
Thomas Quaritsch, Dipl.-Ing. BSc

Diagnosis of LTL Specifications using
Consistency-oriented Model-based Reasoning

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften

eingereicht an der

Technischen Universität Graz

Betreuer

Univ.-Prof. Dipl.-Ing. Dr. techn. Franz Wotawa

Institut für Softwaretechnologie

Fakultät für Informatik und Biomedizinische Technik

Zweitbetreuer: Dipl.-Ing. Dr. techn. Ingo Pill

Graz, Juli 2014

This document was prepared with pdfLAT
E
X2ε and is set in T

E
X Gyre Pagella

(a Palatino clone) in 11 pt on 14pt and Lucida Bright.

The template from Karl Voit and Thomas Quaritsch is based on KOMA script

and can be found at: https://github.com/tquaritsch/LaTeX-KOMA-template

http://LaTeX.TUGraz.at
http://www.komascript.de/
https://github.com/tquaritsch/LaTeX-KOMA-template

EIDESSTATTLICHE ERKLÄRUNG

AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,

andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den

benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche

kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument

ist mit der vorliegenden Dissertation identisch.

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral dissertation.

Datum / Date Unterschrift / Signature

iii

Abstract

Speci�cations in formal, temporal languages like the Linear Temporal Logic

(LTL) enable a non-ambiguous communication about a product’s or service’s

functional requirements. Exploiting their precise syntax and semantics—instead

of using a natural language like English—for a project’s requirements can

improve its e�ciency, time-to-market and reduce rework e�orts. According to

practitioners, up to 50 percent of defects and up to 80 percent of rework e�orts

can be traced back to �awed requirements.

However, writing correct speci�cations that capture the designer’s intent can

be challenging due to the conciseness of such languages. Especially for non-

experienced users, certain operators’ subtleties regarding in�nite behavior may

be hard to grasp. We therefore see a strong need for means to assist designers in

writing correct speci�cations. Complementing existing concepts like coverage

and vacuity, or tools like RAT and RuleBase PE, we developed a consistency-

oriented model-based reasoning approach to provide diagnostic information

in scenarios where a trace unexpectedly satis�es (i.e., is a witness) or contradicts

(i.e., is a counterexample) a given LTL speci�cation.

Our approach is based on an encoding of LTL speci�cations as Satis�ability

(SAT) problems, that is transparent to the employed Model-Based Diagnosis

(MBD) algorithm anddoes not require any prior rewriting of operators.Within a

reasonable amount of time and consumedmemory, resulting diagnoses directly

pinpoint the user to possibly faulty operator occurrences in their speci�cation,

and provide “repairs” if applicable.

Aiming to provide top-notch e�ciency with our approach in order to ensure

user acceptance, we investigated the performance of several corresponding

available diagnosis algorithms. Our experimental evaluation shows that while

v

classical Minimal Hitting Set (MHS)-based approaches can provide acceptable

performance, simple algorithms exploiting the power of today’s SAT solvers

are more powerful and scalable.

Based on our evaluation we provide several optimizations to two existing

approaches; Lin and Jiang’s “Boolean” MHS algorithm and Greiner et al.’s HS-

DAG. For the Boolean algorithm we developed an alternative search strategy,

optimizing its performance in cardinality-bounded runs. Regarding HS-DAG,

we �rst showed how to exploit structural information (an LTL speci�cation’s

parse tree) in order to speed up diagnosis, and second, a variant RC-Tree,

eliminating the redundancies in HS-DAG’s search (ending up with a tree-based

search structure instead of a DAG).

Options for future work are the support of concepts like Sequential Extended

Regular Expressions (SEREs) from more elaborate languages like the Property

Speci�cation Language (PSL), as well as algorithmic improvements using An-

swer Set Programming (ASP) solvers or integrating MBD directly with a solver,

in order to gain from domain knowledge and reduce interface overhead.

vi

Kurzfassung

Spezi�kationen in formalen temporalen Sprachen wie der Linear Temporal

Logic (LTL) erlauben uns die Beschreibung funktionaler Anforderungen von

System und Diensten ohne die Mehrdeutigkeiten natürlicher Sprachen. Erfah-

rungswerte zeigen, dass in Projekten bis zu 50 Prozent der Fehler und bis zu

80 Prozent der Korrekturen auf fehlerhafte Spezi�kationen zurückzuführen

sind. Aufgrund der exakten Syntax und Semantik können formale Spezi�katio-

nen deshalb die E�zienz und Entwicklungszeit von Projekten verringern.

Die Entwicklung von korrekten formalen Spezi�kationen ist jedoch aufgrund

der Prägnanz der verwendeten Sprachen oft schwierig. Speziell unerfahrenen

Entwicklern können feine Unterschiede zwischen Operatoren in Bezug auf

unendlich lange Abläufe unklar sein. Wir sehen deshalb dringenden Bedarf an

Technologien, die das Entwickeln von korrekten Spezi�kationen erleichtern. Er-

gänzend zu vorhandenenKonzeptenwieCoverageundVacuity oderWerkzeugen

wie RAT und RuleBase PE haben wir einen modellbasierten Diagnose-Ansatz

für LTL-Spezi�kationen basierend auf der Konsistenz zwischen Modellen und

Beobachtungen entwickelt. Im Fall einer unerwarteten Abweichung zwischen

Spezi�kation und Verhalten eines Systems werden damit den Entwicklern

Informationen über mögliche Ursachen bereitgestellt.

Unser Ansatz basiert auf einer Kodierung von LTL als Satis�ability (SAT)-

Problem, die transparent gegenüber dem konkret verwendeten Ansatz für

die modellbasierte Diagnose ist. Er erfordert außerdem keinerlei vorherige

Umformung von LTL-Operatoren und kann Spezi�kations-Entwickler e�zient

auf jene Spezi�kationsteile (Operatoren) hinweisen, die Fehlerursache sein

können bzw. sogar “Reparaturen” vorschlagen.

vii

Um diese Informationen möglichst schnell zu berechnen und damit die Akzep-

tanz von potentiellen Benutzern sicherzustellen, wurde die E�zienz verschiede-

ner Diagnose-Algorithmen untersucht. Unsere Experimente zeigten, dass klas-

sische Algorithmen basierend auf Minimal Hitting Set (MHS)-Berechnungen

akzeptable Leistung erbringen, die direkte Verwendung von SAT-Solvern je-

doch einfacher, schneller und skalierbarer ist.

Auf Basis unserer Experimente präsentieren wir auch Optimierungen zweier

vorhandener Algorithmen, des “Booleschen Algorithmus” (Lin und Jiang) so-

wie des Algorithmus HS-DAG (Greiner u. a.). Für den Booleschen Algorithmus

wurde eine alternative Suchstrategie zur Optimierung der Laufzeit bei kardi-

nalitätsbeschränkten Berechnungen entwickelt. Für HS-DAG zeigen wir die

Verwendung des Syntaxbaums einer LTL Spezi�kation zur Beschleunigung

der Diagnoseberechnung, sowie eine Variante RC-Tree, die die Redundanzen in

der Suche eliminiert und eine Baumstruktur anstelle eines Graphen erzeugt.

Folgearbeiten könnten denAnsatz auf umfangreichere Sprachenwie die Proper-

ty Speci�cation Language (PSL) mit ausdrucksstärkeren Sprachelementen wie

Sequential Extended Regular Expressions (SEREs) erweitern, sowie algorith-

mische Verbesserungen mittels Answer Set Programming (ASP)-Solvern oder

durch direkte Integration von Diagnosealgorithmus und Solver erreichen.

viii

Acknowledgments

Karl Voit Arabella Gass Ingo Pill Franz Wotawa Elisabeth Jöbstl Johannes
Maurer Benedict Wright Martin Kandlhofer Paul Felberbauer
Martin Hammerschmied Miriam and Sebastian Gerhard Friedrich Franz Wotawa
Paul Felberbauer Johannes Maurer Petra Pichler Gunda, Arno and Gabriel
Stefan Galler Florian Lorber Herbert Pöckl Farhan Sahito Engelbert
Meissl Markus Quaritsch Elisabeth Quaritsch Stefan Galler Mum
and Dad Peter and Julia Wolfgang Slany Gerhard Friedrich Paul Felberbauer
Elisabeth Jöbstl Hildegard and Franz Unger Mum and Dad Gunda, Arno and
Gabriel Franz Wotawa Grandma and Grandpa Arabella Gass Bene-
dict Wright Annemarie Harzl Michael Felberbauer Florian Lorber Johannes
Maurer Gerhard Friedrich Karl Voit Stefan Tiran Stefan Galler Ingo
Pill Arabella Gass Stefan Galler Grandma and Grandpa Emma
Unger Annemarie Harzl Sandra Lang Elisabeth Quaritsch Paul Felberbauer
Markus Quaritsch Annemarie Harzl Peter and Julia Wolfgang Slany Johannes

Maurer Mum and Dad Ingo Pill Paul Felberbauer Elisabeth
Quaritsch Florian Lorber Herbert Pöckl Stefan Galler Benedict Wright An-
nemarie Harzl Manuel Forrer Wolfgang Slany Martin Kandlhofer Grandma and
Grandpa Stefan Tiran Elisabeth Jöbstl Hildegard and Franz Unger Farhan
Sahito Michael Felberbauer Peter and Julia Sandra Lang Birgit Hofer
Stefan Tiran Gunda, Arno and Gabriel Manuel Forrer Stefan Galler Engelbert
Meissl Elisabeth Quaritsch Karl and Hermine Sandra Lang Wolfgang
Slany Grandma and Grandpa Gerhard Friedrich Hildegard and Franz Unger
Karl Voit Martin Hammerschmied Peter and Julia Ingo Pill Herbert
Pöckl Michael Felberbauer Wolfgang Slany Franz Wotawa Paul Felberbauer
Markus Quaritsch Herbert Pöckl Michael Felberbauer Farhan Sahito.

ix

To my dear grandfather, Ing. Wilhelm Quaritsch.

xi

Contents

Abstract v

Kurzfassung vii

1 Introduction 1

1.1 Motivation . 1

1.2 The MoDiaForTed Project . 3

1.3 Contributions . 4

2 Preliminaries 7

2.1 Model-based Diagnosis . 7

2.1.1 Introduction . 7

2.1.2 De�nitions . 10

2.1.3 Minimal Hitting Sets . 13

2.2 Linear Temporal Logic . 16

2.2.1 De�nitions . 18

2.2.2 LTL Property Patterns and Safety vs. Lifeness 22

2.3 Reasoning via Satis�ability . 23

2.3.1 Introduction to SAT . 24

2.3.2 SAT Solving . 28

2.3.3 Solver Implementations 30

2.3.4 Unsatis�able Cores . 31

3 Model-Based Diagnosis of LTL Specifications 37

3.1 Motivation . 37

3.2 Running Example . 39

xiii

Contents

3.3 SAT-based LTL Encoding for Speci�c Traces 40

3.3.1 Basic Operator Set . 41

3.3.2 Extended Operator Set . 46

3.4 Introducing Weak and Strong Fault Models 48

3.5 Con�ict-based Diagnosis using a SAT Solver 50

3.6 Experimental Results . 55

3.6.1 Pure Encoding Performance 58

3.7 Discussion . 63

4 Evaluating Selected MHS and MBD Approaches 65

4.1 Motivation . 65

4.2 Selected Algorithms and Approaches 68

4.2.1 Minimal Hitting Set Algorithms 69

4.2.2 Model-based Diagnosis Approaches 85

4.3 Test Domains and Test Setup . 95

4.3.1 MHS Computation Scenarios 96

4.3.2 On-The-Fly Diagnosis Scenarios 100

4.3.3 Test Setup . 101

4.4 Experimental Results . 105

4.4.1 MHS Computation Scenarios 105

4.4.2 On-the-�y Diagnosis Scenarios 121

4.5 Discussion . 135

5 Optimizations for the Boolean Hitting Set Algorithm 139

5.1 Motivation . 139

5.2 Enhancements/Optimizations . 140

5.2.1 The Boolean Algorithm 140

5.2.2 How Rule 4 was meant to be 142

5.2.3 A New Decision Strategy 143

5.2.4 Exact Termination Criteria 145

5.3 Evaluation . 146

5.3.1 Test Setup . 147

5.3.2 Experimental Results . 148

5.4 Discussion . 158

xiv

Contents

6 New Variants of Reiter’s Diagnosis Algorithm 159

6.1 Motivation . 159

6.2 Exploiting Parse Trees in LTL Speci�cation Diagnosis 161

6.2.1 HS-DAG . 164

6.2.2 Experimental results . 168

6.3 RC-Tree: An Improved Search Strategy for HS-DAG 170

6.3.1 Experimental Results . 174

6.4 Summary and Discussion . 180

7 Summary and Conclusions 185

8 Outlook and Future Work 191

A List of Publications 195

B List of Abbreviations 199

C Bibliography 201

xv

1 Introduction

1.1 Motivation

A speci�cation is a set of requirements to be satis�ed by a material, product,

system or service [AST13]. Whenever we communicate about such an artifact

with some client or contractor, we use requirements in order to agree on a de-

liverable. Classi�ed into functional and non-functional requirements, the former

capture the set of use cases that must be covered, while the latter character-

ize operational characteristics such as performance, reliability, safety, stability,

availability or similar attributes.

At the end of a project, speci�cations are commonly used to verify whether a

delivery contract has been ful�lled. All too often, informal speci�cations are
employed, for example, by using a natural language like English. Unfortunately,

natural languages are rather ambiguous. That is, one and the same sentence

can be interpreted di�erently by di�erent people or the sentence might not be

able to exactly express the author’s intentions.

Flawed requirements therefore may have a negative impact on a project’s e�-

ciency, its time-to-market, and consumed resources. Data from industry shows

that about 50 percent of product defects can be traced back to bad require-

ments and up to 80 percent of a project’s rework e�ort can be related to those

requirement defects. [Wie01; Wie13]

1

1 Introduction

To overcome these issues, formal requirements use some kind ofmathematical or

programmatic language with well-de�ned, precise syntax and semantics (that

is, structural rules and interpretations). Writing formal speci�cations helps, on

the one hand, concretizing the client’s needs, and on the other hand, can drive

a whole realization work-�ow. For example, in Electronic Design Automation

(EDA) projects like PROSYD [PRO13] propose development work-�ows where

the design, testing, veri�cation and even synthesis processes depend on formal

speci�cations.

Obviously, writing high-quality speci�cations is crucial for such processes. Writ-

ing correct and high-quality speci�cations is unfortunately not a trivial task,

considering the fact that formal languages are often very concise. Linear Tem-

poral Logic (LTL), Property Speci�cation Language (PSL), SystemVerilog As-

sertions (SVA) and ForSpec are examples for formal languages that may be

be used in EDA for reasoning about temporal behavior. As they may describe

in�nite behavior (a reactive system may be running forever), such languages

often contain subtleties regarding events in in�nite traces, which are often hard

to grasp for non-experienced users. As a result, a speci�cation may or may not

feature a speci�c behavior—although intended otherwise by its author.

Interestingly enough, though, much of the research work regarding formal

temporal speci�cations carried out in the past focused on the veri�cation of

designs using speci�cations and seldomly aimed at assisting designers in their

formulation or verifying their quality. Some of the concepts addressing the

latter are, for example, coverage and vacuity. While the coverage of a speci�ca-

tion assesses the extent to which it constrains the allowed behavior [Kup06],

vacuity pinpoints to speci�cation parts that pass vacuously (that is, for example,

a speci�cation requiring acknowledgments on incoming request is satis�ed if

there is no incoming request) [Fis+09]. Tools like the academic RAT(sy) [Blo+07;

Blo+10; Pil+06] help a user by letting her explore a speci�cation and its behavior

interactively. Using a graphical user interface, RAT’s Property Simulation feature

shows the temporal evolution of all subformulae of a given LTL formula via

waveforms, arranged according to its parse tree. IBM’s RuleBase PE [IBM13],

which implements a similar feature, additionally o�ers explanations for coun-

terexamples using causality [Bee+09]. Reasoning about points in the tracewhere

the prior stem’s satis�ability status di�ers from its extension in distinctive ways,

critical signals and related failure causes are identi�ed and marked with red

dots in the visualized waveform for this time-step. Schuppan [Sch12] o�ers a

notion of unsatis�able cores for speci�cations in LTL, identifying minimal sets of

2

1.2 The MoDiaForTed Project

subformulae the conjunction of which is unsatis�able. Similar to the vacuity

concept, unsatis�able cores focus on the speci�cation alone, without taking any

scenario into consideration.

In contrast to that, we employ a scenario-based approach to assist a user pro-

ducing high-quality speci�cations using diagnostic information. That is, we use

traces, a concept well-known by designers, that might be either user-de�ned or

stem from a model-checking process. Based on a given speci�cation and a trace,

we can apply model-based diagnosis approaches like known from de Kleer and

Williams [dKW87] and Reiter [Rei87]. Our work combines methods from the di-

agnosis community, a �eld of arti�cial intelligence, with formal veri�cation and

temporal logics concepts. The output of those methods pinpoints to problems

in the speci�cation (or in the trace) in situations where traces are unexpectedly
satis�ed or violated by the given speci�cation. Using the concept of fault modes

(that is, de�ning possible “mistakes” a user could make), diagnoses can even

suggest repairs for a formula.

Summarizing, via our proposed means and techniques we try to lower the

barrier for using formal temporal speci�cations in design projects. As a side-

product, our approach can also help users to learn (new) temporal languages by

illustrating language subtleties in given scenarios. In order to be used e�ciently,

however, the underlying diagnosis process must be as e�cient as possible, so

that the user can receive timely feedback in interactive tools such as RAT.

1.2 The MoDiaForTed Project

The majority of work presented in this thesis was conducted during the MoDia-

ForTed (Model-based Diagnosis for Formal Temporal Descriptions) project1 (Austrian
Science Fund Grant P22959-N23), which was led by my co-supervisor and co-

author of the published papers, Dr. Ingo Pill. The motivation of this thesis is

thus mainly based on the project’s goals.

1
http://modiaforted.ist.tugraz.at/

3

http://modiaforted.ist.tugraz.at/

1 Introduction

1.3 Contributions

A Structure-preserving LTL SAT Encoding for Specific Traces.
Chapter 3 presents a SAT-based encoding for the Linear Temporal Logic, which

can be e�ciently used in Model-Based Diagnosis (MBD) applications, because

it is structure-preserving and thus scales very well,

it takes the speci�c trace’s features (like the pre-known loop time-step)

into account,

it allows to add (weak and strong) fault modes very easily without unnec-

essarily increasing its size,

it does not require any rewriting of LTL operators and thus preserves

traceability from a user-given speci�cation to the resulting diagnoses (or

repairs),

it is transparent to the underlying diagnosis algorithm.

The encoding has beenpresented atDX in 2012 [PQ12a] and IJCAI in 2013 [PQ13b].

Evaluation of Suitable Model-based Diagnosis Algorithms.
In Chapter 4, we evaluate several MBD algorithms that can be employed for a

model-based diagnosis approach based on our LTL encoding. Using arti�cial

scenarios, circuit-based benchmarks, as well as examples exploiting our LTL

encoding, we aim to answer the question of which diagnosis algorithm and

reasoning engine should be chosen when implementing LTL speci�cation diag-

nosis (and model-based diagnosis in general). We present insights gained from

their implementation as well as evaluation results on pure Minimal Hitting

Set (MHS) algorithms, which are a core part of several MBD approaches. Some

parts of this chapter have been presented at IJCAI in 2013 [Nic+13], with some

preliminary work on the MHS evaluation at DX in 2011 [PQW11].

Improvements for the Boolean Hitting Set Algorithm.
Intrigued by the strong performance of the Boolean MHS algorithm during our

evaluation, we were interested whether its search strategy could be adopted

for on-the-�y MBD approaches (computing the con�icts as needed) as well.

In the course of our investigations we noticed that its (brief) original paper

missed important points about its application to bounded searches (that is,

when limiting the size of solutions). Chapter 5, based on our paper at ECAI in

2012 [PQ12b], therefore presents improvements on the Boolean algorithm, im-

4

1.3 Contributions

plementing a new decision strategy speci�cally targeting cardinality-bounded

computations. Together with optimizations for the termination stage, we could

show a speed-up of about two orders of magnitude for bounded computations,

together with negligible impacts on unbounded runs.

New Variants of Reiter’s HS-DAG Diagnosis Algorithm.
As HS-DAG proved to be a very e�cient diagnosis algorithm (despite its age),

we employed it for our LTL diagnosis as well. Inspired by the idea of dominators

and cones for digital circuits, we showed in [PQ13c] that LTL diagnosis can

be sped up by inferring new diagnoses from existing ones, and focusing the

search based on a speci�cation’s parse tree. A second improvement to HS-DAG

is our variant RC-Tree, enhancing its general strategy of exploring the diagnosis

search space. In [PQ13a], we showed how restricting the search space in certain

sub-DAGs can result in savings as high as 50-70 percent for the algorithm’s

run-time and up to 75 percent for its internal nodes. Chapter 6 presents those

variants together with corresponding experimental results.

5

2 Preliminaries

In the following we will brie�y introduce the topics “Model-based Diagnosis”,

“Linear Temporal Logic” and “Reasoning via Satis�ability” as they will be

needed throughout the thesis.

This chapter containsmaterial previously published in [Nic+13; PQ12a; PQ12b; PQ13a;
PQ13b; PQ13c; PQW11].

2.1 Model-based Diagnosis

2.1.1 Introduction

Diagnosis is de�ned as the “investigation or analysis of the cause or nature

of a condition, situation, or problem”1. In the �eld of arti�cial intelligence,

diagnosis is concerned with the development of algorithms and techniques

to determine whether a system is functioning correctly and, in the case of a

malfunction, which part(s) may be failing. Early attempts applied so-called

expert systems, that is, rule-based systems which made use of knowing the

relationship between occurring faults and their symptoms on the diagnosed

system. Nevertheless, model-based techniques quickly crystallized as being

more powerful. They exploit component-oriented models typically already

established when designing an artifact. Based on these designs, Model-Based

Diagnosis (MBD) aims at identifying the components responsible for a given

1
http://www.merriam-webster.com/dictionary/diagnosis

7

http://www.merriam-webster.com/dictionary/diagnosis

2 Preliminaries

Artifact

Observed

Behavior

Behavioral

Descrepancies

Predicted

Behavior

Model

Assumptions

Diagnoses

observing simulating

verifying

correcting

modeling

Figure 2.1:Model-based diagnosis process (Figure adopted from [dKW87; Str97])

fault. Thus, there is no need to establish and maintain those rule-sets, a cumber-

some and error-prone task. Abductive diagnosis is based on a causal model of a

system’s components and their interactions, containing information about the

type of faults that can occur and their consequences.Consistency-based diagnosis
on the other hand (primarily) uses information about the intended (correct)

behavior available from the design stage. However, these two approaches can

also be combined. The former can include knowledge about the correct behavior

of a system, while the latter can be enriched with fault models. [Pic]

Figure 2.1 gives an idea of the general work-�ow when applying model-based

diagnosis. Given an artifact, we create a (component-based) model or peruse

one created during its design. The diagnostic process is started once we detect

discrepancies between the observed behavior of the real artifact and what

we would expect (predict) from the model, given the same input. Based on

those discrepancies we come up with assumptions on which components may

be malfunctioning. We can verify whether these assumptions (hypotheses)

are consistent with our model (that is, they would be an explanation for the

problems at hand). In the a�rmative case we can report those hypotheses

(which are now called diagnoses) to the user helping her correcting (repairing)

the artifact.

8

2.1 Model-based Diagnosis

Consistency-basedMBDwas de�ned by de Kleer andWilliams [dKW87] and in-

dependently by Reiter [Rei87]. The formers’ General Diagnostic Engine (GDE)

is based on a prediction function P and the propagation of values through

the system, which is represented using constraints. P employs a so-called

Assumption-based Truth Maintenance System (ATMS) to keep record of the

components involved in each computation. Whenever two di�erent values

for a signal can be predicted, GDE uses the involved components to form a

con�ict—a list of components all of which cannot be functioning correctly at

the same time. Their approach then draws on a Minimal Hitting Set (MHS)

algorithm (see Section 2.1.3) to calculate diagnosis candidates from the list

of con�icts. Furthermore, by exploiting the (empirical) failure probabilities

of individual components and Bayes’ law, the next optimal signal measure-

ment point in the system is calculated. This allows to reduce the number of

diagnosis candidates and isolate the actual fault in the shortest sequence of

measurements. [dKW87]

Reiter’s approach is based on a divide-and-conquer algorithm that uses a tree

data structure to conquer the search space. It exploits a theorem prover that can

provide con�icts in terms of a system’s components, given a system model and

observed behavior. Based on the fact that diagnoses are the minimal hitting

sets of the set of con�icts, it computes the set of diagnoses as follows. Starting

from an initial con�ict labeling the root node of the tree, it creates an outgoing

edge labeled e for each element e in the con�ict as well as a corresponding

child node. The set of edge labels on the path to the root form a hitting set

candidate. If such a set is indeed a hitting set (that is, it is veri�ed to be a

diagnosis by the theorem prover), the corresponding sub-tree is closed and the

set is recorded. Otherwise the theorem prover is queried for a con�ict that is

not yet hit by the candidate. Exploring this tree in a breadth-�rst manner and

pruning all supersets of already veri�ed diagnoses ensures the minimality of

found diagnoses.

9

2 Preliminaries

2.1.2 Definitions

In the following we will give a formalization of consistency-oriented model-

based diagnosis following Reiter’s seminal paper [Rei87].

De�nition 2.1 (System): Given a Boolean logic L, a system is a pair (SD, COMP)

where

1. SD, the system description, is a set of logic sentences of L;
2. COMP, the system components, is a �nite set of constants.

Note that while Reiter’s de�nitions are given for �rst-order logic, he notes that

his theory applies to any Boolean logic, in particular also to propositional logic

as used later on.

Reiter uses a so-called “abnormal predicate” AB(·) to describe the behavior of a

system component in its normal (that is, not abnormal) state.

Example 2.1: Consider the circuit in Figure 2.2 below comprising three

multipliers (Mi) and two adders (Ai).

M1

M2

M3

A1

A2

A

B

C

D

E

3

2

2

3

3

X

Y

Z

F

G

10

12

Figure 2.2: Example circuit taken from [dKW87].

This system may be described using COMP = {M1 ,M2 ,M3 ,A1 ,A2} and

the following system description SD:

1. MULT(x) ∧ ¬AB(x)→ (OUT(x) = IN1(x) · IN2(x))

10

2.1 Model-based Diagnosis

2. ADD(x) ∧ ¬AB(x)→ (OUT(x) = IN1(x) + IN2(x))
3. MULT(M1), MULT(M2), MULT(M3)

4. ADD(A1), ADD(A2)

5. IN1(A1) = OUT(M1), IN2(A1) = OUT(M2)

6. IN1(A2) = OUT(M2), IN2(A2) = OUT(M3)

The �rst two lines de�ne the behavior of the component types, stating that,

for example, if component x is a multiplier and not working abnormally,

its output value is equal to the product of its input values. Lines three and

four instantiate all system components, where, for example, MULT(M1)

denotes that M1 is a multiplier with the behavior given in the �rst line.

Finally, the last two lines de�ne the components’ connections using the

“special” INi and OUT predicates denoting the corresponding in- and

outputs of the given component.

Note that SD is missing axioms for the underlying algebra (·, +), which is

assumed to be given implicitly to the MBD engine.

De�nition 2.2 (Observation): An observation of a system is a �nite set of �rst-

order sentences. A system (SD, COMP) with observation OBS is denoted as

(SD, COMP, OBS).

Example 2.1 (Continued): The input and output values given in Fig-

ure 2.2 may be represented by OBS as follows:

IN1(M1) = 3, IN2(M1) = 2, IN1(M2) = 2, IN2(M2) = 3,

IN1(M3) = 2, IN2(M3) = 2, OUT(A1) = 10, OUT(A2) = 12.

Note that the observation given for F (OUT(A1) = 10) is not what one

would expect from a fully working circuit (Y = 6, Z = 6 and thus F = 12).

Reiter’s de�nitions of con�icts and diagnoses are based on the consistency (sat-

is�ability) of a set of logic sentences, that is, answering the question if there is a

unique value for each of the free variables such that all sentences evaluate to

true.

11

2 Preliminaries

De�nition 2.3 (Faulty system): A system (SD, COMP, OBS) is faulty i� SD ∪

OBS ∪ {¬AB(c) | c ∈ COMP} is inconsistent.

That is, if and only if the assumption that every component in the system is

working correctly is not consistent with the input/output behavior we observed,

we say that the system is at fault. A diagnosis is a minimal set of components

whose ¬AB assumptions must be retracted to restore this consistency.

De�nition 2.4 (Diagnosis): ∆ ⊆ COMP is a diagnosis for (SD, COMP, OBS) i�

∆ is a (subset-)minimal set such that SD ∪ OBS ∪ {¬AB(c) | c ∈ COMP \ ∆} is

consistent.

The minimality requirement is important here, in that we are only interested

in sets ∆ containing no super�uous components (we do not want to inspect

components that are not related to the erroneous system behavior). For example,

retracting all assumptions would obviously restore consistency as well but is

useless as a diagnosis where we want to inspect a minimal number of possibly

faulty components.

In addition to subset-minimal diagnoses people are often also interested in

cardinality-minimal (also called minimum) diagnoses, that is, �nding only those

diagnoses with the smallest |∆| for a given (SD, COMP, OBS). Other criteria to

evaluate or rank diagnoses include probabilities, as, for example, employed by

de Kleer and Williams [dKW87]. He de�nes the probability of a diagnosis ∆

as

p(∆) =
∏
x∈∆

pF(x) ·
∏

x∈COMP\∆

(
1 − pF(x)

)
,

assuming stochastic independence of faults, with pF de�ning the fault proba-

bility of a component.

Example 2.1 (Continued): For our multiplier/adder circuit, the set ∆ =

{A2 ,M2} is a diagnosis, while ∆′ = {A1 ,A2 ,M2} is not, as ∆
′ ⊃ ∆. On the

other hand, ∆′′ = {A1} is a cardinality-minimal diagnosis as |∆′′ | = 1 > 0

for a faulty system.

Reiter proposes to obtain the complete set of diagnoses for (SD, COMP, OBS)

via MHS computation of the con�icts of (SD, COMP, OBS).

12

2.1 Model-based Diagnosis

De�nition 2.5 (Con�ict): A set C = {c1 , c2 , . . . , ck } is a con�ict for (SD, COMP,

OBS) i� SD ∪OBS ∪ {¬AB(c1),¬AB(c2), . . . ,¬AB(ck)} is inconsistent.

De�nition 2.6 (Minimal Con�ict): A con�ict C for (SD, COMP, OBS) isminimal
i� no proper subset of it is a con�ict for (SD, COMP, OBS).

Intuitively, a con�ict is a set of components all of which cannot be functioning

correctly at the same time. Therefore, at least one component in every con�ict

must be faulty. Note that adding an arbitrary component to a con�ict still

yields a con�ict. However, the set ofminimal con�icts will commonly be used in

discussions. It contains all information to cover the complete diagnosis space.

2.1.3 Minimal Hitting Sets

We observed above that at least one component in every con�ict must be faulty.

In other words, at least one component from every con�ict must be contained

in a diagnosis. Reiter showed that, consequently, minimal hitting sets can be

used to compute the diagnoses.

De�nition 2.7 (Hitting Set): A hitting set for a collection SC of sets Ci is a set

H such that for every Ci ∈ SC : H ∩ Ci , ∅.

De�nition 2.8 (Minimal Hitting Set): A hitting set H for a collection SC is

minimal i� no proper subset of H is a hitting set for SC.

Theorem 2.1 (Theorem 4.4 from [Rei87]): ∆ ⊆ COMP is a diagnosis for (SD,

COMP, OBS) i� ∆ is a minimal hitting set for the collection of con�icts for (SD,

COMP, OBS).

Note that Theorem 2.1 does not require minimality of con�icts. While it can

be formulated for minimal con�icts too (see Corollary 4.5 in [Rei87]), using

non-minimal con�icts alleviates the requirements on the con�ict-generation

engine (for example, the Satis�ability (SAT) solver).

Theorem 2.1 is the basis for several diagnosis algorithms (see, for example,

[AvG09; Ste+12; Wot01]). Reiter’s original algorithm is based on a tree structure

called a hitting-set tree (HS-tree). The tree both stores computed hitting sets as

well as guides the search process. Greiner, Smith, and Wilkerson corrected a

13

2 Preliminaries

small mistake in their variant called HS-DAG [GSW89] for cases where non-

minimal con�icts are involved, requiring the use of a Directed Acyclic Graph

(DAG). For minimal con�icts, however, the following steps roughly illustrate

the generation of a HS-tree [Rei87]; a more formal and precise description (of

HS-DAG) will be given in Section 4.2.1.1.

1. Assume F to be a collection of sets (for diagnosis these are the con�icts).

2. A HS-tree for F is an edge- and node-labeled tree, where

(a) the set of edge labels are from

⋃
Fi∈F Fi ,

(b) the set of node labels are from {“3′′, “7′′} ∪ F, and
(c) H(n) is the set of edge labels on the path from the root to a node n.

3. The HS-tree for F is generated in a breadth-�rst manner starting from a

root node n0 as follows:

(a) If F = ∅, label n0 with “3′′.

(b) Otherwise, label each node n with a set Fi ∈ F, such that H(n)∩Fi = ∅

and generate outgoing edges labeled ci for every ci ∈ Fi . If there is

no such set, label n with “3′′.

(c) If a node n is going to be labeled “3′′ and there is another node n′

labeled “3′′ such that H(n′) ⊆ H(n), then label n with “7′′ and do

not generate any outgoing edges.

The idea behind this procedure is a divide-and-conquer approach, where the

algorithm tries to cover the con�icts by consideringmore andmore components

until all con�icts have been hit. Constructing an outgoing edge from an existing

node denotes adding its label to the hitting set candidate. This is the divide step—
the size of the problem is reduced by anticipating one part of the solution. The

node at the end of the edge speci�es the �rst con�ict found which is not yet

hit. From there, the same procedure is applied to the now smaller problem (the

conquer step). If no unhit con�ict is left, the corresponding node is labeled “3”.

Example 2.2 shows the HS-tree for the circuit given in Example 2.1 above.

Example 2.2: For the diagnosis problem (SD,COMP,OBS) given in Ex-

ample 2.1 above we know the following two con�icts:

F = {F1 , F2} = {{M1 ,M2 ,A1}, {M1 ,M3 ,A1 ,A2}}

14

2.1 Model-based Diagnosis

Figure 2.3 shows the corresponding HS-tree.

{M
1
,M2 ,A1

}

3

M
1

{M
1
,M3 ,A1

,A2}

7

M
1

3

M3

7

A
1

3

A2

M2

3

A
1

Figure 2.3: HS-tree for Example 2.1.

The root node is labeled with F1 (using F2 would work as well but result

in a larger HS-tree). If we assume M1 or A1 to be part of the solution,

both con�icts are hit such that we can label their corresponding target

nodes with “3”. These are the �rst minimal hitting sets for F, and also the

minimum ones in this example.However, doing the same for M2, we do not

hit F2, such that we use this con�ict as the target node’s label. Applying

the same procedure again, we produce the hitting set candidates {M2 ,M1}

and {M2 ,A1}, both of which are supersets of an existing hitting set ({M1}

and {A1}, respectively). We therefore close these branches, labeling their

target nodes “7”. Using the two components remaining in F2, we discover

the last two minimal hitting sets {M2 ,M3} and {M2 ,A2}.

Note that the minimal hitting set problem is related to a number of other

combinatorial problems. For example, a set of subsets E = {E1 , E2 , . . . , Em } of a

set X can be interpreted as a hypergraph H(X, E)with vertices X and edges Ei i�

all Ei , ∅ and
⋃

Ei∈E Ei = X. A so-called vertex cover or transversal of H is a set

T ⊆ X such that T meets all edges E, that is, T ∩ Ei , ∅ ∀ Ei ∈ E. A transversal

T is minimal i� no proper subset of T is a transversal as well. The family of

minimal transversals of H is called a transversal hypergraph of H [Ber89]. It is

easy to see from De�nition 2.7 and De�nition 2.8 that for X = COMP and

E = SC these notions correspond to the notions of a hitting set, minimal hitting

set and the set of all minimal hitting sets of SC, respectively.

Another related problem is the dualization problem, computing from the (prime)

Conjunctive Normal Form (CNF) (see Section 2.3.1) of a (monotone) Boolean

function f (x1 , x2 , . . . , xn) the prime CNF of its dual function f (x1 , x2 , . . . xn).

15

2 Preliminaries

This is equivalent to computing a hypergraph transversal (identifying the vari-

ables xi with the vertices and the clauses of the CNF with the edges) and thus

also the set of minimal hitting sets of the clauses of f [EGM03; EMG08].

Although a great amount of research work has been invested into this family

of problems, the best known general algorithm is of complexity O(no(log n)
)

(where n is the sum of input size and output size) [FK96]; other algorithms

such as [EMG08] focus on tractable input classes. While all of these algorithms

have in common that they assume the input to be known completely, we focus on

the minimal hitting set computation from a diagnosis point of view. Algorithms

such as HS-DAG steer the computation of additional input sets (con�icts) during

their execution. While the separate computation of those con�icts is possible by

computing unsatis�able cores using a SAT solver (see Section 2.3.4) and even

iteratively using algorithms like [Ste+12], these approaches do not generalize to

the case of Strong Fault Models (SFMs), that is, when dealing with more than

two modes of operation for each component. Our experiments in Chapter 3

and Chapter 4 will show that Reiter’s algorithm generalizes easily to the SFM

case but we can pro�t even more from the recent advancements in SAT solving

for our application.

2.2 Linear Temporal Logic

The Linear Temporal Logic (LTL) is a modal temporal logic that extends the

Boolean propositional logic with modalities referring to time. It was introduced

by Amir Pnueli in 1977 [Pnu77] for reasoning about the correctness of (parallel)

non-terminating cyclic programs. He found the formal systems used at the time

too complex for program veri�cation. Based on another logic called KB [RU71],

he concentrated on the concepts of invariance and eventuality (also known as

safety and liveness, see Section 2.2.2). While invariance speci�es that a prop-

erty holds throughout the execution of a program, eventuality (or temporal

implication) indicates that a property will hold at some point in the future. To

denote these concepts, he introduced the respective operators G and F. G is

usually read as globally or always and F as �nally or eventually. Sometimes the

operators are also written as � and �, respectively. Although G and F are still

main operators of LTL, they are often seen as formally derived from the “basic”

operators next (X) and until (U) (see De�nition 2.11).

16

2.2 Linear Temporal Logic

LTL is called Linear Temporal Logic, because its semantic is de�ned over (in�-

nite) linear traces or computations, that is, each computation step has exactly one

possible successor. In contrast to that, logics like Computation Tree Logic (CTL)

are de�ned over computation trees, that is, each computation step may have

multiple possible successors. There has been (and still is) some controversy

about whether the so-called “linear time” (that is, LTL) or “branching time”

(that is, CTL) model is better [NV07]. While this has led to a uni�ed logic called

CTL* [EH86], a (strict) superset of both LTL and CTL, the latter are still more

relevant than CTL* in �elds like model checking. Model checking (or property

checking) is the process of checking whether a system (that is, its model, usually

given as some sort of transition system) conforms to a speci�cation (a set of prop-

erties). Due to fact that model-checking CTL is computationally easier (linear in

the product of the size n of the system and size m of the speci�cation) than LTL

(n · 2O(m)
) [NV07], CTL was the dominant speci�cation language throughout

the 1990s. Nevertheless, CTL is now believed to be harder and more unintuitive

to use [NV07]. Rather than thinking about all possible paths in a computation

tree, the author of an LTL property can focus on a single, exemplary path. As

a consequence, modern languages like ForSpec [Arm+02], the Property Spec-

i�cation Language (PSL) [EF06] and SystemVerilog Assertions (SVA) [VR05]

focus on linear-time properties, as well2. [NV07]

The notion of time in all mentioned logics is based on a synchronous clock,

given the fact that synchronous circuits dominate today’s semiconductor de-

signs. We thus regard time as a series of discrete events (time instances) and

restrict ourselves to digital signals (that is, discrete-time and discrete-valued

functions). Some logics such as ForSpec, however, support multiple clocks,

targeting circuits and systems that strike a compromise between the (easier)

synchronous and (faster) asynchronous approach. [Var08]

2
However, some logics such as PSL feature a branching-time extension allowing to inter-

pret properties over computation trees originating from non-deterministic model behav-

ior. [Acc04]

17

2 Preliminaries

2.2.1 Definitions

To give the de�nitions of LTL syntax and semantics, we need to clarify �rst what

a trace is. As already mentioned, we concern ourselves with non-terminating

systems, such that a trace (computation) is considered to be “in�nitely long”.

Note that there are only two possibilities for a sequence with �nite space to

describe an in�nite computation:

1. the computation is lasso-shaped and has a look-back cycle from time

instance k to time instance l (l ≤ k), or
2. the sequence describes all possible computations that have this sequence

as pre�x.

Hence, to describe a single computation, we have to use the former type of

traces, also called (k , l)-loops [Bie+99]. For our de�nitions, we assume a �nite

set of atomic propositions AP that induces the alphabet Σ = 2
AP

(that is, the

power set of AP).

Throughout the rest of this document, we will use ∧, ∨ and ¬ as symbols

for Boolean and, or and not, as well as > and ⊥ for true/1/high/(a ∨ ¬a) and
false/0/low/(a ∧¬a), respectively. Sometimes we abbreviate ¬a by a for atomic

propositions. We also use the common Boolean connectives δ → σ, δ ↔ σ and

δ ⊕ σ, which can be rewritten as ¬δ ∨ σ, (δ → σ) ∧ (σ → δ) and ¬(δ ↔ σ),
respectively.

A trace in the form of a (k , l)-loop is denoted by a sequence of time instances τi

(i ≥ 0), made up of a so-called �nite stem “traversed” initially and a loop repeated
in�nitely, where time step τl follows time step τk . Figure 2.4 shows such a trace

with k = 6 and l = 3, that is, the stem includes τ0 , τ1 and τ2, whereas the loop

contains τ3 through τ6. The (k , l)-loop notation is therefore a shorthand for a

trace τ consisting of the time instances

τ = τ0τ1τ2︸ ︷︷ ︸
stem

τ3τ4τ5τ6︸ ︷︷ ︸
loop

τ3τ4τ5τ6︸ ︷︷ ︸
loop

τ3τ4τ5τ6︸ ︷︷ ︸
loop

· · ·

also written as

τ = τ0τ1τ2(τ3τ4τ5τ6)
ω

as formally introduced in De�nition 2.9.

18

2.2 Linear Temporal Logic

τ0 τ1 τ2 τ3 τ4 τ5 τ6

kl

Figure 2.4: Time instances in a (k , l)-loop with k = 6 and l = 3.

De�nition 2.9 (Trace): An in�nite trace τ is an in�nite sequence over letters

from some alphabet Σ of the form

τ = (τ0τ1 . . . τl−1︸ ︷︷ ︸
�nite stem

)(τlτl+1 . . . τk︸ ︷︷ ︸
(k ,l)−loop

)
ω

with l , k ∈ N, 0 ≤ l ≤ k and τi ∈ Σ for any 0 ≤ i ≤ k. (. . .)ω denotes in�nite

repetition of the corresponding (sub-)sequence, (τ0τ1 . . . τl−1) refers to τ’s �nite
stem, l to the loop-back time step, and (τlτl+1 . . . τk) represents the trace’s (k,l)-
loop. We denote the in�nite su�x starting at i as τi

, and τi refers to τ’s element

at time step i, where for any i > k we have τi = τl+(i−l)%(k−l+1). �

Example 2.3: For AP = {a , b , c} consider the following trace, where the

time steps between the red bars repeat in�nitely (as indicated via dotted

lines).

a

b

c

Figure 2.5: Example trace

The trace in Figure 2.5 is equivalent to

τ = (τ0τ1τ2)(τ3τ4)
ω
=

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

ω

with k = 4 and l = 3, where

· · ·

x
y
z
· · ·

 denotes that x, y and z are true in

the corresponding time step (that is, x ∧ y ∧ z is true).

19

2 Preliminaries

Note that while traces usually contain input and output signals only, we may

also add further propositions to encode the evaluation of subformulae within

the trace.

De�nition 2.10 (Basic LTL operators): Assuming a �nite set of atomic proposi-

tions AP, and δ and σ to be LTL formulae, an LTL formula is de�ned inductively

as follows: [Pnu77]

for any p ∈ AP, p is an LTL formula

¬δ, δ ∧ σ, δ ∨ σ, X δ and δU σ are LTL formulae

De�nition 2.11 (Basic LTL semantics): Given a trace τ and an LTL formula ϕ,
τ(=τ0) satis�es ϕ, denoted as τ |= ϕ, under the following conditions: [Bie+99]

τi |= p i� p ∈ τi

τi |= ¬ϕ i� τi 6 |= ϕ

τi |= δ ∧ σ i� τi |= δ and τi |= σ

τi |= δ ∨ σ i� τi |= δ or τi |= σ

τi |= Xϕ i� τi+1 |= ϕ

τi |= δU σ i� ∃ j ≥ i
[
τ j |= σ and ∀i ≤ m < j . τm |= δ

]
While the Boolean operators work as expected, intuitively Xϕ holds i� ϕ holds

in the next time instance and δU σ holds i� δ holds until (one time instance

before) σ holds.

Example 2.3 (Continued):

For our trace τ, we have that

τ = τ0 |= a ∧ b,
τ = τ0 |= b ∨ c,
τ = τ0 |= ¬c,
τ = τ0 |= X a, or
τ = τ0 |= a U c.

as you can see from the

evaluations in Figure 2.6.

a

b

c

X a

a U c

Figure 2.6: Evaluations for sample

trace.

20

2.2 Linear Temporal Logic

As mentioned earlier, several additional operators have been de�ned as abbre-

viations for common formulae. They are often called syntactic sugar and capture

essential properties as easily comprehensible formulae.

De�nition 2.12 (Syntactic LTL sugar): Assuming a �nite set of atomic propo-

sitions AP, and δ and σ to be LTL formulae, also F δ, G δ, δW σ and δR σ are

LTL formulae and are de�ned as follows:

F δ ≡ >U δ
G δ ≡ ⊥R δ
δW σ ≡ δU σ ∨G δ
δR σ ≡ ¬((¬δ)U (¬σ))

For illustration, their semantics can be additionally given explicitly, like for the

other LTL operators:

Given a trace τ and an LTL formula ϕ, τ(=τ0) satis�es ϕ, denoted as τ |= ϕ,
under the following conditions: [Bie+99]

τi |= Fϕ i� ∃ j ≥ i . τ j |= ϕ

τi |= Gϕ i� ∀ j ≥ i . τ j |= ϕ

τi |= δW σ i� τi |= δU σ or τi |= G δ

τi |= δR σ i� ∀ j ≥ i
[
τ j |= σ or ∃i ≤ m < j . τm |= δ

]
�

As de�ned by Pnueli, F captures the important property of eventuality, that

is, something will become true eventually, and G denotes invariance, that is,

something will stay true forever.

W and R on the other hand, are variations of the until operator. δW σ is like

δU σ, except that it also holds if σ never becomes true, but instead δ stays true
forever. δR σ holds i� σ holds up to (and including) the time instance where δ
becomes true or if σ holds forever.

21

2 Preliminaries

The following example demonstrates the di�erences between these operators.

Example 2.4:

Given the behavior of signals d, e and f
in Figure 2.7, we observe the following

behavior:

While d U e and d W e behave the

same for the �rst three time steps,

only d W e holds in the loop as d
stays true forever.

e R f holds for the �rst two time

steps (while e R d does not), but

e R d holds in the loop as d stays

true forever.

d

e

f

d U e

e W e

e R f

e R d

Figure 2.7: Di�erence be-

tween U, W and

R.

2.2.2 LTL Property Patterns and Safety vs. Lifeness

In the following we list a few common LTL properties. From a syntactical point

of view, the operators G and F often appear together, forming “compound”

modalities:

GF p: p happens in�nitely often (in every time step, regardless of whether

p has already been true or or not, there will be another p in the future)

FG p: p is eventually true forever (from some time step on, p will always

be true)

According to Alpern and Schneider [AS87], all properties can be expressed in

terms of safety and liveness properties. A safety property speci�es that “some-

thing bad will never happen”, expressed as G¬δ, for example. A liveness

property on the other hand speci�es that “something good will eventually hap-

pen”, for example, F δ, or G (r → F a). The latter speci�es that all requests will

eventually be acknowledged and is sometimes also called a responsiveness prop-
erty, as it ensures that a system correctly responds to requests. A special class of

liveness properties are fairness properties, specifying that something happens

22

2.3 Reasoning via Satis�ability

Table 2.1: Common LTL property patterns, taken from http://patterns.projects.cis.ksu.

edu/documentation/patterns/ltl.shtml

Universality, p holds . . .

. . . globally G p

. . . before r F r → (p U r)

. . . after q G (q → G p)

. . . between q and r G ((q ∧ ¬r ∧ F r)→ (p U r))

Existence, p becomes true . . .

. . . globally F p

. . . before r ¬r W (p ∧ ¬r)

. . . after q G¬q ∨ F (q ∧ F p)

. . . between q and r G (q ∧ ¬r → (¬r W (p ∧ ¬r))

Precedence, s precedes p . . .

. . . globally ¬p W s

. . . before r F r → (¬p U (s ∨ r))

. . . after q G¬q ∨ F (q ∧ (¬p W s))

. . . between q and r G ((q ∧ ¬r ∧ F r)→ (¬p U (s ∨ r)))

Response, s responds to p . . .

. . . globally G (p → F s)

. . . before r F r → (p → (¬r U (s ∧ ¬r)))U r

. . . after q G (q → G (p → F s))

. . . between q and r G ((q ∧ ¬r ∧ F r)→ (p → (¬r U (s ∧ ¬r)))U r)

in�nitely often (for example, GF δ, GF δ → GF σ or FG δ → GF σ). [Sis94]
Fairness is scheduling terminology, saying that no process may be delayed

inde�nitely, which would be unfair because it couldn’t complete its program

unlike the others. [Pnu77]

Table 2.1 shows some patterns repeatedly occuring in LTL properties.

2.3 Reasoning via Satisfiability

This section will brie�y introduce the Satis�ability (SAT) problem, SAT solving

techniques as well as practical SAT solvers as a prerequisite for the LTL encod-

ing developed in Chapter 3 as well as the SAT-based diagnosis algorithms in

Chapter 4.

23

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

2 Preliminaries

2.3.1 Introduction to SAT

SAT was the �rst known NP-complete problem [Coo71], meaning that it can be

solved in polynomial time on a nondeterministic Turing machine (or, equiva-

lently, a solution can be veri�ed in polynomial time on a deterministic Turing

machine [Sip97]). As it is still unknown whether P = NP or P , NP, no (deter-

ministic) sub-exponential algorithm is available. Nevertheless, throughout the

last decades, SAT decision procedures with a very good average run-time even

for large problems have been developed.

Those procedures answer one simple question: For a given Boolean proposi-

tional formula, is there a satisfying assignment or not?

De�nition 2.13: A Boolean formula or propositional formula φ is an expression

over (atomic) propositions with values from {>,⊥}. A truth assignment (or as-
signment for short) to a set V of propositions is a map λ : V → {>,⊥}. A
satisfying assignment for φ is a truth assignment λ such that φ evaluates to >

under λ. [Gom+08]

De�nition 2.14: A Boolean or propositional formula φ is satis�able, denoted
SAT(φ), if and only if there is at least one satisfying assignment for φ. φ is valid
i� it evaluates to > for every truth assignment λ. [HR04]

Proposition 2.1: Apropositional formulaφ is satis�able i�¬φ is not valid. [HR04]

If there exists a satisfying assignment, this assignment is typically of interest

and also provided by the corresponding decision procedure. For unsatis�able

cases only rarely any additional information is given, for example, a proof of

unsatis�ability.

The problems (formulae) are almost always given in Conjunctive Normal Form,

that is, as conjunctions of disjunctions.

De�nition 2.15 (CNF/DNF): A literal is a propositional symbol p or its nega-

tion ¬p. A clause is a disjunction of literals. A cube (also called term) is a con-

junction of literals. A formula in CNF is a conjunction of clauses. A formula in

Disjunctive Normal Form (DNF) is a disjunction of cubes.

