 

In [2], we linked safety tactics to IEC 61508 methods, 

which now allows us to connect the IEC 61508 methods to 

the architectural safety patterns. Table I shows the IEC 61508 

techniques and measures which are related to the three tactics 

used by the Homogenous Duplex Pattern. 
 

TABLE I: TACTICS AND IEC 61508 METHODS USED BY THE HOMOGENOUS 

DUPLEX PATTERN (BASED ON [2]) 

Tactics Related IEC 61508 techniques and measures 

R
ep
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A.2.1 Test by redundant hardware 

A.2.5 Monitored redundancy 

A.3.5 Reciprocal comparison by software 

A.4.5 Block replication 

A.6.3 Multi-channel output 

A.6.5 Input comparison/Voting 

A.7.3 complete hardware redundancy 

A.7.5 Transmission redundancy 

O
ve

rr
id

e 

A.1.3 Comparator 

A.1.5 Idle current principle 

A.8.1 Overvoltage protection with safety shut-off 

A.8.3 Power-down with safety shut-off 

C
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n
d
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n
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n

it
o
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A.1.1 Failure detection by online monitoring 

A.6.4 Monitored output 

A.8.2 Voltage control 

A.9.1 Watch dog with separate  time base without 

time-window 

A.9.2 Watch dog with separate  time base and time-window 

A.9.3 Logical monitoring of program sequence 

A.9.4 Combination of temporal and logical monitoring of 

program sequences 

A.9.5 Temporal monitoring with on-line check 

A.12.1 Reference sensor 

A.13.1 Monitoring 

 

B. Pattern Evaluation 

In the following we want to evaluate the link between the  

Homogenous Duplex Pattern and the IEC 61508 techniques 

and measures by comparing the techniques and measures 

linked to the pattern to the techniques and measures actually 

used in case studies which implement the pattern. In the 

standard, we have a big pool of techniques and measures and 

we want to know whether our selection from this pool by the 

pattern is good. This is a classical information retrieval 

problem; therefore, to evaluate the pattern, we calculate 

Precision and Recall values, which are well known 

information retrieval measures. 

In our evaluation, the Precision (Equation 1) expresses 

how many of the techniques and measures suggested by the 

pattern are actually useful for the case study architecture and 

the Recall (Equation 2) expresses how many of the actually 

applied techniques and measures were suggested by the 

pattern. Additionally, we calculate the frequency of 

Occurrence (Equation 3), which tells us how many percent of 

the overall techniques and measures from the standard are 

actually applied. This measure gives us an impression of how 

much the effort for a safety architect is reduced if he just has 

to look at our suggested techniques and measures instead of 

the whole set from the safety standard. 

 

 

Precision =  

Number of methods suggested by the pattern and 
used by the specific architecture 

 

  
Number of methods suggested by the pattern 

   
 

 

Recall = 

Number of methods suggested by the pattern and 
used by the specific architecture 

 

 
Number of methods used by the specific architecture 

   
 

Occurrence = 
Number of methods suggested by the pattern 

 
Overall number of methods in the IEC 61508 standard 

 

IV. CASE STUDY I: FREQUENCY CONVERTER 

In this section we compare the IEC 61508 techniques and 

measures used by a frequency converter system to the 

techniques and measures described by our Homogenous 

Duplex Pattern. 

A. System Description 

 

 
Fig. 2. Frequency converter architecture presented by Berthing et al. [13]. 

 

The safety-critical system we will discuss is taken from 

Berthing et al. [13]. The reason for choosing this system is 

that the paper was the only one we could find which gives 

detailed information about the applied IEC 61508 techniques 
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and measures of an architecture. The system is a 

safety-related frequency converter which uses the 1oo2D 

architecture, which is also known as the homogenous duplex 

architecture. A 1oo2D architecture is a high level architecture 

which is described in the IEC 61508 standard. It consists of 

two independent hardware channels producing two outputs 

which are checked by a comparator. Additionally, a 1oo2D 

system is equipped with diagnostic tests. If the tests fail or if 

the outputs differ, the system goes into a fail-safe state. Fig. 2 

shows the system architecture for the frequency converter 

presented by Berthing et al. 

B. Evaluation of the Link of IEC 61508 Methods to the 

Homogenous Duplex Pattern 

 
TABLE II: IEC 61508 TECHNIQUES AND MEASURES USED BY THE 

FREQUENCY CONVERTER ARCHITECTURE 

Tactics IEC 

61508 

Application in the 

frequency converter architecture 

R
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A.2.1 Redundant electronic subsystem 

A.2.5 Monitored redundant processing units 

A.3.5 Processing units - comparison by software 

A.4.5 Processing units - ROM memory replication 

A.6.3  - 

A.6.5 Input comparison for sensors 

A.7.3  - 

A.7.5  - 

O
ve

rr
id

e 

A.1.3 Processing unit result comparator 

A.1.5 Idle current principle for actuators 

A.8.1 Power supply unit overvoltage protection 

A.8.3 
Safety shut-off for power supply unit 
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d
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A.1.1 Online monitoring of the sensors 

A.6.4  - 

A.8.2 Safety shut-off for power supply 

A.9.1 Timeout monitored by a watchdog element 

A.9.2  - 

A.9.3 Watchdog checks correct program sequence 

A.9.4 Watchdog system checks 

A.9.5  - 

A.12.1  - 

A.13.1 Monitoring of the actuators 

- A.3.2 Processing unit software self-test: walking bit 

- A.4.3 Static memory regions: one-word (8bit) signature 

- A.5.2 Walk-path RAM test for variable memory regions 

- A.7.6 Fieldbus communication data checksum 

- A.10.1 Temperature sensor monitor ventilation system 

- A.10.4 Alarm for ventilation system failures 

 

From Table II we can see that most of the methods which 

are actually used by the frequency converter architecture are 

already suggested by the HOMOGENOUS DUPLEX PATTERN. 

With the information from this table, we calculate the 

following metrics: 

 Precision=15/22=68.2% 

 Recall=15/22=68.2% 

 Occurrence=22/216=10.2% 

Both, the Precision and the Recall are reasonably high to 

provide a good selection of suitable methods for the 

architecture. The Occurrence value shows that about 90% of 

the 216 techniques and measures form the IEC 61508 

standard are not used by the architecture. This means that 

especially for inexperienced safety architects, the 

architectural safety patterns can be very useful during the 

design phase to provide an initial overview of suitable IEC 

61508 for a specific system architecture. 

V. CASE STUDY II: AUTOMATION SYSTEM CONTROLLER 

In this section we compare the IEC 61508 techniques and 

measures used by an automation system controller to the 

techniques and measures described by our HOMOGENOUS 

DUPLEX PATTERN. 

A. System Description 

In an industrial case study we want to certify a 

programmable logic controller (PLC) for functional safety 

according to the IEC 61508 standard. The PLC system which 

applies the 1oo2D architecture is shown in Fig. 3. It uses 

redundant inputs and outputs and it has two separate 

hardware processing units which calculate identical tasks. 
 

 
Fig. 3. PLC architecture. 

 

B. Evaluation of the Link of IEC 61508 Methods to the 

Homogenous Duplex Pattern 

 
TABLE III: IEC 61508 TECHNIQUES AND MEASURES USED BY THE PLC  

Tactics IEC 61508 Application in the 

frequency converter architecture 

R
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A.2.1  

A.2.5  

A.3.5  

A.4.5 - 

A.6.3  

A.6.5  

A.7.3 - 

A.7.5  

O
ve

rr
id

e A.1.3 - 

A.1.5  

A.8.1  

A.8.3  

C
o

n
d
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n
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o
n
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o
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n
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A.1.1  

A.6.4  

A.8.2  

A.9.1 - 

A.9.2  

A.9.3  

A.9.4  

A.9.5  

A.12.1  

A.13.1 - 

- A.3.2  

- A.4.3  

- A.5.2  

- A.7.6  

- A.10.1  

- A.10.4  

 

Table III shows which tactics are applied by the PLC 

architecture. Due to confidentiality reasons we cannot 

explain the actual application of the IEC 61508 techniques 

and measures in the PLC architecture, but we can say 

whether it is used or not. Compared to the frequency 
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converter case study, even more of the techniques and 

measures suggested by the pattern are used in the PLC 

architecture and we obtain the following metrics: 

 Precision=17/22=77.2% 

 Recall=17/23=73.9% 

 Occurrence=23/216=10.6% 

The Precision and Recall values, which are both very high. 

This indicates that the techniques and measures suggested by 

the pattern fit the actually used techniques and measures very 

well. The Occurrence is almost the same as in the frequency 

converter case study. 

 

VI. CONCLUSION 

We showed the application of an architectural safety 

pattern from our safety pattern system which is presented in 

[1]. We evaluated the suitability of the HOMOGENOUS 

DUPLEX PATTERN by comparing its consequences in terms of 

suggested IEC 61508 methods to the methods applied in two 

case studies which use this architecture. From the results we 

can see that the patterns deliver reasonable results concerning 

the suggested methods. 

Including the safety methods in the patterns brings benefits 

for system architects, because they can use the well-known 

pattern notation to get an overview of the IEC 61508 methods. 

In particular for system architects who are unfamiliar with the 

standard, this can be very useful. The patterns additionally 

provide a well-structured approach to argue about system 

safety by connecting the safety goals of the architecture to the 

IEC 61508 methods through Goal Structuring Notation. 

