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Abstract

The demand for electrical energy has been increasing constantly during the past decades
but contrary to the demand the resources of fossil energy are finite. It is essential there-
fore, that humanity is provided with renewable energy in order to be able to maintain
prosperity. Water Hydro power is the spine of renewable energy, hence it is essential to
design new and efficient high-head power plants in alpine areas. The plant components
consist mostly of an intake at a reservoir which conveys the water into a pressure tunnel.
The pressure tunnel and the subsequent penstock are divided by a surge chamber with a
valve chamber to be able to close the penstock, if necessary. The main purpose for the
surge chamber is the protection of the pressure tunnel from a water hammer initiated by
a discharge change in the penstock. After the surge chamber follows the high-pressure
penstock which conveys the water to the power house. Shortly before the power house the
water will be distributed with a bifurcator to several turbines.

In this thesis the model test of a Y-bifurcator of a high-head power plant will be presented.
The model test consisted of 42◦ bend, a straight pipe (18 diameters long) from the bend
to the Y-branch and two branching pipes with a branching angle of 40◦. The secondary
flow caused by the bend has been made visible by a Particle Image Velocimetry (PIV).
The results of the secondary flow have been quantified with the velocity correction factor
α. The PIV-Measurements have been carried out with natural seeding; the accuracy of
this procedure is presented and proves reliable results. The upscaling of the hydraulic
model test has been based on the Reynolds law. This caused too high discharge rates
in the model test, thus, an extrapolation with a quadratic polynomial, based on the least
square method, has been conducted to get the discharge rate in respect to the head loss.
The results of the secondary flow and the head losses have been verified with a numerical
simulation. Also, the results of the PIV-measurement (turbulent kinetic energy, Reynolds-
stress, production etc.) have been compared with the numerical simulation. The CFD
calculations have been double-checked with the free and open software OpenFoam. In
order to achieve a reduction of the hydraulic head losses a guide vane device has been
applied. A water-hammer calculation, based on the method of characteristics, has been
carried out to determine the highest pressure in the Y-Bifurcator. The code for the water-
hammer calculation has been written with TCL/TK and Matlab/Octave.
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Kurzfassung

Der Bedarf an elektrischer Energie ist seit den letzten Jahrzehnten stark am Steigen und
im Gegensatz dazu, sind die Vorkommen von fossilen Energien begrenzt. Es ist daher
notwendig, dass die Menschheit mit erneuerbarer Energie versorgt wird, um damit un-
seren Wohlstand halten zu können. Wasserkraftanlagen - im Besonderen Hochdruckan-
lagen, stellen einen wesentlichen Teil der erneuerbaren Energien dar und eine effiziente
Auslegung der Anlage ist daher wünschenswert. Eine Hochdruckanlage besteht generell
aus einer Rohrleitung, die einen alpinen Speicher mit den Turbinen im Tal verbindet. Kurz
vor den Turbinen wird der Wasserstrom mit Bifurkatoren auf einzelne Rohre aufgeteilt.

Ein typischer Bifurkator wurde in dieser Arbeit an Hand eines Modellversuchs und mit
numerischen Berechnungen näher untersucht. Der Modellversuch besteht aus einem
42◦ Bogen, einem geraden Rohrstück und dem anschließenden Y-Bifurkator mit einem
Verzweigungswinkel von 40◦. Die Sekundärströmung, verursacht durch den Bogen, wurde
mit Particle Image Velocimetry (PIV) sichtbar gemacht. Die PIV-Messungen wurden mit
natürlichen Schwebstoffpartikeln (Seeding) durchgeführt; die Genauigkeit dieser Meth-
ode ist dargestellt und zeigt verlässliche Ergebnisse. Der Modellversuch ist nach dem
Reynold’schen Gesetz betrieben. Die dadurch bedingten Durchflussraten im Modell sind
zu hoch und daher wurde eine Extrapolation mit einem quadratischen Polynom durch-
geführt, um die hydraulischen Verluste in Abhängigkeit des Durchflusses zu erhalten. Die
Ergebnisse der Sekundärströmungen und der hydraulischen Verluste sind mit einer nu-
merischen Simulation (Fluent und OpenFoam) nachgerechnet und miteinander verglichen
worden (Turbulente kinetische Energie und deren Produktion, Reynolds Spannung etc.).
Um eine Verringerung der hydraulischen Verluste zu erreichen, wurde der Bifurkator mit
einer Drallströmung beaufschlagt; für eine Durchflussaufteilung konnten dabei gerin-
gere Verluste festgestellt werden, als ohne Drallströmung. Eine Druckstoßberechnung
der gesamten Anlage wurde nach dem Charakteristikenverfahren in der Skriptsprache
Matlab/Oktave und TCL/TK verfasst, um damit den größten Druck im Bifurkator zu
bestimmen. Mit dem berechneten größten Druck ist eine Dimensionierung des Bifurka-
tors möglich. Die Druckstoßberechnung wurde auch mit dem kommerziellen Programm
Wanda verglichen und zeigte übereinstimmende Ergebnisse.
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Chapter 1

Introduction and objectives

The demand for electrical energy has been increasing constantly during the past decades
but contrary to the demand the resources of fossil energy are finite. It is essential therefore,
that humanity is provided with renewable energy in order to be able to maintain prosperity.
Hydro power plants - especially high-head power plants represent a substantial part of
renewably energies, an efficient design of such plants is, therefore, desirable.

The plant components (see Figure 1.1) consist mostly of an intake at a reservoir which
conveys the water into a pressure tunnel. The pressure tunnel and the following penstock
are divided by a surge chamber with a valve chamber to close the penstock if necessary.
The main purpose for the surge chamber is the protection of the pressure tunnel from a
water hammer, initiated by a discharge change in the penstock. After the surge chamber
follows the high-pressure penstock which conveys the water to the power house. Shortly
before the power house the water will be distributed with a bifurcator to several turbines.

Figure 1.1: Sketch of a general layout of a high-head plant

The aforementioned Y-bifurcator is the subject of this thesis. In the Hydraulic Engineer-
ing Laboratory of Graz University of Technology a hydraulic model of the Y-bifurcator
has been set up to investigate the hydraulic behavior of a dividing flow. As a further chal-
lenge a bend has been located 18 times the diameter upstream of the Y-bifurcator which
causes a slight secondary flow in the pipe installation. This makes it necessary to get more
information on the velocity and pressure distribution along the pipe installation of the hy-
draulic model test. This has been conducted with Particle Image Velocimetry (PIV), dif-
ferential pressure measurements and numerical simulations. The general purpose of this
thesis is to demonstrate the head losses of the Y-bifurcator with an extrapolation method,
including the secondary flow. The free software package OpenFoam (CFD) and Wanda
(water hammer) have been double-checked with a commercial and a self-written software



CHAPTER 1. INTRODUCTION AND OBJECTIVES

package. A short summary of the individual chapters of this thesis are as follows:

Literature review

A literature review of hydraulic model tests on bifurcators will be presented. It gives
general considerations of local losses in bifurcations, like in a T-bifurcator, model set up
and so on. The second part of the review deals with Y-bifurcators itself. Again, the model
set up and the calculation of the loss coefficient ζ will be presented and a short summary
of the Y-bifurcators will finish the review. (see Chapter 2, beginning at Page 5).

Particle Image Velocimetry

As aforementioned, it is necessary to quantify the secondary flow in the pipe. This is
done by means of a Particle Image Velocimetry (PIV) which is an optical method to ob-
tain instantaneous velocity vector fields of 2D-planes within a fluid. The whole measuring
campaign has been carried out by using the natural seeding of the flow. The velocity lag
and the minimum detectable velocity of the seeding have been calculated. The results of
the PIV-data, after having validated the velocity vectors, have been statistically analyzed
with the confidence interval of the mean velocity and the standard deviation of the veloc-
ity. With the PIV-results the secondary flow (via the velocity correction factor α) and the
equivalent pipe roughness ks could be determined. Finally, based on the statistical data
retrieved from the PIV, several parameters of the flow have been calculated like turbulent
intensity, kinetic energy, production of kinetic energy, Reynolds-stress and vorticity (see
Chapter 4, beginning at Page 51).

Hydraulic losses - Loss coefficient ζ

The loss coefficient ζ of the Y-bifurcator has been calculated as the head loss ∆h divided
by the kinetic velocity height, excluding any pipe friction. The equivalent sand roughness
ks, which is needed for the Colebrook equation in order to determine the pipe friction
coefficient λ, has been measured with two different methods. The first method used the
differential pressure loss between several control sections where a linear friction gradient
exists (Darcy-Weisbach). The other method for the ks-calculation has been conducted
with Particle Image Velocimetry (PIV) where the logarithmic law of the wall is evaluated.

Due to the bend upstream of the Y-bifurcator a secondary flow occurs in the pipe instal-
lation. Because of the 1D-consideration for the local loss calculation ζ the influence of
the secondary flow needs to be taken into account by the means of a velocity correction
factor α.

The hydraulic model test has been scaled after the Reynolds law which implies that the
velocity in the model test is the product of the scaler and the velocity of the prototype.
This yields a velocity (max. 43 m/s!) in the model test which is far too high for the pumps
in the laboratory. Therefore, the results have been extrapolated with the least square
method. This is also checked with a numerical calculation where the desired discharge
rate due to the Reynolds model can be set and the resulting head losses are compared with
the extrapolated head losses of the model test.

Another way to reduce the loss coefficient ζ was the use of a guide vane apparatus. The
guide vane induces a swirling flow upstream of the Y-bifurcator. As a result, the loss co-
efficient could be reduced for one flow distribution (see Chapter 5, beginning at Page 77).
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Computational Fluid Dynamics

For the complete model test a numerical CFD calculation has been conducted. The CFD
calculation was carried out with the commercial program Fluent. The setting for the
simulations was the unsteady second order implicit method together with the k-ε model.
(see Chapter 6, beginning at Page 105). The CFD-package of Fluent has been compared
also with the open source software OpenFoam.

Programming of water-hammer with the method of characteristics

The final chapter demonstrates a water hammer calculation of the power plant Pirris. The
entire pipe installation has been discretized and numerically solved with the method of
characteristics. The numerical simulation has been written as a Matlab/Octave script.
The objective of the numerical simulation has been the calculation of the highest and
lowest pressure height in the Y-bifurcator. With the known pressure, a design of the
Y-bifurcator is possible. The simulation has been double-checked with the commercial
software Wanda (Version: 3.72.851).
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Chapter 2

Literature Review

Due to the complex flow structures in pipe flows hydraulic model tests are often necessary.
Various model tests have been carried out in the past and abundant data are available (see
Idelchik [1994] and Miller [1990]).

A notable amount of literature studies for trifurcations, which are similar to Y-bifurcations,
are published where energy losses or the general hydraulic behavior for dividing and
combining flow are investigated (see John and Gladwell [1965], Berner [1970], Richter
[1988], Ruprecht et al. [1998], Ruus et al. [1966] and Klasinc et al. [1999]).

Of particular interest are the papers of Mayr [2009], Jahrbacher [2001] and Imitzer [2000]
where a swirling induced flow on a trifurcation is investigated. Mayr [2009] reported for
some flow distributions lower hydraulic losses than without a swirling flow.

The following literature review gives a short overview of the history of hydraulic model
tests with emphasis on Y-bifurcators of dividing flows. Every loss coefficient ζ - if not
other stated - is the coefficient for the local losses without any pipe friction. The loss
coefficient ζ (see Figure 2.1) is made dimensionless with the dynamic velocity head of
the pipe carrying the total flow, that is

ζ =
∆hlocal
V 2
mean/2g

(2.1)

whereas ∆hlocal = ∆htot − ∆hf is the total loss subtracting the pipe friction ∆hf . The
total loss ∆htot is defined with the Bernoulli Equation as

z1 +
P1

ρg
+
V 2

1

2g
= z2 +

P2

ρg
+
V 2

2

2g
+ ∆htot (2.2)

and the pipe friction is calculated, according to Darcy and Weisbach equation, as

∆hf = λ · L
D
· V

2

2 · g (2.3)

With the set of equations from Eq. 2.1 to Eq. 2.3 the loss coefficient ζ can be determined.
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Figure 2.1: Example of energy losses of a pipe with an installed component

The review can be split into two parts whereas the first part deals with general considera-
tions of local losses in bifurcations. This includes the model set up for the pressure loss
measurement as well as the calculation of the loss coefficient ζ .

The second part of the review deals with Y-bifurcators. Again the model set up and
the calculation of the loss coefficient ζ will be presented and a short summary of the
Y-bifurcators will finish the review.

2.1 Hydraulic model test of T-bifurcators

2.1.1 Munich experiments: T-bifurcator or 90◦-bifurcator

One of the earliest hydraulic model test to calculate the loss coefficient ζ was done in
the work of Brabbée [1913]. In this paper the loss coefficients for fittings in a heating
system were determined but unfortunately the geometrical quantities like the radii of the
intersection shape of the fittings were not given. Therefore, the first remarkable hydraulic
model test for a right-angled T-bifurcator, including the features of the intersection shape,
was done by Vogel [1926]. This was the beginning for several test series at the Technical
University of Munich and those investigations are also known under the name of Munich
experiments (see 90◦-bifurcator by Vogel [1926], 45◦-bifurcator by Petermann [1929] and
60◦-bifurcator by Kinne [1931]).

The set-up of the hydraulic model test of Vogel [1926] consists of a main-pipe with
Ø43 mm and two branching pipes with Ø15 mm and Ø25 mm, respectively. This yields
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diameter ratios of 15/43=0.349 and 25/43=0.581. Note, that Vogel [1926] conducted also
a test series with a branching diameter of Ø43 mm which is not presented here.

Figure 2.2: Detail of the T-bifurcator of Vogel [1926]. Main pipe with a diameter of
Ø43 mm, branching pipes either Ø15 mm or Ø25 mm, respectively

The branching angle was always 90◦. The water supply was supplied by a reservoir situ-
ated above the model test and the water discharge rate was regulated by two valves placed
at the end of the main and branching pipe. At several control sections the local static
pressure was measured by four bore holes with a diameter of 2 mm, arranged radially
around the pipe. The static pressure was measured with a water column gauge glass. The
material of the pipe was steel and treated with a anti-rust priming coat. During the whole
measurement campaign, Vogel [1926] reported no changes in the roughness of the pipe
surface.

The first pretest included the determination of the pipe friction loss without the T-bifurcator.
For that purpose, the static head level at several control sections for the main pipe with
a length of 2000 mm was measured. The distance between the entrance of the water in
the hydraulic model test and the first control section was at least 8 times the diameter
and served as a flow calming section. With the Darcy and Weisbach equation the friction
coefficient λ can be calculated with the measured head level loss δhf . The temperature
was assumed to be constant during the measurement campaign due to the large reservoir
with 800 m3.

The main tests were carried out either for combining or dividing flow (see Figure 2.3).
Also, four different intersection shapes (see Figure 2.4, No.1 to No.4) are chosen for the
head loss measurements which have the shapes

• Sharp-edged

• Rounded (Radius R = 1.5 mm)

• Rounded with a conical transition of α = 6.33◦

• Rounded with a conical transition of α = 8.18◦
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Figure 2.3: Sketch of the T-bifurcator and its nomenclature: V is the velocity of the pipe
with the total flow, Vs the velocity of the straight pipe and Vb the velocity of the branching
pipe. The red line indicates the differential pressure loss measurement for the branching
pipe.

Figure 2.4: Four different intersection shapes are presented in the paper of Vogel [1926]
for branching pipe diameter of 15 mm (R = radius [mm] and α = angle [◦]).

Figure 2.5 shows the results for the T-bifurcator with a branching pipe diameter of 15 mm
for dividing and combining flow. The loss coefficient ζb (index b indicates branching pipe)
is made dimensionless with the velocity V (pipe with the total flow), see Figure 2.3. This
is also the reason why the loss coefficient ζb is either -1 or +1 for the two identical flow
distributions with Qb

Q
=0 for combining or dividing flow in Figure 2.7. Note, that for ζs

(index s stands for straight passage) no values are plotted due to the too small quantities
of the static pressure.

An important feature in the paper of Vogel [1926] is the nearly linear relationship be-
tween the loss coefficient ζb in respect to the quadratic discharge rate at a constant
distribution of Qb

Q
. The loss coefficient ζ does not depend on the absolute velocity and

therefore ζs and ζb need to be plotted only against the flow distribution Qb
Q

. The influence
of the intersection shapes can also be seen clearly from Figure 2.5: The loss coefficient
ζ decreases with a rounded intersection edge and a conical transition geometry for the
branching pipe.

Similar to the previous geometry another 5 intersection shapes are defined for the T-
bifurcator with a branching pipe diameter of 25 mm. These shapes for the branching pipe
are

• Sharp-edged

• Rounded (R = 2.5 mm)

• Rounded with a conical transition of α = 8.60◦
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Figure 2.5: Results of the loss coefficient ζb according to Vogel [1926] for the four inter-
section shapes with branching pipe diameter of 15 mm. The left figure shows the case
for dividing and the right figure for combining flow, respectively. The loss coefficient is
always made dimensionless with the pipe carrying the total flow. Index b stands for the
branching pipe.

• Rounded with a conical transition of α = 12.40◦

• Rounded with a conical transition of α = 16.34◦

Figure 2.6: Five different intersection shapes are presented in the paper of Vogel [1926]
for branching pipe diameter of 25 mm (R = radius [mm] and α = angle [◦]).

Again, the loss coefficient is independent of the absolute velocity in Figure 2.7 but not of
the ratio Qb/Q. The rounded intersection edge and the conical transition improve the loss
coefficient ζ . The loss coefficients for a conical transition (cone angle 2 · α = 16.34◦) in
the branching pipe (curve 5 in Figure 2.7) show worse values than the other two conical
transitions. This behavior can be ascribed to the flow separation due to the strong confuser
angle.
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Figure 2.7: Results of the loss coefficient ζ according to Vogel [1926] for the four inter-
section shapes and branching pipe diameter of 25 mm. The left figure shows the case
for a dividing and the right figure for combining flow, respectively. The loss coefficient is
always made dimensionless with the pipe carrying the total flow. Index s stands for the
straight pipe and Index b for the branching pipe.

2.1.2 Munich experiments: 45◦-bifurcator

Based on the hydraulic model test of a T-bifurcator with 90◦ branching angle, Petermann
[1929] conducted another test series for a 45◦-bifurcator with a branching angle of 45◦

(see Figure 2.8). Basically, the set-up for the hydraulic model test was almost the same
as for the test series of Vogel [1926]. Instead of the steel pipe and the risk of rust stains,
Petermann [1929] used brass pipes. This pipe-material produced lower head losses due to
pipe friction which makes the calculation of ζ more accurate.

The developing length from the beginning of the pipe brass to the 45◦-bifurcator was at
least 46 D. The transition between the 45◦-bifurcator and the brass-pipes is much better
manufactured as in the model test of Vogel [1926]. This could be achieved by a flange
between 45◦-bifurcator and the pipes and thus no shock losses occurred because of mis-
aligned components. Three intersection forms, similar to Vogel [1926], are used and
shown in Figure 2.10. In the hydraulic model test of Petermann [1929] the discharge rate
was measured by three different methods, these are:

• Weighing a water volume in a basin and recording the elapsing time,

• Using a rotameter and

• Using an orifice plate.

The first two methods obtained good measuring accuracy; the measurement error was
between 0,1 ‰ and 0,8 ‰, whereas the last method, the orifice plate, showed lower mea-
suring accuracy (3 ‰).

The pressure was measured with two independent systems. The first method, similar to
Vogel [1926], was a column gauge glass and the second method was an upside down
- 10 -
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Figure 2.8: Detail of the 45◦-bifurcator of
Petermann [1929]. Main pipe has a di-
ameter of Ø43 mm, branching pipes ei-
ther Ø15 mm or Ø25 mm respectively

Figure 2.9: Differential mea-
surement: The upside down
U is filed with air at the top.
This allows to measure more
easily higher pressures than
with a column gauge glass.

U with an air cushion at the top (see Figure 2.9). The column gauge glass has a reading
accuracy of±0.25 mm and a deviation due to the turbulent fluctuation in the pipe of 1 mm.
For the differential measurement a reading accuracy of ±0.25 mm is also achieved.

Before the actual measurement campaign started some pretests had been carried out. The
first test was the same as in Vogel [1926], that is, the 45◦-bifurcator without the 45◦ bore
hole was placed in the pipe installation and the pipe friction loss was measured. The pipe
length before the 45◦-bifurcator was 2000 and behind the 45◦-bifurcator 3000 mm. The
result for λ matched the friction coefficient for brass.

The main test for ζs and ζb coefficients are shown from Figure 2.11 to Figure 2.18. Note,
that the loss coefficient is made dimensionless with the kinetic head of the pipe with the
total flow.

45◦-bifurcator 1 (cf. Figure 2.10 - top):

An interesting result can be seen in Figure 2.11 and Figure 2.15 where negative loss co-
efficients ζs for the straight passage exists at a distribution of Qb/Q ≤0.5. This happens
because the slower boundary layer (in terms of velocity) of the straight pipe flow is di-
verted to the branching pipe and therefore only the higher energetic fluid particles flow
straight ahead. In Figure 2.11 it can also clearly be seen that the rounded intersection
form yields smaller loss coefficients for dividing flow in the 45◦-bifurcator. Negative loss
coefficients ζs are also shown in Figure 2.13 for a combining flow due to the suction effect
at higher flow distribution (Qb/Q ≥0.18). For dividing flow, as shown in Figure 2.12, the
quadratic polynomial behavior, similar as in the experiment of Vogel [1926] (compare
with Figure 2.5), can be seen, although the loss coefficient of the T-bifurcator is naturally
higher than of the 45◦-bifurcator.

45◦-bifurcator 2 (cf. Figure 2.10 - bottom):

As expected, the 45◦-bifurcator with the bigger branching diameter of 25 mm yields much
lower ζs and ζb coefficients due to the smaller velocity. If one compares Figure 2.12 with
Figure 2.16 the loss coefficient decreases to ≈ 90% for curve No. 1. Similar results,
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Figure 2.10: On the left: Detail for the three intersection forms of the 45◦-bifurcator of
Petermann [1929] for branching diameters of 15 and 25 mm, respectively. On the right:
sketch of dividing and combining flows. Index s stands for the straight and Index b for the
branching pipe.

and therefore much lower loss coefficient for 45◦-bifurcator 2 can be seen if one com-
pares Figure 2.14 with Figure 2.18, Figure 2.13 with Figure 2.17 and Figure 2.11 with
Figure 2.15.
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Figure 2.11: ζs for 45◦-bifurcator 1, di-
viding flow, straight pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively

Figure 2.12: ζb for 45◦-bifurcator 1, di-
viding flow, branching pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively

Figure 2.13: ζs for 45◦-bifurcator 1,
combining flow, straight pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively

Figure 2.14: ζb for 45◦-bifurcator 1,
combining flow, branching pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively
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Figure 2.15: ζs for 45◦-bifurcator 2, di-
viding flow, straight pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively

Figure 2.16: ζb for 45◦-bifurcator 2, di-
viding flow, branching pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively

Figure 2.17: ζs for 45◦-bifurcator 2,
combining flow, straight pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively

Figure 2.18: ζb for 45◦-bifurcator 2,
combining flow, branching pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively
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2.1.3 Munich experiments: 60◦-bifurcator

Kinne [1931] continued the work of Vogel [1926] and Petermann [1929]. The test cam-
paign of Kinne [1931] included a 60◦-bifurcator with a branching angle of 60◦. The
set-up was the same as in Petermann [1929] and also the intersection forms had the same
appearance.

Figure 2.19: Detail for the three intersection forms of the 60◦-bifurcator of Kinne [1931]
for branching diameter of 15 or 25 mm, respectively. All units in millimeter.

In the hydraulic model test Kinne [1931] also observed that the loss coefficient ζ does not
depend on the absolute velocity just like Vogel [1926] and Petermann [1929] had reported
in their earlier works. The results ζb for the bifurcator 1 (see Figure 2.19) for dividing flow
shows an improvement with a rounded intersection form in comparison to the sharp-edged
intersection form (compare curve 1 and curve 2 in Figure 2.21). The loss coefficient can be
even more improved by using a conical transition in the branching pipe. For ζs (bifurcator
1) negative values exist for curve 3 in Figure 2.20 up to a flow distribution of Qb/Q≈ 0.3
for dividing flow. The reason for this behavior was also shown in the work of Petermann
[1929] where the low energetic boundary layer of the straight passage was diverted to the
branching pipe. For combining flow (bifurcator 1) in Figure 2.23 hardly no improvement
for a rounded intersection form can be seen (compare curve 1 with curve 2) but if a conical
transition is used in the branching pipe the loss coefficient decreases considerably. For
combining flow (bifurcator 1) and a flow distribution ofQb/Q≥ 0.3 high negative ζs exist
due to the suction effects of the branching flow in the straight passage (see Figure 2.22).

For bifurcator 2 in Figure 2.19 the results are similar to the bifurcator 1 although the
level for ζb is much smaller (compare Figure 2.21 with Figure 2.25 or Figure 2.23 with
Figure 2.27).
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Figure 2.20: ζs for 60◦-bifurcator 1, di-
viding flow, straight pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively

Figure 2.21: ζb for 60◦-bifurcator 1, di-
viding flow, branching pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively

Figure 2.22: ζs for 60◦-bifurcator 1,
combining flow, straight pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively

Figure 2.23: ζb for 60◦-bifurcator 1,
combining flow, branching pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø15 mm, respectively
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Figure 2.24: ζs for 60◦-bifurcator 2, di-
viding flow, straight pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively

Figure 2.25: ζb for 60◦-bifurcator 2, di-
viding flow, branching pipe. Main pipe
has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively

Figure 2.26: ζs for 60◦-bifurcator 2,
combining flow, straight pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively

Figure 2.27: ζb for 60◦-bifurcator 2,
combining flow, branching pipe. Main
pipe has a diameter of Ø43 mm and the
branching pipe Ø25 mm, respectively
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2.1.4 Discussion of the Munich experiments

The so-called experiments of Munich were the first comprehensive model tests for di-
viding and combining flows. In the work of Williamson and Rhone [1973], the Munich
Experiments were compared with the work of Gardel [1970], McNown [1954] and oth-
ers. A short summary of the Munich experiments and the comparison of Williamson and
Rhone [1973] will be shown below.

In Section 2.1.1, Section 2.1.2 and Section 2.1.3 a T-bifurcator, a 45◦-bifurcator and a
60◦-bifurcator were presented, respectively. The diameter ratios Db/Ds was either 0.349
or 0.581 (s stands for straight passage and b for branching pipe. The Munich experiments
were also conducted with a diameter ratio of 1, not shown in this work). For the straight
passage the diameter was 43 mm and for the branching pipe 15 or 25 mm, respectively.
The intersection forms of the Munich experiments were either sharp-edge or rounded
with R = 0.1 ·Db and for the branching pipe a conical transition is also tested with a cone
angle between (2 · α) 12.66 - 16.34◦. The Reynolds number was between 4 · 103 - 9 · 104.
The most significant conclusion of the Munich experiments is that the loss coefficient is
independent of the absolute discharge rate and is only a function of the flow ratio in the
branching and main pipe. In the first test series of Vogel [1926] iron pipes were used and
for the later experiments of Petermann [1929] and Kinne [1931] brass pipes were used to
avoid rust stain on the pipe surface.