24

2.3 Reasoning via Satis�ability

Example 2.5: The Boolean formula ¬((a ∧ b) ∨ c) ∨ d is equivalent to

(¬a ∨ ¬b ∨ d) ∧ (¬c ∨ d), which is a conjunction of disjunction and

thus in CNF, and

(¬a ∧ ¬c) ∨ (¬b ∧ ¬c) ∨ d, which is a disjunction of conjunctions

and thus in DNF.

These equivalences can be shown using a transformation with de Mor-

gan’s laws
a
and distributive laws or using truth tables.

a¬(p ∨ q)⇔ ¬p ∧ ¬q and ¬(p ∧ q)⇔ ¬p ∨ ¬q

While the validity of a formula φ in CNF is easy to check (each clause contains

two complementary literals p and ¬p) it is the other way around for DNFs: A

DNF φ is satis�able if at least one cube does not contain both p and¬p. Together
with Proposition 2.1 it follows that the converse problems, satis�ability of CNF

and validity of DNF are of the same complexity (NP-hard) and therefore also

CNF/DNF conversion. [HR04]

We see that the input form does not matter for the complexity of SAT. However,

the CNF is an accepted norm, becausemany problems are naturally given in this

form and it lends itself to the solvers. Every clause is stored as a set of literals,

where at least one of themmust be true. There is also an e�cient transformation

by Tseitin [Tse83] that converts an arbitrary propositional formula into an

equisatis�able CNF by adding a number of auxiliary variables linear in the size

of the formula. [Gom+08]

De�nition 2.16 (Equisatis�ability): Propositional formulae φ and ψ are equi-

satis�able, i� φ is satis�able i� ψ is satis�able, SAT(φ)↔ SAT(ψ).

Note that two equisatis�able formulae are not necessarily equivalent (that

is, have the same assignments) and may even have di�erent number of vari-

ables. Using traditional Boolean replacement rules, de Morgan’s laws and

distributive law to gain an equivalent CNF formula would increase its size

exponentially. [Gom+08]

25

2 Preliminaries

Example 2.6: Tseitin Transformation

The formula from the previous example, ¬((a ∧ b) ∨ c) ∨ d, can be trans-

formed into CNF by introducing a new variable xi for every subformula:

ϕ = ¬((a ∧ b︸︷︷︸
x
1

) ∨ c︸ ︷︷ ︸
x2

)

︸ ︷︷ ︸
x3

∨d

It is obvious that ϕ is equisatis�able to the conjunction of the following

formulae:

x1 ↔ a ∧ b x2 ↔ x1 ∨ c x3 ↔ ¬x2 ϕ ↔ x3 ∨ d

Now each of those can be transformed into the corresponding CNF sepa-

rately. Then the conjunction of all clauses represents a formula equisatis-

�able to ϕ.

(x1 ↔ a ∧ b) = (¬x1 ∨ a) ∧ (¬x1 ∨ b) ∧ (¬a ∨ ¬b ∨ x1)

(x2 ↔ x1 ∨ c) = (¬x1 ∨ x2) ∧ (¬c ∨ x2) ∧ (x1 ∨ c ∨ ¬x2)

(x3 ↔ ¬x2) = (x3 ∨ x2) ∧ (¬x3 ∨ ¬x2)

(ϕ ↔ x3 ∨ d) = (¬x3 ∨ ϕ) ∧ (¬d ∨ ϕ) ∧ (x3 ∨ d ∨ ¬ϕ)

Although this CNF is larger than the one presented in Example 2.5, this

is generally not the case. As the basic formulae σ ↔ δ ∧ ρ, σ ↔ δ ∨ ρ and

σ ↔ ¬δ can be translated using at most three clauses, each additional

subformula adds a constant number of clauses only. On the contrary,

using traditional (equivalence) rules one additional subformula may

double the number of clauses needed.

A very common format to represent a CNF for use in a SAT solver is the DI-

MACS format [DIM93], proposed by and named after the “Center for Discrete

Mathematics & Theoretical Computer Science”3. It is a simple text format with

the following properties:

Comment lines start with c and are ignored by programs, for example,

c This is a comment line.

3
http://dimacs.rutgers.edu/

26

http://dimacs.rutgers.edu/

2.3 Reasoning via Satis�ability

The �rst non-comment line must be the problem line in the format

p FORMAT VARIABLES CLAUSES

FORMAT speci�es the input format (usually cnf), VARIABLES speci�es the

maximum variable number used (variables are the integers from 1 to

VARIABLES), and CLAUSES states the number of clauses following.

Any other line is treated as clause input. Integers are directly used as

variables, a minus (-) sign denotes negation. Clauses are separated by

zeros (0). The following lines, for example, encode the clauses (x1∨¬x2)∧

(¬x1 ∨ x3) ∧ (¬x1 ∨ x4 ∨ x6):

1 -2 0 -1 3 0
-1 4 6 0

Note how it is not necessary for every number in the range (1, VARIABLES)
to appear in the input, and line-breaks are optional between clauses.

Note that we only mentioned the unrestricted SAT problem up to now, where an

arbitrary number of literals may be present in each CNF clause. Sometimes, also

“easier” versions of SATwith restricted clause length are considered.HORNSAT

deals with Horn clauses, where in each clause at most one literal can be positive

(that is, non-negated). [Hor51] This class of clauses is interesting because it

builds the basis for logic programming by providing three possible types of

sentences: [Llo87]

facts are horn clauses with no negative literals (and thus only one positive

literal), for example, (x).
de�nite clauseswith one positive literal represent implications, for example,

(¬x ∨ ¬y ∨ ¬z ∨ a) is equivalent to (x ∧ y ∧ z) → a and thus allows to

conclude the truth of one variable from a set of others.

goal clauses with no positive literal are used to state the negation of the

problem to be solved, for example, (¬x ∨ ¬y ∨ ¬z) is equivalent to x ∧
y ∧ z → ⊥ and implies that a solution must contain one of these literals

in a negative sense.

HORNSAT is NL-complete4, therefore in P and can even be solved in linear

time using a simple marking algorithm [DG84] similar to Boolean Constraint

Propagation (BCP), which is explained in the following section.

4NL is the class of decision problems that can be solved by a nondeterministic Turing machine

using a logarithmic amount of memory space; NL-complete problems are the most “di�cult”

or “expressive” problems in NL [Sip97].

27

2 Preliminaries

It can be easily shown that unrestricted SAT is equivalent to 3SAT, where each

clause can be of length 3 at most [Aho+06]. 2SAT, on the other hand, is solvable

in linear time (see, for example, [APT79]).

2.3.2 SAT Solving

In order to build an e�cient SAT encoding for LTL, we need a basic under-

standing of how SAT problems are solved. We will therefore introduce the basic

ideas underlying the SAT solvers addressed in the subsequent section and also

used for our experiments in Chapter 3 and Chapter 4.

Procedures for answering (unrestricted) SAT can be classi�ed into two cate-

gories: complete ones and incomplete ones. Virtually all complete implemen-

tations are based on an algorithm from Martin Davis, George Logemann and

Donald Loveland, which is called after its authors DLL [DLL62]. As it is a re�ne-

ment of parts of the DP-algorithm [DP60] for checking the validity of �rst-order

formulae, DLL is often also called DPLL or sometimes DP-procedure.

DPLL is a recursive depth-�rst search algorithm based on the idea to pick an

arbitrary, yet unassigned literal and search for solutions when assigning it

to true and when assigning it to false. As soon as any clause turns out to be

unsatis�ed, it backtracks and continues in another branch of the search tree. If

all clauses are satis�ed, so is the total formula. [Gom+08]

Algorithm 1 shows this basic idea along with two common and important

advancements: unit propagation and pure literals. Unit propagation—also called

Boolean Constraint Propagation (BCP)—is used to derive values from clauses

with a single literal left (it must be assigned true). Similarly, if a formula only

contains literal p or ¬p, it is called pure and used to infer a new value for p (>

or ⊥, respectively). Of course, the choice of the next literal to be assigned a new

value (see Line 9 in Algorithm 1), and also whether it is assigned > or ⊥ �rst, is

crucial for the overall performance. In the worst case scenario, the whole search

tree—sized exponentially in the number of variables—has to be traversed until

a solution (either UNSAT or a satisfying assignment) is found. Therefore a huge

number of di�erent variable and value selection strategies emerged, varying

from random ones to those who maximize a target function calculated from the

current clause list. One example would be Maximum Occurence in clauses of

Minimum Size (MOMS), where preference is given to those literals occurring

28

2.3 Reasoning via Satis�ability

Algorithm 1: DPLL, recursive [Gom+08]

1 Function DPLL(ϕ, λ):
Input :CNF formula ϕ, initially empty partial assignment λ
Output :SAT or UNSAT
// Note: ϕ |x is assumed to remove all clauses that contain x (they are
satis�ed) as well as literals ¬x from all others (they are false)

// Unit propagation and pure literals:
2 while ϕ has no empty clause but a unit clause or pure literal x do
3 ϕ ← ϕ |x
4 λ ← λ ∪ {x}

5 if ϕ has an empty clause : return UNSAT
6 if ϕ has no clauses left :
7 output λ
8 return SAT

9 ` ← a literal not assigned in λ
10 if DPLL(ϕ |` , λ ∪ {`})= SAT : return SAT
11 return DPLL(ϕ |¬` , λ ∪ {¬`})

in the smallest unsatis�ed clauses. For a survey on di�erent strategies see, for

example, [Mar99]. Note that for improved memory e�ciency, solvers usually

implement DPLL in an iterative way. [Gom+08]

Another very important feature of state-of-the-art SAT solvers is clause learning
(see, e.g., [BS97;MS96b]). During the search, an implication graph is constructed,

containing those decisions and clauses that led to a con�ict (that is, a situation

where the current assignment leads to an unsatis�ed clause). Prior to the back-

tracking step, the graph can be used to extract new clauses capturing “sources

of con�ict” in a succinct way. This speeds up the solving process by pruning

the search tree e�ciently. Solvers implementing this type of reasoning are also

called Con�ict-Driven Clause Learning (CDCL) SAT solvers. [Gom+08]

Many other advancements like watched literals [Mos+01], di�erent variants of

backjumping (that is, going back more than one level when backtracking, see,

for example [Mos+01; MS96a; MS96b; SS77]), con�ict clause minimization [ES04;

SB09] and randomized restarts [GSK98] have led to the situation that modern SAT

solvers can tackle problems with 10
5
variables and 10

6
clauses in a reasonable

amount of time on normal computers. [Gom+08]

29

2 Preliminaries

In contrast to these complete options there are also incomplete approaches

like GSAT [SLM92] and WalkSAT [SKC96] based on a stochastic local search.

Starting with a random assignment, those algorithms modify literal values

(trying to satisfy a maximum number of previously unsatis�ed clauses) until

the formula is satis�ed or the algorithm times out. [Gom+08] While those

algorithms may outperform DPLL-based ones in some cases (for example,

especially random graph coloring problems and improved versions also some

real-world problems) they are often not applied due to the chance of returning

an inconclusive result. [LeB09, p. 142]

2.3.3 Solver Implementations

To motivate the selection of SAT solvers used for our evaluations in Chapter 3

and Chapter 4 (that is, MiniSat, PicoSAT and SCryptoMinisat), we give a short

(historic) overview of available solver implementations.

Researchers and engineers have been working for decades on improvements of

the algorithms outlined in the previous section. While early versions of SAT

solvers such as Tableau [CA93], POSIT [Fre95], 2cl [GT95] or CSAT [Dub+93]

were more or less direct implementations of the DPLL idea, the introduction of

clause learning and backjumping (non-chronological backtracking) by Silva and

Sakallah [MS96a; MS96b], and Bayardo and Schrag [BS97] greatly improved e�-

ciency. Those techniques resulted in solvers like SATO [Zha97], GRASP [MS96b],

Cha� [Mos+01], BerkMin [GN07] and zCha� [MFM05]. [ZM02]

Today, a sheer number of solvers is available, specialized and optimized for

di�erent problems. For example, 60 solvers con�gured to over 90 solver variants

competed in 14 tracks of the biennial SAT Competition5 in 2013. Interestingly,

many of the state-of-the-art solvers are somehow based on two popular imple-

mentations: MiniSAT [ES04] and PicoSAT [Bie08].

MiniSAT started as a C++ project by Niklas Eén and Niklas Sörensson with

merely 600 lines of code in 2003. Glucose [AS09] is based on MiniSAT and

identi�es glue clauses, a special type of “high quality” learnt clauses which

should not be deleted from the clause table. Experiments showed that other (low-

quality) learnt clauses should be deleted at some point in order to prevent the

5
http://www.satcompetition.org/

30

http://www.satcompetition.org/

2.3 Reasoning via Satis�ability

constraint propagation mechanism getting slowed down by a growing clause

table. SAT4J [LP10] is a Java implementation of MiniSAT aiming at �exibility

and robustness while sheding speed due to its implementation language.

PicoSAT was developed in 2008 by Armin Biere and incorporated some impor-

tant low-level implementation optimizations not found in other solvers and the

possibility to generate proofs of unsatis�ability [Bie08]. PicoSAT was followed

by a series of successful solvers by Biere, for example PrecoSAT [Bie10] which

won the “application track” of the SAT competition in 2009 by combining sev-

eral features from Glucose, MiniSAT and PicoSAT and using the approach of

interleaved solving and preprocessing [Bie10]. Lingeling [Bie10] is mainly a

reimplementation of these ideas in pure C with data structures optimized in

size. Together with its parallel counterpart Plingeling [Bie10] it scored very

good in recent SAT competitions and even won in 2013 (application and parallel

track, respectively).

Another successful parallel solver is ManySAT [HJS09], where several instances

of the solver con�gured with varying parameters compete on di�erent CPU

cores. SATzilla [Nud+04] computes features of a given problem to estimate

its complexity and also tries to select the fastest algorithm based on those

features. Clasp [Geb+07] has actually been developed as a solver for Answer

Set Programming (ASP), but can also be used as a pure SAT solver.

CryptoMiniSat, developed by Mate Soos in 2009, is also based on Glucose,

MiniSAT, PrecoSAT and a preprocessor called SatELite and won the SAT Race

in 20106 and two medals in SAT Competition 20117. SCryptoMinisat8 is an

extension of CryptoMiniSat 2.5.1, which allows the search for several solutions

or search for solutions minimizing a unary/binary number.

2.3.4 Unsatisfiable Cores

As already mentioned, the result delivered by a SAT solver for a satis�able

instance is almost always accompanied by a satisfying assignment. The solver

necessarily needs to construct this assignment when using a DPLL-style algo-

rithm. Hence, the correctness of the result can be veri�ed easily by evaluating

the input formula using the given assignment. As SAT is in NP, this can be done

6
http://baldur.iti.uka.de/sat-race-2010/results.html

7
http://www.cril.univ-artois.fr/SAT11/phase2.pdf

8
http://amit.metodi.me/research/scrypto/

31

http://baldur.iti.uka.de/sat-race-2010/results.html
http://www.cril.univ-artois.fr/SAT11/phase2.pdf
http://amit.metodi.me/research/scrypto/

2 Preliminaries

in polynomial time [Sip97]. On the other hand, a solver answering “UNSAT”

leaves us with the question whether the given instance is truly unsatis�able or

the solver has a bug. In order to overcome this situation, some solvers are able

to produce a refutation proof based on the resolution rule:

De�nition 2.17 (Resolution Rule [Rob65]): Given two clauses A = (x ∨ a1 ∨
a2 ∨ . . . ∨ an) and B = (¬x ∨ b1 ∨ b2 ∨ . . . ∨ bm)we can conclude the resolvent

C = (a1 ∨ a2 ∨ . . . ∨ an ∨ b1 ∨ b2 ∨ . . . ∨ bm).

Resolutions are often written in the notation used for natural deduction

x ∨ a1 ∨ a2 ∨ . . . ∨ an ¬x ∨ b1 ∨ b2 ∨ . . . ∨ bm x
a1 ∨ a2 ∨ . . . ∨ an ∨ b1 ∨ b2 ∨ . . . ∨ bm

where x denotes the resolved variable.

We know that using this simple rule, we can resolve the empty clause (that is,⊥)

if and only if a CNF formula is unsatis�able [Rob65]. This is also the same line

of reasoning already used in the original DP-procedure [DP60]. Unfortunately,

naïve (also called unrestricted) application of resolution usually results in huge

refutation proofs, which is also the main drawback of the DP-procedure. In

fact, it is not known whether there is a short (that is, non-exponential in the

number of clauses used) resolution proof for every (unsatis�able) formula. In

the a�rmative case, this would imply P = NP. [Gom+08]

Nevertheless, it has been shown that clause learning in DPLL can help us to

�nd short proofs of unsatis�ability, if there are short ones. [Sab05] If at any

step during DPLL we �nd a con�ict (that is, the current assignment does not

satisfy all clauses), the implication graph built during BCP contains the clauses

needed for a resolution proof. [Gom+08; LM03]

Example 2.7: Imagine a SAT problem in CNF comprised of the following

clauses: (1) a ∨ ¬b (2)¬a ∨ b (3) a ∨ b (4)¬a ∨ ¬b (5)¬a ∨ c.
Obviously, these clauses are unsatis�able, because (1) and (2) are equiva-

lent to a ↔ b, while (3) and (4) require a ⊕ b.
DPLL with clause learning would require only two steps to prove that.

32

2.3 Reasoning via Satis�ability

1. We start with trying with the partial assignment ¬a. Clauses (2)
and (4) are satis�ed, and using BCP and simpli�cation the clause

set reduces to (1)¬b and (3) b. Hence, we observe a con�ict. The

implication graph would be

¬a ¬b
(1)

b
(3) ⊥

From this con�ict, we can learn a new clause, (6) a, following from

the only decision ¬a.
2. From (6) a, without any decision,we can reduce the clause set to (2) b

and (4)¬b. Again, we observe a con�ict and a similar implication

graph:

a b
(2)

¬b

(4) ⊥

As we can deduce ⊥ without any decision, we declare the problem

unsatis�able.

The implication graphs now tell us the clauses needed to create the fol-

lowing resolution-based refutation proof:

(1) a ∨ ¬b (3) a ∨ b
ba

(2)¬a ∨ b (4)¬a ∨ ¬b
b

¬a a
⊥

Obviously, not all parts of a formula (that is, not all clauses)might be responsible

for its unsatis�ability. Note how in Example 2.7 only clauses (1)–(4) are needed

in the refutation proof. The clauses needed in such a proof are therefore referred

to as the Unsatis�able Core (UC). [LM04]

33

2 Preliminaries

De�nition 2.18 (Unsatis�able Core [LM04]): Given a CNF formula ϕ, ϕUC is

an unsatis�able core of ϕ, i� ϕUC is unsatis�able and ϕUC ⊆ ϕ. We de�ne the

size of an unsatis�able core, denoted |ϕUC |, as the number of CNF clauses in

ϕUC.

Many di�erent unsatis�able cores (or unsat cores for short) may exist for a

given formula, as an unsat core can be any arbitrary subset of the clauses.

Furthermore, one UC may be a subset of another one, and if an unsat core

exists, even the total set of clauses is an unsat core. We therefore de�ne the

following re�nements of unsat cores: [LM04]

De�nition 2.19 (Minimal Unsatis�able Core [LM04]): An unsatis�able core

ϕUC is called minimal i� removing any clause ψ ∈ ϕUC from ϕUC implies that

the remaining set ϕUC \ {ψ} is not an unsatis�able core.

De�nition 2.20 (Minimum Unsatis�able Core [LM04]): An unsatis�able core

is calledminimum unsatis�able core ϕUC of a formula ϕ i� ϕ has no unsatis�able

core ϕUC
′
such that |ϕUC

′ | < |ϕUC |.

This de�nitions capture the idea that we often want to �nd the smallest explana-

tion for the unsatis�ability of a formula (the same de�nitions can be applied to

a knowledge base where we want to �nd the smallest set of constraints respon-

sible for its inconsistency). Note that a formula can contain multiple minimal
UCs as well as multiple minimum UCs.

Example 2.8: (Taken from [LM04]). Consider the CNF formula ϕ com-

prised of the variables x1 to x3 and the following six clauses ψ1 to ψ6:

(ψ1) x1 ∨ ¬x3 (ψ3)¬x2 ∨ x3 (ψ5) x2 ∨ x3

(ψ2) x2 (ψ4)¬x2 ∨ ¬x3 (ψ6)¬x1 ∨ x2 ∨ ¬x3

ϕ contains a total of nine unsat cores:

ϕUC
1
= {ψ1 , ψ2 , ψ3 , ψ4 , ψ5 , ψ6} ϕUC2

= {ψ1 , ψ2 , ψ3 , ψ4 , ψ5}

ϕUC3
= {ψ1 , ψ2 , ψ3 , ψ4 , ψ6} ϕUC

4
= {ψ1 , ψ3 , ψ4 , ψ5 , ψ6}

ϕUC5
= {ψ2 , ψ3 , ψ4 , ψ5 , ψ6} ϕUC6

= {ψ1 , ψ2 , ψ3 , ψ4}

34

2.3 Reasoning via Satis�ability

ϕUC7
= {ψ2 , ψ3 , ψ4 , ψ5} ϕUC8

= {ψ2 , ψ3 , ψ4 , ψ6}

ϕUC9
= {ψ2 , ψ3 , ψ4}

In this example, ϕUC9
is a minimum unsat core (and thus also minimal)

and ϕUC
4
is also minimal but not minimum (as it is larger than ϕUC9

). All

others are supersets of ϕUC9
.

In recent years, a considerable amount of theoretical and practical work has

been invested in �nding algorithms to generate minimal and minimum unsat-

is�able cores (see, for example, [DHN06; Lif+09; LM04; LS08; ML11; Nad10;

NRS13; Oh+04; RS11; ZM03]). While many of them try to advance the Mini-

mal Unsatis�able Core (MUC) algorithms from impractical and ine�cient to

industrial-strength, the problem stays hard and is in fact DP
-complete [PW88].

DP
(Di�erence Polynomial-Time) is the class of problems requiring a solution

to a problem in NP as well as one in coNP. For MUC this translates to �nding

whether a set of clauses is unsatis�able (coNP) and whether all subsets are

satis�able (NP).

Hence, MUC is computationally at least as hard as diagnosis itself so that we

do not aim in determining all minimal unsat cores in MBD. In fact, MUC and

Minimal Correction Subset (MCS) (which are dual in a hitting-set sense) are

closely related to con�icts and diagnoses (see, for example, [LS08; Saf+07]).

35

3 Model-Based Diagnosis of
LTL Specifications

This chapter is based on the following publications:

I. Pill and T. Quaritsch. An LTL SAT Encoding for Behavioral Diagnosis.
In: Proceedings of the 23rd International Workshop on Principles of Di-

agnosis. DX 2012 (Malvern, United Kingdom, July 31–Aug. 3, 2012). 2012,
pp. 67–74. url: http : // thomas .quaritsch .at / pdf / dx2012- pq .pdf (visited on
04/24/2014)
I. Pill and T. Quaritsch. Behavioral Diagnosis of LTL Speci�cations at
Operator Level. In: Proceedings of the 23rd International Joint Conference
on Arti�cial Intelligence. IJCAI 2013 (Beijing, China, Aug. 3–9, 2013). AAAI
Press, 2013, pp. 1053–1059. url: http:// ijcai.org/ papers13/ Papers/ IJCAI13-
160.pdf (visited on 03/28/2014)

3.1 Motivation

Flawed requirements often pose severe problems to a project’s e�ciency and

resources, for example time-to-market and rework e�ort. We therefore aim at

developing means to help designers writing correct speci�cations. Recently,

speci�cation development has been gaining speci�c attention in a formal con-

text. Sanity checks like coverage and vacuity can pinpoint to speci�cation is-

sues [Fis+09; Kup06] by considering whether mutating the input (that is, the

systemor the speci�cation, respectively) still leaves onewith a satis�ed speci�ca-

tion. Vacuity aims to detect whether a speci�cation is satis�ed in an unintended

trivial way, for example, by antecedent failure (that is, in A → B, A is never

37

http://thomas.quaritsch.at/pdf/dx2012-pq.pdf
http://ijcai.org/papers13/Papers/IJCAI13-160.pdf
http://ijcai.org/papers13/Papers/IJCAI13-160.pdf

3 Model-Based Diagnosis of LTL Speci�cations

satis�ed and thus B is never checked). Coverage, on the other hand, tries to

detect parts of the system that do not play a role during veri�cation, similar to

the notion of coverage for software, where those program parts are identi�ed

that never executed during a test run. Speci�cation development tools like

IBM’s RuleBase PE [IBM13] or the academic tool RAT [Blo+07; Pil+06] (and its

successor RATSY [Blo+10]) help by, for example, letting a designer explore a

speci�cation’s semantics (graphically). RAT’s property simulation (a similar

feature was designed for RuleBase PE as well [Blo+07]), for instance, lets a

user explore a speci�cation’s evaluation along sample behavior (a trace). The

temporal evolution for all subformulae is visualized via individual waveforms,

presented according to a speci�cation’s parse tree. While industrial feedback

was very good [Blo+07], this still involves manual reasoning and intervention.

We aim to increase the level of automation via diagnostic reasoning that pin-

points to speci�cation issues more directly. RuleBase PE o�ers a very interesting

feature in this respect, explaining counterexamples using causality [Bee+09].

Reasoning about points in the trace where the prior stem’s satis�ability status

di�ers from its extension in distinctive ways, critical signals and related failure

causes are identi�ed and marked with red dots in the visualized waveform

for this time-step. Schuppan [Sch12] aims to adopt the notion of unsatis�able

cores—a concept well-established in the Satis�ability (SAT) community (see

also Section 2.3.4)—to speci�cations written in Linear Temporal Logic (LTL).

Translating the speci�cation into a Conjunctive Normal Form (CNF) using a

structure-preserving encoding and an optional (one-step) temporal unfolding,

sets of subformulae are identi�ed, the conjunction of which is unsatis�able (and

any conjuncted subset of which is satis�able). Additional temporal information

about the reasons of unsatis�ability can be gained when using a SAT-based

Bounded Model Checking (BMC) encoding (for example, [Bie+99; HJL05]).

Several encodings of LTL to propositional formulae exist for use in BMC (see, for

example, [Bie+99; CRS04; FSW02]), all of which have to deal with the problem

of unknown trace and loop lengths (k , l). While our encoding is similar to the

mentioned ones in that it translates subformulae recursively by introducing

new variables for subformulae, we end up with a simpler CNF sized O(|ϕ | · |τ |),
because for our application to a given trace k and l are already known.

In contrast to [Bee+09] we aim at the speci�cation rather than the trace, and on

a set of diagnoses instead of a �at list of a�ected components. That is, accom-

modating Reiter’s theory of diagnosis in the context of formal speci�cations

38

3.2 Running Example

in LTL, we derive diagnoses that describe viable combinations of operator oc-

currences (that is, subformulae) whose concurrent incorrectness explains a

trace’s unexpected (un-)satis�ability, both in the context of weak and strong

fault modes. Our diagnoses address operator occurrences rather than clauses

(a diagnosis covers all unsat cores, and we can easily have 10
6
clauses even for

small speci�cations), so that we e�ectively focus the search space to the items

and granularity level the designer is working with.

Adopting the interface of the established property simulation idea, we consider

speci�c scenarios in the form of in�nite lasso-shaped traces a designer can

de�ne herself or retrieve, for example, by model-checking. We use a speci�cally

tailored structure-preserving SAT encoding for our reasoning, exploiting known

trace features and weak or strong fault models. For strong fault models that

include descriptions of “alternative” behavior, our diagnoses directly suggest

repairs like “there should come a weak instead of a strong until”.

3.2 Running Example

To further motivate and demonstrate our approach, we use the following ex-

ample from [Pil+06]. Assume a two line arbiter with two request lines r1 and r2
and the corresponding grant lines g1 and g2 as sketched in Figure 3.1.

r1 r2

g1 g2
Arbiter

Bus

Figure 3.1: Two-line arbiter.

The arbiter manages exclusive access to a shared resource, depicted as a bus

system here. Hence, every incoming request should be granted eventually. At

some point during the speci�cation phase, the designer has established the

following four requirements given as LTL formulae:

R1 : ∀i ∈ {1, 2} : G (ri → F gi)

39

3 Model-Based Diagnosis of LTL Speci�cations

R2 : G¬(g1 ∧ g2)

R3 : ∀i ∈ {1, 2} : (¬gi U ri)

R4 : ∀i ∈ {1, 2} : G (gi → X (¬gi U ri))

Requirement R1 demands that requests on both linesmust be granted eventually,

R2 ensures that no simultaneous grants are given, R3 rules out any initial grant

before a request, and �nally R4 prevents additional grants until new incoming

requests.

Testing her speci�cation, a designer de�nes a supposedwitness τ (that is, a trace
that should satisfy the speci�cation) featuring a simultaneous initial request

and grant for line 1 (line 2 is omitted for clarity).

τ =

(
r1
g1

) (
r1
g1

)ω r1
g1

As pointed out by RAT’s authors, using a tool like RAT, the designer would

recognize that, unexpectedly, her trace contradicts the speci�cation. However,

diagnostic reasoning o�ering explanationswhy this is the case, would obviously

be a valuable asset for debugging, which is exactly our challenge.

The speci�c problem in the scenario above is the until operator ¬gi U ri in R4

that should be replaced by its weak version ¬gi W ri : While the idea of both

operators is that¬gi should hold until ri holds, theweak version does not require

ri to hold eventually, while the “strong” one does. Thus, R4 in its current form

repeatedly requires further requests that are not provided by τ, and which is

presumably not in the designer’s intent.

Evidently, the e�ectiveness of a diagnostic reasoning approach depends on

whether a diagnosis’ impact on a speci�cation is easy to grasp, and can pinpoint

the designer intuitively to issues like the one in our example.

3.3 SAT-based LTL Encoding for Specific Traces

Before describing our diagnosis approach for LTL speci�cations, we �rst in-

troduce our general temporal reasoning principles for LTL, which we are then

going to adapt accordingly.

40

3.3 SAT-based LTL Encoding for Speci�c Traces

A typical SAT encoding for LTL as used in model checking (see, for example,

[Bie+99; CRS04; FSW02; HJL05]) faces the challenge of unknown trace char-

acteristics. Aiming to �nd a counterexample (that is, a trace supported by the

model but not by the speci�cation), one has yet to identify the trace length k
and loop-back time-step l (remember that a trace describing one speci�c in�nite

behavior in �nite space requires a loop, see Section 2.2.1 for details). To address

this issue, the trace length k is gradually increased up to a certain bound (Hel-

janko et al. [HJL05] show that there is a certain maximum bound that needs to

be checked), whereas for l the encoding needs to contain all possible time-steps

(that is, 0 ≤ l ≤ k). The situation for the encoding we propose for model-based

diagnosis of LTL speci�cations is di�erent, as due to the given trace (that is,

it is either provided by the user or has been derived beforehand using model

checking) k and l are de�ned. Our aim is a simple encoding that allows us to

reason about the satisfaction of an LTL speci�cation ϕ for a given trace τ, that
is, whether τ |= ϕ, using a SAT solver. By providing corresponding clauses of a

CNF for all standard LTL operators and retaining the speci�cation’s structure,

we ensure traceability from diagnoses to the original speci�cation in our model-

based diagnosis approach of LTL operator occurrences in Section 3.5. Note in

this context that while we could save variables/clauses by reusing syntactically

equivalent subformulae, we refrain from such optimizations as in a diagnostic

scenario only one occurrence of the corresponding operator might be at fault.

In the following sections we develop an encoding for the very basic operators

U,X,∧,∨ and ¬, which is then extended to the “sugar” operators F,G,R and

W to remove the need for syntactical rewriting when using the encoding in an

MBD context.

3.3.1 Basic Operator Set

For an LTL formula ϕ, we can reason about its satisfaction by a trace τ via

recursively considering τ’s current and next time step in the scope of ϕ and its

subformulae. While this is obvious for the Boolean connectives and the next
operator X, the until operator is more complex.

Our reasoning in this case is based on a well known expansion rule as imma-

nently present also in LTL tableaus and automata constructions.

41

3 Model-Based Diagnosis of LTL Speci�cations

De�nition 3.1 (Until expansion rule, (e.g., [CGH97; SB00])):

δU σ = σ ∨ δ ∧ X (δU σ)

This rule basically encodes the option of how to satisfy ϕ in the current time

step and the option of pushing the obligation (possibly iteratively) to the next

time step. If we consider the semantic de�nition of the until operator from
De�nition 2.11,

τi |= δU σ ↔ ∃ j ≥ i
[
τ j |= σ and ∀i ≤ m < j . τm |= δ

]
,

this corresponds to the cases where j = i and j > i, respectively.

However, in order to satisfy the existential quanti�er, we have to verify whether

the obligationwould be pushed in�nitely in time. Compared to an encoding like

[Bie+99] or [HJL05] we can do this very e�ciently, as in our case the loop-back

time step l is also given.

In Table 3.1 on page 43, column 2 lists our unfolding rationales that connect ϕi

to the evaluations of ϕ’s subformulae and signals in the current and next time

step. A checkmark in the third column indicates whether a rationale is to be

instantiated for all time steps (remember that τk+1 = τl due to Def. 2.9, so with

our encoding ϕk+1 = ϕl), whereas in the last column we list the corresponding

clauses as added to our CNF encoding. In the clauses, ϕi represents the corre-

sponding time-instantiated variable that we add for each subformula in order

to derive a structure-preserving encoding. Given these clauses, we can directly

obtain a SAT problem for τ |= ϕ in CNF from ϕ’s parse tree and τ as follows.

De�nition 3.2: In the context of a given in�nite trace with length k and loop-

back time-step l, E1(ψ) encodes an LTL formula ψ using the clauses presented

in Table 3.1, where we instantiate for each subformula ϕ a new variable over

time, denoted ϕi for time instance i. Please note that we assume that k and l
are known inside E1 and R.

E1(ϕ) =

R(ϕ) ∧ E1(δ) ∧ E1(σ) for ϕ = δ ◦1 σ

R(ϕ) ∧ E1(δ) for ϕ = ◦2 δ

R(ϕ) else

with ◦1 ∈ {∧,∨,U}, ◦2 ∈ {¬,X} and R(ϕ) de�ned as the conjunction of the

corresponding clauses in Table 3.1.

42

3.3 SAT-based LTL Encoding for Speci�c Traces

Table 3.1: Unfolding rationales and CNF clauses for the basic LTL operators. A check-

mark indicates that the clauses in the corresponding linemust be instantiated

over time (0 ≤ i ≤ k).

ϕ Unfolding rationale I Clauses

>/⊥ ϕi ↔ >/⊥ 3 (a) ϕi/ϕi
δ ∧ σ ϕi ↔ (δi ∧ σi) 3 (b1) ϕi ∨ δi (b2) ϕi ∨ σi

(b3) ϕi ∨ δi ∨ σi

δ ∨ σ ϕi ↔ (δi ∨ σi) 3 (c1) ϕi ∨ δi (c2) ϕi ∨ σi
(c3) ϕi ∨ δi ∨ σi

¬δ ϕi ↔ ¬δi 3 (d1) ϕi ∨ δi (d2) ϕi ∨ δi

X δ ϕi ↔ δi+1 3 (e1) ϕi ∨ δi+1 (e2) ϕi ∨ δi+1
δU σ ϕi →

(
σi ∨ (δi ∧ ϕi+1)

)
3 (f1) ϕi ∨ σi ∨ δi (f2) ϕi ∨ σi ∨ ϕi+1

σi → ϕi 3 (g) σi ∨ ϕi

δi ∧ ϕi+1 → ϕi 3 (h) δi ∨ ϕi+1 ∨ ϕi
ϕk →

∨
l≤i≤k σi (i) ϕk ∨

∨
l≤i≤k σi

De�nition 3.3: For a given in�nite trace τ (with given k),

E2(τ) =
∧

0≤i≤k

∧

pi∈τi

pi ∧
∧

pi∈AP\τi

¬pi

encodes the signal values as speci�ed by τ.

Theorem 3.1: An encoding E(ϕ, τ) = E1(ϕ) ∧ E2(τ) ∧ ϕ0 of an LTL formula ϕ
and a trace τ as of De�nitions 3.2 and 3.3 is satis�able, SAT(E(ϕ, τ)), i� τ |= ϕ.

Proof. The correctness regarding the Boolean operators and the temporal oper-

ator next (X δ) is easy to see, reconsidering the corresponding parts of De�ni-

tion 2.11:

τi |= ¬δ i� τi 6 |= δ

τi |= δ ∧ σ i� τi |= δ and τi |= σ

τi |= δ ∨ σ i� τi |= δ or τi |= σ

τi |= X δ i� τi+1 |= δ

43

3 Model-Based Diagnosis of LTL Speci�cations

We will prove each operator by showing the two equivalence directions sep-

arately: (a) if a trace τi satis�es ϕ according to LTL’s semantics, then our cor-

responding variable ϕi is true ((τi |= ϕ)→ ϕi), and (b) the other way around

(ϕi → (τi |= ϕ)).

ϕ = ¬δ:
(τi |= ϕ)→ ϕi : δi becoming ⊥ for some 0 ≤ i ≤ k results in ϕi = > due to

Clause (d2). ϕi → (τi |= ϕ): ϕi = > result in δi = ⊥ due to Clause (d1).

ϕ = δ ∧ σ:
(τi |= ϕ)→ ϕi : δi and σi becoming > for some 0 ≤ i ≤ k results in ϕi = >

due to Clause (b3) reducing to (ϕi). ϕi → (τi |= ϕ): ϕi = > results in

δi = > due to Clause (b1) reducing to (δi) and σi = > due to Clause (b2)

reducing to (σi).

ϕ = δ ∨ σ:
(τi |= ϕ)→ ϕi : δi becoming > for some 0 ≤ i ≤ k results in ϕi = > due to

Clause (c1) reducing to (ϕi). σi becoming > for some 0 ≤ i ≤ k results in

ϕi = > due to Clause (c2) reducing to (σi). ϕi → (τi |= ϕ): ϕi = > results

in δi ∨ σi due to Clause (c3).

ϕ = X δ:
(τi |= ϕ)→ ϕi : δi becoming > for some 0 < i ≤ k results in ϕi−1 = > due

to Clause (e2). Note that for i = l, we have that ϕl−1 = ϕk = > due to our

trace de�nition (see De�nition 2.9) and thus ϕk+1 = ϕl . ϕi → (τi |= ϕ):
ϕi = > requires δi+1 = > due to Clause (e1) reducing to (δi+1). Note again

that for i = k we have that δi+1 = δk+1 = δl = >.

For our proof of the until operator we use the following line fromDe�nition 2.11,

τi |= δU σ ↔ ∃ j ≥ i
[
τ j |= σ and ∀i ≤ m < j . τm |= δ

]
ϕ = δU σ:
(τi |= ϕ) → ϕi : According to De�nition 2.11, τi |= ϕ implies that there

exists some j ≥ i, such that τ j |= σ, and for the time steps i ≤ m < j we

have τm |= δ. Clause (g) then requires ϕ j to become >, and Clause (h)

propagates that backward to ϕi .

ϕi → (τi |= ϕ): Clauses (f1) and (f2) require either the immediate satisfac-

tion by σi or postpone (possibly iteratively) the occurrence of σ in time

(in the latter case requiring ϕi+1 and δi). According to De�nition 2.11,

the �rst option obviously implies τi |= ϕ, while for the second one it is

necessary to show that the obligation is not postponed in�nitely such that

44

3.3 SAT-based LTL Encoding for Speci�c Traces

the existential quanti�er would not be ful�lled. This is ensured by Clause

(i), that, if the satisfaction of σ is postponed until k, requires there to be

some σm , with m in the in�nite k , l loop, such that τm |= σ. Thus we have

that ϕi implies τi |= ϕ, and in turn (τi |= ϕ)↔ ϕi . �

Example 3.1: We will now develop an encoding of a simple example as

an illustration, reusing a sub-formula from the arbiter example:

ϕ = (¬g)︸︷︷︸
δ

U r︸︷︷︸
σ

τ =

(
r
g

) (
r
g

)ω
Note that for clarity, we have omitted the indices from the request and

grant signals, while of course the following encoding would have to be

constructed for both request and grant lines if used in our arbiter example.

We will �rst encode the formula ϕ representing an until operator using
the rationales/clauses (f) to (i) from Table 3.1. Note that as our trace is just

two steps (with the loop being one time step long) we have that k = l = 1.

ϕ = δU σ = δU r:
i = 0: (f1) ϕ0

∨ r0 ∨ δ0 (f2) ϕ0
∨ r0 ∨ ϕ1

(g) r0 ∨ ϕ0

(h) δ0 ∨ ϕ1
∨ ϕ0

i = 1: (f1) ϕ1
∨ r1 ∨ δ1 (f2) ϕ1

∨ r1 ∨ ϕ1

(g) r1 ∨ ϕ1

(h) δ1 ∨ ϕ1
∨ ϕ1

(i) ϕ
1
∨ σ1

Encoding the subformula δ results in the following four clauses:

δ = ¬g:
i = 0: (d1) δ0 ∨ g

0
(d2) δ0 ∨ g0

i = 1: (d1) δ1 ∨ g
1

(d2) δ1 ∨ g1

Collecting all clauses we end up with the following encoding for ϕ:

E1(ϕ) = (ϕ
0
∨ r0 ∨ δ0) ∧ (ϕ

0
∨ r0 ∨ ϕ1) ∧ (r0 ∨ ϕ0) ∧ (δ0 ∨ ϕ1

∨ ϕ0)

∧ (ϕ
1
∨ r1 ∨ δ1) ∧ (ϕ

1
∨ r1 ∨ ϕ1) ∧ (r1 ∨ ϕ1) ∧ (δ1 ∨ ϕ1

∨ ϕ1)

∧ (ϕ
1
∨ σ1) ∧ (δ0 ∨ g

0
) ∧ (δ0 ∨ g0) ∧ (δ1 ∨ g

1
) ∧ (δ1 ∨ g1)

45

3 Model-Based Diagnosis of LTL Speci�cations

The encoding of the given trace is rather easy, completing the picture:

E2(τ) = r0 ∧ g0 ∧ r1 ∧ g
1

3.3.2 Extended Operator Set

Similar to the Boolean, X and U operators, we can establish clauses for the

other common LTL operators as well. The additional rationales and clauses

in Table 3.2 therefore allow us to directly encode all LTL operators presented

in Section 2.2.1 directly without using any formula rewriting. While keeping

the encoding as small as possible, this also gives us traceability from the user-

speci�ed formula to the diagnoses established later on.

Theorem 3.2: Assume an updated De�nition 3.2 extended to the operators in

Table 3.2. Then, an encoding E(ϕ, τ) = E1(ϕ) ∧ E2(τ) ∧ ϕ0 of an LTL formula ϕ
and a trace τ as of De�nitions 3.2 and 3.3 is satis�able, SAT(E(ϕ, τ)), i� τ |= ϕ.

Proof.

ϕ = F σ:
For the F operator, Clauses (n) to (q) can be obtained from (f1) to (i) by

simply applying the equivalence F σ ≡ >U σ, that is, replacing in the

clauses all occurrences of δi by >.

ϕ = δR σ:
For the R operator, the reasoning is similar to the standard U operator.

(τi |= ϕ)→ ϕi : According to Def. 2.12 there are two possibilities to satisfy

τi |= ϕ: (1) σ stays true forever. In this case

∧
l≤i≤k σi in Clause (z) would

be ful�lled, implying ϕk , which is then propagated back to ϕi by Clause

(y). (2) For every time step j ≥ i there exists some time step m with

i ≤ m < j, where δ and σ hold simultaneously (due to m < j). In this

time step Clause (x) implies ϕm , which is again propagated back to ϕi by

Clause (y). ϕi → (τi |= ϕ): If ϕi holds, then according to Def. 2.12 σi must

hold (because for j = i there cannot be any i ≤ m < j), which is implied

by Clause (v). Clause (w) then ensures that either ϕ (and through Clause

46

3.3 SAT-based LTL Encoding for Speci�c Traces

Table 3.2: Unfolding rationales and CNF clauses for the remaining LTL operators. A

checkmark indicates that the clauses in the corresponding line must be

instantiated over time (0 ≤ i ≤ k).

ϕ Unfolding rationale I Clauses

δW σ ϕi →
(
σi ∨ (δi ∧ ϕi+1)

)
3 (j1) ϕi ∨ σi ∨ δi (j2) ϕi ∨ σi ∨ ϕi+1

σi → ϕi 3 (k) σi ∨ ϕi

δi ∧ ϕi+1 → ϕi 3 (l) δi ∨ ϕi+1 ∨ ϕi∧
l≤i≤k δi → ϕk (m) ϕk ∨

∨
l≤i≤k δi

F σ ϕi → σi ∨ ϕi+1 3∗ (n) ϕi ∨ σi ∨ ϕi+1
σi → ϕi 3 (o) σi ∨ ϕi
ϕi+1 → ϕi 3 (p) ϕi+1 ∨ ϕi
ϕk →

∨
l≤i≤k σi (q) ϕk ∨

∨
l≤i≤k σi

G σ ϕi → σi 3 (r) ϕi ∨ σi
ϕi → ϕi+1 3 (s) ϕi ∨ ϕi+1
ϕi+1 ∧ σi → ϕi 3 (t) ϕi+1 ∨ σi ∨ ϕi∧

l≤i≤k σi → ϕk (u) ϕk ∨
∨

l≤i≤k σi
δR σ ϕi → σi 3 (v) ϕi ∨ σi

ϕi ∧ ¬ϕi+1 → δi 3 (w) ϕi ∨ ϕi+1 ∨ δi

σi ∧ δi → ϕi 3 (x) σi ∨ δi ∨ ϕi
ϕi+1 ∧ σi → ϕi 3 (y) ϕi+1 ∨ σi ∨ ϕi∧

l≤i≤k σi → ϕk (z) ϕk ∨
∨

l≤i≤k σi

(y) also σ) stays true forever, or there is a time step m ≥ i such that ¬ϕm+1,

where δm holds, that is, either σ holds forever, or it is “released” by δ.
Thus we have that ϕi implies τi |= ϕ, and in turn (τi |= ϕ)↔ ϕi .

ϕ = G σ:
Similar to F, Clauses (r) to (u) for the G operator can be obtained from

those of W by applying G σ ≡ ⊥R σ.
ϕ = δW σ:
For the Clauses (j) to (l) of the W operator, we can reuse Clauses (f) to (h)

of the standard U due to the equivalence δW σ ≡ δU σ∨G δ. On the other

hand, we release the requirement that δ cannot be true forever (Clause
(i)). Thus we have ϕi → (τi |= σU δ ∨ G δ). Instead of (i), we can reuse

Clause (u) from the G operator (replacing σ by δ and resulting in Clause

(m)), so that if G δ holds,
∧

l≤i≤k δi implies ϕk and through Clause (l) also

ϕi . Thus we have (τi |= σU δ ∨G δ)→ ϕi and (τi |= ϕ)↔ ϕi . �

47

3 Model-Based Diagnosis of LTL Speci�cations

In summary, we can verify via Theorems 3.1 and 3.2 whether an in�nite signal

trace τ is contained in a speci�cation ϕ or not. Our encoding E(ϕ, τ) forms

a SAT problem in CNF that is satis�able i� τ |= ϕ. An a�rmative answer is

accompanied by a complete evaluation of all subformulae along the trace. For

counterexamples, we obtain such an evaluation by encoding the negated speci-

�cation. Via E(ϕ, τ)we can also derive (or complete) k , l witnesses (by encoding

ϕ) and counterexamples (encoding ¬ϕ), due to the fact that concerning The-

orem 3.1 and Theorem 3.2 we only weaken the restrictions regarding signal

values for this task.

3.4 Introducing Weak and Strong Fault Models

In terms of Reiter’s diagnosis approach, the encoding given above allows us to

provide the “nominal” behavior of any LTL subformula. In order to be used

in a diagnostic scenario, however, we need to introduce assumptions that can

be varied throughout the diagnosis process. In our case, we build a system

description SD with sentences of the form

¬ABϕ → E1(ϕ)

for each subformula ϕ, where E1(ϕ) is the LTL encoding of ϕ according to

De�nition 3.2. As this is equivalent to ABϕ ∨ E1(ϕ) and E1 is in CNF, we can

actually construct these sentences by extending the encoding as follows. We

identify ¬ABϕ with opϕ for consistency with subsequent de�nitions, where opϕ
can be interpreted as “the correct operator has been used for ϕ”.

Theorem3.3: Assume anupdated Table 3.1 andTable 3.2,where each clause c is
extended to¬opϕ∨c, and an assignment op to all assumptions opψ on ϕ’s various
subformulae ψ’s correctness. Then an encoding EWFM(ϕ, τ) = E1(ϕ)∧E2(τ)∧ϕ0

of an LTL formula ϕ and a trace τ as of De�nitions 3.2 and 3.3 is satis�able,

SAT(EWFM(ϕ, τ)), i� τ |= ϕ under assumptions op.

This diagnosis model is called a Weak Fault Model (WFM), because it speci�es

only the nominal behavior of the diagnosis objects. In contrast, a model also

specifying alternative behavior is called a Strong FaultModel (SFM) [dKW89].

48

3.4 Introducing Weak and Strong Fault Models

For an SFMdiagnosis, each operator assumption toggles between various behav-

ioral (sub-)modes ∈ {nominal,mode1 , . . . ,moden−1}, where, like for the nominal

one, the actual behavior has to be de�ned for any mode via modei → clause. A
good example for an e�ective fault mode for the strong until operator (U) is

suggested by our running example; use a weak until (W) instead. We extend

Theorem 3.3 as follows, wherewe introduce for any subformula ψwith n modes

ld(n) assumption bits opψ, j :

Theorem 3.4: Assume for a formula ϕ with n modes ld(n) variables opϕ, j , and
for a mode 0 ≤ m ≤ n the corresponding minterm M(m) in these variables.

Furthermore assume an updated Table 3.1 and and Table 3.2 where each clause

c describing the behavior of mode m for ϕ is extended to ¬M(m)∨ c, an assign-

ment op to all assumptions opψ on ϕ’s various subformulae ψ’s modes, and a

CNF formula E3 consisting of the conjunction of all negated minterms in the

operator mode variables that don’t refer to a behavioral mode (for all ψ). Then,
an encoding ESFM(ϕ, τ) = E1(ϕ) ∧ E2(τ) ∧ E3 ∧ ϕ0 of an LTL formula ϕ and a

trace τ as of De�nitions 3.2 and 3.3 is satis�able, SAT(ESFM(ϕ, τ)), i� τ |= ϕ
under assumptions op.

The correctness of both extensions to Theorems 3.1/3.2 follows from that for

Theorems 3.1/3.2 and the constructions.

Encoding size With s the number of signals, m the maximum number of

modes for any operator, c the maximum number of clauses for any operator

mode, |ϕ | the size (number of subformulae) of ϕ, and |τ | = k + 1 the length

of the trace τ, we can estimate upper bounds for the number of variables and

clauses for our encoding E
WFM/SFM

(ϕ, τ):

#Vars(E
WFM/SFM

(ϕ, τ)) = O((s + |ϕ |)|τ | + |ϕ | · ld(m))

#Clauses(E
WFM/SFM

(ϕ, τ)) = O(s · |τ | + |ϕ | · ld(m) + c · m · |τ | · |ϕ |)

While the terms can obviously be simpli�ed, they illustrate the origins of the

variables and clauses.

Sharing/reusing subformulae in an encoding (for example if the subformula

a U b occurs twice in a speci�cation) could save variables and entail speedups for

satis�ability checks. However, this would be counterproductive in a diagnostic

context due to situations when only one instance is at fault.

49

3 Model-Based Diagnosis of LTL Speci�cations

3.5 Conflict-based Diagnosis using a SAT Solver

Using our encodings, and varying the assumptions on the operators’ correctness,

we can obviously compute LTL speci�cation diagnoses that have the desired

focus on operator occurrences using various diagnosis algorithms.

For our proof-of-concept tests we usedHS-DAG (see Section 4.2.1.1 for a detailed

description) which has several interesting features for our setting. Besides being

complete, due to its support of on-the-�y computations (including the con�ict

sets themselves), it is very e�cient when limiting the desired diagnosis size.

Furthermore, as diagnoses are continually found during computation, they can

be reported to the user instantly, which is an attractive feature for interactive

tools.

From any unsatis�able instance of E(ϕ, τ) with assumptions, we can use an

unsat core-capable SAT solver to extract those unit clauses from the returned

core that assign operator assumptions. Such a set of unit clauses represents a

(not necessarily minimal) con�ict on the operators in terms of Reiter’s theory

of diagnosis as given by the following Proposition.