With this paper we presented how safety pattern can be 

applied to design safety-critical systems and we showed how 

patterns can even be used to argue about the safety of a 

system. By showing the suitability of safety patterns for real 

safety architecture, we hope that this paper gives an impetus 

to the usage of design patterns in the safety domain. 
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Catalog of Security Tactics linked to Common Criteria
Requirements
CHRISTOPHER PRESCHERN, Institute for Technical Informatics, Graz University of Technology

Security tactics describe security design decisions in a very general, abstract, and implementation-independent way and provide basic
security design guidance. Tactics directly address system quality attributes and can be seen as building blocks for design patterns. In order
to establish a more detailed security tactic collection, we link them with the Common Criteria security certification standard by establishing a
connection between the security tactic goals and the Common Criteria Security Functional Requirements through Goal Structuring Notation.
In this paper we give a brief introduction to the Common Criteria standard and to Goal Structuring Notation, we present the full structured
and refined catalog of security tactics, and we discuss benefits of the link with the Common Criteria security standard regarding security
certification.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architecture—Patterns; K.6.5 [Management of computing
and information systems] Security and Protection

Additional Key Words and Phrases: security tactics, Common Criteria, Security Functional Requirements, security certification

ACM Reference Format:

Preschern, C. 2012.Catalog of Security Tactics linked to Common Criteria Requirements. Proceedings of the 2012 Conference on Pattern
Languages of Programs, 17 pages.

1. INTRODUCTION

Security certification allows to evaluate a system regarding its overall security by providing a pool of requirements
which have to be fulfilled. The security certification process, however, does not provide any methods to evaluate
the influence of single design decisions during system development. The link between single architectural design
decisions and their effect on the security quality attribute is described by [Bass et al. 2003] as security tactics.
Architectural tactics, in general, address a single system quality attribute and are more general and implementation
independent than design patterns, which can be composed of tactics [Kumar and Prabhakar 2010].

To evaluate the effect of architectural design decisions on security certification, a link between security tactics
and the certification process is required. In this paper, we establish this link by mapping requirements given in the
Common Criteria security standard to security tactics. We analyze Part 2 of the Common Critera standard which
contains Security Functional Requirements (SFRs) and relate them to security tactics using Goal Structuring
Notation. With this link between Common Criteria security certification and security tactics we refine security
tactics. Additionally, we refine the tactics by structuring them and by gathering information from literature about
their consequences and related tactics. We present the full catalog of security tactics and discuss the benefit of
the established link to Common Criteria SFRs. Additionally, our security tactics catalog brings the advantage that
the tactics are more structured and can provide a system architect with more detailed information about the effect
of security tactics on the security quality attribute and on security certification.
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Section 2 of this paper presents related work on security tactics, especially on their link to security certification.
Section 3 describes what architectural tactics are and gives a basic introduction to the Common Criteria security
standard and to Goal Structuring Notation. In Section 4 we present the full security tactics catalog with focus
on the link of the security tactics to Common Criteria requirements. In Section 5 we discuss the established link
between security tactics and the Common Criteria requirements and Section 6 concludes this work.

2. RELATED WORK

Architectural tactics addressing the quality attributes availability, modifiability, performance, security, testability,
and usability were introduced by [Bass et al. 2003]. This collection of tactics is extended by tactics addressing
the quality attribute safety [Wu 2003] and by refinement of availability tactics [Scott and Kazman 2009]. Security
tactics are extended in [Wyeth 2009], where a formal specification for them is defined. This allows to formally prove
the implementation of security tactics. [Kim et al. 2009] discusses security tactics and their relationship to each
other and to other tactics. They present the relationships between the tactics through feature modeling notation.
An empirical study on the relationships between architectural tactics given in [Al-Daajeh et al. 2011] where the
effect of safety tactics on quality attributes including security is covered.

Ryoo et al. suggest to extend security tactics by mining existing security patterns in order to find general tactics,
but they do not actually extend the security tactic catalog. They also give requirements which have to hold for
design decisions in order to be considered as a tactic. Tactics are domain neutral and are not attached to a
particular problem, they cannot be divided into multiple tactics, and they just address a single quality attribute
[Ryoo et al. 2010]. Another approach related to security patterns which uses mining is presented by Schumacher
[Schumacher 2002] who suggests to use security certification standards in order to mine for security design
patterns. Building patterns out of standards has the advantage, that the security standard is well accepted by a
huge community and its requirements are more likely to be complete than security requirements developed by an
individual. Therefore the standard allows to build patterns on a well matured basis. In [Schumacher 2003], the
SFR of the Common Criteria standard are taken as input to discuss the forces affecting an architectural security
pattern. Security patterns consisting of SFRs are also suggested in [Bialas 2011a] and [Bialas 2011b], where the
security development process is addressed in particular. A semi-formal way to trace security tactics along the
security development process is presented in [Houmb et al. 2009] where Common Criteria requirements are are
modeled with UMLsec.

[Wu 2007a] analyzes Common Criteria SFRs of existing products in order to reason about the effect of these
requirements on system quality attributes. He also constructs SFR requirement patterns for different domains (e.g
SFR patterns suitable for operating systems). The aim of his work is to provide security system developers a good
overview of relevant Common Criteria SFRs to address certain security aims. Compared to our work, Wu just
focuses on the security requirements and does not describe the consequences of applying architectural tactics.
We take benefit of security tactics which are a link between security quality attributes and architectural decisions.
Linking the tactics to the Common Criteria SFRs allows us to extend Wu’s connection between security quality
attributes and SFRs to include the architectural decision which influences the quality attribute.

To further evaluate the effect of architectural decisions, such as the application of tactics, on system quality
attributes, [Bass et al. 2003] suggest to construct scenarios and to evaluate different system architectures against
these scenarios. In [Ellison et al. 2004] security threats are evaluated and mitigated through security tactics. Our
work allows to establish a connection between the Common Criteria standard and these architecture evaluation
methods by connecting SFRs to security tactics.
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3. BACKGROUND

3.1 Architectural Tactics

Architectural Tactics describe basic design decisions which affect quality attributes like security for example.
Compared to design patterns, tactics are related to a single quality attribute and are more general. [Ryoo et al.
2010] describe the relationship between tactics and patters as follows: “Tactics are primitives that serve as building
blocks for architectural patterns. It is also true that tactics and patterns are not at the same abstraction level.
Patterns implement tactics; therefore tactics are a more abstract design concept than patterns.”

Ryoo et al. also gives basic attributes which have to be fulfilled by a design decision in order to be considered
as a tactic:

—Atomicity - A tactic is a high level design concept and cannot be divided into other multiple tactics, but it can be
refined. For example, the Recovering From An Attack tactic is refined by the Restoration and the Identification
tactic, but it is not composed of them. Refined tactics are presented in a hierarchical tree structure.

—Forces - A tactic just addresses a single quality attribute and therefore does not handle trade-offs between
forces.

—Problem-Specificity - Tactics are not specific to a problem. They are domain-neutral.

—Completeness - Tactics are more complete compared to design patterns in a way that less information has to
be added to a tactic in order to instantiate it. This is the case because tactics are general early-design decisions.

3.2 Common Criteria

The Common Criteria is an international security standard which evolved from security standards of the Canadian,
French, German, Netherlands, UK and US government. The standard is used as a basis for the evaluation of
security properties and allows to compare the security of IT systems [Common Criteria Recognition Arrangement
2009]. Part 1 of the standard gives a general overview of the certification process. Part 2 contains a collection of
Security Functional Requirements (SFRs) and Part 3 contains a collection of Security Assurance Requirements
(SARs). Requirements are grouped into classes which are further refined into families and then further refined into
components. The abbreviation of a requirement consists of three letters for the class, an underscore, three letters
for the family, a dot, and the component number. The requirement for cryptographic key generation (FCS_CKM.1),
for example, is the first component of the Cryptographic Key Management family (CKM) which is member of the
Cryptographic Support class (FCS).

For security certification of a Target Of Evaluation (TOE), a Protection Profile has to be defined or reused. This
profile is a general description of the type of TOE system and contains a set of SFRs and SARs against which
the system has to be certified. If a Protection Profile already exists for the TOE domain, it can be reused. If it
does not exist, it has to be constructed out of the SFRs and SARs given in the Common Criteria standard. This
can be a tedious task due to the huge amount of requirements. To evaluate a TOE according to a Protection
Profile, a Security Target has to be defined. This Security Target also consists of requirements for the TOE, but
compared to the Protection Profile it is not general but bound to the specific implementation of the system. For
the security target, a developer definitely has to create a set of Common Criteria requirements which the system
has to meet. These requrements for Security Targets mostly consist of the Protection Profile requirements and
probably additional requirements of the standard.

For the SARs several packages are defined which allow the developer to easily choose a suitable set of SARs.
The packages are called Evaluation Assurance Levels (EALs) and represent the confidentiality one can have in
the correct implementation of the system SFRs. There are, however, no packages defined for SFRs which makes
it rather difficult for developers to choose an appropriate set of functional requirements. By mapping the SFRs to
security tactics, this paper bridges this gap and allows developers to choose SFRs by deciding for security tactics.
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3.3 Goal Structuring Notation

The Goal Structuring Notation (GSN) was developed by [Kelly and Weaver 2004] and is often used in the safety
domain providing a structured way to argue for the achievement of specific goals. Recently, a standard for the
GSN was published which contains the definitions of the notation and which presents approaches to use GSN
in order to elaborate a specific goal [GSN Working Group 2011]. GSN was used to describe the rationale of
safety tactics [Wu 2003] and several suggestions have been made to use GSN in the security domain [Kelly and
Weaver 2004][Cockram and Lautieri 2007]. Figure 1 explains the GSN concepts which are used in this paper to
link security tactics to Common Criteria SFRs.

Fig. 1. GSN concepts used in this paper taken from [GSN Working Group 2011]

4. SECURITY TACTICS

In this section we give an overview of security tactics introduced by [Bass et al. 2003],we discuss the template
which we use to describe the security tactics, and we present the whole refined and structured security tactic
catalog.

4.1 Security Tactic Overview

Figure 2 gives an overview of the security tactics introduced by [Bass et al. 2003]. They are divided into three
distinct categories. Resisting Attacks covers security measures which can be applied in order to prevent attacks.
These tactics address the confidentiality and integrity security attributes of a system. Detecting Attacks and
Recovering From An Attack aim at handling successful attacks, where Recovering From An Attack focuses on
availability issues of a system.