The test series of the Munich experiments showed a reduction of the branching angle from
90 to 60 or 45◦ leads to an improvement of the loss coefficient (compare for example
dividing flow for Figure 2.5, Figure 2.12 and Figure 2.21). For the conical transition, the
cone angle of 2 · α ≈ 13◦ showed the lowest loss coefficient (cf. Figure 2.7: the curve
4 with 2 · α ≈ 13◦ has the lowest loss coefficient).

Gardel [1970] made similar experiments at the University of Lausanne as shown in the
Munich experiments. The diameter ratios Db/Ds were 1.00, 0.83, 0.66, 0.53 and 0.40
for a T-bifurcator, and for Db/Ds = 1 for a 60- and 45◦-bifurcator. The studies included
dividing and combining flows. The model set up of Gardel [1970] consists of a straight
passage with a diameter of 150 mm and branching diameters between 150 and 60 mm.
The pipe material was asbestos-cement and thus much rougher than the brass pipe of the
Munich experiments. The maximum Reynolds number was 4 · 105.

McNown [1954] conducted another test series for a T-bifurcator which is also known as
the Iowa experiments. The intersection form was sharp edged with diameter ratiosDb/Ds

of 0.25, 0.5 and 1. The main pipe diameter was 51 mm and the branches diameter were
51, 25 and 13 mm. The pipe material was brass.

In Figure 2.28 the comparison of the Munich experiments, Iowa experiments and Gardel
[1970] are shown for T-bifurcators. Note, that the loss coefficient is plotted against the
velocity ration vb/vs instead of a discharge distribution. This makes it simpler to compare
similar bifurcators where only the ratios of the cross-sectional area of the branch to the
main pipe are slightly different. This automatically takes into account the different cross-
sectional areas.

The loss coefficients ζb of the Munich experiments for cylindrical branches with sharp
edges and Db/Ds = 0.58 are compared with the Iowa experiments with Db/Ds = 0.50.
It can be seen in Figure 2.28 that considerable larger loss coefficients are determined by
Munich experiments. For the loss coefficient measured by Gardel [1970] the coefficients
are the lowest in Figure 2.28 for a diameter ratio of Db/Ds = 0.53, although the results of
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Iowa experiments and Gardel [1970] lie closer together. The difference between the loss
coefficient increases with higher velocity distribution. Only for a area ratio of Db/Ds = 1
(not shown here) the results lie closer together.

Figure 2.28: Comparison of the Munich experiments with Gardel [1970] and McNown
[1954]. (taken from Williamson and Rhone [1973])
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2.2 Hydraulic model test of Y-bifurcators

2.2.1 Causey Dam at the Ogden River

The hydraulic model test of King [1963] consists of a channel spillway located in the right
abutment of the Causey Dam and a slide gate. The gate flow is divided by a symmetrical
Y-bifurcator. The scale factor was 1 to 11. Piezometers were placed in the Y-bifurcator to
investigate adverse subatmospheric or unusually high dynamic pressures. The discharge
rates through the model were measured by volumetrically calibrated Venturi meters. In
Figure 2.29 the geometry of the Y-bifurcator is shown. The piezometers for the pressure
difference measurement (marked as blue dots in Figure 2.29) are placed 1 · D upstream
of the Y-bifurcator and downstream in the circular-to-square-transition.

Figure 2.29: Plan and side view of the hydraulic model test of King [1963]. Downscaled
model (1 to 11) with units in meter.

In Figure 2.30 the total loss coefficient ζtot,L and ζtot,R are presented. Note, that it is not
reported if the pipe friction is subtracted. The loss factors in Figure 2.30 are made dimen-
sionless with the upstream dynamic velocity head. As expected, the lowest loss coefficient
is quantified with 0.29 at a distribution of QL/QM = QR/QM ≈ 0.5. The highest value
for ζtot occurs for an asymmetric flow distribution, that is, QL/QM or QR/QM = 1. The
loss coefficient includes also the horizontal bend and the circular-to-square transition.
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Figure 2.30: Result of ζ according to King [1963]. Index M, L and R stands for Main, Left
and Right pipe
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2.2.2 Pumped storage plant Erzhausen

In the work of Ure [1968] the loss coefficient for a symmetrical Y-bifurcator are given for
the pumped storage plant Erzhausen. The power plant consists of 4 turbines and 4 pumps
as can be seen in Figure 2.31. The water distribution is done by two Y-bifurcators and
four 60◦-bifurcators. The branching angle for the Y-bifurcator was also 60◦.

Figure 2.31: Manifold of the pumped storage plant Erzhausen with four pumps and tur-
bines.

The Y-bifurcator for the hydraulic model test consists only of shell elements without any
stiffener inside the Y-bifurcator. The intersection form was sharp-edged. For statical rea-
sons, the form of the Y-bifurcator has a spherical shape which can be seen in Figure 2.32

Figure 2.32: View of the Y-bifurcator for the hydraulic model test.

The spherical form of the Y-bifurcator causes separation flows. Therefore Ure [1968]
defines another two Y-bifurcators to investigate the performance of the Y-bifurcator either
with guiding plates or with a hydraulic favorable form. The three forms of the hydraulic
model test are therefore:
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No. 1: Without any built-in components.

No. 2: With built-in components of cylindrical form.

No. 3: Hydraulically favorable form (Nearly constant velocity along the Y-bifurcator).

In Figure 2.33 the three intersection forms of the Y-bifurcator are shown. The piezometers
for the head loss measurement are located shortly before and after the Y-bifurcator. No
information are available about the behavior of the secondary flow in the Y-bifurcator.

Figure 2.33: Three different Y-bifurcator forms (No.1 to No.3) for the hydraulic model test.
No.1 has a spherical form, No.2 has two built-in cylinders to avoid flow separations and
No.3 consist of a hydraulically favorable form

In Table 2.1 the results of the loss coefficient ζtot are given. As expected, the form No.3
with a loss coefficient ζtot = 0.22 is the smallest value for the symmetrical distribution.
For the asymmetrical distribution the form No.1 and No.2 show the smallest values with
0.27. Be aware that even though the flow distribution is symmetrical the result of the
loss coefficient is not. The reason for that is the non-symmetrical pipe installation of the
Y-bifurcator for turbine/pump 3 and 4.
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Table 2.1: Results of the loss coefficient ζtot for the Y-Bifurcator for turbine 3 and 4 in
Figure 2.31. Symmetrical stands forQleft/Qmain = 0.5 orQright/Qmain = 0.5 and asym-
metrical for Qleft/Qmain = 1 or Qright/Qmain = 1.

Asymmetrical Symmetrical
Left Right Left Right

Without built-in components 0.27 0.27 0.23 0.36

With built-in components 0.27 0.27 ≈ 0 0.07

Hydraulically favorable form 0.44 0.44 ≈ 0 0.06

2.2.3 Loss coefficient for a branch angle of 60◦ and 45◦

Ruus [1970] carried out a large test series for different branching angles and geometrical
forms of Y-bifurcators. Three Y-bifurcators with branching angles 60◦ and 45◦ are shown.

Figure 2.34: Installation of the model test of Ruus [1970].

The Y-bifurcators of the hydraulic model test in Figure 2.34 and Figure 2.35 were turned
on a lathe or machined on a milling machine to a tolerance of 0.0254 mm. Afterwards, the
pieces of the Y-bifurcators (cylindrical and conical) were polished by hand. In the main
and/or branching pipes conical confusers with an angle of 8◦ or 10◦ are located.

The length upstream and downstream of the Y-bifurcator was 75 times and 30 times the
diameter of the Y-bifurcator, respectively. Ruus [1970] considered this length as adequate
to obtain a reasonable fully turbulent velocity profile.

The discharge rate at the inlet was controlled by a control valve and at the branching
outlets by a series of orifices of various diameters. During all tests for symmetrical flow
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conditions a maximum deviation between the branches was less than 1%. Discharge was
measured by a weighing tank with a maximum capacity of 9072 kg and a stopwatch with
an accuracy of 0.1 second. Three readings with a minimum duration of 180 seconds were
taken for any flow conditions.

Per control section four pressure taps were symmetrically distributed around the pipe
cross-section. The bore holes were burr-free and sharp-edged. Each pressure tap is con-
nected to a U-manometer tube. Additionally, each of the four pressure taps are connected
to a gage well with a diameter of 140 mm. With this arrangement the piezometric pressure
measurement is double-checked. Also, the high pressure fluctuations can be damped by
the gage well.

Figure 2.35: Three Y-bifurcators with branching angles of 60◦ and 45◦.

Before the actual main tests were carried out, some preliminary investigations had been
done to verify the symmetry of the model test and to establish suitable lengths for head
losses of the main and the branching pipe. To avoid any asymmetric velocity profile
shortly before the flow enters the Y-bifurcator a flow conditioner is located at the be-
ginning of the model test. To determine the extent of the uneven velocity profile down-
stream of the Y-bifurcator the pipe friction loss, beginning at 30-D downstream of the
Y-Bifurcator and having a length of 30 · D, is measured. If the pipe friction loss is com-
pared to the head loss of an undisturbed pipe the difference was less than 2%. The head
loss of the main and branching pipe was plotted on a Moody diagram and the difference
between the Blasius curve for a smooth pipe and the measured head loss was less than
5%.

For the loss coefficient ζ the pipe friction was subtracted from the total head loss to get
the local head loss. For the total head loss, which was measured between two control
sections, it was assumed that the velocity profile was steady and irrotational. Thus, the
loss calculation can be based on Bernoulli’s energy equation for one-dimensional flow
condition. The velocity head of the main pipe is chosen to define the ζ coefficient.

The main test with individual Y-bifurcators were carried out for discharge rates between 9
and 42.5 l/s. The corresponding maximum and minimum Reynolds numbers for the flow
in the main pipe were between 0.8 · 105 and 4 · 105.

The results of the loss coefficient ζ for the three types of Y-bifurcators are shown in
Figure 2.36. Ruus [1970] reported that even though a symmetrical discharge distribution
was chosen the head loss in the left and right branch were not equal. The maximum
deviation between the two legs was less than 12%. Ruus [1970] described this effect as
similar to the Coanda-Effect (tendency of a fluid jet to be attracted to a surface), where
the fluid would prefer one side of a symmetrical branching.
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Figure 2.36: Results of the loss coefficient ζ for Y-bifurcators with branching angles 60◦

and 45◦.

The difference in head loss measurements between two identical test series with sym-
metrical flow distribution was less than 6%. For any asymmetrical flow distribution the
difference between repeated head loss measurements was less than 15%.

As can be seen in Figure 2.36 the head loss for symmetrical flow distribution is below
ζb = 0.1. With smaller branching angle (60 to 45◦) the loss coefficient gets even smaller.
With asymmetric flow, that is, one branch closed, the loss coefficient increases to a value
of ζb ≈ 0.5 for branching angle of 45◦. For the other two Y-bifurcators with branching
angle of 60◦ the loss coefficient decreases to a value of ζb ≈ 0.3. The conical form in the
main pipe for the Y-bifurcator W60I shows almost the same loss coefficient than does the
Y-bifurcator W60.

2.2.4 Pumped storage plant Muju

Lee et al. [1993] conducted a hydraulic model test for Y-bifurcators (with stiffener) with a
48◦ bend. The Y-bifurcator is part of the Pumped storage plant in Muju with a capacity of
600 MW. The Y-bifurcator splits the main pipe with a diameter of 4 m into two branching
pipes with a diameter of 2.8 m (see Figure 2.37). This gives a diameter ratio of 0.7.
The scale factor was 1 to 13.7. The length upstream of the Y-bifurcator was ≈ 15 and
downstream 10 · D. A flow conditioner at the beginning of the main pipe is located to
reduce any secondary flow.

The loss coefficient ζ is based on the velocity head of the main pipe. The pipe friction
loss is not included in the loss coefficient ζ . The results for the loss coefficients are shown
in Table 2.2.
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Figure 2.37: View of the Y-bifurcator of the pumped storage plant Muju (Lee et al. [1993])

Table 2.2: Results of the loss coefficient ζ for the Y-Bifurcator. Symmetrical stands for
Qleft/Qmain = 0.5 and Asymmetrical for Qleft/Qmain = 1 and Qright/Qmain = 1.

Asymmetrical Symmetrical
lower range upper range lower range upper range

ζ 1.25 1.67 0.21 0.38
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2.2.5 Sulzer

Müller and Stratmann [1971] carried out a hydraulic model test to calculate the loss coef-
ficient ζ for dividing flows. Based on the Munich experiments (Vogel [1926], Petermann
[1929]and Kinne [1931]) they derived ζ-values for several flow aspects like

• different discharge rates,

• different branching angles.

Müller and Stratmann [1971] summarized the total head losses as friction head losses
and head losses due to the secondary flows. The friction head losses have their seeds
in the viscosity and the roughness of the wall whereas the secondary flow are caused
by components in the pipe which turns the flow into another direction or destroy the
boundary layer at the wall. A quantitative separation of friction and secondary head losses
is not possible in the hydraulic model test. Therefore, to take the friction head losses into
account equivalent pipes with a fully developed turbulent flow are chosen to calculate
the friction head losses. These pipes are also called substitution cylinders with length L,
diameter D and sand roughness k; the friction head loss ∆hf can be calculated (see also
Eq. 2.3). With the known friction head loss of the substitution cylinders the losses due to
the secondary flow can be calculated by subtracting the total loss and the friction loss of
the cylinders.
The previously mentioned test at the TU Munich shows, based on numerous hydraulic
model tests, that a relationship of

∆hf = ζ · q (2.4)

exists for Reynolds numbers above 105. The variable q represents the dynamic velocity
head which can be written as

q =
V 2

2 · g (2.5)

The set up of the model test is similar to the previously introduced model tests: At the
entrance of the pipe installation a flow conditioner is installed to smooth out any secondary
flow. The pipe material is metal with a special coat of lacquer. The Y-bifurcator itself
consists of wood. The fluid for the hydraulic model test is air; therefore Reynolds numbers
up to 3.6 · 105 are possible. The discharge rate is controlled by two butterfly valves,
whereas Müller and Stratmann [1971] mentioned to have some difficulties to achieve a
steady state condition. Upstream of the Y-bifurcator the flow is measured by an orifice
plate and downstream by a Venturi-Tube. The inaccuracy of the discharge is less than 1%.
The temperature is also recorded at the beginning and at the end of the pipe installation.
Each control section has 4 bore holes and is connected with a ring line. The details of the
Y-bifurcator are shown in Figure 2.38.
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Figure 2.38: View of the Y-bifurcator (Müller and Stratmann [1971]) with branching angle
of 60◦ and diameter ratio of 1.41.
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Figure 2.39: Results of the Y-bifurcator (Müller and Stratmann [1971]) with branching
angle of 60◦ and 45◦.

The results for branching angles of 30◦ and 45◦ are shown in Figure 2.39. The minimum
loss coefficient ζ in Figure 2.39 does not occur at a flow distribution of QA/Q = 0.5
but for ≈ 0.6. This means that a slightly accelerating flow in the branch pipe causes the
lowest head losses (Note, that the velocity in the main and branching pipe is equal for
flow distribution of QA/Q = 0.5). The loss coefficient ζ also decreases with decreasing
branching angle, similar to the T-bifurcator.

2.2.6 Alberschwende

Klasinc et al. [1992] performed an investigation on a symmetrical Y-bifurcator with a
slight bend located 3 · D upstream of the bifurcator. The applied law of similitude is
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according to Reynolds and the scaling factor is 1 : 12.85. The pipe installation is made
of plexiglass. The water was supplied to the model from an overhead tank with a piping
system and a stilling element to keep the inflow as constant as possible. Downstream of
the Y-bifurcator there are two flow meters and two electrically controlled Howell-Bunger
valves.

The pressure differences are measured at 6 control sections before and 4 control sections
after the Y-bifurcator. A single control section consists of four bore holes which are burr-
free and sharp-edged. For each control section all four bore holes are connected together
by a single ring line. (see Figure 2.40). The pressure difference is measured at least 2 · D
upstream and 10 · D downstream of the Y-bifurcator. To include also the local loss of the
slight bend before the bifurcator the pressure differences are measured between control
section O4 and R3, L3 respectively.

Figure 2.40: View of the hydraulic model test of Klasinc et al. [1992]; longitudinal profile
(top) and plan view (bottom). Label O, E, L, R and A are the position of the control
sections

To get the local head loss the pipe friction loss must be extracted from the total loss. This
is achieved by a set of substitution cylinders similar to the work of Müller and Stratmann
[1971].

To fulfill the Reynolds law of similarity the velocity in the pipe installation must be 12.85
(scaler) times higher than the velocity in the prototype. This is not achievable and Klasinc
et al. [1992] performed a polynomial regression using the method of least squares. As
can be seen in Figure 2.41 the regression with a polynomial of second order shows the
expected quadratic behavior of a fully turbulent flow and is therefore chosen for further
loss coefficient calculations. The results for symmetrical and asymmetrical distribution
are shown in Table 2.3.
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Figure 2.41: Example of polynomial regressions of a head loss measurement. The E-
function represents the dynamic velocity head (V 2

main pipe/2g − V 2
branch pipe/2g). The

second order polynomial shows reasonable results if compared with the E-function. All
other polynomials are far away from the E-function.

Table 2.3: Results of the loss coefficient ζ for the Y-Bifurcator. Symmetrical stands for
Qleft/Qmain = 0.5 and Asymmetrical for Qleft/Qmain = 1 or Qright/Qmain = 1.

Symmetrical Asymmetrical

ζ 0.13 0.36
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2.3 Summary of the Results for Y-bifurcators

In Table 2.4 a short summary of the characteristic of Y-bifurcators presented in Sec-
tion 2.2.1 to Section 2.2.6 is given. Several properties of the Y-bifurcators labeled as
D (diameter of the main Din and branching pipe Dout), A (cross-sectional area), V (ve-
locity), α (branch angle) and ψ (relative power loss) are shown in Table 2.4. If one checks
the velocity ratio sym : Vout/Vin a value close to 1.00 is stated. This means that almost
no ”velocity jump” occurs when the water flows from the main to the branching pipe and
therefore the velocity ratio sym : Vout/Vin ≈ 1 is one of the design criteria. Only the
model test by Klasinc et al. [1992] and of Causey dam do not satisfy the velocity ratio
sym : Vout/Vin ≈ 1.

The relative power loss coefficient is defined as:

ψ =
Ploss
Pkin

= ζleft ·
Qleft

Qmain

+ ζright ·
Qright

Qmain

(2.6)

Ploss =
2∑

i=1

·∆hlocal,i · ρ · g ·Qi (2.7)

Pkin =
V 2
main

2
· ρ ·Qmain (2.8)

whereas Ploss is the power loss, Pkin is the kinetic power and ∆hlocal stands for the
head loss. For the results in Table 2.4 the discharge distributions are either Qleft

Qmain
=

0.5,
Qright
Qmain

= 0.5, Qleft
Qmain

= 1 and Qright
Qmain

= 0.

If the power loss coefficient ψ is compared with each other care has to be taken. As
mentioned in the paper of Williamson and Rhone [1973] a tentative comparison of the
individual loss coefficient (or power loss coefficient) can be done when the ratio of the
cross section areas are nearly the same. Therefore, the model test of the Causey Dam and
the model test of Klasinc will not be plotted in the comparison of the relative power loss
coefficient in Figure 2.42 and Figure 2.43.

The comparison of the ψ coefficient in Figure 2.42 and Figure 2.43 are approximately in
the range of 0.03 to 0.3 for symmetrical and 0.3 to 0.6 for asymmetrical flow distribution.
If one takes the mean of the symmetrical and asymmetrical ψ coefficient a value of 0.1
and 0.37 are gained, respectively. These values are in good agreement with the model test
Pirris in the next chapters.
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Figure 2.42: Relative power loss ψ for all Y-bifurcator, symmetrical discharge rate

Figure 2.43: Relative power loss ψ for all Y-bifurcator, asymmetrical discharge rate
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2.4 Numerical investigations of bifurcators

A notable amount of literature studies of numerical investigations on trifurcations are
available. A detailed study of the influence of the boundary layer in a numerical cal-
culation of a Y-bifurcator can be found in Lasminto and Klasinc [2011]. The applied
turbulence model in Lasminto and Klasinc [2011] was the realizable k-εmodel. The com-
parison for the velocity and pressure distribution in the Y-bifurcator is in good agreement
with the corresponding model test.

Further papers were published by Basara et al. [1999], Klasinc and Knoblauch [1994],
Dobler et al. [2010c] and Dobler et al. [2010b] where the hydraulic behavior in a trifurca-
tion and y-bifurcation is investigated. A direct numerical simulation (DNS) was done by
Tadjfar and Smith [2004], where the pressure losses of different branching angles of the
Y-bifurcator have been investigated. A CFD calculation of a T-bifurcator was conducted
by Moujaes and Deshmukh [2007], where the pressure loss of the fittings was of interest.
Ramamurthy et al. [2006] also investigated a T-bifurcator with the k-ω turbulence model
to determine several loss coefficients for different flow distributions.

The main task of these numerical investigations is to check the accuracy of the results
(mostly with a model test). It could be possible that CFD simulations will replace the
hydraulic model test in the near future. Additionally, which is also shown in this thesis,
non-commercial software packages are gaining in importance.
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Chapter 3

Y-Bifurcator Pirris - Hydraulic Model
Set-Up

In Central America a new hydro power plant is constructed and located close to the river
Pirris. The hydro power plant is equipped with two Pelton turbines each of them pro-
ducing 70 MW. The division of the water supply to the turbines occurs in a symmetrical
Y-bifurcator. The branching angle is 40◦. The main pipe has a diameter of 2 m and down-
stream, after the Y-branch and the confusor, the branching pipes have diameters of 1 m.
The design discharge rate for each Pelton turbine is 9 m3/s. 37 m before the Y-Branch a
42.96◦ bend is placed in the penstock. The total length of the penstock is 11.3 km. The
main task of this hydraulic model test is to investigate the losses of the bifurcation in a
small-scale hydraulic model. Two papers (Dobler et al. [2010a] and Dobler and Zenz
[2011]) have been published about this model test.

3.1 Scaling law

Due to the geometrical size of the penstock and due to the restricted discharge capacity
in the hydraulic laboratory it is not feasible to do tests on a full scale model. Instead, a
down-scaling of the model to a reasonable size is necessary. For full similarity between
the prototype and the model three conditions have to be fulfilled (Kobus [1984]):

1. Geometric similitude, whereby the ratio of the length dimension are equal in the
model and prototype

2. Kinematic similitude, whereby the ratio of velocities and accelerations are equal in
the model and prototype

3. Dynamic similitude, whereby the ratio of the forces are equal in the model and
prototype

It is very difficult or even impossible to achieve similarity for geometric, kinematic and
dynamic similitude between prototype and model. Therefore, it is essential to identify the
primary process in the hydraulic model test. For pipe flow the ratio of the inertia forces to
viscous forces are of predominant importance and therefore the model is scaled after the
Reynolds number Re (Eq. 3.1) which can be written as:
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Re =
L V

ν
(3.1)

Whereas L is a characteristic length scale (e.g. pipe diameter D for pipe flow), V is the
velocity (e.g. mean velocity in a pipe) and ν the dynamic viscosity.

Due to the available size in the laboratory of TU-Graz the following scaling ratio (Eq. 3.4)
has been used:

Repr = Remo (3.2)

Lr =
Lpr
Lmo

= 8.13 (3.3)

Vr =
1

Lr
(3.4)

Qr = Lr (3.5)

Whereas the subscript pr and mo represent prototype and model values, respectively. The
subscript r denotes the ratio between prototype and model.

.

3.2 Model set up

In the hydraulic model test the Y-bifurcator consists of a main pipe with an inner diameter
of 246 mm and two branching pipes with an inner diameter of 172 mm, respectively. The
branching angle of the symmetrical Y-bifurcator is 40◦ and a stiffener is used for statical
reason. 18 diameters (18 · D) upstream of the Y-bifurcator a bend with an angle of 42◦

is located and after this bend exists a 12 · D long pipe which ends in a flow conditioner
(see Figure 3.1). Downstream of the Y-bifurcator, there is a 10 · D long pipe with a inner
diameter of 123 mm and a confuser for each branch.

The flow conditioner (see Figure 3.2) consists of a pipe bundle to smooth the incoming
flow and to create a fully developed turbulent approach flow. The bend itself consists
of 5 segments each of them rotated by 8.4◦. The Y-bifurcator consists of three cone-
shaped volumes and a stiffener. After the confuser two Pelton turbines are located in the
prototype. Instead of the Pelton turbines a 10 · D long pipe is installed in the hydraulic
model to get a fully redeveloped turbulent flow.

The water for the model test is supplied by a reservoir in the laboratory. The water level
in the reservoir is 13 m above the symmetry axes of the Y-bifurcator. With this water head
a maximum discharge rate of 0.12 m3/s is possible. Using pumps, a discharge rate of
0.2 m3/s is possible and the maximum allowable pressure of 1.3 bar, due to the strength of
the plexiglass-pipe, is achieved in the installation. After passing the model test, the water
enters another reservoir which is located below the model.

Due to the length ratio of 8.13 it is possible to use prefabricated pipes with an inner diam-
eter of 123 mm for the downstream part of the Y-branch. Upstream, handmade plexiglass
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Figure 3.1: View of the model test Pirris.

Figure 3.2: Flow conditioner: Assembling of smaller pipe bundles to smooth the incoming
flow

pipes are manufactured with an inner diameter of 246 mm. Generally, a manufactured
pipe consists of two half pipes which are wrapped around a wooden pipe model. This can
only be achieved with a heated plexiglass plate in an oven (Figure 3.3).

The same procedure is also used for the Y-branch. Again a wooden model is used to give
the plexiglass plate a conical form (Figure 3.4).
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Figure 3.3: Manufacturing of a pipe: Firstly, the plexiglass-pipe is wrapped around a
wooden model. After cooling, the pipe keeps its shape. Finally, the half shells are glued
together

Figure 3.4: Manufacturing of the Y-bifurcator: Three conical plexiglass shapes are needed
to assemble the Y-bifurcator
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Figure 3.5: Final form of the Pirris hydraulic model

Finally, all the plexiglass parts are flanged together to give the final form of the Pirris
hydraulic model (Figure 3.5 and Figure 3.6). The additional parts downstream of the Y-
bifurcator, that is the Howell-Bunger valves and the flow meters, will be explained later.

3.2.1 Load Cases

Seven load cases with corresponding discharge ratios for the model test are defined (see
Table 3.1). The theoretical maximum discharge rate based on the Reynolds law isQmain/Lr
= 18/8.13=2.2 m3/s. Note, the discharge for the prototype is 18 m3/s.
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Figure 3.6: Dimensions of the Y-bifurcator (model size [mm])
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Table 3.1: Flow distributions

LC1-left LC2-right LC2-left LC3-right LC3-left LC4-right LC4-left

- - - - - - -

Qleft
Qmain

= 1.0
Qright
Qmain

= 0.33
Qleft
Qmain

= 0.67
Qright
Qmain

= 0.42
Qleft
Qmain

= 0.57
Qright
Qmain

= 0.50
Qleft
Qmain

= 0.50
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3.3 Instrumentation and measuring devices

For the measurement of the loss coefficient ζ two quantities have to be recorded by a
data acquisition device. The first quantity is the piezometer differential pressure between
two control sections and the second quantity is the discharge rate. The measuring device
”Particle Image Velocimetry” will be introduced in Chapter 4.