Proposition 3.1: Given an assignment h ⊆ COMP such that P = SD ∪OBS ∪

{AB(c) | c ∈ h} ∪ {¬AB(c) | c ∈ COMP \ h} is inconsistent, and an arbitrary

unsatis�able core UC of P, the set C = {c | ¬AB(c) ∈ UC} is a con�ict.

Proof. First, we note that any clause of the form (AB(c)) in UC is irrelevant for

the unsatis�ability of UC, because AB(c) only occurs in sentences of the form

¬AB(c)⇒ NominalBehavior(c). Therefore (AB(c)) actually “removes” those sen-

tences (constraints) from the system by making the implications’ premise false.

It can thus never be involved in a system of con�icting clauses and thus the

source of unsatis�ability. Hence they can be removed from UC if present.

The remaining unsatis�able core UC
′
= {sd1 , sd2 , . . .} ∪ {obs1 , obs2 , . . .} ∪

{¬AB(c1),¬AB(c2), . . . ,¬AB(cn)} can be extended with arbitrary clauses from

P and still be inconsistent. Thus SD ∪OBS ∪ {¬AB(c1),¬AB(c2), . . . ,¬AB(cn)}

is inconsistent as well and following De�nition 2.5 on page 13 the set C =

{c1 , c2 , . . . , cn } is a con�ict. �

From those con�icts, HS-DAG computes all diagnoses (or those with a speci�ed

maximum cardinality) via the Minimal Hitting Sets (MHSs).

50

3.5 Con�ict-based Diagnosis using a SAT Solver

Strong Fault Models For SFM, we made HS-DAG aware of strong fault

modes adopting a notion of con�icts similar to Nyberg [Nyb11]. Our de�nitions

of a con�ict and diagnosis are based on the following adoped notion of a

system.

De�nition 3.4 (SFM System): Given a Boolean Logic L, a system with fault

modes is a tuple (SD, COMP, MODES) where

1. COMP is a �nite set of constants, the system components,

2. MODES is a function de�ning for each component c ∈ COMP the set of

possible behavioral modes MODES(c) =
{
mc0 ,mc

1
, . . . ,mc |M(c)|−1

}
,

3. SD is a set of logic sentences of L containing for each component c

(c = mc0)→ NominalBehavior(c)
∀mci ∈ MODES(c) | mci , mc0 : (c = mci)→ FaultyBehaviori(c)

Obviously, for MODES(c) = {m0 ,m1} = {¬AB,AB} ∀c ∈ COMP and given

FaultyBehavior
1
(c) = >, this de�nition reduces to the “standard” system de�ni-

tion as given in Section 2.1.2.

De�nition 3.5 (Behavioral Mode [Nyb11]): A behavioral mode M of a system

(SD, COMP, MODES) is an assignment of a unique mode to each component

c ∈ COMP, that is,

M =

∧
c∈COMP

(c = mc),

such that each mc ∈ MODES(c). A partial behavioral mode is one that does not

contain all components c ∈ COMP.

De�nition 3.6 (Faulty SFM system): A system with fault modes is faulty i�

SD ∪OBS ∪
{
c = mc0 | c ∈ COMP

}
is inconsistent.

De�nition 3.7 (SFM Con�ict [Nyb11]): A (partial) behavioral mode C is an

SFM con�ict for a system (SD, COMP, MODES) with observation OBS i� SD ∪

OBS ∪ C is inconsistent.

Note that this de�nition of a con�ict corresponds to Nyberg’s in that his allows

to combine multiple con�icts into a single one by using sets of possible modes

and a syntax like c1 ∈ {m1 ,m2} ∧ c2 ∈ {m1 ,m4}. In our de�nition via behavioral

modes wemerely limit those sets to size one, such that from a syntactial point of

51

3 Model-Based Diagnosis of LTL Speci�cations

view, multiple con�icts have to be used to describe the same information. Our

de�nitions are the consequence of the fact that in our practical application, we

extract each con�ict as an unsati�able core in terms of mode assignments from

one speci�c instance of our LTL encoding. Naturally, when considering our

de�nitions, a diagnosis is simply a behavioral mode that satis�es SD ∪OBS.

De�nition 3.8 (SFM Diagnosis): A behavioral mode ∆ is an SFM diagnosis

for a system (SD, COMP, MODES) with observation OBS i� SD ∪OBS ∪M is

consistent.

Note that, as mentioned by Nyberg and others (see, for example, [dKMR92]), in

a non-binary mode setting (that is, a SFM) the notion of minimum (with respect

to cardinality) and minimal (with respect to subset-inclusion) diagnoses makes

no sense. However, we can typically establish a partial ordering mci ≥ mc j

amongst the behavioral modes of our components, leading to the notion of

preferred diagnoses [DS92]. This induces an order on behavioral modes M1 ≥ M2

i� for all components c ∈ COMP the mode mcM1
of c in M1 is preferred over

the corresponding mode mcM2
(mcM1

≥ mcM2
). A diagnosis ∆ is a preferred

diagnosis i� there is no other diagnosis ∆′ with ∆′ > ∆. [Nyb11]

For our implementation of HS-DAG we encode SFM con�icts as sets of tuples

(c ,mc) and extract them from a computed unsatis�able core by �ltering allmode

assignments (analog to Proposition 3.1). HS-DAG then expands a corresponding

node by exploring all possible fault modes except the nominal one (mc0) for any

component c in a con�ict, omitting those components already assigned a mode

in h(n). We thus generalize the behavior of the original (WFM-style) HS-DAG

to more than two modes, that is, instead of trying only the abnormal mode for

any component c in order to resolve a con�ict, we try all possible modes of c
(see Section 4.2.1.1 on page 69 for a detailed description of HS-DAG).

Regarding our LTL encoding, we implemented basic fault models like confusion

of Boolean operators, confusion of unary temporal operators, confusion of

binary temporal operators, twisted operands for binary temporal operators and

“use variable v j instead of vi”. The complete list of implemented fault modes

can be found in Table 3.3.

52

3.5 Con�ict-based Diagnosis using a SAT Solver

Ta
bl
e
3.
3:

(
P
r
o
t
o
t
y
p
i
c
a
l
)
s
t
r
o
n
g
f
a
u
l
t
m
o
d
e
s
f
o
r
L
T
L
o
p
e
r
a
t
o
r
s
.

ϕ
δ
∧
σ

δ
∨
σ

δ
⊕
σ

δ
→
σ

δ
↔
σ

F
δ

G
δ

X
δ

δ
U
σ

δ
R
σ

δ
W
σ

σ
U
δ

σ
R
δ

σ
W
δ

δ
∧
σ

3
3

3
3

δ
∨
σ

3
3

3
3

δ
⊕
σ

3
3

3
3

δ
→
σ

3
3

3
3

δ
↔
σ

3
3

3
3

F
δ

3
3

G
δ

3
3

X
δ

3
3

δ
U
σ

3
3

3
3

3

δ
R
σ

3
3

3
3

3

δ
W
σ

3
3

3
3

3

53

3 Model-Based Diagnosis of LTL Speci�cations

∧

∧

G

∨

X

U

r
1 ¬

g
1

¬

g
1

Figure 3.2:WFM diagnosis results for the arbiter example.

Diagnosing the Trace Similarly to instrumenting the speci�cation, we

could take the speci�cation as granted (with no instrumenting assumptions)

and ask what is wrong with the trace. Via �ltering those unit clauses in E2(τ)
from the unsat core de�ning the signals in τ, there is even no need for any

instrumentation when considering the weak fault model (which is for Boolean

variables a strong model in the sense that the value should be �ipped).

Arbiter Example For the arbiter, our WFM approach results in �ve single

fault diagnoses. All �ve concern (faulty) R4 for line 1, and are depicted as

shaded nodes in the (partial) parse tree in Figure 3.2 (the implications have

been rewritten using “∨”). Intuitively, when considering the parse tree, those

diagnoses farthest from the root should be prioritized during debugging, which

would be the incorrect until for our arbiter example. Note that the top-most

“∧” operators have been excluded from the list of diagnoses as they have been

inserted solely to combine the various requirements into a single formula. Our

SFM approach derived the nine diagnoses listed in Table 3.4, where the �rst

one “replace ¬g1 U r1 by ¬g1 W r1” catches the actual fault.

54

3.6 Experimental Results

Table 3.4: The nine SFM diagnoses for the arbiter.

G (g1 → X (¬g1W r1)) F (g1 → X (¬g1 U r1))
X (g1 → X (¬g1 U r1)) G (g1 → X (¬g1 U g2))

G (g1 → X (r1R¬¬¬¬¬¬¬¬¬g1)) G (g1 → X (r1 U¬¬¬¬¬¬¬¬¬g1))
G (g1 → X (¬g1 U r2)) G (g1 → X (r1W¬¬¬¬¬¬¬¬¬g1))
G (g1 → F(¬g1 U r1))

3.6 Experimental Results

In the following, we will discuss diagnosis results for larger samples, and also

analyze the encoding’s performance itself. Regarding the latter, we compared

the basic encoding exploiting di�erent SAT solvers against using the state-of-

the-art NuSMV model checker [Cim+02] in its latest o�cial version 2.5.4 and a

very simple Satis�ability Modulo Theories (SMT) encoding using Z3 to answer

the question τ |= ϕ.

We evaluated our MBD approach using Python (CPython 2.7.31) implementa-

tions of both our encoding and HS-DAG as diagnosis engine. As SAT solvers we

used PicoSAT [Bie08] version 936, MiniSAT [ES04] version 2.2 as well as version

2.0(-070721) included in NuSMV, and Z3 [dMB08] 4.3.1. We executed our tests

on an early 2011-generation MacBook Pro 8,1 featuring an Intel Core i5 2.3GHz

with 4GiB of RAM, a Solid State Drive (SSD) and running Mac OS X 10.6.8. For

our tests, we disabled the Graphical User Interface (GUI) and swapping, and

placed our tests on a RAM-drive.

As already mentioned, the on-the-�y nature of HS-DAG allows us to report

diagnoses to the user as soon as their validity has been veri�ed. In this context,

we investigated the temporal distribution of solutions for both WFM and SFM

diagnosis runs. Figure 3.3 shows the number of diagnoses found for any fraction

of the total computation time of a single run with a random formula of length

100, derived as suggested in [DGV99] with N =

⌊
|ϕ |/3

⌋
variables and a uniform

distribution of LTL operators. We introduced a single fault in order to derive

ϕm from ϕ, and using our encoding we derived an assignment for τ∧ϕ∧¬ϕm

that de�nes τ for k = 199 and l = 100. We then solved the diagnosis problem

E(ϕm , τ). For a WFM, the computation �nished in 3.3 seconds discovering 7

1
https://www.python.org/

55

https://www.python.org/

3 Model-Based Diagnosis of LTL Speci�cations

Table 3.5: Run-time, memory and SAT statistics for 3 samples (|ϕ | = |τ | = 200) and

SFM (top) as well as WFM (bottom).

ID |AP|

run-

time

(sec.)

run-

time

SAT

(sec.)

enc.time

(sec.)

max.

RSS

(MiB)

max.

RSS

SAT

(MiB)

SAT

clauses

SAT

vars

Tree

nodes

#∆

1 36 1168.72 1073.36 11.62 531.91 131.84 1274676 47894 813 262

2 39 1465.12 1344.26 12.81 579.93 139.79 1382874 48500 939 342

3 37 429.01 387.57 9.08 526.46 130.46 1260855 48076 296 126

4 42 771.48 705.60 12.06 628.75 144.59 1483888 49113 459 139

5 39 447.10 408.97 9.92 617.42 143.10 1386183 48506 285 30

6 40 1623.46 1508.30 14.15 614.68 145.20 1408733 48699 1035 68

7 37 1550.24 1430.90 12.52 573.66 131.77 1274345 48083 1084 265

8 38 2374.16 2193.39 16.24 597.20 136.95 1415022 48519 1501 378

9 39 492.59 452.67 10.18 593.07 142.73 1386161 48681 316 7

10 36 1675.14 1547.01 13.86 525.90 125.36 1232294 47875 1210 269

1 36 36.12 6.51 0.46 76.16 13.50 83980 34737 56 52

2 39 43.67 7.84 0.47 77.62 13.49 83587 34935 68 61

3 37 19.26 3.56 0.45 77.07 13.69 84383 35339 28 27

4 42 20.37 3.60 0.46 78.63 13.43 83281 35334 30 26

5 39 20.39 3.42 0.46 77.61 13.43 83587 34935 32 12

6 40 34.90 6.01 0.47 78.41 13.68 85597 35336 56 18

7 37 38.75 6.99 0.46 76.20 13.42 82979 35138 62 48

8 38 55.28 9.61 0.46 77.56 13.37 83590 34534 89 61

9 39 14.52 2.34 0.45 76.38 12.85 82179 35136 23 5

10 36 53.20 9.11 0.47 76.14 13.63 84690 35340 86 54

single fault diagnoses (note that the x-axis is given in logarithmic scale). For an

SFM, we stopped HS-DAG after 10 hours, having computed 118 diagnoses with

a memory footprint of 1 GiB. It is important to note, however, that within one

minute, all 40 single fault diagnoses were found, more than can be presumably

investigated by a user in this time. All the 63 double fault diagnoses were

identi�ed after 9 minutes, and thus the majority of the 10 hours were spent for

another 15 diagnoses with cardinality 3 or 4.

In Figure 3.4 we show some results regarding diagnosis scalability for random

samples with varying sizes. For any |ϕ | in {50, 100, . . . , 300}, we generated 10

random formulae as above, and restricted the search to single fault diagnoses.

Restricting the cardinality of desired solutions is common practice in model-

based diagnosis, and as can be seen from the last column in Table 3.5, we still

56

3.6 Experimental Results

0

20

40

60

80

100

120

0.01% 0.1% 1% 10% 100%

0

2

4

6

8

10

12

S
F
M

d
i
a
g
n
o
s
e
s
f
o
u
n
d

W
F
M

d
i
a
g
n
o
s
e
s
f
o
u
n
d

time (fraction of total run-time)

|∆|=1

|∆|=2

|∆|=3

59 s

544 s

1.3 s

5863 s

SFM (total time: 10h) WFM (total time: 3.3s)

Figure 3.3:Number of diagnoses found over time for a sample with |ϕ | = 100 and

|τ | = 200.

get a considerable amount of diagnoses. In Figure 3.4, we report the average

total run-time, as well as the maximum Resident Set Size (RSS) of our whole

approach and the part for PicoSAT (PS). The performance using a WFM is

very attractive, with average run-times below 50 seconds and a memory foot-

print of approx. 100 MiB2 even for samples with |ϕ | = 300. As expected, the

performance disadvantage for SFM against WFM is huge; up to two orders of

magnitude for the run-time and up to one for memory (maximum resident

size). Identifying an e�ective mode-set, and tool options to focus the diagnosis

on certain operators/subformulae (avoiding the instrumentation of all others)

seem crucial steps to retain resources for large samples.

Table 3.5 o�ers run-time (total and those parts for the SAT solver and creating

the encoding), memory and encoding details for WFM and SFM single fault

diagnosis of ten samples with |ϕ | = |τ | = 200. Apparently the majority of

computation time is spent in the SAT solver tackling a multitude of encoding

instances, and most of the memory footprint is related to the diagnosis part

(the DAG). Thus we report also results for solving a single encoding instance in

the following.

2
We use binary pre�xes, that is, 1 MiB = 2

20
bytes vs. 1 MB = 10

6
bytes.

57

3 Model-Based Diagnosis of LTL Speci�cations

0

1

2

3

4

50 100 150 200 250 300

r
u
n
-
t
i
m
e
/
m
a
x
.
R
S
S

(
1
0

y
s
e
c
.
/
M
i
B
)

Formula size

SFM, run-time

SFM, total memory

SFM, PS memory

WFM, run-time

WFM, total memory

WFM, PS memory

Figure 3.4: Run-time and memory scalability.

3.6.1 Pure Encoding Performance

Figure 3.5a shows the run-times for a set of 27 formulae taken from [SB00] for

100 random traces with |τ | = 100 (l = 50). These traces were generated such

that each signal is true at a certain time step with a probability of 0.5. The graph
compares di�erent variants of our encoding and the e�ects of enabling Mini-

mal Unsatis�able Core (MUC) computation. Compared to an uninstrumented

encoding, a WFM one is only slightly slower and an SFM variant experiences a

penalty of about factor 5. Apparently, the computation of unsat cores is very

cheap, making the “+C” lines (denoting enabled MUC computation) nearly

indistinguishable from the standard ones.

Figure 3.5b compares the LTL-SAT encoding using di�erent SAT solvers with

alternative approaches. For NuSMVwe utilized both the BDD (Binary Decision

Diagram (BDD)) and SAT (Bounded Model Checking—BMC) mode, denoted

in the results as “NuSMV-BDD” and “NuSMV-BMC”, respectively. Following

the suggested encoding for a path in [HJL05], we encoded τ for NuSMV as

follows, and passed along k and l for the BMC variant for a fair comparison:

∀0 ≤ i ≤ k : (τi & si & next(τi+1 & si+1))

58

3.6 Experimental Results

As SAT solvers besides PicoSAT we tried the latest version of MiniSAT (“MS-

2.2”) as well as the version used by NuSMV (“MS-2.0”). Z3 was used as a pure

SAT solver as well as in SMT mode encoding LTL semantics as a problem with

quanti�ers over uninterpreted functions (labeled “Z3/Quanti�ers”). Regardless

of the SAT-solver used, LTL-SAT outperformed both NuSMV variants as well

as the “naïve” SMT approach, with Z3 and MiniSAT in the lead. NuSMV is 1-2

orders ofmagnitude slower thanLTL-SAT, andZ3/Quanti�ers is approximately

3 orders of magnitude slower than LTL-SAT. The performance drawback of

using PicoSAT can presumably be ascribed to its �le-based interface, compared

to the CPythonmodule used to accessMiniSAT. Presumably due to the returned

cores, Z3 proved to be signi�cantly slower than PicoSAT in the diagnosis case,

and MiniSAT does not allow the computation of unsat cores, so that we chose

PicoSAT for our diagnosis runs.

Table 3.6 shows encoding details of the di�erent variants. The weak fault model

results in very little overhead regarding variables and clauses, while, as ex-

pected, strong fault models have a rather high impact due to the clauses and

variables related to the alternative/faulty operator modes. While compared

to NuSMV-BMC our encoding sometimes uses more variables or clauses even

in the uninstrumented case, its run-times are at least one order of magnitude

lower. Even with an SFM instrumentation our encoding is solved faster than

the basic uninstrumented encoding by NuSMV. The numbers for NuSMV were

derived by dumping its internal DIMACS �le in a separate run.

59

3 Model-Based Diagnosis of LTL Speci�cations

-2

-1

0 5 10 15 20 25

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula number

LTL-SAT

LTL-SAT WFM

LTL-SAT SFM

LTL-SAT+C

LTL-SAT WFM+C

LTL-SAT SFM+C

(a) Comparing WFM and SFM variants with optional unsat core computation

-3

-2

-1

0

1

0 5 10 15 20 25

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula number

LTL-SAT/PS

LTL-SAT/Z3

LTL-SAT/MS-2.0

LTL-SAT/MS-2.2

NuSMV-BDD

NuSMV-BMC

Z3/Quanti�ers

(b) Comparing SAT solvers and alternative approaches.

Figure 3.5: Run-times for a test set containing 27 common formulae taken from [SB00].

60

3.6 Experimental Results

-2

-1

0

1

2

0 50 100 150 200 250 300

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula size

LTL-SAT/PicoSAT

LTL-SAT/MiniSAT-2.2

LTL-SAT/MiniSAT-2.0

NuSMV-BDD

(a) Scaling |ϕ |: Average run-times for 10 formulae × 10 traces (k = 99, l = 50).

-2

-1

0

0 200 400 600 800 1000

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Trace length

LTL-SAT/PS

LTL-SAT/MS-2.2

LTL-SAT/MS-2.0

NuSMV-BDD

(b) Scaling |τ |: Average run-times for 10 traces (|ϕ | = 20, l = d k
2
e).

Figure 3.6: Basic encoding scalability.

61

3 Model-Based Diagnosis of LTL Speci�cations

Table 3.6: Rounded # of variables (V) / clauses (C) and run-time for varying |ϕ |, |τ |
(averaged over 10 traces × 10 formulae); #V and #C rounded to whole num-

bers.

|ϕ | |τ |
LTL-SAT LTL-SAT WFM LTL-SAT SFM NuSMV-BMC

run-t. #V #C run-t. #V #C run-t. #V #C run-t. #V #C

10

10 .0033 117 256 .0033 127 265 .0078 185 1143 0.0123 269 621

20 .0040 198 448 .0039 205 455 .0111 297 2150 0.0207 804 2276

50 .0071 645 1359 .0069 656 1368 .0257 978 6335 0.0732 4467 13388

100 .0118 1360 2800 .0119 1372 2810 .0440 1899 11843 0.3383 23487 72386

20

10 .0050 292 566 .0048 317 585 .0157 478 2815 0.0143 318 847

20 .0066 540 1108 .0067 562 1127 .0254 812 5709 0.0282 1208 4061

50 .0115 1185 2669 .0114 1205 2687 .0492 1643 12711 0.1114 6415 22933

100 .0198 2660 5303 .0205 2683 5321 .0931 3685 25055 0.5320 20989 79009

50

10 .0088 791 1367 .0088 860 1412 .0437 1309 8493 0.0193 456 1500

20 .0152 3152 2934 .0151 3299 2983 .0881 4946 18474 0.0440 1469 6780

50 .0281 4275 6946 .0284 4350 6991 .1799 6264 44795 0.8939 6705 37607

100 .0478 6890 13736 .0544 6950 13782 .2992 9727 81586 0.7718 25954 149485

100

10 .0207 2393 2846 .0229 2612 2940 .1320 4185 24135 0.0336 700 2779

20 .0238 3300 5475 .0299 3445 5565 .1977 5064 46485 0.0665 1990 11605

50 .0491 8285 13996 .0566 8430 14088 .4521 12056 120939 0.3120 8267 67200

100 .0928 28450 28159 .1001 28715 28253 .8640 40916 233772 1.7662 27000 255515

62

3.7 Discussion

3.7 Discussion

In this chapter we proposed a novel diagnostic reasoning approach that assists

designers in tackling LTL speci�cation development situations where, unex-

pectedly, a presumed witness fails or a presumed counterexample satis�es a

given formal speci�cation. For such scenarios, we provide designers with com-

plete (with respect to the model) sets of diagnoses explaining possible issues.

Using the computationally cheaper weak fault model (there are no obligations

on faulty operators), a diagnosis de�nes (a set of) operator occurrences, whose

simultaneous incorrectness explains the issue. De�ning also abnormal behav-

ior variants in a strong fault model makes computation harder, but diagnoses

become more precise in delivering also speci�c repairs (for example, “for that

occurrence of the release operator �ip the operands”).

Our implementation for LTL, which is a core of more elaborate industrial-

strength logics such as Property Speci�cation Language (PSL) and is used also

outside Electronic Design Automation (EDA), for example in the context of

Service Oriented Architectures (SOAs) [GTdR06], showed the viability of our

approach. In contrast to Schuppan’s approach [Sch12], a designer can de�ne

scenarios and ask concrete questions (via the trace) and is supplied with (multi-

fault) diagnoses addressing a speci�cation’s operator occurrences, rather than

unsatis�able cores. Compared to RuleBase PE’s trace explanations via causality

reasoning [Bee+09], we address the speci�cation rather than the trace and

provide more detail compared to the set of “red dots” on the trace.

Based on Reiter’s diagnosis theory, we use a structure-preserving SAT encoding

for our reasoning about a presumed witness’ or counterexample’s relation to a

speci�cation, exploiting the knowledge about a trace’s description length k and

loop-back time step l. While we used HS-DAG for our tests, our WFM or SFM

enhanced encoding obviously supports also newer algorithms like [Ste+12],

and can also be used in approaches computing diagnoses directly [Met+12].

Extending our implementation optimizations, the latter also suggests directions

for future encoding optimizations, like transferring the concept of dominating

gates to speci�cations. Exploring incremental SAT approaches [Sht01] will also

provide interesting results.

63

4 Evaluating Selected MHS
and MBD Approaches

This chapter is based on the following publications:

I. Pill, T. Quaritsch, and F. Wotawa. From Con�icts to Diagnoses: An Em-
pirical Evaluation of Minimal Hitting Set Algorithms. In: Proceedings
of the 22

nd
International Workshop on Principles of Diagnosis. DX 2011

(Murnau, Germany, Oct. 4–7, 2011). 2011, pp. 203–210. url: http:// thomas.
quaritsch.at/pdf/dx2011-pqw.pdf (visited on 05/20/2014)
I. Nica, I. Pill, T. Quaritsch, and F. Wotawa. The Route to Success – A Per-
formance Comparison of Diagnosis Algorithms. In: Proceedings of the
23

rd
International Joint Conference on Arti�cial Intelligence. IJCAI 2013

(Beijing, China, Aug. 3–9, 2013). AAAI Press, 2013, pp. 1039–1045. url: http:
// ijcai.org/papers13/Papers/IJCAI13-158.pdf (visited on 03/28/2014)

4.1 Motivation

It is well-known that diagnosis is a computationally hard problem. In partic-

ular, while �nding an arbitrary diagnosis (when using a weak fault model)

can be done in polynomial time1, �nding a minimum cardinality diagnosis or

computing all minimal diagnoses is NP-complete [FGN90; Rym91]. Moreover,

Reiter’s approach ([Rei87], see also Section 2.1) to �nding all minimal diagnoses

1
Starting with ∆ = COMP, trying to remove each element from ∆while keeping ∆ consistent

with SD ∪OBS returns a (minimal) diagnosis.

65

http://thomas.quaritsch.at/pdf/dx2011-pqw.pdf
http://thomas.quaritsch.at/pdf/dx2011-pqw.pdf
http://ijcai.org/papers13/Papers/IJCAI13-158.pdf
http://ijcai.org/papers13/Papers/IJCAI13-158.pdf

4 Evaluating Selected MHS and MBD Approaches

includes two hard problems: �nding all minimal con�icts (which may be expo-

nentially many) and then computing all minimal hitting sets for those con�icts

(which may be exponentially many, too). [Rym91]

Driven by the ever-growing complexity of developed systems and increasing

computational power of today’s processors, the AI community has therefore

developed a multitude of approaches for Model-Based Diagnosis (MBD) over

the last decades. For example, Wotawa [Wot01] suggested with HST (see Sec-

tion 4.2.1.2) a variant of Reiter’s idea that tries to avoid building nodes that

would be pruned anyway. De Kleer and Williams [dKle09; dKW87] use an

assumption-based truth maintenance system (ATMS) [dKle86] to deduce the

set of con�icts for an observation, where their (N)GDE (General Diagnostic

Engine) then derives the desired diagnoses via hitting set computation. Re-

framing the diagnosis problem into an optimal constraint satisfaction problem,

the con�ict-directed A* algorithm [WR07] generates diagnoses incrementally

in best-�rst order and, additionally, uses con�icts to focus the search. Stern,

Kalech, Feldman, and Provan [Ste+12] introduce the Switching Diagnostic En-

gine (SDE) that interleaves the search for diagnoses and con�icts, exploiting

the dual relation between diagnoses and con�icts via minimal hitting sets also

in the reverse direction. Interested in minimal con�icts, Junker [Jun04] intro-

duces a preference-controlled algorithm, based on a divide-and-conquer search

strategy. Starting from the idea that previous con�ict detection algorithms have

not exploited the basic structural properties of constraint-based recommenda-

tion problems, Schubert, Felfernig, and Mandl [SFM10] came up with another

algorithm for an e�cient identi�cation of minimal con�icts, based on a table

representation of the input and inspired by HS-DAG. While Mozetic [Moz92]

aims at computing the minimal diagnoses directly via non-minimal ones, con-

�icts are still computed and used to prune the search space.

Fröhlich and Nejdl [FN97] proposed to directly manipulate logic models when

searching for a diagnosis, without computing con�icts. Via the notion of sat-

is�ability, one can easily encode an MBD problem. That is, introducing the

corresponding variables AB(c) and connecting them to nominal behavior, one

searches in a single query for a solution (or all, depending on the engine) up to

some problem bound k limiting the diagnosis cardinality. Starting with 1, k is

incrementally increased when no solution is found (anymore). As we search

for all solutions in our scope (to be complete), we have to add each diagnosis

∆ found as a blocking clause (in the form of ¬∆ when considering ∆ as con-

junction of its elements) to the problem. This blocking clause excludes both the

66

4.1 Motivation

diagnosis itself as well as all its supersets from the search when running the

solver again. This way, the subset-minimality of derived diagnoses is ensured,

and incrementally raising bound k enables us to derive all diagnoses up to

some desired cardinality. Essential, however, are a reasoning model and an

engine that allow us to limit k in the search.

Feldman, Provan, de Kleer, Robert, and van Gemund [Fel+10] proposed to use

MAX-SAT in this respect, and implemented with MERIDIAN a correspond-

ing approach. Via Odd-Even Mergesort (OEMS) networks [Bat68], or Cardi-

nality Networks [Así+09] this requirement can also be easily encoded in the

Boolean domain to be directly attached to amodel (obviously one could describe

these networks also with constraints). An example approach in this direction

is [Met+12], which uses constraints as intermediate format that are compiled

into a Boolean satisfaction problem. Nica and Wotawa [NW12] proposed with

ConDiag (see Section 4.4.2.2) an algorithm capable of obtaining diagnoses

directly from a constraint description, using a general purpose constraint solver

as reasoning engine.

There is yet another category of diagnosis algorithms computing diagnoses

directly from the model without deriving hitting sets of con�icts. All these

algorithms have in common that they are based on tree-structured models.

Fattah and Dechter [FD95] and later Stumptner and Wotawa [SW01] described

algorithms that exploit tree-structured constraint systems; Sachenbacher and

Williams [SW04] generalized these algorithms. Stumptner and Wotawa [SW03]

discuss the coupling of decomposition methods for constraint satisfaction prob-

lems with tree-structured diagnosis algorithms, in order to make those com-

patible with non-tree-structured models.

This overwhelming variety of approaches, however, leaves us with the question

of which approach to adopt for a certain project. Unfortunately, answering this

question requires the consideration of several aspects. For example, using spe-

cial reasoning engines optimized for diagnosis may result in better performance

than using general-purpose engine. However, recent advancements in the latter

(for example, Satis�ability (SAT) engines) may compensate those drawbacks.

Approaches computing diagnoses directly may outperform con�ict-based ap-

proaches or vice versa. Algorithms that perform good in one problem domain

may perform bad in others. And �nally, some implementation languages or

techniques may bemore suitable than others for di�erent kinds of algorithms.

67

4 Evaluating Selected MHS and MBD Approaches

To investigate run-time performance trends among available MBD approaches

we implemented and evaluated various algorithms for both MHS computation

as well as on-the-�y (that is, computing con�icts duringMHS search) and direct

(that is, computing diagnoses directly using a solver) approaches. By using

more than one implementation language and di�erent application domains,

we try to �nd e�cient setups than can be applied in practice.

In the following sections, we will introduce our selected algorithms, test do-

mains and test setups, followed by the analysis of our experimental results.

4.2 Selected Algorithms and Approaches

Our experimental evaluation was initially driven by the desire to get an in-

depth understanding of Reiter’s theory of diagnosis from �rst principles [Rei87],

in order to create an optimal Linear Temporal Logic (LTL) SAT encoding as

presented in Chapter 3. We soon learned about Wotawa’s variant HST [Wot01]

of Reiter’s algorithm that aims at reducing the amount of subset-checks needed

to compute the Minimal Hitting Set (MHS) from computed con�icts. Although

the basic idea of reducing redundancies was very interesting, initial results were

mixed. Investigating algorithms that further improve on the MHS problem,

we were intrigued by the outstanding performance of the so-called “Boolean

algorithm” [LJ03] of Lin and Jiang in our very early experiments. Unfortunately,

it requires that in order to compute a complete set of diagnoses, a (typically

large) set of con�icts characterizing the whole problem has to be pre-computed.

This is sometimes not desired as it signi�cantly delays the time until the �rst

diagnosis can be reported to the user, and sometimes even not feasible due to the

high number of possible con�icts. Other approaches with this prerequisite are

the STACCATO algorithm [AvG09], borrowing ideas from the spectrum-based

fault localization domain, and Berge’s algorithm [Ber89], also used by de Kleer

and Williams in their General Diagnostic Engine (GDE) [dKW87]. While there

are more algorithms described in literature dealing with MHS computation

(and equivalent problems, see end of Section 2.1.3), we focused on those that

can be integrated with our SAT-based LTL encoding via a SAT solver.

While in our experiments we found that improvements in the MHS algorithm

(for example, exploiting con�icts better by using a cache, or reducing number of

internal nodes and thus the time needed for verifying potential solutions) can

68

4.2 Selected Algorithms and Approaches

lead to better diagnosis run-times when computing also the con�icts on-the-�y

(as proposed by Reiter), this is only half of the game. We therefore investigated

the exact design of the interface between the MHS algorithm and the theorem

prover for HS-DAG and HST. Motivated by the simplicity of direct diagnosis

computation approaches such as MERIDIAN [Fel+10] and ConDiag [NW12],

we tried to answer the question whether we even need specialized hitting set

algorithms and theorem provers for e�cient model-based diagnosis or not.

Results suggest that we can hugely bene�t from the advancements in general-

purpose theorem provers such as SAT or Constraint Satisfaction Problem (CSP)

solvers.

Our description of the selected algorithms in the following chapter is split into

pure-MHS algorithmswhich compute diagnoses from a set of given con�icts SC

(see Section 4.2.1) and full-featured MBD algorithms that compute diagnoses

from SD and OBS directly either via on-the-�y con�ict computation or directly

(Section 4.2.2).

4.2.1 Minimal Hitting Set Algorithms

As outlined above, we �rst focus on the MHS-based algorithms for MBD. Al-

though not all of them are eventually suitable for an on-the-�y diagnosis run

due to their prerequisite of having all con�icts as a pre-computed set, investigat-

ing and evaluating di�erent types of MHS algorithms helped us in improving

others. This resulted in the optimizations as presented in Chapters 5 and 6.

4.2.1.1 Greiner et. al’s Version of Reiter’s Idea: HS-DAG

Reiter’s approach is based on a so-called HS-tree (see also the introduction in

Section 2.1.3). Unfortunately, it contained a minor but serious bug for cases

where SC contains non-minimal con�icts and where the elements Ci do not

appear in SC in ascending order of size. Obviously, this can happen also if the

algorithm is combined with an on-the-�y computation of SC and the corre-

sponding theorem prover returns non-minimal con�icts. We therefore use the

corrected version by Greiner, Smith, and Wilkerson [GSW89] called HS-DAG.

It is de�ned for some ordered (that is, consistently traversable) SC, whose Cis

may be in arbitrary order (even though sorting them by their cardinality may

improve HS-DAGs performance). The basic idea is to take some Ci , search for

69

4 Evaluating Selected MHS and MBD Approaches

each of its elements c ∈ Ci for some C j that is not hit, and do that repeatedly

(keeping track of the selected elements in a Directed Acyclic Graph (DAG)) until

any option reaches (a) some point where all Cis in SC are hit by its selection

sequence h(n), or (b) some subset of h(n) is known to be a hitting set. The algo-

rithm uses the DAG to fuse selection sequences as soon as they are known to

be redundant. That is, if some (potential) hitting set h(n) can be reached using

two di�erent permutations of its elements, the corresponding paths will be

incident to the same node n rather than discarding one of them. Thus, if either

sequence would be removed while pruning of non-minimal con�icts, the other

onewould still preserve h(n) and its sub-DAG, remeding the problem in Reiter’s

formulation. In the following, we formally recap the algorithm, adopting its

description from the original paper:

De�nition 4.1 (HS-DAG [GSW89]): Let D be a growing node- and edge-labeled

DAG with some initial and unlabeled root node n0. Process unlabeled nodes in

D in breadth-�rst order as follows, where for some node n, h(n) is de�ned as

the set of edge labels on the path in D from root node n0 to node n (h(n0) = ∅).

1. (Closing) If there is a node n′ such that h(n′) ⊂ h(n), and which is labeled

with “3” (h(n) is a hitting set), then close node n. Neither will a label be

computed for n, nor will be any successor nodes generated. Proceed with

the next node.

2. I� for all Ci ∈ SC: Ci ∩ h(n) , ∅, then label n with “3”. Otherwise label n
with some C j such that C j is the �rst set in SC with C j ∩ h(n) = ∅.

3. (Pruning) I� a priorly unused set Ci was used to label node n, attempt

to prune D. That is, for nodes n′ labeled with some C j ∈ SC such that

Ci ⊂ C j do as follows:

(a) Relabel n′ with Ci . Then, for any ci in C j \ Ci , the edge labeled ci

originating from n′ is no longer allowed. The node connected by this

edge and all of its descendants are removed, except for those nodes

with another ancestor that is not being removed. Note that this step

may eliminate the very node n currently being processed.

(b) Interchange the sets C j and Ci in SC. (Note that this has the same

e�ect as eliminating C j from SC.)

If n was removed, proceed with the next unlabeled node.

4. If n was labeled with some Ci ∈ SC, generate for each ci ∈ Ci a new

edge originating in n and labeled with ci . If there is a node n′ in D such

that h(n′) = h(n) ∪ {ci }, then let the edge labeled ci point to n′. Hence,

70

4.2 Selected Algorithms and Approaches

n′ will have more than one parent. Otherwise, generate a new node m
as destination for the edge. This new node m will be processed (labeled

and expanded) after all new nodes ni in the same generation as n (that is,

|h(ni)| = |h(n)|) have been processed.

5. If there is no further unlabeled node, return DAG D.

Note that, as mentioned above, the pruning step (Step 3) is relevant only if SC

contains some sets Ci and C j such that Ci ⊂ C j and the sets in SC are not sorted

in respect of their growing cardinality. In contrast to Reiter’s original algorithm,

HS-DAG’s Step 4 results in a DAG instead of a tree if the same assumption set

h(n) is computed via multiple selection sequences. In this case, both sequences

point to the same node n, fusing the corresponding sub-DAGs and preventing

a solution from being lost if an involved Ci is detected to be non-minimal (and

thus one of the sequences getting pruned).

The following example demonstrates HS-DAG for a very small SC.

Example 4.1: The HS-DAG for SC = {{a , b} , {b , c} , {a , c} , {b , d} , {b}} is
constructed as follows (note that SC is purposefully not sorted by cardi-

nality in order to show HS-DAGs pruning mechanism.) The example is

taken from [GSW89].

{a , b}

{a , c}

3

c
{b , c}

3{b , d}

{b}7

b d

c b

a b

a

a: Before pruning.

{b}

{a , c}

33

a c

b

b: After pruning.

Figure 4.1: HS-DAG constructed for SC.

71

4 Evaluating Selected MHS and MBD Approaches

When the set {b} is used to label the leaf on the lower-most level, HS-

DAGs pruning step 3 (a) takes e�ect. A subset of the root node’s label was

found, such that its subtree connected by edge a (dashed) is no longer

allowed and gets pruned. The root node’s label is changed to {b} and the

two �nal solutions are {a , b} and {b , c} as there are no open nodes left.

4.2.1.2 Wotawa’s Variant of Reiter’s Idea: HST

Wotawa presented with HST [Wot01] a variant of Reiter’s algorithm that aims to

omit constructing nodes that would be pruned by Reiter’s approach, and thus

reduce the number of performed subset-checks. This is achieved by adopting

set-enumeration trees to systematically list all possible subsets (that is, the

power set, denoted P(M) or 2
M
) of a given set M (see, for example, [Rym92]):

De�nition 4.2: Given a set M and a bijection i from M to {1, . . . , |M |}, the node
labels ` in the set-enumeration tree T for M represent the power set 2

M
i�:

the root node n0 of T is labeled by the empty set: `(n0) = ∅,

the children of a node n are labeled by `(n)∪{e ∈ M | i(e) < mine′∈`(n) i(e′)}.

(Note that we assumemin(∅) = ∞.)

Example 4.2: The set-enumeration tree for M = {1, 2, 3} is:

∅

{3}

{2, 3}

{1, 2, 3}

{1, 3}

{2}

{1, 2}

{1}

HST adopts this idea for computing minimal hitting sets by constructing a set-

enumeration tree for COMP and restricting its branches to those where hitting

sets can be found. We recap the algorithm HST(SC) adopting its description

from the original paper:

72

4.2 Selected Algorithms and Approaches

De�nition 4.3 (HST [Wot01]):
1. Let ci be a bijectionmapping each ci ∈ COMP to an index in {1, . . . , |COMP|}

and MIN a (global) variable storing the lowest index not previously as-

signed to a component. Initially, MIN is set to |COMP|.

2. Let T represent the growing HS-tree. For each tree node n ∈ T we keep

track of indices i(n) and min(n) from {1, . . . , |COMP|}. Generate a vertex

v which will be the root of the tree, set i(v) = |COMP| + 1, and mark v as

being opened. The vertex v will be processed in Step 3 below.

3. Process the nodes in T in a breadth-�rst order. Nodes are processed in

the same order they are generated. To process an open vertex v do the

following:

(a) Let h(v) be the set of components given by the indices i from the

root to v, that is, h(v) = {C | ci(C) = i(v′), where v′ is a vertex lying

on the path from the root to v}.
(b) If forall x ∈ SC, x ∩ h(v) , ∅, then close v and set mark(v) = “3′′.

Otherwise, let y be the �rst set in SC where y ∩ h(v) = ∅. For every
component C in y with no previously de�ned index ci, let ci(C)

be MIN and decrement MIN afterwards. Letmin(v) be MIN + 1. If

i(v) > min(v) create a new array ranging over {min(v), . . . , i(v) − 1}.

Otherwise, close v and let mark(v) = “7′′ and create no child nodes

for v.
(c) For each n in {min(v), . . . , i(v) − 1} create a new open vertex v′ with

parent(v′) = v, child(v , n) = v′, and let i(v′) be n. The new vertex v′

will be processed after all vertices in the same generation as v have

been processed.

4. Return the resulting tree T.

Similar to Reiter’s algorithm and HS-DAG, HST uses rules to keep the tree as

small as possible:

(A) Closing: A node v is closed if its associated hitting set is a superset of a

hitting set of another previously generated vertex p, that is,

∃p ∈ T : h(p) ⊂ h(v) ⇒ label(v) = “7′′.

73

4 Evaluating Selected MHS and MBD Approaches

(B) Pruning: Remove closed nodes v from the tree T. The arc leading from

the parent node is removed and the entry in the parents’ child array is set

to ε. If all entries of the child array are set to ε, the parent node itself is
removed from T. Pruning is done until all closed nodes and nodes with

only ε entries in their child array are removed from the tree.

Example 4.3: The HS-tree for the same set SC as used in Example 4.1

before (SC = {{a , b} , {b , c} , {a , c} , {b , d} , {b}}) is constructed as follows:

{a , b}

i = 5

min = 3

{b , c}

i = 4

min = 2

3

i = 3

min = ?

{b , d}i = 2

min = 1

7i = 1

min = 1

1

2 3

{a , c}

i = 3

min = 2

3i = 2

min = ?

2

3 4

Mapping

established during

HST run:

ci a b c d
ci(ci) 4 3 2 1

Figure 4.2: HS-tree constructed for SC.

The dashed parts are removed in the pruning step such that the �nal

solutions are again {a , b} and {b , c}.

Through the systematic creation of the HS-tree Wotawa aims at reducing the

number of subset checks inherent to HS-DAG’s closing rule (Step 1 in De�-

nition 4.1). “Because of the structure of the tree not all previously generated

vertices have to be considered for subset checks. Only those nodes marked

with a “3”, lying on a branch located left to the current node, and having a

smaller path length than the current node have to be considered. The path

length is de�ned as the number of nodes between the root and the actual

vertex.” [Wot01]

74

4.2 Selected Algorithms and Approaches

4.2.1.3 BHS-Tree and its Boolean cousin

Lin and Jiang propose [LJ03] two algorithms for computingminimal hitting sets:

The BHS-tree algorithm and a variation of it called the “Boolean algorithm”.

Both algorithms are based on the idea to recursively partition the problem into

two sets (that is, a divide-and-conquer approach). However, there is a subtle but

important di�erence: While BHS divides the input space, the Boolean approach

divides the output space. That is, for example, when dealing with con�icts and

diagnoses, in each step, one BHS branch deals with con�icts that contain a

speci�c element and the other one with those who don’t. In contrast, in each

step of the Boolean algorithm, one recursion step produces those diagnoses
containing a speci�c element and the other those who don’t.

We recap both algorithms using the de�nitions from the original paper:

De�nition 4.4 (BHS-tree [LJ03]): Given a subset-minimal set SC = {C1 , C2 , . . . ,
Cn } of sets Ci , a BHS-tree is a recursive binary tree de�ned as follows: each

node is a tuple (C,H), where C and H are sets of sets. The root node is denoted

by (C = SC,H = ∅); the left and right children of a node are denoted by (Cl ,Hl)

and (Cr ,Hr), respectively. The tree is de�ned recursively as follows:

1. if C = ∅, then the BHS-tree is an empty tree;

2. else select any element a ∈
⋃

Ci , and set (Cl = {Ci \ {a} | a ∈ Ci } ,Hl =

{a}) and (Cr = {Ci | a < Ci } ,Hr = ∅).

Computing the minimal hitting sets from a BHS-tree is done as follows:

1. If a node is a leaf node, then the minimal hitting set of this node is H.

2. Else, replace every parent node H with {H, {ml ∪ mr | ml ∈ Hl ,mr ∈ Hr }}.

Notice that H may be the empty set.

3. Minimize H at the root node with the function µ until it comprises all

minimal hitting sets.

The function µ in De�nition 4.4 represents a minimization function removing

supersets from a set of sets. It is used to ensure that only subset-minimal

solutions (that is, minimal hitting sets) are returned. Note that, of course, when

computing the MHS, µ can be applied at any tree level in order to keep already

the intermediate solution set as small as possible. Note that BHS-tree is not

75

4 Evaluating Selected MHS and MBD Approaches

de�ned for non-minimal sets SC, that is, for SCs containing two sets Ci , C j such

that Ci ⊂ C j . Thus also each C has to be minimized using µ when building the

tree.

Lin and Jiang showed in their paper how to implement their basic divide-and-

conquer idea in a variant that does not need to maintain and prune a tree.

Instead, they formulate the problem using a Boolean formula encoding the Cis

in SC in Disjunctive Normal Form (DNF). A function H comprising �ve rules

then transforms this DNF into another DNF describing their hitting sets. Again,

(Boolean) minimization rules are needed to ensure their minimality.

De�nition 4.5 (Boolean Algorithm [LJ03]): For a Boolean formula C in DNF,

where each conjunct Ci represents one set Ci from SC = {C1 , C2 , . . . , Cn } us-

ing negated elements ci , H(C) encodes SCs hitting sets and is de�ned by the

following �ve rules considered in ascending order:

R1: H(⊥) = >,H(>) = ⊥;

R2: H(e) = e;
R3: H(e ∧ C) = e ∨ H(C);

R4: H(e ∨ C) = e ∧ H(C);

R5: H(C) = e ∧H(C′)∨H(C′′) for some arbitrary atomic proposition e present

in C, with C′ = {Ci | Ci ∈ C ∧ e < Ci } and C
′′
= {Ci | e < Ci ∧ (Ci ∈

C ∨ Ci ∪ {e} ∈ C)}.

While R1 represents the base step of an empty C (that is, all sets have been hit

already) or an empty Ci (that is, the selected set of elements do not represent

a hitting set), rules R2 to R4 cover the special cases when a single element, a

single conjunct or a conjunct with a single element is left, respectively. The

last rule, R5, de�nes the main rule on how to conquer the search space: an

arbitrary element e is chosen, and based on e the search space is split into two

branches. The “left” branch e ∧H(C′) assumes that e is part of the solution and

thus subsequently focuses on those Cis not hit so far. The “right” branch H(C′′)

assumes that e is not part of the solution and thus removes e from the problem

description (compare de�nition of C′′ in R5).

Obviously, the heuristic identifying the split element e seriously a�ects perfor-

mance. An intuitive and common approach is to choose some of those elements

that hit the most Cis. In Chapter 5 we develop an alternative strategy choosing

some e from one of the smallest Cis in C. Together with two other optimizations

76

4.2 Selected Algorithms and Approaches

presented in the chapter, this strategy o�ers signi�cant performance advantages

for cardinality-restricted searches while performance is on par for unrestricted

searches. In order to give some preliminary insight on the e�ects of our opti-

mizations, we will include the best-performing variant from Chapter 5 in our

experimental results in Section 4.4.1.

A drawback of the Boolean approach for some applications might be that SC

has to be known in advance, whereas HST and HS-DAG do not require that.

Example 4.4: Weuse a similar set of con�icts as in the previous examples:

SC
′
= {{a , b} , {b , c} , {a , c} , {b , d}} with the di�erence that the con�ict {b}

is missing. Its inclusion would reduce SC to the trivial case {{b} , {a , c}}
after the minimization needed for BHS.

[a , b |b , c |a , c |b , d][]

[a , c][]

[c][]

[][c]

c

[][a]

a
[a |c |d][b]

[c |d][]

[d][]

[][d]

d
[][c]

c
[][a]

a

b

a: Before calculating hitting sets

a , b |b , c |a , c , d

a , c

c

c

c

a

a
b |a , c , d

c , d

d

d

d
c

c
a

a

b

b: After calculating hitting sets

Figure 4.3: BHS-tree for SC
′
.

Figure 4.3 shows the BHS-tree constructed to compute theminimal hitting

sets of SC
′
. The notation used for the tree nodes’ labels in BHS-tree on

the left is “[C][H]”, where sets in C and H are separated by “|”, and

the individual set elements are separated by “,” (that is, for example,

“a , b |b , c” denotes {{a , b} , {b , c}}). The right hand side tree shows how

77

4 Evaluating Selected MHS and MBD Approaches

the minimal hitting sets are computed from the BHS-tree by (essentially)

computing the cross product of each node’s left and right subtree (and

adding the sets in H). The �nal label of the root node represents (after

minimization) the minimal hitting sets {{a , b} , {b , c} , {a , c , d}}.
For the Boolean algorithm, H(SC

′
) can be computed as follows:

H((a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c) ∨ (b ∧ d))

= b ∧ H(a ∧ c) ∨ H(a ∨ c ∨ (a ∧ c) ∨ d) (apply R5 with e = b)

= b ∧ (a ∨ H(c)) ∨ H(a ∨ c ∨ (a ∧ c) ∨ d) (apply R3)

= b ∧ (a ∨ H(c)) ∨ a ∧ H(c ∨ (a ∧ b) ∨ d) (apply R4)

= (a ∧ b) ∨ (b ∧ c) ∨ a ∧ H(c ∨ (a ∧ b) ∨ d) (R2)

= (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c ∧ H((a ∧ c) ∨ d)) (R4)

= (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c ∧ d ∧ H(a ∧ c)) (R4)

= (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c ∧ d ∧ a ∧ H(c)) (R4)

= (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c ∧ d ∧ a ∧ c) (R2)

= (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c ∧ d) (Boolean algebra)

The result is a Boolean formula representing the minimal hitting sets

{{a , b} , {b , c} , {a , c , d}}.
Note how the branches tackled by Boolean algorithm and HST (see Fig-

ure 4.2) di�er slightly in the �rst step ({{a , c}} and {{a} , {c} , {d}} ver-
sus {{a , c}} and {{a} , {c} , {a , c} , {d}}). While this suggests that HST may

be more e�cient than the Boolean algorithm, our experiments in Sec-

tion 4.4.1 will show that the latter is actually the superior variant.

4.2.1.4 Extraction from a Matrix: STACCATO

Inspired by methods from the �eld of spectrum-based fault localization (see,

for example, [AZvG07; Rep+97]), STACCATO was designed to compute an

approximation D of the set of minimal hitting sets, given two parameters λ
and L. STACCATO is based on a binary matrix A = [ai , j], where ai , j is true

i� Ci ∈ SC contains element c j ∈ COMP and a ranking of the components c j

describing which ones are more likely to be at fault. In our setting, the ranking

heuristic amounts to counting the Cis that contain a component c j . While L

78

4.2 Selected Algorithms and Approaches

is an upper bound on the amount of solutions to be derived, λ de�nes the

fraction of the ranked components to be considered in an iteration. The basic

steps behind STACCATO then are as follows:

De�nition 4.6 (STACCATO [AvG09]):
1. Create matrix A, initialize D = ∅, and rank elements c j .