4.2 Tactic Template

In [Bass et al. 2003] each of the security tactics is just described in a single paragraph. We want to structure
these tactics and add additional information. We do not use the common pattern description template consisting of
problem, forces, solution, and consequences to describe the security tactics, because tactics do not relate to a
specific problem or context and tactics do not address trade-offs between forces [Ryoo et al. 2010]. We use the
following sections to describe security tactics:
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Fig. 2. Overview of security tactics [Bass et al. 2003]

—NAME - The tactic name taken from [Bass et al. 2003]
—DESCRIPTION - A general description of the tactic based on [Bass et al. 2003]
—CONSEQUENCES - This tactic section describes consequences when applying the tactic. The consequences are

partially taken from patterns presented in [Hafiz et al. 2011], [Schumacher et al. 2005], and [Kienzle et al. 2002]
which apply the tactics.

—RELATED TACTICS - Gives information on related tactics. The information is partially based on [Kim et al. 2009].
—KNOWN USES - Gives examples for patterns applying the tactic. The examples are taken from the security

pattern catalog presented in [Hafiz et al. 2011].
—COMMON CRITERIA RATIONALE - This tactic section is the main contribution of our work. Security tactics are

linked to Common Criteria v.3.1 [Common Criteria Recognition Arrangement 2009] SFRs through GSN. GSN
enables us to use a structured approach to connect Common Criteria SFRs to architectural tactics. We do not
break down the goal of the security tactic to a level of how it can be achieved. We break down the goal on
subgoals required by the Common Criteria SFRs which can help achieving the overall goal of the security tactic.
We develop each tactic by gathering and structuring Common Criteria SFRs which are related to the tactic. The
selection of Common Criteria SFRs used in the GSN is based on the following sources:

a) A thorough investigation of the Common Criteria standard Part 2
b) Protection Profiles
c) Wu’s PhD thesis [Wu 2007a]

We found most of the relationships between tactics and SFRs by analyzing the SFR descriptions given in the
Common Criteria standard. The SFR description of FDP_UIT (see footnote1), for example, suggests that this
SFR is related to the Maintain Integrity tactic. We also analyzed approved Protection Profiles regarding their
objectives and their related SFRs. The Separation Kernel Protection Profile [U.S. National Information Assurance
Partnership 2007], for example, describes the objective O.AUTHORIZED_SUBJECT. This objective states that
just authorized subjects are allowed to access restricted data. In the Protection Profile, the objective is reached
if the FMT_MOF.1, FMT_MSA_EXP.1, FMT_MTD.1, and FMT_MCD_EXP.1 requirements are met. This gives us
the hint that these SFRs are related to the Authorize Users tactic. Wu’s PhD thesis [Wu 2007a] provides us

1FDP_UIT description: This family defines the requirements for providing integrity for user data in transit between the TOE and another trusted
IT product and recovering from detectable errors. At a minimum, this family monitors the integrity of user data for modifications. Furthermore,
this family supports different ways of correcting detected integrity errors. [Common Criteria Recognition Arrangement 2009]
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with a link between the SFRs and security attributes such as privacy or confidentiality. Some of the security
tactics (for example Maintain Data Confidentiality) are quite close to security attributes covered by Wu. The
SFRs mapped to these security attributes, therefore, can directly be included in the collection of SFRs for the
corresponding tactic.
After collecting the SFRs for each tactic, we developed GSN diagrams. For each tactic, we grouped SFRs
with similar aims with respect to the tactic and related them to a more general goal or strategy. These general
elements or the SFRs themselves are then connected to the security tactic. Some of the tactics are represented
as strategies, some of them, however, are represented as goals in the GSN. This is, because some of the
security tactics are not really design decisions, but more objectives (for example: Maintain Data Confidentiality ).
The completed GSN notation for the security tactics presents a set of requirements which allows a system
architect to check which requirements have to be met in order to achieve either the stated goal, or which have
to be met for applying the top-level strategy (the tactic) to a system architecture. An advantage of using GSN
is that the tactics can be presented in a more structured way which allows to directly use the representation
for architectural reasoning. GSNs provide a good basis for architectural reasoning regarding quality attributes
and have already been successfully applied to the safety domain [Wu 2007b]. The GSN diagram gives a quick
overview about the goals related to a security tactic. Additionally, the SFRs can provide more detailed information
on how to achieve these goals.
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4.3 Tactics Catalog

TACTIC NAME Authenticate Users
DESCRIPTION This tactic ensures that a user or computer is who he claims to be. Users/computers

are authenticated by something they know, something they have, ore something they
are.

COMMON CRITERIA RATIONALE

Authenticate Users is mainly based on the Common Criteria Identification and Authenti-
cation (FIA) class and on the TOE Access (FTA) class. FIA defines requirements for the
authentication mechanism (G10) and FTA discusses how it can be protected (G1) by
limiting the access (S3) and by maintaining session termination policies (S2).

CONSEQUENCES Authentication mechanisms can make the access to a system more difficult and cum-
bersome. Authentication credentials have to be distributed/maintained

RELATED TACTICS Authenticate Users is supported by the Limit Access tactic (S3). Authenticate Users is
often used in combination with Authorize Users

KNOWN USES Account Lockout, Assertion Builder, Authentication Enforcer, Brokered Authentication,
Message Intercepting Gateway

Catalog of Security Tactics linked to Common Criteria Requirements — Page 7

Publication 7 - PLoP 2012 207



TACTIC NAME Authorize Users
DESCRIPTION This tactic ensures that only certain authenticated users have access to a resource
COMMON CRITERIA RATIONALE

Common Criteria Requirements for the Authenticate Users tactic mainly cover specifi-
cation (G1) and protection (G6) of authorization data

CONSEQUENCES Rules regarding authorization can easily be changed, however, possibly many rules
have to be maintained. Analyzing required rules for users and understanding their
implications is a rather complex task [Schumacher et al. 2005].

RELATED TACTICS The Authenticate Users tactic is required as a precondition for the Authorize Users
tactic. Defining resources a user needs authorization for follows the Limit Exposure
tactic

KNOWN USES Assertion Builder, Brokered Authentication, Container Managed Security, Front Door, In-
tercepting Web Agent, Reference Monitor, Role Based Access Control, Secure Session
Object, Security Context

Catalog of Security Tactics linked to Common Criteria Requirements — Page 8

208 7. Publications



TACTIC NAME Maintain Data Confidentiality
DESCRIPTION Confidential data is protected from unauthorized access
COMMON CRITERIA RATIONALE

Common Criteria Requirements for the Maintain Data Confidentiality tactic cover pro-
tection of stored (G2) and transmitted (G4) data as well as data imported (G12) into or
exported (G9) from the system. Maintain Data Confidentiality is more a specific goal
than a strategy of how to reach a goal and therefore is represented as a goal in the
GSN

CONSEQUENCES In order to enforce cryptographic protection of data, the required cryptographic secret
has to be protected. Additional resources for computing and storing cryptographically
protected data are required [Blakey and Heath 2004].

RELATED TACTICS Limit Exposure helps to protect confidential data by eliminating possible attack vectors.
KNOWN USES Encrypted Storage, Information Obscurity, Intercepting Web Agent, Secure Session

Object
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TACTIC NAME Maintain Integrity
DESCRIPTION System or data modifications should be prevented or detected
COMMON CRITERIA RATIONALE

Most Common Criteria Requirements address the Maintain Integrity tactic. They can
be divided in requirements protecting the device itself (G2), requirements protecting
stored data (G7), and requirements protecting transmitted data (G15, G21). Most of the
requirements come from the Common Criteria classes Protection of the TSF (FPT) and
User Data Protection (FDP)

CONSEQUENCES Additional resources are required to protect the integrity of data by means of cryp-
tography [Blakey and Heath 2004]. Also any other integrity check measure requires
additional resources in terms of redundant computation or storage.

RELATED TACTICS For integrity protection the safety tactics Sanity check and Monitoring which are pre-
sented in [Wu 2003] are used. It is not surprising that safety tactics are used here,
because integrity protection is part of safety measures as well [Avizienis et al. 2004].

KNOWN USES Client Data Storage, Error Detection and Correction, Safe Data Structure

Catalog of Security Tactics linked to Common Criteria Requirements — Page 10

210 7. Publications



TACTIC NAME Limit Exposure
DESCRIPTION Possible attack vectors are decimated by limiting the ways security devices and data

are accessible.
COMMON CRITERIA RATIONALE

No common criteria requirements directly address Limit Exposure. However, if Limit
Exposure is applied to a system, less Common Criteria requirements have to be used
in order to achieve system security, because less threats affect the system.

CONSEQUENCES Limit Exposure is highly desirable for a system, however, it may not always be possible
to enforce this tactic. Limit Exposure decimates possible attack vectors and therefore
makes security validation easier. The tactic may however decrease system functionality.

RELATED TACTICS Limit Access is a way to enforce Limit Exposure
KNOWN USES Compartmentalization, Hidden Implementation, Trust Partitioning

TACTIC NAME Limit Access
DESCRIPTION Access to a resource is disabled. The user does not even have the possibility to access

it [Schumacher et al. 2005].
COMMON CRITERIA RATIONALE

Common Criteria provides requirements limiting the access to data (S2) and to system
resources like memory usage or processing power (S5).

CONSEQUENCES Limit Access decimates possible attack vectors. However, system functionality can be
affected. Administrators do not have to define access rights and enforce access rules,
because access is completely denied [Schumacher et al. 2005].

RELATED TACTICS Limit Access is a form of Limit Exposure. Limit Access is used for Authenticate Users.
Also the Authorize Users and Maintain Data Confidentiality tactic inherently use Limit
Access

KNOWN USES Authentication Enforcer, Chroot Jail, Demilitarized Zone, Front Door, Message Inter-
cepting Gateway, Packet Filter Firewall, Policy Enforcement Point
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TACTIC NAME Intrusion Detection
DESCRIPTION Detect ongoing (intrusion detection) or past (forensic) attacks on the system
COMMON CRITERIA RATIONALE

Most Intrusion Detection relevant Common Criteria Requirements are found in the
Security Audit (FAU) class, who’s description already says that the class can be taken
for intrusion detection requirements.