3.3.1 Control section

For the measurement of differential pressures several control sections are necessary. Each
control section consists of 8 burr-free, equi-distant and sharp edged bore holes with a
diameter of 1 mm as shown in Figure 3.7.

All eight holes are connected together to get one average value. The distance between the
control sections is approximately 3 times the diameter for the main pipe and 2 times the
diameter for the branching pipes, respectively (see Figure 3.8).
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Figure 3.7: Ring-Lines and bore holes of the model test
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Figure 3.8: Control sections along the pipe: M stands for main, L for left and R for right
branch. [mm]
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3.3.2 Sampling rate

For all measurements the sampling rate was 1 kHz. The time length of one measure-
ment was 60 seconds. This time length guarantees that the calculated mean value of the
discharge rates and the pressure differences of the 60 000 data points are representative
values. Figure 3.9 and Figure 3.10 show the influence of the time length of the sampling
rate. Beginning with a time length of 300 seconds a mean value of 214.6 mbar is achieved.
Unfortunately, it is not feasible to carry out the measurements with a time length of 300
seconds and therefore a reduction of the time length is necessary. If reducing the time
length to 60 seconds a mean value of 214.3 mbar is found. That means that the difference
of the two time lengths are only 0.3 mbar (3 mm head level) and the time length of 60
seconds are therefore long enough for the hydraulic model test. The same consideration
can be applied with Figure 3.10. Again the difference for the discharge rate between 300
and 60 seconds are smaller than 0.3%. Note, that nearly 100 measurements have been
carried out; with a sampling rate of 1 kHz and the aforementioned differences of the mea-
surements of discharge and pressure the evaluation of the data with a Matlab script takes
not too long (less than 1 hour) with a time length of 60 seconds.

Figure 3.9: Time dependent mean value of the total pressure difference measurement (con-
trol section M1 - L6, Q-left: 80l/s, Q-right 80 l/s
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Figure 3.10: Time dependent mean discharge rate, normalized with Qt=300 s (control sec-
tion M1 - L6, Q-left: 80l/s, Q-right 80 l/s)

3.3.3 Pressure probe

The PD-23 pressure probe (Figure 3.11) from the company Keller is used. The maximum
uncertainty of the pressure probe is 0.5% of the full range. With an average range of ≈ 1
m head level the uncertainty of 5 mm occurs.

Figure 3.11: Pressure sensor PD-23 (Keller)

3.3.4 Flow meter

Three flow meters (see also Table 3.2) are used to record the discharge rate in each branch,
that is, the main branch (Ø250 mm) and the two branching pipes with a diameter of
150 mm each (flow meters are not placed in the plexiglass installation).

The measuring principle is based on electromagnetic induction where an electromagnetic
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Figure 3.12: Sketch of the position of the flow meter

field B is used to measure the velocity in a pipe. When an electro-conductive fluid (e.g.
water) in a pipe crosses the electromagnetic field which is generated by an electromagnet,
a voltage U is measured between two electrodes. U is proportional to the velocity in the
pipe.

Figure 3.13: Principle of inductive flow measurement (Goch [2008])

The accuracy of the flow meter is a %-value of the measured discharge rate. For the
highest measured discharge rate an uncertainty in the measurements occur as shown in
Table 3.2.

Table 3.2: Accuracy of the flow meters

Flow meter No. Type designation Accuracy (dep.
on flow rate)

Highest flow rate Deviation

- - % `/s `/s

3 FXE4000(COPA-XE) 0.5 200 1

2 10DX3311G(COPA-XE) 1 100 1

1 D10D1465(COPA-XE) 0.5 100 0.5

The sample rate of the flow meter is 1 kHz. An internal damping of two seconds is set
in the flow meter. That means that the flow meter calculates continuously mean values in
the range of two seconds.
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The discharge rate is controlled by two Howell-Bunger valves (see Figure 3.14) which
have a fixed cone dispersion. With an electric motor the valves can be automatically
opened or closed.

Figure 3.14: Howell-Bunger valve (fixed cone dispersion valve) to control the discharge
rate

3.3.5 Calibration of pressure probe

Before the piezometer differential pressure measurement can be started a calibration for
the pressure probe needs to be done. This is done by measuring a hydrostatic head level
of 90 cm and scale the pressure probe to that height. Figure 3.15 shows the calibration
device.

Figure 3.15: Calibration of the difference pressure measurement
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Chapter 4

Particle Image Velocimetry

Particle Image Velocimetry (PIV) is an optical method to obtain instantaneous velocity
vector fields of 2D-planes within a fluid. This chapter shows the set up and the positions
(2D-planes for measurement) where PIV had been carried out. Also, a simple example of
the evaluation of the raw-data from a PIV-measurement is demonstrated by using MAT-
LAB R2008a (Matlab [2008]). A crucial point are the particle seeding within the flow to
measure (indirectly) the flow velocity. To avoid building a second, smaller water circuit
in the hydraulic laboratory where artificial seeding with a certain diameter and density
could be added to the flow, the original water tanks are used instead. Therefore the whole
measuring campaign was carried out by using the natural seeding of the flow itself. The
diameter and the distribution of the natural seeding could be measured optically whereas
an assumption had to be made that the density of the natural seeding is close to the den-
sity of water (only the floating seeding with density close to water can be drawn in by the
pumps). Thus with the known diameter and density of the seeding the velocity lag as well
as the minimum detectable velocity can be estimated. The results of the PIV-data, after
validating the velocity vectors, have been statistically analyzed, that is, confidence inter-
vals of the mean velocity and the standard deviations of the velocity had been checked.
Finally, based on the statistical data from the PIV-measurements, several parameters of
the flow can be calculated like turbulent intensity, kinetic energy, production of kinetic
energy, Reynold-stress and vorticity.

4.1 Measuring Principle

Since the 1980ies considerable efforts have been undertaken to develop a Particle Image
Velocimetry. Today a complete PIV device is available to investigate different flows either
in air or water, mainly for research purposes. The principle of a non intrusive PIV is shown
in Figure 4.1. A double pulsed Nd:YAG laser emits at 527 nm wavelength (green light) to
generate a laser light which is expanded by optical lenses to a laser light sheet within the
measurement area. At 1 kHz repetition rate the Nd:YAG laser has an output power of 23
mJ and therefore belongs to the safety class 4. Details on the PIV system used are given
in Table 4.1.

The particle seeding flow through the laser light sheet and scatter the light which, in turn,
is recorded by a high speed camera. With two images taken at ti and ti+1 a cross corre-
lation is done for each interrogation (I1 and I2) area of the image. For each interrogation
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area one velocity vector is calculated and after carrying out the procedure for the rest of
the interrogation areas a velocity vector field is achieved.

Table 4.1: Components of PIV

Laser Litron Laser - Model: LDY303-PIV, Repetition rate: 0.2 - 10 kHz with
21.5 - 1.85 mJ, λ=527 nm

Camera Photron FASTCAM SA-1 Camera, 5.4 kHz, 1024 · 1024, 16 GB Mem-
ory

Object lens AF Micro-Nikon, 60mm f/2.8 D

Software Dynamic Studio 2.20.18

Figure 4.1: Principle of PIV and its components (Source: Dantec Dynamics)

4.2 PIV set-up

The position for the measurements of PIV is shown in Figure 4.3. The blue hatched boxes
indicate where the laser and the camera are positioned along the pipe. In Figure 4.2 a
principle set up for the camera and the laser light sheet is shown. There are 4 planes for
the PIV whereby the camera is always aligned orthogonally to the laser light sheet. The
reason for the water filled PIV-box is to avoid any astigmatism effects due to the curved
pipe surface. The refraction index between water and plexiglass (water:1.33, plexiglass-
Röhm: 1.49) is nearly the same, that is, no severe diffraction occurs.
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In Table 4.2 the different load cases for PIV are shown. Several planes (Plane 1 to 4 for
PIV-Box 200 to 202L; compare also with Figure 4.3) are investigated for PIV. The flow
property in the hydraulic model test is indicated by the operation mode Generating (flow
has a direction as shown in Figure 4.3) or Swirling flow (flow with an additional swirling
flow, see also Section 5.5 on Page 102).

Figure 4.2: Left Figure: typical set up for a PIV: Laser light sheet and high speed camera
are orthogonally aligned. Right Figure: Four planes are used to determine the velocity
vector fields
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Table 4.2: PIV - Load cases for hydraulic model test Pirris: 40 Planes are investigated
with PIV whereas 2 different discharge rates are used (80 and 40 l/s). The operation mode
is either generating or swirling flow (with the use of a swirling device).

Operation mode Q [l/s] PIV-Box: B200 PIV-Box: B201 PIV-Box: B202

Generating

Qleft = Qright=80

Plane 1 Plane 1 Plane 1

Plane 2 Plane 2 Plane 2

Plane 3 Plane 3 Plane 3

Plane 4 Plane 4 Plane 4

Qleft = 80, Qright=0

Plane 1 Plane 1 Plane 1

Plane 2 Plane 2 Plane 2

Plane 3 Plane 3 Plane 3

Plane 4 Plane 4 Plane 4

Swirling flow

Qleft = Qright=40

Plane 1

Plane 2

Plane 3

Plane 4

Qleft = 40, Qright=0

Plane 1

Plane 2

Plane 3

Plane 4
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Figure 4.3: Position for PIV along the pipe installation
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4.3 Image cross correlation principle with Matlab and
Dantec

In Figure 4.5 the interrogation areas for two time steps of a PIV-measurement are shown.
The interrogation areas belong to a measurement campaign of the Y-bifurcator Pirris with
a sample rate of 1kHz and a size of a single pixel of 0.3 mm in x and y direction. The
natural seeding can be clearly distinguished in Figure 4.5 (flow direction from left to
right). Note, that the intensity for the second flash is somewhat smaller than for the first
one. With the two interrogation areas a cross correlation can be carried out to find the
displacement vector between the first and the second interrogation area. The correlation
between two functions (x and h) is defined as:

z(t) =

∫ −∞

−∞
x(ξ) · h(t+ ξ) · dξ (4.1)

where t is the time and ξ is the shifting of the function. Evaluating Eq. 4.1 for two dimen-
sional PIV pictures would be numerically very time consuming due to the multiplication
and integration procedure. Alternatively, the convolution theorem is applied which states
that a multiplication in the frequency domain is equivalent to a convolution in the time
domain. The convolution and the cross correlation are almost identical as can be seen in
Figure 4.4; the only difference is the mirroring of the function h(τ).

Therefore, as a next step, a 2-D discrete Fourier transformation into the frequency do-
main for the two interrogation areas will be carried out (see Figure 4.6). The syntax in
Matlab2008b is simply: A =fft2(Image). Multiplication in the frequency domain with
Figure 4.6, following an inverse 2-D discrete Fourier transformation (Matlab syntax: Im-
age = ifft2(A)) to get the result in the time domain, gives the wanted peak in Figure 4.7.
With a peak detection algorithm the displacement vector between the center of the image
and the peak (see Figure 4.7) can be calculated (as expected the peak in Figure 4.7 is on
the left of the center point).

The software of Dantec Dynamics is similar to the procedure shown above but with a more
sophisticated algorithm. As a correlation method, the adaptive correlation of Dantec
Dynamic is chosen. The adaptive correlation method calculates velocity vectors with an
initial interrogation area of the size N times the size of the final interrogation area and
uses the intermediary results as information for the next interrogation area of smaller
size, until the final interrogation area size is reached (Source: Dynamic Studio Help file

After the adaptive correlation had been conducted three validation methods, offered by
Dantec Dynamic Studio, are applied. The first one is called peak validation, which
means that the highest peak (see peak in Figure 4.7) and the second highest peak must
fulfill a minimum peak height ratio (the ratio was always 1.2). This enables to distinguish
between the highest and second highest peak. The second validation method is called
range validation. This method simply dumps every vector which has a higher absolute
velocity than a certain threshold. The last method which is used to validate vector maps
is called moving average validation by comparing each vector with the average of other
vectors in a defined neighborhood. Vectors that deviate too much from their neighbors
are dumped from the vector maps. Finally after the validation step, a mean vector map of
all time steps is calculated by the software.
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Figure 4.4: Relationship between convolution and correlation (taken from Brigham
[1997]).
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a) b)

flow directionflow direction

Figure 4.5: Interrogation area at a) t1 and b) t2

a) b)

Figure 4.6: FFT interrogation area at a) t1 and b) t2
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Figure 4.7: Peak of the cross correlation

4.4 Natural seeding

Due to the size of the hydraulic model test and the reservoir for the water supply it is not
feasible to build a smaller water-circuit with artificial seeding in the flow. As an alterna-
tive, the natural seeding particles of the flow are used to detect the velocity. Obviously it
is very difficult to define the density and the diameter of the natural seeding in the flow
to calculate the velocity lag of the particles. Nevertheless, a reliable estimation of the
velocity lag is possible.

In Figure 4.8 a representative example image of a PIV right after the bend is shown. The
natural seeding can clearly be distinguished in Figure 4.8. To calculate the diameter of
these particles it is necessary to divide the image into smaller parts as the working memory
of the computer is restricted. One of the smaller images is presented in Figure 4.9. With
this image having a gray depth of 16 bit the mean value of the gray depth of Figure 4.8
is subtracted. This reduces the background noise of the image considerably and using the
threshold of 2 times the standard deviation gives the ability to distinguish between the
particles and the background. The resulting particle matrix by this filtering is shown as
an image in Figure 4.10 where the white space represents the background with a numeric
pixel value of 0 and the black dots represent the particles with a numeric pixel value of
1. It is now possible with a Matlab script to count the seeding (black dots) and calculate
the area of the seeding. This is done by stepping through the lines and columns of the
particle matrix and count every conglomerate of the black dots in Figure 4.10 which rep-
resents a particle. The knowledge of the area of a pixel allows to calculate an equivalent
particle diameter. Applying this procedure to the remaining image parts gives the particle
distribution shown in the histogram of Figure 4.11. In the histogram a predominated class
between particle diameters of 0.3159 to 0.4791 mm can be distinguished. Unfortunately,
this particle diameter class is close to the pixel resolution (the area of the image is ap-
proximately 300·300 mm; with 1024·1024 pixels a length for a pixel in the image plane
of 290 µm is obtained) and a microscope is used to determine the particle size. Several
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probes had been taken from the reservoir and are used to check the predominated particle
diameter as can be seen in Figure 4.12. The resulting diameter with the microscope is -
for the most cases - between 20 and 50 µm. Therefore, for further calculations the parti-
cle size of 50 µm is used. The histogram with too big particle diameters is still useful to
estimate the amount of particles in the flow which is around 12 000 for particles smaller
than 600 µm. The amount of particles for each image was mostly constant, regardless of
the discharge rate.

flow direction

Inner pipe diamter: 246 mm

Detail

Figure 4.8: Example image for the natural seeding of the model test. (Position: horizontal
plane, right after the bend).

- 60 -



CHAPTER 4. PARTICLE IMAGE VELOCIMETRY

Figure 4.9: Detail of the image in
Figure 4.8

Figure 4.10: Subtracting the mean of
Figure 4.9 and filtering with 2 times the
standard deviation reveals the seeding.

Figure 4.11: Most particles lie in the class from diameter = 0.3159 to 0.4791. More than
12000 seeding are available per image. Note, that these particle diameters are smaller as
shown in Figure 4.12

.
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Figure 4.12: Determine the particle size with a microscope. The predominated particle
sizes are from 20 to 50 µm
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4.5 Velocity lag of the natural seeding

As mentioned in the previous section small particles (seeding) are necessary to determine
the velocity field in the two-dimensional plane expanded by the PIV laser. The behavior
of the seeding is of crucial importance, because PIV measures the velocity of the particles
and not of the flow carrying the seeding. Depending on the size and density every particle
has a velocity lag. A simple method to estimate the velocity lag of a spherical particle
of radius r in a constant acceleration in a laminar flow can be made by using the law of
Stokes (see also Raffel et al. [2007]).

Figure 4.13: Stokes Law of an accelerating particle in a Newtonian fluid.

Fgravity =Fbuoyancy + Fresistance + Finertia (4.2)

ρp · g ·
4

3
· π · r3 =ρf · g ·

4

3
· π · r3 +

ρf
2
· ẋ2 · π · r2 · ζ + ρp · ẍ ·

4

3
· π · r3 (4.3)

where ρp = particle density and ρf = fluid density. For laminar flow the loss coefficient
can be substituted by ζ = 24

Re
= 12·ν

ẋ·r which yields the final ODE of 2nd order:

ẍ+ ẋ · 9 · ρf · ν
2 · ρp · r2

−
(

1− ρf
ρp

)
· g = 0 (4.4)

Rewriting Eq. 4.4 with ẍ = a = dV/dt = V̇ and ẋ = V yields:

V̇ + Aconst. · V = Sconst. (4.5)

with Aconst =
9 · ρf · ν
2 · ρp · r2

(4.6)

and Sconst =

(
1− ρf

ρp

)
· g (4.7)

To get the solution for Eq. 4.5 the following approach is used (Bartsch [1999]):

V = VH + VP (4.8)

Approach for VH : V = eλ·t and V̇ = λ · eλ·t (4.9)
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Substituting Eq. 4.5 with Eq. 4.9 gives the homogeneous solution:

VH = Cintegration · e−A·t (4.10)

To get the particular solution VP the approach VP = Sconst/Aconst is used (A and S are
constant function and do not dependent on t). The final solution (integration constant
Cintegration = −Sconst/Aconst at t=0) is:

v = ẋ =
2 · ρp · r2

9 · ρf · ν
·
(

1− ρf
ρp

)
· g ·

(
1− e−

9·ρf ·ν
2·ρp·r2

·t
)

(4.11)

and for t 7→ ∞ the end velocity uend can be written as

ẋt7→∞ = uend =
2 · ρp · r2

9 · ρf · ν︸ ︷︷ ︸
Relaxation time: τs

(
1− ρf

ρp

)
· g (4.12)

Finally, the particle velocity for every time step and applying the definition for the relax-
ation time τs gives:

up = uend ·
(

1− e− t
τs

)
(4.13)

This means that the particle which is initially at rest reaches exponentially the end velocity
uend. As can be seen in Eq. 4.12 and Eq. 4.13 the density and diameter of the particle need
to be defined. The particle diameter was determined in Section 4.4 with a value of 50 µm
(a smaller particle reaches quicker the end velocity). The density could not be measured
in the flow and therefore the density ρp is varied from 800 to 1200 kg/m3 in Eq. 4.12 to
estimate the velocity lag (only the floating particles in the reservoir with density close to
water can be drawn in by the pump, heavier and lighter particles are on the ground or float
up to the surface, respectively). In Figure 4.14 the result of the exponential velocity law of
Eq. 4.13 is shown. When a particle is dropped in a fluid with a velocity of 1 m/s it needs,
depending on the density ρp,≈ 7 · 10−4 s to reach the end velocity. This result can also be
interpreted as having a low pass filter where every frequency which is higher than 1.4 kHz
is blocked (generally, turbulent flow has a frequency range from 5 to 50 kHz, taken from
Sigloch [2005], p 92). The velocity field of a PIV-measurement is therefore smoother than
the real velocity field in the flow because the particles cannot follow frequencies higher
than 1.4 kHz.
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Figure 4.14: Evaluation of Eq. 4.12 and Eq. 4.13 with Dp = 50 µm - Time response of
the particle seeding.

4.6 Minimum detectable velocity

Another error source of PIV is the diffraction due to the optical instruments. If light waves
hit on a circular aperture they generate a far field diffraction pattern which is also known
as Frauenhofer diffraction. By using the objective lens of the camera the far field pattern
will be imaged on the sensor of the camera. The problem is now that a point in the object
area (e.g. a scattering particle in a laser light sheet) does not display as a point but as
a Frauenhof diffraction on the sensor of the camera (see also Raffel et al. [2007]). An
example of a diffraction for a circular aperture is shown in Figure 4.16. The center of
the first high intensity circle is called airy-disk. In Figure 4.15 the principle of diffraction
due to the behavior of light as an electromagnetic wave is shown. Because of the phase
difference ∆ in Figure 4.15 interference (superposition of waves) occurs and forms the
diffraction pattern on the screen behind the aperture.
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Figure 4.15: Light is an electromagnetic wave.
Due to the interference of waves, for example at
a single-slit or circular aperture, diffraction oc-
curs (Kühlke [2007]): a) general scheme, b) de-
tail

Figure 4.16: Diffraction for a
circular aperture (far-field).
The center of high intensity
is called Airy-disk. (Kühlke
[2007])

Raffel et al. [2007] define the diffraction-limited minimum image diameter Ddif as

Ddif = 2.44(M + 1) ·N · λwave (4.14)

where M is the magnification factor between object and image plane (M=Limage/Lobject=z0/Z0,
see also Figure 4.17), N the f-number (ratio between the focal length f and the aperture
diameter Da) and λwave the wavelength.

Using the relationship for the geometrical optic (geometrical optic = wave behavior of
light is neglected) the particle diameter Dp can be calculated for the particle diameter
Dgeo in the image plane:

Dgeo = M ·Dp (4.15)

Combining Eq. 4.14 and Eq. 4.15 yields the effective particle image diameter Deff :

Deff =
√
D2
dif +D2

geo (4.16)

With Deff being the smallest detectable distance in the image plane the smallest de-
tectable distance in the object plane can be calculated. Setting L∆(image,min) = Deff gives
the smallest length L∆(object,min):
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Figure 4.17: Relationship of image and object plane for the geometrical optic (Raffel et al.
[2007])

L∆(object,min) =
1

M
·Deff (4.17)

To estimate the minimum detectable distance and velocity in the hydraulic model test
following representative values are chosen:

• M = 1/14.284

• N = 2.8

• Dp = 50 µm

• λ = 527 nm

• time step = 1/1kHz = 0.001 s

The results are:

• Ddiff = 0.0039 mm

• Dgeo = 0.0035 mm

• Deff = 0.0052mm.

• L∆(object,min) = 0.0748 mm

• Vmin = 0.0748 m/s

Therefore flow velocities which are smaller than 0.0748 m/s cannot be measured in the
hydraulic model test with these input parameters (for boundary layer measurements the
input parameters are different and a much smaller minimum velocity can be detected).
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4.7 Confidence Interval

In Section 4.3 has been shown the way how to validate velocity vectors for each PIV
measurement. With the validated velocity vectors the reliability of the mean and the
standard deviation can be estimated. The confidence level is (1-αconf,limit) = 90%. As a
probability distribution the Student t-distribution is chosen. The t-distribution is a robust
method and can contain more extreme sample values in the distribution than a normal
distribution (see Fahrmeir and Pigeot [2007], pp304 and Woisetschläger [2008]). The
confidence interval with a t-distribution is:

P

[
u− t1−αconf,limit/2 (n− 1)

STD(u)√
n

, u+

+ t1−αconf,limit/2 (n− 1)
STD(u)√

n

]
= 1− αconf,limit

(4.18)

where 1 − αconf,limit/2 is the quantile of a student distribution, n is the validated vector
sample size, STD(u) is the standard deviation of the velocity u and u is the mean velocity.

A confidence interval for the standard deviation can also be estimated. For that purpose a
χ2 distribution is chosen. The confidence interval for the standard deviation with normal
distributed samples gives,

[
(n− 1) STD(u)2

χ2
1−αconf,limit/2(n− 1)

,
(n− 1) STD(u)2

χ2
αconf,limit/2

(n− 1)

]
(4.19)

where αconf,limit/2 is the 5% quantile and 1-αconf,limit/2 is the 95% quantile of a χ2

distribution.

To demonstrate the influence of the validated sample size n of the velocity vector an
example is shown in Figure 4.18 and Figure 4.19 for the reliability of the mean and the
standard deviation. Evaluating Eq. 4.18 with a mean value of the velocity of 3 m/s and a
Turbulence Intensity (TU = STD(u)/MEAN(u)) of 10% and 20%, respectively, gives
the reliability of the mean value for n-samples (Figure 4.18). The same considerations are
applied for Eq. 4.19; the result of the evaluation of Eq. 4.19 for n-samples are shown in
Figure 4.19. As can be seen in Figure 4.18 and Figure 4.19 a high sample size n (≥ 1000)
is desirable.
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Figure 4.18: Student distribution - reliability of the mean value

Figure 4.19: χ2 distribution - reliability of standard deviation

The confidence interval is based on a normal distribution for the reliability of the mean
and the standard deviation. Figure 4.21 shows a representative histogram of the velocity
sample extracted at the red point in the velocity vector field of Figure 4.20 (the vector
field to demonstrate the normal distribution of the velocity is located right after the bend,
vertical plane). Additionally, a Probability-Probability plot of the velocity distribution is
shown in Figure 4.22 which indicates whether the samples are normal distributed, that is,
the distribution (blue dots in Figure 4.22) are close to the red line in Figure 4.22 or not.
Both plots (Figure 4.21 and Figure 4.22) show that a nearly normal distribution of the
velocity samples can be expected. For other PIV measurements in the hydraulic model
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Figure 4.20: Position for velocity sample for Figure 4.21 and Figure 4.22 (PIV-Box 200,
vertical plane, asymmetric discharge rate)

test the distribution of the velocity sample is always checked with discreet points in the
vector field.

4.7.1 Result of the confidence intervals

The results of the confidence interval are shown for the vertical plane right after the bend
of the PIV Box B200 (compare also with Figure 4.3 and Figure 4.2 in Section 4.2). For
the other two PIV Boxes (B201 and B202L) the results are similar and not shown here.