2. Add elements c j present in all Cis (MHSs of size 1) to D.

3. While |D | < L, do the following for the �rst λ elements in the ranking:

(a) Remove from A the element c j as well as all Cis that contain it.

(b) Run STACCATO with the new A.

(c) Combine all returned solutionswith the element c j andverifywhether

this is a minimal hitting set (that is, it is not subsumed so that the

minimality of the solution is ensured).

In order to compute the complete set of MHSs, our implementation behaves

equivalent to a con�guration with λ = 1 and L = ∞. Note that our setting

also does not require the binary array e used in the original publication to

discriminate between allowed behavior and con�icts, so we revised our brief

introduction accordingly. Like for the BHS and Boolean algorithms, STACCATO

obviously requires SC to be initially known.

Example 4.5: If we assume a function S(A) implementing STAC-

CATO as outlined above, we can depict an execution for SC =

{{a , b} , {b , c} , {a , c} , {b , d} , {b}} as follows. Note that we assume the

cartesian product (×) to take precedence over the union (∪) and thus

omit corresponding parentheses for readability.

S(A) =S

a b c d

1 1 0 0

0 1 1 0

1 0 1 0

0 1 0 1

0 1 0 0

= {{b}} × S
(a c d

1 1 0

)
∪ {{a}} × S

b c d

1 1 0

1 0 1

1 0 0

79

4 Evaluating Selected MHS and MBD Approaches

∪ {{c}} × S

a b d

1 1 0

0 1 1

0 1 0

∪ {{d}} × S

a b c

1 1 0

0 1 1

1 0 1

0 1 0

= {{a , b} , {b , c}} ∪ {{a}} ×

{{b}} ∪ {{c}} × S

(d

1

)
∪ {{d}} × S

(c

1

)
∪ {{c}} ×

{{b}} ∪ {{a}} × S

(d

1

)
∪ {{d}} × S

(a

1

) ∪ {{d}} ×

{{b}} × S

(a c

1 1

)
∪ {{a}} × S

b c

1 1

1 0

 ∪ {{c}} × S

a b

1 1

0 1

= {{a , b} , {b , c} , {a , c , d}}

As this is a fairly large example to trace manually, those executions of S
dealing with a single con�ict or a single component are not shown in full

detail. Also in the last step, intermediate results were left out as they are

subsumed by other sets.

4.2.1.5 The General Diagnostic Engine / Berge’s Algorithm

In direct competition with Reiter’s algorithm, de Kleer and Williams pro-

posed their con�ict-driven General Diagnostic Engine (GDE) [dKW87] intro-

duced in the preliminaries chapter (see Section 2.1.1) and later its extension

NGDE [dKle09]. The concept of their utilized minimal hitting set algorithm is

very intuitive. It appeared several times throughout the literature, for example

on covering problems [Law66] and is nowadays often referred to as Berge’s
algorithm [Ber89]. Starting with an MHS-list ∆ containing only the empty set,

for any newly derived Ci all the minimal hitting sets ∆i in ∆ for the previously

80

4.2 Selected Algorithms and Approaches

Algorithm2:Theminimal hitting set algorithmemployed inGDE. [Nyb11]

1 Function GDE-Berge(∆, Ci):
Input : a set of minimal hitting sets ∆ and a new con�ict Ci
Output : the updated set of minimal hitting sets Θ

2 ∆
old
← ∆

3 ∆
add
← ∅

4 foreach ∆i ∈ ∆ do
5 if ∆i ∩ Ci = ∅ :
6 Remove ∆i from ∆old
7 foreach c ∈ Ci do
8 ∆new ← ∆i ∪ {c}
9 foreach ∆k ∈ ∆,∆k , ∆i do

10 if ∆i ⊆ ∆new :
11 goto Label1

12 ∆
add
← ∆

add
∪ {∆new}

13 Label1

14 Θ← ∆
old
∪ ∆

add

15 return Θ

considered Cks are re�ned as follows: If∆i hits Ci , it stays unchanged, otherwise

it is removed from ∆ and the supersets ∆new = ∆i ∪ {c} for all c ∈ Ci are added

to ∆ i� there is no ∆k ∈ ∆ such that ∆k ⊆ ∆new for the corresponding ∆new. The

formalization of this approach given in Algorithm 2 is taken from [Nyb11].

When SC is completely known a priori, there is the fundamental question of

which Ci sequence to choose for a computation. Considering the upper bound

of the “fan-out” when re�ning ∆i ∈ ∆ for some Ci , we chose to process the

Cis in order of their (ascending) cardinality. With this strategy we aimed at

keeping the amount of MHSs in ∆ low, in order to minimize the amount of total

re�nements themselves as well as the related subset-checks.

4.2.1.6 SAT-based MHS Computation

As mentioned in the previous chapters, SAT solvers are powerful tools enabling

us to tackle a variety of problems e�ciently. Most prominently in this thesis,

through our SAT encoding of LTL introduced in Chapter 3, it allows us to apply

81

4 Evaluating Selected MHS and MBD Approaches

MBD to LTL speci�cations. Moreover, besides using them as backend for MBD

algorithms like HS-DAG as done in Section 3.4, SAT solvers can also be used to

derive diagnoses directly, as we will show in Section 4.2.2 below.

This naturally raises the question of whether a SAT-solver oriented route could

be taken also for the e�cient computation of minimal hitting sets for a pre-

known SC. Borrowing from the diagnosis setting where MAX-SAT solvers (cf.

MERIDIAN [Fel+10]) or cardinality networks (cf. [Met+12]) are exploited to

ensure the minimality of the diagnoses (equal to the minimal hitting sets of SC),

we encode the problem P in Conjunctive Normal Form (CNF) as follows.

Any Ci in an SC is encoded as clause Cli in the form of a disjunction of the

corresponding bits of its elements. The SAT problem SAT(P) then combines

all Clis via logic and such that a satisfying assignment represents indeed some

hitting set of SC.

Iteratively raising the amount of component bits that can be > simultaneously

while adding blocking clauses for previously obtained solutions, we can derive

all the MHSs of an SC using the following two approaches.

HS-SAT encodes the MHS computation as standard SAT problem, adding

cardinality constraints as follows. Sorting networks like OEMS networks [Bat68]

are a classical way to encode cardinality constraints in the Boolean domain. The

underlying idea there is to transform the summands ci ∈ COMP into a unary

number (that is, “sort” all the 1s to the left) and then add for some bound k the

clause ¬xk+1, where {xi | 1 ≤ i ≤ |COMP|} are the sorted bits. As in our case it

is likely that |COMP| � k, we use Cardinality Networks [Así+09] instead, that

are tailored for such scenarios. Compared to OEMS networks, this reduces the

number of clauses to O(n log
2 k) from O(n log

2 n), with n equal to |COMP| in

our case.

Algorithm 3 formalizes this approach. Note that the maximum cardinality

of a minimal hitting set is bounded by both |COMP| and |SC|, as obviously

either all components or one component from each set can be included at

most [dKle11]. For any increment of the cardinality limit, the corresponding

cardinality network attached to the SC model has to be rede�ned, and the

blocking clauses for all earlier solutions have to be attached as well before

starting the solver anew. Adding for any derived minimal hitting set ∆ the

respective blocking clause (a logic or of all the negated “bits” in ∆) via logic and

82

4.2 Selected Algorithms and Approaches

Algorithm 3: SAT-solver based minimal hitting set computation.

1 Function HS-SAT(SC,COMP):
2 card ← 1

3 M ← ∅ /* minimal hitting sets */
4 P ← EncodeAsCNF(SC)
5 while card ≤ min(|SC|, |COMP|) do
6 N ← EncodeCardNet(COMP, card)
7 while ∆← SAT(P ∧ N) /* returns assignment for COMP or ⊥ */
8 do
9 M ← M ∪ {∆}

10 P ← P ∧ ¬∆

11 card← card + 1

12 return M

to the problem description ensures (a) theminimality of the derived solutions in

M, and (b) that the same solution won’t be computedmore than once. Evidently,

the approach thus requires a single call of the solving engine per solution.

Intuitively (and also con�rmed by our very �rst experiments) obtainingmultiple

solutions per SAT-solver call can speed up the computation. Therefore, in our

experiments, we exploit the solver SCryptoMinisat2 featuring an internal loop

that reports all the solutions—in our case for a given cardinality—by adding

the corresponding blocking clauses internally. Thus, all solutions for some

cardinality k are retrieved via a single external program call. The corresponding

algorithm shown in Algorithm 4 di�ers only slightly from Algorithm 3.

Restrictions on the search can be easily established by replacing the condi-

tion of the main while-loop in Line 5 with a more sophisticated one. For es-

tablishing a user-speci�ed cardinality limit L, we can replace it with (card ≤
min(|SC|, |COMP|, L)).

HS-MaxSAT implements a similar approach, inspired byMERIDIAN [Fel+10].

Using a MAX-SAT solver, in our case Yices3, we �nd minimal hitting sets in

order of increasing cardinality as follows. We construct a MAX-SAT problem

2
http://amit.metodi.me/research/scrypto/

3
http://yices.csl.sri.com

83

http://amit.metodi.me/research/scrypto/
http://yices.csl.sri.com

4 Evaluating Selected MHS and MBD Approaches

Algorithm4: SAT-solver basedminimal hitting set computation for solvers

returning all solutions.

1 Function HS-SAT’(SC,COMP):
2 card ← 1

3 M ← ∅ /* minimal hitting sets */
4 P ← EncodeAsCNF(SC)
5 while card ≤ min(|SC|, |COMP|) do
6 N ← EncodeCardNet(COMP, card)
7 ∆← SAT(P ∧ N) /* returns all satisfying assignments or ∅ */
8 P ← P ∧

∧
∆i∈∆

¬∆i

9 M ← M ∪ ∆
10 card← card + 1

11 return M

by maintaining a set of clause and weight pairs. The clauses forming SC are

assigned weight∞ (that is, excluding them from the described partialMAX-SAT

problem), each assumption ¬c stating that c is not part of a solution is added

with weight 1. While solving, any assumption that must be retracted (that is,

assigning > to the corresponding bit c, and thus adding it to the MHS) adds a

weight of one to the problem’s solution. The solution’s weight thus corresponds

to the cardinality of the returned MHS. The MAX-SAT solver is queried for

solutions until the desired maximum cardinality has been exceeded or the

solver returns UNSAT. In each step, a blocking clause for the previous solution

is added, excluding it and its supersets from subsequent computations.

In our implementation, we use Yices’ extended assertions again to state our

(partial, weighted) MAX-SAT problem. All clauses in P are assigned weight∞

via standard assertions, while for any c ∈ COMP an extended assertion that

the corresponding bit is ⊥ is assigned weight 1:

∀clause ∈ P :(assert clause)
∀c ∈ COMP :(assert+ ¬c 1)

84

4.2 Selected Algorithms and Approaches

Using Yices’ (max-sat) command, we then obtain the maximum satis�able

subset in terms of the extended assertions (assert+) for the given problem.

A blocking clause for some derived MHS ∆ is added via (assert ¬∆) for the

following computations.

4.2.2 Model-based Diagnosis Approaches

We now describe MBD approaches which do not rely on a pre-computed SC,

that is, they either compute the con�icts in SC “on-the-�y” or they do not

rely on con�icts at all. Regarding the former, we will speci�cally equip HS-

DAG and HST with a back-end (a SAT solver acting as theorem prover) to

compute new con�icts. In this context, remember that those algorithms are

designed for implicitly de�ned SCs, that is, as they iterate over SC during their

execution, we think of it as if new con�icts were appended automatically as

needed. Put in other words, SC acts like a cache to the theorem prover call

computing new con�icts. This on-the-�y computation introduces several new

aspects regarding the interface between the two components. The second group

consists of direct SAT-based diagnosis algorithms based on HS-SAT and HS-

MaxSAT denoted as DS-SAT and DS-MAXSAT as well as a variant based on

constraint satisfaction (DS-CSP). As our evaluation will be largely based on

the diagnosis of combinational logic circuits (the ISCAS’85 benchmark), we

will occasionally refer to Boolean logic gates in the descriptions of our solver

models.

4.2.2.1 Conflict-Driven Algorithms using SAT

As mentioned above, the algorithms based on Reiter’s idea can derive SC on-

the-�y while constructing their trees/DAGs. This ensures that, especially for

cardinality-restricted runs, only the necessary con�icts have to be computed. In

order for this on-the-�y computation to work, an interface between the hitting

set algorithm and a theorem prover has to be established, enabling

1. the veri�cation of deduced theories—that is, checking whether a set of

components assumed abnormal is consistent with SD and OBS and thus

a potential4 diagnosis; called CONS (for consistent) from here on, and

4
Wewrite potential, because until the algorithm is �nished, any hitting set may still be subsumed

by one that is found later. Only the �nal, minimal hitting sets are actually diagnoses.

85

4 Evaluating Selected MHS and MBD Approaches

2. the computation of refutations of deduced theories—that is, a con�ict

which is not resolved by a given set of abnormal components; called

NEW_CS (for new con�ict set) from here on.

As neither Reiter’s publication nor any other we know of investigates aspects

of designing this interface, we implemented di�erent variants and will report

on their run-times in Section 4.4.2. These include variants with and without a

cache for theorem prover calls as well as using one or two separate theorem

prover instances for the two interface calls mentioned above. The idea for using

two separate instances is based on Reiter’s note that “whatever [...] theorem

proving techniques used by TP, it should probably be implemented in such a

way that intermediate computations obtained while computing a con�ict set

are cached for possible use in subsequent calls to TP” [Rei87]. In our case of a

solver that is capable of dealing with multiple similar problems successively, we

argue that information from the previous computation (for example, learned

clauses) could be used to speed up subsequent ones.

We used Yices and PicoSAT as our solvers, both of which are able to compute

unsat cores as is necessary for the computation of new con�icts as we showed

in Proposition 3.1 on page 50.

Yices Model While the domain of our test models (see Section 4.3) is purely

Boolean, we used the Satis�ability Modulo Theories (SMT) solver Yices in our

experiments for two reasons. First, it can be launched in daemon mode in order

to solve multiple similar problems by retracting old and adding new assertions.

Second, its con�ict search can be focused on our AB(c) predicates via extended

assertions (assert+). Our corresponding Yices model for a NEW_CS call is as

follows5.

∀(v , b) ∈ OBS :(define v::bool b)

∀c ∈ COMP :(define ABc::bool)

(assert ¬ABc → outc = fc(in1

c , . . .))

∀c ∈ COMP \ h :(assert+ ¬ABc)

∀c ∈ h :(assert+ ABc),

5
See http://yices.csl.sri.com/language.shtml for details on the Yices language.

86

http://yices.csl.sri.com/language.shtml

4.2 Selected Algorithms and Approaches

where h is the set of edge labels h(n) in HS-DAG or HST, and ini
c , outc and fc are

a component c’s input-/output signals and its Boolean function implemented

using Yices’ built-in Boolean operators. In subsequent calls, onlyAB(c) predicate
assignments are updated while the system description is retained. For a CONS

call, the model can be reduced to:

∀(v , b) ∈ OBS :(define v::bool b)

∀c ∈ COMP \ h :(assert outc = fc(in1

c , . . .)),

meaning that all components except those contained in h(n)must behave ac-

cording to their nominal behavior and all other are unconstrained. In this case,

no decision variables are left and the solver can use propagation only to deter-

mine satis�ability of the problem. Note that whenever we use the same Yices

instance for both NEW_CS and CONS calls, we use the �rst model and update

the assertions concerning ABc variables accordingly using (push) and (pop)

calls. This way only a small portion of the problem changes and enables the

solver to retain any internal structures and optimizations already set up for the

remaining assertions.

PicoSAT Model To realize the same functionality using a purely Boolean

SAT solver, we translate the Boolean function of each component into its CNF

equivalent. Note that for this solver, we are not able to reuse running instances

as the solver terminates when a solution has been found and there is no way to

reuse previous instances. Moreover, its interface is �le-based, meaning that the

CNF has to be written to the hard disk �rst and also the solutions (satisfying

instances and unsat cores) are always saved into �les. In our experiments, we try

to compensate the entailed run-time drawback by placing those �les (including

the solver) in a RAM drive.

Theorem Prover Interface Asmentioned, onemight devise di�erentmeth-

ods of implementing the interface between the hitting set algorithm and the

theorem prover (that is, our SAT/SMT solver). Reiter’s original approach fea-

tured one method called TP(SD,COMP − h ,OBS) returning a con�ict C for

(SD,COMP,OBS) such that h ∩ C = ∅ or “3” if no such C exists. However,

one might also split the concerns of checking a set h(n) for consistency (that

is, whether SD ∪ OBS ∪ {¬AB(c) | c ∈ COMP \ h(n)} is satis�able such that

87

4 Evaluating Selected MHS and MBD Approaches

h(n) is a potential diagnosis) and computing a new con�ct C. This is especially

interesting in the case where the diagnosis cardinality is bounded, such that

only solutions with up to MAX_CARD components are of interest. For this

case, both HS-DAG and HST can be modi�ed easily to stop node expansion

at the corresponding DAG/tree level. On the �nal level, however, instead of

computing new con�icts we just need to check the consistency of all h(n)s. Inde-
pendent from the exact method used, we added a cache to our implementations

that can be queried before executing a NEW_CS call, together with a switch to

enable/disable it for our experiments.

Algorithm 5 shows the pseudo code of our HS-DAG implementation for a

combined theorem prover interface (that is, only the NEW_CS method is used),

withAlgorithm 6 showing the helper functions for node expansion and pruning.

Themain function, HS-DAG constructs aDAGand a root node and then processes

nodes in a work-list ω until no open node is left. The ProcessNodeCI function

determines a label for a given node and invokes the pruning procedure to

check whether a new con�ict subsumes a previous one. It returns a list of

newly generated (child) nodes to be processed, which are in turn constructed

by ExpandNode. For readability, the functions do not cover the cases of limiting

solutions to a maximum cardinality, limited run-time or number of solutions

as well as switching the cache on and o�.

To clarify the di�erences between the combined and split interface variant,

the function ProcessNodeSI in Algorithm 7 illustrates the node processing

for the latter, replacing the former ProcessNodeCI. Note that in this case the

cache (if enabled) is queried only after the consistency of a set h(n) has been
checked using the theorem prover. However, if we assume that a cache query

is fast compared to a theorem prover call, we can use it also the other way

around. Querying the cache �rst, we can save a Theorem Prover (TP) call for

cache hits. This case occurs whenever a con�ict set can be used at multiple

positions in the DAG. Only for a cache miss we have to check the consistency

using CONS and if needed, get a new con�ict using NEW_CS. Algorithm 8

shows the corresponding variant ProcessNodeSICF. Looking back at the �rst

variant ProcessNodeCI in Algorithm 5, we see that this kind of anticipation of

the inconsistency of a set h(n) is already implemented there, because otherwise

the cache would not make sense at all.

88

4.2 Selected Algorithms and Approaches

Algorithm 5: HS-DAG pseudo code for a combined theorem prover inter-

face.

1 Function HS-DAG(TP):
2 root← Node()
3 τ ← DAG()
4 τ.nodes← [root]
5 ω ← [root]
6 loop
7 n ← ω.popFirst()
8 if n.label is unde�ned :
9 ω.push(ProcessNodeCI(n))

10 if |ω | = 0 :
11 break

12 return
{
n′ ∈ τ.nodes | n′.label = “3′′

}
13 Function ProcessNodeCI(node):
14 if ∃n ∈ τ.nodes | h(n) ⊂ h(node) ∧ n.label = “3′′ ∧ node.level ≥ 2 :
15 node.label← “7′′

16 return []

17 Σ← TP.QUERY_CACHE(h(node))
18 if Σ , null :
19 node.label← Σ
20 PruneTree(node)
21 return ExpandNode(node)
22 else
23 Σ← TP.NEW_CS(h(node))
24 if Σ = ∅ :
25 node.label← “3′′

26 return []

27 node.label← Σ
28 PruneTree(node)
29 return ExpandNode(node)

89

4 Evaluating Selected MHS and MBD Approaches

Algorithm 6: HS-DAG helper functions pseudo code.

1 Function ExpandNode(node):
2 N ← ∅
3 foreach s ∈ node.label do
4 if ∃n ∈ τ.nodes | h(n′) = h(node) ∪ {s} :
5 τ.edges← τ.edges + Edge(node, n , s)
6 else
7 n ← Node(node.level + 1)

8 τ.edges← τ.edges + Edge(node, n , s)
9 N ← N ∪ {n}

10 return N

11 Function PruneTree(node):
12 while ∃n ∈ τ.nodes | node.label ⊂ n.label do
13 foreach e ∈ τ.edges | e .source = n do
14 if e .label < n.label :
15 remove sub-DAG below e

Algorithm 7:HS-DAG node processing pseudo code for a split theorem

prover interface.

1 Function ProcessNodeSI(node):
2 if ∃n ∈ τ.nodes | h(n) ⊂ h(node) ∧ n.label = “3′′ ∧ node.level ≥ 2 :
3 node.label← “7′′

4 return []

5 Σ← null
6 if TP.CONS(h(node)) :
7 node.label← “3′′

8 return []

9 Σ← TP.QUERY_CACHE(h(node))
10 if Σ = null :
11 Σ← TP.NEW_CS(h(node))
12 node.label← Σ
13 PruneTree(node)
14 return ExpandNode(node)

90

4.2 Selected Algorithms and Approaches

Algorithm 8:HS-DAG node processing pseudo code for a split theorem

prover interface; with cache-�rst for anticipating inconsistent h(n)s.

1 Function ProcessNodeSICF(node):
2 if ∃n ∈ τ.nodes | h(n) ⊂ h(node) ∧ n.label = “3′′ ∧ node.level ≥ 2 :
3 node.label← “7′′

4 return []

5 Σ← TP.QUERY_CACHE(h(node))
6 if Σ , null :
7 node.label← Σ
8 PruneTree(node)
9 return ExpandNode(node)

10 else
11 if Σ← TP.CONS(h(node)) :
12 node.label← “3′′

13 return []

14 else
15 Σ← TP.NEW_CS(h(node))
16 node.label← Σ
17 PruneTree(node)
18 return ExpandNode(node)

In our experiments, we investigated which variant is superior in terms of run-

time. A combined interface has the obvious advantage of saving one theorem

prover call for an inconsistent h(n), while the split interface may save run-time

on the �nal DAG level by using consistency checks only. We also evaluated

the impact of reusing a single theorem prover instance for consecutive calls, as

well as using two separate TP instances for NEW_CS and CONS calls. While

the results in Section 4.4.2 are mixed regarding the combined/split interface,

reusing and separating the instances for the solver calls provided a considerable

improvement on run-time.

91

4 Evaluating Selected MHS and MBD Approaches

4.2.2.2 Conflict-Driven Search via Horn Clauses

The variant HS-DAG-HC uses the publicly available diagnosis engine JDia-
gengine6. This engine implements a con�ict-driven search via HS-DAG as de-

scribed in the previous section. However, it exploits a Horn-clause reasoning

engine [Min88] instead of a SAT-solver. Peischl and Wotawa [PW03] described

the diagnosis engine similar to [NW97] and initial results in more detail.

Horn clauses are disjunctions of literals where only one may be positive. In

our models, for an arbitrary component c ∈ COMP, NAB_c represents the

corresponding ¬AB(c) predicate. in_c_v and out_c_v for v ∈ {L,H} (with H
referring to high/true/1/> and L to low/false/0/⊥) refer to c’s input/output
holding value v. Note that in or out represent the connections between the

components’ ports, and we add for each input or output s of a component c the

clause s_c_H ∧ s_c_L → ⊥ stating that a signal cannot be high and low at the

same time. The propositional rules added for a circuit’s gate X are as follows,

where we start with those for a bu�er:

NAB_X ∧ in_X_H→ out_X_H
NAB_X ∧ in_X_L→ out_X_L
NAB_X ∧ out_X_H→ in_X_H
NAB_X ∧ out_X_L→ in_X_L

While an inverter is de�ned similarly, forXOR andXNOR gates with two inputs,

we de�ne all possible combinations of input and output values, resulting in the

following rules for an XOR gate X:

NAB_X ∧ in_1_X_H ∧ in_2_X_L→ out_X_H
NAB_X ∧ in_1_X_L ∧ in_2_X_L→ out_X_L
NAB_X ∧ in_1_X_H ∧ in_2_X_H→ out_X_L
NAB_X ∧ in_1_X_L ∧ in_2_X_H→ out_X_H
NAB_X ∧ out_X_H ∧ in_2_X_L→ in_1_X_H
NAB_X ∧ out_X_L ∧ in_2_X_L→ in_1_X_L
NAB_X ∧ out_X_H ∧ in_2_X_H→ in_1_X_L
NAB_X ∧ out_X_L ∧ in_2_X_H→ in_1_X_H
NAB_X ∧ out_X_H ∧ in_1_X_L→ in_2_X_H

6
http://www.ist.tugraz.at/modremas/downloads.html

92

http://www.ist.tugraz.at/modremas/downloads.html

4.2 Selected Algorithms and Approaches

NAB_X ∧ out_X_L ∧ in_1_X_L→ in_2_X_L
NAB_X ∧ out_X_H ∧ in_1_X_H→ in_2_X_L
NAB_X ∧ out_X_L ∧ in_1_X_H→ in_2_X_H

AND, OR, NAND and NOR gates may comprise more than two inputs. For

example, the model of an AND gate X comprising k inputs is speci�ed as:

NAB_X ∧
∧

i∈1,...,k in_i_X_H→ out_X_H
∀i ∈ 1, . . . , k : NAB_X ∧ in_i_X_L→ out_X_L
∀i ∈ 1, . . . , k : NAB_X ∧ out_X_H→ in_i_X_H
∀K′ ⊂ K = {1, . . . , k} such that |K′ | = k − 1 :

NAB_X ∧ out_X_L ∧
∧

i∈K′ in_i_X_H→ in_j_X_L
for j ∈ K \ K′

4.2.2.3 Computing Diagnoses via SAT Directly

Like for the SAT-based hitting set computation, we employ two approaches

for computing diagnoses with SAT solvers directly: (a) using a MAX-SAT prob-

lem and (b) by introducing cardinality constraints in a “pure” SAT search

approach.

DS-MAXSAT implements the MERIDIAN-based [Fel+10] approach (see also

the description of HS-MaxSAT in Section 4.2.1.6) for computing diagnoses

directly. Our model is similar to the one used in HS-MaxSAT. Instead of clauses

for con�icts, however, we now assert the correct function of each component as

follows:

∀(v , b) ∈ OBS :(define v::bool b)

∀c ∈ COMP :(define ABc::bool)

(assert ¬ABc → outc = fc(in1

c , . . .))

∀c ∈ COMP :(assert+ ¬ABc 1)

Note that, apart from the assertions concerning the AB predicates, this model

is essentially the same one as in the con�ict-based case. Blocking clauses for

derived diagnoses ∆ are again added as (assert ¬∆).

93

4 Evaluating Selected MHS and MBD Approaches

DS-SAT combines the PicoSAT model we used also for the con�ict-based HS-

DAG/HST approaches abovewith the cardinality networkswe used forHS-SAT.

It thus allows us to compute also diagnoses directly using a standard, pure-

Boolean SAT solver. Similar approaches are proposed, for example, in [ES06;

Met+12]. By adding a limit on the number of abnormal predicates activated

simultaneously, a satisfying solution of

SD ∧OBS ∧ (AB1 + AB2 + · · · + AB|COMP| ≤ k)

results in a diagnosis of cardinality k at most. Incrementing k from 1 to the

maximal desired cardinality while blocking discovered solutions (and their su-

persets) like in the MAX-SAT case, we obtain a pure SAT diagnosis algorithm.

4.2.2.4 Direct Constraint Solver-based Computation

General-purpose constraint solvers are another well-known possibility to tackle

consistency-based model-based diagnosis problems (see, for example, [GP87;

MS99]). Similar to SAT solvers, today, CSP solvers are powerful, grown-up tools,

which have been gaining performance over the last decades. For our evaluation,

we adopt a recent approach from Nica and Wotawa [NW12] in this context,

who propose an algorithm called ConDiag.

DS-CSP uses ConDiag together with the constraint solver MINION7 [GJM06]

as underlying reasoning engine to compute diagnoses directly as solutions of

a CSP. ConDiag is very similar to the algorithm used in the HS-SAT in that it

adds to the model a constraint to limit the diagnosis cardinality to a number n,
raised from 1 to some MAX_CARD while blocking previous solutions to obtain

subset-minimal ones only. Like the SAT solver SCryptoMinisat we employed

for HS-SAT, MINION also supports the computation of all solutions (satisfying
assignments) for a problem, such that all diagnoses for a cardinality n can be

computed using a single MINION executable call.

Obviously, constraints o�er more �exibility regarding model-descriptions,

which makes the modeling concept even more important. Internal tests showed

that, for instance, describing logic gates via (universal) table constraints proved

to be signi�cantly slower than encoding them via adequate built-in constraints.

7
http://minion.sourceforge.net/

94

http://minion.sourceforge.net/

4.3 Test Domains and Test Setup

Table 4.1: Minion models for various gate types.

Gate Model MINION encoding

AND out = min(in1 , in2) min([in1,in2],out)

OR out = max(in1 , in2) max([in1,in2],out)

NAND ¬out = min(in1 , in2) min([in1,in2],!out)

NOR ¬out = max(in1 , in2) max([in1,in2],!out)

XOR out = 1⇔ in1 , in2 reify(diseq(in1,in2), out)

XNOR ¬out = 1⇔ in1 , in2 reify(diseq(in1,in2), !out)

NOT out , in diseq(in,out)

BUF out = in eq(in,out)

For our problem domain of Boolean circuits (see Section 4.3.1), Christopher Jef-

ferson and Peter Nightingale, two main developers behind MINION, suggested

the encoding given in Table 4.18.

Considering Reiter’s diagnosis formulations and the various gate types, with

Table 4.1 o�ering the nominal behavior for Boolean gates, we add for each gate g
a constraint reifyimply(NominalBehavior, !AB[g])with AB being a vector de�n-

ing g’s status (abnormal, AB[g] = 1, or not, AB[g] = 0). While observations

are encoded straightforward via eq(variable, value), the desired diagnosis car-

dinality is de�ned via sumleq(AB, n) and sumgeq(AB, n), requiring the sum of

abnormal components to be equal to n.

4.3 Test Domains and Test Setup

We evaluated the algorithms presented in the previous sections using di�er-

ent scenarios. These are grouped into pure MHS computation scenarios with

pre-computed SC to evaluate the e�ciency of the underlying MHS algorithms

(where applicable) and “real” diagnosis scenarios where con�icts are computed

“on-the-�y”. For our MHS scenarios we created both arti�cial SCs, that is, such

that we can precisely scale its complexity using di�erent parameters, as well as

“real-world” SCs with con�icts that have been recorded from diagnosis applica-

tions. For the diagnosis scenarios, on the one hand we employ a benchmark

8
For details on the solver speci�c constraints please refer to MINION’s documentation at

http://minion.sourceforge.net/htmlhelp

95

http://minion.sourceforge.net/htmlhelp

4 Evaluating Selected MHS and MBD Approaches

well-known in the diagnosis community called ISCAS’859 [HYH99] consisting

of combinational logic circuits, and on the other hand apply the algorithms our

LTL diagnosis problems from Chapter 3.

4.3.1 MHS Computation Scenarios

Our arti�cial scenarios TS-MHS-A1 and TS-MHS-A2 constitute two “extremes”

out of all the possible ones: completely disjoint con�icts and completely random

con�icts. While we had other scenarios available, the selected ones allow us

to give a good overview of the performance characteristics of the chosen MHS

algorithms. The “real-world” scenarios TS-MHS-R1 and TS-MHS-R2 are based

on logic circuit diagnosis using the ISCAS’85 benchmarks and the diagnosis

of LTL speci�cations as presented in chapter 3. They allowed us to assess the

algorithms’ performance for real scenarios and whether it matches those of our

arti�cial ones.

Test Scenario TS-MHS-A1: Completely Disjoint Ci ∈ SC. In this sce-

nario, we de�ne two integer parameters m and n (with m ≥ n), and distribute

m components as evenly as possible over n con�icts (that is, the di�erence in

size between any con�ict Ci and C j is one at most). The con�icts in SC are

therefore pairwise disjoint, which maximizes the amount and size of the MHSs

for given m = |COMP| and n = |SC|. As a consequence of the con�icts’ con-

struction, all minimal hitting sets are exactly of size n (|MHS| = |SC|), such that

any reasonable limit on their size does not a�ect performance (relations). More

formally, SC has the following properties:

|COMP| ≥ |SC|,

ci ∈ Ci ∈ SC→ ci ∈ COMP,

∀ci ∈ COMP : ∃C j ∈ SC : ci ∈ C j , and

∀Ci , C j ∈ SC :
���|Ci | − |C j |

��� ≤ 1.

ProcedureGenerateInput-TS-MHS-A1provides a generation procedure in pseudo

code to further clarify the construction. Note that for a given (m , n) each call of

the procedure produces the same result.

9
http://www.cbl.ncsu.edu:16080/benchmarks/ISCAS85/

96

http://www.cbl.ncsu.edu:16080/benchmarks/ISCAS85/

4.3 Test Domains and Test Setup

Procedure GenerateInput-TS-MHS-A1(m, n):
Requires :m ≥ n

1 SC ← ∅

2 COMP ← {1, 2, . . . ,m}
3 for i ← 0 to n do
4 SC ←SC ∪ {{pop(COMP)}}

5 while |COMP| > 0 do
6 foreach C ∈SC do
7 if |COMP| > 0 :
8 SC ←SC ∪ {pop(COMP)}

9 return SC

Example 4.6:
GenerateInput-TS-MHS-A1(10, 3) = {{1, 4, 7, 10},{2, 5, 8},{3, 6, 9}}.

Test Scenario TS-MHS-A2: Completely Random Ci ∈ SC. For this sce-

nario, SC consists of n con�icts Ci that contain m components on an entirely

random basis. That is, each of the m components appears in any of the n Cis

with a probability of 0.5. For this random setting we evaluated the impact on

performance relations when constraining |MHS|, where a well-sized sample

set was crucial in order to avoid any bias from a speci�c random pattern.

More formally, we have that

|SC| = n, where n is a given parameter

ci ∈ Ci ∈ SC→ ci ∈ COMP

Procedure GenerateInputTS-MHS-A2 provides the corresponding generation

procedure in pseudo code.

Example 4.7:
GenerateInput-TS-MHS-A2(10, 3) = {{10, 8, 7} , {1, 2, 3, 5, 6, 7, 8, 9} ,
{1, 2, 3, 4, 6, 7}}.

97

4 Evaluating Selected MHS and MBD Approaches

Procedure GenerateInputTS-MHS-A2(m, n):

1 SC ← ∅

2 COMP ← {1, 2, . . . ,m}
3 while |SC| < n do
4 C ← ∅
5 foreach c ∈ COMP do
6 if rand(0, 1) > 0.5 :
7 C ← C ∪ {c}

8 if |C | > 0 :
9 SC ←SC ∪ C

10 return SC

Test scenario TS-MHS-R1: ISCAS’85 conflicts. This scenario was con-

structed from the ISCAS’85 benchmark suite [HYH99] containing ten combi-

national logic circuits such as interrupt controllers, modules for single-error-

correction (SEC), double-error-detection (DED) and arithmetic logic units (ALU).

These circuits are being used throughout the diagnosis community as, due to

their complexity, they are still an algorithmic challenge. Wang and Provan even

used the circuits’ structure to develop [WP10] a more general benchmark suite

for diagnosis applications.

In order to obtain con�icts for the evaluation, we used circuits c499.isc, c880.isc,
c1355.isc and c1908.isc (see Table 4.2 for detailed statistics). We purposefully

injected faults into a circuit’s model and then computed an observation OBS

based on random inputs. The con�icts calculated by the theorem prover during

a (cardinality-restricted) diagnosis run tackling the resulting problem then

amount to our MHS input SC.

Algorithm 9 shows the pseudo-code of the procedurewe used to inject our faults

into a circuit N by altering the logic function of m gates. Aiming to avoid that for

a given observation the individual faults mask each other entirely, we froze all

output lines that changed after altering a gate, and allowed only the remaining

outputs to �ip when choosing the next gate. The function mutate(N, g) replaces
a gate g in circuit N by a (port-compatible) alternative gate. Note that we assume

that the calcOutputs call in Line 12 changes an output only if it is contained in

Out \ Out*, returning its old value from Out otherwise. InjectFaults returns

the “intended” diagnosis ∆ and a set of observations OBS = In ∪ Out′. The

98

4.3 Test Domains and Test Setup

Table 4.2: ISCAS’85 circuits’ number of primary inputs (# In) and outputs (#Out), the

number of gates and function.

Circuit # In #Out #Gates Function

c432 36 7 160 27-channel interrupt controller

c499 41 32 202 32-bit single-error correction (SEC) circuit

c880 60 26 383 8-bit arithmetic-logic (ALU) unit

c1355 41 32 546 32-bit SEC circuit

c1908 33 25 880 16-bit SEC/double-error detection (DED) circuit

c2670 233 64 1193 12-bit ALU and controller

c3540 50 22 1669 8-bit ALU

c5315 178 123 2307 9-bit ALU

c6288 32 32 2416 16-bit multiplier

c7752 207 107 3512 32-bit adder/comparator

observation is then used together with the system description SD (constructed

from the circuit’s Boolean gates as described in Section 4.2.2.1) in a HS-DAG

run (limited to triple fault diagnoses) with Yices acting as theorem prover. As

our construction does not rule out diagnoses with a cardinality lower than m,

we additionally veri�ed ∆’s validity in terms of subset-minimality.

Test scenario TS-MHS-R2: LTL conflicts. This scenario is based on the

LTL encoding presented in the previous chapter. As described in Section 3.6, to

create a diagnosis problem E(ϕm , τ), we created a random formula as suggested

in [DGV99] with N =

⌊
|ϕ |/3

⌋
variables and a uniform distribution of LTL

operators. We then derived ϕm from ϕ,introducing a number of faults into ϕ by

replacing variable identi�ers or operators with others of the same arity. Again

we prevented faults from masking each other by excluding all superformulae

of a modi�ed subformula for the subsequent steps. Using our LTL encoding

we then derived an assignment for τ ∧ ϕ ∧ ¬ϕm that de�nes τ. As for the test

scenario TS-MHS-R1 based on ISCAS’85 circuits, we extracted the con�icts from

a HS-DAG run limited to triple fault diagnoses.

99

4 Evaluating Selected MHS and MBD Approaches

Algorithm 9: Inject m independent faults into a circuit N with gates G.

Requires : |N | ≥ m
1 Function InjectFaults(N , m):
2 loop
3 In ← createRandomInputs(N)
4 Out* ← ∅ // Frozen outputs
5 Out ← calcOutputs(N, In)
6 Out′ ← Out
7 ∆ ← ∅

8 Gleft ← Gates(N) // Gates (left) to try
9 while |∆| < m and |Gleft | > 0 do

10 g ← popRandom(Gleft)

11 N′ ← mutate(N, g)
12 Out′ ← calcOutputs(N′, In,Out,Out*)
13 C ← {Out′i | Outi , Out′i } // Changed outputs
14 if |C | > 0 :
15 Out* ← Out* ∪ C
16 N ← N′

17 ∆ ← ∆ ∪ g

18 if |∆| = m :
19 return (∆, In ∪ Out′)

20 return error

4.3.2 On-The-Fly Diagnosis Scenarios

TS-DIAG-ISCAS. We again employ the ISCAS’85 benchmark suite for our

real-world diagnosis scenarios. As outlined in Section 4.3.1, we inject a number

of faults into a circuit by manipulating the Boolean function of some gates.

Based on the resulting behavior and a random input vector, we calculate an

observation OBS that can be used for diagnosis purposes together with the

circuit model SD.

100

4.3 Test Domains and Test Setup

For our evaluation, we injected up to three faults into each of the ten circuits

available (see Table 4.2). We evaluated the impact of the theorem prover in-

terface as discussed in Section 4.2.2.1 on this scenario and compared di�erent

combinations of reasoning engines and algorithms (that is, specialized versus

general-purpose engines and con�ict-based versus direct algorithms).

TS-DIAG-LTL. As a second application domain, we evaluated a selected num-

ber of the approaches also on our LTL diagnosis problems. Note that due to

the SAT-based nature of our encoding, some of the reasoning engines were

excluded. For example, translating the CNF encoding to a CSP for DS-CSP

would not allow us to bene�t from the constraint solver’s performance.

4.3.3 Test Setup

Several popular programming languageswere used to implement the presented

approaches. While for a comparison of the algorithms themselves using the

same language would be bene�cial, part of our evaluation was to determine

whether performance relations between them would di�er between languages.

Some existing implementations were provided by third parties:

HS-DAG-HC (Java) is based on the publicly available jDiagengine by

Jörg Weber and Franz Wotawa

DS-CSP (Java) is based on ConDiag by Iulia Nica

HST’s Java version by Franz Wotawa

STACCATO’s Java version by Daniel Detassis

the BHS and Boolean algorithms’ Java version by Frederix Yves.

Together with additional Python and C(++) versions of some of the algorithms

this allowed us (to some degree) to evaluate the in�uence of programming

languages on the e�ciency of algorithms and approaches. Note that this is

particularly interesting for pure MHS computation only as it is well known that

for on-the-�y diagnosis approaches theorem prover computation time exceeds

the MHS part of the algorithm’s run-time by far.

Table 4.3 shows an overview of available implementations. The C(++) versions

were implemented by replacing the performance-critical (central) methods

of the corresponding Python variant by C++ code, which is then interfaced

with the existing (Python) framework using the Boost::Python library. This

101

4 Evaluating Selected MHS and MBD Approaches

Table 4.3: Available algorithm/approach implementations.

Algorithm Implementations available

HS-DAG Python, C, Java

HST Python, Java

STACCATO Python, Java

Boolean-Iterative Python, C

Boolean-Recursive Python, Java

BHS Python

GDE-Berge Python

HS-SAT Python

HS-MaxSAT Python

DS-SAT Python

DS-MAXSAT Python

DS-CSP Java

allowed us to assess and avoid the penalty of higher languages (that is, Python’s

convenient but dynamic type system) for (prototype) implementations. Please

note that while the basic BHS-Tree algorithm was implemented only in Java, we

implemented three Python versions of its Boolean cousin: an iterative solution,

one enhanced with C-Code, and a recursive one that thus implicitly constructs

a tree-like structure. This way we could investigate whether any advantage of

the Boolean algorithm would have its origin in an iterative approach avoiding

a tree entirely.

As for our experiments in the previous chapter, we executed our tests on an

early 2011-generation MacBook Pro 8,1 featuring an Intel Core i5 2.3GHz with

4GiB of RAM, a solid state drive and running Mac OS X 10.6.8. For our tests,

we disabled the GUI and swapping, and placed our tests on a RAM-drive.

The runtime environment was based on (Apple) Java 1.6.0, CPython 2.7.3 and

gcc 4.2.1. Except when noted otherwise, our samples faced resource limits of

300 seconds and 2GiB of memory. For the memory statistics, we polled the

operating system in a separate process about the Resident Set Size (RSS) and

�led the maximum value experienced for a sample.

Note that our implementations are the result of a pro�ling process aiming at

a good trade-o� between run-time and memory characteristics. While newer

Python interpreters such as PyPy have been gaining performance using meth-

102

4.3 Test Domains and Test Setup

ods like just-in-time compilation, for our Python implementations we relied on

the more stable CPython reference interpreter, also for its broader support of

third-party libraries. Due to the fact that data types used in an implementation

play an important role for run-time and memory performance, in the following

we give a short overview of the types we used for performance-critical parts of

the algorithms.

The backbone of theHS-DAG/Py implementation is the compact python-graph

library (version 1.8), which is built upon DAG-global neighbor and incidence

hash maps (Python dicts). In addition, we keep reverse hash mappings from

node labels (Cis) and potential hitting sets (h(n)) to their corresponding nodes

for an e�cient implementation of the node reuse and pruning rules. A list of

nodes labeled “3” (grouped by their cardinality) speeds up involved subset

checks. For the implementation of HST/Py, we replaced the graph library with

a single node class as HST builds a tree structure only. A HST node forms a

tree using a mapping node label→ child node for its children and a parent node

pointer. Our Python version of STACCATO version builds up on a (masked) 2D

Boolean NumPy array and its corresponding (C-implemented) access methods.

For Python, we implemented two versions of the Boolean algorithm. That is, a

recursive one that implicitly constructs a tree-like structure, and an iterative one.

This way we could investigate whether any advantage of the Boolean algorithm

over the others would have its origin in avoiding a tree entirely. Both Boolean

variants utilize Python sets of frozensets for the implementation of its H
function due to their highly e�cient operations. The iterative version stores its

work-list and solutions as lists of (h , C) tuples grouped by cardinality, where h
is a (partial) potential solution and C is the (possibly empty) set of remaining

Cis that still need to be addressed (for this h). Similarly, the Python GDE-Berge

and the SAT-based algorithms use sets of sets as their main data structure for

storing solutions, where the former again uses cardinality grouping to reduce

the number of subset checks necessary.

The Java HS-DAG implementation is mainly based on a simple custom node

class using ArrayLists of edge label/node pairs to represent the graph’s struc-

ture. Con�icts are stored in sorted, linked integer lists. Due to HST’s inherent

“numbering” of children using the i variable, the Java version can employ more

e�cient static arrays for its child nodes, while con�icts are stored in hash sets

similar to our Python implementation. These are also the backend of the BHS’

and Boolean’s Java implementation, where multiple con�icts (that is, SCs) are

103

4 Evaluating Selected MHS and MBD Approaches

-4

-3

-2

-1

0

1

2

3

10
3

1 10 100

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

|COMP|

HS-DAG/Py

HS-DAG/C

HS-DAG/J

HST/Py

HST/J

1

2

3

10
3

1 10 100

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|COMP|

STACCATO/Py

STACCATO/J

-4

-3

-2

-1

0

1

2

3

10
3

1 10 100

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

|COMP|

Bool-Rec./Py

Bool-Rec./J

Bool-Iter./Py

Bool-Iter./C

1

2

3

10
3

1 10 100

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|COMP|

BHS/J

Figure 4.4: Comparing implementation languages: run-times (left) andmax. RSS (right)

for TS-MHS-A1 with |SC| = 3 and a growing |COMP|. The algorithms are

split into two groups to improve legibility.

104

4.4 Experimental Results

stored as linked lists of such hash sets. The STACCATO/J implementation uses a

two-dimensional linked list of Boolean variables to create itsmatrices, providing

good time complexity for their modi�cation (deleting rows and columns).

HS-DAG/C also employs a custom node class instead of a large graph library,

using simple lists of edge label/node pairs for both children and parents (the

latter are, for example, necessary for the pruning process). Con�icts are stored

in a space-e�cient manner using Boost’s dynamic_bitsets (that is, every com-

ponent in a set only occupies one bit), giving fast access to its elements with the

downside that a con�ict’s maximum size (|COMP|) must be pre-de�ned. These

bit-sets are also used for the Boolean’s C implementation, grouping them via

std::vectors to form an SC.

4.4 Experimental Results

Based on the scenarios de�ned in the test setup, our evaluation is again grouped

into a pure-MHS computation and an on-the-�y diagnosis section. We will �rst

present the results regarding the former, assessing the performance charac-

teristics of the various MHS algorithms and their performance relations. For

our various (arti�cial and real-world) scenarios as well as implementation lan-

guages, we will investigate whether there is a single superior algorithm or

not.

The experiments in the subsequent section will show whether these results can

be transferred to samples from “real” on-the-�y diagnosis scenarios. In this

section we will also inspect the interface between hitting-set based diagnosis

algorithms and their theorem prover as well as run-time performance trends

regarding the use of di�erent reasoning engines for direct SAT-based MBD.

4.4.1 MHS Computation Scenarios

4.4.1.1 Artificial Conflicts

Figure 4.4 and 4.5 show the algorithms’ performance for our �rst arti�cial MHS

scenario (TS-MHS-A1) containing disjoint con�icts. We �x |SC| = 3 (and thus

the size of anyminimal hitting set |MHS| = 3), scaling |COMP| over
{
3, . . . , 103

}
.

We plot average values over 20 samples using logarithmic scales for both axes,

105

4 Evaluating Selected MHS and MBD Approaches

-4

-3

-2

-1

0

1

2

3

10
3

1 10 100

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

|COMP|

HS-DAG/Py

HST/Py

Bool-Rec./Py

Bool-Iter./Py

1

2

3

10
3

1 10 100

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|COMP|

STACCATO/Py

GDE-Berge/Py

HS-SAT/Py

HS-MaxSAT/Py

Figure 4.5: Comparing Python implementations: run-times and max. RSS for TS-MHS-

A1 with |SC| = 3 and a growing |COMP|.

where on the x-axis we ended up with 86 integer values for |COMP| = 10
3i/120

(0 ≤ i ≤ 120). While we show only a single con�guration here, we obtained

very similar results for other parameter-combinations such as |SC| = 8 or �xing

|COMP| while scaling |SC|.

Figure 4.4 shows run-times and max. Resident Set Size (RSS) of TS-MHS-A1

for those algorithms where multiple implementation languages were available.

Due to the large number of lines, the algorithms were split into two groups. The

upper half shows HS-DAG, HST and STACCATO while the lower one shows

the Boolean and BHS algorithms. Starting with the former, we see that our

C-enhanced implementation of Reiter’s original algorithm (HS-DAG/C) is the

fastest contestant. Its Python and Java counterparts are (despite a good amount

of optimization on both) slower, with Python in the lead. This con�rms the

suspicion that, while providing platform independence and faster prototyp-

ing (especially for Python), performance can be gained by using a low-level

implementation in run-time critical situations. Note that, of course, this may

still depend on the exact environment such as compiler/interpreter options

or versions. For HST, despite being developed as an optimization of HS-DAG,

there is a considerable performance drawback for both of its implementations.

106

4.4 Experimental Results

While HS-DAG/C could solve samples with more than 300 components, HST/J

bumped into the �ve-minute run-time limit for slightly more than 30 compo-

nents. The slope of the corresponding lines in the graph show that for this

scenario, HS-DAG clearly scales better than HST. Interestingly, for HST, the Java

implementation is substantially faster than its Python counterpart, showing that

run-time relations between algorithms might depend on their implementation

language as well. This suggests that one should not depend on a single lan-

guage for evaluating algorithms. Concerning STACCATO we see an even larger

di�erence between our two implementations. While the Java version performs

similar as HS-DAG/J (or is even faster in some cases, like for |COMP| = 20), our

Python implementation is sometimes more than one order of magnitude slower

than the Java one. Regarding the consumed memory (max. RSS) the graph on

the right-hand side splits the algorithms into two groups: The Python and C

variants start with a relatively lowmemory footprint of about 20MiB in contrast

to the Java variants starting at nearly 60MiB due to the Java Virtual Machine.

Raising the number of components, all algorithms show an exponential growth

in their memory usage, with HST sticking out due to the massive amount of

memory needed already for less than 30 components. As we will see and in-

vestigate later for on-the-�y diagnosis settings, HST produces a considerably

higher number of internal tree nodes compared to HS-DAG, explaining this

anomaly.

The lower part of Figure 4.4 contains both recursive and iterative variants

of the Boolean algorithm, as well as a variant of its tree-based cousin BHS.

The left-hand side graph con�rms the �ndings regarding the implementation

languages from above. Again, the C-based variant of the Boolean algorithm is

the best performer with Python following (for a recursive implementation). In

Python, we see only a minor di�erence between the recursive and the iterative

version, with the former being the superior variant over a large |COMP| range

(3 ≤ |COMP| / 10
2
). As the recursive version implicitly builds a tree (through

recursive function calls), it seems that the Boolean algorithm’s performance does

not stem from avoiding a tree alone. The Bool-Rec./J and BHS/J variants trail

the �eld of contenders in this graph. Comparing the absolute performance of all

algorithms in Figure 4.4, we see that the Boolean implementations are slightly

faster than their HS-DAG counterparts such that, overall, the Boolean algorithm

seems to be the fastest among those. Indeed, as we will see in Chapter 6, the

Boolean algorithm features a very e�cient strategy for exploring the search

space, which can be exploited in HS-DAG as well to improve its performance.

107

4 Evaluating Selected MHS and MBD Approaches

-3

-2

-1

0

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

|SC|

HST/Py

HST/J

HS-DAG/Py

HS-DAG/C

HS-DAG/J

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|SC|

Bool-Rec./Py

Bool-Iter./Py

Bool-Iter./C

Bool-Rec./J

(a) Comparing implementations with di�erent languages.