CONSEQUENCES Measures allowing to identify attacks and measures taken when an attack is detected
have to be specified. Intrusion Detection requires additional resources to log or monitor
relevant data.

RELATED TACTICS -
KNOWN USES Dynamic Service Management

Catalog of Security Tactics linked to Common Criteria Requirements — Page 12

212 7. Publications



TACTIC NAME Restoration - Availability Tactics
DESCRIPTION The system can be restored after an attack
COMMON CRITERIA RATIONALE

The Common Criteria requirements cover system and data recovery with the classes
Protection of the TSF (FPT) and User Data Protection (FDP)

CONSEQUENCES Compared to simple recovery for availability, in the security domain special care has to
be taken when maintaining copies of the system for Restoration, because this includes
that multiple copies of the system can be attacked [Im and McGregor 2007].

RELATED TACTICS Restoration can be in conflict with Maintain Data Confidentiality if multiple copies of
a system have to be maintained. Limit Access can be applied in that case to not
increase the attack surface. Restoration is an availability tactics and any recovery tactic
presented in [Bass et al. 2003] to meet availability aims can be applied.

KNOWN USES Checkpointed System, Error Detection and Correction, Replicated System, Standby,
Tandem System
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TACTIC NAME Identification - Audit Trail
DESCRIPTION Actions performed by a user are logged including an identity link
COMMON CRITERIA RATIONALE

Most requirements come from the Common Criteria FAU class which explicitly ad-
dresses security audits. Other requirements come from the Communication (FCO)
class and cover non-repudiation (G7) of sent or received messages. Non-repudiation is
not handled as a separate security tactics in [Bass et al. 2003], but can be seen as part
of the general Identification goal (G1).

CONSEQUENCES Additional security relevant data for the audit trail has to be stored and protected.
Identification possibly conflicts with user privacy requirements [Schumacher et al.
2005].

RELATED TACTICS Maintaining an additional record of confidential audit data works against the Limit
Exposure tactic. Authenticate Users, Authorize Users, Maintain Data Confidentiality,
and Maintain Integrity are necessary to protect the audit trail.

KNOWN USES Audit Interception, Secure Logger
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FAU (Security Audit) X X
FCO (Communication) X
FCS (Cryptographic Support) X
FDP (User Data Protection) X X X X X X
FIA (Identification&Authentication) X X
FMT (Security Management) X X X
FPR (Privacy)
FPT (Protection of the TSF) X X X X
FRU (Resource Utilisation) X X
FTA (TOE Access) X
FTP (Trusted Path/Channels) X X X

Table I: Mapping of the Common Criteria SFR classes to security tactics

5. DISCUSSION

Table I shows that no Common Criteria SFRs could be found which directly address the Limit exposure tactic.
However, Limit exposure is a valid security tactic. It is a basic security principle and is often applied in security
patterns. Limit Exposure fulfills all necessary requirements for tactics (atomicity, forces, problem-specificity,
completeness) which are described in [Ryoo et al. 2010]. However, Limit Exposure has no direct functional aim
and therefore is not directly addressed by the SFRs. This illustrates that the SFRs can be taken to enhance the
tactics, but they cannot be taken as the single basis for security tactics.

The security tactics also do not address all aspects of security. Privacy, for example, is not handled at all. The
whole Common Criteria class addressing privacy (FPR) is not mapped to any of the security tactics. Apart from
this class, at least parts of all other SFR classes were mapped to at least one security tactic. This shows us that
the security tactics appear to be incomplete, because they do not address all security quality attributes.

Most of the SFRs are mapped to the security tactics addressing authorization, authentication, confidentiality,
and integrity. This indicates that these tactics are especially well suited to be further refined into sub-tactics,
which could be based on the presented strategies in the goal structuring notation of the corresponding tactic.
Confidentiality, for example, can be seen as a separate quality attribute but it is just addressed by the Maintain
Data Confidentiality tactic. Also the integrity quality attribute is just addressed by one security tactic, Maintain
Integrity. These two tactics are mapped to many SFRs which suggests that these two security tactics should
be further refined. Another explanation for the imbalanced SFR distribution is that some security tactics rather
address system requirements than architectural design decisions. Maintain integrity, for example just says that the
quality attribute integrity has to be met and gives no design decision on how to achieve that. This is the reason
why we represented the Maintain Integrity tactic as a goal in the GSN. This indicates that the tactic is not very
well chosen. Another indicator for this is that well known security principles such as defense in depth or the least
privilege principle cannot be found in the security tactics catalog. Therefore, we think that the security tactics
catalog is rather incomplete and we leave it up to future work to revisit security tactics regarding their structure and
completeness by adding or modifying the existing tactics.
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6. CONCLUSIONS

In this paper we present a full catalog of security tactics with focus on the link between the tactics and the Common
Criteria security standard. Moreover, this catalog provides more detailed and structured descriptions of security
tactics compared to the initially presented tactics by [Bass et al. 2003].

The link between security tactics and SFRs allows easier evaluation of the influence of SFRs on system
architectures. Security architects who have to certify their products can benefit from this link in three ways:

—Common Criteria Protection Profile and Security Target designers can construct a security architecture by using
security tactics and can then see which SFRs are appropriate for the architecture. This can reduce the design
effort by giving an initial advice on the SFRs which should be included for the system certification.

—Common Criteria Target Of Evaluation designers have a given set of SFRs which have to be achieved. The
catalog suggests them a set of architectural security tactics which can achieve these SFRs.

—Common Criteria Target of Evaluation designers can use the catalog to argue whether their architecture uses a
specific SFR and can relate this SFR to high level architectural design decisions by using the GSN diagrams.

Security architects who do not have to certify their products can still benefit from the catalog. If they want
to apply a security tactic, they just have to look at the Common Criteria descriptions of the SFRs which are
connected to the security tactic to get a basic idea how the tactic can be implemented. Another application of our
refined security tactics catalog could be to enhance the information of existing security patterns which use the
tactics. [Kumar and Prabhakar 2010] explains how patterns can be decomposed into their basic underlying tactics.
The consequences section of security patterns could be extended with information about the effect on security
certification by decomposing the pattern into its security tactics.

We believe that the presented collection of security tactics encourages the usage of security tactics and security
patterns for products which have to be Common Criteria certified and provides a possibility to structurally argue
about the usage of SFRs in high level design decisions.
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Abstract— The increasing connectivity of embedded systems 

requires more attention to security aspects. Security should not 

be post-engineered to a system, but should already be considered 

during system design. However, especially during early design 

phases it is difficult to judge the impact of high level design 

decisions, such as the decision for an overall system architecture, 

on security.  

To provide guidance for the system architecture selection for 

safety-related systems, we propose a quantitative security as-

sessment method based on the application of design patterns. 

Based on security threats included in the patters, we calculate a 

security metric to estimate the patterns' security influence for a 

specific system. We describe the calculation and application of 

the proposed security metric with an industrial case study. 

 
Index Terms—Design Patterns, Metrics, Safety, Security. 

 

I. INTRODUCTION 

Security plays an increasingly important role for embedded 

systems as they become more and more interconnected. In-

cidents such as the Stuxnet attack [1] show that even safe-

ty-critical systems considered to be secure if not connected to 

the Internet can become subject to attacks. For safety-critical 

systems, security often does not play a primary role but is 

post-engineered after the safety-critical system is designed. 

An example for this are automation systems which partially 

have to use standardized insecure protocols. If these systems 

have to be accessed remotely, a common solution would be to 

provide a VPN connection and to tunnel the insecure protocol 

via this connection. However, such systems do not provide 

any defense in depth and if the VPN security measure can be 

broken or circumvented, an attacker can influence safe-

ty-critical functionality of the system. To analyze and counter 

relevant attacks and to minimize the effect of successful at-

tacks, security should be considered during system design 

already. However, especially during early system design, such 

as the selection of an appropriate architecture meeting the 

system's safety demands, it is difficult to estimate the effect of 

these high level design decisions on the resulting system 

security.  

To provide security guidance for the architecture selection 

for safety-critical systems, we propose a metric to compare 

the security of safety architecture design patterns. The metric 

is based on the relevant set of security threats for a pattern and 

on their probability of occurrence. In this paper we describe 

with a case study how to calculate and use the security metric 

in order to choose a system architecture based on design 

patterns which satisfies both, safety and security needs. 

This paper is structured as follows. Section 2 covers related 

work on security metrics with focus on security metrics for 

design patterns. Section 3 provides basics on Goal Structuring 

Notation and safety architecture design patterns. Both will be 

used in Section 4 where we propose a security metric and 

apply it to a case study to select a system architecture from a 

set of safety architecture patterns. Section 5 concludes this 

work. 

II. RELATED WORK 

This section presents related work on general state of the 

art security metrics and in particular on security metrics for 

design patterns. 

A. Security Metrics 

Security metrics qualitatively or quantitatively describe the 

level of security for a system. Literature provides over 900 

different security metrics [2]. Some of them are 

well-established metrics even used in industry and some of 

them are rather experimental and just described and applied in 

scientific papers. Several papers give an overview of existing 

security metrics and try to categorize them. For example, in 

[3] the authors list existing metrics and divide them into 

metrics which address a set of security targets or activities, 

metrics which relate to vulnerabilities, and metrics related to 

(risk)management. Alternatively security metrics can be 

categorized according to the main security attributes (e.g. 

confidentiality) which they address [4]. Another form of 

overview of existing security metrics which determines at-

tributes such as correctness or measureability to qualify good 

security metrics is presented in [5]. The authors of [6] suggest 

a security metric classification based on the software devel-

opment phase measured by the metric. They obtain the fol-

lowing classes of security metrics (for which we here show 

representative examples based on [6]): 

- Requirements Phase: Metrics describing the per-

centage of fulfilled security requirements or the 

number of security requirements or misuse cases 

[7][8] 

- Design Phase: Metrics describing the number of de-

sign decisions or attack surface related metrics 

[9][10] 

- Implementation Phase: Metrics describing the num-

ber of software failures and in particular security 

related failures or metrics describing the number of 

implemented security exception [11] 

- Testing Phase: Ratio or number of security test cases, 

reaction of the software to attack patterns [8] 

- Maintenance Phase: Ratio of software changes due to 

security incidents or mean time between security 

incidents [7] 

- System-Level Metrics: Some security metrics do not 

just focus on one software development phase, but 

rather include more than one or even all of them. An 

Quantitative Security Estimation 

based on Safety Architecture Design Patterns 

Christopher Preschern, Nermin Kajtazovic, Andrea Höller, Christian Kreiner 
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example for such as metric is the Common Criteria 

security certification. The certification assigns se-

curity levels to describe the achieved security of a 

product which can already be seen as a metric. To 

provide more detailed metrics based on the standard, 

the authors of [12] use specific Common Criteria 

requirements and analyze their achievement in a 

specific product to describe the product’s level of 

security. 