The confidence interval of the mean value for the velocity of the X and Y components
(asymmetrical discharge rate, left branch 80 l/s and right branch 0 l/s) are shown in Fig-
ure 4.23 and Figure 4.24. For better appearance the confidence interval of the mean veloc-
ities will be plotted logarithmically as a function of the ascended sorted velocity against
the confidence interval (see Figure 4.25). In Figure 4.25 it can be seen that the confidence
interval of the mean value is between ≈ ±0.007 and ±0.01 [m/s]. This range can also be
found for the other PIV-Boxes.
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Figure 4.21: Histogram of the X-Velocity

Figure 4.22: Probability-Probability-Plot (P-P-Plot)

The confidence interval for the standard deviation can be taken from Figure 4.26 to Fig-
ure 4.29. Generally speaking, the lower limit of the standard deviation is ≈ 0.07 and the
upper limit 0.23 [m/s]. Again, the confidence interval of the standard deviations for the
remaining PIV-Boxes are similar and not shown here.
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Figure 4.23: Confidence interval [m/s]
for the mean velocity in X-Direction
(longitudinal velocity)

Figure 4.24: Confidence interval [m/s] for the
mean velocity in Y-Direction (lateral velocity)

Figure 4.25: 1D-Plot of the confidence interval of the mean velocity: The discrete point
velocities of the 2D-Plot (Figure 4.23 and Figure 4.23) are ascended sorted.
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Figure 4.26: Confidence interval [m/s]
for the standard deviation of the ve-
locity in X-Direction (longitudinal ve-
locity), lower limit

Figure 4.27: Confidence interval [m/s]
for the standard deviation of the ve-
locity in X-Direction (longitudinal ve-
locity), upper limit

Figure 4.28: Confidence interval [m/s]
for the standard deviation of the ve-
locity in Y-Direction (lateral velocity),
lower limit

Figure 4.29: Confidence interval [m/s]
for the standard deviation of the ve-
locity in Y-Direction (lateral velocity),
upper limit
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4.8 Evaluation of the statistics

After a PIV measurement is carried out abundant data are available for further statistical
investigations. The cross correlation applied on each interrogation area gives a 2D vector
plot of velocities. With a sample rate between 1 and 5 kHz and the corresponding sample
time of 1 second several thousand vector plots (from t1 · · · ti) are obtained. Evaluating
these plots gives the following statistical output:

With the velocity vector

~V =
(u
v

)
(4.20)

a mean value can be calculated (only shown for the u-component). Thus

u =
1

n
·

n∑

i=1

ui (4.21)

with n as the sample size. Furthermore the variance which is

V AR(u) = u′2 =
1

n− 1
·

n∑

i=1

(ui − u)2 (4.22)

and the standard deviation

STD(u) =
√
u′2 =

√√√√ 1

n− 1
·

n∑

i=1

(ui − u)2 =
√
V AR(u) (4.23)

can be calculated. The covariance of u′ and v′ is

COV (u, v) = u′v′ =
1

n− 1
·

n∑

i=1

(ui − u) · (vi − v) (4.24)

and dividing the covariance with the standard deviations gives the correlation coefficient
COR(u,v):

COR(u, v) =
COV (u, v)

STD(u) · STD(v)
{COR(u, v) ∈ < | −1 ≤ COR(u, v) ≤ 1}

(4.25)
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4.8.1 Turbulence Intensity

Depending on the flow being 1 or 2 dimensional the turbulence intensity is defined as
(Bodo [2010]):

TU =

√
1
2
· [V AR(u) + V AR(v)]

∣∣∣~V
∣∣∣

(4.26)

TU =
STD(u)

v
(4.27)

In the Fluent Manual (ANSYS Fluent [2005]) the turbulence intensity is stated as

TU ≈ 0.16(Re)−
1
8 (4.28)

which is a good estimation for a fully turbulent pipe flow. Values for TU below 1% are
considered as a low turbulent flow whereas values above 10% are considered as a strong
turbulent flow (see ANSYS Fluent [2005]).

4.8.2 Kinetic energy of the mean flow

The kinetic energy ktot of the flow can be split into a mean kinetic energy K and the
turbulent kinetic energy k (Bodo [2010]):

ktot = K + k (4.29)

K =
1

2
·
(
u2 + v2

)
(4.30)

In comparison to the turbulent kinetic energy k, where all three dimensions have to be
considered, K can be defined with only one or two components of the velocity vector.

4.8.3 Turbulent kinetic energy of the flow

The turbulent kinetic energy k is defined as (Bodo [2010]):

3D : k =
1

2
· (V AR(u) + V AR(v) + V AR(w)) (4.31)

2D : k =
3

4
· (V AR(u) + V AR(v)) (4.32)

When only a 2D-Measurement system is used (e.g. PIV) the third non-measured compo-
nent will be replaced by half of each of the two known components (see Eq. 4.32). Thus,
an isotropic turbulence is assumed (u′2 = v′2, u′v′ = v′u′ = 0).
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4.8.4 Production of k

The kinetic energy of the mean flow is transferred to the turbulent flow. The term P ap-
pears in the transport equation for the mean and turbulent kinetic energy but with opposite
sign. For a 3D-flow the production can be written as (Bodo [2010]):

Generally (3D)

P = − u′iu′j · Sij (4.33)

(4.34)

2D:

P = −
(
u′2

∂u

∂x
+ u′v′

∂v

∂x
+ u′v′

∂u

∂y
+ v′2

∂v

∂y

)
(4.35)

4.8.5 Turbulent shear stress

The turbulent shear and normal stresses (Reynolds-stress tensor) for a 2D plane is defined as (Bodo
[2010]):

τturb = − ρ · COV (u, v) = −ρ · u′v′ (4.36)

σx,turb = − ρ · V AR(u) = −ρ · u′2 (4.37)

σy,turb = − ρ · V AR(v) = −ρ · v′2 (4.38)
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Chapter 5

Hydraulic losses - Loss coefficient ζ

This chapter presents the calculation of the loss coefficient ζ. For that purpose two quantities need
to be measured: the differential pressure upstream and downstream of the Y-bifurcator and the
discharge rate. For the differential pressure measurement several control sections along the pipe
installations are defined. Each control section consists of 8 burr-free and sharp-edged bore holes
connected together by a single ring line. The discharge rate is measured by three flow meters for
the main and the branching pipes. With the known diameter of the pipe the mean velocity can be
calculated.

The loss coefficient ζ is defined as the total head loss ∆htot divided by the kinetic head, excluding
any pipe friction. This can be done by defining substitute-cylinders between two control sections
and using the Colebrook and Darcy-Weisbach equations to calculate the pipe friction and subtract-
ing it from the measured head loss ∆tot. Before each measuring campaign the pressure probe is
calibrated with a water column gauge glass.

The equivalent sand roughness ks which is needed for the Colebrook-White equation to determine
the pipe friction coefficient λ is measured by two different methods. The first method uses the
differential pressure loss between several control sections where a linear friction gradient exists.
With the known head loss ∆htot the Darcy-Weisbach and the Colebrook-White equations are
applied to calculate the equivalent sand roughness ks. The other method for the ks calculation is
done via Particle Image Velocimetry (PIV). As generally known, close to the wall exists a universal
law for the velocity distribution which is also known as the logarithmic law of the wall. With the
measured (via PIV) axial velocity u and the corresponding distance y from the wall as well as the
equation of the law of the wall for rough pipes the equivalent sand roughness ks can be calculated.
The chosen ks value for both methods is 0.015 mm.

Due to the bend upstream of the Y-bifurcator secondary flow occurs in the pipe installation. Be-
cause of the 1D-consideration for the loss coefficient calculation (ζ) the influence of the secondary
flow needs to be taken into account via a velocity correction factor α which is defined as the ra-
tio of the kinetic energy of the axial secondary flow and the kinetic energy defined by the mean
velocity. With PIV the kinetic energy of the axial secondary flow can be measured - only the last
approximately three millimeters to the wall cannot be resolved with PIV due the reflection of the
laser light close to the wall. This problem is solved by closing the velocity profile with a linear
function. The influence of the velocity profile with the added linear function to close the gap will
be further investigated (Note, the results show that a logarithmic function is not yet necessary).
The results show that the influence of this procedure is marginal and the calculated α coefficients
can be used for further loss calculations.

The hydraulic model test is scaled after the Reynolds law which implies that the velocity in the
model test is the scale-factor times the velocity of the prototype. This yields velocities up to 43 m/s
in the model test which are too high for the pumps in the laboratory. To overcome this problem the
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head loss ∆h as a function of the discharge rate is decomposed into a polynomial function with a
quadratic, linear and constant term via the least square method. With the polynomial function the
desired head loss with respect to the discharge rate can be calculated. Furthermore, a comparison
is carried out whether it is better to use only the quadratic term of the polynomial function to
calculate the head loss for higher discharge rates. This assumption is based on previous model
tests (cf. Vogel [1926]) where the head loss as a function of the discharge rate is a pure quadratic
behavior. The comparison (only the quadratic term of the polynomial function or all three terms)
showed better results if only the quadratic term of the least square method is used. This is also
checked by a numerical calculation where the desired discharge rate due to the Reynolds model
can be set and the resulting head loss are compared with the extrapolated head losses of the model
test. The comparison of the CFD-calculations and the hydraulic model test with the extrapolated
values shows good agreement.

The last section of this chapter shows an attempt to reduce the loss coefficient ζ with a guide vane
apparatus. The guide vane induces a swirling flow upstream of the Y-bifurcator. As a result the
loss coefficient can be reduced for one flow distribution.

5.1 Hydraulic equations

5.1.1 Friction loss

Darcy and Weisbach derived an equation for the loss coefficient λ for a straight pipe and steady
state flow (Preissler and Bollrich [1985]).

Horizon

∆hfV 2
f

g2

hk

Figure 5.1: Head loss ∆hf for a gravi-
tational driven pipe flow

tww

tw

V D

L

Figure 5.2: Friction loss along the wall

The friction energy loss Ef due to the pipe friction for the length L is defined as (cf. Figure 5.1
and Figure 5.2):

Ef = ∆hf ·m · g = ∆hf · ρ · L ·
π ·D2

4
· g (5.1)

where m stands for mass, D for pipe diameter, ρ for density and ∆hf for friction loss. Eq. 5.1 is
also equivalent to the loss of potential energy between two cross sections. The friction energy loss
Ef can also be derived from Figure 5.2 with an additional assumption (experiments showed that
this assumption, especially for strong turbulent flows, is valid):

τw ∼ V 2 (5.2)
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To get a shear stress with the units N
m2 one needs to multiple the right side of Eq. 5.2 with ρ and a

constant factor λ8 . Eq. 5.2 then yields:

τw =
λ

8
· ρ · V 2 (5.3)

The friction force for Eq. 5.3 yields:

Ff = τw ·A =
λ

8
· ρ · V 2 ·D · π · L (5.4)

and the friction energy along the stretch of length L is then

Ef = Ff · L =
λ

8
· ρ · V 2 ·D · π · L2 (5.5)

If Eq. 5.1 and Eq. 5.5 are combined to

∆hf · ρ · L ·
π ·D2

4
· g =

λ

8
· ρ · V 2 ·D · π · L2 (5.6)

and after some rearrangement one gets the Darcy and Weisbach equation:

∆hf = λ · L
D
· V

2

2 · g (5.7)

Depending on the flow condition (laminar or turbulent) λ can either be calculated exactly for
laminar flow or from experimentally determined relationships for turbulent flow. In case of the
hydraulic model test only turbulent flow is predominant. The factor λ is called the friction coeffi-
cient.

5.1.2 Friction coefficient λ

Based on the work of Colebrook [1938] a semi-empirical equation can be derived for the friction
coefficient λ. Generally λ depends on the Reynolds Number (Re) and the relative roughness of the
pipe ks/D with ks as the equivalent sand roughness. This can also be shown in Figure 5.3 where
three areas can be distinguished:

1. Hydraulic smooth: λ(Re)

2. Transition: λ(Re, ks/D)

3. Hydraulic rough: λ(ks/D)

Colebrook developed one single equation for all three areas. This equation is used to calculate the
friction coefficient λ:

1√
λ

= −2.0 · lg
(

2.51

Re ·
√
λ

+
ks/D

3.71

)
(5.8)

with Re = D · V/ν as the Reynolds number.
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Figure 5.3: Diagram of Moody

5.1.3 Definition of the local loss coefficient ζ

Figure 5.4 shows the definition of the loss coefficient ζ. The difference between a pipe with no
installed component and the very same pipe with an installed component is defined as

ζ =
∆hlocal

V 2

2g

(5.9)

The position for the ∆hlocal measurement is always between the redeveloped friction gradients
(upstream and downstream of the component).

In Figure 5.4 a redeveloping friction gradient can be seen which needs a certain distance down-
stream of the component. This makes sure that no secondary flow exists in the cross sections where
the energy budget will be balanced for further calculation. With this definition the loss coefficient
calculation can be based on a 1D-consideration.

The necessary distance to get a redeveloped friction gradient in a pipe after a disturbance can be
estimated by Idelchik [1994] (cf. with Figure 5.5):

Lst
D

= 7.88 · log(Re)− 4.35 (5.10)

whereas Lst is the developing length and Re is the Reynolds number.

As mentioned in previous sections the hydraulic model test consists of a bend before the Y-
bifurcator. The length between the Y-bifurcator and the bend is 4.23 m. Applying Eq. 5.10 with
the maximum velocity in the main branch of V = 4.4 m/s, a diameter of D = 0.246 m and a kine-
matic viscosity of 1 · 10−6 m/s2 yields a developing length of Lst = ≈ 10.6 m. Therefore, due to
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gV
hlocal

2/2

Δ
=ζ

Friction gradient with 
zero local losses 

Figure 5.4: Definition according to Miller [1990]

Figure 5.5: Developing length Lst for turbulent flow (Idelchik [1994])

the too short developing length of the hydraulic model test the secondary flow has to be taken into
account by means of PIV and the resulting velocity correction factor α.
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5.1.4 Energy budget between two control sections for 1D considera-
tion

As is general known the energy budget between two control sections consist of the following
energy terms (frictionless)

Etot = m g z︸ ︷︷ ︸
Potential energy

+ m
P

ρ︸ ︷︷ ︸
Pressure energy

+ m
V 2

2︸ ︷︷ ︸
Kinetic energy

(5.11)

Eq. 5.11 has the unit of energy [Nm]; if on divides Eq. 5.11 by (m g) the well known Bernoulli
equation is obtained in terms of heights:

Etot
m g

= z︸︷︷︸
Height

+
P

g ρ︸︷︷︸
Piezometer head h

+
V 2

2g︸︷︷︸
Kinetichead hk

(5.12)

Due to hydraulic losses the total head is not a horizontal line but a a slope as shown in Figure 5.6.
Generally, for the hydraulic model test the following form of the Bernoulli equation is used for a
horizontal pipe (including hydraulic losses):

h1 + α1 · hk,1 = h2 + α2 · hk,2 + ∆htot (5.13)

Since the differential pressure is measured between two control sections the resulting piezometer
head is ∆h = h1 − h2 and introducing the variable ∆K = α1 · hk,1 − α2 · hk,2 one can rewrite
Eq. 5.13:

∆htot = ∆h+ ∆K (5.14)

whereas

• ∆htot is the total head differential

• hk is the kinetic head

• ∆h is the piezometer head differential

• ∆K is the kinetic head differential

• α is the velocity correction factor (shown later in Section 5.3 at Page 89)

The total head differential ∆htot can also be defined as:

∆htot = ∆hlocal + ∆hf (5.15)
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Figure 5.6: Energy budget between cross section 1 and 2

whereas ∆hf is the hydraulic losses due to pipe friction and ∆hlocal are the losses due to built-in
components. The friction loss ∆hf can be calculated by using the Colebrook equation as given by
Eq. 5.8 and the Darcy Weisbach equation given by Eq. 5.7. To have the ability to use Eq. 5.8 one
needs to define substitute cylinders with a certain diameter D and length L as shown in Figure 5.7
and Table 5.1. The chosen diameters and lengths represent as close as possible the pipe friction in
the hydraulic model test (Note, the loss coefficient for the prototype, derived from the model test,
can only be used when the plexiglass friction of the model is subtracted).

Table 5.1: Lengths and diameters for the substitution cylinders

No. in Figure 5.7 Diameter Lenght

- mm mm

Z 1 246 415

Z 2 262 140

Z 3 185 234

Z 4 172 543

Z 5 123 1272

Finally, with the known pipe frictions ∆hf , the measured piezometer differential ∆h, the mea-
sured kinetic head differential (via flow meter) ∆K and combining equation Eq. 5.14 and Eq. 5.15
one can calculate ∆hlocal. To get the hydraulic losses in dimensionless form ∆hlocal is divided by
the kinetic head of the main pipe in the hydraulic model test which is

ζ =
∆hlocal
V 2
main pipe

2g

(5.16)
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Figure 5.7: Substitution cylinders in the hydraulic model test to calculate ∆hf - Load Case
Generating (Units [mm])
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5.2 Determination of the pipe roughness

As explained in the previous sections it is essential to determine the pipe friction ∆hf as exactly
as possible to calculate the local head loss ∆hlocal. The main parameter for the roughness is the
equivalent sand roughness ks in the Colebrook equation (Eq. 5.8). Normally, ks =0.0015 mm for
plexiglass, but due to the built-in component like flange, bore-holes, etc. the roughness increases.
Two independent ways will be shown in the next two sections for the calculation of the actual
roughness in the hydraulic model test.

5.2.1 Roughness - Pressure differential measurement

In flow regions where the pressure gradient is a linear function it is possible to determine the
equivalent sand roughness ks. In Figure 5.8 two possible positions for the calculation of the
roughness ks are shown: between the bifurcator and the bend and downstream of the bifurcator.

Figure 5.8: Example for the roughness calculation. The right branch is shown for an
asymmetrical flow distribution. The discharge rate starts from 37 `/s up to 180 `/s for
the main branch (in the legend M stands for Main branch and R for the right branch)

With the known friction loss ∆hf from Figure 5.8, velocity V (via flow meter) and the geometry
(L and D) the Darcy-Weisbach equation (Eq. 5.7) can be used to calculate the friction coefficient λ.
Eventually, the Colebrook equation (Eq. 5.8) is applied to determine the equivalent sand roughness
ks. This procedure is repeated for all other of the measurements and is summarized in Figure 5.9.
The equivalent sand roughness ks reaches asymptotically the value of 0.019 and 0.01 mm, respec-
tively. If one takes a closer look of the roughness of the main pipe and the branching pipes it can
be seen that ks has an asymptotical characteristic which, at first glance, is inconsistent with the
Moody-diagram (see Figure 5.3) where ks is a constant value.

The reason for that is that every measurement - also those with slow velocities and thus a viscous
sublayer which is bigger as the actual roughness peaks - are evaluated. For higher velocities (this
is from the transition region up to the hydraulic rough area as shown for example in Figure 5.22)
the roughness peaks have a significant influence and tend to a single constant value.
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Figure 5.9: Evaluation of Darcy Weisbach and Colebrook equation: The branching pipe
reaches asymptotically the roughness of 0.019 and the main pipe 0.008 mm.

5.2.2 Roughness - Particle Image Velocimetry

The other method to estimate the equivalent sand roughness is the use of the logarithmic law of
the wall by von Kármán [1930]. The shear stress near to the wall is:

τ(y) =

(
µ+ ρ · `2m ·

∣∣∣∣
du

dy

∣∣∣∣
)
du

dy
(5.17)

whereas `2m ·
∣∣∣dudy
∣∣∣ = νt is the eddy viscosity based on the mixing length `m of Prandtl [1925], µ is

the dynamic viscosity, dudy the velocity gradient and ρ the density. Close to the wall the turbulent
fluctuations decay to zero and thus `m=0. Eq. 5.17 evolves then to the shear stress for the viscous
sublayer after integrating and normalizing by the shear velocity uτ

uτ =

√
τw
ρ

(5.18)

and also includes the effect that close to the wall τ(y) = τw (see Herwig [2006],p228 and Fig-
ure 5.10) gives

u+ = y+ (5.19)

whereas

u+ =
u

uτ
(5.20)

y+ =
uτ · y
ν

(5.21)
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Figure 5.10: Turbulent and molecular diffusion, shear stress close to the wall and the
corresponding velocity gradient (Herwig [2006])

Further away from the wall the viscose forces decay (ν· � ·ντ ) and the turbulence gets stronger
and stronger. With the experimental data from von Kármán [1930] where the mixing length `m =
κ · y (close to the wall) Eq. 5.17 evolves to the logarithmic law of the wall (after normalizing the
equation again with the friction velocity uτ and integrating it):

u+ = C +
1

κ
· ln y+ (5.22)

u+ = C + 5.75 · log y+ (5.23)

whereas κ = 0.41 is the von Kármán-Constant and C is an integration constant which is deter-
mined experimentally from Figure 5.11 whereas C is the intersection point of the ordinate.

The final form of the logarithmic law of the wall for a smooth wall is then:

u+ = 5.5 + 5.75 log y+ (5.24)

For a rough wall the function y+ = y·uτ
µ is normalized by the sand roughness ks yielding:

u+ = 8.5 + 5.75 log
y

ks
(5.25)

From PIV-results close to the wall (discrete wall distance yi and the corresponding axial velocity
ui) the sand roughness can be calculated from Eq. 5.25 and Eq. 5.18, which is valid between 20≤
y+ ≤ 300 (see ANSYS Fluent [2005]):

ui
5.75 · log yi

ks
+ 8.5

=
ui+1

5.75 · log yi+1

ks
+ 8.5

(5.26)
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Figure 5.11: Experimental results of Nikuradse [1932] of the logarithmic law of the wall

Figure 5.12: Left: Velocity profile (blue line) and contour plot close to the wall at Position
PIV-BOX: B201 (main pipe) in Figure 4.3. Right: Evaluation of Eq. 5.26 and normalizing
with uτ . Q = 160 l/s, D = 0.246 m, V = 3.36 m/s and Re = 8.3 · 105
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The first point of the function F(y+, u+) in Figure 5.12 is still in the valid logarithmic range (20
≤ y+ ≤ 300) and therefore the following quantities can be calculated for the main pipe:

1. ks = 0.0187 mm

2. uτ = 0.103 m/s

3. τw = 10.67 N/m2

The resulting roughness is in acceptable agreement with the results of the roughness due to pres-
sure differential measurements with 0.019 (branching pipe) and 0.01 (main pipe) mm, respectively.
The roughness for the whole plexiglass installation will be set to 0.015 mm. The calculated values
for uτ and τw of the pipe flow can be double checked with Sigloch [2005], p144 (cp. also with
Figure 5.12):

uτ ≈ 0.2 ·Re−0.125 · V ≈ 0.12m/s (5.27)

The distance (in [mm]) for the first point in Figure 5.12-right by using Eq. 5.21 with the values
uτ = 0.103 m/s, y+ = 157 and ν = 1 · 10−6 m2/s gives 1.5 mm (cf. also with Figure 5.13). The
distance where the logarithmic law of the wall is not valid anymore would be at y+ > 300 which
is 2.9 mm or 2.4 % of the pipe radius.

Figure 5.13: Distance between the first row of vectors and the wall of a PIV

5.3 Determination of the velocity correction factor α

Due to the bend upstream of the Y-bifurcator and the short pipe between the bend and the Y-
bifurcator (18 · D) a weak secondary flow is still presented. The simple 1D-consideration of the
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Bernoulli equation is not valid anymore and a velocity correction factor α is introduced to quantify
the secondary flow with PIV. The α factor in this theses deals only with the secondary flow of the
axial velocity and any weak spiral flow within the cross section cannot be measured with PIV
having only one camera (although with a second camera it would be possible). With the known α
factor the Bernoulli equation for 1D-flow can again be used.

The definition of the α factor is (Preissler [1973]):

α =
Ek,real

Ek,theoretical
(5.28)

whereas Ek,real is the real kinetic energy of a control section calculated with the axial velocity u
which is

dEk,real = dm · u
2

2
=
ρ · dt

2
· u3

A · dA (5.29)

and Ek,theoretical is the theoretical energy of the control section calculated with the mean axial
velocity V which is:

dEk,theoretical =
ρ · dt

2
· V 3 ·A (5.30)

Substituting Eq. 5.28 with Eq. 5.29 and Eq. 5.30 gives

α =
1

V 3 ·A ·
∫ A

u3
A · dA (5.31)

Eq. 5.31 is the general form of the velocity correction factor α. With PIV measurements 2D
velocity profiles can be measured as shown in Figure 5.14 for the vertical plan.

For each PIV-Box four planes are used to calculate the velocity correction factor α (cf. with
Figure 4.3 and Figure 4.2). To evaluate Eq. 5.31 for a 2D velocity profile following modification
needs to be done:

α =
1

V 3 ·A ·
∫ R

−R
·u(y)3 · π · y · dy (5.32)

with

• V = u (mean velocity)

• A = cross section area

• and u = axial velocity as function of the distance y
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Figure 5.14: Example of a PIV measurement right after the bend - vertical plane. Dis-
charge rate 80 `/s. The three dashed lines show the position of the velocity plot on the left
side.
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The α factor for a velocity profile in a pipe flow can now be calculated. Before the results are
shown two further comments are necessary: (1) Due to the reflecting laser light on the surface
of the plexiglass installation the last ≈ 3 mm from the boundary cannot be resolved with PIV.
Therefore a linear function is used to close the gap in the profile. Also, (2) the mean value of
the four investigation planes are used to describe the behavior of the three-dimensional velocity
profile. To check the accuracy of the calculated α factors as mentioned in (1) and (2), a 2D-plane
from the numerical solution is chosen as can be seen in Figure 5.15 and Figure 5.16.

Figure 5.15: Cross section cut from the
numerical simulation: The secondary
flow due to the bend can clearly be
seen.

Figure 5.16: At the exact same position
as in the PIV-measurements 4 profile
plots are extracted from the numerical
simulation to calculate the α factor.

As already mentioned above, the last part of the velocity profile, which cannot be resolved with
PIV, will be closed with a linear function. To see the influence of this procedure the velocities of
Figure 5.15 will be replaced with the logarithmic velocity profile from Schlichting and Gersten
[1997] (taken from Sigloch [2005], p138):

Vmax − u(r)

uτ
= −1

κ
·
[
ln

(
1−

√
r

R

)
+

√
r

R

]
(5.33)

where uτ is the friction velocity (see Eq. 5.27), κ = 0.41 the von Kármán-Constant , R=0.123 m
the radius and r the variable radius from r=0 to r=R.

The influence for the linear instead of the logarithmic term is shown in Figure 5.19. As can be
seen more and more of the logarithmic function will be replaced with a linear function up to the
theoretical condition of a conical velocity profile (see also Figure 5.17 and Figure 5.18). The
resulting α factor is the ordinate in Figure 5.19 and the percentage of the replacement of the
logarithmic/linear function is the abscissa (0% means no replacement; 100 % means all of the
logarithmic function is replaced by a linear function). For better illustration the absolute position
for the transition of the logarithmic/linear function is also plotted in Figure 5.19 on the right side.

The results of the α factors from Figure 5.19 show the strong influence of the replacement of
the linear term close to the wall. If one takes the α factor 1.024 (at Clipping in percentage =
0! in Figure 5.19) as the assumed true value (according to Schlichting and Gersten [1997]) the
α factor yields already a value of 1.162 at a clipping percentage of 10%. Fortunately, the PIV-
measurements nearly reach the wall and only the last 3 mm are missing which corresponds to a
2.4 % of the radius (see Figure 5.20). This gives a α factor of 1.044 which is only about 2 % larger
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Figure 5.17: Logarithmic velocity pro-
file for Re = 1.1 · 106 without any lin-
ear term

Figure 5.18: Logarithmic velocity pro-
file for Re = 1.1 · 106 with a linear
term for the last 10% of radius R.

than the assumed true value with 1.024. The final conclusion is that the error which is introduced
by filling up the last 3 mm of the velocity profile with a linear term is small and can be neglected.
This investigation is also carried out for smaller pipes downstream of the Y-bifurcator and similar
results are obtained. Note, that the gap could also be closed with a logarithmic function but in this
measurement series the gaps had been small enough and the influence are negligible.

The second questioned which needs to be answered is the quality of the mean value for the four
profiles. As can be seen in Figure 5.16 four planes from the PIV - measurements are used to
calculate the α factor of the 3D-velocity distribution of Figure 5.15. With the 3D-velocity profile
from the numerical simulation and using Eq. 5.31 the real α factor can be calculated. Also, with
velocity profiles extracted from the 3D-velocity distribution in Figure 5.16 (blue lines), the α factor
can be calculated from Eq. 5.32 and compared with the result of the 3D-velocity distribution.
Table 5.2 shows the results of the comparison: For the 3D velocity distribution the factor is 1.043
and for the mean value of α of the very same 3D velocity distribution is 1.042 which is only about
0.1 % percent lower. This investigation is also carried out for smaller pipes downstream of the
Y-bifurcator and similar results are obtained.