-3

-2

-1

0

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

|SC|

HS-DAG/Py

HST/Py

GDE-Berge/Py

Bool-Rec./Py

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|SC|

Bool-Rec.
′
/Py

Bool-Iter./Py

HS-SAT/Py

HS-MaxSAT/Py

(b) Comparing Python implementations.

Figure 4.6: Run-times and max. RSS for TS-MHS-A2 with |MHS| ≤ 3 and |COMP| =

100.

108

4.4 Experimental Results

On the other hand, subsequent experiments will reveal that for cardinality-

restricted runs, HS-DAG is more e�cient, leading to further optimizations of

the Boolean algorithm in Chapter 5. Remember, however, that HS-DAG can

operate on a growing SC while for the Boolean approach it needs to be known

in advance.

Figure 4.5 includes the remaining Python implementations of GDE-Berge and

the SAT-solver based approaches, comparing them to the other Python vari-

ants already depicted in Figure 4.4. Despite (or, maybe, due to) its simplicity,

we observe that GDE-Berge can outperform the best Boolean variant up to

|COMP| ≈ 45. However, despite their top-notch performance in diagnosis sce-

narios (see Section 4.4.2 below), the SAT-based variants could not live up to

their expectations in the MHS case. It seems that the overhead of converting

the problem into a solver-speci�c format and then starting an external process

does not pay back by improved scalability. However, we see a trend that the

HS-SAT variant based on cardinality networks and SCryptoMinisat beats the

HS-MaxSAT variant (with Yices as its engine). This correlates with our obser-

vations for direct diagnosis computations in the following sections. Memory

usage of all approaches except HST is quite close, with onlyHS-DAG consuming

slightly more memory than the others.

Figure 4.6 shows corresponding results for TS-MHS-A2 with |COMP| = 100

and a growing |SC|. As for this scenario, computing all MHSs quickly violated

our resource limit, we restricted the search to hitting sets of size three (that is,

|MHS| ≤ 3) for our report. This would, for instance, amount to �nding single-,

double- and triple-fault diagnoses in a diagnostic context, which is a reasonable

restriction. Our graphs include points where none of the 20 samples exceeded

the run-time or memory limits.

Sub�gure 4.6a again compares di�erent implementation languages. The run-

times in this graph exhibit a rather strange characteristic. For example, the

HS-DAG/C run-time raises up to a certain threshold (for |SC| < 10) and then

drops if |SC| is increased, continuing to drop up to the far-right margin where

|SC| ≈ 10
6
. Obviously, this is a result of our speci�c generation of SC, where,

as more and more random con�icts are added, the probability of adding a

subset of an existing one raises. As a consequence of sorting the Ci ∈ SC by

increasing cardinality, this e�ectively “decreases” the problem’s complexity as

|SC| raises. However, SC remains to be a very large set for a large |SC| and not

all algorithms can cope with it as good as HS-DAG. For example, the Boolean

109

4 Evaluating Selected MHS and MBD Approaches

algorithm considers the whole set SC when applying its reduction function H,

leading to a massive memory utilization as evident from the right-hand side

graph. In this respect, we also notice that the recursive variant of the Boolean

algorithm iswaymore e�ective in terms ofmemory due to the fact that it focuses

on only one decision path at any time during execution. In contrast to that, the

iterative version needs to store the state of all paths in some tree or set of work-

packages as we implemented it. Note, however, that this additional information

enables us to interrupt and resume the computation in the iterative variant,

for example when higher-cardinality solutions are needed later, whereas the

recursive variant has to be restarted from the beginning. While the trends for

the di�erent implementations of HS-DAG and HST are similar to those seen

for TS-MHS-A1, HS-DAG/J runs into the run-time limit before even reaching

its maximum value.

Sub�gure 4.6b compares all Python implementations. Due to the poor perfor-

mance of STACCATO and BHS for this scenario (they timed out for |SC| ≤ 3) we

excluded them from our evaluation. For this scenario, GDE-Berge could outper-

formHS-DAG only for |SC| < 20, being slightly slower or on par otherwise. The

SAT-based variants HS-SAT and HS-MaxSAT also exhibit poor performance

as experienced for TS-MHS-A1, except for HS-SAT in a small range between

10
2
and 10

3
. As noted, the Boolean algorithm can be improved for cardinality-

restricted runs, where Chapter 5 will go into the details. Nevertheless, we

included our optimized variant as “Bool-Rec.
′
/Py” (named “Bool-Rec.-V3-R4

′
-

Stop” in that chapter, see Section 5.3.2 on page 148) in the graph to demonstrate

the tremendous space for improvements. Considering this implementation, the

Boolean algorithm can now outperform HS-DAG up to |SC| ≈ 500, where

it is nearly two orders of magnitude faster than its un-optimized counter-

part. Also the memory usage is cut down signi�cantly (by a factor of 6.22

for |SC| = 1000).

4.4.1.2 Real-world Conflicts

We now show our evaluation of the selected algorithms for real-world con�icts

as of test scenario TS-MHS-R1 based on the ISCAS’85 circuits. Like with TS-

MHS-A1, we had to restrict the MHS search regarding maximum cardinality

for these samples. For each of the four selected ISCAS’85 circuits (that is, those

containing between 202 and 880 gates) we generated a set of 100 samples by

inserting single (and for a second evaluation triple) faults and generated the

110

4.4 Experimental Results

corresponding SC by letting a diagnosis engine (HS-DAG) run up to triple fault

diagnoses. Aiming to scale the maximum MHS size in the search from one to

three, we then veri�ed that there was at least one MHS of size three.

In Figure 4.7 we report run-times and memory footprint for a maximum

|MHS| ∈ {1, 2, 3} when inserting single faults. We arranged all 400 samples

according to their |SC|, where the amount of samples per |SC| is plotted in

the bottom right graph. Memory or run-time violations (that we encountered

for max. |MHS| = 3 only) are reported at the bottom left. Our random fault

injection resulted in a large variance of |SC| and a sample’s structural features.

As an example, the number of con�icts extracted from the largest circuit c1908
varied between 4 and 548 (with an average of 120.3). Thus, we applied a mov-

ing average �lter that derives for any point x on the x-axis the mean value of

those samples within

[
x/
√
2, x
√
2

]
(with at least a single sample in the win-

dow). This enabled us to unveil trends otherwise obscured by noisy plots.

Sample/algorithm combinations that violated either the time or memory limit

were considered with the threshold value for the corresponding resource, but

not for the other.

For Figure 4.7 we see the trend that Boolean algorithm variants become faster

when raising the maximum cardinality. That is, while for max. |MHS| = 1

HS-DAG/C shows the best performance, the iterative C implementation of

the Boolean algorithm gains attractiveness when raising max. |MHS|. Please

note that apparently good run-time (memory) �gures sometimes may be the

result of a large number of memory-outs (time-outs) and thus a low number

of samples in the corresponding average for a speci�c |SC|. For example, the

run-time of HST/J for max. |MHS| = 3 in Figure 4.7 must be taken with a

pinch of salt due to the high number of memory-outs in the corresponding |SC|

range. Regarding the memory consumption we see that, as earlier, apart from

Java’s run-time environment drawbacks, the Boolean’s (and occasionally HST’s)

performance is inferior to the others’. Please note that for this �gure we used

the un-optimized implementations of the Boolean algorithm again. Figure 4.8,

however, shows together with GDE-Berge and the SAT-based algorithms the

level of improvement that can be obtained by using the optimized version of

the Boolean algorithm as proposed by us in Chapter 5 (Bool-Rec.
′
/Py and Bool-

Iter.
′
/Py in the �gure correspond to the variants “Bool-Rec.-V3-R4

′
-Stop” and

“Bool-Iter.-V3-R4
′
-Stop”, respectively, as described in Section 5.3.2 on page 148).

The upper left graph in this �gure also contains a further variant coined “inter-

sect/Py”. As its name suggests, this variant computes the minimal hitting sets

111

4 Evaluating Selected MHS and MBD Approaches

-4

-3

-2

-1

0

1

m
a
x
.
|M

H
S
|
=
1

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

-3

-2

-1

0

1

2

m
a
x
.
|M

H
S
|
=
2

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

-2

-1

0

1

2

3

m
a
x
.
|M

H
S
|
=
3

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

0

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

10
3

1 10 100

m
a
x
.
|M

H
S
|
=
3

|SC|

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

HS-DAG/Py

HS-DAG/C

HS-DAG/J

HST/Py

HST/J

0

20

40

60

80

10
3

1 10 100

#
S
a
m
p
l
e
s

|SC|
Bool-Rec./J

Bool-Iter./Py

Bool-Rec./Py

Bool-Iter./C

Figure 4.7: Run-times and max. RSS for TS-MHS-R1 with single faults injected and

varyingmax. |MHS|. Number of samples and time-outs (TO)/memory-outs

(MO).

112

4.4 Experimental Results

of size one as the intersection of all the individual Ci’s in some SC. More for-

mally, the set M of MHS of size one is computed as M =

⋂
Ci∈SC

Ci . The actual

implementation relies on Python’s set.intersectionmethod. Obviously, this

is the simplest computation method for the case that only MHSs of size one

are of interest, so that we use it as a reference line. We can see from the top-left

graph of Figure 4.8 that the (now optimized) recursive variant of the Boolean

algorithm is on par with this intersection approach for larger samples (that is,

|SC| > 300) but has a considerable performance penalty for smaller samples as

it needs to build and maintain more complex data structures.

Considering the total performance of the algorithms in Figure 4.8 we see three

groups of algorithms when searching for MHSs of size one. The direct SAT

solver variants HS-SAT and HS-MaxSAT form the slowest group, with the

Boolean algorithms o�ering the best performance in the top group. The re-

maining HS-DAG, HST and GDE-Berge form the intermediate group with

performance in between (but closer to the top group rather than the SAT vari-

ants). For the top group we see good performance that for larger SC sizes

even comes close to the reference values of the intersection variant. In the

intermediate group we saw HST outperforming HS-DAG most of the time,

with GDE-Berge being even faster for smaller samples (|SC| . 30) and close

or slightly slower run-time performance for larger samples. The SAT-based

variants were, on average, around two orders of magnitude slower than the

algorithms in the intermediate group. These two were also the only ones with

a signi�cant deviation in the memory footprint (to the worse), while all the

others performed quite close in this respect.

We experienced similar performance relations when setting the max. |MHS|

to two, with the only two changes being that (a) the gap between the two

SAT-based algorithms became larger and (b) the intermediate group gained in

performance such that for samples with a large |SC|, GDE-Berge even became

the fastest solution. Regarding memory characteristics, we saw the Boolean-

Iterative variant lacking, like for TS-MHS-A2, which we presume to originate

in its internal open work-package list that may become quite bloated.

When searching for solutions with up to three elements, the samples quickly

experienced resource violations for some of the algorithms, as we report in the

bottom-left graph of Figure 4.8. Other than that, HST was beaten by HS-DAG

for these tests (for the majority of the graph’s range), while it was the other way

around for smaller problem sizes. Correlatingwith previous results, GDE-Berge

113

4 Evaluating Selected MHS and MBD Approaches

-5

-4

-3

-2

-1

0

m
a
x
.
|M

H
S
|
=
1

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

-4

-3

-2

-1

0

1

2

m
a
x
.
|M

H
S
|
=
2

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

-1

0

1

2

3

m
a
x
.
|M

H
S
|
=
3

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

10
3

1 10 100

m
a
x
.
|M

H
S
|
=
3

|SC|

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

HS-DAG/Py

HST/Py

GDE-Berge/Py

intersect/Py

0

20

40

60

80

10
3

1 10 100

#
S
a
m
p
l
e
s

|SC|
Bool-Rec

′
./Py

Bool-Iter
′
./Py

HS-SAT/Py

HS-MaxSAT/Py

Figure 4.8: Run-times and max. RSS for TS-MHS-R1 with single faults injected and

varyingmax. |MHS|. Number of samples and time-outs (TO)/memory-outs

(MO).

114

4.4 Experimental Results

and the recursive variant of the Boolean algorithm showed topperformance, and

were in fact the only ones to complete all samples without resource violations.

The Boolean-Iterative variant su�ered from memory exhaustion for the two

largest samples.

For real world test scenarios like our TS-MHS-R1, there is always the question of

which parameters to choose for constructing the abstract test data. In our case,

besides a model’s structural features as de�ned by the ISCAS’85 circuits, the

number of injected faults should be one of those signi�cant parameters in�u-

encing performance. Investigating the in�uence of the number of faults injected

into the ISCAS’85 circuits on the algorithms’ performance, we repeated the

same experiments but injected triple faults. Figure 4.9 shows the corresponding

results.

Besides small variations in the relations, in that one variant would slightly gain

or loose in performance compared to another one, we experienced the same

performance relations as for the injected single faults. Interestingly enough,

however, overall we saw better run-time performance for the injected triple

faults. This is evident also from the bottom left graph in Figure 4.9 that shows

much less resource violations than for the injected single faults. Analyzing the

test data, we found that the average andmaximum problem size was lower than

when injecting single faults, that is, for circuit c1908 we now had 4/15.5/154

min/avg/max for |SC| instead of 4/120.3/548. While this obviously depends to

some degree on the speci�c randompattern (that is, where the injected faults are

placed during the generation process), it suggests that in the diagnosis domain

injecting a higher number of faults does not necessarily result in a harder

benchmark for the corresponding algorithms, as evident from our reported

run-times.

Summing up our results for the ISCAS’85 related samples, we saw the optimized

variant of the Boolean algorithm (especially in a recursive implementation)

to be the best performing contender for our scenario TS-MHS-R1 on average,

beaten by GDE-Berge only occasionally. The bad performance of the SAT-solver

route for solving theMHS computation problemwas con�rmed also for the real

world samples with their restrictions regarding maximumMHS cardinality.

Test scenario TS-MHS-R2 re�ects our experiments on a second real-world ap-

plication domain, namely con�icts from LTL diagnosis (see Section 3.6 for a

description of their generation process). The corresponding results are shown

in Figure 4.10 and Figure 4.11, where the former depicts runs with a maximum

115

4 Evaluating Selected MHS and MBD Approaches

-5

-4

-3

-2

-1

0

1

m
a
x
.
|M

H
S
|
=
1

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

-4

-3

-2

-1

0

1

2

m
a
x
.
|M

H
S
|
=
2

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

-2

-1

0

1

2

3

m
a
x
.
|M

H
S
|
=
3

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

10
3

1 10 100

m
a
x
.
|M

H
S
|
=
3

|SC|

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

TO

MO

HS-DAG/Py

HST/Py

GDE-Berge/Py

intersect/Py

0

20

40

60

80

10
3

1 10 100

#
S
a
m
p
l
e
s

|SC|
Bool-Rec

′
./Py

Bool-Iter
′
./Py

HS-SAT/Py

HS-MaxSAT/Py

Figure 4.9: Run-times and max. RSS for TS-MHS-R1 with triple faults injected varying

max. |MHS|. Number of samples and time-outs (TO)/memory-outs (MO).

Please note that HS-MaxSAT also had time-outs for max. |MHS| = 2 and

an |SC| of 22, 61, 85 and 154.

116

4.4 Experimental Results

MHS cardinality of three, while the latter depicts unbounded runs (that is, all

MHSs are computed). Table 4.4 shows the number of time-outs and memory-

outs we experienced during these runs. Due to lacking support for bounded

computations in the corresponding implementations, STACCATO/Py, STAC-

CATO/J and BHS/J could not be included in Figure 4.10. Both �gures are again

split into two parts, where Figure 4.10a shows those algorithms where multiple

implementation languages are available. As expected, our C-enhanced variants

again set the pace, with the iterative Boolean version in the lead. For the remain-

ing approaches we observe that as for other small samples in prior experiments,

both the Python and the Java implementation of HST were able to outperform

their HS-DAG counterparts. This, however, changes dramatically as soon as

we increase the problem size, like, for example, done in Figure 4.11, where

the HST variants are on par with the (renownedly slow) STACCATO/Py and

BHS/J variants for a large x-range. Regarding the comparison of the Python

implementations in Figure 4.10b, we see GDE-Berge being the best performer,

followed by the (optimized) Boolean variants, HST, HS-DAG and the SAT-based

approaches. HS-MaxSATwas the only algorithm experiencing time-outs for this

bounded runs, �nishing only eight out of ten samples for the largest problem

size |ϕ | = 300. As seen in the right-hand side graph, the tree-based HS-DAG

and HST’s memory performance is inferior compared to the other contenders.

While the former ones have to store the whole tree/DAG, GDE-Berge as well as

the Boolean and hitting set-based approaches only store the set of (preliminary)

solutions.

The unbounded runs for the same scenario, as depicted in Figure 4.11, mainly

exhibit HST’s bad performance for larger samples. As becoming obvious from

the memory graphs on the right-hand side, HST’s tree is much larger than

HS-DAG’s, leading to time-outs and memory-outs for both the Python and the

Java variant, respectively (see Table 4.4 again).

117

4 Evaluating Selected MHS and MBD Approaches

-4

-3

-2

-1

0

1

2

3

50 100 200 300

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula size

HS-DAG/Py

HST/Py

Bool-Rec./Py

Bool-Iter./Py

HS-DAG/C

1

2

3

50 100 200 300

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

Formula size

Bool-Iter./C

HS-DAG/J

HST/J

Bool-Rec./J

(a) Comparing implementation languages

-4

-3

-2

-1

0

1

2

3

50 100 200 300

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula size

HS-DAG/Py

HST/Py

GDE-Berge/Py

1

2

50 100 200 300

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

Formula size

Bool-Rec
′
./Py

Bool-Iter
′
./Py

HS-SAT/Py

HS-MaxSAT/Py

(b) Comparing Python implementations

Figure 4.10: Run-times andmax. RSS for TS-MHS-R2 runs bounded tomax. |MHS| = 3.

118

4.4 Experimental Results

-4

-3

-2

-1

0

1

2

3

50 100 200 300

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula size

HS-DAG/Py

HST/Py

Staccato/Py

Bool-Rec./Py

Bool-It./Py

HS-DAG/C

1

2

3

50 100 200 300

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

Formula size

Bool-Iter./C

HS-DAG/J

HST/J

Bool-Rec./J

Staccato/J

BHS/J

(a) Comparing implementation languages

-4

-3

-2

-1

0

1

2

3

50 100 200 300

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula size

HS-DAG/Py

HST/Py

Staccato/Py

GDE-Berge/Py

1

2

3

50 100 200 300

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

Formula size

Bool-Rec
′
./Py

Bool-Iter
′
./Py

HS-SAT/Py

HS-MaxSAT/Py

(b) Comparing Python implementations

Figure 4.11: Run-times and max. RSS for TS-MHS-R2 runs with unbounded

max. |MHS|.

119

4 Evaluating Selected MHS and MBD Approaches

Table 4.4: Time-outs/memory-outs (out of 10 samples) for TS-MHS-R2.

(a)max. |MHS| = 3

Algorithm

Formula size

50 100 150 200 250 300

HS-MaxSAT/Py −/− −/− −/− −/− −/− 2/−

(b) max. |MHS| unbounded

Algorithm

Formula size

50 100 150 200 250 300

BHS/J −/− −/− 1/− 1/− 3/− 4/−
STACCATO/Py −/− −/− 1/− 1/− 2/− 4/−
HS-MaxSAT/Py −/− −/− −/− −/− 1/− 2/−
HST/Py −/− −/− 2/− 1/− 3/− 5/−
HST/J −/− −/− −/2 −/1 −/4 −/5

120

4.4 Experimental Results

4.4.2 On-the-fly Diagnosis Scenarios

The following results concern real “on-the-�y” diagnosis scenarios, that is,

starting from a given system description SD and observation OBS we calcu-

late (subset-minimal) diagnoses, possibly bounded to a certain maximum car-

dinality. We will apply the on-the-�y-capable MHS algorithms described in

Section 4.2.1 coupled with a corresponding reasoning engine, as well as the

diagnosis approaches from Section 4.2.2 to our test scenarios TS-DIAG-ISCAS

and TS-DIAG-LTL, trying to identify the best-performing contender.

4.4.2.1 ISCAS’85 Diagnosis

Theorem Prover Interface Our �rst test exploiting the ISCAS’85 circuits

concerns the interface between a hitting set algorithm and its reasoning engine

(theorem prover) as discussed in Section 4.2.2.1. We have implemented the

mentioned variants for HS-DAG and HST in Python (denoted as HS-DAG-

CI/Py, HS-DAG-SI/Py, . . .) and some for the C(++) variants embedded in

Python, where we use the following naming:

CI (Combined Interface): only one type of calls is available, namely NEW_CS,

returning a con�ict orthogonal to a given set h or an empty result if h is

consistent and no such con�ict exists). A cache for the con�icts returned

by NEW_CS can be turned on and o�.

SI (Split Interface): consistency checks are available separately as CONS call,

returning a Boolean value indicating whether a set h is a hitting set or

not, and new con�icts are calculated via NEW_CS if needed. Again the

cache for NEW_CS results can be turned on and o�.

SICF (Split Interface, Cache First): this variant has the cache for NEW_CS

always turned on, and it is used to anticipate inconsistent nodes, that is,

a cache hit indicates the existence of a con�ict that could be returned by

NEW_CS and thus CONSmust return false. This saves “expensive” (from

a run-time perspective) theorem prover calls and replaces them by cache

queries.

Figure 4.12 shows the run-time performance of a selection of our implementa-

tions, with Figure 4.13 delivering the corresponding max. RSS values. The bars

depict minimum, average and maximum over 25 samples for the total run-time

(that is, including the theorem prover computations) as well as for the sum of

121

4 Evaluating Selected MHS and MBD Approaches

-1

0

1

2

c4
99

|C
O

M
P
|=
2
0
2

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

-1

0

1

2

c8
80

|C
O

M
P
|=
3
8
3

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

-1

0

1

2

c1
35

5
|C

O
M

P
|=
5
4
6

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

-1

0

1

2

c1
90

8
|C

O
M

P
|=
8
8
0

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

max. |∆|

1 2 3

HS-DAG-CI/Py+Cache

HS-DAG-CI/Py

HS-DAG-SI/Py+Cache

HS-DAG-SI/C

HS-DAG-SICF/Py

HS-DAG-SICF/Py+Reuse

HS-DAG-CI/Py+Cache+Reuse

HS-DAG-SICF/Py+Reuse+2TP

HS-DAG-CI/Py+Reuse

HST-CI/Py+Reuse

HST-CI/Py+Cache+Reuse

HST-SICF/Py+Reuse+2TP

Figure 4.12: Run-times for the on-the-�y-diagnosis of TS-DIAG-ISCAS comparing HS-

DAG and HST variants.

122

4.4 Experimental Results

1

2

c4
99

|C
O

M
P
|=
2
0
2

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

1

2

3

c8
80

|C
O

M
P
|=
3
8
3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

1

2

3

c1
35

5
|C

O
M

P
|=
5
4
6

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

1

2

3

c1
90

8
|C

O
M

P
|=
8
8
0

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

max. |∆|

1 2 3

HS-DAG-CI/Py+Cache

HS-DAG-CI/Py

HS-DAG-SI/Py+Cache

HS-DAG-SI/C

HS-DAG-SICF/Py

HS-DAG-SICF/Py+Reuse

HS-DAG-CI/Py+Cache+Reuse

HS-DAG-SICF/Py+Reuse+2TP

HS-DAG-CI/Py+Reuse

HST-CI/Py+Reuse

HST-CI/Py+Cache+Reuse

HST-SICF/Py+Reuse+2TP

Figure 4.13: Max. RSS for the on-the-�y-diagnosis of TS-DIAG-ISCAS comparing HS-

DAG and HST variants.

123

4 Evaluating Selected MHS and MBD Approaches

Table 4.6: Time-outs/memory-outs (out of 25 samples) for the TS-DIAG-ISCAS graphs

in Figure 4.12 and Figure 4.13.

(a) For max. |∆| = 2

Algorithm

Circuit

c499 c880 c1355 c1908

HS-DAG-SI/Py+Cache −/− −/− −/− 2/−
HS-DAG-CI/Py −/− −/− −/− 9/−
HST-CI/Py+Reuse −/− −/− −/− 9/−

(b) For max. |∆| = 3

Algorithm

Circuit

c499 c880 c1355 c1908

HS-DAG-CI/Py+Cache −/− 6/− 4/− 11/−
HS-DAG-CI/Py −/− 8/− 7/− 19/−
HS-DAG-SI/Py+Cache −/− 6/− 4/− 17/−
HS-DAG-SI/C −/− 6/− 4/− 17/−
HS-DAG-SICF/Py −/− 5/− 4/− 13/−
HS-DAG-SICF/Py+Reuse −/− 2/− 1/− 13/−
HS-DAG-CI/Py+Cache+Reuse −/− 3/− −/− 10/−
HS-DAG-SICF/Py+Reuse+2TP −/− 1/− 2/− 11/−
HS-DAG-CI/Py+Reuse −/− 5/− 4/− 17/−
HST-CI/Py+Reuse −/− 7/− 22/− 21/3
HST-CI/Py+Cache+Reuse −/− 3/− −/− 6/5
HST-SICF/Py+Reuse+2TP −/− 1/− 3/− 8/5

124

4.4 Experimental Results

max. RSS for the algorithm itself and the theorem prover. Samples exceeding

the run-time or memory limit (300 seconds/2 GiB) were considered with their

limit value for the corrsponding plot but excluded for the other. Table 4.6 shows

the detailed number of time-outs and memory-outs for each algorithm/circuit

combination.

The �rst variant “HS-DAG-CI/Py+Cache” re�ects HS-DAG as it has been de-

scribed in [GSW89], where SC is an implicitly de�ned set with the next con�ict

set calculated by the TP as needed. Existing elements in SC thus serve as a

cache cutting down the number of TP calls (cf. second variant with disabled

cache and the detailed results in Table 4.8). For circuit c1908 and max. |∆| = 2

the cache reduced the run-time by a factor of 6.6.

The third variant “HS-DAG-SI/Py+Cache” implements the split theorem prover

interface. Unfortunately, this leads to a performance penalty in most cases,

because it increases the total number of TP calls (a CONS query is issued for

each tree node), while at the same time there is a lower number of con�ict sets

in the cache (see Table 4.8). To conquer this drawback, the variants “HS-DAG-

SICF” try to avoid some of those CONS queries using the cache. Note that these

variants inherently feature a cache even though this is not denoted by “+Cache”

in their name. While this improves the run-time again, compared to the “SI”

variants, in most cases the combined interface is still faster.

Variants containing “Reuse” in their name exploit a special feature of our SMT

solver which allows us to reuse parts of the problem description by running

in daemon mode and the ability to add and remove clauses as you go (see

Section 4.2.2.1 for a more detailed description). Despite needing slightly more

resources (for example, an AB predicate must be created for each component

regardless of whether it is needed in the current query or not), this reuse

reduces run-times throughout all scenarios. The SAT problem reuse can also

be exploited in the “combined” TP interface, which leads to the actually fastest

HS-DAG variant “HS-DAG-CI/Py+Cache+Reuse” for c499 and c1355.

For the remaining circuits, we found room for further improvements using two

separate Yices instances for the CONS and NEW_CS calls in the split TP inter-

face. Despite both instances being initialized with the same problem descrip-

tions, this setup turns out faster than using a single TP instance—presumably

because CONS and NEW_CS calls might interfere in the context of learned

clauses. Comparing HS-DAG with HST, we found that using a cache has more

potential for HST than HS-DAG, because the former constructs more tree nodes

125

4 Evaluating Selected MHS and MBD Approaches

Table
4.8:

D
e
t
a
i
l
e
d
r
e
s
u
l
t
s
f
o
r
o
n
e
o
n
-
t
h
e
-
�
y
d
i
a
g
n
o
s
i
s
s
a
m
p
l
e
o
f
c
i
r
c
u
i
tc1908

a
n
d
m
a
x
.
|∆
|
=
2
,
s
h
o
w
i
n
g
S
C
,
n
o
d
e
,
r
u
n
-
t
i
m
e
,

T
P
a
n
d
c
a
c
h
e
s
t
a
t
i
s
t
i
c
s
.

A
l
g
.

T
h
e
o
r
e
m

P
r
o
v
e
r

T
o
t
a
l

T
P
q
u
e
r
i
e
s

C
a
c
h
e

A
l
g
o
r
i
t
h
m

v
a
r
i
a
n
t

|
S
C
|
N
o
d
e
s

t
T
r
e
e ∑

t
C
O
N
S ∑

t
N
E
W
_
C
S

t
i
m
e

C
O
N
S

N
E
W
_
C
S

h
i
t
s
m
i
s
s
e
s
s
i
z
e

H
S
-
D
A
G
-
C
I
/
P
y
+
C
a
c
h
e

1
7

7
2
2

0
.
0
4
7

-
1
7
.
8
5
9

1
7
.
9
0
6

-
1
6
3

5
6
0

1
6
2

1
7

H
S
-
D
A
G
-
C
I
/
P
y

2
7

5
4
6

0
.
0
6
8

-
4
5
.
4
7
0

4
5
.
5
3
8

-
5
4
7

-
-

-

H
S
-
D
A
G
-
S
I
/
P
y
+
C
a
c
h
e

5
7
2
2

0
.
0
3
4

2
8
.
9
8
8

0
.
4
8
2

2
9
.
5
0
4

7
2
2

6
6

5
5

H
S
-
D
A
G
-
S
I
/
C

5
7
2
2

0
.
0
2
3

2
8
.
9
6
5

0
.
4
9
8

2
9
.
4
8
6

7
2
2

6
6

5
5

H
S
-
D
A
G
-
S
I
C
F
/
P
y

5
7
2
2

0
.
0
5
-

2
1
.
0
0
0

0
.
4
7
9

2
1
.
5
2
9

5
1
0

6
2
1
2

5
1
0

5

H
S
-
D
A
G
-
S
I
C
F
/
P
y
+
R
e
u
s
e

5
7
2
2

0
.
0
5
3

1
4
.
8
2
7

0
.
2
3
0

1
5
.
1
1
0

5
1
0

6
2
1
2

5
1
0

5

H
S
-
D
A
G
-
C
I
/
P
y
+
C
a
c
h
e
+
R
e
u
s
e

1
7

7
2
2

0
.
0
4
4

-
9
.
5
0
7

9
.
5
5
2

-
1
6
3

5
6
0

1
6
2

1
7

H
S
-
D
A
G
-
S
I
C
F
/
P
y
+
R
e
u
s
e
+
2
T
P

5
7
2
2

0
.
0
5
1

1
0
.
3
2
1

0
.
2
3
3

1
0
.
6
0
5

5
1
0

6
2
1
2

5
1
0

5

H
S
-
D
A
G
-
C
I
/
P
y
+
R
e
u
s
e

2
7

5
4
6

0
.
0
7
4

-
2
1
.
6
2
9

2
1
.
7
0
3

-
5
4
7

-
-

-

H
S
T
-
C
I
/
P
y
+
R
e
u
s
e

2
7

9
9
2

0
.
0
9
2

-
3
4
.
3
1
1

3
4
.
4
0
3

-
9
9
3

-
-

-

H
S
T
-
C
I
/
P
y
+
C
a
c
h
e
+
R
e
u
s
e

1
9

9
7
7

0
.
0
4
6

-
9
.
7
5
6

9
.
8
0
1

-
1
6
5

4
6
7

5
1
0

5

H
S
T
-
S
I
C
F
/
P
y
+
R
e
u
s
e
+
2
T
P

5
9
7
7

0
.
0
5
1

1
0
.
8
3
1

0
.
2
3
6

1
1
.
1
1
7

5
1
0

6
8
1
3

1
6
4

1
9

126

4.4 Experimental Results

(see Table 4.8) resulting in more TP CONS calls. Nevertheless, with all opti-

mizations, that is when using reuse, cache and two TP instances, HST is on par

with HS-DAG. This demonstrates that in the context of the whole (for example,

diagnosis) problem (that is, including the computation of SC as needed), overall

performance could be dominated by the computation of SC as in our scenario.

Then, the e�ciency of the MHS algorithm is not that important, which is also

represented in the fact that the C-enhanced version of HS-DAG is on par with

its Python pendant, while it showed signi�cant advantages when considered in

isolation. As a consequence, reducing the number and complexity of TP calls

achieved best results. Whether a combined or split TP interface is faster seems

to depend on internal problem characteristics10.

Conflict-driven versus Direct SAT We now investigate run-time perfor-

mance trends for the diagnosis approaches presented in Section 4.2.2. These

include di�erent approaches (that is, con�ict-based ones and direct ones) and

di�erent reasoning engines like a Horn-clause theorem prover, general SAT

solvers and a constraint solver. More precisely, we compare the following se-

tups:

HS-DAG-HC combines Greiner et al.’s diagnosis algorithm HS-DAG with a

Horn-clause theorem prover and is based on the publicly available jDia-

gengine, implementing both in Java.

HS-DAG-SAT is a Python implementation of the HS-DAG algorithm (the vari-

ant HS-DAG-CI/Py+Cache+Reuse as discussed above) and uses the SMT

solver Yices as its theorem prover.

HST-SAT is the HST counterpart to the previous setup, that is, it uses the

discussed HST-CI/Py+Cache+Reuse instead.

DS-SAT employs the SCryptoMinisat SAT solver to compute diagnoses directly,

with the main algorithm implemented in Python.

DS-MAXSAT uses Yices as a MAX-SAT solver to compute diagnoses directly,

again driven by a Python algorithm.

DS-CSP is the Java algorithm ConDiag using the constraint solver MINION

to compute diagnoses directly.

10
In this context please note that circuit c1355 equals c499 with all XOR gates expanded to their

four-NAND equivalents and features only 2 major functional blocks compared to 7/6 for the

other two circuits.[HYH99]

127

4 Evaluating Selected MHS and MBD Approaches

0

50

100

150

200

250

300

-2 -1 0 1 2 3 4

n
u
m
b
e
r
o
f
s
a
m
p
l
e
s
s
o
l
v
e
d

cumulative run-time (10
y
sec.)

HS-DAG-HC

HS-DAG-SAT

HST-SAT

DS-SAT

DS-MAXSAT

DS-CSP

Figure 4.14: TS-DIAG-ISCAS: Number of diagnosis samples solved over time.

For the evaluation of those setups, we used all ten ISCAS’85 circuits listed in

Table 4.2 and randomly injected ten single-, double- and triple-faults into each

of them, using Algorithm 9 described in Section 4.3.1. This was done such

that the injected faults are indeed minimal diagnoses and thus at least one

diagnosis of the corresponding cardinality exists. Using observations based on

propagating random inputs through the “�awed” circuit we then measured

the run-time for deriving diagnoses up to the cardinality of the injected fault.

Each of the 300 samples faced a run-time limit of 300 seconds.

Table 4.9 shows average run-times over ten test cases for each of the ten circuits

when computing diagnoses up to size one (top part), two (middle part) and

three (bottom part) for injected single-, double-, and triple-faults, respectively.

For clarity, we put the best values per cardinality and circuit in bold face.

Note that we did not include any results from samples that timed out, leading

to the missing entries. However, we report minimal and median values if a

corresponding number of valid samples is available.

In Figure 4.14 we ordered all samples for a given setup according to their

run-time and report the amount of samples solved for a growing cumulative

time. The amount of completed samples per cardinality and setup is given in

Table 4.10.

128

4.4 Experimental Results

Ta
bl
e
4.
9:

A
v
e
r
a
g
e
r
u
n
-
t
i
m
e
s
o
v
e
r
t
e
n
t
e
s
t
c
a
s
e
s
f
o
r
e
a
c
h
o
f
t
h
e
t
h
e
n
c
i
r
c
u
i
t
s
w
h
e
n
c
o
m
p
u
t
i
n
g
d
i
a
g
n
o
s
e
s
u
p
t
o
s
i
z
e
o
n
e
(
t
o
p

p
a
r
t
)
,
t
w
o
(
m
i
d
d
l
e
p
a
r
t
)
a
n
d
t
h
r
e
e
(
b
o
t
t
o
m

p
a
r
t
)
f
o
r
i
n
j
e
c
t
e
d
s
i
n
g
l
e
-
,
d
o
u
b
l
e
-
,
a
n
d
t
r
i
p
l
e
-
f
a
u
l
t
s
,
r
e
s
p
e
c
t
i
v
e
l
y
.

m
a
x
.

H
S
-
D
A
G
-
H
C

H
S
-
D
A
G
-
S
A
T

H
S
T
-
S
A
T

D
S
-
S
A
T

D
S
-
M
A
X
S
A
T

D
S
-
C
S
P

|∆
|

C
ir
cu

it
M
I
N

M
A
X

A
V
G

M
E
D

M
I
N

M
A
X

A
V
G

M
E
D

M
I
N

M
A
X

A
V
G

M
E
D

M
I
N

M
A
X

A
V
G

M
E
D

M
I
N

M
A
X

A
V
G

M
E
D

M
I
N

M
A
X

A
V
G

M
E
D

1

c
4
3
2

0.
00

3
0
.
2
6
6

0.
05

0
0.

01
5

0
.
0
6
0

0
.
7
2
7
0
.
2
6
9

0
.
1
4
7

0
.
0
5
8

0
.
6
1
1
0
.
2
3
5

0
.
1
3
3

0
.
0
3
7

0.
10

5
0
.
0
5
7

0
.
0
4
5

0
.
0
6
4

1
.
3
2
4
0
.
4
2
3

0
.
2
0
9

0
.
0
7
6

0
.
1
0
9
0
.
0
8
9

0
.
0
8
7

c
4
9
9

0.
00

4
0
.
0
2
8

0.
01

4
0.

00
9

0
.
0
7
2

1
.
5
6
8
0
.
6
7
2

0
.
1
0
0

0
.
0
7
8

1
.
3
7
3
0
.
5
8
8

0
.
0
9
0

0
.
0
5
0

0
.
6
0
7
0
.
2
3
8

0
.
0
5
8

0
.
1
0
9

3
.
2
0
3
1
.
3
3
7

0
.
1
4
1

0
.
0
7
9

0
.
1
3
3
0
.
0
9
9

0
.
0
8
6

c
8
8
0

0.
00

4
0
.
0
4
3

0.
02

0
0.

01
9

0
.
1
3
4

2
.
5
1
9
0
.
9
1
3

0
.
7
8
7

0
.
1
2
6

2
.
1
1
6
0
.
7
7
7

0
.
7
0
3

0
.
0
6
8

0
.
3
4
7
0
.
1
8
1

0
.
1
7
2

0
.
1
6
8

4
.
0
6
9
1
.
4
1
0

1
.
2
4
5

0
.
0
8
5

0
.
1
3
0
0
.
1
0
7

0
.
1
0
7

c
1
3
5
5

0.
04

2
0
.
2
7
3

0.
10

3
0.

06
2

0
.
3
7
3

1
2
.
5
2
1
.
6
5
9

0
.
3
9
0

0
.
3
1
0

9
.
9
9
2
1
.
3
4
2

0
.
3
4
0

0
.
1
9
3

1
.
9
6
4
0
.
3
8
8

0
.
2
0
7

0
.
5
1
2

1
9
.
8
2
6
.
0
0
6

1
.
4
3
7

0
.
1
2
7

0
.
7
1
9
0
.
1
8
9

0
.
1
3
0

c
1
9
0
8

0.
01

7
6
7
.
3
1
7
.
0
2
9

0
.
4
4
4

0
.
3
9
3

5
.
6
8
4
2
.
7
9
2

3
.
3
0
8

0
.
2
9
4

4
.
4
7
4
2
.
2
2
4

2
.
6
6
6

0
.
3
5
5

1
.
8
3
5
0
.
8
9
4

0
.
8
7
2

0
.
3
0
6

4
4
.
3
1
8
.
4
3
0

5
.
2
4
6

0
.
2
0
6

0.
28

1
0.

23
4

0.
23

5
c
2
6
7
0

0.
02

9
2
.
7
5
9
0
.
3
8
5

0.
07

8
0
.
4
2
7

7
.
7
5
2
4
.
0
2
9

4
.
4
3
5

0
.
3
5
4

6
.
0
6
9
3
.
2
0
1

3
.
5
1
5

0
.
2
6
2

2
.
8
0
5
1
.
4
3
2

1
.
4
9
1

0
.
4
5
2

1
0
.
9
0
5
.
6
4
1

6
.
2
8
6

0
.
1
3
0

0.
38

5
0.

27
4

0
.
2
6
3

c
3
5
4
0

0.
06

6
1
9
8
.
0
2
0
.
2
1

0.
21

3
1
.
8
4
8

8
.
8
4
0
5
.
6
1
7

5
.
7
5
0

1
.
5
1
3

6
.
8
8
8
4
.
4
5
1

4
.
5
7
0

1
.
3
8
7

3
.
9
9
2
2
.
5
2
9

2
.
4
4
8

2
.
2
3
6

1
2
.
4
2
7
.
3
4
0

7
.
6
6
5

0
.
2
6
4

0.
54

0
0.

45
9

0
.
4
7
6

c
5
3
1
5

0.
04

3
5
.
1
5
5

0.
85

9
0.

23
6

0
.
6
6
8

2
9
.
7
2
7
.
8
7
7

3
.
3
7
4

0
.
5
8
9

2
3
.
4
1
6
.
2
5
3

2
.
7
8
4

0
.
6
9
2

1
2
.
3
0
4
.
3
0
9

2
.
8
4
3

0
.
6
3
6

4
1
.
7
9
1
0
.
4
2

4
.
0
3
1

0
.
1
8
4

1.
83

3
0
.
9
2
0

0
.
8
6
1

c
6
2
8
8

0.
18

7
2
0
.
1
1

4
.
6
1
8

3
2
.
6
7
1
9
.
6
5

2
0
.
0
0

3
.
6
3
3

2
5
.
8
4
1
5
.
6
2

1
6
.
0
0

3
.
5
4
4

1
2
.
5
3
7
.
7
8
0

7
.
7
1
4

5
.
5
1
4

1
1
5
.
5
5
5
.
2
7

6
4
.
0
9

0
.
3
2
0

1.
46

5
0.

99
9

1.
13

6
c
7
7
5
2

0.
20

4
2
4
.
1
9
4
.
3
4
2

0.
61

4
2
.
3
8
2

4
8
.
6
5
1
3
.
0
7

4
.
7
9
1

1
.
9
9
5

4
0
.
7
1
1
0
.
8
6

3
.
9
5
1

4
.
2
5
7

2
8
.
5
1
9
.
8
2
7

5
.
5
3
2

1
.
7
9
2

7
5
.
1
5
1
8
.
4
3

4
.
6
7
0

2
.
2
6
7

4.
97

5
2.

91
0

2
.
4
7
4

2

c
4
3
2

0
.
0
9
9

1
.
6
5
9
0
.
5
6
5

0
.
4
5
2

0
.
0
9
4

1
.
4
0
3
0
.
4
8
5

0
.
3
8
9

0.
06

6
0.

23
0

0.
11

4
0.

09
9

0
.
0
7
2

3
.
2
3
0
1
.
0
2
6

0
.
8
1
9

0
.
1
6
8

0
.
3
4
6
0
.
2
7
1

0
.
2
8
8

c
4
9
9

0
.
1
2
1

3
.
1
0
7
0
.
5
0
6

0
.
1
7
5

0
.
1
0
9

2
.
7
6
0
0
.
4
4
7

0
.
1
5
8

0.
08

1
0
.
5
4
6

0.
14

2
0.

09
3

0
.
1
2
8

7
.
9
5
1
1
.
0
8
6

0
.
2
5
5

0
.
3
9
3

0.
52

2
0
.
4
3
7

0
.
4
2
9

c
8
8
0

0
.
7
2
6

2
2
.
2
1
6
.
8
3
2

3
.
4
3
4

0
.
6
2
6

1
8
.
5
6
5
.
7
3
9

2
.
8
9
7

0.
24

4
3.

31
9

1.
09

9
0.

60
4

1
.
0
5
3

4
6
.
8
6
1
3
.
7
3

6
.
8
2
1

0
.
2
7
7

5
.
0
9
6
2
.
0
0
5

2
.
0
1
6

c
1
3
5
5

1
.
5
1
5

7
.
4
7
5
3
.
3
7
6

1
.
6
4
5

1
.
2
1
0

5
.
8
5
7
2
.
6
8
0

1
.
3
3
3

0.
53

0
1.

49
6

0.
85

0
0.

60
1

4
.
9
9
3

2
8
.
8
6
1
5
.
5
3

1
3
.
5
4

7
.
5
4
6

8
.
1
7
7
7
.
8
4
2

7
.
8
4
7

c
1
9
0
8

0
.
8
2
9

1
4
0
.
0
3
3
.
6
4

2
0
.
8
3

0.
69

1
1
2
7
.
2
2
9
.
1
2

1
6
.
4
7

0
.
7
0
0

39
.2

1
8.

75
6

4.
79

2
1
.
5
2
5

3
4
.
2
9

0
.
9
2
3

2
1
8
.
2
4
9
.
8
0

3
4
.
2
2

c
2
6
7
0

0
.
6
9
4

2
1
6
.
8
6
9
.
3
8

3
3
.
3
7

0
.
5
5
0

1
9
7
.
9
6
1
.
7
9

2
7
.
0
9

0
.
8
1
4

73
.9

2
23

.1
3

10
.1

0
0
.
7
6
7

1
4
.
8
2

0.
41

9
2
6
.
5
4

c
3
5
4
0

1
1
.
7
5

1
9
3
.
0
8
0
.
4
1

5
1
.
0
1

9
.
2
3
5

1
7
2
.
0
6
9
.
8
3

4
2
.
0
8

5.
09

1
77

.6
9

31
.5

4
18

.7
7

2
4
.
3
1

9
4
.
5
1

3
5
.
3
5

1
7
5
.
1

c
5
3
1
5

0
.
8
6
5

3
.
4
6
6

0
.
7
7
0

2
9
9
.
7
5
6
.
1
8

2
1
.
9
0

2
.
3
1
3

16
1.

1
32

.3
0

1
4
.
9
8

0
.
6
2
5

1.
86

9
0.

60
6

c
6
2
8
8

5
4
.
7
3

4
6
.
6
0

3
1
.
0
4

2
8
2
.
5

18
.0

7
c
7
7
5
2

2
3
.
1
9

9
1
.
4
8

18
.1

6
8
1
.
6
3

2
0
.
0
8

64
.2

2
1
3
1
.
1

3

c
4
3
2

0
.
2
4
9

1
2
.
3
3
2
.
8
0
6

1
.
6
8
4

0
.
2
2
4

1
1
.
3
5
2
.
5
0
5

1
.
4
3
9

0.
09

4
1.

47
0

0.
36

0
0.

23
1

0
.
3
5
5

7
8
.
8
2
1
1
.
1
2

4
.
5
0
4

0
.
6
0
4

5
.
9
7
0
1
.
8
2
9

0
.
8
6
6

c
4
9
9

0
.
1
8
6

8
.
3
5
0
1
.
4
6
6

0
.
3
5
7

0
.
1
7
2

7
.
3
0
4
1
.
2
9
0

0
.
3
4
2

0.
10

9
1.

08
8

0.
25

8
0.

12
7

0
.
2
1
1

6
2
.
2
6
8
.
2
6
9

0
.
8
2
8

1
1
.
5
4

1
4
.
0
6
1
2
.
3
9

1
2
.
2
5

c
8
8
0

0
.
8
0
2

1
7
.
4
3

0
.
6
8
8

1
4
.
9
2

0.
29

8
10

0.
6

18
.7

3
3.

14
2

1
.
1
9
7

3
3
.
1
4

0
.
5
9
6

5
.
6
2
9

c
1
3
5
5

7
.
4
3
1

2
7
7
.
2
4
6
.
8
1

2
2
.
1
3

6
.
4
0
5

2
7
1
.
5
4
3
.
0
0

1
7
.
7
7

1.
71

9
65

.0
0

10
.2

3
4.

24
9

9
0
.
2
4

c
1
9
0
8

1
0
.
7
6

8
.
5
5
1

2.
83

1
63

.1
4

7
4
.
5
6

c
2
6
7
0

2
.
0
2
3

1
5
1
.
2

1
.
5
9
7

1
3
5
.
8

1.
40

9
47

.9
4

3
.
6
9
2

c
3
5
4
0

5
4
.
1
1

4
4
.
7
4

20
.1

2
2
8
4
.
5

1
9
5
.
7

c
5
3
1
5

1
7
.
3
3

1
3
.
3
4

10
.0

3
58

.4
1

2
4
.
9
6

c
6
2
8
8

c
7
7
5
2

6
.
4
7
5

5
.
1
1
6

1
0
.
2
0

7
.
0
0
5

3.
38

1

129

4 Evaluating Selected MHS and MBD Approaches

Table 4.10: TS-DIAG-ISCAS: Number of diagnosis samples solved (out of 100 for each

cardinality, 300 in total).

setup

max. |∆|
Σ

1 2 3

HS-DAG-HC 96 0 0 96

HS-DAG-SAT 100 88 61 249

HST-SAT 100 89 61 250

DS-SAT 100 89 68 257

DS-MAXSAT 100 71 40 211

DS-CSP 100 73 29 202

The obtained results suggest that any approach o�ers reasonable performance

when focusing on single-fault diagnoses for this scenario, even though the

lowest run-times were observed for HS-DAG-HC and DS-CSP, where it has

to be noted that the former has the advantage of not relying on an external

reasoning engine (the Horn clause theorem prover is built into the tool itself).

While thus HS-DAG-HC is very good at solving small samples (seen from

the low minimum values), DS-CSP scales better to larger circuits (all samples

could be solved within �ve seconds). Moreover, HS-DAG-HC was not able to

solve a single sample for max. |∆| = 2 and 3 and missed even four samples for

max. |∆| = 1.

The other con�ict-driven setups, HS-DAG-SAT and HST-SAT, performed sim-

ilarly for all cardinality limits (see Table 4.9), with a slight advantage for

max. |∆| = 211. Also the number of samples completed is very similar (249

versus 250, see Table 4.10), only beaten by the best direct SAT setup DS-SAT.

Between the two direct SAT setups DS-SAT and DS-MAXSAT, the �rst can be

seen as being clearly superior (best seen in Figure 4.14). Due to very early tests

with a DS-SAT version computing a single solution per query only, we can

state that a large part of the good performance comes from the fact that the

solver can return all solutions to a given problem at once (looping internally

11
Note that in the version of this experiment published in [Nic+13] we used a di�erent machine

for running the tests, resulting in a reversed situation. This demonstrates that in the case

of non-signi�cant run-time di�erences, local in�uences such as processor model, operating

system or compiler versions may result in changed relations, as is the case here between

HS-DAG-SAT and HST-SAT.

130

4.4 Experimental Results

Table 4.11:Number of variables/literals (#V/#L) and constraints/clauses (#Co/#Cl)

for each approach’s model and ISCAS’85 circuit (excluding blocking con-

straints/clauses).

HS-DAG-HC HS-DAG-SAT HST-SAT DS-SAT DS-MAXSAT DS-CSP

Circuit #L #Cl #V #Co #V #Co #V #Cl #V #Co #V #Co

c432 5391 1497 356 321 356 321 990 1509 356 321 197 205

c499 8350 2262 445 405 445 405 1247 1991 445 488 244 277

c880 10293 3099 826 767 826 767 2358 3495 826 797 444 471

c1355 14758 4398 1133 1093 1133 1093 3311 4951 1133 1097 588 621

c1908 21555 6345 1793 1761 1793 1761 5307 7708 1793 1765 914 940

c2670 30021 9144 2619 2387 2619 2387 7391 10723 2619 2388 1427 1492

c3540 41653 12277 3388 3339 3388 3339 10064 14693 3388 3369 1720 1743

c5315 62098 18251 4792 4615 4792 4615 14020 20835 4792 4615 2486 2610

c6288 65008 19328 4864 4833 4864 4833 14522 21768 4864 4917 2449 2482

c7752 86791 25977 7231 7025 7231 7025 21273 31034 7231 7031 3720 3828

while adding blocking clauses until the problem becomes UNSAT).While a SAT

solver may be better suited for our problem domain in general (consisting of

purely Boolean functions and signals), the overall advantage of one setup over

another may be a simple matter of implementation e�ciency of the employed

solvers.