B. Pattern Security Metrics 

The authors of [13] evaluate the security of an architecture 

by considering different misuse patterns. They propose to 

analyze how many misuse patterns for an architecture can be 

countered when adding security patterns to improve the ar-

chitecture. The calculated value then represents the level of 

security for the applied security patterns. This idea is taken 

one step further in [14], where the patterns present in an 

architecture are first automatically mined and then evaluated 

regarding their influence on security. 

The authors of [15] present a similar approach. They map 

security patterns to quality attributes (confidentiality, availa-

bility, ...) which these patterns achieve or improve and esti-

mate the influence of the patterns on these quality attributes. 

During system design, threat trees are constructed and the risk 

of the threats is estimated. Patterns which can reduce these 

risks are then selected. In another paper [16] the authors focus 

on determining the risk reduction metrics and other security 

metrics for the patterns. 

Halklidis et al. provide the related work which is closest to 

our proposed security metrics for safety patterns. They ana-

lyze a set of security patterns and assign values representing 

their suitability to counter STRIDE threats [17][18]. These 

patterns are then taken into consideration when designing a 

secure architecture. First, they determine possible attacks for 

a system and structure them in fault trees. Next, they estimate 

probabilities for the attacks and decide for a set of security 

patterns by considering how much the attack probabilities can 

be reduced by the different patterns [19]. Compared to our 

work, they use patterns from a different domain (not safety) 

and they do not implicitly cover the threat impact in the pat-

tern structure as it is the case in our work. 

III. BASICS 

This section briefly explains the basics of Goal Structuring 

Notation diagrams and safety architecture patterns which will 

both be needed in the following sections. 

A. Goal Structuring Notation 

Goal Structuring Notation (GSN) is a standardized notation 

to structurally present elements of an argument (claims/goals, 

context, evidence, ...) and their relations [20]. With GSN it is 

possible to link a high level goal to very specific and detailed 

information/evidence which supports the high level 

claim/goal. 

Figure 1 shows an explanatory example for a GSN dia-

gram. In order to show that the rather general top-level goal 

(“The system is safe in case of hardware faults”) is achieved, 

it is broken down into more specific sub-goals and linked to 

these sub-goals and their evidence of achievement with ar-

rows. First, for the specific example, an architectural measure 

(GSN strategy element: “Redundant Hardware & Output 

Voting”) is implemented to achieve the top-level goal. Next, 

sub-goals relevant to achieve the architectural measure come 

up (e.g. “Voter works properly”). If these sub-goals are spe-

cific enough, they can be linked to GSN evidence elements 

(e.g “Voter test documentation”). Otherwise they could be 

further split up. If all sub-goals are related to evidence ele-

ments, one gets a complete argument for the achievement of 

the top-level goal. Further information and examples about 

GSN can be found in [20]. 
 

 
Fig. 1. Goal Structuring Notation Example 

 

B. Safety Architecture Patterns 

Design patterns describe good solutions for re-occurring 

problems. There are patterns for software design or archi-

tectures in general and also patterns which focus on more 

specific topics. We will focus on the safety architecture pat-

terns from [21] which provide solutions for high level soft-

ware or hardware architectures for safety-critical systems. 

An example for such an architecture is the TRIPLE 

MODULAR REDUNDANCY (TMR) pattern which uses three 

identical channels and a voter which decides for the majority 

of the channel outputs. This architecture increases the sys-

tem’s availability and protects from random hardware faults. 

The 15 patterns in [21] all contain the following: 

- Description in which Context they can be applied 

- Description which Problem the solve 

- Description of the Solution to that problem in-

cluding a diagram showing the system’s main 

components 

- Description of the Consequences when applying 

the pattern 

- GSN diagram containing security threats 

We will especially focus on the GSN diagram of the pat-

terns which provides a structured presentation of safe-

ty-relevant threats. The threats were obtained with the 

STRIDE threat modeling approach which is described in 

detail in [22]. The GSN diagrams consist of a collection of 

goals who’s aim is the prevention of attacks related to safe-

ty-critical STRIDE threats. 

IV. CASE STUDY: APPLYING THE SAFETY PATTERNS AND 

ESTIMATING THEIR EFFECT ON SECURITY 

In this section we describe an industrial case study for 

which we consider different safety architectures and compare 

their security. Figure 2 gives on overview of this section and 

shows how we will calculate a security metric to guide the 

architecture selection. 
 

 
Fig. 2. Process of calculating the security metric 
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A. System Description 

Our case study is an automation system for hydro-power 

plants. The automation system has to control turbines and has 

to detect critical states such as too high voltages in the power 

plant generator. Malfunctions of the hydro-power plant con-

troller could lead to damage of the machinery such as the 

turbines and could even be a threat to human safety for people 

operating the power plant. Therefore, the specific system has 

to be safety-integrity-level 3 (SIL3) certified according to the 

IEC 61508 safety standard. This standard recommends to use 

redundant hardware for SIL3 systems. Therefore, we will just 

consider safety patterns containing redundant hardware as 

candidates for the system architecture. 

Additional hardware constraints for the hydro-power plant 

controller further narrow down the applicable patterns. For 

the controller hardware design, at most three independent 

complex hardware elements (programmable microcontrol-

lers) are available due to cost reasons. Thus, just patterns 

containing at most three independent hardware channels will 

be considered. 

The above mentioned constraints give us the choice of the 

following four safety architecture patterns (detailed archi-

tecture descriptions can be found in [21]): 

- HOMOGENOUS DUPLEX,  

HETEROGENOUS DUPLEX 

The architecture (Figure 3) consists of two homoge-

nous (identical) or heterogenous (diverse) channels 

which compute outputs from input data. A switch de-

cides which output is actually taken. Normally, the 

primary channel is used. However, if the fault detector 

detects a failure in the primary channel, the switch 

takes the output of the backup channel. 

For the used hardware, the two channels would be 

implemented on one microcontroller each. One mi-

crocontroller would be used to implement the fault 

detector. The switch would be realized with additional 

hardware. 

 
Fig. 3. HOM. or HET. DUPLEX Patterns 

 

- HOMOGENOUS TRIPLE MODULAR REDUNDANCY,  

HETEROGENOUS TRIPLE MODULAR REDUNDANCY 

The architecture consists of three homogenous (iden-

tical) or heterogenous (diverse) channels. All channels 

compute an output and a voter decides for the majority 

of the outputs. 

For the used hardware, the three channels would be 

implemented on one microcontroller each. The voter 

would be realized with additional hardware. 

 
Fig. 4. HOM. or HET. TRIPLE MODULAR REDUNDANCY Patterns 

 

From a safety point of view, all of the four architectures 

above are applicable for the hydro-power plant controller. 

Now, we want to evaluate their influence on security to get 

some more guidance for the architecture selection. 

B. Security Threats 

The safety architecture patterns of [21] come with a GSN 

diagram representing safety-relevant threats which were 

gathered for the patterns with a STRIDE analysis [22]. Figure 

5 shows the GSN diagrams for the four considered patterns. 

We can see that some sets of specific threats (smaller font size 

in the figure) for the different patterns are similar, but the 

combination of the threats to an overall security argument 

(larger font size) is very different. For example, the difference 

between the HETEROGENOUS and the HOMOGENOUS TMR 

pattern is that for the heterogenous version, 2 of 3 single 

channels have to be secure of attacks, while for the homog-

enous version, no GSN multiplicity element is present in the 

diagram. This is, because if the channels are identical, an 

attacker usually can easily attack all three channels as soon as 

he knows how to compromise one of them. Therefore, the 

security GSN diagram just considers one channel for the 

Homogenous TMR pattern.  
 

 
Fig. 5. GSN diagrams for safety architecture patterns (based on [21]) 
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C. Security Risk Estimation 

We have seen in Figure 3 that many of the threats are sim-

ilar for the different patterns. We now rate these general 

threats without yet knowing which specific architecture will 

be chosen. We conducted a meeting with system architects 

and security experts of our industrial partner to estimate the 

probability of attacks related to specific threats for the hy-

dro-power plant controller. Note that we do not estimate the 

attack impact (which is common in security risk estimation 

like [22]), because the impact is already implicitly covered in 

the position of the threat in the GSN diagram. This is an 

advantage of the presented approach compared to pattern 

security metrics described in literature. The results of the 

probability of attack estimation made by the industrial partner 

is shown in Table I where the introduced “Goal Confidence” 

(probability that the threat-related GSN goal is achieved) is 

the converse probability to the estimated “Probability of 

Attack” and the values (none, low, medium, high) are sub-

stituted with (0.00, 0.01, 0.05,0.20). These values were chose 

based similar estimations in literature [15][19]. 
 