Table 5.2: Comparison of the α factor of the 3D-velocity distribution and the extracted
four velocity profiles of the numerical calculation

3D-Velocity
Profile

Plane 1 - di-
agonal left

Plane 2 - ver-
tical

Plane 3 - di-
agonal right

Plane 4 -
horizontal

Mean of
Plane 1 to 4

- - - - - -

1.043 1.026 1.098 1.026 1.018 1.042

The final results for all α factors are presented in Figure 5.21: The α factor right after the bend
amounts to 1.06, shortly before the Y-bifurcator to 1.037 and downstream of the Y-bifurcator to
1.030 for asymmetrical discharge rate (for symmetrical discharge rate similar results are obtained).
These values are used for the calculation of the loss coefficient ζ.
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Figure 5.19: Result of α factors as function of the percentage of the linear replacement.

Figure 5.20: Close-up view of the velocity profile for the pipe diameter of 0.246 m: The
last 3 mm or 2.4 % of the radius cannot be measured with PIV.
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Figure 5.21: Result of α-factors for the three PIV-Boxes and planes
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5.4 Extrapolation method for the loss coefficient ζ

In Section 5.1 at Page 78 the hydraulic equations for the loss coefficient ζ have been presented.
Unfortunately, due to the law of Reynolds the velocity in the hydraulic model test Vmo must be
larger than the prototype velocity Vpr by the scaling factor of the model. The highest resulting
velocity Vm in the hydraulic model test would be 46.58 m/s which is impossible to achieve. Nev-
ertheless, there exists a way to obtain the loss coefficient ζ for the prototype: If the hydraulic
losses for the prototype are in the hydraulic rough area (see also Figure 5.3) than it is satisfying
when the losses for the hydraulic model test are also in the hydraulic rough area (Kobus [1984],
p237). This implies that the Reynolds number must at least reach the beginning of the hydraulic
rough area. If this is not possible the discharge rate as function to the hydraulic losses need to be
extrapolated into the hydraulic rough are (see Figure 5.22).

Figure 5.22: Applying the Darcy and Weisbach equation for the substitution cylinders with
different Reynolds numbers. The measured local losses ∆hlocal (not shown in the figure)
need to be extrapolated (see Figure 5.7)

The extrapolation method is based on the method of least squares assuming that the best-fit curve
is the curve that has the minimal sum of the deviations squared from a set of measured data. Thus
one can write (Bartsch [1999], p572):

Π =

n∑

i=1

[yi − f(xi)]
2 (5.34)

For the best fit curve f(x) a polynomial of second order will be used:
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Π =

n∑

i=1

[
yi − (a+ b · xi + c · x2

i )
]2 (5.35)

Eq. 5.35 needs to be partially differentiated with respect to ∂a, ∂b and ∂c. This gives three linear
equations which can be solved for the unknown coefficients a, b and c. An example for the
extrapolation method for symmetrical discharge rate is shown in Figure 5.23 and Figure 5.24;
the head losses and the corresponding loss coefficient ζ are measured for the highest possible
discharge rate in the hydraulic model test, beyond that, the values will be extrapolated into the
hydraulic rough are where the loss coefficient ζ is independent of the Reynolds number (the loss
coefficient is normalized with ζmax due to data protection).

As already mentioned by Vogel [1926] the discharge rate as function of the head loss is a pure
quadratic relationship (the quadratic behavior can also be seen in Figure 5.24). It is therefore ob-
vious to conduct the extrapolation method only with the quadratic term in Eq. 5.35. The resulting
coefficients a and b of the least square method will be set to zero and only the coefficient c is
used. The difference between using only the term c for the quadratic function and omitting the a
(constant function) and b (linear function) coefficients or using all three coefficients is shown in
Figure 5.25 and Figure 5.26. Figure 5.25 presents the results of the loss coefficient ζ in the hy-
draulic rough area for several control sections. These control sections are M1-L3/R3, M3-L3/R3,
M4-L4/R4, M5-L5/R5 and M6-L6/R6 (cf. with Figure 3.8). The definitions for the load cases are
in Table 3.1. For a flow without any secondary flow the loss coefficient (excluding pipe friction)
should collapse to a single curve in Figure 5.25 and Figure 5.26. Obviously, this is not the case for
Figure 5.25 where for Load case 1-left and Load case 2-left stronger deviations occur - especially
for those control sections (M5-L5/R5 and M6-L6/R6) which are close to the bend with its strong
secondary flow. The comparison clearly shows that omitting the linear and constant coefficients
of the least square method yields better results.

Another way to check the accuracy of the extrapolation method is done by using a CFD calculation
(for the details of the numerical simulation see Chapter 6 at Page 105). With the necessary model
discharge rates (e.g. load case 4 = Qmain/Lr = 18/8.13=2.2 m3/s, see also Table 3.1) the result-
ing total head loss differential (without secondary flow) between extrapolation method and CFD
calculation [in %] depicts the following behavior as shown in Figure 5.27 and Figure 5.28 (the
absolute values cannot be shown; data protection at the request of HYDRO - Andritz, the founder
of the project). The difference for the control section M1-L/R3, M3-L/R3 and M4-L/R4 are lower
( 5%) than for control section M5-L/R5 and M6-L/R6 in Figure 5.27. The possible reason for this
behavior is shown in Figure 5.29 where a strong secondary flow occurs right after the bend for
control section M5 and M6. Again, if only the quadratic term is used of the least square method
the results for the total head loss differential get much better as can be seen in Figure 5.28.
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Figure 5.23: Extrapolation of the function(Re,ζ), normalized with max(ζ)

Figure 5.24: Extrapolation of the function(Qmain, ∆h), normalized with
max(head loss)
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Figure 5.25: Resulting loss coefficient ζ for several control sections and flow distributions
(see Table 3.1 for LC1-left etc.). Quadratic extrapolation with all three coefficients a, b
and c (see Eq. 5.35)

Figure 5.26: Resulting loss coefficient ζ for several control sections and flow distributions
(see Table 3.1 for LC1-left etc.). Quadratic extrapolation with coefficient c only (see
Eq. 5.35)
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Figure 5.27: Comparison of total head losses between the extrapolation method (with
quadratic, linear and constant term of the least square method) and the numerical simu-
lation for Reprototype = Remodel.

Figure 5.28: Comparison of total head losses between the extrapolation method (only
with the quadratic term of the least square method) and the numerical simulation for
Reprototype = Remodel.
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Figure 5.29: Visualization of the in-plane secondary flow between the bend and the Y-
bifurcator with a numerical simulation (symmetrical discharge rate, Q=160 `/s): At con-
trol section M6 and M5 (3.6 or 6.8-D after the bend) a strong secondary flow is induced
which is also shown by the angular velocity. Further away, the secondary flow decreases
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5.5 Swirling flow

In the thesis of Mayr [2009] a study of a trifurcator is presented. In this hydraulic model test an
attempt was made to reduce the losses by a swirling flow. This idea has also been applied on
the current bifurcator with a guide vane apparatus from the neighboring mechanical engineering
department. A picture of this is shown in Figure 5.30; the guide vane apparatus consists of 16
guides and three fixed guide vanes. The apparatus is installed 6 · D upstream of the Y-bifurcator.

Figure 5.30: Guide vane apparatus; Left picture: View in flow direction, Right picture:
View ageist the flow direction

As can be seen in Figure 5.32 a yellow bulb is installed downstream of the guide vanes (the
guide vane apparatus is connected to a Kaplan-Turbine for its original use, thus the yellow bulb
replaces the Kaplan Turbine). The geometrical form of the bulb corresponds to an airfoil wing;
the geometry is taken from Idelchik [1994] (see Figure 5.31 and Table 5.3):

Figure 5.31: Sketch of the wing for the coordinates given in Table 5.3
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Figure 5.32: Built-in Guide vane apparatus to induce a swirling flow

Table 5.3: Coordinates 2y/dm of the streamlined profile (Idelchik [1994], p 597)

Airfoil Wing

x/t 0 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2y/dm 0 0.528 0.720 0.917 0.987 1 0.960 0.860 0737 0.568 0.340 0

5.5.1 Resulting loss coefficient of the swirling flow

The resulting loss coefficient is shown in Figure 5.33: The flow distributions are the same as given
in Figure 5.25 and Figure 5.26. The control sections for differential pressure measurements are M5
to L6 and R6 respectively (cf. with Figure 3.8). As can be seen in Figure 5.33, the loss coefficient
of the swirling flow (blue line) is higher than the loss coefficient of the original non-swirling flow.
The higher loss coefficient for the swirling flow is due to the relatively high local losses of the
guide vane apparatus. If one subtracts the losses of the guide vane apparatus from the losses of the
swirling flow the magenta line is obtained. Thus, the magenta line includes only the pipe friction
and the losses of the Y-bifurcator due to the swirling flow without any losses of the guide vane
apparatus itself. This results in Figure 5.33 in a lower loss coefficient ζ for load case LC2-left.

Finally, to visualize the swirling flow a PIV-measurement has been carried out (see Figure 4.3).
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swirling

swirling

swirling

swirling

Figure 5.33: Resulting loss coefficient ζ: Red line is the original loss coefficient without
any swirling flow, blue line is the loss coefficient for the swirling flow, black line is the
loss coefficient for the guide vane apparatus without the local loss of the Y-bifurcator and
finally, the magenta line is the loss coefficient of the swirling flow without the local loss of
the guide vane apparatus. All losses include also the pipe friction.

Figure 5.34: Horizontal PIV-measurement of the swirling flow at position: PIV-Box B201
(see Figure 4.3 at Page 55). Symmetrical discharge rate with 40 `/s. The velocity is
normalized with vmax.
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Chapter 6

Computational Fluid Dynamics

6.1 Computational Fluid Dynamics with Fluent (Ansys)

In this chapter the decomposition of the Navier-Stokes and the continuity equation for an incom-
pressible flow is presented. As a result, the Reynolds-averaged Navier-Stokes equation is obtained
with an additional stress term, the so called Reynolds-stress. The Reynolds-stress term is the start-
ing point of turbulence modeling where, due to the molecular-diffusion hypotheses of Boussinesq,
an eddy viscosity as a model parameter is introduced. The set of equations are for the most flow
conditions on the one hand the RANS equations (Reynolds-Averaged Navier-Stokes equations)
and on the other hand the eddy viscosity with additional transport equations. The turbulence
model which is used in this thesis is the k-ε model. The transport equations for the k-ε model
are the turbulent kinetic energy k and the dissipation rate ε. Some terms of the k-ε model can be
measured with Particle Image Velocimetry (see Section 4), namely:

• Kinetic energy K of the mean flow

• Turbulent kinetic energy k (Thus: ktot = K + k) (see Eq. 6.24)

• Reynolds-stress tensor (see: Eq. 6.22)

• Production of turbulent kinetic energy P (see: Eq. 6.28)

As a preprocessor, Gambit is used to create the mesh and the desired boundary layer in the range
of 20 ≤ y+ ≤ 300. Thus the standard wall function to bridge the boundary layer can be used. The
grid independence is checked with several mesh sizes and as a result, meshes with more than 600
000 elements are necessary.

The CFD calculations are carried out with the commercial program Fluent (6.3.26 by Ansys). The
discretization method of the program is the finite volume method. The setting for the simulations
are the unsteady second order implicit method. For the turbulence the k-ε model is used.

Together with the results of the numerical calculations a comparison for the hydraulic model test
can be done (see chapter Section 7), which shows good agreement.

6.1.1 Transport equations

The derivation of the Navier-Stokes equation will be shown by means of transport equations. The
principle for these transport equations are the rate of change of ∆Φ, which is transported by



CHAPTER 6. COMPUTATIONAL FLUID DYNAMICS

fluid motion into and out of a fixed volume in space (see Figure 6.1). Φ is the representative for
example of heat, mass or the components of the momentum (see also Schröder and Zanke [2003]).
The mechanism for the rate of change of ∆Φ are:

C Convection of Φ

Di Diffusion of Φ

S Net rate of change of Φ due to a sink or source in the volume

E Effects on the surface of the volume depending on Φ

Figure 6.1: General transport process (taken from Schröder and Zanke [2003]).

Figure 6.2: Transport process in cartesian coordinate system.

With these qualitative variables Eq. 6.1 can be written for the rate of change of ∆Φ:

∆Φ = (Cin − Cout) + (Diin −Diout) + S + E (6.1)

If a Cartesian coordinate system is used, as shown in Figure 6.2, the qualitative transport equation
can be written more precisely. With dV=dx dy dz one can rewrite the convection (Eq. 6.2) and the
diffusion (Eq. 6.3) equation as:
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−
[
∂

∂x
(u Φ) +

∂

∂y
(v Φ) +

∂

∂z
(w Φ)

]
=̂ Convection (6.2)

−
[
∂

∂x
Dix +

∂

∂y
Diy +

∂

∂z
Diz

]
=̂ Diffusion (6.3)

The convection term in Eq. 6.2 can also be summarized as∇ ·
(
~V Φ
)

which is mathematically the

divergence of ~V Φ. For the diffusion term in Eq. 6.5 the law of Fick is applied and one can write:

Dix = −Γ
∂

∂x

(
Φ

ρ

)
(6.4)

whereas Γ is the diffusion coefficient. Thus Eq. 6.4 can be rewritten as

Γ

[
∂2

∂x2

(
Φ

ρ

)
+

∂2

∂y2

(
Φ

ρ

)
+

∂2

∂z2

(
Φ

ρ

)]
= Γ ∆

(
Φ

ρ

)
(6.5)

whereas ∆ is the Laplace operator which is defined as the divergence∇· of the gradient∇ of Φ
ρ .

Finally, replacing ∆Φ in Eq. 6.1 with the time rate of change ∂Φ
∂t and due to dimensional reasoning

adding the density ρ to the net rate of change S, gives the transport equation Eq. 6.6.

∂Φ

∂t
+∇ ·

(
~V Φ
)

= Γ ∆

(
Φ

ρ

)
+ ρ · ~S + ~E (6.6)

6.1.1.1 Continuity equation

If the transported quantity φ is substituted by the density the transport equation evolves to the con-
tinuity equation. For incompressible flow (ρ=constant) ~E, ~S, the time derivate and the diffusion
process do not influence the transport of mass and therefore one can write:

∇ · ~V = 0 (6.7)

6.1.1.2 Momentum equation

The transport of the vector momentum is shown component by component. For the x-component
the transport variable Φ is (ρu). Additionally, to fulfill the balance of forces the gravitation with
S = Gx and the pressure gradient E=-∂P∂x will be included in the transport equation (Eq. 6.6).

∂(ρ Vx)

∂t
+∇ ·

(
ρ Vx ~V

)
= Γ ∆ Vx + ρ Gx −

∂P

∂x
(6.8)
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For the diffusion coefficient Γ the molecular diffusion coefficient ν due to Newton’s law of vis-
cosity will be applied. Finally, for an incompressible fluid (ρ = const.) and the vector identity
∇ ·

(
Vx ~V

)
= Vx

(
∇ · ~V

)
+ ~V · (∇ Vx) and the use of the continuity equation with ∇ · ~V = 0

one can rewrite the x-component:

∂(Vx)

∂t
+ ~V · (∇ Vx) = ν ∆ Vx +Gx −

1

ρ

∂P

∂x
(6.9)

If the same considerations are applied for the y and z component the momentum equation gets its
final form (in braces are the physical meaning of each term):

∂
(
~V
)

∂t︸ ︷︷ ︸
local derivate

+
(
~V · ∇

)
~V

︸ ︷︷ ︸
convective derivate

= ν ∆ ~V︸ ︷︷ ︸
diffusion derivate

+ ~G︸︷︷︸
body force

− 1

ρ
∇P
︸ ︷︷ ︸

surface force

(6.10)

whereas:

• ~V = ~V (~r) = ~V (x, y, z) =



Vx(x, y, z)

Vy(x, y, z)

Vz(x, y, z)


 Velocity vector

• ~G = (Gx Gy Gz) Body force vector

• ~P = (Px Py Pz) Pressure vector

• ~V · (∇u) = u · ∂u∂x + v · ∂u∂x + w · ∂u∂x Convective derivate; only for the x-component

• ∇ = ∂
∂x

∂
∂y

∂
∂z Nabla Operator

• ∆ = ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
Laplace Operator

• ν = µ
ρ Kinematic viscosity

6.1.1.3 Momentum equation in tensor form

The momentum equation can also be written in a very compact tensor form (see also Pope [2006]):

ρ
duj
dt

=
∂τij
∂xi
− ρ ∂Ψ

∂xj
(6.11)

whereas (only for j=1)

du

dt︸︷︷︸
Lagrange

=
∂u

∂x
u+

∂u

∂y
v +

∂u

∂z
w +

∂u

∂t︸ ︷︷ ︸
Euler

(6.12)

is the total derivate of u (Lagrange reference system) which is equal to the local plus the convective
derivate (Euler reference system). The stress tensor τij in Eq. 6.11 can be written as
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τij = −P · δij + µ ·
(
∂ui
∂xj

+
∂uj
∂xi

)
(6.13)

and for the gravity as the only body force a gravitational field ~g = −∇Ψ with Ψ = gz can be
defined in Eq. 6.11. Again with a constant density and thus

∂2ui
∂xi · ∂xj

=
∂

∂xj

∂ui
∂xi

= 0 (6.14)

Eq. 6.11 can be written as

duj
dt

= − ∂P
∂xj

+ µ · ∂
2uj

∂xixi
− ρ ∂Ψ

∂xj
(6.15)

which is equivalent to Eq. 6.10, except for the gravitational field. The last simplification is to
merge the gravitational potential Ψ with the pressure (both are isotropic stresses), that is,

p = P + ρΨ (6.16)

which gives the final form for the momentum equation in tensor form (Pope [2006])

duj
dt

= − ∂p

∂xj
+ µ · ∂

2uj
∂xixi

(6.17)

(Note: Einstein’s notation is used: when an index appears twice in a single term a summation is
applied. For example, only for j=1: ∂2uj

∂xixi
= ∂2u1

∂x12
+ ∂2u1

∂x22
+ ∂2u1

∂x32
)

6.1.2 Reynolds-averaged Navier-Stokes equation (RANS)

With Eq. 6.17 it is possible to carry out a decomposition into a mean part (over line) and a fluctu-
ating part (prime), that is:

~Vj = ~Vj + ~Vj
′

(6.18)

pj =pj + p′j (6.19)

The final decomposition (the procedure can be found in Pope [2006]) of Eq. 6.17 is the RANS
equation

ρ · duj
dt

= − ∂P
∂xj

+ µ
∂2uj
∂xi ∂xi

−
∂ρu′iu

′
j

∂xi
(6.20)

and the continuity equation is
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∇ · ~V = 0 (6.21)

The RANS equation looks almost the same as the Navier Stokes equation, except for the term
ρu′iu

′
j which is also known as the Reynolds-stress. The Reynolds-stress is a second order tensor

with normal and shear stresses that is:

ρu′iu
′
j =



ρu′2 ρu′v′ ρu′w′

ρv′u′ ρv′2 ρv′w′

ρw′u′ ρw′v′ ρw′2


 (6.22)

One of the primary tasks in fluid mechanics is to model the Reynolds-stress by a turbulent model.
An early attempt to solve this problem was introduced by Boussinesq in 1877 which is analogous
to the stress-rate of strain relation for a Newtonian fluid. This analogy can be written as:

ρ · aij ≡ ρu′iu′j −
2

3
· ρ · k · δij = −ρ · νt

(
∂uj
∂xi

+
∂ui
∂xj

)
= −2 · νt · Sij (6.23)

whereas the variable aij represents the deviatoric and 2
3 · k · δij the isotropic part. The turbulent

kinetic energy is defined as

k = k′ =
1

2
u′iu
′
i (6.24)

The model parameter νt, also called the eddy viscosity, is the link between the deviatoric part and
the deformation tensor

Sij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
=




∂u
∂x

[
∂v
∂x + ∂u

∂y

] [
∂u
∂z + ∂w

∂x

]
[
∂v
∂x + ∂u

∂y

]
∂v
∂y

[
∂w
∂y + ∂v

∂z

]

[
∂u
∂z + ∂w

∂x

] [
∂w
∂y + ∂v

∂z

]
∂w
∂z


 (6.25)

A solution to model νt is the relationship first introduced by Jones and Launder [1972],

νt = Cµ
k2

ε
(6.26)

whereas Cµ is one of the model constants, k is the turbulent kinetic energy and ε is the dissipation
rate (see also Knoblauch [1995]). With the additional eddy viscosity the RANS equation becomes:

duj
dt

=
∂

∂xi

[
νeff

(
∂ui
∂xj

+
∂uj
∂xi

)]
− 1

ρ
· ∂

∂xj
·
(
p+

2

3
· ρ · k

)

whereas νeff = ν + νt.

The exact derivation for the transport equation of k and ε are given in Pope [2006]. For the
turbulence modeling of k and ε, the so called k-ε model, the following transport equation are used
(compare also with Table 6.1):

∂(Φ)

∂t
+

∂

∂xi
(Φui) =

∂

∂xi

(
Γ
∂Φ

∂xi

)
+ S (6.27)
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Table 6.1: Transport coefficient for the k-ε model (Versteeg and Malalasekera [2007])

Equation Φ Γ S

k-equ. k
′ µt

σk
P − ε

ε-equ. ε µt
σε

C1ε P − C2ε ε

The variable P in Table 6.1 is the production of turbulence that is (see also Durst [2006]):

P = −u′iu′j ·
∂uj
∂xi

= νt

(
∂uj
∂xi

+
∂ui
∂xj

)
∂uj
∂xi

(6.28)

P = exact term = modelling term

The exact term of the dissipation ε requires to process into the dissipative (small scale) range.
(see Pope [2006], p375). Therefore the transport equation for ε in Table 6.1 is entirely empirical.
With the eddy viscosity (Eq. 6.26) and the model constants µt, σk, Cµ, σε, σ1ε and σ2ε the k − ε
turbulence model is completed.

The results of the Particle Image Velocimetry (PIV) in Section 4 can be compared with the afore-
mentioned quantities (K, k, Reynolds-stress and P).

6.1.3 The SIMPLE Scheme

One of the major problems (beside non-linearities) of the incompressible Navier-Stokes equation
(see Eq. 6.10) is that there is no transport equation for the pressure as it is available for the com-
pressible flow (equation of state for p=p(ρ,T)). If the pressure field was a priori known the velocity
field could be simply solved by using for example central or upwind differencing schemes. Un-
fortunately, the pressure field is not known a priori and an iterative solution strategy such as the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm is used (Patankar and
Spalding [1972]). The SIMPLE algorithm is applied on a staggered grid, that is, all scalar vari-
ables like pressure, temperature etc., are located at nodal points whereas the velocity is located at
the cell faces. This arrangement avoids that a highly non-uniform pressure field acts like a uni-
form pressure field (see Versteeg and Malalasekera [2007], p 180). The SIMPLE algorithm can
basically be described (see Anderson [1995]) as:

1. Start the iterative process by guessing the pressure field p∗.

2. Use the values of p∗ to solve the momentum equation to get u∗, v∗, w∗.

3. Check if the continuity equation (∇ · ~U=0) is satisfied; if not

4. construct a pressure correction p
′

to correct the pressure (p=p∗+p
′
) to bring the velocity

field more into agreement with continuity.

5. Corresponding velocity corrections u
′
, v
′
, w
′
can be obtained from p

′
such that u=u∗ + u

′
,

v=v∗ + v
′

and w=w∗ + w
′
.

6. With the corrected values repeat the procedure until the velocity field satisfies the continuity
equation.
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The SIMPLE algorithm is implemented in Fluent and OpenFoam. In OpenFoam the algorithm is
called simpleFoam.

6.1.4 Geometry and Mesh of the domain

For the hydraulic model test a numerical simulation has been carried out. The domain of the nu-
merical calculation includes the bend, the Y-bifurcator and the two confusers after the Y-bifurcator
(cf. with Figure 3.1). The geometry is created with Autocad 2008 and exported as an IGES file.
Afterwards, the IGES file is imported into the preprocessor Gambit (Gambit 2.4.6) to mesh the
boundary layer and the core flow of the pipe installation.

6.1.4.1 Dimensionless wall distance y+

Due to the no-slip condition at the wall (VWall=0) high velocity gradients occur and thus a very
dens mesh is necessary. To avoid this uneconomical finer mesh at the wall the logarithmic law
of the wall (further details are given in Section 5.2.2 at Page 86) to bridge the turbulent boundary
layer will be used. This means that the dimensionless distance y+ must be in the range of 20 ≤
y+ ≤ 300 (see Figure 6.3). The first row of the boundary layer is 0.4 mm away from the wall and
starts to grow up tp 2.15 mm. In total, there are four boundary rows before the mesh of the core
flow begins. The equivalent sand roughness of the wall is 0.015 mm.
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Figure 6.3: Contour plot of the dimensionless wall distance y+ and a detailed plot of the
mesh and boundary layer.
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6.1.4.2 Grid size

The next step is to check if the solution of the CFD calculation is independent of the grid size.
This means that several meshes - with different grid sizes - are numerically solved and compared
to each other. If the solution does not show any difference between the mesh and the next finer
mesh, grid independence is achieved. In Figure 6.4 the velocity and the static pressure for 40000
discrete points and four different meshes are shown. As can be seen Grid 2 to Grid 4 show almost
no difference between each other in Figure 6.4; therefore grid 2 with 603813 elements is chosen.
Grid 2 has generally an element size of 10 mm (except in the boundary layer) and the shape of
hexahedron or tetrahedron elements.

Figure 6.4: Descending velocity and static pressure at 40000 discrete points in the domain
for four different meshes: Grid 1 with 293195, Grid 2 with 603813, Grid 3 with 1 791714
and Grid 4 with 2800000 elements

6.1.5 Boundary conditions

The CFD calculation has three inlet/outlet boundaries. With the hydraulic diameter and the turbu-
lence intensity Fluent can estimate the turbulence at the boundary (see Table 6.2).

Table 6.2: Boundary conditions for the CFD calculation; mass flow is either 80 `/s for left
and 80 `/s for right branch or 80 `/s for left and 0 `/s for right branch

Type Turbulence intensity Hydraulic Diameter

- [%] mm

Mass flow inlet 10 246

Pressure outlet-left 10 123

Pressure outlet-right 10 123

6.1.6 Fluent - Solver

The calculation is done with Fluent (6.3.26). The settings for the models are as follows:

The discretization schemes for the CFD calculation is as follows:
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Table 6.3: Setting of the models for the CFD calculation

Model Settings

- -

Space 3D

Time Unsteady, 2nd-Order Implicit

Time step 0.01 second

Viscous Standard k-ε turbulence model

Wall treatment Standard wall function

Table 6.4: Discretization Scheme

Variable Scheme

- -

Pressure second order

Momentum second order upwind

Turbulent Kinetic Energy second order upwind

Turbulent Dissipation Rate second order upwind

The CFD calculation is carried out for different roughnesses and different turbulence models to
check which setting is the best for the current project. The parameter for the comparison was either
the velocity field of the PIV measurements or the measured head losses along the pipe installation.
The best result is achieved with a pipe roughness of 0.015mm and the k-ε turbulence model. The
setting will be used for further investigations (see Chapter 7).