Comparing the constraint solver-based setup DS-CSP with the best SAT setup

DS-SAT, we see superior performance of the former for max. |∆| = 1 (it is

about 3.7 times faster when averaging all 100 samples). This situation changes,

however, with higher maximum cardinalities. DS-SAT not only completes more

samples than DS-CSP (257 versus 211, see Table 4.10) but also seems to scale

better for larger samples. For instance, averaging the 50 samples for max. |∆| = 2

where run-times for both algorithms are available, DS-SAT is about 4.4 times

faster than its competitor. For max. |∆| = 3we even have the situation that for

circuit c499 DS-CSP needs 12.4 seconds on average, where DS-SAT �nishes the

same samples in less than 0.26 seconds (48 times faster!).

Overall, while our results suggest that direct SAT-based setups provide better

scalability for diagnosis than our other approaches, thismight indeed be domain

dependent. That is, for more complex models than Boolean circuits, SMT or

constraint solvers might be able to take advantage of their more powerful input

131

4 Evaluating Selected MHS and MBD Approaches

-2

-1

0

1

2

max. |∆| = 1

-2

-1

0

1

2

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

max. |∆| = 2

-2

-1

0

1

2

10
3

1 10 100

Formula size

max. |∆| = 3

1

2

max. |∆| = 1

1

2

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

max. |∆| = 2

1

2

10
3

1 10 100

Formula size

max. |∆| = 3

HS-DAG-SAT HST-SAT DS-MAXSAT DS-SAT

Figure 4.15: On-the-�y LTL diagnosis results using a weak fault model.

132

4.4 Experimental Results

domains, outperforming a pure SAT solver. In this context note also Table 4.11

showing the number of needed variables/literals and constraints/clauses per

circuit model for each of our setups.

4.4.2.2 LTL Diagnosis

Figure 4.15 and Figure 4.16 show run-time and max. RSS results for the on-

the-�y diagnosis of our application domain, LTL diagnosis as of Chapter 3.

The former employs a Weak Fault Model (WFM), while we use a Strong Fault

Model (SFM) for the latter �gure. In both �gures each point represents the

average over ten samples facing resource limitations of 300 seconds and 2GiB of

memory. We included only points without resource violations in our graphs.

As our LTL encoding directly produces a SAT problem in CNF, only the four

SAT-based setups remain for these tests. Note that HS-DAG-SAT and HST-

SAT now use PicoSAT as backend, as Yices is unable to compute unsatis�able

cores for problems in the DIMACS (CNF) input format and a conversion of the

encoding into Yices’ native syntax would introduce a considerable performance

drawback. As there is no SFM-aware implementation of HST available, only

HS-DAG-SAT, DS-MAXSAT and DS-SAT remain for Figure 4.16.

The WFM-based results in Figure 4.15 demonstrate the superiority of the direct

SAT variants also for this domain. While the run-times for all four algorithms

scale rather similarly (although the graphs indicate slightly better scalability

of the SAT-based variants for max. |∆| = 2 and 3), DS-SAT outperforms all

other approaches signi�cantly. For max. |∆| = 2 and a formula size |ϕ | = 500,

DS-SAT is approximately one order of magnitude faster than the con�ict-based

variants HS-DAG-SAT and HST-SAT, with that advantage growing with raising

formula size and diagnosis cardinality. The right-hand side graphs show the

respective maximum memory needed for each sample (that is, the sum of the

maxima of the algorithm itself and the solver process). Although we see a slight

disadvantage of the DS-SAT approach, it is less than ten megabytes throughout

the graph and clearly induced by the solver’s memory scalability (otherwise

the lines would not meet at formula size |ϕ | = 3).

A similar picture showsup for the SFMruns in Figure 4.16, except that scalability

issues are even more apparent. Although none of the algorithms can solve the

problems for size |ϕ | = 1000, DS-SAT is able to cover the largest x-range without

133

4 Evaluating Selected MHS and MBD Approaches

-2

-1

0

1

2

max. |∆| = 1

-2

-1

0

1

2

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

max. |∆| = 2

-2

-1

0

1

2

10
3

1 10 100

Formula size

max. |∆| = 3

1

2

3

max. |∆| = 1

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

max. |∆| = 2

1

2

3

10
3

1 10 100

Formula size

max. |∆| = 3

HS-DAG-SAT DS-MAXSAT DS-SAT

Figure 4.16: On-the-�y LTL diagnosis results using a strong fault model.

134

4.5 Discussion

running into resource limitations. For max. |∆| = 3, for example, we see HS-

DAG-SAT hitting the run-time limit for |ϕ | ≤ 20, while DS-SAT is able to solve

even problems slightly above |ϕ | = 100.

Considering those results, we see our conclusion from the ISCAS’85 diagnosis

scenario con�rmed for a second application domain, in that direct SAT-based

model-based diagnosis approaches provided better performance and scalability

than the combination of an MHS algorithm with a SAT-based computation of

con�icts.

4.5 Discussion

This chapter was motivated by the fact that diagnoses shall be reported to a user

as fast as possible and with a reasonable memory consumption. Through exper-

imental evaluation we aimed at identifying the best-performing consistency-

oriented model-based diagnosis algorithm amongst a selection of di�erent

approaches and implementations. We constructed several scenarios, both arti�-

cial ones and scenarios that are based on real-world diagnosis applications.

Driven by Reiter’s original diagnosis algorithm, we �rst evaluated pure MHS

computation algorithms that can be used to compute diagnoses if the set of

con�icts has been pre-computed. These algorithms included Greiner et al.’s

correction HS-DAG of Reiter’s approach, Wotawa’s HST, the BHS and “Boolean

algorithm” by Lin and Jiang, the well-known Berge algorithm also used by

de Kleer et al.’s (N)GDE as well as the matrix-based approach STACCATO

originally intended to approximate MHS solutions, and �nally two SAT-based

variants that build upon a SAT/MAX-SAT solver. For some of the algorithms,

implementations in di�erent languages (Java, Python and C++) were avail-

able. Amongst the scenarios (disjoint and random arti�cial con�icts as well

as con�icts based on ISCAS’85 logic circuit and LTL diagnosis), HS-DAG, the

Boolean algorithm and the simple GDE-Berge algorithm crystallized as the

most performant contenders. While HS-DAG could adopt better to situations

where the cardinality of computed solutions (minimal hitting sets) was lim-

ited or the number of con�icts (|SC|) was very large, the Boolean algorithm

performed best for unrestricted searches. Both were, however, occasionally

beaten by the GDE-Berge algorithm. Glimpsing at the implications of our pro-

posed optimizations to the Boolean algorithm from Chapter 5, we saw that

135

4 Evaluating Selected MHS and MBD Approaches

those improvements can lead to a signi�cant run-time performance boost for

cardinality-restricted runs (for example, by a factor of 30 in TS-MHS-R1 for

|SC| = 100 and max. |MHS| = 2). Regarding implementation languages we

found our suspicion con�rmed in that a low-level C++ implementation proved

to be faster than the corresponding Python variants, which in turn were faster

than their Java counterparts, with some occasional exceptions (for example,

HST/J and STACCATO/J were faster than HST/Py and STACCATO/Py, re-

spectively). As an optimization of HS-DAG concerning the number of involved

subset checks, we found HST sometimes superior to HS-DAG (for bounded

runs of TS-MHS-R1 and TS-MHS-R2), while it showed inferior performance in

other situations (for example, signi�cantly higher run-time and memory usage

for our disjoint con�icts in TS-MHS-A1). The SAT and MAX-SAT approaches

could not live up to our expectations that we gained from on-the-�y diagnosis

runs and were generally amongst the slowest approaches.

The second part of our evaluation concerned the computation of diagnoses

directly from the system description and an observation, that is, either by in-

tegrating an MHS algorithm with an on-the-�y computation of con�icts as

in HS-DAG and HST, or by computing diagnoses directly as solutions of an

MBD problem encoded for a SAT or CSP solver. In this context we �rst investi-

gated details of the interface between a hitting set algorithm and the theorem

prover, evaluating whether using separate calls for checking the consistency

of a potential hitting set and computing new ones would make a di�erence to

using just the latter (with an empty result for consistent sets). While results

regarding this topic were mixed, we found that reusing an existing theorem

prover’s instance (that is, running it in daemon mode) and in the case of the

split interface even launching two separate theorem prover instances proved to

be signi�cantly faster. However, our experiments using the ISCAS’85 circuits for

diagnosis showed that even the best con�ict-based approach is inferior to direct

approaches. In particular, encoding the diagnosis problem using cardinality

networks (in order to limit the size of returned solutions) combined with a

SAT solver capable of returning all solutions (valuations) to a given problem

in one call proved to be the fastest amongst our approaches. Also an encoding

as a constraint problem for MINION turned out to be reasonably fast, com-

pared to a MAX-SAT solution and the con�ict-based approaches. The results of

this part of the evaluation show clearly that using general-purpose solvers for

model-based diagnosis is de�nitely an approach to consider for corresponding

projects, drawing on the recent advancements for (SAT) solvers, rather than

136

4.5 Discussion

implementing specialized diagnosis engines. One must, however, take into

account that while our results were consistent amongst our applications, results

may vary for other (non-Boolean) domains.

As a consequence of our results, we clearly see indications that the integration of

a model-based diagnosis algorithm with a (SAT) solver should provide further

performance improvements. This is obvious from the fact that the search space

exploration performed by an MHS algorithm essentially corresponds to that

of a SAT solver. This integration could furthermore bene�t from additional

model information being available in the solver, such as a distinction between

assumption variables (AB predicates) and implied variables, enabling adopted

variable and value selection strategies.

137

5 Optimizations for the
Boolean Hitting Set
Algorithm

This chapter is based on the following publication:

I. Pill and T. Quaritsch.Optimizations for the Boolean Approach to Com-
puting Minimal Hitting Sets. In: Proceedings of the 20th European Con-

ference on Arti�cial Intelligence. ECAI 2012 (Montpellier, France, Aug. 27–
31, 2012). Vol. 242. Frontiers in Arti�cial Intelligence and Applications. IOS
Press, 2012, pp. 648–653. isbn: 978-1-61499-097-0. doi: 10.3233/978-1-61499-
098-7-648. url: http:// thomas.quaritsch.at/ pdf/ ecai2012-pq.pdf (visited on
03/28/2014)

5.1 Motivation

In the previous chapter, we have identi�ed the Boolean algorithm [LJ03] by Lin

and Jiang as a high-performance contender amongst our selection of Minimal

Hitting Set (MHS) algorithms. For scenarios like TS-MHS-A1 containing disjoint

arti�cial con�icts it set the pace, together with GDE-Berge, across implemen-

tation languages and variants (that is, recursive and iterative ones). However,

as soon as we had to limit the size of solutions (that is, the cardinality of de-

sired minimal hitting sets), as in TS-MHS-A2 and our real-world tests based on

ISCAS’85 and Linear Temporal Logic (LTL) diagnosis, the Boolean algorithm

could not live up to our expectations. We saw it gaining performance in relation

to the other algorithms when raising the limit, but it could not deal with these

situations as good as with the unbounded ones.

139

http://dx.doi.org/10.3233/978-1-61499-098-7-648
http://dx.doi.org/10.3233/978-1-61499-098-7-648
http://thomas.quaritsch.at/pdf/ecai2012-pq.pdf

5 Optimizations for the Boolean Hitting Set Algorithm

These observations are based on a variant as one would implement it from

the description in the Boolean’s original paper by Lin and Jiang. However, this

paper does not really tackle bounded computations in detail and leaves such

situations to the programmer. As we have mentioned in Chapter 4, we have

closely investigated bounded computation runs for the Boolean algorithms

and found various ways to improve the algorithms performance. First of all,

we clarify some impreciseness in the formulation of Rule 4, dealing with sit-

uations where a con�ict of size one is left during computation. Furthermore,

we formulated termination criteria for bounded runs, helping the program-

mer to implement a version that considers at each level (that is, depending

on the cardinality limit and size of hitting sets already identi�ed) only exactly

those rules which are applicable. Finally, inspired by the search strategy of

Reiter’s HS-DAG algorithm, we propose a new Rule 5, optimized for bounded

computations by cutting down the size of the “computation tree”.

Using those optimizations, we have been able to improve the Boolean’s perfor-

mance by up to two orders of magnitude for some situations. For example, this

is the case in Figure 4.8 on page 114, where we already showed our optimized

variants as “Bool-Rec.
′
/Py” and “Bool-It.

′
/Py”.

The following section describes our three optimizations in detail, followed by

another evaluation of the di�erent variants developed throughout this paper.

5.2 Enhancements/Optimizations

As we have already introduced the Boolean algorithm in our evaluation of

MHS algorithms in Chapter 4, we will recap it only brie�y in the following.

The remainder of this section will deal with our optimizations of Rule 4 and

Rule 5 as well as the termination criteria for bounded computations.

5.2.1 The Boolean Algorithm

In 2003, Lin and Jiang proposed the Boolean approach [LJ03] using bits (propo-

sitions) for components e ∈ COMP in order to derive all minimal hitting sets

for a given SC. They encode SC as a Boolean formula in Disjunctive Normal

Form (DNF), with the conjuncts encoding the individual Ci ∈ SC and consisting

140

5.2 Enhancements/Optimizations

of the corresponding (negated) element bits. A recursive function H(C) con-

taining �ve rules (considered in ascending order) derives from this SC formula
another formula in DNF encoding the hitting sets. That is, the result still needs

some subset-checks (or the use of Boolean laws) in order to derive a canonical

formwhere the conjuncts represent the individual MHSs. Assuming e denoting
negation of e and ⊥/> referring to e ∧ e/e ∨ e, the Boolean algorithm is de�ned

as follows.

De�nition 5.1 (Boolean Algorithm [LJ03]): For a Boolean formula C in DNF,

where each conjunct Ci represents one set Ci from SC = {C1 , C2 , . . . , Cn } us-

ing negated elements ci , H(C) computes SCs hitting sets and is de�ned by the

following �ve rules considered in ascending order:

R1: H(⊥) = >,H(>) = ⊥;

R2: H(e) = e;
R3: H(e ∧ C) = e ∨ H(C);

R4: H(e ∨ C) = e ∧ H(C);

R5: H(C) = e ∧H(C′)∨H(C′′) for some arbitrary atomic proposition e present

in C, with C′ = {Ci | Ci ∈ C ∧ e < Ci } and C
′′
= {Ci | e < Ci ∧ (Ci ∈

C ∨ Ci ∪ {e} ∈ C)}.

Please note that like Lin and Jiang we consider a conjunction also as a set of

elements. R5 encodes the algorithm’s general strategy of how to conquer the

search space. That is, splitting on some proposition e ∈ COMP, the algorithm

forks two branches; the “left” one that considers those solutions containing e
(and thus subsequently focusing on those Cis not hit so far), while the “right”

one assumes that e is not part of the solution (with a further focus on all sets,

but with e removed from the problem description – C is replaced by C′′). R1 to

R4 resolve speci�c situations, that is, R4 covers the situation when there is a

Ci with only one element (there is one obvious choice then), R3 and R2 those

situations where |SC| = 1, and R1 resolves > and ⊥.

Obviously, the decision heuristic choosing the split element e in R5 has a signif-

icant impact on the actual traversal of the search space. A common heuristic

(which we will refer to as H1) is to use one of those e’s that hit the most Cis.

This ensures that the left branch has to deal only with a minimum of con-

junctions/sets (|C1 | is minimized), and for the right branch a maximum of

conjunctions/sets shrink by one element. In practice, in the unbounded case,

this heuristic o�ers very good general performance (see also Figure 5.3). But

141

5 Optimizations for the Boolean Hitting Set Algorithm

there are issues with H1 in the bounded case (see Figures 5.5, 5.4 and 5.6). That

is, when we establish cardinality limits, the resulting performance is not that

attractive.

Figures 5.3, 5.4, 5.5 and 5.6 compare the Boolean approach’s performance

with that of HS-DAG for a test scenario composed of random con�ict sets (see

Section 5.3.1 for a detailed description). While the standard Boolean approach

(Bool-Rec-V1-R4) easily outperforms HS-DAG in the unbounded case, it does

so only for small |SC| in the bounded case. This fact motivated us to consider

options for improving the Boolean approach’s performance.

5.2.2 How Rule 4 was meant to be

As R1 to R3 o�er little to no room for improvements1, let us have a closer look

at Rule 4 (R4). This rule considers the situation, where SC contains some Ci of

size one (Ci = {e}). In this case, the algorithm makes the obvious decision of

including element e in the current branch. However, the recursion still includes

also those Cis hit by e, so that we propose a new variant R4’.

Lemma 5.1: Replacing R4 with R4
′
as follows does not a�ect the algorithm’s

correctness.

R4
′
: H(e ∨ C) = e ∧ H(C′)with C′ = {Ci | Ci ∈ C ∧ e < Ci }

Proof. By replacing C with those Ci ∈ C not hit by e, we lose those elements e′

for future choices in H(C) which are in C \ C′. This has no ill e�ect at all, as for

any element e′′ in C, we have that

if e′′ could hit some Ci in C′, it would have to be present in C′.

if e′′ cannot hit some Ci in C
′
, then it cannot hit any further set in C not

hit so far. Remember that e was chosen in this step and hits exactly those

Ci ∈ C\C
′
. Thus choosing such an element e′′would result in non-minimal

conjunctions in the hitting set formula to be removed later. �

Intuitively, R4
′
implements the same idea to remove unnecessary input-data

from future consideration as the left branch of R5.

1
R3 considers the case of SC containing a single Ci , so an implementation might use a direct

loop in R3 instead of recursive calls to H leading to some intermediate checks whether R1 or

R2 would apply.

142

5.2 Enhancements/Optimizations

5.2.3 A New Decision Strategy

In Section 5.2.1 we described a common heuristic H1 that o�ers very good

performance in the unbounded case. In the bounded case, however, the Boolean

performance using H1 is not that attractive. That is, while for rule R5 any “left”

branch adds an element to the solution and thus increases cardinality, with H1

the amount of right branches that have to be considered is limited only by the

number of components in C. Considering the case when we limit |MHS| to 1,

and we could stop after considering all the elements in some Ci (any Ci has

to be hit), H1 seems rather unattractive. We thus propose to use the following

heuristic H2 that chooses elements in a minimal-sized Ci .

De�nition 5.2: Let R5, C′, and C′′ be as in De�nition 5.1, but instead of some

arbitrary e, use heuristic H2, that is, choose some e ∈ Ci ∈ C such that there is

no Cj ∈ C with |Cj | < |Ci |.

Like for H1, the validity of H2 follows from the fact that as allowed by the

original paper we could have chosen any e ∈ elements(C), and we choose some

e ∈ Ci ⊆ elements(C).

Intuitively, H2 strives to “clear” some (minimal) Ci as fast as possible, where for

the last element in Ci R4 takes over. When discussing the options for cardinality-

limit related breaks in the algorithm later on, it will become clear that this

e�ectively limits the amount of right branches to be considered. If there are

multiple sets of minimal length, we might encounter some (non-harming) non-

determinism resulting in “hopping” between those sets. For any recursive call

of H(C) removing another element from a minimal Ci , we also have the checks

whether R1 to R4 would apply (even when all |Ci | > 1 and |SC| > 1, which

requires R5). Thus we propose the following variant of R5 that loops on a single

Ci directly.

143

5 Optimizations for the Boolean Hitting Set Algorithm

Lemma 5.2: Adapting R5 as follows does not a�ect the algorithm’s correctness:

R5
′
:

H

C ∨

n∧
i=1

ei

 =

n−1∨
i=1

(
ei ∧ H(

iC′)
)
∨ H(

n−1C)

where
0C = C, ∀Ck ∈ C : |Ck | ≥ n, and the sets

iC and
iC′ are de�ned as

iC = {Cj | ei < Cj ∧ (Cj ∈
i−1C ∨ Cj ∪ {ei } ∈

i−1C)},
iC′ = {Cj | Cj ∈

i−1C ∧ ei < Cj }.

Proof. An essential pre-condition for the correctness is our focus on some

cardinality-minimal Ci as ensured by the prerequisites. Thus, when remov-

ing the n − 1 elements from Ci in the sequence of the sets
iC′, there exists no

other Cj such that its re�nements could trigger R1 to R4. Intuitively, and imple-

menting the general split mechanism of R5, the disjunction of terms ei ∧H(
iC′)

o�ers those terms established by the left branches of each recursion of the

original R5, when choosing the same sequence of elements in Ci for H2 as

split elements (the right branch acting as interface between the recursive calls).

H(
n−1C) is the last missing right branch, that is, the one that triggers R4 in order

to deal with the n-th element in Ci . �

The following example illustrates Lemma 5.2, where we abbreviate
¯b ∧ c̄ ∧ ḡ

with
¯b c̄ ḡ, and loop on the underlined Ci .

Example 5.1: H(
0C) = H(

¯b c̄ ḡ ∨ ā ¯f ḡ ∨ ā c̄ ¯d ē ∨ ¯b ē ¯f)

= b H(
1C′) ∨ e H(

2C′) ∨ H(
2C), where

1C′ =��
�HHH

¯b c̄ ḡ ∨ ā ¯f ḡ ∨ ā c̄ ¯d ē ∨
�
��Z
ZZ

¯b ē ¯f ,
2C′ = c̄ ḡ ∨ ā ¯f ḡ ∨����XXXXā c̄ ¯d ē ∨��@@ē

¯f ,
1C =��SS¯b c̄ ḡ ∨ ā ¯f ḡ ∨ ā c̄ ¯d ē ∨��SS¯b ē ¯f ,
2C = c̄ ḡ ∨ ā ¯f ḡ ∨ ā c̄ ¯d �Āe ∨ �Āe ¯f .

R5
′
makes the connection between our strategy as implemented in both H2 and

R5
′
with the tree-construction used in HS-DAG most obvious, as we capture all

the essential details that allow HS-DAG to cut the depth of the internal tree.

144

5.2 Enhancements/Optimizations

5.2.4 Exact Termination Criteria

Other options for performance gains are unveiled when focusing on restriction-

related termination criteria in the algorithm. That is, in contrast to simply

discarding larger solutions, the computation will focus only on branches that

can produce viable MHS. Explicitly keeping track of an intermediate solution’s

cardinality enables the following intuitive, trivial adaptions of H(C):

Lemma 5.3: Given a bound b, H(C , 0, b) using the following adapted rules

(termination criteria variant I) derives a Boolean formula encoding all MHSs

with 1 ≤ |MHS| ≤ b:

RB1: H(⊥, `, b) = >,H(>, `, b) = ⊥;
RB2: H(ē , `, b) = ⊥ if ` ≥ b , else e;
RB3: H(ē ∧ C , `, b) = ⊥ if ` ≥ b , else e ∨ H(C , `, b);
RB4: H(ē ∨ C , `, b) = ⊥ if ` ≥ b , else e ∧ H(C , ` + 1, b);
RB5: H(C , `, b) = ⊥ if ` ≥ b , else e ∧ H(C′, ` + 1, b) ∨ H(C′′, `, b).

Proof. The correctness follows from that of the original algorithm and the fol-

lowing considerations regarding a branch’s potential for adding elements to the

intermediate solution, possibly resulting in violations of the new postcondition

regarding bound b. Obviously, ` corresponds exactly to the size of a branch’s

intermediate solution, and returning ⊥ in some rule would remove the current

branch from consideration. R1 cannot add to the solution, so it is left unchanged

for RB1. For R2 that adds an element, any ` ≥ b would result in a breach of

bound b, so that we return ⊥ then in RB2. Also R3 would add at least one

element in any case (the recursion would be in RB3 or RB2), so that we return⊥

in RB3 for ` ≥ b. The same is obvious for RB4 and RB5 (where for R5 the right

branch would add at least one element in the recursion to RB2–RB5). Thus, we

remove only (and exactly) those branches from the original computation that

would lead to solutions violating the post-condition regarding bound b. �

Intuitively, if the length of an intermediate solution has reached the bound b,
only R1 has to be considered for re�nement. Any other rule would result in

adding at least one further element to the current branch. Therefore, then only

e1 ∧ e2 ∧ · · · ∧ eb ∧ H(⊥, b , b)may lead to an MHS of length b.

145

5 Optimizations for the Boolean Hitting Set Algorithm

Taking a closer look at situations H(C , b − 1, b) (that is, we can add only one

further element), unveils the potential for another optimization, as then only

those elements present in all Cis are of interest.

Lemma 5.4: Let RB1’ to RB4’ be as RB1 to RB4, and RB5’ as follows (termination

criteria variant II). Then H(C , 0, b)derives a Boolean formula encoding allMHSs

with 1 ≤ |MHS| ≤ b.

RB5’: H(C , `, b) =

⊥ if ` ≥ b ∨ I = ∅,∨

e j∈I e j if ` = b − 1,

else e ∧ H(C′, ` + 1, b) ∨ H(C′′, `, b)

with I =
⋂
Ci∈C

Ci , and C
′
, C′′ as de�ned previously.

Proof. This lemma’s correctness follows directly from that for variant I and the

fact that for ` = b−1 only and exactly those elements in the intersection of all Ci

in C can complete the current decisions to encode further MHS candidates. �

Corollary 5.1: No combination of the proposed modi�cations in the form of

Lemmas 5.1 to 5.4 and adopting H2 does a�ect the correctness of the algorithm.

Proof. The corollary’s correctness directly follows from the individual proofs

and the absence of preconditions. �

5.3 Evaluation

In our experiments, we evaluated both run-time and memory consumption of

the Boolean approach in various con�gurations based on the Python imple-

mentation also used in Chapter 4. We compared it against our Python HS-DAG

implementation and also investigated whether any advantages would manifest

only under certain conditions. We report a conclusive selection of our results.

146

5.3 Evaluation

5.3.1 Test Setup

We will reuse some of the evaluation scenarios de�ned in Section 4.3, which

we recapitulate brie�y.

Test Scenario TS-MHS-A1: Completely Disjoint Ci ∈ SC. Given two

integer parameters m = |COMP| and n = |SC|, in this scenario, we distribute m
components over n con�icts as evenly as possible, such that all con�icts in SC

are pairwise disjoint. This maximizes the amount and size of all MHSs for a

given m , n. Note that in this case all hitting sets are exactly of size n, such that

any (other) bound on their cardinality makes no sense.

Test Scenario TS-MHS-A2: Completely Random Ci ∈ SC. In this sce-

nario, a set Ci ∈ SC contains elements drawn randomly from a set of compo-

nents, that is, every component is included in a Ci with a probability of 0.5. For

this random setting we evaluated the bounded and unbounded case for a given

number of components |COMP|.

Test scenario TS-MHS-R1: ISCAS’85 conflicts. We also peruse the IS-

CAS’85-based scenario as a real-world test. As described previously, we ex-

tracted the con�icts obtained while diagnosing (purposefully) faulty circuits

with HS-DAG for a cardinality bound of three. Due to their structural com-

plexity, those circuits provide a profound challenge for diagnosis and thus for

our MHS computation. Similar to TS-MHS-R1 in Chapter 4, we used circuits

c499.isc, c880.isc and c1355.isc (see Table 4.2 on page 99 for detailed statistics)

for evaluating our Boolean optimizations.

Evaluation Environment. To ensure comparability with the previous ex-

periments, we executed the following ones on the same machine—a 2011-

generation MacBook Pro 8,1 with an Intel Core i5 2.3GHz, 4GiB RAM, a SSD

and Mac OS X 10.6. We adapted our Python (CPython 2.7.3) implementation

of the Boolean algorithm as well, implementing the concepts presented in the

prior section. Again, with swapping and the GUI disabled, each sample faced

resource limits of 300 seconds and 2GiB of RAM. Regarding memory usage,

we polled the process’ Resident Set Size (RSS) from the operating system in a

separate process, and report its maximum.

147

5 Optimizations for the Boolean Hitting Set Algorithm

5.3.2 Experimental Results

In the following descriptions and graphs, we denote with “V1” algorithm

variants using the (original) decision strategy H1, “V2” amounts to using H2

as of De�nition 5.2 (that is, choosing the split element e from the smallest

con�ict) and �nally “V3” implements our new optimized Rule 5 (RB5’) as of

Lemma 5.2. We additionally denote whether the original Rule 4 (R4) or the

one proposed in Lemma 5.1 (R4
′
) was used. Our iterative implementation is

as abbreviated “Bool-Iter.”, and the recursive one as “Bool-Rec.”. For bounded

computations we su�x those variants implementing the termination criteria II

as of Lemma 5.4 using “-Stop”, all others use termination criteria I. Hence the

variants “Bool-Rec.-V1-R4” and “Bool-Iter.-V1-R4” denote the standard variants

without any of our optimizations.

Figure 5.1 shows run-time on the left and max. RSS on the right-hand side for

TS-MHS-A1 for n = |SC| = 3 and a varying |COMP|, averaged over 20 samples.

From the graphs we can observe that the recursive implementation is slightly

faster up to |COMP| ≈ 120 for V1 and V2. However, for V3, the recursive variant

outperforms the iterative one consistently, indicating that our optimization is

sensitive to the exact implementation variant. This result makes sense in that V3

implements the samedecision strategy asV2 but omits the checkswhether Rules

1 to 4 would apply when iterating over the elements of the chosen con�ict in

Rule 5. However, this direct loop is only feasible in a recursive implementation,

as for the iterative one storing intermediate solutions in a work-package list

we still need to process the complete set of rules when picking up a stored

work-package (such that we know that Rule 5 applies). Although the recursive

implementation is in favor here, remember that it cannot be interrupted and

resumed arbitrarily like the iterative one. For this test scenario we see only

negligible di�erences in the amount of memory (max. RSS) consumed by the

recursive and iterative variants. Also the corresponding run-time di�erences

are rather small (well below a factor of two).

We have compared implementation variants for each heuristic in Figure 5.1,

however it is hard to do the other way around in those graphs. Therefore,

Figure 5.2 shows the same data again but grouped in a di�erent way. For each

implementation variant (iterative and recursive) we plot all three heuristics into

one graph. We can now observe clearly that for the iterative implementation

V2 and V3 are just slightly faster than V1, while for the recursive one we

see a noticeable performance advantage of V3 for larger values of |COMP|.

148

5.3 Evaluation

-4

-3

-2

-1

0

1

2

3

-4

-3

-2

-1

0

1

2

3

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

-4

-3

-2

-1

0

1

2

3

10
3

1 10 100

|COMP|

1

2

3

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

1

2

3

10
3

1 10 100

|COMP|

Bool-Iter.-V1-R4 Bool-Rec.-V1-R4 HS-DAG

Bool-Iter.-V2-R4 Bool-Rec.-V2-R4

Bool-Iter.-V3-R4 Bool-Rec.-V3-R4

Figure 5.1: TS-MHS-A1: Comparing run-time and max. RSS for iterative and recursive

implementations of each variant of the decision heuristic.

149

5 Optimizations for the Boolean Hitting Set Algorithm

-4

-3

-2

-1

0

1

2

3

-4

-3

-2

-1

0

1

2

3

10
3

1 10 100

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

|COMP|

1

2

3

1

2

3

10
3

1 10 100

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

|COMP|

Bool-Iter.-V1-R4

Bool-Iter.-V2-R4

Bool-Iter.-V3-R4

Bool-Rec.-V1-R4

Bool-Rec.-V2-R4

Bool-Rec.-V3-R4

HS-DAG

Figure 5.2: TS-MHS-A1: Comparing run-time and max. RSS for all three variants,

shown separately for the iterative and recursive implementations. Note that

these graphs show the same data already present in Figure 5.1 but grouped

di�erently.

150

5.3 Evaluation

For |COMP| = 473, the variant “Bool-Rec.-V3-R4” is more than three times

faster than “Bool-Rec.-V1-R4” (264.2 seconds versus 87.4 seconds run-time).

Obviously, for the scenario of disjoint con�icts there is no di�erence between

using R4 or R4
′
as every component appears just once in SC and therefore the set

C′ = {Ci | Ci ∈ C ∧ e < Ci } = C. This was con�rmed also by our measurements

(such that we do not show variants using R4
′
here). Similarly, as all MHSs are

of size three we conducted unbounded runs only, where termination criteria

do not apply. This will change, however, for TS-MHS-A2.

Figure 5.3 shows corresponding graphs for TS-MHS-A2 and an unbounded

computation. Again we plot the average values over 20 samples with a �xed

|COMP| = 20 and a growing |SC| on the x-axis. The �rst thing to observe from

the graphs is that all Boolean variants are about one order of magnitude faster

than HS-DAG in the range [10, 300] and also consume signi�cantly less memory.

While using R4
′
ensures this also for larger SC, the performance advantage

diminishes otherwise, so that HS-DAG can outperform the Boolean approach

when an SC gets larger than approx. 6 · 104. While variants V2 and V3 su�er

minor drawbacks for small |SC|, they slightly gain in performance for higher

amounts of Cis. All variants using R4
′
feature very similar memory character-

istics. Using a recursive or iterative implementation does not result in huge

di�erences, with the recursive ones being a touch faster, and the iterative ones

a bit more memory-e�ective. While we were motivated mostly by issues with

bounded computations, these results suggest that there is little to no computa-

tion overhead for our optimizations in the unbounded case, and speci�cally

R4
′
can also help in an unbounded search. Please note that the missing plot

segments for HS-DAG stem from (run-time) limit violations.

Figure 5.4 and Figure 5.5 show our results for TS-MHS-A2 and |MHS| = 1. The

former graph shows the recursive implementations’ performance and illustrate

that, as expected, in this case R4
′
has no in�uence on time or memory usage

at all (due to the very small probability of SC containing a Ci of size one).

Compared to V1 using termination criteria I (no “-Stop” su�x), variants V2

and V3 already allow a signi�cant boost, surpassed however by that o�ered

by termination criteria II (“-Stop”). For the latter, the strategy also does not

play a signi�cant role, which is intuitive given the small amount of recursions

allowed by those criteria for a cardinality bound of one. Obviously, as in this case

Rule 5 is never really executed (in fact, only the intersection of all con�ict sets

is computed), all heuristics share the same time- and memory characteristics.

Since our recursive and iterative implementations performed similarly for both

151

5 Optimizations for the Boolean Hitting Set Algorithm

-4

-3

-2

-1

0

1

2

3

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|COMP|

Bool-Rec.-V1-R4

Bool-Rec.-V3-R4

HS-DAG

Bool-Iter.-V1-R4
′

Bool-Iter.-V2-R4
′

Bool-Iter.-V3-R4
′

Bool-Rec.-V1-R4
′

Bool-Rec.-V2-R4
′

Bool-Rec.-V3-R4
′

Figure 5.3: Results for TS-MHS-A2, |COMP| = 20, and an unbounded MHS search.

152

5.3 Evaluation

-4

-3

-2

-1

0

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|COMP|

Bool-Rec.-V1-R4

Bool-Rec.-V3-R4

HS-DAG

Bool-Rec.-V3-R4-Stop

Bool-Rec.-V1-R4
′

Bool-Rec.-V2-R4
′

Bool-Rec.-V3-R4
′

Bool-Rec.-V1-R4
′
-Stop

Bool-Rec.-V2-R4
′
-Stop

Bool-Rec.-V3-R4
′
-Stop

Figure 5.4: Results for TS-MHS-A2, |COMP| = 20, |MHS| = 1, recursive variants.

153

5 Optimizations for the Boolean Hitting Set Algorithm

-4

-3

-2

-1

0

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|COMP|

Bool-Iter.-V1-R4
′

Bool-Iter.-V2-R4
′

Bool-Iter.-V3-R4
′

HS-DAG

Bool-Iter.-V1-R4
′
-Stop

Bool-Iter.-V2-R4
′
-Stop

Bool-Iter.-V3-R4
′
-Stop

Figure 5.5: Results for TS-MHS-A2, |COMP| = 20, |MHS| = 1, iterative variants.

154

5.3 Evaluation

unbounded and bounded computations (Figures 5.3, 5.4 and 5.5), we will

not plot the iterative ones for our further �gures. Overall, while HS-DAG’s

performance is still superior for |SC| larger than about 10
3
, the original threshold

was below ten. Furthermore, we enhanced the performance of the Boolean

approach by up to two orders of magnitude.

A last evaluation of TS-MHS-A2 is shown in Figure 5.6, where we restricted

|MHS| to 3. Like for small samples in the unbounded case, we encountered a

negative impact of R4
′
(for the majority of the smaller samples) when using

the original heuristic V1. For the other variants, the impact of R4
′
diminishes,

speci�cally when using termination criteria II. Again V3 outperforms V2, that in

turn outperforms V1. Also for these tests, we could signi�cantly raise the border

where HS-DAG would take the lead from about |COMP| = 20 to approx. 200.

Finally, Figure 5.7 shows the performance of several implementations for 300

real-world samples using the ISCAS’85 circuits (100 samples from each of the

three circuits) with cardinality limits {1, 2, 3}. Due to random fault injection,

samples with similar |SC| may still have incommensurable structural complex-

ity, leading to a large variance in both run-time andmemory. In order to observe

otherwise obscured trends, we applied amoving average �lter that considers for

any |SC| x0 on the x-axis all samples within the range

[
x0/
√
2, x0

√
2

]
. Consider-

ing the graphs, we �nd that our conclusions from the arti�cial scenario would

also transfer to these SCs as extracted from a real-world application. While for

the original heuristic (V1) R4
′
results in a run-time penalty, this drawback van-

ishes for termination criteria II. The variant ranking V3–V2–V1 is con�rmed, as,

for example, evident from the graph for |MHS| ≤ 2. However, the most notable

result follows from the comparison with HS-DAG. While for |MHS| = 1 and

|SC| ≥ 5, HS-DAG is faster than the original Boolean variant, our termination

criteria II alone (then the variant has almost no impact) leads to an average

advantage of one order of magnitude compared to HS-DAG. When raising the

maximum cardinality to |MHS| = 2 and 3, more and more Boolean variants

catch up, until for max. |MHS| = 3 only one of them (V1-R4’) is slower than

HS-DAG. Also the ranking V3-V2-V1 becomes more apparent then. Summing

up, with our optimizations the Boolean approach is not only a performant

contender in the unbounded case, but also for a bounded MHS search.

155

5 Optimizations for the Boolean Hitting Set Algorithm

-4

-3

-2

-1

0

1

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

1 10 10
2

10
3

10
4

10
5

10
6

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

|COMP|

Bool-Rec.-V1-R4

Bool-Rec.-V3-R4

HS-DAG

Bool-Rec.-V3-R4-Stop

Bool-Rec.-V1-R4
′

Bool-Rec.-V2-R4
′

Bool-Rec.-V3-R4
′

Bool-Rec.-V1-R4
′
-Stop

Bool-Rec.-V2-R4
′
-Stop

Bool-Rec.-V3-R4
′
-Stop

Figure 5.6: Results for TS-MHS-A2, |COMP| = 20, max. |MHS| = 3.

156

5.3 Evaluation

-4

-3

-2

-1

0

-3

-2

-1

0

1

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

-1

0

1

2

1 10 100

|SC|

1

2

1

2

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

1

2

1 10 100

|SC|

Bool-Rec.-V1-R4

Bool-Rec.-V2-R4

Bool-Rec.-V3-R4

Bool-Rec.-V1-R4
′

Bool-Rec.-V1-R4-Stop

HS-DAG

Bool-Rec.-V1-R4
′
-Stop

Bool-Rec.-V2-R4
′
-Stop

Bool-Rec.-V3-R4
′
-Stop

Figure 5.7: Results for TS-MHS-R1 with varying max. |MHS|.

157

5 Optimizations for the Boolean Hitting Set Algorithm

5.4 Discussion

In this chapter we showed how to improve the Boolean approach’s performance

by up to 2 orders of magnitude for arti�cial and real-world scenarios for which

it was known to perform badly before. That is, we showed a new heuristic, a

revised split strategy, as well as tight termination rules that tackle earlier disad-

vantages when conquering the search space for cardinality-bounded problems.

Our experiments suggest that our optimizations would not signi�cantly hinder

performance in the unbounded case, and could sometimes also enhance it.

We also proposed a slightly improved Rule 4 that avoids some duplicates and

non-minimal solutions to be pruned anyway. Thus, the Boolean algorithm now

is also an attractive alternative for the bounded case.

158

6 New Variants of Reiter’s
Diagnosis Algorithm

This chapter is based on the following publications:

I. Pill and T. Quaritsch.And Yet Another Variant of Reiter’s Complete On-
the-�y Hitting Set Algorithm. In: Proceedings of the 24th International

Workshop on Principles of Diagnosis. DX 2013 (Jerusalem, Israel, Oct. 1–4,
2013). 2013, pp. 210–215. url: http:// thomas.quaritsch.at/pdf/dx2013a-pq.pdf
(visited on 05/09/2014)
I. Pill and T. Quaritsch. Exploiting Parse Trees in LTL Speci�cation Diag-
nosis. In: Proceedings of the 24th International Workshop on Principles of

Diagnosis. DX 2013 (Jerusalem, Israel, Oct. 1–4, 2013). 2013, pp. 59–64. url:
http:// thomas.quaritsch.at/pdf/dx2013b-pq.pdf (visited on 05/09/2014)

6.1 Motivation

In Chapter 3 we showed how to exploit the model-based diagnosis for the devel-

opment of speci�cations in Linear Temporal Logic (LTL). Based on behavioral

samples (traces) that unexpectedly satisfy (witnesses) or contradict (counterexam-

ples) a speci�cation, we can isolate corresponding diagnoses at a speci�cation’s

operator level regarding the root causes for the encountered issue. As underly-

ing reasoning engine for the veri�cation of diagnostic theories, we use a SAT

solver and a corresponding encoding of the speci�cation and the trace. For

the diagnosis engine itself, we have used HS-DAG, which, as we have seen in

159

http://thomas.quaritsch.at/pdf/dx2013a-pq.pdf
http://thomas.quaritsch.at/pdf/dx2013b-pq.pdf

6 New Variants of Reiter’s Diagnosis Algorithm

Chapter 4 is still a performant contender (despite its age) amongst various di-

agnosis algorithms. Nevertheless, in this chapter we present two optimizations

to HS-DAG, one of which addresses the speci�c scenario of LTL speci�cation

diagnosis and the other one concerns HS-DAGs general search strategy.

Exploiting Parse Trees in LTL Specification Diagnosis. In the context

of weak fault models, we show in Section 6.2 how to exploit structural infor-

mation about a speci�cation (its parse tree) for speeding up the computation

of diagnoses. That is, inspired by the concept of dominance de�ned for �ow-

graphs [LT79; Pro59] that has been exploited also for digital circuits [KM87],

we show how to draw on the intuitive observation that “If some subformula

can resolve a con�ict, this is true also for its parent”. While in the context

of our speci�cation models as established in Chapter 3, this o�ers us no

option for design abstraction resulting in smaller models, nor to statically

restrict the diagnosis space, we exploit this observation dynamically in the

diagnosis algorithm, that is, the structured search itself. In Section 6.2.1,

we show how to implement our reasoning with HS-DAG and report �rst

results regarding the e�ects in Section 6.2.2.

RC-Tree: An Improved Search Strategy for HS-DAG. Motivated by the

results of our evaluations in Chapter 4, we were curious whether the com-

putational power of the Boolean algorithm could be combined with the

�exibility of an on-the-�y computation as done byHS-DAG.We noticed that,

similar to Wotawa’s variant HST [Wot01] of Reiter’s algorithm, that aims at

minimizing the subset-checks required for building the tree by implement-

ing a speci�c structure in the search, we could restrict the search space of a

sub-DAG in HS-DAG to a portion of the search space only, without a�ecting

correctness. Our resulting algorithm RC-Tree presented in Section 6.3 thus

avoids redundancies present in HS-DAG, which are re�ected, for instance,

in the “reuse” of nodes when varying decision sequences lead to the same

assumptions. Experimental results are shown in Section 6.3.1

160

6.2 Exploiting Parse Trees in LTL Speci�cation Diagnosis

6.2 Exploiting Parse Trees in LTL Specification
Diagnosis

In this section, we show how to exploit an LTL speci�cation ϕ’s actual parse tree
in the search for diagnoses as of Theorem 3.1/3.2. Note that in our discussion,

we occasionally refer to the minimal con�icts characterizing the problem (see

Reiter’s de�nition of diagnosis in Section 2.1.2) and the HS-DAG algorithm

(with its easily graspable DAG documenting the search, see Section 4.2.1.1 for a

detailed description) for illustration purposes.

The main observation we draw on is as follows:

Proposition 6.1: If some subformula ψ from speci�cation ϕ can resolve an

issue (that is, a minimal con�ict), then so can all the superformulae of ψ.

Proof. Formally, this means that for speci�cation ϕ, trace τ, and EWFM(ϕ, τ)
as of Theorem 3.1/3.2, we have that if assuming opψ for some subformula ψ
makes EWFM(ϕ, τ) satis�able, so does assuming opδ for any superformula δ of
ψ.

From Theorem 3.1/3.2, De�nition 3.2, De�nition 3.3, and Table 3.1/3.2, we

know that assuming opψ frees the values ψi in EWFM(ϕ, τ) due to opψ satisfying

R(ψ), that is, opϕ ∨ c for all corresponding clauses c for ψ in Table 3.1/3.2. For

EWFM(ϕ, τ) becoming true when assuming opψ, there is a satisfying assignment

for all δi such that δ is a superformula of ψ. Consequently, EWFM(ϕ, τ) is also
satis�able when assuming opδ (instead) for any superformula δ of ψ. �

Our observation in Proposition 6.1 is also re�ected in the minimal con�icts

describing the diagnosis problem:

Proposition 6.2: If a minimal con�ict Ci contains some subformula ψ, then it

contains also all its superformulae.

Proof. The validity of this proposition is easy to see. Superformula δ’s not being
in Ci would contradict Proposition 6.1 that δ can resolve/hit (at least) those

minimal con�icts that ψ can resolve (including Ci). �

161

6 New Variants of Reiter’s Diagnosis Algorithm

Note that while Proposition 6.2 is obviously not true for a non-minimal Ci ,

such a con�ict might be pruned regarding subformule where not all of its

superformulae are in Ci (shedding some of the non-minimal/unnecessary

components).

In the following, we show how to use these propositions in order to derive new

facts from already computed ones. That is, for instance, from some diagnosis ∆

we can derive further diagnoses ∆′ via the following lemma.

Lemma 6.1 (Infer-up): For a diagnosis ∆ = {ψ1 , . . . , ψn } and some ψi ∈ ∆ with

δ a superformula ofψi , the set∆
′
= (∆\{ψ j | ψ j ∈ ∆ and δ is a superformula of ψ j })

∪{δ} is a diagnosis as well.

Proof. According to Proposition 6.1, a superformula δ of some ψi can resolve

(hit) at least those con�icts that ψi can resolve. Thus replacing ψi with δ in some

diagnosis ∆ constructs a set that can still resolve all con�icts. However, in order

to derive a diagnosis (that has to be subset-minimal per De�nition 2.4), we have

to remove all subformulae of δ from ∆, which, according to Proposition 6.1, is

not a problem concerning the set of con�icts hit by ∆ / ∆′. �

This can help in the search space exploration, as approved hypotheses (diag-

noses, or in the context of Reiter’s algorithm consistent sets h(n)) might be

easily converted into multiple ones. For the HS-DAG algorithm, for instance, we

derive in Section 6.2.1 a corresponding strategy for expanding a node, labeling

also a consistent node’s siblings as consistent (without an explicit consistency

check) if their edge labels refer to superformulae of the subformula at hand.

The following corollary describes the reasoning in the opposite direction;

adding or replacing some ψi in ∆with one of its subformulae obviously cannot

grow the set of Cis hit.

Corollary 6.1 (Infer-down): For some set∆ = {ψ1 , . . . , ψn } such that SD∪OBS∪

{¬AB(ci) | ci ∈ COMP \ ∆} is inconsistent, and a subformula δ of some ψi ∈ ∆,

the set ∆′ = (∆ \ ψi) ∪ {δ} is inconsistent as well.

Considering this corollary, an HS-DAG strategy similar to the one above could

be fathomed, inferring the inconsistency of aDAGnode. ForHS-DAG, the e�ects

however would be hardly noticeable, due to the con�ict cache that we consider

standard in today’s implementations. Retrieving a set not hit by h(n) = ∆′ from

162

6.2 Exploiting Parse Trees in LTL Speci�cation Diagnosis

the cachewould always succeed, as an adequate onewould have been registered

previously for ∆ (otherwise Proposition 6.2 would be violated). Consequently,

this strategy cannot save an expensive theorem prover call.

The following variant of Corollary 6.1, such that we do not replace ψi by sub-

formula δ, but add δ to ∆, while valid for the same reasons, does allow us to

prune the search space in terms of subformulae of some ψ ∈ ∆.

Lemma 6.2 (Prune-down): For some set∆ = {ψ1 , . . . , ψn } such that SD∪OBS∪

{¬AB(ci) | ci ∈ COMP \ ∆} is inconsistent, and a subformula δ of some ψi ∈ ∆,

the set ∆′ = ∆∪δ is inconsistent. Furthermore ∆′ and any of its supersets cannot

be a diagnosis.

Proof. Obviously, ∆′ hits exactly those con�icts Ci also hit by ∆ (according to

Proposition 6.2), so that SD ∪ OBS ∪ {¬AB(ci) | ci ∈ COMP \ ∆′} cannot be

consistent. Furthermore, by Proposition 6.1, ψi hits (at least) all the con�icts

that δ hits, so that one could remove δ from ∆′ and any of its supersets without

a�ecting the set of con�ict sets hit by them. Thus neither ∆′ nor any of its

supersets can be a diagnosis that, per De�nition 2.4, has to be subset-minimal.

�

Regarding this lemma,wewould like to note that HS-DAGperfectly implements

this reasoning. That is, when retrieving a label for some non-leaf node n, it
asks for some Ci not hit by h(n). A corresponding Ci thus cannot contain a

subformula of some ψi ∈ h(n) due to Proposition 6.2.

Interestingly enough, a diagnosis’ de�nition allows us to apply some parts of

this reasoning also for superformulae.

Lemma 6.3 (Prune-up): For some ∆ = {ψ1 , . . . , ψn } such that SD ∪ OBS ∪

{¬AB(ci) | ci ∈ COMP \ ∆} is inconsistent, adding some δ (∆′ = ∆ ∪ {δ}) that is
a superformula of some ψi ∈ ∆ cannot yield a diagnosis.

Proof. By Proposition 6.1 we know that δ hits (at least) all the con�icts that ψi

hits, so that one could remove ψi from ∆
′
without a�ecting the set of hit con�ict

sets. As diagnoses have to be subset-minimal (De�nition 2.4), ∆′ cannot be a

diagnosis. Obviously, adding elements to ∆′ cannot resolve the issue at hand,

so that also no superset of ∆′ can be a diagnosis. �

163

6 New Variants of Reiter’s Diagnosis Algorithm

The e�ect of this lemma is that when some part of a solution is established

(for example, during a structured con�ict-driven search with HS-DAG, or for

a partial assignment when computing diagnoses directly with a Satis�ability

(SAT)-solver), we can rule out all superformulae of any ψi already considered,

up to the point where we remove ψi again (for example, during some back-

tracking step in the SAT-solver for a direct diagnosis setup like [Met+12]).

Summarizing, our lemmas 6.1 to 6.3 allow us to dynamically adapt and fo-

cus the search for diagnoses with easily derived positive or negative data. In

Section 6.2.1, we discuss how to implement our reasoning in HS-DAG.

Note that while Proposition 6.2 refers tominimal con�ict only, it still allows us to

prune non-minmal con�icts (shedding some of the non-minimal/unnecessary

components). This becomes handy if, for some reason, one has to cope with a

theorem prover that returns also non-minimal con�icts.

Lemma 6.4: For some encountered con�ict C = {ψ1 , . . . , ψn }, C′ = C \ {ψi |

any of ψi’s superformulae δ is not in Ci } is also a con�ict.

Proof. For a minimal con�ict, there is obviously no ψi that can be pruned. For

a non-minimal con�ict, due to Proposition 6.2, the described pruning does not

remove any ψi in the minimal con�ict at the heart of C. �

6.2.1 HS-DAG

For adoptingHS-DAG, we implemented the reasoning from Lemmas 6.1 and 6.3

in the procedures InferUp and PruneUp in Algorithms 11 and 10, respectively.

Please note that HS-DAG covers the reasoning from Lemma 6.2 by construction,

as we mentioned before. Lemma 6.4 concerns a theorem prover interface only,

where the PicoSAT solver used in our setup returns minimal con�icts so that

we did not apply such a �lter (see Section 6.2.2 for more details on our setup).

Prior to the expansion process of an (inconsistent) HS-DAG node in Step 4 (see

our outline of HS-DAG in De�nition 4.1 on page 70), we call the procedure

PruneUp. It discards from n’s intended label the superformulae of all ψi ∈ h(n).
As con�icts may comprise multiple (overlapping) “chains” to the parse tree’s

root, we mark those superformulae in T which have been examined already.