TABLE I: GENERAL THREATS FOR ALL CONSIDERED ARCHITECTURES 

Threat 
Prob.of 

Attack 

Goal-

Conf. 
Comments 

Denial of Service, micro- 

controller output data 
none 1.00 

The outputs are always hardwired 

to the actors, switches or voters 

Denial of Service of 

microcontroller input data 
low 0.99 

The inputs are received via a 

separate LAN 

Tampering of micro- 

controller output data 
none 1.00 

The outputs are always hardwired 

to the actors, switches or voters 

Tampering of micro- 

controller input data 
low 0.99 

The inputs are received via a 

separate LAN 

Elevation of privilege on 

microcontroller 
high 0.80 

Controller connected to the local 

LAN; OS could be compromised 

Microcontroller spoofing medium 0.95 
Users often just use weak 

passwords 

Denial of Service of 

switch/ voter output data 
none 1.00 The outputs are hardwired 

Tampering of 

switch/voter output data 
none 1.00 The outputs are hardwired 

Elevation of privilege on 

switch/voter 
low 0.99 

Unlikely, because it is a simple 

hardware element 
 

Switch/Voter spoofing 
 

none 1.00 The outputs are hardwired 

 

D. Goal Confidence 

With the “Goal Confidence” for the threat goals estimated 

in Table I, we can now compute an overall metric for the 

security of the pattern architectures. We simply use proba-

bility theory to propagate the goal confidence to higher level 

goals. Table II shows the calculation rules. 

With the established rules we can now calculate the goal 

confidence of the top-level goals for the security GSNs of the 

four considered safety architecture patterns. First, we calcu-

late the goal confidence for “Single Channel works properly” 

or “Fault Detector works properly” (goals from Figure 5):  
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TABLE II: GOAL CONFIDENCE FORMULAS 

GSN Relation Goal-Confidence 
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(formula taken from [23]) 

 
At least one of N subgoals has to be 

met to meet the high-level goal 
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Next we calculate the goal confidence for “Switch works 

properly” or “Voter works properly”: 
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Next we calculate the goal confidence for the top-level 

goals for our four considered architectures. We simply apply 

the equations from Table II according to the GSN diagrams 

from Figure 3 to obtain the goal confidence values for the 

HOMOGENOUS TMR, HETEROGENOUS TMR, and the 

HOMOGENOUS DUPLEX system. 
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For the HETEROGENOUS DUPLEX system we first calculate 

the goal confidence of the “Fault Detector and one Channel 

work properly” goal and then the overall goal confidence. 
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E. Architecture Decision 

Based on the probability estimation for threat-related at-

tacks, we now have the following security metrics for our four 

considered architectures: 
 

- HOMOGENOUS TMR: 73.7% 

- HETEROGENOUS TMR: 83.0% 

- HOMOGENOUS DUPLEX: 73.7% 

- HETEROGENOUS DUPLEX: 85.7% 
 

These values represent the probability of an attacker tam-

pering with the safety functionality of the system. However, 

one has to be careful when interpreting these values. The 

absolute values are highly dependent on our mapping of the 

(none, low, medium, high) terms used during the threat 

probability estimation to quantitative values. This means that 

the absolute values are not well suited to directly represent the 

exact probabilities for attacks. However, when comparing the 

values for the different architectures, the calculated security 

metrics can be very useful. For example, we can see that the 

HOMOGENOUS TMR pattern for our case study is less secure 

than the HETEROGENOUS TMR pattern. This is not very sur-

prising, because obviously it is more difficult for an attacker 

to attack three diverse systems compared to three identical 

systems. Still, for other architecture pairs, the security metrics 

do give valuable information. For example, the metrics say 

that the HETEROGENOUS TMR pattern is less secure then the 

HETEROGENOUS DUPLEX pattern in the case of our hy-

dro-power plant controller with its specific threat probability 

estimation. This information is not obvious and can give 

guidance for preferring one safety architecture over another. 

It is also interesting to compare the security metrics of the 

patterns to the security metric of a single microcontroller 

(which would be the architecture for the system without ap-

plying any of the patterns): 
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These values represent the relative security improvement 

when applying the pattern. We can see that the homogenous 

version of the patterns actually decrease the overall security 

of the system. This is not surprising, because they increase the 

attack surface for the system. The heterogenous versions also 

increase the attack surface, but they also provide more secu-

rity, because compared to a single microcontroller, they pro-

vide diverse systems which requires an attacker to break more 

than one of the microcontrollers. 

For the hydro-power plant controller, the information about 

the influence of the architecture on security supported the 

decision to implement the Heterogenous Duplex pattern. 

Figure 6 shows the high-level architecture of the resulting 

hydro-power plant controller. 

 

 

 

 

 
Fig. 6. Implemented HETEROGENOUS DUPLEX architecture 

 for the hydro-power plant controller 

 

 

F. Discussion 

We calculated security metrics for four patterns; however, 

with the calculation rules given in this paper, it is no problem 

to calculate the security metrics also for the other patterns in 

[21]. This would be necessary, for example, if there were 

different hardware constraints for a system architecture. Our 

choice for one of the four considered architectures of course 

not just effects system security, but even has a bigger effect on 

other quality attributes such as safety, availability, or system 

costs which might be more important drivers for the design 

decision. Still, the security metric allows to already consider 

security at early stage architecture design and provides the 

possibility to quantitatively compare the security of different 

architectures. In particular in some cases, as in our case study, 

where from the point of view of other quality attributes sev-

eral different architectures are possible candidates, the secu-

rity metrics can help making a decision. 

A drawback of the proposed security metric is that some-

one who is familiar with the system has to estimate the 

probability of attacks related to some basic threats. However, 

a risk estimation step is usually required for any kind of 

quantitative security metrics. The advantage of the proposed 

approach is, that one just has to estimate the probability of 

attacks and not their impact, because the information about 

the impact is already present in the safety architecture pat-

terns. 

V. CONCLUSION 

In this paper we showed with a case study how security 

metrics can help to make decisions for early system archi-

tecture design. We estimated the probability of general at-

tacks for a case study and calculated a resulting security 

metric when applying different safety architecture patterns in 

order to compare them and decide for one of them. Apart from 

the design guidance by the patterns as good solutions to spe-

cific problems, with the described approach a system designer 

now has the possibility to quantitatively estimate the influence 

of safety architecture selection on security. The presented 

method to compare the security of different architectures aids 

the decision for a specific architecture from a security point of 

view. 
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For future work it would be interesting to apply the security 

metric to other case studies or to apply the metric to GSN 

diagrams of other domains. The metric could even be ex-

tended to evaluate both, safety and security, of an architecture 

if appropriate safety GSN diagrams for the architecture are 

available. Another point for future work is to thoroughly 

evaluate the proposed security (for example with a sensitivity 

analysis) metric. At this point it is difficult to compare the 

metric to security metrics in literature, because the metrics in 

literature do not describe the security of general architectures 

and require more detailed security assumptions/information 

about the system (such as the impact and probability of de-

tailed attacks). However, in the long term we plan to evaluate 

the proposed metric by analyzing the number of incidents on 

different systems which apply the safety architecture patterns 

and we expect to obtain a relation to our security metric. 

With the approach described in this paper we provide a way 

to easily compare the level of security when applying safety 

design patterns. With this method we aim to increase the 

awareness and consideration of security problems in the 

safety domain. 
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Abstract—Safety and security certification are time and
money consuming tasks. Changes to certified systems usually
require re-certification of the whole product. Modular certifi-
cation approaches applied to the safety and security domain
aim at reducing these costs.

In this paper, modular certification concepts with focus on
IEC 61508 safety certification are analyzed and an approach for
structuring the modular certification process by providing de-
tailed requirements is suggested. We gather requirements from
the security domain in order to fulfill objectives which have to
be reached to enable modular safety certification. Functional
requirements are taken from the Common Criteria Separation
Kernel Protection Profile and assurance requirements are taken
from a Common Criteria class responsible for compositional
security certification.

Keywords-safety; security; modular certification; IEC 61508;
Common Criteria; Separation Kernel Protection Profile

I. INTRODUCTION

Safety and security critical devices require certification
according to standards, such as IEC 61508 for safety and
Common Criteria for security. Both of these certifications
require rigorous development and maintenance processes
why nowadays, certification takes a big part of product de-
velopment costs. For reducing these costs it is very desirable
to find more efficient approaches to achieve certification.

Because safety and security have several common aims,
like system integrity for example [1], certifications for safety
and security also have some processes in common. Several
steps for safety and security certification could be combined
or artifacts from one certification could be used for the
other to reduce overall certification costs for systems which
have to be certified for both, safety and security [2]. There
are suggestions in literature on how to merge safety and
security certification processes, although current certification
standards do not explicitly allow that. There even have been
attempts to provide a basis for combined safety and security
certification in form of a suggestion for a safety and security
standard [3]. Even if a system does not need to be certified
for both safety and security, there still is a lot of potential
that safety and security certification processes could benefit

from one another by using well established methods from
the other certification process.

An example where safety certification could benefit from
security standards is modular certification, where system
components can be certified independently from one another
in order to keep certification costs low. This allows effec-
tive certification and in particular effective re-certification
of modified systems. The IEC 61508 safety certification
standard allows modular certification, but it is not very
well described in the standard which requirements have
to be met in order to be allowed to certify components
independently from one another. The standard lacks of a
structured approach for system developers to show the safety
certification authority whether modular certification can be
used for certifying a system.

In this paper, we suggest an approach providing a struc-
tured basis for showing an IEC 61508 certification authority
whether modular safety certification can be applied. The
current modular safety certification process requires the
developer to show time and space partitioning between com-
ponents in order to certify them independently. The standard
does not cover how this can be achieved in detail. We suggest
to use Common Criteria security certification requirements
taken from a Protection Profiles with similar aims, as a
basis to show software component independence for modular
safety certification. Protection Profiles are collections of
security certification requirements for specific product types,
such as the product type of separation kernels for example.

Artifacts from the Separation Kernel Protection Profile
(SKPP) can build a basis for time and space partitioning
requirements in the safety domain. The SKPP includes a
detailed collection of requirements necessary for time and
space partitioning and has been acknowledged by a big
community; therefore, it is more likely to be complete than
solutions that are developed individually.