6.2 Computational Fluid Dynamics with OpenFoam

This chapter shows the comparison between Fluent (Version 6.3.26) and OpenFoam (Version
1.7.1) for the symmetrical (80 `/s per branch) and asymmetrical (only 80 `/s for the left branch)
discharge rates. The numerical simulation is done with a steady state simulation and a solver for
incompressible fluids. The k-ε and the standard wall function are applied. The results for the
piezometer head as well as for the velocity along the center line of the pipe show good agree-
ment between Fluent and OpenFoam. The results for the symmetrical discharge rate are also
double-checked with measurements of the hydraulic model test. Due to the promising outcome
of OpenFoam which is a non- commercial, open source software, it is expected that this software
will be more and more applied in the industry.

In Chapter 6 the numerical simulation was carried out with the commercial software Fluent (An-
sys). Two simulations will be repeated with two different discharge rates which are

• Symmetrical discharge rate - Qleft = Qright = 80`/s and

• Asymmetrical discharge rate - Qleft = 80`/s, Qright = 0`/s
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to show that a highly sophisticated and reliable solution with OpenFoam can be achieved. Open-
Foam uses the finite volume method to solve the Navier-Stokes equation on an arbitrary, unstruc-
tured 3D mesh of polyhedral elements. The fluid flow solvers are developed within a robust,
implicit, pressure-velocity, iterative solution framework (OpenFoam [2010]). The newest version
(Version 1.7.1, released 26/08/10) has been used on a Linux-Ubuntu system (Version 10.04 LTS
- Lucid Lynx). The available computational resources are two Intel (T7500) 2.2 Ghz processors
with 2 GB memory (ordinary Laptop). The mesh for the simulation is the same as for the Fluent
case. The file structures for this case are in the appendix (Table 10.1).

6.2.1 Folder 0: Boundary conditions

The positions for the boundary conditions are shown in Figure 6.5:

Figure 6.5: Boundary conditions for the numerical simulation: main is the inlet boundary,
left and right are the outlet boundaries and finally plexiglass wall is the wall boundary

6.2.1.1 File: epsilon

The dissipation rate ε will be initialized with a guessed value of 1 m2/s3. For the inlet boundary
main, a turbulent length scale `0 related to the larger eddies will be defined. In fully-developed
pipe flow, the length scale is restricted to the pipe diameter, since the eddies cannot be larger than
the pipe diameter. An approximate relationship between `0 and the physical size of the duct is
(taken from ANSYS Fluent [2005])

`0 = 0.07 ·D (6.29)

- 116 -



CHAPTER 6. COMPUTATIONAL FLUID DYNAMICS

where D is the pipe diameter. The pipe diameter for the numerical simulation is 0.25 m (at the
entrance there is a confuser which reduces the pipe diameter from 0.25 to 0.246m) and therefore
the length scale becomes `0 = 0.0175 m. With this length scale the dissipate rate ε at the inlet can
be estimated:

ε = C3/4
µ · k

3/2

`0
(6.30)

whereas Cµ is a constant of the k-ε model (approximately 0.09) and k is the turbulent kinetic
energy.

For the outlets left and right an inlet-outlet boundary condition is used (see also OpenFoam
[2010]). If the velocity vector at the boundary points outward of the domain then a Neumann
boundary condition is used (∂ε/∂n = 0), if the velocity vector points inward to the domain then a
Dirichlet boundary condition is used (ε = const.)

For the wall boundary plexiglass-wall the epsilon wall function is used. With Eq. 6.30 and the
mixing length `m = κ · y as the turbulent length scale in the boundary layer, ε can be calculated
as:

ε = C3/4
µ · k

3/2

κ · y (6.31)

where κ is the von Kármán-constant and y is the distance from the wall.

6.2.1.2 File: Turbulent kinetic energy

The turbulent kinetic energy at the inlet is defined by a turbulent intensity TU and the inlet velocity
magnitude

∣∣∣~V
∣∣∣:

k =
3

2
·
(∣∣∣~V

∣∣∣ · TU
)2

(6.32)

The turbulent intensity TU = 5% which corresponds to a medium turbulence at the inlet boundary.

For the outlets left and right an inlet-outlet boundary condition is used as described in Sec-
tion 6.2.1.1. For the wall function the turbulent kinetic energy is solved in the whole domain
including the near wall region where the kinetic energy is:

∂k

∂nw
= 0 (6.33)

6.2.1.3 File: Turbulent eddy viscosity

The turbulent eddy viscosity is solved together with two transport equations for k and ε. At all
boundary conditions a zero gradient condition is used.
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6.2.1.4 File: Pressure

The domain is initialized with zero gauge pressure. At the outlets zero gauge pressure is defined.
For the inlet and the wall boundary a zero gradient pressure is used.

6.2.1.5 File: Velocity

The inlet velocity is defined by the boundary condition surfaceNormalFixedValue (see also
OpenFoam [2010]). The inlet velocity is 3.26 m/s for symmetrical discharge and 1.63 m/s for
asymmetrical discharge. For the outlets a inlet-Outlet, as described in Section 6.2.1.1, is used.
The velocity at the wall is zero due to the no-slip condition for viscous flow.
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Comparison of CFD and PIV

In this chapter the comparison between the PIV-Measurements and the numerical simulations is
presented. As a result, the accuracy of the CFD calculation, like secondary flow or the head loss
along the pipe installation, can be quantified. The results of the PIV measurements are similar
to a Large Eddy Simulation (LES) where the big eddies are numerically resolved and the smaller
eddies are modeled with a turbulence model. The turbulence model for the numerical simulation
presented in this thesis is the k-ε model which models to whole turbulent spectrum (including
also the big eddies). Therefore, the comparison between the PIV measurements and the CFD
simulations could be improved if a LES simulation is applied.

The velocity distribution along the hydraulic model shows good agreement between PIV and CFD
as long as no strong secondary flow occurs: For example in Figure 7.1 (PIV-Box-200) a strong
secondary flow is initialized after the flow passes the bend and the results between PIV - CFD
do not match properly. However, the results of the comparison (see Figure 7.1 PIV-Box 201 and
202L) get much better when the secondary flow decays as indicated in Figure 7.4. The influence
of the secondary flow on the pressure distribution along the pipe and thus the head loss of the
pipe installation can be seen in Figure 7.5: After the bend the total head losses of the numerical
simulation (k-ε, standard wall function) and the pressure loss measurements are almost the same.
This means, if only the loss coefficient ζ is of interest a numerical simulation without a model test
could be sufficient in simple pipe flows and bifurcations.

In Figure 7.6 to Figure 7.7 the kinetic energy of the mean flow and the turbulent flow are shown.
The location of the presented quantities is right after the Y-bifurcator (PIV-Box: 202L) and the
comparison between PIV and CFD shows an acceptable agreement. The turbulent kinetic quantity
is also an important value for turbulence modeling: The kinetic energy of the mean flow is trans-
fered via the production term (see Figure 7.11) to the turbulent kinetic energy which is one of the
quantities of the k-ε turbulence model.

Further comparisons between PIV and CFD are shown in Figure 7.8 to Figure 7.10. These plots
present the Reynold stress tensor (normal and shear stress) of the pipe flow right after the Y-
bifurcator. Again, the comparison between PIV and CFD looks reasonable, although a slight
deviation at the upper part of the pipe flow occurs. The isotropic normal stress of the CFD-
calculation due to the Boussinesq hypotheses can also be seen for the normal stresses in lateral
and longitudinal direction. However, the PIV-measurements for the lateral and longitudinal normal
stresses do not fully show the isotropic behavior which reveals one of the well known shortcomings
of the k-ε turbulence model.
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7.1 Velocity

Figure 7.1 and Figure 7.2 show the velocity distribution for symmetrical discharge rate (each
branch 80 `/s) for the horizontal and vertical plane, respectively. On the left side the PIV and
on the right side the CFD results are shown. The secondary flow caused by the bend is qualita-
tively predicted by the numerical simulation but it does not match the PIV results quantitatively
(compare the PIV-Box: 200 of Figure 7.1 and Figure 7.2). The secondary flow induced by the
bend is reduced along the pipe installation and reasonably well predicted further downstream in
the numerical simulation(see PIV-Box: 201 and PIV-Box: 202L).

The secondary flow is also shown in Figure 7.3 where the ill-predicted secondary flow right after
the bend in the numerical simulation can clearly be seen for the PIV-Box: 200.

The development of the secondary flow along the pipe installation (PIV and CDF) up to the Y-
bifurcator is shown in Figure 7.4. The reduction of strength of the secondary flow is shown along
the pipe installation but does not vanish before the flow enters the Y-bifurcator. This is the principle
reason why the velocity correction factor α needs to be determined for the loss coefficient ζ.
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Figure 7.1: Comparison of PIV-CFD velocity distributions (normalized with vmax), sym-
metrical flow with Qmain = 160 `/s - horizontal plane
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Figure 7.2: Comparison of PIV-CFD velocity distributions (normalized with vmax), sym-
metrical flow with Qmain = 160 `/s - vertical plane
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Figure 7.3: Comparison of PIV-CFD for horizontal and vertical velocity profiles (normal-
ized with vmax), symmetrical flow with Qmain = 160 `/s
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PIV-Box-200

PIV-Box-201

Figure 7.4: Comparison of the secondary flow: PIV-CFD for vertical velocity with Qmain
= 160 `/s, flow direction from bottom to top
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7.2 Total head

The differential total head based on the control section M1 (see Figure 3.8) is shown in Figure 7.5.
The differential pressure in the numerical simulation is extracted at the pipe-surface and compared
with the results of the hydraulic model test. As can be seen, there is a good agreement between the
numerical simulation and the model test. The slight asymmetry between branch left and branch
right in the model test could not be avoided even though the model set up was done carefully (to
avoid the asymmetry of the total head loss for 80 `/s per branch a deviation of 1 `/s is necessary.
The deviation of 1 `/s is within the accuracy of the flow meter; see Table 3.2). The good results of
the comparison in Figure 7.5 indicate that even with a simple k-ε turbulence model the necessity
of a hydraulic model test is questionable and could be omitted.

Figure 7.5: Comparison of differential total head loss based on control section M1 with
Qleft = Qright =80 `/s

7.3 Kinetic Energy

7.3.1 Kinetic energy of the mean flow

The kinetic energy of the mean flow is shown in Figure 7.6 for the plane which is rotated by 45◦

against the vertical plane (other planes are also evaluated, but have some missing velocity vectors).
The CFD-PIV comparisons are in reasonable agreement for the PIV-Box 200L.
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Figure 7.6: Comparison of the kinetic energy of the mean flow (m
2

s2
per unit mass [kg]) for

Qmain = 160 `/s, PIV-Box B202L

7.3.2 Kinetic energy of the turbulent flow

The energy of the mean flow will be transferred via the production P (see Figure 7.11) to the
turbulent kinetic energy (see Figure 7.7).
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Figure 7.7: Comparison of the turbulent kinetic energy (m
2

s2
per unit mass [kg]) for Q =

160 `/s, PIV-Box B202L

7.4 Reynolds stress

The normal and shear stresses are shown in Figure 7.8, Figure 7.9 and Figure 7.10. From the
bottom to the middle of the PIV-planes the normal and shear stresses of the PIV-measurements
match the CFD results; above the symmetry line a deviation occurs. The presumably reason, as
already mentioned at the beginning of the chapter, is that the PIV-measurements are similar to a
LES calculation and thus, more accurate than a CFD simulation with the k-ε model. Note, that the
k-ε model calculates isotropic stresses as shown in Figure 7.8 and Figure 7.9 which is not always
true in real flows (this behavior is also mentioned in several books, like Pope [2006] or Laurien
and Oertel [2009]).
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7.4.1 Normal stress

Figure 7.8: Comparison of the Reynolds stress in longitudinal direction ( N
m2 ) for Qmain =

160 `/s , PIV-Box B202L

Figure 7.9: Comparison of the lateral Reynolds stress ( N
m2 ) forQmain = 160 `/s , PIV-Box

B202L

- 128 -



CHAPTER 7. COMPARISON OF CFD AND PIV

7.4.2 Shear stress

Figure 7.10: Comparison of the Reynolds shear stress (
N

m2 ) forQmain = 160 `/s , PIV-Box
B202L

7.5 Production

In Figure 7.11 the results for the production of turbulent kinetic energy of the PIV-measurements
and CFD-calculations are shown. One of the main difference between the methods is the negative
sign of the production in the PIV-measurement which cannot be explained with the turbulent-
viscosity hypothesis (there can only be a positive sign). This means that energy is transferred from
the turbulent kinetic energy to the mean flow. This behavior is also found in other flows, e.g. in
turbulent mixing layers (see Pope [2006]).
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Figure 7.11: Comparison of the production of turbulent kinetic energy (m
2

s3
per unit mass

[kg]) for Q = 160 `/s , PIV-Box B202L

7.6 Comparison of Fluent with OpenFoam

The comparison of OpenFoam with Fluent and with measurements in the hydraulic lab is shown
in Figure 7.12 to Figure 7.15: The first two pictures show the piezometric head along the left and
the main pipe. The numerical simulations show the same results and are in good agreement with
the measured piezometer head in the hydraulic model test (see Figure 7.12). The velocity results
along the hydraulic model test in the center line show also good agreement between OpenFoam
and Fluent (see Figure 7.14 Figure 7.15). The secondary flow can also be seen in the velocity
plot; after the bend the velocity shows no constant value due to the influence of the bend. The
secondary flow which is induced by the bifurcator is smoothed out by the confuser.
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Figure 7.12: Comparison of the piezometric head of the Fluent and OpenFoam simulations,
symmetrical discharge rate with Qmain = 160 `/s

Figure 7.13: Comparison of the piezometric head of the Fluent and OpenFoam simulations,
asymmetrical discharge rate with Qmain = Qleft = 80 `/s
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Figure 7.14: Comparison of the velocities of the Fluent and OpenFoam simulations, sym-
metrical discharge rate with Qmain = 160 `/s

Figure 7.15: Comparison of the velocities of the Fluent and OpenFoam simulations, asym-
metrical discharge rate with Qmain = Qleft = 80 `/s
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Water Hammer calculation of Pirris
hydro power plant

This chapter presents a water hammer calculation of the Pirris power plant (see Figure 8.1 and Fig-
ure 8.2). The whole pipe installation will be discretized and numerically solved with the method
of characteristics. The numerical simulation is written as a Matlab/Octave script. The input data
for the water hammer calculation (like pressure wave speed, operating level, discharge etc.) are
kindly provided by Andritz-Hydro. Two load cases will be simulated

1. Opening in 100 seconds, linearly

2. Closing in 150 seconds, linearly

The goal of the numerical simulation is the calculation of the highest and lowest pressure height
in the Y-bifurcator for the load cases. The penstock has no surge chamber. With the known
pressure, a design of the Y-bifurcator is possible. The simulation will be double-checked with
the commercial software Wanda (Version: 3.72.851). The results of the comparison show good
agreement between Wanda and the Matlab/Octave script.
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Figure 8.1: Plan view of the Y-bifurcator

- 134 -



CHAPTER 8. WATER HAMMER CALCULATION OF PIRRIS HYDRO POWER PLANT

Figure 8.2: Longitudinal section of the pipe installation
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8.1 Theoretical background for water hammer

If the discharge rate is changed, typically by the turbine or a valve, a water hammer is induced
in the penstock. The kinetic energy, when closing a valve, will be changed into pressure energy
which can destroy the pipe. However, if the valve opens, pressure energy will be converted into
kinetic energy and can cause serious cavitation in the pipe installation. The water hammer is
therefore an inertia force due to the change of rate of momentum.

For better convenience, the complete derivations of the equations for the water hammer calcula-
tions are in the appendix (see Section 10.2). The resulting equations of the derivations for the
pressure height HP at point p is:

HP = hU +B · (QU −QP )−R · (QP · |QU |)
HP = hR −B · (QR −QP ) +R · (QP · |QR|) (8.1)

With the abbreviations:

B =
a

g ·A
R =

∆x · λ
2 · g ·D ·A2

(8.2)

where a = pressure wave speed [m/s], g t = acceleration of gravity [m/s2], A = cross sectional
area of the pipe [m2], ∆x = length [m], λ = friction coefficient [−], D = pipe diameter [m] and
finally Q = discharge [m/s3]. The indexes U and R stand for a position before and after the index
P, respectively.

8.1.1 Time step

The time step is regarded implicitly for the characteristic method. With the length L, which is
divided by n integer number elements ∆x , one obtains:

∆t =
∆x

a
(8.3)

When more than one pipe element is considered (with different ∆x), the time step needs also
to be divided into sub-time steps. The sub-time step is a multiple of the global time step (e. g.
tglobal = 0.1 s the sub-time step could be: tsub = 0.05 s or tsub = 0.025 s ; with 2 or 4 iterations
the global time step is reached). Therefore, for more than one pipe element either the element
length ∆x or the pressure wave velocity a deviates more or less from the actual value. For all
calculations the pressure wave velocity a will be slightly modified to fulfill Eq. 8.3 .

8.1.2 Boundary Conditions

For the water hammer calculations 6 boundary conditions are defined; surge chamber, constant
discharge or height (e. g. operation level in the reservoir), resistance in the pipe installation,
connection between pipes and bifurcation.
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8.1.2.1 Constant height

Depending whether the start or the end point of the pipe is considered, a forward or a backward
characteristic for the discharge Q is used. With Eq. 8.1 the discharge can be calculated with a
backward characteristic for the pipe-end point:

QP =
HP − hR +B ·QR
B +R · |QR|

(8.4)

For the pipe-start point the forward characteristic gives:

QP =
HP − hU −B ·QU
−B +R · |QU |

(8.5)

8.1.2.2 Constant discharge Q

Depending whether the start or the end point of the pipe is considered, a forward or a backward
characteristic for the height H is used. With Eq. 8.1 the height can be calculated with a backward
characteristic for the pipe-end point:

HP = HR +B · (QP −QR) +R ·QP · |QR| (8.6)

For the pipe-start point the forward characteristic gives:

HP = HU −B · (QP −QU )−R ·QP · |QU | (8.7)

8.1.2.3 Y-Bifurcation

For the Y-Bifurcation two equations need to be satisfied:

∑
Q = QPipe1 +QPipe2 +QPipe3 = 0 (8.8)

h = hPipe1 = hPipe2 = hPipe3 (8.9)

Depending whether the start or the end point of the bifurcation is considered, Eq. 8.9 will be
rewritten with the characteristic equations ( Eq. 8.1). The following terms are obtained (from
ABif to DBif ):

ABif = −H(Pipe1,Position) − V z1 ·B ·Q(Pipe1,Position) (8.10)

BBif = −B · V z1 −R · V z1 ·
∣∣Q(Pipe1,Position)

∣∣ (8.11)

CBif = −H(Pipe2,Position) − V z2 ·B ·Q(Pipe2,Position) (8.12)

DBif = −B · V z2 −R · V z2 ·
∣∣Q(Pipe2,Position)

∣∣ (8.13)
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EBif = −H(Pipe3,Position) − V z3 ·B ·Q(Pipe3,Position) (8.14)

FBif = −B · V z3 −R · V z3 ·
∣∣Q(Pipe3,Position)

∣∣ (8.15)

where Position indicates if the pipe-end or the pipe start point is considered. The variable Vz,
which stands for the sign (- or +), is automatically determined with the Position. B and R are
defined from Eq. 8.2. Finally, the terms ABif to DBif can be used to calculate the pressure height
h and the discharge Q:

h =
−ABif ·V z1

BBif
− CBif ·V z2

DBif
− EBif ·V z3

FBif
V z1
BBif

+ V z2
DBif

+ V z3
FBif

Q(Pipe1) =
h+ABif
BBif

Q(Pipe2) =
h+ CBif
DBif

Q(Pipe3) =
h+ EBif
FBif

(8.16)

8.1.2.4 Pipe Connection

For a pipe-connection (e. g. Pipe 1 with Pipe 2) two equations are necessary:

Q = QPipe1 = QPipe2 (8.17)

h = hPipe1 = hPipe2 (8.18)

A forward and a backward characteristic is used for hPipe1 and hPipe2, respectively. Solving the
equation for Q and h yields:

Q =
h(Pipe1) +B ·Q(Pipe1) − h(Pipe2) +B ·Q(Pipe2)

B +R ·
∣∣Q(Pipe1)

∣∣+B +R ·
∣∣Q(Pipe2)

∣∣

h =

(
B +R ·

∣∣Q(Pipe2)

∣∣) ·
(
h(Pipe1) +B ·Q(Pipe1)

)
−
(
B +R ·

∣∣Q(Pipe1)

∣∣) ·
(
h(Pipe2) −B ·Q(Pipe2)

)

B +R ·
∣∣Q(Pipe2)

∣∣+B +R ·
∣∣Q(Pipe1)

∣∣
(8.19)

whereas B and R are defined from Eq. 8.2.

8.1.2.5 Pipe Connection with a resistance

Similar to the equations for the pipe-connection an additional term is included for the pressure
height:

Q = QPipe1 = QPipe2 (8.20)

∆h = hPipe1 − hPipe2 (8.21)
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and for ∆h, the additional head loss, one can write:

∆h = ζResistance ·
V 2

2 · g (8.22)

A forward and a backward characteristic is used for hPipe1 and hPipe2, respectively. Solving the
equation for Q and h yields:

Term1 =
ζResistance

2 · g ·A2
throttle

Term2 = −B −R · |QPipe1| −B −R · |QPipe2|
Term3 = HPipe1 +B ·QPipe1 −HPipe2 +B ·QPipe2 (8.23)

whereas B and R are defined for Eq. 8.2, Q is the discharge, H is the height, g is the acceleration and
Athrottle is the throttle cross section. Term1 to Term3 are used to solve the quadratic equation:

Solution1 =
−Term2 +

√
Term2

2 − 4 · Term1 · Term3

2 · Term1

Solution2 =
−Term2 −

√
Term2

2 − 4 · Term1 · Term3

2 · Term1

Q = Solution1,2

∆h =
Q · |Q|

A2
throttle · 2 · g

· ζthrottle (8.24)

8.1.2.6 Surge chamber

For the surge chamber the condition (Giesecke and Mosonyi [1997]):

dV = AW · dz = AW · (zP − z3) (8.25)

is used, whereas zP is the actual height (at time step j) and z3 is the former height (at time step
j-1) in the surge chamber. AW [m2] is the cross sectional area of the surge chamber. Rewriting
Eq. 8.25 yields:

(zP − z3) =
Qp +Q3

2 ·AW
·∆t (8.26)

whereas QP is the actual discharge rate into the chamber and Q3 the former discharge. For the
new height zP Eq. 8.26 can be written as:

zP = z3 +
∆t

2 ·AW
·QP +

∆t

2 ·AW
·Q3 (8.27)

If a throttle is used in the surge chamber an additional term is defined for Eq. 8.27:
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hthrottle = ± ζthrottle
2 · g ·A2

throttle

·Q2
throttle (8.28)

where, hthrottle = loss of height, ζthrottle = loss coefficient, Athrottle = cross section and Qthrottle
= discharge rate of the throttle. Further details about water chambers can be found in Richter and
Dobler [2011], Richter et al. [2012], Gabl et al. [2011] and Heigerth [1970].

8.2 Calculation procedure and results

8.2.1 Input data

The input data to calculate the water hammer of the Pirris hydro power plant is provided by
Andritz-Hydro. The general pipe installation is shown in Figure 8.3; for the main Pipe between
the reservoir and the bifurcation 20 pipe elements are defined. Downstream of the bifurcation, two
pipe elements for each branch are defined. The whole installation can also be seen in Figure 8.1
and Figure 8.2.

The detailed input data for the water hammer calculation are given in Table 8.1.
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Figure 8.3: Sketch of the pipe elements
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Table 8.1: Input Data for the pipe elements: dx = length of element, Knots = number of
knots, a theo = theoretical pressure wave speed, a actual = actual pressure wave speed,
ratio of theoretical and actual pressure wave speed, Length = length of pipe, Diameter =
diameter of pipe, ks = sand roughness and H1, H2 = geodetic height of pipe.
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The boundaries for water hammer calculation are shown in Table 8.2

Table 8.2: Boundaries and time step for opening and closing.

Time Step [s] 0.005 Time Step [s] 0.005
End Time [s] 1000 End Time [s] 1000

Reservoir level Reservoir level
H [m. a. s. l.] 1160 H [m. a. s. l.] 1205

Discharge left turbine Discharge left turbine
Time [s] 0 100 1000 Time [s] 0 60 150 1000
Discharge [m3/s] 0 9.9 9.9 Discharge [m3/s] 9.9 7.7 0 0

Discharge right turbine Discharge right turbine
Time [s] 0 100 1000 Time [s] 0 60 150 1000
Discharge [m3/s] 0 9.9 9.9 Discharge [m3/s] 9.9 7.7 0 0

Simulation ‐ Opening Simulation ‐ Closing

8.2.2 Results for the water hammer of the bifurcation

The results for the head level in the pipe installation are shown in Figure 8.4. The maximum head
level of 1242.2 [m. a. s. l.] occurs when the discharge is linearly reduced from 9.9 to 7.7 and finally
to 0.0 m3/s. The maximum allowable head level in the pipe installation is 10% of the maximum
static head level in the nozzle corresponding to 1295.05 [m. a. s. l.] according to Andritz Hydro.
The minimum head level of 1084.7 [m. a. s. l.] belongs to the linear opening of the turbines; no
cavitation takes place. Note, that only two load cases are represented here whereas Andritz Hydro
investigated several other flow conditions with non-linear closing and opening procedures.

The water hammer in the bifurcation is shown in Figure 8.5 and Figure 8.6: The geodetic height
of the Y-bifurcator is 304.5 [m. a. s. l.]. With the maximum head level of 1241.5 [m. a. s. l.] a
maximum pressure of 937 [MWC] is obtained. The numerical calculation is also compared with
Wanda (Version: 3.72.851); both results for opening and closing are in good agreement with the
numerical code. The slight differences between the curves are due to the slightly different pressure
wave speed of the pipes (see also Section 8.1.1). With the results of the minimum and maximum
pressure in the Y-bifurcator a structural design can be carried out (not shown here). The satisfying
results of the water hammer code are encouraging for further implementations of boundaries, like
differential effects in surge chambers or degassing processes.
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Figure 8.4: Piezometric line of the pipe installation for opening and closing.

- 144 -



CHAPTER 8. WATER HAMMER CALCULATION OF PIRRIS HYDRO POWER PLANT

1240

1250

1230
a.
 s
. .
l]

TUGraz Closing 

Wanda Closing

1210

1220

ea
d 
Le
ve
l [
m
. a

1190

1200

H
e

1180

0 100 200 300 400 500 600 700 800 900 1000Time [s]

Figure 8.5: Head level of the bifurcator for linear closing. The maximum Head level is
1241.5 [m. a. s. l.]

1080

1090

1100

1110

1120

1130

1140

1150

1160

0 100 200 300 400 500 600 700 800 900 1000

H
ea
d 
Le
ve
l [
m
. a
. s
. l
.]

Time [s]

TUGraz Opening

Wanda Opening

Figure 8.6: Head level of the bifurcator for linear opening. The minimum Head level is
1086.7 [m. a. s. l.]