164

6.2 Exploiting Parse Trees in LTL Speci�cation Diagnosis

Algorithm 10: Pruning con�ict sets in HS-DAG.

1 Function PruneUp(n, T):
Requires :n —HS-DAG node being expanded

Requires :T — parse tree of diagnosed speci�cation ϕ
2 ClearMarks(T)
3 C ← `(n)
4 forall the ψ ∈ h(n) do
5 while ψ , Null ∧ ψ not marked do
6 ψ ← Parent(ψ, T)
7 C ← C \ {ψ}
8 mark ψ

9 return C

We assume now that HS-DAG expands an inconsistent node by iterating over

its label/con�ict C, considering �rst those subformulae farthest from vϕ in the

parse tree T .

Whenever a node n is found to be consistent (that is, h(n) is “consistent”) in
HS-DAG’s Step 2, we call the procedure InferUp that under certain conditions

labels siblings, whose incoming edges are labeledwith superformulae, with “3”

too. In lines 7 to 8 we make the corresponding subset-check whether there is a

subset in h(n′) that is a diagnosis, such that n′ should be closed. Again, we stop

following a path to the parse tree’s root whenever we encounter a superformula

already considered.

The e�ects of our improvements become evident in the following two ex-

amples. Our �rst example is adopted from [Pil+06] and has already been

used in Section 3.2. It features a two line arbiter with request lines r1 and

r2 and the corresponding grant lines g1 and g2. Its speci�cation consists of

the following four requirements: R1 demanding that requests on both lines

must be granted eventually, R2 ensuring that no simultaneous grants are

given, R3 ruling out any initial grant before a request, and �nally the faulty

R4 : ∀i ∈ {1, 2} : G (gi → X (¬gi U ri)) preventing additional grants until new

incoming requests. Testing her speci�cation, a designer de�nes an unexpectedly

failing witness (that is, a trace that should satisfy the speci�cation but violates

it) τ = τ0τ1(⊥)ω featuring consecutive (and instantly granted) single requests

165

6 New Variants of Reiter’s Diagnosis Algorithm

Algorithm 11: Inferring new diagnoses in HS-DAG.

1 Function InferUp(n, T , ψ):
Requires :n — consistent HS-DAG node

Requires :T — parse tree of diagnosed speci�cation ϕ
Requires :ψ— subformula that led to n

2 C ← `(Parent(n)) // parent node’s con�ict
3 δ ← Parent(ψ, T) // parent in the parse tree
4 while δ , Null do
5 if δ is not marked ∧ δ ∈ C :
6 n′ ← GetSibling((h(n) \ ψ) ∪ {δ})
7 if ∃m such that h(m) ⊆ h(n′) ∧ `(m) = “3′′ :
8 `(n′) ← “×′′

9 else
10 `(n′) ← “3′′

11 mark δ
12 else
13 break
14 δ ← Parent(δ, T)

for both lines:

τ0 = r1 ∧ g1 ∧ ¬r2 ∧ ¬g2

τ1 = ¬r1 ∧ ¬g1 ∧ r2 ∧ g2

As already pointed out in [Pil+06], the problem in this speci�cation is the until

operator ¬gi U ri in R4 that should be replaced by its weak version ¬gi W ri :

While the idea of both operators is that ¬gi should hold until ri holds, the weak
version does not require ri to hold eventually, while the “strong” one does.

Thus, R4 in its current form repeatedly requires requests that are not provided

by τ, and which is presumably not in the designer’s intent.

Our standard HS-DAG implementation, as used in Chapter 4, obtained for this

scenario 31 diagnoses, including the one pinpointing to wrong until operators
in both instances of R4. It issued 34 theorem prover (SAT solver) calls in total,

when building its DAG comprising 44 nodes (compare Table 6.1).

The e�ects of our optimizations can be seen in Table 6.1. While the number of

nodes constructed by HS-DAG could be reduced from 44 to 38 (some minimum

number of nodes is needed to represent the 31 diagnoses) using PruneUp, the

166

6.2 Exploiting Parse Trees in LTL Speci�cation Diagnosis

Table 6.1:HS-DAG statistics for the arbiter example using no/PruneUp/Infer-

Up/PruneUp+InferUp optimization

– P↑ I↑ P↑ + I↑

HS-DAG nodes 44 38 44 38

TP consistency checks 31 31 13 13

TP con�ict computations 3 3 3 3

pruned “edges” – 6 – 6

inferred diagnoses – – 18 18

diagnoses 31 31 31 31

run-time (sec.) 0.3801 0.3821 0.2029 0.2033

number of consistency checks that require a theorem prover call could be cut

down from 31 to 13 (−58%), as 18 diagnoses could be inferred using InferUp.

This resulted also in a run-time reduction (over 100 runs) ofmore than 46%, even

for this simple example. Using the PruneUp node-reduction alone resulted in a

slight but negligible (less than one percent) run-time penalty. Using InferUp

and PruneUp aggregates the advantages, o�ering fewest nodes as well as an

attractive run-time.

For visualizing the e�ects of our InferUp and PruneUp optimizations, we extract

an even smaller example from R4. As PruneUp only a�ects DAG levels with

|h(n)| > 1, we purposefully injected a second fault in R4 by replacing (in the

rewritten implication) the logic Or with a logic And: ϕ = G (¬g1 ∧X (¬g1 U r1))
and considered a single line only (r1/g1). The trace consisted of a single request

and grant: τ = τ0(⊥)ω with τ0 = r1 ∧ g1. In Figure 6.1 we depict the parse tree

of ϕ on the right and the example’s resulting DAG on the left.

This DAG (that is, a tree for this example) is constructed as follows: We start

expanding the root node using n2 (inconsistent) and n8. As {n8} is consistent,

we can infer {n9} to be consistent as well (InferUp), as n9 is a superformula

of n8 (see Fig. 6.1b). For the node labeled {n6 , n7 , n8 , n9}, we can skip n8 and

n9 in the expansion (PruneUp), as both are superformulae of n2 (see Fig. 6.1b).

Similar to the level above, we can infer {n2 , n7} to be a diagnosis due to {n2 , n6}

being a diagnosis and the fact that n7 is a superformula of n6.

167

6 New Variants of Reiter’s Diagnosis Algorithm

{n2 , n8 , n9}

{n6 , n7 , n8 , n9}

3

n6

3

n7

×

n8

×

n9

n2

3

n8

3

n9

(a)HS-DAG tree, inferred nodes

shaded, pruned “edges” dashed.

n9 : G

n8 : ∧

n2 : ¬

n
1
: g

1

n7 : X

n6 : U

n
4
: ¬

n3 : g
1

n5 : r
1

(b) Parse tree, the two con�icts are

shaded/double lined.

Figure 6.1: HS-DAG run for the arbiter formula.

6.2.2 Experimental results

For our tests, we adopted our Python implementation of HS-DAG that we used

in Chapter 4.We ran our tests on the samemachine as our previous experiments

(an early 2011-generation MacBook Pro 8,1 with an Intel Core i5 2.3GHz, 4GiB

RAM, SSD and with Mac OS X 10.6), disabled the GUI and swapping, and used

a Random Access Memory (RAM)-drive for the �le system.

We reuse the test scenario TS-DIAG-LTL from Chapter 4 (see Section 4.4.2 for

details). Brie�y described, we generated random LTL formulae as suggested

in [DGV99], with N =

⌊
|ϕ |/3

⌋
variables and a uniform distribution of LTL

operators. We injected triple faults in order to derive ϕm from ϕ. Using our LTL

encoding, we then derived some trace τ (k = 99, l = 50) via solving τ∧ϕ∧¬ϕm ,

and veri�ed ϕm to be a diagnosis for ϕ and τ.

To obtain the results in Figure 6.2, we generated ten random diagnosis problems

(as outlined above) for any |ϕ | in {50, 100, . . . , 300}, ran HS-DAG ten times with

a diagnosis cardinality limit of 1, 2 and 3 (single, double and triple faults)

with our various optimizations applied, and plotted average values. For the

single fault diagnosis runs (solid lines), we observe a run-time reduction of up

to approx. 60% due to InferUp. The run-time bene�t diminishes with rising

maximum diagnosis cardinality, when, intuitively, the number of diagnoses

(and thus inferable nodes) grows slower than the total number of DAG nodes

(see the bottom part of the �gure). While PruneUp showed virtually no in�uence

on the run-time, the bottom left part of Figure 6.2 depicts its impact on the

number of DAG nodes constructed for a speci�c problem. Growing with rising

168

6.2 Exploiting Parse Trees in LTL Speci�cation Diagnosis

0

1

2

3

50 100 200 300

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula size

1

2

100 200 300

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

Formula size

1

2

3

4

100 200 300

#
H
S
-
D
A
G

n
o
d
e
s
(
1
0

y)

Formula size

HS-DAG

HS-DAG+InferUp

HS-DAG+PruneUp

HS-DAG+PruneUp+InferUp

20

0

40

80

120

50 100 200 300

#
d
i
a
g
n
o
s
e
s

Formula size

|∆| = 1

|∆| ≤ 2

|∆| ≤ 3

Figure 6.2: Diagnosis performance for random samples.

maximum diagnosis cardinality, a reduction of up to 23% was possible for

|ϕ | = 200 and |∆| ≤ 3. We thus argue that PruneUp eliminates HS-DAG nodes

that would have been closed otherwise by subset-checks later-on.

Summarizing, while PruneUp could achieve a signi�cant DAG node reduction

for large diagnosis cardinalities only (that is, in unbounded runs), InferUp

could substantially reduce run-times for the more practical, low-bound case.

169

6 New Variants of Reiter’s Diagnosis Algorithm

6.3 RC-Tree: An Improved Search Strategy for
HS-DAG

In this section, we show how to avoid the redundancies in HS-DAG’s search

by narrowing the search focus for a sub-DAG when it is guaranteed that some

solutions will be considered in other sub-DAGs.

Our basic reasoning is as follows: when expanding a node n (Step 4 in our

description of HS-DAG in De�nition 4.1 on page 70), that is, creating new

edges originating in n, we create for each destination node n′ a set Θ(n′) of
components for which we will not create new edges in the corresponding sub-

DAG. As we will show, the blocked component combinations are investigated

by other sub-DAGs anyway. Θ(n′) for node n′ , n0 consists of two subsets

Θ(n′) = ΘC(n′) ∪ Θ(n). The set ΘC(n′) comprises those components ci , for

which we created outgoing edges from node n already, and Θ(n) is inherited
from its parent in order to propagate our reasoning in some sub-DAG. For

the root node n0, we have Θ(n0) = ΘC(n0) = ∅. In Figure 6.3, we illustrate the

various ΘC(n′)s when assuming Θ(n1) = ∅ and creating the edges according to

their label’s appearance in n1’s label C.

It is easy to see that while we exclude via our “�lter” Θ some sequences that

might lead to a certain set of assumptions h(n), we do not prevent them all. That

is, assume there is someminimal hitting set∆. Then, starting from the root node

n0, we can always take the “left-most” branch possible (removing the edge-label

ci from ∆). Due to the exhaustive nature of HS-DAG (repeatedly searching for

any branch for some set that has not been hit so far), and minimizingΘ (that is,

such that there is no restriction regarding those ci still in ∆), this sequence has

to be allowed. For the most general case, this is however correct only, if we also

adapt the pruning procedure (Step 3). That is, if we replace some node-label

Ci with some subset C j and remove the edges for those elements not present

in the subset C j anymore, then we have to update Θ accordingly. Considering

Figure 6.3, for instance, if we removed b from n1’s label, then b should not be

in ΘC for the target nodes of the three rightmost edges. Ensuring that such

changes are propagated accordingly, the algorithm is correct also if SC contains

non-minimal sets.

Formalizing our idea of reducing the con�icts (“node labels” C ∈ SC),we derived

the following algorithm from HS-DAG:

170

6.3 RC-Tree: An Improved Search Strategy for HS-DAG

n
1
: {a , b , c , d , e}

a

a

b

a , b

c

a , b , c

d

a , b , c , d

e

ΘC for the various sub-DAGs

Figure 6.3: Focusing the search by blocking elements in sub-DAGs.

De�nition 6.1: (RC-Tree) Let D be a growing node- and edge-labeled tree with

some initial and unlabeled root node n0. Process unlabeled nodes in D in

breadth-�rst order as follows, where for some node n, h(n) is de�ned to be the

set of edge labels on the path in D from root node n0 to node n (h(n0) = ∅).

Furthermore assume the setsΘ(n) andΘC(n) to be subsets of

⋃
Ci∈SC

Ci , where

Θ(n0) = ΘC(n0) = ∅.

1. (Closing) If there is a node n′ such that h(n′) ⊂ h(n), and which is labeled

with “3” (h(n) is a hitting set), then close node n. Neither will a label be

computed for n, nor will any successor nodes be generated. Proceed with

the next node.

2. I� for all Ci ∈ SC: Ci ∩ h(n) , ∅, then label n with “3”. Otherwise label n
with some C j : C j is the �rst set in SC such that C j ∩ h(n) = ∅.

3. (Pruning) I� a priorly unused set Ci was used to label node n, attempt

to prune D. That is, for nodes n′ labeled with some C j ∈ SC such that

Ci ⊂ C j do as follows:

(a) Relabel n′ with Ci . Then, for any ci in C j \ Ci , the edge labeled ci

originating from n′ is no longer allowed. The node connected by this

edge and all of its descendants are removed, except for those nodes

with another ancestor that is not being removed. Note that this step

may eliminate the very node n currently being processed.

Now, for all children n′′ of n′ updateΘC(n′′) toΘC(n′′)\ (C j \Ci) and

for all descendants n′′′ of some n′′ propagate the update accordingly.
Then create for all n′′ and n′′′ all the edges that are not avoided

anymore (due to the updates to theirΘs), and process the new nodes

in a breadth �rst order (always choosing a node with the smallest

h(n)) as usual.

171

6 New Variants of Reiter’s Diagnosis Algorithm

(b) Interchange the sets C j and Ci in SC. (Note that this has the same

e�ect as eliminating C j from SC.)

If n was removed, proceed with the next unlabeled node.

4. If n was labeled with some Ci ∈ SC, generate for each ci ∈ Ci \ Θ(n) a
new edge e originating in n and labeled with ci . Generate a new node

n′, where Θ(n′) = ΘC(n′) ∪ Θ(n) with ΘC(n′) = {c j | c j ∈ Ci and we

already created an edge labeled c j from n} as destination for the edge e.
This new node n′ will be processed (labeled and expanded) after all new

nodes ni in the same generation as n (such that |h(ni)| = |h(n)|) have been
processed.

5. If there is no further unlabeled node, return tree D.

A reader might wonder right now why we compute a tree instead of a DAG.

The reason for this becomes evident from Lemma 6.5. That is, via ΘC, our

exploration construction avoids any redundancy, so that there would not be any

two nodes with the same h(n) that we could fuse. As a side e�ect, compared to

HS-DAG, also the corresponding checks in Step 4 are missing.

Lemma 6.5: For the algorithm as of Def. 6.1 and any node n in D, there is no

other node n′ , n such that h(n′) = h(n).

Proof. Let us assume that D o�ers two nodes n and n′ such that h(n′) = h(n).
Per de�nition of a set, the Cis in SC do not allow duplicate elements in a set,

and as Step 4 does create for each element in Ci a single edge only, this means

the paths (and sequences of edge labels) to reach n and n′ have to di�er. Now

let us focus on the �rst di�erence in the sequences/paths. That is, there is some

node m′ up until which both sequences use the same edges (because of the

common pre�x), and where, due to the varying su�xes, the sequences take

di�erent edges en (the sequence that leads to n) and en′ (the sequence that leads

to n′). Without loosing generality, now assume that en was created before en′.

This means that per construction in Step 4, the edge label cn of en is blocked

via ΘC when taking en′. This contradicts, however, the requirement for cn to

appear later when taking en′, as otherwise h(n′) cannot become equal to h(n).
Thus, there cannot be two nodes n and n′ in D such that h(n′) = h(n). �

Now we have to show that RC-Tree is complete and sound.

172

6.3 RC-Tree: An Improved Search Strategy for HS-DAG

Theorem 6.1: The algorithm as of Def. 6.1 is complete. That is, for any minimal

hitting set ∆ for SC, the constructed tree D contains some node n labeled “3”

such that h(n) = ∆.

Proof. We show that the construction is exhaustive and that Step 3 does not

remove any node n from D such that h(n) is an Minimal Hitting Set (MHS) for

SC.

Regarding Step 3, it is easy to see that it alters D only such that it is as if we had

used Ci instead of C j in the �rst place. With Step 1 only blocking supersets of

known hitting sets, and Step 5 checking only whether D was fully expanded, we

have to show that the combination of Steps 2 and 4 is exhaustive: Considering

Lemma 6.5, it is easy to see that our algorithm constructs the following path in

D for some MHS ∆. Starting with n0, and a copy ∆′ of ∆, while ∆′ , ∅, choose

for some encountered node n the �rst edge e constructed from n such that

e′s label ci is in ∆
′
and remove ci from ∆

′
. Such an edge e has to exist due to

∆ having to hit all C js in SC and the fact that our choice of edges e prohibits

that any ci ∈ ∆ appears in ΘC. e will lead to some node n′ labeled with some

Ci ∈ SC, as otherwise ∆ could not be aminimal hitting set. Obviously, whenever

∆′ becomes ∅, we reach node n∆ such that h(n∆) = ∆.

�

Theorem 6.2: The algorithm as of Def. 6.1 is sound. That is, for any node n′ in
D that is labeled with “3”, we have that h(n′) is indeed a minimal hitting set

for SC.

Proof. The soundness of RC-Tree is ensured by the breadth-�rst search and

Steps 1 and 2. Step 1 blocks all supersets of any hitting set found from being

considered as an MHS. Step 2 labels only those nodes n allowed by Step 1

with the corresponding checkmark such that h(n) indeed hits all Cis in SC. As

RC-Tree is complete (all MHSs’ supersets get blocked via Step 1), it thus follows

that RC-Tree is also sound. �

Note that, like for HS-DAG, the pruning step is relevant only if SC contains

some sets Ci and C j such that Ci ⊂ C j and the Cis are not sorted in respect of

their growing cardinality.

173

6 New Variants of Reiter’s Diagnosis Algorithm

From an abstract point of view, the motivation behind our reasoning is the same

as Wotawa’s for HST [Wot01]. That is, we aimed to avoid the construction of

assumption combinations (h(n)) in a sub-DAG i� this h(n)would be considered

in other reasoning branches anyway. However, our underlying reasoning and

the implementation di�er signi�cantly. That is, our expansion is still based on

a pruned version of a node’s label (con�ict), rather than a range within bounds

propagated (and altered) when constructing HST’s tree.

In some sense, our reasoning ismore similar to a speci�c scenario in our Boolean

algorithm variant that we presented in Chapter 5. This variant revised Rule 5

such that we consecutively choose as e the elements in a single C (for speci�c

details please refer to Lemma 5.2 on page 144). Those consecutive decisions

regarding the split elements re�ect the structure of Θ for the various branches

when RC-Tree expands the same C. For the example in Figure 6.3 (SC
′
=

{a , b , c , d , e}∪SC) it would construct the formula a∧H(SC
a
)∨ b∧H(SC

b
a)∨ c∧

H(SC
c
a ,b)∨d∧H(SC

d
a ,b ,c)∨e∧H(SC

e
a ,b ,c ,d), where SC

e
a ,b ,c ,d means that we pruned

from the Cis in SC the elements a , b , c , d and took the subset of pruned Cis not

hit by e. This perfectly resembles the e�ects of ΘC as illustrated in Figure 6.3

and the edge label’s inclusion in h(n). While this is an interesting analogy

speci�cally regarding the evaluation, please let us remind you at this point that

the Boolean algorithm requires SC to be known a priori, while RC-Tree can

operate on-the-�y.

6.3.1 Experimental Results

As reference implementation for HS-DAG, we used our Python implementation

from the diagnosis algorithm performance comparison in Chapter 4. For imple-

menting RC-Tree, we adopted that implementation accordingly. A small change

we made for both algorithms is the encoding of the worklist, that is, the list of

nodes to be processed. As evident from its de�nition, RC-Tree might construct

nodes with an |h(n)| smaller than that of the currently expanded node n, due
to updates resulting from some Θ changing in pruning Step 3. For an easily

manageable node-processing list, we thus group nodes by their |h(n)|. Hence,

a node with the smallest h(n) can be retrieved easily without the need to sort

the list whenever adding a new node (as we would have to do for a monolithic

list). As we experienced no penalty for the HS-DAG variant when using the

same grouped list (a list of lists) instead of the original single monolithic list,

the reported results for HS-DAG also use this type of worklist.

174

6.3 RC-Tree: An Improved Search Strategy for HS-DAG

-4

-3

-2

-1

0

1

2

3

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

1 10 100 10
3

10
4

10
5

10
6

#
o
f
D
A
G
/
t
r
e
e
n
o
d
e
s

|SC|

HS-DAG RC-Tree

(a) Unbounded

-4

-3

-2

-1

0

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
i
n
1
0

y
M
i
B

0

100

200

300

400

500

600

700

800

1 10 100 10
3

10
4

10
5

10
6

#
o
f
D
A
G
/
t
r
e
e
n
o
d
e
s

|SC|

Boolean HST

(b) Bounded, max. |MHS| = 3

Figure 6.4: Performance results using random con�icts.

175

6 New Variants of Reiter’s Diagnosis Algorithm

In the following, we report on results for two di�erent scenarios taken from

Chapter 4. The �rst one, TS-MHS-A2, contains arti�cial con�icts that we used

also for evaluating our optimizations to the Boolean algorithm in Chapter 5.

In this scenario, a Ci ∈ SC contains elements drawn randomly from COMP

such that every component ci ∈ COMP is included in some Ci ∈ SC with a

probability of 50 percent (no duplicate Cs in SC allowed).

Figure 6.4 reports on the run-time, node-amount and memory consumption

(maximum Resident Set Size (RSS)) regarding our experiments with |COMP| =

20, and a growing SC. For each |SC|, we derived 10 samples and report the

average values over the results for the individual samples. Furthermore, we

ran both a bounded (|MHS| ≤ 3) and an unbounded search for each sample.

The results of the unbounded search are reported in Figure 6.4a, those for

the bounded one in Figure 6.4b. Let us consider the unbounded search �rst.

Regarding a comparison between HS-DAG and RC-Tree, we see a run-time

advantage for themajority of our |SC| range,with performance on par otherwise.

For an |SC| = 1000we experienced a run-time reduction of 70.5 percent, a node

reduction of 71.7 percent and a reduction regarding max. RSS of approximately

63.3 percent. The maximum average reductions for any |SC| were 73.7 percent,

75.9 percent and 65.0 percent respectively. For the bounded case we see virtually

no di�erence betweenHS-DAG and RC-Tree in respect of run-time andmemory-

consumption. Here, the overhead for maintaining Θ seems to counterbalance

the slight reduction in the number of nodes (18.9 percent for |SC| = 10). As

the “pruning”-e�ect of Θ obviously depends on the tree-depth, this is not

unexpected for this low cardinality limit of 3, which is often a reasonable bound

in practice. Evidently, in those cases where the Boolean algorithm outperforms

HS-DAG, RC-Tree reduces the gap, but is closer in performance to HS-DAG

than to the Boolean algorithm.

Our second test scenario, TS-MHS-R2, is based on con�icts created during

speci�cation diagnosis runs as described in Chapter 3 (see Section 4.3.1 for

a detailed description of the scenario). That is, brie�y described, for some

speci�cation length in {50, 100, ..., 300} we derived 10 random speci�cations ϕ
in LTL and then introduced triple faults as described in Algorithm 9 on page 100

in order to derive ϕm from ϕ. Using our LTL encoding (see Section 3.3), we

then retrieved an assignment for τ ∧ ϕ ∧ ¬ϕm that de�nes a variable trace τ
of length k = 99 and loop-back time step l = 50. Using HS-DAG we solved the

diagnosis problem E(ϕm , τ) for a cardinality limit of three and recorded the

con�icts derived.

176

6.3 RC-Tree: An Improved Search Strategy for HS-DAG

-4

-3

-2

-1

0

1

2

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

3

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

1

2

3

4

100 200 300

#
o
f
D
A
G
/
t
r
e
e
n
o
d
e
s
(
1
0

y)

Formula size

HS-DAG RC-Tree

(a) Unbounded

-4

-3

-2

-1

0

1

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

1

2

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

1

2

3

4

50 100 200 300

#
o
f
D
A
G
/
t
r
e
e
n
o
d
e
s
(
1
0

y)

Formula size

Boolean HST

(b) Bounded, max. |MHS| = 3

Figure 6.5: Performance results using con�icts from LTL speci�cation diagnosis.

177

6 New Variants of Reiter’s Diagnosis Algorithm

Figure 6.5 reports on the run-time, node amount and memory consumption

(maximum resident size) regarding our experiments with the SCs recorded for

speci�cation diagnosis runs. Again, we ran both an unbounded and a bounded

(|MHS| ≤ 3) search for minimal hitting sets. While we observed a run-time

reduction of 58.6 percent for |ϕ | = 300 in the unbounded case, the computation

of Θ seems to entail a slight performance drawback (1.5 milliseconds instead of

1.3 milliseconds) for small samples with |ϕ | = 50. Nevertheless, we see also a

signi�cant reduction in the number of nodes, that is a reduction of 56.5 percent

for |ϕ | = 300. The node reduction is however accompanied by an increase in

the memory consumption from 40.6 MiB to 53.0 MiB, presumably related to

managing Θ. An implementation optimized for low memory consumption

could however drop the setΘ after the construction of a subtree and recompute

it if needed during a pruning/reconstruction step.

Like for the arti�cial scenario, in the bounded case we see only negligible

di�erences in the run-time, and the reduction in the number of nodes (41.2

percent for |ϕ | = 300) is outweighed regarding memory consumption by the

needs for Θ so that with 34.7 percent we have a similar memory penalty for

|ϕ | = 300 as in the unbounded case (30.6 percent).

While we concentrated so far on the improvements in respect of HS-DAG, let

us now include also HST and the Boolean algorithm into the picture. They are

interesting contenders as our RC-Tree shares ideas with both of them. On the

one hand we mimic the search strategy of the Boolean algorithm, and on the

other hand our construction of a tree instead of a DAG is driven by the same

motivation to reduce redundancy as found in HST. For the unbounded runs

using random con�icts in Figure 6.4a we see that HST has a slightly di�erent

run-time characteristic compared to HS-DAG. It was faster than HS-DAG for

|SC| . 60 and |SC| & 7000, while it was the other way around in between. It

also outperformed HS-DAG in terms of memory requirements and the number

of constructed nodes. These results are interesting because run-time relations

were reversed in Chapter 4, where we had the same scenario with a di�erent

con�guration (we had |COMP| = 100 there, while we now have |COMP| = 20)—

see Figure 4.6b on page 108. This suggests that HST’s strategy of restricting the

search to certain ranges in COMP gets more e�ective, the lower the number

of components is (at least for this scenario). RC-Tree, however, outperforms

both HS-DAG and HST consistently in terms of run-time, number of nodes

and memory requirements (where the latter is very similar to HST in a large

|SC| range). Interestingly, the Boolean algorithm still outperforms RC-Tree

178

6.3 RC-Tree: An Improved Search Strategy for HS-DAG

signi�cantly (run-time is more than one order of magnitude lower over the

majority of samples), indicating that the Boolean algorithm’s strategy of storing

only necessary intermediate solutions instead of the whole search tree is still

more e�cient for unbounded computations. The situation changes, however,

if we concentrate on the bounded searches in Figure 6.4b. As we have seen

in Chapter 4, the tree-based approaches can exploit cardinality limitations far

better than the Boolean algorithm, even though we used our optimized variant

“Bool-Rec.-V3-R4
′
-Stop” from Chapter 5 for the latter. Regarding HST we see

that while performance is slightly better than those of HS-DAG and RC-Tree

in terms of run-time, the number of nodes constructed in the bounded case is

even higher than for the original HS-DAG approach.

For the results covering our second scenario TS-MHS-R2 in Figure 6.5, we ob-

tained for the unbounded case the interesting result that HST is signi�cantly

slower than HS-DAG and RC-Tree (for |ϕ | = 150 almost three orders of mag-

nitude), also featuring higher memory requirements, while at the same time

producing a lower number of (�nal1) tree nodes. The Boolean algorithm out-

performs the tree-based ones for the unbounded case as for TS-MHS-A2 and

now also for the bounded case as we only encountered up to 74 con�icts in

this scenario (compared to up to 10
6
in the previous one). Interestingly, HST’s

run-time performance in the bounded case is close to the Boolean algorithm’s

(within a maximum factor of 2.5), while, however, still producing slightly more

tree nodes than our RC-tree.

Summing up the reported results, we see an attractive performance advan-

tage for our RC-Tree against the original variant of HS-DAG, speci�cally for

the unbounded MHS search. For very small cardinality limits like 3 the (still

noticeable) e�ects from the node reduction can be diminished by the needs for

maintaining Θ, so that we end up with virtually no di�erence in the run-times

but occasionally even experience a penalty in the memory consumption (for the

LTL samples we had a penalty, while there was none for the random samples).

Thus we see no reason why not to prefer our RC-Tree over HS-DAG, given

the reductions in the run-time, node number, and memory consumption (by

73.7 / 75.9 / 65.0 percent, respectively by factors 3.80 / 4.15 / 2.85, for the

random samples in the unbounded search) that we could achieve during our

tests. While RC-Tree could outperform HST as well in the unbounded cases

(sometimes by a very large margin of three orders of magnitude), we foundHST

1
Note that the number of DAG/tree nodes depicted resembles the �nal tree size, while it might

be larger during the computation if pruning occurs.

179

6 New Variants of Reiter’s Diagnosis Algorithm

again a performant contender of HS-DAG (and also RC-Tree) in the bounded

cases—con�rming our corresponding �ndings in Chapter 4. While the Boolean

algorithm is often superior to the tree-based HS-DAG, HST and RC-Tree, please

remember that the latter ones can also operate on-the-�y as well (that is, drive

the computation of needed con�icts), while the Boolean approach always relies

on pre-computed con�icts.

6.4 Summary and Discussion

As the primary implementation of Reiter’s original idea, HS-DAG is a central al-

gorithm in consistency-basedmodel-based diagnosis. The twoHS-DAGvariants

developed in this chapter have shown that even for very well-established algo-

rithms like HS-DAG, there is still room for improvement, speci�cally in concrete

applications. While several approaches have been developed for model-based

diagnosis since Reiter’s publication, HS-DAG is still a performant contender

amongst the set of approaches we have evaluated in Chapter 4.

In our �rst HS-DAG extension, we deal with the application of HS-DAG for

LTL speci�cation diagnosis using weak fault models. We show how to speed

up the diagnosis process by exploiting the system structure. Similar ideas have

been exploited previously for other domains, for example, in the context of

circuit diagnosis. There the concepts of dominators and cones are exploited

for circuit abstraction and a diagnosis speed up. Originating in the �eld of

program analysis using control �ow graphs [LT79; Pro59] and later adopted for

the analysis of digital circuits [KM87], a dominating component can “overrule”

the dominated ones (referred to as its corresponding cone) because, for example,

it is “closer to the output”. As dominators for an arbitrary graph structure can

be computed in linear time [Buc+08], approaches such as [Met+12; SH07] focus

their diagnostic search on those gates �rst. The resulting top level diagnoses are
then re�ned by creating further potential diagnoses with dominators replaced

by gates from their cone.

While cones are not directly exploitable for speci�cation diagnosis (we would

get a single (maximal) cone if applied to a static LTL parse tree or raise complex-

ity unnecessarily when temporally unfolding it) [Le+12; Man+11] peruse the no-

tion of (reverse) dominance for their SAT-basedRegister Transfer Level (RTL) de-

bugging, resulting in implied (non-)solutions. We showed that for consistency-

180

6.4 Summary and Discussion

based diagnosis using HS-DAG, we can achieve a speed-up of about factor

two also for our problem domain, using implied (inferred) solutions. On the

other hand, we showed that the implication of non-solutions does not speed up

HS-DAG’s diagnosis process due to the usage of a con�ict set cache. Instead, we

could optimizeHS-DAG’s search strategy in the context of a domination relation

by pruning the con�icts depending on the current tree context. The latter re-

sulted in up to 23% fewer HS-DAG nodes for our tests. We expect our reasoning

to be attractive also for similar, (temporal) formula-based descriptions.

Our second optimization for HS-DAG is a more general one, motivated by

our work on the Boolean algorithm in Chapter 5. The improved splitting rule

developed in this chapter is closely related to the search strategy employed by

HS-DAG in that it branches on every element of a given con�ict. Nonetheless,

the Boolean algorithm does not need to maintain a DAG due to the fact that

the whole set SC is given up-front. As a result, the Boolean algorithm is able

to classify hitting sets into those that contain a speci�c component and those

that don’t. Our RC-Tree algorithm takes up on this idea by maintaining an

“exclusion-set” Θ for each node/sub-DAG, such that only those solutions not
containing components from Θ are handled in the corresponding sub-DAG.

From an abstract point of view, our RC-Tree therefore mimics the Boolean’s

divide-and-conquer strategy by also removing already considered elements

from the (sub-)problem at hand. As we saw, our updated node-expansion

routine requires also a more complex pruning function that ensures the tree’s

compliance with our con�ict pruning rules regarding the exclusion-set.

Performance-wise, we could observe in our experiments bene�ts in the run-

time and memory for our random and LTL speci�cation diagnosis samples.

Internally, the nodes constructed could be reduced signi�cantly. While for

bounded runs (that is, limiting the cardinality of solutions to some maximum

|MHS|), our strategy occasionally induced some (minimal) performance and

memory overhead compared to the simpler HS-DAG strategy, we expect the

experienced bene�ts to grow with rising maximum cardinality. For unbounded

searches computing all solutions to a given problem, the experienced savings

were as high as 50–70 percent regarding the run-time, 60–75 percent regarding

the number of DAG nodes, and approximately 60 percent in respect of the

memory consumption (max. RSS).

181

6 New Variants of Reiter’s Diagnosis Algorithm

0

1

2

3

50 100 200 300

r
u
n
-
t
i
m
e
(
1
0

y
s
e
c
.
)

Formula size |ϕ |

1

2

100 200 300

m
a
x
.
R
S
S
(
1
0

y
M
i
B
)

Formula size |ϕ |

1

2

3

4

100 200 300

#
H
S
-
D
A
G

n
o
d
e
s
(
1
0

y)

Formula size |ϕ |
HS-DAG

HS-DAG+PruneUp+InferUp

RC-Tree

RC-Tree+PruneUp+InferUp

20

0

40

80

120

50 100 200 300

#
d
i
a
g
n
o
s
e
s

Formula size |ϕ |

|∆| ≤ 2

|∆| ≤ 3

Figure 6.6: Diagnosis performance for random samples when combining bothHS-DAG

optimizations.

While we evaluated our two optimizations individually for assessing their indi-

vidual impacts, there is the natural question of how they performwhen applied

together. We therefore ran our scenario TS-DIAG-LTL also on a HS-DAG variant

unifying the InferUp and PruneUp methods from Section 6.2 as well as the

exclusion set Θ from Section 6.3. As RC-Tree’s optimization has no e�ect on

single fault diagnoses (Θ of the root node is empty and therefore nothing can be

saved when checking the �rst tree level for consistency), Figure 6.6 shows the

corresponding results for double and triple fault diagnoses. We observe that

RC-Tree produces fewer DAG/tree nodes than HS-DAG +PruneUp+InferUp,

and the combination of the two approaches reduces their number even fur-

ther. Unfortunately, managing the exclusion sets (and possibly re-constructing

previously omitted tree parts during a pruning process) seems to induce a

182

6.4 Summary and Discussion

slight performance drawback compared to HS-DAG, both with and without the

PruneUp+InferUp optimization. While this is only a snapshot using a single

test scenario and relatively low cardinality constraints, the situation may vary

in other cases, showing that algorithmic improvements are often double-edged

swords—speeding up one case may degenerate performance in others.

183

7 Summary and Conclusions

The motivation for this work was the fact that we were still missing diagnostic

means to assist users in writing high-quality formal (temporal) speci�cations.

Formal speci�cations are a project’s lifeblood, enabling unambiguous communi-

cation about the functional requirements of a product or service. Industrial data

indicates that about 50 percent of a product’s defects occur due to �awed re-

quirements and up to 80 percent of a project’s rework e�orts can be traced back

to those requirement defects [Wie01; Wie13]. In �elds like Electronic Design

Automation (EDA), the full project work-�ow including design, development,

testing and even synthesis of a systemmay depend on formal speci�cations (see,

for example, projects like PROSYD [PRO13]). In order to improve a product’s

time-to-market and reduce the amount of rework e�ort needed, it is crucial to

write high-quality speci�cations.

Due to their concise syntax, however, formal speci�cations are often hard to

get right, especially for non-experienced users. Thus we see a strong need for

means to assist designers in writing correct speci�cations. Interactive tools like

IBM’s RuleBase PE [IBM13] and the academic RAT(sy) [Blo+07; Blo+10; Pil+06]

provide some help in this context, in addition to concepts like coverage [Kup06]

and vacuity [Fis+09]. The concept of unsatis�able cores—well known in the

Satis�ability (SAT) community—has also been transferred to Linear Temporal

Logic (LTL) speci�cations [Sch12]. Nevertheless, we are still missing diagnostic
informationwhen facing the situation that a given trace unexpectedly satis�es

(witness) or contradicts (counterexample) a speci�cation. Given a reasonable

185

7 Summary and Conclusions

large speci�cation and/or trace, a manual investigation of the failure cause may

be very cumbersome, such that an automated indication of possibly responsible

speci�cation (or trace) parts would be of great help.

This was the motivation for the consistency-oriented model-based diagnosis

approach for speci�cations in the Linear Temporal Logic (LTL), which we pre-

sented in Chapter 3. LTL forms the basis of modern speci�cation languages

like the Property Speci�cation Language (PSL) [EF06], SystemVerilog Asser-

tions (SVA) [VR05] or ForSpec [Arm+02] and is therefore a good starting point

for diagnostic means for temporal speci�cations. Our approach is based on the

assumption that the user provides a speci�cation and a lasso-shaped trace (a

well-known concept for designers to describe in�nite traces). Drawing on an

encoding of LTL’s semantics as a SAT problem—an idea already exploited in

the �eld of Bounded Model Checking (BMC) [Bie+99]—joined with a corre-

sponding encoding of the trace, we can then implement a diagnosis approach

in terms of operator occurrences. In this respect, we equip every operator oc-

currence with an assumption bit, the variation of which allows us to reason

about con�icts and diagnoses using a general-purpose SAT solver. Our encod-

ing is tailored to be e�cient in that it is given directly in Conjunctive Normal

Form (CNF) for all common LTL operators without the need of applying any

rewriting rules or conversion processes that may result in a size blow-up. More-

over, due to its structure-preserving nature, it allows to easily integrate both

Weak Fault Models (WFMs) and Strong Fault Models (SFMs) on the level of the

originally written operators. We have implemented a concrete Model-Based

Diagnosis (MBD) approach for LTL based on HS-DAG for both weak and some

prototypical strong fault modes, showing that our approach is viable and perfor-

mant. Furthermore, our LTL encoding is transparent to the concrete underlying

diagnosis approach as long as its reasoning can be based on a Boolean formula

tackled by a SAT solver.

Aiming to provide top-notch performance of our approach in order to ensure

user acceptance, we thus investigated various available diagnosis algorithms.

In Chapter 4 we presented an evaluation of several diagnosis approaches based

on di�erent scenarios, including, but not limited to, LTL speci�cation diagnosis.

We targeted the question of which concrete approach to choose when adopting

our speci�cation diagnosis approach (and model-based diagnosis in general)

in a certain project. Our evaluation also tackled algorithms computing Minimal

Hitting Sets (MHSs), a problem central to many con�ict-based consistency-

oriented diagnosis approaches, as well as “direct” MBD approaches. This way

186

we also investigated the research question whether reasoning engines speci�-

cally tailored for diagnosis provide advantages over general-purpose reasoning

engines like SAT solvers or Constraint Satisfaction Problem (CSP) solvers.

Our results showed that regarding theMHS computation using arti�cial (specif-

ically, disjoint and completely random) con�icts as well as con�icts that stem

from circuit diagnosis (that is, the ISCAS’85 benchmark suite) and LTL di-

agnosis, we found the Boolean algorithm, HS-DAG and GDE-Berge as the

best-performing algorithms (see Section 4.4.1.1 and 4.4.1.2). Nevertheless, by

employing di�erent implementation languages, we found that performance

relations for MHS algorithms may di�er between languages as well, suggesting

to be cautious when drawing conclusions from a single programming language.

Wotawa’s HST, an optimization of HS-DAG in terms of subset checks did not

show signi�cant advantages over HS-DAG and some tests exhibited huge per-

formance drawbacks for HST (see, for example, Figure 4.11). Regarding the

top-performers we saw that HS-DAG can accommodate better to cardinality-

bounded computations, whereas the Boolean algorithm performed best for

unbounded runs (compare, for example, Figure 4.5 and Figure 4.6b). This ob-

servation motivated our work on three optimizations on the Boolean algorithm

for bounded runs in Chapter 5.

For full diagnosis scenarios where diagnoses are computed directly from the

system description and observations, we also employed the ISCAS’85 and LTL

benchmarks, identifying direct approaches as advantageous over con�ict-driven

ones, especially for reasonable cardinality limits like two or three (that is, double

or triple fault diagnoses). For the ISCAS’85 scenario, our HST implementation

outperformed HS-DAG slightly on our 2011-generation MacBook Pro platform,

while it was the other way around on a 2009-generation MacPro, such that we

consider them largely on par. HS-DAG-HC based on a Horn-clause theorem

prover directly integrated with the diagnosis algorithm showed good run-

times for single fault diagnosis due to eliminating external tool calls unlike

our other approaches, but scaled signi�cantly worse than all other ones. For

the direct approaches, our pure Boolean SAT solver-based setup based on

SCryptoMinisat and Cardinality Networks outperformed both the constraint

solver-based andMAX-SAT-based ones (see Table 4.9 and Figure 4.14).Whilewe

expect this to be domain dependent, our LTL scenario con�rmed those trends,

suggesting this approach as an attractive solution due to its performance and

easy implementation (no maintenance of a tree is necessary). In the diagnosis

187

7 Summary and Conclusions

case also the implementation language of the diagnosis algorithm itself is

secondary to the total performance since run-time is dominated by theorem

prover calls (best seen from Table 4.8).

Chapter 5 provides the mentioned optimizations to the Boolean algorithm

targeted speci�cally at bounded computations. The Boolean algorithm is based

on �ve rules forming a divide-and-conquer approach upon a given set of con-

�icts (SC) until all hitting sets have been found (minimizing them at the end

to obtain MHS). A common approach for the main splitting rule (Rule 5) is

to choose an element hitting the most con�icts and thus eliminating it from

the largest amount of sets remaining, maximizing the problem size reduction.

While this was found to be a good approach for unbounded computations, we

propose a new Rule 5, better suitable for bounded computations. Based on the

simple fact that a hitting set must hit all con�icts in order to be a valid one,

we branch on all elements of a single con�ict, similar to HS-DAG’s strategy.

By furthermore using the smallest con�icts �rst, we can reduce the number

of iterations/branching steps necessary for the same computation. The other

optimizations concern the fourth rule addressing the case where a con�ict of

size one is left, clarifying some impreciseness in the original paper, as well

as stopping criteria indicating which rules need to be considered depending

on the di�erence in size between intermediate solutions and the global car-

dinality bound. In our evaluation we found that with our optimizations, the

Boolean algorithm is now a good-performing alternative to HS-DAG, especially

in the real-life scenarios based on ISCAS’85 con�icts. In this scenario, bounded

computations could be sped up by up to two orders of magnitude, while no

signi�cant drawbacks could be measured for unbounded scenarios based on

arti�cial con�icts (see Section 5.3.2).

Inspired by the performance of the Boolean algorithm and the idea to fuse it

with HS-DAG in order to create an on-the-�y pendant of the Boolean algorithm,

Chapter 6 presents a large step in this direction: RC-Tree. As our �rst of two

new HS-DAG variants, RC-Tree restricts the search space for a given sub-DAG,

such that it produces exactly those solutions containing a restricted set of

components. We do this by constructing for each node in the DAG a set of

excluded components ΘC , which are then deleted from considered con�icts in

the corresponding sub-DAG.While this ensures that still all minimal hitting sets

are found, it removes the redundancies of HS-DAG (fusing selection sequences

when they contain the same components), ending up in a tree-based search

again. Our experiments in Section 6.3.1 showed that this leads to a signi�cant

188

reduction in the number of internal tree nodes (up to 75%) and in run-time

(up to 70%) for sets of random con�icts, and slightly lower reductions for LTL

diagnosis con�icts.

Our second HS-DAG variant targets LTL speci�cation diagnosis as deployed

in Chapter 3, exploiting structural information from the LTL speci�cation to

speed up the diagnosis process. Similar to the concept of dominance de�ned

for �ow-graphs, which has also been exploited for digital circuits, we show how

to draw on the observation “if some sub-formula can resolve a con�ict, so can

all its parents”. This allows us to dynamically infer new solutions from existing

ones by replacing components by those representing their parent formulae. At

the same time it allows us to prune con�icts in the sense that we can remove

all super-formulae of those sub-formulae already considered. Implementing

our reasoning with HS-DAG allowed us to save up to 60% of run-time when

computing single-fault diagnoses for LTL speci�cations of length 200 (see the

discussion of our results in Section 6.2.2). While the node reduction was not

as high, our pruning rule could save up to 23% of the nodes when computing

triple fault diagnoses (which presumably raises with growing cardinality).

Summarizing, the work presented in this thesis creates a profound base for

applying model-based LTL speci�cation diagnosis to moderate-sized speci�ca-

tions (we considered formulas of a length of up to 300 operators and variables,

with traces as long as 1000 steps) in an e�cient manner. Especially direct SAT-

based diagnosis approaches provide good run-times while still providing diag-

noses in an iterative manner and being easy to implement. While due to the lack

of alternative comparable full-stack LTL speci�cation diagnosis approaches the

term “e�cient” has to be takenwith care, our experiments showed that both our

encoding and our direct diagnosis algorithm are superior to other approaches

in these �elds. Speci�cally, we compared the pure encoding’s performance to a

“naïve” approach were we encoded the trace as a model in NuSMV [Cim+02;

HJL05] and used its BDD/BMC-based model checking capabilities to check

whether it satis�es the given LTL formula. For assessing the diagnosis algorithm

we evaluated several corresponding approaches, including traditional con�ict-

based ones. Additionally, we have shown that structural information from a

speci�cation’s parse tree can be used to speed up the diagnosis process.

189

8 Outlook and Future Work

The work presented in this thesis is a �rst step towards the successful applica-

tion of diagnostic reasoning in the context of formal speci�cation development.

As we initially focused on LTL, the most obvious continuation of the work

presented in Chapter 3 is to develop an encoding for more elaborate logics such

as the Property Speci�cation Language (PSL), SystemVerilog Assertions (SVA)

or ForSpec. An important task there will be the coverage of so-called Sequen-

tial Extended Regular Expressions (SEREs), which allow the speci�cation of

sequential behavior using a syntax similar to standard regular expressions.

From an encoding point of view, the involved operators such as PSLs length-

matching and (requiring that the two SERE operands can be satis�ed on a trace

part of the same length) combined with inde�nite repetition (using the star (*)

operator known from normal regular expressions), however, pose considerable

challenges. In contrast to the encoding presented in Chapter 3, a similar one

covering SEREs will probably need a number of auxiliary Boolean variables

being at least quadratic in the size of the speci�cation. Additionally, a clever way

of encoding the corresponding operator semantics in CNF without a signi�cant

blow-up has to be found. For LTL itself, we have furthermore not yet tackled

the problem of selecting and implementing adequate strong fault modes (par-

ticularly ones accommodating structural faults), where a detailed study will be

necessary to identify a good set of modes.

For our evaluation of Model-Based Diagnosis (MBD) approaches in Chapter 4

there are obviously always more options to consider. While our evaluation

gives �rst hints about trends among the selected set of approaches, a more

in-depth investigation on their causes would be desirable. In this context, the

191

8 Outlook and Future Work

extension of the test scenarios to other application �elds will likely help to

gain insights. Also, while not included in this thesis, �rst experiments with

Answer Set Programming (ASP)-solvers demonstrate that there is still room

for improvement regarding the theorem provers. Naturally, also the topic of

parallelization of model-based diagnosis should be considered to enable even

further speed-ups. In this context, parallelizable ASP- and Satis�ability (SAT)-

solvers could provide means to tackle this challenge. Exploring incremental

SAT approaches [Sht01] will also provide interesting results.

Based on the similarities between a Minimal Hitting Set (MHS) algorithm and

the DPLL algorithm underlying most SAT solvers, a long-term goal should be

to combine those algorithms into one, for example, by integrating the diagnosis

process directly into the SAT solver. As our evaluation results have shown,

today’s SAT solvers are superior when dealing with consistency-based MBD

compared to classical con�ict-based approaches. Nevertheless, an integration

may relieve the need for specifying cardinality limits externally (through the

use of cardinality networks, for example) as well as enable further speed-ups

gained from domain knowledge. Our results from Section 6.2 have shown that

a signi�cant reduction in run-time is possible by using structural information

about the diagnosed system.

Eventually, the diagnosis approach should be integrated with a graphical tool

such as RAT(sy) [Blo+07; Blo+10] to enable its use by designers. In this context,

a further processing of the diagnosis results will be necessary in order present

them in a concise way, possibly drawing additional conclusions from the set

of diagnoses as well. Finally, also the simultaneous consideration of multiple

traces in one diagnosis run would be bene�cial.

192

Appendix

193

A List of Publications

I. Pill, T. Quaritsch, and F. Wotawa. From Con�icts to Diagnoses: An Empiri-
cal Evaluation of Minimal Hitting Set Algorithms. In: Proceedings of the 22nd
International Workshop on Principles of Diagnosis. DX 2011 (Murnau, Germany,

Oct. 4–7, 2011). 2011, pp. 203–210. url: http://thomas.quaritsch.at/pdf/dx2011-

pqw.pdf (visited on 05/20/2014)

I implemented the evaluated Python algorithms, conducted the experi-

mental evaluation supported by Ingo Pill and helped in proof-reading

the paper. I presented our work at the poster session of the venue.

I. Pill and T. Quaritsch. An LTL SAT Encoding for Behavioral Diagnosis. In:
Proceedings of the 23rd International Workshop on Principles of Diagnosis. DX 2012

(Malvern, United Kingdom, July 31–Aug. 3, 2012). 2012, pp. 67–74. url: http:

//thomas.quaritsch.at/pdf/dx2012-pq.pdf (visited on 04/24/2014)

I implemented the evaluated prototype, helped with the formalization

of the encoding and de�nitions, conducted the experimental evaluation

supported by Ingo Pill and helped in writing the evaluation and model-

based diagnosis section as well as proof-reading the paper. I presented

our work at the DX 2012 in Malvern, UK.

I. Pill and T. Quaritsch. Optimizations for the Boolean Approach to Com-
puting Minimal Hitting Sets. In: Proceedings of the 20th European Conference on
Arti�cial Intelligence. ECAI 2012 (Montpellier, France, Aug. 27–31, 2012). Vol. 242.

195

http://thomas.quaritsch.at/pdf/dx2011-pqw.pdf
http://thomas.quaritsch.at/pdf/dx2011-pqw.pdf
http://thomas.quaritsch.at/pdf/dx2012-pq.pdf
http://thomas.quaritsch.at/pdf/dx2012-pq.pdf

Appendix A List of Publications

Frontiers in Arti�cial Intelligence and Applications. IOS Press, 2012, pp. 648–

653. isbn: 978-1-61499-097-0. doi: 10 . 3233/978 - 1 - 61499 - 098 - 7 - 648. url:

http://thomas.quaritsch.at/pdf/ecai2012-pq.pdf (visited on 03/28/2014)

I helped developing the underlying ideas as well as their formalizations,

implemented the evaluated algorithmic variants and conducted the ex-

perimental evaluation together with Ingo Pill. I helped in writing the

approach, evaluation and conclusions sections as well as proof-reading

the paper. I presented our work at the ECAI 2012 in Montpellier, France.