II. MODULAR CERTIFICATION

This section shows state of the art regarding modular
safety and security certification with focus on the IEC 61508
safety standard.
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Rushby [4] presents the idea of modular certification and
shows its basic requirements. To provide modular certifi-
cation, isolation between the modules has to be enforced
so that safety and security attributes can still be guaranteed
when modules are being composed. To achieve that, micro-
kernels are commonly used to separate applications. Rushby
[5] draws connections between the safety partitioning prop-
erty and security efforts by relating security attributes such
as process security, data flow security, access control and
denial of service to the safety partitioning process. The
connections indicate that the problems in the two domains
are rather similar and that probably a common solution for
modular certification can be used for both, the safety and
the security domain.

A. Modular Security Certification

Evolving from Rushby’s requirements, nowadays the Mul-
tiple Independent Levels of Security (MILS) architecture is
commonly used for separating security modules to allow
modular certification. MILS is based on different layers of
trust, where upper layers are based on lower layers, but do
not depend on anything else in the system. In the security
domain such systems are implemented as separation kernels
which ensure that software running on top of the kernel
is partitioned into independent components which cannot
influence each other [6]. Such systems can be certified to
the Common Criteria standard, which offers an approved
Protection Profile containing requirements for separation
kernels. Modular certification for secure systems is possible
since version 3.0 of Common Criteria which contains an
assurance class addressing compositional certification (the
ACO:Composition class) [2] [7].

B. Modular Safety Certification

Regarding safety, modular certification is often applied to
the avionics domain where the well established Integrated
Modular Avionics architecture allows to build and certify
components separately from each other [8] [9]. The archi-
tecture is based on a separation kernel which handles data
and resource partitioning and protects tasks from unintended
interaction.

Most approaches for modular safety certification are based
on a certified operating system which monitors resource
allocation and task partitioning [5]. McDermid et. al. [10]
suggest an approach called LISA (Low-level Interaction
Safety Analysis) to analyze partitioning capabilities of oper-
ating systems for safety-critical applications. The approach
analyzes system resources and possible failures with special
focus on the effect of hardware failures on software compo-
nents.

Recently also other approaches, which are not based
on the underlying operating system, are used to achieve
modular safety certification. Amey et. al. [11] describes a

modular certification concept, where the SPARK program-
ming language is used in combination with static code
analysis to provide a proof that one part of the code cannot
influence other parts. Also [12] shows how the usage of
a safe programming language subset in combination with
static code analysis enables robust partitioning. Delange et.
al. [13] present an approach where the system architecture
is modeled with an architecture description language and
architectural constraints regarding safety partitioning can be
checked.

C. Modular Safety Certification According to IEC 61508

The IEC 61508 standard [14] allows modular certification
and covers several architectural aspects allowing later soft-
ware modifications. For modifications, the effect on other
system components has to be analyzed. For hardware, the
Failure Mode and Effects Analysis (FMEA) is used to asses
a system regarding safety and to check which parts of
a system can influence one another. For software, several
effect analysis techniques have been proposed in literature
[15] and a very basic explanation for a software effect
analysis is given in IEC 61508-3 appendix F. Depending
on the result of this effect analysis, just parts of the system
or even the whole system have to be re-certified.

IEC 61508-3 appendix F describes objectives (time and
space partitioning) which have to be achieved for software
components in order to allow modular certification. These
objectives include that data cannot be modified by other
modules and that a module cannot block resources (e.g.
processing time) in a way that the safety functionality of
another module fails.

The IEC 61508 standard describes no detailed require-
ments for the partitioning mechanism. The only information
given, is that time and space partitioning has to be ensured.
By not giving clear requirements, the standard leaves the
task of gathering these requirements up to the system devel-
oper. We suggest to use requirements already collected and
approved in the security domain, because a security certified
separation kernel must meet similar objectives.

III. DEVELOPING A STRUCTURED METHOD TO ACHIEVE

MODULAR SAFETY CERTIFICATION

In this section we propose a well structured approach
to show software component independence which allows
modular safety certification. We gather security requirements
and present a method how to use these requirements to make
a decision on which parts of a system modular certification
can be applied.

The SKPP [16] describes requirements for separation
kernels which are used in the security domain to achieve
modular certification. Some of the functional separation
kernel requirements can be used as requirements to prove
independence between software safety components. We an-
alyzed the SKPP to filter out time and space partitioning
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Table II
DESCRIPTION OF ALL PARTS OF THE COMMON CRITERIA

ACO:COMPONENTS CLASS [7]

Name Description
ACO
COR

This family addresses the requirement to demonstrate that the
base component can provide an appropriate level of assurance
for use in composition.

ACO
DEV

This family sets out requirements for a specification of the
base component in increasing levels of detail. Such infor-
mation is required to gain confidence that the appropriate
security functionality is provided to support the requirements
of the dependent component (as identified in the reliance
information).

ACO
REL

The purpose of this family is to provide evidence that de-
scribes the reliance that a dependent component has upon
the base component. This information is useful to persons
responsible for integrating the component with other eval-
uated IT components to form the composed TOE, and for
providing insight into the security properties of the resulting
composition. This provides a description of the interface
between the dependent and base components of the composed
TOE that may not have been analyzed during evaluation of
the individual components, as the interfaces were not TSF
interfaces of the individual component TOEs.

ACO
CTT

This family requires that testing of composed TOE and testing
of the base component, as used in the composed TOE, is
performed.

ACO
VUL

This family calls for an analysis of vulnerability information
available in the public domain and of vulnerabilities that may
be introduced as a result of the composition.

requirements which are relevant for the safety effect analy-
sis. The Protection Profile gathers these requirements in two
objectives (see Table I) which address resource allocation
and isolation between tasks.

The ACO:Components class of Common Criteria Part
3 describes assurance requirements for composed systems.
A basic description of its content is shown in Table II.
The ACO COR requirement can also be found in the
IEC 61508 safety standard in relation to time and space
partitioning mechanisms, which have to be certified to a
level at least as high as the component using its service.
The ACO DEV and ACO REL requirements describe the
interfaces and interactions between components, whis is
not described in such detail in the safety standard. The
ACO CTT requirements are already covered in the safety
domain by integration testing and ACO VUL addresses
a vulnerability analysis which is unnecessary for safety
systems. From the ACO:Components class, ACO COR,
ACO DEV, and ACO REL provide useful information for
the software component effect analysis.

The functional requirements taken from the SKPP and
the ACO COR requirement can serve as a basis to show
time and space partitioning. A time and space partitioned
system need not be re-certified as a whole if components
are modified, because the partitioning mechanism assures
that other components are not affected. Components directly
affected by the change in the system still have to be re-
verified in a time and space partitioned architecture, because

Figure 1. Effect of component change on re-verification effort

their functionality depends on the modified component. If
the component communication is based on well defined
interfaces and the components guarantee services at these
interfaces, then such components would not have to be re-
verified if the interface communication and service guar-
antee stays the same. These interface criteria are defined
by the ACO DEV and ACO REL requirements from the
ACO:Components class.

For systems which meet the time and space partitioning
requirements in Table I and the ACO COR requirement,
not all parts have to re-certified after modifications. Just
the modified components and the components depending on
services of modified or affected components have to be re-
verified. If, additionally, the requirements ACO DEV and
ACO REL are not changed for the modified component,
just the modified component itself has to be re-verified and
any other parts of the system need no re-verification, because
the service provided by the component does not change and,
therefore, any other components cannot be affected. Figure 1
shows a decision tree presenting the outcome of the software
affect analysis for modular safety certification by using
the requirements form the SKPP and the ACO:Components
class.

IV. CONCLUSION

In this paper we showed how modular certification in the
safety domain can be achieved by using methods from the
security domain. Common Criteria compositional assurance
requirements and SKPP partitioning requirements build a
basis for a structured approach to analyze dependencies for
software components of a safety system. Our approach can
be taken as a reference for safety system developers to
show a safety certification authority that a system meets the
necessary requirements for modular certification. Compared
to the software effect analysis of IEC 61508, our approach
is more detailed and provides a more structured way to
argument for component independence. We do not propose
an alternative way for modular certification, compared to the
IEC 61508 standard we propose a refined method.

We believe that with this method the safety certification
effort, in particular the safety re-certification effort, can be
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Table I
SKPP OBJECTIVES RELATED TO TIME AND SPACE PARTITIONING [16]

Objective
/ Requirement

Description

O.RESOURCE
ALLOCATION
/ FRU RSA.2

Allocation limits are enforced for the minimum and maximum amount of memory and processing time available to a partition.
Allocation requirements for system memory are based on the minimum and maximum simultaneous memory usage by each
individual partition at any given time. Allocation limits on processing time are based on the minimum and maximum CPU usage
by each individual partition over a specific time interval. A refinement to the wording of the choices provided by the CC in the
selection operation was made. The allocation is made to the partition, which is inclusive of subjects and exported resources (there
are no ’users’ in the context of the separation kernel allocation of resources).

O.SUBJECT
ISOLATION
/ FDP IFC.2
FDP IFF.1
FPT SEP.3

This objective requires the Target Of Evaluation (TOE) to establish security domains for subjects where each subject is completely
isolated from every other subject. This complete isolation is the default configuration that is established by the TOE Security
Functionality (TSF). Where flows between subjects are specified by the configuration data and mediated by the TSF throughout
the execution session, the scope of this objective expands and must also ensure that no unauthorized information flows can occur,
which may result in one subject interfering with another. FDP IFC.2 and FDP IFF.1 combine to define the scope of the partitioned
information flow policy to be enforced by the TSF, and the rules implemented by the TSF to enforce the policy. This enforcement
capability of the TSF ensures that strict isolation of a subject is preserved where no flows to/from the subject are allowed, and
ensures that only authorized information flows as specified by the configuration data are allowed. FPT SEP.3 satisfies this objective
by requiring the TSF to enforce separation between the security domains of all subjects in the TSF scope of control, thus ensuring
that subjects cannot access or manipulate other subject’s services and resources in violation of the TOE security policy. The security
domain of a subject includes the services and exported resources that the particular subject is allowed to use.

reduced and time and costs can be saved. The possibility
of modular certification motivates more intensive software
maintenance, because it requires less costs to re-certify
product modifications. This is highly desirable, because in
the safety domain, software maintenance becomes more
important due to the growing complexity of safety critical
systems. Modular certification also provides a basis for mod-
ular software concepts such as component based systems
which are, nowadays, not yet commonly used in the safety
domain, but are already handled in literature and appear to
be a promising field of research.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, Jan. 2004.