- 145 -



CHAPTER 8. WATER HAMMER CALCULATION OF PIRRIS HYDRO POWER PLANT

- 146 -



Chapter 9

Summary and Outlook

9.1 Summary

In this thesis, the hydraulic investigation of a Y-bifurcator has been presented. The hydraulic
model, which consists of plexiglass, was used to measure the energy loss along the pipe instal-
lation. This has been achieved with careful investigations of secondary flows via Particle Image
Velocimetry and differential pressure measurements. With several numerical simulations further
insight into the flow behavior could be gained. The main findings of this thesis are as follows:

Particle Image Velocimetry

The results of the hydraulic investigations of the flow behavior of a typical Y-Bifurcator have
shown that the Particle Image Velocimetry (PIV), together with differential pressure measurements
and Computational Fluid Dynamic simulations is a very effective tool to describe the performance
of the Y-bifurcator. Due to the fact that a bend is located in the pipe installation upstream of
the Y-bifurcator (15 times the pipe diameter) a secondary flow occurs. In order to be able to
measure the head loss of the Y-bifurcator the velocity distribution needs to be known which is
achieved by PIV. The results of the PIV-data, after having validated the velocity vectors, have
shown that the reliability of the mean value of the velocity distribution and the standard deviation
was considerably good, that is, the mean value of the flow deviated only around 7 ‰ in most
cases. These velocity distributions have been measured with the natural seeding of the flow. In
order to investigate the velocity lag of the seeding a microscope had been used to determine the
diameter of the seeding. On account of the law of Stokes it could been shown that the seeding can
follow the flow up to a turbulent frequency of 1.4 kHz. This is an encouraging result for further
investigations with PIV when only natural seeding particles are available. The velocity correction
factor α has been between 1.01 and 1.1 for the secondary flow. Care has been taken with the near
wall velocities to calculate the α-value: due to the fact that the velocities close to the wall cannot
be measured with PIV a linear function has been used to close that gap. The influence of this
procedure has been checked with an analytical velocity profile, with which more and more of the
profile has been replaced by a linear function. The result of this procedure showed that for small
gaps (1-2% of the diameter) which have been closed with a linear function a deviation of only 2%
occurred. Furthermore, due to the fact that four velocity planes have been available for one cross
section the mean of the α-values has been calculated. To verify if the mean value of the four planes
would be sufficient a 3D numerical simulation with Fluent has been carried out. In this simulation
the α-value for the whole cross section as well as for the four planes has been calculated. The
result of the comparison showed that the α-value for the four velocity profiles deviated only about
0.1 % from the full cross section of the CFD simulation.
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Hydraulic losses - Loss coefficient ζ

After the secondary flow has been determined with the velocity correction factor α the Bernoulli
equation has been used to calculate the head loss of the bifurcation. The loss coefficient ζ was
defined as the head loss ∆h divided by the kinetic velocity height, and by excluding any pipe
friction. This has been done by defining substitute-cylinders between two control sections and by
using the Colebrook and the Darcy-Weisbach equations in order to calculate the pipe friction and
subtracting it from the measured head loss ∆h. The equivalent sand roughness ks, which is needed
for the Colebrook equation to determine the pipe friction coefficient λ, has been measured by two
different methods. The first method made use of the differential pressure loss between several
control sections where in fact a linear friction gradient exists. With the known head loss ∆h and
with the Darcy-Weisbach equation and the Colebrook equations the equivalent sand roughness ks
has been evaluated. The other method of the ks calculation made use of Particle Image Velocimetry
(PIV) data. Close to the wall a universal law of velocity distribution comes into effect which
is also known as the logarithmic law of the wall. With the measured axial velocity u and the
corresponding distance y from the wall as well as the application of the equation of the law of the
wall the equivalent sand roughness for rough pipes ks could be calculated. The calculated ks-value
for both methods has been 0.015 mm.

The hydraulic model test is scaled after the Reynolds law which implies that the velocity in the
model test equals the velocity of the prototype times the scale factor. This yields a velocity in the
model test up to 43 m/s which is far too high for the pumps in the laboratory. In order to overcome
this problem the head loss ∆h as function of the discharge rate has been decomposed into a
polynomial function with a quadratic, linear and constant term via the least square method. With
the polynomial function the desired head loss has been calculated. Furthermore, a comparison has
been carried out to determine whether it would be better to use the quadratic term of the polynomial
function to calculate the head loss for higher discharge rates exclusively, or not. This assumption
has been based on previous model tests in which the head loss as function of the discharge rate
showed a purely quadratic behavior. The comparison showed better results if when exclusively
the quadratic term of the least square method has been applied. This has been controlled also by
the means of a numerical calculation, in which the desired discharge rate can be set according to
the Reynold’s model and the resultant head losses can be compared to the extrapolated head losses
of the model test. The comparison of the CFD-calculation to the hydraulic model test with the
extrapolated values displays good agreement.

To reduce the loss coefficient ζ a guide vane apparatus has been used (this concept had been tested
in a previous model test (trifurcator), see also Mayr [2009]). The guide vane induced a swirling
flow upstream of the Y-bifurcator. As a result, the loss coefficient could be reduced for one flow
distribution.

Computational Fluid Dynamics

Several CFD simulations (Ansys and OpenFoam) have been conducted. The results of the CFD
simulations have been compared to the PIV measurements. The quantities which had been com-
pared to one another were: Kinetic energy of the mean flow, turbulent kinetic energy, Reynolds-
stress tensor and the production of turbulent kinetic energy. The comparison between CFD and
PIV showed acceptable agreement.

With the results of the numerical calculation a comparison of the head losses and the measured
velocity distributions has been conducted for the hydraulic model test. The velocity distributions
along the hydraulic model show good agreement between PIV and CFD as long as no strong
secondary flow occurred. The influence of the secondary flows on the pressure distribution along
the pipe has been low and thus - if only the loss coefficient ζ should be of interest - a numerical
simulation without a model test will be sufficient in simple pipe flows.
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Computational Fluid Dynamics with OpenFoam

The comparison of Fluent and OpenFoam for the symmetrical (80 `/s per branch) and asymmet-
rical (only 80 `/s for the left branch) discharge rate has been investigated. The results of the
piezometric head as well as of the velocity along the center line of the pipe showed good agree-
ment between Fluent and OpenFoam. The results of the symmetrical discharge rate have been also
double-checked with the measurements of the hydraulic model test. On account of the promising
outcome of OpenFoam which is a non- commercial, open source software, it is to be expected that
this software will be more and more applied by the industry as well as by practitioners.

Programming of Water-Hammer with the method of characteristics

The water hammer calculation of the Pirris power plant showed a maximum head level of 937
[MWC]. The numerical simulation has been written as a Matlab/Octave script. The differential
equations have been numerically solved with the method of characteristics. With the known maxi-
mum head level, a design of the Y-bifurcator is possible. The simulation has been double-checked
with the software Wanda and shows satisfactory accordance.

9.2 Outlook

Based on Chapter 1 further questions arise concerning the results of the hydraulic investigation of
the Y-bifurcator:

1. Secondary flow: PIV is a reliable and effective tool to quantify the roughness and the axial
secondary flow in the hydraulic model tests. These measurements were obtained with a
standard PIV set-up that is with one camera and one laser. With a second camera an even
deeper insight into the flow would be possible with which the secondary flow within the
cross section (swirl-flow) could even be rendered visible. With the knowledge about the
in-plane velocity distribution a more accurate energy balance between two control sections
could be achieved.

2. Roughness: The roughness measurement in the hydraulic model test with PIV was a very
time-consuming procedure due to the reflecting laser-light from the pipe wall. Nevertheless,
with a careful set-up a roughness measurement has been carried out successfully. It would
be very interesting to compare these measurements - which had been conducted with natural
seeding - to the fluorescenting particles with a wavelength other than that of the green laser
light. With an optical filter which suppresses the green laser-light (and the reflecting light
from the plexiglass wall) the fluorescenting particles could be made visible very well in the
PIV-measurement.

3. Swirling flow: The guide vane device which has been used to induce the swirling flow - and
thus, also to reduce the hydraulic losses - has been optimized to improve the approaching
flow to the Kaplan-turbine and has a bulb in the middle of the device. The author expects
that without this bulb more load distributions would show lower losses due to the swirling
flow.

4. Scaling effects: The extrapolation method shown in this thesis to calculate the loss coef-
ficient of the prototype has been double-checked with a numerical simulation. It would
be helpful to repeat the numerical simulation with different scales, so that any scaling ef-
fects could be made visible. Further, another hydraulic model test based on different scales
should be built to investigate the scaling effects.
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5. Computational Fluid Dynamics: The numerical simulations with OpenFoam showed reli-
able results for a pressurized pipe flow. All further investigations concerning scaling effects
should be performed with this free and open software. When the results are satisfactory an
efficient tool for further research projects will be at hand.

6. Water Hammer: The code for the water hammer calculation has shown reliable results for
the Pirris power plant when compared with the commercial Program Wanda. 6 boundaries
have been implemented in the code (these are surge chamber, variable height and discharge
at the end and starting point of the pipe, bifurcation, connection of two pipes and a resis-
tance/throttle in the pipe). Further boundary elements like a surge chamber which would
include differential effects or open channel flow would be worth implementing.

- 150 -



Bibliography

J. D. Anderson. Computational Fluid Dynamics. McGraw-Hill, Inc., New York, 1 edition, 1995.
ISBN 0-07-11321ß-4.

ANSYS Fluent. Fluent 6.2 User’s Guid, 2005. URL http://www.ansys.com.

H. J. Bartsch. Taschenbuch Mathematischer Formeln. Fachbuchverlag Leipzig, 18 edition, 1999.
ISBN 3-446-21048-2.

B. Basara, H. Grogger, R. Klasinc, and D. Mayr. Experimental and numerical study of the flow
through a trifurcation. In 28th IAHR World Congress, pages 102–103, Graz, 1999.

W. Berner. Trifurkation, Druckverlust im Verteil- und Sammelbetrieb (Trifurcation, Pressure head
losses for flow dividing and merging). Report Nr. WT-70-401, Escher Wyss AG, unpublished,
1970.
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10.1 Input File - OpenFoam

10.1.1 File structure

The directories for the OpenFoam files are given in Table 10.1:

Table 10.1: Directory and File structure for OpenFoam on a Linux computer

10.1.2 Folder 0

10.1.2.1 epsilon

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;
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location "0";

object epsilon;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [ 0 2 -3 0 0 0 0 ];

internalField uniform 1;

boundaryField

{

MAIN // This is the entrance of the main pipe

{

type turbulentMixingLengthDissipationRateInlet;

mixingLength 0.0175; // mixingLenght=

// 0.07 * Hydraulic Diameter =

// 0.07*0.250=0.0175

value uniform 1; // placeholder

}

LEFT // This is the the outlet of the left pipe

{

type inletOutlet; // Switches epsilon between

// fixedValue and zeroGradient

// depending on direction of U

inletValue uniform 0.00861 ;

}

REIGHT // This is the the outlet of the right pipe

{

type inletOutlet;

inletValue uniform 0.00861;

}

plexi_wall

{

type epsilonWallFunction; //standard wall function

value uniform 0;

}

}

// ************************************************************************* //

10.1.2.2 Turbulent kinetic energy

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
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| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object k;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [ 0 2 -2 0 0 0 0 ];

internalField uniform 1;

boundaryField

{

MAIN

{

type turbulentIntensityKineticEnergyInlet;

intensity 0.05; // 5% turbulent intensity

value uniform 1;

}

LEFT

{

type inletOutlet;

inletValue uniform 1;

}

REIGHT

{

type inletOutlet;

inletValue uniform 1;

}

plexi_wall

{

type kqRWallFunction;

value uniform 0;

}

}

// ************************************************************************* //
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10.1.2.3 Turbulent eddy viscosity

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object nuTilda;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 0;

boundaryField

{

MAIN

{

type zeroGradient;

}

LEFT

{

type zeroGradient;

}

REIGHT

{

type zeroGradient;

}

plexi_wall

{

type zeroGradient;

}

}

// ************************************************************************* //

10.1.2.4 Pressure

/*--------------------------------*- C++ -*----------------------------------*\
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| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

MAIN

{

type zeroGradient;

}

LEFT

{

type fixedValue;

value uniform 0;

}

REIGHT

{

type fixedValue;

value uniform 0;

}

plexi_wall

{

type zeroGradient;

}

}

// ************************************************************************* //

10.1.2.5 Velocity

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |
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| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

object U;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

MAIN

{

type surfaceNormalFixedValue;

refValue uniform -3.26;

}

LEFT

{

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0 0 0);

}

REIGHT

{

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0 0 0);

}

plexi_wall

{

type fixedValue;

value uniform (0 0 0);

}

}

// ************************************************************************* //
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10.2 Derivation of the water hammer equations

10.2.1 Water hammer based on the theory of the elastic water col-
umn

To calculate the water hammer in a pipe system the compressibility of the fluid and the elasticity
of the pipe wall have to be taken into account. The change of density due to the pressure wave
in the pipe propagates with the wave speed a [m/s]; these waves are longitudinal waves (Giesecke
and Mosonyi [1997]). Due to the reflection of the pressure waves considerably higher magnitudes
of waves can occur.

The mathematical derivation of the water hammer is based on Newton’s second law:

~F = m · ~aaccel = m · d
~V

dt
(10.1)

Eq. 10.1 is also called Momentum Equation and states that the product of mass (ρ · dx · A) and
the acceleration is equal to the resulting forces acting on the element dx.

A P· A (P+ P/ x dj j ·

dx

ρ·dx·A·g

t p·D· ·dx

t p·D· ·dx

A P·

A (P+ P/ x dx)
j

j ·
dx

sin· · ·dx·A·g
a ρ

t
p

0
·D· ·dx

ρ·dx·A·g

a

Figure 10.1: Momentum equation of a pipe element

Figure 10.1 shows the resulting forces acting on the pipe element of a finite length dx. With
Eq. 10.1 and Figure 10.1 the momentum equation has the following shape:

−∂P
∂x
− ρf ·

dV

dt
− ρf · g · sinβ −

4

D
· τw = 0 (10.2)

whereas P = pressure, ρf = density of water, g = gravity, β = angle, D = diameter and τw = wall
shear stress.

With the quadratic relationship between wall shear stress (τw) and velocity (V) for turbulent flows:

τw ∝ V 2 (10.3)
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the empirical equation can be defined:

τw =
λ

8
· ρf · V · |V | (10.4)

Replacing the wall shear stress in Eq. 10.2 yields:

−∂P
∂x
− ρf ·

dV

dt
− ρf · g · sinβ −

ρf · λ
2 ·D · V · |V | = 0 (10.5)

The total differential of Vt,x is (Bartsch [1999]):

dV =
∂V

∂x
· dx+

∂V

∂t
· dt (10.6)

Rearranging with dx/dt=V yields forEq. 10.6:

dV

dt
= V · ∂V

∂x
+
∂V

∂t
(10.7)

The final form of the momentum equation - including the fact that sin β=dz/dx, is: (Giesecke
and Mosonyi [1997]):

1

ρf
· ∂P
∂x

+ V · ∂V
∂x

+
∂V

∂t
+ g · dz

dx
+

λ

2 ·D · V · |V | = 0 (10.8)

The continuity equation is (cf. also with Eq. 6.6 and Eq. 6.7):

∂ρf
∂t

+∇ · (ρf · ~V ) =
∂ρf
∂t

+ ρf

(
∇ · ~V

)
+ ~V · (∇ρf ) = 0 (10.9)

and if only one dimension is considered:

∂ρf
∂t

+ ρf ·
∂V

∂x
+ V

∂ρf
∂x

= 0 (10.10)

Taking into account the equation of state for the speed of sound ρf = P/c2, Eq. 10.10 yields:

∂P

∂t
+ P · ∂V

∂x
+ V · ∂P

∂x
= 0 (10.11)

For the pressure the approximation P ≈ a2 · ρf is used instead of ρf = P/c2. This condition
is only valid for weakly compressible fluids like water. In order to consider the elasticity of the
pipe the variable for the speed of sound will be replaced with the pressure wave velocity a. The
continuity equation is then (Schröder and Zanke [2003]):
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∂V

∂x
+

1

a2 · ρf
·
(
V · ∂P

∂x
+
∂P

∂t

)
= 0 (10.12)

For the pressure wave velocity a one can write:

a =

√
1

1
c2

+
ρf
A · dAdP

(10.13)

whereas 1
A · dAdP represents the widening of the pipe. According to Hooke’s law for thin walled

pipes with the wall thickness s one obtains:

∆r

r
=
r ·∆P
Es · s

(10.14)

where Es is Young’s modulus for steel pipe, r the radius and s the wall thickness. For the change
of the cross sectional area one can write:

∆A = 2 · π · r ·∆r (10.15)

Finally, for the widening of the pipe one can write:

1

A
· dA
dP

=
1

Es
· D
s

(10.16)

and with the definition for the speed of sound c =
√

(Ef/ρf ), Eq. 10.13 can be rewritten accord-
ing to Schröder and Zanke [2003]:

a =

√√√√
Ef
ρf

1 +
Ef
Es
· Ds

< c =

√
Ef
ρf

(10.17)

Generally, the Bulk modulusEf in Eq. 10.17 isEf= 2 · 109 N/m2 for water and Young’s modulus
Es= 2.1 · 1011 N/m2 for steel.

10.2.2 Solution of the differential equation with the method of char-
acteristics

The momentum equation (Eq. 10.8) and the continuity equation (Eq. 10.12) for unsteady pipe
flows are partial, non-linear differential equations of hyperbolic type. Hyperbolic differential
equations generally describe propagation problems; the transport of information occurs along a
characteristic (Sanz [2008]). The gradient of the characteristic is equivalent to the propagation
velocity of the pressure and the rate of change of velocity as long as the velocity of the fluid is
smaller than the pressure wave velocity a.
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The derivation for the method of characteristics is taken from Giesecke and Mosonyi [1997] and
has the following form:

The continuity equation (Eq. 10.12) will be multiplied with the pressure wave velocity a:

a · ∂V
∂x

+
1

a · ρf
·
(
V · ∂P

∂x
+
∂P

∂t

)
= 0 (10.18)

The momentum equation (Eq. 10.8) will be rearranged as follows:

∂V

∂t
+ V · ∂V

∂x
+

1

ρf
· ∂P
∂x

+ g · dz
dx

+
λ

2 ·D · V · |V | = 0 (10.19)

Subtraction and addition of Eq. 10.18 with Eq. 10.19 yields:

∂V

∂t
+ (V ± a) · ∂V

∂x
± 1

ρf · a
·
(

(V ± a) · ∂P
∂x

+
∂P

∂x

)
+ g · dz

dx
+

λ

2 ·D · V · |V | = 0

(10.20)

The terms (V ± a) = dx/dt are called characteristics, thus Eq. 10.20 can be recast into:

∂V

∂t
+
dx

dt
· ∂V
∂x
± 1

ρf · a
·
(
dx

dt
· ∂P
∂x

+
∂P

∂x

)
+ g · dz

dx
+

λ

2 ·D · V · |V | = 0 (10.21)

With the total differential

dV

dt
=
∂V

∂t
+
∂V

∂x
· dx
dt

dP

dt
=
∂P

∂t
+
∂P

∂x
· dx
dt

(10.22)

Eq. 10.21 can be rearranged into the form:

dV

dt
± 1

ρf · a
· dP
dt

+ g · dz
dx

+
λ

2 ·D · V · |V | = 0 (10.23)

The pressure gradient in Eq. 10.23 will be rewritten as a pressure height P = ρ · g · (h− z):

1

ρf · a
· dP
dt

=
g

a
·
(
dh

dt
− dz

dt

)
(10.24)

Thus Eq. 10.23 yields:

dV

dt
± g

a
·
(
dh

dt
− dz

dt

)
+ g · dz

dx
+

λ

2 ·D · V · |V | = 0 (10.25)
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The term dz/dx in Eq. 10.25 will be converted to

dz

dt
=
dz

dx
· dx
dt

= (v ± a) · dz
dx

(10.26)

Replacing Eq. 10.26 in Eq. 10.25 yields:

dV

dt
± g

a
·
(
dh

dt
− (v ± a) · dz

dx

)
+ g · dz

dx
+

λ

2 ·D · V · |V | = 0 (10.27)

When the velocity V fulfills the condition: V < 0, 05 · a (Giesecke and Mosonyi [1997]), the
convection term with dz/dx can be neglected. Thus Eq. 10.27 gives:

dV

dt
± g

a
· dh
dt

+
λ

2 ·D · V · |V | = 0 (10.28)

Integrating along the characteristic Eq. 10.28 can be solved (cf. also with Figure 10.2)

[
V +

g

a
· h
]P
U

=

∫ tP

tU

(
− λ

2 ·D · V · |V |
)
· dt + Charakteristics (10.29)

[
V − g

a
· h
]P
R

=

∫ tP

tR

(
− λ

2 ·D · V · |V |
)
· dt − Charakteristics (10.30)

Figure 10.2: Sketch of the characteristics (taken from Giesecke and Mosonyi [1997])

Eq. 10.29 and Eq. 10.30 are solved by using the trapezoidal rule [A=(xP -xU )/2 · (f(xP )+f(xU ))]
for the integration. Additionally, with a nearly linear progression, dt = dx/(±a) is set.
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[
V +

g

a
· h
]
P

=
[
V +

g

a
· h
]
U

+
xP − xU

2 · a ·
([
− λ

2 ·D · V · |V |
]

P

+

[
− λ

2 ·D · V · |V |
]

U

)

(10.31)

and

HP = hU +
a

g
· (VU − VP )− ∆x · λ

4 · g ·D · (VP · |VP |+ VU · |VU |) (10.32)

Eq. 10.30 will be rearranged in the same form:

HP = hR −
a

g
· (VR − VP )− ∆x · λ

4 · g ·D · (VP · |VP |+ VR · |VR|) (10.33)

Due to the fact that the velocity for point P, U and R changes only marginally for one iteration
step, one can write:

VP · |VP |+ VU · |VU | = 2 · VP · |VU |
VP · |VP |+ VR · |VR| = 2 · VP · |VR| (10.34)

Additionally, with Q=V · A Eq. 10.32 and Eq. 10.33 yields:

HP = hU +
a

g ·A · (QU −QP )− ∆x · λ
2 · g ·D ·A2

· (QP · |QU |)

HP = hR −
a

g ·A · (QR −QP ) +
∆x · λ

2 · g ·D ·A2
· (QP · |QR|) (10.35)

With the abbreviations:

B =
a

g ·A
R =

∆x · λ
2 · g ·D ·A2

(10.36)

Eq. 10.35 can be rewritten as:

HP = hU +B · (QU −QP )−R · (QP · |QU |)
HP = hR −B · (QR −QP ) +R · (QP · |QR|) (10.37)

With the following abbreviations for Eq. 10.37 :
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BU = B +R · |QU |
CU = hU +B ·QU
BR = B +R · |QR|
CR = hR −B ·QR (10.38)

the variables HP und QP can be solved (Giesecke and Mosonyi [1997]):

HP =
CU ·BR + CR ·BU

BU +BR

QP =
CU − CR
BU +BR

(10.39)
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Hydraulic investigation of a Y-bifurcator
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Abstract

In this paper the model test of a Y-bifurcator of a power plant will be introduced. The model test consists of a 42◦ bend,
a straight pipe from the bend to the Y-branch and two branching pipes with a branching angle of 40◦. The secondary
flow caused by the bend will be made visible by a Particle Image Velocimetry (PIV) and quantified with the velocity
correction factor α. The downscaling of the hydraulic model test is based on the Reynolds law. This causes too high
discharge rates in the model test and an extrapolation with a linear polynomial, based on the least square method, is used
to get the discharge rate in respect to the head loss. The head losses and the corresponding local loss coefficient ζlocal
will be presented and compared by either a linear or polynomial extrapolation.

INTRODUCTION

Considerable efforts are undertaken to reduce hydraulic losses in pipe systems of a hydro-power plant. Beside the friction
loss of a straight pipe the local losses due to built-in components like a junction or confuser are also of interest. The first
important measurements for the local loss coefficient ζlocal in a bifurcator was done in Munich from 1928 to 1931 and
are also known as the Munich experiments (Vogel [1928], Petermann [1929] and Kinne [1931]). Vogel [1928] represented
results for right-angled bifurcators with diameters from Ø15 mm to Ø45 mm. The form of the intersection edges of
the bifurcator were either sharp-edged or rounded. Vogel [1928] mentioned also the proportional relationship between
the pressure losses and the quadratic discharge rate. Petermann [1929] and Kinne [1931] repeated the test series of
Vogel [1928] with a branching angle of 40◦ and 60◦, respectively. McNown [1954] repeated the results of the Munich
experiments with more accurate measurements at the hydraulic lab in Iowa. The branching angle of the test series in Iowa
was 90◦ and the pipe diameters were form 12.7mm to 50.8mm.

Abundant data for loss coefficients of Y-bifurcators are presented in Miller [1990]. The parameter for the loss coeffi-
cients in Miller [1990] are the ratio of area for the main and branching pipe, discharge ratio, different branching angles
and different forms of the intersection edge (rounded or edged). Kavianpour [2003] determined loss coefficients for two
asymmetrical Y-bifurcators in a hydraulic model test made of plexiglass pipes. Kavianpour [2003] used for his inves-
tigation different stiffener inside the Y-bifurcator and also mentioned the important fact that no secondary flow should
reach the turbine. Klasinc et al. [1992] reported the loss coefficient for an asymmetrical Y-bifurcator. For this model test
the scaling law of Reynolds was used. This leads to too high discharge rates in the hydraulic model test and polynomial
extrapolation methods are used. Based on the hydraulic model test of Klasinc et al. [1992] further investigations for a
symmetrical Y-bifurcator are shown in this paper.

INSTALLATION OF THE HYDRAULIC MODEL TEST

The hydraulic model test is downscaled with a factor of 8.13, based on the Reynolds law, where the ratio of the inertia
to the viscous force is the same in prototype and the model. In the hydraulic model test the Y-bifurcator consists of a
main pipe with a inner diameter of 246mm and two branching pipes with a inner diameter of 172mm, respectively. The
branching angle of the symmetrical Y-bifurcator is 40◦ and a stiffener is used for statical reason. 18 diameters (18-D)
upstream of the Y-bifurcator is located a bend with an angle of 42◦ and after this bend exists a 12-D long pipe which ends
in a flow conditioner (see Figure 1). Downstream of the Y-bifurcator is a 10-D long pipe with a inner diameter of 123mm
and a confuser for each branch.

The flow conditioner consists of a pipe bundle to smooth the incoming flow and to get a fully developed turbulent flow
before the flow enters the bend. The bend itself consists of 5 segments each of them rotated by 8.4◦. The Y-bifurcator
consists of three cone-shaped volumes and a stiffener. After the confuser in the hydraulic model test two pelton turbines
are located in the prototype. Instead of the pelton turbines a 10-D long pipe is installed in the hydraulic model test to get
a fully redeveloped turbulent flow.

The water supply for the model test is done by a reservoir in the laboratory. The water level in the reservoir is 13m
above the symmetry line in the Y-bifurcator. With this water head level a maximum discharge rate of 0.12 (m3/s) is
possible. Using pumps a discharge rate of 0.2 (m3/s) is possible and the maximum allowable pressure of 1.3 (bar), due to
the strength of the plexiglass-pipe, is achieved in the installation. The water, after passing the model test, enters another

- xxviii -



APPENDIX

Figure 1: View of the whole plexiglass-pipe installation and a detail of the Y-bifurcator (top-left).

reservoir which is allocated below the model test.