I. Nica, I. Pill, T. Quaritsch, and F. Wotawa. The Route to Success – A Per-
formance Comparison of Diagnosis Algorithms. In: Proceedings of the 23rd In-
ternational Joint Conference on Arti�cial Intelligence. IJCAI 2013 (Beijing, China,

Aug. 3–9, 2013). AAAI Press, 2013, pp. 1039–1045. url: http : // ijcai . org/

papers13/Papers/IJCAI13-158.pdf (visited on 03/28/2014)

I implemented four of the presented diagnostic setups, helped in writing

the corresponding algorithm descriptions as well as the experimental

results section and proof-reading the paper.

I. Pill and T. Quaritsch. Behavioral Diagnosis of LTL Speci�cations at Oper-
ator Level. In: Proceedings of the 23rd International Joint Conference on Arti�cial
Intelligence. IJCAI 2013 (Beijing, China, Aug. 3–9, 2013). AAAI Press, 2013,

pp. 1053–1059. url: http :// ijcai .org/papers13/Papers/IJCAI13 - 160 .pdf

(visited on 03/28/2014)

I implemented the evaluated prototype, helped with the formalization

of the encoding and de�nitions, conducted the experimental evaluation

supported by Ingo Pill and helped in writing the encoding, evaluation

and conclusions sections as well as proof-reading the paper.

I. Pill and T. Quaritsch.AndYetAnother Variant of Reiter’s CompleteOn-the-
�y Hitting Set Algorithm. In: Proceedings of the 24th International Workshop on
Principles of Diagnosis. DX 2013 (Jerusalem, Israel, Oct. 1–4, 2013). 2013, pp. 210–

215. url: http : // thomas . quaritsch . at /pdf/dx2013a - pq . pdf (visited on

05/09/2014)

196

http://dx.doi.org/10.3233/978-1-61499-098-7-648
http://thomas.quaritsch.at/pdf/ecai2012-pq.pdf
http://ijcai.org/papers13/Papers/IJCAI13-158.pdf
http://ijcai.org/papers13/Papers/IJCAI13-158.pdf
http://ijcai.org/papers13/Papers/IJCAI13-160.pdf
http://thomas.quaritsch.at/pdf/dx2013a-pq.pdf

I helped developing the underlying ideas as well as their formalizations,

implemented the evaluated prototype and conducted the experimental

evaluation together with Ingo Pill. I helped in writing the preliminaries,

approach, evaluation and conclusions sections as well as proof-reading

the paper.

I. Pill and T. Quaritsch. Exploiting Parse Trees in LTL Speci�cationDiagnosis.
In: Proceedings of the 24th International Workshop on Principles of Diagnosis. DX
2013 (Jerusalem, Israel, Oct. 1–4, 2013). 2013, pp. 59–64. url: http://thomas.

quaritsch.at/pdf/dx2013b-pq.pdf (visited on 05/09/2014)

I helped in developing the underlying ideas as well as their formalizations,

implemented the evaluated prototype and conducted the experimental

evaluation together with Ingo Pill. I helped in writing the preliminaries,

approach, implementation/evaluation and conclusions sections as well

as proof-reading the paper.

197

http://thomas.quaritsch.at/pdf/dx2013b-pq.pdf
http://thomas.quaritsch.at/pdf/dx2013b-pq.pdf

B List of Abbreviations

ASP Answer Set Programming . 192

ATMS Assumption-based Truth Maintenance System . 9

BCP Boolean Constraint Propagation . 27

BDD Binary Decision Diagram . 58

BMC Bounded Model Checking . 186

CDCL Con�ict-Driven Clause Learning . 29

CNF Conjunctive Normal Form . 186

CSP Constraint Satisfaction Problem . 187

CTL Computation Tree Logic . 17

DAG Directed Acyclic Graph . 70

DNF Disjunctive Normal Form . 140

EDA Electronic Design Automation . 185

GDE General Diagnostic Engine . 68

GUI Graphical User Interface . 55

LTL Linear Temporal Logic . 185

MBD Model-Based Diagnosis . 191

MCS Minimal Correction Subset . 35

MHS Minimal Hitting Set . 192

MOMS Maximum Occurence in clauses of Minimum Size 28

MUC Minimal Unsatis�able Core . 58

OEMS Odd-Even Mergesort . 67

PSL Property Speci�cation Language . 191

RAM Random Access Memory . 168

RSS Resident Set Size . 176

199

Appendix B List of Abbreviations

RTL Register Transfer Level .180

SAT Satis�ability . 192

SDE Switching Diagnostic Engine . 66

SERE Sequential Extended Regular Expression . 191

SFM Strong Fault Model . 186

SMT Satis�ability Modulo Theories . 86

SOA Service Oriented Architecture . 63

SSD Solid State Drive . 55

SVA SystemVerilog Assertions . 191

TP Theorem Prover . 88

UC Unsatis�able Core . 33

WFM Weak Fault Model . 186

200

C Bibliography

[Acc04] Accellera. Property Speci�cation Language Reference Manual. Version
1.1. June 9, 2004. url: http://www.eda.org/vfv/docs/PSL-

v1.1.pdf (visited on 05/05/2014) (cit. on p. 17).

[Aho+06] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-Wesley. 2006.

isbn: 0-321-48681-1 (cit. on p. 28).

[APT79] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm
for testing the truth of certain quanti�ed boolean formulas. In:
Information Processing Letters 8/3 (1979), pp. 121–123 (cit. on p. 28).

[Arm+02] R. Armoni, L. Fix, et al.The ForSpec Temporal Logic: ANewTem-
poral Property-Speci�cation Language. In: Tools and Algorithms
for the Construction and Analysis of Systems. 8th International Confer-
ence, TACAS 2002 Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002 Grenoble, France, April
8–12, 2002 Proceedings. Lecture Notes in Computer Science 2280.

Springer, 2002, pp. 296–311 (cit. on pp. 17, 186).

[AS09] G.Audemard andL. Simon.Predicting LearntClausesQuality in
Modern SAT Solvers. In: Proceedings of the 21st International Joint
Conference on Arti�cal Intelligence. 2009, pp. 399–404 (cit. on p. 30).

[AS87] B. Alpern and F. B. Schneider. Recognizing safety and liveness.
In: Distributed Computing 2/3 (1987), pp. 117–126 (cit. on p. 22).

201

http://www.eda.org/vfv/docs/PSL-v1.1.pdf
http://www.eda.org/vfv/docs/PSL-v1.1.pdf

Appendix C Bibliography

[Así+09] R. Asín, R. Nieuwenhuis, A. Oliveras, and E. Rodríguez-Carbonell.

CardinalityNetworks andTheirApplications. In:Theory andAp-
plications of Satis�ability Testing – SAT 2009. 12th International Con-
ference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings.
Lecture Notes in Computer Science 5584. Springer, 2009, pp. 167–

180 (cit. on pp. 67, 82).

[AST13] ASTM INTERNATIONAL. Form and Style for ASTM Standards.
ASTM Blue Book. 2013. url: http://www.astm.org/COMMIT/

Blue_Book.pdf (visited on 05/22/2014) (cit. on p. 1).

[AvG09] R. Abreu and A. van Gemund. A Low-Cost Approximate Mini-
mal Hitting Set Algorithm and its Application to Model-Based
Diagnosis. In:Proceedings, the Eighth Symposium onAbstraction, Re-
formulation, and Approximation. 2009 (cit. on pp. 13, 68, 79).

[AZvG07] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the Accu-
racy of Spectrum-based Fault Localization. In: Testing: Academic
and Industrial Conference Practice and Research Techniques – MUTA-
TION, 2007. 2007, pp. 89–98 (cit. on p. 78).

[Bat68] K. Batcher. Sorting Networks and their applications. In: Proceed-
ings of the April 30–May 2, 1968, spring joint computer conference.
1968, pp. 307–314 (cit. on pp. 67, 82).

[Bee+09] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Tre�er. Explain-
ing Counterexamples Using Causality. In: Computer Aided Veri�-
cation. 21st International Conference, CAV2009, Grenoble, France, June
26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science

5643. Springer, 2009, pp. 94–108 (cit. on pp. 2, 38, 63).

[Ber89] C. Berge. Hypergraphs. Combinatorics of Finite Sets. Elsevier, 1989.
isbn: 0-444-87489-5 (cit. on pp. 15, 68, 80).

[Bie+99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model
Checkingwithout BDDs. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. 5th International Conference, TACAS’99,
Held as Part of the Joint EuropeanConferences on Theory and Practice of
Software, ETAPS’99, Amsterdam, The Netherlands, March 22–28, 1999
Proceedings. Lecture Notes in Computer Science 1579. Springer,

1999, pp. 193–207 (cit. on pp. 18, 20, 21, 38, 41, 42, 186).

202

http://www.astm.org/COMMIT/Blue_Book.pdf
http://www.astm.org/COMMIT/Blue_Book.pdf

[Bie08] A. Biere. PicoSAT Essentials. In: Journal on Satis�ability, Boolean
Modeling and Computation 4 (2008), pp. 75–97 (cit. on pp. 30, 31,

55).

[Bie10] A. Biere. Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race
2010. Technical Report. Institute for Formal Models and Veri�ca-

tion, Johannes Kepler University, 2010 (cit. on p. 31).

[Blo+07] R. Bloem, R. Cavada, I. Pill, M. Roveri, and A. Tchaltsev. RAT:
A Tool for the Formal Analysis of Requirements. In: Computer
Aided Veri�cation. 19th International Conference, CAV 2007, Berlin,
Germany, July 3-7, 2007, Proceedings. Lecture Notes in Computer

Science 4590. Springer, 2007, pp. 263–267 (cit. on pp. 2, 38, 185,

192).

[Blo+10] R. Bloem, A. Cimatti, et al.RATSY –ANewRequirements Analy-
sis Tool with Synthesis. In: Computer Aided Veri�cation. 22nd Inter-
national Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Pro-
ceedings. Lecture Notes in Computer Science 6174. 2010, pp. 425–

429 (cit. on pp. 2, 38, 185, 192).

[BS97] R. J. Bayardo and R. C. Schrag.Using CSP Look-Back Techniques
to Solve Real-World SAT Instances. In: Proceedings of the 14th Na-
tional Conference on Arti�cial Intelligence. 1997, pp. 203–208 (cit. on

pp. 29, 30).

[Buc+08] A. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. Tarjan,

and J. Westbrook. Linear-Time Algorithms for Dominators and
Other Path-Evaluation Problems. In: SIAM Journal on Computing
38/4 (2008), pp. 1533–1573 (cit. on p. 180).

[CA93] J. M. Crawford and L. D. Auton. Experimental Results on the
Crossover Point in Satis�ability Problems. In: Proceedings of the
11th National Conference on Arti�cial Intelligence. 1993, pp. 21–27 (cit.
on p. 30).

[CGH97] E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another Look at
LTL Model Checking. In: Formal Methods in System Design 10/1

(1997), pp. 47–71 (cit. on p. 42).

203

Appendix C Bibliography

[Cim+02] A. Cimatti, E. Clarke, et al. NuSMV Version 2: An OpenSource
Tool for Symbolic Model Checking. In: Computer Aided Veri�ca-
tion. 14th International Conference, CAV 2002 Copenhagen, Denmark,
July 27–31, 2002. Proceedings. Lecture Notes in Computer Science

2404. Springer, 2002, pp. 359–364 (cit. on pp. 55, 189).

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In:
Proceedings of the 3rd annual ACM symposium on Theory of Comput-
ing. 1971, pp. 151–158 (cit. on p. 24).

[CRS04] A. Cimatti, M. Roveri, and D. Sheridan. Bounded Veri�cation
of Past LTL. In: Formal Methods in Computer-Aided Design. 5th In-
ternational Conference, FMCAD 2004, Austin, Texas, USA, November
15-17, 2004. Proceedings. Lecture Notes in Computer Science 3312.

2004, pp. 245–259 (cit. on pp. 38, 41).

[DG84] W. F. Dowling and J. H. Gallier. Linear-time algorithms for test-
ing the satis�ability of propositional horn formulae. In:The Jour-
nal of Logic Programming 1/3 (1984), 267–284 (cit. on p. 27).

[DGV99] M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved Automata
Generation for Linear Temporal Logic. In: Computer Aided Veri-
�cation. 11th International Conference, CAV’99 Trento, Italy, July 6–10,
1999. Proceedings. LectureNotes inComputer Science 1633. Springer,

1999, pp. 249–260 (cit. on pp. 55, 99, 168).

[DHN06] N. Dershowitz, Z. Hanna, andA.Nadel.AScalableAlgorithm for
Minimal Unsatis�able Core Extraction. In: Theory and Applica-
tions of Satis�ability Testing - SAT 2006. 9th International Conference,
Seattle, WA, USA, August 12-15, 2006. Proceedings. Lecture Notes in

Computer Science 4121. 2006, pp. 36–41 (cit. on p. 35).

[DIM93] Center for Discrete Mathematics & Theoretical Computer Science.

Satis�ability Suggested Format. 1993. url: ftp ://dimacs . rutgers .

edu/pub/challenge/satis�ability/doc/satformat.dvi (visited on

02/05/2014) (cit. on p. 26).

[dKle09] J. deKleer.Mininimumcardinality candidate generation. In: 20th
International Workshop on Principles of Diagnosis. 2009, pp. 397–402
(cit. on pp. 66, 80).

204

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi

[dKle11] J. de Kleer.Hitting set algorithms formodel-based diagnosis. In:
Proceedings of the 22nd International Workshop on Principles of Diag-
nosis. DX 2011 (Murnau, Germany, Oct. 4–7, 2011). 2011, pp. 100–

105 (cit. on p. 82).

[dKle86] J. de Kleer. An assumption-based TMS. In: Arti�cial Intelligence
28/2 (1986), pp. 127–162 (cit. on p. 66).

[dKMR92] J. de Kleer, A. K. Mackworth, and R. Reiter. Characterizing diag-
noses and systems. In:Arti�cial Intelligence 56/2-3 (1992), pp. 192–
222 (cit. on p. 52).

[dKW87] J. de Kleer and B. C. Williams. Diagnosing Multiple Faults. In:
Arti�cial Intelligence 32/1 (1987), pp. 97–130 (cit. on pp. 3, 8–10, 12,

66, 68, 80).

[dKW89] J. de Kleer and B. C.Williams.Diagnosis with BehavioralModes.
In: Proceedings of the 11th International Joint Conference on Arti�cial
Intelligence. Detroit, MI, USA, August 1989. Vol. 2. 1989, pp. 1324–
1330 (cit. on p. 48).

[DLL62] M. Davis, G. Logeman, and D. Loveland. A Machine Program
for Theorem-Proving. In: Communications of the ACM 5/7 (1962),

pp. 394–397 (cit. on p. 28).

[dMB08] L. de Moura and N. Bjørner. Z3: An E�cient SMT Solver. In:
Tools andAlgorithms for the Construction andAnalysis of Systems. 14th
International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Bu-
dapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture Notes

in Computer Science 4963. 2008, pp. 337–340 (cit. on p. 55).

[DP60] M. Davis and H. Putnam. A Computing Procedure for Quanti�-
cation Theory. In: Journal of the ACM 7/3 (1960), pp. 201–215 (cit.

on pp. 28, 32).

[DS92] O. Dressler and P. Struss. Back to defaults: characterizing and
computing diagnoses as coherent assumption sets. In: Proceed-
ings of the 10th European Conference on Arti�cial intelligence. 1992,
pp. 719–723 (cit. on p. 52).

205

Appendix C Bibliography

[Dub+93] O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT vs. UN-
SAT. In: Cliques, Coloring and Satis�ablity. Second DIMACS Imple-
mentation Challenge, October 11-13, 1993. Vol. 26. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science. 1993,

pp. 415–434 (cit. on p. 30).

[EF06] C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer
US, 2006. isbn: 978-0-387-35313-5 (cit. on pp. 17, 186).

[EGM03] T. Eiter, G. Gottlob, and K. Makino. New Results on Monotone
Dualization andGeneratingHypergraphTransversals. In:SIAM
Journal on Computing 32/2 (2003), pp. 514–537 (cit. on p. 16).

[EH86] E. A. Emerson and J. Y.Halpern. “Sometimes” and “not never” re-
visited: on branching versus linear time temporal logic. In: Jour-
nal of the ACM 33/1 (1986), pp. 151–178 (cit. on p. 17).

[EMG08] T. Eiter, K. Makino, and G. Gottlob. Computational aspects of
monotone dualization: A brief survey. In: Discrete Applied Math-
ematics 156 (2008), pp. 2035–2049 (cit. on p. 16).

[ES04] N. Eén and N. Sörensson. An Extensible SAT-solver. In: Theory
and Applications of Satis�ability Testing. 6th International Conference,
SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003, Selected Re-
vised Papers. Lecture Notes in Computer Science 2919. Springer,

2004, pp. 502–518 (cit. on pp. 29, 30, 55).

[ES06] N. Eén andN. Sörensson.TranslatingPseudo-BooleanConstraints
into SAT. In: Journal on Satis�ability, Boolean Modeling and Compu-
tation 2 (2006), pp. 1–26 (cit. on p. 94).

[FD95] Y. E. Fattah and R. Dechter. Diagnosing tree-decomposable cir-
cuits. In: Proceedings of the 14th International Joint Conference on Ar-
ti�cial Intelligence – Volume 2. 1995, pp. 1742–1748 (cit. on p. 67).

[Fel+10] A. Feldman, G. Provan, J. de Kleer, S. Robert, and A. van Gemund.

SolvingModel-BasedDiagnosis ProblemswithMax-SATSolvers
and Vice Versa. In: Proceedings of the 21st International Workshop on
Principles of Diagnosis. 2010 (cit. on pp. 67, 69, 82, 83, 93).

[FGN90] G. Friedrich, G. Gottlob, and W. Nejdl. Physical Impossibility
Instead of FaultModels. In:AAAI’90 Proceedings of the 8th National
conference on Arti�cial Intelligence – Volume 1. 1990, pp. 331–336 (cit.
on p. 65).

206

[Fis+09] D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and M. Y. Vardi.A
Framework for Inherent Vacuity. In: Hardware and Software: Ver-
i�cation and Testing. 4th International Haifa Veri�cation Conference,
HVC 2008, Haifa, Israel, October 27-30, 2008. Proceedings. Lecture
Notes in Computer Science 5394. Springer, 2009, pp. 7–22 (cit. on

pp. 2, 37, 185).

[FK96] M. L. Fredman and L. Khachiyan. On the Complexity of Dual-
ization of Monotone Disjunctive Normal Forms. In: Journal of
Algorithms 21/3 (1996), 618––628 (cit. on p. 16).

[FN97] P. Fröhlich andW.Nejdl.AStaticModel-BasedEngine forModel-
Based Reasoning. In: Proceedings of the 15th International Joint Con-
ference on Arti�cial Intelligence. IJCAI 97, Nagoya, Japan, August 23-
29, 1997. Vol. 1. 2 vols. 1997, pp. 466–473 (cit. on p. 66).

[Fre95] J.W. Freeman. ImprovementsToPropositional Satis�ability Search
Algorithms. Dissertation. University of Pennsylvania, 1995 (cit. on

p. 30).

[FSW02] A. Frisch, D. Sheridan, and T. Walsh. A Fixpoint Based Encoding
for Bounded Model Checking. In: Formal Methods in Computer-
Aided Design. 4th International Conference, FMCAD 2002 Portland,
OR, USA, November 6–8, 2002 Proceedings. Lecture Notes in Com-

puter Science 2517. 2002, pp. 238–255 (cit. on pp. 38, 41).

[Geb+07] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. clasp: A
Con�ict-Driven Answer Set Solver. In: Logic Programming and
Nonmonotonic Reasoning. 9th International Conference, LPNMR 2007,
Tempe, AZ, USA, May 15-17, 2007. Proceedings. Lecture Notes in

Computer Science 4483. 2007, pp. 260–265 (cit. on p. 31).

[GJM06] I. P. Gent, C. Je�erson, and I. Miguel. MINION: A Fast, Scalable,
Constraint Solver. In: ECAI 2006. 17th European Conference on Arti-
�cial Intelligence August 29 – September 1, 2006, Riva del Garda, Italy.
Proceedings. Frontiers in Arti�cial Intelligence and Applications

141. IOS Press, 2006, pp. 98–102 (cit. on p. 94).

[GN07] E. Goldberg and Y. Novikov. BerkMin: A fast and robust Sat-
solver. In: Discrete Applied Mathematics 155/12 (2007): SAT 2001,
the 4th International Symposium on the Theory and Applications of Sat-
is�ability Testing, 1549–1561 (cit. on p. 30).

207

Appendix C Bibliography

[Gom+08] C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satis�abil-
ity Solvers. In: Handbook of Knowledge Representation. Ed. by F. V.

Harmelen, V. Lifschitz, and B. Porter. Elsevier, 2008. isbn: 978-

0444522115 (cit. on pp. 24, 25, 28–30, 32).

[GP87] H. Ge�ner and J. Pearl. An Improved Constraint-Propagation
Algorithm for Diagnosis. In: Proceedings of the 10th International
Joint Conference on Arti�cial Intelligence. Milan, Italy, August 1987.
1987, pp. 1105–1111 (cit. on p. 94).

[GSK98] C. P. Gomes, B. Selman, and H. Kautz. Boosting combinatorial
search through randomization. In: AAAI ’98/IAAI ’98 Proceedings
of the 15th National/10th Conference onArti�cial Intelligence/Innovative
Applications of Arti�cial Intelligence. 1998, pp. 431–437 (cit. on p. 29).

[GSW89] R. Greiner, B. A. Smith, and R. W. Wilkerson. A Correction to the
Algorithm in Reiter’s Theory of Diagnosis. In: Arti�cial Intelli-
gence 41/1 (1989), pp. 79–88 (cit. on pp. 13, 14, 69–71, 125).

[GT95] A. V. Gelder and Y. K. Tsuji. Satis�ability Testing with More Reason-
ing and Less Guessing. Technical Report. University of California,

1995 (cit. on p. 30).

[GTdR06] J. García-Fanjul, J. Tuya, and C. de la Riva.Generating Test Cases
Speci�cations for BPEL Compositions of Web Services Using
SPIN. In: International Workshop onWeb Services Modeling and Test-
ing. 2006, pp. 83–94 (cit. on p. 63).

[HJL05] K.Heljanko, T. Junttila, and T. Latvala. Incremental andComplete
BoundedModel Checking for Full PLTL. In: Computer Aided Ver-
i�cation. 17th International Conference, CAV 2005, Edinburgh, Scot-
land, UK, July 6-10, 2005. Proceedings. Lecture Notes in Computer

Science 3576. Springer, 2005, pp. 98–111 (cit. on pp. 38, 41, 42, 58,

189).

[HJS09] Y. Hamadi, S. Jabbour, and L. Sais. ManySAT: a Parallel SAT
Solver. In: Journal on Satis�ability, Boolean Modeling and Computa-
tion 6 (2009), pp. 245–262 (cit. on p. 31).

[Hor51] A. Horn. On Sentences Which are True of Direct Unions of Al-
gebras. In: The Journal of Symbolic Logic 16/1 (1951), pp. 14–21 (cit.
on p. 27).

208

[HR04] M. Huth and M. Ryan. Logic in Computer Science. Cambridge Uni-

versity Press, 2004. isbn: 978-0-521-54310-1 (cit. on pp. 24, 25).

[HYH99] M. Hansen, H. Yahlcin, and J. P. Hayes. Unveiling the ISCAS-
85 Benchmarks: a case study in reverse engineering. In: IEEE
Design and Test of Computers 6/3 (1999), pp. 72–80 (cit. on pp. 96,

98, 127).

[IBM13] IBM. RuleBase PE homepage. 2013. url: https ://www.research .

ibm.com/haifa/projects/veri�cation/RB_Homepage (visited on

02/27/2014) (cit. on pp. 2, 38, 185).

[Jun04] U. Junker. QUICKXPLAIN: Preferred Explanations and Relax-
ations for Over-Constrained Problems. In: Proceedings of the 19th
National Conference on Arti�cial Intelligence, 16th Innovative Applica-
tions of Arti�cial Intelligence Conference. July 9-13, 2005, Pittsburgh,
Pennsylvania, USA. 2004, pp. 167–172 (cit. on p. 66).

[KM87] T. Kirkland and M. R. Mercer. A topological search algorithm
for ATPG. In: Proceedings of the 24th ACM/IEEE Design Automation
Conference. 1987, pp. 502–508 (cit. on pp. 160, 180).

[Kup06] O. Kupferman. Sanity Checks in Formal Veri�cation. In: CON-
CUR 2006 – Concurrency Theory. 17th International Conference, CON-
CUR 2006, Bonn, Germany, August 27-30, 2006. Proceedings. Lecture
Notes in Computer Science 4137. Springer, 2006, pp. 37–51 (cit. on

pp. 2, 37, 185).

[Law66] E. L. Lawler. Covering Problems: Duality Relations and a New
Method of Solution. In: SIAM Journal of AppliedMathematics 14/5
(1966), 1115–1132 (cit. on p. 80).

[Le+12] B. Le,H.Mangassarian, B. Keng, andA.Veneris.Non-Solution Im-
plications using Reverse Domination in a Modern SAT-based
Debugging Environment. In: 2012 Design, Automation & Test in
Europe Conference&Exhibition.DATE 2012,Dresden, Germany,March
12-16. 2012, pp. 629–634 (cit. on p. 180).

[LeB09] D. Le Berre. Understanding and using SAT solvers. Presenta-
tion at the Summer School 2009: Veri�cation Technology, Sys-

tems & Applications, Nancy, October 12-16, 2009. 2009. url: http:

//www.mpi-inf.mpg.de/vtsa09/slides/leberre2.pdf (visited on

03/14/2014) (cit. on p. 30).

209

https://www.research.ibm.com/haifa/projects/verification/RB_Homepage
https://www.research.ibm.com/haifa/projects/verification/RB_Homepage
http://www.mpi-inf.mpg.de/vtsa09/slides/leberre2.pdf
http://www.mpi-inf.mpg.de/vtsa09/slides/leberre2.pdf

Appendix C Bibliography

[Lif+09] M. Li�ton, M. Mneimneh, I. Lynce, Z. Andraus, J. Marques-Silva,

and K. Sakallah. A branch and bound algorithm for extracting
smallestminimal unsatis�able subformulas. In:Constraints 14/4
(2009), pp. 415–442 (cit. on p. 35).

[LJ03] L. Lin and Y. Jiang. The computation of hitting sets: Review
and new algorithms. In: Information Processing Letters 86/4 (2003),
pp. 177–184 (cit. on pp. vi, viii, 68, 75, 76, 135, 139–141).

[Llo87] J.W. Lloyd. Foundations of Logic Programming. 2nd edition. Springer,
1987. isbn: 978-3540181996 (cit. on p. 27).

[LM03] I. Lynce and J. P.Marques-Silva.AnOverviewofBacktrackSearch
Satis�ability Algorithms. In: Annals of Mathematics and Arti�cial
Intelligence 37/3 (2003), pp. 307–326 (cit. on p. 32).

[LM04] I. Lynce and J. P. Marques-Silva.OnComputingMinimumUnsat-
is�able Cores. In: SAT 2004 - The Seventh International Conference
on Theory and Applications of Satis�ability Testing. 2004, pp. 305–310
(cit. on pp. 33–35).

[LP10] D. Le Berre and A. Parrain. The Sat4j library, release 2.2. In:
Journal on Satis�ability, Boolean Modeling and Computation 7 (2010),

pp. 59–64 (cit. on p. 31).

[LS08] M. H. Li�ton and K. A. Sakallah. Algorithms for Computing
Minimal Unsatis�able Subsets of Constraints. In: Journal of Au-
tomated Reasoning 40/1 (2008), pp. 1–33 (cit. on p. 35).

[LT79] T. Lengauer and R. E. Tarjan. A fast algorithm for �nding domi-
nators in a �owgraph. In: ACM Transactions on Programming Lan-
guages and Systems 1/1 (1979), pp. 121–141 (cit. on pp. 160, 180).

[Man+11] H.Mangassarian, A. Veneris, D. E. Smith, and S. Safarpour.Debug-
ging with Dominance: On-the-�y RTL Debug Solution Impli-
cations. In: 2011 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). 2011, pp. 587–594 (cit. on p. 180).

[Mar99] J. Marques-Silva. The Impact of Branching Heuristics in Propo-
sitional Satis�ability Algorithms. In: Progress in Arti�cial Intel-
ligence. 9th Portuguese Conference on Arti�cial Intelligence, EPIA ’99
Évora, Portugal, September 21–24, 1999 Proceedings. Lecture Notes

in Computer Science 1695. Springer, 1999, pp. 62–74 (cit. on p. 29).

210

[Met+12] A. Metodi, R. Stern, M. Kalech, andM. Codish.CompilingModel-
Based Diagnosis to Boolean Satisfaction. In: Proceedings of the
Twenty-Sixth AAAI Conference on Arti�cial Intelligence, July 22-26,
2012, Toronto, Ontario, Canada. 2012 (cit. on pp. 63, 67, 82, 94, 164,

180).

[MFM05] Y. S. Mahajan, Z. Fu, and S. Malik. Zcha�2004: An E�cient SAT
Solver. In: Theory and Applications of Satis�ability Testing. 7th Inter-
national Conference, SAT 2004, Vancouver, BC, Canada, May 10-13,
2004, Revised Selected Papers. Lecture Notes in Computer Science

3542. 2005, pp. 360–375 (cit. on p. 30).

[Min88] M. Minoux. LTUR: a simpli�ed linear-time unit resolution al-
gorithm for Horn formulae and computer implementation. In:
Information Processing Letters 29/1 (1988), pp. 1–12 (cit. on p. 92).

[ML11] J. P. Marques-Silva and I. Lynce. On Improving MUS Extraction
Algorithms. In: Theory and Applications of Satis�ability Testing -
SAT 2011. 14th International Conference, SAT 2011, Ann Arbor, MI,
USA, June 19-22, 2011. Proceedings. Lecture Notes in Computer Sci-

ence 6695. 2011, pp. 159–173 (cit. on p. 35).

[Mos+01] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.

Cha�: Engineering an E�cient SAT Solver. In: Proceedings of the
38th Annual Design Automation Conference. 2001, pp. 530–535 (cit.

on pp. 29, 30).

[Moz92] I. Mozetic. A Polynomial-time Algorithm For Model-based Di-
agnosis. In: 10th European Conference on Arti�cial Intelligence. ECAI
92, Vienna, Austria, August 3-7, 1992. 1992, pp. 729–733 (cit. on

p. 66).

[MS96a] J. P.Marques-Silva andK.A. Sakallah.Con�ict Analysis In Search
Algorithms For Satis�ability. In: Proceedings of the 8th IEEE Inter-
national Conference on Tools with Arti�cial Intelligence. 1996, pp. 467–
469 (cit. on pp. 29, 30).

[MS96b] J. P. Marques-Silva and K. A. Sakallah. GRASP – A New Search
Algorithm for Satis�ability. In: Proceedings of the 1996 IEEE/ACM
International Conference on Computer-aided Design. 1996, pp. 220–
227 (cit. on pp. 29, 30).

211

Appendix C Bibliography

[MS99] J. Mauss and M. Sachenbacher. Con�ict-Driven Diagnosis using
Relational Aggregations. In: Proceedings of the 10th International
Workshop on Principles of Diagnosis (Dx99). 1999 (cit. on p. 94).

[Nad10] A. Nadel. Boosting Minimal Unsatis�able Core Extraction. In:
Formal Methods in Computer-Aided Design (FMCAD), 2010. 2010,
pp. 221–229 (cit. on p. 35).

[Nic+13] I. Nica, I. Pill, T. Quaritsch, and F. Wotawa. The Route to Suc-
cess – A Performance Comparison of Diagnosis Algorithms. In:
Proceedings of the 23rd International Joint Conference on Arti�cial In-
telligence. IJCAI 2013 (Beijing, China, Aug. 3–9, 2013). AAAI Press,

2013, pp. 1039–1045. url: http://ijcai .org/papers13/Papers/

IJCAI13-158.pdf (visited on 03/28/2014) (cit. on pp. 4, 7, 65, 130,

196).

[NRS13] A. Nadel, V. Ryvchin, and O. Strichman. E�cient MUS Extrac-
tionwithResolution. In: FormalMethods in Computer-AidedDesign
(FMCAD), 2013. 2013, pp. 197–200 (cit. on p. 35).

[Nud+04] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y.

Shoham. Understanding Random SAT: Beyond the Clauses-to-
Variables Ratio. In: Principles and Practice of Constraint Program-
ming –CP 2004. 10th International Conference, CP 2004, Toronto, Canada,
September 27–October 1, 2004. Proceedings. Lecture Notes in Com-

puter Science 3258. 2004, pp. 438–452 (cit. on p. 31).

[NV07] S. Nain and M. Y. Vardi. Branching vs. Linear Time: Semanti-
cal Perspective. In: Automated Technology for Veri�cation and Anal-
ysis. 5th International Symposium, ATVA 2007 Tokyo, Japan, October
22–25, 2007 Proceedings. Lecture Notes in Computer Science 4762.

Springer, 2007, pp. 19–34 (cit. on p. 17).

[NW12] I. Nica and F. Wotawa. ConDiag – Computing minimal diag-
noses using a constraint solver. In: Proceedings of the 23rd Interna-
tionalWorkshop on Principles ofDiagnosis. DX 2012 (Malvern,United

Kingdom, July 31–Aug. 3, 2012). 2012, pp. 185–191 (cit. on pp. 67,

69, 94).

212

http://ijcai.org/papers13/Papers/IJCAI13-158.pdf
http://ijcai.org/papers13/Papers/IJCAI13-158.pdf

[NW97] P. P. Nayak and B. C. Williams. Fast Context Switching in Real-
Time Propositional Reasoning. In: Proceedings of the 14th National
Conference on Arti�cial Intelligence and Ninth Innovative Applications
of Arti�cial Intelligence Conference. IAAI 97, July 27-31, 1997, Provi-
dence, Rhode Island. 1997, pp. 50–56 (cit. on p. 92).

[Nyb11] M. Nyberg. A Generalized Minimal Hitting-Set Algorithm to
Handle DiagnosisWith BehavioralModes. In: IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans 41/1
(2011), pp. 137–148 (cit. on pp. 51, 52, 81).

[Oh+04] Y. Oh, M. N. Mneimneh, Z. S. Andraus, K. A. Sakallah, and I. L.

Markov. AMUSE: A Minimally-Unsatis�able Subformula Ex-
tractor. In: Proceedings of the 41st annual Design Automation Con-
ference. 2004, pp. 518–523 (cit. on p. 35).

[Pic] C. Picardi. A Short Tutorial on Model-Based Diagnosis. url: http :

//www.di .unito. it/~botta/didattica/dispenseDiagnosi .pdf

(visited on 02/04/2014) (cit. on p. 8).

[Pil+06] I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti.

Formal Analysis of Hardware Requirements. In: Proceedings of
the 43rd annual Design Automation Conference. 2006, pp. 821–826
(cit. on pp. 2, 38, 39, 165, 166, 185).

[Pnu77] A. Pnueli. The Temporal Logic of Programs. In: 18th Annual Sym-
posium on Foundations of Computer Science. 1977, pp. 46–57 (cit. on

pp. 16, 20, 21, 23).

[PQ12a] I. Pill and T. Quaritsch.An LTL SAT Encoding for Behavioral Di-
agnosis. In: Proceedings of the 23rd International Workshop on Prin-
ciples of Diagnosis. DX 2012 (Malvern, United Kingdom, July 31–

Aug. 3, 2012). 2012, pp. 67–74. url: http://thomas.quaritsch.at/

pdf/dx2012-pq.pdf (visited on 04/24/2014) (cit. on pp. 4, 7, 37,

195).

[PQ12b] I. Pill and T. Quaritsch.Optimizations for the Boolean Approach
to Computing Minimal Hitting Sets. In: Proceedings of the 20th
European Conference on Arti�cial Intelligence. ECAI 2012 (Montpel-

lier, France, Aug. 27–31, 2012). Vol. 242. Frontiers in Arti�cial

Intelligence and Applications. IOS Press, 2012, pp. 648–653. isbn:

213

http://www.di.unito.it/~botta/didattica/dispenseDiagnosi.pdf
http://www.di.unito.it/~botta/didattica/dispenseDiagnosi.pdf
http://thomas.quaritsch.at/pdf/dx2012-pq.pdf
http://thomas.quaritsch.at/pdf/dx2012-pq.pdf

Appendix C Bibliography

978-1-61499-097-0. doi: 10.3233/978-1-61499-098-7-648. url:

http://thomas.quaritsch.at/pdf/ecai2012-pq.pdf (visited on

03/28/2014) (cit. on pp. 4, 7, 139, 195).

[PQ13a] I. Pill and T. Quaritsch. And Yet Another Variant of Reiter’s
Complete On-the-�y Hitting Set Algorithm. In: Proceedings of
the 24th International Workshop on Principles of Diagnosis. DX 2013

(Jerusalem, Israel, Oct. 1–4, 2013). 2013, pp. 210–215. url: http://

thomas.quaritsch.at/pdf/dx2013a-pq.pdf (visited on 05/09/2014)

(cit. on pp. 5, 7, 159, 196).

[PQ13b] I. Pill and T. Quaritsch. Behavioral Diagnosis of LTL Speci�-
cations at Operator Level. In: Proceedings of the 23rd International
Joint Conference on Arti�cial Intelligence. IJCAI 2013 (Beijing, China,

Aug. 3–9, 2013). AAAI Press, 2013, pp. 1053–1059. url: http://ijcai.

org/papers13/Papers/IJCAI13-160.pdf (visited on 03/28/2014)

(cit. on pp. 4, 7, 37, 196).

[PQ13c] I. Pill and T. Quaritsch. Exploiting Parse Trees in LTL Speci�ca-
tion Diagnosis. In: Proceedings of the 24th International Workshop on
Principles of Diagnosis. DX 2013 (Jerusalem, Israel, Oct. 1–4, 2013).

2013, pp. 59–64. url: http://thomas.quaritsch.at/pdf/dx2013b-

pq.pdf (visited on 05/09/2014) (cit. on pp. 5, 7, 159, 197).

[PQW11] I. Pill, T. Quaritsch, and F. Wotawa. From Con�icts to Diagnoses:
An Empirical Evaluation ofMinimalHitting Set Algorithms. In:
Proceedings of the 22nd International Workshop on Principles of Diag-
nosis. DX 2011 (Murnau, Germany, Oct. 4–7, 2011). 2011, pp. 203–

210. url: http ://thomas .quaritsch .at/pdf/dx2011 - pqw.pdf

(visited on 05/20/2014) (cit. on pp. 4, 7, 65, 195).

[PRO13] PROSYD. PROSYD homepage. 2013. url: http://www.prosyd.org

(visited on 01/31/2014) (cit. on pp. 2, 185).

[Pro59] R. T. Prosser. Applications of Boolean Matrices to the Analy-
sis of Flow Diagrams. In: Proceedings of the Eastern Joint Computer
Conference. Papers presented at the Joint IRE-AIEE-ACM Computer
Conference, Boston, Massachusetts, December 1-3, 1959. No. 16. 1959,

pp. 133–138 (cit. on pp. 160, 180).

214

http://dx.doi.org/10.3233/978-1-61499-098-7-648
http://thomas.quaritsch.at/pdf/ecai2012-pq.pdf
http://thomas.quaritsch.at/pdf/dx2013a-pq.pdf
http://thomas.quaritsch.at/pdf/dx2013a-pq.pdf
http://ijcai.org/papers13/Papers/IJCAI13-160.pdf
http://ijcai.org/papers13/Papers/IJCAI13-160.pdf
http://thomas.quaritsch.at/pdf/dx2013b-pq.pdf
http://thomas.quaritsch.at/pdf/dx2013b-pq.pdf
http://thomas.quaritsch.at/pdf/dx2011-pqw.pdf
http://www.prosyd.org

[PW03] B. Peischl and F. Wotawa. Computing Diagnoses E�ciently: A
Fast Theorem Prover for Propositional Horn Clause Theories.
In:DX-03, Proceedings of the 14th InternationalWorkshop on Principles
of Diagnosis. 2003, pp. 175–180 (cit. on p. 92).

[PW88] C. H. Papadimitriou and D. Wolfe. The complexity of facets re-
solved. In: Journal of Computer and System Sciences 37/1 (1988), 2–13
(cit. on p. 35).

[Rei87] R. Reiter. A Theory of Diagnosis from First Principles. In: Arti-
�cial Intelligence 32/1 (1987), pp. 57–95 (cit. on pp. 3, 9, 10, 13, 14,

65, 68, 86, 87).

[Rep+97] T. Reps, T. Ball, M. Das, and J. Larus. The use of program pro�l-
ing for softwaremaintenancewith applications to the year 2000
problem. In: Software Engineering — ESEC/FSE’97. 6th European
Software Engineering Conference Held Jointly with the 5th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering Zurich,
Switzerland, September 22–25, 1997 Proceedings. Lecture Notes in

Computer Science 1301. 1997, pp. 432–449 (cit. on p. 78).

[Rob65] J. A. Robinson. AMachine-Oriented Logic Based on the Resolu-
tion Principle. In: Journal of the ACM 12/1 (1965), pp. 23–41 (cit. on

p. 32).

[RS11] V. Ryvchin and O. Strichman. Faster Extraction of High-Level
Minimal Unsatis�able Cores. In: Theory and Applications of Satis-
�ability Testing - SAT 2011. 14th International Conference, SAT 2011,
Ann Arbor, MI, USA, June 19-22, 2011. Proceedings. Lecture Notes

in Computer Science 6695. 2011, pp. 174–187 (cit. on p. 35).

[RU71] N. Rescher and A. Urquhart. Temporal Logic. Springer Verlag, 1971
(cit. on p. 16).

[Rym91] R. Rymon. A Final Determination of the Complexity of Current For-
mulations of Model-Based Diagnosis (OrMaybe Not Final?) Technical
Report. University of Pennsylvania, 1991. url: http://repository.

upenn.edu/cis_reports/483/ (visited on 03/11/2014) (cit. on

pp. 65, 66).

[Rym92] R. Rymon. Search Through Systematic Set Enumeration. Technical
Report. University of Pennsylvania, 1992. url: http://repository.

upenn.edu/cis_reports/297/ (visited on 03/17/2014) (cit. on

p. 72).

215

http://repository.upenn.edu/cis_reports/483/
http://repository.upenn.edu/cis_reports/483/
http://repository.upenn.edu/cis_reports/297/
http://repository.upenn.edu/cis_reports/297/

Appendix C Bibliography

[Sab05] A. Sabharwal. Algorithmic Applications of Propositional Proof
Complexity. Dissertation. University of Washington, 2005 (cit. on

p. 32).

[Saf+07] S. Safarpour, H. Mangassarian, A. Veneris, M. H. Li�ton, and

K. A. Sakallah. Improved Design Debugging Using Maximum
Satis�ability. In: Formal Methods in Computer Aided Design, 2007.
FMCAD ’07. 2007, pp. 13–19 (cit. on p. 35).

[SB00] F. Somenzi and R. Bloem. E�cient Büchi Automata from LTL
Formulae. In: Computer Aided Veri�cation. 12th International Con-
ference, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings.
Lecture Notes in Computer Science 1855. Springer, 2000, pp. 248–

263 (cit. on pp. 42, 58, 60).

[SB09] N. Sörensson and A. Biere.Minimizing Learned Clauses. In: The-
ory and Applications of Satis�ability Testing - SAT 2009. 12th Inter-
national Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings. Lecture Notes in Computer Science 5584. Springer,

2009, pp. 237–243 (cit. on p. 29).

[Sch12] V. Schuppan.Towards a notion of unsatis�able andunrealizable
cores for LTL. In: Science of Computer Programming 77/7-8 (2012),

pp. 908–939 (cit. on pp. 2, 38, 63, 185).

[SFM10] M. Schubert, A. Felfernig, and M. Mandl. FastXplain: Con�ict
Detection for Constraint-Based Recommendation Problems. In:
Trends in Applied Intelligent Systems. 23rd International Conference on
Industrial Engineering and Other Applications of Applied Intelligent
Systems, IEA/AIE 2010, Cordoba, Spain, June 1-4, 2010, Proceedings,
Part I. Lecture Notes in Computer Science 6096. Springer, 2010,

pp. 621–630 (cit. on p. 66).

[SH07] S. Siddiqi and J.Huang.HierarchicalDiagnosis ofMultiple Faults.
In: Proceedings of the 20th International Joint Conference on Arti�cial
Intelligence. 2007, pp. 581–586 (cit. on p. 180).

[Sht01] O. Shtrichman.Pruning Techniques for the SAT-BasedBounded
Model Checking Problem. In:CHARME ’01 Proceedings of the 11th
IFIPWG10.5AdvancedResearchWorkingConference onCorrectHard-
ware Design and Veri�cation Method. 2001, pp. 58–70 (cit. on pp. 63,

192).

216

[Sip97] M. Sipser. Introduction to the Theory of Computation. PWS Publish-

ing Company, 1997 (cit. on pp. 24, 27, 32).

[Sis94] A. P. Sistla. Safety, liveness and fairness in temporal logic. In:
Formal Aspects of Computing 6/5 (1994), pp. 495–511 (cit. on p. 23).

[SKC96] B. Selman, H. Kautz, and B. Cohen. Local Search Strategies for
Satis�ability Testing. In: DIMACS Series in Discrete Mathematics
and Theoretical Computer Science 26 (1996), 521–532 (cit. on p. 30).

[SLM92] B. Selman, H. Levesque, and D.Mitchell.ANewMethod for Solv-
ing Hard Satis�ability Problems. In: Proceedings of the 10th Na-
tional Conference on Arti�cial Intelligence (AAAI-92), San Jose, CA,
July 1992. 1992, pp. 440–446 (cit. on p. 30).

[SS77] R.M. Stallman andG. J. Sussman.Forward reasoning anddependency-
directed backtracking in a system for computer-aided circuit
analysis. In: Arti�cial Intelligence 9/2 (1977), pp. 135–196 (cit. on

p. 29).

[Ste+12] R. Stern,M. Kalech, A. Feldman, andG. Provan. Exploring theDu-
ality in Con�ict-Directed Model-Based Diagnosis. In: Proceed-
ings of the Twenty-Sixth AAAI Conference on Arti�cial Intelligence,
July 22-26, 2012, Toronto, Ontario, Canada. 2012 (cit. on pp. 13, 16,

63, 66).

[Str97] P. Struss. Model-based and qualitative reasoning: An introduc-
tion. In:Annals ofMathematics andArti�cial Intelligence 19/3-4 (1997),
355–381 (cit. on p. 8).

[SW01] M. Stumptner and F. Wotawa. Diagnosing tree-structured sys-
tems. In: Arti�cial Intelligence 127/1 (2001), pp. 1–29 (cit. on p. 67).

[SW03] M. Stumptner and F. Wotawa. Coupling CSP Decomposition
Methods andDiagnosisAlgorithms forTree-StructuredSystems.
In: IJCAI’03 Proceedings of the 18th International Joint Conference On
Arti�cial Intelligence. 2003, pp. 388–393 (cit. on p. 67).

[SW04] M. Sachenbacher and B. C. Williams. Diagnosis as Semiring-
based Constraint Optimization. In: Proceedings of the 16th Euro-
pean Conference on Arti�cial Intelligence, ECAI’2004, including Pres-
tigious Applicants of Intelligent Systems, PAIS 2004. Valencia, Spain,
August 22-27, 2004. 2004, pp. 873–877 (cit. on p. 67).

217

Appendix C Bibliography

[Tse83] G. S. Tseitin. On the Complexity of Derivation in Propositional
Calculus. In:Automation of Reasoning. Symbolic Computation. Springer

Berlin Heidelberg, 1983, pp. 466–483. isbn: 978-3-642-81957-5 (cit.

on p. 25).

[Var08] M. Y. Vardi. From Church and Prior to PSL. In: 25 Years of Model
Checking. History, Achievements, Perspectives. LectureNotes in Com-

puter Science 5000. 2008, pp. 150–171 (cit. on p. 17).

[VR05] S. Vijayaraghavan and M. Ramanathan. A practical guide for Sys-
temVerilog assertions. Springer, 2005. isbn: 0-387-26049-8 (cit. on

pp. 17, 186).

[Wie01] K. E. Wiegers. Inspecting Requirements. StickyMinds Weekly Column.
2001. url: http://www.stickyminds.com/s.asp?F=S2697_COL_2

(visited on 05/21/2014) (cit. on pp. 1, 185).

[Wie13] K. E. Wiegers.When Bad Requirements Happen to Nice People. 2013.
url: http://www.jamasoftware.com/when-bad-requirements-

happen-to-nice-people/ (visited on 05/21/2014) (cit. on pp. 1,

185).

[Wot01] F. Wotawa. A variant of Reiter’s hitting-set algorithm. In: Infor-
mation Processing Letters 79/1 (2001), pp. 45–51 (cit. on pp. 13, 66,

68, 72–74, 135, 160, 174).

[WP10] J. Wang and G. Provan.ABenchmark Diagnostic Model Genera-
tion System. In: IEEE Transactions on Systems, Man, and Cybernet-
ics, Part A: Systems and Humans - Special issue on model-based diag-
nostics 40/5 (2010), pp. 959–981 (cit. on p. 98).

[WR07] B. C. Williams and R. J. Ragno. Con�ict-directed A* and its role
in model-based embedded systems. In: Discrete Applied Mathe-
matics 155/12 (2007): SAT 2001, the 4th International Symposium on
the Theory and Applications of Satis�ability Testing, pp. 1562–1595
(cit. on p. 66).

[Zha97] H. Zhang. SATO: An E�cient Propositional Prover. In: Auto-
mated Deduction – CADE-14. 14th International Conference on Auto-
matedDeduction, Townsville, NorthQueensland, Australia, July 13–17,
1997. Proceedings. LectureNotes inComputer Science 1249. Springer,

1997, pp. 272–275 (cit. on p. 30).

218

http://www.stickyminds.com/s.asp?F=S2697_COL_2
http://www.jamasoftware.com/when-bad-requirements-happen-to-nice-people/
http://www.jamasoftware.com/when-bad-requirements-happen-to-nice-people/

[ZM02] L. Zhang and S. Malik. The Quest for E�cient Boolean Satis�-
ability Solvers. In: Computer Aided Veri�cation. 14th International
Conference, CAV 2002 Copenhagen, Denmark, July 27–31, 2002. Pro-
ceedings. Lecture Notes in Computer Science 2404. 2002, pp. 17–36

(cit. on p. 30).

[ZM03] L. Zhang and S. Malik. Validating SAT Solvers Using an Inde-
pendent Resolution-Based Checker: Practical Implementations
and Other Applications. In:Design, Automation and Test in Europe
Conference and Exhibition, 2003. 2003, pp. 880–885 (cit. on p. 35).

219

	Abstract
	Kurzfassung
	Introduction
	Motivation
	The MoDiaForTed Project
	Contributions

	Preliminaries
	Model-based Diagnosis
	Introduction
	Definitions
	Minimal Hitting Sets

	Linear Temporal Logic
	Definitions
	LTL Property Patterns and Safety vs. Lifeness

	Reasoning via Satisfiability
	Introduction to SAT
	SAT Solving
	Solver Implementations
	Unsatisfiable Cores

	Model-Based Diagnosis of LTL Specifications
	Motivation
	Running Example
	SAT-based LTL Encoding for Specific Traces
	Basic Operator Set
	Extended Operator Set

	Introducing Weak and Strong Fault Models
	Conflict-based Diagnosis using a SAT Solver
	Experimental Results
	Pure Encoding Performance

	Discussion

	Evaluating Selected MHS and MBD Approaches
	Motivation
	Selected Algorithms and Approaches
	Minimal Hitting Set Algorithms
	Model-based Diagnosis Approaches

	Test Domains and Test Setup
	MHS Computation Scenarios
	On-The-Fly Diagnosis Scenarios
	Test Setup

	Experimental Results
	MHS Computation Scenarios
	On-the-fly Diagnosis Scenarios

	Discussion

	Optimizations for the Boolean Hitting Set Algorithm
	Motivation
	Enhancements/Optimizations
	The Boolean Algorithm
	How Rule 4 was meant to be
	A New Decision Strategy
	Exact Termination Criteria

	Evaluation
	Test Setup
	Experimental Results

	Discussion

	New Variants of Reiter's Diagnosis Algorithm
	Motivation
	Exploiting Parse Trees in LTL Specification Diagnosis
	HS-DAG
	Experimental results

	RC-Tree: An Improved Search Strategy for HS-DAG
	Experimental Results

	Summary and Discussion

	Summary and Conclusions
	Outlook and Future Work
	List of Publications
	List of Abbreviations
	Bibliography