[2] C. Taylor, “Component Based Common Criteria Certifica-
tion,” in Systems, Software and Technology Conference, 2006.

[3] B. Dobbing and S. Lautieri, “SafSec : Integration of Safety &
Security Certification,” Praxis High Integrity Systems, Tech.
Rep., 2006. [Online]. Available: http://www.altran-praxis.com

[4] J. M. Rushby, “Design and verification of secure systems,”
ACM SIGOPS Operating Systems Review, vol. 15, no. 5, pp.
12–21, Dec. 1981.

[5] J. Rushby, “Partitioning in Avionics Architectures:
Requirements, Mechanisms, and Assurance,” NASA
Langley, Tech. Rep., 2000. [Online]. Available:
http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

[6] J. Alves-Foss, C. Taylor, and P. Oman, “A Multi-layered
Approach to Security in High Assurance Systems,” in Pro-
ceedings of the 37th Hawaii International Conference on
System Sciences. IEEE, 2004.

[7] Common Criteria, “Common Criteria Standard v3.1,”
http://www.commoncriteriaportal.org/cc/, 2009.

[8] G. Romanski, “Safe and Secure Partitioned Systems and
Their Certification,” in 30 IFAC Workshop on Real-Time
Programming, vol. 30, 2009, pp. 12–14.

[9] J. Windsor and K. Hjortnaes, “Time and Space Partitioning
in Spacecraft Avionics,” in 2009 Third IEEE International
Conference on Space Mission Challenges for Information
Technology. IEEE, Jul. 2009, pp. 13–20.

[10] J. A. McDermid and D. J. Pumfrey, “Assessing the Safety
of Integrity Level Partitioning in Software,” in Proceedings
of the Eighth Safety-critical Systems Symposium. Springer,
2000, pp. 134–152.

[11] P. Amey, R. Chapman, and N. White, “Smart Certifica-
tion Of Mixed Criticality Systems,” in Proceedings of Ada-
Europe’2005, 2008, pp. pp.144–155.

[12] B. Dobbing, “Building partitioned architectures based on the
Ravenscar profile,” ACM SIGAda Ada Letters, vol. XX, no. 4,
pp. 29–31, Dec. 2000.

[13] J. Delange, L. Pautet, and P. Feiler, “Validating safety and
security requirements for partitioned architectures,” in Pro-
ceedings of the 14th Ada-Europe International Conference
on Reliable Software Technologies. Springer, 2009.

[14] International Electrotechnical Commission, “IEC 61508,
Functional Safety of Electrical/Electronic/Programmable
Electronic Safety Related Systems,” 1999.

[15] J. McDermid, “Software hazard and safety analysis,” in Pro-
ceedings of the 7th International Symposium on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems. Springer
Berlin / Heidelberg, 2002.

[16] U.S. National Information Assurance Partnership, “U.S.
Government Protection Profile for Separation Kernels in Envi-
ronments Requiring High Robustness,” 2007. [Online]. Avail-
able: http://www.niap-ccevs.org/pp/pp skpp hr v1.03.pdf

50

228 7. Publications



Bibliography

[AKA12] Pablo Oliveira Antonino, Thorsten Keuler, and Pablo Antonino. Towards
an Approach to Represent Safety Patterns. In The Seventh International
Conference on Software Engineering Advances (ICSEA), pages 228–237, 2012.

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford University
Press, 1979.

[Arm10] Ashraf Armoush. Design patterns for safety-critical embedded systems. PhD
thesis, RWTH Aachen University, 2010.

[Bab07] Muhammad Ali Babar. Improving the Reuse of Pattern-Based Knowledge in
Software Architecting. In EuroPLoP, pages 7–11. Lero, Ireland, 2007.

[BB98] Peter Bishop and Robin Bloomfield. A Methodology for Safety Case Develop-
ment. In Proceedings of the Sixth Safety-critical Systems Symposium. Springer,
1998.

[BBD+12] Pierre Bieber, Jean-Paul Blanquart, Gilles Descargues, Michael Dulucq,
Yannick Fourastier, Eric Hazane, Mathias Julien, Laurent Leonardon, and
Gabrielle Sarouille. Security and Safety Assurance for Aerospace Embedded
Systems. In Embedded Real Time Software And Systems (ERTSS), 2012.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Longman, 2003.

[Ber10] Vincent Bernard. Modsafe deliverable report wp1 d1.2. Technical report,
MODSafe FP7 Project, 2010.

[Bit07] Friedemann Bitsch. Verfahren zur Spezifikation funktionaler Sicherheitsan-
forderungen fr Automatisierungssysteme in Temporallogik. PhD thesis, Uni-
versität Stuttgart, 2007.

[BMRS96] Frank Buschmann, Regine Meunier, Hans Rohnert, and Peter Sommerlad.
Pattern-Oriented Software Architecture: A System of Patterns. John Wiley
& Sons, 1996.

[BNS13] Robin Bloomfield, Kateryna Netkachova, and Robert Stroud. Security-
Informed Safety: If It’s Not Secure, It’s Not Safe. In Proceedings of the 5th
International Workshop on Software Engineering for Resilient Systems, 2013.

229



230 Bibliography

[Bro08] Benjamin Brogsol. Safety and Security: Certification Issues and Technologies.
CrossTalk - The Journal of Defense Software Engineering, 21(10), 2008.

[CL07] T J Cockram and S R Lautieri. Combining Security and Safety Principles
in Practice. In 2nd Institution of Engineering and Technology International
Conference on System Safety. IEEE, 2007.

[Cor99] Pierre Corneillie. End of Project Report. Technical report, ACTS FP4 Pro-
gram, 1999.

[DKV97] Fonda Daniels, Kalhee Kim, and Mladen A Vouk. The Reliable Hybrid Pat-
tern A Generalized Software Fault Tolerant Design Pattern. In European
Conference on Pattern Language of Programs (EuroPLoP), pages 1–9, 1997.

[DL06] Brian Dobbing and Samantha Lautieri. SafSec : Integration of Safety &
Security Certification. Technical report, Praxis High Integrity Systems, 2006.

[Dou98] Bruce Powel Douglass. Safety-Critical Systems Design. Electronic Engineer-
ing, 70(862), 1998.

[Dou02] Bruce Powel Douglass. Real-Time Design Patterns: Robust Scalable Architec-
ture for Real-Time Systems. Pearson, 2002.

[Dou10] Bruce Powel Douglass. Design Patterns for Embedded Systems in C. Elsevier,
2010.

[EPSW10] Christian Eherer, Henrik J Putzer, Franz Strasser, and Marko Wolf. Synergetic
Safety and Security Engineering Improving Efficiency and Dependability. In
8th Embedded Security in Cars Workshop, Bremen, Germany, 2010.

[Eur06] European Parliament. Directive 2006/42/EC of the European Parliament and
of the Council, vol. L 157/24, 2006.

[Fan13] Pasquale Fanelli. IEC 61508 and IEC 61511: application state and trends. In
4th International Symposium on Loss Prevention and Safety Promotion in the
Process Industries, 2013.

[FGG+05] Ingmar Fliege, Alexander Geraldy, Reinhard Gotzhein, Thomas Kuhn, and
Christian Webel. Developing safety-critical real-time systems with SDL design
patterns and components. Computer Networks, 49(5):689–706, 2005.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman, 1994.

[GJØO10] T.O. Grøtan, M.G. Jaatun, K. Øien, and T. Onshus. The sesa method for
assessing secure remote access to safety instrumented systems, technical report
a1626. Technical report, SINTEF, 2010.

[GLW12] John Goodenough, Howard Lipson, and Chuck Weinstock. Arguing Security
- Creating Security Assurance Cases. Technical report, US Department of
Homeland Security, 2012.



Bibliography 231

[Gru03] Lars Grunske. Transformational Patterns for the Improvement of Safety Prop-
erties in Architectural Specification. In Nordic Conference on Pattern Lan-
guages of Programs (VikingPLoP), 2003.

[GSN11] GSN Community. GSN Community Standard, Verison 1, 2011.

[Ham12] Paul Hampton. Survey of safety Architectural Patterns. In Achieving Systems
Safety, pages 7–9. Springer London, London, 2012.

[Han07] Robert S. Hanmer. Patterns for Fault Tolerant Software. Wiley, 2007.

[Har11] Neil Harrison. Improving Quality Attributes of Software Systems Through
Software Architecture Patterns. Phd thesis, University of Groningen, 2011.

[HCS04] S Halkidis, Alexander Chatzigeorgiou, and George Stephanides. A qualitative
evaluation of security patterns. In 6th International Conference on Informa-
tion and Communications Security, pages 132–144. Springer, 2004.

[HCS06a] Spyros T. Halkidis, Alexander Chatzigeorgiou, and George Stephanides. A
qualitative analysis of software security patterns. Computers & Security,
25(5):379–392, July 2006.

[HCS06b] Spyros T Halkidis, Alexander Chatzigeorgiou, and George Stephanides. Quan-
titative Evaluation of Systems with Security Patterns Using a Fuzzy Approach.
In roceedings of the 2006 international conference on On the Move to Mean-
ingful Internet Systems: AWeSOMe, CAMS, COMINF, IS, KSinBIT, MIOS-
CIAO, MONET, pages 554–564. Springer, 2006.

[HDGJ10] Brahim Hamid, Nicolas Desnos, Cyril Grepet, and Christophe Jouvray. Model-
based security and dependability patterns in RCES - the TERESA Approach.
In Proceedings of the International Workshop on Security and Dependability
for Resource Constrained Embedded Systems - S&D4RCES ’10. ACM Press,
2010.

[HL03] M. Howard and D. LeBlanc. Writing Secure Code. Microsoft Press, 2003.
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