Data acquisition

Figure 2: Howell-Bunger valve to vary continuously the dis-
charge rate.

For the measurement of the loss coefficient ζlocal the pres-
sure differences and the discharge rates are needed. The
temperature needs not be recorded due to the constant tem-
perature in the laboratory of ±1˚C.

The pressure difference is measured from the control sec-
tion M1 in Figure 3 to every other control section, that is,
from M2 to M6, L1 to L6 and R1 to R6 respectively. Each
control section consists of 8 pressure-holes, regularly ar-
ranged around the plexiglass-pipe. The pressure-holes are
burr-free and have a diameter of 1mm each. All eight bore
holes are connected together to a single ring-line to get an
average value of the head level in the control section. The
pressure-sensor for the head level difference measurement
has a maximum inaccuracy of ±0.5% of the full range.
For each meassuring campaign the pressure-probe is cali-
brated against a constant water head level. The ring-line is
connected with the pressure-sensor by a air-free plastic tube. The signal (4-20mA) from the pressure-sensor is sent to a
measurement amplifier and then recorded and stored by the software LabView.

The discharge rates are measured by three electromagnetic flow meters, one in the main pipe and one at each branching
pipe. The measuring principle of the flow meter is based on the electromagnetic induction. The discharge rate can be
continuously varied by two Howell-Bunger valves (see Figure 2) with an electric motor. The accuracy of the flow meters
are ±0.5% of the discharge rate.
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Figure 3: Plan view of the model test: Control section M1 to M7, L1 to L6 and R1 to R6. M, L and R stands for Main,
Left and Right respectively. Position for PIV-measurements are the red hatched areas (two in the main pipe, one at the
left-branch.)

Particle Image Velocimetry (PIV)

Figure 4: PIV - Set up: Figure left shows the laser, the PIV-box
filled with water to avoid the astigmatism-effect and the High Speed
Camera. Figure right shows the 4 investigation planes for the PIV-
measurements.

PIV is a non-intrusive device to measure velocities
at a 2D-plane within the pipe installation. The ba-
sic parts of a PIV-measurement are a double pulsed
laser which expands to a 2D laser light sheet, a high
speed camera and a special PIV-box to avoid the
astigmatism-effect due to the curved surface of the
plexiglass-pipe. The natural particles in the flow
( Ø0.1mm) are used as seedings. As can be seen in
Figure 4, for each PIV-box 4 planes are used to mea-
sure the velocity vector fields. The physical record-
ing time of the flow is 1 second and the sampling rate
1 kHz. With this set-up the axial secondary flow as
well as the roughness of the plexiglass wall can be
measured. The software to calculate the velocity is
DynamicStudio 2.20.18 from DantecDynamics.

HYDRAULIC EQUATIONS

g
Vhdyn 2

2
1

11, α=

tothΔ
localhΔ

∆h

g
Vhdyn 2

2
2

22, α=

1 2

Figure 5: Definition of the local head loss ∆hlocal

The dimensionless coefficient ζlocal is defined as

ζlocal =
∆hlocal

V 2
main pipe/2g

(1)

whereas ∆hlocal is the local head loss in the Y-bifurcator
without friction losses due to pipe friction, Vmain pipe the
mean velocity in the main pipe and g the gravity. To cal-
culate ∆hlocal the relationship

∆htot =∆hlocal + hf (2)

∆h+ α1
V 2
1

2g
=α2

V 2
2

2g
+ ∆htot (3)

is used. The introduced variables in Eq. 2 and Eq. 3 have following meaning (compare also with Figure 5): ∆htot is
the total head level difference which includes local (∆hlocal) and pipe friction losses (hf ). ∆h is the with the pressure-
sensor measured piezometer head level difference in the hydraulic model test. α is the velocity correction factor for a
non-uniform velocity distribution. V1 and V1 are the measured velocities due to the flow meters before and after the Y-
bifurcator. hf is the pipe friction due to the Darcy-Weisbach equation (see Eq. 4), whereas L is the length, D the diameter,
V the velocity in the pipe and λ the friction coefficient. λ can be calculated with the Colebrook equation (see Eq. 5),
whereas Re is the Reynolds number and k the equivalent sand roughness.
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hf = λ
L

D

V 2

2g
(4)

1√
λ

= −2.0 lg

(
2.51

Re
√
λ

+
k/D

3.71

)
(5)

u+ =
u

uτ
=

1

κ
ln
(y
k

)
+ 8.5 (6)

y+ =
y uτ
ν

(7)

ui
1
κ ln

(
yi
k

)
+ 8.5

=
ui+1

1
κ ln

(yi+1

k

)
+ 8.5

(8)

Finally, to calculate the friction loss hf substitution cylinders need to
be defined along the pipe installation. Depending on the control sec-
tion in Figure 3 for the loss coefficient calculation, 5 substitution cylin-
ders are defined to calculate the friction loss of the pipe installation
between two control sections and subtract it from the total head level
difference (Three cylinders for the Y-bifurcator and one for the main-
and one for the branching pipe).

An essential point in the loss coefficient calculation is the determina-
tion of the equivalent sand roughness in the plexiglass installation to
determine the pipe friction losses hf . A simple method to calculate
the sand roughness is the application of the results of the measured
piezometer head level difference where a linear loss gradient appears.
This certain flow behaviour exist between the bend and the Y-bifurcator and downstream of th Y-bifurcator.

The other method to estimate the equivalent sand roughness is the use of the logarithmic law of the wall by von Kármán
[1930]. The law of the wall is shown in Eq. 6, whereas uτ is the friction velocity, κ the von Kármán constant, y the distance
normal to the pipe wall, u the corresponding axial velocity for the distance y and k the equivalent sand roughness. Solving
Eq. 6 in respect to uτ a set of equations are defined and with PIV-results close to the wall (wall distance yi and the
corresponding axial velocity ui, i denotes the step of the discrete points of the velocity vector field) the sand roughness
can be calculated (see Eq. 8). With Eq. 6 and Eq. 7 the logarithmic law of the wall, which is valid between 30 ≤ y+ ≤
300, can be plotted.

α =
1

u3mean A

∫ A

u3A dA (9)

In Eq. 3 the α coefficients need to be defined. Due to the bend in the installation
a slight secondary effect still exists shortly before the flow enters the Y-bifurcator.
With PIV it is possible to calculate the α value before and after the Y-bifurcator
(compare also with the label PIV-2 and PIV-3 in Figure 3). The analytical equation
for the α coefficient (Preiß ler and Bollrich [1985]) is shown in Eq. 9, whereas A is the cross section area of the pipe and
u the axial velocity due to PIV-measurement.

EXTRAPOLATION OF THE PIEZOMETER HEAD LEVEL DIFFERENCE

The scaling ratio, based on the Reynolds law, between the prototype and the hydraulic model test is 8.13. This means that
a 8.13-times higher velocity would be needed in the hydraulic model test which is not possible to achieve. Therefore, an
extrapolation method is needed for the function of the discharge rate in respect to the piezometer head level difference
∆h. In the work of Klasinc et al. [1992] a second order polynomial equation was used for the extrapolation due to the
quadratic behaviour of the head loss in respect to the discharge rate. In this paper, the extrapolation is done by using
a linear function of the quadratic discharge rate in respect to the head loss. With Matlab(R2008a) it is possible to
find either for a linear- or a quadratic polynomial extrapolation the necessary function to approximate the measured head
loss and extrapolate it beyond the possible discharge rate in the hydraulic model test. The subroutine in Matlab for the
extrapolation method is called polyfit and is based on the least square method.

RESULTS AND DISCUSSION

Roughness

In Figure 6 the results for the determination of the roughness k due to the ∆hlocal - measurements are presented. The
standard value for k of a plexiglass-pipe is 0.0015 (mm). Because of the built-in components (e.g. flanges) the roughness
increases to a value for the main pipe of 0.01 and for the branching pipes of 0.019 (mm), respectively. The roughness k is
also double checked by a PIV-measurement as can be seen in Figure 7. With Eq. 8 the k coefficient yields 0.0187 (mm)
for the first point in the logarithmic layer. Therefore, the chosen roughness for the plexglass installation is 0.019 (mm)
due to the PIV- and ∆hlocal- measurements.

In Figure 8 the velocity profiles four all four planes at the position PIV-2 (compare with Figure 4) are shown. The distorted
velocity profile, which is caused by the secondary flow initialized by the bend is still visible. The calculated mean value of
the alpha coefficient for all four planes is 1.08. This coefficient is calculated for a symmetrical flow distribution with 0.08
(m3/s) in the left and right branch. For a asymmetrical flow distribution (only left branch with 0.08 (m3/s)) the coefficient
increase slightly to 1.10. It can be expected that the α coefficient of 1.08 is in good agreement with the α coefficient of
other flow distributions. Therefore the α coefficient of 1.08 is chosen upstream of the Y-bifurcator. Downstream of the
Y-bifurcator the measured α coefficient is 1.01 due to smoothing effect of the confuser.
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Figure 6: Sand roughness cal-
culated from the ∆hlocal -
measurements where a linear
friction gradient exists.

Figure 7: Left: Velocity profile (blue line)
and contour plot close to the wall at Posi-
tion PIV-2 in Figure 3. Right: Evaluation of
Eq. 6 and Eq. 7.

Figure 8: Velocity profiles made
dimensionless with umax ex-
tracted at the four planes in
Figure 4 with their respective
coefficient α.

Difference between the linear or quadratic polynomial extrapolation of the ζlocal coefficient

Figure 9: Example of ζlocal coefficient extrapolated with a linear polynomial, distribu-
tion: Qleft/Qmain = 0.57. Due to data protection the ζlocal coefficient is made dimen-
sionless with the maximum ζlocal coefficient

In Figure 9 an example of a linear
ζlocal extrapolation is shown. The
red line shows the measured and
the blue line the extrapolated val-
ues. The flow distribution is sym-
metrically (Qleft = Qright). As
can be seen in Figure 9 the loss
coefficient is nearly independent
at a Reynolds number higher than
1 × 106.

In Figure 10 the extrapolated
ζlocal values for a linear- and a
quadratic polynomial extrapola-
tion are shown. All loss coeffi-
cients in Figure 10 are in the hy-
draulic rough area, that is, they
are independent of the Reynolds
number. The loss coefficients are
calculated for four flow distributions (e.g. LC1 is Load case 1 with Qleft/Qmain = 1). The figure to the left in Figure 10
represents the result of the linear and the figure to the right of the quadratic polynomial extrapolation, respectively. Due
to the numerous pressure difference measurements it is possible to calculate the loss coefficient for five pair of control
sections, that is, control section M1-L3/R3, M3-L3/R3, M4-L4/R4, M5-L5/R5 and M6-L6/R6.

Figure 10: Comparison of the linear- (left figure) and quadratic polynomial extrapolation. ζlocal is plotted against the flow
distribution (LC1 to LC4) and for fife different pairs of control sections (M1-L3/R3 to M6-L6/R6). Due to data protection
the ζlocal coefficient is made dimensionless with the maximum ζlocal coefficient
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If one checks the left figure in Figure 10 all 5 five curves (Position M1-L3/R3 to M6-L6/R6) are almost identical, which
is reasonable because ζlocal does not include any friction loss hf and thus is independent of the position of the control
sections as long as no strong secondary flow occurs in the pipe. If the left picture is considered there can be clearly
distinguished unreasonable loss coefficients for LC1-left, where the coefficients have a very high deviation and even
negative quantities. Also, all five lines do not collapse to one single line as good as it can be seen in the left figure.
In summary it can be said that the linear polynomial extrapolation causes less deviation as the quadratic polynomial
extrapolation. The linear extrapolation is therefore more suitable for the determination of the loss coefficient ζlocal.

CONCLUSION

Due to the Reynolds law of similarity very high discharge rates would be necessary in the hydraulic model test. With a
linear extrapolation of the quadratic discharge rate in respect to the piezometer head level difference the loss coefficient
ζlocal can be calculated. It can be shown that the linear extrapolation yields more reasonable results than does the poly-
nomial extrapolation of Klasinc et al. [1992]. The roughness calculation either with PIV or with the measured head level
differences in the hydraulic model test shows almost the same result. The secondary flow cased by the bend is quantified
with the velocity correction factor α and thus it is possible to calculate the loss coefficient ζlocal.
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NOMENCLATURE

α Velocity correction factor (-)
∆h Piezometer head level difference (m)
∆hlocal Local head loss (m)
∆htot Total head level difference (m)
κ von Kármán constant (-)
λ Friction coefficient (-)
ν Kinematic viscosity (m2/s)
ζlocal Local loss coefficient (-)
A Area (m2)
D Inner diameter (m)
g Gravity (m/s2)
hf Friction loss (m)
k Equivalent sand roughness (m)
L Length of a substitution cylinder (m)
Q Discharge rate (m3/s)
Re Reynolds - Number (-)
u Axial velocity (m/s)
u+, y+ Dimensionless distance and velocity (-)
uτ Friction velocity (m/s)
V Mean velocity (m/s)
y Distance from the center line of the pipe (m)
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Particle Image Velocimetry of a Y-bifurcator 
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Abstract: In this paper PIV-Measurements are presented for a Y-bifurcator of a power plant. The 
Plexiglas model test consists of a 42 degree bend, a straight pipe from the bend to the Y-branch and 
two branching pipes with a branching angle of 40 degrees. At several locations PIV-Measurements 
upstream and downstream of the Y-bifurcator are carried out by using natural seeding particles. The 
quality of the seeding particles will be presented by means of the velocity lag and the size of the 
particles. A confidence interval for a typical PIV-Measurement is calculated to demonstrate the 
reliability of the mean velocity. The result of the PIV-Measurement shows the velocity profile and the 
secondary flow within the Plexiglas installation. The secondary flow will also be quantified by the 
velocity correction factor α. Due to the reflection at the Plexiglas surface, the velocity profile will be 
closed with a linear function. The accuracy of this procedure will be checked with a CFD calculation. 
 
Keywords: Hydraulic model test, Particle Image Velocimetry (PIV), secondary flow, velocity correction 
factor, numerical simulation  

1. INTRODUCTION 

As is well-known a pipeline between a reservoir and a power plant is necessary to transport the water 
in the shortest way to the power plant, with low energy losses and with economical low prized pipe 
installation. The penstock consists therefore mostly of a single pipe which distributes the water - 
shortly before the power plant - to several turbines. The distribution is in many cases done by a Y-
bifurcator which is investigated by numerous authors, like (King, 1963), (Lee et al, 1993), (Ruus, 1970) 
and (Williamson & Rhone, 1973). In the Hermann Grengg Laboratory a 8.13 times smaller hydraulic 
model test of a Y-bifurcator is set up to investigate the hydraulic behavior of a dividing flow. As a 
further challenge, a bend is located 18 times the diameter upstream of the Y-bifurcator which causes a 
slight secondary flow in the pipe installation (see Figure 1). This makes it necessary to get more 
information of the velocity and pressure distribution along the pipe installation of the hydraulic model 
test. With the Bernoulli-Equation it is possible to calculate the head loss between two control sections 
up- and downstream of the bifurcator. With 
 

     (1) 
 
one can calculate the head loss hl, whereas z is the geodetic height, β the pressure correction factor, 
P the static pressure, α the velocity correction factor, g the gravity and final V the mean velocity in the 
pipe. The index 1 and 2 denotes a control section before and after the Y-bifurcator where the mean 
velocity V and the pressure P can be measured with flow meters and pressure probes, respectively 
(see also the previous paper (Dobler et al, 2010) for this hydraulic model test). The pressure correction 
factor β is zero because no strong curved streamline occur in the control sections (apart from the 
bend). The velocity correction factor α, which quantifies the axial secondary flow, will be closer 
investigated by means of PIV. The discharge rate for the bifurcation is either 160 l/s (each branch 80 
l/s) or 80 l/s (the flow streams only through the left branch). 
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Figure 1 Set up of the hydraulic model test 

2. SET UP FOR PIV-MEASUREMENTS 

Particle Image Velocimetry (PIV) is an optical method to obtain instantaneous velocity vector fields of 
a 2D-Plane within a fluid. The positions for the measurements are shown in Figure 2. For each PIV-
Box four planes are available to investigate the axial velocity.  
 

 
Figure 2 Position for PIV-Box to measure the axial velocities 

 
The laser for the PIV-measurement is a Litron Laser – Model (LDY303-PIV) with a repetition rate of 
0.2 – 10 kHz with 21.5 – 1.85 mJ. The wave length is 527 nm (green light). The camera is a Photron 
FASTCAM SA-1 with a frame rate of 5.4 kHz and resolution of 1024 times 1024 pixel. The working 
memory has a storage capacity of 16 GB. For a measurement the camera is normally oriented to the 
2D-Laser light sheet (see Figure 3, left) and all the illuminated particles (seeding) are recorded. With 
the images from the camera a cross correlation is done to get the velocity vector field. 
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Figure 3: PIV-Box (filled up with water) to avoid the astigmatism effect of the curved pipe 

surface. Four planes are available to measure the axial velocity 

2.1. Natural seeding 

Du to the size of the hydraulic model test and the reservoir for the water supply it is not possible to add 
seeding with a certain property (density, diameter...) to the flow. Therefore, natural seeding are used 
to measure the velocity within the pipe. To estimate the quality of the natural seeding the average size 
and the density of the seeding is necessary.  

 
Figure 4 The picture on the left shows the raw data of an instantaneous PIV-measurement 
where the mean value of the gray levels is subtracted. The picture on the right shows the 

natural seeding with an optical microscope. 

 
Figure 4 shows a representative example image of a PIV-measurement right after the bend (PIV-BOX 
200, Plane 4), where the natural seeding can clearly be distinguished. The diameter of the natural 
seeding is determined by using a microscope (see Figure 4, right). Several probes had been taken 
from the water reservoir to check the particle diameter. In the majority of cases the particle size was 
between 20 and 50 micrometer. 

2.2. Velocity Lag of the natural seeding 

PIV measures the velocity of the natural seeding and not of the actual flow velocity, carrying the 
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natural seeding. Every particle, depending on the size and density of the particle, has a velocity lag. 
One of the methods to estimate the velocity lag in a laminar flow for a spherical particle within a 
constant acceleration can be made by using the law of Stokes where the forces for gravity, buoyancy, 
resistance and inertia are in equilibrium (see also (Raffel et al, 2007)). With 
 

1   (2) 
and  
 

    
    

  (3) 

 
gives the particle velocity up depending on the time t. The other variables are uend which is the end 
velocity, ψ the relaxation time, ρp the density of the seeding, ρf the density of the fluid, υ the kinematic 
viscosity, r the seeding diameter and finale g the gravity. The density for the particle was estimated by 
using a lower and upper limit of 800 and 1200 kg/m3. This definition is based on the consideration that 
only floating particles (density close to water) can be drawn in by the pumps in the reservoir. The 
diameter of the seeding particle is 50 micrometer which represents the upper limit from the 
investigation with the optical microscope. The result for the end velocity up is shown Figure 5. The 
particle reaches the end velocity, for example 1 m/s, depending on the density, in approximately 7 10-4 
seconds (for other end velocity up the same time is needed). This result can also be interpreted as 
having a low pass filter where every turbulent frequency which is higher than 1.4 kHz is blocked due to 
the inability of the particles (velocity lag) to follow the higher frequency of the flow. 
 

 
Figure 5 Time response of the natural seeding in accelerating flow 

2.3. Confidence interval 

With the software of Dantec Dynamics 2.20.18 the raw date with a recording time of at least 1 second 
and a frame rate between 1000 and 3000 will be evaluated to eliminate any outlier (these are peak, 
range and moving average validation, the recording time in the pretests was longer to check 
convergence). After that, the statistical accuracy of the steady state flow of the measurement is 
checked by a confidence interval with a t-distribution. This implies that the data are nearly normal 
distributed which will be demonstrated with the red marked example point in Figure 6. 
With a confidence level of (1-α)=95%  the reliability of the mean value, based on a t-distribution, is 
 

1 /2 1
√

, 1 /2 1
√  (4) 

 
whereas u is the mean velocity, n the sample size and S the standard deviation.  
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Figure 6 The right figure shows the histogram of the nearly normal distributed longitudinal 

velocities [m/s] taken from the location marked with the red point in the left figure, where the 
mean velocities are shown. Location: Piv-Box 200, Plane 2, 80 l/s. 

 

 
Figure 7 Confidence interval of the mean velocity in longitudinal direction [m/s] 

 
Figure 7 shows the result of the reliability of the mean value of Figure 6. The highest confidence 
interval is ±0.011 m/s with a longitudinal mean velocity of approximately 2 m/s which indicates a good 
measurement. For other locations of PIV-measurements (PIV-Box 201 and PIV-Box 202, for all four 
planes in Figure 2 and Figure 3) equivalent results for the reliability of the mean value (in longitudinal 
and lateral direction) are achieved. The reliability of the standard deviation is also checked with a χ2-
distribution and shows similar good results as for the mean value (not shown in this paper).  

3. VELOCITY CORRECTION FACTOR 

Due to the bend upstream of the Y-bifurcator and the short pipe between the bend and the Y-
bifurcator (18 times the diameter D) a weak secondary flow is still presented. The simply 1D-
consideration of the Bernoulli equation is not valid anymore and a velocity correction factor α is 
introduced to quantify the axial velocity. Generally, α is defined as (taken from (Preißler & Bollrich, 
1980)) 
 

,

,  
  (5) 

 
whereas Ek,real is the kinetic energy of the real flow with velocity uA, Ek,theoretical is the kinetic energy of 
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the mean velocity u, A is the cross section area and dA the differential cross section area.  
 

 
Figure 8 Close up view of the near wall 

region. The last 3 mm to the wall cannot be 
measured 

 
Figure 9 Logarithmic Velocity profile (see 

Equation 7) 

 
For each PIV-Box four planes (see Figure 3) are used to calculate the velocity correction factor α. To 
evaluate a single velocity profile Equation 5 needs to be rewritten as 
 

 
    (6) 

 
whereas π y is the half circumference, y is the integration variable between the range of –R and +R, uy 
is a velocity profile extracted from the four planes in Figure 3 and R is the radius of the pipe. Before 
Equation 6 will be evaluated one further comment is necessary: In Figure 8 is shown a close-up view 
of the boundary layer and the first row of evaluated velocity vectors which are 3 mm away from the 
wall. Due to the reflecting light it is not possible to resolve the last 3 mm and the velocity profile will be 
closed with a linear function. To estimate the accuracy of this method a 3 dimensional logarithmic 
velocity profile of a fully turbulent flow with the same Reynolds number is used which is (taken form 
(Sigloch, 2005), see also Figure 9): 
 

1  (7) 

 
whereas umax is the maximum velocity, ut is the friction velocity, κ is the von Karman-Constant, R is 
the pipe radius and u is the velocity at radius r.  
 

 
Figure 10 Replacement of the logarithmic velocity profile with 

a linear function 

Figure 11 Axial velocities from 
CFD: 4 lines labelled as Plane 
1 to Plane 4 (same position as 

in Figure 3) are chosen to 
calculate the α-values 

The friction velocity is estimated by using  
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0.2 .   (8) 
 
whereas Re is the Reynolds number and umean the mean velocity. 
 
With this generic velocity profile more and more of the logarithmic part will be replaced with a linear 
function as can be seen in Figure 10. The influence on the calculated α-value with the 
linear/logarithmic velocity profile is also plotted in Figure 10: At 0% replacement (no linear function) α 
yields a value of 1.024 (turbulent flow, Re = 106), when 100% is substituted with a linear function then 
the theoretical α value of 2.7 is calculated. For the case where the last 3 mm are replaced with a linear 
function which correspond to a clipping of 2.4 % (3/R = 3/124=2.4%), a α-value of 1.044 is obtained. 
Thus, the calculated α-value is only about 2% larger than the “true” value with 1.024. Therefore, it can 
be expected that the velocity profiles of the secondary flow of the PIV-Measurements plus the linear 
functions, show similar results as with the logarithmic profile of Equation 7 and the added linear 
function.  
 
As already mentioned four flow profiles for each PIV-box are used to calculate one single α value of 
the three dimensional, axial velocity profile. It is therefore necessary to check if the mean value of all 
four planes is close enough to the exact α value of the whole control section. For that purpose a CFD 
calculation is done to simulate the secondary flow induced by the bend. The numerical calculation is 
carried out with Fluent 12.1 with a hybrid mesh of 1.6 million tetrahedron and hexahedron elements. 
The turbulence model is k-e with the standard wall function for the near wall treatment. A velocity 
profile at location “PIV-Box 200” (see Figure 2) will be extracted, to calculate the α value for the whole 
3D profile and also for the four lines (see Figure 11). Equation 5 is evaluated to calculate the alpha 
value for the 3D-Velocity profile and Equation 6 is used to calculate the four α values for the extracted 
velocities at the blue lines in Figure 11. The results are shown in Table 1: For the 3D-Velocity profile a 
α-value of 1.043 [-] is obtained and for the mean value 1.042 [-] which is only about 0.1 [%] lower than 
for the 3D profile. Therefore, it can be expected that the mean of the α-values from the four planes of 
the PIV-measurement represent the axial secondary flow of the whole 3D profile. 
 

Table 1 Comparison of the velocity correction factor of the entire 3D flow profile and of the 
mean of the four velocity flow profiles (numerical simulation, location: PIV-Box 200) 

 
 
The results (discharge 80 l/s) of the PIV-measurement with the linear modification of the near wall 
region are shown in Figure 12 and Figure 13. Shortly before the flow enters the Y-bifurcator (PIV-Box 
201) a weak secondary flow is still visible and the mean value of the four planes for the velocity 
correction factor α yields 1.037; the velocity factor after the Y-bifurcator (PIV-Box 202) yields a slightly 
lower value of 1.030. With these α-values the Bernoulli equation (see Equation 1) can be used to 
calculate the hydraulic loss of the Y-bifurcator including the induced secondary flow of the bend as 
shown in Figure 14. 

4. CONCLUSION 

With the use of natural seeding it is possible to carry out PIV-Measurements to investigate the 
secondary flow up- and downstream of a Y-bifurcator. The quality of this measurement is checked with 
the velocity lag of the particles which shows that the particles can follow the flow up to a frequency of 
1.4 kHz. Additionally, the confidence interval of the mean value of the steady state flow is calculated 
and confirms the good quality of the results. The secondary flow of the pipe installation is quantified 
with the velocity correction factor α, based on the velocity profile of several PIV-measurements. Due to 
the reflection at the inner pipe surface parts of the velocity profile are replaced with a linear function. 
The calculated α-values, including the linear function, show only a ≈2% deviation in comparison to a 
complete logarithmic profile without any linear function. The mean value of the calculated α-values for 
the 2D-Velocity profiles represents accurately enough the 3D-Velocity profile of a control section. This 

- xl -



APPENDIX

 

is double-checked with numerical simulation where the difference between the 2D and 3D-velocity 
profile is only about ≈0.1%. 

 
Figure 12 Velocity profile PIV-

Box 202 

 
Figure 13 Velocity profile PIV-

Box 201 

 
Figure 14 Velocity profile PIV-

Box 200 
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